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Introduction 3

Computational Geometry concerns itself with designing and analyzing algo-
rithms for solving geometric problems. It is a recent field of theoretical computer
science, that has developed rapidly since it first appeared in M.I. Shamos’ thesis
[Sha78] in 1978.

The field has already reached a high level of sophistication, sometimes being
too theoretical to be really useful: to achieve optimal running times, it is occa-
sionally necessary to design very complicated algorithms, using data structures
whose implementation is difficult.

Though the importance of such research is unquestionable, it can be useful,
from time to time, to develop more practical algorithms. This is all the more
true when their development also yields attractive theoretical problems while
using rigorous methods. One such method is the use of randomized algorithms,
introduced to the field by K.L. Clarkson in 1985 [Cla85]. Once introduced, these
algorithms became more and more popular, turning into one of the hottest areas
of recent years (sometimes too hot to my taste, though racing is stimulating!).

Randomization avoids the use of complicated data structures, and yields
efficient algorithms, both from the point of view of theoretical complexity as well
as real-life usage. It must, however, be noted that, in the literature, although
emphasis is often put on practical efficiency, it is usually only mentioned and
seldom experimentally tested.

The running times of these randomized algorithms will only be efficient in
the average case. More precisely, the execution of the algorithms has a random
aspect, but the algorithms themselves remain purely deterministic, and give an
unique and exact output. Moreover, we emphasize that their analysis assumes
no special configuration of data, while classical average-case analysis usually
assumes some probabilistic distribution on data.

Randomized analysis averages over all possible executions of the algorithm,
but assumes worst-case data. Consequently, it is a realistic model of analysis: in
practice, interesting data are often points measured on objects, their distribution
is far from being homogeneous, and they do not obey any probability assumption
in space. Randomization is interesting from this point of view if the expected
complexity of a randomized algorithm is better than the worst-case complexity
of the best deterministic algorithms known for the same problem, or if equal,
when the algorithms are simpler (which is very often the case).

Introducing some quantities representing the complexity of the outputs in
the analysis is also possible, and leads to algorithms that are output-sensitive to
a certain extent.

We were particularly interested in designing dynamic algorithms, because in
practice, the data of a problem are often acquired progressively. It is obviously
not reasonable to recompute the whole result each time new data is inserted.
Thus (semi-)dynamic schemes are necessary. We study both theoretical com-
plexity and practical efficiency of the algorithms. This thesis presents our work
in this field.

In the first chapter, the definitions and main properties of classical struc-
tures in Computational Geometry are recalled, as well as a fundamental tool
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—duality— whose presentation is new, and which allows us to prove well known
results in a manner that is more intuitive than the usual one. All background
necessary for understanding our algorithms will be found in this chapter.

Some previous results on randomized incremental algorithms are presented in
Chapter 2. These algorithms are the ones that marked the beginning of research
in this field. They are static, though incremental, because they all make use
-of the Conflict Graph, a structure that needs the knowledge of all data during
the initialization step. It must be noticed that K.L. Clarkson also worked a lot
on randomized divide-and-conquer algorithms, but these algorithms cannot be
extended to a dynamic scheme, and thus will not be developed here. We also
present several methods of analysis, due to K.L. Clarkson, K. Mulmuley and R.
Seidel.

The Delaunay Tree is introduced in Chapter 3. It is, (pre-)historically(!),
our first semi-dynamic structure [BT86, BT93]. It allows the construction of
the Delaunay triangulation of a set of point sites, in any dimension, without
preliminary knowledge of this set. The Delaunay Tree is compared to a similar
structure proposed in 1990 by L.J. Guibas, D.E. Knuth, and M. Sharir.

Chapter 4 shows how the basic idea of the Delaunay Tree leads to designing a
very general structure, the Influence Graph, allowing the semi-dynamic construc-
tion of numerous geometric structures. We can roughly say that this structure
applies to the same problems for which the Conflict Graph was previously used,
but it allows insertions.

Two kinds of complexity analysis are presented, which hold under hypotheses
similar to those stated for analyzing algorithms using the Conflict Graph. The
possibility of removing these conditions is also studied.

Several applications are developed. The use of the Influence Graph for effi-
ciently responding to queries is also discussed.

Expertmental results for computing convex hulls in dimensions 3 and 4, and
Delaunay triangulations in dimensions 2 and 3, show the practical efficiency of
the algorithms.

In Chapter 5, the idea of the Delaunay Tree is picked up again, and enlarged
to be applied to the case of higher orders Voronoi diagrams, in any dimensions.
This case does not fit into the framework of Chapter 4. Experimental results
are shown.

Chapter 6 finally shows how to dynamize the Influence Graph. The general
scheme for deleting data is simple, although the details are rather technical. We
Hlustrate it on two examples: Delaunay triangulation of point sites and arrange-
ments of line segments in the plane. The theoretical complexity is nevertheless
excellent, and the algorithm is very efficient in practice.

At the same time as we were developing the Influence Graph, anthors were
designing other structures. A quick presentation of these structures will be found
in Chapter 7.
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1.1. Convex hull 7

In this chapter, we present the definitions and main properties of fundamental
structures in Computational Geometry, for which algorithms of constructions are
presented in the following chapters. The complexity of the best known determin-
istic algorithms is also given. Most of the results are taken from [Ede87, Meh84,
PS85], where more details can be found, especially concerning algorithms, that
will not be studied here.

IE? denotes the d-dimensional Euclidean space, with scalar product (-, -), and
Euclidean distance §. Terms such as “vertical”, “above”, “below”, will be often
used : the vertical direction is parallel Lo the last axis of E°, and its orthogonal
hyperplane is thus horizontal.

1.1 Convex hull

The convez hull of a finite set S of n points of E*, denoted as E(S), can be
equivalently defined in the following way as :

e the smallest convex set containing S,
o the intersection of all convex sets containing S,
e the intersection of all halfspaces containing S.

The computation of the convex hullis a central problem in Computational Geom-
etry, and it has been vastly studied, not only because of its practical applications,
but also because it is a preliminary for solving a lot of other questions.
Classical mathematical results for convex polyhedra allow us to state the
following property (let us recall that a k-face is a face of dimension k) :

Property 1.1 The number of k-faces and the number of incidences
between k-faces and k + 1-faces of E(S) are O (n‘“i“(l.%J "““)), for
0 < k < d — 1. These bounds are asymptotically tight.

In particular, in both dimensions 2 and 3, this number is linear.

The behaviour of the complexity of E(S) has also been studied under hy-
potheses for the distributions of the points of §. For example, if the points are
chosen independently from a normal distribution, then the expected size of E(S)
is O ((logn)*7").

The problem of computing the convex hull consists in computing the poly-
hedron that it forms, 1.e. the complete description of its boundary.

Let us start with a first observation. In the plane, it is easy to see that this
problem is at least as complex as sorting n numbers : let us take the points on a
parabola with vertical axis, then the convex hull is the polygon formed by these
n points, in the order of abscissae. Each algorithm computing the convex hull
of n points has thus a Q(nlogn) time complexity.

Optimal static algorithms exist in dimensions 2 and 3.
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In higher dimensions, R. Seidel [Sei81] has given an algorithm whose com-
plexity is O (n logn + nlb;—lj), which is optimal for even dimension > 2. The

storage 1s in O (n 14 ) The algorithm is incremental, but the analysis is amor-
tized on the n insertions. ’
After several years of unsuccessful researchs on finding an optimal algorithm
for any dimensions, B. Chazelle has recently given such an algorithm [Cha91].
An algorithm whose complexity is O(n? + flogn), where f is the size of the
output, that is the number of facets of the convex hull, is described in [Sei86].
In the plane, deterministic on-line algorithms are known, with optimal com-
plexity O(logn) per insertion (see for example [AES85)).

1.2 Voronoi diagram

1.2.1 Voronoi diagram for points in FE*¢

The Voronoi diagram of a set S of n points, called sites, in E? is a geometric
structure used to solved proximity queries, such as the closest neighbors of a
given site, or the closest pair of sites.

This structure has been plentifully studied in the literature, and we started
our works with it. F. Aurenhammer recently devoted a very complete survey
to it [Aur91}, in which he gives the applications, the properties, and a lot of
algorithms for computing the diagram.

For each site p, the Voronoi cell V(p) of p is the set of points in JE¢ that are
closer to p than to any other site of S.

V(p) = {x € E?,¥q € §\ {p}, §(x,p) < 6(x,q)}
V(p) can also be expressed as :

vie)= [ H(pa)
qes\{p}

where H(p, q) is the halfspace limited by the bisecting hyperplane of p and q,
containing p.

The Voronoi diagram of S is the partitioning of JE% formed by the Voronoi
cells of the sites.

The points of S are assumed to be in general position : no d + 2 points
are cospherical. In this case, the vertices of the diagram are the centers of the
spheres passing through d + 2 sites.

Property 1.2 The complexity of the Voronoi diagram of a set of n
points in E¢ is O (nl-%]).

In the 3 dimensional case, this complexity is quadratic.
The Delaunay triangulation is the dual graph of the Voronoi diagram : two
sites of S are linked by an edge of the triangulation if and only if their respective
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cells are adjacent. The Delaunay triangulation is a partition of E¢ in simplices
whose vertices are the sites. It satisfies the following property, which defines it
uniquely :

The spheres circumscribing the simplices of the Delaunay triangula-
tion do not contain any site in their interior.

This property allows us to design a very simple incremental algorithm. This
algorithm is due to Green and Sibson [GST78] for the two dimensional case, and
it has been generalized to any dimensions [Bow81]. As many incremental algo-
rithms, it is not efficient in the worst case : its complexity is O(n2) in the planar

case and O (nl—%] "'1) in dimension d. The authors show that the complexity can

be improved to an expected cost of O (nl"‘%) for homogeneous distributions.

However, the proof is not really formal, the hypotheses are not very precise and
the performances tend to be poorer for degenerate distributions such as points
on surfaces.

The algorithm consists in inserting the points in turn, and in updating the
structure after each insertion. When a new point m is inserted, the simplices
whose circumscribed sphere contains m must be removed, they do not belong to
the triangulation any more. The union of these simplices is a simply connected
region R(m). If F(m) denotes the set of facets of the boundary of R(m), the new
simplices are obtained by linking m to the elements of F(m) (Figure 1.1). This
algorithm is very simple, and allows us to progressively acquire new data, which
is of great practical interest. To increase its efficiency, a data structure giving
quickly the set R(m) has to be found. This problem has been the starting point
of our researches (Chapter 3).

Numerous optimal algorithms are known for the planar case. The recent
algorithm by B. Chazelle, for the computation of convex hulls, now gives by
duality (section 1.4) a worst-case optimal algorithm in any dimension.

When the points are uniformly distributed, the expected size of the Voronot
diagram is O(n) [Dwy91]. In practice, in 3D space, for points on the surface
of varied objects, its size is also often linear. A fundamental open question is
to design output-sensitive algorithms, that is algorithms whose complexity is a
function of the size ¢ of the diagram. This has been solved in the particular case
where the points lie in two planes [Boi88, BCDT91).

1.2.2 Higher order Voronoi diagrams
Planar case

S denotes a set of n sites in general position in the plane. Given T a subset of
points of S, the generalized Voronoi polygon of 7 is defined as :

VT)={p,WWeT,YueS\T,ép,v) < ép,v)}
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V(T) is the locus of a point p that is closer to each site of 7 than to any other
point in S\ 7. The order k Voronoi diagram of S is (| - | denotes cardinality)

Vory(S) = {V(T), T C S, |T| = k}

Let p1, p2,pa be three sites of S, v their circamcenter, B(p1, P2, pa) their open
circumndisk. Since the points are in general position, their circumcircle do not
pass through any other site. Let R be the set of sites belonging to B(pi1, P2, ps)-
If |[R| = k, then v is a vertex of Vorg41(S) and Vorgys(S) :

e v is the common point to regions V(R U {p1}), V(R U {p»}) and V(R U
{p3}) in Vory41(S). v is called a close-type vertez in this diagram (see
Figure 1.2).

e v is the common point to regions V(R U {p1,p2}), V(R U {p2, p3}) and
V(RU {ps,p1}) in Vorg42(S). v is a far-type vertez in this diagram (see
Figure 1.2).

To summarize, any triangle whose vertices are sites of § and whose open
circumndisk contains k sites corresponds to (is dual t0) a vertex of both Vorg4(S)
and VOT‘;H.Q(S).

Conversely, any vertex of Vor(8) is dual to a triangle whose open circumdisk
contains k — 1 or k — 2 sites in its interior.

Dimension d

The preceding results can be extended to higher dimensions.

The order k Voronoi diagram consists in cells of dimensions 0,...,d. the
vertices of the diagram are dual to simplices whose vertices are sites of S. Let
P1,P2,---,Pd+1 be d + 1 sites of S, B({p1,...,Pd+1}) their open circumball, v
its center and R the subset of points of & contained in B({p1,...,pa+1}). If
[R| =, then v is a vertex of all Voronoi diagrams Vorg(S) for 1 +1 < k <l+d.

¢ v is the common point to the regions V(R U{p;}) fori€ {1,...,d+ 1} in
Vori41(S) : as in the planar case, v is called a close-type vertex.

e In Vori44(S), v is the common point to the regions V(RUP) where P may
be any subset of size k of {p1,...,pat+1} ; v is incident to (*}*) regions. If
1 < h < d we call v a medium-type verter.

e v is the common point to the regions V(R U {p1,...,Pas1} \ {pi}) for
i€{l,...,d+ 1} in Vori44(S) : as in dimension 2, v is a far-type vertex.

To summarize, a close-type vertex of a higher order Voronoi diagram remains
in d successive diagrams. More generally, a h-face remains in d — h successive
diagrams.
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V(Ru{p:})
P

Ps P2

V(RU{ps}) V(Ru{p:})

Close-type vertex in Vorg,;(S)

P:
V(RU{Ps,P1}) Y V(RU{p1,P2})

Ps P2

V(RU{P2,P3})

Far-type vertex in Vory»(S)

Figure 1.2 : Two types of vertices
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Complexity results

The order k Voronoi diagram has been introduced in [SH75] to deal with k closest
points problems. Lee [Lee82] gives the following result :

Property 1.8 In the plane, the size of the order k£ Voronoi diagram is
O(k(n—k)). The size of orders < k Voronoi diagrams is thus O(nk?).

The random sampling technique (Section 2.3.1) shows the following worst-case
result in dimension d [CS89] :

Property 1.4 In dimension d > 2, the size of all Voronoi diagrams of
orders 1 to kis O (k[ﬁz"l’-lnl.g#.l)

Lee has also given the first algorithm to compute higher orders Voronoi diagrams
for n sites in the plane. The order k diagram is constructed from the order k—1
diagram in O(k(n—k)logn) time. The orders < k diagrams are thus constructed
in O(k?nlog n) time. [AGSS89] give a tighter bound of O(nlogn + k2n).

B. Chazelle and H. Edelsbrunner [CE85] have developed two versions of a
better algorithm for large k. The first one has a O(n?logn + k(n — k) log® n)
time complexity, with a O(k(n—k)) storage, while the second one runs in O(n?+
k(n — k)log® n) time with O(n?) storage. H. Edelsbrunner, J. O’Rourke and R.
Seidel [EOS86] use duality (Section 1.4) to construct all orders < n—1 diagrams
in O(n%t?) time and space complexity.

1.2.3 Voronoi diagram of line segments

S now denotes a set of objects : points or line segments, in Euclidean space IE2.
The Voronoi diagram of § is defined in the same ways as the preceding case, it
is the tesselation of the plane into cells V(s) associated with segments s € S :

V(s)={x€ E*Vs' €S8\ {s}, 6(x,s) < 6(x,s")}

Figure 1.3 shows an example. Let us now detail the structure of the diagram,
which will be useful for Section 4.3.3.1.

The maximal empty circle centered at a vertex of the diagram touches three
objects, and the maximal empty circle centered on an edge touches two objects.

An edge I of this diagram is part of the bisecting line of two objects p and
q, and its two extremities are equidistant from p, q and r and from p, q and
srespectively. T is defined by four segments and denoted as (pq, r, s). It consists
of portions of lines and parabolas. To describe the case of infinite edges, we
add the symbol co. The region (pq, r, c0) corresponds to an unbounded part of
the bisecting line of p and q (Figure 1.5). Moreover, to ensure connectivity, we
add edges at infinity, that will bound unbounded cells : the edge (poo,r,s) in
Figure 1.5 is the set of centers (at infinity) of the circles (with infinite radius,
that is lines) that touch p, and it is limited by the circles that respectively touch
r and s. In Figures 1.4 and 1.5, the shadowed parts are the interiors of the
empty circles centered on edge T'.
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Figure 1.3 : Voronoi diagram of line segments

In some ambiguous cases, label (pq, r, s) may denote two different edges, that
will be distinguished in the following way : (pq,r,s)* and (pq,r,s)” (Figure
1.6).

The geometric dual of the Voronoi diagram of line segments is the edge
Delaunay triangulation. C.K. Yap [Yap87] gives an optimal algorithm running
in O(nlogn) to compute the Voronoi diagram of lines and portions of circles.

1.3 Arrangements

An arrangement is the partition of JE9 induced by a finite set of hypersurfaces
or portions of hypersurfaces.

Figure 1.4 : Edge (pq,1,s)
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1
I" lies at infinity

edge defined by (pq,r, 0o) edge defined by (poo, r, 5)
Figure 1.5 : Infinite edges

1.3.1 Arrangements of hyperplanes

S is a set of hyperplans in JE9. The general position condition sets that any d +1
hyperplanes have empty intersection, so a vertex of the arrangement belongs
to exactly d hyperplanes. The arrangement consists of cells that are convex
polyhedra.

An arrangement of n hyperplanes in IE? can be computed together with its
incidence graph in optimal running time O(n9). The algorithm is incremen-
tal, it leans on the Zone Theorem [ESS91], that states that the insertion of an
hyperplane can be achieved in O (n4-1!).

The k-level of an arrangement is the set of points p in IE9 such that the
number of hyperplanes of S strictly above p is < k — 1 and the number of
hyperplanes strictly below p is < n — k (the hyperplanes are assumed to be non
wvertical).

! (py, T, 1) .
IL (Srypa OO)— /——\__(Q._;.B,_)__;I oo)t *
1

‘ \:_P/
' PT.q,9) /

\
\ T 7/
~ 7

~ —— . p

(ro0,q,q)

Figure 1.6 : Ambiguous label (pq, r,s)
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Figure 1.7 shows the 2-level in an arrangement of lines in the plane.

\

Figure 1.7 : 2-level in an arrangement of hyperplanes

K.L. Clarkson (see Section 2.3.1) has proved that :

Property 1.5 The size of levels 1 to k in an arrangement of n hyper-
planes in E¢ is O (nl.%.‘ k[%])

1.3.2 Trapezoidal map

In the case when S consists of n line segments in plane IE2, the trapezoidal map
of the arrangement is obtained by drawing vertical lines from the extremities
and the intersection points of the segments, limited by the firstly encountered
segment in both directions upwards and downwards (Figure 1.8).

Figure 1.8 : Trapezoidal map

If a denotes the number of intersection points between the n segments, it
can easily be seen that this map has O(n +a) trapezoids, and that it completely
describes the arrangement.
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The best deterministic algorithm is due to B. Chazelle and H. Edelsbrunner
[CE88], who compute the arrangement of n line segments in O(n logn + a) time
and O(n + a) storage.

1.4 Geometric transformations

Geometric transformations are often used to go from a structure to another,
and to deduce results by using equivalent problems. These transformations are
usually known under the global name of duality. It is a fundamental tool with
different aspects that we describe more precisely in the following.

The origin of duality is mathematical polarity, that associates an hyperplane
of E¢ with a point of E*, and conversely : a point p of coordinates

(p1, P2, - -, Pd)

1s dual to the hyperplane of equation
(1rp) 24 = 2012 + 2paza + ... + 2pg-124-1 — P,

and vice versa. This transformation preserves incidence, and reverses the “above-
below” relation. It easily implies that

The convex hull of a set of points is dual to the intersection of a set
of half-spaces.

Geometric transformations can use spaces of different dimensions : H. Edels-
brunner and F. Aurenhammer (and others) have worked a lot on results obtained
owing to geometric transformations in Computational Geometry (see [Bro79]
who has applied this tool to Voronoi diagram for the first time, [ES86], and
[Aur91] for a survey). Their approach is as follows : if we take the unit paraboloid
in %!, of equation

() 2441 =2 +23+... 4123

then the intersection between II and the dual hyperplane 7p of a point p exterior
to II is the set of points of II at which the hyperplane tangent to I contains p.
In particular, if p lies on I, 7p is tangent to II.

This remark shows that the projection of 7p NII on the horizontal hyperplane
z4+1 = 0 is a sphere whose center is the projection of p.

As an important consequence, if S is a set of n point sites in E¢, and if E¢
is immersed in JE%*! as the horizontal hyperplane, then

The Voronoi diagram of S is the projection onto E? of the 1-level
(upper envelope) of the arrangement in E 4+1 5f the hyperplanes dual
to the points obtained by projecting the sites of S onto II.

In fact, the intersection of two hyperplanes tangent to Il at the two respectively
projected points of p and q onto II, projects onto the horizontal hyperplane
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Figure 1.9 : Duality between Voronoi diagram and arrangement

E?* on the bisecting hyperplane of p and q (Figure 1.9). In the same way, the
Intersection point between d-+1 hyperplanes of this arrangement, associated with
d + 1 sites of S, projects on the center v of the sphere passing through these
d+1 sites. The number of sites interior to the sphere is the number of associated
hyperplanes in the arrangement, that pass above this intersecting point. More
generally, we get :

The order k Voronoi diagram of S is dual to the k-level of the ar-
rangement in JE%*! of the hyperplanes dual to the sites of §.

In [Bro79], K.Q. Brown proved the duality between Voronoi diagram and
convex hull, using inversions. In [ES86, Aur9l], the proofs of such properties
where purely analytic. We propose in [DMT92b] a much more geometric inter-
pretation, that avoids all calculations (see also [BCDT91]). We now give a quick
clue of the reasonings obtained with this new point of view.

The core idea resides in the definition of the space of spheres 0 in E%. A
sphere in JE? with equation

(p) (x,x)—2(x,®)+x=0
is represented by the point with coordinates
P=(®x)

in 0. The space of spheres is isomorphic to E!.
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It can be immediately noticed that the set of spheres that are reduced to
their center (0 radius spheres) is the paraboloid II, that appears naturally as a
particular set in E*!,

Everything then reduces to mathematical polarity. The dual hyperplane 7p
is nothing else but the polar hyperplane of p with respect to paraboloid II, or
the set of conjugate points of p with respect to II, that is the set of spheres that
are orthogonal to p in IE°.

These observations allow us to use very classical mathematical results and
to deduce in a really simple way all duality results involving generalized Voronoi
diagrams. Details are given in [DMT92b].
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Several techniques to analyze randomized incremental algorithms are presented
in this chapter, as well as a data structure, the Conflict Graph due to K.L.
Clarkson. This structure sets the static character of the incremental algorithms
using it : if a new data is introduced, there is no way of updating the result, the
new result must be computed by starting the algorithm again from the beginning.

A formalization of the problem, borrowed from [CS89], except in a few details,
1s firstly described. This general formalism can be applied to numerous geometric
problems. The notations introduced here will be used throughout the following
chapters.

This chapter does not alm at exhaustively citing the results that can be
obtained with randomized static incremental algorithms, but to present the es-
sentials of the most important ideas. These ideas (particularly those of K.L.
Clarkson, who pioneered the field) have given rise to an impressive quantity of
papers.

2.1 Formalization of the problem

All the geometric problems are formulated in very general terms.

The data of the problem are objects, elements of an universe (). The consid-
ered objects are subsets of the working space, for instance the points, the line
segment, the lines. . .in the Euclidean space ¢ of dimension d.

The regions belong to an universe F, also consisting of subsets of the working
space.

We take interest in the regions defined by the objects. If S is a set of objects,
we denote as S(®) the set of subsets of S having at most b elements, for an integer
b€ IN* ; let V be a relation between F and S(®). We say that F € F is defined
by the set S if there is an element X € §® such that FV.X. We say in this case
that X determines F. F(S) denotes the set of regions defined by S.

F(S)={FeF/(AX € SM) FVX}

The relation V is assumed to be functional, 1.e. for each region F € F(S),
the subset X of § determining F is unique. This formalizes the usual hypotheses
of general position on the set of objects in S.

