

Lecture Notes in Computer Science 6605
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Parosh Aziz Abdulla
K. Rustan M. Leino (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

17th International Conference, TACAS 2011
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011
Saarbrücken, Germany, March 26–April 3, 2011
Proceedings

13

Volume Editors

Parosh Aziz Abdulla
University of Uppsala
Dept. of Information Technology
751 05 Uppsala, Sweden
E-mail: parosh@it.uu.se

K. Rustan M. Leino
Microsoft Research
Redmond, WA 98052, USA
E-mail: leino@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19834-2 e-ISBN 978-3-642-19835-9
DOI 10.1007/978-3-642-19835-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922620

CR Subject Classification (1998): F.3, D.2, C.2, D.3, D.2.4, C.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2011 was the 14th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised the usual five sister conferences (CC, ESOP, FASE, FOS-
SACS, TACAS), 16 satellite workshops (ACCAT, BYTECODE, COCV, DICE,
FESCA, GaLoP, GT-VMT, HAS, IWIGP, LDTA, PLACES, QAPL, ROCKS,
SVARM, TERMGRAPH, and WGT), one associated event (TOSCA), and seven
invited lectures (excluding those specific to the satellite events).

The five main conferences received 463 submissions this year (including 26
tool demonstration papers), 130 of which were accepted (2 tool demos), giving
an overall acceptance rate of 28%. Congratulations therefore to all the authors
who made it to the final programme! I hope that most of the other authors
will still have found a way of participating in this exciting event, and that you
will all continue submitting to ETAPS and contributing to make of it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2011 was organised by the Universität des Saarlandes in cooperation
with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

It also had support from the following sponsors, which we gratefully thank:
DFG Deutsche Forschungsgemeinschaft; AbsInt Angewandte Infor-

matik GmbH; Microsoft Research; Robert Bosch GmbH; IDS Scheer

AG / Software AG; T-Systems Enterprise Services GmbH; IBM Re-

search; gwSaar Gesellschaft für Wirtschaftsförderung Saar mbH;

Springer-Verlag GmbH; and Elsevier B.V.

The organising team comprised:

General Chair: Reinhard Wilhelm
Organising Committee: Bernd Finkbeiner, Holger Hermanns (chair),

Reinhard Wilhelm, Stefanie Haupert-Betz,
Christa Schäfer

Satellite Events: Bernd Finkbeiner
Website: Hernán Baró Graf

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Gilles
Barthe (IMDEA-Software), Lars Birkedal (Copenhagen), Michael O’Boyle (Ed-
inburgh), Giuseppe Castagna (CNRS Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (Imperial College London), Bernd Finkbeiner (Saarbrücken) Cor-
mac Flanagan (Santa Cruz), Dimitra Giannakopoulou (CMU/NASA Ames),
Andrew D. Gordon (MSR Cambridge), Rajiv Gupta (UC Riverside), Chris Han-
kin (Imperial College London), Holger Hermanns (Saarbrücken), Mike Hinchey
(Lero, the Irish Software Engineering Research Centre), Martin Hofmann (LMU
Munich), Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop
(Vienna), Barbara König (Duisburg), Shriram Krishnamurthi (Brown), Juan de
Lara (Madrid), Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald
Luettgen (Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Pots-
dam), Ugo Montanari (Pisa), Luke Ong (Oxford), Fernando Orejas (Barcelona),
Catuscia Palamidessi (INRIA Paris), George Papadopoulos (Cyprus), David
Rosenblum (UCL), Don Sannella (Edinburgh), João Saraiva (Minho), Helmut
Seidl (TU Munich), Tarmo Uustalu (Tallinn), and Andrea Zisman (London).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2011, Holger
Hermanns and his Organising Committee, for arranging for us to have ETAPS
in the most beautiful surroundings of Saarbrücken.

January 2011 Vladimiro Sassone
ETAPS SC Chair

Preface

This volume contains the proceedings of the 17th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2011). TACAS 2011 took place in Saarbrücken, Germany, March 28–31, 2011,
as part of the 14th European Joint Conferences on Theory and Practice of Soft-
ware (ETAPS 2011), whose aims, organization, and history are presented in the
foreword of this volume by the ETAPS Steering Committee Chair, Vladimiro
Sassone.

TACAS is a forum for researchers, developers, and users interested in rigor-
ously based tools and algorithms for the construction and analysis of systems.
The conference serves to bridge the gaps between different communities that
share common interests in tool development and its algorithmic foundations. The
research areas covered by such communities include, but are not limited to, for-
mal methods, software and hardware verification, static analysis, programming
languages, software engineering, real-time systems, communications protocols,
and biological systems. The TACAS forum provides a venue for such communities
at which common problems, heuristics, algorithms, data structures, and method-
ologies can be discussed and explored. TACAS aims to support researchers in
their quest to improve the usability, utility, flexibility, and efficiency of tools
and algorithms for building systems. Tool descriptions and case studies with a
conceptual message, as well as theoretical papers with clear relevance for tool
construction, are all encouraged. The specific topics covered by the conference
include, but are not limited to, the following: specification and verification tech-
niques for finite and infinite-state systems, software and hardware verification,
theorem proving and model checking, system construction and transformation
techniques, static and run-time analysis, abstraction techniques for modeling
and validation, compositional and refinement-based methodologies, testing and
test-case generation, analytical techniques for safety, security, or dependability,
analytical techniques for real-time, hybrid, or stochastic systems, integration of
formal methods and static analysis in high-level hardware design or software
environments, tool environments and tool architectures, SAT and SMT solvers,
and applications and case studies.

TACAS traditionally considers two types of papers: research papers and tool
demonstration papers. Research papers are full-length papers that contain novel
research on topics within the scope of the TACAS conference and have a clear rel-
evance for tool construction. Tool demonstration papers are shorter papers that
give an overview of a particular tool and its applications or evaluation. TACAS
2011 received a total of 112 submissions including 24 tool demonstration papers
and accepted 32 papers of which 10 papers were tool demonstration papers. Each
submission was evaluated by at least three reviewers. After a six-week reviewing
process, the program selection was carried out in a two-week electronic Program

VIII Preface

Committee meeting. We believe that the committee deliberations resulted in a
strong technical program. One highlight is the quantity and quality of the tool
papers submitted to the conference and accepted for presentation.

Gerard J. Holzmann, Jet Propulsion Laboratory, California Institute of Tech-
nology, USA, gave the unifying ETAPS 2011 invited talk on “Reliable Soft-
ware Development: Analysis-Aware Design.” Andreas Podelski, University of
Freiburg, Germany, gave the TACAS 2011 invited talk on “Transition Invariants
and Transition Predicate Abstraction for Program Termination”. The abstracts
of the talks are included in this volume.

As TACAS 2011 Program Committee Co-chairs, we would like to thank the
authors of all submitted papers, the Program Committee members, and all the
referees for their invaluable contribution in guaranteeing such a strong technical
program. We also thank the EasyChair system for hosting the conference sub-
mission and program selection process and automating much of the proceedings
generation process. We would like to express our appreciation to the ETAPS
Steering Committee and especially its Chair, Vladimiro Sassone, as well as the
Organizing Committee for their efforts in making ETAPS 2011 such a successful
event.

January 2011
Parosh Aziz Abdulla
K. Rustan M. Leino

Conference Organization

Steering Committee

Ed Brinksma ESI and University of Twente
(The Netherlands)

Rance Cleaveland University of Maryland and Fraunhofer USA
Inc. (USA)

Kim G. Larsen Aalborg University (Denmark)
Bernhard Steffen Technical University Dortmund (Germany)
Lenore Zuck University of Illinois at Chicago (USA)

Program Chairs

Parosh A. Abdulla Uppsala University (Sweden)
K. Rustan M. Leino Microsoft Research (USA)

Program Committee

Nikolaj Bjørner Microsoft Research (USA)
Ahmed Bouajjani LIAFA, University of Paris 7 (France)
Patricia Bouyer-Decitre LSV, CNRS and ENS Cachan (France)
Alessandro Cimatti Istituto per la Ricerca Scientifica e Tecnologica

(Italy)
Rance Cleaveland University of Maryland and Fraunhofer USA

Inc. (USA)
Thierry Coquand Chalmers University (Sweden)
Giorgio Delzanno Università di Genova (Italy)
Javier Esparza Technische Universität München (Germany)
Orna Grumberg Technion - Israel Institute of Technology

(Israel)
Peter Habermehl LIAFA University Paris 7 (France)
Reiner Hähnle Chalmers University of Technology (Sweden)
Naoki Kobayashi Tohoku University (Japan)
Kim G. Larsen Aalborg University (Denmark)
Rupak Majumdar Max Planck Institute for Software Systems

(Germany)
Panagiotis Manolios Northeastern University (USA)
Richard Mayr University of Edinburgh (UK)
Doron Peled Bar Ilan University (Israel)
Anna Philippou University of Cyprus (Cyprus)

X Conference Organization

C.R. Ramakrishnan University at Stony Brook (USA)
Xavier Rival INRIA, ENS Paris (France)
Natasha Sharygina University of Lugano (Switzerland)
Armando Solar-Lezama MIT (USA)
Bernhard Steffen Technical University Dortmund (Germany)
Tomáš Vojnar Brno University of Technology

(Czech Republic)
Verena Wolf Saarland University (Germany)
Lenore Zuck University of Illinois at Chicago (USA)

External Reviewers

Markus Aderhold
Francesco Alberti
Aleksandr Andreychenko
Mohamed Faouzi Atig
Simon Baeumler
Christel Baier
Jiri Barnat
Sharon Barner
Ananda Basu
Prithwish Basu
Nathalie Bertrand
Julien Bertrane
Michel Bidoit
Jasmin Christian Blanchette
Bernard Boigelot
Matthew Bolton
Marius Bozga
Marco Bozzano
Tomas Brazdil
Thomas Brihaye
Vaclav Brozek
Roberto Bruttomesso
Richard Bubel
Peter Buchholz
Sebastian Burckhardt
Franck Cassez
Ivana Cerna
Harsh Raju Chamarthi
Yu-Fang Chen
Alvin Cheung
Lorenzo Clemente
Christopher Conway
Katherine Coons

Pepijn Crouzen
Pieter Cuijpers
Mads Dam
Alexandre David
Cezara Dragoi
Michael Emmi
Constantin Enea
Uli Fahrenberg
Jean-Christophe Filliatre
Shaked Flur
Vojtech Forejt
Guy Gallasch
Pierre Ganty
Samir Genaim
Patrice Godefroid
Eugene Goldberg
Andreas Griesmayer
Alberto Griggio
Ashutosh Gupta
Serge Haddad
Ernst Moritz Hahn
Keijo Heljanko
Jane Hillston
Lukas Holik
Florian Horn
Falk Howar
Radu Iosif
Malte Isberner
Yoshinao Isobe
Susmit Jha
Barbara Jobstmann
Manu Jose
Line Juhl

Conference Organization XI

Kenneth Yrke Jørgensen
Vineet Kahlon
Gal Katz
Christian Kern
Filip Konecny
Hillel Kugler
Shashi Kumar
Marta Kwiatkowska
Peter Lammich
Kai Lampka
Axel Legay
Jerome Leroux
Stefan Leue
Shuhao Li
Ann Lillieström
Florian Lonsing
Michael Luttenberger
Claude Marché
Yael Meller
Maik Merten
Marco Mesiti
Roland Meyer
Linar Mikeev
Marius Mikučionis
Wojciech Mostowski
Sergio Mover
Iman Narasamdya
Stefan Naujokat
Daniel Neider
Johannes Neubauer
Mads Chr. Olesen
Jörg Olschewski
Gabriele Paganelli
Vasilis Papavasileiou
Gennaro Parlato
Hans-Jörg Peter
Ricardo Peña
Andre Platzer
Isabelle Puaut
Hongyang Qu
Yusi Ramadian
Gianna Reggio
Ahmed Rezine
Marina Ribaudo

Enric Rodriguez Carbonell
Simone Fulvio Rollini
Marco Roveri
Pritam Roy
Philipp Ruemmer
Andrey Rybalchenko
Oliver Rüthing
Yaniv Sa’ar
Indranil Saha
Arnaud Sangnier
Viktor Schuppan
Ondrej Sery
K.C. Shashidhar
Sarai Sheinvald
Mihaela Sighireanu
Rishabh Singh
Oleg Sokolsky
David Spieler
Scott Stoller
Ofer Strichman
Kohei Suenaga
Damian Sulewski
Andrzej Tarlecki
Tino Teige
Claus Thrane
Anthony To
Stefano Tonetta
Tayssir Touili
Yih-Kuen Tsay
Aliaksei Tsitovich
Antti Valmari
Boudewijn van Dongen
Laurent Vigneron
Yakir Vizel
Christian von Essen
Björn Wachter
Xiaoyang Wang
Zheng Wang
Sam Weber
Zhilei Xu
Eran Yahav
Kuat Yessenov
Gianluigi Zavattaro

Table of Contents

Reliable Software Development: Analysis-Aware Design
(Invited Talk) . 1

Gerard J. Holzmann

Transition Invariants and Transition Predicate Abstraction for Program
Termination (Invited Talk) . 3

Andreas Podelski and Andrey Rybalchenko

Memory Models and Consistency

Sound and Complete Monitoring of Sequential Consistency for Relaxed
Memory Models . 11

Jabob Burnim, Koushik Sen, and Christos Stergiou

Compositionality Entails Sequentializability . 26
Pranav Garg and P. Madhusudan

Litmus: Running Tests against Hardware . 41
Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell

Invariants and Termination

Canonized Rewriting and Ground AC Completion Modulo Shostak
Theories . 45

Sylvain Conchon, Evelyne Contejean, and Mohamed Iguernelala

Invariant Generation in Vampire . 60
Kryštof Hoder, Laura Kovács, and Andrei Voronkov

Enforcing Structural Invariants Using Dynamic Frames 65
Diego Garbervetsky, Daniel Goŕın, and Ariel Neisen

Loop Summarization and Termination Analysis . 81
Aliaksei Tsitovich, Natasha Sharygina,
Christoph M. Wintersteiger, and Daniel Kroening

Timed and Probabilistic Systems

Off-Line Test Selection with Test Purposes for Non-deterministic
Timed Automata . 96

Nathalie Bertrand, Thierry Jéron, Amélie Stainer, and Moez Krichen

XIV Table of Contents

Quantitative Multi-objective Verification for Probabilistic Systems 112
Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman,
David Parker, and Hongyang Qu

Efficient CTMC Model Checking of Linear Real-Time Objectives 128
Benôıt Barbot, Taolue Chen, Tingting Han,
Joost-Pieter Katoen, and Alexandru Mereacre

Interpolations and SAT-Solvers

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer
Arithmetic . 143

Alberto Griggio, Thi Thieu Hoa Le, and Roberto Sebastiani

Generalized Craig Interpolation for Stochastic Boolean Satisfiability
Problems . 158

Tino Teige and Martin Fränzle

Specification-Based Program Repair Using SAT . 173
Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid

Optimal Base Encodings for Pseudo-Boolean Constraints 189
Michael Codish, Yoav Fekete, Carsten Fuhs, and
Peter Schneider-Kamp

Learning

Predicate Generation for Learning-Based Quantifier-Free Loop
Invariant Inference . 205

Yungbum Jung, Wonchan Lee, Bow-Yaw Wang, and Kwangkuen Yi

Next Generation LearnLib . 220
Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria

Model Checking

Applying CEGAR to the Petri Net State Equation 224
Harro Wimmel and Karsten Wolf

Biased Model Checking Using Flows . 239
Muralidhar Talupur and Hyojung Han

S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid
Systems . 254

Yashwanth Annapureddy, Che Liu, Georgios Fainekos, and
Sriram Sankaranarayanan

Table of Contents XV

Games and Automata

GAVS+: An Open Platform for the Research of Algorithmic Game
Solving . 258

Chih-Hong Cheng, Alois Knoll, Michael Luttenberger, and
Christian Buckl

Büchi Store: An Open Repository of Büchi Automata 262
Yih-Kuen Tsay, Ming-Hsien Tsai, Jinn-Shu Chang, and
Yi-Wen Chang

QUASY: Quantitative Synthesis Tool . 267
Krishnendu Chatterjee, Thomas A. Henzinger,
Barbara Jobstmann, and Rohit Singh

Unbeast: Symbolic Bounded Synthesis . 272
Rüdiger Ehlers

Verification (I)

Abstractions and Pattern Databases: The Quest for Succinctness and
Accuracy . 276

Sebastian Kupferschmid and Martin Wehrle

The ACL2 Sedan Theorem Proving System . 291
Harsh Raju Chamarthi, Peter Dillinger, Panagiotis Manolios, and
Daron Vroon

Probabilistic Systems

On Probabilistic Parallel Programs with Process Creation and
Synchronisation . 296

Stefan Kiefer and Dominik Wojtczak

Confluence Reduction for Probabilistic Systems . 311
Mark Timmer, Mariëlle Stoelinga, and Jaco van de Pol

Model Repair for Probabilistic Systems . 326
Ezio Bartocci, Radu Grosu, Panagiotis Katsaros,
C.R. Ramakrishnan, and Scott A. Smolka

Verification (II)

Boosting Lazy Abstraction for SystemC with Partial Order
Reduction . 341

Alessandro Cimatti, Iman Narasamdya, and Marco Roveri

XVI Table of Contents

Modelling and Verification of Web Services Business Activity
Protocol . 357

Anders P. Ravn, Jǐŕı Srba, and Saleem Vighio

CADP 2010: A Toolbox for the Construction and Analysis of
Distributed Processes . 372

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe

GameTime: A Toolkit for Timing Analysis of Software 388
Sanjit A. Seshia and Jonathan Kotker

Author Index . 393

Reliable Software Development:

Analysis-Aware Design

Gerard J. Holzmann

Laboratory for Reliable Software,
Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, CA 91109, USA
http://lars-lab.jpl.nasa.gov/

Abstract. The application of formal methods in software development
does not have to be an all-or-nothing proposition. Progress can be made
with the introduction of relatively unobtrusive techniques that simplify
analysis. This approach is meant replace traditional analysis-agnostic
coding with an analysis-aware style of software development.

Software verification efforts are often stumped by the complexity of not just
the analysis itself, but also the preparations that have to be made to enable it.
This holds especially if the code base is large, and written in a more traditional
programming language with limited builtin protection. When asked to analyze,
for instance, the embedded software of an automobile in a high-profile study
of the potential software causes for unintended acceleration incidents, our first
challenge is generally in the preparations phase. Very similar challenges can exist
in the analysis of mission-critical flight software for space missions. Some of the
more time-consuming obstacles in these efforts can be avoided, though, if code
is designed explicitly with the possibility of independent analysis in mind.

To give a, perhaps overly simple, example of the wisdom or restricting access
to shared data in a multi-tasking system: if valuables are stored in the open
in a yard, and some are damaged or missing, the analyst will generally have a
difficult problem finding out what happened. If they are stored in a locked room
and the same thing happens, the job of finding out what happened is reduced
to finding out who had access to the key. The analogy to software will be clear:
taking even simple precautions can have a large effect.

The adoption of somewhat stronger analysis-aware coding principles can make
a notable difference in the types of guarantees that one can give about a large
software system, especially when formal methods related tools are used such as
static analyzers [10], logic model checkers [6], or provers such as VCC [3]. As one
example, reconstructing where state information is stored in a complex system
can be one of the hardest obstacles in the application of model-driven verification
techniques [7]. The task becomes almost trivial if the global state information is
co-located in memory, or placed in a single data structure.

There are many other relatively benign tactics that can be adopted to make
code safer and more thoroughly verifiable. As one other example, the integra-
tion of complex code with simple aspect-oriented annotations [1] can support

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 1–2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 G.J. Holzmann

the mechanical generation of code instrumentations that can help a verifier ex-
tract design information, or build visualizations of dynamic data structures and
message flows that can guide a verification effort.

The benefit of assertions is also well-known [2,9]. A richer set of assertions
can be used though [5,4]. As an example, two types of inline temporal asser-
tions can be used in combination with the FeaVer model extractor [5]: response
and precedence assertions. A response assertion, assert r(e), expresses the LTL
property ♦e), stating that a condition e must hold within a finite number of
steps from the point in the code where the assertion is placed. A precedence
assertion, assert p(e1, e2), expresses the LTL property (e1 U e2), which states
that condition e1 must hold at least until, within a finite number of steps, condi-
tion e2 also holds. Temporal assertions can be used to derive property automata
for model checkers, as in the FeaVer system [5], or to generate runtime monitors
for use in runtime verification, as in the TimeRover system [4].

Finally, in the analysis of complex systems, exhaustive proof will often be
beyond reach. This is not necessarily fatal. As Sanjoy Mahajan, a theoretical
physicist at Caltech, noted, the attempt to solve complex problems with rigorous
methods can lead to rigor mortis, which can only be avoided by breaking some
of the rules. In our case this can mean using randomized proof techniques and
massively-parallel search techniques [8], which can be remarkably effective.

Acknowledgments. The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

References

1. http://en.wikipedia.org/wiki/Aspect-oriented_programming
2. Clarke, L.A., Rosenblum, D.: A historical perspective on runtime assertion checking

in software development. ACM SIGSOFT Software Eng. Notes 31(3) (May 2006)
3. Cohen, E., Dahlweid, M., et al.: VCC: A Practical System for Verifying Concurrent

C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

4. Drusinsky, D.: Temporal Rover. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN
2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg (2000)

5. Holzmann, G.J., Smith, M.H.: FeaVer 1.0 User Guide, Bell Laboratories Technical
Report, 64 pages (2000), http://cm.bell-labs.com/cm/cs/what/modex/

6. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

7. Holzmann, G.J., Joshi, R., Groce, A.: Model driven code checking. Automated
Software Eng. Journal 15(3-4), 283–297 (2008)

8. Holzmann, G.J., Joshi, R., Groce, A.: Swarm Verification Techniques. IEEE Trans.
on Software Eng. (to appear, 2011)

9. Kudrjavets, G., Nagappan, N., Ball, T.: Assessing the relationship between software
assertions and code quality: an empirical investigation. Microsoft Technical Report,
MSR_TR-2006-54, 17 pages (2006)

10. http://spinroot.com/static/

Transition Invariants and

Transition Predicate Abstraction
for Program Termination

Andreas Podelski1 and Andrey Rybalchenko2

1 University of Freiburg
2 Technische Universität München

Abstract. Originally, the concepts of transition invariants and transi-
tion predicate abstraction were used to formulate a proof rule and an
abstraction-based algorithm for the verification of liveness properties of
concurrent programs under fairness assumptions. This note applies the
two concepts for proving termination of sequential programs. We believe
that the specialized setting exhibits the underlying principles in a more
direct way.

1 Introduction

Transition invariants allow one to combine several ranking functions into a sin-
gle termination argument. Transition predicate abstraction automates the com-
putation of transition invariants using automated theorem proving techniques.
Together, transition invariants and transition predicate abstraction overcome
critical deficiencies of the classical proof method for program termination. The
classical method for proving program termination is based on the construction
of a single ranking function for the entire program. This construction cannot
be supported by the abstraction of a program into a finite-state program (each
finite-state program with n states will contain a loop to accomodate executions
with length greater than n).

Transition invariants and transition predicate abstraction were introduced in
[3] and [4], respectively (we refer to [3,4] for the discussion of related work). Here,
we use a uniform setting in order to present the two concepts together (as it was
done in the earlier technical report [1]). Originally, the concepts of transition
invariants and transition predicate abstraction were used to formulate a proof
rule and an abstraction-based algorithm for the verification of liveness properties
of concurrent programs under fairness assumptions. This note applies the two
concepts for proving termination of sequential programs. The purpose of this
note is to provide a short, direct, and comprehensive access to the underlying
principles.

2 Preliminaries

We abstract away from a particular programming language and use transi-
tion relations to describe programs. To further simplify the presentation, our

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 3–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 A. Podelski and A. Rybalchenko

l1: y := read_int();

l2: while (y > 0) {

y := y-1;

}

ρ1 : pc = �1 ∧ pc′ = �2

ρ1 : pc = �2 ∧ pc′ = �2 ∧ y > 0 ∧ y′ = y − 1

T1 : pc = �1 ∧ pc′ = �2

T2 : y > 0 ∧ y′ < y

Fig. 1. Program Any-Y contains unbounded non-determinism at line l1. The union
of binary relations ρ1 and ρ2 is the transition relation of the program. Termination
of Any-Y cannot be proved with ranking functions ranging over the set of natural
numbers (the initial rank must be at least the ordinal ω). The union of binary relations
T1 and T2 is a transition invariant for Any-Y. The binary relations T1 and T2 are both
well-founded (T1 does not have a chain longer than 1; T2 does not have a chain longer
than the value of y in its starting element). Thus we have a disjunctively well-founded
transition invariant for Any-Y, which proves the termination of Any-Y.

definition of programs does not specify a particular set of initial states. We
assume that the program can be started from any state.

Definition 1 (Transition-based program). We define a program as a triple

P = (Σ, T , ρ),

consisting of:

– a set of states Σ,
– a finite set of transitions T , which can be thought of as labels of program

statements, and
– a function ρ which assigns to each transition a binary transition relation

over states,
ρτ ⊆ Σ ×Σ, for τ ∈ T .

The transition relation of P , denoted RP , comprises the transition relations ρτ
of all transitions τ ∈ T , i.e.,

RP =
⋃

τ∈T
ρτ .

A program state is a valuation of program variables, including the program
counter. An assertion over program variables denotes a set of program states,
while an assertion over program variables and their primed versions denotes a
binary relation over program states. We identify sets and binary relations by
assertions denoting them.

See Figure 1 for an example of a program and its formal representation in
terms of its transition relations.

A program P is terminating if its transition relation RP is well-founded. This
means that the relation RP does not have an infinite chain, i.e., an infinite
sequence

s1, s2, s3, . . .

where each pair of successive states (si, si+1) is contained in the relation RP .

Transition Invariants and Transition Predicate Abstraction 5

3 Disjunctively Well-Founded Transition Invariants

In this section we give a brief description of terminology and results of [3] re-
stricted to termination ([3] also deals with general liveness properties and fair-
ness). We write r+ to denote the transitive closure of a relation r.

Definition 2 (Transition invariant). Given a program P = (Σ, T , ρ), a tran-
sition invariant T is a binary relation over states T that contains the program’s
transition relation R+

P , i.e.,
R+
P ⊆ T .

Definition 3 (Disjunctively well-founded relation). A relation T is dis-
junctively well-founded if it is a finite union of well-founded relations:

T = T1 ∪ · · · ∪ Tn .

Theorem 1 (Proof rule for termination). A program P is terminating if
and only if there exists a disjunctively well-founded transition invariant for P .

Proof. “Only if” (⇒) is trivial: if P is terminating, then both RP and R+
P are

well-founded. Choose n = 1 and T1 = R+
P .

“If” (⇐): we show that if P is not terminating and T1∪· · ·∪Tn is a transition
invariant, then some Ti is not well-founded. Nontermination of P means there
exists an infinite computation:

s0
τ1→ s1

τ2→ s3
τ3→ . . .

Let a choice function f satisfy

f(k, �) ∈ { Ti | (sk, s�) ∈ Ti }

for k, � ∈ IN with k < �. (The condition R+
P ⊆ T1 ∪ · · · ∪Tn implies that f exists,

but does not define it uniquely.) Define equivalence relation � on f ’s domain by

(k, �) � (k′, �′) if and only if f(k, �) = f(k′, �′)

Relation � is of finite index since the set of Ti’s is finite. By Ramsey’s Theorem
there exists an infinite sequence of natural numbers k1 < k2 < . . . and fixed
m,n ∈ IN such that

(ki, ki+1) � (m,n) for all i ∈ IN.

Hence (ski , ski+1) ∈ Tf(m,n) for all i. This is a contradiction: Tf(m,n) is not
well-founded. �

The proof of Theorem 1 uses a weak version of Ramsey’s theorem. This version
states that every infinite complete graph that is colored with finitely many col-
ors contains a monochrome infinite path (as opposed to a monochrome infinite
complete subgraph, in the strong version of Ramsey’s theorem).

6 A. Podelski and A. Rybalchenko

l1: while (x => 0) {

y := 1;

l2: while (y < x) {

y := y+1;

}

x := x-1;

}

ρ1 : pc = �1 ∧ pc′ = �2 ∧ x ≥ 0 ∧ x′ = x ∧ y′ = 1

ρ2 : pc = �2 ∧ pc′ = �2 ∧ y < x ∧ x′ = x ∧ y′ = y + 1

ρ3 : pc = �2 ∧ pc′ = �1 ∧ y ≥ x ∧ x′ = x− 1 ∧ y′ = y

T1 : pc = �1 ∧ pc′ = �2

T2 : pc = �2 ∧ pc′ = �1

T3 : x ≥ 0 ∧ x′ < x

T4 : x− y > 0 ∧ x′ − y′ < x− y

Fig. 2. Program Bubble contains a nested loop. Termination of Bubble is classically
shown with the lexicographic ranking function 〈x, x − y〉 defined by the pair of the
ranking functions x and x − y. The disjunctively well-founded transition invariant
shown (the union of binary relations T1, . . . , T4) does not prescribe an order between
the two ranking functions x and x − y (which have T3 and T4 as the corresponding
ranking relations).

l: while (x > 0 && y > 0) {

if (read_int()) {

(x, y) := (x-1, x);

} else {

(x, y) := (y-2, x+1);

}

}

ρ1 : pc = pc′ = � ∧ x > 0 ∧ y > 0 ∧
x′ = x− 1 ∧ y′ = x

ρ2 : pc = pc′ = � ∧ x > 0 ∧ y > 0 ∧
x′ = y − 2 ∧ y′ = x+ 1

T1 : x > 0 ∧ x′ < x

T2 : y > 0 ∧ y′ < y

T3 : x+ y > 0 ∧ x′ + y′ < x+ y

Fig. 3. Program Choice contains a non-determinstic choice between two simultaneous
assignment statements in the loop body. The disjunctively well-founded transition in-
variant shown (the union of binary relations T1, . . . , T3) presents the ranking relations
for the three ranking functions x, y, and x+ y, none of which by itself suffices to prove
terminations.

See Figures 1, 2, 3, and 4 for examples of disjunctively well-founded transition
invariants.

As a consequence of the above theorem, we can prove termination of a program
P as follows. We compute a disjunctively well-founded superset of the transitive
closure of the transition relation of the program P , i.e., we construct a finite
number of well-founded relations T1, . . . , Tn whose union covers R+

P . We need to
show that the inclusion R+

P ⊆ T1 ∪ · · · ∪ Tn indeed holds, and we need to show
that each of the relations T1, . . . , Tn is indeed well-founded. Transition predicate
abstraction can be used to obtain an automation of the three steps, as shown in
the next section.

Transition Invariants and Transition Predicate Abstraction 7

l: while (x > 0 && y > 0) {

if (read_int()) {

x := x-1;

y := read_int();

} else {

y := y-1;

}

}

ρ1 : pc = pc′ = � ∧ x > 0 ∧ y > 0 ∧
x′ = x− 1

ρ2 : pc = pc′ = � ∧ x > 0 ∧ y > 0 ∧
x′ = x ∧ y′ = y − 1

T1 : x ≥ 0 ∧ x′ < x

T2 : y > 0 ∧ y′ < y

Fig. 4. The program XorY shown contains a non-deterministic choice between two
simultaneous assignment statements in the loop body. The first one decrements x
and erases y (assigns a non-deterministic value to y). The second decrements y. The
validity of the disjunctively well-founded transition invariant shown (the union of the
ranking relations for the two ranking functions x and y) is shown by transition predicate
abstraction.

4 Transition Predicate Abstraction (TPA)

A transition predicate is a binary relation over program states. Transition pred-
icate abstraction [4] is a method to compute transition invariants, just as pred-
icate abstraction is a method to compute invariants.

Definition 4 (Set of abstract transitions T #
P). Given the set of transition

predicates P, the set of abstract transitions T #
P is the set that contains for

every subset of transition predicates {p1, . . . , pm} ⊆ P the conjunction of these
transition predicates, i.e.,

T #
P = {p1 ∧ . . . ∧ pm | 0 ≤ m and pi ∈ P for 1 ≤ i ≤ m} .

The set of abstract transitions T #
P is closed under intersection, and it contains

the assertion true (the empty intersection, corresponding to the case m = 0),
which denotes the set of all pairs of program states.

Example 1. Consider the following set of transition predicates.

P = {x′ = x, x′ < x, y′ < y}

The set of abstract transitions T #
P is

{true, x′ = x, x′ < x, y′ < y, x′ = x ∧ y′ < y, x′ < x ∧ y′ < y, false} .

The abstract transition written as true is the set of all state pairs Σ ×Σ and is
the empty conjunction of transition predicates. The abstract transition written
as false is the empty relation; e.g., the conjunction of x = x′ and x > x′ is false.

We next define a function that assigns to a binary relation T over states the
least (wrt. inclusion) abstract transition that is a superset of T .

8 A. Podelski and A. Rybalchenko

Definition 5 (Abstraction function α). A set of transition predicates P de-
fines the abstraction function

α : 2Σ×Σ → T #
P

which assigns to a relation r ⊆ Σ ×Σ the smallest abstract transition that is a
superset of r, i.e.,

α(r) =
∧
{p ∈ P | r ⊆ p}.

We note that α is extensive, i.e., the inclusion

r ⊆ α(r)

holds for any binary relation over states r ⊆ Σ ×Σ.

Example 2. After taking the transition predicates x > 0 and y > 0, which leave
the primed variables unconstrained, into consideration the application of the
abstraction function α to the transition relations ρ1 and ρ2 of the program in
Figure 4 results in the following abstract transitions.

α(ρ1) = x > 0 ∧ y > 0 ∧ x′ < x

α(ρ2) = x > 0 ∧ y > 0 ∧ x′ = x ∧ y′ < y

We next present an algorithm that uses the abstraction α to compute (a set
of abstract transitions that represents) a transition invariant. The algorithm
terminates because the set of abstract transitions T #

P is finite.

Algorithm 1 (TPA).
Transition invariants via transition predicate abstraction.

Input: program P = (Σ,T , ρ)
set of transition predicates P
abstraction α defined by P (according to Def. 5)

Output: set of abstract transitions P# = {T1, . . . , Tn}
such that T1 ∪ · · · ∪ Tn is a transition invariant

P# := {α(ρτ) | τ ∈ T }
repeat

P# := P# ∪ {α(T ◦ ρτ) | T ∈ P#, τ ∈ T , T ◦ ρτ �= ∅}
until no change

Our notation P# for the set of abstract transitions computed by the TPA
algorithm stems from [4]. There, P# is called an abstract transition program.
In contrast to [4] we do not consider edges between the abstract transitions,
since they only needed for keeping track of fairness assumption when proving
fair termination and liveness properties.

