
Large-Scale
Simulation

Models, Algorithms, and Applications

Dan Chen • Lizhe Wang • Jingying ChenISBN: 978-1-4398-6886-7

9 781439 868867

9 0 0 0 0

K13152

Large-Scale
Simulation

Models, Algorithms, and Applications

Large-Scale Simulation: Models, Algorithms, and Applications
gives you firsthand insight on the latest advances in large-scale
simulation techniques. Most of the research results are drawn from
the authors’ papers in top-tier, peer-reviewed, scientific conference
proceedings and journals.

The first part of the book presents the fundamentals of large-scale
simulation, including high-level architecture and runtime infrastructure.
The second part covers middleware and software architecture for
large-scale simulations, such as decoupled federate architecture,
fault tolerant mechanisms, grid-enabled simulation, and federation
communities. In the third part, the authors explore mechanisms—
such as simulation cloning methods and algorithms—that support
quick evaluation of alternative scenarios. The final part describes
how distributed computing technologies and many-core architecture
are used to study social phenomena.

Reflecting the latest research in the field, this book guides you in
using and further researching advanced models and algorithms for
large-scale distributed simulation. These simulation tools will help
you gain insight into large-scale systems across many disciplines.

COMPUTER ENGINEERING

K13152_Cover_mech.indd 1 5/2/12 11:19 AM

Large-Scale
Simulation

Models, Algorithms, and Applications

This page intentionally left blankThis page intentionally left blank

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Large-Scale
Simulation

Models, Algorithms, and Applications

Dan Chen • Lizhe Wang • Jingying Chen

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120320

International Standard Book Number-13: 978-1-4398-6896-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures xi

List of Tables xv

Foreword xvii

Preface xix

About the Authors xxi

Acknowledgments xxiii

I Fundamentals 1

1 Introduction 3
1.1 Background . 3
1.2 Organization of the Book . 5

2 Background and Fundamentals 7
2.1 High Level Architecture and Runtime Infrastructure 7
2.2 Cloning and Replication . 11

2.2.1 Cloning in Programming Languages 11
2.2.2 Data Replication in Distributed Systems 11
2.2.3 Agent Cloning in Multi-Agent Systems 12
2.2.4 Object Replication in Parallel Object-Oriented

Environments . 13
2.2.5 Fault Tolerance Using Replication 13

2.3 Simulation Cloning . 13
2.3.1 Cloning in Rare Event Simulations 14
2.3.2 Multitrajectory Simulations 14
2.3.3 Cloning in Simulation Software Packages 15
2.3.4 Parallel Simulation Cloning 15
2.3.5 Cloning of HLA-Compliant Federates 16
2.3.6 Fault-Tolerant Distributed Simulation 17

2.4 Summary of Cloning and Replication Techniques 17
2.5 Fault Tolerance . 18
2.6 Time Management Mechanisms for Federation Community . 20

v

vi Contents

II Middleware and Software Architectures 23

3 A Decoupled Federate Architecture 25
3.1 Problem Statement . 25
3.2 Virtual Federate and Physical Federate 27
3.3 Inside the Decoupled Architecture 29
3.4 Federate Cloning Procedure 33
3.5 Benchmark Experiments and Results 35

3.5.1 Experiment Design . 35
3.5.2 Latency Benchmark Results 37
3.5.3 Time Advancement Benchmark Results 37

3.6 Exploiting the Decoupled Federate Architecture 39
3.6.1 Web/Grid-Enabled Architecture 40
3.6.2 Load Balancing . 42

3.7 Summary . 43

4 Fault-Tolerant HLA-Based Distributed Simulations 45
4.1 Introduction . 46
4.2 Decoupled Federate Architecture 48
4.3 A Framework for Supporting Robust HLA-Based Simulations 49

4.3.1 Fault-Tolerant Model 50
4.3.2 Dealing with In-Transit Events 52
4.3.3 Fossil Collection . 54
4.3.4 Optimizing the Failure Recovery Procedure 56

4.4 Experiments and Results . 58
4.4.1 Configuration of Experiments 59
4.4.2 Correctness of Fault-Tolerant Model 60
4.4.3 Efficiency of Fault-Tolerant Model 62
4.4.4 Scalability of the Fault-Tolerant Model 64
4.4.5 User Transparency and Related Issues 65

4.5 Summary . 67

5 Synchronization in Federation Community Networks 69
5.1 Introduction . 70
5.2 HLA Federation Communities 73

5.2.1 Construction Approaches 73
5.2.2 Architectures of Federation Community Networks . . 74

5.2.2.1 Proposed Internal Architecture of the Gate-
way Federates 76

5.2.3 Grid-Enabled Federation Community 76
5.3 Time Management in Federation Communities 78

5.3.1 Problem Statement . 80
5.4 Synchronization Algorithms for Federation Community

Networks . 81
5.4.1 Synchronization Algorithms 83

Contents vii

5.4.2 Proof . 88
5.4.2.1 Compliance to HLA Rules 88
5.4.2.2 Deadlock Free 89
5.4.2.3 Correct TSO Event Transmissions 91

5.5 Experiments and Results . 92
5.5.1 Experiments on Multiple-Layer Federation Community

Networks . 92
5.5.2 Experiments on Peer-to-Peer Federation Community

Networks . 95
5.5.3 Experiments on Grid-Enabled Federation Community

Networks . 96
5.6 Summary . 100

III Evaluation of Alternative Scenarios 103

6 Theory and Issues in Distributed Simulation Cloning 105
6.1 Decision Points . 105
6.2 Active and Passive Cloning of Federates 106
6.3 Entire versus Incremental Cloning 106

6.3.1 Shared Clones . 107
6.3.2 Theory and Issues in Incremental Cloning 108

6.4 Scenario Tree . 110
6.5 Summary . 112

7 Alternative Solutions for Cloning in HLA-Based
Distributed Simulation 115
7.1 Single-Federation Solution versus Multiple-Federations

Solution . 115
7.2 DDM versus Non-DDM in Single-Federation Solution 117
7.3 Middleware Approach . 119
7.4 Benchmark Experiments and Results 120

7.4.1 Experiment Design . 121
7.4.2 Benchmark Results and Analysis 123
7.4.3 Comparing Alternative Cloning Solutions Using TSO

Federates . 124
7.4.4 Comparing Alternative Cloning Solutions Using RO

Federates . 126
7.4.5 Comparing Alternative Cloning Solutions Using Time

Advancement Benchmark Federates 127
7.5 Summary . 127

8 Managing Scenarios 131
8.1 Problem Statement . 131
8.2 Recursive Region Division Solution 134
8.3 Point Region Solution . 137
8.4 Summary . 139

viii Contents

9 Algorithms for Distributed Simulation Cloning 141
9.1 Overview of Simulation Cloning Infrastructure 141
9.2 Active Simulation Cloning 144
9.3 Passive Simulation Cloning 150
9.4 Mapping Entities . 151
9.5 Incremental Distributed Simulation Cloning 154

9.5.1 Illustrating Incremental Distributed Simulation
Cloning . 154

9.5.2 Managing Shared Clones 156
9.6 Summary . 160

10 Experiments and Results of Simulation Cloning
Algorithms 163
10.1 Application Example . 163
10.2 Configuration of Experiments 164
10.3 Correctness of Distributed Simulation Cloning 165
10.4 Efficiency of Distributed Simulation Cloning 167
10.5 Scalability of Distributed Simulation Cloning 170
10.6 Optimizing the Cloning Procedure 171
10.7 Summary of Experiments and Results 174
10.8 Achievements in Simulation Cloning 175

IV Applications 179

11 Hybrid Modeling and Simulation of a Huge Crowd over
an HGA 181
11.1 Introduction . 181
11.2 Crowd Modeling and Simulation 183
11.3 Hierarchical Grid Architecture for Large Hybrid Simulation . 184

11.3.1 Grid System Architecture 184
11.3.2 HLA-Based Simulation Model 184
11.3.3 Hierarchical Grid Simulation Architecture: Overview . 186

11.4 Hybrid Modeling and Simulation of Huge Crowd: A Case
Study . 187
11.4.1 Huge Crowd Scenario 187
11.4.2 Simulation Models . 189

11.4.2.1 Pedestrian Agent Model 189
11.4.2.2 Computational Model of the Crowd Aggre-

gated in the Assembly Area 190
11.4.2.3 Vehicle Agent Model 191

11.4.3 Crowd Simulation over the Hybrid Grid Simulation
Infrastructure . 192

11.5 Experiments and Results . 195
11.5.1 Communication Latency 196
11.5.2 Crowd Simulation Outputs 196

Contents ix

11.5.3 Performance Evaluation 198
11.6 Summary . 199

12 Massively Parallel Modeling & Simulation of a Large
Crowd with GPGPU 201
12.1 Introduction . 201
12.2 Background and Notation . 203
12.3 Hybrid . 205
12.4 Case Study of Confrontation Operation Simulation 208

12.4.1 Simulation of a Crowd in a Confrontation Operation . 208
12.4.2 Dynamics Analysis via Entropy Calculation 209

12.5 Aided by GPGPU . 211
12.5.1 Parallelization of Crowd Simulation 211
12.5.2 Evaluation of Performance and Energy Efficiency . . . 212

12.5.2.1 GPGPU-Aided Confrontation Operation
Simulation 212

12.5.2.2 Performance Evaluation and Energy
Efficiency Analysis 214

12.6 Summary . 216

References 219

Index 231

This page intentionally left blankThis page intentionally left blank

List of Figures

2.1 Functional view of an HLA federation. 8
2.2 Overview of HLA federation and RTI. 9

3.1 Abstract model of a simulation federate. 26
3.2 Decoupled federate architecture. 28
3.3 Executing an RTI call in the decoupled architecture. 30
3.4 Messaging between virtual federate and physical federate . . 31
3.5 Conveying callbacks to the virtual federate. 32
3.6 Saving RTI states. 34
3.7 Federate cloning. 34
3.8 Architecture of benchmark experiments for decoupled federate

architecture . 36
3.9 Latency benchmark on decoupled federate versus normal fed-

erate with payload 100 bytes (in milliseconds). 38
3.10 Latency benchmark on decoupled federate versus normal fed-

erate with payload 1,000 bytes (in milliseconds). 38
3.11 Latency benchmark on decoupled federate versus normal fed-

erate with payload 10,000 bytes (in milliseconds). 39
3.12 Time advancement benchmark on decoupled federate versus

normal federate (times/sec). 39
3.13 Model supporting Web/Grid-Enabled Architecture. 41
3.14 Load balancing model for simulation model. 43

4.1 Normal federate and decoupled federate architecture. 48
4.2 Fault-tolerant model upon dynamic LRC substitution. . . . 50
4.3 Illustration of straightforward failure recovery procedure. . . 51
4.4 Illustration of the problems in dealing with in-transit events. 53
4.5 Example for calculating timestamp of events to be disposed. 55
4.6 Physical federate pool approach 57
4.7 Illustration of the optimized failure recovery procedure using

PhyFed pool. 58
4.8 A simple distributed supply-chain simulation. 59
4.9 Simulation execution time of different experiments. 63
4.10 Percentage of saved execution time with failure occurring at

different stages. 63

xi

xii Large-Scale Simulation: Models, Algorithms, and Applications

4.11 Initial federation for the ten sets of experiments for the scal-
ability test. 65

4.12 Simulation execution times with increasing number of
federates. 65

4.13 Overhead of robust federates (fault incurred) versus normal
federates without faults. 66

4.14 Simulation execution times with failure incurred in the middle
stage. 66

4.15 Percentage of saved execution time with increasing number of
federates (fault occurs at middle stage). 67

5.1 Illustrating (A) flat federation and (B) federation community. 71
5.2 Typical approaches to construction of federation community. 73
5.3 Illustrating various architectures of federation community net-

works. 75
5.4 A simplified view of the internal architecture of a gateway

federate. 77
5.5 Two examples of Grid-enabled federation community. 79
5.6 A simple federation community scenario. 82
5.7 The fragment of a federation community subject to constraint

of message switching. 84
5.8 Synchronization algorithm for multiple-layer federation com-

munity networks. 85
5.9 Synchronization algorithm for peer-to-peer federation commu-

nity networks. 87
5.10 Synchronization benchmark scenarios for set-based federation

community networks. 93
5.11 Synchronization benchmark scenarios for hierarchical federa-

tion community networks. 94
5.12 Synchronization benchmark results for a flat federation over

a low-performance platform. 94
5.13 Synchronization benchmark results for hierarchical federation

community and set-based federation community. 95
5.14 Synchronization benchmark results for a flat federation versus

a simple peer-to-peer federation. 97
5.15 Synchronization benchmark results for peer-to-peer federation

communities over a high-performance platform. 98
5.16 Testbed for benchmark of Grid-enabled federation community

over WAN. 99
5.17 Synchronization benchmark results for Grid-enabled federa-

tion community. 100

6.1 Entire cloning versus incremental cloning. 107
6.2 A typical shared clone. 108
6.3 Relationship between terms related to shared clones. 110

List of Figures xiii

6.4 Example of incremental cloning and scenario tree. 111

7.1 Example of single-federation solution and multiple-federation
solution. 116

7.2 Example of routing space and regions. 118
7.3 Example of middleware for cloning. 120
7.4 Example of RTI++ implementation. 120
7.5 Test bed for MF solution. 121
7.6 Test bed for DSF and NDSF solution. 122
7.7 Execution time comparison between different cloning solu-

tions using TSO federates. 124
7.8 CPU utilization comparison between different cloning solu-

tions using TSO federates. 125
7.9 Execution time comparison between different cloning solu-

tions using RO federates. 126
7.10 CPU utilization comparison between different cloning solu-

tions using RO federates. 126
7.11 Execution time comparison between cloning solutions using

time advancement federates. 128
7.12 CPU utilization comparison between cloning solutions using

time advancement federates. 128

8.1 Formation of a scenario tree. 132
8.2 An example of a scenario tree. 133
8.3 Development of binary scenario tree. 134
8.4 Binary scenario tree and scenario region code. 135
8.5 Coding the scenario tree. 138
8.6 Point region allocation flow. 139

9.1 RTI++ and internal modules. 142
9.2 Cloning Manager module. 143
9.3 Active simulation cloning. 145
9.4 Replicating states for new clones. 148
9.5 Coordinating federates in state replication. 149
9.6 Passive simulation cloning. 152
9.7 Mapping RTI entities. 153
9.8 A distributed simulation example. 155
9.9 Executing simulation with incremental cloning. 156
9.10 Internal design of the callback processor. 157
9.11 Checking sensitive events. 158
9.12 Processing events in pending passive cloning. 160

10.1 A simple distributed supply-chain simulation. 164
10.2 Execution time for examining multiple scenarios. 169
10.3 Percentage of saved execution time using entire and incremen-

tal cloning. 169

xiv Large-Scale Simulation: Models, Algorithms, and Applications

10.4 Initial federation for the nth set of experiments for the scala-
bility test. 170

10.5 Execution time for examining three policies with increasing
number of federates. 171

10.6 Percentage of saved execution time with increasing number of
federates. 172

10.7 Physical federate pool approach 173
10.8 Experiments for studying physical federate pool approach. . 174

11.1 Grid computing system architecture. 185
11.2 Model of HLA-based simulation. 185
11.3 Concept model of the hierarchical Grid simulation

architecture. 186
11.4 Large-scale distributed simulation in a hierarchical Grid ar-

chitecture. 187
11.5 Gateway service architecture. 188
11.6 Illustrating the huge crowd scenario. 189
11.7 State transition of a pedestrian agent in terms of behaviors. 190
11.8 Structure of the crowd evacuation simulation system. 194
11.9 Conceptual view of the partitions of the scenario. 195
11.10 Snapshot of pedestrians in the square at simulation

time 9000. 197
11.11 Snapshot of pedestrians and vehicles on a road at simulation

time 9030. 198
11.12 Snapshot of the vehicles on a road at simulation time 9090. 198

12.1 A gravitational field (left) and a repulsive field (right). . . . 204
12.2 Conceptual view of the vector field submodel and the behavior

model. 206
12.3 Simulation of a crowd in a confrontation operation. 207
12.4 Combined force acted on an agent. 209
12.5 Evolvement of a simulated crowd in a confrontation

operation. 210
12.6 The information entropy of the case studies of COS. 211
12.7 Execution task graph of a parallelized simulation scheme. . 214
12.8 Execution time of alternative COS systems (agent number 6

8000). 216

List of Tables

3.1 Configuration of Experiment Test Bed for Examining Decou-
pled Federate Architecture 36

4.1 Declaration Information of the Federates. 60
4.2 Configuration of Experiment Test Bed 61
4.3 System Object/Interaction Classes in the Extended FOM . 68

7.1 Comparison between Single-Federation and
Multiple-Federations Solutions 117

7.2 Notations of the Federate Attributes 124
7.3 Index of the Experiments . 124

8.1 Comparison between the Recursive Region Division and the
Point Region Solutions . 140

10.1 Declaration Information of the Federates 165
10.2 Configuration of Experiment Test Bed 166
10.3 Experiments for Verifying the Correctness of Cloning Tech-

nology . 167
10.4 Experiments for Studying the Efficiency of Cloning Technol-

ogy . 168
10.5 Comparison between Normal and Pool Approach 173

11.1 Features of Simulation Models 192
11.2 Test Bed Description . 195
11.3 Performance of Sequential and Parallelized COS Systems. . 199

12.1 Configuration of the Test Bed. 213
12.2 Performance of Sequential and Parallelized COS Systems . . 215

xv

This page intentionally left blankThis page intentionally left blank

Foreword

I am delighted to introduce this interesting book on large-scale simulation
technologies. By simulation, I mean a computer-based simulation, which is a
computer application that attempts to formulate the dynamics of a real or
imagined system in a certain abstract level. With the fast increasing complex-
ity of problem domains, people often need to identify a particularly large and
complex system exactly as something like “a modern battlefield,” “a global
supply chain,” and “a global climate model,” etc.

For more than a decade, research in this direction has been very produc-
tive with a large number of publications of high quality. This direction has
been put to more and more successful applications in many diverse domains.
Undoubtedly, a book can play a significant role in maturing a research di-
rection. I appreciate the three authors’ efforts to unify the field by bringing
in disparate topics via a series of solid research work of their own and other
exciting papers.

The authors’ interpretations of the architectures for large-scale simulation,
simulation cloning, fault tolerance, synchronization mechanisms, and agent-
based models are of great value for undergraduate/postgraduate students,
researchers, and engineers who are exploring the simulation discipline or the
subdomain of modeling and simulation of complex systems. The book provides
a comprehensive background knowledge foundation that identifies very helpful
ideas, contemporary methods, and solid examples of the research work. For
researchers and instructors of the modeling and simulation of complex systems,
this book reviews much they have been familiar with but certainly gives them
new insights into issues and methods, and assures their recognition of the
latest advances in the findings.

I was inspired by this book project at the very beginning. The book now
appears to be a much better manuscript. The resulting work is really thought-
ful, creative, and comprehensive. I highly recommend this book.

Lawrence T. Yang
Department of Computer Science

St. Francis Xavier University

xvii

This page intentionally left blankThis page intentionally left blank

Preface

A computer-based simulation model formulates a real-life or hypothetical sys-
tem that is executable over computers so that the simulated system can be
analyzed to see how it evolves over time. Computer simulation has become an
essential part of modeling many natural systems in physics, chemistry and bi-
ology, and human systems in economics and social science (the computational
sociology) as well as in engineering to gain insight into the operation of those
systems.

Large-scale simulation empowered by high-performance computing enables
a complex simulation program to be executed on a parallel or distributed
computer system. A large-scale distributed simulation may be constructed
by linking together existing simulation models across multiple locations to
achieve reusability and interoperability. The past decade has witnessed an ex-
plosion of interest in large-scale distributed simulations due to the increasing
scale, resolution, and complexity of systems to be studied. The culmination
of these activities includes the advent of the High Level Architecture (HLA),
an IEEE standard to facilitate interoperability and reuse among simulation
models. Recently, with the advance of computing technologies, like Grids,
modern cyberinfrastructure, Web services, and multi-core/many-core archi-
tectures, more research efforts have been performed on large-scale simulation
techniques. However, there is no specific book that reflects the latest research
advances in this field. This book is devoted to filling this gap and to sum-
marizing the authors’ research achievements in connection with important
research issues for large-scale simulations since 2000. Most of the research
results in this book have been published in top-tier, peer-reviewed, scientific
conference proceedings and journals. By complementing an introduction and
foundation of the research, this book organizes the study in a clear manner:
model → algorithm → applications. This book discusses the advanced models
and algorithms for large-scale distributed simulation. It is organized in four
parts:

• Part I: Fundamentals of the study of large-scale simulation, including
background, HLA/RTI, and related work

• Part II: Middleware and software architecture for large-scale simula-
tions, for example, decoupled federate architecture, fault-tolerant mecha-
nism, Grid-enabled simulation, and federation community

xix

xx Large-Scale Simulation: Models, Algorithms, and Applications

• Part III: Mechanisms that support quick evaluation of alternative sce-
narios, which mainly consist of simulation cloning methods and algorithms

• Part IV: Important applications of large-scale simulation for the study
of social phenomena using distributed computing technologies and many-
core architecture

The authors would like to express their deep gratitude to Professor Stephen
J. Turner. This erudite and perspicacious scholar gave us massive support in
faith, with great patience, throughout the course of most research projects
in connection with this book. Special thanks to Professor Wentong Cai of
Nanyang Technological University, for his unreserved contributions and ideas.
Through him, we have acquired countless knowledge in this area.

Dan Chen, Lizhe Wang, and Jingying Chen

About the Authors

Dr. Dan Chen is a full professor and the director of the Scientific Computing
Lab with the School of Computer Science, China University of Geosciences,
China. His research interests include computer-based modeling and simula-
tion, high-performance computing, and neuroinformatics. Dr. Chen has pub-
lished more than 60 research papers in these research areas. He was a Joint
Higher Education Funding Council for England (HEFCE) Research Fellow at
the University of Birmingham (UoB), and the University of Warwick, U.K.
Before he joined UoB, he was an Associate Research Fellow at the Singapore
Institute of Manufacturing Technology, Singapore. He received a B.Sc. degree
from Wuhan University, China, an M.Eng. degree from the Huazhong Uni-
versity of Science and Technology, China, and another M.Eng. degree and his
Ph.D. degree from Nanyang Technological University, Singapore.

Dr. Lizhe Wang is a full professor at the Center for Earth Observation
and Digital Earth (CEODE), the Chinese Academy of Sciences. Before he
joined the CEODE, Dr. Wang was a research scientist and principal research
engineer at the Pervasive Technology Institute, Indiana University. Dr. Wang
was awarded the Research Innovation Award in 2010 by the HP Lab. Dr.
Wang has published more than 70 papers and 6 books. Dr. Wang has served
as program chair/general chair for more than 10 conferences/workshops, and
program committee member for more than 50 conferences/workshops. Dr.
Wang’s research interests include high-performance computing, Grid comput-
ing and Cloud computing. Currently Dr. Wang is leading a group at the
Division of Data Technology and carries out his research on high-performance
storage service and massive data processing for remote sensing.

Dr. Jingying Chen is a full professor with the National Engineering
Center for E-Learning, Central China Normal University, China. Her research
interests include image processing, computer vision, pattern recognition, and
human–machine interface. She was a post-doctor in INRIA, France, and a
Research Fellow with the University of St. Andrews and the University of
Edinburgh, U.K. She received her Bachelor’s and Master’s degrees from the
Huazhong University of Science and Technology, China, in 1996 and 1998,
respectively. She received her Ph.D. degree from the School of Computer En-
gineering, Nanyang Technological University, Singapore, in 2002.

xxi

This page intentionally left blankThis page intentionally left blank

Acknowledgments

This work was supported in part by National Natural Science Foundation of
China (grant No. 60804036), the Specialized Research Fund for the Doctoral
Program of Higher Education (grant No. 20110145110010), the Programme
of High-Resolution Earth Observing System (China), the Fundamental Re-
search Funds for the Central Universities (CUGL100608, CUG, Wuhan), the
Program for New Century Excellent Talents in University (grant No. NCET-
11-0722), Natural Science Foundation of Hubei Province of China (grant No.
2011CDB159), and the CNU Talent Programme (grant No. 120005030223).

Dan Chen gratefully acknowledges support from the Birmingham-Warwick
Science City Research Alliance. Lizhe Wang’s work in this book was funded
by “One Hundred Talents” Programme of Chinese Academy of Sciences.

xxiii

This page intentionally left blankThis page intentionally left blank

Part I

Fundamentals

This page intentionally left blankThis page intentionally left blank

1

Introduction

CONTENTS

1.1 Background . 3

1.2 Organization of the Book . 5

1.1 Background

Simulation technology is commonly used to study physical systems or imag-
ined systems [41]. A complex system can be modeled as a simulation program
(or programs), which simulates the system’s behavior on computers. The sim-
ulations can be used to perform what-if analysis on the simulated system, to
predict the different results of varying key parameters/estimates, or to exam-
ine a series of solutions prior to making the final implementation decision.

Sometimes it is unmanageable, expensive, and/or risky to construct a real
system for analysis. For example, people want to explore the eruption process
of an active volcano. Astronomers attempt to discover the evolution of the
Universe. Researchers may have to choose to use simulation to emulate the
activities of these systems. Simulation technology is safer, more feasible and
flexible, and possibly much less costly in practice. Simulation can overcome the
inconvenience incurred by the span in time and geographic distribution. Days
or even years of activity can be executed in a very short time in simulation ex-
ecutions. Thus, simulation can provide prediction to support decision-making.
Furthermore, the external environment is unlikely to impact the execution of
simulations while it often limits the operation of real systems.

Nowadays, simulation technology has a wide application spectrum, from
training to gaming, from scientific research to business operation, and from
military to civilian purposes. It is involved in a variety of human and natu-
ral activities. Battlefield simulation environments over networked computers
have already replaced the sand table for plotting military operations. Flight
simulators can help in training pilots safely and efficiently from the Boeing
series to Longbow Apache. Networked multimedia together with simulation
facilitates the creation of new exciting automated learning environments [94].
Many PC games like Command&Conquer construct an amazing virtual world
for many people [68]. As for scientific research, algorithms and prototypes

3

4 Large-Scale Simulation: Models, Algorithms, and Applications

are often developed based on simulation models. In practice, system design-
ers often exploit simulations to verify the proposed designs; thus they can
perform their work conveniently and efficiently [32]. Industry and business
collaborations also benefit from simulation for decision support and produc-
tivity enhancement [79]. Simulation can help companies facilitate the design,
evaluation, and optimization of their daily operations.

There are different types of simulations, such as continuous simulation and
discrete event simulation, parallel and distributed simulation. In continuous
simulation, states change continuously over simulation time, but in discrete
event simulation, system states change at discrete points in time [41]. The
events represent the system activities or changes of system state. An associ-
ated timestamp denotes the simulation time at which an event occurs. For
example, in a supply-chain simulation [44], the arrival of a customer order can
be modeled as an event.

The simulation of a complex system can be divided into smaller compo-
nents to form a parallel simulation. Each component, known as a Logical
Process (LP), models a subset of the system. Parallel simulation concurrently
executes LPs over multiple processors to reduce execution time.

Distributed simulation is an important technology that enables a simula-
tion program to be executed on a distributed computer system. A large-scale
simulation may be constructed by linking together existing simulation models
at possibly different locations. For example, distributed simulation technology
meets the pressing need of supply-chain simulation, as a supply-chain often
involves multiple companies across enterprise boundaries [44]. Each of the
companies participating in a supply-chain simulation may already have their
existing simulation models, which can be developed independently based on
heterogeneous platforms [108]. Distributed simulation technology based on a
common standard can facilitate the interoperability among these distributed
simulation models.

Distributed simulation has been the focus of the U.S. defense industry for
over a decade. These defense-related efforts originated with SIMNET [93] and
evolved into the Distributed Interactive Simulation (DIS) protocol initiative
[28, 64]. To meet the demand for standardization on a higher abstraction level,
the Defense Modeling and Simulation Office (DMSO) sponsored the definition
and development of the High Level Architecture (HLA) for modeling and sim-
ulation (M&S). The HLA defines an architecture for reuse and interoperation
of simulations. The HLA supports component-based simulation development;
the components are referred to as simulation federates [72]. Thus, a set of sim-
ulation federates, possibly developed independently, can be linked together to
form a large federation. The HLA has been approved as an open standard
through the Institute of Electrical and Electronic Engineers (IEEE) [66]. The
Runtime Infrastructure (RTI) is the software to support an HLA-compliant
distributed simulation.

In recent years, we have witnessed the rapidly increasing Complexity and
scales of problem domains; there exists a pressing need for technologies to

Introduction 5

sustain simulations of large sizes. With the advance of computing technologies,
like Grids, modern cyberinfrastructure, Web services, and multi-core/many-
core architectures, more research efforts have been performed on large-scale
simulation techniques.

1.2 Organization of the Book

Including the introduction chapter, this book contains twelves chapters in to-
tal. Chapter 2 introduces the basics of HLA and RTI services. This chapter
also introduces the work related to large-scale simulations, including simula-
tion cloning, fault tolerance, and synchronization in federation communities.

Chapter 3 introduces a novel Decoupled federate architecture to enable
federate cloning at runtime. The decoupled architecture ensures the correct
replication of federates and facilitates fault tolerance at the RTI level. This
chapter gives preliminary benchmark experiments to study the extra overhead
incurred by the Decoupled federate architecture against the normal federate.
This chapter also discusses the exploitation of the Decoupled federate ar-
chitecture used in distributed simulation cloning. A fault-tolerant model is
proposed to provide runtime robustness. A Web/Grid-enabled architecture is
introduced to support the use of HLA in a Web/Grid environment. The ad-
vantages of the decoupled architecture in providing load balancing are also
discussed.

Chapter 4 presents a generic model and software framework that supports
fault-tolerant large simulations based on the HLA. The framework deals with
failure with a dynamic substitution approach. A sender-based method is de-
signed to ensure reliable in-transit message delivery, which is coupled with a
fossil collection algorithm. Experiments have been carried out to validate and
benchmark the fault-tolerant federates.

Chapter 5 details a synchronization mechanism for federation community
networks. A mathematical proof is given to examine the mechanism’s correct-
ness. The synchronization mechanism is suited for various types of federation
community networks and supports the reusability of legacy federates. It also
allows simulation users to benefit from both the Grid computing technologies
and federation community approach.

Chapter 6 introduces the foundation theory of distributed simulation
cloning. Basic concepts of the technology are defined and critical research
issues are identified. This chapter outlines various types of federate cloning
and scenario representation in distributed simulations.

Chapter 7 discusses the issues involved in cloning distributed simulations
based on the HLA, as well as proposing tentative solutions. Alternative solu-
tions are compared from both the qualitative and quantitative points of view.
A middleware approach is suggested to hide the implementation Complexity

6 Large-Scale Simulation: Models, Algorithms, and Applications

and provide reusability and user transparency to existing simulation federates.
To measure the trade-off between Complexity and efficiency, this chapter in-
troduces a series of experiments to benchmark various solutions at the RTI
level.

Chapter 8 describes the method of using Data Distribution Management
(DDM) to partition concurrent scenarios in a cloning-enabled distributed sim-
ulation. Two candidate solutions are introduced for managing scenarios and
identifying each clone and scenario. This chapter details the design of these
two solutions and analyzes their advantages and drawbacks. This chapter also
discusses how the partitioning mechanism is implemented using a middleware
method to address reusability issues.

Chapter 9 first describes the design and functionalities of the infrastructure
enabling distributed. Second, this chapter details the algorithms of simulation
cloning at Decision points, including state saving and replication, the method
of coordinating and synchronizing clones, etc. Third, an incremental cloning
mechanism is covered in detail, which is designed to replicate only those feder-
ates whose states will be affected. This mechanism employs an event checking
algorithm for sharing federates in multiple scenarios, and supports correct
HLA semantics. This chapter also summarizes the entire cloning mechanism,
which makes clones of all federates at the same time.

The performance of cloning mechanisms is examined in Chapter 10, and
their correctness is established as well. Experiments have been carried out to
compare the execution time of entire cloning and incremental cloning-enabled
federates using an example of a simple supply-chain simulation. Experimental
results indicate that the proposed cloning technology provides correct dis-
tributed simulation cloning and can significantly reduce the execution time
for evaluating different scenarios of distributed simulations. Moreover, the in-
cremental cloning mechanism significantly surpasses entire cloning in terms of
execution efficiency.

Chapter 11 introduces a simulation of evacuating thousands of pedestrians
in a large urban area on top of a hierarchical Grid infrastructure. The Grid
simulation infrastructure can facilitate a large crowd simulation comprising
models of different grains and various types in nature.

In Chapter 12, we present a method based on the concept of vector field
to formulate the way in which external stimuli may affect the behaviors of
individuals in a crowd. This study adopts GPGPU to sustain massively par-
allel M&S of a confrontation operation involving a large crowd. Experimental
results indicate that the approach is efficient in terms of both performance
and energy consumption.

2

Background and Fundamentals

CONTENTS

2.1 High Level Architecture and Runtime Infrastructure 7

2.2 Cloning and Replication . 11

2.2.1 Cloning in Programming Languages . 11

2.2.2 Data Replication in Distributed Systems 11

2.2.3 Agent Cloning in Multi-Agent Systems . 12

2.2.4 Object Replication in Parallel Object-Oriented

Environments . 13

2.2.5 Fault Tolerance Using Replication . 13

2.3 Simulation Cloning . 13

2.3.1 Cloning in Rare Event Simulations . 14

2.3.2 Multitrajectory Simulations . 14

2.3.3 Cloning in Simulation Software Packages 15

2.3.4 Parallel Simulation Cloning . 15

2.3.5 Cloning of HLA-Compliant Federates . 16

2.3.6 Fault-Tolerant Distributed Simulation . 17

2.4 Summary of Cloning and Replication Techniques 17

2.5 Fault Tolerance . 18

2.6 Time Management Mechanisms for Federation Community 20

This chapter first introduces the basic concepts of HLA and RTI. The HLA
provides the underlying infrastructure for the mechanisms developed in this
study. The second section describes existing replication techniques used in soft-
ware engineering and distributed systems. The third section presents previous
research work on cloning in simulation. Some specific features and require-
ments for the proposed distributed simulation cloning mechanisms are also
presented.

2.1 High Level Architecture and Runtime Infrastructure

The Defense Modeling and Simulation Office (DMSO) sponsored and devel-
oped the HLA standard [81]. The DMSO provides a full-time focal point
for information concerning Department of Defense modeling and simulation
(M&S) activities. The HLA defines a software architecture for modeling and

7

8 Large-Scale Simulation: Models, Algorithms, and Applications

Data Collectors

Passive Viewers

Command and Control Components
…

Runtime Infrastructure

Real System

Real Time

Interface

Support

Utilities
Simulations

 Online

Simulations

FIGURE 2.1
Functional view of an HLA federation.

simulation. The HLA is designed to provide reuse and interoperability of sim-
ulation components. The simulation components are referred to as federates.
A simulation federation can be created to achieve some specific objective by
combining simulation federates. The HLA supports component-based simula-
tion development in this way [33]. A functional view of an HLA federation is
illustrated in Figure 2.1.

The HLA federation is a collection of federates (observers, live participants,
simulations, etc.) interacting with each other for a common purpose, for ex-
ample war-gaming. These federates interact with each other with the support
of the Runtime Infrastructure (RTI) and the use of a common Federation
Object Model (FOM).

In the formal definition, the HLA standard comprises four main compo-
nents: HLA Rules, Object Model Template (OMT), Interface Spec-
ification [66], and Federation Development and Execution Process
(FEDEP) [67]. The HLA rules define the principles of HLA in terms of re-
sponsibilities that federates and federations must uphold. Each federation has
an FOM, which is a common object model for the data exchanged between
federates in a federation. The OMT defines the meta-model for all FOMs
[72]. The HLA Interface Specification identifies the RTI services available to
each federate and the functions each federate must provide to the federation.
The FEDEP mainly defines a process framework for federation developers,
including the necessary activities to build HLA federations.

As defined in the OMT, an “object” represents an entity with a distinct
identity created in a federate, which belongs to a certain “class” and defines
a set of named data called “attributes.” An “interaction” is a collection
of data sent at one time through the RTI to other federates, with accom-
panying “parameters,” representing some occurrence in a federate. Objects
and interactions are identified by unique handles assigned by the RTI. In the

Background and Fundamentals 9

context of an HLA-compliant simulation, events can be updating attributes
of an object or sending an interaction. Any federation model can be written
in terms of objects and interactions [72], in which (1) any occurrence can be
modeled as an interaction, (2) if an entity is to be modeled such that it has
persistent state, the entity should be represented as an object.

The HLA is an architecture defining the rules and interface, whereas the
RTI is the software conforming to the HLA standard, and is used to support
a federation execution. Figure 2.2 gives an overview of an HLA federation
and the RTI [72]. The RTI provides a set of services to the federates for
data interchange and synchronization in a coordinated fashion. The RTI ser-
vices are provided to each federate through its Local RTI Component (LRC)
[1]. The RTI can be viewed as a distributed operating system providing ser-
vices to support interoperable simulations executing in distributed computing
environments [56]. The HLA exhibits three features [72]: a layered architec-
ture, data abstraction architecture, and event-based architecture. The HLA
architecture separates the simulation model from the infrastructure functions.
Thus, all behavior specific to a given simulation model is in the federate, and
the infrastructure contains functions generic to simulation interoperability. In
a distributed federation, the LRC contains the network functions needed to
facilitate distribution. The data abstraction architecture frees federates from
retaining references to other federates. The event-based architecture provides
implicit invocations to call back all receiving federates for an event and does
not require the sending federate to know the receivers.

Interface

Federate

FederateAmbassador

RTIambassador

Runtime Infrastructure

 Federation Management Object Management

 Time Management Ownership Management

 Declaration Management Data Distribution Management

Federate

FederateAmbassador

RTIambassador

FIGURE 2.2
Overview of HLA federation and RTI.

A total of six service categories are defined in the specification, namely Fed-
eration Management, Declaration Management, Object Management, Owner-
ship Management, Data distribution Management, and Time Management [1].
The definition and functionalities of these RTI services are given as follows.

Federation management services provide methods such as creating federa-
tions, joining federates to federations, observing federation-wide synchroniza-
tion points, effecting federation-wide saves and restores, resigning federates
from federations, and destroying federations.

10 Large-Scale Simulation: Models, Algorithms, and Applications

Declaration management services include publication, subscription, and
supporting control functions. Using services defined in this category, federates
declare object class attributes or interactions (predefined in the OMT) that
they intend to publish (produce) or subscribe (consume).

Object management services include instance registration and instance
updates for the object producers. On the other hand, they provide instance
discovery and reflection for the object consumers. They also support methods
for sending and receiving interactions, controlling instance updates based on
consumer demand, and other miscellaneous functions.

Ownership management services can be used to transfer ownership of in-
stance attributes among federates. The ability to transfer ownership is in-
tended to support the cooperative modeling of a given object instance across
a federation. The services provided support both push and pull mechanisms
for ownership transfer.

Data distribution management (DDM) services are employed by the data
producers and consumers to assert properties of their data or to specify their
data requirements respectively based on specified regions. The RTI then dis-
tributes the data from the producers to the consumers based on the matches
between the properties and the requirements. This management controls the
efficient routing of class attributes and interactions via the RTI.

Time management is concerned with the mechanisms for controlling the
advancement of each federate along the federation time axis. The services in
this group synchronize event delivery among federates. Time advances are
coordinated by the RTI with object management services so that informa-
tion is delivered to federates in a causally correct and ordered fashion. Time
regulating federates may send timestamp ordered (TSO) events while time-
constrained federates are able to receive TSO events in time order. Each reg-
ulating federate must specify a “lookahead” value and ensure that it will not
generate any TSO event earlier than its current time plus lookahead [1]. A
federate can be both time regulating and time constrained, either of them, or
neither. Each federate’s LRC maintains two internal event queues, that is, a
TSO queue and a FIFO receive queue. When TSO events arrive at a time-
constrained federate, the LRC buffers these events in the TSO queue [1]. After
requesting a time advance, the federate is passed through all events in the TSO
queue with timestamp less than or equal to the federate’s granted time. As for
the events without timestamp, known as Receive Order (RO) events, the LRC
places them in the receive queue in the order in which they arrive. Information
in the receive queue is immediately available to the federate.

The RTI services are available as a library (C++ or Java) to the feder-
ate developers. Within the RTI library, the class RTIAmbassador [1] bundles
the services provided by the RTI. A federate may invoke operations on the
interface to request a service (federate-initiated service) from the RTI. The
FederateAmbassador [1] is a pure virtual class that identifies the “callback”
functions each federate is obliged to provide (RTI-initiated) service. The fed-
erate developers need to implement the FederateAmbassador. The callback

Background and Fundamentals 11

functions provide a mechanism for the RTI to invoke operations and commu-
nicate back to the federate.

The HLA specification leaves the RTI implementation details to the RTI
implementers while defining a standard interface. Nowadays there are various
RTI software available to the developers, including both commercial and aca-
demic implementations. These include the RTI Next Generation (RTI-NG)
implementation sponsored by the DMSO [82], the pRTI developed by Pitch
AB [2], the Federated Simulations Development Kit developed by the Georgia
Tech PADS research group [55], etc. The research work studied in this book
is based on the DMSO RTI-NG software; however, the implementation need
not be specific to this software. The standard HLA interface enables the use
of different RTI implementations for the work discussed in this book.

2.2 Cloning and Replication

Cloning and replication have been widely used in software engineering and
distributed applications for various objectives, such as improving performance,
enhancing system reliability and scalability, etc. In this section, the terms
“cloning” and “replication” are interchangeable with respect to the existing
work, while in Chapter 6 a distinction is made between them in our theory of
distributed simulation cloning.

2.2.1 Cloning in Programming Languages

Methods of procedure cloning have been studied in the domain of program-
ming languages, such as those presented by Cooper et al. and Vahid [29, 109].
Their approaches aim at optimizing code generation for the compiler, by creat-
ing clones of procedure bodies. By carefully partitioning the calls, the compiler
ensures that each clone inherits an environment that allows for better code
optimization.

Object cloning was discussed in [92] and is used for eliminating paramet-
ric polymorphism and minimizing code duplication to overcome some typical
inferior performance of object-oriented programs. For instance, polymorphic
functions do not know the exact types of the data on which they operate,
and must use indirection to operate on them. Plevyak[92] proposed special-
izing a polymorphic class into a set of monomorphic classes (clones of the
corresponding class) to improve efficiency.

2.2.2 Data Replication in Distributed Systems

Data replication techniques play an important role in distributed systems. For
the concern of performance, data are often replicated to facilitate fast local

12 Large-Scale Simulation: Models, Algorithms, and Applications

access. Scalability is about how to address the performance bottleneck in scal-
ing a system. Data replication is also used as a scaling technique by placing
data copies close to the process using them. Moreover, Data replication helps
to improve the reliability of a distributed system in the sense that the sys-
tem continues working when some replicas crash and also provides protection
against corrupted data [106].

Data replication has been widely applied in distributed database systems
for improving both performance and reliability. In geographically distributed
database systems, the access of remote data is expensive. Data are often fully
or partially replicated to avoid remote access for read transactions [27]. Full
replication requires all data objects being replicated to all sites so that each
site holds a complete copy of the distributed database. This extreme case of
replication has been recognized not to be the optimal configuration for many
applications. Partial replication can consist of replicating (1) all data objects
to some sites, (2) some data objects to all sites, and (3) some data objects
to some sites [89]. The several partial replication approaches are suggested
to balance the overhead in keeping data consistency and the benefit gained
in access efficiency. In addition, Data replication has also been exploited to
control concurrency in distributed database systems [27].

The general principles and issues studied in Data replication are also used
as guidelines in designing and developing our distributed simulation cloning
technology. For example, we need to ensure the scalability of our cloning-
enabled systems and keep state consistency without sacrificing execution effi-
ciency.

2.2.3 Agent Cloning in Multi-Agent Systems

Multi-agent systems (MASs) are increasingly used when a problem domain
is particularly complex, large, or unpredictable [103]. Basically, in MASs an
agent has incomplete information or capabilities for addressing the whole prob-
lem, and multiple agents interact and collaborate to solve the problem. She-
hory et al. use agent cloning as a comprehensive approach to the performance
bottlenecks in MASs. Their approach allows agents to make clones, transfer
tasks, or merge with other agents [99].

They use an agent cloning approach to deal with overload in MASs. In the
context of their approach, agent overload means either an agent is not able to
process current tasks due to its limited capability or machine overloads. The
first case does not imply machine overload, and therefore they suggest cloning
the agent locally to let clones take over part of the tasks. For the second case,
their approach will create and activate clones of agents at a remote machine.
Through agent cloning, load balancing can be achieved and the performance
of an overloaded MAS can be improved.

Agent cloning aims at optimizing the resource usage of the whole MAS. It
should be noted that the approach requires an agent to reason about its cur-
rent and future load. Furthermore, their design and implementation are built

Background and Fundamentals 13

upon the RETSINA infrastructure, which is specially designed for intelligent
network agents [104].

2.2.4 Object Replication in Parallel Object-Oriented Envi-
ronments

Concurrent and parallel object-oriented systems have been designed to allow
the developers to manage the high complexity of parallel programming and
provide modularity and code reuse. The capability of supporting load balanc-
ing is one of the major factors affecting the performance of these systems. Jie
et al. developed a Parallel Object-oriented Environment for Multi-computer
Systems (POEMS) to dynamically balance the processing load based on ob-
ject replication; thus the performance of parallel object-oriented applications
can be improved [70].

Their approach achieves dynamic load balancing by migrating objects.
They designed a Parallel Object Replication(POR) model to support task
parallelism by distributing the replicas of POR objects in different nodes.
Their model only requires migrating the data rather than the entire objects;
hence the overheads of migrating objects are reduced considerably.

2.2.5 Fault Tolerance Using Replication

Fault-tolerant techniques often employ redundant/backup components to
achieve system robustness. Birman used backup to achieve fault tolerance
in building reliable network applications [7]. In [38], fault tolerance was en-
abled in a distributed system using rollback-recovery and process replication.
In rollback-recovery, processes periodically save their states on stable storage
during failure- free operation, and the states can be loaded to restore con-
sistent execution. Process replication is used to provide high availability of
servers with replicas of server programs running in multiple machines. Prin-
cipally, these methods take advantage of replication to ensure reliability of
distributed applications. Replication consumes extra resources and requires
synchronization of the replicas to maintain consistency [34].

2.3 Simulation Cloning

Simulation users often execute multiple “replications” of the same simulation
to obtain outputs that meet required confidence levels [74]. In later chapters,
the term replication is slightly different from that used in traditional simula-
tions, and does not merely mean repeating multiple runs of an application or
simulation. In this section, cloning and replication denote making replicas of

14 Large-Scale Simulation: Models, Algorithms, and Applications

simulation processes, threads, or data in the middle of execution. We give a
survey on existing techniques exploiting cloning/replication in simulations.

2.3.1 Cloning in Rare Event Simulations

The performance of computer and communication systems is commonly char-
acterized by the occurrence of rare events, the probability of cell loss in asyn-
chronous transfer mode (ATM) switches is typically less than 10−9. Because
straightforward simulation of rare events often takes an extremely long execu-
tion time, rare event simulations are often used to evaluate the performance
of this kind of system [50].

Glasserman et al. adopted the cloning approach to improve the efficiency
and effectiveness of rare event simulations [48]. In the standard simulation
of a stochastic process, a lot of time is spent in the region of state space
faraway from the rare set of interest, from where the chance of entering the
rare set is extremely low. In order to tackle this problem, their approach
splits multiple identical copies of the process to get more chances for rare
events to occur when the state space is close to the rare set. Thus, within a
given amount of execution time, the approach increases the number of times
of hitting the desired rare set. Their approach has a common point with ours
in the sense of using cloning to improve execution efficiency. However, our
approach is significantly different from theirs. First of all, their approach makes
multiple identical copies of the stochastic process while our approach makes
clones of a federate with each clone exploring different execution paths. More
importantly, our approach aims at distributed simulation cloning, and their
approach does not concern distributed simulation at all.

Addie proposed an approach to emphasize the execution paths of interest
in quantum simulations by simulation cloning and killing off the uninterest-
ing paths [4]. His approach is intended to increase the speed and accuracy
of estimation of rare events. It uses threads to simulate quantum stochastic
processes, and makes multiple clones of selected threads or terminates clones
in the middle of a simulation following dedicated rules. The clones evolve
independently; thus execution efficiency is gained compared with repeating
simulations using multiple parameters. His idea also aims to avoid unneces-
sary or undesired repetition of executions among different execution paths.

2.3.2 Multitrajectory Simulations

Gilmer, Jr. and Sullivan developed a multitrajectory simulation technique to
obtain a better understanding of the possible outcome set of stochastic simula-
tion [45, 46]. In conventional stochastic simulation, each replication gives only
one outcome. In contrast, the multitrajectory simulation generates multiple
outcomes when a random event occurs, with each outcome constituting a tra-
jectory maintaining its own states cloned from the original execution. Their
technique has advantages over traditional stochastic simulation and requires

Background and Fundamentals 15

many fewer runs to generate an equivalent quality histogram. Multitrajectory
simulation technology is also adopted to support recursive simulation, which
means a simulation recursively uses the outputs of another instance of the
same simulation, thus improving the quality of decision making [47].

In [46], the same authors briefly describe the issue of multitrajectory routes
and trajectory management. Their discussion approximates to the rudiments
of our scenario management mechanism (see Section 6.4 and Chapter 8). How-
ever, their cloning technique often requires the modeler to take care of state
cloning and initiating alternative trajectories when building the models, which
becomes even more difficult when the stochastic event is embedded in the
functional code [45]. Hence, there are limitations to the application of this
technique to existing simulation models. Furthermore, their cloning approach
does not perform well compared with normal runs when dealing with small
scenarios.

2.3.3 Cloning in Simulation Software Packages

Some simulation software packages also incorporate cloning functionality. For
example, the Simulation Language with Extensibility (SLX) supports cloning
of transactions in its simulation language [52, 53]. SIMPHONY also provides
methods for cloning entities in construction simulation [3]. Developers may
take advantage of the functionalities provided by those packages to customize
their simulation cloning mechanisms.

2.3.4 Parallel Simulation Cloning

Hybinette and Fujimoto were the first to employ simulation cloning technol-
ogy as a concurrent evaluation mechanism in the context of parallel simula-
tion [60, 61, 62]. Their work provides a thorough study of parallel simulation
cloning technology. The motivation for this technique was to develop a cloning
mechanism that supports an efficient, simple, and effective way to evaluate
and compare alternate scenarios. The method was targeted for parallel dis-
crete event simulators that provide the simulation application developer with
a logical process (LP) execution model. Through their work, the basic theory
of parallel simulation cloning has been established.

Parallel simulation cloning improves performance of simulation execution
in two ways: (1) cloned simulations share the same execution path before the
point that cloning happens, and (2) the idea of a virtual logical process avoids
repeating unnecessary computation among clones and aims at further sharing
computations after the decision point.

Cloning of an LP may occur at predefined Decision points so the original
LP and the clones execute along different execution paths in parallel; thus the
execution path before cloning is shared. In designing the cloning mechanism,
they proposed replicating LPs incrementally rather than copying the whole
simulation at once as it is likely that only some of the LPs are different among

16 Large-Scale Simulation: Models, Algorithms, and Applications

execution paths. They designed an LP as a combination of a virtual LP and an
underlying physical LP. The physical LPs realize the real parallel simulation
system and maintain the state space and physical messages. In contrast, a vir-
tual LP only maps to the corresponding physical LP and interacts with other
virtual LPs via its physical LP. When cloning a simulation, their approach
only requires replicating the physical LPs that are different in the alternative
scenarios. For identical LPs, only the virtual LPs need to be replicated (which
is cheap) and multiple replicas share a single physical LP. Besides process
cloning, their cloning mechanism also includes message cloning. A message is
cloned when a shared physical LP sends a message to LPs that are not shared.