With each region is associated its influence range that is a subset of the
universe of objects (). The objects belonging to the influence range of a region
F are said to be in conflict with F. By definition, the influence range of F does
not contain any of the objects determining F. The definition of an influence
range, thus of a conflict, will of course be given precisely for each application.

For F € F and § C O, § finite, we denote as S(F') the set of objects of S in
conflict with F', and we call width of F with respect to S the number |S(F)|.

It will be assumed at the moment (a more general problem will be studied
in Chapter 5) that the problem can be expressed as :

Compute the regions defined by S and without any conflict with the
objects in S (regions with zero width).
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Let us illustrate these definitions on the example of the Delaunay trian-

gulation. In 4, the universe O is the set of points of . The universe of
regions is the set of simplices and halfspaces of IE®. If § denotes a set of point
sites, a region can be determined by d or d 4+ 1 sites. Let b = d +1, F(S) is
the set of simplices with its d + 1 vertices belonging to S and halfspaces whose
boundary is a hyperplane containing d points of S.
The influence range of a simplex is its open circumball, and the influence range
of a halfspace is its own interior. V is functional if and only if any d+ 2 sites are
never cospherical and d+ 1 siles never lie on a common hyperplane. To compute
the Delaunay triangulation of S is exactly to compute the set of regions without
conflict defined by S.

In the example of the intersection of halfspaces, the objects are halfs-
paces of IE%, and the regions are edges of the intersection, determined by d + 1
objects. An edge and a halfspace are in conflict if the edge is not contained
in the closed halfspace. The intersection of the halfspaces is the set of edges
without conflict.

The example of the intersections of a set of line segments will also
be studied in the sequel. The algorithm constructs a trapezoidal map (Section
1.3.2). An object (a segment line) is in conflict with a region (a trapezoid) if the
segment intersects the trapezoid. A trapezoid is defined by at most 4 segments.
The set of empty trapezoids gives the arrangement of the set of line segments.

Additional notations will be necessary.

If j is an integer, we denote as F;(S) the set of regions of F(S) of width j with
respect to S, and as F<;(S) the set of regions of width at most j. f'}')(S) is
the subset of F;(S) consisting in the regions determined by elements X in S®
with cardinality [X| = i < b. FC)(S) is defined in a similar way.

All preceding notations can be defined in the same manner for any subset R
of 8. The width of a region defined by R might be calculated with respect to
any set of objects. For the sake of brevity, we call “region of width j (with no
more precision) defined by R” a region defined by R and of width j with respect
to R. If the algorithm is incremental, and if R is the set of present objects at a
given time (R is the current set of objects), the current width of a region defined
by S is its width with respect to R.

We already define the notations connected to random sampling. A subset R
of S is a random sample of S if the elements of R are randomly chosen from the
elements of S. All random samples of size r of S are equally likely, they have
probability (IT) where n denotes the cardinality of S.

We denote as f;(r,S) the mathematical expectation E(,’s)[|f'j('R)|] of the
number |F;(R)| of regions of width j defined by a random sample R of size r
of S. In the same way, f(r,8) = E¢s)[|IF{(R)[]. Finally, ¢;(r,S) is the
maximum of the expectations f;(+',S8) for 1 <7/ <r.

The notations defined that have been defined in this section are summarized
in Figure2.1.
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O untverse of objects
F o e universe of regions
S set of objects S C O
SO . set of all subsets of S of cardinality at most b
F(S) o set of all regions defined by &
S(F) oo set of all objects of S in conflict with region F
Fi(S) o set of all regions of F(S) of width j
Fei(S) v set of all regions of F(8) of width < j
f}i)(S) ........................ set of all regions of F;(S) defined by i objects
f'g])(S) ....................... set of all regions of F<;(S) defined by i objects
(r,8) .o expectation of |F;(R)| for R C S of cardinality r
f]w(r, S) expectation of [f']w('R)! for R C S of cardinality r
Gi(r8) maximum of f;(+/,8) for v <r

Figure 2.1 : Notations

2.2 A data structure : the conflict graph

The general idea leading to the conflict graph of K.L. Clarkson is not specific to
geometric problems.

The principle of the conflict graph is illustrated in [CS89] on the example
of insertion sort. The insertion sort of n numbers can be seen as an alternative
to divide-and-conquer for quicksort. At each step, a new element is put into its
place. If we maintain a sorted list of the already inserted elements, this sort
can be time-consuming, because a large proportion of the sorted list may be
examined at each step.

Two main ideas are used to speed up this algorithm :

o Let us assume that we now, for each uninserted value, its location in the
current list, and conversely for each location, the list of corresponding
uninserted values. These informations constitute the conflict graph. When
element c is inserted, if its location is between a and b, it can be directly
inserted. We then have to update in the conflict graph the set of uninserted
values between @ and b, by comparing them with ¢. The insertion time is
thus proportional to the number of elements between a and b.

¢ If in addition, the numbers are inserted in a randomized fashion, that is in
random order, at step r, the already inserted values are fairly evenly dis-
tributed among the whole set to be sorted. The number of values between
a and b is about 2 on the average.

These two hypotheses allow us to conclude that the expected randomized com-
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plexity is

n
n
(8] — ] =0(nlogn
(53) ot
This summarizes the scheme of incremental randomized algorithms using the
conflict graph. It is to be noticed that in those algorithms, the insertion cost 1s
dominated by the time of updating the informations about conflicts.

The formalization of this scheme can be done in the framework of Section
2.1. The geometric problem reduces to constructing the set Fo(S) of regions
with width zero defined by a set § of n objects.

The incremental algorithm consists in adding the objects of S one by one to
the current subset R of S while maintaining the set Fo(R) of regions without
conflict defined by R.

At step r, when object o is added to the current subset R, the set of regions
having current width zero is updated by removing the regions of Fo(R) in conflict
with o and adding new regions having current width zero : the regions defined by
subsets of RU {o} containing o, and without conflict with any object of R U{c}.

To speed up this updating, the algorithm maintains, in addition to the set of
regions Fo(R), the conflict graph. It is a bipartite graph, defined on the cartesian
product Fo(R) x S\ R, with an edge for each pair (F, o) of a region F of Fo(R)
and an object o in § \ R in conflict with F.

The conflict graph thus quickly gives (in time linear in the number of desired
regions) the regions of Fo(R) conflicting with the new object o studied in the
current step. Per contra, each incremental stage must now include a phase
updating the conflict graph. The edge of the conflict graph incident to the
regions of Fy(R) conflicting with o are removed, and new edges are created to
represent the conflicts involving the new regions of current width zero (regions
in Fo(R U {o}) \ Fo(R)) and the remaining objects (objects in §\ (R U {o})).
The complexity of each step is thus at least proportional to the number of edges
in the conflict graph that are updated (created or removed) at that step.

The definition of the conflict graph imposes the knowledge of the whole
set & from the initialization step. That is why the algorithms using it are
intrinsically static, though incremental. Our goal in the following chapters will
be to introduce a structure quite as general, but allowing us to break free from
this constraint.

2.3 Techniques of analysis

2.3.1 Random sampling
A first idea

P. Erdos and J. Spencer [ES74] have been the first ones to write a whole book
devoted to probabilistic techniques. Their aim was to make the scientific com-
munity know these powerful techniques, that had been applied to a wide variety
of combinatorial problems with much success.



2.3. Techniques of analysis 27

This book contains new proofs of already known theorems, in various fields on
combinatorics, mainly graph theory. The technique consists in replacing “count-
ing arguments” by “random variable arguments”, in nonconstructive proofs of
existence.

Let us consider one of the first examples in the book.

A tournament T on aset V of vertices is a directed graph (set of couples of V2) in
which, for each pair {z,y} C V, such that « # y, either (z,y) €T, or (y,2) €T
holds, but not both. Let 7, be the set of tournaments on V, = {1,...,n}
for a given integer n. An hamiltonian path P in a tournament 7' € T, is an
element of the set ¥, of permutations of V,, such that for all : € {1,...,n—1},
(P(i), P(i+ 1)) € T holds. The following result is due to T. Szele!.

Theorem [Szele] There is some T € T,, containing at least n! 27"*! hamil-
tontan paths.

Proof. by T. Szele
Let U = {(T, P)/T € Tp, P € £, hamiltonian path in T}

The cardinality of 7, is 2(;)
If P € £, is fixed, the number of tournaments T such that (T, P) € U

is 2(2)—(11-1) since P determines n — 1 edges of 7. Since there are n!

)-—(n—l

permutations of V,,, U has |U] = n! 2(2 ) elements.

On the other hand, [U| = ) |{P € £./(T, P) € U}|.
Te€Tn

This sum has 2(2) terms, so there i1s some T € 7, such that

{P € £./(T,P) € U}| > nt 2~(*~D

Proof. by P. Erdés and J. Spencer
Let T be a random variable with values in 7,,, such that

VT € T,,, Prob(T = T) = 27 (2)

or, equivalently,
1
Vi, j € V,,, Prob((i,j) € T) = 3

with independent probabilities for each pair {3, j}.
For a fixed P € X,, let us define a function fp on 7, by

1if P is an hamiltonian path in T
0 otherwise

fo(T) = {

lKombinatorikai vizsgilatok az irdnyitott teljes graffil kapcsolatban, Mat. Fiz. Lapok 50,
1943, 223-256
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h(T)= Y fp(T) is the number of hamiltonian paths in T
PeX,
The additivity of mathematical expectation gives :

E[NT) = E| Y fo(T)

EETE

Y Elfp(T)]

PeX,

Z 9-n+l

PE,
nt 27 "+1

Thus, there necessarily is some T € 7,, such that

h(T) > n! 2"+

Application to computational geometry

K.L. Clarkson has used this idea to build a technique for proving combinatorial
results in computational geometry. In his numerous papers, he applies it firstly
to specific algorithms —post-office problem, convex hulls, intersections of line
segments— [Cla85, Cla87, CS88], then he defines, together with P.W. Shor, a
very general formalism [CS89] whose essentials are repeated in Section 2.1.

We use the notations defined in Section 2.1. )

K.L. Clarkson and P.W. Shor bound the number |F{)(S)| of regions with
width at most k defined by a set S of n objects. We will give here the proof of
this theorem because it is representative of all proofs using random sampling. It
uses two fundamental lemmas.

Lemma 2.1 Let S be a set of n objects and F a region determined by i objects
of S and having width j with respect to S (F € f'}')(S)). Then the probability

pg",)c(r) that F be a region of width k defined by a random subset of size r of S
s :
( j ) ( Sy )
; k r—i—k
) (r) =
p],k(r) n
r

Proof. Let R be a random subset of size r of S. There are (})
possibilities to choose R. Region F in f'}')(S) belongs to f',(c')('R)
if the i objects determining it belong to R, and if in addition F is
in conflict with k objects among the j objects of S in conflict with
it. R then must contain r — ¢ — k objects chosen from the n — i — j
remaining objects of S. o




2.3. Techniques of analysis 29

Lemma 2.2 Let S be a set of n objects and R a random sample of size r of S.

Then the mathematical expectation f,gi)(r, S) of the number of regions determined
by i objects of R and having width k with respect to R is given by :

oy 1) (120
~— i k r—i—k
8) = _I7(S) .
j=0 ( )
r
Proof. f,gi)(r, 8) is a function of the probability for a region F €
F(S), determined by i objects, to belong to 7-',(6')(72) :

fO,8) = Z_ S Prob(F € F)(R))

J=0 peFr(I(s)
= Z 7S] #k(r)

Lemma 2.1 allows us to conclude. a
We can prove the following theoremn, owing to those two lemmas :

Theorem 2.3 [Clarkson-Shor] Let S be a set of n objects. Then the number
|F<(S)| (for k > 2) of regions having width at most k defined by S is bounded by
a function of the mathematical expectation fq (|_,’;—_|,S) of the number of regions
without conflict defined by a random sample of size . of S, as follows :

|F<k(S) < 46+ 1)°k fo (12, S)
(b still denotes, as in the definition of F(S), the maximal number of objects

determining a region)

Proof. The inequality |fg,2(8)| <4(b+ l)iki ((,i) (1#],S) is proved
for each value of i between 1 and b.

From Lemma 2.2, the mathematical expectation f§"(r,S) of the
number of regions without conflict defined by a random sample of
size rof Sis :

| ()
008) = YIS
j=0 .
( n(—z?J)
S L

= (1)

I\
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Calculations on factorials show that, for j < k,

n—i-j |
( ) >z;?5,’;:i’)'.'.:§;:',-:11)) (2==11)

r

For r = |#[ and k > 1, we have in addition

thus we can give the lower bound :

k
E_M >lfork>2.
n—i—k+1 — 4 -

Comparing with the inequality obtained for f((,i)(r, S), we get :

(')S nn—-1)...(n—-i—1) (,) 21,8
KOl A= () =i 0 1S

and using % — 1 < | 2], we obtain finally :

IFEUS)I < 4k"——— O (12),8)

(1-%)

from which we deduce the result by bounding k above by %7. O

Remark 2.4 This theorem only applies for k between 2 and :%~. The

T
following bounds can nevertheless be deduced from it :

IFo(S)] < [Fex(S)] < 1Fea(S)
<4(b+1)°2°fo (12, S) (1 +0 (%))
On the other hand, for k close to n, we have the trivial bound :
[F<r(S)| < IF(S) = O(n)

The theorem gives interesting bounds when an upper bound on fo (|_-,';-_| ,8) is

known. Let us take the example of a set S of hyperplanes in JE¢. The theorem
shows, as announced in Section 1.3.1 :

Corollary 2.5 [Clarkson-Shor] For any set of hyperplanes in general position
in B4, and for any integer k > 2, the size of all orders < k levels in the

arrangement is bounded by O (nl.%-l k[%]).
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and another result already mentioned in Section 1.2.2 :

Corollary 2.6 [Clarkson-Shor]
For any set of points in general position in IEC, and for any k > 2, the size

of the orders < k Voronoi diagrams is bounded by O (nl-dli.'k[%l"l)

Let us now consider an incremental algorithm. This algorithm is randomized
if the objects are introduced at random, that 1s, at each step, all objects have
the same probability to be chosen. In this case, the set R of present objects at
a given stage is a random sample of S.

As seen in Section 2.2, if a conflict graph is used, the complexity of each step
is at least proportional to the number of edges of the conflict graph created or
removed at that step. We impose the following condition :

Update condition : at each increinental step, updating the set of regions
having carrent width zero, and the conflict graph, can be done within a time
proportional to the number of edges of the conflict graph created or removed at
that step.

The fundamental theorem on complexity of randomized algorithms is pre-
sented below. Its proof is given in [CS89], it uses random sampling in a similar
way as the proof of Theorem 2.3. The expected time for inserting an object at

step r + 1 is shown to be
n—r

r2

O(o(r, S5))
(¢o(r, S)is the maximum of fo(r',S) for v < r)

Theorem 2.7 [Clarkson-Shor| A randomized incremental algorithm using a
conflict graph and satisfying the update condition runs on a set of objects S of

size n in ezpected time
Z" ¢o(r, S)

So, for example

o if ¢o(r,8) = O(r), then the expected running time of the algorithm is
O(nlogn).

o if ¢o(r, S) = O(r®) with a > 1, then the expected complexity is O(n?).
Let us mention two applications for this problem :

Theorem 2.8 [Clarkson-Shor] Let S be a non degenerate set of n line seg-
ments in the plane, among which a pairs intersect. The a intersections can be
computed with a randomized incremental algorithm with ezpected O(a + nlogn)
running time and O(n + a) storage.

Theorem 2.9 [Clarkson-Shor] A randomized incremental algorithm comp-
utes the intersection of n halfspaces of E® in ezpected O(nlogn) running time

ford <3 and O (nl-%-l) ford > 4.
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2.3.2 Probabilistic games and O series

In parallel with K.L. Clarkson, K. Mulmuley worked on randomized incremental
algorithms. His analyses are totally different and do not use random sampling.
His results are nevertheless similar, and the data structure is also a conflict
graph. He firstly studied arrangements of curves in the plane [Mul88, Mul89a]
then arrangements of hyperplanes in space and higher orders Voronoi diagrams
[Mul89b, Mul91al.

In [Mul91a], the k first levels in an arrangement of a set § of n hyperplanes
in E* are computed. v(l) denotes the size of the I-level. Let us define

O1,(5,4,8) = Z o(l) + Z (-)39(1)

1=lg+1

The complexity of the algorithm is given as a function of ©(d, n, S).

The probabilistic model used for drawing the hyperplane out in random or-
der is a sequence of independent Bernoulli trials : for each hyperplane of S, it
independently tosses a coin having probablhty = of success. The selected hyper-
planes are those for which success occurred. <I>'° denotes the number of vertices
of the levels of orders at most ly in the arrangement of the so obtained random
sample. We then compute the expectation E[®°] in two following ways.

On one hand, a simple reasoning is done (similar to the one used in the proof
of Lemma 2.1), permitting to say that a vertex v with level { — 1 appears, for
l < lg, if the d hyperplanes determining it are drawn out, and in addition, for
l > lo, if at most o — 1 hyperplanes among the ! — 1 below v are drawn out.
This leads to an expression of E[®!°]. On the other hand, owing to the chosen
probabilistic model that gives usual mathematical tools such as I' function or
Chernoff bound, E[®!°] can be bounded (some generalized zone theorem, proved
in the same paper, is also used).

Comparing the two results gives bounds on © series, from which the following
result follows :

Theorem 2.10 [Mulmuley] The k first levels in an arrangement of hyper-
planes in E® can be computed in O (k[%] nl-%-l) ezpected running time ford > 4
(O (knlog %) for d =2 and O (k®nlog %) for d = 3) using a randomized incre-
mental algorithm.

The Voronoi diagrams of orders 1 to k are obtained by the same method in

(0] (k[ﬁﬂ:l’.lnl.diﬂl'.,) expected running time ford > 3 (O(nk%*+nlogn) ford = 2).

K. Mulmuley’s recent work on dynamic randomized algorithms are presented
in Section 7.3.2.

2.3.3 Backwards analysis

This method gives very nice and elegant proofs, because they are surprisingly
simple. [Sei91c] is one of the first papers in which this idea was published.
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R. Seidel imputes to P. Chew the authorship of this technique that remained
in the background for a long time. P. Chew might have used it for the first
time to analyze an algorithm computing the Delaunay triangulation of a convex
polygon, an algorithm that had never been published before R. Seidel [Sei91a]
or O. Devillers (who also uses a similar analysis that is presented in Chapter 4)
[Dev92] wrote it.

The method consists in analyzing the algorithm as if it was running back-
wards in time, from output to input. It does not use any formalism, nor any
specific calculation technique.

Let us study the classical example of computing the convex hull of a set S of
n point sites. A conflict graph is maintained between the edges of the current
convex hull and the uninserted points. Let us describe the algorithm recursively
computing the convex hullof R C S :

If |R| = 3, then we obtain the triangle spanned by the 3 points of R.

Else, choose a random point in R, recursively compute the convex hull of R/ =
R\ {q} and insert q in the following way :

If q is contained in the convex hull of R’ there is nothing more to do. Otherwise,
the conflict graph gives a visible edge from q, and a traversal of the convex hull
gives all edges visible from q, since they form a chain. Then it is sufficient to
replace that chain with the two edges that have q as an endpoint.

The cost of updating the convex hull is proportional to the number of edges
removed by inserting q, that can be large. However, since a removed edge will
never appear again, this cost can be charged on the creation of these edges. But,
at each insertion, at most 2 edges are created, so the total cost of updating the
hull is linear.

The cost of updating the conflict graph must be evaluated. It is enough to
maintain, for each uninserted point p, the edge Ep of the convex hull crossed
by segment [cp], where ¢ is a fixed point interior to the hull (for example the
circumcenter of the 3 first points). Conversely, for each edge E, we maintain the
set of points p for which £ = Fp.

The cost of updating the conflict graph when q is inserted is proportional
to the number of points p for which Fp changes. For given p, Ep changes if,
after inserting q (here comes the backwards analysis), q is an endpoint of Ep.
As q is randomly chosen from R, the probability that q be chosen as one of the
endpoints of Ep is 2 where r = |R|. The expected number of changes for p is
thus at most 2 (if p already lies in R, there is no change). If we sum for all values
of r < n, we get that the total number of changes for p is at most O(logn).

Since initializing the conflict graph takes a linear time, the whole cost of the
algorithm is O(nlogn).

This example shows the simplicity of the method : no calculations or com-
plicated reasoning was needed.
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Conclusion

We presented previous works on incremental randomized algorithms. A com-
mon point to all these algorithms is that the results hold whatever the point
distribution might be, contrary to more classical analyses such as in [Dwy91].
The only condition is that the points must be inserted in random order.

These algorithms are all static because they use the conflict graph. This
structure has been successfully used by a lot of authors, to compute various
geometric structures. Let us mention [MMO91] who compute abstract Voronoi
diagrams, [Mul88, Mul89a] who constructs arrangements in the plane, [Mul89b,
Mul91a] who studies levels in arrangements of hyperplanes, and of course [CS89)
who develop numerous applications. One of the aims of following chapters is to
design a fully dynamic structure.

Let us notice that, in the theorems proved up to now, the cost of inserting
an object is dominated by the cost of updating the conflict graph, that is not
directly a function of the size of the change in the desired structure. We can
roughly say that the cost of inserting the first objects is high, while the change
in the output is of constant size.

Numerous other results have been obtained in parallel or after ours. Some
of these results will be summarized in the chapters presenting our work, and the
other ones together form Chapter 7.



Chapter 3

The Delaunay Tree
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The Delaunay Tree is a hierarchical data structure which is defined from the
Delaunay triangulation and, roughly speaking, represents a triangulation as a
hierarchy of balls. It allows an “on-line”, or semi-dynamic construction of the
Delaunay triangulation of a finite set of n points in any dimensions : the points
are not supposed to be known in advance, as in Chapter 2. On the contrary,
the Delaunay Tree allows the data to be given while the incremental algorithm
1s running, because it makes possible to look for the conflicts of the point to be
inserted, without storing them explicitly.

To this aim, the idea of maintaining the history of the construction —the
successtve versions of the triangulation, linked together in the tree— is intro-
duced for the first time in [BT86]. The history allows a hierarchical location
in the current triangulation, which is very efficient. The update of the struc-
ture is easy. This idea has been then often used again in randomized dynamic
algorithms (see Sections 3.3 and Chapter 7). However, K. Mulmuley created a
totally different dynamic data structure (see Section 7.3.2).

We only present the algorithm and the data structure in this chapter. The
analysis will be given in Section 4.3.3.1, as a consequence of the general analysis
of the Influence graph (see also [BT93)).

A similar structure, introduced afterwards by L.J. Guibas, D.E. Knuth and
M. Sharir [GKS92], is presented at the end of this chapter.

3.1 Structure

The nodes of the tree are associated with the successive simplices of the trian-
gulation. The word “simplex” will denote the geometric object as well as the
corresponding node.

For the initialization step we choose d + 1 sites of S. They generate one
finite simplex and d + 1 infinite ones (see Figure 3.1) : a halfspace will also be
called a simplex, and will be considered as having d finite vertices and one vertex
at infinity. The ball circumscribing an infinite simplex is exactly the halfspace
itself, that can be considered as a ball with infinite radius. These d+ 2 simplices
will be the sons of the root of the tree.

V3

Figure 3.1 : Initialization step

Then the other points are inserted one after another. The triangulation is
updated as indicated in Section 1.2.1. As already defined in Section 2.1, we say
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that asite p is in conflict with a simplex if p lies in the interior of it circumscribing
ball.

After the insertion of site p, the simplices in conflict with p disappear from
the triangulation, but remain in the Delaunay Tree. They are called dead and
p is their killer. Some of those simplices have a facet on the boundary F(p) of
the region R(p) formed by the simplices in conflict with p. Let T be one of the
simplices in conflict with p that has a facet F belonging to F(p). We construct a
new simplex S, crealed by p, having vertex p and facet F. Let N be the simplex
sharing facet F' with T before the insertion of p. Because the triangulation is

Case of a finite facet F Case of an infinite facet F'

Figure 3.2 : Insertion of p

a Delaunay one, we have the following property (see Figure 3.2) :

Property 3.1 The circumscribing ball of S is included in the union
of the two balls circumscribing 7' and N

This property is fundamental for the correctness of the algorithm, as will be seen
in the sequel.