Transition Invariants and Transition Predicate Abstraction 9

Theorem 2 (TPA). Let P# = {T1, . . . , Tn} be the set of abstract transi-
tions computed by Algorithm TPA. If every abstract relation T1, . . . , Tn is well-
founded, then program P is terminating.

Proof. The union of the abstract relations T1 ∪ · · · ∪Tn is a transition invariant.
If every abstract relation T1, . . . , Tn is well-founded, the union T1 ∪ · · · ∪ Tn is a
disjunctively well-founded transition invariant and by Theorem 1 the program
P is terminating. �

Example 3. Consider the program P in Figure 4 and the set of transition pred-
icates P in Example 1. The output of Algorithm TPA is

P# = {x > x′, x = x′ ∧ y > y′}

Both abstract transitions in P# are well-founded. Hence P is terminating. In
fact, it is sufficient to show the well-foundedness of the (simpler) binary relations
T1 and T2 given in Figure 4. The transition invariant given there is valid because
it contains the one defined by P#.

Each abstract transition in P# (the representation of a transition invariant com-
puted by the transition-predicate abstraction-based algorithm) is a conjunction
of transition predicates. Thus it corresponds to a conjunction g ∧ u of a guard
formula g which contains only unprimed variables, and an update formula u
which contains primed variables, for example x > 0 ∧ x > x′. Thus it denotes
the transition relation of a simple while program of the form while g { u },
for example, while (x > 0) { assume(x > x′); x := x′ }. The well-foundedness
of the abstract transition is thus equivalent to the termination of the simple
while program. Since we have fast and complete procedures that find ranking
functions for such programs [2], we can automate also the third step of transition
invariant-based termination proofs, as outlined in the previous section.

5 Conclusion

We have presented disjunctively well-founded transition invariants as the basis of
a new proof rule for program termination, and transition predicate abstraction
as the basis of its automation. As a result, we obtain the foundation for a new
class of automatic methods for proving program termination.

Acknowledgements. Discussions with Neil Jones and Chin Soon Lee started this
work. We thank Amir Pnueli for inspiration and encouragement, and for sug-
gesting the terminology of disjunctively well-founded transition invariants.

References

1. Podelski, A., Rybalchenko, A.: Software model checking of liveness properties via
transition invariants. Technical Report MPI-I-2003-2-004, Max-Planck-Institut für
Informatik (December 2003),
http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2003-2-004

10 A. Podelski and A. Rybalchenko

2. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

3. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science, Washington, DC,
USA, pp. 32–41. IEEE Computer Society Press, Los Alamitos (2004)

4. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. In: POPL 2005: Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, vol. 32, pp. 132–144. ACM, New York (2005)

Sound and Complete Monitoring of Sequential

Consistency for Relaxed Memory Models

Jabob Burnim, Koushik Sen, and Christos Stergiou

EECS Department, University of California, Berkeley
{jburnim,ksen,chster}@cs.berkeley.edu

Abstract. We present a technique for verifying that a program has no
executions violating sequential consistency (SC) when run under the re-
laxed memory models Total Store Order (TSO) and Partial Store Order
(PSO). The technique works by monitoring sequentially consistent execu-
tions of a program to detect if similar program executions could fail to be
sequentially consistent under TSO or PSO. We propose novel monitoring
algorithms that are sound and complete for TSO and PSO—if a program
can exhibit an SC violation under TSO or PSO, then the corresponding
monitor can detect this on some SC execution. The monitoring algo-
rithms arise naturally from the operational definitions of these relaxed
memory models, highlighting an advantage of viewing relaxed memory
models operationally rather than axiomatically. We apply our technique
to several concurrent data structures and synchronization primitives, de-
tecting a number of violations of sequential consistency.

1 Introduction

Programmers writing concurrent software often assume that the underlying
memory model is sequentially consistent. However, sequential consistency strongly
constrains the ordering of memory operations, which can make it difficult to
achieve high performance in commodity microprocessors [9,20]. Thus, to enable
increased concurrency and performance, processors often provide a relaxed mem-
ory model. Unfortunately, working with relaxed memory models often requires
subtle and difficult reasoning [9,20].

Nevertheless, developers of high-performance concurrent programs, such as
lock-free data-structures and synchronization libraries, often use regular load
and store operations, atomic compare-and-swap-like primitives, and explicit data
races instead of locks to increase performance. Concurrency bugs are notoriously
hard to detect and debug; relaxed memory models make the situation even worse.

Recently, there has been great interest in developing techniques for the
verification and analysis of concurrent programs under relaxed memory mod-
els [9,20,13,3,15,4,2,10]. In a promising and practical approach for such verifi-
cation, Burckhardt and Musuvathi [4] argued that programmers, despite using
ad-hoc synchronization, expect their program to be sequentially consistent. They
proposed SOBER, which monitors sequentially consistent executions to detect
violations of sequential consistency (SC). A key observation made in their work

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 11–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

12 J. Burnim, K. Sen, and C. Stergiou

is that, for the Total Store Order (TSO) [23] memory model (which is quite
similar to that of the x86 architecture [21]), if a program execution under TSO
violates sequential consistency (SC), then this fact can be detected by examin-
ing some sequentially consistent execution of the program. Therefore, if run-time
monitoring is combined with a traditional model checker, which explores all se-
quentially consistent executions of the program, then all violations of SC under
TSO can be detected. Burckhardt and Musuvathi [4] use an axiomatic definition
of SC and TSO to derive the SOBER monitoring algorithm.

In this paper, we develop two novel monitoring algorithms for detecting vio-
lations of sequential consistency (SC) under relaxed memory models Total Store
Order (TSO) [23] and Partial Store Order (PSO) [23]. Each algorithm, when
monitoring a sequentially consistent execution of a program, simulates a similar
TSO or PSO execution, reporting if this similar execution can ever violate se-
quential consistency. We prove both monitors sound—if they report a warning,
then the monitored program can violate SC under TSO or PSO—and complete—
if a program can violate SC under TSO or PSO, then the corresponding monitor
can detect this fact by examining some sequentially consistent execution.

Rather than working with axiomatic definitions of these relaxed memory mod-
els, as [4] does, we derive our algorithms from operational definitions of TSO and
PSO. We show that this alternate approach naturally leads to fundamentally dif-
ferent monitoring algorithms, with several advantages over SOBER.

One advantage of our operational approach is that our monitoring algorithms
follow simply from the operational definitions of TSO and PSO. While moni-
toring algorithms based on axiomatic definitions require the design of complex
vector clocks, in addition to the standard vector clocks to track the traditional
happens-before relation, our approach can directly “run” the operational mem-
ory model. Thus, we were easily able to develop a monitoring algorithm for PSO,
in addition to TSO—such an extension is unknown for the SOBER algorithm.

Another advantage of our algorithms is that they have a run-time complexity
of O(N ·P) when monitoring a sequentially consistent execution with N shared
memory operations and P processes. This complexity is an improvement over
the run-time complexity O(N · P 2) of the SOBER algorithm. We see this im-
provement in run-time complexity because we do not need to maintain additional
vector clocks for TSO and PSO.

Further, in developing our monitoring algorithms, we discovered a bug in
the SOBER algorithm—in its axiomatic definition of TSO—which makes the
algorithm incomplete. We believe that this bug is quite subtle. The same bug is
also present [21] in the 2007 Intel R© 64 Architecture Memory Order White Paper.
In this paper, we identify and correct the error [8] in the SOBER algorithm
arising from a too-strict axiomatic definition of the TSO memory model.

We have implemented our monitoring algorithms for C programs in THRILLE
[16] and, combined with THRILLE’s preemption-bounded model checking [19],
have applied our monitors to two mutual exclusion algorithms and several con-
current data structures. Our experiments show that we can detect sequential
consistency violations under TSO or PSO in all of these benchmarks.

Sound and Complete Monitoring of Sequential Consistency 13

Other Related Work. There have been many efforts to verify or check con-
current programs on relaxed memory models [9,20,13,3,15,4,2,10]. Some of these
techniques [13,3] encode a program and the underlying memory model as a con-
straint system and use a constraint solver to find bugs. Other techniques [9,20,15]
explicitly explore the state space of a program to find bugs.

Recently, [10] proposed an adversarial memory for testing at run-time if a
data race in a Java program could be harmful under Java’s memory model.

2 Preliminaries

We consider a parallel program P to consist of a number of parallel threads,
each with a thread-local state, that communicate though a shared memory. The
execution of a parallel program consists of a sequence of program steps. In each
step, one of the program threads issues a shared memory operation—e.g., a
read or write of a shared variable—and then updates its local state based on its
current local state and anything returned by the memory operation—e.g., the
value read for a shared variable.

Below, we will give operational definitions of relaxed memory models TSO
and PSO as abstract machines. These abstract machine definitions are designed
to be simple for a programmer to understand and to reason about, not to ex-
actly describe the internal structure or operation of real hardware processors. For
example, our operational definitions contain no caches or mechanisms for ensur-
ing cache coherency. At the same time, these operational definitions are faithful
in that they allow exactly the program behaviors allowed by more traditional
axiomatic definitions of TSO and PSO.

2.1 Programming Model

Let Proc be set of all program processes or thread identifiers and Value be the
set of possible program values. Then, we define the set Event of shared memory
operations, or events, to consist of all:

– Stores st(p, a, v) by process p ∈ Proc to address a ∈ Adr of v ∈ Value.
– Loads ld(p, a) by process p ∈ Proc of address a ∈ Adr.
– Atomic operations atm(p, a, f) by p ∈ Proc on a ∈ Adr, which store f(v) to

address a after reading v ∈ Value from a, where f : Value→ Value.
This operations models atomic shared memory primitives such as compare-
and-swap (CAS), fetch-and-add, test-and-set, etc.1

Note that we need not explicitly include a memory fence operation. In our
operational models, memory barriers can be simulated by atomic operations
atm(p, a, f), which restrict reordering or delaying of earlier memory ops.

1 For example, a CAS(a, old,new) by process p is modeled by atm(p, a, f), where
f = (λx. if x = old then new else x). The CAS “succeeds” when it reads value
old, and “fails” otherwise.

14 J. Burnim, K. Sen, and C. Stergiou

We denote the process p and address a of an event e ∈ Event by p(e) and
a(e), respectively.

We now formalize programs as independent processes with local state and
communicating only via the above shared memory operations. We abstract un-
necessary details such as the source language, control flow, and structure of the
process-local state. We define a program P to be a tuple (s0,next, update) where:

– Function s0 : Proc→ Σ is the initial program state, mapping process p to its
thread-local state s0(p) ∈ Σ, where Σ is the set of all possible local states.

– Partial function next : Proc×Σ → Event indicates the next memory opera-
tion or event, next(p, σ), that process p issues when in local state σ.
If next is undefined for (p, σ), denoted next(p, σ) = ⊥, then process p is
complete. Program P terminates when next(p, s(p)) = ⊥ for all p.

– Function update : Proc × Σ × Value → Σ indicates the new local state
update(p, σ, v) of process p after it receives response v to op next(p, σ).

We similarly formalize a memory model MM as a labeled transition system with
initial state m0 and with transitions labeled by events from Event, paired with
memory model responses. We also allow memory model MM to have a set of
labeled internal transitions τMM, to model any internal nondeterminism of the
memory model. Then, an execution of program P under memory model MM is
a sequence of labeled transitions:

(s0,m0)
l1−→ (s1,m1)

l2−→ · · · ln−→ (sn,mn)

where each transition (si−1,mi−1)
li−→ (si,mi) is either labeled by an ordered

pair (ei, ri) ∈ Event× Value, in which case:

– ei = next(p(ei), si−1(p(ei)))
– si(p(ei)) = update(p(ei), si−1(p(ei)), ri), where ri is the value returned for
ei, which is ⊥ for stores.

– si(p′) = si−1(p′) for p′ �= p(ei)

– mi−1
(ei,ri)−−−−→ mi is a transition in MM

or is labeled by an internal transition from τMM, in which case:

– si = si−1, and mi−1
li−→ mi is a transition in MM

In this model, there are two sources of nondeterminism in a program execution:
(1) The thread schedule—i.e., at each step, which process p executes a transition,
and (2) the internal nondeterminism of the memory model.

3 Operational Memory Models

We now give our operational definitions for three memory models: sequential con-
sistency (SC) and relaxed memory models TSO and PSO. Fundamentally, these
definitions are equivalent to operational definitions given by other researchers
for SC [14,5,2,18], TSO [14,5,2,21,18], and PSO [14,2,18].

Sound and Complete Monitoring of Sequential Consistency 15

In our presentation, we aim for definitions that provide a simple and easy to
understand model for a programmer. We present each memory model as a library
or module with an internal state, representing the abstract state of a shared mem-
ory, and with methods store(p, a, v), load(p, a), and atomic(p, a, f) by which a
program interacts with the shared memory. The memory model executes all such
methods atomically—i.e. one at a time and uninterrupted. Additionally, mem-
ory models TSO and PSO each have an internal method storec. Each memory
model is permitted to nondeterministically call this internal method, with any
arguments, whenever no other memory model method is being executed.

A note about connecting these definitions to our formalism in Section 2:

– m
ld(p,a),v−−−−−→ m when load(p, a), run in memory model state m, returns v.

(Note that load(p, a) does not modify the memory model state m.)

– m
st(p,a,v),⊥−−−−−−−→ m′ when store(p, a, v), run in state m, yields state m′.

– m
atm(p,a,f),v−−−−−−−−→ m′ when atomic(p, a, f), run in m, returns v and yields m′.

Sequential Consistency (SC). Our operational definition of SC [17] is given
in Figure 1. The SC abstract machine simply models shared memory as an array
m mapping addresses to values, reading from and writing to this array on loads,
stores, and atomic operations.

Total Store Order (TSO). Our definition of TSO [23] is given in Figure 2. In
addition to modeling shared memory as array m, mapping addresses to values,
the TSO abstract machine has a FIFO write buffer B[p] for each process p.

We omit a proof that our operational definition is equivalent to more tradi-
tional axiomatic ones. Our model is similar to the operational definitions in [4]
and [21], both of which are proved equivalent to axiomatic definitions of TSO.
Conceptually, the per-process write buffers allow stores to be reordered or de-
layed past later loads, while ensuring that each process’s stores become globally
visible in the order in which they are performed. And there is a total order on
all stores—the order in which stores commit—that respects the program order.

Partial Store Order (PSO). Our operational definition of PSO [23] is given
in Figure 3. Our PSO abstract machine is very similar to that of TSO, except
that pending writes are stored in per-process and per-address write buffers. In-
ternal method storec

PSO(p, a) commits the oldest pending store to address a and
atomicPSO(p, a, f) commits/flushes only pending stores to address a.

m[Adr] : Val

storeSC(p, a, v) :
m[a] := v

loadSC(p, a) :
return m[a]

atomicSC(p, a, f) :
ret := m[a]
m[a] := f(m[a])
return ret

Fig. 1. Operational Model of Sequential Consistency (SC)

16 J. Burnim, K. Sen, and C. Stergiou

m[Adr] : Val
B[Proc] : FIFOQueue of (Adr,Val)

storeTSO(p, a, v) :
B[p].addLast(a, v)

storec
TSO(p) :

if not B[p].empty():
(a, v) := B[p].removeFirst()
m[a] := v

loadTSO(p, a) :
if B[p].contains((a, ∗)):

(a, v) := last element (a, ∗) of B[p]
return v

else:
return m[a]

atomicTSO(p, a, f):
while not B[p].empty():

storec
TSO(p)

ret := m[a]
m[a] := f(m[a])
return ret

Fig. 2. Operational Model of TSO

m[Adr] : Val
B[Proc][Adr] : FIFOQueue of Val

storePSO(p, a, v) :
B[p][a].addLast(v)

storec
PSO(p, a) :

if not B[p][a].empty ():
m[a] := B[p][a].removeFirst ()

loadPSO(p, a) :
if not B[p][a].empty ():

return B[p][a].getLast ()

else:
return m[a]

atomicPSO(p, a, f):
while not B[p][a].empty():

storec
PSO(p, a)

ret := m[a]
m[a] := f(m[a])
return ret

Fig. 3. Operational Model of PSO

4 Violations of Sequential Consistency

In this section, we formally define what it means for a program to have a violation
of sequential consistency under a relaxed memory model. In Section 5, we will
give monitoring algorithms for detecting such violations under TSO and PSO
by examining only the SC executions of a program.

4.1 Execution Traces

If a program exhibits some behavior in a TSO or PSO execution, we would like
to say that the behavior is not sequentially consistent if there is no execution
under SC exhibiting the same behavior. We will define a trace of an SC, TSO,
or PSO execution to capture this notion of the behavior of a program execution.

Following [12], [4], and [6], we formally define a trace of an execution of a
program P to be a tuple (E,→p, src,→st), where

– E ⊆ Event is the set of shared memory operations or events in the execution.
– For each process p ∈ Proc, relation →p⊆ E × E is a total order on the

events e ∈ E from process p—i.e. with p(e) = p. In particular, e →p e
′ iff

p(e) = p(e′) and e is before e′ in the execution. Thus, →p does not relate
events from different processes.

Sound and Complete Monitoring of Sequential Consistency 17

Relation →p is called the program order relation, and e→p e
′ indicates that

process p issued operation e before issuing e′.
– For each load or atomic operation e ∈ E, partial function src : Event →

Event indicates the store or atomic operation src(e) ∈ Event from which
e reads its value. src(e) = ⊥ indicates that e got its value from no store,
instead reading the initial default value in the shared memory. Note that
a(src(e)) = a(e) whenever src(e) is defined.

– For each address a, relation →st⊆ E × E is a total order on the stores
and atomic operations on a in the execution. In particular, e →st e′ iff
a(e) = a(e′) and e becomes globally visible before e′ in the execution. Thus,
→st does not relate events on different addresses.
Memory models SC, TSO, and PSO all guarantee the existence, for each
address, of such a total order in which the writes to that address become
globally visible2. Note that not all relaxed memory models guarantee the
existence of such an ordering.

Note that we can only define a trace for a complete TSO or PSO execution—that
is, one in which every store has become globally visible or, in the language of
our abstract models, committed. If multiple processes have pending writes to
the same address, then the execution does not specify an order on those writes
and thus does not define a total →st relation.

4.2 Sequential Consistency and the Happens-Before Relation

We define a trace of a program P to be sequentially consistent only if it arises
from some sequentially consistent execution of P :

Definition 1. A trace T = (E,→p, src,→st) of a program P is sequentially
consistent iff there exists some execution of P under SC with trace T .

This definition is not very convenient for showing that a trace is not sequentially
consistent. Thus, following [22,4], we give an axiomatic characterization of SC
traces by defining relations →c and →hb on the events of a trace:

Definition 2. Let (E,→p, src,→st) be a trace. Events e, e′ ∈ E are related by
the conflict-order relation, denoted e →c e

′, iff a(e) = a(e′) and one of the
following holds:
– e is a write, e′ is a read, and e = src(e′),
– e is a write, e′ is a write, and e→st e

′

– e is a read, e′ is a write, and either src(e) = ⊥ or src(e)→st e
′

Definition 3. For a trace (E,→p, src,→st), the happens-before relation is de-
fined as the union of the program-order and conflict-order relations on E—i.e.
→hb = (→p ∪ →c). We refer to the reflexive transitive closure of the happens-
before relation as →∗hb.
2 This property is closely related to store atomicity [1]. TSO and PSO do not techni-

cally have store atomicity, however, because a process’s loads can see the values of
the process’s earlier stores before those stores become globally visible.

18 J. Burnim, K. Sen, and C. Stergiou

As observed in [22] and [4], a trace is sequentially consistent iff its →hb relation
is acyclic:

Proposition 1. Let T = (E,→p, src,→st) be a trace of an execution of program
P . Trace T is sequentially consistent iff relation →hb is acyclic on E.

We define a sequential consistency violation as a program execution with a non-
sequentially-consistent trace:

Definition 4. A program P has a violation of sequential consistency under
relaxed memory model TSO (resp. PSO) iff there exists some TSO (resp. PSO)
execution of P with trace T such that T is not sequentially consistent.

5 Monitoring Algorithms

We describe our monitoring algorithms for TSO and PSO in this section. We
suppose here that we are already using a model checker to explore and to verify
the correctness of all sequentially consistent executions of program P . A number
of existing model checkers [19,16] explore the sequentially consistent, interleaved
schedules of a parallel program.

Figures 4 and 5 list our monitor algorithms for TSO and PSO. We present
our algorithms as online monitors—that is, for an SC execution (s0,m0)

e1,r1−−−→
· · · en,rn−−−→ (sn,mn) of some program P , we run monitorTSO (respectively
monitorPSO) on the execution by:

– Initializing the internal state B and last as described in Figure 4 (resp. 5).
– Then, for each step ei ∈ Event in the execution, from e1 to en, we call

monitorTSO(ei).
– If any of these calls signals “SC Violation”, then P has a sequential con-

sistency violation under TSO (resp., PSO). Note that we do not stop our
monitoring algorithm after detecting the first violation. Thus, we find all
such violations of sequential consistency along each SC execution.

Conceptually, each monitor algorithm works by simulating a TSO (respectively
PSO) version of the given SC execution. Array B simulates the FIFO write
buffers in a TSO (resp. PSO) execution, but buffers the pending store events
rather than just the pending values to be written. Lines 16–25 update these
write buffers, queueing a store when the SC execution performs a store and
flushing the buffers when the SC execution performs an atomic operation.

But when should this simulated TSO (resp. PSO) execution “commit” these
pending stores, making them globally visible? Lines 10–12 commit these pend-
ing stores as late as possible while still ensuring that the simulated TSO (resp.
PSO) execution has the same trace and →hb-relation as the SC execution. This
is achieved by, just before simulating operation e by process p on address a, com-
mitting all pending stores to address a from any other process—these pending
stores happen before e in the SC execution, so they must be committed to ensure
they happen before e in the simulated TSO (resp. PSO) execution. Note that, in
the TSO monitor, this may commit pending stores to other addresses, as well.

Sound and Complete Monitoring of Sequential Consistency 19

1 B[Proc] : FIFOQueue of (Adr,Event)
2 prev[Proc] : Event initialized to ⊥
3

4 monitorTSO(e):
5 // Could simulation have →hb−cycle?
6 if ∃(a(e), e′) ∈ B[p(e′)] with

p(e′) �= p(e) ∧ e′ →∗
hbprev[p(e)]:

7 signal ‘‘SC Violation’’
8

9 // Ensure equivalence to SC.
10 while ∃(a(e), ∗) ∈ B[p′] with p′ �= p(e):

11 B[p′].removeFirst ()
12 emit stc(p′)
13

14 // Execute e in TSO simulation.
15 prev[p(e)] := e
16 if e =st(p, a, v):
17 B[p].addLast (a, e)
18 emit st(p, a, v)
19 else if e =ld(p, a):
20 emit ld(p, a)
21 else if e =atm(p, a, f):
22 while not B[p].empty():
23 B[p].removeFirst()
24 emit stc(p)
25 emit atm(p, a, f)

Fig. 4. Monitoring algorithm for TSO

1 B[Proc][Adr] : FIFOQueue of Event
2 prev[Proc] : Event initialized to ⊥
3

4 monitorPSO(e):
5 // Could simulation have →hb−cycle?
6 if ∃e′ ∈ B[p(e′)][a(e)] with

p(e′) �= p(e) ∧ e′ →∗
hbprev[p(e)]:

7 signal ‘‘SC Violation’’
8

9 // Ensure equivalence to SC.
10 while ∃p′ �= p(e) with not

B[p′][a(e)].empty():
11 B[p′][a(e)].removeFirst()
12 emit stc(p′, a(e))
13

14 // Execute e in PSO simulation.
15 prev[p(e)] := e
16 if e =st(p, a, v):
17 B[p][a].addLast(e)
18 emit st(p, a, v)
19 else if e =ld(p, a):
20 emit ld(p, a)
21 else if e =atm(p, a, f):
22 while not B[p][a].empty ():
23 B[p][a].removeFirst ()
24 emit stc(p, a)
25 emit atm(p, a, f)

Fig. 5. Monitoring algorithm for PSO

But first, Line 6 of monitorTSO(e), resp. monitorPSO(e), checks if we can
create a violation of sequential consistency by executing memory operation e in
the TSO (resp. PSO) simulation before committing any pending and conflicting
stores. That is, suppose e is an operation on address a by process p, and in our
simulated TSO (resp. PSO) execution there is a pending store e′ to a by process
p′ �= p. In the TSO (resp. PSO) execution, we can force e→c e

′ by executing e
(and committing e, if it is a store) before committing e′. Further, suppose that e′

satisfies the rest of the condition at Line 6. That is, e′ →∗hb prev[p]—in the trace
of the SC execution, event e′ happens before the event prev[p] issued by process
p just before e. Then, as proved in Theorem 1, in the trace of the simulated TSO
(resp. PSO) execution we will have e′ →∗hb prev[p] →p e →c e

′. This is a cycle
in the →hb-relation, indicating that the simulated TSO (resp. PSO) execution
is not sequentially consistent.

In order to track the classic→∗hb relation on the trace of the SC execution that
we are monitoring, we use a well-known vector clock algorithm. The algorithm
has a time complexity of O(N · P) on a trace/execution of length N with P
processes. A short description of the algorithm can be found in, e.g., [11].

20 J. Burnim, K. Sen, and C. Stergiou

Theorem 1. Algorithms monitorTSO and monitorPSO are sound monitoring
algorithms for TSO and PSO, respectively. That is, whenever either reports a
violation of sequential consistency given an SC execution of a program P , then
P really has a violation of sequential consistency under TSO (resp. PSO).

Theorem 2. Algorithms monitorTSO and monitorPSO are complete for TSO
and PSO, respectively. That is, if program P has a violation of sequential con-
sistency under TSO (resp. PSO), then there exists some SC execution of P on
which monitorTSO (resp. monitorPSO) reports an SC violation.

Theorem 3. On a sequentially consistent execution of length N on P processes,
monitoring algorithms monitorTSO and monitorPSO run in time O(N · P).
We sketch the proofs of these results in the Appendix. Complete proofs can be
found in our accompanying technical report.

6 Comparison to SOBER

Our work is inspired by SOBER [4], a previous monitoring algorithm that detects
program executions under TSO that violate sequential consistency by examining
only SC executions. SOBER is derived from the axiomatic characterization of
relaxed memory model TSO, while we work from operational definitions of TSO
and PSO. There are four key differences between our work and SOBER.

First, we give monitor algorithms for detecting sequential consistency viola-
tions under both TSO and the more relaxed PSO memory model, while SOBER
detects only violations under TSO.

Second, the run-time complexity of our algorithms is O(N ·P), where P is the
number of processors and N is the length of the monitored SC execution. This
is an improvement over the complexity O(N ·P 2) of the SOBER algorithm. The
additional factor of O(P) in SOBER is from a vector clock algorithm to maintain
the relaxed happens-before relation, which axiomatically defines the behaviors
legal under TSO. In contrast, when working from our operational definitions for
TSO and PSO, there is no need for such additional vector clocks.

Third, the SOBER monitoring algorithm is more sensitive than our
monitorTSO. That is, for some programs there exist individual sequentially
consistent executions for which SOBER will report the existence of an SC viola-
tion while monitorTSO will not. However, this does not affect the completeness
of our monitoring algorithms—for such programs, there will always exist some
other SC execution on which monitorTSO will detect and report a violation of
sequential consistency. In our experimental evaluation, this reduced sensitivity
does not seem to hinder our ability to find violations of sequential consistency
when combining our monitors with preemption-bounded model checking [19].

Fourth, we believe that working with operational definitions for relaxed mem-
ory models TSO and PSO is both simpler than working with axiomatic defini-
tions and leads to more natural and intuitive monitoring algorithms. As evidence
for this belief, we note that we have discovered [8] a subtle error in the axiomatic
definition of TSO given in [4], which leads SOBER to fail to detect some real
violations of sequential consistency under TSO. This error has been confirmed [7]

Sound and Complete Monitoring of Sequential Consistency 21

both by the authors of [4] and by [18]. We discuss this error, and how to correct
it, in our accompanying technical report.

7 Experimental Evaluation

In order to experimentally evaluate our monitor algorithms, we have imple-
mented monitorTSO and monitorPSO on top of the THRILLE [16] tool for
model checking, testing, and debugging parallel C programs.

In our experiments, we use seven benchmarks. The names and sizes of these
benchmarks are given in Columns 1 and 2 of Tables 1 and 2. Five are imple-
mentations of concurrent data structures taken from [3]: msn, a non-blocking
queue, ms2, a two-lock queue, lazylist, a list-based concurrent set, harris, a
non-blocking set, and snark, a double-ended queue (dequeue). The other two
benchmarks are implementations of Dekker’s algorithm and Lamport’s bakery
algorithm for mutual exclusion. Previous research [3,4] has demonstrated that
the benchmarks have sequential consistency violations under relaxed memory
models without added memory fences. For each of the benchmarks we have
manually constructed a test harness.

In our experimental evaluation, we combine our monitoring algorithms
with THRILLE’s preemption-bounded [19] model checking. That is, we run
monitorTSO and monitorPSO on all sequentially consistent executions of each
benchmark with a bounded number of preemptive context switches. This ver-
ification is not complete—because we do not apply our monitor algorithms to
every SC execution, we may miss possible violations of SC under TSO or PSO.
We evaluate only whether our monitoring algorithms are effective in finding real
violations of SC when combined with a systematic but incomplete model checker.

We run two sets of experiments, one with a preemption bound of 1 and the
other with a preemption bound of 2. Columns 3 and 4 list the number of parallel
interleavings explored and the total time taken with a preemption bound of 1
(Table 1) and a bound of 2 (Table 2). The cost of running our unoptimized moni-
tor implementations on every sequentially consistent execution adds an overhead
of roughly 20% to THRILLE’s model checking for the data structure benchmarks
and about 100% to the mutual exclusion benchmarks.

Table 1. Experimental evaluation of monitorTSO and monitorPSO on all interleav-
ings with up to 1 preemption

inter- total distinct violations distinct violations
bench LOC leavings time under TSO under PSO
dekker 20 79 6.4 3 5
bakery 30 197 42.4 3 4
msn 80 92 7.5 0 3
ms2 80 123 11.0 0 2

harris 160 161 18.8 0 2
lazylist 120 139 14.0 0 4
snark 150 172 15.4 0 4

22 J. Burnim, K. Sen, and C. Stergiou

Table 2. Experimental evaluation on all interleavings with up to 2 preemptions

inter- total distinct violations distinct violations
bench LOC leavings time under TSO under PSO
dekker 20 1714 180.0 9 11
bakery 30 13632 3992.4 3 4
msn 80 2300 196.1 0 3
ms2 80 3322 300.0 0 2

harris 160 5646 661.7 0 2
lazylist 120 4045 428.4 0 4
snark 150 6510 609.9 0 10

Rather than report every single parallel interleaving on which one of our
monitor algorithms signaled a violation, we group together violations caused by
the same pair of operations e and e′. We say that a violation is caused by e and
e′ when monitorTSO(e) or monitorPSO(e) is the call on which a violation is
signaled, and e′ is the conflicting memory access identified in the condition at
Line 6. For such a violation, e′ happens before the event prev[p(e)] just before
e in process p(e), but event e also happens before e′ because we delay store e′

until after e completes in the violating TSO or PSO execution.
Columns 4 and 5 of Tables 1 and 2 list the number of such distinct violations

of sequential consistency found under TSO and PSO in our experiments. Note
that we find no violations of sequential consistency under TSO for any of the
data structure benchmarks. Their use of locks and compare-and-swap operations
appear to be sufficient to ensure sequential consistency under TSO. On the other
hand, we find violations of sequential consistency for all benchmarks under PSO.

Acknowledgments. We would like to thank Krste Asanović, Pallavi Joshi, Chang-
Seo Park, and our anonymous reviewers for their valuable comments. This re-
search supported in part by Microsoft (Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C. Discovery (Award #DIG07-10227), by
NSF Grants CNS-0720906, CCF-1018729, and CCF-1018730, and by a DoD ND-
SEG Graduate Fellowship. Additional support comes from Par Lab affiliates Na-
tional Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems.

References

1. Arvind, A., Maessen, J.W.: Memory model = instruction reordering + store atom-
icity. In: ISCA 2006: Proceedings of the 33rd Annual International Symposium on
Computer Architecture, pp. 29–40. IEEE Computer Society, Los Alamitos (2006)

2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification prob-
lem for weak memory models. In: The 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL (2010)

3. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (2007)

Sound and Complete Monitoring of Sequential Consistency 23

4. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

5. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. Tech. Rep. MSR-TR-2008-12, Microsoft Research (2008)

6. Burckhardt, S., Musuvathi, M.: Memory model safety of programs. In (EC)2: Work-
shop on Exploting Concurrency Efficiently and Correctly (2008)

7. Burckhardt, S., Musuvathi, M.: Personal communcation (2010)
8. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential

consistency in relaxed memory models. Tech. Rep. UCB/EECS-2010-31, EECS
Department, University of California, Berkeley (March 2010),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-31.html

9. Dill, D.L., Park, S., Nowatzyk, A.G.: Formal specification of abstract memory
models. In: Symposium on Research on Integrated Systems (1993)

10. Flanagan, C., Freund, S.N.: Adversarial memory for detecting destructive races.
In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI (2010)

11. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proc. of the 32nd Symposium on Principles of Programming Lan-
guages (POPL 2005), pp. 110–121 (2005)

12. Gibbons, P., Korach, E.: The complexity of sequential consistency. In: Fourth IEEE
Symposium on Parallel and Distributed Processing. pp. 317–235 (1992)

13. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or not QB: An efficient execution
verification tool for memory orderings. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 401–413. Springer, Heidelberg (2004)

14. Higham, L., Kawash, J., Verwaal, N.: Weak memory consistency models. part i:
Definitions and comparisons. Tech. Rep. 97/603/05, Department of Computer Sci-
ence, The University of Calgary (1998)

15. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification.
FMSD 31(3), 281–305 (2007)

16. Jalbert, N., Sen, K.: A trace simplification technique for effective debugging of
concurrent programs. In: The 18th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (SIGSOFT 2010/FSE-18) (2010)

17. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

18. Mador-Haim, S., Alur, R., Martin, M.M.: Generating litmus tests for contrasting
memory consistency models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 273–287. Springer, Heidelberg (2010)

19. Musuvathi,M.,Qadeer, S.: Iterative context bounding for systematic testing ofmulti-
threaded programs. In: PLDI 2007: Proceedings of the 2007 ACM SIGPLAN Confer-
ence onProgrammingLanguageDesign and Implementation.ACM,NewYork (2007)

20. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(relaxed memory order). In: ACM Symposium on Parallel Algorithms and Achi-
tectures, pp. 34–41. ACM Press, New York (1995)

21. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

22. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

23. SPARC International. The SPARC architecture manual (v. 9). Prentice-Hall, En-
glewood Cliffs (1994)

24 J. Burnim, K. Sen, and C. Stergiou

A Soundness and Completeness Proof Sketches

We sketch here proofs of the soundness and completeness of our monitoring
algorithms. Complete proofs can be found in our accompanying technical report.