Some concepts and issues from parallel simulation cloning are also exam-
ined in our research, such as decision point, execution paths and evaluation
of alternative paths, etc. Their work gives us a viable guideline in identifying
some basic research issues.

Their cloning mechanism, which relies on theGeorgia Tech Time Warp
simulation executive [35], is implemented as a Clone-Sim software package.
The package requires the simulation executive to support copying of LPs as
well as dynamic creation, allocation, and initialization of LPs [61]. Hence,
their approach does not imply a generic LP cloning mechanism. Futhermore,
their approach is aimed at the parallel simulation paradigm, and it seems that
there exists a gap to directly apply their approaches to HLA-based distributed
simulation. For example, their design does not concern maintaining state con-
sistency of LPs in the distributed environment on cloning, which is crucial in
distributed simulation cloning.

2.3.5 Cloning of HLA-Compliant Federates

Schulze et al. extended the simulation cloning technology to HLA-compliant
simulations [96]. They introduced a cloning approach to extend the flexibility
of system composition to runtime, and gave a proposal for cloning federates
and the federation at runtime [96, 97].

Internal cloning and external cloning techniques were suggested to clone
the federates. Internal cloning means replicating federates and letting the repli-
cas participate in the original federation. This technique requires the federates
to distinguish the messages from clones. It is also suitable for federates with
only passive behaviors, such as a pure “observer” federate, which does not
generate any event, or in other words does not affect the states of any other
federate during the simulation. The external cloning approach makes replicas
of federates so that they operate in a different federation. Forecast function-
ality is provided by this approach via the parallel scenario management of
different time axes.

They describe the problems of cloning federates in terms of dealing with
cloning all relevant elements of the simulation model, such as object instances
and other internal states of the model. Their work proves the feasibility of
applying cloning in HLA-based simulation. However, other critical issues are

Background and Fundamentals 17

not clearly addressed, such as how to ensure the correctness of the interaction
between the clones (and the federate being cloned) and other related federates.
Their cloning design intensively relies on the SLX simulation package, so that
their approach lacks generality when applied to other simulation models [52,
53]. The detailed federate replication algorithms and the performance of the
proposed approaches are not given.

2.3.6 Fault-Tolerant Distributed Simulation

Distributed simulations are liable to encounter failure, and normally users have
to restart the entire simulation session from scratch. Obviously, this results in
a considerable waste of time and computation. Approaches for fault-tolerant
distributed simulation have been studied to address this problem.

State manipulation methods such as checkpoint and migration are often
exploited in existing fault-tolerant approaches for distributed simulations. In
[34], a rollback-based optimistic fault-tolerance scheme is integrated with an
optimistic distributed simulation scheme. The scheme models a failure as a
straggler event to optimize implementation efforts. This kind of approach has
some common drawbacks from the developers’ perspective:

They require simulation components to have the capability of saving sys-
tem states and recovering the saved states at the model level in the case of fail-
ure. The approach does not apply in the case that existing simulation models
are not designed to support state manipulation or process/thread replication.

Berchtold and Hezel proposed the Replica Federate approach for fault-
tolerant HLA-based simulation [6]. Their approach produces multiple identical
instances of one single federate, and failures can be detected and recovered
upon the outputs of those identical instances. However, redundancy is liable
to result in lower system performance. Furthermore, extra federate replicas
in a distributed simulation increase the probability of overall system failure
incurred by an LRC failure.

2.4 Summary of Cloning and Replication Techniques

In this chapter, we introduce the basics on HLA and its supporting software,
that is, the RTI. The distributed simulation cloning technology of our study
is based on this architecture. Related work on the major research issues in
this study, that is, replication and cloning in various computing technologies,
distributed systems, and simulations, is described and briefly analyzed. Our
research is significantly different from the above research in the following as-
pects:

• We aim to enable distributed simulation cloning technology based on

18 Large-Scale Simulation: Models, Algorithms, and Applications

the High Level Architecture. This is not addressed by the above research
except Schulze et al.’s work.

• In our project, simulation cloning means the replication of the entire
federate at runtime.

• The proposed cloning technology supports evaluation of concurrent sce-
narios of a distributed simulation. Automatic scenario partitioning /man-
aging and dynamic execution/computation sharing will be enabled. Our
technology is designed to mask the complexity involved in the above ef-
forts.

• As our design targets potential academic or industrial users who may
have their own complex simulation models, we have the additional aim to
support reusability and transparency while enabling simulation cloning.

• We intend to provide a generic cloning infrastructure to existing dis-
tributed simulations, which is independent of the RTI software and the
implementation of the simulation model.

• The technology is designed to offer analysts the flexibility to specify the
conditions/rules according to which distributed simulation cloning can be
initiated automatically.

• The technology ensures the correctness of the synchronization between
federates in cloning-enabled simulations.

The proposed solution must guarantee the state consistency of distributed
federates. Our technology needs to ensure the scenarios created by cloning
have an identical execution to the traditional approach. Designers of repli-
cated systems have to make trade-offs between consistency, performance, and
availability [115], and at the same time this technology needs to minimize the
extra overhead incurred by cloning. We need to explore the mechanisms of
managing a cloning-enabled distributed simulation at both the scenario level
and clone (federate) level.

2.5 Fault Tolerance

People have developed many technologies for facilitating fault tolerance in
distributed applications. Cristian pointed out some principles about fault tol-
erance in distributed system architectures [31], and these are understanding
failure semantics, masking failure, and balancing design cost.

The checkpoint and message-logging approach is commonly used. For ex-
ample, as proposed in [71], a process records each message received in a mes-
sage log while the state of each process is occasionally saved as a checkpoint.

Background and Fundamentals 19

A failed process can be restored using some previous checkpoint of the pro-
cess and the log of messages. The HLA federation save and restore services
[1] could be used to save the RTI states at some checkpoints. In the case of
failure, a new federation could be created to “restore” the federation with
the saved states. However, in the checkpoint approach, the simulation model
should have the functionality to manipulate the states at the model level, and
it repeats the computation from one of the checkpoints onward. Moreover, the
overhead for executing federation save and restore can be significant [101, 118].

Fault-tolerant techniques often employ redundant/backup components to
achieve system robustness. Birman used backup to ensure fault tolerance in
building reliable network applications [7]. In [38], fault tolerance was enabled
in a distributed system using rollback-recovery and process replication. Prin-
cipally, these methods take advantage of replication to ensure the reliability
of distributed applications. Another typical example is the Replica Federate
approach proposed in [6]. This approach produces multiple identical instances
of one single federate, and failures can be detected and recovered upon the
outputs of those identical instances. However, replication consumes extra re-
sources and requires synchronization of the replicas to maintain consistency;
as such, it results in lowered system performance. Furthermore, extra federate
replicas in a single federation increase the probability of overall system fault
due to an RTI failure, and this may also limit the scalability of the approach.
Our fault-tolerant framework adopts both state saving and replication in the
design, and it avoids the drawbacks of the above approaches. By separating
the execution of simulation models from RTI failures, the framework does not
require rollback support from simulation models. The light-weighted physi-
cal federation consumes minimal system resource and operates independently
from the simulation model execution. The framework makes replicas of physi-
cal federates only when failure occurs while leaving simulation models intact.
Therefore, the redundancy incurred by common replication approach is also
minimized.

Although fault-tolerance support has been informally proposed in the lat-
est HLA Evolved specification and some design patterns for fault-tolerant
federations were suggested in [83], there are only a few preliminary and non-
standard implementations for this purpose. In addition, the “failure-over RTI”
design pattern suggested in [83] is similar to the scheme proposed by us in
[22]. The design pattern provides federates with a prioritized list of RTIs with
an active RTI servicing the federates, and they connect to another one when
the active RTI fails. Our scheme in [22] suggests replacing a failed RTI with
a new one using the decoupled federate architecture.

[36, 37] proposed a framework, Distributed Resource Management Sys-
tem (DRMS), for robust execution of federations. Their framework deals with
failure by migrating federates to new hosts upon failure, while using the check-
point approach for state saving/recovery. In the context of this approach, the
federates should be specially developed to save/recover the simulation mod-
els’ internal states. It is also assumed that federates executed within the scope

20 Large-Scale Simulation: Models, Algorithms, and Applications

of DRMS are portable, meaning that they should not be bound to a specific
piece of hardware and can be easily migrated between different host environ-
ments. The experimental results indicate a significant overhead for providing
fault tolerance in terms of extra messages in some scenarios [36]. In con-
trast, our framework is not subject to the above constraints. It provides a
relatively generic fault-tolerance solution to the HLA-based distributed sim-
ulations. However, it is a challenge to develop a generic fault-tolerant model.
One of the difficulties is due to the assumption that developers can model their
federates in a totally free manner. It is unlikely that a generic state saving and
replication mechanism can be provided that will be suitable for any federate.
Even given such a mechanism, it is unlikely that all developers will use the
same standard package to model their simulations. Without the ability to cus-
tomize the user’s simulation code, it is almost impossible to make snapshots
of all system states of any federate. The principle of reusing existing federate
code increases the difficulty of this task. On the other hand, the HLA standard
makes it relatively easy to intercept the system states at the RTI level using
a middleware approach. Furthermore, we can see that the simulation model
and the Local RTI Component have very different characteristics. Therefore,
it suggests a distinction should be made between these two modules when
dealing with failure. It is desirable to develop a generic framework to handle
the failures of the RTI rather than the faults of the simulation models.

2.6 Time Management Mechanisms for Federation Com-

munity

There only exist few noticeable works on a Time Management mechanism
aimed at HLA federation community networks. Lake introduced a preliminary
work on Time Management for federations linked by a bridge [73]. The Time
Management algorithm is implemented using extensions to the standard HLA
specifications. His study does not support a hierarchical federation community.
Although a robust Time Management algorithm has been claimed in [73],
the algorithm may not always work correctly as it solely relies on the Lower
Bound Time Stamp (LBTS) for calculation. The problem is further elaborated
in Section 6.2. The system performance has not been presented. Instead of
using the RTI communication backbone, the algorithm requires the bridge
to broadcast the information of LBTS calculation to all federates per time
advance. The effect of this costly operation on system performance or whether
such operation can be optimized has not been analyzed.

In [30], Cramp and Best proposed “Distributed Federate Proxy (DFP) Ar-
chitecture” for interconnecting federations into hierarchical federation com-
munities. They discussed the necessary constraints on the components of a
hierarchical federation community in order to ensure correct temporal and

Background and Fundamentals 21

causal ordering of events. They claimed that the entire DFP architecture can
perform correct time management. However, the correctness of their algo-
rithm has not been mathematically proven, and there are no experimental
results for the evaluation of the architecture or validation of the proposed al-
gorithms either. Furthermore, in their design, a special federate called “Proxy
Component” corresponds to each federation, and the Proxy Components are
interconnected via an additional tree of processes handling inter-federation
communications, etc. The inevitable overhead incurred in such design has not
been addressed. Whether their approach supports federation communities of
other architectures remains unclear.

Another interesting work is the proximity-aware synchronization developed
by Okutanoglu and Bozyigit [90]. Their basic idea is to relate the Data dis-
tribution in the federation community to the synchronization strategy. In the
context of their method, federates are clustered, and synchronization will be
waived between two clusters without interactions. However, the method fully
bases on the Data distribution Management services and demands that the
federates to use these services. Another requirement is the prediction of the
interaction pattern among clusters. The features make the method unlikely
to be a generic one. Another issue is that the method may encounter a severe
problem when two federates do not interact directly but through intermediate
federates instead. For example, an agent federate and a factory federate in
a supply chain simulation may not exchange messages and they may adopt
different regions according to the locations where the two entities persist in
the realistic world, but synchronizing the two federates is mandatory as far as
causality is concerned.

This page intentionally left blankThis page intentionally left blank

Part II

Middleware and Software

Architectures

This page intentionally left blankThis page intentionally left blank

3

A Decoupled Federate Architecture

CONTENTS

3.1 Problem Statement . 25

3.2 Virtual Federate and Physical Federate . 27

3.3 Inside the Decoupled Architecture . 29

3.4 Federate Cloning Procedure . 33

3.5 Benchmark Experiments and Results . 35

3.5.1 Experiment Design . 35

3.5.2 Latency Benchmark Results . 37

3.5.3 Time Advancement Benchmark Results . 37

3.6 Exploiting the Decoupled Federate Architecture . 38

3.6.1 Web/Grid-Enabled Architecture . 40

3.6.2 Load Balancing . 42

3.7 Summary . 43

This chapter introduces the idea of decoupling the Local RTI Component
from a normal HLA federate, to give a Decoupled Federate Architecture. This
architecture forms the basis for enabling federate cloning at runtime.

3.1 Problem Statement

A normal simulation federate can be viewed as an integrated program con-
sisting of a simulation model and Local RTI Component (LRC), as shown in
Figure 3.1. The simulation model executes the representation of the system
of interest, whereas the LRC services it by interacting and synchronizing with
other federates. In a sense, the simulation model performs local computing
while the LRC carries out distributed computing for the model.

Cloning of a federate occurs at a decision point to enable different candi-
date actions to be performed. “Cloning” implies that the new clones of one
particular federate should initially have the same features and states as the
original federate, both at the RTI level and at the simulation model level.
This is to ensure the consistency of the simulation state. For example, at the
RTI level, clones must have subscribed to the same object classes and regis-
tered the same object instances, etc. At the simulation model level, the clones

25

26 Large-Scale Simulation: Models, Algorithms, and Applications

Simulation Model

Local RTI Component

RTI interface

Simulation Federate

Runtime Infrastructure

FIGURE 3.1
Abstract model of a simulation federate.

should have the same program structure, data structures, objects, and vari-
ables; all these program entities should have identical states. Immediately after
the cloning, the clones will be given some particular parameters or routines
to execute in different paths.

One possible solution is to introduce a state saving and replication mech-
anism to the simulation federates, allowing the simulation federate to store
snapshots of all the system states. When cloning occurs, new federate instances
are started and initialized with stored states. However, users model their sim-
ulations in a totally free manner. It is unlikely that a generic state saving and
replication mechanism can be provided that will be suitable for any simulation
federate. Besides, as the LRC is not designed to be replicated, direct cloning
of a federate can lead to unpredictable and uncontrollable failure at the RTI
level.

Even given such a mechanism, it is unlikely that all simulation developers
will use the same standard package to model their simulations. Without the
ability to customize the user’s simulation code, it is almost impossible to make
snapshots of all system states of any federate. Furthermore, the principle of
reusing existing federate code increases the difficulty of this task. On the other
hand, the standard HLA specification makes it relatively easy to intercept the
system states at the RTI level. Using a middleware approach, one may save
and replicate the RTI states while enabling transparency. Thus we can see
that the simulation model and the LRC have very different characteristics.
Therefore, it suggests a distinction should be made between these two modules
for cloning a federate.

Decoupling the LRC from the simulation model has further advantages,
such as providing a way of integrating simulation packages or legacy simula-
tions into an HLA-based distributed simulation. Straburger et al. presented
different solutions including a gateway program approach to adapt models
built using commercial-off-the-shelf (COTS) simulation packages to the HLA

A Decoupled Federate Architecture 27

[102]. Under this approach, a simulation application consists of a COTS-based
model and a gateway program that couples the model with the RTI. Thus,
previously stand-alone models may interoperate with each other using the
HLA specification with user transparency maintained. Similarly, McLean and
Riddick designed a Distributed Manufacturing Adapter to integrate legacy
simulations with the HLA/RTI [80]. This design aims to simplify the integra-
tion while gaining the capabilities of HLA-based distributed simulations.

Morse et al. proposed an Extensible Modeling and Simulation Framework
(XMSF) to allow various simulations to take advantage of Web-based tech-
nologies [85]. They developed a Web-enabled RTI implementation to provide
support for HLA-compliant simulations to communicate with the RTI through
SOAP and BEEP. Several obvious advantages are identified such as: platform
crossing, language crossing, and interoperability of federates (for example,
breaking though the constraints of firewalls, etc).

Different from the above work, this project focuses on using a decoupled
federate architecture to enable simulation cloning, while facilitating reusabil-
ity, simulation independency, and user transparency. The design also needs to
ensure execution efficiency. The technology may also be used to provide a so-
lution to other issues, such as fault tolerance, supporting a Grid/Web-enabled
architecture Web-enabled architecture, and load balancing, as discussed in
Chapter 4.

3.2 Virtual Federate and Physical Federate

In the context of the decoupled architecture, a federate’s simulation model
is decoupled from the Local RTI Component. A virtual federate is built up
with the same code as the original federate. As HLA only defines the standard
interface of RTI services, we are able to substitute the original RTI software
with our customized RTI++ library without altering the semantics of RTI
services (see Chapter 7). Figure 3.2(B) gives the abstract model of the virtual
federate. Compared with the original federate model illustrated in Figure 3.1,
the only difference is in the module below the RTI interface, which remains
transparent to the simulation user.

A physical federate is specially designed as shown in Figure 3.2(A). The
physical federate associates itself with a real LRC. Physical federates inter-
act with each other via a common RTI. Both virtual federates and physical
federates operate as independent processes. Reliable external communication
channels, such as Inter-Process Communication (IPC), Socket, SOAP, or other
out-of-band communication mechanisms, bridge the two entities into a single
federate executive [100]. To ease discussion, this chapter uses the abbrevia-
tion “ExtComm” to denote those alternative communication channels and
assumes messages are delivered / received strictly in an FIFO manner.

28 Large-Scale Simulation: Models, Algorithms, and Applications

Physical Federate

newRTIAmb

fedAmb

Messaging Protocol

Messaging Protocol

phyFedAmb

Callback

Processor

External Communication

RTIAmb

Real Runtime Infrastructure

Simulation Model

Simulation Model

Customized RTI++

Library

RTI interface

Communication Channel

(A) (B)

Middleware

Virtual Federate

communication

channel for RTI

services

communication

channel for

callback

Virtual Federate

FIGURE 3.2
Decoupled federate architecture.

All the components inside the dashed rectangle in Figure 3.2(A) form a
Middleware module between the simulation model and the real RTI. Within
the virtual federate, the newRTIAmb contains customized libraries while
presenting the standard RTI services and related helpers to the simulation
model. This module can be designed to contain all other management mod-
ules for the objectives mentioned previously. The fedAmb serves as a common
callback to the user federate, which is freely designed by the user and inde-
pendent of the decoupled approach. The newRTIAmb handles the user’s RTI
service calls by converting the method together with the associated parameters
into ExtComm messages via the Messaging Protocol. The protocol mainly
defines a mapping between an ExtComm message and the RTI method it
represents. For example, an RTI UPDATE message indicates that the virtual
federate has invoked the RTI method updateAttributeValues(). The protocol
can also be extended for other purposes, such as manipulating the physical
federate. The ExtComm conveys these messages immediately to the physical
federate for processing in an FIFO manner.

The physical federate converts an RTI call message generated from the
virtual federate into the corresponding RTI call through its own messaging
protocol layer. The RTIAmb module executes any RTI service initiated by
the simulation model prior to passing the returned value to the ExtComm.
The phyFedAmb serves as the callback module of the physical federate to
respond to the invocation issued by the real RTI. Within the phyFedAmb

A Decoupled Federate Architecture 29

module, the messaging protocol is employed to pack any callback method
with its parameters into ExtComm messages. The ExtComm enqueues the
callback message to the Callback Processor module at the virtual federate.
Through the messaging protocol, the callback processor activates the cor-
responding fedAmb method implemented by the user. From the simulation
users’ perspective, a combination of one virtual federate and its correspond-
ing physical federate operates as a simulation federate in the context of the
decoupled architecture. The federate combination performs an identical ex-
ecution to a normal simulation federate with the same code as the virtual
federate. In future discussion, we will explicitly use “normal federate” to refer
to a traditional federate that directly interacts with the RTI. By default, in
the discussion in this chapter a federate contains a virtual federate module
and a physical federate module.

3.3 Inside the Decoupled Architecture

As discussed above, the decoupled approach interlinks a virtual federate and
the physical federate into a simulator that performs an identical simulation
to the corresponding normal federate. This section gives the details of how
an RTI service call is executed and the callback is invoked in the Decoupled
federate architecture.

Figure 3.3 depicts the procedure where a simulation model initiates an RTI
call and waits for a return from the real RTI, using the updateAttributeValues
method as an example. The procedure is as follows:

• The virtual federate invokes the redefined updateAttributeValues
method.

• Inside the updateAttributeValues method, the packMsg routine extracts
the data stored in the AttributeHandleValuePairSet (AHVPS) and packs
them together with other parameters such as the associated timestamp,
object instance handle, and tag into an RTI UPDATE message.

• The ExtComm enqueues the RTI UPDATE message to the physical
federate. The virtual federate switches to waiting mode for the returned
message.

• Once the physical federate receives the ExtComm message, it invokes
the unpackMsg routine to process it according to the associated type,
RTI UPDATE.

• A new AHVPS object and related parameters are recovered based on the
ExtComm message and passed to the RTI::updateAttributeValues, which
invokes the real RTI service.

30 Large-Scale Simulation: Models, Algorithms, and Applications

Invoke
newRTI::updateAttr

ibuteValues()

packMsg(RTI_UP

DATE)

in
itia

te

unpackMsg()

Execute
RTI::updateAttribut

eValues()

translate via

protocol

Block waiting

Block waiting

Virtual Federate Physical Federate

return

Finish

newRTI::updateAttr
ibuteValues()

Return to caller

FIGURE 3.3
Executing an RTI call in the decoupled architecture.

• On the accomplishment of this RTI::updateAttributeValues call, the
physical federate acknowledges the virtual federate with an ExtComm
message containing the returned value.

• The updateAttributeValues call finishes and the data retrieved from the
acknowledgment message is returned to the simulation model.

From the user’s point of view, the initiation and accomplishment of an
RTI call are identical to the original normal federate. The semantics of RTI
services are kept intact in the decoupled approach.

The RTI software has an interface that provides flexible methods to the
user for packing update data and leaves the transmission details transpar-
ent. The user can create update data of variable lengths. However, most low-
level communications do not offer flexible methods to handle message delivery
without agreement of lengths between source and destinations. For example,
most IPC mechanisms have limitations in message size and buffer size. The
Message Queue based on Solaris defines the maximum queue length as 4096
bytes [100]. The message sender and receiver must agree with each other on

A Decoupled Federate Architecture 31

the same message length. If a fixed message size is defined for ExtComm
messaging, it may incur some unnecessary overhead. A fixed large size is inef-
ficient in transmitting small messages. On the other hand, a fixed small size
increases the overhead for packing, delivering, and unpacking a large number
of small packets in the case of processing large messages. Therefore a simple
protocol is proposed for messaging between the virtual federate and physical
federate. We define a small message size (MSG DEF) and a large message size
(MSG LG) for assembling user data into packets. A special “PREDEFINED”
packet is used to notify the receiver if large or multiple packets are to be sent
for a single data block. Figure 3.4 gives the messaging details based on this
simple protocol.

Invoke

packMsg()

Processor

Block waiting for

MSG_DEF

message

Sender Receiver

Is large data?

Small Packet

Assembler

N

"predefined"

packet?Y

Large Packet

Assembler

Send

Produce

PREDEFINE

message 1

ExtComm Send

Slice and assemble

user data into

multiple packets

2

Return

to caller

Small Packet

Disassembler

N

Y
Retrieve type and

length of next packets

Large Packet

Disassembler

Return

to caller

Block waiting for

MSG_LG message

Produce Integrated

Data Block

Y

All packets

received?

N

FIGURE 3.4
Messaging between virtual federate and physical federate

The RTI communicates with a federate via its Federate Ambassador pro-
vided by the user [82]. In the DMSO RTI, a federate must explicitly pass
control to the RTI by invoking the tick method. For example, the RTI deliv-
ers the Timestamp Order (TSO) events and Time Advance Granted (TAG)
to a time-constrained federate in strict order of simulation time, which coordi-
nates event interchange among time-regulating and time-constrained federates
in a correct and causal manner. Therefore, the decoupled architecture should
guarantee that (1) the Federate Ambassador at the user federate works in a
callback-like manner and (2) callback methods are invoked in the correct or-

32 Large-Scale Simulation: Models, Algorithms, and Applications

Invoke

Invoke

newRTI::tick()
Initiate

Invoke

RTI::tick()

ExtComm send

Block waiting

1. RTI_DISCOVER

Block waiting

Virtual Federate Physical Federate

Callback

Processor

N

phyFedAmb

Callback

sequence starts

Pass control
to RTI

::discoverObjectI

nstance(65356)

::reflectArribute

Values(14.9)

::timeAdvanceGr

anted(15.0)

2. RTI_REFLECT

3. RTI_TAG

Send

Callback

sequence finishesFinish

RTI::tick()

Return control

to caller

RTI tick done?

fedAmb

::discoverObject

Instance(65356)

::timeAdvanceG

ranted(15.0)

::reflectArribute

sUpdate(14.9)

1. RTI_DISCOVER

2. RTI_REFLECT

3. RTI_TAG

Finish

newRTI::tick()

Y
R

T
I_

T
IC

K
_
D

O
N

E

FIGURE 3.5
Conveying callbacks to the virtual federate.

der. Figure 3.5 depicts how to realize these functionalities. To ease discussion,
we assume the physical federate will get the callbacks shown in Figure 3.5.
This procedure is illustrated by the following steps:

• The virtual federate invokes the routine newRTI::tick and the latter
sends out an RTI TICK message to the physical federate.

• The physical federate calls the real RTI tick according to the RTI TICK
message.

• The LRC acquires control and delivers events to the phyfedAmb module
of the physical federate in a strict order.

• In each callback method invoked, the data sent by the RTI is enqueued
to the callback ExtComm channel. The routine inside the newRTI::tick
accesses the queue for the virtual federate.

• As long as the RTI TICK DONE message is not detected, the callback
processor continuously processes the messages in FIFO order while ac-
tivating the corresponding method in the fedAmb module based on the
messaging protocol.

A Decoupled Federate Architecture 33

• At the physical federate side, once the RTI finishes its current
work and passes control to the physical federate, the latter returns an
RTI TICK DONE message to the virtual federate.

• On receiving the RTI TICK DONEmessage, the virtual federate accom-
plishes the newRTI::tick, and control is returned to the caller immediately.

The real RTI starts to take charge only when the physical federate explic-
itly invokes RTI::tick. On the other hand, the newRTI::tick can only return
when the real RTI finishes its work. As the ExtComm channels work in an
FIFO manner, the order of each callback method invoked at the physical fed-
erate is identical to the sequence in which the callback processor at the virtual
federate processes the data. From the user’s perspective, the callback mecha-
nism based on the decoupled approach executes the equivalent operations to
the normal federate. It guarantees consistency in presenting messages from
the real RTI to the simulation model and also ensures user transparency.

The decoupled architecture requires an additional ExtComm communica-
tion layer although it performs exactly the same computation as the corre-
sponding normal federate. The external communication may incur some extra
overhead. To investigate the overhead incurred by the decoupled approach,
a series of benchmark experiments has been performed to compare with the
normal federates. Section 3.5 reports and analyzes the experimental results in
terms of event transmission latency and synchronization efficiency.

3.4 Federate Cloning Procedure

Using the decoupled approach can solve the problem caused by making copies
of the LRC at runtime in the case of executing traditional federates. Cloning
a federate can be achieved by replicating the virtual federate process and
starting an additional physical federate instance with restored system state.

As illustrated in Figure 3.6, at runtime the middleware intercepts the in-
vocation of each RTI service method. The interceptor logs all the RTI sys-
tem states into stable storage. Some RTI states are relatively static, such as
the federate identity, federation information, the published/subscribed classes
and time constrained/regulating status. Other states include the registered or
deleted objected instances, and granted federate time. Some event data may
also need to be saved, such as sent and received interactions, updated and
reflected attribute values of object instances, etc.

As soon as a federate reaches a decision point, the cloning conditions are
checked to decide whether or not cloning is required. If necessary, the middle-
ware spawns clones of the federate immediately to explore alterative execu-
tion paths. From the perspective of the federate making clones, the simulation
cloning procedure can be described as follows (see Figure 3.7):

34 Large-Scale Simulation: Models, Algorithms, and Applications

x

x

Declaration

Data

Time Feature

Events

FIGURE 3.6
Saving RTI states.

3. Replicate states & Initialize

Stable

Storage

1. Replicate Virtual

Federate

2. Initiate new

Physical Federate

Cloning

Manager

Real Runtime Infrastructure

Virtual Federate x

Middleware

RTI Interface

RTI States

Manipulator

Physical Federate x

... ...

Simulation Federate X

Cloning

Manager

Virtual Federate x’

Middleware

RTI Interface

RTI States

Manipulator

Physical Federate x’

Clone X’

FIGURE 3.7
Federate cloning.

• Copying simulation model. The cloning manager within the middle-
ware makes the specified number of clones of the virtual federate (simula-
tion model).

A Decoupled Federate Architecture 35

• Initiating physical federates. The cloning manager initiates an in-
dividual physical federate for each clone of the virtual federate and hooks
up the two new processes into a whole.

• Replicating states. A clone’s physical federate is initialized with the
stored system states from the parent federate, after which a new clone of
the original federate is formed.

The distributed simulation cloning algorithms are described in detail in
Chapter 9.

3.5 Benchmark Experiments and Results

The decoupled architecture separates the simulation model and the LRC into
independent processes. In contrast, in a normal federate these operate within
the same memory space, which may be superior in terms of execution effi-
ciency. In order to investigate the overhead incurred in the proposed archi-
tecture due to decoupling, we perform a series of benchmark experiments to
compare the Decoupled federate with a normal federate.

The experiments study the scalability by emulating the simulation cloning
procedure based on the decoupled architecture using the IPC Message Queue
[100] as the external communication to bridge the virtual and physical feder-
ate. Through these experiments, we also find out the overhead of adopting the
Message Queue as the external communication backbone. The performance
is compared in terms of latency and time advancement calculation. Latency
is reported as the one-way event transmission time between one pair of feder-
ates. The time advancement performance is represented as the time advance
grant rate.

3.5.1 Experiment Design

The experiments use three computers in total (two workstations and one
server), in which the server executes the RTIEXEC and FEDEX processes
(see Figure 3.8). The federates that run at one independent workstation are
enclosed in a dashed rectangle. In our case, Fed A[i] and Fed B[i] (i > 1)
occupy Workstation 1 and Workstation 2, respectively. The computers are
interlinked via a 100Mbps-based backbone. Table 3.1 gives the configuration
of the test bed.

The experiments study the scalability by increasing the number of identical
federates. As shown in Figure 3.8, Fed A[1] and B[1] form a pair of initial
federate partners, which represent the federates to be cloned in the original
scenario. Fed A[i] and B[i](i>1) stand for the ith clones of the two initial
federates respectively and form an independent scenario. The architecture is

36 Large-Scale Simulation: Models, Algorithms, and Applications

used through all the benchmarks experiments and for both normal federates
and Decoupled federates.

Fed X[1]

Fed X[2]

Fed X[3]

Fed X[4]

Fed X[5]

RTI

1 FED 1[B]1

2 FED 2[B]2

3 FED 3[B]3

4 FED 4[B]4

5 FED 5[B]5

Fed Y[1]

Fed Y[2]

Fed Y[3]

Fed Y[4]

Fed Y[5]

FIGURE 3.8
Architecture of benchmark experiments for decoupled federate architecture

TABLE 3.1
Configuration of Experiment Test Bed for Examining Decoupled Federate

Architecture
Specification Computers

Workstation1 Workstation2 Server1

Operating
System

Sun Solaris OS
5.8

Sun Solaris OS
5.8

Sun Solaris OS
5.8

CPU Sparcv9 CPU,
at 900 MHz

Sparcv9 CPU,
at 900 MHz

Sparcv9 CPU *
6, at 248 MHz

RAM 1024M 1024M 2048M

Compiler GCC 2.95.3 GCC 2.95.3 GCC 2.95.3

Underlying
RT

DMSO NG 1.3
V6

DMSO NG 1.3
V6

DMSO NG 1.3
V6

Processes
running on

Fed A[i] Fed B[i] RTIEXEC
&FEDEXE

A DDM-based approach is used to partition concurrent scenarios (see
Chapters 7 and 8). For the latency benchmark, each pair of federates has an
exclusive point region associated to any event being exchanged. The federates
are neither time regulating nor time constrained. In one run, each federate up-
dates an attribute instance and waits for an acknowledgment from its partner
(from Fed A[i] to Fed B[i], and vice versa) for 5,000 times with a payload of

A Decoupled Federate Architecture 37

100, 1k, and 10k bytes. The time interval in the ping-pong procedure will
be averaged and divided by 2 to give the latency in milliseconds. A federate
merely reflects the events with identical region to itself. In other words, Fed
A[i] only exchanges events with Fed B[i].

As for the time advancement benchmark, all federates are time regulating
and time constrained. Each federate has lookahead 1.0 and advances the fed-
erate time from 0.0 to 5,000.0 with timestep 1.0 using timeAdvanceRequest
[82]. The results report the rate that the RTI issues timeAdvanceGranted
(TAGs/second).

3.5.2 Latency Benchmark Results

The latency benchmark experiments report the latency with three different
payload sizes. From Figure 3.9 to Figure 3.11, we can see that no matter
whether the payload size is small or large, the latency increases steadily with
the number of federates. The increment becomes obvious when the number of
federates exceeds four pairs (eight federates in total). As indicated in Figure
3.9 and Figure 3.10, when the payload is not greater than 1,000 bytes, the
latency varies from about 10 milliseconds for one pair of federates to about 30
milliseconds for seven pairs of federates. The Decoupled federate and normal
federate show similar results in this situation, and the Decoupled federates
incur only slightly more latency than the normal ones.

As shown in Figure 3.11, when a bulky payload as large as 10,000 bytes is
applied, the Decoupled federates incur about 5 milliseconds extra latency to
the normal ones. However, the extra latency remains nearly constant with the
number of federate pairs. The latencies for both types of federates increase
more rapidly than the small payload cases. This is due to the extra overhead
incurred by Inter-Process Communication, which becomes obvious with bulky
data transmission between the physical federate and virtual federate. When
the payload size and the number of participating federates are not too large,
the Decoupled federate has a similar performance to the normal federate in
terms of latency.

3.5.3 Time Advancement Benchmark Results

Another series of experiments is carried out to compare the Decoupled fed-
erates and normal federates in terms of the speed of time synchronization.
Figure 3.12 presents the experimental results reported as the TAG rate. In
the time advancement benchmark, the TAG rate decreases with the number
of federates for both decoupled and normal federates. The rate decreases less
rapidly when the number of federate pairs is greater than four (eight federates
in total). The TAG rate is about 300 times per second for one pair of federates
down to about forty times per second for seven pairs of federates. The results
indicate that the performance of the decoupled and normal federates is very
similar in terms of time advancement.

38 Large-Scale Simulation: Models, Algorithms, and Applications

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1 2 3 4 5 6 7 8

 Number of Federate Pairs

L
a
te

n
c
y
 (

M
il
li
S

e
c
s
)

Decoupled federate

Normal federate

FIGURE 3.9
Latency benchmark on decoupled federate versus normal federate with pay-
load 100 bytes (in milliseconds).

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1 2 3 4 5 6 7 8

 Number of Federate Pairs

L
a
te

n
c
y
 (

M
ill

iS
e
c
s
)

Decoupled federate

Normal federate

FIGURE 3.10
Latency benchmark on decoupled federate versus normal federate with pay-
load 1,000 bytes (in milliseconds).

A Decoupled Federate Architecture 39

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 3 4 5 6 7 8

 Number of Federate Pairs

L
a
te

n
c
y
 (

M
il
li
S

e
c
s
)

Decoupled federate

Normal federate

FIGURE 3.11
Latency benchmark on decoupled federate versus normal federate with pay-
load 10,000 bytes (in milliseconds).

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0 1 2 3 4 5 6 7 8

 Number of Federate Pairs

T
A

G
s
/S

e
c Decoupled federate

Normal federate

FIGURE 3.12
Time advancement benchmark on decoupled federate versus normal federate
(times/sec).

3.6 Exploiting the Decoupled Federate Architecture

In Chapter 3 we discussed the Decoupled federate architecture, which sepa-
rates a federate’s simulation model from the Local RTI Component (LRC).

40 Large-Scale Simulation: Models, Algorithms, and Applications

The architecture enables efficient simulation cloning while facilitating reusabil-
ity of legacy federate code and user transparency. The Decoupled federate ar-
chitecture can provide other advantages to distributed simulation technology.
Executing HLA-based simulations normally requires users to allocate comput-
ing resources to federates and the RTIEXEC (DMSO RTI) statically, which
lacks flexibility. The interoperation among federates over the Internet is also
restrained by security requirements (e.g., firewalls) or heterogeneity of the
computing resources in different organizations.

Web services provide interoperability between software applications dis-
tributed over the Internet. As an extension of Web services, the Grid has
been designed to manage sharable and often heterogeneous computing re-
sources distributed in different organizations.

One of the advantages of distributing simulations over a network is the
capability of exploiting indexsharable computing power. In the case where an
individual federate experiences high congestion at the host where it executes,
load balancing [119] can improve the overall simulation performance. This can
be achieved by migrating load of the congested federate to other lightly loaded
hosts [116].

3.6.1 Web/Grid-Enabled Architecture

The Grid infrastructure provides dependable, consistent, pervasive, inexpen-
sive, and secure access to high-end computational capabilities [39]. The Open
Grid Services Architecture (OGSA) extends the Web services to include ad-
ditional functionalities. With these features, Web and Grid services offer a
promising approach to enhance the flexibility and interoperability for large-
scale HLA-based simulations.

The HLA does not define security mechanisms for using RTI services, while
the Grid provides a built-in security architecture to support authentication
and secure communication in accessing Grid services [49].

The HLA supports interoperability among HLA-compliant federates. How-
ever, this feature is often hampered in the context of large-scale distributed
simulations over the Internet. This is due to various security requirements on
the networking resources belonging to different organizations. There is a need
to combine the HLA and Web or Grid technologies in order to achieve the
advantages of both. Directly utilizing Web or Grid services will incur extra
effort from the developers in modeling simulations. An alternative approach is
to use a Web or Grid Enabled Architecture, which manages the RTI services
at the backend while presenting dynamic access of the RTI services to the
simulation model or the end users via Web or Grid services. The architecture
can be used to relieve the developers from the complication of coding Web or
Grid services in existing simulation models.

Web and Grid technologies can help large-scale distributed applications
in terms of resource coordination and connectivity. Using a Decoupled feder-

A Decoupled Federate Architecture 41

ate architecture can ease the combination of Web/Grid technologies with the
HLA.

Figure 3.13 gives an abstract model that supports a Web/Grid-Enabled
Architecture. The model treats physical federates and the RTIEXEC pro-
cess as components managed by the Web/Grid services. Therefore, each
physical federate (or RTIEXEC) is encapsulated as a Web/Grid service and
becomes a Web/Grid-enabled component accessible via Web-based communi-
cations (such as SOAP, BEEP). AWeb/Grid-enabled RTI library is embedded
in the middleware to bridge the model and the physical federate.

The model has significant advantages compared with traditional simulation
using the HLA RTI in the sense that (1) it can cross firewalls, (2) it enhances
the interoperability and connectivity among simulation federates, and (3) it
eases the interoperation between HLA federates and non-HLA simulations.
The communication between the virtual federate and the physical federate is
via Web services that can pass through most firewalls. Using Web services
allows interoperation of federates physically located at various organizations,
while connecting them over a normal RTI may encounter network barriers.
The RTI component becomes a Web service in the context of the architecture.
Non-HLA simulations can also be wrapped as Web services. Therefore, HLA
simulations can easily interoperate with non-HLA ones through Web services.

Virtual Federate X

RTI Interface

Physical federate

m
RTI

... ...

Web/Grid -

Enabled RTI

Simulation Federate

Interface

Web

Service

Interface

... ...

Interface

Network/Internet

Web/Grid Enabled

Component

Grid

Service

Web/Grid Enabled

Component

Physical federate

n

... ...

Virtual Federate Y

RTI Interface

Web/Grid-

Enabled RTI

Interface

Simulation Federate

Web

Service

Grid

Service

FIGURE 3.13
Model supporting Web/Grid-Enabled Architecture.

Using Grid services has the added benefits over using pure Web services
as follows:

• Grid services provide dynamic creation and life-cycle management. The

42 Large-Scale Simulation: Models, Algorithms, and Applications

RTI and federate instances are dynamic and transient service instances
under the management of the Grid service infrastructure.

• The model also eases the discovery of the Grid-enabled RTI and federate
services using the Grid Index Service [49].

• The Grid provides security in accessing services using its built-in mech-
anisms such as authentication, secured communication, etc.

• With the notifications feature of the Grid, the simulation model does
not have to block for the completion of RTI calls and may operate asyn-
chronously from the physical federate.

With the nature of the Grid, this model has the potential of providing fault
tolerance and load balancing. The model supports the reusability of legacy fed-
erate code and it also allows federates developed upon the Web/Grid-Enabled
Architecture to interact with other traditional federates.

3.6.2 Load Balancing

A large-scale distributed simulation running over the Internet is liable to en-
counter congestion in some computing hosts or over part of the network. The
congestion will cause performance degradation of some federate(s); thus the
execution efficiency of the whole federation may be lowered. Load balancing
technologies are often used in a distributed simulation (system) to smooth out
periods of high congestion; therefore the performance of the system can be
improved.

Load management of federates at the simulation model level has been ad-
dressed by some researchers, such as the approach proposed in [11]. However,
there exists significant overhead and implementation complexity for dealing
with RTI-related computing during the migration of a federate at runtime
[118]. For example, the federate being migrated needs to resign from the fed-
eration and the new federate needs to join the federation. The test bed de-
scribed in Section 10.2 shows that it can take about 20 seconds for a federate
to complete the RTI call joinFederationExecution [1]. The migration design
also needs to ensure correct event delivery and state consistency at the RTI
level.

This section presents a generic model to provide load balancing in the
HLA. Our approach treats the simulation model and the physical federate as
separate tasks to be managed, and attempts to distribute the model’s load
to lightly congested nodes when necessary. Appropriate existing algorithms
for load management may be adopted. The approach focuses on avoiding the
complication of dealing with RTI related operations while migrating running
federates.

An abstract model for load balancing is illustrated in Figure 3.14, in which
the Resource Observer monitors the availability of resources. In the case of
host congestion, the model may alleviate the lack of computing resources by

A Decoupled Federate Architecture 43

Virtual Federate X

RTI Interface

Physical Federate

X

 RTI

... ...

Resource
observer

2. Migrate virtual

 federate

Simulation Federate X
1. Monitor

status of host/

network

Original Host

Network

Light loaded host

Stay intact

Migrate

Load balancing

Algorithms

Virtual Federate X’

RTI Interface

FIGURE 3.14
Load balancing model for simulation model.

migrating the virtual federate to another idle host. The migration process is
managed based on the load balancing algorithms. The migrated virtual fed-
erate (a replica of the old one) on the new host links to the original physical
federate, and both processes form a federate executive to continue the simu-
lation session.

The load balancing model separates the simulation model’s migration from
the physical federate. The model has advantages in that (1) it does not require
the physical federate to perform extra RTI operations to support the model
migration, (2) it avoids dealing with in-transit events during migration, (3)
it saves the overhead for joining the federation, and (4) the physical federate
remains intact while servicing the new virtual federate as before.

3.7 Summary

In this chapter we have investigated the issues related to a Decoupled federate
architecture in large-scale HLA-based distributed simulations. A federate is
separated into a virtual federate process and a physical federate process, where
the former executes the simulation model and the latter provides RTI services
at the backend. A standard RTI interface is presented to support user trans-
parency, while the original RTI component is substituted with a customized
library. The architecture enables a relatively generic method of replicating

44 Large-Scale Simulation: Models, Algorithms, and Applications

the simulation model and also facilitates state saving and replication at the
RTI level. The proposed approach guarantees the correctness of executing RTI
services calls and reflecting RTI callbacks to the simulation model.

Benchmark experiments have been performed to investigate the overhead
incurred by a architecture. The experimental results are compared for a Decou-
pled federate and normal federate in terms of latency and time advancement
performance. The results indicate that the decoupled architecture incurs only
a slight extra latency in the case of a bulky payload and has a very close per-
formance of time advancement compared with a normal federate. The results
also indicate that an IPC mechanism, such as the Message Queue, can provide
efficient communication that bridges the virtual and physical federates and is
appropriate in designing a framework for federate cloning.

4

Fault-Tolerant HLA-Based Distributed

Simulations

CONTENTS

4.1 Introduction . 46

4.2 Decoupled Federate Architecture . 48

4.3 A Framework for Supporting Robust HLA-Based Simulations 49

4.3.1 Fault-Tolerant Model . 50

4.3.2 Dealing with In-Transit Events . 52

4.3.3 Fossil Collection . 54

4.3.4 Optimizing the Failure Recovery Procedure 56

4.4 Experiments and Results . 58

4.4.1 Configuration of Experiments . 59

4.4.2 Correctness of Fault-Tolerant Model . 60

4.4.3 Efficiency of Fault-Tolerant Model . 62

4.4.4 Scalability of the Fault-Tolerant Model . 63

4.4.5 User Transparency and Related Issues . 64

4.5 Summary . 67

Large-scale High Level Architecture (HLA)-based simulations are built to
study complex problems, and they often involve a large number of federates
and vast computing resources. Simulation federates running at different loca-
tions are liable to failure. The failure of one federate can lead to the crash of the
overall simulation execution. Such risk increases with the scale of a distributed
simulation. Hence, fault tolerance is required to support runtime robustness.
This chapter introduces a framework for robust HLA-based distributed sim-
ulations using a “Decoupled federate Architecture.” The framework provides
a generic fault-tolerant model that deals with failure with a “dynamic sub-
stitution” approach. A sender-based method is designed to ensure reliable in-
transit message delivery, which is coupled with a novel algorithm to perform
effective fossil collection. The fault-tolerant model also avoids any unnecessary
repeated computation when handling failure. Using a middleware approach,
the framework supports reusability of legacy federate code, and it is platform
neutral and independent of federate modeling approaches. Experiments have
been carried out to validate and benchmark the fault-tolerant federates using
an example of a supply-chain simulation. The experimental results show that
the framework provides correct failure recovery. The results also indicate that

45

46 Large-Scale Simulation: Models, Algorithms, and Applications

the framework only incurs minimal overhead for facilitating fault tolerance
and has a promising scalability.

4.1 Introduction

Distributed simulation technology facilitates the construction of a large-scale
simulation with component models that can be developed independently on
heterogeneous platforms and distributed geographically. The High Level Ar-
chitecture (HLA) defines the rules, interface specification, and object model
template to support reusability and interoperability among the simulation
components, known as federates. The Runtime Infrastructure (RTI) software
supports and synchronizes the interactions among different federates conform-
ing to the HLA standard [33] to give an overall simulation application, known
as a federation.

In the case where the problem domain is particularly complex or involves
multiple collaborative parties, analysts often need to construct a large-scale
federation with individual simulation federates interacting over the Internet.
Some typical examples are military commission rehearsal, Internet gaming,
supply chain simulation, etc. Those applications usually are time consum-
ing, computation intensive, and require vast distributed computing resources.
Simulation federates running at different locations are liable to failure: as the
current IEEE 1516 HLA standard does not support a formal fault-tolerant
model [65], the crash of a federate or a part of a federation may lead to the
failure of the whole federation. When failure occurs, even it is feasible to restart
the simulation from a previous checkpoint [71], repeating the execution could
either be costly or result in the loss of functions of the failed simulation (e.g.,
a random event may not be regenerated in the new “recovered” simulation
execution). The risk of such failure increases with the number of federates
inside a single federation. Hence, there exists a pressing need for a mechanism
to support runtime robustness in HLA-based distributed simulations.

A normal federate usually exists as a single process at runtime, and the
simulation model shares the same memory space with the Local RTI Compo-
nent (LRC) [1, 72]. In the case where the RTI crashes or meets congestion,
the failure of any LRC prevents the simulation execution from proceeding
correctly even though the simulation model contains no error at all. Thus,
providing fault tolerance to federates requires an approach to “isolate” the
error of the LRC from the simulation model in addition to the challenge of
developing a generic state saving and recovery mechanism. In [22], we have
proposed a “Decoupled federate Architecture” approach to enable state saving
and recovery for federate cloning, and we have also suggested a preliminary
scheme to achieve fault tolerance using the architecture [17]. In this chapter

Fault-Tolerant HLA-Based Distributed Simulations 47

we focus on the investigation of the fault-tolerance issue, and whether the
Decoupled federate Architecture can be used for this purpose.

This study aims to explore a solution to runtime robustness upon existing
RTI implementations, and it also provides the designers of the future RTI
software with a viable direction to address the fault-tolerance issues. Our
framework has been designed with the following objectives and scope:

• Tackling unpredictable failure of RTI services, regardless of what
causes the failure

• Minimizing overhead for providing runtime robustness to ensure exe-
cution efficiency

• Resuming normal execution exactly from where a failure occurs with-
out repeating or disrupting the global simulation execution

• Providing user transparency, which (1) avoids the need for developers
to include extra “fault-tolerant codes” in modeling federates, to minimize
development cost and support reuse of legacy federates; (2) allows devel-
opers to model their federates freely using various software packages and
on different platforms; (3) masks failure from the users at runtime; and
(4) allows users to deploy/execute fault-tolerant federations in the same
way as normal federations

This chapter proposes a framework that takes advantage of the Decoupled
federate Architecture to handle an RTI failure. The basic idea is to prevent a
local failure from affecting the overall distributed computation (simulation).
A generic fault-tolerant model has been developed as middleware transparent
to the user. The model dynamically substitutes the crashed RTI components
with backups, while the simulation federates still continue to operate as nor-
mal without being disrupted. The fault-tolerant model avoids repeating the
execution of federates when handling failure. Furthermore, the framework uses
a sender-based method to ensure reliable in-transit message delivery in case of
failure. We have also designed a novel algorithm to dispose of buffered events
after they have been successfully delivered to the subscribers. A series of ex-
periments has been performed to validate and benchmark the fault-tolerant
model.

The remainder of this chapter is organized as follows: Section 4.2 gives an
overview of the Decoupled federate Architecture. Section 4.3 details the func-
tionalities and design of the framework, as well as the algorithms for dealing
with in-transit messages. Section 4.4 presents the experiments based on a dis-
tributed supply-chain simulation example, which examine the correctness of
the fault-tolerant model and compare the robust federates with normal feder-
ates in terms of execution efficiency and scalability. In Section 4.5, we conclude
with a summary and proposals for future work.

48 Large-Scale Simulation: Models, Algorithms, and Applications

4.2 Decoupled Federate Architecture

As shown in Figure 4.1(A), in an HLA-based distributed simulation, a normal
simulation federate can be viewed as an integrated program consisting of a
simulation model and Local RTI Component (LRC) [1]. The simulation model
executes the representation of the system being analyzed, whereas the LRC
services it by interacting and synchronizing with other federates. In a sense,
the simulation model performs local computing while the LRC carries out
distributed computing for the model.

Physical Federate

newRTIAmb

fedAmb

Messaging Protocol

Messaging Protocol

phyFedAmb

Callback

Processor

External Communication

RTIAmb

Real Runtime Infrastructure

Simulation Model

Simulation Model

Customized RTI++

Library

RTI interface

Communication Channel

(B) (C)

Middleware

Virtual Federate

communication

channel for RTI

services

communication

channel for

callback

Virtual Federate

Simulation Model

RTI component

RTI interface

Normal Simulation Federate

Runtime Infrastructure

(A)

FIGURE 4.1
Normal federate and decoupled federate architecture.