The newly created simplex S will be called : son of T and stepson of N
through facet F. These edges will never been modified during the construction.

When it is killed, a simplex receives from 0 (if it has no facet on F(p)) to
d+1 sons. As long as it is not dead, it can on the other hand receive an arbitrary
number of stepsons : when a new point p’ will be inserted, in conflict with S but
not with N, S will be killed in turn, and its son S’ having vertex p’ and facet
F will be another stepson of N. Thus a node has at most one son and one list
of stepsons through each facet, that is : 0 to d + 1 sons and 0 to d + 1 lists of
stepsons. The following property can nevertheless be used to bound the size of
the structure :
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Property 3.2 The total size of the stepson lists in the Delaunay Tree
is less than the number of nodes, since each newly created node (the
d + 2 sons of the root excepted) has exactly one stepfather. This is
true in any dimension.

This hierarchical structure is called a Delaunay Tree for short, but it is more
exactly a rooted direct acyclic graph. This graph contains a tree : the tree whose
links are the links between fathers and sons.

A simplex of the current triangulation is not dead, and so corresponds to a
node having no son, but possibly stepsons.

Note that we also maintain adjacency relationships between the simplices of
the current triangulation. This will be developed in Section 5.1.3.5.

Let us summarize the structure of a node of the Delaunay Tree :

e the triangle : creator vertex, two other vertices, circumscribed circle

e a mark dead

e pointers to the at most three sons and the list of stepsons

e the three current neighbors if the triangle is not dead, the three neighbors at
the death otherwise

e a pointer Killer to the site that killed the triangle

3.2 Constructing the Delaunay triangulation

Let p be a site to be introduced in the triangulation. Two steps are performed:
first, we locate p in order to find the set R(p) of all the simplices in conflict with
p and then we create the new simplices.

3.2.1 Location

If p is in conflict with a simplex T, Property 3.1 implies that p is in conflict with
the father or the stepfather of T' (or both of them). So we will be able to find all
the simplices which are killed by p by recursively exploring the Delaunay Tree.
Procedure location given in Figure 3.3 describes this traversal.

Procedure location(p,T) :

if T has not been visited yet
and p is in conflict with 7" then
for each stepson S of T location(p,S) ;
for each son S of T location(p,5) ;
if T 1s not dead then
mark T killed by p ;
add T to the list R(p) of the killed simplices.

Figure 3.3 : Location of a site in the Delaunay Tree
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Remark 3.3 Tt would also be possible to stop the recursive traversal
as soon as a first simplex of the current triangulation in conflict with
p is found. The other simplices in conflict with p would then be
obtained by following neighborhood relations (see the end of Section
3.1).

Remark 3.4 All edges between a simplex and its successive stepsons
may be traversed by Procedure location. Figure 3.4 shows an exam-
ple. Points 1 to 7 are numbered in insertion order. The subgraph

123 234

7

256 237

—>» stepson
—> son

Figure 3.4 : All stepsons may be useful

of the Delaunay Tree corresponding to triangles 123, 234, 235, 256
et 237 is shown on the right side of the figure.

If site 8 is now introduced, it is in conflict with 235 and 256. but
not with 123, The edges traversed to locate 8 are those from 234 to
235 and from 235 to 256. No path passing through 237 leads from
234 to 235.

If we want to locate 9, which is in conflict with 237, but not with
235, we must use the link from 234 to 237.

Thus, it is necessary to store both stepsons of 234.

3.2.2 Creating the new simplices

We go through the list R(p) of the killed simplices. A facet F of a simplex T is
on F(p) if the simplex N neighbor of 7" through F is not killed. In this case, we
create the stimplex S with vertex p and facet F', and the two edges between S,



3.2. Constructing the Delaunay triangulation 41

its father T' and its stepfather N. Moreover N and S are neighbors through F.
Figure 3.5 describes Procedure creation realizing these updatings.

Procedure creation(p):

for each simplex T killed by p
for each neighbor N of T through a facet F
if p is not in conflict with N then
create the simplex S having vertex p and facet F ;
replace the adjacency relation between N and T
by the adjacency relation between N and S ;

create the relations: S son of T and S stepson of N through fac

create the adjacency relationships between the new simplices.

Figure 3.5 : Creating the new simplices

The adjacency relations between the new simplices are obtained by exploiting
the relations between old ones. For the sake of clarity, the dimensions of the
faces are precised. If f is a (d — 2)-face of F(p), common to two (d — 1)-faces F
and F’ of F(p), there exists a sequence of simplices killed by p and all sharing
the same (d — 2)-face f. The first simplex of this sequence has facet F', and the
last one has facet F’/. Theses simplices are neighbors, taken two by two. The
traversal of this sequence of simplices, using their adjacency relations, allows to
link the two new simplices S and S’ having vertex p and respective facets F and
F', that are neighbors through the (d — 1)-face formed by p and f. Repeating
this process around each (d — 2)-face of F(p), we obtain all adjacency relations.
Figure 3.6 illustrates this.

Figure 3.6 : Adjacency relations between new simplices

Each killed simplex has at most d + 1 (d — 1)-faces on F(p), each of them
has d (d — 2)-faces, and each (d — 2)-face is shared by two (d — 1)-faces. A killed



42 Chapter 3. The Delaunay Tree

simplex is thus traversed at most ﬂi;—ll times during this search for neighbors
among the new simplices.

The analysis of the algorithm is presented in section 4.3.3.1. Let us only give
the result stated in Proposition 4.21 :

The Delaunay triangulation of n points in d-space can be computed
on-line with O (n I.d__ﬂﬂ.,) expecled space in dimension d > 2.

The expected update time for an insertion is O(logn) if d = 2 and
(0] (nl.%'l‘."l) if d > 3. These resultls are optimal.

3.3 Another structure

L.J. Guibas, D.E. Knuth and M. Sharir proposed another structure [GKS92],
also based on the history of the construction.

The construction is incremental, but the updating of the triangulation is
different. It relies on the technique of switching the diagonal inside the quadri-
lateral composed by two adjacent triangles : if two adjacent triangles pqr and
rsp are given, if s is in conflict with pqr, then pqr and rsp are replaced by pqs
and qrs.

When a new site p is inserted, it must be located, which means here that
we look for the triangle abc of the Delaunay triangulation containing p, and not
those whose circumscribing circle contains p. Then the triangulation is updated
as follows : first, abc is replaced by pab, pbe, pca ; then there is a propagation
in the triangulation by examining the triangles by pairs of adjacent triangles,
and possibly exchanging the diagonals.

The structure contains all triangles, Delaunay triangles and non Delaunay
triangles, created at any time of the construction. Edges are created between a
killed triangle and the new triangles partially covering it. In this way, the lists
of stepsons are avoided, and the number of edges outcoming from a triangle is
constant. but some triangles that have never been Delaunay triangles remain in
the structure. The randomized analysis of this algorithm, based on random sam-
pling, yields, despite these differences, to the same complexity as the Delaunay
Tree (however, the analysis that is presented in {GKS92] is amortized).

A major drawback of this technique was, until a very recent time, that it was
based on an updating process (the exchange of diagonals), that had never been
generalized to dimensions greater than 2. But V.T. Rajan [Raj91] has just filled
this lack, which might allow the extension of this structure to higher dimensions.
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Conclusion

We have defined a semi-dynamic data structure for constructing the Delaunay
triangulation, based on the knowledge of the history of the incremental construc-
tion.

It is possible to generalize this structure, keeping the same idea of remember-
ing the previous steps of the construction. This general structure, the Influence
graph, is presented in Chapter 4.
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The Influence Graph [BDSTY92] generalizes the Delaunay tree. It is presented
here under the formalism and notations introduced in Section 2.1 (see Figure 2.1
on Page 25). A randomized analysis of the algorithms using this structure is pro-
posed in Section 4.1.1. We also describe a different analysis, due to O. Devillers.
Then, in Section 4.2, we study the efficiency of the Influence Graph for locating
a site.

Section 4.3 develops several applications to semi-dynamic constructions (al-
lowing insertions) : arrangements, Delaunay triangulations of point sites in F4,
convex hull in E®, Voronoi diagrams of segments in the plane. In the case of
convex hulls and Delaunay triangulations, some experimental results are given.

The last section of the chapter is devoted to some remarks about our results.

4.1 The general framework

The different algorithms presented here are incremental and introduce objects
one by one. Let S be the set of objects which have already been introduced. At
a given stage, the incremental algorithin inserts a new object in & and updates
the set Fo(S) of regions of current zero width defined by S (recall that a region
is determined by at most b objects). This is performed through the maintenance
of a dynamic structure called the influence graph (I-DAG for short) described
below.

The I-DAG is a rooted directed acyclic graph whose nodes are associated
with regions that, at some stage of the algorithm, have appeared as regions of
zero width defined by the set of objects that have been introduced at that stage.
Although the I-DAG is not strictly speaking a tree, we speak of leaves, fathers,
sons etc. in the obvious way. The nodes of the I-DAG associated with regions of
Fo(S) are marked. When a new object o is added to S, one new node is created
for each region in Fo(S U {o}) that is not a region of Fo(S).

As in the Delaunay Tree, the already existing nodes are never deleted from
the I-DAG but possibly unmarked (they are dead). The new nodes are linked
by edges to nodes already present in the I-DAG. These edges are constructed
In such a way that a new object o can be efficiently located in the structure ;
locating o means here to traverse all the nodes whose associated regions are in
conflict with o. When a new node corresponding to a region F of Fo(SU {o}) is
added to the I-DAG, we put edges between already existing nodes and the new
nodes so that the influence range of F' is included in the union of the ranges of
its parents.

The I-DAG structure is characterized by the two following fundamental prop-
erties :

Property 1 At each stage of the incremental process, the regions of current
zero width (Fo(S)) are leaves of the I-DAG.

Property 2 The influence range of the region associated with a node is included
in the union of the ranges of its parents.
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The construction of the F-DAG can be sketched as follows:

o We initialize S with the b first objects. A node of the I-DAG is created for
each region of Fo(8) and made son of the root of the I-DAG. The influence
range associated with the root is the whole objects universe 0.

e At each subsequent step, a new object o i1s added to § and the I-DAG is
updated. The two following substeps are performed:

location substep. This substep finds all the nodes of the I-DAG whose
regions have zero width and are in conflict with o. This is done by
traversing every path from the root of the F-DAG down to the first
node which is not in conflict with object o.

creation substep. From the information collected during the first sub-
step, the creation substep creates a new node for each region in Fo(SU
{0})\ Fo(S) and links the new nodes to already existing nodes in the
structure so that Properties 1 and 2 still hold. The details of this
substep depend on each particular application.

4.1.1 Randomized analysis of the I-DAG

This subsection aims at providing a randomized analysis of the space and time
required to build the I-DAG structure. Randomization concerns here only the
order in which the inserted objects are introduced in the structure. Thus, if the
current set of objects is a set S of cardinality n, our results are expected values
that correspond to averaging over the n! possible permutations of the inserted
objects, each one being equally likely to occur.

The main results of this chapter are stated in Theorems 4.3 and 4.13 below,
they give quite general upper bounds on the size and the update time of the
I-DAG as functions of the expected size of the output for a sample of the input.

For the sake of clarity, we will make some hypotheses that simplify somewhat
the analysis. These conditions are fulfilled by a large class of geometric problems
and allow one to express the results in a simple way. However these hypotheses
are not really necessary and will be removed in Section 4.1.4.

The update conditions

We first assume that three update conditions are satisfied. These conditions
are almost equivalent to Clarkson’s. As already mentioned these hypotheses are
mainly for clarity and will be removed later.

(1) The number of sons of a node of the I-DAG is bounded.

(2) Given a region F and an object o, the test to decide whether or not o is
in conflict with F can be performed in constant time.

(3) If the new object o added to the current set S is found to be in conflict
with k regions of Fo(S) then the creation substep requires O(k) time.
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Expected storage
Lemma 4.1 If S has cardinality n, the expecied size of the L DAG of S is :

“ Jo %,3
O(Z (© ))

j=1

Proof. The expected number of nodes 7(8), in the I-DAG of § can be
obtained by summing, for all the regions F of F (8) the probability
that F' occurs as a node in the I-DAG, which 1s (‘—_l_L]—)—, (the i objects

determining F' must be inserted before the j objects in conflict with
F).
So,

b n-i
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o (Z fo—(l'_;;—J’i)-) by Theorem 2.3.

j=t
According to Update condition 1, this bound applies also to the size
of the I-DAG. o
Expected time

Lemma 4.2 Under the update conditions, if S has cardinality n, the ezpected
time for inserting the last object in the I-DAG is

0 (%Zfo(m,o‘))
j=1

Proof. Under Update condition 2, the computing time spent to
locate the last inserted object o is proportional to the total number of
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nodes of the I-DAG visited when locating o. Due to Update condition
1, the number of nodes visited when locating o is at most proportional
to the number of nodes of the I-DAG associated with regions in
conflict with o. Thus the expected time for locating the last inserted
object o is proportional to the expected number, §(S), of nodes of
the - DAG associated with regions in conflict with o.

Let F be a region of f'}')(S). F is a region in conflict with o as-
sociated with a node of the I-DAG, if o is one of the j objects in
conflict with F (thus the choice, for o, of any of the j objects among
the n is possible) and if the i objects defining F have been inserted
before the j objects in conflict with F. This occurs with probability
%%% The expected number 6(S) of nodes visited during the
last 1nsertion is then obtained by summing, for all the regions F of
F(S), the above probability. Using Theorem 2.3, this yields :

b n—1 . - n
()= % |f]gz)(s)|m% —0 %Zfo([-;-_l,S) ,
i=1 j=1 : j=1

from a calculation similar to the proof of Lemnma. 4.1

Due to Update condition 3, the computing time of the last creation

substep is also dominated by a term proportional to the number of

nodes of the I-DAG associated with a region in conflict with o and

admits the same expected upper bound as 4(S). ]
Main theorem

Lemmas 4.1 and 4.2 prove the main result of this section :

Theorem 4.3 If the set of already inserted objects S has cardinality n and if
the update conditions are fulfilled, the I-DAG of S requires

= Jo ?,3
O(Z 1319

j=1

ezpected memory space. The insertion of the n'® object can be done in

0 (%Zfo(m,a‘)
i=1

expected update time.

Corollary 4.4 Under the update conditions, the total expected time to build a
I-DAG for a set 8 of n objects is :

oS 4ol121,9)
j=1
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Proof. Notice that in that corollary, S is no longer the carrent subset
of inserted objects, but the final set of objects. From Theorem 4.3,
we know that, if a subset R of § with cardinality r has been inserted
at a given time, the expected time to insert the last object of R is

: 0 (Z;zl %fo(l_ﬂ,R)). This expected time accounts for averaging
over the r! permutations of the objects of R. Now, the expected
time to insert the r** object of S results from further averaging over

the r-random samples of & which yields : O (Z;=1 %fo(l_;’_[,S)) .
The proof of Corollary 4.4 results from summing over r from 1 to

n, knowing that ¢¢(r,S) is a non decreasing function (recall that
$o(r, 8) is the maximum of the values fo(+/, S), for ' < 7). O

Two immediate consequences of Theorem 4.3 are the following :

o If fo(z,S) = O(z), the space complexity is O(n) and the time to insert a
new object is O(log n).

o If fo(z,8) = ©(x*) (with a > 1), the space complexity is O (n*) and the
time to insert a new object is O (n®~1).

4.1.2 Influence graph versus Conflict graph
This result is the same as the complexity obtained by using the conflict graph,

which is
— ¢o(r, S)
o (" P
r=1
(see Theorem 2.7).

In fact, || = r for j such that 25 < j < . By changing ? to r in our
result, and grouping partial sums (we sum together all terms corresponding to
values of j yielding the same |2|), yields the expression of K.L. Clarkson and
P.W. Shor.

Another, maybe more pleasant, way to see the similarity is to look precisely
at the total number of nodes traversed in the I-DAG in order to locate an object,
during the whole construction : it is the sum, over all regions ever created, of
the number of objects in conflict with this region. In other words, it is exactly
the number of Conflict graph edges ever created.

The only difference between the two results (independently from the on-line
possibility in the I-DAG) lies in the fact that the non amortized complexity of
an insertion is totally different : the work done in the Conflict graph is more
expensive for the first objects than for the last ones, while it is the contrary in

the I-DAG.

4.1.3 Another analysis

The above analysis of the algorithms constructing the I-DAG uses random sam-
pling to bound the number of regions in conflict with at most k objects, and
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deduces time and space bounds for the algorithms. O. Devillers proposes in
[Dev92] a simple analysis, using the principle of backwards analysis presented in
Section 2.3.3. He avoids the use of random sampling techniques. He also ana-
lyzes the Conflict Graph in a similar manner, and applies his results to the design
of efficient algorithms combining Conflict and Influence graphs (see Section 7.1).

Lemma 4.5 The expected value of the number of conflicts of the I** object with
regions that had no conflict at stage k (k < 1) is i‘—K:—I;’—sl

Proof. Let w be one of the n! possible orderings on §. By averaging
over w, the first k objects plus the I'* object o may be any sample
of size k + 1 with the same probability. Suppose thus that o is
introduced immediately after the first k elements. Then the regions
that were defined by those k elements and that are in conflict with o,
are determined by a subset of those k + 1 elements and their width
is 1 after the insertion of o. Finally, o may be any element of the
sample of size k+ 1, with probability ﬁT, which yields the result. O

Lemma 4.6 The ezpected number of regions created by the insertion of the kt*
object is less than b—f—"—(:il.

Proof. A region created by the k** object o is a region defined by
these k objects and without any conflict with them. In the same way
as done in the preceding lemma, we can say that the first k objects
may be any sample of § of size k with the same probability. Then %
is an upper bound for the probability that o be one of the at most b
objects determining a region. O

Lemma 4.7 The expected value of the number of conflicts of the ' object
with the regions created by the insertion of the k'* object (k < 1) is less than

ﬁ !1!h+1,5[
k k+1 :

Proof. Let us denote Ej; this expected value. Ey ; is the sum, over
all regions F defined by S, of the probability pr i ; that F be created
by the insertion of the k** object and in conflict with the I** object
o.

Let us decompose this probability pr x i, conditionally with the event
that F is in conflict with o and had no conflict at stage k. In the case
where F' had no conflict at stage k, the probability that the object
that created F be the last among the k objects is less than %, as in
the preceding lemma. In the case where F had a conflict at stage k,
F could not have been created by the k*® object, so this case does
not contribute to the value of pr ;. So we conclude by using Lemma
4.5, which gives the expectation of the conditional event. O

Theorem 4.8 The complexily of the operations on the Influence graph are the
followinyg :
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(1) The expected size of the Influence graph at stage k is less than Z;-czo Mﬂ]l—‘a

(2) The exzpected cost of inserting the I'* object in the Influence graph is less
-1 b f1(j+1,8
than ;24 § RS

(3) The ezxpected cost of inserting the I'* object in the Influence graph, knowing

the conflicts of this object with the regions that had no conflict at stage k,
is less than zl'l b f1(i+1,8)

J=kj 541
The result (3) is the central point that allows to build accelerated algorithms
(Section 7.1).

Proof.

(1) Since the number of sons is bounded, the size of the influence
graph is proportional to its number of nodes. This number is
simply the sum over all the regions of the probability for a region
to be a node of the graph. By Lemma 4.6 the expected number
of nodes created at stage j is less than m”]]—‘ﬁ

(2) During the insertion of the I** object, the conflicts are located
by a traversal of the influence graph. A node F is visited, and
yields a positive answer, if it is in conflict with the I*® object. By

summing over the stage of creation j of F we get (Z;—:II E;q).

According to update conditions, the number of visited nodes,
with positive answer, in the influence graph is linearly related
to the cost of the insertion.

(3) Same result starting the summation at j = k.
0

In the applications fo(r, S) and fi(r, S) are often both linear. In such a case,
the complexities get a more explicit expression stated in the following theorem.
Furthermore, if a direct expression of fi(r,S) is not available, it is possible to
show (see [CS89], Theorem 2.3 and Remark 2.4) that fi(r,S) = O (fo (l5),9)),
so 1t is sufficient to suppose that fo(r,8) is linear.

Theorem 4.9 If fo(r,8) = O(r),
(1) The expected size of the influence graph at stage k is O(k).

(2) The expected cost of inserting the I'* object in the influence graph is
O(log!).
The whole cost of the algorithm is O (3_,_, logl) = O(nlogn).

(3) The expected cost of inserting the I'* object in the influence graph, knowing

the conflicts of this object with the regions that had no conflict at stage k,
is O (log 1).

Proof. This theorem is simnply a corollary of Theorem 4.8. O
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4.1.4 Removing the update conditions

In some cases the three update conditions can be removed. We will show in
Section 4.3 that removing the update conditions (especially Condition 1, that is
not verified in the case of the Delaunay Tree) will lead, in some cases, to simpler
algorithms.

Constant test time and linear update time

Update conditions 2 and 3 can be relaxed. If the time required to check conflict
between a region and an object exceeds O(1), the overcost will simply appear
as a multiplicative factor in the overall complexity. If the time required by the
creation substep surpasses a linear function of the number of conflicts, 1t is in
general not difficult to charge the overcost to the overall complexity. This kind
of analysis will be done for example for the incremental construction of higher
order Voronot diagrams (see Section 5.1.3.5).

Bounded number of sons

It is more interesting to attempt to remove Update condition 1. The preceding
analysis works because all the relevant quantities can be expressed as functions
of the number of nodes. If the condition is not fulfilled, we must count the
number of edges of the I-DAG and to that purpose, we introduce the notion of
bicycles. A bicycle is a pair of regions of F(S) occurring as a father and one of
its sons in the I-DAG associated with at least one permutation of the object set
S.

Notice that the maximum number of objects defining a bicycle is at most 2b
and thus is still bounded. An object is in conflict with a bicycle if it is not any of
the objects that determine the bicycle and if it is in conflict with at least one of
the two regions forming the bicycle. Thus the influence range of a bicycle is the
union of the influence ranges of the two regions forming the bicycle, excepting
the objects defining these regions.

In analogy with the notation used for regions, the additional notations G(S)
(set of bicycles defined by S), G;(S) (set of bicycles defined by § of width j),
G<;(S) (for bicycles of width at most j)... are naturally derived. We define
go(r,S) to be the expected size of Go(R) for r-random samples R of S.

With these definitions, the following lemma can be proved, using the random
sampling technique, in a way similar to Theorem 2.3.

Lemma 4.10
165 = 0(™90(|3],5))
We can now compute the expected storage required by the I-DAG :
Lemma 4.11 If S has cardinality n, the expected size of the I-DAG of S is :
n 5 ,S
o (30211219

=17
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Proof. The size of the I-DAG is linearly related to the number of
its edges. A necessary condition for a given bicycle G to occur as
an edge in the I-DAG is that the i objects defining G are inserted
before the j objects in conflict with G (i.e. in conflict with one of the
two regions associated with G). So the probability that G' € G(S)
arises in the I-DAG is less than (z—'}]‘—)—, Calculations analogous to
those appearing in the proof of Lemma 4.1 yield the result. o

Lemma 4.12 The ezpected time for inserting the n** object in the I-DAG is

0 (%Zyo(L?J,S)
j=1

Proof. Let o be the n'? object to be inserted. The number of times
a node is visited is equal to the number of its parents which are in
conflict with o. Thus the number of performed tests is no more than
the number of bicycles in conflict with o occurring in the I-DAG.

Let G be a bicycle of g](')(S). G is in conflict with o and occurs as
an edge in the I-DAG if the following two necessary conditions are
satisfied : the i objects defining G are inserted before the j objects
in conflict with G, and one of the j objects is o. The probability that
G 1s in conflict with o is thus no more than %%i]-'_—lll):; The result is
then achieved as in Lemma 4.2. a

Lemmas 4.11 and 4.12 prove the main results of this section, generalizing
Theorem 4.3 and Corollary 4.4 :

Theorem 4.13 If the set of already inserted objects S has cardinality n and if
Update conditions 2 and 3 are fulfilled (but not Update condition 1), the I-DAG

of 8 requires
o (5o 2L
=t 7

th

expected memory space. The insertion of the n*® object can be done in

0 (%Zyouﬂ,&
j=1

ezpected update time.