Theorem 1. Algorithms monitorTSO and monitorPSO are sound monitoring
algorithms for TSO and PSO, respectively.

Proof (sketch). Let (σ0,m0)
e1,r1−−−→ · · · en,rn−−−→ (σn,mn) be an SC execution of a

program P such that monitorTSO (resp., monitorPSO), on this execution, first
signals “Sequential Consistency Violation” on event en. We prove that P has an
execution under TSO (resp., PSO) with a non-sequentially-consistent trace.

Observe that, during its execution, monitorTSO (resp., monitorPSO) emits
labels from Event and τTSO (resp., τPSO). We can show:

(1) That the events emitted during the first n− 1 calls to monitorTSO (resp.,
monitorPSO) form a TSO (resp., PSO) execution of program P . Further,
this execution has the same trace as the SC execution.
We can show that the emitted stc transitions ensure that the loads and
atomic operations in the TSO (resp., PSO) execution see the same values as
in the SC execution. Thus, program P behaves identically.

(2) That operation en can be performed in this TSO (resp., PSO) execution in
a way that creates a trace with a cycle in its →hb-relation.
In the emitted TSO (resp., PSO) execution, the event e′ in the condition
at Line 6 is still pending. Thus, we can perform e (and commit it, if it is a
store) before e′ commits, so that e →c e

′. And e′ →∗hb prev[p(e)] because
the emitted execution has the same trace as the SC execution e1, . . . , en−1.
Thus, we create a TSO (resp., PSO) execution with happens-before cycle:

e′ →∗hb prev[p(e)] →p e →c e′

Theorem 2. Algorithms monitorTSO and monitorPSO are complete moni-
toring algorithms for TSO and PSO, respectively.

Proof (sketch). Suppose (s0,m0)
l1−→ · · · ln−→ (sn,mn) is a TSO (resp., PSO)

execution of program P with a trace (E,→p, src,→st) that is not sequentially
consistent. Recall that each li is either a memory event from Event or an internal
transition stc(p) for TSO or stc(p, a) for PSO.

We can obtain shorter TSO (resp., PSO) executions of P by removing some
Event -labeled transition from the execution l1, . . . , ln, as well as possibly remov-
ing corresponding stc transitions. For example, we can safely remove the last
Event issued by any process p, even if it is not last in the execution, as long as
it does not write a value that is read by a later operation.

We use this freedom to construct a shorter TSO (resp., PSO) execution that
is a minimal violation of sequential consistency. That is, if any further Event ’s
are removed, the trace of the execution becomes sequentially consistent.

On this minimally-violating execution, consider the Event ’s that can be safely
removed—i.e. their removal leaves a valid TSO (resp., PSO) execution, but this

Sound and Complete Monitoring of Sequential Consistency 25

execution has an SC trace. For such a safely-removable e, let last(e) denote the
last write to a(e) to become globally visible in the TSO (resp., PSO) execution,
not including e itself. In the TSO (resp., PSO) execution e→c last, but we would
have last(e) →∗hb e in the SC execution in which e is removed and then run at
the end. We can show that, for at least one of the these e, no other event comes
after last(e) in any SC trace and also forces last(e) to be committed before event
e executes. Thus, monitorTSO/PSO(e) reports a violation on this execution.

B Complexity of Monitoring Algorithms

Lemma 1. During the execution of monitorTSO (respectively, monitorPSO),
for each address a ∈ Adr, at any given time at most one process p ∈ Proc will
have pending stores to address a in its write buffer B[p] (resp., B[p][a]).

Proof (by induction). Initially, before any calls to monitorTSO (resp.,
monitorPSO), the lemma clearly holds.

Suppose the lemma holds after k calls to monitorTSO (resp., monitorPSO),
and let monitorTSO(e) or monitorPSO(e) be the (k + 1)-st call. If e is not a
store, or if e = st(p, a, v) where no other process p′ �= p has any pending stores
to a, then the lemma clearly holds during and after the call.

Suppose instead that e = st(p, a, v) and process p′ �= p is the only process
with pending stores to address a. Then, in monitorTSO (resp., monitorPSO),
the while-loop at Lines 10–12 commits all such pending stores by p′ before Line
17 adds a pending store to a to a write buffer of process p.

By Lemma 1, in the condition at Line 6 in monitorTSO(e) and monitorPSO(e)
at most one processor p′ can have pending writes to a(e).

We further observe that monitorTSO and monitorPSO remain complete if,
at Line 6, we check this condition with only the last (i.e. most recent) pending
store to a in B[p′] or B[p′][a]. See the proof of Theorem 2 for details.

Theorem 3. On a sequentially consistent execution of length N on P processes,
monitoring algorithms monitorTSO and monitorPSO run in time O(N · P).

Proof. We show that each call monitorTSO/PSO(e) runs in amortized O(P)
time, yielding O(N ·P) total time. As mentioned in the previous section, updating
the vector clocks to maintain the happens-before relation on the monitored SC
execution requires O(P) time per call to monitorTSO/PSO(e).

For each address a ∈ Adr, we track the single process p which has pending
stores to a. Further, for a we maintain a pointer into the FIFOQueue of this pro-
cess to the last (i.e. most recent) pending store to a. We can maintain these two
pieces of per-address information in O(1) time per call to monitorTSO/PSO(e).
Using this information, checking the condition at Line 6 requires O(1) time to
find the last pending store to a(e) andO(1) time to check e′ →∗hb e. The condition
at Line 10 can similarly be checked in O(1).

Finally, the total number of iterations of the while-loops at Lines 10 and 22,
across all N calls to monitorTSO/PSO(e), cannot exceed O(N) as we buffer no
more than N writes.

Compositionality Entails Sequentializability

Pranav Garg and P. Madhusudan

University of Illinois at Urbana-Champaign

Abstract. We show that any concurrent program that is amenable to
compositional reasoning can be effectively translated to a sequential pro-
gram. More precisely, we give a reduction from the verification problem
for concurrent programs against safety specifications to the verification
of sequential programs against safety specifications, where the reduction
is parameterized by a set of auxiliary variables A, such that the concur-
rent program compositionally satisfies its specification using auxiliary
variables A iff the sequentialization satisfies its specification. Existing
sequentializations for concurrent programs work only for underapproxi-
mations like bounded context-switching, while our sequentialization has
the salient feature that it can prove concurrent programs entirely cor-
rect, as long as it has a compositional proof. The sequentialization allows
us to use sequential verification tools (including deductive verification
tools and predicate abstraction tools) to analyze and prove concurrent
programs correct. We also report on our experience in the deductive ver-
ification of concurrent programs by proving their sequential counterparts
using the program verifier Boogie.

Keywords: concurrent programs, compositional verification, sequen-
tialization.

1 Introduction

Sequentializing concurrent programs has been a topic of recent research. Given
a concurrent program with a safety specification, we would like to reduce the
problem of verifying the concurrent program to the verification of a sequential
program. Moreover, and most importantly, we seek a sequential program that
does not simply simulate the global evolution of the concurrent program as
that would be quite complex and involve taking the product of the local state-
spaces of the processes. Instead, we seek a sequential program that tracks a
bounded number of copies of the local and shared variables, where the bound is
independent of the number of parallel components.

The appeal of sequentialization is that it allows using the existing class of
sequential verification tools to verify concurrent programs. A large number of se-
quential verification techniques and tools, like deductive verification, abstraction-
based model-checking, and static dataflow analysis immediately come into play
when a sequentialization is possible.

Of course, such sequentializations are not possible for all concurrent programs
and specifications. In fact, in the presence of recursion and when variables have

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 26–40, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compositionality Entails Sequentializability 27

bounded domains, concurrent verification is undecidable while sequential verifi-
cation is decidable, which proves that an effective sequentialization is in general
impossible.

The currently known sequentializations have hence focussed on capturing
under-approximations of concurrent programs. Lal and Reps [13] showed that
given a concurrent program with finitely many threads and a bound k, the prob-
lem of checking whether the concurrent program is safe on all executions that
involve only k context-rounds can be reduced to the verification of a sequential
program. A lazy sequentialization for bounded context rounds that ensures that
the sequential program explores only states reachable by the concurrent program
was defined by La Torre et al [10]. A sequentialization for unboundedly many
threads and bounded round-robin rounds of context-switching is also known [11].
Lahiri, Qadeer and Rakamarić have used the sequentialization of Lal and Reps
to check concurrent C-programs by unrolling loops in the sequential program a
bounded number of times, and subjecting them to deductive SMT-solver based
verification [12,8].

In this paper, we show a general sequentializability result that is not re-
stricted to under-approximations. We show that any concurrent program with
finitely many threads can always be sequentialized provided there exists a com-
positional proof of correctness of the concurrent program. More precisely, we
show that given a concurrent program C with assertions and a set of auxiliary
variables A, there is a sequentialization of it, SC,A with assertions, and that C
can be shown to compositionally satisfy its assertions by exposing the auxiliary
variables A if and only if SC,A satisfies its assertions. The notion of C compo-
sitionally satisfying its assertions using auxiliary variables A is defined semanti-
cally, and intuitively captures the rely-guarantee proofs pioneered by Jones [9].
Rely-guarantee proofs of concurrent programs are very standard, and perhaps
the best known compositional verification technique for concurrent programs. In
these proofs, auxiliary variables can be seen as local states that get exposed in
order to build a compositional rely-guarantee proof.

Compositional proofs of programs may not always exist, and since our sequen-
tialization only produces sequential programs that are precise when a composi-
tional proof exists over the fixed auxiliary variables A, proving its sequentializa-
tion correct can be seen as a sound but incomplete mechanism for verifying the
concurrent program. Note that our sequentialization does not require the com-
positional proof to be given; it is only parameterized by the auxiliary variables
A. In fact, if the sequential program is correct, then we show that the concurrent
program is always correct. Conversely, if the concurrent program is correct and
has a compositional proof using variables A, then we show that the sequential
program is guaranteed to be correct as well.

The salient aspect of our sequentialization is that it can be used to prove
concurrent programs entirely correct, as opposed to checking underapproxima-
tions of it. Moreover, though our sequentializations are sound but incomplete,
we believe they are useful on most practical applications since concurrent pro-
grams often have compositional proofs. Our result also captures the cost of

28 P. Garg and P. Madhusudan

sequentialization (i.e. the number of variables in the sequentialization) as di-
rectly proportional to the number of auxiliary variables that are required to
build a compositional proof. Concurrent programs that are “loosely coupled” of-
ten require only a small number of auxiliary variables to be exposed, and hence
admit efficient sequentializations.

We also describe our experience in applying our sequentialization to prove a
suite of concurrent programs entirely correct by using deductive verification of
their sequentializations. More precisely, we wrote rely-guarantee proof annota-
tions for some concurrent programs by formulating the rely and guarantee condi-
tions, the loop invariants, and pre- and post-conditions for every function. We then
sequentialized the concurrent program and also transformed the rely-guarantee
proof annotations to corresponding proof annotations on the sequential program.
As we show, in this translation, rely and guarantee conditions naturally get trans-
formed to pre- and post-conditions of methods, while loop-invariants and pre-
and post-conditions get translated to loop invariants and pre- and post-conditions
in the sequential program. Then, using an automatic sequential program verifier
Boogie, we verified the sequentializations correct. Boogie takes our programs
with the proof annotations, generates verification conditions, and discharges them
using an automatic theorem prover (SMT solver).

The above use of sequentialization for deductive verification is not the best
use of our sequentializations, as given rely-guarantee proofs, simpler techniques
for statically verifying them are known [6]. However, our sequentializations can
be applied even when the rely-guarantee proofs are not known, provided the
sequential verification tool is powerful to prove it correct. Indeed, we have also
used the sequentialization followed by an automatic predicate-abstraction tool
(SLAM [2]) to prove some concurrent programs correct.

In summary, the result presented in this paper shows a surprising connection
between compositional proofs and sequentializability. We believe that this con-
stitutes a fundamental theoretical understanding of when concurrent programs
are efficiently sequentializable, and offers the first efficient sequentializations that
work without underapproximation restrictions, enabling us to verify concurrent
program entirely using sequentializations.

Related work: Thread-modular verification [6,7] is in fact precisely the same
as compositional verification á la Jones, but has been adapted to both model-
checking [7] and extended static checking [6]. Our result can be hence seen as
showing how thread-modular verification of concurrent programs can be reduced
to pure sequential verification. There has also been work on using counter-
example guided predicate-abstraction and refinement for rely-guarantee reason-
ing [4], and building rely-guarantee interfaces using learning [3,1].

2 A Compositional Abstract Semantics for Programs

We define a non-standard compositional semantics for concurrent programs, dif-
ferent from the traditional semantics, in order to capture when a parallel compo-
sition of programs can be argued compositionally to satisfy a specification. This

Compositionality Entails Sequentializability 29

semantics is parameterized by a set of auxiliary variables, and is the semantic
analog of compositional rely-guarantee proofs pioneered by Jones [9].

Let us fix two processes P1 and P2, working concurrently, with local variables
L1 and L2 respectively, and a set of shared variables S (assume L1, L2 and S
are pairwise disjoint, without loss of generality). For any set of (typed) variables
V , let ValV denote the set of valuations of V to their respective data-domains
(data-domains are finite or countably infinite). For any u ∈ ValV , let u ↓V ′
denote the valuation u restricted to the variables in V ∩ V ′. We extend this
notation to sets of valuations, U ↓V ′. Also, for any u ∈ ValV and u′ ∈ ValV ′ ,
where V ∩V ′ = ∅, let u∪u′ denote the unique valuation in ValV ∪V ′ that extends
u and u′ to V ∪ V ′.

Let Init ⊆ (ValL1 ×ValL2 ×ValS) be the set of initial global configurations of
P1||P2. Let δ1 ⊆ (ValL1×ValS×ValL1×ValS) and δ2 ⊆ (ValL2×ValS×ValL2×
ValS) be the local transition relations of P1 and P2, respectively.

The natural (interleaving) semantics of P1||P2 is, of course, defined by the
function δ ⊆ (ValL1×ValL2×ValS×ValL1×ValL2×ValS), where δ(l1, l2, s, l′1, l′2, s′)
holds iff δ1(l1, s, l′1, s

′) holds and l′2 = l2, or δ2(l2, s, l′2, s
′) holds and l′1 = l1. The

set of reachable states according to this relation, Reach, is defined as the set of
global states that can be reached from the initial state.

Let us now define the non-standard compositional semantics of P1||P2. This
definition is parameterized by a set of auxiliary variables A ⊆ L1 ∪ L2.

Definition 1. The semantics of the compositional semantics of parallel compo-
sition with respect to the set of auxiliary variables A, denoted P1||AP2, is defined
using the four sets:

R1 ⊆ (ValL1 ×ValS ×ValA∩L2),
R2 ⊆ (ValL2 ×ValS ×ValA∩L1),

Guar1,Guar2 ⊆ (ValS ×ValA ×ValS ×ValA),

which are defined as the least sets that satisfy the following conditions:

a) Initialization:
- R1 contains the set {(l1, s, t) | l1 ∪ s ∪ t ∈ Init ↓ (L1 ∪A ∪ S)}.
- R2 contains the set {(l2, s, t) | l2 ∪ s ∪ t ∈ Init ↓ (L2 ∪A ∪ S)}.

b) Transitions of P1: If (l1, s, t) ∈ R1 and δ1(l1, s, l′1, s
′) holds, then

- Local update: (l′1, s
′, t) ∈ R1.

- Update to guarantee: (s, l1 ↓A ∪ t, s′, l′1 ↓A ∪ t) ∈ Guar1.
c) Transitions of P2: If (l2, s, t) ∈ R2 and δ2(l2, s, l′2, s

′) holds, then
- Local update: (l′2, s

′, t) ∈ R2

- Update to guarantee: (s, l2 ↓A ∪ t, s′, l′2 ↓A ∪ t) ∈ Guar2.
d) Interference:

- If (l1, s, t) ∈ R1 and (s, l1 ↓A ∪ t, s′, t′) ∈ Guar2, then (l1, s′, t′ ↓L2) ∈ R1.
- If (l2, s, t) ∈ R2 and (s, l2 ↓A ∪ t, s′, t′) ∈ Guar1, then (l2, s′, t′ ↓L1) ∈ R2.

The set of reachable states according to the non-standard compositional seman-
tics with respect to the set of auxiliary variables A is defined as

ReachA = {(l1, s, l2) | (l1, s, l2 ↓A) ∈ R1 and (l2, s, l1 ↓A) ∈ R2}. �	

30 P. Garg and P. Madhusudan

Intuitively, under the compositional semantics, we track independently the view
of P1 (and P2) using valuations of its local variables, shared variables, and the
subset of the other process’s local variables declared to be auxiliary (using the
sets R1 and R2). Furthermore, we keep the set of guarantee transition-relations
Guar1 and Guar2 that summarize what transitions P1 and P2 can take, but
restricted to the auxiliary and shared variables only. The guarantee-relation of
P1 is used to update the view of P2 (i.e. R2), and vice versa. The crucial aspect
of the definition above is that it ignores the correlation between local variables
of P1 and P2 that are not defined to be auxiliary variables. The computation of
P1||AP2 hence proceeds mostly locally, with updates using the guarantee relation
of the other process (which affects shared and auxiliary variables only), and is
combined in the end to get the set of globally reachable configurations.

It is not hard to see that Reach ⊆ ReachA, for any A. Hence, the composi-
tional semantics is an over-approximation of the set of reachable states of the
program, and proving that a program is safe under the compositional seman-
tics is sufficient to prove that the program is safe. Moreover, when the auxiliary
variables include all local variables (including the program counter and local call
stack), the compositional semantics coincides with the natural semantics.

The above definitions and rules can be generalized to k processes running
in parallel, and we can define the compositional semantics P1||AP2||A . . . ||APn

where A is subset of local variables of each process.

The rely-guarantee proof method of Jones
The rely-guarantee method of Jones [9] essentially builds compositional rely-
guarantee proofs using a similar abstraction. Given sequential programs P1 and
P2, and a pre-condition pre and a post-condition post for P1||P2, the rely-
guarantee proof technique over a set of auxiliary variables A involves providing a
pair of tuples, (pre1, post1, rely1, guar1) and (pre2, post2, rely2, guar2), where pre1,
post1, pre2, and post2 are unary predicates defining subsets of states, and rely1,
guar1, rely2, guar2 are binary relations defining transformations of the shared
variables and the auxiliary variables A. The meaning of the tuple for P1 is that,
when P1 is started with a state satisfying pre1 and in an environment that could
change the auxiliary variables and shared variables allowed by rely1, P1 would
make transitions that accord to guar1, and if it terminates, will satisfy post1 at
the exit. An analogous meaning holds for P2. Note that rely1, rely2, guar1 and
guar2 are defined over shared variables and the auxiliary variables. The pro-
grams P1 and P2 are proved to satisfy these conditions using a local proof by
considering each Pi interacting with a general environment satisfying relyi; in
particular invariants of Pi needed to establish the Hoare-style proof of Pi should
be invariant or stable with respect to relyi.

The following proof rule can then be used to prove partial correctness of
P1||P2:

guar1 ⇒ rely2, guar2 ⇒ rely1,
P |= (pre, post1, rely1, guar1), Q |= (pre, post2, rely2, guar2)

P ||Q |= (pre, post1 ∧ post2)

Compositionality Entails Sequentializability 31

The rely-guarantee method works also for nested parallellism compositionally;
see [9,16] for details.

It is easy to see that a compositional rely-guarantee proof of P1||P2, over a
set of auxiliary variables A, is really a proof that the compositional semantics
of P1||AP2 is correct. Note that if P1||AP2 is correct, it does not imply a rely-
guarantee proof exists, however, as proofs have limitations of the logical syntax
used to write the rely and guarantee conditions, and hence do not always exist.

The main result
We can now state the main result of this paper. We show that, given a parallel
composition of sequential programs P1||P2|| . . . ||Pn with assertions, and a set of
auxiliary variables A, we can build a sequential program S with assertions such
that S has the following properties:

– At any point, the scope of S contains at most one copy of the local variables
of a single process Pi, three copies of the auxiliary variables, and at most
three copies of the shared variables.

– The compositional semantics of P1||AP2||A . . . ||APn with respect to the aux-
iliary variables A satisfies its assertions iff S satisfies its assertions.

– If S satisfies its assertions, then P1||P2|| . . . ||Pn also satisfies its assertions.

The first remark above says that the sequentialized program has less variables
in scope than the naive product of the individual processes; the sequentialization
intuitively simulates the processes separately, keeping track of only an extra
copy of auxiliary variables and shared variables. Second, the sequentialization is
a precise reduction of the verification problem, provided the concurrent program
can be proved compositionally (i.e. if the auxiliary variables are sufficient to make
the compositional semantics of the program be assertion-failure free). Finally,
the sequential program is an over-approximation of the behaviors of the parallel
program for any set of auxiliary variables, and hence proving it correct proves
the parallel program correct.

The above result will be formalized in the sequel (see Theorem 1) for a class
of parallel programs that has sequential recursive functions, but with no thread
creation or dynamic memory allocation (the result can be extended to dynamic
data-structures but will require mechanisms to cache heap-structures and com-
pare them for equality). Our main theorem hence states that any parallel pro-
gram that is amenable to compositional reasoning can be sequentialized, where
the number of new variables added in the sequentialization grows with the num-
ber of auxiliary variables required to prove the program correct. We utilize the
sequentialization result in one verification context, namely deductive verification,
to build a compositional deductive verification tool for concurrent programs us-
ing the sequential verifier Boogie.

3 A High Level Overview of the Sequentialization

In this section, we give a brief overview of our sequentialization. For ease of
explanation, let us consider a concurrent program consisting of two processes P1

32 P. Garg and P. Madhusudan

and P2. Let A be the set of auxiliary variables and assume that the compositional
semantics of the concurrent program is correct with respect to A.

Assume we had functions G1(s∗, a∗) (and G2(s∗, a∗)) that somehow takes a
shared and auxiliary state (s∗, a∗) and non-deterministically returns all states
(s, a) such that (s∗, a∗, s, a) ∈ Guar1 (respectively Guar2), where Guar1 and
Guar2 are as in Definition 1. Then we could write a function that computes
the states reachable by P1 according to the compositional semantics (i.e. R1 in
Definition 1) using the following code:

while(*) {

if (*) then

<<simulate a transition of P1>>

else

(s,a) := G2(s,a);

fi

}

return (s,a);

In other words, we could write a sequential program that returns precisely the
states in R1, by interleaving simulations of P1 with calls to G2 to compute
interference according to Guar2 (see Definition 1). We can similarly implement
the sequential code that explores R2 using calls to G1.

Note that on two successive calls to G2(), there is no preservation of the local
states of P2, except its variables declared to be auxiliary. However, we do not have
to preserve the exact local state of P2 as we are not simulating the natural seman-
tics of the program, but only its compositional semantics with respect to auxiliary
variables A. This is the crux of the argument as to why we can sequentially com-
pute R1 without simultaneously tracking all the local variables of P2.

Now, turning to the function G2 (and G1), consider Definition 1 again, and
notice that, given (s∗, a∗), in order to compute (s, a) such that (s∗, a∗, s, a) ∈
Guar2, we must essentially be able to find a local state l2 such that (l2, s∗, a∗ ↓
L1) ∈ R2 where l2 ↓A = a∗ ↓L2 , and then we can take its transitive closure
with respect to δ2. We can hence write G2 using the following sequential code:

G2(s*,a*) {

<<initialize variables of P2>>

while(*) {

if (*) then

<<simulate a transition of P2>>

else

(s,a) := G1(s,a);

fi

}

assume (local and shared state is consistent with s*,a*);

while(*) {

<<simulate a transition of P2>>

}

return (s,a);

}

Compositionality Entails Sequentializability 33

Intuitively, G2 starts with the initial state of P2 and sets about recomputing a
state (l2, s2) that is compatible with its given input (s∗, a∗) (i.e. with s2 = s∗

and l2 ↓A= a∗ ↓L2). It does this by essentially running the code for R2 (i.e. by
simulating P2 and calling G1). Once it has found such a state, it simulates P2

for a while longer, and returns the resulting state.
We hence get four procedures that compute R1, R2, Guar1 and Guar2, re-

spectively, with mutually recursive calls between the functions computing Guar1

and Guar2. The correctness of the sequential programs follow readily from Def-
inition 1, as it is a direct encoding of that computation. Our sequentialization
transformation essentially creates these functions G1 and G2. However, since our
program cannot have statements like “simulate a transition of P2”, we perform
a syntactic transformation of the concurrent code into a sequential code, where
control code is inserted between statements of the concurrent program in order
to define the functions G1 and G2. This complication combined with the han-
dling of recursive functions makes the translation quite involved; however, the
above explanation captures the crux of the construction.

4 Sequential and Concurrent Programs

Our language for concurrent programs consists of a parallel composition of
recursive sequential programs. Variables in our programs are defined over in-
teger and Boolean domains. The syntax of programs is defined by the following
grammar:

〈conc-pgm〉 ::= 〈decl〉∗〈pgm-list〉
〈pgm-list〉 ::= 〈pgm-list〉 || 〈pgm-list〉 | 〈pgm〉
〈pgm〉 ::= 〈decl〉∗〈proc〉∗
〈proc〉 ::= f(x) begin 〈decl〉∗〈stmt〉 end
〈stmt〉 ::= 〈stmt〉; 〈stmt〉 | skip | x := expr(x) | x := f(y) |

f(x) | return x | assume b-expr | assert b-expr |
if b-expr then 〈stmt〉 else 〈stmt〉 fi |
while b-expr do 〈stmt〉 od | atomic {〈stmt〉}

〈decl〉 ::= int 〈var-list〉; | bool 〈var-list〉;
〈var-list〉 ::= 〈var-list〉, 〈var-list〉 | 〈literal〉

A concurrent program consists of k sequential program components P1...Pk (for
some k) communicating with each other through shared variables S. These
shared variables are declared in the beginning of the concurrent program (we
assume integer variables are initialized to 0 and Boolean variables to false).
Each sequential component consists of a procedure called main and a list of
other procedures. The control flow for all sequential components Pi starts in the
corresponding main procedure, which we call maini. The main for all sequential
components has zero arguments and no return value.

Each procedure is a declaration of local variables followed by a sequence of
statements, where statements can be simultaneous assignments, function calls

34 P. Garg and P. Madhusudan

(call-by-value) that take in multiple parameters and return multiple values, con-
ditionals, while loops, assumes, asserts, atomic, and return statements. In the
above syntax, x represents a vector of variables. We allow non-determinism in
our programs; boolean constants are true, false and ∗, where ∗ evaluates non-
deterministically to true or false.

The safety specifications for both concurrent and sequential programs are
expressed in our language as assert statements. The semantics of an assume
statement is slightly different. If the value of the boolean expression (b-expr)
evaluates to true, then the assume behaves like a skip. Otherwise, if the boolean
expression evaluates to false, the program silently terminates. Synchronization
and atomicity are achieved by the atomic construct. All the statements enclosed
in the atomic block are executed without any interference by the other processes.
Locks can be simulated in our syntax by modeling a lock l as an integer variable
l and by modeling Pi acquiring l using the code:

atomic { assume(l=0); l := i;}
and modeling the release with the code:

atomic { if (l=i) then l := 0;}
We assume programs do not have nested atomic blocks.

The syntax of sequential programs is the same as the syntax of concurrent
programs except that we disallow the parallel composition operator (||) and the
atomic construct.

5 The Sequentialization

In this section, we describe our sequentialization for concurrent programs and
argue its correctness.

Let us fix a concurrent program with shared variables S and auxiliary variables
A; we assume auxiliary variables are global in each thread Pi. Let the concurrent
program be composed of k sequential components.

The sequential program corresponding to the concurrent program will have
a new function main, and additionally, as explained in Section 3, will have a
procedure Gi for each sequential component Pi of the concurrent program that
semantically captures the guarantee Guari of Pi. The procedure Gi takes a
shared state (s∗) and auxiliary state (a∗) as input and returns (s, a) such that
(s∗, a∗, s, a) ∈ Guari. Finally, each Gi() is formed using procedures that are
obtained by transforming the process Pi (using the function τi[] shown below
that essentially inserts the interference code Ii shown in Figure 1 between the
statements of Pi).

The shared variables and auxiliary variables are modeled as global variables
in the sequential program. Furthermore, we have an extra copy of the shared
and auxiliary variables (s∗ and a∗) that are used to pass shared and auxiliary
states between the processes Gi(). We also have a copy of shared and auxiliary
variables (s′ and a′) that are declared to be local in each procedure to store

Compositionality Entails Sequentializability 35

a shared and auxiliary state and restore it after a call to a function Gj() to
compute interference. Besides these, the sequential program also uses global
Boolean variables z and term; intuitively, z is used to keep track of when the
shared and auxiliary state s∗ and a∗ has been reached and term (for terminate)
is used to signal that Gi() has finished computing and wants to return the value.

– Global variable declarations are:
// insert declaration for s, a, s∗, a∗ as global variables
decl bool term, z;

– The function main() is defined as: main() begin G 1() end

– Each function Gi() is defined as below:
G i() begin

z := false; term := false;
s∗ := s; a∗ := a;
// insert code to initialize s, a
main i();
assume (term = true);
return

end

– The function τi that transforms the program for Pi is defined as:
• τi[f(x) begin decl stmt end] =

f(x) begin decl
// insert declaration of s′, a′ as local variables.
τi[stmt]

end
• τi[S1; S2] = τi[S1]; τi[S2]
• τi[S] = Ii; S where S is an assignment, skip, assume, assert, a function

call or a return statement.
• τi[while b-expr do S od] = Ii; while b-expr do τi[S]; Ii od
• τi[if b-expr then S1 else S2 fi] =

Ii; if b-expr then τi[S1] else τi[S2] fi
• τi[atomic {S}] = Ii; S

The procedure main in the sequential program simply calls the method G1.
The procedure Gi is obtained from the corresponding program component

Pi by a simple transformation. At a high level, this procedure first copies the
incoming shared and auxiliary state into the variables s∗ and a∗. It then com-
putes a local state of Pi which is consistent with the state (s∗, a∗) (at which
point z turns to true), and then non-deterministically simulates the transitions
of Pi from this local state, to return a reachable shared state s and auxiliary
state a. Every time Gi is called, it starts from its initial state, and simulates Pi,
interleaving it with the control code Ii given in Figure 1.

The interference code Ii (Figure 1) keeps track of whether the incoming state
(s∗, a∗) has been reached through a boolean variable z which is initialized to

36 P. Garg and P. Madhusudan

false. If z is false (i.e. the state (s∗, a∗) has not been reached), then before any
transition of Pi, the control code can non-determinsitically choose to invoke its
environment (in doing so, in order to preserve its input s∗, a∗, it stores them in
a local state and restores them after the call returns and restores its variables z
and term to false).

if(term = true) then return fi
if(!z & *) then

while(*) do
// call G1

if(*) then
s′ := s∗; a′ := a∗;
G 1();
z := false;
term := false;
s∗ := s′; a∗ := a′

fi
Similarly call G2 . . . Gk except Gi

od
fi
if(!z & s = s∗ & a = a∗ & *) then

z := true fi
if(z & *) then

term := true; return
fi

Fig. 1. The interference control code Ii

When the state (s∗, a∗) is reached,
z can be non-deterministically set
to true, from which point no in-
terference code Gj can be called,
and only local computation pro-
ceeds, till non-deterministically the
program decides to terminate by set-
ting term to true. Once term is
true, the code pops the control-
stack all the way back to reach
the function Gi which then re-
turns to its caller, returning the
new state in (s, a). Note that the
state z = false, term = false cor-
responds to the first while loop in
the code for the guarantee G2 in
Section 3. Similarly, setting term to
true corresponds to the termination
of the second while loop. We con-
clude this section by stating our main
theorem:

Theorem 1. Let C be a concurrent program with auxiliary variables A (assumed
global), and let SC,A be its sequentialization with respect to A. Then the compo-
sitional semantics of C with respect to the auxiliary variables A has no reachable
state violating any of its assertions iff SC,A violates none of its assertions. �	
Illustration of a sequentialization
Figure 2 shows a concurrent program consisting of two threads, say P1 and P2.
The program consists of a shared variable x whose initial value is zero. Both the
threads atomically increment the value of x. Let A = {pc1, pc2} be the auxiliary
variables capturing the control position in the respective processes and let the
initial value of these variables also be zero. In general, new auxiliary variables
may be needed for performing compositional proofs; these new variables are
written to but never read from in the program, and hence do not affect the
semantics of the original program; see [9,15].

It can be easily seen that the compositional semantics of this program with
respect to the auxiliary variables A is correct. Figure 3 shows the sequential
program obtained from the sequentialization of this concurrent program with
respect to these auxiliary variables. Our result allows us to verify the concurrent
program in Figure 2 by verifying the correctness of its sequentialization with
respect to the auxiliary variables A, shown in Figure 3.

Compositionality Entails Sequentializability 37

decl int x, pc1, pc2;

main 1() main 2()

begin begin

atomic { atomic {
x := x + 1; x := x + 2;

pc1 := 1 pc2 := 1

} }
assert(spec1); assert(spec2);

return return

end end

spec1: pc1 = 1 && ((pc2 = 0 && x = 1) || (pc2 = 1 && x = 3))
spec2: pc2 = 1 && ((pc1 = 0 && x = 2) || (pc1 = 1 && x = 3))

Fig. 2. An example program

decl int x, pc1, pc2;

decl int x∗, pc1∗, pc2∗;
decl bool z, term;

main begin

G 1();

return

end

Ii: if(term = true) then

return fi

if(! z & *) then

x′, pc1′, pc2′ :=

x∗, pc1∗, pc2∗;
G {3-i}();
z, term:=false, false;

x∗, pc1∗, pc2∗ :=

x′, pc1′, pc2′

fi

if(x = x∗ & pc1 = pc1∗ &

pc2 = pc2∗ & *) then

z := true

fi

if(z & *) then

term := true; return

fi

G 1() begin

z, term:=false, false;

x∗, pc1∗, pc2∗ :=

x, pc1, pc2

x, pc1, pc2 := 0, 0, 0;

main 1();

assume(term = true);

return

end

main 1() begin

decl int x′, pc1′, pc2′;
I1

x := x + 1;

pc1 := 1;

I1

assert(spec1);

I1

return

end

G 2() begin

z, term:=false, false;

x∗, pc1∗, pc2∗:=
x, pc1, pc2

x, pc1, pc2:=0, 0, 0;

main 2();

assume(term = true);

return

end

main 2() begin

decl int x′, pc1′, pc2′;
I2

x := x + 2;

pc2 := 1;

I2

assert(spec2);

I1

return

end

Fig. 3. The sequential program obtained from the concurrent program in Figure 2

6 Experience

The sequentialization used in this paper can be used to verify a concurrent
program using any sequential verification tool. This includes tools based on

38 P. Garg and P. Madhusudan

abstract interpretation and predicate abestraction, those based on bounded
model-checking, as well as those based on deductive-verification based extended
static checking.