The Decoupled federate Architecture [22] was initially designed to tackle
the problems involved in replicating running federates for distributed simula-
tion cloning. It separates a federate’s simulation model from the Local RTI

Fault-Tolerant HLA-Based Distributed Simulations 49

Component. A virtual federate is built with the same code as the original
federate. Figure 4.1(C) gives the abstract model of the virtual federate. Com-
pared with the original federate, the only difference is in the module below
the RTI interface, which remains transparent to the users. A physical federate
(PhyFed) is designed as shown in Figure 4.1(B), and it associates itself with
a real LRC. Physical federates interact with each other via a common RTI
and form a “physical federation” serving the overall simulation. Both the vir-
tual federate and physical federate operate as independent processes. Reliable
external communication channels link the two modules into a single federate
executive. The virtual federate and the physical federate may operate within
the same address space or in different machines in a networking environment,
depending on the developers’ requirements.

A well-designed Decoupled federate Architecture can provide federated
simulations with almost equivalent execution efficiency to that obtained using
normal federates in terms of both latency and time advancement performance
[19, 22]. As the Decoupled federate Architecture keeps the standard HLA
interface, we can customize our own library (middleware) to expand the func-
tionalities of the original RTI software without altering the semantics of RTI
services. With these merits, the architecture seems to be an infrastructure
suitable for developing the fault-tolerant model (see Section 7.1).

4.3 A Framework for Supporting Robust HLA-Based

Simulations

This section introduces the internal design of the fault-tolerant model and re-
lated issues. No implementation can ensure that any program is immune from
all faults, and the focus of this study is to develop a robust infrastructure for
facilitating distributed simulations rather than to free developers from vali-
dating their simulation models. Therefore, the fault-tolerant model does not
consider federate crashes due to the incorrect implementation of its simula-
tion model or address deadlock in federation synchronization. It assumes also
that (1) the underlying RTI software is properly implemented, which improb-
ably contains bugs; and (2) the messages sent and received in the network
are not corrupted as well. An RTI failure in the current implementation can
be (1) time-out of an RTI invocation, (2) a critical RTI exception1, (3) any
other unknown error2 from the RTI, or (4) crash of the physical federate or
RTIEXEC/FEDEXEC. Apparently, crash of RTIEXEC/FEDEXEC only con-
cerns the DMSO RTI software. In the remainder of this chapter, a federate
means one that contains a virtual federate and a physical federate, and we

1RTI::RTIinternalError or any other exception specified as critical by the user.
2Some low level error that cannot be caught as RTI exceptions defined in the HLA, for

example, a runtime error of some system libraries employed by the RTI software.

50 Large-Scale Simulation: Models, Algorithms, and Applications

explicitly refer to a traditional federate that directly interacts with the real
RTI as a “normal federate.”

4.3.1 Fault-Tolerant Model

In the framework, the fault-tolerant model is embedded in the customized
RTI++ library (middleware of the Decoupled federate Architecture). As
shown in Figure 4.2, the model contains a Management Module and a Fail-
ure Detector in the middleware. The Management Module comprises an RTI
States Manipulator and a Buffer Manager.

Management Module

1. Save RTI
System State

Stable

Storage

Crashed RTI

Virtual Federate X

RTI Interface

Physical Federate

X

New Real RTI

New Physical Federate

X'

... ...

4. Replicate RTI
System State

3. Initiate new
physical federate

Simulation Federate X

2. Monitor status
of LRC

Failure

Detector

RTI States

Manipulator

Buffer

Manager

FIGURE 4.2
Fault-tolerant model upon dynamic LRC substitution.

At runtime, the middleware intercepts the invocation of each RTI ser-
vice method. The RTI States Manipulator saves RTI states immediately be-
fore passing the RTI call to the physical federate to execute it. For example,
when the virtual federate invokes publishObjectClass, the RTI States Ma-
nipulator intercepts this call and saves the information, after which it will
call the physical federate via the External Communication channel. In this
way, the RTI States Manipulator logs all the RTI system states into local
stable storage. Some RTI states are relatively static, such as the federate
identity, federation information, the published/subscribed classes, and time
constrained/regulating status. Other states include the registered or deleted
object instances, and granted federate time. Some event data may also need
to be saved, such as sent and received interactions, updated and reflected at-
tribute values of object instances, etc. The RTI States Manipulator logs those
states through the standard RTI interface, and its design is transparent to
and independent of the underlying RTI implementation. The Buffer Manager

Fault-Tolerant HLA-Based Distributed Simulations 51

makes use of saved attribute updates and interactions for dealing with in-
transit events (see Section 7.2 for details). The Failure Detector monitors the
status of the LRC or even the RTIEXEC/FEDEXEC if necessary. In the four
cases of RTI failure (see above), the first three cases can be detected passively
via the physical federate, while the fourth requires the failure detector ac-
tively checking the status of the physical federate or RTIEXEC/FEDEXEC.
Subsequent to confirming the occurrence of an RTI failure, the Management
Module will start a failure recovery procedure. Management Modules of other
federates will eventually detect the “remote” failure. In this section we de-
scribe a straightforward recovery scheme (as shown in Figure 4.3) from the
perspective of the first failed federate(s) using the following steps:

Initiate failure recovery

actively

Under Middleware's control

The first federate detects failure All other federates

Initiate failure recovery

passively

Wait for initialization

ready

Return control to the

Simulation model

Synchronize the resumed federation

Start a new physical

federation

Cut off link to the

original PhyFed

Initiate a new PhyFed

and replicate states

Deal with in-transit

events

Cut off link to the

original PhyFed

Flush TSO queue if this

service is still available

Wait for initialization

ready

Return control to the

Simulation model

Initiate a new PhyFed

and replicate states

Deal with in-transit

events

Upon new physical federation

FIGURE 4.3
Illustration of straightforward failure recovery procedure.

• Preparation for recovery. The Management Module cuts off the
connection from its PhyFed and terminates it, while other federates’ mid-
dleware attempts to extract received events before doing this.

• Initiation of new physical federation. Because the original phys-
ical federation cannot function properly due to the RTI failure, the Man-
agement Module has to create a new physical federation and initiates a

52 Large-Scale Simulation: Models, Algorithms, and Applications

new PhyFed instance. Other federates’ middleware also performs exactly
the same operation. All virtual federates switch to the new PhyFeds and
form a new workable federation together.

• State recovery. All RTI States Manipulators recover RTI states from
stable storage to the PhyFeds.

• Handling in-transit events. All Buffer Managers ensure that in-
transit events are delivered properly to the subscribers.

• Coordination among Management Modules. The Management
Module synchronizes the recovered federation to guarantee that all feder-
ates are fully reinitialized and ready to proceed.

Finally, the virtual federates obtain control again and continue execution with
the support of a new physical federation. Therefore, physical federates work as
plug-and-play components, and they can be replaced at runtime. The fault-
tolerant model functions as a firewall to prevent failure of local or remote
LRCs from stopping the execution of the simulation model.

4.3.2 Dealing with In-Transit Events

The current design of the fault-tolerant model supports the conservative time
synchronization scheme [65]. The RTI does not keep the events, such as up-
dating of attributes and sending interactions, after they have been processed.
Thus, the recovered federates may miss some events previously generated with
a timestamp greater than the federation time on failure, which should be de-
livered to them. Examples of this problem are shown in Figure 4.4. Although
the example is discussed based on the timestamp ordered (TSO) events, it is
similar for receive order (RO) events.

As illustrated in Figure 4.4(A), at simulation time T, Fed[1] sends a TSO
event EvX with timestamp T +∆t1(∆t1 > ∆t0 > Lookahead) to subscribers
(e.g., Fed[2]). In the case that Fed[2] encounters RTI failure at time T +∆t0,
Fed[2] resumes with a new PhyFed. But the recovered federate will never
receive the event EvX as it has already been lost due to the failure. In another
case (Figure 4.4(B)), Fed[3] encounters RTI failure at time T immediately
after sending a TSO event EvY with timestamp T +∆t0. Refer to the failure
recovery procedure shown in Figure 4.3; in this case the message EvY may or
may not be received by the Fed[1] before it flushes its original PhyFed’s TSO
queue to initiate a new PhyFed.

In order to ensure that in-transit events are delivered to the receivers when
the simulation resumes from failure, a solution is proposed to resend “image”
events with an identical content/timestamp to the corresponding in-transit
events generated previously. The Buffer Manager Buffer Manager (Figure 4.2)
at the sender side records each outgoing TSO event and indexes the event in
time order. The buffer can be flushed to stable storage from time to time. This

Fault-Tolerant HLA-Based Distributed Simulations 53

approach has similarity to the commonly used message logging approach in
the sense of recording events, but it does not require rollback of the model’s
execution [106]. The approach needs to make a trade-off between redundancy
in message passing and complexity of the control mechanism under the condi-
tion that the new PhyFed must not miss any event that ought to be received.
A general principle in designing the resending approach is to ensure that all
federates operate in the same way as normal federates that have not encoun-
tered a fault.

To minimize extra networking overhead, the proposed approach requires
the sender only to resend those events that (1) have been subscribed and (2)
have not been received or buffered in the subscriber’s TSO queue. The mid-
dleware can be designed to help the subscribers notify the particular sender(s)
about the reception status of the events originating from the sender. According
to the feedback, the sender can selectively generate the required events. The
procedure is as follows, including preparation before a crash and the action
on failure recovery:

Fed[3]

Fed[2]

send EvX

Fed[1]

Simulation

Time

0tT ∆+

)(:vX 1tTTimeStampEeventTSO ∆+

1tT ∆+

Fed[1]

Fed[1]

New

Fed[2]

other events

EvX lost

[2] fails

T

send EvY

)(:vY 0tTTimeStampEeventTSO ∆+

other events

EvY’s status

unpredictable

[3] fails

immediately

after sending

(A) (B)

Fed[2]

New

Fed[2]

New

Fed[3]

New

Fed[3]

Fed[1]

Fed[1]

FIGURE 4.4
Illustration of the problems in dealing with in-transit events.

• Collecting Subscription/Publication/Registration Data. Each
federate builds a Federate Subscription/Publication/Registration (FSPR)
Table, which records the classes subscribed/published and the objects
registered by other federates. Each federate broadcasts its subscrip-
tion/publication information that enables other federates to update corre-
sponding entries in their own FSPR Tables. When an object instance3 is
registered (with federate ID encoded using middleware), each subscriber
updates the table according to the object class and federate to which it

3When ownership transferred, the table must be updated accordingly.

54 Large-Scale Simulation: Models, Algorithms, and Applications

belongs. Thus, when attribute updates of an object instance (events) are
received, the receiver can trace the source of this event4.

• Buffering Events. Each sender records its local updates in time-
stamp order according to their associated object classes. Thus, each sender
records what events it has generated. Referring to the FSPR Table, each
sender also knows which federates should receive these events.

• Regenerating Events. On recovering from failure, the PhyFed be-
ing recovered requests the senders to deliver those events with timestamp
greater than its current granted time5. Thus, the recovered federate can
receive those events and pass them to the simulation model with the ad-
vance of time.

The resending approach is also applicable for processing interactions. For pro-
cessing RO events, the Buffer Manager logs and indexes all the outgoing RO
events according to the sequence in which they are created; thus the index can
be used to identify the RO events. The subscribers simply keep the indexes of
the RO events they have received. When failure occurs, the PhyFed being re-
covered requests the senders to deliver the missing RO events. The RO events
to be resent can be easily identified by comparing the indexes maintained by
the sender and the receiver. After that, the senders resend the missing RO
events and dispose of the logged RO events accordingly after successful de-
livery. This approach is similar to the counter mechanism introduced in [12].
The Data Distribution Management (DDM) method used in [117] can be also
adopted in our case to optimize the delivery of missing events.

4.3.3 Fossil Collection

Using the scheme described in the previous section, sent events are buffered
at the sender’s side against any potential unpredictable failure. As the sim-
ulation execution proceeds, the buffered data will accumulate indefinitely; at
some stage this will become a bottleneck as system resources are wasted in
maintaining a huge amount of redundant data. Therefore, it is necessary to
perform fossil collection on the logged events. The fossil collection should (1)
ensure that events that any subscriber might miss in case of failure are al-
ways available, as well as (2) dispose of events that have been received by all
subscribers as soon as possible. The RTI ensures that a federate receives all
events with timestamp less than its granted time. Therefore, senders do not
need to keep events with timestamp less than the granted time of a receiver.

4When dealing with interactions, the middleware simply codes the federate ID in the
tag of an interaction and decodes the ID on reception.

5It is possible that the timestamps of some events to be resent are less than the sender’s
granted time plus lookahead. In this case, the middleware can be designed to encode the
content and timestamps of these events in a special RO message, which can then be decoded
in the form of TSO events at the receiver’s end.

Fault-Tolerant HLA-Based Distributed Simulations 55

Based on this fundamental assumption, the main task of fossil collection is
to determine which logged TSO events are safe for a sender to dispose of
according to its current granted time. A time-constrained federate has an as-
sociated Lower Bound Time Stamp (LBTS), which is the timestamp of the
earliest possible TSO event that may be generated by any other regulating
federate [72]. In the scenario depicted in Figure 4.5, we write the lookahead
of the ith federate (Fed[i]) as Lai, its current granted time as Ti, and the
time of the next request this federate may make to the RTI to advance time
as T

′

i . We define a maximum “timestep” by which Fed[i] advances its time in

each loop as δi = T
′

i −Ti. Considering the simplest scenario consisting of only
two federates, from Fed[1] ’s perspective, failure may occur in Fed[2] either (1)
after Fed[2] has been granted time but before Fed[2] makes another request
to advance time, or (2) after Fed[2] has made a request to advance time to
T2 + δi but before the request is granted.

Fed[1]

Runtime Infrastructure

Fed[2] Fed[n]
...

Lookhead : La2

TAG: T2

next time

request : T2'

Lookhead : Lan

TAG: Tn

next time

request : Tn'

TAG: T1

Considering how

to dispose of

buffered events

FIGURE 4.5
Example for calculating timestamp of events to be disposed.

Fed[1] ’s LBTS is T2 +La2 in the first case (hence T1 6 T2 +La2), and its
LBTS is T2+La2+ δ2 in the second case (hence T1 6 T2+La2+ δ2). It is safe
for Fed[1] to dispose of buffered events earlier than Fed[2] ’s current granted
time T2, which means any event with timestamp less than T1− (La2+ δ2) can
be removed immediately.

Generalizing to n federates, suppose that Fed[k](k 6= 1) has the smallest
federate time Tk of the other federates, so that it is safe for Fed[1] to dispose
of events with time earlier than Tk. It is obvious that Lak + δk 6 max{(Lai+
δi)|i 6= 1}. Thus, in the worst case, it is safe for Fed[1] to dispose of all
logged with timestamp less than T1 −max{(Lai + δi)|i 6= 1}, and we define
this value as Fed[1]’s safe lower bound. The fossil collection algorithm can
easily determine this safe lower bound given that the lookahead and of other
federates are available, and this can be achieved easily using a middleware
approach.

Furthermore, for any federate, its “timestep” may change from time to
time. To minimize global propagations, a simulation time window can be de-

56 Large-Scale Simulation: Models, Algorithms, and Applications

fined with an upper and lower bound specified. The window of a federate (say
Fed[i]) is an interval around Ti+ δi, i.e. [(Ti+ δi)− ζ1, (Ti+ δi)+ ζ2], for some
ζ1 < δi and ζ1, ζ2 > 0. When Fed[i] requests to advance its time to T

′

i , there
are four cases:

1. If T
′

i 6 (Ti + δi)− ζ1, set new δi = (δi − ζ1).

2. If (Ti + δi)− ζ1 < T
′

i 6 (Ti + δi), δi is unchanged.

3. If (Ti + δi) < T
′

i 6 (Ti + δi) + ζ2, set new δi = (δi + ζ2).

4. If T
′

i > (Ti + δi) + ζ2, set new δi = (T
′

i − Ti).

When δi decreases, it is safe for the other federates to calculate safe lower
bounds using a larger δ value for Fed[i]. In case (1), we still need to send other
federates the new δi, as it is out of the window. For cases (3) and (4), using
middleware can ensure that other federates have received the new δi before
Fed[i] requests the RTI to advance time. After Fed[i] is granted a new time,
the time window will be moved forward to adapt to the change.

4.3.4 Optimizing the Failure Recovery Procedure

The failure recovery procedure starts from the point where a failure is detected
by the first federate and ends at the point where all federates are completely
re-initialized and ready for resuming normal execution. The straightforward
recovery scheme (see Figure 4.3) requires two time-consuming RTI related
operations to be performed: (1) to create the physical federation and (2) for
each federate, to join the existing federation. The joinFederationExecution call
incurs costly federation-wide operations. For example in DMSO RTI-NG, this
operation usually requires opening TCP sockets to all other federates in the
federation, which is expensive [95]. To minimize the overhead (which can be
greater than 20 seconds; see Section 4.4), a possible solution is to avoid these
calls during the procedure itself. We attempt to solve this problem using a
Physical Federate Pool approach as shown in Figure 4.6.

This approach creates one or multiple “backup” physical federations6 con-
currently with the normal simulation execution. An appropriate number of
PhyFed instances are created, which join their respective backup federations
and form PhyFed instance pools (one pool for each federation). In the context
of the pool approach, a PhyFed instance may operate in two modes: (1) work-
ing mode, servicing a virtual federate as normal; and (2) idle mode, calling
tick regularly to maintain connection session with the RTI while checking for
invocation from a virtual federate. On start-up, a virtual federate connects
to a PhyFed from the pool and the PhyFed operates in working mode from

6Depending on the fault-tolerance requirements, these multiple physical federations can
be supported by one or multiple RTIEXEC and the backup physical federates can be exe-
cuted on the same or different machines as the active physical federate.

Fault-Tolerant HLA-Based Distributed Simulations 57

Real Runtime Infrastructure

Working PhyFed Instance

PF[i]

...

Federate on startup/

Failed Federate in Recovering

Physical Federate x
Physical Federate xIdle Phyfed Instance

PF[i]

Physical Federate Instance Pool
1.Fetch an idle

PhyFed2. Connect and set

working mode

Virtual Federate

Real Runtime Infrastructure
Real Runtime Infrastructure

FIGURE 4.6
Physical federate pool approach

then onward. The backup physical federations purely consist of idle PhyFeds
instances, which are neither time regulating nor time constrained, and only
have minimum interaction with each other. The backup physical federations
potentially serve for recovery in the future. On failure recovery, an idle PhyFed
instance can be fetched from the pool by the virtual federate to provide the re-
quired RTI services immediately. Thus, this approach avoids consuming time
for creating the federation and joining the federation execution prior to state
replication. Maintaining spare PhyFed instances consumes extra system re-
sources, and we need to investigate the overhead this may cause. Correspond-
ingly, the straightforward fault recovery scheme (Section 7.1) can be optimized
using the pool approach as shown in Figure 4.7.

Another uncertain factor is the time needed for the remaining federates to
detect the failure propagated from the origin. It depends on the form in which
the failure appears and how the fault-tolerant model handles it. If the failure
is detected as one of the last three cases defined in Section 4.3, other federates’
middleware need only immediately initiate a passive failure recovery. For the
first case, the time required to confirm the occurrence of a failure must be
longer than the specified “time-out” period.

The situation becomes even more complicated if the “symptoms” of fail-
ure cannot be explicitly identified at all. For example, suppose a federate does
not receive a timeAdvanceGranted (TAG) for a significantly long period after
it requests advancing its time from the RTI [1]. Basically this may due to
the fact that (1) some LRCs have failed, or (2) the condition for granting its
request has not been met yet, or (3) some other reason not related to fail-
ure, for example, an unexpected communication delay for the RTI to convey
callbacks. There needs to be a method to distinguish the first case from the
others. The PhyFed pool approach can be used to solve this issue: a prese-

58 Large-Scale Simulation: Models, Algorithms, and Applications

Initiate failure recovery

actively

Under Middleware's control

The first federate detects failure All other federates

Initiate failure recovery

passively

Wait for initialization

ready

Return control to the

Simulation model

Synchronize the resumed federation

Cut off link to the

original PhyFed

Fetch an idle PhyFed

from pool and

replicate states

Deal with in-transit

events

Cut off link to the

original PhyFed

Flush TSO queue if this

service is still available

Wait for initialization

ready

Return control to the

Simulation model

Fetch an idle PhyFed

from pool and

replicate states

Deal with in-transit

events

Upon another physical federation

FIGURE 4.7
Illustration of the optimized failure recovery procedure using PhyFed pool.

lected backup physical federation can also serve as an out-of-band channel for
a failed federate to notify the remaining federates of the occurrence of fail-
ure. We define a special “system” object class (“RTI FAIL”) and have all idle
PhyFed instances subscribe to and publish it. The Management Module of
the first failed federate registers an RTI FAIL object instance in the selected
backup physical federation. The remaining federates’ Management Modules
periodically check the existence of such an object from the selected backup
physical federation to decide whether to start a passive fault recovery proce-
dure. Hence, it is possible for the whole federation to quickly respond to a
local failure.

4.4 Experiments and Results

In order to verify the correctness and investigate the overhead incurred in the
proposed fault-tolerant model, we perform a series of experiments to compare

Fault-Tolerant HLA-Based Distributed Simulations 59

the robust federates with normal federates using a simple distributed supply
chain simulation.

4.4.1 Configuration of Experiments

The simulated supply chain comprises an agent company, a factory, and a
transportation company. The agent keeps issuing orders to the factory, and
the latter processes these orders and plans production accordingly. The trans-
portation company is responsible for delivering products of the factory and
reporting the delivery status. The three nodes in the supply chain can be mod-
eled as three federates as shown in Figure 4.8, namely simAgent, simFactory,
and simTransportation. These federates form a simple distributed simulation
to simulate the supply chain’s operation in almost a year (from simulation
time 0 to 361). Two object classes “Order” “Products” and one interaction
class “deliveryReport” are defined in the Federation Object Model (FOM)
[65] to represent the types of events exchanged among the federates. Table 4.1
gives the classes published and/or subscribed to by the federates. The simFac-
tory reports the cost incurred for each order at the end of the simulation. The
simulation starts with an initialization procedure and then enters the “real”
simulation procedure after a global synchronization. The initialization proce-
dure denotes the interval from the point a federate is started to the exact point
where it has completed the following operations: create/join the federation, en-
able time-regulating/constrained, publish/subscribe object/interaction classes
and register object instances. During the simulation procedure, federates inter-
act and coordinate time advancement with each other using the conservative
synchronization scheme. In this chapter, the elapsed times of the initialization
procedure and the simulation procedure of each run are called its initialization
time and simulation execution time, respectively.

OrdersimAgent simFactory simTransportation

Products

deliveryReport

(Interaction)

Agent Factory Transportation

FIGURE 4.8
A simple distributed supply-chain simulation.

Using the same codes for the simulation models, the federates are built into
two versions by linking to (1) the DMSO RTI library directly (normal) and
(2) the RTI++ middleware library supporting fault tolerance (robust). The
RTI++ in these experiments adopts the PhyFed pool approach and uses the
IPC Message Queue [101] as the external communication to bridge the virtual

60 Large-Scale Simulation: Models, Algorithms, and Applications

federate and its PhyFed. The PhyFed pool maintains one backup physical
federation consisting of three idle PhyFeds.

TABLE 4.1
Declaration Information of the Federates.

Interaction
Federate Object Classes and Attributes Classes and

Parameters
Order Products deliveryReport

Index,Size Amount,Index,Date Index,Status

simAgent Publish NIL NIL

simFactory Subscribe Publish Subscribe
simTransportation NIL Subscribe Publish

The experiment architecture and platform specification are listed in Table
4.4.1. The experiments use three up to twelve workstations and one server,
which are interlinked via a 100Mbps-based backbone. Workstations 4 through
12 are only used in scalability studies (Section 3.4). Each federate occupies one
individual workstation, with the RTIEXEC and FEDEXEC processes running
on the server.

4.4.2 Correctness of Fault-Tolerant Model

To verify the correctness of the fault-tolerant model, we specify a federate sim-
Agent to generate the same set of orders in different runs. There are three sets
of experiments in this session. We first execute the normal federates, in which
the outputs are used as a reference in subsequent experiments. Second, we
repeat the simulation using the robust federates without introducing failure
(FAULT FREE). The last experiment also uses robust federates but with fail-
ure abruptly triggered once by manually terminating a working PhyFed during
the simulation procedure (FAULT INCURRED). The outputs obtained using
normal federates are summarized as follows:

1. simAgent issues 240 orders, in which the first and the last order
carry timestamp 2.5 and 362.5, respectively.

2. simFactory receives 239 orders (note that the last order is not
received as it is after the simulation end time) and makes products
accordingly.

3. simTransportation receives all product updates issued earlier
than the end time and sends deliveryReport interactions with re-
spect to these updates.

From the FAULT FREE and FAULT INCURRED experiments, we check
the orders issued and received, products produced and delivered, as well as

Fault-Tolerant HLA-Based Distributed Simulations 61

TABLE 4.2
Configuration of Experiment Test Bed

Specification Computers
Workstation Workstation Server Workstation

1∼2 3 4∼12

Operating
System

Sun Solaris
OS 5.8

Sun Solaris
OS 5.8

Sun
Solaris
OS 5.8

Sun Solaris
OS 5.9

Sparcv9 Sparcv9 Sparcv9 Sparc II
CPU,at CPU,at CPU*6 CPU,at

CPU 900 MHz 360 MHz*2 at 248 400MHz
MHz

RAM 1024M 512M 2048M 512M

Compiler GCC 2.95.3 GCC 2.95.3 GCC
2.95.3

GCC 2.95.3

Underlying
RTI

DMSO NG
1.3 V6

DMSO NG
1.3 V6

DMSO
NG 1.3
V6

DMSO NG
1.3 V6

SimAgent
Processes
running on or SimTrans-

portation

simFactory RTIEXEC
&

FEDEX

or SimTrans-
portation

62 Large-Scale Simulation: Models, Algorithms, and Applications

the calculation of costs. Outputs (including the timestamps and values of
all events) in these experiments match exactly those using normal federates.
This indicates that the fault-tolerant model does not introduce any variation
to the simulation results, and our framework provides a correct robustness
mechanism for HLA-based distributed simulations. The FAULT INCURRED
experiments also show the benefit of the decouple architecture. The failure
and the recovery procedure are properly handled and executed by middleware
during the runtime. The fault handling and recovery is transparent to the
simulation model execution. The user’s simulation model was executed exactly
in the same way as if the failure had not occurred.

4.4.3 Efficiency of Fault-Tolerant Model

To investigate the performance of the fault-tolerance mechanism, another
set of experiments are performed to collect the overall execution time us-
ing normal and robust federates. We specify federate simAgent to generate
orders randomly in each run. For normal federates, we have a number of
runs, and the average execution time of these runs is referred to as the NOR-
MAL time of executing one simulation session. As for the robust federates,
we first repeat the FAULT FREE experiments and then carry out a number
of FAULT INCURRED experiments. From FAULT INCURRED experiments,
we select three runs in which the failure of the PhyFed corresponding to fed-
erate simFactory occurs only once at simulation time 43, 182, or 320. These
points represent failure at the start (FI S), middle (FI M), and end (FI E)
stages, respectively.

The average CPU utilization of a single normal federate or a virtual fed-
erate (in Workstation 1 or 2) is reported as above 80%. A PhyFed has an
average CPU utilization as low as <0.5% in working mode and <0.02% in idle
mode.

The initialization time of normal federates varies between 19 and 27 sec-
onds in different runs, and it varies between 21 and 27 seconds using robust
federates. The latency for initiating the PhyFed pool is well hidden. The sim-
ulation execution times of different experiments are reported in Figure 4.9.
The normal simulation execution time is ∼584 seconds using normal feder-
ates, which is almost the same as the average simulation execution time in
FAULT FREE experiments. This means the overhead for federate decoupling
and maintaining the PhyFed pool has little influence on execution efficiency. In
the FAULT INCURRED experiments, the simulation execution time is only
11 to 13 seconds longer than the normal case. The overhead does not fluctuate
much for failure at different stages of the simulation execution. In the exper-
iments, if an RTI call issued from the virtual federate has not been returned
by the PhyFed after more than 6 seconds, a time-out will occur. Because of
this, a large part of this slight overhead is due mainly to the failure detection
procedure.

When failure occurs, we assume that the normal federates have to start

Fault-Tolerant HLA-Based Distributed Simulations 63

584 584 596 595 597
654

878

1101

0

200

400

600

800

1000

1200

NORMAL FAULT_FREE FI_S FI_M FI_E

Robust Federate

Normal Federate

Experiments

S
ec

o
n

d
s

FIGURE 4.9
Simulation execution time of different experiments.

from the beginning, and the sum of the elapsed times of both the failed and
repeated simulation executions is used for comparison with the simulation
execution times using robust federates. The percentage of saved execution
time is shown in Figure 4.10. Obviously, the later the failure occurs, the more
execution time can be saved (up to 50%).

0

10

20

30

40

50

Start Middle End

P
e

rc
e

n
ta

g
e

(%
)

_

FIGURE 4.10
Percentage of saved execution time with failure occurring at different stages.

64 Large-Scale Simulation: Models, Algorithms, and Applications

4.4.4 Scalability of the Fault-Tolerant Model

A third series of experiments is performed to test the scalability of the fault-
tolerant model. This consists of ten sets of experiments in total, with the
number of federates varying from three to twelve. Each set of experiments
uses a federation that always contains one simFactory and one or multiple
instances of simAgent and simTransportation. In the first set of experiments,
the federation has one simFactory, one simAgent, and one simTransporta-
tion. In each subsequent set of experiments, we always introduce one new
instance of simAgent or simTransportation alternately to the previous set of
experiments. As shown in Figure 4.11, each added simAgent (simTransporta-
tion) is marked with the total number of federates in the federation after it
is added. Similar to the experiments reported in Section 3.3, the execution
time is measured and compared using different types of federates, that is,
normal and robust (FAULT FREE and FAULT INCURRED) federates. For
FAULT INCURRED experiments, the failure of federate simFactory is con-
figured to occur only once at simulation time 182 (i.e., always at the middle
of the simulation execution). The experiment architecture and platform spec-
ification for the scalability study are listed in Table 4.1, and the workstation
on which each federate operates is also illustrated in Figure 4.11.

The average CPU utilization of each federate is the same as in previous ex-
periments. The execution times for all experiments are recorded in Figure 4.12.
The execution times using normal federates increases smoothly when the fed-
eration contains an increasing number of federates (starting from 584 seconds
for three federates to 714 seconds for twelve federates), and the same trend
can be observed when using robust federates. The extra execution time (versus
normal federates) consumed by FAULT INCURRED federates are highlighted
in Figure 4.13. Note that the percentage increment of the execution time re-
mains invariant to the number of federates in the federation. It is about 2% for
all the cases. The experimental results show that (1) the fault-tolerant model
scales well with increasing distributed simulation size; (2) in the case of no
fault, robust federates perform almost the same as the normal federates; and
(3) in the case of a fault occurring, the model’s overhead remains negligible
compared to normal federates encountering no fault.

Figure 4.14 shows the overall simulation execution times of normal feder-
ates and robust federates in the present of the fault. Similar to the experiments
reported in the previous subsection, we assume that the normal federates must
restart from the beginning when the fault occurs. Using the same calculation
method as in Figure 4.10, the percentages of saved execution time are given
in Figure 4.15. The percentage remains about 32% steadily with increasing
federation scale. The results indicate that the robust federates can signifi-
cantly reduce execution time when dealing with failure, compared to normal
federates without fault-tolerance functionalities.

Fault-Tolerant HLA-Based Distributed Simulations 65

Initial

simAgent

simFactory(3)

Initial

simTransportation

simAgent (4) simTransportation (5)

simAgent (6) simTransportation (7)

simAgent (8)

simAgent

(10)

simTransportation (9)

simTransportation

(11)

simAgent (12)

WS1 WS2

WS3
WS4

WS6

WS8

WS10

WS5

WS7

WS9

WS11

WS12

FIGURE 4.11
Initial federation for the ten sets of experiments for the scalability test.

Execution Time Using Normal & Robust Federates

5
8
4

5
8
4

5
8
6

5
8
6

5
8
9

5
9
2

6
0
2

6
8
9

7
1
0

7
1
4

5
8

4

5
8

5

5
8

6

5
8

8

5
9

1

5
9

3

6
0

4

6
9

0

7
1

0

7
1

5

5
9
5

5
9
4

5
9
5

5
9
8

5
9
8

6
0
4

6
1
1

7
0
4

7
2
0

7
2
4

0

100

200

300

400

500

600

700

800

3 4 5 6 7 8 9 10 11 12
Number of Federates

S
e
c
o
n
d
s

I

Normal

FAULT_FREE

FAULT_INCURRED

FIGURE 4.12
Simulation execution times with increasing number of federates.

4.4.5 User Transparency and Related Issues

As introduced previously, the extra effort needed for building robust federates
is minimal as users only need to link normal federates’ code to the RTI++
library. Our framework does not require a federate to be modeled on any par-
ticular software package or specially coded for the purpose of fault tolerance.
The FOM defined for a normal federate only needs to be slightly extended for
the use of the corresponding robust federate, which includes several extra “sys-
tem” object/interaction classes. Table 4.4.5 lists the system object/interaction
classes added into the FOM.

66 Large-Scale Simulation: Models, Algorithms, and Applications

1
1

1
0

9

1
2

9

1
2

9

1
5

1
0

1
0

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8 9 10 11 12
Number of Federates

O
v
e
rh

e
a
d
(S

e
c
s
)

FIGURE 4.13
Overhead of robust federates (fault incurred) versus normal federates without
faults.

8
7

6

8
7

6

8
7

9

8
7

9

8
8

3
.5

8
8

8

9
0

3

1
0

3
4

1
0

6
5

1
0

7
1

5
9

5

5
9

4

5
9

5

5
9

8

5
9

8

6
0

4

6
1

1

7
0

4

7
2

0

7
2

4

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10 11 12
Number of Federates

S
e
c
o
n
d
s

NORMAL_FI_M

ROBUST

FIGURE 4.14
Simulation execution times with failure incurred in the middle stage.

To examine whether robust federates can interoperate properly with nor-
mal federates, we repeat the same simulation scenario as described in Section
3.2 using both robust federates and normal federates in each session (twenty-
three possible combinations in total, inclusive of two constructed by pure

Fault-Tolerant HLA-Based Distributed Simulations 67

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12
Number of Federates

P
e
rc

e
n
ta

g
e
(%

)

FIGURE 4.15
Percentage of saved execution time with increasing number of federates (fault
occurs at middle stage).

normal/robust federates). The extended FOM applies for both types of fed-
erates. The six “hybrid” sessions have the same outputs as those reported in
Section 3.2. Robust federates upon our framework can interact properly with
normal federates. The extended FOM does not cause any semantic problem or
any difference in simulation execution. The experiments further show that the
fault-tolerant model provides reuse of federate code and user transparency.

4.5 Summary

In this chapter, we introduced a framework for supporting runtime robustness
to HLA-based distributed simulations. We investigated the issues and design
of a generic fault-tolerant federate model. Based upon the Decoupled federate
Architecture, the model was developed to prevent an RTI error from disrupt-
ing the execution of simulation federates and ensuring correct recovery of a
distributed simulation session. Algorithms were presented to ensure reliable
delivery of in-transit messages as well as perform safe fossil collection.

The fault-tolerant model supports the reuse of legacy federates while en-
abling robustness, and it minimizes developers’ efforts for modeling robust
federates. The model is platform neutral and model independent. User trans-

68 Large-Scale Simulation: Models, Algorithms, and Applications

TABLE 4.3
System Object/Interaction Classes in the Extended FOM

Object/Interaction
Classes

Declaration Functionalities

RTI FAIL(Object) Publish&Subscribe Notifying other federates
about the occurrence of an

RTI failure
SYS FED

DECLARATION
(Interaction)

Publish&Subscribe Broadcasting the
information about which

object/interation classesthe
local federate has

published/subscribed to
SYS IN TRAN MSG

(Interaction)
Publish&Subscribe Delivering the content of

intransit TSO or RO events
to the receiver during fault

recovery

parency has been provided with failure properly masked. Robust federates do
not require rollback of simulation execution in the case of failure.

A series of experiments was performed to investigate the correctness and
performance of the fault-tolerant model using an example of a distributed
supply chain simulation. The experimental results were compared for normal
and robust federates in terms of uniformity of output statistics and computing
efficiency. The output statistics indicate that the model provides correct fault
recovery. The results show that robust federates have a very close performance
to normal federates and only incur minimal extra overhead. Our work indicates
that the fault-tolerant model is a feasible and efficient solution to the support
of runtime robustness in HLA-based distributed simulations, which can be
used in the design of robust RTI software in the future.

5

Synchronization in Federation Community

Networks

CONTENTS

5.1 Introduction . 70

5.2 HLA Federation Communities . 72

5.2.1 Construction Approaches . 73

5.2.2 Architectures of Federation Community Networks 74

5.2.2.1 Proposed Internal Architecture of the Gateway

Federates . 76

5.2.3 Grid-Enabled Federation Community . 76

5.3 Time Management in Federation Communities . 78

5.3.1 Problem Statement . 80

5.4 Synchronization Algorithms for Federation Community Networks 81

5.4.1 Synchronization Algorithms . 83

5.4.2 Proof . 88

5.4.2.1 Compliance to HLA Rules . 88

5.4.2.2 Deadlock Free . 89

5.4.2.3 Correct TSO Event Transmissions 91

5.5 Experiments and Results . 92

5.5.1 Experiments on Multiple-Layer Federation Community

Networks . 92

5.5.2 Experiments on Peer-to-Peer Federation Community

Networks . 95

5.5.3 Experiments on Grid-Enabled Federation Community

Networks . 96

5.6 Summary . 99

A large-scale High Level Architecture (HLA)-based simulation can be con-
structed using a network of simulation federations to form a “federation com-
munity.” This effort is often for the sake of enhancing scalability, interoper-
ability, and Composability, and enabling information security. Synchronization
mechanisms are essential to coordinate the execution of federates and event
transmissions across the boundaries of interlinked federations. We have devel-
oped a generic synchronization mechanism for federation community networks
with its correctness mathematically proved. The synchronization mechanism
suits various types of federation community networks and supports reusabil-
ity of legacy federates. It is platform neutral and independent of federate

69

70 Large-Scale Simulation: Models, Algorithms, and Applications

modeling approaches. The synchronization mechanism has been evaluated in
the context of the Grid-enabled federation community approach, which al-
lows simulation users to benefit from both the Grid computing technologies
and federation community approach. A series of experiments has been carried
out to validate and benchmark the synchronization mechanism. The exper-
imental results indicate that the proposed mechanism provides correct time
management services to federation communities. The results also show that
the mechanism exhibits encouraging performance in terms of synchronization
efficiency and scalability.

5.1 Introduction

Distributed simulation technology facilitates the construction of a large-scale
simulation with simulation components of various types, which can be de-
veloped independently and distributed geographically. The High Level Ar-
chitecture (HLA) defines the rules, interface specification, and object model
template to support reusability and interoperability among the simulation
components, known as federates [33]. While the HLA serves as the de facto
standard for distributed simulations, the Runtime Infrastructure (RTI) soft-
ware provides services1to support and synchronize the interactions among
different federates conforming to the HLA standard to sustain an overall sim-
ulation application, known as a federation as shown in Figure 5.1(A).

In the case where the problem domain is particularly complex or involves
multiple collaborative parties, the analysts often need to construct large-scale
HLA-based simulations that may involve a large number of federates and
vast computing resources over a network or the Internet. Some typical exam-
ples are military commission rehearsal, Internet gaming, biology simulation,
and supply-chain simulation. Sometimes such large-scale simulations need to
be constructed upon multiple simulation federations. Despite the tremendous
advantages brought by the HLA technologies, the HLA standard does not
explicitly sustain interoperation between federates across the boundaries of
federations. To address this issue, a method has been proposed to harness a
network of federations to achieve a common goal in the form of a “federation
community” [88]. Figure 5.1(B) illustrates an example federation community
network. In addition to the advantages of using flat federations2, simulation
developers and users can benefit from the federation community method in (1)
improving the scalability of large and complex applications by reducing the

1A total of six service categories are defined in the IEEE 1516 HLA standard, namely
Federation Management, Declaration Management, Object Management, Ownership Man-
agement, Data Distribution Management, and Time Management.

2To distinguish a traditional federation from federation communities, a simulation upon
an individual federation is called a flat federation.

Synchronization in Federation Community Networks 71

A3A2A1

RTI-A

B3B2B1

RTI-B

C3C2C1

RTI-C

RTI-ABC

Simulation Federate Gateway Federate Runtime Infrastructure Individual Federation

Gw-cGw-a Gw-b

A3A2A1

RTI-A

(A)

(B)

FIGURE 5.1
Illustrating (A) flat federation and (B) federation community.

bandwidth requirements through the partitioning of network load and filter-
ing out irrelevant data among federations, (2) enhancing the Composability of
simulation by enabling simulation development using legacy federations, (3)
supporting interoperation between heterogeneous federations and RTIs, and
(4) facilitating information security [9, 10, 11, 14, 78, 88]. The applications of
federation community have been extensively discussed in existing literature,
including the architecture for information hiding adopted in secured supply-
chain simulation developed by our team [11].

The emergence of Grid computing technologies meets the requirement of
large amounts of distributed computational and data resources by the in-
creasing size and complexity of simulation applications. The Grid provides a
flexible, secure, and coordinated resource that sharing environment that can
facilitate distributed simulation execution [95]. In the past few years, there
has been increasing interest in taking advantage of the Grid technologies to
execute HLA simulations over the Internet. A few research groups have suc-
cessfully enabled the Grid technologies to RTI, which either use middleware
approaches to encapsulate vendor-provided RTIs [16, 95, 113, 118, 122] or
implement the RTI directly using Grid services [40, 91]. While the existing
Grid-enabled simulation techniques have proved highly advantageous, users
can benefit even more if a whole federation is accessible through Grid ser-
vices. Once a Grid-enabled federation community is constructed, the com-
putational resources within administrative domains can be further exploited

72 Large-Scale Simulation: Models, Algorithms, and Applications

with the reusability3 of legacy federates maximized when enabling the Grid
technology.

Simulation federates in a federation community should be provided with
RTI services as in a flat federation [18] so that they can interact with each
other and the RTIs involved, irrespective of whether or not those federates
operate in the same federation. Support to the RTI services related to Federa-
tion Management, Declaration Management, Object Management (OM), and
Data Distribution Management (DDM) has been well addressed to facilitate
the execution of federation communities [9, 10, 76, 77]. Nevertheless, a more
important and challenging issue, namely Time Management (TM) over feder-
ation community networks, has received little attention. Time management is
concerned with the mechanisms for controlling the advancement of each feder-
ate along the federation time axis and synchronizing event (the terms “event”
and “message” are used interchangeably in the rest of the chapter) delivery
among federates. Without a properly designed synchronization mechanism,
the overall simulation execution upon a federation community is susceptible
to state inconsistencies, the federates in different federations receiving mes-
sages for the same set of events in different orders. However, the current IEEE
1516 HLA standard is not intended to foster time management across the
boundaries of federations [65]. There exists only a few preliminary or non-
standard methods to address this issue. Hence, there is a pressing need for a
generic synchronization mechanism for HLA-based federation communities.

This chapter proposes a generic approach to synchronizing federates and
events within federation community networks. The proposed synchronization
algorithms have been developed based on the gateway federate approach for
constructing federation communities. The algorithms operate inside the gate-
way federates, and the time constraints from any federation are propagated
through the whole network to coordinate the progress of the whole federation
community along the simulation time axis. The approach has also been suc-
cessfully applied to Grid-enabled federation communities. The remainder of
this chapter is organized as follows: Section 5.2 gives an overview of federa-
tion communities and related issues. Section 5.3 discusses existing work and
analyzes the challenges to be addressed. Section 5.4 details the algorithms for
synchronizing Timestamp Order events crossing federation boundaries and
proves the algorithms’ correctness. Section 5.5 presents the benchmarking ex-
periments, which examine the correctness of the synchronization mechanism
and evaluate its performance. In Section 5.6, we conclude with a summary
and proposals for future work.

3Reusability may be supported at the executive level and/or code level. Reusability at the
executive level refers to the feasibility of reusing federate executives directly, while reusabil-
ity at code level means reusing the legacy federates’ source code, such as via middleware
approaches.

Synchronization in Federation Community Networks 73

5.2 HLA Federation Communities

The technology for constructing federation communities has been well stud-
ied. Federation communities may be constructed for different objectives (see
Section 5.1) and various architectures architectures. The Grid computing tech-
nologies can also be combined with federation community approaches to fur-
ther benefit simulation users.

5.2.1 Construction Approaches

Federation community networks are formed usually via one of the following
approaches as defined in [88, 91], that is, gateway federate, federation gateway
process, federation broker, or federation protocol. A gateway federate (also re-
ferred to as a proxy federate [88] or bridge federate [8, 73], see Figure 5.2(A))
is a specially designed federate that joins multiple federations simultaneously
and performs the translating functions between them so as to accomplish
the multi-federation interoperability. A federation gateway process (Figure
5.2(B)) is a nonfederate process that interconnects two or more federates in
multiple discrete federations and does the translation between these federa-
tions. A federation broker (Figure 5.2(C)) is a process that directly connects
heterogeneous RTI implementations together through an RTI-to-RTI API to
be defined. It passes RTI internal states between multiple RTIs. Instead of

A3A2A1

RTI-A

B3B2B1

RTI-B

Gateway

Federate

A3A2A1

RTI-A

B3B2B1

RTI-B

Gateway

Process

A3A2A1

RTI-A

B3B2B1

RTI-B

(A) Gateway federate (B) Gateway process

(C) Broker process

A3A2A1

RTI-A

B3B2B1

RTI-B

(D) Federation protocol

Router

Broker

Process

FIGURE 5.2
Typical approaches to construction of federation community.

74 Large-Scale Simulation: Models, Algorithms, and Applications

using any intermediate process as in the above three approaches, the “feder-
ation protocol” refers to a lower-level RTI-to-RTI protocol to enable direct
communication between heterogeneous RTI implementations (Figure 5.2(D)).
Another interesting work is the SIP-RTI proposed by Van Ham [110], which
aims to interoperate heterogeneous RTIs via a middleware layer below the
RTI APIs and successfully enables Ownership Management services.

Generally speaking, the functionalities of a federation gateway process
(Figure 5.2(B)) can be fully supported by a customized gateway federate (Fig-
ure 5.2(A)). Although the gateway federate approach cannot access low-level
RTI information as the broker or protocol approach does, it does not intrude
on the execution of simulation federates or demand any extra support from
the RTI software in addition to the standard RTI services. The approach also
frees modelers from revising legacy federate code or having to use designated
middleware. The performance of the approach has proved acceptable in terms
of latency [10].

A gateway federate is normally available as a single process having mul-
tiple Local RTI Components (LRC) [1]. In some cases, we can also couple
multiple processes (possibly distributed) together to form a gateway federate
executive in a general sense, such as using the Decoupled federate Architecture
to incorporate the Grid computing technologies [21], for example, the gateway
federates used for Grid-enabled federation communities (see Section 5.4).

Capitalizing on the merits of the gateway approach, the work presented
in this chapter utilizes gateway federates for constructing federation com-
munities. In particular, our design assumes an exclusive gateway for a user
federation (composed of users’ simulation federates and a gateway federate)
while interlinking multiple gateway federates via additional gateway federa-
tions. Clearly, a gateway federation consists of only gateway federates instead
of any simulation federate. From any simulation federate’s point of view, the
other federates inside the same federation are its local federates, while those
in other federations are its remote federates. The federations that a gateway
federate participates in are termed neighbor federations to each other.

5.2.2 Architectures of Federation Community Networks

The architectures of federation communities are indefinite, depending on the
users’ requirements. Some typical examples are peer-to-peer federations (Fig-
ure 5.3(A)), set-based federations (Figure 5.3(B)), and hierarchical federations
(Figure 5.3(C)). Figure 5.3(D) illustrates another example with a more compli-
cated architecture. For the first three cases, there exists only one unique path
for message delivery from a federate to any remote federate. In a federation
community with structure as shown in Figure 5.3(D), two remote federates
can be connected via multiple paths, for example, path 1 and 2 between feder-
ate C2 and E2; thus, loops can be formed in this federation community. Inside
a federation, any message generated by a federate is reachable to any other
federate through the RTI, and it is not necessary to specify any receiver. This

Synchronization in Federation Community Networks 75

feature makes a federation similar to a subnet with the federates and the RTI
resembling the nodes and the hub, respectively [105]. Therefore, a federation
community network can always be viewed as interconnected Local Area Net-
works (LANs). In this sense, a gateway federate resembles a bridge or switch
supporting local internetworking, which performs the functionality of rout-
ing messages among federations. Therefore, to address the problems caused
by loops in a network, the spanning tree algorithm used for interconnected
LANs has been effectively transplanted to construct a loop-free topology for
a federation community network [9]. Hence, our approach assumes the sup-
port of gateway federates for loop-free messaging in any federation community
network. Undoubtedly, the leaf nodes will always be user federations.

RTI-AB

A2A1

RTI-A

B2B1

RTI-B

GW

C2C1

RTI-C

D2D1

RTI-D

A2A1

RTI-A

B2B1

RTI-B

Gw-a

C2C1

RTI-C

D2D1

RTI-D

E2E1

RTI-E

Gw-

abcd
RTI-ABCDE

Gw-e

(A) Peer-to-peer federation community network (star link)

(C) Hierarchical federation community network

(B) Set-based federation community network (always in two levels)

A2A1

RTI-A

B2B1

RTI-B

Gw-a

C2C1

RTI-C

D2D1

RTI-D

RTI-AC RTI-CD

Gw-b Gw-c Gw-d

A2A1

RTI-A

B2B1

RTI-B

C2C1

RTI-C

D2D1

RTI-D

RTI-ABCDE

Gw-e

RTI-F

F2F1

E2E1

RTI-E

G2G1

RTI-G

RTI-ABCDEFG

RTI-EFGH

(D) A complex federation community network

H2H1

RTI-H

Gw-h

P
at

h
1

RTI-AB

Gw-b Gw-c

RTI-CD

Gw-d

Gw-a Gw-b Gw-c Gw-d

Gw-f Gw-g
Gw-ab Gw-cd

RTI-ABCD

P
at

h
2

FIGURE 5.3
Illustrating various architectures of federation community networks.

A gateway federate may transfer messages from/to any pair of neighbor
federations, such as the star link shown in Figure 5.3(A). There does not exist
any technical barrier to using a gateway for multiple-user federations either.
Nevertheless, to simplify the design of control mechanisms, this study assumes

76 Large-Scale Simulation: Models, Algorithms, and Applications

that a user federation only has one gateway federate. Neighbor federations will
be layered according to their distances to the leaf nodes, the user federation,
or the nearest gateway federation will be at the lower layer and the remainder
will be at the upper layer. More details are available in Section 5.2.2.1 and
5.4.1. Messages will be forwarded only between the lower federation and any
of the upper federations4.