Corollary 4.14 Under Update conditions 2 and 3, the total expected time to
build a I-DAG for a set S of n object is :

01X n(l2):8)
j=1

where Yo (r, S) denotes the mazimum value of go(r',S) for ' < r.
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4.2 Locating with the influence graph

4.2.1 Faster object location

If the following additional property is verified, it is possible to get a better
complexity result for the search of a single region in conflict with a new object.

Property 3 The influence range of the region associated to a node is included
in the union of the ranges of its children.

If Property 3 holds, then a conflict with a given new object can be found by
following a simple path from the root of the I-DAG to a leaf.

Theorem 4.15 If Property 3 holds then e conflict with any new object can be
Jound in O(logn) time provided that the n objects that were inserted in the I-
DAG have been inserted in random order.

Proof. Let o be the new object and F be a region on the path
from the root to a leaf of the I-DAG in conflict with o. Suppose
that F has zero width after the insertion of the k** object. If F is
determined by i objects, the conditional probability that F has been
created during the insertion of the k*® object is 'F < % Indeed, for
F to be created at step k, the k*® inserted object must be one of
the i objects defining F. (It is important to notice that the above
probability is conditioned by the fact that F has width zero after the
insertion of the first k objects.)

Averaging this probability over the (}) possible subsets of k objects
introduced first in the I-DAG yields a probability less than % that the
node on the path would change after the insertion of the k** object.
Thus the number of visited nodes is less than Z% =O(logn). 0O

Let us make some remarks about Theorem 4.15. First it is important to
notice that the cost studied here is expected over all possible orders to insert the
objects in the I-DAG, but there is no hypothesis on the new object, by opposition
to Lemma 4.2 where all objects, including the last one, are supposed to satisfy
the randomization hypothesis. Secondly, in many applications, 1t is posstble to
find all conflicts with a new object from a single one in time proportional to the
actual number of conflicts (for example by the use of some neigborhood notions).
The faster location may be used as a first step of the insertion of a new object
in the I-DAG. A last remark concerns the worst case ; though we are interested
in randomized complexities, the faster location has a worst case running time
O(n) which is better than the general location step.

4.2.2 Queries

In some applications, queries consist in finding the regions having zero width
which are in conflict with a given element of the object universe : this is just
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a special instance of a location substep. In such cases, the I-DAG can be used
and the randomized analysis of Theorem 4.3 holds, provided that the query
object q together with the set of objects S introduced in the I-DAG satisfy the
randomization hypothesis, i.e. the (n + 1)! permutations of {q} US are likely to
occur.

In other applications, regions and queries are such that the answer to a
query consists of exactly one region of Fo(S8) for any set S. Such a query will be
answered by a location substep that will traverse only one path from the root
to a leaf. This yilelds the following strong variant of Lemma 4.2.

Theorem 4.16 Assume thal regions and queries are such that the answer to a
query consists of ezactly one region of Fo(S) for any set S. Then any query can
be answered in O(logn) time provided that the n objects that were inserted in
the I-DAG have been inserted in random order.

Proof. The proof is similar to the proof of Theorem 4.15. a

4.3 Applications

We study several cases in which the update conditions are fulfilled : one algo-
rithm for convex hulls (Section 4.3.1), arrangements (Section 4.3.2) and Voronoi
diagrams of line segments (Section 4.3.3.2). We will also see cases where they are
not fulfilled : another algorithm for convex hulls, and the case Voronoi diagrams
(Section 4.3.3.1).

4.3.1 Convex hulls

We consider the geometric problem of computing the convex hull of a set of
points. We present in this section two algorithms that are both on-line and
whose expected performances are optimal in any dimension. For simplicity, we
expose here firstly the two dimensional case. The extension to higher dimensional
spaces is quite straightforward and will be shortly described next.

First algorithm

Objects are points of the plane. Regions are determined by three points. The
region (p,q,r) associated with p, q and r consists of the union of two half-planes :
one bounded by line (pq) and not containing r and the other bounded by line
(qr) and not containing p (see Figure 4.1). An object is in conflict with a region
if and only if it lies in the region.

Now let p, q and r be three points in S, the set of points already inserted.
The region associated with these points has zero width if and only if p, q and r
are three consecutive vertices of the convex hull. So computing the convex hull
of § is equivalent to computing the zero width regions.

Let us now describe the algorithm. Suppose that the I-DAG has been con-
structed for the points in § and that we want to insert a new point m. The
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region associ
to pgr

Figure 4.1 : Definitions of regions for the convex hull problem

location substep gives the regions of Fy(S) containing m. 1f m belongs to the
interior of the convex hull, there is no such region, Fo(SU {m}) = Fo(S) and the
I-DAG is not modified. Otherwise, let p; and px be the two vertices adjacent
to m In the new convex hull and ps, ..., pr—1 the chain of vertices which are no
longer vertices of the convex hull after the insertion of m (see Figure 4.2). The

Figure 4.2 : Inserting a new point in the convex hull

regions of Fo(S) containing m are (p;—1, pr, Pi+1), for 1 <1< k. By a simple test
on these regions, we can determine (po, p1,p2) and (px—1, Px, Pr+1) (m belongs to
only one of the two half-planes defining the region). The I-DAG is then modified
in the following manner : all the (pi—1,p1, p1+1), for 1 <1 < k, are killed by m,
their width are incremented and three new regions are created, namely

hd (PO:PI: m) as a son of (PO;Pla P2)
¢ (m, Pk, Pr+1) as a son of (pek—1, Pk, Pr+1)

¢ (p1,m,px) as a son of both (po,p1,p2) and (pr—1,pk, Pr+1)-
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It is clear that the properties of the I-DAG are preserved and that the update
conditions are satisfied. Here fy(r,S) is the expected size of the convex hull of
r points of S which is clearly O(r), so applying Theorem 4.3 we deduce :

Proposition 4.17 The convezx hull of n poinis in the plane can be computed
on-line with O(n) ezpected space and O(logn) expected update time.

These results can be generalized to any dimension. The regions are deter-
mined by d+ 1 points and are unions of two half-spaces. The zero width regions
correspond to (d—2)-faces of the convex hull and their two adjacent (d— 1)-faces.

The expected size fo(r,S) of the convex hull of » points is O (rL%J )

Proposition 4.18 The conver hull of n points in d-space can be compuied on-
line with O (nl-%.l) expected space and O(logn) ezpected update time if d < 3

and O (nl.%.l"l) expected update time if d > 3.

These results are optimal.
As far as queries are concerned, the above results show that one can decide
if a point lies inside or outside the convex hull of n points in O(log n) expected

time in the plane and O (nl.%J '1) expected time in d-space.

Second algorithm

It might look more natural to take half-spaces as regions. In that case, as will
become clear below, the number of sons is not bounded and Update condition 1
is not satisfied. However the result of Section 4.1.4 proves that the resulting
algorithm has the same complexity as the one above.

We describe the algorithm for the two diimensional case. It can be generalized
to any dimension with no difficulty. O still denotes the set of points of the plane.
Regions are now determined by only two points. The regions (p, q) and (q,p)
are the two half planes limited by the line (pq). A point is in conflict with the
region (p, q) if it lies inside the corresponding half-plane. If a region (p,q) has
zero width, then [pq] is an edge of the convex hull.

In addition to the standard information stored in each node of the I-DAG,
we also maintain at each leaf which is associated with an edge F of the convex
hull two pointers towards the two leaves associated with the two edges of the
convex hull adjacent to E. When a new point m is inserted, the location substep
provides all the half-planes with current width 0 in conflict with m. These half-
planes correspond to a chain of edges of the convex hull [pips], ..., [pr-1Pk] (see
Figure 4.2). The two extremal edges [p1p2] and [px—1px] are identified, by testing
if their two neighbors are not both in conflict with m. Two new regions (p1,m)
and (m, py) are created. In order to satisfy Property 2, (po,p1) and (p1,p2) are
made parents of (pi,m) ; similarly (px—1,pt) and (pi,Pr+1) are made parents
of (m,pr). The neighborhood relationships are updated : (pg,pi) and (p1,m)
become adjacent and similarly (p, pr+1) and (m, pi), and (p1,m) and (m, pz).
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Notice than the width of (po,p1) is still zero and that this region may have
other sons in the future : Update condition 1 is not satisfied.

As described in Section 4.1.4, we introduce the notion of a bicycle. Here a
bicycle is defined by two regions (p, q) and (q, r) sharing a point of definition (a
bicycle here is a region of the previous section ; see Figure 4.1). The zero width
bicycles are of two kinds. The first ones are associated with two regions with zero
width : (po,p1) and (p1,m) in Figure 4.2. They correspond to two consecutive
edges of the convex hull. The second ones are associated with a region of zero
width and a region in conflict with the additional point of definition of the
other : (p1,p2) and (p1,m) in Figure 4.2. They correspond to an edge E of
the convex hull and to an edge F’, incident to one of the endpoint of £ and
whose supporting line separates a 1-set of §. Using the results on the number

of k-sets (see, for instance, [Ede87]) we conclude that go(r) is O (rI-%J) . Thus

Theorem 4.13 1mplies that this simpler algorithm has the same complexity as
the algorithm of the previous section.

Experimental results

The second algorithm has been coded in both dimensions 3 and 4. The results
appear to be really good in the case where there are a lot of sites on the convex
hull. In the case where the number of faces of the convex hull is small, compared
to the number of sites, a lot of points must be located in the I-DAG, without
creating any new result (this problem will not occur in the case of Voronoi
diagrams, as will be seen next). Observe however that, in most cases, the number
of nodes visited to locate asite is much smaller than the size of the current convex
hull. Compare for example the results of Figures 4.3 and 4.4 in 3D.

630
—_|_ number of nodes in the IDAG
' _number of ?odes visited
number of faces
| _of the convex hull
74

U points 1000 points

Figure 4.3 : Convex hull : 1000 sites in the interior of a 3D-cube
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2919
. number of nodes in the IDAG
number of faces
of the convex hull
967 T
number of nodes visited
pont 500 points

Figure 4.4 : Convex hull : 500 sites on the surface of a 3D-sphere

Figure 4.5 shows the results obtained for a set of points lying on a closed
surface in 3D. Finally, Figures 4.6 and 4.7 show results in dimension 4.

1637
| number of nodes in the IDAG
number of faces
of the convex hull
360 -
—number of nodes visited
poIn 1164 points

Figure 4.5 : Convex hull : Points lying on the surface of a heart

4.3.2 Arrangements

Let us consider first the case of line segments. The general framework of Section
4.1 can be applied to solve this problem. The algorithm builds the trapezoidal
map of & (see Section 1.3.2). Objects are here line segments and regions are
trapezoids (i.e. cells of the trapezoidal diagram). A trapezoid is determined by
at most four segments. A line segment and a trapezoid are in conflict if and
only if the segment intersects the interior of the trapezoid. For each leaf of the
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364
_ number of nodes in the IDAG
number of faces
| of the convex hull
|_number of nodes visited
628

point 500 points

Figure 4.6 : Convex hull : Points lying in the interior of a 4 dimensional cube

4851
L number of nodes of the IDAG
| number of nodes visited
number of faces
| of the convex hull
649
poin 1000 points

Figure 4.7 : Convex hull : Points lying on the surface of a 4 dimensional cube
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I-DAG, we store also some neighbors of the corresponding zero width trape-
zoid. More precisely, we store two kinds of adjacency relationships : adjacent
trapezoids through vertical edges of the map are called horizontal neighbors and
adjacent trapezoid through line segments are called up or down neighbors. In
general position a leaf of the F-DAG has at most four horizontal neighbors and
an arbitrary number of up and down neighbors.

When a new segment s is inserted, we traverse the -DAG to collect the
set £(s) of all the zero width trapezoids in conflict with s. Each such region is
subdivided into at most four subregions and these subregions are possibly merged
to form new trapezoids (vertical segments intersecting s have to be shortened)
which is easily done using the adjacency relationships stored in the nodes of the
I-DAG. The resulting trapezoids are the new nodes we attach to the -DAG. The
parents of a new node are the trapezoids of £(S) which intersect that node (see
Figure 4.8). Notice that a trapezoid may have several parents, for example in
this figure, a portion of 4 is merged with a portion of 6 to form ¢ ; thus 4 and 6
are together parents of c.

™ ANA AN

Figure 4.8 : Insertion of s in the Influence Graph

Let us detail the whole information stored in a node of the graph.

First a node corresponds to a trapezoid 7', so we store the four segments deter-
mining T ; one of them is its creator.

In order to merge trapezoids during the insertion of a segment, we need to store
horizontal neighbors, that is at most 2 left and 2 right neighbors, and links to
some parents. )

For the removal of a segment (see Section 6.2), we will need to store for each
trapezoid some vertical neighbors : the up-right neighbor, namely its up neigh-
bor adjacent to its right side neighbor, and the up-left, down-right and down-left
neighbors, at the time when the trapezoid was created. To initialize these neigh-
bors, for a new trapezoid, during an insertion, we need to know all current up
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and down neighbors of its parents. We have two ways to perform this : the first
one is to maintain all those vertical neighbors for each trapezoid in the map ;
the second one 1s to look for them each time when we need them ; to do so,
we only need one of them, and find the other ones using horizontal neighbors.
The first solution makes the structure of a node rather heavy, and we can easily
see that the second solution does not increase the time complexity and gives all
necessary information [CS89]. So we will consider that we know every up and
down neighbor.

Trapezoid created by s

<o Explicit horizontal neighbo

\ Explicit vertical neighbors
at creation

4 parents (covering corners)

@ corner

Figure 4.9 : A trapezoid, its neighbors and parents

Let us summarize the structure of a node (see Figure 4.9) :

¢ at most 4 segments defining it (one of them is the creator)
e the at most 4 horizontal current neighbors

e its at most 4 children

o its killer

e its at most 4 corners (i.e. its vertices)

o all current vertical neighbors (they are not explicitly stored)
e one vertical neighbor at creation per corner

e at most 4 parents : for each corner, the parent covering it
If the node is dead, all current neighbors become neighbors at the
death.

Figure 4.10 shows the insertion of a new segment s. s is the new segment
and T is a node of the Influence Graph. For the first call to Insert, T is the root
of the Influence Graph.

A node has at most four sons so that the update conditions are fulfilled (but
the number of parents for a trapezoid is unbounded). An easy lemma, proved

in [CS89], shows that fo(r,8) = O (r + a%). In fact, if R is a random subset

of S of size r, since the trapezoidal map of R is a planar map, the number of
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Insert(s, T')
if s is not in conflict with T
return ;
if T is dead then
for each child S of T Insert(s, S) ;
else
s 1s the killer of T' ;
split 7" into pieces, that become children of T ;
deduce the neighbors of the children from the neighbors of T ;
for each child of T
if it has an intersection as a corner
put a parent link from it to T ;
look for a merge with horizontal neighbors ;
if it has no parent pointer then link it to T ;
update all neighbor relations of the neighbors of T' ;

Figure 4.10 : Insertion of a new segment

its trapezoids is O(n + a(R)), where a(R) denotes the number of intersecting
pairs of segments of R. Let z be an intersection between two segments of S, the

probability that z be an intersection between segments of R is g;;)_, since the

two segments meeting at z must both be in R. The result follows fr(z)m summing
this probability for all intersections between segments of S.

This result can be readily extended to planar arrangements of curves of
bounded degree : the expression for fy(r,S) is the same, and the number of
sons of a node is bounded by a constant depending on the kind of curves con-
sidered (it is 11 for circles, for example).

Proposition 4.19 An arrangement of n planar curves (of bounded degree) can
be computed on-line with O(n + a) expected space and O (logn + 2) ezpected
update time, where a is the complezily of the arrangement.

We achieve the same complexity as Clarkson and Shor [CS89) and Mulmuley
[Mul89b], whose algorithms use the conflict graph, and thus are static. The
trapezoids with zero width partition the plane, so that Theorem 4.16 applies :

Proposition 4.20 A point can be located in an arrangement of n planar curves
(of bounded degree) in O(logn) ezpected time using O(n + a) ezpected space
and O(nlogn + a) expected preprocessing time, where a is the complezity of the
arrangement.
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4.3.3 Voronoi diagrams
4.3.3.1 Voronoi diagrams of point sites in E*

Using the well known correspondence between Voronoi diagrams in d dimensions
and convex hulls in d + 1 dimensions (see Section 1.4), we immediately deduce
from the previous section two optimal on-line algorithms to construct the Voronoi
diagrams of points in any dimension.

A direct presentation that does not use this correspondence has already been
described in detail in Chapter 3 : the Delaunay Tree is in fact nothing else but
an Influence Graph. Here, Update condition 1 is not fulfilled, so, for the analysis,
we need to define a bicycle as a pair of simplices sharing a facet. We use the
fact that the number of simplices arising in a Delaunay triangulation of n sites

is O (nl.%ﬂ) (see for example [K1e80]) and thus, that the number of bicycles of

width zero has the same complexity (d is fixed). The analysis given in Theorem
4.13 allows to state :

Proposition 4.21 The Delaunay triangulation of n points in d-space can be
d+1
computed on-line with O (nl.'%‘.l expected space in dimension d > 2. The

expected update time is O(logn) ifd =2 and O (nl.d—;—l.l_l) ifd>31.
These results are optimal.

Remark 4.22 The results stated in Proposition 4.21 are obtained by
using worst-case bounds for the size of a Delaunay triangulation

(O nl.ig-lJ) is used to bound [Fo(S)|).

If we assume that the set of sites to be triangulated is uniformly
distributed in the space, we know from the results of [Dwy91] that
|Fo(8)| (and thus |Gy(S)|) is O(n). Consequently, the random sam-
pling technique used in Theorem 2.3 provides a linear complexity for
the size of F<;(S§) and G<;(S) and our algorithm runs in O(nlogn)
expected time in any dimension.

Experimental results

The algorithm has been implemented in both dimensions 2 and 3. It is to be
noted that the algorithm is extremely simple.

Moreover, the numerical computations involved are ‘also very simple : when
a simplex is created, we can compute the coordinates of the center of its cir-
cumscribing sphere, and its squared radius. This is achieved by first writing the
equation of a sphere in d dimensions, then writing that the d + 1 sites defining
the simplex belong to the sphere, and solving the linear system which results

1The constants depend on the dimension as a d+5) factor for the time complexity and a
fsn

f

here.

L f t i i it t tati
m actor for the space complexity. We will omit the computations of these constants
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from that, with d + 1 equations and d + 1 unknowns, in O(d®) time.

The center and the squared radius of a simplex is computed once for all and
stored in the corresponding node. For testing if a site is in conflict with a sim-
plex, we only have to compute its squared distance to the center of the simplex,
which costs O(d), and compare it with the squared radius. The constant in
Footnote 1 has been computed according to this method.

The algorithm has run on many examples with different kinds of point dis-
tributions, in two and three dimensions.

In each case, several orders of insertion of the sites have been tried to an-
alyze the running time down to the constants. All randomized orders that we
experimented yielded roughly the same results.

Some results are presented on Figures 4.11, 4.12 and 4.13 for the planar case.
See also some related figures in Chapter 5 (5.8 to 5.16) and in Chapter 6 (6.9 to
6.11).

558
number of nodes

\F in the Delaunay Tree

number of triangles
in the Delaunay triangulation
—

190D /

number of nodes vistted
to find the first conflict
-

e e L 1.4 .
0 U48 sites

Figure 4.11 : Voronoi diagram : Random sites in the plane

Figures 4.14, 4.15 and 4.16 present results in 3-space. Figures 4.14 and 4.15
show results in the case where the size of the final Delaunay triangulation is linear
in the number of sites, whereas Figure 4.16 was obtained for a distribution where
the number of tetrahedra was quadratic (the sites are lying on two non-coplanar
line segments).

Storage of the Delaunay Tree

The number of nodes in the Delaunay Tree has been studied with respect
to the number of inserted sites. This must be compared with the number of
stmplices in the final triangulation, which is the size of the output.

In the two dimensional case, the ratio between the number of nodes in the
Delaunay Tree to the size of the output is less than 3, in any example. In the
space, this ratio becomes 4 in the case where the size of the triangulation is
linear, and only 2 in the quadratic case.
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1257
number of nodes
\__in the Delaunay Tree
number of triangles
/__in the Delaunay triangulation
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number of nodes visited
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/
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Figure 4.12 : Voronoi diagram : A non-convex curve
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Figure 4.13 : Voronoi diagram : An ellipsis
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Figure 4.14 : Voronoi diagram : Random sites in 3-space

Inserting a site in the Delaunay Tree

The chosen parameter to evaluate the cost of inserting a site 1s the number
of nodes visited by Procedure location to find the first conflict. According to
Remark 3.3, the remainder cost of this procedure consists of an output sensitive
search in the Delaunay triangulation, and the cost of Procedure creation also
depends on the number of modifications in the Delaunay triangulation.

The cost of locating a site in the Delaunay Tree appears to be very small
compared with the size of the Delaunay triangulation.

Some empirical investigations have been done to evaluate the constants. In
the plane, the variations of the number of nodes visited to find the first conflict
can be roughly (after smoothing) assimilated to the variations of the function
x + 3log, x, in all examples. In 3-space, in the case where the size of the
triangulation is linear, the function is z + 7log, z, which has been explained in
Remark 4.22.

We have given a theoretical analysis for the expected number of nodes visited
by Procedure location to find all the simplices in conflict with a new site m, but
no such analysis has been done for the number of nodes visited to find the first
conflict. We can empirically see that, even in the quadratic case that we have
tested, this number remains logarithmic. Moreover, the constant appears to be
better than in the linear case, since it is about 4.

4.3.3.2 Voronoi diagrams of line segments in the plane

Let us consider now the case of Voronoi diagrams of line segments in two dimen-
sions (see Section 1.2.3). Here O is the set of all line segments of the euclidean
plane. Let p, q, r and s be four segments and let T" be the portion of the bisec-
tor of p and q extending between the two points equidistant from p, q, r and
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Figure 4.15 : Voronoi diagram : A closed surface (a heart)
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Figure 4.16 : Voronoi diagram : A quadratic example

P, Q, s respectively (see Section 1.2.3). The region, noted (pq, r, s), associated
with p, g, r and s is the union of the interiors of the disks tangent to p and q
whose centers lie on I'. Notice that, with this definition, a region is what was
previously called a bicycle for the analysis of the Delaunay Tree. A line segment
and a region are in conflict if and only if they intersect. A region has zero width
if and only if T is an edge of the Voronoi diagram.

The update algorithm is as follows. We find in the I-DAG all regions in
conflict with the new segment m : these regions correspond to the edges which
disappear in the new diagram. The set of disappearing edges form a tree. In
fact, an edge (or a part of an edge) E disappears if the points lying on it are
closer to m than to the segments determining E. Then, after the insertion of m,
these points will belong to the Voronoi cell V(m) of m. Assume now that the set
of disappearing edges contains a cycle. Necessarily, this cycle must surround at
least one segment s. In the new diagram, the cell V(s) will form a hole in V(m),
which is impossible because all cells of the diagram are simply connected.

Let E be a disappearing edge. If one of the two end-points of F is still a valid
vertex of the Voronoi diagram (that is if the segment m does not intersect the
corresponding disk ) we compute in constant time the portion of E that remains
in the new diagram. The new region associated with that new edge becomes a son
of the region associated with E. We then connect the new vertices of the Voronoi
diagram (which are new end-points lying on old edges) by edges supported by
new bisectors (see Figure 4.17). The region corresponding to a new edge E’ 1s
made son of the regions associated with the unique path of disappearing edges
that joins the two end points of E’. This ensures that this region is contained
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in its parents : an edge E’ is the bisector of m and some s € §. E’ lies entirely
in the Voronoi cell V(s) of the diagram before the insertion of m. Let p be a
point belonging to the region associated to E’. p lies in the interior of a disk
tangent to both m and s, which has no conflict. In the previous diagram, before
the insertion of m, this disk can grow larger, without having any conflict, until
it touches one segment of S. Then its center necessarily lies on some edge on
the boundary of the previous cell V(s). So p lies in the region associated to one
father of the region associated to E'.

The update conditions are satisfied and, by the Euler relation, f; is linearly
related to the number of segments.

Remark 4.23 We can remark that, if the analogous definition had
been given for regions in the case of point sites only, we would
have obtained another possible definition for the Delaunay Tree, that
would have satisfied Update condition 1.

Proposition 4.24 The Voronoi diagram of n line segments in the plane can be
computed with O(n) ezpected space and O(logn) ezpected update time.

Notice that the algorithm has been coded.