Deductive verification: We used the sequentialization for proving concurrent pro-
grams using deductive verification. Given a concurrent program and its Jones-
style rely-guarantee proof annotations (pre, post, rely, guar, and loop-invariants),
we sequentialized it with respect to the auxiliary variables and syntactically
transformed the user-provided proof annotations to obtain the proof annota-
tions (pre-conditions and post-conditions of methods and loop invariants) of
the sequential program. In general, the pre-condition of method Gi asserts that
“term = false” and its post-condition asserts that the guarantee guari is true
across the function (if term is true). Furthermore, the pre-conditions and post-
conditions of every function in Pi gets translated to pre-conditions and post-
conditions in its sequentialization with the extra condition that guari is true
when term is equal to true.

These annotated sequential programs were fed to the sequential verifier Boo-
gie that generates verification conditions that are in turn solved by an SMT
solver (Z3 in this case). If the sequential program is proved correct, it proves
the correctness of the original concurrent program. Note that though similar
static extended checking techniques are known for the rely-guarantee method [6],
our technique allows one to use just a sequential verifier like Boogie to prove
the program correct, and requires no other decision problems to be solved (the
checking in [6], for example, requires a separate call to a theorem prover to check
guarantees are reflexive and transitive, etc.)

We used this technique to prove correct the following set of concurrent pro-
grams: X++ (Figure 2), Lock [7], Peterson’s mutual exclusion algorithm, the
Bakery protocol, ArrayIndexSearch [9], GCD [5], and a simplified version of a
Windows NT Bluetooth driver. Lock is a simple example program consisting of
two threads that modify a shared variable after acquiring a lock; the safety con-
dition in the example asserts that these modifications cannot occur concurrently.
The program ArrayIndexSearch finds the least index of an array such that the
value at that index satisfies a given predicate, and consists of two threads, one
that searches odd indices and the other that searches even indices, and commu-
nicate on a shared variable index that is always kept updated to the current
least index value. GCD is a concurrent version of Euclid’s algorithm for comput-
ing the greatest common divisor of any two numbers; here the two concurrent
threads update the pair of integers.

The Windows NT bluetooth driver is a parameterized program (i.e. has an
unbounded number of threads). It consists of two types of threads: there is one
stopper-thread and an unbounded number of adder-threads. A stopper calls a
procedure to halt the driver, while an adder calls a procedure to perform I/O
in the driver. The I/O is successfully handled if the driver is not stopped while
it executes. The program, though small, has an intricate global invariant that
requires a shared variable to reflect the number of active adder threads.

Compositionality Entails Sequentializability 39

Table 1. Experimental Results. Evaluated on Intel dual-core 1.6GHz, 1Gb RAM.

Concurrent pgm Sequential pgm
Programs #Threads #LOC #Lines of #LOC #Lines of Time

annotations annotations
X++ 2 38 5 113 6 8s
Lock 2 50 9 184 10 122s

Peterson 2 52 35 232 36 145s
Bakery 2 55 8 147 13 18s

ArrayIndexSearch 2 74 17 222 21 126s
GCD 2 78 23 279 29 869s

Bluetooth unbdd 69 20 276 55 107s

Table 1 gives the experimental results1. For each program, we report the
number of threads in the concurrent program, the number of lines of code in the
concurrent program and its sequentialization, the number of lines of annotations
in both the concurrent program (which includes rely/guarantee annotations and
loop invariants) and its sequentialization, and the time taken by Boogie to
verify the sequentialized program.

Boogie was able to verify the correctness of all our programs. All these pro-
grams except the Windows NT bluetooth driver consist of two threads and are
sequentialized as detailed in Section 5. The Bluetooth driver is an example of a pa-
rameterized program running any number of instances of the adder threads. In our
sequentialization, we model the environment consisting of all the adder threads
together with a single procedure. If we keep track of the number of adders at a
particular program location (counter abstraction [14]) and expose these auxiliary
variables, it turns out that the device driver can be proved correct under composi-
tional semantics. We used this rely-guarantee proof, sequentialized the program,
and used Boogie to prove the Bluetooth driver correct in its full generality.

Predicate abstraction: We have also used our sequentialization followed by the
predicate-abstraction tool SLAM [2] to prove programs automatically correct.
In this case, we need no annotations and just the set of auxiliary variables. We
were able to automatically prove the correctness of the programs X++, Lock,
Peterson and the Bakery protocol, in negligible time.

7 Future Directions

One drawback of our sequentialization is that it creates recursive programs, even
when the concurrent program has no recursion. It is hence natural to ask whether
there is a sequentialization that does not introduce recursion. We know indeed of
such a sequentialization, where the processGi does not start from the initial state
to match the state given to it, but rather “jumps” directly to a state consistent
with the state given to it. This, of course, does not capture compositional semantic

1 Experiments available at http://www.cs.uiuc.edu/\simgarg11/tacas11

40 P. Garg and P. Madhusudan

reasoning precisely, and seems to be an over-approximation of it. Evaluating the
effectiveness of this translation is an interesting future direction.

Finally, since our sequentialization captures the concurrent program with-
out under-approximations, utilizing the sequentialization followed by techniques
such as static analysis, predicate-abstraction, and even bounded model-checking,
would be interesting directions to pursue.

Acknowledgements. This work is partially supported by NSF grants #0747041
and #1018182.

References

1. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL, pp. 1–3. ACM, New York (2002)

3. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

4. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 55–67. Springer, Heidelberg
(2007)

5. Feng, X.: Local rely-guarantee reasoning. In: POPL, pp. 315–327. ACM, New York
(2009)

6. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-modular verification for shared-
memory programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
262–277. Springer, Heidelberg (2002)

7. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

8. Ghafari, N., Hu, A.J., Rakamarić, Z.: Context-bounded translations for concurrent
software: An empirical evaluation. In: van de Pol, J., Weber, M. (eds.) SPIN 2010.
LNCS, vol. 6349, pp. 227–244. Springer, Heidelberg (2010)

9. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

10. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009)

11. La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing parameterized programs
(2010), http://www.cs.uiuc.edu/~madhu/seqparam.pdf

12. Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and precise detection of concurrency
errors in systems code using SMT solvers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

13. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
37–51. Springer, Heidelberg (2008)

14. Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. Acta Inf. 21, 125–169 (1984)

15. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Inf. 6, 319–340 (1976)

16. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Asp. Comput. 9(2), 149–174 (1997)

Litmus: Running Tests against Hardware�

Jade Alglave1,3, Luc Maranget1, Susmit Sarkar2, and Peter Sewell2

1 INRIA
2 University of Cambridge

3 Oxford University

Abstract. Shared memory multiprocessors typically expose subtle,
poorly understood and poorly specified relaxed-memory semantics to
programmers. To understand them, and to develop formal models to use
in program verification, we find it essential to take an empirical approach,
testing what results parallel programs can actually produce when exe-
cuted on the hardware. We describe a key ingredient of our approach, our
litmus tool, which takes small ‘litmus test’ programs and runs them for
many iterations to find interesting behaviour. It embodies various tech-
niques for making such interesting behaviour appear more frequently.

1 Introduction

Modern shared memory multiprocessors do not actually provide the sequentially
consistent (SC) memory semantics [Lam79] typically assumed in concurrent pro-
gram verification. Instead, they provide a relaxed memory model, arising from
optimisations in multiprocessor hardware, such as store buffering and instruc-
tion reordering (relaxed-memory behaviour can also arise from compiler opti-
misations). For example, in hardware with store buffers, the program below (in
pseudo-code on the left and x86 assembly on the right) can end with 0 in both
r0 and r1 on x86, a result not possible under SC:

Shared: x, y, initially zero
Thread-local: r0, r1

Proc 0 Proc 1
y ← 1 x ← 1
r0 ← x r1 ← y

Finally: is r0 = 0 and r1 = 0 possible?

X86 SB (* Store Buffer test *)

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

The actual relaxed memory model exposed to the programmer by a particu-
lar multiprocessor is often unclear. Many models are described only in informal
prose documentation [int09, pow09], which is often ambiguous, usually incom-
plete [SSS+10, AMSS10], and sometimes unsound (forbidding behaviour that
is observable in reality) [SSS+10]. Meanwhile, researchers have specified vari-
ous formal models for relaxed memory, but whether they accurately capture
the subtleties of actual processor implementations is usually left unexamined. In
� We acknowledge funding from EPSRC grants EP/F036345, EP/H005633, and

EP/H027351, from ANR project parsec (ANR-06-SETIN-010), and from INRIA
associated team MM.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 41–44, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

42 J. Alglave et al.

contrast, we take a firmly empirical approach: testing what current implementa-
tions actually provide, and use the test results to inform the building of models.
This is in the spirit of Collier’s early work on ARCHTEST [Col92], which ex-
plores various violations of SC, but which does not deal with many complexities
of modern processors, and also does not easily support testing new tests.

Much interesting memory model behaviour already shows up in small, but care-
fully crafted, concurrent programs operating on shared memory locations, “litmus
tests”. Given a specified initial state, the question for each test is what final values
of registers and memory locations are permitted by actual hardware. Our litmus
tool takes as input a litmus file, as on the right above, and runs the program within
a test harness many times. On one such run of a million executions, it produced
the result below, indicating that the result of interest occurred 34 times.
Positive: 34, Negative: 999966

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

The observable behaviour of a typical multiprocessor arises from an extremely
complex (and commercially confidential) internal structure, and is highly non-
deterministic, dependent on details of timing and the processors’ internal state.
Black-box testing cannot be guaranteed to produce all permitted results in such
a setting, but with careful design the tool does generate interesting results with
reasonable frequency.

2 High Level Overview

file.litmus
� litmus �

file.c
gcc -pthread �

file.exe�
utils.c

Our litmus tool takes as input small concurrent programs in x86 or Power assem-
bly code (file.litmus). It accepts symbolic locations (such as x and y in our ex-
ample), and symbolic registers. The tool then translates the program file.litmus
into a C source file, encapsulating the program as inline assembly in a test har-
ness. The C file is then compiled by gcc into executables which can be run on
the machine to perform checks. The translation process performs some simple
liveness analysis (to properly identify registers read and trashed by inline as-
sembly), and some macro expansions (macros for lock acquire and release are
translated to packaged assembly code).

The test harness initialises the shared locations, and then spawns threads
(using the POSIX pthread library) to run the various threads within a loop. Each
thread does some mild synchronization to ensure the programs run roughly at
the same time, but with some variability so that interesting behaviour can show
up. In the next section we describe various ways in which the harness can be
adjusted, so that results of interest show up more often.

The entire program consists of about 10,000 lines of Objective Caml, plus about
1,000 lines of C. The two phases can be separated, allowing translated C files to

Litmus: Running Tests against Hardware 43

be transferred to many machines. It is publicly distributed as a part of the diy tool
suite, available at http://diy.inria.fr, with companion user documentation.
litmus has been run successfully on Linux, Mac OS and AIX [AMSS10].

3 Test Infrastructure and Parameters

Users can control various parameters of the tool, which impact efficiency and
outcome variability, sometimes dramatically.

Test repetition. To benefit from parallelism and stress the memory subsystem,
given a test consisting of t threads P0,. . . , Pt−1, we run n = max(1, a/t) identical
test instances concurrently on a machine with a cores. Each of these tests consists
in repeating r times the sequence of creating t threads, collectively running the
litmus test s times, then summing the produced outcomes in an histogram.

Thread assignment. We first fork t POSIX threads T0, . . . Tt−1 for executing
P0,. . . , Pt−1. We can control which thread executes which code with the launch
mode: if fixed then Tk executes Pk; if changing (the default) the association
between POSIX and test threads is random. In our experience, the launch mode
has a marginal impact, except when affinity is enabled—see Affinity below.

Accessing memory cells. Each thread executes a loop of size s. Loop iteration
number i executes the code of one test thread and saves the final contents of its
observed registers in arrays indexed by i; a memory location x in the .litmus
source corresponds to an array cell. The access to this array cell depends on the
memory mode. In direct mode the array cell is accessed directly as x[i]; hence
cells are accessed sequentially and false sharing effects are likely. In indirect mode
(the default) the array cell is accessed by a shuffled array of pointers, giving a
much greater variability of outcomes. If the (default) preload mode is enabled,
a preliminary loop of size s reads a random subset of the memory locations
accessed by Pk, also leading to a greater outcome variability.

Thread synchronisation. The iterations performed by the different threads Tk

may be unsynchronised, synchronised by a pthread-based barrier, or synchro-
nised by busy-wait loops. Absence of synchronisation is of marginal interest
when t exceeds a or when t = 2. Pthread-based barriers are slow and in fact of-
fer poor synchronisation for short code sequences. Busy-waiting synchronisation
is thus the preferred technique and the default.

Affinity. Affinity is a scheduler property binding software (POSIX) threads to
given hardware logical processor. The latter may be single cores or, on machines
with hyper-threading (x86) or simultaneous multi threading (SMT, Power) each
core may host several logical processors.

We allocate logical processors test instance by test instance (parameter n)
and then POSIX thread by POSIX thread, scanning the logical processors se-
quence left-to-right by steps of the specified affinity increment. Suppose a logical
processors sequence P = 0, 1, . . . , A − 1 (the default on a machine with A log-
ical processors available) and an increment i: we allocate (modulo A) first the

44 J. Alglave et al.

processor 0, then i, then 2i, etc. If we reach 0 again, we allocate the processor
1 and then increment again. Thereby, all the processors in the sequence will
get allocated to different threads naturally, provided of course that less than A
threads are scheduled to run.

4 The Impact of Test Parameters

Test parameters can have a large impact on the frequency of interesting results.
Our tests are non-deterministic and parallel, and the behaviours of interest arise
from specific microarchitectural actions at specific times. Thus the observed
frequency is quite sensitive to the machine in question and to its operating
system, in addition to the specific test itself.

Let us run the SB test from the introduction with various combinations of
parameters on a lightly loaded Intel Core 2 Duo. There is one interesting out-
come here, and we graph the frequency of that outcome arising per second below
against the logarithm of the iteration size s. Note that only the orders of mag-
nitude are significant, not the precise numbers, for a test of this nature.

0

2

4

6

8

1 2 3 4 5 6
log10 s (s = iteration size)

Test SB: direct memory mode

Non-SC
outcomes/sec affinity disabled

�
� � � �

�
�

affinity set
�

�

� � �

�
�

0

5000

10000

15000

20000

1 2 3 4 5 6
log10 s (s = iteration size)

Test SB: indirect memory mode

Non-SC
outcomes/sec affinity disabled

� � � � � �

�
affinity set

�
�

�

�

� �

�

We obtain the best results with indirect memory mode and affinity control,
and 104 iterations per thread creation. These settings depend on the character-
istics of the machine and scheduler, and we generally find such combinations of
parameters remain good on the same testbed, even for different tests.

References

[AMSS10] Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in weak memory
models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 258–272. Springer, Heidelberg (2010)

[Col92] Collier, W.W.: Reasoning About Parallel Architectures. Prentice-Hall,
Englewood Cliffs (1992)

[int09] Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 3A,
rev. 30 (March 2009)

[Lam79] Lamport, L.: How to Make a Correct Multiprocess Program Execute Cor-
rectly on a Multiprocessor. IEEE Trans. Comput. 46(7), 779–782 (1979)

[pow09] Power ISA Version 2.06 (2009)
[SSS+10] Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-

TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM 53(7), 89–97 (2010) (Research Highlights)

Canonized Rewriting and Ground AC

Completion Modulo Shostak Theories�

Sylvain Conchon, Evelyne Contejean, and Mohamed Iguernelala

LRI, Univ Paris-Sud, CNRS, Orsay F-91405
INRIA Saclay – Ile-de-France, ProVal, Orsay, F-91893

Abstract. AC-completion efficiently handles equality modulo associa-
tive and commutative function symbols. When the input is ground, the
procedure terminates and provides a decision algorithm for the word
problem. In this paper, we present a modular extension of ground AC-
completion for deciding formulas in the combination of the theory of
equality with user-defined AC symbols, uninterpreted symbols and an ar-
bitrary signature disjoint Shostak theory X. Our algorithm, called AC(X),
is obtained by augmenting in a modular way ground AC-completion
with the canonizer and solver present for the theory X. This integration
rests on canonized rewriting, a new relation reminiscent to normalized
rewriting, which integrates canonizers in rewriting steps. AC(X) is proved
sound, complete and terminating, and is implemented to extend the core
of the Alt-Ergo theorem prover.

Keywords: decision procedure, associativity and commutativity, rewrit-
ing, AC-completion, SMT solvers, Shostak’s algorithm.

1 Introduction

Many mathematical operators occurring in automated reasoning such as union
and intersection of sets, or boolean and arithmetic operators, satisfy the following
associativity and commutativity (AC) axioms

∀x.∀y.∀z. u(x, u(y, z)) = u(u(x, y), z) (A)
∀x.∀y. u(x, y) = u(y, x) (C)

Automated AC reasoning is known to be difficult. Indeed, the mere addition of
these two axioms to a prover will usually glut it with plenty of useless equalities
which will strongly impact its performances1. In order to avoid this drawback,
built-in procedures have been designed to efficiently handle AC symbols. For
instance, SMT-solvers incorporate dedicated decision procedures for some spe-
cific AC symbols such as arithmetic or boolean operators. On the contrary, algo-
rithms found in resolution-based provers such as AC-completion allow a powerful
generic treatment of user-defined AC symbols.
� Work partially supported by the French ANR project ANR-08-005 Decert.
1 Given a term t of the form u(c1, u(c2, . . . , u(cn, cn+1) . . .), the axiomatic approach

may have to explicitly handle the (2n)!/n! terms equivalent to t.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 45–59, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

46 S. Conchon, E. Contejean, and M. Iguernelala

Given a finite word problem
∧
i∈I si = ti � s = t where the function sym-

bols are either uninterpreted or AC, AC-completion attempts to transform the
conjunction

∧
i∈I si = ti into a finitely terminating, confluent term rewriting

system R whose reductions preserve identity. The rewriting system R serves as
a decision procedure for validating s = t modulo AC: the equation holds if and
only if the normal forms of s and t w.r.t R are equal modulo AC. Furthermore,
when its input contains only ground equations, AC-completion terminates and
outputs a convergent rewriting system [16].

Unfortunately, AC reasoning is only a part of the automated deduction prob-
lem, and what we really need is to decide formulas combining AC symbols and
other theories. For instance, in practice, we are interested in deciding finite
ground word problems which contain a mixture of uninterpreted, interpreted
and AC function symbols, as in the following assertion

u(a, c2 − c1) ≈ a ∧ u(e1, e2)− f(b) ≈ u(d, d)∧
d ≈ c1 + 1 ∧ e2 ≈ b ∧ u(b, e1) ≈ f(e2) ∧ c2 ≈ 2 ∗ c1 + 1 � a ≈ u(a, 0)

where u is an AC symbol, +, −, ∗ and the numerals are from the theory of linear
arithmetic, f is an uninterpreted function symbol and the other symbols are
uninterpreted constants. A combination of AC reasoning with linear arithmetic
and the free theory E of equality is necessary to prove this formula. Linear
arithmetic is used to show that c2−c1 = c1 +1 so that (i) u(a, c1+1) = a follows
by congruence. Independently, e2 = b and d = c1+1 imply (ii) u(c1+1, c1+1) = 0
by congruence, linear arithmetic and commutativity of u. AC reasoning can
finally be used to conclude that (i) and (ii) imply that u(a, c1 + 1, c1 + 1) is
equal to both a and u(a, 0).

There are two main methods for combining decision procedures for disjoint
theories. First, the Nelson-Oppen approach [18] is based on a variable abstraction
mechanism and the exchange of equalities between shared variables. Second, the
Shostak’s algorithm [21] extends a congruence closure procedure with theories
equipped with canonizers and solvers, i.e. procedures that compute canonical
forms of terms and solve equations, respectively. While ground AC-completion
can be easily combined with other decision procedures by the Nelson-Oppen
method, it cannot be directly integrated in the Shostak’s framework since it
actually does not provide a solver for the AC theory.

In this paper, we investigate the integration of Shostak theories in ground
AC-completion. We first introduce a new notion of rewriting called canonized
rewriting which adapts normalized rewriting to cope with canonization. Then,
we present a modular extension of ground AC-completion for deciding formulas
in the combination of the theory of equality with user-defined AC symbols,
uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. The
main ideas of our integration are to substitute standard rewriting by canonized
rewriting, using a global canonizer for AC and X, and to replace the equation
orientation mechanism found in ground AC-completion with the solver for X.

AC-completion has been studied for a long time in the rewriting commu-
nity [15,20]. A generic framework for combining completion with a generic built-
in equational theory E has been proposed in [10]. Normalized completion [17] is

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories 47

designed to use a modified rewriting relation when the theory E is equivalent to
the union of the AC theory and a convergent rewriting system S. In this setting,
rewriting steps are only performed on S-normalized terms. AC(X) can be seen as
an adaptation of ground normalized completion to efficiently handle the theory
E when it is equivalent to the union of the AC theory and a Shostak theory X.
In particular, S-normalization is replaced by the application of the canonizer of
X. This modular integration of X allows us to reuse proof techniques of ground
AC-completion [16] to show the correctness of AC(X).

Kapur [11] used ground completion to demystify Shostak’s congruence closure
algorithm and Bachmair et al. [3] compared its strategy with other ones into
an abstract congruence closure framework. While the latter approach can also
handle AC symbols, none of these works formalized the integration of Shostak
theories into (AC) ground completion.

Outline. Section 2 recalls standard ground AC completion. Section 3 is devoted to
Shostak theories and global canonization. Section 4 presents the AC(X) algorithm
and illustrates its use through an example. The correctness of AC(X) is sketched
in Section 5 and experimental results are presented in Section 6. Conclusion and
future works are presented in Section 7.

2 Ground AC-Completion

In this section, we first briefly recall the usual notations and definitions of [1,7]
for term rewriting modulo AC. Then, we give the usual set of inference rules for
ground AC-completion procedure and we illustrate its use through an example.

Terms are built from a signature Σ = ΣAC � ΣE of AC and uninterpreted
symbols, and a set of variables X yielding the term algebra TΣ(X). The range of
letters a . . . f denotes uninterpreted symbols, u denotes an AC function symbol,
s, t, l, r denote terms, and x, y, z denote variables. Viewing terms as trees,
subterms within a term s are identified by their positions. Given a position
p, s|p denotes the subterm of s at position p, and s[r]p the term obtained by
replacement of s|p by the term r. We will also use the notation s(p) to denote the
symbol at position p in the tree, and the root position is denoted by Λ. Given a
subset Σ′ of Σ, a subterm t|p of t is a Σ′-alien of t if t(p) �∈ Σ′ and p is minimal
w.r.t the prefix word ordering2. We write AΣ′(t) the multiset of Σ′-aliens of t.

A substitution is a partial mapping from variables to terms. Substitutions are
extended to a total mapping from terms to terms in the usual way. We write
tσ for the application of a substitution σ to a term t. A well-founded quasi-
ordering [6] on terms is a reduction quasi-ordering if s
 t implies sσ
 tσ and
l[s]p
 l[t]p, for any substitution σ, term l and position p. A quasi-ordering

defines an equivalence relation � as
 ∩ and a partial ordering ≺ as
 ∩ �.

An equation is an unordered pair of terms, written s ≈ t. The variables
contained in an equation, if any, are understood as being universally quantified.
Given a set of equations E, the equational theory of E, written =E , is the set of

2 Notice that according to this definition, a variable may be a Σ′-alien.

48 S. Conchon, E. Contejean, and M. Iguernelala

equations that can be obtained by reflexivity, symmetry, transitivity, congruence
and instances of equations in E3. The word problem for E consists in determining
if, given two ground terms s and t, the equation s ≈ t is in =E , denoted by s =E t.
The word problem for E is ground when E contains only ground equations. An
equational theory =E is said to be inconsistent when s =E t, for any s and t.

A rewriting rule is an oriented equation, usually denoted by l → r. A term s
rewrites to a term t at position p by the rule l → r, denoted by s→p

l→r t, iff there
exists a substitution σ such that s|p = lσ and t = s[rσ]p. A rewriting system R is
a set of rules. We write s→R t whenever there exists a rule l → r of R such that
s rewrites to t by l→ r at some position. A normal form of a term s w.r.t to R is
a term t such that s→∗R t and t cannot be rewritten by R. The system R is said
to be convergent whenever any term s has a unique normal form, denoted s↓R,
and does not admit any infinite reduction. Completion [12] aims at converting a
set E of equations into a convergent rewriting system R such that the sets =E

and {s ≈ t | s↓R= t↓R} coincide. Given a suitable reduction ordering on terms,
it has been proved that completion terminates when E is ground [14].

Rewriting modulo AC. Let =AC be the equational theory obtained from the set:

AC =
⋃

u∈ΣAC

{ u(x, y) ≈ u(y, x), u(x, u(y, z)) ≈ u(u(x, y), z) }

In general, given a set E of equations, it has been shown that no suitable reduc-
tion ordering allows completion to produce a convergent rewriting system for
E ∪ AC. When E is ground, an alternative consists in in-lining AC reasoning
both in the notion of rewriting step and in the completion procedure.

Rewriting modulo AC is directly related to the notion of matching modulo
AC as shown by the following example. Given a rule u(a, u(b, c)))→ t, we would
like the following reductions to be possible:

(1) f(u(c, u(b, a)), d)→ f(t, d) (2) u(a, u(c, u(d, b)))→ u(t, d)

Associativity and commutativity of u are needed in (1) for the subterm u(c, u(b,
a)) to match the term u(a, u(b, c)), and in (2) for the term u(a, u(c, u(d, b))) to
be seen as u(u(a, u(b, c)), d), so that the rule can be applied. More formally, this
leads to the following definition.

Definition 1 (Ground rewriting modulo AC). A term s rewrites to a term
t modulo AC at position p by the rule l→ r, denoted by s →p

AC\l→r t, iff (1)
s|p =AC l and t = s[r]p or (2) l(Λ) = u and there exists a term s′ such that
s|p =AC u(l, s′) and t = s[u(r, s′)]p

In order to produce a convergent rewriting system, ground AC-completion re-
quires a well-founded reduction quasi-ordering
 total on ground terms with an
underlying equivalence relation which coincides with =AC . Such an ordering will
be called a total ground AC-reduction ordering.

3 The equational theory of the free theory of equality E , defined by the empty set of
equations, is simply denoted =.

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories 49

Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉 s =AC t

Orient
〈 E ∪ { s ≈ t } | R 〉
〈 E | R ∪ { s→ t } 〉 t ≺ s

Simplify
〈 E ∪ { s ≈ t } | R 〉
〈 E ∪ { s′ ≈ t } | R 〉 s→AC\R s′

Compose
〈 E | R ∪ { l→ r } 〉
〈 E | R ∪ { l→ r′ } 〉 r →AC\R r′

Collapse
〈 E | R ∪ { g → d, l → r } 〉
〈 E ∪ { l′ ≈ r } | R ∪ { g → d } 〉

{
l→AC\g→d l

′

g ≺ l ∨ (g 	 l ∧ d ≺ r)

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉 s ≈ t ∈ headCP(R)

Fig. 1. Inference rules for ground AC-completion

The inference rules for ground AC-completion are given in Figure 1. The rules
describe the evolution of the state of a procedure, represented as a configuration
〈 E | R 〉, where E is a set of ground equations and R a ground set of rewriting
rules. The initial state is 〈 E0 | ∅ 〉 where E0 is a given set of ground equations.
Trivial removes an equation u ≈ v from E when u and v are equal modulo
AC. Orient turns an equation into a rewriting rule according to a given total
ground AC-reduction ordering
. R is used to rewrite either side of an equation
(Simplify), and to reduce right hand side of rewriting rules (Compose). Given
a rule l → r, Collapse either reduces l at an inner position, or replaces l by a
term smaller than r. In both cases, the reduction of l to l′ may influence the
orientation of the rule l′ → r which is added to E as an equation in order to be
re-oriented. Finally, Deduce adds equational consequences of rewriting rules to
E. For instance, if R contains two rules of the form u(a, b)→ s and u(a, c)→ t,
then the term u(a, u(b, c)) can either be reduced to u(s, c) or to the term u(t, b).
The equation u(s, c) ≈ u(t, b), called critical pair, is thus necessary for ensuring
convergence of R. Critical pairs of a set of rules are computed by the following
function (aμ stands for the maximal term w.r.t. size enjoying the assertion):

headCP(R) =
{
u(b, r′) ≈ u(b′, r)

∣∣∣∣
l → r ∈ R, l′ → r′ ∈ R
∃ aμ : l =AC u(aμ, b) ∧ l′ =AC u(aμ, b′)

}

Example. To get a flavor of ground AC-completion, consider a modified version
of the assertion given in the introduction, where the arithmetic part has been
removed (and uninterpreted constant symbols renamed for the sake of simplicity)

u(a1, a4) ≈ a1, u(a3, a6) ≈ u(a5, a5), a5 ≈ a4, a6 ≈ a2 � a1 ≈ u(a1, u(a6, a3))

The precedence a1 ≺p · · · ≺p a6 ≺p u defines an AC-RPO ordering on terms [19]
which is suitable for ground AC-completion. The table in Figure 2 shows the

50 S. Conchon, E. Contejean, and M. Iguernelala

application steps of the rules given in Figure 1 from an initial configuration
〈 {u(a1, a4) ≈ a1, u(a3, a6) ≈ u(a5, a5), a5 ≈ a4, a6 ≈ a2} | ∅ 〉 to a final configu-
ration 〈 ∅ | Rf 〉, where Rf is the set of rewriting rules {1, 3, 5, 7, 10}. It can be
checked that a1 ↓Rf

and u(a1, u(a6, a3))↓Rf
are identical.

1 u(a1, a4)→ a1 Ori u(a1, a4) ≈ a1

2 u(a3, a6)→ u(a5, a5) Ori u(a3, a6) ≈ u(a5, a5)

3 a5 → a4 Ori a5 ≈ a4

4 u(a3, a6)→ u(a4, a4) Com 2 and 3

5 a6 → a2 Ori a6 ≈ a2

6 u(a3, a2) ≈ u(a4, a4) Col 4 and 5

7 u(a4, a4)→ u(a3, a2) Ori 6

8 u(a1, a4) ≈ u(a1, u(a3, a2)) Ded from 1 and 7

9 a1 ≈ u(a1, u(a3, a2)) Sim 8 by 1

10 u(a1,u(a3, a2))→ a1 Ori 9

Fig. 2. Ground AC-completion example

3 Shostak Theories and Global Canonization

In this section, we recall the notions of canonizers and solvers underlying Shostak
theories and show how to obtain a global canonizer for the combination of the
theories E and AC with an arbitrary signature disjoint Shostak theory X.

From now on, we assume given a theory X with a signature ΣX. A canonizer
for X is a function canX that computes a unique normal form for every term
such that s =X t iff canX(s) = canX(t). A solver for X is a function solveX that
solves equations between ΣX-terms. Given an equation s ≈ t, solveX(s ≈ t)
either returns a special value ⊥ when s ≈ t ∪ X is inconsistent, or an equivalent
substitution. A Shostak theory X is a theory with a canonizer and a solver which
fulfill some standard properties given for instance in [13].

Our combination technique is based on the integration of a Shostak theory X
in ground AC-completion. From now on, we assume that terms are built from
a signature Σ defined as the union of the disjoint signatures ΣAC , ΣE and ΣX.
We also assume a total ground AC-reduction ordering
 defined on TΣ(X) used
later on for completion. The combination mechanism requires defining both a
global canonizer for the union of E , AC and X, and a wrapper of solveX to
handle heterogeneous equations. These definitions make use of a global one-to-
one mapping α : TΣ → X (and its inverse mapping ρ) and are based on a variable
abstraction mechanism which computes the pure ΣX-part [[t]] of a heterogeneous
term t as follows:

[[t]] = f([[s]]) when t = f(s) and f ∈ ΣX and [[t]] = α(t) otherwise

The canonizer for AC defined in [9] is based on flattening and sorting techniques
which simulate associativity and commutativity, respectively. For instance, the
term u(u(u′(c, b), b), c) is first flattened to u(u′(c, b), b, c) and then sorted4 to get
4 For instance, using the AC-RPO ordering based on the precedence b ≺p c ≺p u

′.

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories 51

the term u(b, c, u′(c, b)). It has been formally proved that this canonizer solves
the word problem for AC [5]. However, this definition implies a modification
of the signature ΣAC where arity of AC symbols becomes variadic. Using such
canonizer would impact the definition of AC-rewriting given in Section 2. In order
to avoid such modification we shall define an equivalent canonizer that builds
degenerate trees instead of flattened terms. For instance, we would expect the
normal form of u(u(u′(c, b), b), c) to be u(b, u(c, u′(c, b))). Given a signature Σ
which contains ΣAC and any total ordering � on terms, we define canAC by:

canAC(x) = x when x ∈ X
canAC(f(v)) = f(canAC(v)) when f �∈ ΣAC
canAC(u(t1, t2)) = u(s1, u(s2, . . . , u(sn−1, sn) . . .))

where t′i = canAC(ti) for i ∈ [1, 2]
and {{s1, . . . , sn}} = A{u}(t′1) ∪ A{u}(t′2)
and si � si+1 for i ∈ [1, n− 1]when u ∈ ΣAC

We can easily show that canAC enjoys the standard properties required for a
canonizer. The proof that canAC solves the word problem for AC follows directly
from the one given in [5].

Using the technique described in [13], we define our global canonizer can which
combines canX with canAC as follows:

can(x) = x when x ∈ X
can(f(v)) = f(can(v)) when f ∈ ΣE
can(u(s, t)) = canAC(u(can(s), can(t))) when u ∈ ΣAC

can(fX(v)) = canX(fX([[can(v)]]))ρ when fX ∈ ΣX

Again, the proofs that can solves the word problem for the union E , AC and X
and enjoys the standard properties required for a canonizer are similar to those
given in [13]. The only difference is that canAC directly works on the signature
Σ, which avoids the use of a variable abstraction step when canonizing a mixed
term of the form u(t1, t2) such that u ∈ ΣAC .