5.2.2.1 Proposed Internal Architecture of the Gateway Federates

In [9, 10, 76, 77], we have detailed the design and implementation of the
gateway federate in connection with Federation Management, Declaration
Management, Object Management, and Data Distribution Management. This
chapter is only concerned with the two basic functionalities directly servicing
the need of Time Management, that is, routing and synchronization (Figure
5.4). Routing deals with delivering a message to the right federations (then the
recipients), and synchronization is about delivering these messages in the cor-
rect order without violating the HLA rules and coordinating time advances of
all federates in the community. By making use of the declaration management
and object management services, an accurate routing algorithm (detailed in
[13]) has been developed to map the publishing, object instance registration,
and subscription information of federates residing in different federations.

Figure 5.4 depicts a portion of a gateway federate’s internal architecture
using the gateway federate GW-E in Figure 5.3(D) as an example. The gate-
way federate comprises multiple “federate modules,” a TSO event buffer, a
routing module, and a synchronization module. Each federate module operates
an individual LRC to directly interact with the respective federation.

Assuming the gateway federate is dealing with TSO events originating from
RTI-E, the routing module maintains the events in the buffer and refers to the
routing table to direct each event to the neighbor federation(s) when needed.
Thus, these events may be gradually relayed to the remote destination feder-
ations. The synchronization module then decides at any point which events
should be relayed according to their timestamps. The synchronization module
also propels the federate modules to advance times in all neighbor federations.
The basic idea is to impose the time constraints from each federation to the
neighbors, and other gateways propagate the constraints through the whole
network. The whole federation community then progresses along the simula-
tion time axis in a coordinated manner. The synchronization algorithms are
detailed in Section 5.4.

5.2.3 Grid-Enabled Federation Community

While the HLA enables the construction of large-scale simulations using dis-
tributed simulation components, the Grid technologies enable collaboration

4This does not apply in star link federation communities, as all federations are peer-to-
peer linked by a single gateway federate.

Synchronization in Federation Community Networks 77

Gateway

federate

TSO event buffer

TSO events

Advance to certain

Simulation time

Routing Module

Routing table

Synchronization

Module

RTI-EFGH

RTI-

ABCDE

RTI-E

Select destinations

Choose events with
certain timestamp

Execution Event flow Communication link via RTI

RTI-ABCDEFGH

FMu[1]

FMl

FMu[3]

FMx

Federate Module

FMu[2]

FIGURE 5.4
A simplified view of the internal architecture of a gateway federate.

and provide mechanisms for the management of distributed computing re-
sources where the simulation is being executed, while also facilitating access
to geographically distributed data sets. The Grid computing technologies have
been employed to present HLA-compliant simulation models as Grid services
to the external simulation users outside an administrative domain.

Although these existing Grid-enabled distributed simulation systems have
exhibited significant merits, there are still two issues to be addressed due to
the existing security rules of most administrative domains. One issue is that
only a few nodes of an administrative domain are accessible to the exter-
nal users. As an indicative example, the HLA Grid RePast framework [16]
supports large-scale agent-based simulations and has been deployed on top
of two high-performance clusters, one at the Parallel and Distributed Com-
puting Center (PDCC) in Singapore and another at the Midlands e-Science
Center in Birmingham (UK). In this test bed, only the simulation model run-
ning on the master node of each cluster can be accessed by external users,
while the models hosted by a number of other worker nodes are isolated by
the firewall. However, we can envision some customized approaches using dis-
tributed computing technologies, such as MPI, to make use of the computing
resources on the internal nodes. Those will either be application specific or
require considerable reengineering of the existing simulation federates.

78 Large-Scale Simulation: Models, Algorithms, and Applications

Another pending issue is that federate developers often already have a set
of federates situated over their intranet; thus, it is desirable for users to access
a whole federation through Grid services to further exploit computational
resources and support the reusability of federates at the executive level5. In
an HLA-based simulation, federates interact only through the RTI. Federates
are not aware that other federates are connected in the same federation. From
a federate’s point of view, its correct execution can be guaranteed as long
as the events it consumes from other federates and the events it generates
to them have correct content and order. This conforms to the fundamental
principle of event-driven distributed simulation. Thus, we can use a gateway
federate to collect the events of the federates from the intranet and present
the gateway federate as a set of Grid services on a public node. Eventually,
the resources inside the administrative domain and the internal simulation
federates are exposed to the authorized external users.

Two simple examples of Grid-enabled federation community are shown in
Figure 5.5, in which each gateway consists of one federate module interacting
with local RTI and another Grid-enabled federate module driving a proxy
running in a federation controlled by the user. The Grid-enabled module calls
the RTI services through a standard RTI interface, and the calls are translated
to Grid invocations over the Grid computing backbone to drive a proxy process
[16]. A proxy is a special federate process that contains the real LRC and
executes whatever RTI services instructed by the Grid-enabled module. The
gateway then interacts with Grid-enabled federations as if those are supported
by normal RTIs.

5.3 Time Management in Federation Communities

In the context of HLA-based simulations, a federate can be both time regulat-
ing and time constrained, either of them, or neither. Time-regulating federates
may send timestamp ordered (TSO) events while time-constrained federates
are able to receive TSO events in time order. Each regulating federate must
specify a “lookahead” value and ensure that it will not generate any TSO
event earlier than its current time plus lookahead [65]. After requesting a
time advance from the RTI and getting granted, the federate is passed to all
events with timestamp less than or equal to the federate’s granted time.

The HLA standard defines two synchronization approaches, namely a Con-
servative approach and an optimistic approach. The Conservative approach
implements the TSO event delivery services and is used to advance logical
time. The principal task of this approach is to determine the lower bound

5In contrast, the reusability support at code level demands the availability of federate
source code.

Synchronization in Federation Community Networks 79

Grid computing

A3A2A1

RTI-A

B3B2B1

RTI-B

C3C2C1

RTI-C

A user’s RTI

Simulation Federates

Running on Intranet Nodes

Grid-Enabled Gateway

Running on a Public Host
Administrative Domain

Gw-cGw-a Gw-b

Proxy

a b c

Grid computing

A3A2A1

RTI-A A user’s RTI

Gw-a
a

B3B2B1

(A)

(B)

FIGURE 5.5
Two examples of Grid-enabled federation community.

on the timestamp of future TSO events that it will receive [42]. A time-
constrained federate has an associated LBTS6, which is the timestamp of
the earliest possible TSO event that may be generated by any other regu-
lating federate [1]. When a federate adopts the Conservative approach, the
RTI ensures that no message is delivered to the federate “in its past”, that is,
no TSO event is delivered that contains a timestamp less than the federate’s
current time. In contrast, the optimistic synchronization approach allows mes-
sage processing out of time stamp order, and optimistic federates may enjoy
the advantages of being freed from the constraint of other federates. However,
because the RTI no longer guarantees orderly event delivery, this approach

6IEEE 1516 [43] defines a term “Greatest Available Logical Time (GALT)” as the sub-
stitute for LBTS. This chapter still uses LBTS to avoid confusion with existing work.

80 Large-Scale Simulation: Models, Algorithms, and Applications

demands dedicated rollback procedures within the simulation models in the
case of receiving “past” events.

5.3.1 Problem Statement

A number of research challenges must be addressed in the development of
a generic synchronization mechanism. To develop a correct synchronization
mechanism among multiple federations is not trivial, as the HLA does not
support crossing-federation synchronization at all. It is even more challeng-
ing to develop a generic synchronization mechanism to address the drawbacks
of the existing work. The HLA only defines the functionalities that the time
management services should possess, while it suggests no design rules for the
implementation of these services. It is also difficult to probe the internal exe-
cution of an RTI during runtime because most RTI implementations operate
in a black-box manner. To develop a suite of Time Management services to
replace the existing RTI library requires tremendous efforts in spite of the
difficulties of integrating them into other services without knowing the RTI’s
implementation details. Even if this is feasible, users have to reengineer legacy
federates to adapt to the new RTI software or middleware. The strategy is
prone to failure when the legacy federates are only available as binary execu-
tives. It is desirable to have a synchronization mechanism that can reuse the
Time Management services built into flat federations and does not intrude on
the internal execution of RTIs.

A gateway federate does not contain any portion of the simulation model
and will generate no event on its own initiative. It needs to be time constrained
to receive TSO events from a federation and be time regulating to reproduce
them in other federations, and vice versa. Some existing works rely purely
on LBTS calculation to manage the time advance of correlated federations,
which will encounter the problem as follows:

• Considering the simplest federation community consisting of only two
federations, each containing only one simulation federate. In the scenario
depicted in Figure 5.6, we specify the lookahead (La) of both federates as
1.0, and the “timestep” by which every federate advances its time in each
iteration as 1.0. When a federate (Fed[i]) is granted to time Ti, it generates
an event with timestamp Ti+Lai+0.5 (written as Eventi (Ti+Lai+0.5)),
and this event should be delivered to another federate. Both federates start
with simulation time 0. We mark the federate module interacting with RTI-
A as FMa and the one interacting with RTI-B as FMb, and zero lookahead
is set to both modules.

• Initially, LBTSa equals T1 +La1 = 1.0, as does LBTSb. FMa requests
to advance Ta to LBTSa, that is, 1.0, and it will be granted to time 1.0
immediately, as will FMb be. Fed[1] generates Event1(1.5) and then will
be granted to 1.0 since Ta = 1.0 already, same will Fed[2] be. Now LBTSa

and LBTSb have increased to 2.0, if FMa requests time advance to 2.0,

Synchronization in Federation Community Networks 81

it will be granted to 2.0 and RTI-A will deliver Event1(1.5) to FMa. At
this point, if FMb has not issued the time advance, it still can reproduce
Event1(1.5) through RTI-B. But FMa will never stand a chance to repro-
duce Event2(1.5) through RTI-A as Ta = 2.0 > 1.5, which means that
Event2(1.5) is in FMa’s past. To generate an event in a federate’s past will
inevitably induce state inconsistency. Alternative methods are expected to
fix the severe flaws of the existing work.

The ultimate goal of synchronizing federation communities is to ensure that
a federate advances its logic time and generates/consumes TSO events in the
manner as if all federates are operating in a flat federation. In other words, a
well-designed synchronization mechanism is able to properly impose the time
constraints of all other federates onto each federate. According to the above
analysis, a more reasonable approach should focus on dealing with the TSO
events, to coordinate the operations of a gateway in multiple federations based
on the status of events.

Furthermore, regardless of the fact that the federation community ap-
proach may improve the execution efficiency for some ad hoc applications,
the synchronization and communication in a federation community must go
through gateways from one RTI to another. These tasks are directly handled
by a single RTI in the flat federation. To achieve an acceptable performance
requires a “concise” synchronization mechanism to minimize the overhead in-
troduced by the complexity of synchronization control, which is even more
cumbersome when processing through multiple intermediate gateways is in-
volved. Therefore, in our view, the research issue about the efficiency of any
synchronization mechanism for federate community is how close it may ap-
proximate that of a flat federation rather than how much it may outperform,
which is unrealistic.

5.4 Synchronization Algorithms for Federation Commu-

nity Networks

This section proposes a generic synchronization mechanism that takes advan-
tage of the Gateway approach to constructing federation communities. Two
novel synchronization algorithms are introduced that are employed by gate-
way federates, one for layered federations and another for star link federations
(see Figure 5.3). The basic idea of the proposed mechanism is to let a gateway
throttle the time advance of the federations linked together by the gateway.
The two proposed algorithms acquire the time constraint of each federation
and gradually impose the constraint over all the federation community net-
works. Thus, federates belonging to different federations can properly coordi-
nate with each other in time advance as if they are in a single federation.

82 Large-Scale Simulation: Models, Algorithms, and Applications

Lookhead : La1=1

TAG: T1

Next time request: T1+1

Next event:

Event1(T1+La1+0.5)

Fed[1]

RTI-A

Fed[2]

RTI-B

FMa

Lookhead : Laa

TAG: Ta

next time

request : LBTSa

FMb

Lookhead : Lab

TAG: Tb

next time

request : LBTSb

Lookhead : La2 =1

TAG: T2

Next time request : T2+1

Next event:

Event2(T2+La2+0.5)

FMa FMb

FIGURE 5.6
A simple federation community scenario.

Aiming at generality, the proposed mechanism focuses on the support of
Conservative synchronization. This is because Conservative synchronization
does not require a Conservative federate’s simulation model having the roll-
back capability; thus, the Conservative federate is liable to synchronization
error when using the optimistic approach. On the contrary, the optimistic fed-
erates are capable of interacting with Conservative federates by their nature,
and they can be easily revised to use Conservative synchronization anyway.
As a matter of fact, the RTI services for optimistic synchronization actually
leave the complication to ensure state consistency to the optimistic federate
(or middleware) developers. The efficiency of Conservative synchronization
is becoming less of an issue with the rapid growth in computing power of
computers available to researchers.

Another aim of the proposed mechanism is to provide the designers of
future RTI software with a viable direction to address issues related to the
construction and execution of federation communities. Our proposed solution
does not intend to create a new synchronization approach to substitute the
Time Management services of any existing RTI software; instead, it makes the
most of the standard services to coordinate federates in multiple federations.

The objectives and scope of this study are summarized as follows:

• To support strictly correct time management services to a federation
community regardless of its network structure.

• To provide user transparency, which (1) allows developers to model their

Synchronization in Federation Community Networks 83

federates freely using various software packages and on different platforms;
(2) avoids the need for developers to include extra codes in the simulation
models to acquire Time Management services for federation communities,
thus to minimizing development cost and support reuse of legacy feder-
ates at both the code level and executive level; and (3) allows users to
deploy/execute federates in the same way as in normal flat federations.

• To minimize overhead for providing synchronization to ensure execution
efficiency.

• To facilitate synchronization among simulation models in Grid-enabled
federation communities.

5.4.1 Synchronization Algorithms

We first consider those federation communities subject to constraints on mes-
sage switching (layered). Figure 5.7 presents a fragment of a federation com-
munity and highlights the simplified internal view of a gateway federate. The
gateway federate (such as Gw-c in Figure 5.3(B)) links one user federation
via module FMl at the lower layer together with multiple gateway federa-
tions via module FMu[i] (i=1, 2, . . . , n) at the upper layer (the definition
of lower and upper layers available in paragraph 2, Section 5.2.2). The lower
layer may be either a user federation or a gateway federation, and the upper
layer can only be gateway federations. The TSO buffer maintains the attribute
updates and interactions collected from different federations by the federate
modules. Let minNextEventTimeStamp denote the minimum timestamp of
all TSO events that may be subsequently delivered to a federate module from
the federation it joins, and let lastGrantedTime denote the logic time granted
to the federate module in the previous iteration, which is also the federate’s
current time. Particularly, a federate module’s minNextEventTimeStamp can
be obtained via the RTI call queryMinNextEventTime() [1]. This value is
computed by taking the minimum of the effective federation LBTS and the
timestamps of all TSO events (if any) currently queued for delivery to the
federate. Four methods, namely nextEventRequest (NER), nextEventReques-
tAvailable (NERA), timeAdvancementRequest (TAR), and timeAdvancemen-
tRequestAvailable (TARA), have been defined in the HLA specification for a
federate to request time advance from the RTI. The nextEventRequest method
advances the federate’s logical time to the timestamp of the next relevant TSO
event in the federation, while the timeAdvancementRequest method advances
the federate’s logical time to a specified timestamp. The other two methods
are similar, but they do not guarantee that all events with timestamp equal to
the granted time will be delivered to the federate. If a federate with zero looka-
head advances its time to T using timeAdvancementRequestAvailable, it may
advance to time T again in the future without violating the HLA rules, while
this is illegal if timeAdvancementRequest or nextEventRequest has been used.

84 Large-Scale Simulation: Models, Algorithms, and Applications

The features of these methods have been fully utilized in our synchronization
algorithms.

Gateway

federate

TSO event buffer

Link to a user’s

federation

Link to gateway

federation 1

FML

FMu[1]

FMu[i]

FMu[n]

Link to gateway

federation i

Link to gateway

federation n

Upper layer

Lower layer

FIGURE 5.7
The fragment of a federation community subject to constraint of message
switching.

The synchronization algorithm employed by the gateway federate can be
described by the pseudo code in Figure 5.8. We put a section “RTI” in the
name of each routine that invokes standard RTI service calls. The algorithm
consists of five basic phases:

• Phase 1: The federate module FMl at the lower layer obtains
the minimum timestamp of all TSO events that may be subsequently
delivered to it from its local federation; the timestamp is referred to
as FMl.minNextEventTimeStamp. If FMl’s current federate time (that
is, the last time granted) is less than FMl .minNextEventTimeStamp,
the control will be passed to the federate modules servicing federa-
tions at the upper layer, FMus. In turn, each FMu initiates the RTI
method timeAdvancementRequestAvailable to request time advance to
FMl.minNextEventTimeStamp.

• Phase 2: In turn, each FMu keeps invoking the RTI method tick to
wait for its local RTI to grant it the requested time advance. On completion
of this phase, all FMus will be granted to a federate time, that is, FMl

.minNextEventTimeStamp, and each FMu enqueues all TSO events received
from its local federation (if any) to the TSO event buffer.

• Phase 3: The TSO events in the buffer will be processed and routed
to the corresponding destination, which is the federation at the lower layer

Synchronization in Federation Community Networks 85

in this case. Control is now with FMl, which reproduces these events in its
local federation.

do
//Phase 1: Using the minNextEventTimeStamp of the user federation to advance the logic
time in all gateway federations

FMl .minNextEventTimeStamp= FMl .RTI.queryMinNextEventTime()
if (FMl .minNextEventTimeStamp > FMl .lastGrantedTime)

for each module servicing federations at the upper layer, FMu[i], do
 FMu[i].RTI.
timeAdvancementRequestAvailable(FMl .minNextEventTimeStamp)

end for

// Phase 2: Ticking in all gateway federations one after another until the corresponding
federate modules granted to a new time

do
for each FMu[i] do
FMu[i].RTI.tick()

end for
while time advancement request not granted for any FMu[i]

end if

// Phase 3: Routing each TSO event collected from the gateway federations, with
timestamps not greater than FMl .minNextEventTimeStamp and not less than Min(FMu[i].
lastGrantedTime, i= 1, 2, …, n)

do
route_TSO_event()
FMl.forward_TSO_event()

while TSO event buffer not empty

// Phase 4: Advancing the time of the federate module at lower layer using the minimum
of granted times of the federate modules at the upper layer. Actually, the granted times
are identical and equal to the minNextEventTimeStamp of FMl at the beginning of this
iteration. This routine operates until the federate module detects that its
minNextEventTimeStamp is greater than its granted time.

minTAG = Min(FMu[i]. lastGrantedTime, i= 1, 2, …, n)
do
 FMl.RTI. timeAdvancementRequestAvailable(minTAG)

while time advancement request not granted for FMl do
FMl.RTI.tick()

end while
while FMl.RTI.queryMinNextEventTime() is not greater than

minTAG

// Phase 5: Routing each TSO event generated from the user federation or the gateway
federation at lower layer, with timestamps not greater than Min(FMu[i]. lastGrantedTime,
i= 1, 2, …, n)

do
route_TSO_event()

for any destination federation i at upper layer, do
FMu[i].forward_TSO_event()

 end for
while TSO event buffer not empty

while simulation end time has not been reached

FIGURE 5.8
Synchronization algorithm for multiple-layer federation community networks.

86 Large-Scale Simulation: Models, Algorithms, and Applications

• Phase 4: The minimum of granted times of the FMus will be computed,
that is, minTAG. FMl keeps invoking the RTI method timeAdvancemen-
tRequestAvailable to request time advance to minTAG and blocks until it
detects FMl.minNextEventTimeStamp becomes greater than minTAG.FMl

enqueues all TSO events received from its local federation (if any) to the
TSO event buffer;

• Phase 5: The TSO events in the buffer will be processed and routed to
the corresponding destination, which are the federations at the upper layers.
Each FMu reproduces these events in its local federation if the federation
is a destination.

As for the star link federation communities with no constraint on message
switching, a more general algorithm will apply. Given a gateway consisting of
n federate modules linking to n peer-to-peer user federations, we denote the
ith federate module as FM[i]. The algorithm can be written as the pseudo
code in Figure 5.9, which has only slight differences from the first one. This
algorithm consists of four basic phases:

• Phase 1: The federate module with the least minNextEventTimeS-
tamp is identified, and referred to as FM[k]. FM[k] keeps initiating the
RTI method timeAdvancementRequestAvailable to request time advance to
FM[k].minNextEventTimeStamp blocks until FM[k] detects the minNex-
tEventTimeStamp becomes greater than FM[k] ’s current federate time.
FM[k] enqueues all TSO events received from its local federation (if any) to
the TSO event buffer;

• Phase 2: The TSO events in the buffer will be processed and routed
to the corresponding destinations. Each of the other FM s (referred to as
FM[i], i 6= k) reproduces these events in its local federation if the federation
is a destination. Each FM[i] then initiates the RTI method timeAdvance-
mentRequestAvailable to request time advance to FM[k] ’s last granted time.

• Phase 3: Each gains control in turn. FM[i] keeps invoking the RTI
method tick to wait for its local RTI to grant it the requested time advance.
In this phase, each FM[i] enqueues all TSO events received from its local
federation (if any) to the TSO event buffer.

• Phase 4: If FM[i] ’s time advance request is granted, the TSO events in
the buffer will be processed and routed to the corresponding destinations.
Each of the other FM s (referred to as FM[m], m 6= i) reproduces these
events in its local federation if the federation is a destination. Phase 3 and
Phase 4 will repeat until the requested time advances of all FM s (exclusive
of FM[k]) are granted.

The core point of the two algorithms is to let gateway federates detect the
minimum value of the TSO events in all simulation federations and use this

Synchronization in Federation Community Networks 87

do
// Phase 1: Getting the federate module FM[k], which has the minimum of all user
federations’ minNextEventTimeStamps, and advance the federate module’s time
until the module’s minNextEventTimeStamp increases
 for (i=1, i<n; i++) do

 FM[i].minNextEventTimeStamp= FM[i].RTI.queryMinNextEventTime()
end for

get FM[k], FM[k].minNextEventTimeStamp = Min(FM[i].
minNextEventTimeStamp, i= 1, 2, …, n))
do
do
 FM[k].RTI.

timeAdvancementRequestAvailable(FM[k].minNextEventTimeStamp)
 while time advancement request not granted for FM[k] do
 FM[k].RTI.tick()

 end while
 while FM[k].RTI.queryMinNextEventTime() is not greater

than FM[k].lastGrantedTime

// Phase 2: Routing each TSO event collected from federation k, with timestamps
not greater than FM[k].minNextEventTimeStamp and not less than FM[k].
lastGrantedTime

do
route_TSO_event()
for any destination federation i ≠ k, do
FM[i].forward_TSO_event()

 end for
FM[i].RTI. timeAdvancementRequestAvailable(FM[k].lastGrantedTime)

end for

// Phase 3: Ticking in all other federations one after another until the
corresponding federate modules granted to a new time

do
for each FM[i], i ≠ k do
FM[i].RTI.tick()

end for

// Phase 4: Routing each TSO event collected from a federation j, with timestamps
not less than the FM[k]’s logic time

if FM[i] is granted do
route_TSO_event()
for any destination federation m ≠ i, do
FM[m].forward_TSO_event()
 end for
end if

while time advancement request not granted for any FM [i]

end if

FIGURE 5.9
Synchronization algorithm for peer-to-peer federation community networks.

value as a “safe lower bound” to control the progress of simulation federates
through the gateways. The RTI time advance methods are used to “inform”
the remainder of the simulation of the safe lower bound at any point.

The above algorithms work with the assumption that a simulation fed-

88 Large-Scale Simulation: Models, Algorithms, and Applications

erate either has non-zero lookahead or always advances its logic time to
a value greater than its current minNextEventTimeStamp. Given that a
simulation federate (X) has zero lookahead and attempts to advance its
time to its minNextEventTimeStamp, apparently the federate’s current time
(granted the most recently) is not greater than X.minNextEventTimeStamp.
According to the definitions of and minNextEventTimeStamp, the minNex-
tEventTimeStamp of FMl in the gateway federate conforms to the in-
equation: FMl.minNextEventTimeStamp ≤ X.lastGrantTime+X.lookahead
= X.lastGrantTime ≤ X.minNextEventTimeStamp. Meanwhile, the same
inequation also applies for the minNextEventTimeStamp of federate X ;
we have X.minNextEventT imeStamp ≤ FMl.minNextEventT imeStamp.
This is because FMl also has zero lookahead and always advances to
FMl.minNextEventT imeStamp. Thus, federate X and module FMl will al-
ways attempt to advance to a fixed time, and this inevitably causes deadlock.

5.4.2 Proof

The correctness of a synchronization algorithms covers three aspects, that is,
(1) the algorithm is logically correct by indicating that all federates generate
TSO events and advance time with compliance to HLA rules, (2) the algorithm
proves to be deadlock free, and (3) simulation federates are always guaranteed
to receive all TSO events within the granted time and in an orderly manner.
The proof is given to the first algorithm from the perspective of a gateway
federate that connects to a user federation. We assume there are m federate
modules at the upper layer.

5.4.2.1 Compliance to HLA Rules

This issue involves federate modules at the upper layer (FMu) and the module
at the lower layer (FMl). FMu simulate TSO events collected by FMl from
the user federation. Let minNETn be the minNextEventTimestamp of FMl

on the initialization of the nth iteration of the algorithm. Let lowerEven be
the set of the events to be collected by FMl in the current iteration; we have

∀le ∈ lowerEven, le.T imestamp ≥ minNETn (5.1)

Let FMSetu = FMu[i]|i= 1, 2, . . ., m and TAGn represent the logic
time granted to a federate module in the nth iteration. ∀FMu[i] ∈
FMSetu, FMu[i].TARA(minNETn); we have

FMu[i].TAGn = minNETn (5.2)

Let upperEven be the set of events collected by FMus in the current iteration
before FMl initiates time advance.

∀re ∈ upperEven, FMu[i].TAGn−1 ≤ le.T imestamp ≤ minNETn (5.3)

Synchronization in Federation Community Networks 89

FMl.TARA(min(FMu[i].TAGn)), from equality (5.2), we have

∀le ∈ lowerEven, le.T imestamp ≥ minNETn (5.4)

FMl.TAGn = minNETn (5.5)

FMu[i].forward TSO event(∀le ∈ lowerEven), from (5.4), FMu[i] should
generate TSO events with timestamp equal to minNETn. From (5.2), the
current logic times of FMu are equal to minNETn. The HLA rules permit
any time regulating federate, which advance its time using TARA, to generate
TSO events with timestamp equal to (current time + lookahead). It is assured
that (1) the RTI of user federation has guaranteed the order of the TSO events
in the federation, which means the minNextEventTime of FMl will never roll
back to a smaller value, (2) user federates have non-zero lookahead or always
advance time with a greater time than its current time (see Section 5.4.1).
The algorithm makes FMus advance time only if FMl detects (the current
minNextEventTime) > (the last minNextEventTime) (5.6) Let UtimeAdvk be
the value of the kth time to which FMus advance. As FMus advances their
logic times to the minNextEventTime of the user federation, from inequality
(5.6), we can have UT imeAdvk > UT imeAdvk−1. From above, we can con-
clude that the federate modules at the upper layer advance time and generate
TSO events conforming to the HLA rules. FMl generates TSO events copied
from FMu. In the nth time advance iteration of the gateway, let’s consider the
point where FMu have time advances granted and FMl is about to perform
TARA. The current logic time of FMl is FMl.TAGn−1.

According to the algorithm, we know that FMl.TAGn−1= FMus’ granted
time in the last itereation. FMl issues FMl.forward TSO event(∀re ∈
upperEven). From (5.3), we have re.T imestamp > FMl.TAGn−1. Undoubt-
edly, this event generation procedure obeys the HLA rules. In order to
indicate that FMl advances time with compliance to the HLA rules, we
need to consider two cases. minNETn = minNETn−1: FMl.TAGn−1 =
minNETn−1, thus FMl needs to advance to its current logic time again. Since
Lfed.lookahead = 0, and Lfed advances its time using TARA, the HLA rules al-
low FMl.TARA(current time + zero lookahead).minNETn > minNETn−1:
FMl needs to advance time according to the minimal of Ufeds ’ TAG times.
From (5.2), FMl.TAGn−1 < min(FMu[i].TAGn, ∀FMu[i] ∈ FMSetu) =
minNETn.Thus FMl.TARA(minNETn) will request time with a greater
value than the current time of FMl, which absolutely obeys the HLA rules.

From the above reasoning, we assure that gateway federates keep strict
compliance with the HLA rules in advancing time and generating TSO events.

5.4.2.2 Deadlock Free

Next, we show that the synchronization algorithm will not cause deadlock,
by proving that all federates, that is, FMu, FMl and simulation federates,
are able to obtain grants to time advance requests within a simulation’s end

90 Large-Scale Simulation: Models, Algorithms, and Applications

time. Let Tn denote the time to which a federate module advances at the nth
iteration of the algorithm.

∀FMu[i] ∈ FMSetu, FMu[i].TARA(Tn). Let NeighborFMSeti be the set
of federates joining the same gateway federation with FMu[i]. Obviously, in a
set-based federation community (see Figure 5.3(B)), each of these federates is
an upper federate module hosted by an individual gateway servicing a unique
user federation.

∀RemoteFM [k] ∈ NeighborFMSeti, RemoteFM [k] 6= FMu[i], let
UTimeAdv[k] be the time that RemoteFM[k] have recently requested on the
initiation of FMu[i].TARA(Tn). Here we use min(UTimeAdv) to denote the
minimal value of all the requested time by the federates in NeighborFMSeti.
There are two possibilities, Tn = min(UT imeAdv): According to the HLA
rules, FMu[i] will be granted to Tn. Referring to the previous proof on the
correctness of upper federate modules, we have Tn > FMu[i].TAGn−1. This
means FMu[i] can advance its time without being blocked.

Tn > Min(UT imeAdv): ∃RemoteFM [s] ∈ NeighborFMSeti, and
UTimeAdv[s] = min(UTimeAdv), then RemoteFM[s] is able to be granted
to UTimeAdv[s] immediately. When other FM s in the same remote gateway
federate in which RemoteFM[s] resides get TAG = UTimeAdv[s], the min-
NextEventTime in the corresponding remote user federation will increase due
to the continuous attempts of time advance made by the simulation federates.
Thus the min(UTimeAdv) of NeighborFMSeti will increase too. With this
procedure repeating, eventually we will have Tn = min(UT imeAdv). There-
fore, the condition for the RTI to grant FMu[i] to Tn is satisfied at this stage.

From the above, we can see that FMu[i] is able to advance time continu-
ously within the simulation termination time under any condition.

When FMl.TARA(minNETn) is initiated, according to the definition, we
have

minNETn ≤ the current LBTS of FMl (5.7)

(5.7) implies that FMl will be granted minNETn immediately. We consider
the following two cases. minNETn = minNETn−1 = T : With FMl issuing
TARA(T) repeatedly, all the TSO events with timestamp T will sooner or
later be delivered to FMl at some point. On that point, FMl will detect
minNETn > T .

minNETn > minNETn−1: This means that FMl progresses to a greater
time. With the advancing of FMl’s logic time, the user federates will also
definitely get time granted within the simulation termination time.

In the case that the federation community is not set based,NeighborFMSeti
may contain only one remote lower federate module (ReFMl) (belong to re-
mote gateway X). With the remote federations linked through gateway X
keeping advancing time, the upper federate modules will eventually be granted
to the time ReFMl passed to them, min(UTimeAdv). ReFMl will be granted
in the gateway federation formed by NeighborFMSeti; gradually other Re-
moteFM s will be granted and the min(UTimeAdv) increased. From the above

Synchronization in Federation Community Networks 91

we can conclude that all types of federates involved in the federation commu-
nity are able to progress time under the management of the algorithm.

5.4.2.3 Correct TSO Event Transmissions

This issue concerns the bi-directional propagation of events, that is, from the
local federation to the remote federations and the other way around. From
the local federation to the remote federations, FMl collects TSO events from
local user federation. The algorithm keeps FMl issuing TARA to the current
minNextEventTime unless an increase in the value has been detected. This
guarantees that FMl has retrieved all local events with timestamp equal to
minNextEventTime prior to the next TARA invocations by FMus.

From the remote federations to the local federation, let us consider a simu-
lation federate’s (SF) using method TAR to advance time. Given SF.TAR(Tn)
in the nth time advance request, and SF is granted to Tn, SF.TAGn = Tn.

According to the condition to satisfy this time advance request defined in
the HLA rules, we have

SF.LBTSn > Tn (5.8)

As FMl is time regulating, if FMl.TARA(Tx) is invoked at this point,
and TxTn: Since SF.LBTSn should not be greater than the time requested
by FMl, we have SF.LBTSnTxTn, this conflicts with in equation (5.8)

We can conclude that FMl must have initiated TARA(τ), with τ >
Tn (5.9) From (5.9) and the algorithm, we have ∀FMu[i] ∈ FMSetu :
FMu[i].TAGn = τ , which means all FMus have already issued TARA(τ)
and been granted. This also means that FMus have generated all events with
timestamp < τ in the gateway federation. Let’s refer to the subsection on
“deadlock free”, ∀RemoteFM [k] ∈ NeighborFMSeti, from (5.8) and (5.9),
we have RemoteFM[k] must have performed TARA(τ + δ), δ > 0 (5.10)
Let RemoteMinNET[k] denote be the current minNextEventTime of the re-
mote simulaiton federation for which RemoteFM[k] serves. From (5.10), we
have

RemoteMinNET [k] = τ + δ ≥ τ > Tn (5.11)

We can conclude from (5.11) and the above reasoning that RemoteFM[k]
had processed all events with timestamp 6 τ + δ from the remote simulation.

∀FMu[i].TAGn = τ also means: (1) ∀FMu[i] ∈ FMSetu, FMu[i] had
put all remote TSO events with timestamp < τ into buffer and (2) FMl

had simulated all the remote TSO events with timestamp < τ in the lo-
cal simulation federation prior to its time advance request. The same facts
apply to any other related remote federation of the federate gateway. Thus,
SF.TAGn = Tn means that SF had received all remote events with timestamp
less than or equal to Tn from all simulation federations linked to the gateway
federate.

92 Large-Scale Simulation: Models, Algorithms, and Applications

Although the above proof is given from the perspective of a gateway fed-
erate associated with a user federation, the proof can be generalized to the
gateway federates servicing only gateway federations. The correctness of the
second algorithm can be also proved easily in a similar manner.

5.5 Experiments and Results

In order to verify the correctness and investigate the overhead incurred in
the proposed synchronization mechanism and its scalability, we carried out a
number of experiments to benchmark the efficiency of synchronization in fed-
eration communities (multiple-layer federation community, peer-to-peer fed-
eration community, and Grid-enabled federation community) in both LAN
environments and a WAN environment between the United Kindom (Birm-
ingham) and Singapore.

The DMSO RTI NG 1.3 with Java bindings and its associated time ad-
vance benchmark application are used in the experiments. The identical par-
ticipating federates are both time constrained and time regulating, and each
attempts to advance its time from 0 to 10,000 with both time-step and looka-
head set to 1.0. A time synchronization benchmark records the number of
RTI time-step cycles that can be processed by the underlying networked RTIs
per second. A time-step cycle starts at the point where a benchmark federate
issues a time advance request and ends at the point where the request is being
granted. The results are reported as the number of time advances granted per
second (TAGs/second). The experimental results presented in this section are
averaged from the outputs of a number of runs, and the deviations are very
insignificant.

In these experiments, a federation community has been treated from the
simulation federates’ point of view rather than the underlying RTIs, with the
underlying RTIs in a federation community operating as a whole “composite”
infrastructure. No matter how the participating federations (or RTIs) are in-
terconnected, those RTIs remain transparent to the simulation federates (this
is exactly the case for a common federation). The TAG rate is measured from
the federates’ point of view.

5.5.1 Experiments on Multiple-Layer Federation Commu-
nity Networks

In [43], we investigated the synchronization efficiency of two types of multiple-
layer federation community networks (see Figure 5.3), that is, the hierarchical
federation community network (HFC) and the set-based federation community
network (SFC). The preliminary investigation focused on the two alternative
architectures’ scalability. In the context of multiple-layer federation communi-

Synchronization in Federation Community Networks 93

ties, a federation community may scale either vertically, such as by increasing
the number of hierarchical layers of the structure in an HFC, or horizontally,
such as by increasing the number of gateway federations that a gateway fed-
erate joins in an SFC. Figure 5.10 and Figure 5.11 present the scenarios of
the benchmarks for SFC and HFC, respectively. The benchmark federates
involved in each scenario are enclosed in the corresponding indexed circle.

The experiments were conducted in a LAN environment consisting of a
number of PCs. Each PC has 256M bytes of memory and one single Intel CPU
(at either 1.4GHz or 1.7GHz) while connectivity is provided by a 100Mbit
Ethernet switch. We first performed a synchronization benchmark using a flat
federation, and the set of results (Figure 5.12) are used as a standard reference
for the remaining benchmarks on multiple-layer federation communities. The
benchmark results for SFC and HFC are presented in Figure 5.13.

In the flat federation, the TAG rate remains about 20 times per second
with the number of federates varied from two to eight. With two federates, the
TAG rate measured on federation community is 7.8 TAGs/second, about 40%
of the corresponding flat federation result. The TAG rates of both SFC and
HFC decrease with the number of federates. All simulation federates report
almost the same TAG rates, as they are designed to be regulated by each
other and our synchronization mechanism has properly enabled this in the
final federation communities regardless of their architectures (the same applies
to all other experiments introduced in Sections 5.2 and 5.3).

RTI-AB

A3A4

RTI-A

B1

RTI-B

Gw-a

C1

RTI-C

D1

RTI-D

RTI-AC

Gw-b Gw-c Gw-d

A1A2

RTI-AD

E1

RTI-E

Gw-e

RTI-AE

(1)
(2)

(3)
(4)

FIGURE 5.10
Synchronization benchmark scenarios for set-based federation community net-
works.

Obviously, the SFC’s synchronization efficiency is superior to that of the
HFC. With more levels in HFC, it takes more intermediate stages for the
time synchronization to propagate through the gateway federates to the re-
mote benchmark federates as compared to SFC. From Figure 5.13 it can be

94 Large-Scale Simulation: Models, Algorithms, and Applications

A3A4

RTI-A

B1

RTI-B

Gw-a

C1

RTI-C

D1

RTI-D

Gw-b Gw-c Gw-d

A1A2 E1

RTI-E

Gw-e

(1)
(2)

(3)
(4)

RTI-AB

Gw-ab

RTI-ABC

Gw-abc

RTI-ABCD

Gw-abcd

RTI-ABCDE

FIGURE 5.11
Synchronization benchmark scenarios for hierarchical federation community
networks.

0

5

10

15

20

0 2 4 6 8 10

Number of Federates

Flat Federation

T
A

G
s/

S
ec

o
n

d

FIGURE 5.12
Synchronization benchmark results for a flat federation over a low-
performance platform.

Synchronization in Federation Community Networks 95

7.8

5.1

3.9

3

7.8

6.5

5.4

4.8

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Hierarchical Federation Community

Set-based Federation Community

Number of Federates

T
A

G
s/

S
ec

o
n

d

FIGURE 5.13
Synchronization benchmark results for hierarchical federation community and
set-based federation community.

observed that the lowering of the TAG rate (about 20% of the correspond-
ing flat federation result) starts to bottom out for SFC, and this indicates
that SFC has potentially good scalability. As far as synchronization efficiency
is concerned, the results suggest that scaling horizontally tends to result in
better performance than scaling vertically when constructing a multiple-layer
federation community.

5.5.2 Experiments on Peer-to-Peer Federation Community
Networks

This series of experiments focuses on the scalability study of peer-to-peer fed-
eration community (See Figure 5.3(A)). These experiments aim to (1) compare
the performance of peer-to-peer federation community and flat federation, and
(2) investigate the scalability with respect of the number of federations in a
peer-to-peer federation community. The experiments were based on a high
performance PC cluster at Birmingham/UK consisting of one master node
and 54 worker nodes. Each node has 2G bytes of memory and two Intel Xeon
3GHz processors, while connectivity is provided by a Gigabit Ethernet Switch.
Each benchmark federate occupies an individual work node separately.

96 Large-Scale Simulation: Models, Algorithms, and Applications

Figure 5.14 presents the synchronization benchmark results using a flat
federation. In the time advancement benchmark, the TAG rate decreases with
the number of federates. The rate decreases less rapidly when the number of
federates is greater than 6. The TAG rate is 2279 times per second for two
federates down to about 373 times per second (about 16% of the case of two
federates) for twenty four federates.

The benchmark federates were then partitioned into two separate feder-
ations evenly (one federation will contain one more federate than the other
when the total number of federates is odd) and formed a simple peer-to-peer
federation community using a gateway federate on an additional worker node.
The experimental results are also presented in Figure 5.14. The rate decreases
slightly with the number of federates in contrast to the flat federation case.
The TAG rate is 525 times per second (about 20% of the corresponding flat
federation result) for two federates down to about 287 times per second (about
55% of the case of two federates and about 77% of the corresponding flat fed-
eration result) for twenty four federates. The synchronization efficiency of
the peer-to-peer federation community tends towards that of the flat federa-
tion and the overhead introduced by synchronization becomes more and more
ignorable with the increasing number of federates. The encouraging results
indicate that the peer-to-peer community scales very well when the number
for federations is limited.

In another set of experiments, we fix the total number (24) of federates
and make them evenly join a number (2, 3, 4, 6, and 8) of federations. The
TAG rates in these scenarios are reported in Figure 5.15. The TAG rate is
287 times per second for two federations down to about 96 times per second
(about 33% of the case of two federations) for eight federations.

This suggests that the number of federations in a community should be lim-
ited in the case of requiring extremely high synchronization efficiency. Another
observation is that the TAG rate decreases very slightly when the number of
federations exceeds four. The results also indicate that the scalability of the
synchronization mechanism is good in terms of the number of federations.

It is pertinent to note that the overhead incurred by synchronization is
only part of the load of a federated simulation system, which also includes the
models’ computational load and communication load for message deliveries.
When the models are highly complex (this is often the case for federation
communities), the relative contribution of the synchronization overhead to the
overall system load is decreased. The same is true as the number of federates
increases.

5.5.3 Experiments on Grid-Enabled Federation Community
Networks

The last set of experiments aims to investigate the correctness and perfor-
mance of the synchronization mechanism in Grid-enabled federation commu-
nity. A high-performance cluster at Singapore has been used in addition to

Synchronization in Federation Community Networks 97

2279

2027

1908

1669

1463
1396

1250

1150

1041

943

853
797

740

631
591 587 561 529

492
431 418

378 373525 512 516 494 479 459 456 455 441 434 416 395 397 402 403
354 351 333 304 271

310 282 287

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22 24

Flat Federation

Peer-to-peer Federation Community (2 federations)

Log. (Flat Federation)

Log. (Peer-to-peer Federation Community (2 federations))

Number of Federates

T
A

G
/S

ec
o

n
d

FIGURE 5.14
Synchronization benchmark results for a flat federation versus a simple peer-
to-peer federation.

the cluster at Birmingham. The cluster at Singapore consists of one master
node and fifteen worker nodes, and each node has 4G bytes of memory and
two Intel Dual Core 3GHz processors while connectivity is provided by a Gi-
gabit Ethernet Switch. The firewall rule on each cluster only allows external
authorized users to access the master node via a designated port.

The configuration of the testbed is illustrated in Figure 5.16. Grid services
provided by GT4.1.2 have been enabled to the master nodes of both clusters.
In order to initiate the Grid-enabled gateway, a ClientFederateAmbassador
service should be started to host the gateway thread on the master node at
Birmingham, namely “Gw-b,” and a ProxyRTIAmbassador service should also
be started to host the corresponding proxy, namely “Proxy b.”

Each benchmark federate occupies an individual work node separately.
The benchmark starts with one federate at Singapore cluster and another at
the Birmingham cluster. We then increased the number of federates equally
until twelve federates were involved at each side (denoted as A1 to A12 at
Singapore and B1 to B12 at Birmingham). After that, we only add feder-
ates (denoted as B13 to B24) at the Birmingham cluster to a total number
of thirty-six federates. The setup of the Grid-enabled federation community
follows the architecture as shown in Figure 5.5(A). Proxy b directly interacts
with federates B1 to B24 through an RTI session at Birmingham while Gw-b

98 Large-Scale Simulation: Models, Algorithms, and Applications

373

287

208

122 118

96

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9

Number of Federations

T
G

A
S

/S
ec

o
n

d

FIGURE 5.15
Synchronization benchmark results for peer-to-peer federation communities
over a high-performance platform.

interacts with federates A1 to A12 through another RTI session at Singapore.
A Grid-enabled gateway between the two RTI sessions were formed by gluing
Gw-b together with Proxy b through Grid invocations over the Grid. Figure
5.17 presents the benchmark results.

The TAG rate is 1.61 times per second for two federates down to about 1.48
times per second for four federates. The TAG rate remains almost constant
when the number of federates is less than twenty-six. With more federates
added at Birmingham side, the TAG rate decreases slightly down to 1.15
times per second with thirty-six federates in total. The results exhibit an en-
couraging scalability of the synchronization mechanism upon the Grid-enabled
federation community.

The experimental results are mainly determined by the communication
overhead between the clusters. We have measured the times required for RTI
service invocations (queryMinNextEventTime and timeAdvanceRequestAvail-
able) across the Grid, and each of them takes about 300 milliseconds to com-
plete. The two calls will be invoked at least once in order for the gateway to
advance the time at both sides (see Figures 5.8 and 5.9). Even if the overhead
of other operations can be ignored, the interval for the gateway to success-
fully advance its simulation time once is at least 600 milliseconds. Because
only when the gateway advances its time successfully can other federates pro-

Synchronization in Federation Community Networks 99

Grid Services

RTIExecA1

B24B12B1

latigid

Gigabit Ethernet

Birmingham/UK cluster

Singapore cluster

Proxy b

...

...
Gw-b

Gigabit Ethernet

latigid latigid latigid latigid

A2 A12

RTIExecB13

...

...

...

...

ProxyRTIAmbassador

Service

ClientFederateAmbassador

Service

Master

Node

Master

Node

FIGURE 5.16
Testbed for benchmark of Grid-enabled federation community over WAN.

ceed with a new time advance request, the TAG rate of a federate should
not exceed about 1/(0.6) = 1.66 times per second. This figure is in accor-
dance with the experimental results. Furthermore, due to the delay caused by
Grid invocations at the gateway, the overhead involved in the intra-federation
synchronization is well hidden.

In addition to the outputs described above, the benchmark federates in all
experiments presented in this section can advance their times and get grants
properly in exactly the same manner as in a flat federation. This observa-
tion further indicates the correctness and user transparency of the proposed
synchronization mechanism.

100 Large-Scale Simulation: Models, Algorithms, and Applications

1.61

1.48 1.47 1.48 1.48 1.48
1.45 1.45 1.44

1.48 1.47 1.47

1.34 1.32
1.27 1.25

1.19
1.15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Number of Federates

T
A

G
s/

S
ec

o
n

d

FIGURE 5.17
Synchronization benchmark results for Grid-enabled federation community.

5.6 Summary

This chapter is concerned with issues related to synchronization in federation
community networks with alternative approaches for constructing federation
communities and various architectures of federation community networks in-
troduced. The chapter presented a mechanism for supporting synchronization
crossing the boundaries of interlinked federations. We have investigated the
issues and design of two generic synchronization algorithms. Based upon the
gateway federate approach, the synchronization mechanism was developed to
properly propagate time constraints of each individual federation all over the
network, thus to coordinate the time advances of all simulation federates and
TSO event deliveries among them. This has been achieved without the risk of
deadlock or violation to the HLA rules.

All the objectives set at the beginning of this chapter have been fulfilled.
A mathematical proof as to the correctness of the synchronization algorithms
has been provided. Our design supports the reuse of legacy federates at both
the executive level and code level while enabling synchronization among fed-
erations. It avoids developers’ effort for reengineering simulation federates in
order to make use of the proposed synchronization mechanism. The synchro-

Synchronization in Federation Community Networks 101

nization mechanism is platform neutral and model independent, and it has
been successfully applied in federation communities of a variety of architec-
tures.

The Grid-enabled federation communities have been successfully con-
structed with time management fostered by our synchronization algorithms.
An individual federation operating inside an administrative domain has been
presented as Grid services using GT4.1.2 and can be by easily accessed for
use by external users.

A number of experiments have been performed to investigate the correct-
ness and benchmark the performance of the synchronization mechanism. The
standard benchmark applications available in the DMSO RTI software suite
(1.3 NG Version 6) have been adopted to benchmark the synchronization
mechanism over LAN and WAN environments in terms of efficiency of time
advance and scalability. The experimental results on multiple-level federation
community networks over LAN indicate the mechanism scales better in a set-
based federation community than in a hierarchical federation community, and
it suggests that scaling horizontally is preferred when constructing a multiple-
layer federation community. The experimental results on peer-to-peer federa-
tion community networks show that the synchronization mechanism provides
encouraging synchronization performance, especially in the case of large-scale
distributed simulation. It can be observed that with the number of federates
increasing the federation community powered by the proposed algorithm can
reach about 77% performance of the corresponding flat federation in terms of
synchronization. The synchronization performance on Grid-enabled federation
communities is limited by the communication overhead over the Grid. Nev-
ertheless, the synchronization mechanism scales quite well. The experimental
results imply that the mechanism suits compute-intensive and large-scale sim-
ulation when synchronization among federates is not frequent.

This page intentionally left blankThis page intentionally left blank

Part III

Evaluation of Alternative

Scenarios

This page intentionally left blankThis page intentionally left blank

6

Theory and Issues in Distributed Simulation

Cloning

CONTENTS

6.1 Decision Points . 105

6.2 Active and Passive Cloning of Federates . 106

6.3 Entire versus Incremental Cloning . 106

6.3.1 Shared Clones . 107

6.3.2 Theory and Issues in Incremental Cloning 108

6.4 Scenario Tree . 110

6.5 Summary . 112

This chapter presents the theory of distributed simulation cloning and the
critical research issues involved. It defines basic concepts and notations that
are used in the technology. Different types of federate cloning and scenario
cloning in distributed simulations are identified and classified.

6.1 Decision Points

As discussed in Section 3.2, during the execution of a simulation, a feder-
ate may face different choices to perform alternative actions. The federate
is cloned at such Decision points according to some predefined triggering
conditions or rules. A decision point represents the location in the execution
path where the states of the system start to diverge in a cloning-enabled sim-
ulation. “Cloning” differs from simple replication in the sense that Clones of
the original federate execute in different paths rather than simply repeat the
same executions, even though the computation of clones is identical at the
decision point. From the decision point onward, a simulation spawns multiple
execution paths to exploit alternative scenarios concurrently.

From the user’s point of view, Decision points can be specified either at the
modeling stage or at runtime. A user may predefine the Cloning triggers for
a decision point, which comprise the cloning conditions, alternative actions,
and properties of the trigger. The properties of a trigger describe how it is

105

106 Large-Scale Simulation: Models, Algorithms, and Applications

defined: This may be based on (1) the values of an object instance, (2) the
status of the model’s internal states, (3) a certain simulation time, or (4)
dependency on other triggers. At the modeling stage, the user can specify the
conditions of the Decision points and the alternative actions for the Decision
points. During runtime, the user can insert Decision points dynamically and
can even specify alternative execution paths at a decision point interactively.
The cloning trigger will initiate cloning when necessary.

Any occurrence of cloning has an impact on the existing scenarios and
other federates in a distributed simulation. Section 6.2 classifies the simulation
cloning from an individual federate’s point of view, whereas Section 6.3 defines
different cloning mechanisms from a scenario’s perspective.

6.2 Active and Passive Cloning of Federates

When a federate reaches a decision point, it makes clones on its own initiative.
This federate is said to perform active cloning. Each clone of the federate
executes a separate scenario. An active cloning results in the creation of
new scenarios.