4.4 About complexity results

4.4.1 Randomization

Our analysis of the space and time required to build the I-DAG structure is
randomized. As previously noted, randomization concerns here only the order
in which the inserted objects are introduced in the structure. No assumption
is made as to the distribution of the input. As already said, our results are
expected values that correspond to averaging over the n! possible permutations
of the n inserted objects, each supposed to be equally likely to occur.

4.4.2 Amortization

We have been able to bound the cost of inserting the k*” object in the -DAG.
This cost is not amortized as opposed to the results in [BDT93, GKS92] but the
k** object may be any one of the inserted objects with the same probability.

It must be noted however that the bound given in Theorem 4.3 cannot be
a bound for the cost of inserting a given object. Indeed let us consider the
construction of the Delaunay triangulation (the dual of the Voronoi diagram) of
a set of n points in the plane. We take 1;—1 points close to one line segment,
1‘;—1 points close to another line segment, and one point, say o, between the two
segments (see Figure 4.18). For appropriate positions of the points, the insertion
of o will modify most of the triangles; thus the expected cost of inserting o in

the I-DAG at step k is §2(k) whatever k is.



4.4. About complexity results

The new segment m is in bold line.
The dotted edges correspond to regions in conflict with m.
The dashed edges correspond to new regions created by m.

Figure 4.17 : Insertion of m in the Voronot diagram
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—— triangulation before the insertion of

- — — triangulation after the insertion of «

Figure 4.18 : Cost of inserting point o

This is not in contradiction with our result. Indeed, the cost of inserting
a given object appears weighted by the probability factor 1/n in the expected
cost of step k. Our bound on the cost of the k'” insertion proves that objects
requiring expensive updates are rare whatever the set S of input data may be.

4.4.3 Output sensitivity

An algorithm is said to be output-sensitive if, for a given set of input data, its
complexity depends on the actual size of the output. It is clearly impossible,
in general, to have incremental algorithms that are sensitive to the final output
because at some stage of the incremental construction the intermediate results
may be greater than the final one. We may illustrate this with the example of
the Voronoi diagram in three dimensions. Let S be a set of n points lying on
two non coplanar line segments. The Voronot diagram of S is quadratic but, if a
point o between the two segments is added to S, the diagram of SU {0} becomes
linear.

In view of this fact, it is interesting to define on-line output sensitive algo-
rithms as algorithms whose update complexities depend on the actual size of the:
current output.

Our algorithms are not on-line output sensitive because the expected com-
plexity of each step depends on fo(r,S) (or go(r,S)) for some r < n. Let us
consider again the case of the Voronoi diagram of the set of points above. In-
serting a n+ 224 point to SU{o} will take O(n?) expected time using the I-DAG
although the current output is O(n).

However, in many situations, the expected value fo(r,S) is a well behaved
function of the size r of the random sample which is sensitive to the actual size
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of the output for S. In such a case, the expected complexity of the I-DAG is
on-line output sensitive.

A first illustration is the case of an arrangement of planar curves which has
been described in Section 4.3.2. As a second illustration, let us consider the
case of the Voronoi diagram in higher dimensions. For some distributions of the
input data, the diagrams built on the entire set of points as well as on most of
the samples have a linear size. For example, the expected size of the Voronoi
diagram of a set S of n points evenly distributed in the unit d-ball is O(n)
and the expected size of the Voronoi diagram for a r-random sample fo(r, S) is
O(r) [Dwy91]. This result readily implies that the Voronoi diagram of n points
evenly distributed in the unit d-ball can be computed on-line with O(n) space
and O(logn) update time in any dimension.



76 Chapter 4. A general structure : the Influence Graph

Conclusion

We have presented in this chapter a general framework for the design and anal-
ysis of on-line algorithms. This framework has been applied successfully to var-
tous problems : convex hulls and Voronoi diagrams in any dimension, Voronoi
diagrams of segments in the plane, arrangements of curves in the plane. The al-
gorithms are randomized, simple and in some cases output sensitive. They have
been coded easily and preliminary experiments have provided strong evidence
that they are very efficient in practice. The I-DAG can be used to solve several
other problems and provides simnple on-line algorithms with the same worst-case
complexities as the best (in general static) deterministic algorithms. We simply
mention some of them :

¢ Computing the upper envelope of triangular surface patches in the three
dimensional space, with a complexity of O (n2a(n)logn) in the worst case
where the size of the output is O (n?a(n)) [BD92].

¢ Computing abstract Voronoi diagrams ((MMO91] propose a static random-
ized algorithm).

¢ Computing arrangements of surface patches in space (see [CEGSW90] for
combinatorial bounds).

¢ Computing the intersection of n half spaces : this problem is dual to
constructing convex hulls.

¢ Computing the union of n balls in d space : consider the d-dimensional
space as an hyperplane of a d + 1-space and use an inversion with a point
outside the hyperplane as its pole : the problem reduces to that of com-
puting the intersection of n half spaces.

¢ Computing the visibility graph of a set of line segments in the plane (see
[Wel85]) : take as regions the triangles containing two edges of the visibility
graph incident to a common vertex and consecutive when sorted by polar
angle around this vertex. A line segment is in conflict with a region if it
intersects the region.

Our technique assumes that the geometric structure to be computed is closely
related to the regions of zero width. One may be interested in computing instead
regions of width < k to construct, for example, k-sets or Voronot diagrams of
order k. It is possible to generalize the -DAG and to obtain results similar to
the ones described here. The complexity results will depend on the expected
number of regions of width < k defined by random samples, as will be seen in
Chapter 5.

We will study the possibility of allowing deletions as well as insertions, thus
making the structure fully dynamic, in Chapter 6.



Chapter 5

The k-Delaunay Tree
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The k-Delaunay Tree is an extension of the Delaunay Tree, and is used for the
construction of higher order Voronoi diagrams defined in Section 1.2.2.

K.L. Clarkson’s randomized algorithm [Cla87] determines the order k Voronot
diagram of n sites in the plane in expected time O(kn'*¢) with a constant factor
that depends on ¢.

K. Mulmuley [Mul91a] achieves a complexity of O (kl—di?l'-,nl.%l’J) ford > 3

(O(nk? + nlogn) if d = 2), for the randomized construction of the Voronoi
diagram of order 1 to k (see Section 2.3.2). These algorithms are static.

We present here an algorithm that is semi-dynamic. After each insertion of
a new site, the algorithm updates a data structure, called the k-Delaunay Tree
[BDT93]. This structure generalizes the Delaunay Tree to compute the Delaunay
triangulation (and, by duality, the Voronoi diagram) of a set of points. The k-
Delaunay Tree contains all the successive versions of the order < k Voronoi
diagrams and allows fast point location.

As in the preceding chapter, we show that randomization allows to obtain an
efficient complexity on the average, which is, as usual, impossible in the worst
case for a semi-dynamic algorithm. Qur main result states that if we randomize
the insertion sequence of the n sites, the k-Delaunay Tree (and thus the order
< k Voronoi diagrams) can be constructed in expected time O(nlogn + kn) in
two dimensions and expected storage O(k’n).

Our algorithm extends to higher dimensions. For a given value d of the

dimension, its expected time complexity is O (kl—gjﬂ‘l] Hyp ] ) and its expected

space complexity is O (kl—di?l’] nl ).

Very recently, F. Aurenhammer and O. Schwarzkopf [AS92] proposed a dy-
namic algorithm for the construction of the order k diagram in the plane whose
randomized complexity is O (k?n + knlog® n) (see Chapter 7).

The overall organization of the chapter is the following. In Section 5.1, we
define the k-Delaunay Tree in two dimensions and present an algorithm for its
construction. In Section 5.2, we analyse the complexity of the randomized con-
struction of the k-Delaunay Tree and thus, of all order < k Voronoi diagrams.
Section 5.3 shows how to use the k-Delaunay Tree for searching the ! nearest
neighbors of a given point. In Section 5.4, we extend our results to d dimen-
sions. Last but not least, Section 5.5 presents experimental results which provide
evidence that the algorithm is very effective in practice for small values of k.

5.1 The k-Delaunay Tree in two dimensions

S is a non degenerated set of n sites in the euclidean plane. We use the terms
defined in Section 1.2.2.
We first show a lemma which will be useful in the sequel.

Lemma 5.1 Let T C 8. The Voronoi polygon V(T) does not change if we add
to T and S some new points lying in the convez hull of T. More precisely V(7T)
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in Vor7|(S) is equal to V(T UR) in Vorjrur|(S UR) if the points of R lie in
the interior of the convex hull of T .

Proof. Let R be a set of points not in S, and lying in the interior
of the convex hull of 7 C 8. We denote Vs(7) the Voronoi polygon
of 7, where 7 is considered as a subset of § (i.e. in Vorr|(S)). We
first prove that Vs(7) C Vsur(7 UR).

Letm€ Vs(T),peTUR, and q€ (SUR)\ (T UR) = S\ 7.

e if p€ 7, then é(m,p) < 6(m, q), since m € Vs(T).

o ifpeR,thenp =3, o4t;, wheret; €T and o; € R, ;0 =
1.

6(m,p) < Za,—é(m,t,-)

since § is associated to the euclidean norm,

and thus x — 6(m, x) is a convex function

< Z a;6(m, q) since t; € 7
i
= 4(m,q)

In both cases, §(m,p) < 6(m, q), from which we deduce that :
m€ Vsur(7 UR).

The reciprocal inclusion is straightforward, which achieves the proof.
O

5.1.1 Including and excluding neighbors

In the sequel, we will denote B(T') the interior of the disk circumscribing triangle
T.

For a triangle T, we will define 2 neighbors through each of its 3 edges : one
will be called the including neighbor and the other one the ezcluding neighbor.
This notion of neighborhood corresponds to the actual notion of adjacency in
the higher order Voronoi diagrams.

Let E be an edge of T and p be the opposite vertex of T. Let us consider a
moving disk B whose boundary passes through the end points of E, and whose
center moves along the bisecting line of E. Starting from B = B(T'), we can move
B in two opposite directions : the one such that p € B is called the including
direction and the other such that p ¢ B is called the excluding direction. We
stop moving B as soon as its boundary encounters a site different from the end
points of E. Let q; (resp. q.) be the first site encountered in the including
(resp. excluding) direction. The triangle T; (resp. T.) having E as an edge and
Qi (resp. q.) as a vertex will be called the including neighbor (resp. ezcluding
neighbor) of T through edge E (see Figure 5.1). Notice that q; and q. may be
on etther side of the line supporting E.
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Figure 5.1 : Including and excluding neighbors

Remark 5.2 In the sequel, we will also speak of the neighbors of a
triangle T in the direction including a site m in B(T') and in the
direction excluding m. The neighbor of T through E in the direction
excluding m (resp. including m) is the excluding (resp. including)
neighbor of T if m and p are on the same side of E and the including
(resp. excluding) neighbor of T' otherwise.

Remark 5.3 If S is the excluding neighbor through E for T, then
T is a neighbor of S, but 7" may be either the including neighbor
through F of S, if q, lies on the same side as T" with respect to the
supporting line of E, or the excluding one on the other case.

In the same way, if S is the including neighbor of T', T is the including
neighbor of S if q; does not lite on the same side as T with respect to
E, and the excluding neighbor otherwise.

The neighborhood relationships are reciprocal if and only if S and T
do not lie on the same side with respect to the supporting line of E.
They are inversed otherwise

Remark 5.4 The following property will be useful in the sequel :
B(T) C B(T;)U B(T.)

Hence, if a site m lies inside B(T), we can deduce that m lies into
either B(T;) or B(Te).

If B(T) contains k sites, B(T,) contains k sites if q. lies outside B(T') (the
k sites in B(T')), or k — 1 sites if q, lies inside B(T') (the k sites in B(T') minus
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q.). Speaking in terms of Voronoi vertices, if B(T') contains k sites, T is dual
to a close-type vertex T of Vorgy; and its excluding neighbors are dual to the
adjacent vertices of 7in Vorgss.

Similarly, if B(T") contains k sites, then B(7;) contains k + 1 sites if q; lies
outside B(T') (the k sites in B(T') plus p), or k sites if q; lies inside B(T") (the k
sites in B(T) plus p minus q;). Then T is dual to a far-type vertex v’ of Vorg 4,
and its including neighbors are dual to the adjacent vertices of 7 in Vorgys.

5.1.2 A semi-dynamic algorithm for constructing the order
< k Voronoi diagrams

Our algorithm is a generalization of the semi-dynamic algorithm presented in
Chapter 3 for constructing the Delaunay triangulation. Each site is introduced,
one after another, in each of the order < k Voronoi diagrams and each diagram
is subsequently updated. We will describe this algorithm at the same time as
the k-Delaunay Tree, in the following sections, but it is actually independent of
that data structure.

5.1.3 Construction of the k-Delaunay Tree

The k-Delaunay Tree is a hierarchical structure that we use to construct the
order < k Voronoi diagrams. As in the Delaunay Tree, the nodes are associated
with triangles. We will often use the same word triangle for both a triangle
and the node associated with it. The k-Delaunay Tree is not really a tree but a
rooted direct acyclic graph.

Recall that the width of a triangle is the number of sites in conflict with it
or, in other words, the number of sites lying in the interior of its circumscribing
disk.

Following our algorithm, each site is introduced in turn and we keep all
triangles in a hierarchical manner in the k-Delaunay Tree, creating appropriate
links between “old” (i.e. created before the introduction of the site) and “new”
triangles (i.e. created after the introduction of the site). This will allow to
efliciently locate a new site in the current structure.

5.1.3.1 Initialization

For the initialization step we choose 3 sites. They define one finite triangle and
six half planes (considered as infinite triangles) limited by the supporting lines
of the finite triangle. Three of the half planes contain one site, the other ones
are empty. The 4 triangles of current width zero will be the sons of the root
of the tree. Their neighborhood relationships in the Delaunay triangulation are
created. The 3 triangles of current width 1 are linked to the preceding ones by
their neighborhood relationships in the order 2 Voronoi diagram.
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5.1.3.2 Imnserting a new site

The k-Delaunay Tree will be constructed so that it satisfies the following prop-
erty :

(P) all the triangles of current width strictly less than k are present
in the k-Delaunay Tree.

Hence, the triangles dual to the vertices of the order < k Voronoi diagrams
are all present in the structure. Moreover, we keep their adjacency relationships
in the corresponding Voronoi diagrams. The k-Delaunay Tree thus contains the
whole information necessary to construct all the order < k Voronoi diagrams.

Let us suppose that the k-Delaunay Tree has been constructed for the already
inserted sites and satisfies the above property (P). Let m be the next site to be
inserted. We will see how to update the k-Delaunay Tree so that it still satisfies
(P) after the insertion of m.

Let S be a triangle dual to a vertex of some of the order < k Voronoi diagrams,
to be created after the insertion of m in order to satisfy (P). S is called a new
triangle. S has m as a vertex ; let F be the edge of S not containing m. S
has an including neighbor T through E, and an excluding neighbor R through
E. Tt is plain to observe that R and T were necessarily neighbors before the
insertion of m and that B(T') contains m while B(R) does not. We have obtained
a necessary condition for the creation of a triangle. Figure 5.2 shows the four
typical situations.

Conversely, we show that this condition is sufficient. Let T be a triangle dual
to a vertex of some of the order < k Voronoi diagrams, whose disk B(T") contains
m. Let E be an edge of T, and p be the third vertex of T'. If the neighbor R
of T through E in the direction excluding m does not contain m in its disk, then
T and R cannot stay neighbors any longer. We must create a new triangle S
by linking m to E. T becomes the including neighbor of S through E and R its
excluding one. (Notice that, in Case (d) of Figure 5.2, if / = k, R does not need
any including neighbor, which would belong to the Voronoi diagram of order
k+1,s0 S is not created in this case.)

If now the current width of S is I, the current width of T', before the insertion
of m, was ! or [ — 1 and the current width of R is still [ or I — 1, as before the
insertion of m (see Figure 5.2). Thus property (P) implies that T" and R were
associated to nodes in the k-Delaunay Tree before the insertion of m, the current
width of T is increased by one and is now I/ + 1 or I. If this number is larger or
equal to k, then T is marked as dead (T is no longer dual to a vertex of some
order < k Voronoi diagram). (Remember that, if / = k, which can happen only
in Case (d), Sis not created.)

Furthermore, if the current width of S is zero when it is created (which can
only occur in Case (a) of Figure 5.2), we then update the tree by making S a
son of T and a stepson of R.

Remark 5.5 We can thus notice that the subgraph of the k-Delaunay
Tree obtained by recursively traversing all links to sons and stepsons,



84 Chapter 5. The k-Delaunay Tree

stepson

S

If [ is the current width of the new triangle S, the current width of
T before the insertion of m, the current width of 7" after the insertion
and the current width of R are respectively :

e [, 1+ 1 and ! in the upper-left case (a)

e [ — 1,1 and ! in the upper-right case (b)
[,1+1and ! -1 in the bottom-left case (c)
e l—1,1and ! -1 in the bottom-right case (d).

Figure 5.2 : Inserting a new site
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starting from the root, is the Delaunay Tree presented in Chapter
3 (which is also the 1-Delaunay Tree) : a triangle can be created
in the (1-)Delaunay Tree only if its current width is zero ; at this
moment, it is the neighbor of its stepfather, and the current width of
its father is incremented, so it becomes at once dead. There are no
additional neighborhood relationships involving triangles of current
width larger than zero, because the (1-)Delaunay Tree only deals
with neighborhood relationships between Delaunay triangles.

We also update the neighborhood relationships between the triangles which
are not marked as dead.

In order to ensure that (P) still holds, it is sufficient to apply the above
procedure to all the triangles T whose circumscribing disks contain m. Thus we
need to find all those triangles. This will be performed by Procedure location
while the creation of the new triangles and the maintenance of the neighborhood
relationships will be performed by Procedure creation. These two procedures are
detailed below.

When a node receives sons, its width increases, and it can only get new sons
when its width is zero, so the total number of sons of a node is at most 3. Notice
however that the number of stepsons is unbounded ; unfortunately, all stepsons
are useful as shown in Chapter 3.

Nevertheless, we have the following property :

Lemma 5.6 The total number of links to sons and stepsons in the k-Delaunay
Tree is less than twice the number of nodes.

Proof. Each newly created node (the 7 first ones excepted) has
exactly one father and one stepfather. ]

5.1.3.3 Structure of the k~-Delaunay Tree

As previously noted, the k-Delaunay Tree is a directed acyclic graph. Each
node of the k-Delaunay Tree is associated to a triangle. The node associated to
triangle T contains the following informations :

o three links to the three sites which are vertices of T

e the center and the radius (more exactly the squared radius) of B(T'), which
can also be used to mark 7 as finite or infinite

e its at most 3 sons
e the list of its stepsons
e the last site located in T

o the last site propagated in T (these last two fields will be used by Procedure
location)
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e the current width of T, which can also be used to mark T as dead

o the three excluding neighbors of T, and its three including neighbors if its
width is at most k — 2

The first six fields are the same as in the (1-)Delaunay Tree (see Remark 5.5).
In the (1-)Delaunay Tree, as soon as the current width of a triangle T is equal to
1, it becomes dead, so there is only a mark remembering whether T is dead or
not ; another difference is that there are only three neighbors (they are excluding
neighbors), that are the neighbors of T in the Delaunay triangulation, if T is
not dead.

Remark 5.7 As already noticed, the two types of neighbors corre-
spond to neighbors in different Voronoi diagrams, and allow, starting
from one vertex of the order 1 Voronoi diagram, to reach all adjacent
vertices in each of the higher order Voronoi diagrams. This point is
crucial for Procedure propagate, called by procedure location, as will
be seen in the next section.

5.1.3.4 Procedure location

If m belongs to the circumscribing disk of a triangle, we know (see Remark 5.4)
that it belongs to the union of the circumscribing disks of its father and of its
stepfather. So the traversal of the Delaunay Tree (Remark 5.5) gives all triangles
whose disks contain m.

In fact, we traverse it until we find only one Delaunay triangle in conflict
with m. Then we follow the neighborhood relationships to find all triangles, of
current width strictly less than k, in conflict with m (see Remark 5.7). We store
them in a list 7'(m), the edges of these triangles are the possible candidates to
be used for the creation of new triangles.

Procedure location and Procedure propagate are described in Figure 5.3. Ob-
serve that Procedure location is the same as in Chapter 3, because it consists of
a traversal of the Delaunay Tree.

5.1.3.5 Procedure creation

We go through the list T'(m). Let T" be a triangle of this list and E one of its
edges. If the neighbor R of T through E in the direction excluding m does not
contain m, we then create S by linkingm to £, and the son and stepson relations
involving S, if the current width of S is 0. Procedure creation is described in
Figure 5.4.

Let us now see how we can maintain the neighborhood relationships between
triangles.

As already mentioned, when S is created, R is the excluding neighbor of S
through edge E common to T" and R, and 7T is the including one. We can easily
compute the reciprocal relations : R and 7' were neighbors before the insertion
of m (notice that R may be either an excluding or an including neighbor of
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Initialize the list T'(m) as the empty list
location(m,root of the k-Delaunay Tree)

Procedure location(m,node)
{* The node is associated to triangle 7" x)
if the last site located in T is not m and
if m lies into B(T), then
m becomes the last site located in T
for each son, location(m,son);
for each stepson, location(m,stepson);
if the current width of T is 0, then
propagate(m,T);
stop Procedure location.

Procedure propagate(m,T)

m becomes the last site propagated in T}
add T to the list T(m);
increment the current width of T}
if the current width of 7" is now &, then mark 7" as dead;
for each neighbor N of T’

if the last site propagated in N is not m and

if N is not dead, then

if m lies into B(V), then propagate(m,N).

Figure 5.3 : Locating a site in the k-Delaunay Tree

Procedure creation(Z'(m))

for each triangle T of T'(m)
for each edge E of T
if the neighbor R of T through F in the direction
excluding m does not contain m in its disk, then
o create the triangle S having vertex m and edge E,
and its associated node
{except in the case where the width of S is k);
¢ declare R as the excluding neighbor of S through E
and update the reciprocal relation;
o declare 1" as the including neighbor of S through E
and update the reciprocal relation;
¢ if the current width of S is 0, then
create the relations : S son of T" and S stepson of R;
create the neighborhood relationships between the new triangles.

Figure 5.4 : Creating the new triangles

87
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T ; remember also that the relations between neighbors are not symmetric, see
Remark 5.3). If T was the excluding (resp. including) neighbor of R through
E, then now S is the excluding (resp. including) neighbor of R. Similarly, if R
was the excluding (resp. including) neighbor of T through E, then now S is the
excluding (resp. including) neighbor of T.

In order to create the neighborhood relationships between the new triangles,
we proceed as follows. Let us suppose that the insertion of m creates z(m) new
triangles 71, T3, ..., Trm), where T; = (m,80,s}),i=1,2,...,2z(m). The T}’s are
dual to vertices of various Vor;(8),! < k. The adjacency relationships must be
created in each Vori(8),l < k. Our goal is to find, for each T; (i = 1,. .., z(m)),
its excluding and its including neighbors through both edges ms{ and ms}. To
this aim, for each sf:,i =1,2,...,2(m),j = 0,1, we sort the list of new triangles
having sj as a vertex, according to the abscissa of their center on the bisecting
line of [m, 5] ] By definition, (m, s!, v) and (m, s?, v') are neighbors through [m, s/ ]
iff they are successive in this order. We thus only have to go through the
list of sorted triangles to obtain the neighborhood relationships through the
corresponding edge.

For each edge (m, s ) the complexity of this sorting is O(n] nd log nd), where nj
denotes the number of new triangles having (m, sf } as an edge, which is bounded
by 2k. The whole complexity of creating the neighborhood relationships is thus
O(z(m) log k) for each new site m.

Remark 5.8 The log k appearing in this complexity could be drop-
ped, but it would complicate our algorithm. As we shall see in the
sequel, the cost of Procedure creation is dominated by the cost of
Procedure location, therefore we do not elaborate on improving its
complexity.

5.2 Analysis of the randomized construction

The above algorithm allows to insert new sites in a dynamic way. As in Chapter
4, for the analysis, we assume that all sequences of insertion have the same
probability.

This section proves the main result of this paper, stated in the following
theorem :

Theorem 5.9 For any set of n sites, if we randomize the sequence of their
insertion, the k-Delaunay Tree (and thus the order < k Voronoi diagrams) of the
n sites can be constructed in ezpected time O(nlogn + k3n) in two dimensions,
using expected storage O(k’n).