Using the same mappings α, ρ and the abstraction function, the wrapper
solve can be easily defined by:

solve(s ≈ t) =
{
⊥ if solveX([[s]] ≈ [[t]]) = ⊥
{ xiρ→ tiρ } if solveX([[s]] ≈ [[t]]) = {xi≈ ti}

In order to ensure termination of AC(X), the global canonizer and the wrapper
must be compatible with the ordering
 used by AC-completion, that is:

Lemma 1. ∀t ∈ TΣ, can(t)
 t
∀s, t ∈ TΣ, if solve(s ≈ t) =

⋃
{pi → vi} then vi ≺ pi

We can prove that the above properties hold when the theory X enjoys the
following local compatibility properties:

Axiom 1. ∀t ∈ TΣ, canX([[t]])
 [[t]]
∀s, t ∈ TΣ, if solveX([[s]] ≈ [[t]]) =

⋃
{xi ≈ ti} then tiρ ≺ xiρ

52 S. Conchon, E. Contejean, and M. Iguernelala

To fulfil this axiom, AC-reduction ordering can be chosen as an AC-RPO order-
ing [19] based on a precedence relation ≺p such that ΣX ≺p ΣE ∪ ΣAC . From
now on, we assume that X is locally compatible with
.

Example. To solve the equation u(a, b) + a ≈ 0, we use the abstraction α =
{u(a, b) �→ x, a �→ y} and call solveX on x+ y ≈ 0. Since a ≺ u(a, b), the only
solution which fulfills the axiom above is {x ≈ −y}. We apply ρ and get the set
{u(a, b)→ −a} of rewriting rules.

4 Ground AC-Completion Modulo X

In this section, we present the AC(X) algorithm which extends the ground AC-
completion procedure given in Section 2. For that purpose, we first adapt the
notion of ground AC-rewriting to cope with canonizers. Then, we show how
to refine the inference rules given in Figure 1 to reason modulo the equational
theory induced by a set E of ground equations and the theories E , AC and X.

4.1 Canonized Rewriting

From rewriting point of view, a canonizer behaves like a convergent rewriting sys-
tem: it gives an effective way of computing normal forms. Thus, a natural way for
integrating can in ground AC-completion is to extend normalized rewriting [17].

Definition 2. Let can be a canonizer. A term s can-rewrites to a term t at
position p by the rule l→ r, denoted by s �p

l→r t, iff
s→p

AC\l→r t
′ and can(t′) = t

Example. Using the usual canonizer canA for linear arithmetic and the rule
γ : u(a, b) → a, the term f(a + 2 ∗ u(b, a)) canA-rewrites to f(3 ∗ a) by �γ as
follows: f(a+2 ∗u(b, a))→AC\γ f(a+2 ∗a) and canA(f(a+2 ∗a)) = f(3 ∗a).
Lemma 2. ∀ s, t. s �l→r t =⇒ s =AC,X,l≈r t

4.2 The AC(X) Algorithm

The first step of our combination technique consists in replacing the rewriting
relation found in completion by canonized rewriting. This leads to the rules of
AC(X) given in Figure 3. The state of the procedure is a pair 〈 E | R 〉 of equations
and rewriting rules. The initial configuration is 〈 E0 | ∅ 〉 where E0 is supposed to
be a set of equations between canonized terms. Since AC(X)’s rules only involve
canonized rewriting, the algorithm maintains the invariant that terms occurring
in E and R are in canonical forms. Trivial thus removes an equation u ≈ v
from E when u and v are syntactically equal. A new rule Bottom is used to
detect inconsistent equations. Similarly to normalized completion, integrating
the global canonizer can in rewriting is not enough to fully extend ground AC-
completion with the theory X: in both cases the orientation mechanism has
to be adapted . Therefore, the second step consists in integrating the wrapper
solve in the Orient rule. The other rules are much similar to those of ground
AC-completion except that they use the relation �R instead of →AC\R.

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories 53

Trivial
〈 E ∪ { s ≈ t } | R 〉

〈 E | R 〉 s = t Bottom
〈 E ∪ { s ≈ t } | R 〉

⊥ solve(s, t) = ⊥

Orient
〈 E ∪ { s ≈ t } | R 〉
〈 E | R ∪ solve(s, t) 〉 solve(s, t) = ⊥

Simplify
〈 E ∪ { s ≈ t } | R 〉
〈 E ∪ { s′ ≈ t } | R 〉 s �R s′ Compose

〈 E | R ∪ { l→ r } 〉
〈 E | R ∪ { l → r′ } 〉 r �R r′

Collapse
〈 E | R ∪ { g → d, l→ r } 〉
〈 E ∪ { l′ ≈ r } | R ∪ { g → d } 〉

{
l �g→d l

′

g ≺ l ∨ (g 	 l ∧ d ≺ r)

Deduce
〈 E | R 〉

〈 E ∪ { s ≈ t } | R 〉 s ≈ t ∈ headCP(R)

Fig. 3. Inference rules for ground AC-completion modulo X

1 u(a, c2 − c1)→ a Ori u(a, c2 − c1) ≈ a
2 u(e1, e2)→ u(d, d) + f(b) Ori u(e1, e2) − f(b) ≈ u(d, d)

3 d→ c1 + 1 Ori d ≈ c1 + 1

4 u(e1, e2)→ u(c1 + 1, c1 + 1) + f(b) Com 2 and 3

5 e2 → b Ori e2 ≈ b
6 u(b, e1) ≈ u(c1 + 1, c1 + 1) + f(b) Col 4 and 5

7 u(b, e1)→ u(c1 + 1, c1 + 1) + f(b) Ori u(b, e1) ≈ u(c1 + 1, c1 + 1) + f(b)

8 u(c1 + 1, c1 + 1) + f(b) ≈ f(b) Sim u(b, e1) ≈ f(e2) by 5 and 7

9 u(c1 + 1, c1 + 1)→ 0 Ori u(c1 + 1, c1 + 1) + f(b) ≈ f(b)

10 u(b,e1)→ f(b) Com 7 and 9

11 c2 → 2 ∗ c1 + 1 Ori c2 ≈ 2 ∗ c1 + 1

12 u(a, c1 + 1) ≈ a Col 1 and 11

13 u(a, c1 + 1)→ a Ori u(a, c1 + 1) ≈ a
14 u(0, a) ≈ u(a, c1 + 1) Ded from 9 and 13

15 u(0, a) ≈ a Sim 14 by 13

16 u(0,a)→ a Ori 15

Fig. 4. AC(X) on the running example

Example. We illustrate AC(X) on the example given in the introduction:

u(a, c2 − c1) ≈ a ∧ u(e1, e2)− f(b) ≈ u(d, d)∧
d ≈ c1 + 1 ∧ e2 ≈ b ∧ u(b, e1) ≈ f(e2) ∧ c2 ≈ 2 ∗ c1 + 1 � a ≈ u(a, 0)

The table given in Figure 4 shows the application of the rules of AC(X) on
the example when X is instantiated by linear arithmetic. We use an AC-RPO
ordering based on the precedence 1 ≺p 2 ≺p a ≺p b ≺p c1 ≺p c2 ≺p d ≺p e1 ≺p
e2 ≺p f ≺p u. The procedure terminates and produces a convergent rewriting
system Rf = {3, 5, 9, 10, 11, 13, 16}. Using Rf , we can check that a and u(a, 0)
can-rewrite to the same normal form.

54 S. Conchon, E. Contejean, and M. Iguernelala

5 Correctness

As usual, in order to enforce correctness, we cannot use any (unfair) strategy. We
say that a strategy is strongly fair when no possible application of an inference
rule is infinitely delayed and Orient is only applied over fully reduced terms.
Theorem 1. Given a set E of ground equations, the application of the rules
of AC(X) under a strongly fair strategy terminates and either produces ⊥ when
E ∪ AC ∪ X is inconsistent, or yields a final configuration 〈 ∅ | R 〉 such that:
∀s, t ∈ TΣ . s =

E,AC,X
t ⇐⇒ can(s)

�

R
= can(t)

�
R

The proof5 is based on three intermediate theorems, stating respectively sound-
ness, completeness and termination. In the following, we shall consider a fixed
run of the completion procedure,

〈 E0 | ∅ 〉 → 〈 E1 | R1 〉 → . . .→ 〈 En | Rn 〉 → 〈 En+1 | Rn+1 〉 → . . .

starting from the initial configuration 〈 E0 | ∅ 〉. We denote R∞ (resp. E∞) the
set of all encountered rules

⋃
nRn (resp. equations

⋃
nEn) and Rω (resp. Eω)

the set of persistent rules
⋃
n

⋂
i≥nRi (resp. equations

⋃
n

⋂
i≥nEi).

5.1 Soundness

Soundness is ensured by the following invariant:
Theorem 2. For any configuration 〈 En | Rn 〉 reachable from 〈 E0 | ∅ 〉,

∀ s, t, (s, t) ∈ En ∪Rn =⇒ s =AC,X,E0 t

Proof. The invariant obviously holds for the initial configuration and is preserved
by all the inference rules. The rules Simplify, Compose, Collapse and Deduce
preserve the invariant since for any rule l → r, if l =AC,X,E0 r, for any term
s rewritten by �l→r into t, then s =AC,X,E0 t. If Orient is used to turn an
equation s ≈ t into a set of rules {pi → vi}, by definition of solve, pi = xiρ
and vi = tiρ, where solveX([[s]] ≈ [[t]]) = {xi ≈ ti} . By soundness of solveX

xi =X,[[s]]≈[[t]] ti. An equational proof of xi =X,[[s]]≈[[t]] ti can be instantiated by ρ,
yielding an equational proof pi =X,s≈t vi. Since by induction s =AC,X,E0 t holds,
we get pi =AC,X,E0 vi.

In the rest of this section, we assume that the strategy is strongly fair. This
implies in particular that headCP(Rω) ⊆ E∞, Eω = ∅ and Rω is inter-reduced,
that is none of its rules can be collapsed or composed by another one. We also
assume that ⊥ is not encountered, otherwise, termination is obvious.

5.2 Completeness

Completeness is established by using a variant of the technique introduced by
Bachmair et al. in [2] for proving completeness of completion. It transforms a

5 All the details of the proof can be found in a research report [4].

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories 55

proof between two terms which is not under a suitable form into a smaller one,
and the smallest proofs are the desired ones. The proofs we are considering
are made of elementary steps, either equational steps, with AC, X and E∞, or
rewriting steps, with R∞ and the additional (possibly infinite) rules Rcan = {t→
can(t) | can(t) �= t}. Rewriting steps with R∞ can be either �R∞ or →R∞

6.
The measure of a proof is the multiset of the elementary measures of its

elementary steps. The measure of an elementary step takes into account the
number of terms which are in a canonical form in an elementary proof: the
canonical weight of a term t, wcan(t) is equal to 0 if can(t) =AC t and to 1
otherwise. Notice that if wcan(t) = 1, then can(t) ≺ t, and if wcan(t) = 0, then
can(t) � t. The measure of an elementary step between t1 and t2 performed
thanks to:

– an equation is equal to ({t1, t2}, , , ,)
– a rule l → r ∈ R∞ is equal to ({t1}, 1, wcan(t1) + wcan(t2), l, r) if t1 �l→r t2

or t1 →l→r t2 .
– a rule of Rcan is equal to ({t1}, 0, wcan(t1) + wcan(t2), t1, t2) if t1 →Rcan

t2.

As usual the measure of a step s← t is the measure of t→ s. Elementary steps
are compared lexicographically using the multiset extension of
 for the first
component, the usual ordering over natural numbers for the components 2 and
3, and
 for last ones. Since
 is an AC-reduction ordering, the ordering defined
over proofs is well-founded.

The general methodology is to show that a proof which contains some un-
wanted elementary steps can be replaced by a proof with a strictly smaller mea-
sure. Since the ordering over measures is well-founded, there exists a minimal
proof, and such a minimal proof is of the desired form.

Lemma 3. A proof containing

– an elementary step ←→s≈t, where s ≈ t ∈ AC ∪ X ∪ E∞,
– or an elementary rewriting step truly of the form −→R∞ or←−R∞ , or �l→r

or �

r←l, where l→ r ∈ R∞ \Rω
– or a peak s←Rcan

t→Rcan
s′, s �

Rω t �Rω s
′, or s �

Rω t −→Rcan
s′

is not minimal.

Theorem 3. If s and t are two terms such that s←→∗AC,X,E∞,R∞ s′ then
can(s)

�

Rω
= can(t)

�

Rω
.

Proof. If s and s′ are equal modulo ←→∗AC,X,E∞,R∞ , so are can(s) and can(s′).
By the above lemma, a minimal proof between can(s) and can(s′) is necessary of
the form can(s)(�Rω ∪ →Rcan

)∗(�

Rω∪ ←Rcan
)∗can(s′). This sequence of steps

can also be seen as can(s)→∗Rcan
(�Rω→∗Rcan

)∗(←∗Rcan

�

Rω)∗ ←∗Rcan
can(s′). By

definition, →Rcan
cannot follow a �Rω -step, and can(s) and can(s′) cannot be

reduced by →Rcan
, hence the wanted result.

6 Here,s −→R∞ t actually means s −→AC\R∞ t′ and t = canAC(t′).

56 S. Conchon, E. Contejean, and M. Iguernelala

5.3 Termination

We shall prove that, under a strongly fair strategy, Rω is finite and obtained
in a finite time (by cases on the head function symbol of the rule’s left-hand
side), and then we show that Rω will clean up the next configurations and the
completion process eventually halts on 〈 ∅ | Rω 〉. In order to make our case
analysis on rules, and to prove the needed invariants, we define several sets of
terms (assuming without loss of generality that E0 = can(E0)):

T0 = {t | ∃t0, e1, e2 ∈ TΣ(X), e1 ≈ e2 ∈ E0 and t0 = ei|p and t0 �∗R∞ t}
T0X = T0 ∪ {fX(t1, . . . , tn) | fX ∈ ΣX and ∀i, ti ∈ T0X}
T1 = {t | t ∈ T0 and ∀p, t|p ∈ T0X}
T2 = {u(t1, . . . , tn) | u ∈ ΣAC and ∀i, ti ∈ T1}

T0 is the set of all terms and subterms in the original problem as well as their
reducts by R∞. The set T0X moreover contains terms with X-aliens in T0. T1 is
the set of terms that can be introduced by X from terms of T0 (by solving or
canonizing). T2 is a superset of the terms built by critical pairs.

We first establish by structural induction over terms that:

∀γ, t, s, γ ∈ R∞ ∩ T 2
j ∧ t ∈ Ti ∧ t �γ s =⇒ s ∈ Ti, for i, j = 1, 2

Then, by induction over n, we show that any configuration 〈 En | Rn 〉 accessible
from 〈 E0 | ∅ 〉 after n steps is such that En ∪Rn ⊆ T 2

1 ∪ T 2
2 .

The fact that R∞ is finitely branching is a corollary of

Lemma 4. If l → rn is created at step n in Rn and l → rm at step m in Rm,
with n < m, then rm is a reduct of rn by �R∞ .

The proof of this lemma is by induction over the length of the derivation, and
by a case analysis over the applied inference rule.

Theorem 4. Under a strongly fair strategy, AC(X) terminates.

By the above properties, Rω can be divided in Rω ∩ T 2
1 and Rω ∩ T 2

2 . Rω ∩ T 2
1

is finite, since all its left-hand sides are reducts of a finite number of terms by
R∞ which is well-founded and finitely branching. Rω ∩ T 2

2 is finite by using the
same argument as in the ground AC-completion proof, based on the Higman’s
lemma. Hence Rω is finite and obtained in a finite number of steps, that is, there
exists n such that Rω ⊆ Rn. Then Rω will clean the rest of En, and the newly
generated critical pairs will be discarded as trivial ones.

6 Experimental Results

AC(X) has been implemented in the Alt-Ergo [8] theorem prover. In this sec-
tion, we show that this extension has strong impact both on performances and
memory allocation w.r.t. an axiomatic approach. For that purpose, we bench-
marked our implementation and compared its performances with state-of-the-art

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories 57

smt solvers (Z3 v2.8, CVC3 v2.2, Simplify v1.5.4). All measures were obtained
on a laptop running Linux equipped with a 2.58GHz dual-core Intel processor
and with 4Gb main memory. Provers were given a time limit of five minutes for
each test and memory limitation was managed by the system. The results are
given in seconds; we write to for timeout and om for out of memory.

Our test suite is made of formulas which are valid in the combination of the
theory of linear arithmetic A, the free theory of equality7 E and a small part of
the theory of sets defined by the symbols ∪, ⊆, the singleton constructor {·},
and the following set of axioms:

AC

{
Assoc : ∀x, y, z. x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

Commut : ∀x, y. x ∪ y ≈ y ∪ x

S

⎧
⎪⎪⎨

⎪⎪⎩

SubTrans : ∀x, y, z. x ⊆ y → y ⊆ z → x ⊆ z
SubSuper : ∀x, y, z. x ⊆ y → x ⊆ y ∪ z
SubUnion : ∀x, y, z. x ⊆ y → x ∪ z ⊆ y ∪ z

SubRefl : ∀x. x ⊆ x

In order to get the most accurate information from our benchmarks, we classify
formulas in three categories according to the subset of axioms needed to prove
their validity. We use the standard mathematical notation

⋃d
i=1 ai for the terms

of the form a1∪(a2∪(· · ·∪ad)) · · ·) and we write
⋃d
i=1 ai; b for terms of the form

a1 ∪ (a2 ∪ (· · · ∪ (ad ∪ b))) · · ·). Formulas in the first category are of the form:

∧n
p=1({e} ∪

⋃d
i=1 a

p
i) ≈ bp →

∧n
p=1

∧n
q=p+1

⋃1
i=d a

p
i ; b

q ≈
⋃1
i=d a

q
i ; b

p

︸ ︷︷ ︸
G

and proving their validity only requires the theory E and the AC properties of ∪.
The second category contains formulas additionally involving linear arithmetic:

∧n
p=1({tp − p} ∪

⋃d
i=1 a

p
i) ≈ bp ∧

∧n−1
p=1 tp + 1 ≈ tp+1 → G

Formulas in the third category involve the ⊆ symbol and are of the form:
∧n
p=1

⋃d
i=1{e

p
i } ≈ bp ∧

⋃d
i=d{e+ epi } ≈ cp ∧ e ≈ 0→

∧n
p=1 c

p ⊆ (bp ∪ {epd}) ∪ {e}

In order to prove their validity, we additionally need some axioms of S. The
results of the benchmarks are shown in Fig. 5, Fig. 6 and Fig 7. The first column
contains the results for Alt-Ergo when we explicitly declare ∪ as an AC symbol
and remove the AC axioms from the problem. In the second column, we do not
take advantage of AC(X) and keep the AC axioms in the context. Figures 5 and
6 show that, contrary to the axiomatic approach, built-in AC reasoning is little
sensitive to the depth of terms: given a number n of equations, the running time
is proportional to the depth d of terms. However, we notice a slowdown when n
increases. This is due to the fact that AC(X) has to process a quadratic number
of critical pairs generated from the equations in the hypothesis. From Fig. 7,
we notice that Alt-Ergo with AC(X) performs better than the other provers.

7 These two theories are built-in for all SMT solvers we used for our benchmarks.

58 S. Conchon, E. Contejean, and M. Iguernelala

n-d ac(x) a-e z3 cvc3 simp.
3-3 0.01 0.19 0.22 0.40 0.18
3-6 0.01 32.2 om 132 om
3-12 0.01 to om om om
6-3 0.01 11.2 1.10 13.2 2.20
6-6 0.02 to om om om
6-12 0.02 to om om om
12-3 0.16 to 5.64 242 11.5
12-6 0.24 to om om om
12-12 0.44 to om om om

Fig. 5. AC + E

n-d ac(x) a-e z3 cvc3 simp.
3-3 0.00 1.10 0.03 0.11 0.19
3-6 0.00 to 3.67 4.21 om
3-12 0.00 to om om om
6-3 0.02 149 0.10 2.26 2.22
6-6 0.02 to 17.7 99.3 om
6-12 0.04 to om om om
12-3 0.27 to 0.35 44.5 11.2
12-6 0.40 to 76.7 to om
12-12 0.72 to om om om

Fig. 6. AC + E + A

n-d ac(x) a-e z3 cvc3 simp.
3-3 0.02 3.16 0.09 10.2 om
3-6 0.04 to 60.6 om om
3-12 0.12 to om om om
6-3 0.07 188 0.18 179 om
6-6 0.12 to to om om
6-12 0.66 to om om om
12-3 0.20 to 0.58 om om
12-6 0.43 to to om om
12-12 1.90 to om om om

Fig. 7. AC + E + A + S

The main reason is that its instantiation mechanism is not spoiled by the huge
number of intermediate terms the other provers generate when they instantiate
the AC axioms.

7 Conclusion and Future Works

We have presented a new algorithm AC(X) which efficiently combines, in the
ground case, the AC theory with a Shostak theory X and the free theory of
equality. Our combination consists in a tight embedding of the canonizer and
the solver for X in ground AC-completion. The integration of the canonizer
relies on a new rewriting relation, reminiscent to normalized rewriting, which
interleaves canonization and rewriting rules. We proved correctness of AC(X)
by reusing standard proof techniques. Completeness is established thanks to a
proofs’ reduction argument, and termination follows the lines of the proof of
ground AC-completion where the finitely branching result is adapted to account
for the theory X.

AC(X) has been implemented in the Alt-Ergo theorem prover. The first
experiments are very promising and show that a built-in treatment of AC, in the
combination of the free theory of equality and a Shostak theory, is more efficient
than an axiomatic approach. Although effective, the integration of AC(X) in
Alt-Ergo fails to prove the formula

(∀x, y, z.P ((x ∪ y) ∪ z)) ∧ b ≈ c ∪ d→ P (a ∪ b)

since the trigger for the internal quantified formula (the term (x∪y)∪z)) does not
match the term a∪ b, even when exploiting the ground equation b = c∪ d which
allows to match the term a ∪ (c ∪ d)). Introducing explicitly the AC axioms for
∪ would allow the matcher to generate the ground term (a∪ c)∪d that could be
matched. However, as shown by our benchmarks, too many terms are generated
with these axioms in general. In order to fix this problem, we intend to extend
the pattern-matching algorithm of Alt-Ergo to exploit both ground equalities
and properties of AC symbols. In the near future, we also plan to extend AC(X)
to handle the AC theory with unit or idempotence. This will be a first step
towards a decision procedure for a substantial part of the finite sets theory.

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories 59

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: Proc.
1st LICS, Cambridge, Mass., pp. 346–357 (June 1986)

3. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. Journal of
Automated Reasoning 31(2), 129–168 (2003)

4. Conchon, S., Contejean, E., Iguernelala, M.: Canonized Rewriting and Ground
AC Completion Modulo Shostak Theories. Research Report 1538, LRI (December
2010)

5. Contejean, E.: A certified AC matching algorithm. In: van Oostrom, V. (ed.) RTA
2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)

6. Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Sci-
ence 17(3), 279–301 (1982)

7. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, pp. 243–320. North-Holland, Amsterdam
(1990)

8. Conchon, S., Contejean, E., Bobot, F., Lescuyer, S., Iguernelala, M.: The Alt-Ergo
theorem prover, http://alt-ergo.lri.fr

9. Hullot, J.-M.: Associative commutative pattern matching. In: Proc. 6th IJCAI,
Tokyo, vol. I, pp. 406–412 (August 1979)

10. Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal on Computing 15(4) (November 1986)

11. Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA
1997. LNCS, vol. 1232. Springer, Heidelberg (1997)

12. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press, Oxford (1970)

13. Krstić, S., Conchon, S.: Canonization for disjoint unions of theories. Information
and Computation 199(1-2), 87–106 (2005)

14. Lankford, D.S.: Canonical inference. Memo ATP-32, University of Texas at Austin
(March 1975)

15. Lankford, D.S., Ballantyne, A.M.: Decision procedures for simple equational the-
ories with permutative axioms: Complete sets of permutative reductions. Memo
ATP-37, University of Texas, Austin, Texas, USA (August 1977)

16. Marché, C.: On ground AC-completion. In: Book, R.V. (ed.) RTA 1991. LNCS,
vol. 488. Springer, Heidelberg (1991)

17. Marché, C.: Normalized rewriting: an alternative to rewriting modulo a set of
equations. Journal of Symbolic Computation 21(3), 253–288 (1996)

18. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. on Programming, Languages and Systems 1(2), 245–257 (1979)

19. Nieuwenhuis, R., Rubio, A.: A precedence-based total AC-compatible ordering. In:
Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690. Springer, Heidelberg (1993)

20. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational
theories. J. ACM 28(2), 233–264 (1981)

21. Shostak, R.E.: Deciding combinations of theories. J. ACM 31, 1–12 (1984)

Invariant Generation in Vampire�

Kryštof Hoder1, Laura Kovács2, and Andrei Voronkov1

1 University of Manchester
2 TU Vienna

Abstract. This paper describes a loop invariant generator implemented in the
theorem prover Vampire. It is based on the symbol elimination method proposed
by two authors of this paper. The generator accepts a program written in a subset
of C, finds loops in it, analyses the loops, generates and outputs invariants. It also
uses a special consequence removal mode added to Vampire to remove invariants
implied by other invariants. The generator is implemented as a standalone tool,
thus no knowledge of theorem proving is required from its users.

1 Introduction

In [9] a new symbol elimination method of loop invariant generation was introduced.
The method is based on the following ideas. Suppose we have a loop L with a set of
(scalar and array) variables V . The set V defines the language of L. We extend the
language L to a richer language L′ by a number of functions and predicates. For every
scalar variable v of the loop we add to L′ a unary function v(i) which denotes the
value of v after i iterations of L, and similar for array variables. Thus, all loop variables
are considered as functions of the loop counter. Further, we add to L′ so-called update
predicates expressing updates to arrays as formulas depending on the loop counter.
After that we automatically generate a set P of first-order properties of the loop in the
language L′. These properties are valid properties of the loop, yet they are not loop
invariants since they use the extended language L′.

Note that any logical consequence of P that only contains variables in L is also a
loop invariant. Thus, we are interested in finding logical consequences of formulas in
P expressed in L. To this end, we run a first-order theorem prover using a saturation
algorithm on P in such a way that it tries to derive formulas in L. To obtain a saturation
algorithm specialised to efficiently derive consequences in L, we enhanced the theorem
prover Vampire [7] by so-called colored proofs and a symbol elimination mode. In col-
ored proofs, some (predicate and/or function) symbols are declared to have colors, and
every proof inference can use symbols of at most one color.

As reported in [9], we tested Vampire on several benchmarks for invariant genera-
tion. It was shown that symbol elimination can infer complex properties with quantifier
alternations. Symbol elimination thus provides new perspectives in automating program
verification, since such invariants could not be automatically derived by other methods.

� Kryštof Hoder is supported by the School of Computer Science at the University of Manch-
ester. Laura Kovács is supported by an FWF Hertha Firnberg Research grant (T425-N23). An-
drei Voronkov is partially supported by an EPSRC grant. This research was partly supported
by Dassault Aviation.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 60–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Invariant Generation in Vampire 61

As the method is new, its practical power and limitations are not well-understood.
The main obstacle to its experimental evaluation lies in the fact that program analysis
and generation of input for symbol elimination by a separate tool is error-prone and
requires full knowledge of our invariant generation method. The tool described in this
paper was designed with the purpose of creating a standalone tool implementing invari-
ant generation by symbol elimination. Vampire can still be used for symbol elimination
only, so that the program analysis is done by another tool (for example, for experiments
with variations of the method).

The purpose of this paper is to describe the program analyser and loop invariant
generator of Vampire, their implementation and use. We do not overview Vampire itself.

Related work. Reasoning about loop invariants is a challenging and widely studied
research topic. We overview only some papers most closely related to our tool.

Automatic loop invariant generation is described in a number of papers, including
[3,12,5,10,4,6]. In [12] loop invariants are inferred by predicate abstraction over a set
of a priori defined predicates, while [4] employs constraint solving over invariant tem-
plates. Input predicates in conjunction with interpolation are used to infer invariants
in [10]. Unlike these works, we require no used guidance in providing input templates
and/or predicates. User guidance is also not required in [3,5], but invariants are de-
rived using abstract interpretation [3,5] or symbolic computation [6]. However, these
approaches can only infer universally quantified invariants, whereas we can also derive
invariants with quantifier alternation.

Our work is also related to first-order theorem proving [11,13,8]. These works
implement superposition calculi, with a limited support for theories. However, only
Vampire implements colored proofs and consequence removal essential for the symbol
elimination method.

A more complex and general framework for program analysis is given in, e.g., [1,2].
Whereas in [1,2] theorem proving is integrated in a program analysis environment, we
integrate program analysis in a theorem proving framework. Although our approach at
the moment is limited to the analysis of a restricted class of loops, we are able to infer
richer and more complex quantified invariants than [1,2]. Combining our method with
other techniques for verification and invariant generation is left for further work.

2 Invariant Generation in Vampire: Overview

To create an integrated environment for invariant generation, we implemented a simple
program analyser and several new features in Vampire. The workflow of the invariant
generation process is given in Figure 1.

The analyser itself comprises about 4,000 lines of C++ code (all Vampire is written
in C++). In addition to the analyser, we had to extend formulas and terms with if-
then-else and let-in constructs, implement colored proofs, automatic theory loading,
and the consequence removal mode. All together making Vampire into an invariant
generator required about 12,000 lines of code. Currently, the analyser only generates
loop properties for symbol elimination, but we plan to use it in the future for a more
powerful integration of program analysis and theorem proving.

62 K. Hoder, L. Kovács, and A. Voronkov

Fig. 1. Program Analysis and Invariant Generation in Vampire

Program analysis. The program analysis part works as follows. First, it extracts all
loops from the input program. It ignores nested loops and performs the following steps
on every non-nested loop.

1. Find all loop variables.
2. Classify them into variables updated by the loop and constant variables.
3. Find counters, that is, updated scalar variables that are only incremented or decre-

mented by constant values. Note that expressions used as array indexes in loops are
typically counters.

4. Save properties of counters.
5. Generate update predicates of updated array variables and save their properties.
6. Save the formulas corresponding to the transition relation of the loop.
7. Generate a symbol elimination task for Vampire.

The input to the analyser is a program written in a subset of C. The subset consists of
scalar integer variables, array variables, arithmetical expressions, assignments, condi-
tionals and while-do loops. Nested loops are not yet handled.

Symbol Elimination and Theory Loading. The program analyser generates a set of
first-order loop properties and information about which symbols should be eliminated.
A (predicate and/or function) symbol is to be eliminated in Vampire whenever it is spec-
ified to have some color. The next phase of invariant generation runs symbol elimina-
tion on the set of formulas generated by the analyser. Before doing symbol elimination,
Vampire checks which theory symbols (such as integer addition) are used and loads ax-
ioms relevant to these theory symbols. Theory symbols have no color in Vampire. After
theory loading, Vampire runs a saturation algorithm on the theory axioms and the for-
mulas generated by its analyser. A special term ordering is used to ensure that symbol
elimination is effective and efficient.

Consequence Removal. The result of the symbol elimination phase is a set of loop
invariants. This set is sometimes too large. For example, it is not unusual that Vampire
generates over a hundred invariants in less than a second.

Invariant Generation in Vampire 63

An analysis of these invariants shows that some invariants are concise and natural
for humans, while some other invariants look artificial (this does not mean they are not
interesting and/or not useful). It is typically the case that the generated set of invariants
contains many invariants implied by other invariants in the set.

The next phase of invariant generation prunes the generated set by removing the
implied invariants. Checking whether each generated invariant is implied by all other
invariants is too inefficient. To remove them efficiently, we implemented a special con-
sequence removal mode. The output of the tool is the set of all non-removed invariants.

Implementation and Availability. We implemented our approach to invariant
generation in Vampire. The new version of Vampire is available from http://
www.vprover.org. The current version of Vampire runs under Windows, Linux
and MacOS.

Experiments. We evaluated invariant generation in Vampire using two benchmark
suites: (1) challenging loops taken from [3,12], and (2) a collection of 38 loops taken
from programs provided by Dassault Aviation. We used a computer with a 2GHz pro-
cessor and 2GB RAM and ran experiments using Vampire version 0.6. The symbol
elimination phase was run with a 1 second time limit and the consequence removal
phase with a 20 seconds time limit.

For all the examples the program analyser took essentially no time. It turned out that
symbol elimination in one second can produce a large amount of invariants, ranging
from one to hundreds. Consequence removal normally deletes about 80% of all invari-
ants.

3 Conclusion

It is not unusual that program analysers call theorem provers or contain theorem provers
as essential parts. Having a program analyser as part of a theorem prover is less com-
mon. We implemented an extension of Vampire by program analysis tools, which re-
sulted in a standalone automatic loop invariant generator. Our tool derives logically
complex invariants, strengthening the state-of-the-art in reasoning about loops.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Correnson, L., Cuoq, P., Puccetti, A., Signoles, J.: Frama-C User Manual. In: CEA LIST
(2010)

3. Gopan, D., Reps, T.W., Sagiv, S.: A Framework for Numeric Analysis of Array Operations.
In: Proc. of POPL, pp. 338–350 (2005)

4. Gupta, A., Rybalchenko, A.: InvGen: An efficient invariant generator. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg (2009)

5. Halbwachs, N., Peron, M.: Discovering Properties about Arrays in Simple Programs. In:
Proc. of PLDI, pp. 339–348 (2008)

64 K. Hoder, L. Kovács, and A. Voronkov

6. Henzinger, T.A., Hottelier, T., Kovács, L., Rybalchenko, A.: Aligators for arrays (Tool paper).
In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS (LNAI), vol. 6397, pp. 348–356.
Springer, Heidelberg (2010)

7. Hoder, K., Kovacs, L., Voronkov, A.: Interpolation and Symbol Elimination in Vampire. In:
Proc. of IJCAR, pp. 188–195 (2010)

8. Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order Logic (Sys-
tem Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

9. Kovács, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theo-
rem Prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485.
Springer, Heidelberg (2009)

10. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover.
In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427.
Springer, Heidelberg (2008)

11. Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004.
LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

12. Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate Abstraction.
In: Proc. of PLDI, pp. 223–234 (2009)

13. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System description:
SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520.
Springer, Heidelberg (2007)

Enforcing Structural Invariants Using Dynamic

Frames

Diego Garbervetsky, Daniel Goŕın, and Ariel Neisen

Departamento de Computación, FCEyN, Universidad de Buenos Aires
{diegog,dgorin,aneisen}@dc.uba.ar

Abstract. The theory of dynamic frames is a promising approach to
handle the so-called framing problem, that is, giving a precise character-
izations of the locations in the heap that a procedure may modify.