In distributed simulations, there are multiple federates interoperating with
each other. When one federate splits into different executions, the partners
who interact with this federate may have to spawn clones to perform proper
interaction even though the partners have not yet met a decision point. Those
partners are said to perform passive cloning. Generally speaking, the clones
generated in an active cloning have separate initial states while those created
in a passive cloning have identical initial states. Only the active cloning
leads to the creation of new scenarios, and this induces passive cloning in
some other federates.

6.3 Entire versus Incremental Cloning

A simple approach to keep the correctness of the simulation is to clone the
whole simulation whenever any federate reaches a decision point, that is. en-
tire cloning. Each cloned simulation consists of a separate set of federates
that reports results independently. One can see that the scalability of dis-
tributed simulation is a challenge in this case. Another approach replicates
the simulation incrementally; that is, only those federates whose states will
alter at a decision point need to be cloned, other federates will remain intact.
This alternative approach is referred to as incremental cloning. Such an
incremental cloning approach shares computation between federates in alter-

Theory and Issues in Distributed Simulation Cloning 107

native scenarios, and provides a more efficient and scalable method to clone
the distributed simulation.

Fed
A[0]

Simulation
Time

0

T

Fed
B[0]

Fed
X[0]

Initial
Scenario

Fed B[0]

makes active
cloning

Fed
A[0]

Fed
B[0]

Fed
X[0]

Fed

A[0]

Fed
B[0]

Fed

X[0]

Original

Scenario

New

Scenario 1

Fed

A[1]

Fed

B[1]

Fed

X[1]

Fed
A[n]

Fed
B[n]

Fed
X[n]

...

...

...

...

...

...

New

Scenario n

Fed

B[1]

Fed
B[n]

...

...

...

Entire
Simulation Cloning

Incremental
Simulation Cloning

Scenario Operating inFederate Concurrent

FIGURE 6.1
Entire cloning versus incremental cloning.

6.3.1 Shared Clones

Figure 6.1 illustrates the different effects of an active cloning using entire
cloning versus incremental cloning. For those federates whose states are not
affected, the incremental cloning mechanism allows them to operate in the new
scenarios in addition to the original one as shared federates (clones), such
as Fed A[0] and Fed X[0] in the right half of Figure 6.1. A shared clone may
subsequently perform cloning passively during the execution of the simulation
on demand of its partners.

Normal clones are those clones that operate in a single scenario (e.g. Fed
B[i] in Figure 6.1); this term is used in this book to distinguish them from
the shared clones. The clones created from the same root federate are referred
to as sibling clones. The federate being cloned is referred to as the parent
federate (clone) of the clones directly replicated from it. Those federates that
interact within the same scenario are known as partner federates1.

A clone needs to inherit the same RTI objects from the parent federate. We
name the object instances registered by the original federates prior to cloning
as original object instances whereas we use image object instances to
denote those object instances re-registered by the clones in the state recovery
procedure.

1In our design, each federate (clone) is associated with a scenario ID, from which part-
nership can be distinguished among different federates (clones).

108 Large-Scale Simulation: Models, Algorithms, and Applications

6.3.2 Theory and Issues in Incremental Cloning

 relaScen[1]

 relaScen[2]

 relaScen[n]

Scenario

...

Clone
X[1]

Clone

X[2]

Clone
X[n]

Federate

inEv [n]

Outgoing Event

...

inEv[2]

inEv [i]

inEv[1]

...

...

Shared Clone

SC

FIGURE 6.2
A typical shared clone.

The incremental cloning mechanism enables a shared clone to execute in
multiple scenarios as long as it keeps receiving identical events from corre-
sponding federates in all scenarios in which it participates. This design aims
to avoid repeating identical computation among scenarios as much as possi-
ble. The shared clone persists in this mode until the condition for triggering
passive cloning is met.

A typical shared clone is shown in Figure 6.2. The shared clone (SC)
executes in n concurrent scenarios, and those scenarios are said to be SC ’s
related scenarios (written as RELASCEN = {relaScen[i]|i = 1, 2,...,n}).
Let X = {x[i]|i = 1, 2,...,n} denote the set of sibling clones that are created
from the same simulation federate x, with x[i] operating in relaScen[i]. SC
may receive events from x[i] and generate events for each related scenario. It
is unnecessary to perform extra checking on the events generated by SC, as
those events must be identical in any scenario. However, the events received
by SC must be checked.

Definition 1 (Sensitive Update) If an object instance ObjX registered
by federate has been discovered by SC, then SC treats ObjX and its image
objects (see Section 6.3.1) as a set of sensitive object instances. Obviously, the
object class to which ObjX belongs must be published by x and subscribed
by SC. Let inEv[i] represent an update of ObjX (or its image objects) issued
by any x[i] ∈ X ; then inEv[i] is defined as a sensitive update for the shared
clone SC.

Theory and Issues in Distributed Simulation Cloning 109

Definition 2 (Sensitive Interaction) Any interaction class published by
x and subscribed by the shared clone SC is regarded as a sensitive interaction
class. Let inEv[i] represent an interaction of any sensitive interaction class
sent by any x[i] ∈ X ; then inEv[i] is defined as a sensitive interaction for
the shared clone SC.

A sensitive event is defined as a sensitive update or interaction. A
shared clone may present nonsensitive events straightforwardly to its simu-
lation model without extra checking, whereas it has to check each sensitive
event before conveying it to the simulation model. A non-sensitive event can
be an event sent by another shared clone executing in all related scenarios of
the receiver. A sensitive event must be compared with corresponding coun-
terpart events. In each round of event comparison, the first received sensitive
event is referred to as the target event by subsequent counterpart events.

Definition 3 (Comparable Updates) Any two sensitive updates for a
shared clone are comparable to each other only when the following conditions
are satisfied:

• They carry equivalent timestamps.

• They are updates of two individual image objects (or an original object
and one of its image objects) representing the same original object.

.
Definition 4 (Comparable Interactions) Any two sensitive interac-

tions are comparable only when the following conditions are satisfied:

• They carry equivalent timestamps.

• They belong to the same sensitive interaction class.

• They originate from two individual sibling clones.

A shared clone should not compare received interactions that are not sent
by sibling clones even if they belong to the same interaction class. According
to Definition 3 and the definition of original and image object instance, it is
obvious that comparable events must originate from sibling clones.

Definition 5 (Identical Events) Comparable events are called identical
if they have the same associated attributes/parameters and the values of all
attributes/parameters are identical.

Comparable events must be checked to verify whether or not they are
identical. If a shared clone detects that any two comparable events are not
identical, the shared clone has to perform passive cloning to handle this situ-
ation. On the other hand, the shared clone may remain intact if

• All received comparable events are identical.

• The shared clone receives comparable events from all the sibling clones
in the related scenarios before it is granted a simulation time greater than
(or equal to) the target event’s timestamp.

110 Large-Scale Simulation: Models, Algorithms, and Applications

If either condition is not met, it means that the shared clone has obtained
different behaviors from related scenarios and requires passive cloning. As
a consequence, the federate previously shared and its clones created in this
passive cloning each operate as a normal clone in only one individual scenario
(at least until the next decision point). Figure 6.3 depicts the relationship
among the terms defined in this section.

Comparable Interactions

Updates Interactions

Events

Another

Sensitive

Update

Sensitive

Interaction Si

A Sensitive

Update Su

Another

Sensitive

Interaction

Si[i] Si[j]

definition 3

Comparable Updates

Su[j]Su[i]

definition 4

Identical Updates

Su[j]Su[i]

definition 5 definition 5

Identical Interactions

Si[i] Si[j]

definition 1 definition 2

Supertype/Subtype Equivalent

FIGURE 6.3
Relationship between terms related to shared clones.

6.4 Scenario Tree

In the context of distributed simulation cloning, each clone (federate) is an
individual entity, whereas each scenario is a dynamic group, which involves
a changing combination of member clones. Each scenario reports simulation
results independently; it is the basic unit in our consideration and discussion.
Only active cloning can drive the creation of new scenarios. We utilize a tree
data structure to represent the relationship and development of the scenarios.

Theory and Issues in Distributed Simulation Cloning 111

Figure 6.4 gives an example of a cloning-enabled simulation in which Fed
A[0] operates as an event publisher, and Fed B[0] and Fed C[0] exchange
events. Part (A) illustrates the details of the overall cloning procedure. Part
(B) gives an abstraction of the scenario tree, in which each parent node (full
circles) represents an occurrence of active cloning. The leaf nodes (empty
circle) stand for active scenarios at the current simulation time. An active
cloning results in spawning new scenarios; this is reflected in the figure as
parent nodes that have multiple children. Each scenario is marked as S[i] (i
= 0, 1, 2, ...). The scenario tree grows along the simulation time axis as follows:

Fed

A[0]

Fed

B[0]

Fed

C[0]

Event X

Fed

A[0]

Fed

B[0] Fed

C[0]
Fed

B[1]

Event X'

X == X'

Event X

Fed

A[0]

Fed

B[0]

Fed

C[0]

Fed

B[1]

Event X'

X != X'
Fed

C[1]

Simulation

Time

0

T1

T2

T3

B[0] performs

active cloning

C[0] performs

passive cloning

C[1] performs

active cloning

Fed

A[0]

Fed

B[0]

Fed

C[0]

Fed

B[1]

Fed

C[1]

Fed

C[2]

S
[1

]

S
[0

]

S
[1

]

S
[2

]

S
[0

]

(A) (B)

FIGURE 6.4
Example of incremental cloning and scenario tree.

• At simulation time 0, there exists a single scenario S[0]. When simu-
lation time is advanced to T1, Fed B meets a decision point and performs
active cloning, splitting into clones B[0] and B[1]. A new branch S[1] is cre-
ated in the scenario tree at this point. An event generated by B[0] is named
as event X while an event from B[1] is called event X ′. Fed C[0] keeps intact
and this will continue as long as events X and X ′ remain the same. Fed C[0]
operates as a shared clone for the duration between time T1 and time T2.

112 Large-Scale Simulation: Models, Algorithms, and Applications

• At simulation time T2, an event X deviates from event X ′; this incurs
a passive cloning of Fed C[0] and results in the birth of clone C[1]. This
passive cloning does not trigger any change in the scenario tree.

• At simulation time T3, Fed C[1] performs an active cloning, spawning
off clone C[2]. A new scenario is created and marked as S[2] in the scenario
tree.

A Combinatorial explosion of scenarios in distributed simulation cloning
may occur in some situations. The number of possible scenarios is determined
by (1) the number of active cloning federates, (2) the times those federates
perform active cloning, and (3) the candidate choices that each decision point
represents. Human intervention may reduce the Combinatorial explosion, but
it is difficult to reach a general solution [5].

In practice, it is unlikely that such a Combinatorial explosion will occur.
For example, in a supply chain simulation, one company may wish to examine
its own decision strategies concurrently. It is unlikely that one company could
manipulate its partners’ internal decision policies. So in this case, there will
be only one or a few federates that perform active cloning while the remaining
federates perform passive cloning at the request of the active cloning federates.

From the above discussion we observe that different scenarios may have
common member clones. The relationship among scenarios and Clones can
be complex and highly dynamic. There is a need for an identification and
partitioning mechanism to manage the concurrent scenarios in the distributed
simulation cloning procedure. This requires us to

• Represent the relationship among scenarios.

• Identify each scenario and clone to enable control.

• Partition the event messages belonging to different scenarios.

• Support the sharing of Clones between scenarios.

• Provide reusability to user federates while enabling the former func-
tionalities.

In Chapter 8 we will address the above problems by presenting a recursive
region division solution and a point region solution to manage the scenarios
using Data Distribution Management (DDM).

6.5 Summary

This chapter gave the basic theory and identifies issues involved in distributed
simulation cloning. Different types of cloning were introduced, such as active

Theory and Issues in Distributed Simulation Cloning 113

and passive cloning, and total and incremental cloning. Key terms were de-
fined, which include decision point, normal clone and shared clone, and part-
ner federate and sibling Clones. Although some concepts, for example decision
point, have been identified in [60] for parallel simulation cloning, our book is
the first to provide a systematic definition of simulation cloning at both the
federate and distributed simulation level.

This chapter also described the theory of incremental cloning. Sensitive
events and related concepts were explained. Similar ideas for incremental
cloning have subsequently been adopted in the parallel simulation domain
[59].

A scenario tree was designed to represent the evolvement of concurrent sce-
narios resulting from cloning and the dynamic relationship among them. This
chapter clearly described the interdependencies between scenarios, Clones,
RTI objects and events which is missing in previous approaches to cloning of
HLA-based simulations.

This page intentionally left blankThis page intentionally left blank

7

Alternative Solutions for Cloning in

HLA-Based Distributed Simulation

CONTENTS

7.1 Single-Federation Solution versus Multiple-Federations Solution 115

7.2 DDM versus Non-DDM in Single-Federation Solution 117

7.3 Middleware Approach . 119

7.4 Benchmark Experiments and Results . 120

7.4.1 Experiment Design . 121

7.4.2 Benchmark Results and Analysis . 123

7.4.3 Comparing Alternative Cloning Solutions Using TSO

Federates . 124

7.4.4 Comparing Alternative Cloning Solutions Using RO

Federates . 126

7.4.5 Comparing Alternative Cloning Solutions Using Time

Advancement Benchmark Federates . 127

7.5 Summary . 127

Simulation cloning is designed to satisfy the requirement of examining alterna-
tive scenarios concurrently. In this chapter, alternative solutions are proposed
and compared from both the qualitative and quantitative points of view. In
terms of federation organization, candidate solutions can be classified as either
single federation or multiple federation. In order to guarantee the correctness
and optimize the performance of the whole cloning-enabled distributed sim-
ulation, the single federation solution requires an additional mechanism to
isolate the interactions among alternative executions. Data Distribution Man-
agement (DDM) is one of the candidate approaches. To measure the trade-off
between Complexity and efficiency, we also introduce a series of experiments
to benchmark various solutions at the RTI level.

7.1 Single-Federation Solution versus

Multiple-Federations Solution

When a federate is cloned, we can create multiple federations to meet the
demand of executing alternative scenarios or generate new federates to op-

115

116 Large-Scale Simulation: Models, Algorithms, and Applications

erate in the original federation without intervening in the execution of any
other scenario. This book uses Multiple-Federation (MF)Solution to denote
the former design, and Single-Federation (SF) Solution to denote the latter
one.

Figure 7.1 depicts the cloning of a simulation using both solutions. Feder-
ates inside the dashed rectangle represent the clones originating from a com-
mon ancestor. Following the cloning action that is triggered at the decision
point, both original federates (A and B) duplicate themselves to form two
different scenarios. By applying the SF solution, the new federates Fed A[1]
and B[1]participate in the original federation RTI[0] and there is no need for
an additional federation to support the new scenario (labeled). By applying
the MF solution, Fed A[1] and B[1] form another federation RTI[1]to facilitate
another scenario (labeled).

Fed

B[0]

Fed

B[1]

RTI[0]

0

Initial Scenario

Reach Decision Point

Fed A: active cloning

Fed B: passive cloning

0

0

1 1

Fed

A

Fed

B

0

RTI[0]

0

Fed

A[0]

Fed

B[0]

0

Fed

A[0]

Fed

A[1]

RTI[0] RTI[1]

1

Fed

A[1]

Fed

B[1]

1

Single-federation

Solution
Multiple-federation

Solution

FIGURE 7.1
Example of single-federation solution and multiple-federation solution.

The two solutions mentioned above involve different research issues and
problems, especially at the RTI level. Table 7.1 gives a comparison showing

Alternative Solutions for Cloning in HLA-Based Distributed Simulation 117

TABLE 7.1
Comparison between Single-Federation and Multiple-Federations Solutions

Issues Single-Federation Multiple-Federation
Additional mechanism is Interaction between

needed to deal with clones in various
Interaction unnecessary event-crossing scenarios isolated

among concurrent scenarios by default

Unnecessary synchronization Synchronization among
Synchronization among clones in different clones in different

scenarios is inevitable scenarios is eliminated

Complexity of
Sharing

Clone sharing is available in
a single federation

Clone sharing is
difficult among
federations

Multiple RTI instances
for one user federation

If an RTI instance crashes, are maintained; thus
Robustness the simulation will fail one RTI instance crash

will not result in failure
of the whole simulation

Management
of Clones

Management of clones is
easier inside the same

federation

Management of clones
crossing multiple

federations is indirect

the advantages and disadvantages of both solutions from different viewpoints.
To make a trade-off among these issues is difficult. As RTI does not provide
destination-specific delivery in its Object Management services, it is manda-
tory that the Single-Federation solution requires an additional mechanism to
isolate interactions among clones in different scenarios.

7.2 DDM versus Non-DDM in Single-Federation

Solution

To isolate separate scenarios, a straightforward approach is to filter events
at the receiver side. Each event is attached with the exclusive identity of the
scenario of the sender. The receivers discard those events from other scenarios
and merely reflect those belonging to the same scenario. Minimal effort is
required to enable this filtering in addition to the standard RTI services.

It is also possible to use Data Distribution Management (DDM) services
to partition scenarios in the overall cloning-enabled distributed simulation.
In general, the purpose of DDM services is to reduce the transmission and

118 Large-Scale Simulation: Models, Algorithms, and Applications

receipt of irrelevant data by the federates. DDM services are employed by
the federates, which can be interpreted as data producers and consumers, to
assert properties of their data or to specify their data requirements respec-
tively based on specified regions. The RTI then distributes the data from the
producers to the consumers based on the match between the properties and
the requirements. DDM controls the efficient routing of class attributes and
interactions via the RTI.

Routing spaces are a collection of dimensions that represents coordinate
axes of the federation problem space with a bounded range [86]. A region
defines a multidimensional sub-space in the routing space by defining the lower
bound and upper bound on each dimension of the routing space. Figure 7.2
illustrates an example of routing space and regions, in which two dimensions
“X” and “Y” define a routing space. Three regions R1, R2, R3 are indicated
as the large rectangles in the figure. R1 overlaps with R2 in area O1 and R2

overlaps with R3 in area O2. Obviously, there is no overlap between R1 and
R3.

Dimension X

Dimension Y

R1

R2

R3

O1 O2

FIGURE 7.2
Example of routing space and regions.

In DDM, data producers and consumers specify their data properties and
data requirements by providing update regions and subscription regions. Data
connection will be established between a pair of federates only when an update
region and a subscription region overlap. With this property, DDM seems to
be a natural candidate for developing the mechanism to restrict the interaction
among clones to within the same scenario.

The RTI offers a region modification method to enable the dynamic change
of sub-space without creating a different region. The change takes effect im-
mediately after notifying the RTI. This feature enables the adjusting of a
clone’s “characteristic” region at runtime; thus dynamic routing and filtering
of events from one clone to different scenario combinations can be realized.

Alternative Solutions for Cloning in HLA-Based Distributed Simulation 119

The RTI specification leaves the DDM implementation details to the RTI
implementers. The current DMSO RTI-NG supports a number of DDM data
filtering strategies, one of which is the StaticGridPartitioned strategy. This
strategy partitions individual spaces into a grid in which each grid cell is as-
signed a separate reliable and best-effort channel [63]. Wise use of the Static-
GridPartitioned strategy can increase performance through sender-side filter-
ing.

By assigning a scenario-specific region to one set of clones, the interac-
tions will automatically be confined to this scenario. However, this incurs
some extra overhead for managing the regions and increases the Complex-
ity of implementation. It is not necessary to introduce the DDM mechanism
to the multiple-federation solution, as the communication traffic has already
been confined within each federation. Thus, there are three candidate solu-
tions for cloning HLA-based distributed simulations: Multiple-Federation so-
lution (MF), DDM Single-Federation solution (DSF), and Non-DDM Single-
Federation solution (NDSF). In order to evaluate these solutions, another
important criterion is their efficiency. The trade-off between efficiency and
Complexity is a main concern of the distributed system designer. Section 7.4
will introduce the benchmark experiments to measure the overall performance
of the three solutions in terms of execution time.

7.3 Middleware Approach

No matter what kind of solution is chosen to perform simulation cloning, a
critical principle is the reusability of the user’s program. Our solutions should
minimize the modification to the user’s existing code even though it is diffi-
cult to eliminate all extra Complexity when enabling simulation cloning. We
propose a middleware approach to hide the Complexity as indicated in Figure
7.3.

We extend the standard RTI to RTI++ to encapsulate cloning operations
directly related to the RTI while presenting the standard RTI interface to the
user. The user code still uses the standard RTI interface while the enhanced
functionality remains transparent to the user. The middleware sits between the
user’s code and the real RTI, and contains a library for cloning management
and the RTI++.

As mentioned previously, any of the solutions discussed should work as
an underlying control mechanism with transparency to federate codes. Hiding
the implementation details while enabling the management of scenarios can
maximize the reusability of the user’s existing simulation model. Our RTI++
software is built to encapsulate the cloning-related modules while maintaining
the same RTI interface to the calling federate code. Figure 7.4 gives an example
of pseudo codes for implementing the above inside the middleware.

120 Large-Scale Simulation: Models, Algorithms, and Applications

User's Program

Standard RTI Interface

RTI++

DDM Other Services
...

Module

Library

Middleware

Real RTI

FIGURE 7.3
Example of middleware for cloning.

Get region associated with current clone federate

CurrentRegion = ScenManager->getCloneRegion();

Override Standard RTI functions with DDM enabled services

For example:

RTIambassadorPlus::subscribeObjectClassAttributes(theClass, attributeList, ...){

…

(RTI::RTIambassador* this)->subscribeObjectClassAttributesWithRegion(theClass,

CurrentRegion, attributeList, ...);

...

}

...

FIGURE 7.4
Example of RTI++ implementation.

7.4 Benchmark Experiments and Results

The primary objective of the experiments is to provide some criteria on Com-
plexity and efficiency to help us decide what kind of cloning method we should
adopt: namely, MF, DSF, and NDSF as discussed.

We study the Complexity and efficiency using three factors: (1) Lower
Bound Time Stamp (LBTS) computation for time advance [1], (2) the

Alternative Solutions for Cloning in HLA-Based Distributed Simulation 121

interaction latency between federates, and (3) the load of the federate
processes. The LBTS computation determines the speed at which federates
can advance simulation time. The interaction latency means the communica-
tion overhead for delivering events among federates. The load of the federate
processes is a measure of the computational resources required for executing
a simulation. The experiments explore how these crucial factors impact the
overall performance. The experiments report the execution times of adopting
alternative solutions in terms of the efficiency of the LBTS computation and
the interaction latency. They also measure the CPU utilization of each node
to study the load of federate processes under different circumstances.

7.4.1 Experiment Design

The experiments use three PCs in total (PC 1, 2, and 3 in Figures 7.5 and
7.6), in which PC 2 executes the RTIEXEC and FEDEX processes [1]. The
federates that run at each independent PC are enclosed in a dashed rectangle.
In our case Fed A[i] and Fed B[i] (i > 1) occupy PC 1 and PC 3 respectively.
The PCs are interlinked via an EtherFast 100 five-port Workgroup Switch,
which forms an isolated subnet to avoid fluctuation incurred by additional
network traffic. The PCs’ configuration is as follows:

• Intel 1700MHz Pentium IV

• 256 Mbytes of RAM

• Windows 2000 Professional

• DMSO RTI NG 1.3 V4

FED A[1]

FED A[2]

FED A[3]

FED A[4]

FED A[5]

RTI 11 FED 1[B]1

2 FED 2[B]2

3 FED 3[B]3

4 FED 4[B]4

5 FED 5[B]5

FED B[1]

FED B[2]

FED B[3]

FED B[4]

FED B[5]

RTI 3

RTI 4

RTI 5

RTI 2

...

PC 1 PC 2 PC 3

FIGURE 7.5
Test bed for MF solution.

122 Large-Scale Simulation: Models, Algorithms, and Applications

FED A[1]

FED A[2]

FED A[3]

FED A[4]

FED A[5]

1 FED 1[B]1

2 FED 2[B]2

3 FED 3[B]3

4 FED 4[B]4

5 FED 5[B]5

FED B[1]

FED B[2]

FED B[3]

FED B[4]

FED B[5]

... ...

RTI

PC 1 PC 2 PC 3

FIGURE 7.6
Test bed for DSF and NDSF solution.

The experiments emulate the simulation cloning process by increasing the
number of identical federates. In Figures 7.5 and 7.6, Fed A[1] and B[1] form a
pair of initial federate partners, which represent the federates to be cloned. Fed
A[i] and B[i](i>1) denote the ith clones of the two original federates, respec-
tively. The federates are tailored based on the DMSO standard benchmarking
programs [82].

As indicated in Figure 7.5, each pair of Fed A[i] and B[i] comprises an ex-
clusive federation, which is denoted as RTI[i]. We employ this set of scenarios
to perform the benchmarking experiments for the MF solution. In Figure 7.6,
all federates form one single federation; accordingly, we use this set of scenarios
to measure the performance of NDSF and DSF solutions.

Each federate is time constrained and time regulating, or neither. In one
run, each federate updates an attribute instance and receives an acknowledg-
ment from its partner (from Fed A[i] to Fed B[i], and vice versa) for 10,000
times with a payload of 150 bytes. A federate merely reflects the events with
identical ID to itself. In other words, Fed A[i] will discard any events not gen-
erated by Fed B[i], and vice versa. In TSO mode, federates advance federate
time from 0 to 10,000 with timestep = 1 and lookahead = 1. To investigate
the efficiency for time synchronization among federates, we also examine the
execution time for the standard Time Advancement benchmarking federates
using both the MF and SF solutions.

Each federate can also be set as DDM enabled and Non-DDM. An ex-
clusive ID is shared between Fed A[i] and Fed B[i]. In DDM-enabled mode,
each pair of federates has an associated region, which is pair-specific and non-
overlapping to any other region. As previously mentioned, the StaticGrid-
Partitioned strategy partitions individual spaces into a grid in which each
grid cell is assigned a separate reliable and best-effort channel [63]. The size

Alternative Solutions for Cloning in HLA-Based Distributed Simulation 123

of the grid is specified by a parameter NumPartitionsPerDimension (NPPD).
To optimize the utilization of communication channels, we split the full di-
mension [MIN EXTENT , MAX EXTENT) evenly into the same number
of segments as NPPD, which is set to the number of scenarios (federate pairs).
The middle point of each segment will be defined as one region. We set the
region associated to the kth pair of federates as

(2k − 1)(MAX EXTENT −MIN EXTENT)

2×NPPD
+MIN EXTENT,

(2k − 1)(MAX EXTENT −MIN EXTENT)

2×NPPD
+MIN EXTENT + 1)

In these experiments, all federates subscribe and publish the same object
class, and associate the designated region to their subscription and updates.

7.4.2 Benchmark Results and Analysis

Some abbreviated notations are used to denote the properties of the federates,
as listed in Table 7.2. In order to investigate the factors that impact the per-
formance of alternative solutions, several series of experiments are designed as
indexed in Table 7.3. The notations are the same as in the previous discussion.
Combining the time features and solutions together, we perform eight series
of experiments in total. In each series of experiments, the number of federates
increases by one pair each time from five pairs to fourteen pairs.

TABLE 7.2
Notations of the Federate Attributes

Notations Meaning
TSO Federates are Time Regulating /Time Constrained and use

Time Stamp Order update and reflection

RO Federates use Receive Order update and reflection only

SYN Standard DMSO time advancement benchmarking
application

MF Experiment in Multiple-Federation mode

DSF Experiment in Single-Federation mode using DDM

NDSF Experiment in Single-Federation mode without using DDM

124 Large-Scale Simulation: Models, Algorithms, and Applications

TABLE 7.3
Index of the Experiments

TSO RO SYN
NDSF Experiment 1: Experiment 4:

TSO-NDSF RO-NDSF
Experiment 7:SYN-SF

DSF Experiment 2: Experiment 5:
TSO-DSF RO-DSF

MF Experiment 3: Experiment 6: Experiment 8:
TSO-MF RO-MF SYN-MF

0

500

1000

1500

2000

2500

3000

5 6 7 8 9 10 11 12 13 14

Federate Pairs

E
x
e

c
u

ti
o

n
 T

im
e

(S
e

c
o

n
d

s
)

TSO-NDSF
TSO-DSF
TSO-MF

FIGURE 7.7
Execution time comparison between different cloning solutions using TSO
federates.

7.4.3 Comparing Alternative Cloning Solutions Using TSO
Federates

Figure 7.7 reports the execution time of TSO federates using the three different
solutions. The execution time of the TSO-NDSF scenarios has an obvious
increase when the number of federate pairs reaches seven. When no DDM
services are used, the execution time increases sharply with more and more
TSO federates joining the same federation. The topmost value (2,800 seconds,
14 pairs) is over 5 times the start value (∼500 seconds, 5 pairs). On the
contrary, the execution times of both the TSO-DSF and TSO-MF scenarios
stay at a relatively stable level, about 500 seconds, in spite of the increase in
the number of participating federates.

In Single-Federation mode, all federates interact with each other through

Alternative Solutions for Cloning in HLA-Based Distributed Simulation 125

0

10

20

30

40

50

60

70

80

90

100

5 6 7 8 9 10 11 12 13 14

Federate Pairs

C
P

U
 U

ti
li
z
a

ti
o

n
 %

TSO-NDSF
TSO-DSF
TSO-MF

FIGURE 7.8
CPU utilization comparison between different cloning solutions using TSO
federates.

the same RTI, the computation load of LBTS increases with the number
of federates. In the TSO-NDSF scenarios, of more importance is that each
federate not only receives useful events from its partner federate but also has to
filter out some useless messages from all other federates as they belong to other
scenarios. The overall communication traffic through the RTI is proportional

to C2
n = n(n−1)

2 , where n is the number of federates. Only 1
(n−1) of the total

incoming events make sense to one particular federate pair. Other unnecessary
communication and reflection increase the overhead in the RTI dramatically.
The DDM services strictly confine the interaction to the pair of federates
with a common region. This optimization results in the significantly improved
performance as indicated in the curve “TSO-DSF.”

In Multiple-Federation mode, a federate interacts with its partner through
an exclusive RTI. Also, the LBTS computations will take place between a
pair of federates independently. These positive factors lead to the much better
performance compared with the TSO-NDSF scenarios.

CPU utilization percentage reports the processor activity in the computer.
This counter sums the average non-idle time of all processors during the sam-
ple interval and divides it by the number of processors. The CPU utilization
results in Figure 7.8 indicate that the TSO-NDSF scenarios consume much
more system resource than the other two solutions.However, the TSO-DSF
and TSO-MF scenarios also have an uptrend in terms of CPU utilization. The
CPU utilization of the TSO-NDSF scenarios reaches about 90% after the num-
ber of federate pairs exceeds seven. These experiments are a combination of

126 Large-Scale Simulation: Models, Algorithms, and Applications

complex executions, including LBTS and TSO events receiving and reflecting.
We attempt to isolate these two factors in the following experiments.

7.4.4 Comparing Alternative Cloning Solutions Using RO
Federates

0

200

400

600

800

1000

1200

1400

5 6 7 8 9 10 11 12 13 14
Federate Pairs

E
x

e
c

u
ti
o

n
 T

im
e

 (
S

e
c

o
n

d

RO-NDSF

RO-DSF
RO-MF

FIGURE 7.9
Execution time comparison between different cloning solutions using RO fed-
erates.

0

10

20

30

40

50

60

70

80

90

100

5 6 7 8 9 10 11 12 13 14
Federate Pairs

R
a

te
 (

T
im

e
s
/S

e
c
o

n
d

)

RO-NDSF
RO-DSF
RO-MF

FIGURE 7.10
CPU utilization comparison between different cloning solutions using RO fed-
erates.

Alternative Solutions for Cloning in HLA-Based Distributed Simulation 127

In order to further investigate the computational Complexity in these solu-
tions, we disable the time feature of federates and reapply the three solutions
to them. Execution time and CPU utilization are presented in Figure 7.9 and
Figure 7.10, respectively.

Similar to the previous experiments, the execution time of RO-NDSF sce-
narios increases rapidly with the number of federates. The peak execution
time (∼1200 seconds, 14 pairs) is about six times the start value (∼200 sec-
onds, 5 pairs). The execution time of RO-NDSF scenarios always has a greater
value than that of RO-DSF and RO-MF scenarios. The RO-DSF and RO-MF
scenarios have execution times that fluctuate slightly from 100 seconds to 200
seconds. From the discussion of the TSO scenarios, the extra communication
and reflection lower the performance of RO-NDSF solutions significantly.

Figure 7.10 also shows that the RO-NDSF scenarios consume much more
system resource than the other two solutions. The CPU utilization of the RO-
NDSF scenarios jumps to 100% after the number of federate pairs exceeds
six. The RO-DSF and RO-MF scenarios have a very low CPU utilization (less
than 10%) until there are more than twelve pairs of federates.

7.4.5 Comparing Alternative Cloning Solutions Using Time
Advancement Benchmark Federates

In order to have a better understanding of how another factor, the LBTS cal-
culation, impacts the performance, we reexamine the SF and MF solutions by
introducing the standard Time Advancement Benchmark Federates [82]. Ex-
ecution time and CPU utilizations of both solutions are shown in Figure 7.11
and Figure 7.12, respectively. As DDM does not intervene in the synchroniza-
tion among federates, this series of benchmarks ignores the DDM mechanism.

We can conclude that the LBTS calculation does not make a significant
difference in the execution time of either the MF or SF scenarios with an in-
crease in the number of federates. The RO-NDSF and TSO-NDSF scenarios
show a fast increasing execution time. This means that the reduction in in-
teraction is the key to the optimization of the overall system performance in
the simulation as long as the number of federates stays in a reasonable range.

7.5 Summary

This chapter proposed alternative solutions for distributed simulation cloning,
namely the Single-Federation solution (with and without DDM) and the
Multiple-Federation solution. The alternative candidate solutions were com-
pared in terms of robustness, Complexity, and efficiency.

In the context of the Multiple-Federation (MF) solution, multiple federa-
tions operate in parallel to explore alternative scenarios. Thus, the MF solu-

128 Large-Scale Simulation: Models, Algorithms, and Applications

499.5

500

500.5

501

501.5

502

502.5

503

5 6 7 8 9 10 11 12 13 14
Federate Pairs

E
x
e

c
u

ti
o

n
 t
im

e

(S
e

c
o

n
d

s
)

SYN-MF
SYN-SF

FIGURE 7.11
Execution time comparison between cloning solutions using time advancement
federates.

0

10

20

30

40

50

60

70

80

90

100

5 6 7 8 9 10 11 12 13 14

Federate Pairs

C
P

U
 u

til
iz

a
tio

n
 R

a
te

 (
%

SYN-MF

SYN-SF

FIGURE 7.12
CPU utilization comparison between cloning solutions using time advance-
ment federates.

tion surpasses in robustness and federate synchronization. If a failure occurs
in a scenario, the failure will not affect the remaining scenarios as they are
in different federations. However, scenario management becomes more com-
plex. In particular, the requirement of dynamic clone sharing by incremental
cloning is extremely difficult in the MF solution as the shared clones need to

Alternative Solutions for Cloning in HLA-Based Distributed Simulation 129

operate in different federations. The Single-Federation solution (SF) thus has
an advantage in cloning control and clone sharing.

The benchmark results indicate that, in general, MF exhibits much better
performance than NDSF. The interaction among federates is the main factor
that impacts the execution speed. In the case where there is a high data
exchange, the performance can be improved dramatically by applying DDM
to NDSF. The calculation of LBTS makes no significant difference in either the
MF or SF solution. The results show that DSF performs as well as MF in terms
of efficiency. Considering the reduction in implementation Complexity and
convenience for scenario management, the Single-Federation solution applying
DDM (DSF) was chosen for cloning distributed simulations in this current
study.

This page intentionally left blankThis page intentionally left blank

8

Managing Scenarios

CONTENTS

8.1 Problem Statement . 131

8.2 Recursive Region Division Solution . 133

8.3 Point Region Solution . 137

8.4 Summary . 139

A federate spawns multiple clones to explore different new scenarios at Deci-
sion points; thus the overall distributed simulation comprises multiple concur-
rent scenarios.Data Distribution Management (DDM) provides a method to
partition concurrent scenarios in an HLA-based distributed simulation. This
chapter details our design of two DDM-based solutions and analyzes their
advantages and drawbacks.

8.1 Problem Statement

As multiple dynamic scenarios operate in a common overall distributed simu-
lation, a mechanism is necessary to identify the scenarios and partition them,
so as to manage them in a precise and efficient manner. Moreover, to mini-
mize the overhead incurred by creating more and more scenarios, we need to
reduce bandwidth requirements by only transmitting interactions or attribute
updates where necessary. As a shared clone clone may operate in different
scenarios dynamically, as described in Chapter 6, there needs to be a dynamic
event “routing” and “filtering” mechanism to support cloning. To provide
reusability of existing simulations, it is also necessary to hide the complexity
of the above operations. In an HLA-based simulation, this means we need to
maintain the standard HLA interface to the user’s programs while providing
extended functionalities.

This chapter extends the idea of using the Data Distribution Manage-
ment (DDM) mechanism to partition concurrent scenarios in a distributed
simulation. In the benchmark experiments on DDM and Non-DDM cloning
solutions in Chapter 7, we compared the performance of these two approaches
in terms of execution time using both Time Stamp Order and Receive Order

131

132 Large-Scale Simulation: Models, Algorithms, and Applications

cases. The performance of the DDM enabled approach significantly exceeds
the Non-DDM one. This superiority is obvious in a large-scale distributed
simulation.

Two alternative solutions are introduced in this chapter for managing sce-
narios and identifying each clone and scenario. A recursive region division
solution and a point region solution are discussed and compared. The for-
mer solution initializes each original federate with a region occupying the full
dimension of the routing space. During the cloning procedure, the new clones
inherit split sub-regions from their parent. The latter solution specifies a point
region for each original federate, and a new clone is given an additional point
region on birth. Dynamic region combining is used for shared clones shared
clones. Our potential solutions for managing scenarios aim to provide the stan-
dard interface of Object Management (OM) or DDM services while employing
additional DDM methods in the underlying middleware. Thus, it is possible
to hide the DDM solution implementation behind the normal OM or DDM
services interface in a transparent way. The solutions to be discussed focus on
addressing the manipulation of regions and the mapping between each region
and the scenarios.

Simulation

Time

0

T1

T2

T3

Fed B[0] performs

active cloning

Fed C[0] performs

passive cloning and

results in creating

clone Fed C [1]

Fed C[1] performs

active cloning

S
[1

]

S
[0

]

S
[1]

S
[2

]

S
[0

]

Fed

A[0]

Fed

B[0]

Fed

C[0]

Fed

A[0]

Fed

B[0]

Fed

B[1]

Fed

A[0]

Fed

B[0]

Fed

C[0]

Fed

B[1]

Fed

C[1]

Fed

C[2]

Fed

C[0]

Fed

A[0]

Fed

B[0]

Fed

B[1]

Fed

C[0]

Fed

C[1]

FIGURE 8.1
Formation of a scenario tree.

As discussed in chapter 6, the active cloning of federates incurs the spawn-
ing of new scenarios in the simulation. The concurrent scenarios can be repre-
sented as a tree developing along the simulation time axis. Figure 8.1, which
is a simplified version of Figure 3.4, illustrates how a scenario tree is formed.
The issues to be considered in comparing the two alternative solutions include
coding scenarios, region specification for each scenario, and implementing the
middleware approach. To illustrate the details of each solution, the example

Managing Scenarios 133

in Figure 8.2 is also used in the following sections for studying the coding
scheme. Seven scenarios (labeled “a” to “g”) are present in the overall simu-
lation following two active clonings at times T1 and T2, respectively.

a

Simulation

Time

T1

T2

b c d e f g

0

FIGURE 8.2
An example of a scenario tree.

In order to minimize the computation involved in DDM, we use only one
single routing space having a single dimension for cloning. To ease discus-
sion, we assume the federates being studied do not use DDM services in their
models. However, federates that already use DDM services can also easily ap-
ply the solutions without changing the federate code. This can be achieved
by associating another “cloning” dimension in the middleware to the existing
DDM-enabled interactions and attribute updates when necessary.

The underlying middleware subscribes and publishes with the same region
for a given clone. Each scenario is associated with an exclusive region, and
there is no overlap with any other scenario’s region at any point during ex-
ecution. Clones within the same scenario utilize a common scenario-specific
region extent1 unless they are shared clones. A shared clone has a merged
region that exactly covers the scenario-specific extents of all the scenarios in
which it operates. DDM also aids interactive control of the scenarios at run-
time; external commands can be easily routed to the clones within a given
scenario by associating the proper region to them. The approach will lessen
the work of recognition and processing at the clone side.

1In this book, extent is used to mean the interval [Lower Bound, Upper Bound] that
defines the region.

134 Large-Scale Simulation: Models, Algorithms, and Applications

8.2 Recursive Region Division Solution

The basic idea of the recursive region division solution is to divide the full
dimension (i.e., [MIN EXTENT, MAX EXTENT]) from top to bottom. A
federation is initialized with all federates having an associated region with
extent [MIN EXTENT, MAX EXTENT]; thereby the initial scenario has a
full dimension region. Once new scenarios are created, each scenario inherits
a sub-region from its “parent” scenario under a region division algorithm.
Thus the active cloning federate should divide its original region for the child
clones, while its partner may still keep the region unchanged. In the example
shown in Figure 8.1, immediately after time T1, Fed B[0] ’s original region
is split into two parts; Fed B[0] and Fed B[1] modify their region with the
first and the second part, respectively. The new regions indicate that Fed B[0]
and Fed B[1] belong to scenario S[0] and S[1], respectively; however, Fed C[0]
will remain associated with the region of both scenarios S[0] and S[1]. Thus
the events from both Fed B[0] and Fed B[1] will be automatically routed
to Fed C[0] without any modification to its region. This solution requires
minimal work for shared clones. Region division keeps taking place along the
development of the scenario tree.

The scenario tree can be reconstructed as a binary tree to ease coding.
When n new scenarios are developed from one scenario branch, the following
rule will be applied:

Given that 2k−1 < n 6 2k, n is rewritten as n = 2k−1 + m,m 6 2k−1.
Then the branch extends k levels downward, the leftmost m nodes at level
k − 1 will always be expanded one further level.

predecessor scenarioExample:

n = 5 = 2̂ 2 + 1
k =2+1=3 , m = 1

new levels = 3

leftmost
node at this

level

FIGURE 8.3
Development of binary scenario tree.

Following this rule, the scenario tree in Figure 8.2 is converted to a binary
tree. Suppose that five new scenarios are created from the predecessor scenario
node at time T2 ; the development of this branch is as indicated in Figure 8.3.
The leaf nodes represent the newborn scenarios including the original one.

As shown in Figure 8.4(A), we code a node’s left branch as “0” and the

Managing Scenarios 135

(A) Coding the Binary

Scenario tree

(B) Coding the Region extent and specifying

region for each scenario

00000 00001 0001 0010 0011 01 1

FIGURE 8.4
Binary scenario tree and scenario region code.

right branch as “1” accordingly. Based on the binary tree, we link the branch
codes together along the path from the root to the given leaf node; thus the
exclusive code of each scenario is obtained. For example, scenario e is identified
as “0011”. The position of the scenario can be easily traced according to its
identity.

A shared clone needs to distinguish events from different clones that are
spawned by the same federate. We may also need to control the cloning pro-
cedure or update the system state of one particular clone. Therefore it is nec-
essary to identify each clone accurately. A clone always joins one or multiple
scenarios; naturally the clone identity needs to cover this information. A direct
scheme is to combine scenario codes and the federate name of the original an-
cestor to this clone, with format “<Scenario ID>&&<Federate Name>”. For
example, a clone joins scenario e and its ancestor federate is named “fab1”;
then this clone may be coded as “0011&&fab1”. In the case of shared clones,
a delimiter symbol is placed between scenarios; if necessary, a wildcard is
also introduced to reduce the identity length. The format is “<Scenario ID
1>:<Scenario ID 2>: ... :<Scenario ID N>&&<Federate Name>”, in which
“:” is a delimiter and “*” is a wildcard. For example, if another clone of an-
cestor “fab2” is shared among scenarios a, b, and g, this clone is coded as
“0000*:1&&fab2”.

Figure 8.4(B) gives the region-coding scheme. The relationship between
the position of a scenario node and its specific region is illustrated explicitly.
The full dimension is segmented more and more densely with the increase in
level depth.

At the kth level (mapping the nodes in the binary tree with depth equal
to k), the full dimension is evenly partitioned into n = 2k segments. Each

136 Large-Scale Simulation: Models, Algorithms, and Applications

segment is given a binary code according to its index, with the code length
equal to the level depth. The segment code is length sensitive; for example, the
code “011” at level 3 differs from the code “0011” at level 4. For the purpose of
illustration, assume that MIN EXTENT = 0x00000000 and MAX EXTENT
= 0xFFFFFFFF; then the following simple formula gives the calculation of
the extent of the ith segment at level k :

LowerBound = i× 232−k

UpperBound = (i+ 1)× 232−k − 1
(8.1)

The code of each scenario coincides perfectly with the segment extent . The
extent of the scenario-specific region can be directly obtained from the scenario
code. First we assign the length of the scenario code to k ; second, we calculate
i= atol(scenario code); then the extent of the region is available immediately
from Equation (8.1). For example, the code of scenario e is “0011”; then we
have k = strlen(“0011”) = 4 and i = atol(“0011”) = 3:

Lower Bound = 3× 232−4

Upper Bound = (3 + 1)× 232−4 − 1

The region extent of scenario e is [0x30000000, 0x3FFFFFFF]. The one-
to-one map between a scenario code and the region extent is constant for
any simulation. This feature implies that we do not have to record the map
between a scenario ID and its specific region extent. Using the recursive region
division solution avoids the need for a searching procedure.

The full dimension [MIN EXTENT, MAX EXTENT] contains 232 unique
extents at most. Thereby, 232 concurrent scenarios are allowed when making
full use of the dimension. Such a large number is able to meet any practical
requirement for classifying scenarios. However, the binary division algorithm
may incur problems in some extreme situations. Let us look at a special exam-
ple in which on active cloning only the leftmost branch in the binary scenario
tree splits into multiple new scenarios. Thus the region extent of the leftmost
scenario will shrink rapidly in an exponential way, much faster than other
scenarios. It can be seen that region allocation is densely concentrated at the
left end of the dimension, whereas only a few scenarios occupy the remainder
of the dimension. As this continues, when the depth of the binary tree reaches
32, one scenario’s region extent becomes a point and child scenarios are not
able to inherit extents any more. This potential limitation exists even if this
is unlikely to occur.

Once the extent is exhausted in the single clone dimension, one possi-
ble solution is to redistribute the extents of the full dimension. Undoubtedly
the redistribution incurs extra complexity and it damages the natural har-
mony of the one-to-one map between scenario identity and its region extent.
Alternatively we can specify a multidimensional routing space for cloning be-
forehand. A clone region is created with these dimensions, and the recursive
division algorithm is initially applied to the first dimension. When the extent

Managing Scenarios 137

is exhausted in this dimension, the subsequent dimensions are still available
for extent allocation using the same recursive division algorithm. This ap-
proach is able to keep the coding scheme intact. As long as the number of
clone dimensions is set large enough, it should meet any request in practice.

8.3 Point Region Solution

An alternative solution, namely the point region solution, is proposed to dis-
tribute the extents of the dimension as evenly as possible in a bottom-up man-
ner. A point region has an extent defined as [Lower Bound, Lower Bound+1).
As the name implies, the point region is a single element used in associating a
region with a scenario. The initial federates are assigned a start point region.
Instead of inheriting any region from their predecessor, the new scenarios get
different point regions from the dimension. A shared clone has to combine its
original region with the new ones associated with additional scenarios.

Thus, scenarios can be coded based on the scenario tree. Figure 8.5 illus-
trates a coded scenario tree based on the example given in Figure 8.2. In this
solution, on an active cloning, no matter how many new scenarios are cre-
ated from an existing scenario, the scenario tree extends only one level down
with all the new scenarios (and the existing one). From left to right, sibling
branches of any scenario are labeled with “0” to “n”. For the scenarios that
remain unsplit, in the scenario tree, the corresponding nodes still extend one
level down with one single child to keep consistency in representing current
scenarios and the cloning history along the simulation time axis. By simply
linking codes starting from the root, the identity of a scenario is obtained.
To ease representing and resolving the scenario identity, we can record the
label of each branch in hex format, where each byte holds a sibling’s code;
thus scenario e’s identity is written as “0004”. The clone identity follows the
format defined in the previous recursive division solution. Given the same
examples as in Section 8.2, we can code the descendant clone of original fed-
erate “fab1” that joins scenario e as “0004&&fab1”. As for another clone with
ancestor “fab2”, which is shared by scenarios a, b, and g, we can code it as
“0000:0001:0200&&fab2”. This shared clone has a region that is the union of
region extents associated with scenarios a, b, and g.

To optimize the usage of Communication channels provided by DDM
in RTI-NG, the single “cloning” dimension is evenly divided into multi-
ple segments according to the NumPartitionsPerDimension (NPPD) in the
“RTI.rid” file [1]. Each segment will contain an identical number of point
regions. To ease discussion, here we still assume that MIN EXTENT =
0x00000000 and MAX EXTENT = 0xFFFFFFFF. The following matrix de-
scribes the distribution of all available point regions with the number of
rows equal to NPPD and the number of columns equal to (MAX EXTENT-

138 Large-Scale Simulation: Models, Algorithms, and Applications

0 1

1 3 0

a

Simulation

Time

N
U

L
L

T1

T2

2

00 2 4

b c d e f g

0

0000 0001 0002 0003 0004 0100 0200

00 01 02

FIGURE 8.5
Coding the scenario tree.

MIN EXTENT+1)/NPPD. It is obvious that the points in one row belong to
the same segment in the dimension.

Rgn =









R0,0 R0,1 ... R0,(232/NPPD−1)

R1,0 ... :
: :

R(NPPD−1),0 ... R(NPPD−1),(232/NPPD−1)









where Ri,j = (232/NPPD)× i+ j

(8.2)

In total, there can be up to 232 available point regions in which the j th
point region in the ith row is written as [R0,0, R0,0+1). The initial scenario
starts with a region [Ri,j , Ri,j+1). A new scenario will always be assigned
the first unused point region in the next row. Once the regions in the same
column are fully used, the allocation will start from the beginning of the next
column. Figure 8.6 illustrates this region specifying flow as indicated by the
arrowed line. The scenario ID maps to its specified region in a one-to-one way.
The scenario tree records the scenario ID and the region in the node for that
scenario, and can be used for resolving the region of one particular scenario
from its identity by searching the tree. The scenario ID is resolved to locate
the scenario node in the tree; this search is only performed along a given path
instead of making a full search of the scenario tree.

The point region solution has an added advantage in that it maximizes
the use of available communication channels. For each routing space, RTI-
NG will create reliable NPPD(NumberofDimension) and best-effort channels.
The channels are mapped to the dimension in a grid-like fashion. As we only
define one dimension, RTI provides exactly NPPD pairs of channels for the

Managing Scenarios 139

)1/2),(1(0),1(

0,1

)1/2,(01,00,0

32

32

...

::

:...

...

−−−

−

NPPDNPPDNPPD

NPPD

RR

R

RRR

FIGURE 8.6
Point region allocation flow.

“cloning” space in our solution. The point regions in the same row (see the
matrix in Equation (8.2)) occupy a common data channel. The point region
ensures that the interactions or updates with which it is associated use a
unique channel when possible and avoids the overhead of sending data through
multiple channels unnecessarily. However, this solution does not support a
direct conversion between the scenario ID and region; the scenario manager
module needs to record this map relationship. Furthermore, shared clones need
to modify their regions on the latest active cloning. This incurs extra effort
compared with the recursive region division solution.