The remaining of Section 5.2 is devoted to the proof of Theorem 5.9. Section
5.2.2 analyzes the expected space used to store the k-Delaunay Tree, Section
5.2.3 the expected cost of locating the n sites and Section 5.2.4 the cost of
constructing the successive triangles and their neighborhood relationships.
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5.2.1 Results on triangles and bicycles

Let x,y,2,t be four sites. As in Chapter 4, the bicycle x(yz)t is the figure
drawn by B(xyz) and B(yzt) (see Figure 5.5 which represents one of the possible
configurations of a bicycle).

y

Figure 5.5 : The bicycle x(yz)t

The width of a bicycle x(yz)t is the number of sites belonging to B(xyz) and
B(yzt), where we do not take x,y,z and t into account. F;(S) (resp. G;(S)) is
the set of triangles (resp. bicycles) having width j and F<;(S) (resp. G<;(S))
the set of triangles (resp. bicycles) of width at most j.

Lemma 5.10 Let xyz be a triangle having width j. xyz will arise as a vertex
of some order < k Voronoi diagram during the construction with probability

{ k(k +1)(k+2) i vk

G+DE+2)G+3)
1 if 1<k

Proof. Let ! be the current width of xyz when xyz is created. The
property holds true if and only if one of the three sites x,y and z is
introduced after the ! sites inside B(xyz) (in any order, hence 3({+2)!

possible orders for the [ + 3 first sites, and ]l possible sets of {

sites among the j ones), and before the j — / remaining sites (which
may also be introduced in any order, that is (j — {)! possibilities).
There are (j + 3)! permutations on the j + 3 sites. Thus xyz of width
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Jj appears with current width [ with probability :

RN ET I
(1>(+ }G=0 3(1 +1)(1 +2)

(7 +3)! TGTDG+G+93)
The required probability is the sum of the last ones, for all { :

o if j > k, I can only be < k, so we get

k=1

Z 3(1+1)(1+2) _ k(k+1)(k+2)
“(+DG+2)(E+3) G+ +2)( +3)
sif j<k
Z 31+ 1)(1+2) DG+ +3)
S G+HNGE+YG+3) T (DG +2G +3)
= 1

which agrees with Property (P) : a triangle with width < k will
necessarily appear at some stage of the construction. a

Lemma 5.11 Let x(yz)t be a bicycle of width j such that yzt is a son or a step-
son of xyz. The probability that such a bicycle appears during the construction

is 31
G+DG+2)(+3)5 +4)

Proof. A bicycle x(yz)t is always created with current width 0.
Now, to get yzt as a son or a stepson of xyz, we need the following
condition : t must be inserted after x,y and z ; thus there are 3!
possibilities to insert x,y, z and t. Then the j sites inside the bicycle
can be inserted in any of the j! possible orders. So the probability

B 3151 3!
G+ G+HDGE+2)G+3)G +4)
This result also agrees with property (P) : a bicycle with width 0

will always appear, and the last site inserted among x, y, z and t is
t with probability ;. 0

The following lemma is a direct consequence of the bound on the size of
higher order Voronoi diagrams. It gives in this case a bound for |F;(S)|, more
precise that the general bound given by Theorem 2.3 for |F<;(S)|.

Lemma 5.12 The number of triangles having width j is

|F5(S) < (25 + 1)n
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Proof. |F;(S)| is exactly the number of close-type vertices of the
order j + 1 Voronot diagram. This number is computed in [Lee82],
which gives the result. |

We propose here an alternative proof for Lemma 4.10, owing to the preceding
lemma.

Lemma 5.13 The number of bicycles having width at most j is

G<i($)l = O(n(j + 1))

Proof. We first notice that a given segment joining two points of

Figure 5.6 : For the proof of Lemma 5.13

S is an edge of at most 2j + 2 triangles of width less than j : in
Figure 5.6, every triangle defined by F as an edge, and a site lying
outside the two drawn circles will be of width superior to j, and the
sites lying on or inside these circles allow us to form at most 25 + 2
triangles of width at most j.

We then bound the number of bicycles of width < j by subdividing
a bicycle into two adjacent triangles, one of width ! and the other of
width less than j.

J
68 < S 1F(S)I3(25 +2)

1=0

< 6(i+1) iO(n(l-q- 1))
=0
6(j +1)O(n(j +1)*)

A

O(n(j +1)%)
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5.2.2 Analysis of the expected space used by the k-Delau-
nay Tree

Lemma 5.14 The ezpected number of nodes in the k-Delaunay Tree is O(k?n).

Proof. This number is the number of all successive vertices arising
in all order < k Voronoi diagrams during the construction. It is less

than
n-3
Z Z Prob(S arises during the construction)
Jj=0 SE.T"J' (8)

k(k+1)(k+2)
- Yy ¥y
Toscris)  Shseris) G+DG+2)G+3)
(using Lemma 5.10)

k—~ .
= Z F; S)|+k(k+l)(k+2)z H)l(f’g)'(j ey
= O(k n) , using Lemma 5.12 and Z m O(l)
0

We already know that the total number of links to sons and stepsons is less
than the number of nodes (Lemma 5.6), and that each node has at most 6
neighbors. We conclude :

Proposition 5.15 The ezpected space complezity of the k-Delaunay Tree is
O(k%n).

5.2.3 Analysis of the expected cost of Procedure location

We want here to count the number of nodes visited during the construction.
During the insertion of m, Procedure location looks at first for a Delaunay triangle
in conflict with m. To this end, a triangle yzt may be visited if yzt is the son or
the stepson of a triangle xyz such that m € B(xyz). So a bicycle x(yz)t of width
Jj obliges to visit up to j nodes. Secondly, Procedure propagate is called, and a
triangle 1s visited if it is the neighbor of a triangle xyz such that m € B(xyz),
and xyz is not dead. So a triangle of width j obliges to visit up to 6inf(j, k—1)
nodes.

Lemma 5.16 The expected total number of visited nodes during the construction
is O(nlogn + k3n).
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Proof. The total number of visited nodes during the search for a
triangle of the Delaunay triangulation in conflict with a new site is
inferior to :

yzt arises as a son

n—4
Z Z Jj Prob or a stepson of xyz
J=0 x(yZ)t€g;(8) during the construction

We then bound this expression by O(n logn), using Lemmas 5.11 and
5.13, in a way that is similar to the proof of Lemma 4.1. When such
a triangle has been found, Procedure propagate then explores all tri-
angles in conflict with the site, using the neighborhood relationships.
The total number of triangles visited during the propagation is less

than :
n-3
Z Z 6inf(j, k — 1) Prob (S arises during the construction)
j=0 SeF;(8)

Similar calculations prove that this is O(k3n), using Lemma 5.10. O

Since it takes constant time to process a node, Lemma 5.16 yields the fol-
lowing proposition :

Proposition 5.17 The ezpected cost of Procedure location is O(nlogn + k3n).

5.2.4 Analysis of the expected cost of Procedure creation

This cost is the cost of creating all the vertices of the order < k Voronoi diagrams,
plus the cost of maintaining the adjacency relationships, after each insertion of
a new site m. If z(m) is the number of new triangles created after the insertion
of m, the first cost is O(x(m)), since creating a triangle costs a constant time.
As we have seen in Section 5.1.3.5, the second cost is O(z(m)logk). The overall
cost is thus, using Lemma 5.14 :

0 (Z m(m)) +0 (Zm(m) log k) < O(k’nlogk)
m m
As mentioned in Remark 5.8, this could be improved to O(k?n) complexity.

Proposition 5.18 The ezpected cost of Procedure creation is O(k’nlog k).
Altogether, Propositions 5.15, 5.17 and 5.18 prove Theorem 5.9.

5.3 [-nearest neighbors

The k-Delaunay Tree contains the combinatorial structure of any order [ Voronoi
diagram (! < k). We show in the following section how such a diagram can be
extracted from the k-Delaunay Tree.
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As shown by the analysis of Procedure location, the k-Delaunay Tree is an
efficient data structure to perform point location. Section 5.3.2 shows that it
can be readily used to search the ! nearest neighbors of a given point.

5.3.1 Deducing the order [ Voronoi diagram from the k-
Delaunay Tree (I < k)

Theorem 5.19 Vori(S) (I < k) can be deduced from the k-Delaunay Tree in
time proportional to the size of Vori(S), which is O(in).

Proof. Remember that the £ Delaunay Tree maintains all the adja-
cency relations in Vor;(S). So we can find Vor(S) in time propor-
tional to its size, as soon as we know one of its vertices. We thus
only have to find one vertex of each Voronoi diagram.

Assume we know an infinite triangle pgoo of current width 0. Its
finite edge [pq] is necessarily an edge of the current convex hull. Let
so be the site such that pgs, is a neighbor of pqoo and that B(pqso)
is empty. Let s;,...,sk_; be the sites such that triangle pgs; is
the including neighbor of triangle pgs;_1, i = 1,...,k — 1. Such
sites always exist (provided that k < n — 1) since [pq] is an edge of
the convex hull of the already inserted sites. Each triangle pqs; is
associated to a node in the k-Delaunay Tree and its current width is
i. Triangle pqs; is dual to a vertex v; of Vori41(S).

If we maintain a pointer to an infinite triangle of current width 0
(which can be done in constant time at each stage of the construc-
tion), we can find the s;, { < [, and thus a vertex of each < ! Voronot
diagrams, in time O(l). o

Remark 5.20 Now, suppose we want to label the regions of V or;(S),
i < k, by the i nearest sites of an (arbitrary) point of the interior
of that region. We remark that the label of one region of Vori;1(S)
incident to v; is {sg, 1, ..., 5;}. As soon as we know the label of one
particular region, we can deduce the labels of all the other regions by
traversing the diagram. Each time we cross an edge E, we come out
of one region, say C, and enter another region, say C’. The labels of
C and ' differ by only one site. The site of the label of C' which is
not in the label of C’, and the site of the label of C’ which is not in
the label of C, are precisely the two sites whose bisector supports E.
We have to substitute this first site by the second one in the label of
C to get the label of C'.

5.3.2 Finding the !/ nearest neighbors

Let us consider now the problem of finding the ! nearest neighbors (I < k) of
a given point. This problem is equivalent to finding the label of the region
V({{p1,P2,--.,p1}) of Vori(S) which contains point m. Procedure location gives
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the vertices of the Voronoi diagrams whose associated disk contains m. It remains
to show how to find the label of a region. This point must be clarified since our
structure represents vertices of the Voronoi regions and we know, from Lemma
5.1, that the label of a Voronot polygon is not included in the unton of the labels
of its vertices and thus, cannot be deduced from them (the label of a vertex
consists of the three sites which are the vertices of its dual triangle ; it is also
the symmetric difference of the labels of its incident regions).

However, we can take advantage of the fact that we know all the order <
Voronoi diagrams to compute the label of a region. The following lemma will
help in that task.

Lemma 5.21 Letm € V({p1,p2,.-.,p1}) in Vori(S), where p1,p2,...,p1 are
some sites of S (with 6(p;,m) < 6(pj,m) if and only if i < j). Then, for each
i € {1,...,1}, there ezxists a vertez v; of VoryS), such that v; is dual to a
triangle S; having p; as a verter, and such that m € B(S;).

Proof. Since p; is a I'? nearest site from m, we have 6(p;,m) < é(pi, m),

Vi=1,...,1L

Let q be a point on the line (mp;) : q=tm+ (1 - t)p1,t € R.
6(P‘>q) = ‘tlé(Pl)m)
§(mq) = |1-1|é(p1,m)

Let us suppose that ¢t > 1, i.e. m lies between q and p;.
The following inequalities hold, for i = 1,...,1:

6(pi,q) < 6(ps,m)+ 6(m,q)
< 6(pr,m) + (¢ ~1)é(pr, m)
t(s(px,m)
é(p1,9q)

So, if we move q on the half line D,'{P, ={tm+(1-t)p;, ¢t > 1} sup-
ported by (mp;), a furthest site from q among {p1, P2, ..., p1} remains
p1, the same as from m. We can deduce that the intersection of D,‘L’P,
with the boundary of V({p1,pa,...,p1}) is a point q belonging to
the bisecting line Bis(p;,p’) of [p1, p’], where p’ is a site of S not in
{p1,P2,...,p1}. Let us denote by F the edge of V({p1,p2,...,pi})
supported by Bis(p;,p’) (see Figure 5.7).

Let us define R = {r € Bis(p;,p’)/m € C(r,p1)} where C(r,p;)
denotes the disk of center r and radius é(r,p;). R is a half line of
Bis(p1, p') containing q. So F N R # @, which implies that one of the
two end points of F', say v, belongs to R. v is a vertex of Vori(S)
dual to a triangle S; having p; as one of its vertices, and whose disk
contains m.

The lemma is thus proved for p;. For the other p;,i =1,2,...,1—1,
the same proof still holds, considering V or;(S) instead of VorS). O
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Bis(pi, p (

V({P11P27 s 7P1})

Figure 5.7 : For the proof of Lemma 5.21

If we want to find the label of the region of Vori(S),! < k, which contains
m, we can locate it, by applying Procedure location to the I-Delaunay Tree. We
first find all the triangles whose balls contain m. We then have to find, among
the vertices of those triangles, the [ nearest sites from m, which can be done in
a straightforward way.

5.4 The k-Delaunay Tree in higher dimensions

In this section, we generalize the previous results to higher dimensions. Let S
be a set of n sites in d-space such that no subset of d + 2 sites lie on a same
sphere and no subset of d + 1 sites are coplanar.

The notion of including and excluding neighbors can be generalized. A sim-
plex has d+ 1 excluding neighbors and d + 1 including ones, one through each of
its facets. To any pair of adjacent simplices correspond an edge in some higher
order Voronoi diagram. If v is a close-type vertex (resp. far-type vertex) of
Vory(S), the edges of Vorg(S) issued from v correspond to the neighborhood
relationships between the simplex dual to v and its excluding (resp. including)
neighbors. If v is a medium-type vertex (see section 1.2.2), the edges of Vori(S)
1ssued from v correspond to both types of neighborhood relationships.
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5.4.1 The d dimensional k-Delaunay Tree

We can generalize the structure developed in Section 5.1.3. The d-dimenstonal
Delaunay Tree is a direct acyclic graph satisfying the following property :

(P) all the simplices of current width strictly less than k are present
in the d-dimensional k-Delaunay Tree.

The extension of the construction of the k-Delaunay Tree to higher dimen-
stons is straightforward.

The technique of Section 5.3.1 that deduces the order  Voronoi diagram from
the k-Delaunay Tree can be extended to higher dimensions in a straightforward
manner. As in Section 5.3.1, we can traverse the graph consisting of the vertices
and the edges of the order ! Voronoi diagram and compute the labels of each
region. From this graph and the labels, it is plain to compute the faces of all
dimenstons of the diagram.

The algorithm presented in Section 5.3.2 can also be extended without diffi-
culty, to compute the ! nearest neighbors of a given site (I < k).

5.4.2 Analysis of the randomized construction

This section presents the following theorem, which generalizes Theorem 5.9 to d
dimensions :

Theorem 5.22 For any set of n siles, if we randomize the sequence of their
insertions, the k-Delaunay Tree (and thus the order < k Voronoi diagrams)

of the n sites can be constructed in ezpected time O (k[ﬁ"l]“n[ﬁﬂij) using
expected storage O (kl—d_#] nl_d—}l_l) .

Our bounds are not as good as those of K. Mulmuley [Mul91a] : the increase
by one in the exponent of k is a consequence of the fact that we maintain, at
each stage of the incremental insertion, the complete informations relative to all
order < k Voronoi diagrams, whereas Mulmuley only maintains the vertices of
the diagrams, without maintaining their order (which can be deduced at the end
of the construction).

We will see in Chapter 7 the works of K. Mulmuley concerning dynamic
algorithms,

We only give the main steps achieving the proof of Theorem 5.22.

As in Section 5.2.3, we can define, for d + 2 sites x;,X, ..., X442, the bicycle
x1(X2...Xg41)Xd+2. We also define the width of a simplex and the width of a
bicycle.

The following lemmas generalize Lemmas 5.10 and 5.11.

Lemma 5.23 Let x1X3...%441 be a simplex having width j. x1X3... %441 will
arise as a verter of some order < k Voronoi diagram during the construction
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with probability -

k(k+1)...(k +d) L
{l(j+l)(j+2)...(j+d+l) if jzk

if j<k

Lemma 5.24 Let x1(x3...X441)x449 be a bicycle of width j such that xox3. ..
X442 1S @ son or a stepson of X1Xy...x441. The probability that such a bicycle
appears during the construction is

(d+ 1)!
G+1)..G+d+2)

Applying Theorem 2.3, we have :

Lemma 5.25 The number of simplices having width at most j is

lfS](S)I =0 (nl_ﬁﬂg_l (] + l)l—gjz‘—l-‘)

Lemma 5.26 The number of bicycles having width at most j is

16<;(S)I =0 (nl.dizl‘.l (G + 1)[‘—#]“)

Let us now compute the complexity of the k-Delaunay Tree.

Proposition 5.27 The ezpected space complezity of the k-Delaunay Tree is
0 (kf"—’z‘” nl’%-’J)

Proof. The proof is similar to the one of Proposition 5.15, using
Lemmas 5.23 and 5.25, and the fact that, as in 2 dimensions, the
total number of links to sons and stepsons is less than the number of
nodes (Lemma 5.6), and each node has at most 2(d + 1) neighbors.
(]

Proposition 5.28 The ezpected cost of Procedure location is
0 (kl—%r,"'lnl.d_}l.l)

Proof. Lemmas 5.24 and 5.26 allow to prove the result, using argu-
ments similar to those used in the proof of Lemma 5.16. ]
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The cost of Procedure creation is the cost of creating all the vertices of the
order < k Voronoi diagrams plus the cost of maintaining the neighborhood
relationships, after each insertion of a new site m. The computation of the
neighborhood relationships between the new simplices created by the insertion
of a new point m is the same as in the two dimensional case, an edge is simply
replaced by a (d — 1)-face.

So we obtain :

Proposition 5.29 The ezpected cost of Procedure creation is
o (k[%l"lnl.ﬁﬂiJ logk)

Altogether, Propositions 5.27, 5.28 and 5.29 prove Theorem 5.22.

5.5 Experimental results

It is to be noted that the algorithm is simple, even if its description and its anal-
ysis may look rather intricate ! The core of the algorithm is given in Figures 5.3
and 5.4. Moreover, the numerical computations involved are also quite simple :
they consist mostly of comparisons of (squared) distances in order to check if a
point lies inside or outside a ball. The algorithm has been implemented in the
two dimensional case. The program consists of less than 1000 lines of C. It has
run on many examples with different kinds of point distributions. Some results
and statistics are presented in Figures 5.8 to 5.16.

5.5.1 Influence of randomization

In Figure 5.8, the points lie on three ellipses, two for the eyes and one for the
head. We tried several permutations of the points for the computation of the
3-Delaunay Tree :

(1) Points of the head in the order along the ellipse, and then points in the
order along each eye.

(2) The same as the preceding, except that one point of an eye is inserted first.
(3) Points on the eyes in order, and then points on the head in order.

(4) A random permutation.

(5) Another random permutation.

In Figure 5.9, the function drawn in dotted line shows the total number of
vertices of the order < 3 Voronol diagrams, versus the number of inserted sites.
The functions drawn in bold line show the numbers of nodes in the 3-Delaunay
Tree, for the different permutations. The functions drawn in thin line show the
numbers of nodes visited by the first part of Procedure location (we will call
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NN R Z.

N

p=

Figure 5.8 : Delaunay triangulation and order 3 Voronoi diagram of a set of 415
points

those nodes I1-visited nodes for short, since they correspond to a traversal of the
(1-)Delaunay Tree), to find a Delaunay triangle in conflict with the new point.

Figure 5.10 gives some statistics about the computation using the different
permutations : the size of the 3-Delaunay Tree and the sum of the sizes of the
order < 3 Voronoi diagrams at the end of the execution, and for the insertion
of one point, the maximal and average numbers of 1-visited nodes and created
nodes.

This example shows that, if degenerate orders may be really unefficient, the
behaviour for random order, or even for the third permutation is satisfying.

5.5.2 Influence of &

To study the effect of increasing k on the algorithm, we use the set of points
depicted in Figure 5.11.

Figure 5.12 presents, on the left side, the size of the (1-)Delaunay Tree in
bold line, the size of the (order 1) Voronoi diagram in dotted line and in thin
line the number of nodes that are 1-visited by Procedure location, which does
not depend on k. The right side of Figure 5.12 shows the size of the k-Delaunay
Tree and the sum of the sizes of the order < k Voronoi diagrams for k = 1,2,3,4,6
and 10.

Figure 5.13 presents statistics similar to those in Figure 5.10.

5.5.3 Influence of the point distribution

These last statistics concern the influence of the point distribution. To this aim,
we compute the 3-Delaunay Tree for the four sets of 400 points described in
Figures 5.8, 5.11 and 5.14. Figure 5.15 shows in this left part the size of the
3-Delaunay Tree, and the sum of the sizes of the order < 3 Voronoi diagrams and
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62500 triangles

size of the 3-Delaunay tree
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Figure 5.9 : Results for the set of points of Figure 5.8, k¥ = 3, different permu-

tations for the insertion
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Permutation 1 2 3 4 5
Size of the 3-Delaunay Tree 62522 | 48334 | 14958 | 10903 | 10395
Size of the < 3 Voronoi 3917 3917 3917 3917 3917
Max nb of 1-visited nodes 14835 1245 1329 181 73
Average nb of 1-visited nodes 2123 245 239 33.5 27
Max nb of created triangles 1044 853 71 210 179
Average nb of created triangles 151 117 36 26.4 25.1

Figure 5.10 : Statistics for the set of points of Figure 5.8

the number of 1-visited nodes for the four sets. This figure demonstrates that,
with a randomization of the input data, the average behaviour of the algorithm
does not depend on the distribution of the points. The better result for points
of Figure 5.8 is only due to the smallest size of the output (which is related to
the points on the k-hulls). One can see also that the location time is very small
in comparison with the sum of the sizes of the < 3 Voronoi diagrams. The right
part of Figure 5.15 shows only the location time for the forty last points. Figure
5.16 presents statistics as in Figures 5.10 and 5.13.

The experimental results show that the algorithm performs well even on
degenerate distributions of points.
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2300 triangles

size of the
1-Delaunay tg

size of the order 1 |
Voronol diagram~

-
-

_--71b of 1-visited nodes in
- the k-Delaunay tree (\(k)
0 points 400 points

90000 triangles

size of the k-Delaunay tree

and of all the order ! k=10
Voronoi diagrams

fori<k

—— — -

0 points 400 points

Figure 5.12 : Results for the set of points of Figure 5.11, for different values of k



5.5. Experimental results

105

k 1 2 3 4 6
Size of the k-Delaunay Tree 2307 | 6748 | 13246 | 21694 | 43740
Size of the < k Voronoi 799 | 2378 4720 7815 | 16198
Max nb of 1-visited nodes 79 79 79 79 79
Average nb of 1-visited nodes 31 31 N 31 31
Max nb of created triangles 10 29 50 80 150
Average nb of created triangles 5.8 | 16.9 33.2 54.5 110

Figure 5.13 : Statistics for the set of points of Figure 5.11

Figure 5.14 : Delaunay triangulation and order 3 Voronoi diagram of a set of

400 random points in a thin rectangle

13284 triangles

Fig 5.11 and 5.1

ZOOoI)

0 triangles

106 triangles

0 points

400 points 360 points

400 points

Figure 5.15 : Results for the set of points of Figures 5.8, 5.11 and 5.14 for k = 3
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Set of points Fig. 7 | Fig. 10 | Fig. 13 | Fig. 14
Size of the 3-Delaunay Tree 10141 13246 13284 13184
Size of the < 3 Voronoi 3776 4720 4718 4718
Max nb of 1-visited nodes 109 79 90 78
Average nb of 1-visited nodes 30 31 33 34
Max nb of created triangles 236 50 67 57
Average nb of created triangles 25.6 33.2 33.1 33.1

Figure 5.16 : Statistics for the sets of points of Figures 5.8, 5.11 and 5.14



Conclusion 107

Conclusion

We have shown that the k-Delaunay Tree of n points can be constructed in
O(nlogn + k®n) (resp. O (kl—diﬁl’] +1n|.d_-=tl.|)) randomized expected time in
the plane (resp. in d space). Its randomized expected size is O(k2n) (resp.
(0] (k[diﬂl'-lnl.%”)) The k-Delaunay Tree allows to compute the order < k

Voronoi diagrams of n points within the same bounds. Any order ! < k Voronot
diagram can be deduced from the k-Delaunay Tree in time proportional to its
size, which is O(In) in two dimensions. Moreover, the k-Delaunay Tree can be
used to find the ! nearest neighbors of a given point.