In this paper, we show that the machinery used for dynamic frames
may be exploited even further. In particular, we use it to check that
implementations of abstract data types maintain certain structural in-
variants that are very hard to express with usual means, including being
acyclic (like non-circular linked lists and trees) and having a unique path
between nodes (like in a tree).

The idea is that regions in this formalism over-approximate the set
of reachable objects. We can then maintain this structural invariants by
including special preconditions in assignments, of the kind that can be
verified by state-of-the-art SMT-based tools. To test this approach we
modified the verifier for the Dafny programming language in a suitable
way and were able to enforce these invariants in non-trivial examples.

1 Introduction

A typical procedure specification describes the effects of the procedure over its
arguments. However, in a context involving pointers, this information is not
enough to enable the verification (neither manual nor automatic) of conformance
of an implementation to its specification –at least not in a modular way [9].

What is missing in typical specifications is a precise characterization of the
locations in the program heap that can be safely assumed to be left untouched
by an operation. The problem of formally describing such locations is known as
the frame problem. The theory of dynamic frames [5] is, perhaps, one of the most
promising proposals on how to address this problem in a practical way. Recent
implementations have shown that verification of programs containing dynamic
frame specifications is feasible using state-of-the-art tools [7,4,8,14].

To use dynamic frames basically means to equip each value o in the heap
with a specification variable or ghost field (i.e., a field that can be used in the
program specification but not in the program text) that represents the collection
of heap locations that must be affected in order to make the observable value of
o change.1 This attribute is usually called representation region. Intuitively, if o1
1 More precisely, a value can be equipped with more than one such attributes, which

allows for more precise specifications, but for the general case, one is enough.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 65–80, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

66 D. Garbervetsky, D. Goŕın, and A. Neisen

and o2 have disjoint representation regions, one can guarantee that modifying
o1 will not inadvertently alter o2 too.

Now, this article is not about framing the scope of the effects of a procedure
call. Instead, our starting point is the simple observation that, in practice, the
representation region of o roughly corresponds to the set of locations that are
reachable from o by chasing pointers. This means that in a setting with dynamic
frames the developer is required to provide, for the sake of framing, information
about the heap that might be extremely useful for the verification of heap-related
properties such as reachability, shape-analysis, etc. We are therefore interested in
the question of how this information can be effectively exploited for such tasks.

In this paper we give a first step in that direction: we use the machinery of
dynamic frames to verify that (the graph induced by the points-to relation of)
the internal representation of an abstract data type satisfies certain structural
properties, such as acyclicity or tree-shapedness. This kind of structural proper-
ties constitute the invariant of countless data-structures and at the same time
they tend to be tricky to maintain properly, leading to very subtle bugs. In ad-
dition, these are properties that cannot even be expressed using a formula of
plain first-order logic and, therefore, are not very amenable to the automated
techniques employed in contract-based verification.

The paper is structured as follows. In §2 we briefly introduce the dynamic
frames methodology and define a simple language with region inference that
serves as a basis for the developments in later sections. In §3, for instance, we
show how to extend it with a class qualifier for acyclity and in §4 with another one
for tree-shapedness. In §5 we focus on improving the precision of the techniques
and in §6 we present some preliminary results using a prototype implementation.
We conclude in §7 and §8 discussing related work and future directions.

2 Dynamic Frames

We begin by fixing notations and terminology. We assume an infinite set Ref of
references (or locations) and a set Val of values, which we assume indexed tuples
of references (we shall call them records or objects). We also assume an infinite
set Var of program variables. As usual, all these sets are mutually disjoint.

A store (or heap) is a finite and injective mapping σh from Ref to Val ,2

while an environment is a finite mapping σe from Var to Ref . A state is then
a pair σ = 〈σh, σe〉 and we will typically write both σ(ι) and σ(v) for ι ∈ Ref
and v ∈ Var meaning σh(ι) and σh(σe(v)) respectively. That is, σ(x) denotes
the value of x, where x can be either a program variable or a reference. In the
same vein, for f a field of an indexed tuple, we will write σ(ι.f) and σ(v.f) for
σ(σ(ι).f) and σ(σ(v).f). We refer to the domain of σh as the references used in
σ. Finally, we say that an object oi reaches an object oj in a state σ if either
i = j or for some field f , σ(oi.f) reaches oj in σ (if the state σ is clear from
context, we say simply “oi reaches oj”).
2 In very concrete terms, σh maps memory locations to objects and the injectiveness

condition witnessess the fact that different locations refer to different objects.

Enforcing Structural Invariants Using Dynamic Frames 67

The idea behind the dynamic frames theory is to use finite sets of references,
called regions, to frame a value. Intuitively, a region ρ frames a reference ι in
state σ if in any other state τ that coincides with σ in the value of the objects
denoted in ρ, σ(ι) and τ(ι) must coincide too. It is easy to see that if ρ frames
ι then it must be the case that ι ∈ ρ.3

Now, if we know that ρ frames ι, and we also have that region π is the set of
references touched by a procedure invocation and we can show that ρ and π are
disjoint (denoted ρ ‖ π), then we can assert that the invocation did not change
the value of ι (this is the Value Preservation Theorem in [5]).

The dynamic frames methodology can therefore be summed up as the re-
quirement to assign to each object in the store a region that frames it, called
its representation region. Representation regions can then appear in procedure
specifications, e.g., a precondition may require that two objects have disjoint
representation regions –which means they are not aliased; a postcondition may
indicate that an object’s representation region grew only by the addition of fresh
references (cf. swinging pivots [9]), which preserves disjointness of regions, etc.

2.1 Inferring Regions Automatically

In order to illustrate dynamic frames with an example and provide a basis for
the developments in the following sections, we introduce next a very small pro-
gramming language. Its syntax, shown in Fig. 1, is loosely based on Dafny’s [7].
We assume the language to be statically typed, but we will not give the formal
typing rules since this is standard.

Member ::= Field |Method
Field ::= var f : C

Method ::= method m(x1 : C1, . . . , xn : Cn) returns (y : C)
requires α(this, x1, . . . , xn, σ);
ensures β(this, x1, . . . , xn, y, σ, τ);
modifies ρ(this, x1, . . . , xn, σ);
{ Stmt }

Stmt ::= v := Expr | v := new C | vt.f := vs | vt := vs.m(v1, . . . , vn)
| if (Expr == null){Stmt} else {Stmt} | Stmt;Stmt

Ref ::= v | this | null
Expr ::= Ref | Ref.f

Fig. 1. Syntax of a language with support for dynamic frame annotations

Similarly, we leave the language for method contracts unspecified and simply
take it to be a form of many-sorted first-order language. In an ensures clause,
the free variables σ and τ in β(this, x1, . . . , xn, y, σ, τ) both have sort state and
correspond to the states before and after the execution of the method, respec-
tively. In a requires clause, only the state variable σ may occur free. That said,
we will sometimes write specifications in a sugared form, as in Fig. 2, and leave
the unsugaring to the reader. Notice that in sugared ensure clauses, variable x
corresponds to the term τe(x), while old(x) denotes σe(x).

3 We are excluding the degenerate case where there is only one possible value for ι.

68 D. Garbervetsky, D. Goŕın, and A. Neisen

method returnCopy(x,y) returns (z)
modifies x; // � {σe(x)}
requires x �= null ∧ y �= null; // � σe(x) �= null ∧ σe(y) �= null
ensures x.f = old(y).f ∧ z = old(x); // � τ (x.f) = σ(y.f) ∧ τ (z) = σ(x)

Fig. 2. A typical procedure specification and the unsugared version (commented)

The modifies clause is an expression of sort set of references, where only a
state variable σ occurs free. An example of such an expression would be:

{σe(this)} ∪ reg(σ(x.f)) (1)

which we will normally write in its sugared form {this}∪reg(x.f). Notice that reg
is used to denote the representation region of an object, which every object has.
The representation region is an attribute of an object, therefore o1 = o2 implies
reg(o1) = reg(o2). It is not a field accessible from the program text, though; in
fact two objects may have reg(o1) �= reg(o2) while o1.f = o2.f for every field
f. We use notation o1 ≈ o2 for this form of structural equality that takes into
account only the value of these fields (of course, o1 = o2 implies o1 ≈ o2). As
we will see next, it is possible to have an execution from σ to τ such that for
some reference ι, σh(ι) ≈ τh(ι) (i.e., ι is not “touched”) while σh(ι) �= τh(ι)
(e.g., reg(σh(ι)) �= reg(τh(ι)) because some reference reachable from ι in σ was
modified in τ). For conciseness, we may write regσ(x) for reg(σ(x)).

We will impose some sanity conditions on valid states. For instance, to simplify
definitions, we want to assume that the null reference ø denotes a special null
object with an empty representation region. More importantly, the representation
region of an object o must include the set of objects reachable from o. We can
express these conditions as a state invariant Is(σ) using the following:

imσe ⊆ dmσh ∧ ø ∈ dmσh ∧ regσ(ø) = ∅ ∧ ∀f · σ(ø.f) = ø (2)
∀ι ∈ dmσh · (ι �= ø⇒ ι ∈ regσ(ι) ∧ ∀f · regσ(ι.f) ⊆ regσ(ι) ⊆ dm σh) (3)

Fig. 3 presents the interesting cases of the semantics of this language, in an ax-
iomatic form. To minimize boilerplate we will consistently use the constructions
PreP(α1(σ), . . . , αn(σ)) and PstPQ(β1(σ, τ), . . . , βm(σ, τ)), where the αi and βi
are the relevant parts of the pre and post-conditions. They correspond, respec-
tively to ∀σ · (P(σ)⇒ (Is(σ)∧α1(σ)∧· · ·∧αn(σ))) and ∀σ, τ · ((P(σ)∧β1(σ, τ)∧
· · · ∧ βm(σ, τ))⇒ Q(σ, τ)).

Unlike Dafny, the semantics dictate the way in which the representation re-
gions of the objects in the heap are updated. Consider, for example, rule new.
Firstly, it requires P to be strong enough to ensure the state invariant holds at
the pre-state σ. Next, it requires that Q must hold whenever P was satisfied by
σ and the post-state τ differs from σ only on the value of variable v (see defini-
tion of � below), which corresponds to a fresh reference (i.e., not occurring in
σ) and refers to an object that is the only member of its representation region.

The store rule indicates that an assignment may modify the representation
region of the target vt: whatever might be reachable from vs (i.e., its represen-
tation region) is added to what may be reachable from vt. But this is not the

Enforcing Structural Invariants Using Dynamic Frames 69

whole story: in the statement x. f :=y; y. f :=z, after the second assignment,
x’s representation region needs to be adjusted too. As we will see next, the state
modification operator � takes care of this also.

Let ν be a set of variables and let ρ be a set of locations; the predicate σ �ν
ρ τ

is then the conjunction of the following formulas:

Is(τ) ∧ dmσe ⊆ dm τe ∧ dmσh ⊆ dm τh (4)
∀v ∈ (dm σe \ ν) · σe(v) = τe(v) ∧ ∀ι ∈ (dm σh \ ρ) · σ(ι) ≈ τ(ι) (5)

∀ι ∈ dmσh · regτ (ι) = regσ(ι) ∪ regsτ (ρ ∩ regσ(ι)) (6)

where regsσ(ρ) =
⋃
κ∈ρ regσ(κ). Clearly (4) is just a basic state sanity condition;

(5) indicates that ν and ρ characterize the variables and locations that may have
changed; while (6) propagates updates in representation regions. Notice that for
ρ ‖ regσ(ι), (5) and (6) guarantee that σ(ι) = τ(ι). We write �ν and �ρ for �ν

∅
and �∅ρ respectively.

new

|= PreP()
|= PstPQ(σ �{v} τ, τe(v) ∈ (dm τh \ dmσh), regτ (v) = {τe(v)})

{P} v := new C {Q}

read

|= PreP(σ(vs) �= σ(ø))
|= PstPQ(σ �{vt} τ, τ (vt) = σ(vs.f))

{P} vt := vs.f {Q}

store

|= PreP(σ(vt) �= σ(ø))
|= PstPQ(σ�{σe(vt)} τ, τ (vt) ≈ σ(vt)[f �→ σ(vs)], regτ (vt) = regσ(vt) ∪ regσ(vs))

{P} vt.f := vs {Q}

call

|= PreP(σ(vs) �= σ(ø), α(vs, v1, . . . , vn, σ))
|= PstPQ(σ �{vt}

ρ(vs,v1,...,vn,σ) τ, β(vs, v0, . . . , vn, vt, σ, τ))

{P} vt := vs.m(v1, ..., vn) {Q}

Fig. 3. Semantic rules for the language of Fig. 1 (fragment)

In rule call, α, β and ρ correspond to the requires, ensures and modifies
clauses of method m, respectively. Therefore, the scope of the effects of the
method call is framed by ρ(vs, v1, . . . , vn, σ), since the post-state τ must satisfy
σ �{vt}

ρ(vs,v1,...,vn,σ) τ .
Given these semantic clauses, one can derive program acceptance rules in a

straightforward way: a class C is accepted if all its methods are accepted; and a
method declaration of the form

method m(x1 : C1, . . . , xn : Cn) returns (z: D)
requires α(this , x1, . . . , xn, σ);
ensures β(this , x1, . . . , xn, z, σ, τ);
modifies ρ(this, x1, . . . , xn, σ);
{ S }

70 D. Garbervetsky, D. Goŕın, and A. Neisen

is accepted if, for {v1, . . . , vk} the local variables in S, we have:

{α(this , x1, . . . , xn, σ)}S{σ �{v1,...,vk}
ρ(this ,x1,...,xn,σ)

∧β(this , x1, . . . , xn, z, σ, τ)} (7)

Of course, in order to decide acceptance one needs to resort to some sort of
automated reasoner, like is done with the Dafny verifying-compiler. Verification
this way can be seen as a form of typing.

It is not hard to prove that programs that are thus accepted behave well with
respect to the frame conditions of the modifies clauses. For this, one needs to
prove a stronger result, namely, that representation regions over-approximate
reachability (i.e., if o1 reaches o2 in σ then o2 ∈ reg(o1)), which follows from
the fact that this condition is preserved according to the semantics. Formal
definitions and proofs can be found in [12]

As a final remark, notice that according to our rules (including condition (6)),
representation regions are monotonic in the sense that no reference is ever re-
moved –even those that may be no longer reachable are kept. This is subopti-
mal: one may easily end up in a scenario with two objects o1 and o2 such that
reg(o1) �‖ reg(o2) although no location reachable from one is reachable by the
other. In Kassios’s original formulation [5] this was not the case; but it required
higher-order logic and inductive reasoning, which is just too hard for state-of-
the-art automated reasoners. Our presentation can be seen as a compromise
between precision and automatic verifiability.

Example 1. Consider the declaration of a class List in Fig. 4. We are interested
only in the framing specification and will ignore the functional part.

class List {
method add(d : Data)

modifies reg(this);
ensures
(reg(old(this)) ∪ reg(d)) ⊆ reg(this);

ensures
fresh(reg(this)\(reg(old(this)) ∪ reg(d));

ensures ...

method concat(l : List)
requires reg(this)‖reg(l);
modifies reg(this);
ensures
reg(this) = reg(old(this)) ∪ reg(l);

ensures ...
}

Fig. 4. A simple List type interface

Method add modifies the list to append a new element and its modifies
clause states that the set of references reachable from this can be affected by
this method. Therefore, we need to specify the effect only for those locations.
The specification says that after executing add every reachable object remains
reachable and, in addition, d will be reachable too. It also says that it will not
introduce aliasing with other existing objects by declaring that any other object
reachable from this will be fresh4.

4 A fresh object will most probably correspond to a newly allocated node that will
hold the data; but this is an implementation detail and nothing else need to be said
about it in the interface.

Enforcing Structural Invariants Using Dynamic Frames 71

Similarly, method concat declares that after its execution this will also reach
the objects reachable from list l . The combination of the requires and modifies
clauses also guarantees that l will not be mutated.

3 Verifiably Acyclic Data Structures

In this section we will show how the language of §2.1 can be easily adapted
to support verifiably correct acyclic data structures. These are ubiquitous in
computer science, typically implemented using a node type with a recursive
reference. Fig. 5 shows two structures that can be built using this type of nodes.
The one on the right, though, does not correspond to what one expects from a
linked list since it contains a cycle. An incorrect implementation of a linked list
that allows such instances to be built may lead to bugs that are very hard to
track-down.

l1
next next

l2
next next

next

Fig. 5. Structures l1 and l2 are built with linked list nodes; l2 is not acyclic

The fact that no node in a linked list should participate in a cycle can be seen
as part of the class invariant of the list type. One would be tempted to include this
requirement as part of the class invariant of the type and use standard techniques
to verify that it holds at the end of every procedure call [1,3]. Regrettably, no
first-order logic formula can express this condition (this is a straightforward
consequence of the compactness theorem, see, e.g., [12] for more details), which
makes this approach currently unfeasible.

The idea we will explore here is to treat this requirement as a strong form
of class invariant, which must hold at every point of the method execution. We
will see that exploiting representation regions makes it feasible to guarantee that
this condition is preserved.

3.1 A Characterization of acyclicity

Suppose we implement the class List of Fig. 4 using a linked list and want to
enforce its acyclicity. We propose to extend the syntax of the language of §2.1
with a special class qualifier “acyclic” that allows us to write declarations as
the one in Fig. 6. The intended meaning is that any object of a class qualified
as acyclic satisfies a strong class invariant. The exact invariant deserves some
considerations, though. We shall say that oi occurs in a cycle in σ whenever for
some f, σ(oi.f) reaches oi in σ. The most intuitive definition would be, perhaps,
to stipulate that an object o of a class tagged as acyclic satisfies the invariant
“o does not reach an object that occurs in a cycle”. This would be too strong
in practice. Consider for example an object n of class LLNode (Fig. 6); to fulfill
this invariant we might as well demand T to be qualified with acyclic too. But

72 D. Garbervetsky, D. Goŕın, and A. Neisen

acyclic class List{
var first : LLNode;
...

}
acyclic class LLNode {

var next : LLNode
var payload : T

}

l1
next next

payload payload payload

f
f

Fig. 6. Declaration of an acyclic linked list node

this would impose a big restriction on the type of the payload. In other words,
a linked list node should not put demands on the internal representation of the
payload.

The invariant we will use, instead, is that if o is of a class qualified as acyclic
then “o cannot occur in a cycle made of objects of acyclic classes”. That is, o
may occur in a cycle as long as some object in the cycle is not tagged as acyclic.
To avoid confusion, we will term the cycles that this invariant forbids “invalid
cycles”. We believe this weaker notion of acyclicity constitutes a good compro-
mise in practice. For instance, observe that if one is given a while-loop where
every inductive variable is a reference to an object qualified as acyclic that is
not mutated during the cycle (as it would typically be the case in algorithms
traversing the internal representation of an abstract datatype implemented us-
ing an acyclic structure), then if every iteration of the loop can be shown to
terminate, the loop cannot hang.

3.2 Preserving the Acyclicity Invariant

We want to guarantee that an acyclic object remains acyclic after the execution
of any statement (that is, assuming the pre-condition of the statement holds).
What we will exploit is the fact that reg(o) over-approximates the set of objects
that o may reach.

The first thing to observe is that only assignments and method invocations
can introduce cycles; and among assignments, only store instructions vt.f = vs
do. Notice, furthermore that if vt or vs is of a non-acyclic type, then no invalid
cycle can be formed (recall that an invalid cycle involves acyclic objects).

Fig. 7 shows an example of a store instruction that introduces a cycle. The
important thing to observe is that this can happen if and only if o2 reaches o1.
This motivates rule storea shown in Fig. 8, which replaces rule store when
both the target and source of the store are references to acyclic classes. The only
difference with rule store is the additional pre-condition σe(vt) �∈ regσ(vs).

o2o1

f

f

f

o2o1

f

f

f

f

Fig. 7. Execution of o1.f = o.2 introduces an invalid cycle

Enforcing Structural Invariants Using Dynamic Frames 73

storea

|= PreP(σ(vt) �= σ(ø), σe(vt) �∈ regσ(vs))
|= PstPQ(σ�{σe(vt)} τ, τ (vt) ≈ σ(vt)[f �→ σ(vs)], regτ (vt) = regσ(vt) ∪ regσ(vs))

{P} vt.f := vs {Q}

Fig. 8. storea rule applies whenever vt and vs are references of acyclic classes

Interestingly, the introduction of the storea rule is the only modification
we need to do to the semantics. To see this, consider a method invocation
vt = vs.m(v1, . . . , vn). According to rule call, it must be the case that the pre-
condition of method m, α(vs, v1, . . . , vn, σ), holds before the invocation. But this
precondition must have been strong enough to verify that the body of method
m introduces no invalid cycles (cf. (7) on p.70).

4 Trees and Similar Data Structures

Acyclicity is not the only common invariant that is impossible to express using
classical logic. In this section we will discuss that of being a tree, which requires
not only having no cycles but also having a unique path to every reachable node.
We will show that by incorporating a second region to objects, we can handle
an additional class qualifier “tree”, whose precise meaning we will give below.

Before going into the details, it is worth observing that the dynamic frames
methodology does not preclude the inclusion of more than one region per object.
We will be exploiting this possibility also on the following sections.

For succinctness, we will say that an object o is a tree if it is an instance of
a class tagged as tree. We will also assume that the tree qualifier implies the
acyclic qualifier.

Just like in the previous section, we will consider a notion of “being a tree”
that constitutes a compromise between what can be expressed and what can be
enforced. Therefore, we want the following invariant for a tree o: i) o satisfies the
invariant for acyclic objects (see §3), ii) if o reaches an object o′ that is a tree,
then there is only one path between o and o′ where every object in the path is
also a tree.

Again, in order to see how this invariant can be preserved, we need to look
only at store instructions vt.f := vs, where both vt and vs are trees. One can then
see that there are essentially two ways in which the invariant can get broken.
The first one, illustrated in Fig. 9 corresponds to the case when both vt and vs
can reach a common (tree) object o: there is already a unique path from each to
o, but executing the store would introduce an additional path from the target
to o. This can be avoided by adding the following additional precondition:

regσ(vt) ‖ regσ(vs) (8)

This clause implies the condition σe(vt) �∈ regσ(vs) required to enforce acyclicity.
It is not hard to verify that if vt and vs satisfy (8) then the tree invariant must

hold on every node reachable from either vt or vs. But what can we say about

74 D. Garbervetsky, D. Goŕın, and A. Neisen

o2
o3

o1g1 g2

f

o2
o3

o1g1

g2 f

f

Fig. 9. Execution of o1.f = o.2 introduces an extra path from o1 to o3

o1
o2 o3

g1 g2 o1
o2 o3

g1 g2

f

Fig. 10. Execution of o2.f = o.3 introduces an extra path from o1 to o3

the invariant at tree nodes that reach either vt or vs? This question leads us to
the second case, illustrated in Fig. 10. If vt and vs share a common ancestor,
then the store will necessarily break the invariant of this ancestor.

Of course, it is not possible to express this condition using a first-order for-
mula and the reg predicate. But using analogous ideas and techniques, one can
associate to each object o an additional region ger(o) that over-approximates
the set of references that reach o and specify its evolution in semantic rules and
method contracts. Using this, we can express the missing pre-condition for the
store (when vt and vs are trees) as:

gerσ(vt) ‖ gerσ(vs) (9)

To make everything fit well, we add to invariant Is(σ) (cf. p.68) the requirements:

gerσ(ø) = ∅ (10)
∀ι ∈ dmσh · ι �= ø⇒ ι ∈ gerσ(ι) ∧ ∀f · gerσ(ι) ⊆ gerσ(ι.f) ⊆ dmσh (11)

Similarly, the �ν
ρ predicate must be extended with the following clause:

∀ι ∈ dm σh · gerτ (ι) = gerσ(ι) ∪ gersτ (ρ ∩ gerσ(ι)) (12)

where gersσ(ρ) =
⋃
κ∈ρ gerσ(κ). Fig. 11 finally shows the formal semantics of

the store rule for trees. It states that ger(vt) remains unchanged but, of course,
ger(vs) is expanded. The latter implies that vs is modified by the operation and
therefore it must be included in the argument of the � predicate and the fact
that every other field remains unchanged must be explicitly stated.

storet

|= PreP(σ(vt) �= σ(ø), regσ(vt) ‖ regσ(vs), gerσ(vt) ‖ gerσ(vs))

|= PstPQ

⎛

⎝
σ�{σe(vt),σe(vs)} τ, τ (vs) ≈ σ(vs), τ(vt) ≈ σ(vt)[f �→ σ(vs)],
regτ (vt) = regσ(vt) ∪ regσ(vs), gerτ (vt) = gerσ(vt)
gerτ (vs) = gerσ(vs) ∪ gerσ(vt), regτ (vs) = regσ(vs)

⎞

⎠

{P} vt.f := vs {Q}

Fig. 11. storet rule applies whenever vt and vs are references to trees

Enforcing Structural Invariants Using Dynamic Frames 75

The rules in Fig. 3 and 8 need to be modified to accommodate predicate
ger but this is straightforward so we leave the details for the reader. It is not
difficult to see that, in the resulting system, ger(o) represents the set of objects
that reach o and that every object of a class tagged as tree verifies its invariant.

5 Improving Precision

We have shown thus far that representation regions, used in principle for framing,
can be also used to enforce complex structural invariants (e.g., acyclicity, etc.). In
this section we will see examples of code that would be rejected by our proposed
rules, although the invariants are clearly preserved.

Let us start considering the example in Fig. 12, where LLNode is the acyclic
class defined in Fig. 6 and T is not tagged as acyclic. Call σ the state be-
fore b.next:=a; then regσ(a) = {σe(a), σe(c), σe(b)} which means that the pre-
condition of the storea rule does not hold. That is, it is detected that executing
this instruction may lead to an invalid cycle involving a and b and the code is
therefore rejected. But as Fig. 12 shows graphically, this would be indeed a valid
cycle, since it passes through c that is not an instance of an acyclic class.

method rejected1() returns a {
a := new LLNode;
b := new LLNode;
c := new T;
a.payload := c;
c. f := b;
b.next := a;

}
a c b

payload f

next

Fig. 12. Rejected code snippet and the shape of a after b.next :=a

The technique is imprecise in this case, and the imprecision comes from the
fact that reg(o) contains the location of every reachable object, and not just of
those that are reachable using only acyclic objects.

In §4 we already explored the possibility of incorporating additional regions in
the context of handling the tree qualifier; we can take a similar approach here to
improve the precision of the methodology. We propose, therefore, adding to each
o a region rega(o) that contains every acyclic object reachable from o passing
only through acyclic objects. Again, this requires adding additional clauses to
the state invariant Is(σ) and the � predicate and extending the semantic rules.
This changes are straightforward and were already mentioned in more detail
in §4, so we will skip the details. The important part is replacing reg by rega in
the pre-condition of rule storea.

Of course, the same approach can be used to improve the precision on code
handling trees: we can add regions regt and ger t that only hold references to
tree objects based on reachability via paths that contain only trees.

Let us assume this was indeed done and consider now the scenario in Fig. 13,
where BTNode is a class qualified as tree. The code in question “moves to

76 D. Garbervetsky, D. Goŕın, and A. Neisen

method rejected2(BTNode r)
returns s
requires t. left �= null;
modifies reg(r);
{

s := t. left ;
t . left := null;
s . left := t;
}

t

s

a3

a1 a2

left right

left right

s

a2

t

a3

left right

right

Fig. 13. Rejected code snippet, it is due to the monotonic nature of regions

the root” a node in a binary tree and it is not hard to see that the resulting
structure would satisfy the required invariant. The problem is that before the
method execution we have r . left ∈ regt(r) and, therefore, regt(s) �‖ regt(r) holds
after executing s :=t . left . Since regions are monotonic (cf. §2), this is also true
before executing s . right :=t and therefore, the requirements of storet are not
satisfied and this program is rejected.

More precisely, the problem originates after the execution of instruction
t . left :=null: s is no longer reachable from t although this is not reflected
in regt(t) nor in ger t(s). But since s and t are trees, there is only one path
from s to any tree reachable from t; hence, if σ and τ are the pre and post-
states of this instruction, it is safe to assume regtτ (t) = regtσ(t) \ regtσ(s) and
ger tτ (s) = ger tσ(s) \ ger tσ(t) (although it is not necessarily the case, for instance,
that regτ (t) = regσ(t) \ regσ(s)). Hence, we can improve rule storet even fur-
ther, by including in PstPQ the following clauses:

reg tτ (vt) = (regtσ(vt) \ regtσ(vt.f)) ∪ regtσ(vs) (13)

ger tτ (σe(vt.f))) = ger tσ(vt.f) \ ger tσ(vt) (14)

Of course, we need also add to the definition of �ν
ρ clauses:

∀ι ∈ dmσh · regtτ (ι) = (regtσ(ι) \ regs tσ(ρ ∩ regtσ(ι)) ∪ regstτ (ρ ∩ regtσ(ι)) (15)

∀ι ∈ dmσh · ger tτ (ι) = (ger tσ(ι) \ gerstσ(ρ ∩ ger tσ(ι)) ∪ gerstτ (ρ ∩ ger tσ(ι)) (16)

where regstσ(ρ) =
⋃
κ∈ρ regtσ(κ) and gerstσ(ρ) =

⋃
κ∈ρ ger tσ(κ).

Using these new rules, it is not hard to see that the example in Fig. 13 is
not rejected. Now, we must insist that the soundness of these rules depends on
the fact that there is at most one path (passing only through tree nodes) that
connects any two tree nodes. To illustrate this point, assume a class ANode is
tagged as acyclic and consider Fig. 14. If after instruction a. f1 :=null, b is
removed from rega(a), then the precondition of the last instruction will hold,
which would permit the introduction of a cycle.

In a way, the problem in this case is that the set of reachable regions does not
give us enough information to decide if we no longer reach an object. It might be
interesting to consider, as future work, the possibility of turning rega(o) into a
multiset of locations, i.e., a total function from Ref to N. The intended semantics
for rega(o) would be that it counts the total number of paths going only through

Enforcing Structural Invariants Using Dynamic Frames 77

method invalid() {
a := new ANode;
b := new ANode;
a.f1 := b;
b.f2 := b;
a.f1 := null;
b.f1 := a;

}

a b
f1

f2

f1

Fig. 14. If ANode is tagged acyclic this method should be rejected

acyclic nodes between o and any location ι and the tricky part would be to
actually maintain this invariant.

6 Evaluation

We developed a prototype implementation5 based on Dafny’s language tool
chain. Dafny is an experimental language that explores the use of dynamic
frames in object-based sequential programs by enabling the use of ghost fields in
contracts and statements [7]. We extended the language with automatic region
inference and support for acyclic class qualification. Details can be found in [12].

We then implemented various basic abstract data types using acyclic struc-
tures. Stack, Sequence and Queue use a linked list (the last two keep refer-
ences to both head and tail), Dictionary uses a non-balanced binary search
tree (BST). We evaluated the cost of enforcing acyclicity in terms of the number
of atoms in region-related annotations, both in specifications (S.Ann) and inside
method bodies such as loop invariants (B.Ann), and the verification time (in
seconds). The following table summarizes the results obtained.6

Module LOC #classes #methods S.Ann B.Ann Verif. Time
Sequence 136 2 4 6 2 2.7s
Stack 48 2 4 5 0 2.3s
Queue 75 2 4 7 1 2.4s
Dictionary 140 2 5 11 4 4.0s

For most cases we were able to automatically check that a method preserves
acyclicity. We could not do it, for instance, in the remove method of Dictionary
because of monotonicity of the regions. A variation of the standard deletion
algorithm for BSTs in which values are swapped instead of nodes should be
more amenable to verification. It is worth observing that we did not use manual
update of ghost fields in method bodies, only loop invariants were provided.

As a second experiment, we tried to assess if the inferred regions together with
the acyclic qualifier could be used to significantly reduce the overall number of

5 Tool and experiments available at http://lafhis.dc.uba.ar/dynframes
6 Times measured on a 3GHz Intel R© CoreTM2 Duo based desktop with 4GB of

RAM, running Microsoft Windows Vista (32 bits), under regular load.

78 D. Garbervetsky, D. Goŕın, and A. Neisen

annotations on idiomatic Dafny programs. For this, we took some examples from
the Dafny distribution (a linked list, an unbounded stack, a queue, and BST
based dictionary) and tried to simplify them by tagging the relevant classes as
acyclic, removing the ghost field used for the representation region (together
with their manual updates) and pruning the contracts and invariants accordingly.

We were able to remove about 25%-30% of the annotations in contracts (plus
the manual updates of ghost fields that were also removed). The only method we
failed to verify was list reversal, which relies on temporarily breaking acyclicity.

It is worth noticing that our implementation cannot currently handle some
constructs available in the latest version of the Dafny language; in particular,
universal quantification restricted to objects of a given type. Once this is cor-
rected, we might be able to reduce even further the number of annotations in
some examples (most notably, in linked lists, which require a ghost field which
represents the spine of the list, that is, the set of nodes that form the list).

7 Related Work

Dafny is a programming language with a verifying compiler and support for
dynamic frames. It is possible to verify the correctness of Dafny programs (that
is, without our extensions) that contain class invariants that entail acyclicity
or tree-shapedness. It is therefore important to discuss the differences with our
approach.

In Dafny, regions are explicitly declared as ghost fields of a class and the
programmer is responsible for maintaining them with explicit update instruc-
tions. These are, arguably, a form of annotation. With our extensions there are
also pre-defined regions handled by the tool. While this scheme is perhaps less
flexible, it demands no region update annotations in program text.

Acyclicity can be enforced by way of user-provided class invariants that rely
on the fact that certain ghost fields over-approximate reachability (even with-
out manually maintaining regions, a similar effect could be achieved with the
incomplete encoding of transitive closure in first-order logic given in [10]). These
invariants can be temporally violated and must be provably restored at a later
stage. This differs from our approach in two important ways. Firstly, it is the
user, but not the compiler, who is aware of these properties. Therefore this
knowledge cannot be transparently exploited by the compiler, for instance, for
better memory-management (e.g., switching to a reference counting scheme for
certain types) or loop-termination analysis. The second difference is that in our
approach the properties cannot be temporarily broken and later restored but
are preserved throughout the execution of the methods. This has the advantage
of being enforceable by relatively simple checks. The price to pay, in the case of
trees, is the introduction of a second region (cf. Fig. 10).