8.4 Summary

To address the complexity of the overall cloning-enabled distributed simula-
tion due to increasing scenario spawning, we investigated an efficient and pre-
cise scheme to identify and represent scenarios. This chapter described and
compared two alterative scenario management algorithms, namely the recur-
sive region division solution and the point region solution. The two solutions
were designed to code scenarios as well as to manipulate region extents in
the “cloning” dimension. The former solution initializes each original federate
with a region occupying the full dimension of the routing space. During the
cloning procedure, the new clones inherit split sub-regions from their parent.
The latter solution specifies a point region for each original federate and a
new clone is given an additional point region on birth. Shared clones may
have changing region combinations when cloning occurs in the scenarios in
which they operate.

Table 8.1 gives a concise comparison between the recursive region division
solution and the point region solution. The recursive region division solution
has some advantages in that (1) it avoids the extra operation of manipulating
regions for shared clones which is required by the point region solution and

140 Large-Scale Simulation: Models, Algorithms, and Applications

TABLE 8.1
Comparison between the Recursive Region Division and the Point Region

Solutions
Features Recursive region division Point region

Characteristic
region

An extent A point

Region
Manipulation
for cloning

Top-down division, a
clone inherits region from

its parent

Bottom-up distribution,
each clone’s region is

independent
Number of In the worst case, 33

scenarios that times the number of 232

can be handled “cloning” dimensions

Support of
clone sharing

Clone sharing is
facilitated automatically

Extra region
manipulation is required

for shared clones

Map scenario
ID to region

Natural one-to-one map Specific map is needed

Use of
communication Not optimized Optimized

channels

(2) it provides a natural one-to-one mapping between scenario identity and
region extent. The coding mechanism harmonizes with the region specifica-
tion perfectly. However, the recursive region division solution has a limitation
in dealing with some extreme situations. The point region solution has ad-
vantages over the former one in that (1) it can meet the region allocation
requirements even in extreme situations; and (2) it optimizes the use of data
channels. The latter solution is therefore chosen and developed in designing
our cloning technology due to these superior features.

9

Algorithms for Distributed Simulation

Cloning

CONTENTS

9.1 Overview of Simulation Cloning Infrastructure . 141

9.2 Active Simulation Cloning . 144

9.3 Passive Simulation Cloning . 150

9.4 Mapping Entities . 151

9.5 Incremental Distributed Simulation Cloning . 154

9.5.1 Illustrating Incremental Distributed Simulation Cloning . 154

9.5.2 Managing Shared Clones . 155

9.6 Summary . 160

The cloning management mechanism is designed to ensure correct federate
replication, and its tasks include creating clones, manipulating states, and
coordinating the federation. This chapter first introduces the overall cloning
infrastructure, and details the algorithms for distributed simulation cloning,
including active cloning and passive cloning. Subsequently, this chapter dis-
cusses incremental cloning and the algorithms for managing shared clones.

9.1 Overview of Simulation Cloning Infrastructure

An RTI++ infrastructure enabling simulation cloning is built as the mid-
dleware1 between the simulation model and the real RTI. The infrastructure
contains several major modules that perform the necessary functionalities re-
lated to simulation cloning while presenting a standard RTI interface to the
simulation model (as shown in Figure 9.1).

Prior to using simulation cloning, the user can specify the conditions

1The physical federate can also be regarded as a component of the whole middleware
between the simulation model and the real RTI. In this discussion, we are only concerned
with the RTI++ library that directly interacts with the simulation model in the virtual
federate.

141

142 Large-Scale Simulation: Models, Algorithms, and Applications

and/or rules according to which the cloning should be triggered and the dif-
ferent candidate actions to be taken.

The Control Module monitors the states in which the user is interested
and evaluates the conditions for cloning the federate at a decision point. The
Cloning Manager module creates new clones for the request issued by the
Control Module, and it initiates the creation and update of the scenarios. The
Scenario Manager module creates and stores the scenario tree, from which
the identity and corresponding DDM region of each scenario can be fetched.
The Scenario Manager keeps the history of the overall cloning procedure. The
Region Manager module creates DDM regions and manages the regions. The
Region Manager services the Scenario Manager by answering enquiries and
providing the clone specific region. The Region Manager also deals with any
request for modifying a region. The Scenario Manager presents the region
to the middleware for partitioning event transmission. The RTI++ Object
Management services invoked by a federate are executed via the corresponding
DDM methods by associating the region obtained from the Scenario Manager.
Eventually it is the physical federate who calls the real RTI services and
conveys the callbacks to the Callback Processor in the RTI++ middleware
(see Chapter 3).

Customized Library

Scenario

Manager
DDM services

RTI++

Real RTI

Cloning

Manager

Region

Manager

C
a
ll

b
a
ck

U
p
d
a
teR

e
tu

rn

co
n
tr

o
l

R
e
tu

rn
 s

ce
n
a
ri
o

 I
D

 &
 R

e
g
io

n

C
o
n
tro

l

clo
n
in

g

Q
u
e
ry

ID
&

reg
io

n cre
a
te

 &

u
p
d
a
te

re
g
io

n

Q
u
e
ry

re
g
io

n

Create&

update scenario

R
e
tu

rn

re
g
io

n

Control

Module

Standard RTI Interface

Via Physical Federate

FIGURE 9.1
RTI++ and internal modules.

In the context of the middleware approach, the Cloning Manager provides
services directly to the Control Module that handles the decision point and
cloning trigger. It also interacts with the Scenario Manager (see Chapter 8)

Algorithms for Distributed Simulation Cloning 143

to update/fetch scenario information, such as region and scenario ID etc.
Once the condition for cloning is met, the cloning trigger invokes the Cloning
Manager and the latter performs cloning of the federate accordingly. External
stable storage is used to store RTI States of the federate. Figure 9.2 illustrates
the internal components inside the Cloning Manager, which is designed to

• Log and update the system state at the RTI level to stable storage.

• Replicate the virtual federate process at runtime according to the pa-
rameters given by the cloning trigger.

• Coordinate with other federates for the cloning operation.

• Recover system states to initialize the physical federates of all clones.

• Link the cloned virtual federates to the corresponding physical federates
and resume simulation execution.

Cloning Executor

Federation

Coordinator

Stable

Storage

Other

Federates

RTI States

Manipulator

Scenario/Region

Manager

Cloning

Manager RTI States

Trigger/Decision

Point/Control

Standand RTI interface
Control Module

Passive Cloning

Decision

Callback

Processor

FIGURE 9.2
Cloning Manager module.

The Cloning Executor works as the key component of the Cloning Manager
module. It answers the cloning request issued by the Control Module. Upon
cloning, it interacts with the Scenario Manager to update and retrieve scenario
and characteristic region information. The Cloning Executor makes replicas
of the simulation model. In addition, it initiates the same number of new
physical federate instances. The saved RTI States are loaded from the external
stable storage to initialize the physical federates. Once the state of each clone

144 Large-Scale Simulation: Models, Algorithms, and Applications

is initialized to the snapshot of the parent federate at the decision point,
the Cloning Executor resumes the whole simulation after applying the action
defined for the decision point to each clone. The Cloning Executor also handles
the in-transit events on cloning using the RTI federation save services, which
forces all in-transit events to be delivered to all receivers.

The RTI States Manipulator saves RTI states and replicates them when
needed. The RTI states include federation information, publication/subscript-
ion information, object registration information, time granted, etc. A new
clone needs to register object instances that represent the same entities known
to the simulation model in the parent federate. However, the RTI assigns dif-
ferent handles [72] to the “cloned” objects, which are unknown to the simu-
lation model. The RTI States Manipulator deals with this problem using an
entity mapping approach. The approach maintains the relationships among
original entities and “cloned” entities at the RTI level. All incoming events
will be mapped (processed) by the Callback Processor (see Chapter 3) prior
to conveying them to the simulation model.

During cloning of a federate, the Federation Coordinator should synchro-
nize other federates within the whole simulation execution, including the sib-
ling clones. After cloning is initiated, execution of the simulation model of a
federate (clone) will be paused, while the middleware keeps operating in co-
ordination with the cloning procedure. The coordinator is designed to ensure
that prior to continuing the simulation execution, every clone has finished ini-
tialization and all federates have updated their states for the current cloning
operation. Only when these conditions are met can the simulation be reacti-
vated and resumed.

9.2 Active Simulation Cloning

When a federate reaches a decision point, the Control Module evaluates the
states in which the user is interested. Once the cloning conditions are met, the
Cloning Manager will make clones immediately to explore alternative execu-
tions as predefined in the cloning triggers. Then an active simulation cloning
occurs. The partner federates may perform passive cloning or operate as shared
clones.

From the perspective of the federate (parent federate) making clones, the
process of an active simulation cloning can be described as follows (see Fig-
ure 9.3). In this process, the RTI services used by the middleware are directly
executed by the physical federate, remaining transparent to the simulation
model.

• Initiating cloning. The Cloning Executor calls cloningManager::createC-
lone (number of clones) to initiate the active cloning. The federate being

Algorithms for Distributed Simulation Cloning 145

Initiate Cloning

Manager

Notify other federates

of active cloning

enter into each clone's control

The federate making

active cloning

...

All other federates

Invoke :createClone(no.

of new clones),

enter cloning mode

Processing callbacks

Wait for tick() return

from real RTI

Synchronize

Synchronize/Enter

remote cloning mode

Partner federate?

Identify the source of

the shared clone

Y

N

Synchronize/Leave

cloning mode

Return tick() to the

Simulation model

Each new sibling cloneThe parent federate

Reinitialize RTI++ and

join existing federation

Associate point region

to the joined scenario

Replicate RTI entities/

system states

Resolve information

about the new clone

Wait for all new clones

to accomplish

initialization

Resolve new clones’

information

Update Mapping

tables

Wait for all new clones

to accomplish state

replication

Report to the original

federate

Pass information of

new clones to other

federates

Synchronize/Leave

cloning mode

Synchronize/Leave

cloning mode

Return control to the

Simulation model

Return control to the

Cloned Simulation model

Synchronize

Region Manager: Merge

new scenarios’ point

regions into my region

Set myself as a shared

clone

Scenario Manager:

Update scenario tree

Scenario Manager:

Update scenario tree

Make given number

of clones of current

federate

Handle in-transit

events

Synchronize

FIGURE 9.3
Active simulation cloning.

replicated enters Cloning mode, in which control is with the RTI++ mid-
dleware.

• Synchronizing federation. The Federation Coordinator notifies and
synchronizes the remaining federates by requesting a federation save. The

146 Large-Scale Simulation: Models, Algorithms, and Applications

federation save label is coded to contain the following information: (1)
whether the current simulation cloning is an active one or passive one, (2)
the number of new clones to be created, (3) the handle of the federate making
clones, and (4) the scenario within which cloning occurs (cloning scenario).
The remaining federates retrieve this label via their callbacks. When they
have identified that this synchronization is for the purpose of cloning, their
Callback Processors extract the coded information for reference. When the
whole federation has completed synchronization, all federates enter cloning
mode.

• Handling in-transit events. The current design utilizes the federa-
tion save services to ensure all in-transit events reach their destinations prior
to cloning. The Callback Processor will present those events to the virtual
federate when cloning is accomplished. Those events with timestamp greater
than the current federate time must be passed to the simulation model with
the advancing of simulation time.

• Updating scenario tree. The Scenario Manager of every federate
updates its scenario tree (see Chapter 8) based on the cloning scenario ID
and clone number. The scenario updating algorithm ensures all federates
maintain identical scenario trees. Those federates remaining intact check
whether they operate in the existing scenario as a partner federate or not. A
partner federate will work as a shared clone in the current and new scenarios;
the region manager needs to merge the new scenarios’ point region extents
into its existing region and notify the RTI about this region update. The
updated region can be written as region(Scen[1])∪ . . .∪region(Scen[n]), in
which region(Scen[i]) represents the characteristic point region associated
with the ith scenario in which the shared clone will execute. Non-partner
federates directly block until the end of the current cloning.

• Making clones. The Cloning Executor makes the specified number of
replicas of the simulation model and initiates an individual physical feder-
ate for each replica. Within each replica, the Cloning Executor causes the
virtual federate to link to the corresponding physical federate, which joins
the existing federation. Thereafter, a clone of the parent federate comes into
being, which leads to the construction of a new scenario.

• Replicating system states. A clone’s physical federate must be ini-
tialized with the stored system states from the parent federate. The system
states to be replicated include (1) object classes/interactions that have been
published/subscribed, (2) registered object instances, and (3) federate time.
The state replication of the new clones is detailed later. The parent federate
and partner federates block for the new clones to complete state replication.
Each clone reports to the parent federate when fully initialized with its in-
herited system states. All clones’ identities will be collected and forwarded
to the partner federates by the parent federate.

Algorithms for Distributed Simulation Cloning 147

• Leaving cloning mode. After all clones announce that they are ready,
the Federation Coordinator of the parent federate initiates another federa-
tion synchronization to declare the termination of the cloning process. The
synchronization label codes the relationship between each clone’s federate
handle and the scenario in which it will operate. The partner federates’
Callback Processors can decode the mapping relationships and use them
to distinguish the source of incoming events in the future. As soon as syn-
chronization is achieved, the parent federate, its clones, and the remaining
federates obtain control from the middleware.

After leaving cloning mode, the paused simulation execution resumes with
the new scenarios starting operation. The new clones and the parent federate
each execute in a single scenario, while the partner federates of the parent
initially become shared clones that execute in the original scenario and the
new ones. All federates work in normal mode until the next occurrence of
simulation cloning.

Figure 9.4 depicts the state replication procedure of a new clone. This
procedure involves the parent federate, the new clones, and the partner feder-
ates, but does not affect the remaining federates. Prior to creating clones, the
parent federate sends a “system” interaction (namely, “cloningNotification,”
defined for cloning) to the partner federates. This interaction encapsulates
the published object/interaction classes and the list of registered objects of
the parent federate. The receiver’s Callback Processor can simply take the
intersection of this remote object list and the original object instances dis-
covered previously, and then it can predict what image object instances (see
Section 6.3.1) it should discover from each new clone. Hence, information con-
tained in this interaction provides criteria for the partner federate to detect
the state replication status of each clone. Furthermore, the receiver’s Callback
Processor will refer to this remote publication and registration information in
processing events from the parent federate’s sibling clones.

A new clone’s state replication can be broken down into three phases.
When a clone is created, first it enables time constrained and/or time reg-
ulating, depending on the parent federate’s settings. The federate time and
lookahead recorded on cloning should be specified accordingly.

Second, the clone’s Cloning Manager associates a scenario-specific point
region to the clone, which is obtained from the scenario tree according to the
scenario in which the clone will execute. The States Manipulator instructs the
physical federate to subscribe/publish the same object/interaction classes as
the parent federate has subscribed/published, but with the newly retrieved re-
gion. The partner federates (shared clones) merge the designated point regions
of the new scenarios into their current region.

Third, the new clone needs to register image objects to the objects
owned by the parent federate. The physical federate invokes the RTI method
RTI::registerObjectClassInstanceWithRegion(objectClass, Name, . . .) [72] and
conveys the returned object handle to the middleware, and the latter maps
the original objects to the image ones. The specified “name” of an image

148 Large-Scale Simulation: Models, Algorithms, and Applications

...

Each new sibling cloneThe parent federate

Associate scenario-

specific point region

Subscribe to stored

Object/Interaction

classes with region

Resolve information

about the new clone

(fedID, ScenID)

Wait for all new clones

to accomplish

initialization

Resolve identities of

new clones

Update Mapping

tables

Wait for all new clones

to accomplish state

replication

Pass information of

new clones to other

federates

Partner clone

Report to the original

federate

Publish stored Object /

Interaction classes

Enable time regulating

if necessary

Enable time

constrained with stored

federate time and

lookahead if necessary

Re-register stored

object instances

Send publication/

registration

information to related

federates

Resolve parent

clones’ publication/

registration

information

Discover and identify

image objects

...

...Finish states

replication

FIGURE 9.4
Replicating states for new clones.

object follows the format “<federate handle>&&<original object instance
handle>”. The middleware of other partner federates that are subscribers
will discover these image objects (their regions overlap with the clone’s region)

Algorithms for Distributed Simulation Cloning 149

Shared

clones

New

Clone

Parent

federate

2.Initialization
ready report

1.Finish state
replication

3.Notification of

clones’ information

Condition to

 proceed

FIGURE 9.5
Coordinating federates in state replication.

and can map them to the original ones from their names. The mapping rela-
tionship (recorded in Mapping Tables) will be used by the Callback Processors
to process events from different scenarios. The Callback Processor blocks un-
til all image objects have been discovered, and hides these object discoveries
from the simulation model to keep correct HLA semantics. Otherwise, the
simulation model will “rediscover” object instances it has already discovered
before cloning. On the other hand, the new clones may also detect objects
registered by the partner federates before cloning (due to the overlapped re-
gion). As the cloned simulation model has “already” discovered those objects,
these object discoveries should also be hidden to avoid repeated discovery. The
parent federate waits for new clones to be created and initialized. As soon as
each clone completes initialization, it reports to the parent federate with a
“cloningReady” message containing its federate handle and scenario ID. This
design puts constraints (see Figure 9.5) on the parent federate and partner
federates before leaving cloning mode. Only when all clones finish replicat-
ing states can the whole federation resume normal execution. Thus the state
consistency of the overall simulation can be achieved.

Let n denote the number of new scenarios to be explored at a decision point
and r the number of RTI object instances to be re-registered. The computa-
tional complexity of the cloning process for an individual clone is O(r). As the
new sibling clones execute on the same processor as the parent federate, the
overall computational complexity of the active cloning algorithm is O(n× r).
This does not include the cost of communication and synchronization with
other federates, which will depend on the underlying RTI implementation.

150 Large-Scale Simulation: Models, Algorithms, and Applications

The overall performance of the cloning mechanism is analyzed experimentally
in Chapter 10.

9.3 Passive Simulation Cloning

The partner federates of the federate making active cloning may remain intact
and become shared clones in related scenarios, given that their system states
are not affected by the cloning immediately. Incoming events of a shared clone
are checked by the Callback Processor. The result of checking an event decides
whether the shared clone remains shared or requires passive cloning. The event
checking algorithm determines which events and how these events should be
conveyed to the simulation model as well as when the passive cloning should
be triggered.

As mentioned previously, a shared clone performs passive cloning to handle
different events from existing scenarios rather than to explore new scenarios
on its own initiative. The passive cloning does not cause creation of new
scenarios, and this is different from active cloning. A passive cloning procedure
is illustrated in Figure 9.6 from the shared clone’s point of view, and can be
described as follows:

• Initiating passive cloning. The Cloning Executor calls cloningMan-
ager ::splitClone to initiate the passive cloning, and the shared clone enters
cloning mode. The in-transit events are handled in the same way as for
active cloning.

• Synchronizing federation. The Federation Coordinator notifies and
synchronizes with the remaining federates by requesting a federation save.
These federates retrieve the federation save tag and identify the current
passive cloning from the extracted information. When the whole federation
has completed synchronization, all federates enter cloning mode.

• Creating clones and updating region. The Cloning Executor cre-
ates new clones, and the number of clones is set, depending on the num-
ber of scenarios in which the parent federate operates beforehand. The
original region of the parent federate (denoted as region(Scen[1]) ∪ . . . ∪
region(Scen[n]), in which region(Scen[i])) should be split into n individual
point regions. The Region Manager of the parent federate and each new clone
associates an exclusive point region to the clone according to the individual
scenario in which it may participate. The parent federate becomes a normal
clone and so do its new clones, while the remaining federates continue to
operate as normal or shared clones. Their existing scenarios are kept intact
without generating new ones.

• Replicating system states (see Figure 9.4). The mapping tables of

Algorithms for Distributed Simulation Cloning 151

partner federates will be updated by their Callback Processors according to
the re-registered image object instances.

• Leaving cloning and conveying buffered callbacks. After each
clone finishes initialization, another federation synchronization will be ini-
tiated to denote the ending of passive cloning. The Callback Processor of
the parent federate or each new clone needs to convey the buffered events
(received in pending-passive-cloning mode, see Section 9.5.2) to the Fed-
erate Ambassador. The events are inherited from the parent federate (for
new clones). Only those events with timestamp not greater than the current
federate time must be conveyed. Subsequently, each Callback Processor re-
turns control to the simulation model and the latter obtains control again.
Thereafter, the whole federation resumes normal execution.

Let n denote the number of independent scenarios from which a shared
federate (clone) has received different events and r the number of RTI object
instances to be re-registered. The computational complexity of the cloning
process for an individual clone isO(r). As the new sibling clones execute on the
same processor as the parent federate, the overall computational complexity
of the passive cloning algorithm is O(n× r). Again, this does not include the
cost of communication and synchronization with other federates.

9.4 Mapping Entities

A federate simulation model produces or consumes information in its object
model via RTI services using handles assigned by the RTI. For example, when
an object instance is registered, a federation-unique handle is returned to
identify that object instance. This handle is used to represent an entity known
to the model and other federates that have discovered this object instance.

A clone inherits identical states from the original federate, including the
RTI entities known to the simulation model. In order to keep the state con-
sistent and federate code transparent, our cloning approach needs to ensure
that the clones of a federate use the same reference to the original entities at
the RTI level as before cloning. The approach should correctly manage the
events associated with these entities within the overall federation; for example,
a shared clone may receive updates of different object instances even though
they refer to the same object in the simulation model (see Figure 9.7).

The consistency can be achieved using a mapping approach in the mid-
dleware. The middleware maps the original handles with the image object
handles to ensure user transparency and consistency. For one original object
instance referred to by the simulation models of all clones, there can be differ-
ent image object instances accessed by the physical federates. The middleware
keeps transparency of object instances in the object model by translating the

152 Large-Scale Simulation: Models, Algorithms, and Applications

Initiate Cloning

Manager

Notify other federates

of passive cloning

enter into each clone's control

The shared clone making
passive cloning

...

All other federates

Invoke :splitClone,

enter cloning mode

Processing callbacks

Wait for tick() return

from real RTI

Synchronize

Synchronize/Enter

remote cloning mode

Am I in related

scenarios?

Identify the source of

the shared clone

Y

N

Synchronize/Leave

cloning mode

Return tick() to the

Simulation model

Each new sibling clone

Shrink associated

region to the first point

The parent federate

Reinitialize RTI++ and

join existing federation

Associate point region

to the joined scenario

Replicate RTI entities/

system states

Resolve information

about the new clone

Wait for all new clones

to accomplish

initialization

Resolve new clones’

information

Update Mapping

tables

Wait for all new clones

to accomplish state

replication

Report to the original

federate

Pass information of

new clones to other

federates

Return tick() to the

Simulation model

Return tick() to the

Cloned simulation model

Synchronize

Synchronize/Leave

cloning mode

Present enqueued

events and callbacks

to the fedAmb

Present enqueued

events and callbacks

to the fedAmb

Synchronize/Leave

cloning mode

Clone current

federate according to

the scenarios in

which it is operating

Synchronize

Handle in-transit

events

FIGURE 9.6
Passive simulation cloning.

handle as appropriate. The same principle is applied in processing other en-
tities at the RTI level. An example of processing object instances is given in
Figure 9.7. The physical federate is omitted in the figure to ease discussion.

Algorithms for Distributed Simulation Cloning 153

Simulation

Model

Fed A[0]

Runtime Infrastructure

RTI++

Simulation

Model

RTI++

A machine

"6533"

created

register an

instance of M,

handle 6533

Local Object

discover an

instance of M,

handle 6533

Remote Object
Fed B[0]

Simulation

Model

Fed A[1]

Runtime Infrastructure

RTI++

Simulation

Model

RTI++

 machine

"6533"
Local Object

Remote Object

Fed B[0]

Simulation

Model

Fed A[0]

RTI++

Local Object

re-register an

image

instance of

"6533",

handle 8872

(A)

(B)

discover an

instance handle

8872, image of

"6533"

"6533":= "8872"

....

Simulation

Model

Fed A[1]

Runtime Infrastructure

RTI++

Simulation

Model

RTI++

change state

of "6533"
Local Object

Remote Object

Fed B[0]

Simulation

Model

Fed A[0]

RTI++

Local Object

update

8872

(C)

reflect update of

image instance

8872 and 6533,

images of original

instance "6533"

"6533":= "8872"

....

change state

of "6533"

reflect updates of

"6533"

update

6533

Execution Reference

FIGURE 9.7
Mapping RTI entities.

The overall simulation starts with a federation formed by a pair of feder-
ates (Fed A[0] and B[0]). Assume that Fed A[0] publishes object class “ma-
chine” and Fed B[0] subscribes to it. As shown in Figure 9.7(A), when Fed
A[0]registers an object instance of “machine” with object handle 6533 via its
RTI++, its simulation model recognizes that a local machine object “6533” is

154 Large-Scale Simulation: Models, Algorithms, and Applications

created. Fed B[0] detects the object via its RTI++ and its simulation model
also knows about the creation of this remote machine.

As illustrated in Figure 9.7(B), Fed A[1] is created as a clone of Fed A[0]
at some point, and Fed B[0] is shared by Fed A[0] and A[1]. Fed A[1] re-
registers an image object of class “machine” with the original object instance
6533 during state replication and gets a unique handle 8872 from the RTI.
However, the simulation model of Fed A[1] still refers to the original object
“6533”, the original machine object. The object 8872 is an image object and
is mapped to the original object 6533 by the RTI++. Similarly, Fed B[0] ’s
RTI++ discovers the new object and records its mapping to the original one.
The new image object handle will not be passed to Fed B[0] ’s simulation
model, as Fed B[0] has already discovered the original object instance.

As simulation execution proceeds, Fed A[1] needs to change the state of
machine “6533” (Figure 9.7(C)). Its RTI++ converts the update call of “6533”
to the image object 8872 and passes it to the RTI services in the underlying
layer. Fed A[0] invokes an update of image object 6533 directly on its simu-
lation model’s behalf. At the Fed B[0] ’s side, these updates are automatically
translated into the updates of machine “6533” for the simulation model.

9.5 Incremental Distributed Simulation Cloning

When a federate makes clones on its own initiative and creates new scenarios,
other federates in the original scenario have to interact with each of these
clones properly in the new scenarios. One direct solution is to clone all other
federates immediately; thus, each independent set of clones forms a new stand-
alone scenario. In this case, a full set of independent federates is exploited to
examine each scenario after cloning. However, when performing distributed
simulation cloning, it is desirable to replicate only those federates whose states
will alter at a decision point. The remaining federates may keep intact and
become shared between the original scenario and the new ones; only when
absolutely necessary will those shared federates be cloned. Hence such an
incremental simulation cloning mechanism is expected to further share com-
putation among scenarios.

9.5.1 Illustrating Incremental Distributed Simulation Cloning

Figure 9.8 illustrates a simple supply-chain simulation comprising three feder-
ates, namely simAgent (SA), simFactory (SF), and simTransportation (ST). A
cloning trigger is predefined for federate simFactory, which contains a cloning
condition “OrderSize > MAX?” and four candidate policies. The simulation
models the supply chain operation of one-year duration. The simFactory re-

Algorithms for Distributed Simulation Cloning 155

ports the cost incurred in each order and in the whole year at the end of the
simulation. Chapter 10 gives a detailed description of this example.

OrdersimAgent simFactory
simTransp

ortation

Products

deliveryReport

(Interaction)

Event

Flow
Federate

Cloning Trigger :

OrderSize > Max?

FIGURE 9.8
A distributed simulation example.

Figure 9.9 depicts the simulation execution using incremental simulation
cloning to examine three of the candidate policies. Each scenario is marked
as Scen[i] (i = 0, 1, 2), in which Scen[0] denotes the initial scenario. The
incremental simulation cloning occurs along the time axis as follows:

At time 0, the simulation is initialized with a single scenario Scen[0]. When
simulation progresses to time T1, SF[0] performs active cloning due to an order
with extra large volume, which results in the creation of clones SF[1] and
SF[2], and new scenarios Scen[1] and Scen[2]. The remaining federates do not
need to be cloned immediately, and they only need to expand their associated
region to enable them to continue interacting with SF[1] and SF[2]. Thus
SA[0] and ST[0] become shared clones in both scenarios. The event flow from
SF[i] (i = 0,1,2) to ST[0] is named ev F[i] (i = 0,1,2). ST[0] keeps intact as
long as ev F[i](i = 0,1,2) remain identical.

At simulation time T2, ev F[0] deviates from ev F[1] and ev F[2] ; this trig-
gers a passive cloning of ST[0] and results in the creation of clones ST[1] and
ST[2]. This passive cloning does not trigger any change in existing scenarios.
SA[0] persists as a shared clone after that.

Using the incremental cloning algorithm, clones are created as required ac-
cording to the changing external conditions. For the whole simulation session,
we always have:

Total no. of federates 6
∑

No. of federates executing in each scenario. For
example, as shown in Figure 9.9, from simulation time T0 to T1 there exist
only five federates simulating three scenarios whereas there must be nine fed-
erates examining the same scenarios in the context of traditional distributed
simulations or using the entire cloning approach. Both incremental and en-
tire cloning avoid repeating the computation of the original scenario before
cloning. However, the incremental cloning approach also enables the sharing
of computation among independent coexisting scenarios after cloning.

156 Large-Scale Simulation: Models, Algorithms, and Applications

Scenario Sending to

SA[0]

Federate

Simulation

Time

0

T1

SF[0] ST[0] Scen [0]

SA[0] SF[0] ST[0] Scen [0]

ev_F[0]

SF[1] Scen [1]

ev_F[1]

simFactory makes

active cloning

T2

SA[0] SF[0] ST[0]
Scen [0]

SF[1] Scen [1]ST[1]

simTransportation

makes passive

cloning

Concurrent

SF[2] Scen [2]

SF[2] Scen [2]

ev_F[2]

simAgent simFactory simTransport

ST[2]

FIGURE 9.9
Executing simulation with incremental cloning.

9.5.2 Managing Shared Clones

A shared clone is capable of operating in multiple scenarios as long as it
keeps receiving identical events from all scenarios in which it participates.
The shared clone persists in this mode until the condition of triggering pas-
sive cloning is met. Thus during this time, the computation of this clone can
be shared by different scenarios. The incremental cloning mechanism aims
to make full use of the interdependencies among related scenarios, which is
supported by a sensitive event-checking algorithm.

Sensitive events are those received from sibling clones in different scenarios,
and sensitive events are comparable if they are updates of the same original ob-
ject instance or interactions belonging to the same class (see Chapter 6 for de-
tails). Sensitive events are checked by the Callback Processor which is one part
of the RTI++ middleware built upon the Decoupled federate architecture (see
Chapter 3). Figure 9.10 illustrates the primary elements inside the Callback
Processor, designed for checking events. The Sensitive Event Checker checks
events and invokes the Control Module to trigger passive cloning when nec-
essary. Mapping Tables maintain the relationships among scenarios and fed-
erates and the object instances (original/image) registered by related sibling
clones. These tables are established and updated during the state replicating

Algorithms for Distributed Simulation Cloning 157

TSO_Queue_Scen[1]

TSO_Queue_Scen[2]

TSO_Queue_Scen[n]

. . .

Pending_Sensitive_Events_Queue

Within RTI++ Middleware Within Simulation

ModelCallback Processor

Sensitive Event

Checker

Cloning Manager

federateAmb

assador

Processing/

Invoking

Conveying

Event
Referring to

Mapping Tables

Passive Cloning

Decision

Control Module

fedID objHDhLhhhindex ...

...

Incoming Events

scenID

FIGURE 9.10
Internal design of the callback processor.

procedure on cloning. The checker can identify the source clone and scenario
of each event via the tables; thus it can verify which events are comparable. A
queue Pending Sensitive Events Queue (PSEQ) stores the target-sensitive
events with which other incoming sensitive events must be compared. The
queue can be either empty or contain events with the same timestamp at any
point in the simulation; this timestamp is referred to as the characteristic
timestamp of PSEQ. A set of TSO event queues, TSO Queue Scen[i], abbre-
viated TQS[i] (i = 1, 2, . . . , n), is established to buffer the events from each
scenario in the corresponding queue. Events in those queues can be presented
to the simulation model as appropriate.

The event-checking algorithm determines which events and how these
events should be conveyed to the simulation model. The event checking decides
whether or not a passive cloning is required and at which point the cloning
should be triggered. A shared clone is said to be in pending-passive-cloning
mode during the interval from deciding that a passive cloning is required to
carrying out the cloning. Event checking is performed in the Callback Proces-
sor when control of a federate process is still with the RTI. Thus cloning will
only be carried out when the RTI returns control to avoid potential problems
incurred by replicating a federate while the RTI invokes callbacks. Figure 9.11
illustrates the algorithm of checking sensitive events by the Callback Proces-
sor, which are as follows:

• Testing sensitive event. A received update/interaction is tested ac-
cording to definition 1 and 2 in section 6.3.2. In the case where the event

158 Large-Scale Simulation: Models, Algorithms, and Applications

Receive Event

Sensitive Event Processor

Is sensitive event?

Y

Convey event to

Federate

Ambassador

N

Is PSEQ empty?

Push this event

into PSEQ

Y

Locate source

scenario index (idx)

and push this event

into TQS[idx]

N

Enter Pending

Passive Cloning

Mode

N

Y
N

Check this event with

the comparable event

in PSEQ

Y

Identical? N

Y

Y

N

Pop target event

from PSEQ and

remove all

comparable events

in the TQS set

Received all

identical

events from all

other

scenarios?

Find

comparable

event (target)

in PSEQ?

This event’s

timestamp =

PSEQ’s?

Is PSEQ empty?

This

event’s

timestamp

= PSEQ ’s?
Y

Y

N

N

Add new
target

sensitive

event into

PSEQ

FIGURE 9.11
Checking sensitive events.

is a sensitive one, the checking continues. The processing of non-sensitive
events will be covered later.

• Identifying event source. Mapping Tables are referenced to locate
the source of this event. Hence the event checker can enqueue this event into
the corresponding TQS queue.

• Checking pending sensitive event queue. If PSEQ is empty, the
event checker pushes this event into PSEQ and sets its characteristic times-
tamp equal to the event’s, after which current processing ends. When PSEQ
is not empty, the event checker compares its characteristic timestamp with
the event’s. In the case where they are not equal (event’s timestamp >

Algorithms for Distributed Simulation Cloning 159

PSEQ’s), the shared clone will enter pending-passive-cloning mode; other-
wise the processing continues.

• Locating target comparable event. The event checker searches
PSEQ to locate the comparable event to the event being processed. If PSEQ
does not contain any comparable event, the event will be pushed into PSEQ
and the processing ends. Otherwise, the event checker checks if the received
event and the target event in PSEQ are identical. If they are not identical,
the shared clone will also enter pending-passive-cloning mode; otherwise the
processing continues.

• Checking the progress status of processing. The event checker
examines whether the shared clone has received identical comparable events
from all other scenarios. If so, the event checker presents the target event
from PSEQ to the Federate Ambassador and deletes the comparable events
inside the TQS queue set. If not, then the event checker waits for the next
event.

The last step ensures the Federate Ambassador receives/reflects only one sin-
gle event for one full set of identical events obtained from all related scenarios.
This design hides the complexity of checking events from multiple scenarios.
As a result, shared clones operate in multiple scenarios as if they only interact
with one single scenario independently.

In the case where a non-sensitive event is received, the PSEQ’s charac-
teristic timestamp also must be compared when PSEQ is not empty. If the
event’s timestamp is greater than the characteristic timestamp, the shared
clone requires passive cloning. This is because the shared clone will no longer
receive identical events from any of the related scenarios to the target events
in PSEQ. In the case that their timestamps are identical or PSEQ is empty,
the event checker delivers this event to the Federate Ambassador directly.
If PSEQ contains target-sensitive events, the decision of triggering a passive
cloning depends on both the incoming events and the next granted time. Once
the Callback Processor gets a granted time greater than (or equal to) PSEQ’s
timestamp2, the shared clone enters pending-passive-cloning mode.

2If the granted time is equal to PSEQ’s timestamp, setting pending-passive-cloning or
not depends on whether the shared clone requests the last time advance by calling timeAd-
vanceRequest (TAR) / nextEventRequest (NER) or timeAdvanceRequestAvailable (TARA)
/ nextEventRequestAvailable (NERA).

160 Large-Scale Simulation: Models, Algorithms, and Applications

Current tick() returned

from Physical Federate

Is sensitive event?
N

Locate source

scenario index (idx)

and push this event

into TQS[idx]

Tick() returned

Y

Push this event into

all queues of TQS

set

Trigger passive

cloning

Enter pending-

passive-cloning

mode

Callback

N

Log current

granted time

Control module

Pass control

TAGEvent

FIGURE 9.12
Processing events in pending passive cloning.

When a shared clone is in pending-passive-cloning mode, the Callback Pro-
cessor buffers the incoming events as illustrated in Figure 9.12. Sensitive events
should be enqueued to the corresponding TQS queue, whereas non-sensitive
events should be inserted into all TQS queues unselectively. Thus, when new
clones are created later on, each clone can straightforwardly inherit the events
belonging to the scenario in which it operates. The Callback Processor logs
the timeAdvanceGranted callback and the granted time. All callbacks are re-
tained and not delivered to the simulation model until the pending cloning
has been completed. Such a design aims to keep the semantics of the HLA
specification and minimize the complexity of dealing with potential callbacks
during pending-passive-cloning.

9.6 Summary

In this chapter, we introduced the infrastructure for HLA-based distributed
simulation cloning. Our design enables distributed simulation cloning using a
Decoupled federate architecture. The Cloning Manager module was developed
to ensure correct cloning of distributed simulations when preset conditions
are met at Decision points. During cloning, coordination and synchronization
are required to maintain the state consistency. We presented the mechanism
and algorithms for managing distributed simulation cloning, including active
cloning and passive cloning.

The incremental cloning mechanism initiates cloning only when strictly

Algorithms for Distributed Simulation Cloning 161

necessary. Clone sharing among multiple scenarios is supported by a sensitive
event-checking algorithm. The algorithm facilitates accurate sharing of clones
and delays the passive cloning as long as possible. An entity mapping approach
is designed to identify events, which maps the new HLA entities created for
the clones in state replication to the existing ones known to the simulation
models. The proposed incremental cloning mechanism supports correct HLA
semantics and user transparency.

This page intentionally left blankThis page intentionally left blank

10

Experiments and Results of Simulation

Cloning Algorithms

CONTENTS

10.1 Application Example . 163

10.2 Configuration of Experiments . 164

10.3 Correctness of Distributed Simulation Cloning . 165

10.4 Efficiency of Distributed Simulation Cloning . 167

10.5 Scalability of Distributed Simulation Cloning . 170

10.6 Optimizing the Cloning Procedure . 171

10.7 Summary of Experiments and Results . 174

10.8 Achievements in Simulation Cloning . 175

10.1 Application Example

This chapter presents a simulation example (see Figure 10.1) to verify the
correctness and investigate the performance of the proposed distributed sim-
ulation cloning technology. The example studies a simple supply chain that
comprises an agent company, a factory, and a transportation company. The
agent keeps issuing orders to the factory, and the latter processes these orders
and plans production accordingly. The transportation company is responsible
for delivering products of the factory and reporting the delivery status. The
factory has a limited manufacturing ability, which means it needs to adjust
its daily operation policy in the case of fulfilling an extra large order. One of
the following candidate policies can be chosen:

• Keeping normal operation policy (NORMAL policy); thus the factory
may get penalized because the order is not fulfilled in time.

• Encouraging overtime work to ensure on time delivery (OVERTIME
policy); the factory has to pay for the extra manpower.

• Sharing a partial order with other competing factories (SUBCON-
TRACT policy); this also incurs profit loss and negative impact on future
business development.

163

164 Large-Scale Simulation: Models, Algorithms, and Applications

• Expanding manufacturing ability by purchasing assembly lines and re-
cruiting more workers (EXPAND policy); thus extra cost will be incurred.

OrdersimAgent simFactory
simTrans

portation

Products

deliveryReport

(Interaction)

Event

Flow
Federate

Candidate Policies :

1. NORMAL

2. OVERTIME

3. SUBCONTRACT

4. EXPAND

Cloning Trigger :

OrderSize > Max?

Agent Factory Transportation

FIGURE 10.1
A simple distributed supply-chain simulation.

The analyst focuses on optimizing the extra cost/profit loss of the fac-
tory operation in processing large orders. Four different scenarios must be
constructed to examine the candidate policies.

10.2 Configuration of Experiments

The three nodes in the supply-chain can be modeled as three federates as
shown in Figure 10.1, namely simAgent, simFactory and simTransportation.
These federates form a simple distributed supply-chain simulation. Two object
classes, Order, Products and one interaction class, deliveryReport are defined
in the FOM [66] to represent the types of events exchanged amongst the
federates. Table 10.2 gives the classes published and/or subscribed by the
federates. The simFactory reports the extra cost incurred for each order and
for the whole year (from simulation time 0 to 361) at the end of the simulation.
The experiments use four computers in total (three workstations and one
server), which are interlinked via a 100Mbps-based backbone. Each federate
(together with its clones if any) occupies one individual computer, with the
RTIEXEC and FEDEX processes running on another computer.

Experiments and Results of Simulation Cloning Algorithms 165

The experiment architecture and platform specification are listed in Ta-
ble 10.2. Using the same codes for the simulation models, the federates are
built into three different versions by linking to (1) the DMSO RTI library
directly (TRADITIONAL), (2) an RTI++ middleware library supporting en-
tire cloning (CLONING ENTIRE), and (3) an RTI++ middleware library
supporting incremental cloning (CLONING INCREMENTAL). We can also
configure the federates of the 2nd (or the 3rd) version to execute each of
the policies without using cloning (CLONING DISABLED) to examine the
correctness of using the decoupled architecture to build federates. The sim-
ulation execution using incremental cloning is discussed in Section 9.5.1 and
illustrated in Figure 7.9.

TABLE 10.1
Declaration Information of the Federates

Interaction
Federate Object Classes and Attributes Classes and

Parameters

Order Products deliveryReport
Index,Size Amount,Index,Date Index,Status

simAgent Publish NIL NIL
simFactory Subscribe Publish Subscribe

simTransportation NIL Subscribe Publish

10.3 Correctness of Distributed Simulation Cloning

The ten sets of experiments in total are indicated in Table 10.3. To ver-
ify the correctness of the cloning mechanism, we specify federate simA-
gent to generate the same set of orders in different runs. We first exe-
cute the TRADITIONAL federates, in which the collected results are used
as a reference in subsequent experiments. Second, we repeat these exper-
iments using CLONING DISABLED federates. The last two experiments
adopt CLONING ENTIRE and CLONING INCREMENTAL federates to ex-
plore multiple policies in each of the sessions. The outputs obtained using
TRADITIONAL federates are summarized as follows:

• simAgent issues 240 orders, in which the first extra large order and the
last order carries timestamp 83 and 362.5, respectively (note the last order
is not received as it is after the simulation end time).

• simFactory receives 239 orders and makes products according to the

166 Large-Scale Simulation: Models, Algorithms, and Applications

TABLE 10.2
Configuration of Experiment Test Bed

Specification Computers
Workstation Workstation Server Workstation Workstation

1 2 1 3 4∼13

Operating
System

Sun
Solaris OS

5.8

Sun
Solaris OS

5.8

Sun
Solaris
OS 5.8

Win2000
Profes-
sional

Sun
Solaris OS

5.9

Sparcv9 Sparcv9 Sparcv9 Intel 1700 Sparc II
CPU, at CPU, at CPU*6 MHz CPU, at

CPU 900 MHz 900 MHz at 248 Pentium 400MHz
MHz IV

RAM 1024M 1024M 2048M 256M 512M

Compiler GCC
2.95.33

GCC
2.95.3

GCC
2.95.3

MS VC++
6.0

GCC
2.95.3

Underlying
RTI

DMSO
NG 1.3 V6

DMSO
NG 1.3 V6

DMSO
NG 1.3
V6

DMSO
NG 1.3 V6

DMSO
NG 1.3 V6

SimAgent
Processes
running on

simAgent SimTransp
-ortation

simFact
-ory

RTIEXEC
& FEDEX

or
simTrans
-portation

policy adopted. Different costs are reported in experiments T Norm, T Over,
T Sub, and T Exp, respectively.

• simTransportation receives all product updates issued earlier than the
end time and sends deliveryReport interactions with respect to these up-
dates.

In order to evaluate the correctness of the cloning mechanisms, we examine
the orders issued and received, products produced and delivered as well as the
costs. We have the following observations from the experiments using federates
linked with the other libraries:

• Outputs in the experiments with CLONING DISABLED federates
(D Norm, D Over, D Sub, and D Exp) match exactly those using TRA-
DITIONAL federates.

• In experiments Ec Multiple, simFactory makes one, two or three new
clones at simulation time 83 to execute two, three, or four policies concur-
rently. Immediately after this, passive cloning is forced in both simAgent
and simTransport. For example, in the experiment to examine three poli-
cies, after cloning there are nine federates in total to explore three scenarios

Experiments and Results of Simulation Cloning Algorithms 167

TABLE 10.3
Experiments for Verifying the Correctness of Cloning Technology

Type of
Federates

Candidate Policies

NORMAL OVERTIME SUBCONRACT EXPAND

TRADITIONAL T Norm T Over T Sub T Exp

CLONING
DISABLED D Norm D Over D Sub D Exp

CLONING
ENTIRE Ec Multiple

CLONING
INCREMENTAL Ic Multiple

concurrently. Each clone of simFactory reports exactly the same results to
those in T Norm, T Over, T Sub, and T Exp, respectively.

• In experiments Ic Multiple, simFactory makes clones in the same way
as in the Ec Multiple experiments. The difference is that federate simAgent
keeps intact all the time and simTransportation remains shared until sim-
ulation time 101 when it performs passive cloning, required by the event
checking algorithm (see section 9.5). In the experiment to examine three
policies, there are five federates from time 83 to 101 while there are seven
federates after time 101 to explore three scenarios (see Figure 7.9). Each
clone of simFactory reports exactly the same results to those in T Norm,
T Over, and T Sub, respectively.

Outputs of the above experiments indicate that the technology provides a
correct cloning mechanism for HLA-based distributed simulations. This also
proves that the Decoupled federate architecture ensures complete fidelity in
the way it bridges the simulation model and the Local RTI Component. In
other words, the simulation cloning technology does not introduce any varia-
tion in the simulation results.

10.4 Efficiency of Distributed Simulation Cloning

To investigate the performance of the cloning technology, we carry out a series
of experiments to collect the overall execution time using federates linked to
different libraries to execute all policies (Table 10.4). For traditional federates,
we execute the policies one by one, and for each policy we carry out a number
of runs with the extra large order generated randomly at any time (ranging

168 Large-Scale Simulation: Models, Algorithms, and Applications

from the start time to the end time) in each run. The execution times of all
runs are averaged, and the result is referred to as the average time of executing
one single scenario. As for experiments with cloning-enabled federates, we let
federate simAgent generate different orders. We select three runs in which the
extra large order occurs at time 80, 203, and 320, thus, federate simFactory
may trigger active cloning at different stages in each run. These points repre-
sent cloning at the start, middle, and end stages, respectively. Furthermore,
we also specify simFactory to make a different number of clones to examine
alternative policies in different experiments (2, 3, or 4, policies respectively).

TABLE 10.4
Experiments for Studying the Efficiency of Cloning Technology

Type of
Federates

Experiments

Cloning
Stage

Start Middle End

Number
of 2 3 4 2 3 4 2 3 4

Policies
CLONING
ENTIRE Ec

s 2
Ec
s 3

Ec
s 4

Ec
m 2

Ec
m 3

Ec
m 4

Ec
e 2

Ec
e 3

Ec
e 4

CLONING
INCREM
-ENTAL

Ic
s 2

Ic
s 3

Ic
s 4

Ic
m 2

Ic
m 3

Ic
m 4

Ic
e 2

Ic
e 3

Ic
e 4

The average CPU utilization of a single traditional federate (in workstation
1 or 2) is reported as above 80%. In the case of enabling simulation cloning,
the average CPU utilization of each clone is reported as ∼44%, ∼30%, or
∼21%, respectively, when there are two, three, or four clones running on a
single workstation. Physical federates have an average CPU utilization as low
as ∼1%. Experimental results are recorded in seconds in Figure 10.2. The
average time for executing one single scenario per run is 561 seconds using
traditional federates. The percentage of saved execution time using cloning
technology is shown in Figure 10.3. This uses the execution times reported by
traditional federates running scenarios sequentially as a reference.

Figure 10.2 shows that the cloning-enabled federates can significantly re-
duce execution time compared with traditional federates. The experimental
results indicate that the more Computation there is in common among dif-
ferent scenarios, the more execution time can be reduced using simulation
cloning. It also shows that the larger the number of scenarios to be examined
using cloning, the more execution time can be reduced. Results in Figure 10.3
indicate that the incremental cloning approach has an obvious advantage over

Experiments and Results of Simulation Cloning Algorithms 169

the entire cloning approach in terms of execution efficiency under all given
configurations. This is because the incremental cloning approach can further
save Computation by supporting federate sharing among scenarios.

0

500

1000

1500

2000

2500

Examine 2 Policies Examine 3 Policies Examine 4 Policies

Number of Policies

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

s
)

Traditional

EC_S(80)

IC_S(80)

EC_M(203)

IC_M(203)

EC_E(320)

IC_E(320)

FIGURE 10.2
Execution time for examining multiple scenarios.

0

10

20

30

40

50

60

70

Examine 2 Policies Examine 3 Policies Examine 4 Policies

Number of Policies

P
e

rc
e

n
ta

g
e

 S
a

v
e

d
 (

%
)

EC_S(80)

IC_S(80)

EC_M(203)

IC_M(203)

EC_E(320)

IC_E(320)

FIGURE 10.3
Percentage of saved execution time using entire and incremental cloning.

170 Large-Scale Simulation: Models, Algorithms, and Applications

10.5 Scalability of Distributed Simulation Cloning

Another series of experiments are performed to test the scalability of the
cloning technology. This consists of six sets of experiments in total, with the
initial number of federates varying from three to thirteen. Each set of ex-
periments uses a federation that always contains one simFactory and one
or multiple instances of simAgent and simTransportation. In the nth set of
experiments, the federation initially has 2n+1 federates as shown in Fig-
ure 10.4. Similar to the previous experiments, the execution time for exam-
ining the first three policies (see Section 10.1) is measured and compared
using different types of federates (TRADITIONAL, CLONING ENTIRE,
and CLONING INCREMENTAL). The experiment architecture and plat-
form specification for the scalability study are listed in Table 10.2. Federates
simAgent.1∼n are configured to issue extra large orders at the middle stage
of the simulation. The first extra large order received by the simFactory acts
as a trigger of an active cloning, but after cloning, each particular scenario
applies to all subsequent orders, including extra large ones.

simAgent.1

simFactory

simTransp

ortation.1

simAgent.n
simTransp

ortation.n

simAgent.2
simTransp

ortation.2

FIGURE 10.4
Initial federation for the nth set of experiments for the scalability test.

The average CPU utilization of each federate is the same as in previous
experiments. The experimental results are recorded in Figure 10.5. The sum
of the execution times using traditional federates increases smoothly when
the federation contains an increasing number of federates (starting from 1683
seconds for three federates to 2,169 seconds for thirteen federates), and the
same trend can be observed when using cloning enabled federates. Figure 10.5
indicates that cloning technology can reduce the execution time significantly.
Figure 10.6 shows that using incremental cloning the percentage of saved
execution time is about 47% to 49%. The entire cloning approach gains about
30% to 39% time saving. The experimental results show that the proposed
cloning technologies scale well with increasing distributed simulation size, and
the incremental cloning approach consistently performs better than the entire
cloning approach.