The structure could be extended to deal with k-levels of general arrange-
ments. But in this case, it is not sufficient to store the Delaunay Tree augmented
with additional neighborhood relations, since the hyperplanes are not supposed
to have one face on the lowest level. We must store parent pointers between old
and new triangles of all widths.

An important point is that these results hold whatever the point distribution
may be.

The algorithm is simple and, moreover, the numerical computations involved
are also quite simple : they consist mostly of comparisons of (squared) distances
in order to check if a point lies inside or outside a ball. Experimental results,
for uniform as well as degenerate distributions of points, have provided strong
evidence that this algorithm is very effective in practice, for small values of k.

For large values of k, a similar structure, based on the order k furthest
neighbors Voronoi diagrams, could be derived. It would provide results similar
to the ones above to construct all order > n — k Voronoi diagrams and to find {
furthest neighbors for I < k.
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We describe here the dynamization of the Influence Graph, on two examples :
the Delaunay triangulation of point sites in any dimension, and the arrangement
of line segments in the plane. In both cases, the main idea is the same : when
an object 1s removed from the structure, we decide to “reconstruct the past”, as
if this object had never existed.

However, in spite of this similarity, the details of the algorithms differ a lot,
as will be seen, and it seems to be difficult to design a general —and precise,
too— framework for dealing with deletion of an object.

[CMS92] uses the same idea, of restoring the history as if the object had never
been inserted, for convex hulls in any dimension. [Sch91] computes the whole
history of insertions, but also deletions, and in this way gets a bigger history
that he has to clean up sometimes. [Mul91b] uses a different technique which
does not involve the history of the construction. All these approaches will be
rapidly presented in Chapter 7.

6.1 Removing a site from the Delaunay trian-
gulation

In this section, we describe an algorithm maintaining the Delaunay Tree under
insertions and deletions of sites. This can be done in O(log n) expected time for
an insertion and O(loglog n) expected time for a deletion in the plane [DMT92a],
where n is the number of sites currently present in the structure. For deletions,
by expected time, we mean averaging over all already inserted sites for the choice
of the deleted sites. The algorithm has been effectively coded and experimental
results are given. The method extends to higher dimensions.

Let S be a set of n sites in the euclidean plane, such that no four sites are
cocircular.

We assume that the Delaunay Tree has been constructed for the set S, by
using the incremental randomized algorithm (see Chapter 3). We now want to
remove a site p of §. All the triangles incident to p must be removed from the
Delaunay Tree : some of them are triangles of the Delaunay triangulation of §
(so they are leaves of the Delaunay Tree), but other ones already died ; they
correspond to internal nodes of the Delaunay Tree, and must be removed, too.
Moreover, we must restore the Delaunay Tree in the same state it would be in if
p had never been inserted, and if the other sites had been inserted in the same
order. That way, we preserve the randomized hypothesis on the sequence of
sites, and the conditions for further insertions or deletions are fulfilled.

We must thus reconstruct a past for the final triangulation in which p takes
no part. The deletion of p creates a “hole” in each successive triangulation after
the insertion of p, which the tree keeps a trace of. The idea of our algorithm is
to fill each hole with the right Delaunay triangulation.

Let us describe the structure of a node of the Delaunay Tree, obtained from
the structure given in Chapter 3 by adding a few new fields (some of them have
not been used yet and will be defined in the following) :
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e the triangle : creator vertex, two other vertices, circumscribed circle
¢ a mark dead
e polnters to the at most three sons and the list of stepsons
e pointers to the father and the stepfather
o the three current neighbors if the triangle is not dead, the three neighbors at
the death otherwise
o the three neighbors at the time of the creation
e two special neighbors
o a pointer killer to the site that killed the triangle
e a mark to be removed
o three pointers star to elements of structure Star
The insertion phase described in Chapter 3 can obviously maintain those
additional informations.

6.1.1 Different kinds of modified nodes
Let us describe how the deletion of p affects the nodes in the Delaunay Tree.

9 A xx5q : unhooked triangle
stepfather of xx,q

V7N

triangles that were created by
the insertion of p and that must
be removed when p is deleted
(x was inserted after p)

Figure 6.1 : The two kinds of modified nodes

Some nodes must be removed : they correspond to triangles having p as a
vertex. Depending on its time of creation there are two cases for such a node :
either it has been created by the insertion of p, or it has been created by the
insertion of some site afterwards ; the latter occurs iff its father and stepfather
both have p as a vertex and thus both the parents must be removed, too. During
the construction of the Delaunay Tree, some sites did not create any triangle to
be removed now, but if a site x created such a triangle, it created in fact two
triangles to be removed : the two triangles created by x sharing edge px, see
Figure 6.1. One of them, say xx;p, is oriented clockwise, and the second one,
xX5p, is oriented counterclockwise.
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A node to be deleted xx,p may have a son (or a stepson) xx»q that does not
have p as a vertex and thus must remain in the Delaunay tree, see Figure 6.1.
Such a node loses just one of its two parents and is therefore called unhooked.
We must find a new parent in replacement of the lacking one.

The sketch of the method is the following :

Search step : Find all nodes of the Delaunay Tree that have to be
removed, and all unhooked nodes

Reinsertion step : Locally reinsert the sites that are creators of the
triangles found during the Search step, and update the triangulation

6.1.2 The Search step

By the discussion above, the set of nodes to be removed can be found by searching
the Delaunay Tree starting from the nodes that were created by p. At each node
marked to be removed we visit all its sons and stepsons recursively. If one of
them has p as a vertex, it will be marked to be removed as well. Otherwise
it is an unhooked node. The creator of both these types of triangles must be
reinserted, in order to replace the removed triangles by other triangles, and to
hang up unhooked triangles again.

In order to be able to perform the Reinsertion step, we must store the list of
sites to be reinserted :

We need an auxiliary structure, Reinsert, which is a balanced bi-
nary tree consisting of the set of sites which created the nodes to be
removed and the unhooked nodes ; the sites are sorted by order of
insertion. This will allow us to reconstruct the triangles which will
fill the holes in the successive triangulations, and to hang up again
the unhooked nodes.

An element of Reinsert contains :

e the site x to be reinserted

¢ pointers to the two triangles xx1p and xxsp that were created by
the insertion of x, if they exist (see Section 6.1.1). xx;p is oriented
clockwise

o the list of unhooked triangles that were created by the insertion of
x

The search is initialized by the set C' of nodes created by p.

To this aim, we must maintain an auxiliary array, Created, contain-
ing, for each site s of S, a pointer to one of the nodes created by
5.

From this node, we can then compute the set C using the neighborhood relations
at the time of creation and examining the creator of the triangles (Figure 6.2).
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4

N ’ The shadowed triangle
N ’ had been created by p

\,
;_,neighbor pointers used to find C

Figure 6.2 : The search step : Initialization

for each element S of C
for each son or stepson U of S
examine(U)
endfor ;
remove links between S and its father and stepfather ;
put S in "garbage collector”
endfor

We then simply recursively traverse the subgraph consisting of removed and
unhooked nodes. Each son or stepson of a removed node is removed if it has p
as a vertex and unhooked otherwise. All these nodes are added in the element
of Reinsert associated to their creator. This process is detailed above.

examine(7")
if T is marked to be removed
{ T has already been visited }
nothing
else
if pis a vertex of T’
{ T ==xsp}
mark 7T to be removed ;
for each son or stepson S of T'
examine(S)
endfor ;
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locate the creator x of T in Reinsert ;
{ if the location fails, a new element is created }
if xsp turns clockwise
store T" as the field xx;p of x in Reinsert
else
store T as the field xx,p of x in Reinsert
endif
else
{ T is either son or stepson of a removed node }
locate the creator x of T in Reinsert ;
add T to the list of unhooked nodes associated to x ;
set the pointer to the removed parent of T' as null
endif

Observe that in the search step the triangles are only visited. They are
removed from the Delaunay Tree later during the reinsertion step.

6.1.3 The Reinsertion step

The sites contained in Reinsert must be reinserted in the Delaunay Tree in
order to construct the successive triangulations without site p. The scheme of
the reinsertion of a site x is the same as the usual scheme of insertion, except
that everything happens locally : the location of a site x to be reinserted in the
whole Delaunay Tree is unnecessary and would be too expensive.

The location in a generally small set A (for active) of triangles is sufficient.
At the beginning of the reinsertion set A is initialized with all triangles killed by
the insertion of p. They can be found by looking at the fathers of the triangles
in C and following their neighbor pointers at their death.

Then, during the Reinsertion step, A is maintained so that it is the set
of triangles in conflict with p in the Delaunay triangulation at the time just
preceding the reinsertion of x. In each step, A is modified as follows : all the
triangles of A in conflict with x are killed by x and thus disappear from the
Delaunay triangulation and from A. The triangles created by the reinsertion of
x appear in A (Figure 6.3), because they are in conflict with p (otherwise they
would have existed in the triangulation containing p). The triangles of A not in
conflict with x still remain in A. The triangles outside A are not modified by
a reinsertion since they are not in conflict with p ; only their neighborhood or
stepson relations involving removed nodes must be updated.

More precisely, the set A of triangles must be organized so that the location
of conflicts is efficient. We can notice that the triangles in A form a star-shaped
polygon with respect to p, since they are in conflict with p.

The edges and vertices (sites) of this polygon are stored in counterclockwise
order in a circular list called Star. Note that the vertices of Star are the sites
that are adjacent to p. Furthermore we maintain some pointers :

e Each edge of Star points to the adjacent triangle in A.
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triangles xx,p and xx,p must be removed
x must be reinserted

A\ triangles of A before the reinsertion of x
£) triangles remaining in A
$_ new triangles of A after the reinsertion of x
é an unhooked triangle

Figure 6.3 : A reinsertion

e Each triangle in A points to the adjacent edges of Star (at most three,
pointers star in the description of a node).

o Each site which is a vertex of Star points to the edge of Star following the
site.

Some elements of A are not represented in Star, but the whole set A can
nevertheless be traversed using Star and pointers to neighbors.

Star can be initialized by first choosing a vertex of a triangle in A. We
then follow the boundary of the star-shaped polygon using the neighborhood
relations, and the pointers star.

We know the current neighbors of each triangle of A. Each edge e of Star is
an edge of a triangle U of A and of a triangle V that does not belong to A.

Special neighbors :

The current neighbor of U through e is V, but the reciprocal relation
does not always exist ; the neighbor pointer of V through e may reach
another triangle W created a long time later.

If W must not be removed, this pointer must remain after the dele-
tion of p. So we do not want to systematically modify the current
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neighbors of triangles not belonging to A. We need to put a special
neighbor pointer from V to U. Thus each triangle outside A, having
an edge on the boundary of A, has a special neighbor pointer to the
adjacent triangle in A. It is easy to see that two special neighbor
pointers are enough : at most two edges of a given triangle lie on the
boundary of a star-shaped polygon, if it is exterior to it. The special
neighbor pointers store intermediate relations between triangles.

Nevertheless, if W must be removed, then a new neighbor must be
found for V, and the current neighbor must be maintained identical
to the special one. When we update a special neighbor U of V, if the
neighbor at creation of V is removed, then U is also the neighbor at
creation of V. Similarly, if the current neighbor of V is removed, or
if it belongs to A, then it must be updated to be U.

Everything is now set up to start the reinsertion. Each site in Structure
Reinsert is reinserted in the right order (the order used for first insertion).

triangles xx;p 4nd xxsp must be removed
x must be reinserte

triangles of A before the reinsertion of z

an unhooked triangle which needs a new father
—» stepfather pointer
=p= special neighbor pointer

Figure 6.4 : An unhooked triangle with some removed triangles

Processing the unhooked triangles
Each element of Reinsert contains a site x to be reinserted, and the list of
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corresponding unhooked triangles. To hang up such a triangle T again, we only
have to go to the remaining parent of it, which must have an edge in Star, and
then hang T up to the appropriate special neighbor of this parent. There may
also exist some removed triangles created by x (Figure 6.4). Notice that this
is not always true (Figure 6.5). If there is no removed triangle, the unhooked
triangle necessarily needs a stepfather, which is also the neighbor at creation
and the special neighbor, all these three triangles are set to the special neighbor
of the father.

x must be reinserted
A triangles in A before and after the reinsertion of x
A unhooked triangle needing a new stepfather

—» father pointer
—>» special neighbor pointer

Figure 6.5 : An unhooked triangle in the case that there is no removed triangle

Replacing the triangles to be removed by new ones
For each element x of Reinsert, we check if triangle xx;p (and xx,p) exists. If
xx,p and xx,p do not exist in the triangulation, then nothing has to be done.
Otherwise we have to fill the gap of triangles incident at x between edges xx;
and xx;. We must look at Star in order to find the triangles that have to be
created by the reinsertion of x. There are two cases : there may exist no triangle
of A in conflict with x, or several such triangles.

First note that x; and x5 both belong to Star : in fact, before the insertion
of x, in the triangulation containing p, the edges px, and pxs already existed
(by definition, the insertion of x created xx;p and xx;p) ; we know that the



6.1. Removing a site from the Delaunay triangulation 119

vertices adjacent to p lie on Star. Let U be the triangle of A adjacent to the
edge following x; on Star (remember that Star is oriented counterclockwise and
xx;p clockwise). U serves to distinguish between the two cases above. We have
a direct access from x; to U, via edge xxs.

After the reinsertion of x, the edges xx; and xx, will be on the boundary of
the new set A of triangles in conflict with p. So, if there are some vertices on the
current boundary of A, between x; and x4, the triangles adjacent to the edges of
this chain of vertices must be in conflict with x. U is such a particular triangle.
Thus, if U is not in conflict with x, x;x is an edge on the boundary of A, and
consequently of U, and the first case occurs, otherwise the second case occurs.

First case, see Figure 6.6 :
In this case, the only way to fill the gap is to replace the removed triangles xx;p
and xxsp around x by only one new triangle xx;x5. The new triangle xx;x3 has
U as stepfather and the neighbor of U, which does not belong to A, as father.
x points to edge xx» of Star, x; points to edge x1x. Both these edges point to
triangle xx1x5 of A. Details concerning other neighbor pointers can be found in
the following pseudo code procedure :

2\ triangles of A before and after reinsertion of x
new triangle xx;x

Figure 6.6 : Reinsertion - removed triangles - First case

Reinsertion - removed triangles - First case
create triangle xx; x5,
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with U as stepfather and the neighbor of U through x,x4 as father ;
update the neighbor through x;x9 of U to be xx;x5 ;
find the neighbors at the creation of xx;x5, by looking at those of xx;p and xxp ;
update the special neighbor pointers of the neighbors of xx;x,

and their neighbor at creation, and current neighbor, if necessary ;
throw xx;p and xxp away in “garbage collector” ;
add edges xx; and xx, in Star ;
add pointers from x to edge xx,, and from x; to edge x;x ;
update Star by letting xx; and xx5 be incident to xx x5 ;
put two star pointers from xx;x9 to the elements xx; and xx5 of Star ;
in Created, xx,x; is a triangle created by x

Second case, see Figures 6.7 and 6.8 :
We know that U is in conflict with x. We must find all the triangles in A in
conflict with x. Those triangles may be fathers for the nodes that will be created
by x. They form a connected subset of A, so they will be found owing to neighbor
pointers in the following way :

triangle

ﬁxxlp and ﬁxgp must be removed
x must be retnserte

Z\ triangles of A before the reinsertion of x
,‘\  new triangles

Figure 6.7 : Reinsertion - removed triangles - Second case

Starting with U we visit the triangles in A incident at x; in counterclockwise
order until we reach a triangle not in conflict with x. Let V denote the last
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such triangle in conflict with x and let e denote the edge of V' at which the visit
stops. Let e = x1x'. We create triangle W’ = xx,x’ and start this process again
at vertex x’ with V as starting triangle. When vertex x; is reached, all the new
triangles have been created. The iteration continues until vertex x; is reached
in order to mark the triangles of A killed by x.

During the traversal, when a new triangle is created, we update the neighbor
and star pointers of its neighbors. We also update its relevant vertex to point
on the corresponding edge of Star. Once this is achieved, it remains to compute
all kinds of neighborhood relations involving edges xx; and xx,. Particularly, as
the current neighbor of the just created triangle having edge xx;, we take the
neighbor of the now removed triangle xx;p at its creation. The same holds for
edge xx5. The pseudo code procedure below formalizes these operations.

,7\ non removed triangles created by x

FL triangles xx;p and xx,p

N

new triangles created by
the reinsertion of x

N before the reinsertion of x
Figure 6.8 : A non trivial example for reinsertion

Reinsertion - removed triangles - Second case
VU
S —X;
repeat
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while the neighbor of V sharing vertex s is in conflict with x
{ we turn around s counterclockwise }
V « this neighbor ;
the killer of V is x
endwhile :
e «— edge of V through which we stopped finding conflict ;
create W' with edge € and vertex x ;
W' is the son of V, and the stepson of the neighbor of V through e ;
the neighbor at creation of W' through e is its stepfather ;
if e is an edge of Star
update the element of ¢ in Star by replacing V by W' ;
let the star pointer of W' reach e ;
put a pointer from s to e ;
update the special neighbor of the neighbor of V' through ¢ to be W’
and the ordinary neighbor if necessary
else
update the neighbor of the neighbor of V through e to be W’
endif ;
if s ;é X)
W’ and W are neighbors and neighbors at creation through edge xs
endif ;
ifs= X1
W1 — W N
W « neighbor at creation of xx,p through xx; ;
W' and W are neighbors at creation through edge xx; ;
the ordinary neighbor through xx; of Wi is W ;
the special neighbor through xx; of W is W} ;
the ordinary neighbor through xx; of W is Wj if necessary
endif ;
s « the other vertex of ¢ ;
if s = x5
Wy —« W',
W — neighbor at creation of xxap through xx3 ;
W' and W are neighbors at creation through edge xx3 ;
the ordinary neighbor through xx5 of Wa is W ;
the special neighbor through xxs of W is W, ;
the ordinary neighbor through xx4 of W is W5 if necessary
endif ;
W—Ww
{ W must be stored for future neighborhood relations }

until s = x5 ;

store for example W) as created by x in Created ;
throw xx;p and xx,p away in “garbage collector” ;
repeat

while the neighbor of V sharing vertex s is in conflict with p
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{ we turn around s counterclockwise }
V « this neighbor ;
the killer of V is x
endwhile ;
s — the third vertex of V
until s = x;
replace the polygonal chain of Star between x; and x;
by the edges x;x and xx3, associated with Wy and W; ;
the star pointers of Wi and W, reach respectively xx; and xxj ;

6.1.4 Analysis

We assume that p is a random site in S, i.e. p is any of the precedingly inserted
sites, with the same probability and independently from the insertion order.
More precisely, an event is now one of the n! permutations and one of the n

sites. Each event occurs with the same probability #

Lemma 6.1 The expected number of removed nodes is constant.

Proof. Since p is chosen independently from the insertion order, the
expected number of removed nodes is

Z Prob(p vertex of T) Prob(T exists in the Delaunay Tree)
T triangle

3 .
= % expected number of vertices of the Delaunay Tree

= 0(1)

Lemma 6.2 The ezpected number of unhooked nodes is constant.

Proof 1In fact the number of unhooked nodes is bounded by the
number of edges disappearing in the Delaunay tree, which is :

Z Prob(p vertex of T or S)
7,5 adjacent triangles

x Prob(TS is an edge of the Delaunay Tree)

4

o % expected number of edges of the Delaunay Tree

= 01

O

Lemma 6.3 The expected number of nodes created by the deletion of p is con-
stant.
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Proof. The number of created triangles during the deletion of p is

Z Prob(T appears during the deletion of p)
T triangle

A triangle T of width j will appear iff p is one of the j sites in conflict
with 7', and p and the 3 vertices of T" are introduced before the j—1
other sites in conflict with T, and p is not inserted after the 3 vertices
of T. So the probability that T" appears is :

ig3G-1! 334!
n" (j+3) T n(i+3)

Hence by virtue of the proof of Lemma 4.1, the expected number of
triangles created by the deletion of p is :

% ZProb(T appears during the insertion phase) = O(1)
T

Lemma 6.4 The ezpected cost of a deletion is O(loglogn).

Proof. The expected number of triangles killed by p is constant
using Lemma 6.1 (which also implies that the initialization of Star
is achieved in constant time), and the traversal that is done during
the Search step visits a constant number of nodes by Lemma 6.2.
For each node, we must locate the creator of the node in Reinsert,
which can be done in O(loglogn) worst case deterministic time, by
using a bounded ordered dictionary [VEBKZ77]. The universe for
this dictionary is the insertion age of the points, or in other words
the number of the sites. The required finiteness of the universe can
be circumvented using standard dynamization techniques, see for
example [Ove83, section5.2].

To preserve the simplicity of the auxiliary data structures we can
use a simple balanced binary search tree [AHUS83]. In this way we
achieve a complexity of O(logn) time. During the reinsertion phase
Star can be updated in time proportional to the number of removed
nodes.

The total cost of the work on unhooked triangles is constant, since
we only have to reach the neighbor of the parent of each of them,
and by Lemma 6.2.

For the triangles deleted by the reinsertion of x, the cost is linear
in the number of triangles in conflict with both p and x, which is
linear in the number of triangles created by the reinsertion of x. By
Lemma 6.3, this expected cost i1s thus constant.

The expected whole cost is then less than O(loglogn). O
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It is important to notice that the randomized hypothesis is preserved by
a deletion. Namely, consider now the permutation o of 8\ {p} obtained by
removing p from the insertion order ; there are n permutations of § which give
the same o, so the probability that ¢ occurs is n x # and o 1s really a random
permutation of S \ {p}. The randomization of the n — 1 currently present sites
is actual and the deletion of p does not affect the analysis of further insertions
or deletions. Thus Lemmas 4.1, 4.2 and 6.4 yield the following theorem :

Theorem 6.5 The Delaunay triangulation (or the Voronoi diagram) of a set
S of n sites in the plane can be dynamically maintained in O(logn) expected
time to insert or locate a point and O(loglog n) ezpected time to delete a point.
This resull holds provided that, at any time, the order of insertion on the sites
remaining in S may be each order with the same probability, and when a site is
deleted, it may be any site with the same probability.

It is possible to avoid the hypothesis that the random deleted site and the
random insertion permutation are independent. It is clear that the deletion of
the first inserted site is more expensive that the deletion of the last one, but
we show in the sequel that even the deletion of the first inserted site can be
done with a good complexity. For this other kind of analysis of deletions, the
probability space is only the set of permutations for the insertion, each being
equally likely to occur.

Lemma 6.6 The ezpected number of removed, unhooked and created nodes dur-
ing the deletion of the first inserted site is O(logn).

Proof. We here only give the proof for the removed nodes, the other
quantities can be obtained in the same way. A triangle 7" of width
j exists in the Delaunay tree and is removed during the deletion of
the first inserted site if the first site is a vertex of 7" and if the two
other vertices of T are inserted before the j sites in conflict with T'.
This happens with probability %G%%T' By summing for all triangles
T, the number of nodes removed in the Delaunay Tree is :

Z |75 (S 3 22+] N O(log n)

8]

The same result holds for the k*” site : if we do not consider the first site
but the k** site, the probability that a triangle is removed during the deletion
of the k** site is clearly less than ;(J—Z_;_-Z'L),

Therefore, the proof of Lemma 6.4 can be modified in a straightforward
manner to obtain the following result :

Theorem 6.7 The ezpected cost of deleting the k'" site is O(log nloglogn).

Thus, for any deletion sequence, the whole set of sites can be deleted in
expected time O(n log nloglogn), where the expectation is only on the insertion
sequence.
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6.1.5 d-dimensional case

When the dimension is greater than 2, the general scheme of the algorithm is the
same. The difference lies in the fact that the simplices of A form now a polytope
of dimension d, that is star-shaped from p. A can still be represented by its
boundary. In order to be able to build all the necessary information concerning
adjacency on the boundary of A, we must maintain the whole incidence graph
of the Delaunay triangulation. The complexity does not increase, though the
constants are of course higher.