One can argue that class invariants expressing acyclicity constraints on com-
plex types such as abstract syntax trees with subformula sharing could easily
become unwiedly; on the other hand, they would be trivial to express with our
approach. However, a systematic comparison of the annotation burden, both
qualitative and quantitative, in Dafny with and without our extensions is needed.

Enforcing Structural Invariants Using Dynamic Frames 79

Instead of using the representation regions of the dynamic frames methodol-
ogy, one could instead enforce acyclicity using the representation containment
concept of Ownership Types (see, e.g. [2]). In fact, the object graph structure
obtained using this approach is typically a tree. However, since every object is
required to have at most one owner, it is very non-trivial (if at all possible, de-
pending the setting) to enforce a DAG, like it would be the case, for instance, in
a Queue implemented with pointers to the first and last nodes of a linked list.

The most common approach to this problem is via shape analysis techniques
(e.g., [13]). These are used to determine shape invariants for programs that
perform destructive updates on dynamically allocated storage. In [6] a method
is presented that automatically verifies acyclic linked lists, by carefully defining
axioms for modeling the standard list operations. In [11] the authors introduce a
type system which controls acyclicity by defining the concept of regions in which
cycles are only allowed inside a region and forcing a partial order within regions.

8 Conclusions

In this work we tried to demonstrate that one can take advantage of the ma-
chinery required for dynamic frames to enforce non-trivial structural invariants
in abstract data types. In particular, it is possible to guarantee acyclicity prac-
tically without performing changes to code. We developed similar techniques to
enforce tree-shapedness and, finally, we discussed the use of additional represen-
tation regions as means to reject fewer valid programs. We also reported on some
preliminary results using a prototypic implementation of some of these ideas.

We believe that besides providing correctness guarantees, these kind of
structural invariants can be exploited by the compiler; examples include sound
heuristics for analyzing program termination, and enabling cheaper memory
management schemes (e.g., reference counting).

As future work, we would like to look at the interplay between the introduced
techniques and classical features of object-oriented languages such us inheritance
and dynamic binding. Moreover, while acyclic data structures are ubiquitous, so
are cyclic ones (e.g. doubly-linked lists, circular buffers, etc.). We believe that
common cyclicity patterns exist that can be enforced using similar techniques.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Clarke, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 1998), pp. 48–64. ACM
Press, New York (1998)

3. Huizing, K., Kuiper, R.: Verification of object oriented programs using class invari-
ants. In: FASE 2000. LNCS, vol. 1783, pp. 208–221. Springer, Heidelberg (2000)

80 D. Garbervetsky, D. Goŕın, and A. Neisen

4. Jacobs, B., Smans, J., Piessens, F.: VeriFast: Imperative Programs as Proofs. In:
VSTTE Workshop on Tools & Experiments (2010)

5. Kassios, I.T.: The dynamic frames theory. In: Formal Aspects of Computing (2010)
6. Lahiri, S., Qadeer, S.: Verifying properties of well-founded linked lists. In: Proceed-

ings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2006), pp. 115–126. ACM Press, New York (2006)

7. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

8. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

9. Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM
TOPLAS 24(5), 491–553 (2002)

10. Lev-Ami, T., Immerman, N., Reps, T., Sagiv, M., Srivastava, S., Yorsh, G.: Simu-
lating reachability using first-order logic with applications to verification of linked
data structures. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 99–115. Springer, Heidelberg (2005)

11. Lu, Y., Potter, J.: A type system for reachability and acyclicity. In: Gao, X.-X.
(ed.) ECOOP 2005. LNCS, vol. 3586, pp. 479–503. Springer, Heidelberg (2005)

12. Neisen, A.: Automatic verification of acyclic data structures using theorem provers.
Master’s thesis, Universidad de Buenos Aires (2010)

13. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM TOPLAS 24(3), 217–298 (2002)

14. Smans, J., Jacobs, B., Piessens, F.: VeriCool: An automatic verifier for a concurrent
object-oriented language. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 220–239. Springer, Heidelberg (2008)

Loop Summarization and Termination Analysis�

Aliaksei Tsitovich1, Natasha Sharygina1,
Christoph M. Wintersteiger2, and Daniel Kroening2

1 Formal Verification and Security Group, University of Lugano, Switzerland
2 Oxford University, Computing Laboratory, UK

Abstract. We present a technique for program termination analysis
based on loop summarization. The algorithm relies on a library of ab-
stract domains to discover well-founded transition invariants. In contrast
to state-of-the-art methods it aims to construct a complete ranking argu-
ment for all paths through a loop at once, thus avoiding expensive enu-
meration of individual paths. Compositionality is used as a completeness
criterion for the discovered transition invariants. The practical efficiency
of the approach is evaluated using a set of Windows device drivers.

1 Introduction

The program termination problem has received increased interest in the recent
past. In practice, termination analysis is at a point where industrial applica-
tion of termination proving tools is feasible. This is possible through a series of
improvements upon methods that prove program termination by constructing
well-founded ranking relations.

Podelski and Rybalchenko propose disjunctive well-foundedness of transition
invariants [1] as a means to improve the performance of termination proving, as
well as to simplify synthesis of ranking relations. Based on their crucial discov-
ery, the same authors together with Cook give an algorithm to verify program
termination using iterative construction of transition invariants — the Termi-
nator algorithm [2,3]. This algorithm exploits the relative simplicity of ranking
relations for a single path of a program. It relies on a safety checker to find
previously unranked paths of a program, computes a ranking relation for each
of them individually, and disjunctively combines them to form a global (disjunc-
tively well-founded) termination argument. This strategy shifts the complexity
of the problem from ranking relation synthesis to safety checking, a problem for
which many efficient solutions exist.

The Terminator algorithm was successfully implemented in tools (e.g., Ter-
minator [3], ARMC [4], SatAbs [5]) and applied to verify industrial code, most
notably Windows device drivers. However, it has subsequently become apparent
that the safety check is a bottleneck of the algorithm, taking up to 99% of the

� Supported by the Swiss National Science Foundation under grant no. 200020-122077
and by a Microsoft Software Engineering Innovation Foundation (SEIF) Award.
Christoph M. Wintersteiger is now with Microsoft Research, Cambridge, UK.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 81–95, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

82 A. Tsitovich et al.

runtime in practice [3,5]. The runtime required for ranking relation synthesis is
negligible in comparison. A possible solution to this performance issue is Compo-
sitional Termination Analysis (CTA) [6]. This method limits path exploration to
several iterations of each loop of the program. Transitivity (or compositionality)
of the intermediate ranking arguments is used as a criterion to determine when
to stop the loop unwinding. This allows for a reduction in runtime, but intro-
duces incompleteness since a transitive termination argument may not be found
for each loop of a program. However, an experimental evaluation on Windows
device drivers indicates that this case is rare in practice.

The complexity of the termination problem together with the observation that
most loops in practice have (relatively) simple termination arguments suggests
the use of light-weight static analysis for this purpose. In this paper, we propose
a new technique for termination analysis, which extends a known algorithm for
loop summarization [7] based on abstract interpretation [8]. The crucial differ-
ence between the previous approach and our proposal is the use of (disjunctively
well-founded) transition invariants instead of state invariants during summa-
rization. Furthermore, fixpoint computation of abstract transformers is avoided
(but required by other methods, e.g., [9,10]).

Our algorithm constructs summaries for loops, starting from the inner-most
loop in the control flow graph of the program. In case of nested loops, inner loops
are replaced with (loop-free) summaries during verification. At any point during
the analysis, the problem is therefore reduced to the analysis of a single loop.
During construction of the loop summaries, our algorithm relies on a library
of templates for abstract domains. These are used to construct candidates for
transition invariants, which subsequently are verified to be actual disjunctively
well-founded transition invariants by means of a safety checker and a satisfiabil-
ity decision procedure. Due to the fact that the safety checker is employed to
analyze only a single unwinding of a loop at any point, we gain large speedups
compared to algorithms like Terminator or CTA. At the same time, the false-
positive rate of our algorithm is very low in practice, which we demonstrate
using an experimental evaluation on a diverse suite of C programs.

This paper is organized as follows: Section 2 introduces the theoretical back-
ground, Section 3 presents our new methods. Section 4 proposes an optimization
that simplifies the selection of candidates for transition invariants. In Section 5
we give experimental evidence of the practicality of our approach. Section 6 re-
lates this approach to size-change termination principle and discusses the other
related work. Finally, Section 7 suggests future work and concludes.

2 Background

We formalize programs as transition systems.

Definition 1 (Transition System). A transition system (program) P is a
three tuple 〈S, I, R〉, where

Loop Summarization and Termination Analysis 83

– S is a (possibly infinite) set of states,
– I ⊆ S is the set of initial states,
– R ⊆ S × S is the transition relation.

A computation of a transition system is a (maximal) sequence of states s0, s1, . . .
such that s0 ∈ I and (si, si+1) ∈ R for all i ≥ 0.

The reflexive and non-reflexive transitive closures of R are denoted as R∗

and R+ respectively. The set of reachable states is R∗(I). We also define the
relational composition operator ◦ for two relations R1, R2 : S × S by

R1 ◦R2 := { (s, s′) ∃s′′.(s, s′′) ∈ R1 ∧ (s′′, s′) ∈ R2 } .

Note that a relation R is transitive if it is closed under relational composition,
i.e., when R ◦R ⊆ R.

2.1 Termination

A program is terminating if it does not allow infinite computations, which fol-
lows from well-foundedness of the transition relation (restricted to the reachable
states). A well-founded relation is a relation that does not contain infinite de-
scending chains or, more formally:

Definition 2 (Well-foundedness). A relation R is well-founded (wf.) over S
if for any non-empty subset of S there exists a minimal element (with respect to
R), i.e. ∀X ⊆ S . X �= ∅ =⇒ ∃m ∈ X,∀s ∈ S(s, m) /∈ R.

The same does not hold true for the weaker notion of disjunctive well-foundedness.
However, Podelski and Rybalchenko show that disjunctive well-foundedness of
a transition invariant is equivalent to program termination:

Definition 3 (Disjunctive Well-foundedness [1]). A relation T is disjunc-
tively well-founded (d.wf.) if it is a finite union T = T1∪ . . .∪Tn of well-founded
relations.

Definition 4 (Transition Invariant [1]). A transition invariant T for pro-
gram P = 〈S, I, R〉 is a superset of the transitive closure of R restricted to the
reachable state space, i.e., R+ ∩ (R∗(I)×R∗(I)) ⊆ T .

The crucial theorem is as follows:

Theorem 1 (Termination [1]). A program P is terminating iff there exists a
d.wf. transition invariant for P .

The Terminator algorithm [3] automates the construction of d.wf. transition
invariants. It starts with an empty termination condition T = ∅ and queries a
safety checker for a counterexample — a computation that is not covered by the
current termination condition T . Next, a ranking relation synthesis algorithm
is used to obtain a termination argument T ′ covering the transitions in the
counterexample. The termination argument is then updated to T = T ∪ T ′

84 A. Tsitovich et al.

and the algorithm continues to search for counterexamples. Finally, either a
complete (d.wf.) transition invariant is constructed or there does not exist a
ranking relation for some counterexample, in which case the program is reported
as non-terminating.

To comply with the terminology in the existing literature, we define the notion
of compositionality for transition invariants as follows:

Definition 5 (Compositional Transition Invariant [1,6]). A d.wf. transi-
tion invariant T is called compositional if it is also transitive, or equivalently,
closed under composition with itself, i.e., when T ◦ T ⊆ T .

Podelski and Rybalchenko made an interesting remark regarding the composi-
tionality (transitivity) of transition invariants: If T is transitive, it is sufficient
to show that T ⊇ R instead of T ⊇ R+ to conclude termination, because a com-
positional and d.wf. transition invariant is well-founded, since it is an inductive
transition invariant for itself [1]. Therefore, compositionality of a d.wf. transition
invariant implies program termination. This fact is exploited in Compositional
Termination Analysis [6], which iteratively constructs a termination argument,
similar to the Terminator algorithm. In contrast to Terminator however, the
safety checker is not required to analyze complete loops. Instead, the algorithm
checks an increasing number of unwindings of the loops in the program until a
compositional transition invariant is established. This technique results in sig-
nificant speed-ups in practice, but comes at a price: there is no guarantee that
a compositional transition invariant can be found for every loop.

2.2 Loop Summarization

In the following section we present a method for static analysis based on a pre-
viously presented loop summarization algorithm [7]. This technique constructs
sound program abstractions for the purpose of scalable static analysis. It re-
places loops in a program by smaller loop-free program fragments that over-
approximate the original behavior of the loop.

Algorithm 1 presents an outline of this procedure. The function Summarize
traverses the control-flow graph of the program P and calls itself recursively
for each block with nested loops. If a block contains a non-nested loop, it is
summarized using the function SummarizeLoop and the resulting summary
replaces the original loop in P ′. Consequently, any outer loop eventually becomes
non-nested, which enables further progress.

The function SummarizeLoop computes the summaries. A simple
over-approximation can be obtained by replacing a loop by a program frag-
ment that ‘havocs’ the state, i.e., by setting all variables which are (potentially)
modified during loop execution to non-deterministic values. To improve the pre-
cision of these summaries, they are strengthened by (partial) loop invariants.
SummarizeLoop has two subroutines that are related to invariant discovery:
1) PickInvariantCandidates, which generates a set of ‘invariant candidates’
using a library of abstract domains, and 2) IsInvariant, which checks whether
a candidate is an actual invariant for a given loop.

Loop Summarization and Termination Analysis 85

Summarize(P)1

input: program P2

output: Program summary3

begin4

foreach Block B in ControlFlowGraph(P) do5

if B has nested loops then6

B :=Summarize(B)7

else if B is a single loop then8

B :=SummarizeLoop(B)9

return P10

end11

SummarizeLoop(L)12

input: Single-loop program L (over variable set X)13

output: Loop summary14

begin15

I := �16

foreach Candidate C(X) in PickInvariantCandidates(Loop) do17

if IsInvariant(L, C) then18

I := I ∧ C19

return “Xpre := X; havoc(L); assume(I(Xpre) =⇒ I(X));”20

end21

IsInvariant(L, C)22

input: Single-loop program L (over variable set X), invariant candidate C23

output: TRUE if C is invariant for L; FALSE otherwise24

begin25

return Unsat(L(X,X ′) ∧ C(X)⇒ C(X′))26

end27

Algorithm 1. Basic routines of loop summarization

Note that this summarization algorithm does not preserve loop termination:
the summaries computed by the algorithm are always terminating program frag-
ments. This abstraction is a sound over-approximation, but it may be too coarse
for programs that contain unreachable paths.

3 Loop Summarization with Transition Invariants

In this section, we introduce a method that allows transition invariants to be
included as a strengthening of loop summaries. This increases the precision of
loop summaries and enables construction of termination proofs over summaries.

According to Definition 4, a binary relation T is a transition invariant for a
program P if it contains R+ (restricted to the reachable states). However, the
transitivity of T is also a sufficient condition when T is only a superset of R:

Theorem 2. A binary relation T is a transition invariant for the program
〈S, I, R〉 if it is transitive and R ⊆ T .

86 A. Tsitovich et al.

Proof. From transitivity of T it follows that T + ⊆ T . Since R ⊆ T it follows
that R+ ⊆ T . ��

This simple fact allows for an integration of transition invariants into the loop
summarization framework by a few adjustments to the original algorithm. Con-
sider line 16 of Algorithm 1, where candidate invariants are selected. Clearly,
we need to allow selection of transition invariants here, i.e., invariant candidates
now have the form C(X, X ′), where X ′ is the post-state of L.

What follows is a check for invariance of C over L(X, X ′), i.e., a single un-
winding of the loop. Consider the temporary (sub-)program 〈S, S, L〉 to represent
the execution of the loop from a non-deterministic entry state, as required by
IsInvariant. A transition invariant for this program is required to cover L+,
which, according to Theorem 2, is implied by L ⊆ C and transitivity of C. The
original invariant check in IsInvariant establishes L ⊆ C, when the check for
unsatisfiability receives the more general formula L(X, X ′) ∧ C(X, X ′) as a pa-
rameter. The summarization procedure furthermore requires a slight change to
to include a check for compositionality. The resulting procedure is Algorithm 2.

SummarizeLoop-TI(L)1

input: Single-loop program L with a set of variables X2

output: Loop summary3

begin4

T := �5

foreach Candidate C(X, X′) in PickInvariantCandidates(Loop) do6

if IsInvariant(L, C) ∧ IsCompositional(C) then7

T := T ∧ C8

return “Xpre := X; havoc(L); assume(T (Xpre, X));”9

end10

Algorithm 2. Loop summarization with transition invariants

The additional compositionality (transitivity) check at line 7 of Algorithm 2
corresponds to a check for satisfiability of

∃si, sj , sk ∈ S . ¬ (C(si, sj) ∧ C(sj , sk)⇒ C(si, sk)) , (1)

which may be decided by a suitable decision procedure, e.g., an SMT solver.
Of course, this check may be omitted if the selected invariant candidates are
compositional by construction.

Termination. The changes to the summarization algorithm allow for termi-
nation checks during summarization through application of Theorem 1, which
requires a transition invariant to be disjunctively well-founded. This property
may be established by allowing only disjunctively well-founded invariant candi-
dates, or it may be checked by means of decision procedures (e.g., SMT solvers
where applicable). According to Definition 3, d.wf.-ness of a candidate relation T
requires establishing well-foundedness of each of its disjuncts. This can be done

Loop Summarization and Termination Analysis 87

by an explicit encoding of the well-foundedness criteria of Definition 2. However,
the resulting formula contains quantifiers, which severly limits the applicability
of existing decision procedures.

4 Selection of Candidate Invariants

In this section, we propose a set of specialized candidate relations, which we
find to be useful in practice. We focus on transition invariants for machine-level
integers for programs implemented in low-level languages like ANSI-C.

In contrast to other work on termination proving with abstract domains
(e.g., [10]), we do not aim at general domains like Octagons or Polyhedra, as
they are not designed for termination and the required d.wf.-ness and composi-
tionality checks can be costly. Instead we prefer domains that

– generate few, relatively simple candidate relations, and
– allow for efficient d.wf. and compositionality checks.

Note that very similar criteria are applied in termination provers based on the
size-change termination principle. This connection is discussed in more detail in
Sec. 6.1.

Arithmetic operations on machine-level integers usually allow overflows, e.g.,
the instruction i = i + 1 for a pre-state i = 2k − 1 results in a post-state
i′ = −2k−1 (when represented in two’s-complement), complicating termination
arguments. If termination of the loop depends only on machine-level integers,
there is however a way to simplify the argument:

Observation 3. If T : K ×K is a strict order relation for a finite set K ⊆ S
and is a transition invariant for the program 〈S, I, R〉, then T is well-founded.

Proof. T is a transition invariant, i.e., it holds for all pairs (k1, k2) ∈ K × K.
Thus it is total. Non-empty finite totally-ordered sets always have a least element
and, therefore, T is well-founded. ��

A total strict order relation is also transitive, which gives rise to a criterion
weaker than Theorem 1:

Corollary 1. A program terminates if it has a transition invariant T that is
also a finite strict order relation.

This corollary allows for a selection of invariant candidates that ensures (dis-
junctive) well-foundedness of transition invariants. An explicit check is therefore
not required.

Note that strictly ordered and finite transition invariants exist for many pro-
grams in practice: machine-level integers or strings of fixed length have a finite
number of possible distinct pairs and strict natural or lexicographical orders are
defined for them as well.

88 A. Tsitovich et al.

Table 1. Templates used to generate transition invariant candidates

Constraint Meaning

1 i′ < i
i′ > i

A numeric variable i is strictly decreasing (increas-
ing).

2 x′ < x
x′ > x

Any loop variable x is strictly decreasing (increas-
ing).

3 sum(x′, y′) < sum(x, y)
sum(x′, y′) > sum(x, y)

The sum of all numeric loop variables is strictly de-
creasing (increasing).

4

max(x′, y′) < max(x, y)
max(x′, y′) > max(x, y)
min(x′, y′) < min(x, y)
min(x′, y′) > min(x, y)

The maximum or minimum of all numeric loop vari-
ables is strictly decreasing (increasing).

5

(x′ < x ∧ y′ = y)∨
(x′ > x ∧ y′ = y)∨
(y′ < y ∧ x′ = x)∨
(y′ > y ∧ x′ = x)

A combination of strict increasing or decreasing for
one of loop variables while the remaining ones are
not updated.

5 Evaluation

We have implemented the algorithm described in the previous section in a new
version of the static analyzer LoopFrog [11]. The tool operates on program
models produced by the Goto-CC model extractor; ANSI-C programs are con-
sidered as the primary target.

We implemented a number of domains based on strict orders, thus, following
Corollary 1, additional checks for compositionality and d.wf.-ness of candidate
relations are not required. The domains are listed in Table 1.

The full set of experimental results is available on-line. Here, we only report
the results for the two most illustrative schemata:

– LoopFrog 1: domain #3 in Table 1. Expresses the fact that a sum of
all numeric variables of a loop is strictly decreasing (increasing). This is
the fastest approach, because it generates very few (but large) invariant
candidates per loop;

– LoopFrog 2: domain #1 in Table 1. Expresses strict decreasing (increasing)
for every numeric variable of a loop. This generates twice as many simple
strict orders as there are variables in a loop;

As reference points we use termination provers built upon the CBMC/SatAbs
framework [12]. This tool implements both Compositional Termination Analysis
(CTA) [6] and the Terminator algorithm [2] (referred to as SatAbs+T in all
tables). For both the default ranking function synthesis methods were enabled;
for more details see [5].

Loop Summarization and Termination Analysis 89

We experimented with a large number of ANSI-C programs including:

– The SNU real-time benchmark suite that contains small C programs used
for worst-case execution time analysis1;

– The Powerstone benchmark suite as an example set of C programs for em-
bedded systems [13];

– The Verisec 0.2 benchmark suite [14];
– Windows device drivers (from the Windows Device Driver Kit 6.0).

All experiments were run on an Ubuntu server equipped with a Dual-Core 2GHz
Opteron 2212 CPU and 4GB of memory. The timeout was set to 120 minutes
if an analysis is applied to all loops at once (LoopFrog) or to 60 minutes per
loop (CTA and SatAbs+T).

The results for SNU and Power-Stone are presented in Tables 2 and 3. Each
table reports the number of loops that were proven as terminating (T), po-
tentially non-terminating (NT) and time-out (TO) for each of the compared
techniques. The time column contains the wall-clock time spend for the analysis
of completed loops; time-outs are not included in the total time.

The results for the Verisec 0.2 benchmark suite are given in the aggregated
form in Table 4. The suite consists a large number of stripped C programs that
correspond to known security bugs. Although each program has only very few
loops, the benchmark set offers a large variety of loop types and is therefore
interesting for termination analysis.

The aggregated data on experiments with Windows device drivers is provided
in Table 5. The benchmarks are grouped according to the harness used upon
extraction of a model with Goto-CC.2 We omit results of the Terminator
algorithm for this benchmark set, as a corresponding comparison was already
reported previously [6].

Discussion. Note that direct comparison of the runtime of LoopFrog with
that of iterative techniques like CTA and Terminator is not fair. The latter
methods are complete at least for finite-state programs, relative to the complete-
ness of the ranking synthesis method. Our loop summarization technique, on the
other hand, is a static analysis that only aims at conservative abstractions. In
particular, it does not try to prove unreachability of a loop or of preconditions
that lead to non-termination3.

The timing information provided here serves as a reference that allows to
compare efforts of achieving the same result. In summary, the three techniques
can be compared as follows:

– LoopFrog spends time enumerating invariant candidates, provided by the
chosen abstract domain, and has to check just one loop iteration. Composi-
tionality and d.wf. checks are not required for the domains we use.

1 http://archi.snu.ac.kr/realtime/benchmark/
2 The groups in Table 5 have varying numbers of benchmarks/loops as we omit the

benchmarks without loops.
3 In future, we plan to use a loop-free stem to prove unreachability of certain loop

preconditions.

90 A. Tsitovich et al.

Table 2. SNU real-time benchmark suite

Benchmark Method T NT TO Time

adpcm-test
18 loops

LoopFrog 1 13 5 0 470.052
LoopFrog 2 17 1 0 644.092
CTA 13 3 2 260.982+
SatAbs+T 12 2 4 165.673+

bs
1 loop

LoopFrog 1 0 1 0 0.05
LoopFrog 2 0 1 0 0.118
CTA 0 1 0 12.218
SatAbs+T 0 1 0 18.469

crc
3 loops

LoopFrog 1 1 2 0 0.17
LoopFrog 2 2 1 0 0.255
CTA 1 1 1 0.206+
SatAbs+T 2 1 0 13.878

fft1k
7 loops

LoopFrog 1 2 5 0 0.356
LoopFrog 2 5 2 0 0.668
CTA 5 2 0 141.176
SatAbs+T 5 2 0 116.81

fft1
11 loops

LoopFrog 1 3 8 0 3.68
LoopFrog 2 7 4 0 4.976
CTA 7 4 0 441.937
SatAbs+T 7 4 0 427.355

fibcall
1 loop

LoopFrog 1 0 1 0 0.04
LoopFrog 2 0 1 0 0.016
CTA 0 1 0 0.335
SatAbs+T 0 1 0 0.309

fir
8 loops

LoopFrog 1 2 6 0 2.897
LoopFrog 2 6 2 0 8.481
CTA 6 2 0 2817.08
SatAbs+T 6 1 1 236.702+

insertsort
2 loops

LoopFrog 1 0 2 0 0.054
LoopFrog 2 1 1 0 0.063
CTA 1 1 0 226.446
SatAbs+T 1 1 0 209.12

jfdctint
3 loops

LoopFrog 1 0 3 0 5.612
LoopFrog 2 3 0 0 0.05
CTA 3 0 0 1.24
SatAbs+T 3 0 0 0.975

lms
10 loops

LoopFrog 1 3 7 0 2.863
LoopFrog 2 6 4 0 10.488
CTA 6 4 0 2923.12
SatAbs+T 6 3 1 251.031+

ludcmp
11 loops

LoopFrog 1 0 11 0 96.726
LoopFrog 2 5 6 0 112.808
CTA 3 5 3 3.256+
SatAbs+T 3 8 0 94.657

matmul
5 loops

LoopFrog 1 0 5 0 0.148
LoopFrog 2 5 0 0 0.086
CTA 3 2 0 1.969
SatAbs+T 3 2 0 2.152

minver
17 loops

LoopFrog 1 1 16 0 2.574
LoopFrog 2 16 1 0 7.664
CTA 14 1 2 105.26+
SatAbs+T 14 1 2 87.088+

qsort-exam
6 loops

LoopFrog 1 0 6 0 0.671
LoopFrog 2 0 6 0 3.96
CTA 0 5 1 45.918+
SatAbs+T 0 5 1 2530.58+

select
4 loops

LoopFrog 1 0 4 0 0.548
LoopFrog 2 0 4 0 3.561
CTA 0 3 1 32.599+
SatAbs+T 0 3 1 28.12+

Table 3. PowerStone benchmark suite

Benchmark Method T NT TO Time

adpcm
11 loops

LoopFrog 1 8 3 0 59.655
LoopFrog 2 10 1 0 162.752
CTA 8 3 0 101.301
SatAbs+T 6 2 3 94.449+

bcnt
2 loops

LoopFrog 1 0 2 0 2.634
LoopFrog 2 0 2 0 2.822
CTA 0 2 0 0.79
SatAbs+T 0 2 0 0.299

blit
4 loops

LoopFrog 1 0 4 0 0.155
LoopFrog 2 3 1 0 0.047
CTA 3 1 0 5.945
SatAbs+T 3 1 0 3.672

compress
18 loops

LoopFrog 1 5 13 0 3.134
LoopFrog 2 6 12 0 33.924
CTA 5 12 1 698.996+
SatAbs+T 7 10 1 474.361+

crc
3 loops

LoopFrog 1 1 2 0 0.152
LoopFrog 2 2 1 0 0.208
CTA 1 1 1 0.328+
SatAbs+T 2 1 0 14.583

engine
6 loops

LoopFrog 1 0 6 0 2.397
LoopFrog 2 2 4 0 9.875
CTA 2 4 0 16.195
SatAbs+T 2 4 0 4.877

fir
9 loops

LoopFrog 1 2 7 0 5.993
LoopFrog 2 6 3 0 21.592
CTA 6 3 0 2957.06
SatAbs+T 6 2 1 193.911+

g3fax
7 loops

LoopFrog 1 1 6 0 1.565
LoopFrog 2 1 6 0 6.047
CTA 1 5 1 256.899+
SatAbs+T 1 5 1 206.847+

huff
11 loops

LoopFrog 1 3 8 0 24.368
LoopFrog 2 8 3 0 94.613
CTA 7 3 1 16.353+
SatAbs+T 7 4 0 52.323

jpeg
23 loops

LoopFrog 1 2 21 0 8.366
LoopFrog 2 16 7 0 32.9
CTA 15 8 0 2279.13
SatAbs+T 15 8 0 2121.36

pocsag
12 loops

LoopFrog 1 3 9 0 2.07
LoopFrog 2 9 3 0 6.906
CTA 9 3 0 10.392
SatAbs+T 7 3 2 1557.57+

ucbqsort
15 loops

LoopFrog 1 1 14 0 0.789
LoopFrog 2 2 13 0 2.059
CTA 2 12 1 71.729+
SatAbs+T 9 5 1 51.084+

v42
12 loops

LoopFrog 1 0 12 0 82.836
LoopFrog 2 0 12 0 2587.22
CTA 0 12 0 73.565
SatAbs+T 1 11 0 335.688

Table 4. Aggregated data on Verisec 0.2
suite

Benchmark

group

Method T NT TO Time

244 loops
in 160 pro-
grams

LoopFrog 1 33 211 0 11.381
LoopFrog 2 44 200 0 22.494
CTA 34 208 2 1207.62+
SatAbs+T 40 204 0 4040.53

Columns 3 to 5 state the number of loops proven to terminate (T), possibly non-terminate (NT) and

time-out (TO) for each benchmark. Time is computed only for T/NT loops; ’+’ is used to denote

the resulting time for the cases where at least one time-outed loop was not considered.

Loop Summarization and Termination Analysis 91

Table 5. Aggregated data on Windows device drivers

Benchmark group Method T NT TO Time

SDV FLAT DISPATCH HARNESS
557 loops in 30 benchmarks

LoopFrog 1 135 389 33 1752.08
LoopFrog 2 215 201 141 10584.4
CTA 166 160 231 25399.5

SDV FLAT DISPATCH STARTIO HARNESS
557 loops in 30 benchmarks

LoopFrog 1 135 389 33 1396.01
LoopFrog 2 215 201 141 9265.81
CTA 166 160 231 28033.3

SDV FLAT HARNESS
635 loops in 45 benchmarks

LoopFrog 1 170 416 49 1323
LoopFrog 2 239 205 191 6816.37
CTA 201 186 248 31003.2

SDV FLAT SIMPLE HARNESS
573 loops in 31 benchmarks

LoopFrog 1 135 398 40 1510
LoopFrog 2 200 191 182 6813.99
CTA 166 169 238 30292.7

SDV HARNESS DRIVER CREATE
9 loops in 5 benchmarks

LoopFrog 1 1 8 0 0.135
LoopFrog 2 1 8 0 0.234
CTA 1 8 0 151.846

SDV HARNESS PNP DEFERRED IO REQUESTS
177 loops in 31 benchmarks

LoopFrog 1 22 98 57 47.934
LoopFrog 2 66 54 57 617.41
CTA 80 94 3 44645

SDV HARNESS PNP IO REQUESTS
173 loops in 31 benchmarks

LoopFrog 1 25 94 54 46.568
LoopFrog 2 68 51 54 568.705
CTA 85 86 2 15673.9

SDV PNP HARNESS SMALL
618 loops in 44 benchmarks

LoopFrog 1 172 417 29 8209.51
LoopFrog 2 261 231 126 12373.2
CTA 200 177 241 26613.7

SDV PNP HARNESS
635 loops in 45 benchmarks

LoopFrog 1 173 426 36 7402.23
LoopFrog 2 261 230 144 13500.2
CTA 201 186 248 41566.6

SDV PNP HARNESS UNLOAD
506 loops in 41 benchmarks

LoopFrog 1 128 355 23 8082.51
LoopFrog 2 189 188 129 13584.6
CTA 137 130 239 20967.8

SDV WDF FLAT SIMPLE HARNESS
172 loops in 18 benchmarks

LoopFrog 1 27 125 20 30.281
LoopFrog 2 61 91 20 201.96
CTA 73 95 4 70663

– CTA spends time 1) unwinding loop iterations, 2) discovering a ranking func-
tion for each unwound program fragment and 3) checking compositionality
of a discovered relation.

– Terminator spends time 1) enumerating paths through the loop and 2) dis-
covering a ranking function for each path.

The techniques can greatly vary in the time required for a particular loop or
program. CTA and Terminator give up on a loop once a they hit a path
on which ranking synthesis fails. LoopFrog gives up on a loop if it runs out
of transition invariant candidates to try. Given a large number of candidates,
this behavior results in an advantage for Terminator on loops that cannot be
shown to terminate (huff and engine in Table 3). However, we observe in almost
every other test that the LoopFrog technique is generally cheaper (often orders
of magnitude) in computational effort required to discover a valid termination
argument.

The comparison demonstrates some weak points of iterative analysis:

– Enumeration of paths through the loop can require many iterations or even
can be non-terminating for infinite state systems (as are many realistic
programs).

92 A. Tsitovich et al.

– Ranking procedures often fail to produce a ranking argument; the same time
if successful, a simpler relation could be sufficient as well.

– CTA suffers from the fact that the search for a compositional transition in-
variant sometimes results in exponential growth of the loop unrolling depth.

LoopFrog does not suffer from at least the first of these problems: the analysis
of each loop requires a finite number of calls to a decision procedure. The second
issue is leveraged by relative simplicity of adding new abstract domains over
implementing complex ranking function methods. The third issue is transformed
into the generation of suitable candidate invariants, which, in general, may result
in a large number candidates, which slow the procedure down. However, as we
can control the ordering of the candidates by prioritizing some domains over the
others, simple ranking arguments can be expected to be discovered early.

The complete results of the experiments as well as the LoopFrog tool are
available at www.verify.inf.usi.ch/loopfrog/termination

6 Related Work

Although the field of program termination analysis is mature (the first results
date back to Turing [15]), recent years have seen a tremendous increase in prac-
tical applications of termination proving. Two directions of research contributed
to the efficacy of termination provers in practice:

– the size-change termination principle (SCT) presented by Lee, Jones and
Ben-Amram [16], and

– transition invariants by Podelski and Rybalchenko [1],

where the former has its roots in previous research on termination of declara-
tive programs. Until very recently, these two lines of research did not intersect
much. The first systematic attempt to understand their connections is a recent
publication by Heizmann et al. [17].