Experiments and Results of Simulation Cloning Algorithms 171

0

500

1000

1500

2000

2500

3 f ederates 5 f ederates 7 f ederates 9 f ederates 11 f ederates 13 f ederates

Number of Federates

E
x

e
c

u
ti

o
n

 T
im

e
 (

S
e

c
o

n
d

s
)

Traditional

Entire_Cloning

Incremental_Cloning

FIGURE 10.5
Execution time for examining three policies with increasing number of feder-
ates.

10.6 Optimizing the Cloning Procedure

The simulation Cloning procedure is defined as the interval from the point
where the parent federate starts cloning by calling the createClone method
(or splitClone in the case of passive cloning) to the point where all new clones
complete initialization, the remaining federates are ready for resuming normal
execution, and control is returned to the simulation models (see Figure 7.3 and
Figure 7.6). The cloning algorithm requires the following RTI-related opera-
tions to be performed in sequence during the cloning procedure (as described
in Section 9.2):

• Save the federation.

• For each new clone, join the existing federation.

• Synchronize the federation.

Such a simulation cloning procedure takes about 20 seconds in the previ-
ous experiments. This overhead is mainly due to the above operations that
incur costly federation-wide coordination, especially the joinFederationExe-
cution call. In DMSO RTI-NG, this operation requires opening TCP sockets
to all other federates in the federation, which is expensive [95]. Although the
time taken by these operations will increase with the number of federates, the
exact relationship will depend on the internal design of these RTI services,
which is transparent to the user. It is therefore worthwhile to optimize the
cloning procedure. A possible solution is to avoid the joinFederationExecution

172 Large-Scale Simulation: Models, Algorithms, and Applications

49.14 48.90 49.33 50.27
47.13 47.58

30.98
35.6635.06

39.1540.05 39.55

0

10

20

30

40

50

60

3 federates 5 federates 7 federates 9 federates 11 federates 13 federates

Number of Federates

P
e
rc

e
n

ta
g

e
 S

a
v
e
d

 (
%

)

Entire_Cloning

Incremental_Cloning

FIGURE 10.6
Percentage of saved execution time with increasing number of federates.

call during the cloning procedure itself. We attempt to solve this problem us-
ing a physical federate (phyfed) pool approach as shown in Figure 10.7. This
approach creates phyfed instances concurrently with the normal simulation
execution, which can potentially serve the new clones in the future.

Before cloning occurs, several existing phyfed instances are created, which
join the federation and form a phyfed instance pool. In the context of the pool
approach, a phyfed instance may operate in two modes: (1) idle mode, calling
tick regularly to maintain connection session with the RTI while checking for
invocation from a virtual federate; and (2) working mode Working mode,
servicing a virtual federate as normal. An idle phyfed instance is neither time
regulating nor constrained, and has minimum interaction with other federates.

When cloning occurs, a phyfed instance can be fetched from the pool by
the virtual federate to provide the required RTI services immediately. Thus,
this approach avoids new clones taking part in the joinFederationExecution
prior to state replication. However, maintaining spare phyfed instances will
incur extra overhead in that (1) each instance consumes system resources and
(2) the RTI has to monitor the session with more federates.

In order to measure the performance of this approach, a series of experi-
ments is carried out. The configuration and structure of the experiments are
similar to the supply-chain example and are given in Figure 10.8 (see Ta-
ble 10.2 for the platform specification). The simulation contains three feder-
ates (Fed[1] to [3]), which are built into two different versions by linking to (1)
the previous RTI++ middleware supporting incremental cloning and (2) an
RTI++ middleware supporting the phyfed pool approach. Fed[2] is configured
to perform active cloning (spawning 1sim3 clones in different runs) when it
is granted federate time 100, and this leads to passive cloning of Fed[3] after-

Experiments and Results of Simulation Cloning Algorithms 173

Real Runtime Infrastructure

Working Physical

Federate PF[i]

...

A New Clone

Physical Federate x
Physical Federate xIdle Phyfed Instance

PF[i]

Physical Federate

Instance Pool
1.Fetch an

idle phyfed2. Recover states

Virtual Federate

FIGURE 10.7
Physical federate pool approach

ward. The average CPU utilization of each federate is the same as in previous
experiments.

In these experiments, we compare the initialization time of federates, the
time for the cloning procedure, and the overall execution time using the two
different versions of middleware. The initialization time denotes the interval
from when a federate is started to the point immediately after it completes the
following operations: join the federation, enable time regulating/constrained,
publish/subscribe object/interaction classes, and register object instances.
The phyfed pool is created at the time when the original federate invokes
createFederationExecution, and a different number of idle phyfed instances
are created according to the number of potential policies. Table 10.6 lists the
results of the experiments.

TABLE 10.5
Comparison between Normal and Pool Approach

Number
of

Clones

Idle
Phyfed
In-

stances

Initialization
Time

(seconds)

Cloning
Time

(seconds)

Execution
Time

(seconds)

For
Each Normal Pool Normal Pool Normal Pool

Federate Approach Approach Approach

1 1
19∼27 21∼27

∼20 ∼3 ∼93 ∼83

2 2 ∼23 ∼3 ∼117 ∼107

3 3 ∼23 3∼4 ∼140 ∼131

174 Large-Scale Simulation: Models, Algorithms, and Applications

Fed[1] Fed[2] Fed[3]

Event

Flow

Cloning condition :

Federate time = 100

Workstation 1 Workstation 2Server 1

Start time of all federates : 0

Simulation end time : 200

RTIEXEC &

FEDEXC

Workstation 3

FIGURE 10.8
Experiments for studying physical federate pool approach.

The initialization time in the pool approach is close to the normal one,
which indicates that the overhead of phyfed instances joining the federation
is hidden by the other initialization operations. The time used for cloning
is dramatically reduced from ∼20 seconds to ∼3 seconds, and most of the
time is spent in the federation save operation. Using the pool approach can
reduce the overall execution time compared with the normal cloning approach.
However, the improvement in cloning time is reduced by the overhead for
maintaining idle phyfed instances. To achieve the best performance using this
approach, phyfed instances should be added to the pool close to the point
of cloning. In this way, the reduction in cloning time can best outweigh the
redundancy of idle phyfeds. Another concern is to optimize the time consumed
in the federation save operation, which is only used to ensure that in-transit
messages will arrive at destinations prior to cloning. An alternative candidate
approach for dealing with in-transit messages is introduced in Chapter 3.6.

10.7 Summary of Experiments and Results

In this chapter, an example of distributed supply chain simulation was used
for examining the correctness, performance, and scalability of the distributed
simulation cloning technology. Experiments were carried out to compare two
cloning mechanisms, namely entire cloning and incremental cloning, in terms
of execution time using normal federates as a reference.

The simulation outputs demonstrated that the technology provides a cor-
rect cloning mechanism for existing distributed simulations. The performance
results showed that the technology can reduce the time of executing multi-

Experiments and Results of Simulation Cloning Algorithms 175

ple scenarios significantly. The results also showed that the proposed cloning
technology has a promising scalability. Furthermore, incremental cloning can
provide further savings by sharing the Computation of alternative scenarios
compared with an approach using entire cloning.

10.8 Achievements in Simulation Cloning

We have investigated important research issues in HLA-based distributed sim-
ulation cloning and have presented alternative management mechanisms. Sim-
ulation cloning offers the flexibility for a distributed simulation to examine
multiple decision policies concurrently at a decision point. Thus, the execu-
tion time can be reduced and the analyst can quickly obtain multiple sets
of results that represent the impacts of alternative decisions. The technology
provides simulation users with a decision-support platform much more pow-
erful and flexible than the traditional linear approach. All the objectives set
at the beginning of the book have been fulfilled. The major achievements are
summarized as follows:

• Establishment of the foundation theory of distributed simulation
cloning.

• Investigation and design of efficient and reliable solutions to support
distributed simulation cloning.

• Development of a generic approach for federate cloning using our de-
coupled federate architecture.

• Development of mechanisms for management of concurrent scenarios in
cloning-enabled simulations.

• Design and development of RTI++ middleware to provide reusability
of existing simulation models and user transparency.

• Investigation and development of alternative distributed simulation
cloning mechanisms, including entire and incremental cloning.

This book establishes the foundation theory of distributed simulation cloning,
defining the terms and identifying the issues involved. A federate can perform
cloning actively or passively according to its own or its partner’s require-
ments. When cloning of a federate is required, an entire cloning mechanism
replicates the whole scenario, whereas an incremental mechanism only clones
those federates whose states will alter at the decision point. Execution of iden-
tical federates (clones) may be shared by multiple scenarios. Thus, there exist
dynamic relationships among scenarios and federates.

176 Large-Scale Simulation: Models, Algorithms, and Applications

We consider Multiple-Federation (MF) and Single-Federation (SF) solu-
tions to distributed simulation cloning. This book compares and analyzes their
advantages as well as drawbacks. The Multiple-Federation solution has the
advantage of robustness and provides simple synchronization of federates in
each individual scenario. Using the Single-Federation solution, management of
cloning and Computation sharing among scenarios is much easier to achieve.

These candidate solutions have been analyzed and compared in terms of ef-
ficiency, complexity in management, and reliability. In the case where there is
high data exchange, the MF solution can perform much better than the simple
SF solution as the concurrent scenarios are not efficiently partitioned when
the latter solution is applied. The two solutions exhibit close performance
by applying Data Distribution Management services to the Single-Federation
solution to give the DSF solution. Furthermore, the two solutions have no sig-
nificant difference in terms of federate synchronization. As DSF is also superior
in convenience for design and scenario management, it has been adopted for
developing the infrastructure of distributed simulation cloning.

In order to tackle the problems of replicating a federate instance and pro-
viding fault tolerance to HLA-based distributed simulations, a Decoupled fed-
erate architecture has been designed. This approach decouples the simulation
model from the Local RTI Component, with these two basic modules forming
a single federate executive. A virtual federate process executes the simula-
tion model while a physical federate process provides RTI services to the
corresponding model at the backend. The decoupled approach successfully
supports user transparency using the standard HLA specification to provide
an interface to the simulation model. The approach maintains the semantics
of executing RTI service calls and conveying RTI callbacks to the simulation
model. The decoupled architecture facilitates state saving and replication at
the RTI level. It has been used to develop a mechanism for replicating the
simulation federate, which is reliable, correct, and relatively model indepen-
dent.

Decoupled federates have been compared with normal federates in terms
of latency and time advancement performance. The decoupled architecture
incurs a negligible latency overhead for small or medium payloads and only a
slight extra latency in the case of a bulky payload. Furthermore, the Decou-
pled federate architecture has a promising performance of time advancement
to normal federates. This makes the architecture an ideal approach to support
cloning. Concurrent scenarios coexist in a single federation session as a result
of simulation cloning, each representing a particular execution path. Interac-
tions must be confined within each scenario to guarantee the correctness of
simulation results. On the other hand, a mechanism to share Computation
is required by the shared clones that cross multiple scenarios. DDM services
have been used at the backend to route events and partition scenarios. In
this book, we have studied issues involved in managing concurrent scenarios
and suggested candidate approaches. To obtain the best DDM performance,

Experiments and Results of Simulation Cloning Algorithms 177

the internal mechanism of DDM services implemented in DMSO RTI-NG has
been analyzed.

With the spawning of scenarios, the number of clones in a cloning-enabled
simulation session keeps increasing. We have developed the idea of a scenario
tree to identify and denote scenarios correctly and efficiently. In this book, we
discussed two possible solutions that we have designed to code scenarios and
to manipulate characteristic region extents associated with a scenario, namely
a recursive region division solution and a point region solution. The former
solution has advantages in minimizing the complication for sharing federates
(clones) and mapping the scenario identity to the region extent. However,
the point region solution has been adopted in our cloning technology because
it can meet the region allocation requirements in any situation while opti-
mizing the use of networking channels for DDM services. The scenario man-
agement mechanism ensures both proper scenario partitioning and accurate
Computation sharing across scenarios, which are potentially contradictory re-
quirements. The mechanism also accurately represents and manipulates the
dynamically complex relationship among increasing numbers of scenarios.

A middleware approach is used to hide the complexity incurred by simu-
lation cloning. A cloning-enabled infrastructure, namely RTI++, contains the
modules for controlling, and managing cloning, managing scenarios as well
as handling cloning regions and the underlying DDM services. The RTI++
presents a standard RTI interface to the simulation model. The infrastructure
supports the correct HLA semantics and user transparency, which maximizes
the reusability of legacy simulation applications and also minimizes the users’
efforts to utilize cloning technology in developing their models.

One important goal of cloning technology is to optimize execution by avoid-
ing repeated Computation among independent scenarios. Alternative cloning
mechanisms have been developed: an entire cloning mechanism and an in-
cremental cloning mechanism. We have investigated and designed algorithms
for managing active and passive cloning, which ensure correct replication of
federates when required. These algorithms maintain the state consistency of
the simulation session by introducing proper coordination and synchroniza-
tion on cloning. State saving and replication are designed using the Decoupled
federate architecture.

Although the incremental mechanism requires a more complex control al-
gorithm, it makes the most use of Computation sharing. In this book, we have
studied the incremental cloning mechanism and established a theory of incre-
mental distributed simulation cloning. The incremental mechanism initiates
cloning of a federate only when strictly necessary, while the entire cloning
mechanism makes replicas of every federate in a scenario. A sensitive event
checking algorithm facilitates clone sharing across scenarios, and avoids/delays
the passive cloning as long as possible while guaranteeing the correctness of
Computation sharing. The checking algorithm employs an entity mapping
approach to identify events, which maps the new HLA entities created for
the clones in state replication to the existing ones known to the simulation

178 Large-Scale Simulation: Models, Algorithms, and Applications

models, and vice versa. The incremental cloning mechanism not only avoids
repeated Computation prior to cloning, but also further saves identical feder-
ate execution among scenarios without prior knowledge of the behavior of the
federate.

A series of experiments has been performed to investigate the correctness
and performance of the two alternative mechanisms using an example of a
distributed supply chain simulation. The experimental results are compared
for traditional, cloning-disabled, and cloning-enabled federates in terms of
the consistency of outputs and computing efficiency. The experimental results
show that the technology provides a correct cloning mechanism for HLA-based
distributed simulations. The experimental results also show that the cloning
technology can reduce the time of executing multiple scenarios of distributed
simulations. The scalability of the cloning mechanisms has also been exam-
ined, and experimental results show that the proposed cloning technology has
promising scalability for both mechanisms.

However, there is still not a general solution to the problem of a possible
combinatorial explosion of scenarios in distributed simulation cloning in some
extreme situations. Although it is unlikely to occur, simulation analysts should
be aware of the problem and avoid defining too many cloning triggers or
specifying a large number of new scenarios on active cloning.

The Decoupled federate architecture can also be exploited in providing
fault tolerance and load balancing as well introducing Web and Grid technolo-
gies to HLA-based simulations. In this book, we have discussed and proposed
candidate solutions to address these issues. An alternative scheme for dealing
with in-transit messages was also described. The HLA-based distributed sim-
ulations may benefit from the Decoupled federate architecture in the following
ways:

• Fault tolerance. We can easily isolate the faults of part of a federation
and provide fault recovery without rolling back the simulation execution.

• Web-or Grid-Enabled Architecture. The decoupled architecture
can be exploited to combine the advantage of Web/Grid services and the
HLA. HLA-based simulations may profit from the flexible resource man-
agement and enhanced interoperability provided by a Web/Grid-enabled
architecture.

• Supporting load balancing. Using the decoupled architecture can
free developers from handling RTI, states and in-transit events, and it avoids
the overhead incurred in saving/restoring RTI states when adopting a fed-
erate migration approach to balance the federates load.

Part IV

Applications

This page intentionally left blankThis page intentionally left blank

11

Hybrid Modeling and Simulation of Huge

Crowd over an HGA

CONTENTS

11.1 Introduction . 181

11.2 Crowd Modeling and Simulation . 183

11.3 Hierarchical Grid Architecture for Large Hybrid Simulation 184

11.3.1 Grid System Architecture . 184

11.3.2 HLA-Based Simulation Model . 184

11.3.3 Hierarchical Grid Simulation Architecture: Overview 186

11.4 Hybrid Modeling and Simulation of Huge Crowd: A Case Study . 187

11.4.1 Huge Crowd Scenario . 187

11.4.2 Simulation Models . 188

11.4.2.1 Pedestrian Agent Model . 189

11.4.2.2 Computational Model of the Crowd Aggregated

in the Assembly Area . 190

11.4.2.3 Vehicle Agent Model . 191

11.4.3 Crowd Simulation over the Hybrid Grid Simulation

Infrastructure . 192

11.5 Experiments and Results . 194

11.5.1 Communication Latency . 195

11.5.2 Crowd Simulation Outputs . 196

11.5.3 Performance Evaluation . 198

11.6 Summary . 199

11.1 Introduction

Modeling and Simulation are at the very core in many areas of science and
engineering. With the rapid growth of both the complexity and the scale of
problem domains, it has become a key requirement to create efficient and ever
more complex simulations of large scale and/or high resolution for research,
industry, and management. Modeling and simulation of crowd is a typical
paradigm. As a collective and highly dynamic social group, a human crowd is
a fascinating phenomenon, which has been constantly concerned by experts
from various areas. Recently computer-based modeling and simulation tech-
nologies have emerged to support investigation of the dynamics of crowds.

181

182 Large-Scale Simulation: Models, Algorithms, and Applications

Crowd modeling and simulation has now become a key design issue in many
fields including military simulation, safety engineering, architectural design,
and digital entertainment.

To represent the behavior of a crowd, a number of behavior models have
been proposed with various types of modeling approaches [25], such as parti-
cle system models [51], flow-based models [58], and agent-based models [16].
Despite the many existing research efforts and applications in crowd model-
ing and simulation, it is still a young and emerging area. Work on modeling
and simulation of large crowds (consisting of thousands of individuals or even
more), especially at the individual level, is still rare. Large agent-based sys-
tems, such as simulation of large crowds at the individual level, have long been
placed in the highly computation-intensive world [16, 25]. Study on crowd phe-
nomenon still suffers from a lack of (1) an effective modeling approach to cope
with the size and complexity of a scenario involving a huge crowd and (2) an
appropriate platform to sustain such large Crowd simulation systems.

In the past few years, there have been a lot of successful attempts of in-
corporating Grid technologies to foster large simulations over the Internet,
such as the Grid-aware Time Warp Kernel [69] and the HLA Grid RePast
framework [16, 21]. However, these simulation systems are only suited for ex-
ecuting coarse-grained models due to the limited network bandwidth between
different administrative domains. Another issue is that only a few nodes of
an administrative domain are accessible to the external users due to the ex-
isting security rules of most administrative domains. The third issue concerns
reusability: Large simulation developers often already have a set of simulation
models/components situating over their intranet. Only with the advent of
our hierarchical Grid infrastructure [25] can (1) existing individual bundles of
simulation models be linked to form a dedicated large simulation crossing the
boundaries of previously independent simulation groups and the boundaries
of the administrative domains, (2) fine-grained models still benefit from the
advantages of Grid technology, and (3) users have a flexible solution to the
reusability issue.

This study employs the hierarchical Grid infrastructure as an effective
approach to addressing the two pending issues in large crowd modeling and
simulation. The resultant simulation system is hybrid in nature: (1) to capture
the individuality of pedestrians, agent-based models have been developed with
each agent representing a pedestrian; (2) to describe the global dynamics of
the whole (or a part of interest) crowd, computational models have been used;
and (3) these heterogeneous models are linked together to allow studying the
interaction dynamics of a crowd at both the individual and global scales.

The large Crowd simulation system had been deployed over two distinctive
administrative domains located in China and the United States respectively.
The simulated crowd has a size which is prohibitively large for traditional
simulation techniques using a cutting-edge office desktop. Our approach suc-
cessfully alleviates the bottleneck in the design and analysis of particularly
large and complex scenarios like huge crowd. This study is one of the first

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 183

to provide a solution to simulation of a crowd with models of multiple scales
and types. The remainder of this chapter is organized as follows: Section 11.2
briefs the background and related work of crowd modeling and simulation.
Section 11.3 recaps the hierarchical Grid simulation infrastructure. Section
11.4 describes the case study of exploring the dynamics of a huge crowd in an
evacuation procedure. Section 11.5 concludes this work with a summary and
proposals on future work.

11.2 Crowd Modeling and Simulation

As a collective and highly dynamic social group, a human crowd is a fascinat-
ing phenomenon, which has constantly been a concern of experts from various
areas. A crowd may exhibit highly complex dynamics; in general, pure mathe-
matical approaches or analytic models are not adequate in characterizing the
dynamics of a crowd.

Recently, modeling and simulation technologies have been gaining tremen-
dous momentum in investigating crowd dynamics. Various simulation archi-
tectures have been developed [25, 87]. To represent the behavior of a crowd, a
number of behavior models have been proposed with different types of model-
ing approaches, such as flow-based models and agent-based models. To study
or mimic the dynamics of a crowd, modelers have considered a number of
physical factors, social factors, and psychological factors when characterizing
crowds in their models. Crowd models may also concern different aspects of
a crowd. Some work aims at the external characteristics of a crowd, such as
appearance, poses or movement patterns, coordinated positions of individuals;
and some other works focus on how a crowds social behaviors evolve over time
upon some events.

Many open research issues are still very much in flux due to the complexity
of individual and crowd behaviors [120]. Modeling of a crowd first needs to
determine the scale (level of detail) of the model. The existing models are
largely at two extreme levels: either model each individual as an autonomous
agent equipped with some human-like behavior modules such as locomotion,
perception, and decision making, or treat the crowd as a whole or a collection
of homogeneous particles with limited or no cognitive features. With the fast
development of computing technology, there seems to be a trend in Crowd
simulation to model each individual as some kind of intelligent agent with
attempts to incorporate more and more social and psychological factors into
the agent behavior model. However, we believe that the common shortcoming
of existing models is the absence of modeling the social group process and its
impact on human behavior.

The interoperability and composability issue is largely ignored by exist-
ing research. Although there already exist a number of Crowd simulation

184 Large-Scale Simulation: Models, Algorithms, and Applications

Crowd simulation models and modeling approaches, these models can hardly
work with each other: They may operate at different levels of abstraction.
This makes the communication between different models difficult. In a typical
Crowd simulation, the crowd model needs to pass various information about
individuals actions and also needs to understand the events in the simulated
world so that the individuals can determine how to respond to these events.
However, research in interoperable Crowd simulation models is still rare.

This study attempts to address the two pending issues via the hierarchical
Grid simulation architecture. We aim to explore an approach to constructing
simulations of huge crowd constituted by models of various scales and types;
thus the dynamics of a huge crowd may be investigated at different levels in
a manner more comprehensive than existing approaches do.

11.3 Hierarchical Grid Architecture for Large Hybrid

Simulation

In [25], we presented the hierarchical Grid computing architecture for large-
scale simulation. The architecture serves as a simulation infrastructure, which
can (1) cross distributed administrative domains, (2) link multiple distributed
simulation models into a large-scale simulation over Grids, and (3) reduce
the communication overhead among simulation bundles. This section recaps
the basics of a Grid system as well as the design and functionalities of the
architecture.

11.3.1 Grid System Architecture

As shown in Figure 11.1, a production Grid typically contains a number of
compute centers, which are linked by high-speed networking. A compute cen-
ter in general is organized at two levels. A head node, which hosts several
access services and resource management functions for a compute center, ac-
cepts incoming computing jobs and schedules them to local computing and
data resources, which are termed here Compute Element (CE), and Storage
Element (SE), respectively. Inside a data center, the head node, CEs and SEs
are interconnected by a high-performance local area network (LAN).

11.3.2 HLA-Based Simulation Model

The High Level Architecture (HLA) is a technology for simulator interoper-
ability and the de facto standard [66] for simulations over distributed com-
puting platforms. The HLA defines software architecture for modeling and
simulation, and is designed to provide reuse and interoperability of simulation
models/components, namely federates. A collection of federates interacting
with each other for a common purpose forms a federation; in the context of

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 185

Grid

Infrastructure

Compute center

Head node

CE
SE

LAN

FIGURE 11.1
Grid computing system architecture.

this study, a simulation bundle is referred to as an independent federation
running within a compute center. As the HLA defines the specification, it is
the Runtime Infrastructure (RTI) that services federates for data interchange
and synchronization in a coordinated fashion (see Figure 11.2). The RTI ser-
vices are provided to each federate through its Local RTI Component (LRC)
[18, 21]. The RTI can be viewed as a distributed operating system providing
services to support interoperable simulations executing in distributed com-
puting environments [51].

Runtime Infrastructure

Federate 1

Simulation

model 1

2 n

LRC

Callbacks

……

RTI calls

FIGURE 11.2
Model of HLA-based simulation.

186 Large-Scale Simulation: Models, Algorithms, and Applications

11.3.3 Hierarchical Grid Simulation Architecture: Overview

The design of the hierarchical Grid Simulation Architecture adopts a con-
cept model as shown in Figure 11.3. A number of federates are grouped into
multiple simulation bundles. Inside a simulation bundle, multiple federates
communicate with each other via the local RTI. Each simulation bundle hosts
a gateway service, which coordinates the communication of federates from dif-
ferent simulation bundles. The concept model of hierarchical Grid simulation
infrastructure was designed to conform to the Grid system defined in Section
11.3.1. As shown in Figure 11.4, a compute center hosts a simulation bundle;
the gateway service is implemented in the head node, and federates of the
simulation bundle are computed in CEs of the compute center. The gateway
service communicates with gateways of other simulation bundles over the Grid
infrastructure.

Run Time Infrastructure

……
Federate 1

n

Run Time Infrastructure

……
Federate 1

n

I f

gateway

Simulation bundle

Simulation

bundle

Simulation

bundle

Simulation

bundle

bu

Simu

bu

ion

e

networking

FIGURE 11.3
Concept model of the hierarchical Grid simulation architecture.

As illustrated by Figure 11.5, a gateway mainly consists of (1) a Grid feder-
ate module (GFM), (2) a Local federate module (LFM), (3) a Routing module,
and (4) a Synchronization module. The GFM is implemented as a Grid ser-
vice and communicates with other gateways. The GFM retrieves events and
runtime simulation data generated by simulation models from other simula-
tion bundles. The LFM operates an individual LRC to directly interact with
federates in the simulation bundle. The LFM receives timestamped ordered
(TSO) events and other runtime simulation data from its local federation and

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 187

Grid

Infrastructure

Compute center

Head node

L
A

N

nodde

Gateway

Mode 1
Mode 1

CE

Federate

y

R
T

I

FIGURE 11.4
Large-scale distributed simulation in a hierarchical Grid architecture.

generates events from other federations (remote events) the local federation.
The Routing module deals with delivering an event to the right destination
gateway and relays remote events to the LFM. The synchronization module is
responsible for delivering these events in correct order and coordinating time
advances of all simulation models. More details about the synchronization
algorithm are available in [20].

11.4 Hybrid Modeling and Simulation of Huge Crowd:

A Case Study

We have developed a federated simulation of a huge crowds evacuation and
its interaction with vehicles in an urban area. The objectives include (1) to
examine the feasibility of composing models of various types to characterize a
crowd, (2) to explore the suitability of the hierarchical Grid simulation archi-
tecture for Crowd simulation, and (3) to address the performance bottleneck
of simulating a huge crowd.

11.4.1 Huge Crowd Scenario

We first identified a typical scenario of the huge crowd phenomenon: an evacu-
ation procedure of a crowd after a National Flag Raising Ceremony at Tianan-
men Square (see Figure 11.6(A)). The square is 440,000 square meters in area
with a rectangular shape. The main body of the square is shown as the area

188 Large-Scale Simulation: Models, Algorithms, and Applications

Event

selecti

on

Synchronization

module

Routing

module

Event

buffer

Grid

federate module

Event

selecti

on

Synchronization

module

E

s

o

n
Routing

module

g

Event

buffer

ect

Grid

federate module

Simulation

bundle

Simulation bundle

Local

federate module

Gateway

Simulation bundle

Gatewaytew

Gateway

Computational

Grids

Federate 1 2 n ……

Run Time Infrastructure

time constraint, events, runtime data

Time

constrai

nt

Events

Routing

table Events

Time

constrai

nt

FIGURE 11.5
Gateway service architecture.

circled by the dashed line. Pedestrians may freely traverse in this area except
the zones restricted from access. Thousands of pedestrians can gather around
the zone of interest (flagged) and still remain in the assembly area with the
ongoing event. Figure 11.6(B) is a snapshot of the assembly area in real life.

On completion of the event, pedestrians start to disperse away from the
assembly area and leave the square via six passages, referred to as P1 through
P6. P1 and P2 denote the entrances of two pedestrian underpasses, and P3
through P6 represent four pedestrian crosswalks. As soon as pedestrians enter
P1 or P2, they will be considered out of the scenario. Two one-way roads lo-
cated on the top and beneath the circled area respectively, and pedestrians can
leave the square to the other side of each road via the crosswalks (the reserve
direction not assumed) and leave the scenario afterward. When pedestrians
are moving on a crosswalk, the flow of vehicles along a road will be controlled
by traffic lights that signal every 60 seconds periodically. No violation of the
traffic rule is assumed for either pedestrians or vehicles.

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 189

P1

P2

P3

P4P6

P5

Restricted

Zone
Passage

N

Assembly

Area
(A) Environment of the crowd scenario (B) A case of the crowd in the assembly area

One

Way

One

Way

FIGURE 11.6
Illustrating the huge crowd scenario.

11.4.2 Simulation Models

To adapt to the size and complexity of the scenario, we developed three sig-
nificantly different types of models with various scales and composed the huge
Crowd simulation with them. Those include (1) an agent-based model for
pedestrians in the square (except the assembly area) and the crosswalks, (2) a
macroscopic crowd model for the pedestrians aggregated only in the assembly
area, and (3) another agent-based model for the vehicles on the roads.

11.4.2.1 Pedestrian Agent Model

In this study, we adopted an agent model to characterize a pedestrian’s behav-
iors. An agent represents a pedestrian, who can be an independent individual
or a member of (1) a tourist group, (2) several friends or (3) a group of rel-
atives. Under normal conditions, the model assumes that pedestrians would
follow the rule of proximity; for example, pedestrians with their initial loca-
tions at the upper part of the square tend to select the upper exits as their
final goals. Figure 11.7 depicts an agents state transition process spanning
from its start state (initial location) to the end state (an exit reached) where
it is removed from the simulation scenario.

An agent always tends to reach a passage to exit the scenario, and the
passage will be selected as its final goal. We define a human-like rule for
routing the agent to fulfill its final goal. The agent’s route area is always
divided into four connected areas, each associated with a sub-goal, that can
be any location of the area. In a normal situation, that is, no danger event
detected, the agent needs to check whether it is related to the neighbors. If

190 Large-Scale Simulation: Models, Algorithms, and Applications

Selecting

a goal

Individual

searching for

direction

Danger event

detected

Checking

neighbors

No

danger

Following

a leader

Avoiding

collision

Being as

a leader

Direction

confirmed

Leader

searching

for

direction

Being as a

follower

Leader

followed

Checking

final goal

Goal

reached

Goal not

reached

Goal

reached

Direction

confirmed

Joining a

groupRelated

Not

related

FIGURE 11.7
State transition of a pedestrian agent in terms of behaviors.

yes, the agent moves together with the related agent(s) as a group, and the
leader agent in the group searches for direction while other agents follow the
leader. In contrast, an independent agent searches for direction individually.

Once any agent identifies the direction, it switches to the behavior of avoid-
ing neighbors. The agent checks from time to time whether the goal in the
area is reached; if yes, it will move to the next area and do the check again;
otherwise it continues searching for direction and avoiding behaviors until it
reaches the final goal. If a danger event is detected, the agent directly searches
for direction without considering the grouping option. Another possibility not
covered by Figure 11.7 is that an agent can perish when encountering dan-
ger. The agent will reach the end state immediately and be removed from the
scenario.

11.4.2.2 Computational Model of the Crowd Aggregated in the
Assembly Area

When dealing with a crowd of high density and large size, a macroscopic model
often applies. Such a macroscopic (computational) model treats a crowd as a
whole to characterize some common features of the individuals in the crowd

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 191

without distinguishing their individualities, for example, the flow model using
the continuum theory [58]. A computational model can obtain results at the
scale of a whole crowd at much lower computational expense in comparison
with using agent-based models. In the study, we compose a computational
model that defines the mechanism for the pedestrians in the assembly area
(referred to as the crowd in this discussion), choosing the route to the destina-
tion and implementing the choice of routing: The crowd’s speed is a dynamic
three-dimensional function [114]. It defines the average speed of individuals
located within a unit area of floor space at given a time point t and location
(x, y). The expected number of these individuals is the pedestrian density,
written as ρ(x, y, t). The chosen speed and moving direction of these individ-
uals, that is, the expected velocity, is written as v(x, y, t). The crowd’s speed
is subject to the density. The speed monotonically decreases from a preferred
speed down to zero, with the density varying from zero to a preset maximum
value.

The model always chooses the route that requires the shortest time to reach
the destination. We defined a cost function and a potential function for this
purpose: The cost function, written as c(x, y, t), represents the minimal time
cost for the pedestrians at a given location to move a unit distance, which
is determined by the density of pedestrians at this location. The potential
function, written as φ(x, y, t), defines the time to reach the final destination.
The potential function can be calculated given that the neighboring points
with the minimal value of the cost function are always chosen from the current
location to the destination. The cost function and the potential function can
be quantified using an Eikonal equation:

∇φ(x, y, t) = c(x, y, t) (11.1)

After the potential function is resolved from the above equation, the min-
imal time from any point to the destination can be obtained. The pedestrians
in the crowd will choose the route with the direction opposite that of the gra-
dient of the potential function, φ(x, y, t). Eventually, the crowd movement is
governed by a conservative equation:

∂ρ(x, y, t)/∂t+∇(v(x, y, t)ρ(x, y, t)) = 0 (11.2)

11.4.2.3 Vehicle Agent Model

The vehicles running on the two one-way roads are modeled using another
type of vehicle agent, with each agent representing an individual vehicle. A
road consists of four lanes, and each agent only moves along one lane and
will not switch to another. All vehicle agents tend to maintain the maximum
speed allowed by the traffic control. A safety distance is defined to regulate
vehicle agents according to their speeds. When two adjacent agents become
too close, the one that is behind will attempt to slow down to maintain a safe
distance between them. When an agent encounters a red traffic light, it stops

192 Large-Scale Simulation: Models, Algorithms, and Applications

to leave the crosswalk to the pedestrians. When a vehicle agent approaches
the end of a road, it slows down for turning.

In summary, Table 11.4.2.3 lists the basic features of the three types of
models:

TABLE 11.1
Features of Simulation Models

Models Pedestrians Crowd in the
Assembly Area

Vehicles

Type Agent based Computational Agent based

Scale Individual Crowd(macroscopic) Individual
Outputs Each

pedestrian’s
behaviors

A crowd’s dynamic
distribution pattern

Each vehicle’s
motion pattern

Environment 2D space 2D space 1D space

11.4.3 Crowd Simulation over the Hybrid Grid Simulation
Infrastructure

The overall scenario consists of two main regions, that is, the square and the
surrounding roads involving entities with very different dynamics. Accord-
ingly, two sets of simulation models were developed to represent the evolving
activities in the two regions. Each set of models forms an individual simula-
tion federation. The square federation and the roads federation operated on
two administrative domains correspondingly (marked as federations A and B,
respectively, in the remainder of this chapter). The former federation (referred
to as federation A) simulates how aggregated pedestrians disperse from the
assembly area (see Figure 11.6) and permeate over the whole square. The lat-
ter federation (referred to as federation B) describes the pedestrian flows on
the crosswalks and the motion patterns of the vehicles on the roads. In par-
ticular, the combined influence from the dynamics of the crowd on the square
and from traffic control on each pedestrian flow has been considered. Figure
11.8 illustrates the structure of the overall agent-based models sustained by
the infrastructure. The major event or data flows among individual federates
are presented.

Twenty thousand pedestrians were simulated in the scenario, and this re-
quires the same large number of deliberative agent which inevitably results
in a performance bottleneck for a desktop computer. Aiming at the potential,
the square was divided into seven partitions as shown in Figure 11.9. Each
dashed line represents a border between two neighboring partitions. Dark
gray blocks denote the areas restricted from access. Six pedestrian federates
(denoted by A1 through A6) were constructed with each corresponding to a
partition linked to a crosswalk or passage to simulate the activities within the

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 193

partition. A pedestrian federate consists of a number of pedestrian agents.
Another crowd federate (A7) simulates the crowd initially aggregated in the
assembly area using the macroscopic model. Each partition of the virtual en-
vironment was maintained by a federate, respectively, as illustrated by Figure
11.8, which highlights the interactions among federates A4, A6, and A7 (the
interactions between entities inside a federate are detailed in Section 11.4.2):

• A pedestrian federate to another. If a pedestrian moves to an adjacent
partition, the ownership of the corresponding agent will be transferred to
the federate maintaining this partition. This partition-crossing activity will
be signaled by an event sent from the source federate to the destination
federate, which carries the information of agents states, the locations, and
the time point this movement occurs.

• The crowd federate to an adjacent pedestrian federate. The crowd feder-
ate provides statistical information about the pattern of the crowd dispersing
from the assembly area. The information drives each adjacent pedestrian to
create agents at certain locations and times as well as to initialize the state
of each agent. This results in a gradual de-aggregation of the crowd in the
assembly area, which was originally in an ultra high density.

• A pedestrian federate to the adjacent crowd federate. A pedestrian may
move back to the assembly area from an adjacent partition; thus the de-
parting agent will aggregate to the crowd simulated by the crowd federate.
The macroscopic model needs to adapt to this event. Federation B simulates
vehicle and pedestrian activities on the roads. Each road and the vehicles
running on them are simulated by an individual road federate (denoted by
B1 and B2). A road federate maintains a number of vehicle agents. The
activities of pedestrians on each crosswalk are simulated by an individual
pedestrian federate (denoted by B3 through B6 corresponding to the cross-
walks illustrated in Figures 11.6 and 11.8).

• Between a pedestrian federate (in square) and an adjacent pedestrian
federate. Taking federate A6 and federate B6, for example, at a time point
at which traffic light switches, federate B6 signals federate A6 with an event.
If the light becomes green to pedestrians waiting in front of the crosswalk,
federate A6 responds with an event of pedestrian moving to the crosswalk.
Federate B6 will be fed with the information of the pedestrians, and federate
B6 accordingly initiates a procedure of simulating agent movement on the
crosswalk.

• Between a pedestrian federate (in roads) and a related vehicle federate.
Federate B2 simulates the vehicles running on a road (B2). When the traf-
fic light of the crosswalk associated with B6 remains green (from vehicles’
perspective), federate B2 sends events to federate B6 about the vehicles
crossing the crosswalk. When the traffic light switches, federate B6 signals
federate B2 with an event. If the light turns to red or green, vehicle agents
on federate B2 will respond to this event as described in Section 11.4.1.

194 Large-Scale Simulation: Models, Algorithms, and Applications

A2

A1

GW-AA7

A4

A3

A6

A5

Pedestrians

moving to

adjacent

partition

direct event/data flow

Deaggregation

indirect event/data flow

Aggregation

The “Square” Federation in domain A

B3

B4

GW-B

B1

B2

B5

B6

Vehicles crossing

a crosswalk

Traffic light switching

The “Roads” Federation in domain B

D
ata

flo
w

o
v
er

th
e

G
rid

Pedestrians

moving to a crosswalk

Traffic light switching

FIGURE 11.8
Structure of the crowd evacuation simulation system.

In the whole Crowd simulation, one virtual time unit in the simulation
represents 0.1 second wall clock time. Sixty-minute activities in the scenario
were simulated, which corresponds to 36,000 virtual time units. The pedes-
trian federates’ timesteps and lookaheads [72] are set to 2.0, and the vehicle
models’ timesteps and lookaheads are set to 1.0. As each traffic light signals
every 60 seconds, the lookahead of both gateways are set to 600. This value ap-
propriately reflects the relation of the two federations. One virtual space unit
represents 1.0 meter in the scenario. The resolution of the simulated square
and crosswalks are set to 0.5 meters, while the resolution of the roads is set
to 1.0 meter.

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 195

A1

A1

A2

A7

A4

A3

A5

A6

B5 B1

B2

B3

B4B6

FIGURE 11.9
Conceptual view of the partitions of the scenario.

11.5 Experiments and Results

The test bed is built upon two compute centers at Indiana University, United
States, and at Huazhong University of Science and Technology, China. Each
site contains a compute cluster. Table 11.5 describes their resource configura-
tion. Grid services are provided by Globus Toolkit 5.0.3 [51].

TABLE 11.2
Test Bed Description

Compute Center Resource Description

Univ. Indiana, US Compute cluster: 20 nodes
Node: Intelr CoreTM i5-2520M Processor 2.50GHz,

4G RAM
Network: 1Gbps Ethernet

OS: Ubuntu Linux 10.04 LTS
CUG, China Compute cluster:10 nodes

Node: Intelr Xeonr Processor E5603, 2G RAM
Network: 2Gbps Myrinet

OS: SuSE Linux Enterprise 11sp1

196 Large-Scale Simulation: Models, Algorithms, and Applications

11.5.1 Communication Latency

We first performed a latency benchmark to investigate the communication
overhead incurred by the underlying infrastructure. The benchmark measures
the latency of federate communications as follows: One federate (on A1) sends
an attribute update [25], and upon receiving this update, the other federate
(on B1) sends it back to the sending federate. The elapsed time of this commu-
nication is calculated using the real-time taken at the sending and reflecting
federates [16, 21]. The averaged result indicates that the latency is about 373
milliseconds.

11.5.2 Crowd Simulation Outputs

The experimental data recorded from one run were collected and the evolve-
ment of the whole scenario is reconstructed. Snapshots of the virtual scenarios
states of the two regions at different stages are presented as follows:

• Initial Stage of the Activities in the Square. There are in total 30,000
agents with their locations set conforming to uniform distribution in the
assembly area. Those represent the state of the crowd initialized by federate
A7 (the computational crowd model) according to the density function. The
speed (see Section 11.4.2.2 for definition) of the crowd remains zero until
the occurrence of the event End of the ceremony.

• Middle Stage of the Activities in the Square. After triggering the
End of the ceremony event, agents at federates A1thourgh A4 were initial-
ized and driven by the inputs from A7 (see Figures 11.8 and 11.9) to rep-
resent the scattering pedestrians. With the simulation progressing, agents
at models A5 and A6 were eventually driven to simulate the activities of
pedestrians on partitions A5 and A6. We developed a visualization end for
displaying the pedestrians in the square area, and Figure 11.10(A) presents
the overall distribution of pedestrians at simulation time 9,000. The coordi-
nates of the remaining pedestrians are exactly the agents current positions
logged by A1 through A6. Agents are marked with three different colors:
red (a member of a tourist group), blue (a member of a group of friends),
and black (an independent individual). We selected two areas as shown in
Figure 11.10(A) to have a zoom-in view. The zoom-in view explicitly gives
each pedestrian’s position and moving direction. Figure 11.10(B) presents
a number of agents in the middle of the square in which exist two tourist
groups. We can see the agents in a group are close to each other and moving
toward the similar directions. Figure 11.10(C) highlights a selected area at
the entrance of passage P1. It can be observed that pedestrians are swarming
towards the entrance of the crosswalk.

• Middle Stage of the Activities over a Crosswalk. Federates B3 through
B6 generate the activities of the pedestrians moving over the crosswalks.
Figure 11.11 presents the snapshot of the walking pedestrians over crosswalk

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 197

P4 at simulation time 9,030. The figure also shows the status of vehicles
close to P3. Each black block represents a vehicle with an arrow marking its
direction and the length of the arrow indicating its rate. A block associated
with no arrow denotes a still vehicle.

FIGURE 11.10
Snapshot of pedestrians in the square at simulation time 9000.

The activities on a road are presented in Figure 11.12. It gives a snapshot
of the vehicles running on a road (B2) at simulation time 9,090, at which point
pedestrians are restricted from trespassing the crosswalks by traffic control.

198 Large-Scale Simulation: Models, Algorithms, and Applications

Vehicle Speed

60km/h

Pedestrian
Moving

Direction

60k /h

FIGURE 11.11
Snapshot of pedestrians and vehicles on a road at simulation time 9030.

We can observe that the vehicles located closer to both ends of the road have
a speed lower than those in the middle.

Vehicle Speed

60km/h

FIGURE 11.12
Snapshot of the vehicles on a road at simulation time 9090.

11.5.3 Performance Evaluation

The total averaged execution time of the simulation reports about 2118 sec-
onds; therefore a faster-than-real-time method has been enabled to study the
simulated scenario and the potential bottleneck of executing large number of
deliberative agents has been successfully resolved.

In order to investigate the runtime performance of the hierarchical Grid ar-
chitecture, we compare the Crowd simulation over the architecture (referred
to as the Grid-enabled Crowd simulation, GCS) versus a stand-alone com-

Hybrid Modeling and Simulation of a Huge Crowd over an HGA 199

pute node at the CUG side (see Table 11.5 for specification). We developed a
pedestrian agent model that covers the crowd activities of the square (i.e., the
combination of federates A1 through A6) and uses the log of federate A7 as
input to initialize the agents originating from the assembly area and the logs
of federates B3 through B6 as inputs to throttle the actions of agents that
finally exit the scenario via passages P3 through P6. This model is referred to
as the sequential Crowd simulation, SCS, in this section.

We performed a series of experiments that focuses on the execution times
of GCS and SCS. We trust that the complexity of the two simulation systems
is basically controlled by the number of pedestrians, that is, the number of
the deliberative agents.

Table 11.5 gives the execution times of the two types of Crowd simulation
systems with increasing crowd sizes. When there are 3000 pedestrians, the
execution time of GCS is 1318s which longer than that of SCE. This is due to
the high communication overhead of the Grid services. With the complexity
increasing significantly, GCS performs better when the communication over-
head is covered by the benefits gained by distributing the computation load of
agents to multiple compute nodes. A single compute node can sustain about
8000 agents as the maximum. The results indicate that (1) the hierarchical
Grid architecture can significantly improve the runtime performance of exe-
cuting complex simulation scenarios and (2) it scales well with the scenario’s
complexity.

TABLE 11.3
Performance of Sequential and Parallelized COS Systems.

Number of agents Execution time(Sec)
SCS GCS

3000 897 1318

5000 1965 1571
8000 2923 1943
10000 N/A 2080

20000 N/A 2117

30000 N/A 2518

11.6 Summary

This chapter presented a hybrid approach to modeling and simulation of a
huge crowd upon a hierarchical Grid simulation architecture. We successfully
developed a simulation system of the evacuation procedure of a huge crowd in
an urban area that initially had a high density. Three heterogeneous models,

200 Large-Scale Simulation: Models, Algorithms, and Applications

namely a computational microscopic crowd model, a pedestrian agent model,
and a vehicle agent model, have been constructed to characterize different
portions and aspects of the large and complex simulated scenario.

The simulation of a huge crowd at the scales of both the individual and
the crowd has been successfully developed with the support of the hierarchical
Grid simulation architecture. The simulation outputs indicate that the pro-
posed approach is effective in dealing with the size and complexity of scenarios
involving huge crowds. The performance issue in connection with executing
a large number of deliberative agents has been properly addressed as well.
These achievements are based on the underlying simulation architecture em-
powered by Grid computing. Coarse-grained and fine-grained models can be
seamlessly interplayed to describe the global dynamics of the whole while be-
ing able to capture the individuality of pedestrians. The experimental results
also indicated that even the execution efficiency of fine-grained models can
be guaranteed when the asymmetry of the simulation models in different do-
mains is properly mapped to the infrastructure. The infrastructure well suits
compute-intensive and large-scale simulation.

It is possible extend the current design to support large simulation with
models using hybrid computing platforms, for example, incorporating many-
core architectures [24]. It is particularly interesting to adapt multi-scale
ecosystem simulations and interacting neuronal networks [84] to the infras-
tructure.

12

Massively Parallel Modeling & Simulation of

a Large Crowd with GPGPU

CONTENTS

12.1 Introduction . 201

12.2 Background and Notation . 203

12.3 Hybrid . 205

12.4 Case Study of Confrontation Operation Simulation 208

12.4.1 Simulation of a Crowd in a Confrontation Operation 208

12.4.2 Dynamics Analysis via Entropy Calculation 209

12.5 Aided by GPGPU . 211

12.5.1 Parallelization of Crowd Simulation . 211

12.5.2 Evaluation of Performance and Energy Efficiency 212

12.5.2.1 GPGPU-Aided Confrontation Operation

Simulation . 212

12.5.2.2 Performance Evaluation and Energy Efficiency

Analysis . 214

12.6 Summary . 215

12.1 Introduction

A human crowd is a fascinating social phenomenon in nature. A crowd of
people may show a well-organized structure and become disordered animals
at another point. Numerous incidents/accidents in connection with a crowd
have been recorded in human history. How to predict and control the behavior
of a crowd upon various conditions/events is an intriguing question faced by
many psychologists, sociologists, physicists, and computer scientists. It is also
a major concern of many government agencies when dealing with crowds in
confrontation.

A crowd is not simply a collection of individuals; if usually exhibits highly
complex dynamics. The study of crowds in confrontation operations has re-
ceived more and more attention. Crowd gatherings accompanied by severe
violence have occurred frequently in our nowadays restless world. From a re-
searcher’s perspective, another important reason is that the dynamics of a
crowd in a confrontation operation are largely influenced by external stimuli

201

202 Large-Scale Simulation: Models, Algorithms, and Applications

(properties and status of entities in the scenario as well as events), which are
highly uncertain and often interact with the collective behavior of the crowd.

In general, pure mathematical approaches or analytic models are not ade-
quate in characterizing the dynamics of a crowd. Crowd modeling and simula-
tion (M & S) has recently been gaining tremendous momentum [121]. Existing
models are largely at two extreme levels (microscopic and macroscopic): ei-
ther model each individual as an autonomous agent, or treat the crowd as a
whole [26, 57, 58] or consisting of homogeneous particles [51] with no cognitive
features.

No matter that a crowd is formed spontaneously or organized, individu-
als in the crowd gathering at the same time and space will globally exhibit
common features, which can be well described by macroscopic modeling ap-
proaches. But the inherent pitfall of macroscopic modeling approaches is the
incapability to reflect the impact brought by regional events and individuali-
ties within the crowd: for what microscopic approaches are designed. On the
other hand, in general there is lack of a formal method to formulate a crowd’s
common features with agent-based approaches.

The collective behavior of a crowd in a confrontation operation is deter-
mined by both unanticipated external stimuli and the common features of the
crowd itself. In this study, we propose a novel method based on the concept of
vector field to formulate the way in which external stimuli may affect the ten-
dency of the behaviors of individuals. Our approach represents each individual
as an autonomous agent whose actions are guided by the vector field model.
As such, we bridge the gap between the macroscopic with the agent-based
approaches to more accurately characterize the interaction dynamics between
a crowd and external stimuli.

Furthermore, as pointed out by Helbing, emotions play a decisive role in
how people behave in crowds and the more nervous crowds get, the more
unpredictably and irrationally they behave. Existing crowd models normally
incorporate a number of tangible factors (such as speed, location, appear-
ance, age) and some also consider intangible (such as emotional) factors. How
to properly portray intangible factors and to quantitatively measure the im-
pact of these factors in a model remain a research challenge. This study also
explores an information entropy-based method to quantify the degree of of
individuals and proposes the potential for disorder of the whole crowd. A
quantitative analysis on the intangible dynamics of a crowd in confrontation
is then enabled. It is a research challenge to support confrontation opera-
tion simulations (COS) involving a large crowd. Large agent-based systems,
such as simulation of large crowds at the individual level, have long placed
it in the highly computation-intensive world. Using traditional CPU-based
high performance computing technology may provide an ad hoc solution to
the performance issue but this type of technology is subject to a number of
limitations: heat dissemination, excessive energy consumption, high-density
power, and excessive cost for associated cooling systems. There exists a press-

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 203

ing need for computing methods for COS that can simulate a crowd of large
size while ensuring energy efficiency.