Though the details are more involved than in the planar case, the analysis ex-

tends without any problem, providing an expected cost of O (nl.d_}l.l ~1loglog n)

for the deletion of a given site.

6.1.6 Practical results in the planar case

The algorithm described here has been effectively coded. This section presents
practical results. The sites are first inserted in a random order, and afterwards
they are all deleted in another random order. Figures 6.9, 6.10 and 6.11 show
the size of the Delaunay Tree in bold line, the size of the Delaunay triangulation
in dashed line, and in thin line, a measure of the complexity of the operation.
For insertions, it is the number of visited nodes, for deletions it is the number
of unhooked triangles plus the numbers of triangles created during this deletion
plus the cost of each location in structure Reinsert. The cost of deleting a site
has a higher variance than the cost of inserting a site ; it may be important if
the site had been inserted at the beginning of the construction, but this happens
with a low probability.

Even in the case of sites lying on a parabola, which gives a bad behaviour for
most of the existing algorithms, our algorithm has a good behaviour in practice.

The Delaunay triangulation of 15000 random sites in a square has been com-
puted in 35 seconds on a Sun 4/75 and the deletion phase has been computed
in 50 seconds.

6.2 Removing a segment from an arrangement

This section is roughly similar to the preceding one. We need however to develop
some different details (see also [DTY92]).

We assume that the I-DAG has already been constructed as in Section 4.3.2.
We need to introduce an auxiliary kind of entity, consisting of the corners of
trapezoids. When we write that a trapezoid 7" has at most 4 corners, we now
mean that the node of the -DAG corresponding to T has pointers to those
corners. This corners are crucial in the removing process, as will be seen in
the sequel. It is not difficult to maintain them, during the insertion step : in
Procedure Insert (Figure 4.10) we only have to deduce the corners of the children
of T' from the corners of T, and to create new corners.
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Figure 6.9 : Statistics on 15000 random sites in a square
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Figure 6.11 : Statistics on 1000 random sites on a parabola

Let us now detail the removing of a segment s. As for Delaunay triangula-
tions, we distinguish the unhooked and the removed nodes.

The first part of the removing of s will consist in finding all removed nodes.
Then we must reinsert the creators of these nodes, while maintaining at each
step the set A of trapezoids in conflict with s. The unhooked nodes will be
processed while processing the removed nodes : the influence range of a trapezoid
is included in the influence ranges of its children. So, a removed node cannot
have only unhooked nodes. Therefore, an unhooked node must have a removed
sibling, and it will be processed in the same time.

The initialization of A is the same as in the preceding section.

6.2.1 The Search step

We do not really look for whole segments to be reinserted. We only look for all
parts of them to be reinserted, without trying to connect them. More precisely,
what we need to reinsert segments is a list of triplets (x,T, F') consisting of a
segment to be reinserted, a node T to be removed, and one parent F' of T also
to be removed. The reinsertion of such a triplet takes in account only the part
of x on the boundary of T'N F (which can be reduced to an extremity of x).

We obtain this list by traversing the Influence Graph, starting from the
trapezoids in A. Each time we find a node F to be removed, we look at its
children, and for each child T defined by s and created by the insertion of a
segment x, we add (x,T, F) to the list.

Furthermore, the segments need to be reinserted in the same order as they
had been inserted first, so we need to sort these triplets (the ordering is along x
only). This can be done in O(loglog n) time worst case deterministic time as in
the preceding section.
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6.2.2 Corners and bridges

When we reinsert a segment, we must first of all find the trapezoids in the current
set A that are in conflict with it. So we need a location structure for A.

By definition, A is the set of trapezoids in conflict with the segment removed
s at some stage of the history of the construction. So, the segment s crosses all
trapezoids in A.

Notice that a removed node is defined by s, so it has at least one corner on
s (except if it is defined by a vertex of s, this case is not difficult and can be
solved easily).

The general idea is, when we process a triplet (x, T, F), to use the corners of
T or F to locate in A the part of x defining T (that is an approximate idea, the
details are given below).

So, rather than maintaining the set A, we maintain a doubly linked list of
bridges allowing to deduce the trapezoids of A in conflict with x the corners of
T, F or theirs suitable neighbors. The bridges are some corners that appear on
s. These bridges are ordered by the order in which they appear on s. More
precisely, a corner of a trapezoid is a bridge, if and only if it is on the common
boundary of two trapezoids of A, and we store both of them in it (see Figure
6.12). This hst of bridges is the analogous of the structure Star that we used for
the Delaunay triangulation.

In order to initialize the list of bridges, we traverse the set A consisting of
all nodes killed by s, by using neighborhood relations. For each node T in A,
and each of its children, the corners ¢ of this child that lie on s now appear as
bridges on s. T is one of the two trapezoids in A to be stored in .

6.2.3 Reinsertion of a triplet (x,7, F)

We now describe how a triplet (x, T, F) is reinserted. These such triplets are
processed in the order used for the first insertion of segments, the order for
triplets having the same x is indifferent.

Let us recall that in the triplet (x,T, F), x 1s a segment, T is a removed
node created by x and F is a removed parent of 7. At the current stage of the
reinsertion, the creator of F is either s or has already been reinserted (because
this creator is before x in the insertion order).

The removed node T has necessarily at least one corner ¢ on the segment
s that we delete, we first look for a bridge & close to this corner, which means
that there is no other bridge on s between b and ¢. Such a bridge b points to a
trapezoid in A in conflict with x. The main problem is to find b using suitable
parent and neighbor pointers. To find b we have to look for trapezoid adjacent
to s in the old trapezoidal map, trapezoids above and below give two candidate
bridges (b1 and b2) and & is the closest bridge to ¢ among b, and b,.

Let us assume without loss of generality that ¢ is the down left corner of T
There are several cases to examine.
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Trapezoids in A

<> Bridges and adjacent trapezoids

Figure 6.12 : The bridges along s

(1) If the down left corner of F is ¢ then c is already a bridge, so ¢ = b (see
Figure 6.13).

(2) If ¢ is not the intersection s Nz, then s is necessarily the down side of T
(otherwise, we are in case 1). b; is the down left corner of F. b, is the left
up corner of the down neighbor at creation N of T (see Figure 6.14). b is
the closest bridge to ¢ among b; and bs.

(3) If e = pNz, as in the preceding case b, is the down left corner of F. Then,
we determine the trapezoid N adjacent to ¢ below s. The down side of T
can be s (trapezoid 7" in Figure 6.15) or can be x (trapezoid T in Figure
6.15). In the first case N is the down neighbor at creation of T and in the
second case N is the down neighbor of the down neighbor at creation of T'.
N cannot be used directly to determine b5 since the corners the creator of
N 1s also x and 1t is not possible to ensure that the corner of N is already
a bridge. So we use for by the left up corner of N/, parent of N covering
the corner ¢ = zNpof N. bis the closest bridge to ¢ among §, and b5.

From b we have a direct access to the two trapezoids of A covering b, let S
be the one intersecting T". This trapezoid is in conflict with x, so we update the
graph in the following way : first x is the (new) killer of S, then x splits S in
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Figure 6.13 : Bridge b is ¢

pieces, these pieces are children of S and some of them that are in conflict with
s must be created now and added to A. The children of S which are not in
conflict with s already exist in the graph and have not to be created, but they
are unhooked and must be hung up to S ; these nodes can be found among the
children of F. Figure 6.16 describes these operations in the case of Figure 6.13.
We must also update the list of bridges, the neighborhood relations and possibly
merge some newly created nodes.

The following pseudo-code procedure summarizes the reinsertion of a triplet.

Reinsert(x, T, F)

{wlog, the corner ¢ of T lying on s is its down left corner}
{Looking for the closest bridge b to ¢ :}
if ¢ is already a bridge then b = ¢
else by = left down corner of F ;
if ¢ £z Np then
by = left up corner of the down neighbor at creation of T
else {the down neighbor of 7" is a sibling of T', so its corners are not bridges yet}
{in this case we have intersecting points,
so the stored parent is not any one of the parents (see Section 4.3.2)}
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Figure 6.14 : Bridge b is the closest to ¢ among #, and b,

by = left up corner of the parent of the down neighbor of T'

endif ;
b = closest bridge to ¢ between b; and b
endif ;

from b, determine the trapezoid S in A which intersects T,
it is in conflict with x ;
x is the killer of S ;
split S with x ;
for each child R of §
if Ris in conflict with s { R must be added to A}
if the corner ¢ of T becomes a new bridge (i.e. b # ¢)
create this bridge with R as one of its two trapezoids
and find its other trapezoid, which is another child of S
and find its other trapezoid, which is another child of S
insert ¢ in the doubly linked list of bridges as a successor of b
else {b = ¢}
update b : R is one of its two trapezoids
endif ;
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Figure 6.15 : Bridge b is the closest to ¢ among b, and b,
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SeA

(x, F,T) is the triplet to be reinserted

Influence Graph after
the deletion of s the reinsertion of (x,7, F)

F K S

Influence Graph before

Figure 6.16 : Computing the new trapezoid R and hanging up the unhooked
nodes H; and Ho

else { R must be already existing as an unhooked node}
find R among the children of F and hang it up to S
endif ;
update all other fields in R, and neighbor relations, as for a usual insertion ;
look for a possible merge with neighbors as for an insertion
endfor.

6.3 Analysis

The extra work to analyze the deletion of a segment is extremely simple. n is
the number of segments currently present in the structure, a is the number of
intersection points between these n line segments. Let us first recall the result
for insertion proved in Section 4.3.2 : The expected size of the Influence Graph
is O(n+a), the expected number of visited nodes during the insertion of the last
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segment in the Influence Graph is O(log n+£), the cost of locating a query point
in the trapezoidal map is O(logn). This cost is expected over the randomization
of the segments (not on the query point).

We now deal with the analysis of the deletion phase.

Lemma 6.8 The expected number of removed nodes 1s O(1 + £).

Proof. If the deleted segment s is randomly chosen among the n seg-
ments present in the arrangement, the expected number of removed
nodes is

Z Prob(p defines T') Prob(T exists in the Influence Graph)
T trapezoid

4
< X expected number of nodes of the Influence Graph

a
= O(l+~r;)
u]

Since a node has at most four sons, there are at most four triplets (x, T, F)
with the same removed node F, thus the above bound apply also to the number
of triplets processed by the algorithm. These triplets must be sorted according to
the age of the insertion of the creator segment, this is done in O((1+ £) loglogn)
expected time using a bounded ordered dictionary (or in O((1 + £)logn) ex-
pected time using a simpler priority queue).The reinsertion of a triplet involves
a constant number of operations, so the expected time of deleting a random
segment is O((1 + £)loglog n).

As the Influence Graph is restored as if s was never inserted, the results
stated for the insertion step are still valid after a segment has been removed,
and we obtain the main result of this section :

Theorem 6.9 An arrangement of line segments in the plane can be maintained
dynamically in O(log n + 2) time for an insertion and O((1 + 2)loglogn) time
Jor a deletion. The space complezity is O(n + a). All complezities are ezpected
with respect to the randomized insertion of the line segments. Here n denotes
the current number of segments present in the arrangement, and a denotes the
current complezity of the arrangement.

The expected cost of the location of any point in the arrangement is O(logn),
where the ezpectation is over the randomization of the order of insertion of the
line segments present in the arrangement, these queries can be done persistently
with respect to the insertions.
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Conclusion

The common points between these two examples seem to reside only in the
general idea of reconstructing the past. However, we can also see similarities in
the analysis.

Other approaches appeared recently in the literature, they will be rapidly
presented in Chapter 7.
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We rapidly present in this chapter some papers that have mostly been published
recently or even not published yet, in order to replace our work amidst the
community.

Only general ideas are given, without any detail.

7.1 Accelerated static algorithms

The union between conflict graph and influence graph permits to accelerate
randomized algorithms, under some hypotheses.

R. Seidel was the first one to use such a combination, to compute the
trapezoidal map induced by a simple polygonal chain of size n [Sei91b]. He
deduces an algorithm running in O(nlog* n) expected time (more generally,
O(nlog* n + klogn) when the segments form a planar graph with k connected
components).

O. Devillers [Dev92] generalized this result to many cases, when similar in-
formations are given (some traversal order of the segments) about the data : he
deals for example with the computation of the skeleton of a simple polygon, or
the Delaunay triangulation of a set of points knowing the minimum spanning
tree.

Let us recall that for n > 0, log* n is the largest integer ! such that log(" n <
1, where z — log(') z is the application obtained by ! iterations of function z —
log z. It is an extremely slowly increasing function (log*n < 5 for n < 26%536),

The idea of the algorithm is the following : Let s1,s9,...,s, be a random
permutation among the n! permutations of set S of line segments. The process
is initialized by computing the trapezoidal map 7; induced by the first segment
s1. h steps are then carried out, consisting, at each step i > 2, in :

¢ inserting N;— N;_, segments in the trapezoidal map 7;_, and constructing
and influence graph. A trapezoidal map 7; is obtained.

¢ building the conflict graph between the n — N; uninserted segments and
the trapezoids in 7;, by using the traversal order given by the known
informations (for example, the segments form a simple polygon). This is
achieved by traversing 7; using the neighborhood relations.

When a new segment is inserted, at the next step i + 1, the conflict graph of
trapezoids in 7; is used to find the conflicts with this map, then the conflicts with
more recent trapezoids are obtained by traversing only the part of the influence
graph that is just being constructed at that step.

This allows us to use point {3) of Theorem 4.9. A judicious choice of param-

eters (h = log* n and N; = lﬁﬁp gives the announced complexity.
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7.2 Semi-dynamic algorithms

Computing one cell in an arrangement of line segments

In [CEGSS91], B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir and J. Sno-

eyink compute a particular cell in an arrangement of n line segments. The

randomized expected complexity of the algorithm is O(na(n)logn), while the

best deterministic algorithm known was running in O(na(n)log” n) worst-case

time. a(n) is the pseudo-inverse of A ckermann function ; o grows to infinite, but

excessively slowly, and remains less than 3 for any “reasonable” value (smaller
2

than 22°¢"2%°*) of n. Let us recall that the worst-case size of a cell is Q(na(n)).

The algorithm is semi-dynamic, it works by maintaining the history of the
construction of the trapezoidal map induced by the segments, in a graph similar
to the I-DAG. To detect whether a new segment intersects the boundary of the
desired cell, the connected components of its boundary are stored in a classi-
cal union-find structure, allowing to update the trapezoidal map when a new
segment 1s inserted.

7.3 Dynamic algorithms

Several authors recently worked on the possibility of performing deletions in
randomized structures.

7.3.1 With storage of the history
General approaches

O. Schwarzkopf [Sch91] builds a larger history of the structure, keeping track of
deletions as well as insertions. In this way, he obtains a structure whose memory
cost is bigger. So he must reconstruct it, whenever its size is too big, by only
keeping objects that have been inserted and not removed at the current step.

In the particular case of Voronoi diagram in the plane, each insertion is done
in O(logn) expected time, and locating a points takes O(log” n) time with high
probability.

The construction of the trapezoidal map of a set of n non-crossing line seg-
ments can also be treated in O(log® n) expected time for an insertion.

F. Aurenhammer and O. Schwarzkopf use a similar method for higher orders
Voronoi diagrams [AS92].

In a new paper, K. Mulmuley takes the same scheme as O. Schwarzkopf
[Mul91¢]. The difference is that the structure is not based upon the real history of
the construction, but on another, imaginary, sequence of insertions and deletions.
When this history is too large, he reconstructs another one. Another, more
powerful, alternative, is to rebalance the structure, by doing operations similar
to rotations in binary search trees, still by manipulating this imaginary past.
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Convex hulls

K.L. Clarkson, K. Mehlhorn and R. Seidel [CMS92] solve the problem for convex
hulls in any dimension. They use the same general principle as we use : to
reconstruct a new past. But the history of the construction is maintained in the
convex hull itself : more precisely, the anthors maintain a triangulation of the
convex hull, in which they can locate the new point to be inserted.

If this point is interior to the current convex hull, that is if it belongs to
a simplex of its triangulation, we store this information. If it is exterior, we
construct the simplices formed by this point and the visible facets of the convex
hull, and we add them to the hull.

When a vertex of the hull is removed, the triangulation also gives the interior
points that might appear as new vertices : they are points interior to the sim-
plices incident to this vertex. These points will be reinserted. When a vertex of
the triangulation is removed, some of the points interior to the simplices incident
to this vertex must also been reinserted, in order to reconstruct the history.

A randomized analysis gives a O(logn) expected complexity in dimension

<3, and O (nl-%."l) in higher dimensions, for each operation.

7.3.2 Without storing the history

K. Mulmuley [Mul91b, MS91} uses a radically different approach, and success-
fully avoids the storage of the history, recapturing the idea of [AS89].

He constructs a hierarchical structure : on level 1, all objects are present.
Then for any i < 2, the objects present on level i are selected by tossing a coin
for each object of level i —1. The geometric structure is computed for each level.

Between two levels, the conflicts of a region determined by objects of level i,
with the objects of level i — 1 not belonging to level i, are stored in a conflict
graph. In addition, a Descent structure gives the location of an object of level
%, knowing its location in level i — 1.

When a new object is inserted, the coin is tossed, the object is inserted in each
level, up to a negative answer. The structures between levels must be updated.
Removing an object is now only the exact opposite of an insertion. The only
difference is that an insertion must firstly look for conflicts, which increases the
complexity.

This idea is applied to the dynamic construction of the Delaunay triangula-
tion in the plane. The expected complexities are O(log n) for an insertion, O(1)
for a deletion, and O(log® n) for a location. For the case of arrangements of line
segments in the plane, an insertion runs in O(log a) expected time, a deletion in
O(1) expected time, and a location in O(loga) with high probability, where a is
the size of the trapezoidal map. The analyses use random sampling.
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7.4 Strategies

Several authors recently studied problems of a different kind. If the running
time ¢4 of an algorithm A is given by its expectation, Markov’s inequality gives
the probability that the running time be superior to a given value. It is the best
known bound when no additional information on the probabilistic distribution
of 14 1s known.

Let us now assume that the following experiment is performed : It runs A
for ¢, time units, then, if A does not stop before t;, it runs A again for ¢,
time units, and so on. Thus a new algorithm is obtained, and we look for the
optimal sequence t;,t5,.... H. Alt, L. Guibas, K. Mehlhorn, R. Karp and A.
Widgerson prove, among other results, that there is always an optimal strategy,
if the expectation of ¢4 is known [AGMKW91].

K. Mehlhorn, M. Sharir and E. Welzl study a similar problem, but they
compute the space complexity, and obtain very tight tail estimates [MSW92].
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Conclusion

We presented here different trends for data structures and algorithms, in the field
of dynamic randomized algorithms. As publications in this field are rushing, this
presentation deliberately stop at what I have heard of, up to this fatidical day of
october 14** 1991 ! T have no doubt that the field will still inspire researchers

in the future.
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Our paper about the Delaunay Tree [BT86] claimed an expected complexity of
O(logn) per insertion, in the planar case, as well as in 3D when the size of
the Delaunay triangulation is linear. The main problem in ouR proofs was the
lack of a clear assumption about the insertion order of the points. This kind of
assumption was not usual at that time. It was only mentioned in experimental
statements : as soon as the points were inserted in random order, even very
strongly degenerated distributions were treated with the same efficiency as ho-
mogeneous distributions. Hindsight allows us to see these proofs more clearly,
and to realize that their central arguments were roughly the same as the ones
now common in randomized algorithms.

Let us emphasize these arguments : n points are assumed to be inserted
according to a random permutation w among the n! possible ones. We can
restrict ourselves to the planar case, since the same proofs still hold in 3D when
the size of the triangulation is linear. Euler’s formula gives a way to bound by
6 the average degree of a point in the Delaunay triangulation, by dividing the
number of edges by the number of points. It was deduced that the expected
number of triangles created by the insertion of the k** point o was at most 6.
This very argument, which uses “backwards” analysis technique, can be found
in Lemma 4.6 : o 1s any of the k points present after its own insertion, since w
is any permutation. Thus, it creates any of the triangles present at step k& with
probability 2.

Another crucial point consisted of saying that, when the I** point site o was
inserted, the number of triangles present at step k (k < !) and in conflict with
o was the same as it would have been if o had been inserted as the (k + 1)**
site. The idea behind Lemma 4.5 can be recognized, it is only an averaging on
all possible permutations.

However, we had to wait for [Dev92] and the “backwards” analysis introduced
by R. Seidel, to settle our proofs of 1986 rigorously. Meanwhile, K.L. Clarkson
presented the new technique of random sampling, and we followed him, as did
almost the whole international community. It might have been possible for us
to reach directly a backwards analysis.

lth

Our work proved that the approach followed in the design of the Delaunay
Tree —storing the history of the construction done by the algorithm— was good,
since we have been able to generalize this structure in two different ways by
applying K.L. Clarkson’s formalism : the Influence Graph allows us to compute
various geometric structures, provided that they can be defined as sets of regions
without conflicts ; the k-Delaunay Tree extends the possibilities to the case of
regions having at most k conflicts. The Influence Graph has also been shown to
be a fully dynamic structure.

One quality of randomized incremental algorithms is their simplicity, copi-
ously proved in recent literature, of which our algorithms are only an additional
illustration.

The comparison of algorithms using the Influence Graph with similar work
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—many using the same approach based on the history (I cannot refrain myself
from citing here Otfried Schwarzkopf [Sch92] who qualifies our idea [BT86] as
“belonging to the folklore of the field” }— shows the theoretical efficiency of this
structure. The Delaunay Tree was the first data structure for designing efficient
semi-dynamic geometric algorithms, it was also one of the very first dynamic
structures. The implementation of these algorithms also showed their practical
efficiency.

In spite of the efficiency of randomized algorithms, research on M determin-
istic algorithms has not stopped. Since 1988, B. Chazelle et J. Friedman, for
example, have taken an interest in “derandomizing” algorithms based on ran-
dom sampling and divide-and-conquer scheme [CF90). much of this research is
only of theoretical interest, because optimal deterministic algorithms are often
very complicated and difficult to implement. It is however useful, because the
discovery of any deterministic algorithm, even a non practical one, proves the
existence of a solution, and opens the way towards simpler solutions.

In [BT86], the question was raised to search for an optimal order for inserting
sites in the Delaunay Tree, so that a maximal cost for any location could be
guaranteed; the randomized analysis only gives an expected cost. The algorithm
would then loose its “on-line” property, since the preliminary knowledge of the
whole set of data would be necessary to find this order. By asking the same
question, B. Chazelle has just found an optimal algorithm to compute convex
hulls in any dimension [Cha91}], which until then was an open problem, though
convex hull was one of the most studied structures in geometry.

The most interesting algorithms in practice are probably output-sensitive
algorithms, more than optimal algorithms, that are only worst-case optimal.

In fact, it has been shown that randomized incremental algorithms are sen-
sitive, not to the final output size, but to the size of all intermediate results.
When the size of the studied structures grows with the number of input data,
this is sufficient. This holds for example for the construction of the trapezoidal
map of an arrangement of line segments in the plane.

However for the problem of hidden line or hidden surface removal, for ex-
ample, this approach cannot give good results : let us assume that a big object
hides a scene of quadratic complexity. This object will be inserted, with proba-
‘bility %, among one of the 3 last objects. Numerous intermediate results have
thus a quadratic size, while the final output has constant size. The design of
output-sensitive algorithms is crucial in this field. Let us for example mention
the paper by M. de Berg et M. Overmars [dB0O91] who gave one of the first
simple solutions to this problem.

There are several deterministic output-sensitive algorithms, for the geometric
structures studied in this thesis. The Delaunay triangulation, from dimension
3, is another example raising the same problem : even if the size of the final
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triangulation is linear, some intermediate triangulation may have a quadratic
size. In [Boi88, BCDT91], we obtain an optimal algorithm O(nlogn + 1) (n
is the number of point sites, and ¢ the number of tetrahedra in the triangula-
tion), for the restricted case when the points are assumed to lie on two planes.
The algorithm by R. Seidel [Sei86] for the computation of convex hulls in any
dimension runs in O(n? + flogn), where f is the numbers of faces of the hull.

Too few results exist in this field, and it can be supposed that this subject
will be much studied in future.
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