In the past few years, the modern Graphics Processing Unit (GPU) has
evolved into a highly parallel, multithreaded, and many-core processor far
beyond a graphics engine that substantially outpaces its CPU counterparts
in dealing with computationally demanding, complex problems [8]. In this
study, we have developed a parallelized Crowd simulation approach, which
successfully adopts general-purpose computing on the graphics processing unit
(GPGPU) to thoroughly exploit the parallelisms of the COS process. The pro-
posed approach has been developed based upon NVIDIAs Compute Unified
Device Architecture (CUDA) [9], a general-purpose parallel computing archi-
tecture. Results demonstrate that GPGPU-aided approaches are remarkably
superior to the distributed computing-based counterparts in terms of both
performance and energy consumption.

The remainder of this chapter is organized as follows: Section 12.2 pro-
vides some background knowledge and redefines notations borrowed from
other disciplines. Section 12.3 introduces the vector field approach. Section
12.4 presents a case study of the simulation of a crowd in confrontation op-
eration. This section also gives a quantitative analysis of the evolution of the
simulated crowds entropy in terms of degree of panic. Section 12.5 introduces
the approach to M & S of a large crowd in a confrontation operation us-
ing GPGPU. We conclude this chapter with a summary and future work in
Section 12.6.

12.2 Background and Notation

This study (1) adopts an agent-based approach for modeling individuals, (2)
transplants the concept of vector field to reflect the influences of external
stimuli on a crowd, (3) uses information entropy to analyze a crowds intangible
dynamics, and (4) adopts GPGPU to parallelize COS to sustain scenarios
consisting of large crowds. Several important notations related to the above
methods are presented as follows:

• The agent-based approach is currently the most active approach used
for crowd M & S in the community of computer science and engineering
[15, 24, 51, 23, 111, 112]. A crowd is regarded as a collection of hetero-
geneous individuals who are empowered with decision-making capability,
with each agent representing an individual. The agent-based approach is
the most natural way to model behaviors with strong individual differentia-
tions. A typical example is the PAX system, which provides an M & S tool
for scenarios of peace support missions [98]. Our model also uses autonomous
agents to model individuals.

204 Large-Scale Simulation: Models, Algorithms, and Applications

• A vector field is a construction in vector calculus that associates a
vector to every point in a subset of Euclidean space. Vector fields are often
used in physics to model the strength and direction of some force, such as
the magnetic or gravitational force, as it changes from point to point. A
vector field in the context of this study formulates the relationship between
people’s intention (internal) and the external stimuli. The vector field theory
in physics will be adopted as the mathematical basis of the macroscopic
model. A vector field (see Figure 12.1) describes the influence (force) that a
stimulus has on a certain intention of a person who perceives this stimulus
in the scenario’s space. An intention is regarded as a charged particle, whose
charge is subject to the intention’s magnitude and may change with the
evolution of simulation. A vector field is dynamic if its intensity and direction
can change over time; otherwise it is fixed.

FIGURE 12.1
A gravitational field (left) and a repulsive field (right).

In this study, a vector field is defined for one particular stimulus that merely
works on one particular intention. As such, interference does not exist be-
tween any two vector fields. This definition significantly differs from those
vector fields in physics. The effect of multiple vector fields on an individual
is only exhibited by the combined force resulted from the forces these vector
fields act on multiple intentions exclusively.

• Entropy has important physical implications as the degree of disorder
of a physical system [54, 75, 107]. Information entropy is a measure of the

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 205

uncertainty associated with a random variable (X), which is defined as

H(X) = H(P1, P2, . . . , Pn) = −
∑

P (xi) logP (xi) (12.1)

where P (xi) is the probability that X is in the state xi, and
∑

n
P (xi) = 1.

If P (xi) = 0, P (xi) logP (xi) is defined as 0. The more disorderly a system
is, the more information it contains, and vice versa. In the context of our
crowd model, five types of behaviors have been defined, namely following,
avoiding, adjusting, confrontation, and retreat. An agent may be specified
a behavior at any point to conduct subject to a probability distribution on
these candidate behaviors. The information entropy can then be calculated
for the whole crowd. The value of the entropy will provide a quantitative
measure on how disorderly the current crowd is, which may then facilitate
controlling the crowd.

• The notation Degree of Parallelism (DoP) is used to quantify the par-
allelism as a problem to be solved. A problems DoP means the number of
portions in the problem, which can be concurrently solved/executed with
the same results as those attained in a serial manner.

12.3 Hybrid

A hybrid behavior model is designed to manipulate each agent’s behavior.
Figure 12.2 presents a conceptual view of the proposed model consisting of
two submodels, that is, (1) a rule-based submodel to specify each agent’s exact
behavior and (2) a vector field submodel representing the influences of external
stimuli common among all agents in the simulation. We adopted a classic
design for an agent, which has the cognition capability to sense, deliberate,
and then act. Rule-based agent approach has been extensively covered by
existing work. This study emphasizes the vector field submodel only.

The vector field submodel maintains a set of vector fields. The submodel
computes the integrative influence of the external stimuli on people’s various
internal intentions, and it outputs the tendency (measured by the combined
force) of an individual’s behavior. The tendency means what the individual
is likely to do rather than a deterministic action/motion as in Helbing’s ap-
proach [51]. The vector field approach has been examined in a scenario of
demonstration in front of a governmental building, as shown at the top of
Figure 12.3.

A crowd of demonstrators moves on a march toward a governmental build-
ing (with its entrance highlighted as the red star). Each individual demon-
strator is represented by a small red circle with its field of view and mov-
ing/confrontation direction marked. Armed policemen are denoted by blue

206 Large-Scale Simulation: Models, Algorithms, and Applications

Vector field submodel

Rule-based individual behavior submodel

External global event

Crowd level

tendency/rules

Emergent

event

Individual

Crowd/

Group

FIGURE 12.2
Conceptual view of the vector field submodel and the behavior model.

triangles pointing at their moving/confrontation directions. Agents are mov-
ing within the 2D space confined by the upper and lower bounds.

Here we consider an agent’s intentions of two types: (A) to approach the
entrance of the governmental building; and (B) to avoid being attacked by
the policemen. A basic type of vector fields has been defined to represent the

influences of the governmental building on an agent’s intention A (
→

Eg
(
→

r) in
Equation (12.2)) and (2) each armed policeman on an agent’s intention B

(
→

Ep[i]
(
→

r) in Equation 4):

→

Eg
(
→

r) =















































CA
(
→

r −Rg)
∣

∣

∣

→

r −Rg

∣

∣

∣

∣

∣

∣

→

r −Rg

∣

∣

∣
< D1

kA
Qg(

→

r −Rg)
∣

∣

∣

→

r −Rg

∣

∣

∣

3 D1 6

∣

∣

∣

→

r −Rg

∣

∣

∣
6 DMAX (12.2)

0
∣

∣

∣

→

r −Rg

∣

∣

∣
> DMAX

→

Ep[i]
(
→

r) =



















−kB
Qp[i](t)(

→

r −Rp)
∣

∣

∣

→

r −Rp

∣

∣

∣

3

∣

∣

∣

→

r −Rp[i]

∣

∣

∣
< D2 (12.3)

0
∣

∣

∣

→

r −Rp[i]

∣

∣

∣
> D3

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 207

Field of

view

A demonstrator

(an agent)
Direction of moving/

confrontation

A policeman

Y
-A

x
is

X-Axis

FIGURE 12.3
Simulation of a crowd in a confrontation operation.

where Qg is a fixed variable representing the intensity of the governmental

building; Qp(t) represents the intensity of the governmental building;
→

r is a
vector from the origin of coordinate to an agents location; RG is the vector
(fixed) from the origin to the star; RG is the vector from the origin to a
policeman (i); and CA is a constant. D1, D2, and D3 (>> D2) are constants
representing distances; DMAX represents the max distance between any two
locations in the scenario; and kA and kB are two coefficients.

We write an agent’s intentions A, B at a time point as QA(t) and QB(t)
respectively. The combined effect of the governmental building and the po-
licemen (i = 1, 2, . . . , n) on the agent can be written as

→

FAB(t) =
→

FA(t) +
→

FB(t) =
→

Eg(
→

r)×QA(t) +

n
∑

i−1

→

Ep[i](
→

r)×QB(t) (12.4)

In this scenario, policemen are deployed between the governmental building
and the demonstrators, and it is close to the government. Given that only
intentions A and B are concerned, the agent tends to confront the policemen

when
∣

∣

∣

→

FAB(t)
∣

∣

∣
is small enough (ε). The effect of

→

FAB(t) on the agent relies

208 Large-Scale Simulation: Models, Algorithms, and Applications

on the component (A-component) of
→

FAB(t) along the direction of
→

FA(t);
negative means in the same direction (see Figure 12.4). Let α denote the angle

between
→

FAB(t) and
→

FA(t); the magnitude of the A-component of
→

FAB(t) is

written as
→

F ε(t):

→

F ε(t) =
→

FAB(t)× cos(α) (12.5)

When
→

F ε(t) is negative, the agent tends to leave the governmental build-
ing and policemen; otherwise the agent tends to approach the governmental
building. The intensity of the tendency of the agent’s behavior is proportional

to
∣

∣

∣

→

F ε(t)
∣

∣

∣
.

12.4 Case Study of Confrontation Operation Simulation

Simulation has been executed using the agent model based on the vector-field
method to examine the effectiveness of the proposed method. The dynamics of
the simulated system have been quantified via entropy calculation afterward.

12.4.1 Simulation of a Crowd in a Confrontation Operation

The simulation scenario involves a crowd of 500 demonstrators marching to
the governmental building and interacting with the policemen (22 on initial-
ization) attempting to expel the demonstrators. The simulation lasts for 200
time units.

Figure 12.3 (see description in Section 12.3) illustrates the initial stage of

the simulation. The gravity field,
→

Eg(
→

r), dominates the agents’ (marked in

red) tendency;
→

F ε(t) on the agents are positive, so the agents approach the
red star. A small number of agents in the front lead the way, followed by the
remaining agents.

Figure 12.5 demonstrates three other stages of the simulation. When the

agents in the front get close enough to the policemen, the,
→

Ep[i](1 n), generate

a repulsive force sufficient to balance
→

Eg(
→

r).
→

F ε(t) on some agents in the front
half become less than ε, thus most of them confront the policemen and their
color turns to green (see Figure 12.5(A)).

Policemen start to move toward the agents to prevent the demonstrator
agents from further approaching the red star (see Figure 12.5(B) and (C)).
When the distance between the policemen and the agents in the front is gener-
ally small, the agents panic level increase, and the intensity of their intention

A diminishes. In these cases
→

Ep[i](1 n) dominate, and
→

F ε(t) of most agents
become negative which drive more and more agents leave the demonstration.

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 209

p[1]

p[7]

f[6]

FA

Agent:

demonstrator

p[2]

p[3]

p[4]

p[5]

p[6]

f[3]

f[5]

f[2] f[1]

f[4] f[7]

FIGURE 12.4
Combined force acted on an agent.

12.4.2 Dynamics Analysis via Entropy Calculation

In this study, we introduce the concept of information entropy to analyze the
degree of disorder of the simulated crowd. The definition of entropy is available
in Section 12.2.

Figure 12.6(A) presents the information entropy of the crowd calculated
for the simulation scenario presented in Section 12.4.1:

• A peak in entropy in the duration, from time 0 to 40 can be observed.
This is caused by the diversity of agents’ behaviors when the agents pour
into the demonstration at the beginning.

• After time 20, the crowd march to the governmental building and most
agents’ behaviors converge; thus the value of entropy drops sharply.

• From time 40 to 70, there is a sharp increase in information entropy.
Agents are in the process of approaching the governmental building, and
their degrees of panic are growing as they get closer to policemen.

• After time 70, agents continue to move forward and most of their be-
haviors become confrontational to the policemen. This results in a drop in
the value of information entropy.

210 Large-Scale Simulation: Models, Algorithms, and Applications

(A) Demonstrators confronting the policemen (B) Most demonstrators being stopped & retreatingconfrff onting the policemen ((B)BB Most demonstrators being stop

(C) Demonstrators being dispersed

FIGURE 12.5
Evolvement of a simulated crowd in a confrontation operation.

• From time 100 to 130, the policemen move toward the agents in advanc-
ing. Agents gradually start to retreat. As the number of retreating agents
increases, the behaviors of the crowd tend to converge, and the entropys
value drops further.

• When some small groups of agents are formed and remain in confronta-
tion with the policemen, the third peak is reached at time 150. There can be
few agents who managed to cross the policemen and rush into the govern-
mental building. This diversity makes the information entropy at a relatively
high level.

In the previous simulation, agents with strong intention A may break
through the policemen line. To test the influence of more policemen on the
order of the crowd, we performed another simulation with more policemen
(30) deployed when most agents are in the state of confrontation. From Fig-
ure 12.6(b), we can see that the value of information entropy in the current
simulation is generally less than that calculated from the previous simulation.
The information entropy also drops to zero at the end stage of the simulation,
in contrast to the results presented in Figure 12.6(a). This denotes that the
crowd is more orderly in this simulation and the probability of an unantici-
pated emergency events is reduced. The time for the crowd to reach stability
is also shortened. In the two simulations, the information entropy properly

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 211

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

v
a
lu

e

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

v
a
lu

e

(a) Entropy of the first COS (b) Entropy of the second COS

FIGURE 12.6
The information entropy of the case studies of COS.

reflects the status and the evolution of the dynamics of the crowd under the
influence of the policemen and the governmental building.

12.5 Aided by GPGPU

Due to the complexity of the COS at the individual agent level, the size of
a simulated crowd is very limited, that is, around 8000 individuals as the
maximum, even using a cutting-edge desktop computer. Another problem is
the execution efficiency. We developed a GPGPU-aided solution to address
these problems.

12.5.1 Parallelization of Crowd Simulation

The most intensive computation of a COS in this study lies in the execution
of agents. The complexity increases almost linearly with the size of the crowd,
that is, the number of agents. A sequential COS operates in a number of
identical virtual time frames, typically representing 0.2 seconds in real world.
For each time frame, the simulation executes all agents one by one to compute
each agents velocity (V), position (P), decision on behavior selection (B), and
its target (G). Computing the four attributes of an agent requires the COS
system state (obtained from the last time frame), and this is independent of
the results of any other agent in the current time frame.

This means that it is possible to parallelize the task of executing multiple
agents. Considering the feature of the Crowd simulation, we propose a scheme

212 Large-Scale Simulation: Models, Algorithms, and Applications

to partition the execution of agents into a number of subtasks, with each
executing an individual agent as shown in Figure 12.7. Given that a COS
scenario consists of NA individuals, the COS’ DoP equals NA at the individual
agent level.

12.5.2 Evaluation of Performance and Energy Efficiency

We have performed a number of experiments to study the performance of the
alternative COS systems. The configurations of the test bed are presented in
Table 12.1. The original sequential version of the COS was modeled using Java
upon RePast 3.0 [16], a Java-based toolkit for the development of lightweight
agents and agent models. RePast has become a popular and influential toolkit,
providing the development platform for several large multi-agent simulation
experiments, particularly in the field of social phenomena. We first examined
the overhead distribution of the simulation program. The computer node is
only able to execute 8000 demonstrators to the maximum. Given a scenario
consisting of 4000 demonstrators with the timestep set as 0.5 seconds (simu-
lation time), the simulation execution time on a single computer node is 309
seconds. The elapsed time in calculating V, P, B, and G is 308 seconds, which
contributes about 99.6% of the overall overhead. Clearly, the performance
bottleneck of the program lies with calculation of the four attributes of the
agents.

12.5.2.1 GPGPU-Aided Confrontation Operation Simulation

Based on the above observations, we developed a parallelized simulation using
GPGPU, which excels in handling large numbers of concurrent fine-grained
subtasks. The GPGPU-aided COS uses an individual CUDA thread to com-
pute each agent’s four attributes in each time frame (see Figure 12.7). The
new simulation program was developed based on JCuda (version 0.3.2a) [54],
a Java bindings for Java programs to interact with CUDA runtime and driver
APIs. Thus, most of the original simulation code in Java can be reused while
still having the benefit from the underlying powerful parallel programming
and computing capabilities offered by GPGPU.

Given that a COS scenario consists of NA individuals, we produced a
scheme that maps this task to CUDA threads in the following steps: Step 1 :
After initialization of the kth time frame, the host assigns NA data sets derived
from the simulation’s current system state. Each data set corresponds to an
individual agent for computing its velocity, position, decision on behavior
selection, and its target; Step 2 : The host invokes NA CUDA threads via
JCuda, and these threads are evenly grouped into 480 blocks (NA/480 threads
operating in each block) on the device. This means that 480 cores on the GPU
are assigned to execute these agents with each core computing one agents
attributes individually; Step 3 : Step 2 repeats until the NA threads complete
execution. The NA agents’ new attributes are then passed from the device

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 213

TABLE 12.1
Configuration of the Test Bed.

Specifications Computers
Desktop Computer

(Client)
Computer Cluster

(Server, 1 master node
and 15 worker nodes
interlinked via 1Gbps

Ethernet)
Operating
System

Windows 7
Professional

Rocks 4.2.1 (Cydonia)
Red Hat Enterprise Linux

ES release 4, X86 64
2.6.9-42.ELsmp

CPU Intel Pentium Dual
Core at 3.20GHz and

3.19GHz

2 x Intel Dual Core at
3.0GHz

RAM 2048M 4096M

Power
Consumption

650W 3.5KW∼14KW

Specifications of NVIDIA GeForce GTX 480

CUDA Cores 480
Processor

Clock
1401MHz

Standard
Memory

1536 MB GDDR5

Memory
Bandwidth

223.8GB/s

Power
Consumption

250W

214 Large-Scale Simulation: Models, Algorithms, and Applications

Initialization of the

execution of the kth time

frame

Thread [k][1] …

Calculation of

Agent[1]’s V, P, B,

and G

…

Thread [k][NA]

Calculation of

Agent[NA]’s V, P,

B, and G

Update of the simulation

process’s system state at the end

of the kth time frame

FIGURE 12.7
Execution task graph of a parallelized simulation scheme.

to the host. The host then updates the system state through the RePast
simulation engine and enters the (k+1)th time frame. Our design minimizes
the thread number in a thread block while it creates thread blocks as many as
possible when executing threads of this type. Hence, these threads can make
the most of CUDA cores to deal with intensive computations and occupy as
much fast shared memory (manipulated by each block) as possible to buffer
the intermediate data generated during their executions. The GPGPU-aided
COS can support scenarios consisting of more than 30,000 demonstrators.

12.5.2.2 Performance Evaluation and Energy Efficiency Analysis

In order to investigate the potentials of traditional CPU-based high-
performance techniques, for example, cluster computing, and to establish a
reference for evaluating the GPGPU-based approach, we developed another
parallelized COS with the support of HLA RePast [16], a middleware that
supports the execution of multiple interacting instances of RePast agent-based
models. Thus a Cluster-aided COS (CCOS) has been established, and the load
of executing the original COS can then be distributed over the fifteen worker
nodes of the computer cluster (see Table 12.1).

We performed a series of experiments that focused on speedup (compar-

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 215

ing to sequential COS, referred to as SCOS) and aimed to investigate and
compare the performance of GPGPU-aided and Cluster-aided COS systems.
Table 12.2 gives the execution times of the two types of COS systems with
different numbers of agents (demonstrators). The results indicate that (1) the
two parallelized COS systems significantly improve the runtime performance
and scale well with the number of agents; and (2) the GPGPU-aided COS (re-
ferred to as GCOS) always excels in performance improvement. The results
(agent number 6 8000) are highlighted in Figure 12.8.

TABLE 12.2
Performance of Sequential and Parallelized COS Systems

Number Sequential Cluster-Aided GPGPU-Aided COS
of

Agents
COS COS (parallelized) (massively

parallelized)
Execution

Time
(sec)

Execution
Time
(sec)

Speedup Execution
Time
(sec)

Speedup

3000 206 102 2 20 9.8

4000 309 138 2.2 31 10

5000 565 191 3 57 10
8000 1219 439 2.8 95 13
10000 N/A 680 N/A 115 N/A

12000 N/A 718 N/A 129 N/A

20000 N/A 1409 N/A 209 N/A
30000 N/A N/A N/A 317 N/A

The GPGPU-aided COS in this study operates on a graphic card with
power consumption that amounts to the maximum 250W included in the
maxim 650W power consumption of the desktop. During the execution of
GCOS on the desktop (viewed as a CPU-GPU hybrid system), the desktop’s
consumption was about ∼210W. In contrast, during the execution of SCOS
on the desktop (viewed as a pure CPU system), the desktop’s consumption
was about ∼130W. The computer cluster’s power consumption amounts to
∼9KW during the execution of CCOS.

Taking the test scenario with 8000 agents for example, the execution times
with SCOS, CCOS, and GCOS are 1219s, 439s, and 95s, respectively. The
total energy consumption using the three systems is ∼158470j, ∼3951000j,
and ∼19950j. Comparing with the GCOS system, SCOS/CCOS consumes
∼7/∼197 times more energy. This analysis does not consider the power con-
sumption of the cooling system for the computer cluster room. The exper-
imental results demonstrate the great advantages of GCOS over SCOS and
CCOS in terms of both runtime performance and energy consumption.

216 Large-Scale Simulation: Models, Algorithms, and Applications

206

309

565

1219

102
138

191

439

20 31
57

95

0

200

400

600

800

1000

1200

1400

3,000 4,000 5,000 8,000

E
x

e
c

u
ti

o
n

 t
im

e
s

 (
S

e
c

o
n

d
s

)

Number of agents

Execution time of alternative COS systems

Sequential COS

Cluster-aided COS (parallelized)

GPGPU-aided COS (massively parallelized)

FIGURE 12.8
Execution time of alternative COS systems (agent number 6 8000).

12.6 Summary

This study explored an energy-efficient and high-performance solution to sim-
ulation of confrontation operations involving large crowds. The novel simu-
lation approach, namely GPGPU-aided COS, was developed to address the
scalability and performance issues using GPGPU.

We first proposed a vector field method that aims to formulate the way
in which external stimuli may affect the tendency of the behaviors of individ-
uals. Together with the agent-based approach, a model for the simulation of
a crowd in confrontation operations has been established using RePast. We
also introduced the concept of information entropy to analyze how the change
in each individual’s behavior may affect the intangible dynamics of the whole
crowd. A case study of Crowd simulation was carried out. Through the mea-
surement of information entropy, the status and the evolution of the dynamics
of the crowd can be revealed. The results indicate that (1) the proposed COS
model can exhibit the typical behavior pattern of a crowd in confrontation;
and (2) that information entropy can provide evident support for the design
of control tactics for crowd control.

This study then emphasizes the feasibility and effectiveness of COS with

Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU 217

GPGPU. The GPGPU-aided approach naturally divides a COS into a large
number of fine-grained tasks; thus it effectively exploits the parallelism of the
COS system at the individual agent level. It seamlessly maps the tasks to
the same number of CUDA threads that can be executed concurrently by
hundreds of GPU cores.

Experiments have been carried out to evaluate the performance of GPU-
aided COS and to investigate the potentials of traditional CPU-based high-
performance techniques. A Cluster-aided COS has been developed based on
HLA-RePast. Although Cluster-aided COS runs over a high-end CPU-based
computer cluster, GPU-aided COS prevails in runtime efficiency: G-EEMD is
∼6 times faster than the best distributed counterpart does. More importantly,
the graphics card has maximum power consumption at only ∼1/36 of the
computer cluster’s power consumption. This figure does not consider the power
consumption of the cooling system to ensure that the computer cluster is
operable. The results indicate that GPGPU is a very promising technique
in the simulation of social phenomena. The proposed GPGPU-aided COS is
indeed a highly energy-efficient and an ultra high-performance solution to the
M & S of confrontation operations

This page intentionally left blankThis page intentionally left blank

References

[1] RTI 1.3-Next Generation Programmers Guide Version 5. DoD, DMSO,
Feb. 2002.

[2] Pitch Kunskapsutveckling AB. 2004.

[3] S. AbouRizk and Y. Mohamed. Simphony-an integrated environment for
construction simulation. In Proceedings of the 2000 Winter Simulation
Conference, pages 1970–1974, Orlando, Florida, USA, Dec. 2000.

[4] R.G. Addie. Quantum simulation: Rare event simulation by means of
cloning and thinning. European Transactions on Telecommunications,
13(4):387–397, Jul./Aug. 2002.

[5] A. Agarwal and M. Hybinette. Merging parallel simulation programs.
In Proceedings of the 19th ACM/IEEE/SCS Workshop on Principles of
Advanced and Distributed Simulation, pages 227–233, Monterey, Cali-
fornia, USA, June. 2005.

[6] C. Berchtold andM. Hezel. An architecture for fault-tolerant HLA-based
simulation. In Proceedings of the 15th International European Simula-
tion Multi-Conference (ESM) 2001, pages 616–620, Prague, Czech Re-
public, June. 2001.

[7] K.P. Birman. Building Secure and Reliable Network Applications. Pren-
tice Hall and Manning Publishing Company, New Jersey, USA, 1997.

[8] C. Bouwens, D. Hurrell, and D. Shen. Implementing ownership man-
agement services with a bridge federate. In Proceedings of the 1998
Spring Simulation Interoperability Workshop, Orlando, Florida, USA,
Mar. 1998.

[9] W. Cai, G. Li, S.J. Turner, B.S. Lee, and L. Liu. Automatic construction
of hierarchical federation architectures. In Proceedings of the 6th IEEE
International Symposium on Distributed Simulation and Real Time Ap-
plications (DSRT 2002), pages 50–57, Fort Worth, Texas, USA, Oct.
2002.

[10] W. Cai, G. Li, S.J. Turner, B.S. Lee, and L. Liu. Implementation of
federation management services over federation community networks. In
Proceedings of the 17th workshop on Parallel and Distributed Simulation
(PADS 2003), pages 50–57, Diego, California, USA, Jun. 2003.

219

220 Large-Scale Simulation: Models, Algorithms, and Applications

[11] W. Cai, S.J. Turner, and B.P. Gan. Hierarchical federations: An ar-
chitecture for information hiding. In 15th Workshop on Parallel and
Distributed Simulation (PADS ’01), pages 67–74, Lake Arrowhead, Cal-
ifornia, USA, May 2001.

[12] W. Cai, Z. Yuan, M.Y.H. Low, and S.J. Turner. Federate migration in
HLA-based distributed simulation. Future Generation Computer Sys-
tem, 21(1):87–95, 2005.

[13] D. Chen and C. Bian. Towards hybrid grid infrastructure for large
simulations. In Proceedings of the 1st IEEE International Workshop
on Advances of CyberInfrastructure (IWACI 2009) in conjunction with
the 15th Int’l Conf. on Parallel and Distributed Systems (ICPADS’09),
Shenzhen, China, Dec. 2009.

[14] D. Chen, B.S. Lee, W. Cai, and S.J. Turner. Design and development of
a cluster gateway for cluster-based HLA distributed virtual simulation
environments. In Proceedings of the 36th Annual Simulation Symposium
(IEEE Computer Society), pages 193–200, Orlando, Florida, USA, Apr.
2003.

[15] D. Chen, D. Li, M. Xiong, H. Bao, and X Li. GPGPU-aided ensem-
ble empirical mode decomposition for electroencephalogram analysis
during anaesthesia. IEEE Transactions on Information Technology in
BioMedicine, 14(6):1417–1427, 2010.

[16] D. Chen, G.K. Theodoropoulos, S.J. Turner, W. Cai, R. Minson, and
Y. Zhang. Large scale agent-based simulation on the grid. Future Gen-
eration Computer Systems, 24(7):658–671, 2008.

[17] D. Chen, S.J. Turner, and W. Cai. A framework for robust HLA-based
distributed simulation. In Proceedings of the 20 th ACM/IEEE/SCS
Workshop on Principles of Advanced and Distributed Simulation (PADS
2006), pages 183–192, Singapore, May. 2006.

[18] D. Chen, S.J. Turner, andW Cai. Towards fault-tolerant HLA-based dis-
tributed simulations. Simulation: Transactions of the Society for Mod-
eling and Simulation International, 84(10/11):493–509, 2008.

[19] D. Chen, S.J. Turner, W. Cai, B.P. Gan, and M.Y.H. Low. Algorithms
for HLA-based distributed simulation cloning. ACM Transactions on
Modeling and Computer Simulation, 15(4):316–345, 2005.

[20] D. Chen, S.J. Turner, W. Cai, G.K. Theodoropoulos, M. Xiong, and
M. Lees. Synchronization in federation community networks. Journal
of Parallel and Distributed Computing (Elsevier), 70(2):144–159, 2010.

[21] D. Chen, S.J. Turner, W. Cai, and M. Xiong. A decoupled federate archi-
tecture for high level architecture-based distributed simulation. Journal
of Parallel and Distributed Computing, 68(11):1487–1503, 2008.

References 221

[22] D. Chen, S.J. Turner, B.P. Gan, W. Cai, and J. Wei. A decoupled
federate architecture for distributed simulation cloning. In Proceedings
of the 15 th European Simulation Symposium, pages 131–140, Delft, the
Netherlands, Oct. 2003.

[23] D. Chen, L. Wang, G. Ouyang, and X Li. Massively parallel neural
signal processing on a many-core platform. IEEE Computing in Science
and Engineering, 2011.

[24] D. Chen, L. Wang, M. Tian, J. Tian, S. Wang, C. Bian, and X. Li.
Massively parallel modelling & simulation of large crowd with GPGPU.
The Journal of Supercomputing, 2011.

[25] D. Chen, Lizhe Wang, Congcong Bian, and Xuguagn Zhang. A grid
infrastructure for hybrid simulations. International Journal of Computer
Systems Science & Engineering, 3:197–206, May. 2011.

[26] Stephen Chenney. Flow tiles. In In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on computer animation, pages 233–
242, 2004.

[27] B. Ciciani, D.M. Dias, and P.S. Yu. Analysis of replication in distributed
database systems. IEEE Transaction on Knowledge and Data Engineer-
ing, 2(2):247–261, June 1990.

[28] DIS Steering Committee. The DIS vision, a map to the future of dis-
tributed simulation. In Technical Report IST-SP-94-01, Institute for
Simulation and Training, Orlando, Florida, USA, 1994.

[29] K.D. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure
cloning. Computer Languages, 19(2):105–118, Apr. 1993.

[30] A. Cramp and J.P. Best. Time management in hierarchical federation
communities. In Proceedings of the 2002 Fall Simulation Interoperability
Workshop, Orlando, Florida, USA, 2002.

[31] F. Cristian. Understanding fault-tolerant distributed systems. Commu-
nications of the ACM, 34(2):57–78, 1991.

[32] S.J. Cunning, S. Schulz, and J.W. Rozenblit. An embedded system’s
design verification using object-oriented simulation techniques. Simula-
tion, 72(4):238–249, Apr. 1999.

[33] J.S. Dahmann, F. Kuhl, and R. Weatherly. Standards for simulation:
As simple as possible but not simpler, the high level architecture for
simulation. Simulation, 71(6):378–387, Dec. 1998.

[34] Om.P. Danami and V.K. Garg. Fault-tolerant distributed simulation.
In Proceedings of the 12th Workshop of Parallel and Distributed Simu-
lation, pages 38–45, Banff, Alberta, Canada, May 1998.

222 Large-Scale Simulation: Models, Algorithms, and Applications

[35] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. GTW: A
time warp system for shared memory multiprocessors. In Proceedings of
the 1994 Winter Simulation Conference, pages 1332–1339, Lake Buena
Vista, Florida, USA, Dec. 1994.

[36] M. Eklöf, R. Ayani, and F. Moradi. Evaluation of a fault-tolerance mech-
anism for HLA-based distributed simulations. In Proceedings of the 20th
ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed
Simulation(PADS 2006), pages 175–182, Singapore, May 2006.

[37] M. Eklöf, F. Moradi, and R. Ayani. A framework for fault-tolerance in
HLA-based distributed simulations. In Proceedings of the 2005 Winter
Simulation Conference, pages 1182–1189, Orlando, Florida, USA, Dec.
2005.

[38] E.N. Elnozahy. Fault Tolerance in Distributed systems Using Rollback-
Recovery and Process Replication. PhD thesis, Rice University, Texas,
USA, 1993.

[39] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid.
International Journal of High Performance Computing Applications,
15(3):200–222, Fall 2001.

[40] G. Fox, A. Ho, S. Pallickara, M. Pierce, andW. Wu. Grids for the gig and
real time simulation. In Proceedings of the 9th IEEE International Sym-
posium on Distributed Simulation and Real Time Applications (DSRT
2005), pages 129–138, Montreal, Canada, Oct. 2005.

[41] R.M. Fujimoto. Parallel Distributed Simulation Systems. New York:
Wiley, 2000.

[42] R.M. Fujimoto and R. Weatherly. Time management in the dod high
level architecture. ACM SIGSIM Simulation Digest Archive, 26(1):60–
67, 1996.

[43] B.P. Gan, D. Chen, N. Julka, S.J. Turner, and W. Cai. Benchmark-
ing alternative topologies for multi-level federations. In Proceedings of
the 2003 Spring Simulation Interoperability Workshop, pages 129–138,
Orlando, Florida, USA, Mar. 2003.

[44] B.P. Gan, L. Liu, S. Jain, S.J. Turner, W. Cai, and W. Hsu. Distributed
supply chain simulation across enterprise boundaries. In Proceedings
of the 2000 Winter Simulation Conference, pages 1245–1251, Orlando,
Florida, USA, Dec. 2000.

[45] J.B. Gilmer, Jr., and F.J. Sullivan. Alternative implementations of mul-
titrajectory simulation. In Proceedings of the 1998 Winter Simulation
Conference, pages 865–872, Piscataway, New Jersey, USA, Dec. 1998.

References 223

[46] J.B. Gilmer, Jr., and F.J. Sullivan. Multi-trajectory simulation per-
formance for varying scenario size. In Proceedings of the 1999 Winter
Simulation Conference, pages 1137–1146, Phoenix, Arizona, USA, Dec.
1999.

[47] J.B. Gilmer, Jr., and F.J. Sullivan. Recursive simulation to aid mod-
els of decision making. In Proceedings of the 2000 Winter Simulation
Conference, pages 958–963, Orlando, Florida, USA, Dec. 2000.

[48] P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. Split-
ting for rare event simulation: Analysis of simple cases. In Proceedings
of the 1996 Winter Simulation Conference, pages 302–308, Coronado,
California, USA, Dec. 1996.

[49] Globus. 2004.

[50] C. Görg, E. Lamers, O. Fuß, and P. Heegaardy. Rare event simula-
tion. In Proceedings of the European COST (256) Telecommunication
Symposium, volume 5807/2009, pages 365–396. Kluwer Academic Press,
2001.

[51] Dirk Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features
of escape panic. Letters to Nature, 407:487–490, 2000.

[52] J.O. Henriksen. An introduction to slxTM. In Proceedings of the 1997
Winter Simulation Conference, pages 559–566, Atlanta, Georgia, USA,
Dec. 1997.

[53] J.O. Henriksen. Stretching the boundaries of simulation software. In
Proceedings of the 1998 Winter Simulation Conference, pages 227–234,
Washington, DC, USA, Dec. 1998.

[54] Carsten Herrmann-Pillath. Entropy, function and evolution: Naturaliz-
ing peircian semiosis. Entropy, 12(2):197–242, 2010.

[55] http://www.cc.gatech.edu/computing/pads/fdk.html. 2004.

[56] http://www.cc.gatech.edu/computing/pads/tech highperf.html. 2004.

[57] Ling Huang, S.C. Wong, Mengping Zhang, Chi-Wang Shu, and W.H.K
Lam. Revisiting Hughes’ dynamic continuum model for pedestrian flow
and the development of an efficient solution algorithm. Transportation
Research Part B, 43(1):127–141, 2009.

[58] Roger L. Hughes. A continuum theory for the flow of pedestrians. Trans-
portation Research Part B, 36(6):507–535, 2002.

[59] M. Hybinette. Just-in-time cloning. In Proceedings of the Eighteenth
Workshop on Parallel and Distributed Simulation, pages 45–51, Kuf-
stein, Austria, May. 2004.

224 Large-Scale Simulation: Models, Algorithms, and Applications

[60] M. Hybinette and R.M. Fujimoto. Cloning: A novel method for interac-
tive parallel simulation. In Proceedings of the 1997 Winter Simulation
Conference, pages 444–451, Atlanta, Georgia, USA, Dec. 1997.

[61] M. Hybinette and R.M. Fujimoto. Cloning parallel simulations.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
11(1):378–407, Jan. 2001.

[62] M. Hybinette and R.M. Fujimoto. Scalability of parallel simulation
cloning. In Proceedings of the 35th Annual Simulation Symposium, San
Diego, California, USA, Apr. 2002.

[63] M. Hyett and R. Wuerfel. Implementation of the data distribution man-
agement services in the RTI-NG. In Proceedings of 2002 Spring Simu-
lation Interoperability Workshop, Orlando, Florida, USA, Mar. 2002.

[64] IEEE 1278. IEEE Standard for Distributed Interactive Simulation.
IEEE, 1993.

[65] IEEE 1516. IEEE Standard for High Level Architecture. IEEE, 2000.

[66] IEEE 1516. IEEE Standard for High Level Architecture. IEEE, 2001.

[67] IEEE 1516.3. IEEE Recommended Practice for High Level Architec-
ture(HLA) Federation Development and Execution Process(FEDEP).
IEEE, 2003.

[68] Electronic Arts Inc. In Westwood Studio, 2004.

[69] K. Iskra, G Albada, and P Sloot. Towards grid-aware time warp. Simu-
lation: Transactions of The Society for Modeling and Simulation Inter-
national, 81(4):293–306, 2005.

[70] W Jie. POEMS: A Parallel Object-oriented Environment for Multi-
computer Systems. PhD thesis, Nanyang Technological University, Sin-
gapore, 2001.

[71] D.B. Johnson. Distributed System Fault-tolerance Using Message Log-
ging and Checkpointing. PhD thesis, Rice University, Texas, USA, 1989.

[72] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Computer Simulation
Systems: An Introduction to HLA. Prentice Hall, New Jersey, USA,
1999.

[73] T. Lake. Time management over inter-federation bridges. In Proceedings
of the 1998 Fall Simulation Interoperability Workshop, Orlando, Florida,
USA, Sept. 1998.

[74] A.M. Law and W. David Kelton. In Simulation Modeling and Analysis,
3rd edition, New York, USA, 2000. McGraw-Hill.

References 225

[75] C. Liu and B. Hu. Mutual information based on Renyi’s entropy feature
selection. In Proceedings of the IEEE International Conference on In-
telligent Computing and Intelligent Systems 2009, pages 816–820, 2009.

[76] L. Liu, S.J. Turner, W. Cai, G. Li, and B.S. Lee. DDM implementation
in hierarchical federations. In Proceedings of the 2002 Fall Simulation
Interoperability Workshop, Orlando, Florida, USA, Sept. 2002.

[77] L. Liu, S.J. Turner, W. Cai, G. Li, and B.S. Lee. Improving data filtering
accuracy in hierarchical federations. In Proceedings of the 36th Annual
Simulation Symposium, pages 209–215, Orlando, Florida, USA, Sept.
2003.

[78] G. Magee, G. Shanks, and P. Hore. Hierarchical federations. In Proceed-
ings of the 1999 Spring Simulation Interoperability Workshop, Orlando,
Florida, USA, Mar. 1999.

[79] R. McHaney. Integration of the genetic algorithm and discrete-event
computer simulation for decision support. Simulation, 72(6):401–411,
June, 1999.

[80] C. McLean and F. Riddick. The IMS mission architecture for distributed
manufacturing simulation. In Proceedings of the 2000 Winter Simulation
Conference, pages 1539–1548, Orlando, Florida, USA, Dec. 2000.

[81] Defense Modeling and Simulation Office. In DoD Modeling and Simu-
lation Master Plan, U.S. Government Printing Office, Washington, DC,
USA, 1995.

[82] Defense Modeling and Simulation Office. In Software Distribution Cen-
ter, 2003.

[83] B. Möller, B. Löfstrand, and Mikael Karlsson. Developing fault tolerant
federations using HLA evolved. In Proceedings of 2005 Spring Simula-
tion Interoperability Workshop, San Diego, California, USA, Apr. 2005.

[84] A. Morrison, C. Mehring, T. Geisel, AD. Aertsen, and M. Diesmann.
Advancing the boundaries of high-connectivity network simulation with
distributed computing. Neural Comput, 17(8):1776–801, 2005.

[85] K.L. Morse, D. Drake, and R.P.Z. Brunton. Web enabling an RTICAN
XMSF profile. In Proceedings of the 2003 European Simulation Interop-
erability Workshop, Stockholm, Sweden, Jun. 2003.

[86] K.L. Morse and M.D. Petty. Data distribution management migration
from DoD 1.3 to IEEE 1516. In Proceedings of the Fifth IEEE Interna-
tional Workshop on Distributed Simulation and Real-Time Applications,
pages 58–65, Cincinnati, Ohio, USA, Aug. 2001.

226 Large-Scale Simulation: Models, Algorithms, and Applications

[87] S.R. Musse and D. Thalmann. Hierarchical model for real time simula-
tion of virtual human crowds. IEEE Trans. Visualiz. Comput. Graph,
7(2):152–164, 2005.

[88] M.D. Myjak, D. Clark, and T. Lake. RTI interoperability study group
final report. In Proceedings of 1999 Spring Simulation Interoperability
Workshop, Orlando, Florida, USA, Sept. 1999.

[89] M. Nicola and M. Jarke. Performance modeling of distributed and repli-
cated databases. IEEE Transactions on Knowledge and Data Engineer-
ing, 12(4):645–672, Jul./Aug. 2000.

[90] A. Okutanoglu and M. Bozyigit. Proximity-aware synchronization
within federation communities. In Proceedings of the Tenth IEEE Inter-
national Symposium on Distributed Simulation and Real-Time Applica-
tions, pages 185–192, Torremolinos, Malaga, Spain, Oct. 2006.

[91] K Pan. A Service Oriented HLA RTI on the Grid. PhD thesis, Nanyang
Technological Universtiy, Singapore, 2007.

[92] J. Plevyak. Optimization of Object-Oriented and Concurrent Programs.
PhD thesis, University of Illinois, Urbana-Champaign, Illinois, USA,
1996.

[93] A. Pope and R. Schaffer. The SIMNET network and protocols. Technical
Report 7627, BBN Systems and Technologies, 1991.

[94] M. Roccetti, P. Salomoni, and M.E. Bonfigli. A design for a simulation-
based multimedia learning environment. Simulation, 76(4):214–221,
Apr. 2001.

[95] K. Rycerz, M. Bubak, M. Malawski, and P. Sloot. A framework for HLA-
based interactive simulations on the grid. Simulation, 81(1):67–76, Jan.
2005.

[96] T. Schulze, S. Straßburger, and U. Klein. Online-data processing in sim-
ulation models: New approaches and possibilities through HLA. In Pro-
ceedings of the 1999 Winter Simulation Conference, pages 1602–1609,
Washington DC, USA, 1999.

[97] T. Schulze, S. Straßburger, and U. Klein. HLA-federate reproduction
procedures in public transportation federations. In Proceedings of the
2000 Summer Computer Simulation Conference, Vancouver, Canada,
July. 2000.

[98] G. Schwarz and H.J. Mosler. Investigating escalation processes in peace
support operations: An agent-based model about collective aggression.
In Proceedings of the Third Annual Conference of the European Social
Simulation Association, 2005.

References 227

[99] O. Shehory, K. Sycara, P. Chalasani, and S. Jha. Agent cloning: An
approach to agent mobility and resource allocation. IEEE Communica-
tions, 36(7):58–67, July, 1998.

[100] W.R. Stevens. UNIX Network Programming, Networking APIs: Sockets
and XTI, volume 1. Prentice Hall, New Jersey, USA, 2nd edition, 1998.

[101] W.R. Stevens. UNIX Network Programming, Inter-Process Communi-
cations, volume 2. Prentice Hall, New Jersey, USA, 2nd edition, 1999.

[102] S. Straßburger, T. Schulze, U. Klein, and J.O. Henriksen. Internet-based
simulation using off-the-shelf simulation tools and HLA. In Proceedings
of the 1998 Winter Simulation Conference, pages 1669–1676, Washing-
ton DC, USA, Dec. 1998.

[103] K.P. Sycara. Multi-agent systems. AI Magazine: The American Asso-
ciation for Artificial Intelligence, pages 79–92, June, 1998.

[104] K.P. Sycara, A. Pannu, M. Willamson, Dajun Zeng, and K. Decker.
Distributed intelligent agents. IEEE Expert, 11(6):36–46, Dec. 1996.

[105] A.S. Tanenbaum. Computer Networks. Prentice Hall, New Jersey, USA,
fourth edition, 2003.

[106] A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, New Jersey, USA, 2002.

[107] Bernard Testa. Dispersal (entropy) and recognition (information) as
foundations of emergence and dissolvence. Entropy, 11(4):993–1000,
2009.

[108] S.J. Turner, W. Cai, and B.P. Gan. Adapting a supply-chain simulation
for HLA. In Proceedings of the Fourth IEEE International Workshop
on Distributed Simulation and Real-Time Applications, pages 67–74, San
Francisco, California, USA, Aug. 2001.

[109] F. Vahid. Procedure cloning: A transformation for improved system-
level functional partitioning. ACM Transactions on Design Automation
of Electronic Systems, 4(1):70–96, Jan. 1999.

[110] C. Van Ham and T. Pearce. The SIP-RTI: An HLA RTI implemen-
tation supporting interoperability. In Proceedings of the Tenth IEEE
International Symposium on Distributed Simulation and Real-Time Ap-
plications, pages 227–234, Torremolinos, Malaga, Spain, Oct. 2006.

[111] Lizhe Wang and Wei Jie. Towards supporting multiple virtual private
computing environments on computational grids. Advances in Engineer-
ing Software, 40(4):239–245, 2009.

228 Large-Scale Simulation: Models, Algorithms, and Applications

[112] Lizhe Wang, Gregor von Laszewski, Marcel Kunze, Jie Tao, and Jai
Dayal. Provide virtual distributed environments for grid computing on
demand. Advances in Engineering Software, 41(2):213–219, 2010.

[113] Y. Xie, Y.M. Teo, W. Cai, and S.J. Turner. Service provisioning for
HLA-based distributed simulation on the grid. In Proceedings of the
Nineteenth ACM/IEEE/SCS Workshop on Principles of Advanced and
Distributed Simulation (PADS 2005), pages 282–291, Monterey, Califor-
nia, USA, Jun. 2005.

[114] M. Xiong, Wentong Cai, Suiping Zhou, Malcolm Yoke Hean Low, Feng
Tian, Dan Chen, Daren Wee Sze Ong, and Benjamin D. Hamilton. A
case study of multi-resolution modeling for crowd simulation. In Pro-
ceedings of the Agent-Directed Simulation Symposium (ADS’09), pages
22–27, San Diego, California, USA, March 2009.

[115] H. Yu and A. Vahdat. Design and evaluation of a Conit-based contin-
uous consistency model for replicated services. ACM Transactions on
Computer Systems, 20(3):239–282, Aug. 2002.

[116] Z. Yuan, W. Cai, W.Y.H. Low, and S.J. Turner. Federate migration in
HLA-based simulation. In Proceedings of the 2004 International Confer-
ence on Computational Science, pages 225–233, Kraków, Poland, June
2004.

[117] Z. Yuan, W. Cai, and Y.H. Low. A framework for executing parallel
simulation using RTI. In Proceedings of 7th IEEE International Sym-
posium on Distributed Simulation and Real Time Applications (DSRT
2003), pages 12–19, Delft, the Netherlands, Oct. 2003.

[118] K. Zaja̧c, M. Bubak, M. Malawski, and P. Sloot. Towards a grid man-
agement system for HLA-based interactive simulations. In Proceedings
of the 7th IEEE International Symposium on Distributed Simulation and
Real Time Applications, pages 4–11, Delft, the Netherlands, Oct. 2003.

[119] S. Zhou. A trace-driven simulation study of dynamic load balancing.
IEEE Transactions on Software Engineering, 14(9):1327–1341, Sept.
1988.

[120] S. Zhou, D. Chen, W. Cai, L. Luo, M. Low, F. Tian, V. Tay, D. Ong, and
B. D. Hamilton. Crowd modeling and simulation technologies. ACM
Transactions on Modeling and Computer Simulation, 20(4):Article 20,
Oct. 2010.

[121] S.P. Zhou, D. Chen, W.T. Cai, L.B. Luo, Y.H. Low, F. Tian, S.H. Tay,
W.S. Ong, and B.D. Hamilton. Crowd modeling and simulation tech-
nologies. ACM Transactions on Modeling and Computer Simulation,
20(4), 2010.

References 229

[122] W. Zong, Y. Wang, W. Cai, and S.J. Turner. Service provisioning for
HLA-based distributed simulation on the grid. In Proceedings of the
8th IEEE International Symposium on Distributed Simulation and Real
Time Applications (DSRT 2004), pages 116–124, Budapest, Hungary,
Oct. 2004.

This page intentionally left blankThis page intentionally left blank

Large-Scale
Simulation

Models, Algorithms, and Applications

Dan Chen • Lizhe Wang • Jingying ChenISBN: 978-1-4398-6886-7

9 781439 868867

9 0 0 0 0

K13152

Large-Scale
Simulation

Models, Algorithms, and Applications

Large-Scale Simulation: Models, Algorithms, and Applications
gives you firsthand insight on the latest advances in large-scale
simulation techniques. Most of the research results are drawn from
the authors’ papers in top-tier, peer-reviewed, scientific conference
proceedings and journals.

The first part of the book presents the fundamentals of large-scale
simulation, including high-level architecture and runtime infrastructure.
The second part covers middleware and software architecture for
large-scale simulations, such as decoupled federate architecture,
fault tolerant mechanisms, grid-enabled simulation, and federation
communities. In the third part, the authors explore mechanisms—
such as simulation cloning methods and algorithms—that support
quick evaluation of alternative scenarios. The final part describes
how distributed computing technologies and many-core architecture
are used to study social phenomena.

Reflecting the latest research in the field, this book guides you in
using and further researching advanced models and algorithms for
large-scale distributed simulation. These simulation tools will help
you gain insight into large-scale systems across many disciplines.

COMPUTER ENGINEERING

K13152_Cover_mech.indd 1 5/2/12 11:19 AM

	Front Cover
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	About the Authors
	Acknowledgments
	I. Fundamentals
	1. Introduction
	2. Background and Fundamentals

	II. Middleware and Software Architectures
	3. A Decoupled Federate Architecture
	4. Fault-Tolerant HLA-Based Distributed Simulations
	5. Synchronization in Federation Community Networks

	III. Evaluation of Alternative Scenarios
	6. Theory and Issues in Distributed Simulation Cloning
	7. Alternative Solutions for Cloning in HLA-Based Distributed Simulation
	8. Managing Scenarios
	9. Algorithms for Distributed Simulation Cloning
	10. Experiments and Results of Simulation Cloning Algorithms

	IV. Applications
	11. Hybrid Modeling and Simulation of a Huge Crowd overan HGA
	12. Massively Parallel Modeling & Simulation of a Large Crowd with GPGPU

	References