6.1 Relation to Size-Change Termination Principle

Termination analysis based on the SCT principle usually involves two steps:

1. construction of an abstract model of the original program in the form of
size-change graphs (SC-graphs) and

2. analysis of the SC-graphs for termination.

SC-graphs contain abstract program values as nodes and use two types of edges,
along which values of variables must decrease, or decrease or stay the same. No
edge between nodes means that none of the relations can be ensured. Graphs
G which are closed under composition with itself are called idempotent, i.e.,
G; G = G.4

4 In this discussion we omit introducing the notation necessary for a formal description
of SCT; see Lee et al. [16,17] for more detail.

Loop Summarization and Termination Analysis 93

Lee et al. [16] identify two termination criteria based on a size-change graph:

1. The SC-graph is well-founded, or
2. the idempotent components of an SC-graph are well-founded.

An SC-graph can be related to transition invariants as follows. Each sub-graph
corresponds to a conjunction of relations, which constitutes a transition invariant.
The whole graph forms a disjunction, resulting in a termination criterion very simi-
lar to that presented as Theorem 1: if an SC-graph is well-founded then there exists
a d.wf. transition invariant. Indeed, Heizmann et al. identify the SCT termination
criterion as strictly stronger than the argument via transition invariants [17]. An
intuitive argument is that SC-graphs abstract from the reachability of states in a
program, i.e., arguments based on SC-graphs require termination of all paths ir-
respectively of whether those paths are reachable or not. Transition invariants, on
the other hand, require the computation of the reachable states of the program.
In this respect, our light-weight analysis is closely related to SCT, as it havocs the
input to individual loop iterations before checking a candidate transition invariant.

The domains of SC-graphs correspond to abstract domains in our approach.
The initial inspiration for the domains we experimented with comes from a recent
survey on ranking functions for SCT [18]. The domains #1–4 in Table 1 encode
those graphs with only down-arcs. Domain #5 has down-arcs and edges that
preserve the value. However, note that, in order to avoid costly well-foundedness
checks, we omit domains that have mixed edge types.

Program abstraction using our loop summarization algorithm can be seen as
construction of size-change graphs. The domains suggested in Sec. 4 result in
SC-graphs that are idempotent and well-founded by construction.

Another similarity to SCT relates to the second SCT criterion based on idem-
potent SC-components. In [17], the relation of idempotency to analyses using
transition invariants was stated as an open question. We remark that there
is a close relation between the idempotent SC-components and compositional
transition invariants (Definition 5) used here and in compositional termination
analysis [6]. The d.wf. transition invariant constructed from idempotent graphs
is also a compositional transition invariant.

6.2 Relation to Other Research Using Transition Invariants

The work in this paper is a continuation of the research on proving termination
using transition invariants initiated by Podelski and Rybalchenko [1]. Methods
developed on the basis of transition invariants rely on an iterative, abstraction
refinement-like construction of d.wf. transition invariants [2,3,5,6]. Our approach
differs in that it aims to construct a d.wf. transition invariant without refinement.
Instead of applying ranking function discovery for every non-ranked path, we use
abstract domains that express ranking arguments for all paths at the same time.

Chawdhary et al. [9] propose a termination analysis using a combination of
fixpoint-based abstract interpretation and an abstract domain of disjunctively
well-founded relations. The abstract domain they suggest is of the same form
as domain #5 in Table 1. However, their method performs an iterative com-
putation of the set of abstract values and has a fixpoint detection of the form

94 A. Tsitovich et al.

T ⊆ R+, while in our approach it is sufficient to check T ⊆ R, combined with
the compositionality criterion. This allows a richer set of abstract domains to be
applied for summarization, as the resulting satisfiability problems are low-cost.

Dams et al. [19] present a set of heuristics for inferring candidate ranking
relations from a program. These heuristics can be seen as abstract domains in
our framework. Moreover, we also show how candidate relations can be checked
effectively using SAT/SMT.

Cook et al. [20] use relational predicates to extend the framework of Reps et
al. [21] to support termination properties during computation of inter-procedural
program summaries. Our approach shares a similar motivation and adds termi-
nation support to loop summarization based on abstract domains. However, we
concentrate on scalable non-iterating methods to construct the summary while
Cook et al. [20] rely on a refinement-based approach. The same argument applies
in the case of Balaban et al.’s framework [22] for procedure summarization with
support for liveness properties.

Berdine et al. [10] use the Octagon and Polyhedra abstract domains to discover
invariance constraints sufficient to ensure termination. Well-foundedness checks,
which we identify as an expensive part of the analysis, are left to iterative verifica-
tion by an external procedure as in the Terminator algorithm [3] and CTA [6].
In contrast to these methods, our approach relies on abstract domains that yield
well-founded relations by construction and therefore do not require explicit checks.

7 Conclusion and Future Work

In this paper, we present an extension to a loop summarization algorithm such
that it correctly handles termination properties while constructing a loop-free
program over-approximation. To that end, we employ abstract domains that
encode transition invariants, i.e., relations over pre- and post-states of the sum-
marized loop. Termination of loops may be established at the same time, by
checking disjunctive well-foundedness of the discovered transition invariants. We
demonstrate the practicality of our approach on a large set of benchmarks in-
cluding open-source programs and Windows device drivers.

Further research includes an investigation of abstract domains that allow ef-
fective summarization with termination support. We are especially interested in
encoding forms of Size-Change-Graphs into schemata for generating candidate
invariants.

References

1. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE
Computer Society, Los Alamitos (2004)

2. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

3. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, pp. 415–426. ACM, New York (2006)

Loop Summarization and Termination Analysis 95

4. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2006)

5. Cook, B., Kroening, D., Ruemmer, P., Wintersteiger, C.: Ranking function syn-
thesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

6. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-
ysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

7. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using abstract transformers. In: Cha, S(S.), Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125.
Springer, Heidelberg (2008)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

9. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions.
In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 148–162. Springer, Heidel-
berg (2008)

10. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance analyses
from invariance analyses. SIGPLAN Not. 42(1), 211–224 (2007)

11. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.:
Loopfrog: A static analyzer for ANSI-C programs. In: The 24th IEEE/ACM In-
ternational Conference on Automated Software Engineering, pp. 668–670. IEEE
Computer Society, Los Alamitos (2009)

12. Clarke, E., Kröning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

13. Scott, J., Lee, L.H., Arends, J., Moyer, B.: Designing the low-power M*CORE
architecture. In: Proc. IEEE Power Driven Microarchitecture Workshop (1998)

14. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: ASE 2007, pp. 389–392. ACM Press, New York (2007)

15. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67–69. Univ. Math. Lab., Cambridge (1949)

16. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92. ACM, New York (2001)

17. Heizmann, M., Jones, N., Podelski, A.: Size-change termination and transition
invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 22–
50. Springer, Heidelberg (2010)

18. Ben-Amram, A.M., Lee, C.S.: Ranking functions for size-change termination II.
Logical Methods in Computer Science 5(2) (2009)

19. Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of
ranking functions. In: Workshop on Advances in Verification, pp. 1–8 (2000)

20. Cook, B., Podelski, A., Rybalchenko, A.: Summarization for termination: no return!
Formal Methods in System Design 35(3), 369–387 (2009)

21. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Symposium on Principles of Programming Languages
(POPL), pp. 49–61. ACM, New York (1995)

22. Balaban, I., Cohen, A., Pnueli, A.: Ranking abstraction of recursive programs. In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 267–281.
Springer, Heidelberg (2005)

Off-Line Test Selection with Test Purposes for
Non-deterministic Timed Automata�

Nathalie Bertrand1, Thierry Jéron1, Amélie Stainer1, and Moez Krichen2

1 INRIA Rennes - Bretagne Atlantique, Rennes, France
2 Institute of Computer Science and Multimedia, Sfax, Tunisia

Abstract. This paper proposes novel off-line test generation techniques
for non-deterministic timed automata with inputs and outputs (TAIOs)
in the formal framework of the tioco conformance theory. In this con-
text, a first problem is the determinization of TAIOs, which is necessary
to foresee next enabled actions, but is in general impossible. This problem
is solved here thanks to an approximate determinization using a game
approach, which preserves tioco and guarantees the soundness of gen-
erated test cases. A second problem is test selection for which a precise
description of timed behaviors to be tested is carried out by expressive
test purposes modeled by a generalization of TAIOs. Finally, using a
symbolic co-reachability analysis guided by the test purpose, test cases
are generated in the form of TAIOs equipped with verdicts.

Keywords: Conformance testing, timed automata, partial observabil-
ity, urgency, approximate determinization, game, test purpose.

1 Introduction

Conformance testing is the process of testing whether an implementation be-
haves correctly with respect to a specification. Implementations are considered
as black boxes, i.e. the source code is unknown, only their interface with the en-
vironment is known and used to interact with the tester. In formal model-based
conformance testing models are used to describe testing artifacts (specifications,
implementations, test cases, ...), conformance is formally defined and test cases
with verdicts are generated automatically. Then, the quality of testing may be
characterized by properties of test cases which relate the verdicts of their execu-
tions with conformance (e.g. soundness). For timed models, model-based confor-
mance testing has already been explored in the last decade, with different models
and conformance relations (see e.g. [16] for a survey), and test generation algo-
rithms (e.g. [6,14,15]). In this context, a very popular model is timed automata
with inputs and outputs (TAIOs), a variant of timed automata (TAs) [1], in which
observable actions are partitioned into inputs and outputs. We consider here par-
tially observable and non-deterministic TAIOs with invariants for the modeling
of urgency.
� This work was partly funded by the french ANR project Testec. An extended version

of the paper with full proofs is available as a technical report[4].

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 96–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Off-Line Test Selection with Test Purposes 97

One of the main difficulties encountered in test generation for TAIOs is de-
terminization, which is impossible in general, as for TAs [1], but is required in
order to foresee the next enabled actions during execution and to emit a cor-
rect verdict. Two different approaches have been taken for test generation from
timed models, which induce different treatments of non-determinism. In off-line
test generation test cases are first generated as TAs (or timed sequences, trees,
or timed transition systems) and subsequently executed on the implementation.
Test cases can then be stored and further used e.g. for regression testing and doc-
umentation. However, due to the non-determinizability of TAIOs, the approach
has often been limited to deterministic or determinizable TAIOs (see e.g. [12,15]),
except in [14] where the problem is solved by the use of an over-approximate
determinization with fixed resources, or [8] where winning strategies of timed
games are used as test cases. In on-line test generation, test cases are generated
during their execution, thus can be applied to any TAIO as only possible ob-
servable actions are computed along the current finite execution, thus avoiding
a complete determinization. This is of particular interest to rapidly discover er-
rors, but may sometimes be impracticable due to a lack of reactivity (the time
needed to compute successor states on-line may sometimes be incompatible with
delays).

In this paper, we propose to generate test cases off-line for non-deterministic
TAIOs, in the formal context of the tioco conformance theory. The determiniza-
tion problem is tackled thanks to an approximate determinization with fixed
resources in the spirit of [14], using a game approach [5]. Determinization is ex-
act for known classes of determinizable TAIOs (e.g. event-clock TAs, TAs with
integer resets, strongly non-Zeno TAs) if resources are sufficient. In the gen-
eral case, approximate determinization guarantees soundness of generated test
cases by producing a deterministic io-abstraction of the TAIO for a particular
io-refinement relation, generalizing the io-refinement of [7]. Our method is more
precise than [14] (see [5] for details) and preserves the richness of our model by
dealing with partial observability and urgency. Behaviors of specifications to be
tested are identified by means of test purposes defined as open timed automata
with inputs and outputs (OTAIOs), a model generalizing TAIOs, allowing to pre-
cisely describe behaviors according to actions and clocks of the specification as
well as proper clocks. Then, in the same spirit as for the TGV tool in the untimed
case [11], test selection is performed by a co-reachability analysis, producing a
test case in the form of a TAIO. To our knowledge, this work constitutes the
most general and advanced off-line test selection approach for TAIOs.

The paper is structured as follows. In the next section we introduce the model
of OTAIOs, its semantics, some notations and operations. Section 3 recalls the
tioco conformance theory including expected properties relating conformance
and verdicts, and an io-refinement relation preserving tioco. Section 4 presents
our game approach for the approximate determinization compatible with the
io-refinement. In Section 5 we detail the test selection mechanism using test
purposes and prove some properties on generated test cases.

98 N. Bertrand et al.

2 A Model of Open Timed Automata with
Inputs/Outputs

Timed automata (TAs) [1] is a usual model for time constrained systems. In
the context of model-based testing, TAs have been extended to timed automata
with inputs and outputs (TAIOs) whose sets of actions are partitioned into
inputs, outputs and unobservable actions. In this section, we further extend
TAIOs into the model of open timed automata with inputs/outputs (OTAIOs for
short), by partitioning the set of clocks into proper and observed clocks. While
the submodel of TAIOs (with only proper clocks) is sufficient for most testing
artifacts, observed clocks of OTAIOs will be useful to express test purposes whose
aim is to focus on the timed behavior of the specification. Like in [1] for TAs,
we consider OTAIOs and TAIOs with location invariants to model urgency.

2.1 Open Timed Automata with Inputs/Outputs

We start by introducing notations and definitions concerning TAIOs and
OTAIOs.

Given X a finite set of clocks, and R≥0 the set of non-negative real numbers, a
clock valuation is a mapping v : X → R≥0. If v is a valuation over X and t ∈ R,
then v + t denotes the valuation which assigns to every clock x ∈ X the value
v(x) + t. For X ′ ⊆ X we write v[X′←0] for the valuation equal to v on X \X ′
and assigning 0 to all clocks of X ′.

Given M a non-negative integer, an M -bounded guard (or simply guard) over
X is a finite conjunction of constraints of the form x ∼ c where x ∈ X, c ∈
[0,M]∩N and ∼∈ {<,≤,=,≥, >}. Given g a guard and v a valuation, we write
v |= g if v satisfies g. We abuse notations and write g for the set of valuations
satisfying g. Invariants are restricted cases of guards: given M ∈ N, an M -
bounded invariant over X is a finite conjunction of constraints of the form x� c
where x ∈ X, c ∈ [0,M] ∩ N and � ∈ {<,≤}. We denote by GM (X) (resp.
IM (X)) the set of M -bounded guards (resp. invariants) over X .

Definition 1 (OTAIO). An open timed automaton with inputs and outputs
(OTAIO) is a tuple A = (LA, �A0 , Σ

A
? , Σ

A
! , Σ

A
τ , X

A
p , X

A
o ,M

A, IA, EA) such that:

– LA is a finite set of locations, with �A0 ∈ LA the initial location,
– ΣA

? , ΣA
! and ΣA

τ are disjoint finite alphabets of input actions (noted
a?, b?, . . .), output actions (noted a!, b!, . . .), and internal actions (noted
τ1, τ2, . . .). We note ΣA

obs = ΣA
? 	 ΣA

! (where 	 denotes the disjoint union)
for the alphabet of observable actions, and ΣA = ΣA

? 	ΣA
! 	ΣA

τ for the whole
set of actions.

– XA
p and XA

o are disjoint finite sets of proper clocks and observed clocks,
respectively. We note XA = XA

p 	XA
o for the whole set of clocks.

– MA ∈ N is the maximal constant of A, and we will refer to (|XA|,MA) as
the resources of A,

Off-Line Test Selection with Test Purposes 99

�0

�1 �2 �3 �4

�5 �6 �7 �8

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Fig. 1. Specification A

– IA : LA → IMA(XA) is a mapping labeling each location with an invariant,
– EA ⊆ LA×GMA(XA)×ΣA×2X

A
p ×LA is a finite set of edges where guards

are defined on XA, but resets are restricted to proper clocks in XA
p .

The reason for introducing the OTAIO model is to have a unique model (syntax
and semantics) that will be next specialized for particular testing artifacts. In par-
ticular, an OTAIO with an empty set of observed clocks XA

o is a classical TAIO,
and will be the model for specifications, implementations and test cases. For ex-
ample, Fig. 1 represents such a TAIO for a specification A with clock x, input a,
output b and internal action τ . The partition of actions reflects their roles in the
testing context: the environment cannot observe internal actions, but controls in-
puts and observes outputs (and delays). The set of clocks is also partitioned into
proper clocks, i.e. usual clocks controlled by A, and observed clocks referring to
proper clocks of another OTAIO. These cannot be reset to avoid intrusiveness,
but synchronization with them in guards and invariants is allowed. In particular,
test purposes have observed clocks which observe proper clocks of specifications
in order to describe time constrained behaviors to be tested.

2.2 The Semantics of OTAIOs

The semantics of an OTAIO A = (LA, �A0 , Σ
A
? , Σ

A
! , Σ

A
τ , X

A
p , X

A
o ,M

A, IA, EA) is
a timed transition system T A = (SA, sA0 , Γ

A,→A) where SA = LA × R
XA
≥0 is

the set of states i.e. pairs (�, v) consisting in a location and a valuation of clocks;
sA0 = (�A0 , 0) ∈ SA is the initial state; ΓA = R≥0	EA×2X

A
o is the set of transition

labels consisting in either a delay δ or a pair (e,X ′o) formed by an edge and a set
of observed clocks; the transition relation →A⊆ SA × ΓA × SA is the smallest
set of the following moves:

– Discrete moves: (�, v)
(e,X′

o)−→A (�′, v′) whenever there exists e =
(�, g, a,X ′p, �

′) ∈ EA such that v |= g ∧ IA(�), X ′o ⊆ XA
o is an arbitrary

subset of observed clocks, v′ = v[X′
p�X′

o←0] and v′ |= IA(�′). Note that X ′o is
unconstrained as observed clocks are controlled by another OTAIO.

– Time elapse: (�, v) δ−→A (�, v + δ) for δ ∈ R≥0 if v + δ |= IA(�).

A partial run of A is a finite sequence of subsequent moves in (SA × ΓA)∗.SA.

100 N. Bertrand et al.

For example ρ = s0
δ1−→A s′0

(e1,X
1
o)−→A s1 · · · sk−1

δk−→A s′k−1

(ek,X
k
o)−→A sk. The sum

of delays in ρ is noted time(ρ). A run is a partial run starting in sA0 . Run(A) and
pRun(A) denote respectively runs and partial runs of A. A state s is reachable
if there exists a run leading to s. A state s is co-reachable from a set S′ ⊆ SA

if there is a partial run from s to a state in S ′. We note reach(A) the set of
reachable states and coreach(A, S′) the set of states co-reachable from S′.

A (partial) sequence is a projection of a (partial) run where states are forgot-
ten, and discrete transitions are abstracted to actions and proper resets which are
grouped with observed resets. The sequence corresponding to a run ρ = s0

δ1−→A

s′0
(e1,X

1
o)−→A s1 · · · sk−1

δk−→A s′k−1

(ek,X
k
o)−→A sk is μ = δ1.(a1, X

1
p 	X1

o) · · · δk.(ak, Xk
p 	

Xk
o) where ∀i ∈ [1, k], ei = (�i, gi, ai, X i

p, �
′
i). We then note sA0

μ−→A sk. We
write sA0

μ−→A for ∃sk, sA0
μ−→A sk. We note Seq(A) ⊆ (R≥0 	 (ΣA × 2X

A
))∗

(respectively pSeq(A)) the set of sequences (resp. partial sequences) of A. For
a sequence μ, time(μ) denotes the sum of delays in μ. For μ ∈ pSeq(A),
Trace(μ) ∈ (R≥0 	 ΣA

obs)
∗.R≥0 denotes the observable timed word obtained

by erasing internal actions and summing delays between observable ones. It
is defined inductively as follows: Trace(ε) = 0, Trace((τ,X).μ) = Trace(μ),
Trace(δ1 . . . δk) = Σk

i=1δi and Trace(δ1 . . . δk.(a,X ′).μ) = (Σk
i=1δi).a.T race(μ)

if a ∈ ΣA
obs. For example Trace(1.(τ,X1).2.(a,X2).2.(τ,X3)) = (3, a).2 and

Trace(1.(τ,X1).2.(a,X2)) = (3, a).0. For a run ρ projecting onto a sequence μ,
we write Trace(ρ) for Trace(μ). The set of traces of runs of A is denoted by
Traces(A) ⊆ (R≥0 	 ΣA

obs)
∗.R≥0. Two OTAIOs with same sets of traces are said

equivalent.
Let σ ∈ (R≥0 	ΣA

obs)
∗.R≥0 be an observable timed word, and s ∈ SA a state,

A afterσ = {s ∈ SA | ∃μ ∈ Seq(A), sA0
μ−→A s ∧ trace(μ) = σ} denotes the

set of states where A can stay after observing the trace σ. We note elapse(s) =
{t ∈ R≥0 | s t−→A} the set of possible delays in s, and out(s) = {a ∈ ΣA

! |
∃X ⊆ XA, s

(a,X)−→A} 	 elapse(s) (and in(s) = {a ∈ ΣA
? | s

(a,X)−→A}) for the set
of outputs and delays (respectively inputs) that can be observed from s. For
S′ ⊂ SA, out(S ′) =

⋃
s∈S′ out(s) and in(S′) =

⋃
s∈S′ in(s).

2.3 Properties and Operations

An TAIO A is deterministic (and called a DTAIO) whenever for any σ ∈
Traces(A), sA0 afterσ is a singleton1. A TAIO A is determinizable if there exists
an equivalent DTAIO. It is well-known that some TAs are not determinizable [1];
moreover, the determinizability of TAs is an undecidable problem, even with
fixed resources [18,10].

An OTAIO A is complete if in any location �, IA(�) = true, for any action
a ∈ ΣA, the disjunction of guards of transitions leaving � and labeled by a is true.

1 The notion of determinism is needed here and defined only for TAIOs. For OTAIOs
the right definition would consider the projection of sA0 afterσ which forgets values
of observed clocks, as these introduce “environmental” non-determinism.

Off-Line Test Selection with Test Purposes 101

This entails Traces(A) = (ΣA)∗ (the universal language). A is input-complete in
s ∈ reach(A), if ∀a ∈ ΣA

? , s a→. A is non-blocking if ∀s ∈ reach(A), ∀t ∈
R≥0, ∃μ ∈ pSeq(A) ∩ (R≥0 	 (ΣA

! 	ΣA
τ)× 2X

A
))∗, time(μ) = t ∧ s μ→.

We now define a product operation on OTAIOs which extends the classical
product of TAs, with a particular attention to observed clocks:

Definition 2 (Product). The product of two OTAIOs with same alphabets
Ai = (Li, �i

0, Σ?, Σ!, Στ , X
i
p, X

i
o,M

i, Ii, Ei), i = 1, 2, and disjoint sets of proper
clocks (X1

p∩X2
p = ∅) is the OTAIO A1×A2 = (L, �0, Σ?, Σ!, Στ , Xp, Xo,M, I, E)

where: L = L1 × L2; �0 = (�10, �
2
0); Xp = X1

p 	 X2
p, Xo = (X1

o ∪ X2
o) \ Xp;

M = max(M 1,M 2); ∀(�1, �2) ∈ L, I((�1, �2)) = I1(�1) ∧ I2(�2); and
((�1, �2), g1 ∧ g2, a,X ′1p 	X ′2p , (�′1, �′2)) ∈ E if (�i, gi, a,X ′ip , �

′i) ∈ Ei, i=1,2.

Intuitively, A1 and A2 synchronize on both time and common actions (including
internal ones). A2 may observe proper clocks of A1 with its observed clocks
X1
o ∩ X2

p, and vice versa. The set of proper clocks of A1 × A2 is the union of
proper clocks of A1 and A2, and observed clocks are those observed clocks of one
OTAIO that are not proper. For example, the OTAIO in Fig. 3 represents the
product of the TAIO A in Fig. 1 and the OTAIO T P of Fig. 2.

The product is the right operation for intersecting sets of sequences. In fact,
let A1↑(X2

p ,X
2
o) (respectively A2↑(X1

p,X
1
o)) denote the same TAIO A1 (resp. A2)

defined on (X1
p, X

2
p ∪X2

o ∪X1
o \X1

p) (resp. on (X2
p, X

1
p ∪X2

o ∪X2
o \X2

p)). Then
we get: Seq(A1 ×A2) = Seq(A1↑(X2

p,X
2
o)) ∩ Seq(A2↑(X1

p ,X
1
o)).

An OTAIO equipped with a set of states F ⊆ SA can play the role of an
acceptor. RunF (A) denotes the set of runs accepted in F , those runs ending in
F , SeqF (A) denotes the set of sequences of accepted runs and TracesF (A) the set
of their traces. By abuse of notation, if L is a subset of locations LA, we write
RunL(A) for Run

L×R
XA
≥0

(A) and similarly for SeqL(A) and TracesL(A). Note

that for the product A1 × A2, if F 1 and F 2 are subsets of states of A1 and A2

respectively, we get: SeqF 1×F2(A1×A2) = SeqF 1(A1↑X2
p ,X

2
o)∩SeqF 2(A2↑X1

p ,X
1
o).

3 Conformance Testing Theory

In this section, we recall the conformance relation tioco [14], that formally de-
fines the set of correct implementations of a given TAIO specification. We then
define test cases, formalize their executions, verdicts and expected properties.
Finally, we introduce a refinement relation between TAIOs that preserves tioco.

3.1 The tioco Conformance Theory

We consider that the specification is given as a (possibly non-deterministic)
TAIO A = (LA, �A0 , Σ?, Σ!, Στ , X

A
p , ∅,MA, IA, EA). The implementation is a

black box, unknown except for its alphabet of observable actions, which is the
same as the one of A. As usual, in order to formally reason about conformance,
we assume that the implementation can be modeled by an (unknown) TAIO
I = (LI, �I0 , Σ?, Σ!, Σ

I
τ , X

I
p , ∅,MI, II, EI) with same observable alphabet as A,

102 N. Bertrand et al.

and require that it is input-complete and non-blocking. The set of such possible
implementations of A is denoted by I(A). Among these, the conformance rela-
tion tioco [14] formally defines which ones conform to A, naturaly extending
the ioco relation of Tretmans [17] to timed systems:

Definition 3 (Conformance relation). Let A be a TAIO and I ∈ I(A),
I tioco A if ∀σ ∈ Traces(A), out(I afterσ) ⊆ out(A afterσ).

Intuitively, I conforms to A (I tiocoA) if after any timed trace enabled in A,
every output or delay of I is specified in A. In practice, conformance is checked
by test cases run on implementations. In our setting, we define test cases as
deterministic TAIOs equipped with verdicts defined by a partition of states.

Definition 4 (Test case, test suite). Given a specification TAIO A, a test
case for A is a pair (T C,Verdicts) consisting of a deterministic TAIO (DTAIO)
T C = (LT C, �T C

0 , ΣT C

? , ΣT C

! , ΣT C
τ , XT C

p , ∅,MT C , IT C, ET C) together with a parti-
tion Verdicts of the set of states ST C = None	Inconc	Pass	Fail. States out-
side None are called verdict states. We require that ΣT C

? = ΣA
! and ΣT C

! = ΣA
? ,

IT C(�) = true for all � ∈ LT C, and T C is input-complete in all None states,
meaning that it is ready to receive any input from the implementation before
reaching a verdict. A test suite is a set of test cases.

The verdict of an execution σ ∈ Traces(T C), noted Verdict(σ, T C), is Pass,
Fail, Inconc or None if T C afterσ is included in the corresponding states
set. We note I fails TC if some execution σ of T C‖I leads T C to a Fail state,
i.e. when TracesFail(T C)∩Traces(I) �= ∅ 2. Notice that this is only a possibility
to reach the Fail verdict among the infinite set of executions.

We now introduce soundness, a crucial property ensured by our test generation
method and strictness that will be ensured when determinization is exact.

Definition 5 (Test case properties). A test suite T S for A is sound if no
conformant implementation is rejected by the test suite i.e. ∀I ∈ I(A), ∀T C ∈
T S, I fails T C ⇒ ¬(I tioco A). It is strict if non-conformance is detected as
soon as it occurs i.e. ∀I ∈ I(A), ∀T C ∈ T S,¬(I‖T C tioco A)⇒ I fails T C.

3.2 Refinement Preserving tioco

We introduce an io-refinement relation between TAIOs, a generalization to non-
deterministic TAIOs of the io-refinement between DTAIOs introduced in [7],
itself a generalization of alternating simulation [2]. We prove that io-abstraction
(the inverse relation) preserves tioco: if I conforms to A, it also conforms to any
io-abstraction B of A. This will ensure that soundness of test cases is preserved
by the approximate determinization defined in Section 4.

2 The execution of a test case T C on an implementation I is usually modeled by the
standard parallel composition T C‖I. Due to space limitations, ‖ is not defined here,
but we use its trace properties: Traces(I‖T C) = Traces(I) ∩ Traces(T C).

Off-Line Test Selection with Test Purposes 103

Definition 6. Let A and B be two TAIOs with same input and output alphabets,
we say that A io-refines B (or B io-abstracts A) and note A � B if

(i) ∀σ ∈ Traces(B), out(A afterσ) ⊆ out(B afterσ) and
(ii) ∀σ ∈ Traces(A), in(B afterσ) ⊆ in(A afterσ).

It can be proved that � is a preorder relation. Moreover, as (ii) is always satisfied
if A is input-complete, for I ∈ I(A), I tioco A is equivalent to I � A. By
transitivity of �, Proposition 1 states that io-refinement preserves conformance.
Its Corollary 1 says that io-abstraction preserves soundness of test suites and
will later justify that if a TAIO B io-abstracting A is obtained by approximate
determinization, a sound test suite generated from B is still sound for A.

Proposition 1. If A � B then ∀I ∈ I(A) (= I(B)), I tioco A ⇒ I tioco B.

Corollary 1. If A � B then any sound test suite for B is also sound for A.

4 Approximate Determinization Preserving tioco

We recently proposed a game approach to determinize or provide a deterministic
over-approximation for TAs [5]. Determinization is exact on all known classes
of determinizable TAIOs (e.g. event-clock TAs, TAs with integer resets, strongly
non-Zeno TAs) if resources are sufficient. Provided a couple of extensions, this
method can be adapted to the context of testing for building a deterministic io-
abstraction of a given TAIO. Thanks to Proposition 1, the construction preserves
tioco, and Corollary 1 guarantees the soundness of generated test cases.

The approximate determinization uses the classical region construction [1].
As for classical TAs, the regions form a partition of valuations over a given
set of clocks which allows to make abstractions and decide properties like the
reachability of a location. We note Reg(X,M) the set of regions over clocks X
with maximal constant M . A region r′ is a time-successor of a region r if ∃v ∈
r, ∃t ∈ R≥0, v+t ∈ r′. Given X and Y two finite sets of clocks, a relation between
clocks of X and Y is a finite conjunction C of atomic constraints of the form
x − y ∼ c where x ∈ X, y ∈ Y, ∼∈ {<,=, >} and c ∈ N. When c ∈ [−M ′,M],
for M,M ′ ∈ N, RelM,M ′(X,Y) we denote the set of relations between X and Y .

4.1 A Game Approach to Determinize Timed Automata

The technique presented in [5] applies first to TAs, i.e. the alphabet only consists
of one kind of actions (output actions), and the invariants are all trivial. Given
such a TA A over the set of clocks XA, the goal is to build a deterministic TA
B with Traces(A) = Traces(B) as often as possible, or Traces(A) ⊆ Traces(B).
In order to do so, resources of B (number of clocks k and maximal constant
MB) are fixed, and a finite 2-player turn-based safety game GA,(k,MB) is built.
The two players, Spoiler and Determinizator, alternate moves, the objective of
player Determinizator being to remain in a set of safe states where intuitively,
for sure no over-approximation has been performed. Every strategy for Deter-
minizator yields a deterministic automaton B with Traces(A) ⊆ Traces(B), and

104 N. Bertrand et al.

every winning strategy induces a deterministic TA B equivalent to A. It is well
known that for this kind of games, winning strategies can be chosen positional
and computed in linear time in the size of the arena.

Let us now give more details on the definition of the game. Let XB be a set of
clocks of cardinality k. The initial state of the game is a state of Spoiler consisting
of the initial location of A, the simplest relation between XA and XB: ∀x ∈
XA, ∀y ∈ XB, x − y = 0, a marking � indicating that no over-approximation
was done so far, together with the null region over XB. In each of his states,
Spoiler challenges Determinizator by proposing a region r ∈ Reg(XB,MB), and an
action a ∈ Σ. Determinizator answers by deciding the subset of clocks Y ′ ⊆ XB

he wishes to reset. The next state of Spoiler contains a region over XB (r′ =
r[Y ′←0]), and a finite set of configurations: triples formed of a location of A,
a relation between clocks in XA and clocks in XB, and a boolean marking (�
or ⊥). A state of Spoiler thus constitutes a states estimate of A, and the role
of the markings is to indicate whether over-approximations possibly happened.
Bad states Determinizator wants to avoid are states where all configurations are
marked ⊥, i.e. configurations where an approximation possibly happened.

A strategy for Determinizator thus assigns to each state of Determinizator a
set Y ′ ⊆ XB of clocks to be reset. With every strategy for Determinizator Π
we associate the TA B = Aut(Π) obtained by merging a transition of Spoiler
with the transition chosen by Determinizator just after. The following theorem
links strategies of Determinizator with deterministic over-approximations of the
original traces language and enlightens the interest of the game:

Theorem 1 ([5]). Let A be a TA, k,MB ∈ N. For any strategy Π of Deter-
minizator in GA,(k,MB), B = Aut(Π) is a deterministic TA over resources (k,MB)
with Traces(A) ⊆ Traces(B). Moreover, if Π is winning, Traces(A) = Traces(B).

4.2 Extensions to TAIOs and Adaptation to tioco

In the context of model-based testing, the above-mentioned determinization tech-
nique must be adapted to TAIOs, as detailed in [5], and summarized below. First
the model of TAIOs is more expressive than TAs, incorporating internal actions
and invariants. Second, inputs and outputs must be treated differently in order
to build from a TAIO A a DTAIO B such that A � B and then preserve tioco.

Internal actions: Specifications naturally include internal actions that cannot
be observed during test executions, and should thus be removed during deter-
minization. In order to do so, a closure by internal actions is performed for each
state during the construction of the game. To this attempt, states of the game
have to be extended since internal actions might be enabled only from some
time-successor of the region associated with the state. Therefore, each configu-
ration is associated with a proper region which is a time-successor of the initial
region of the state. The closure by silent transitions is effectively computed the
same way as successors in the original construction when Determinizator does
not reset any clock, computations thus terminate for the same reasons. It is well

Off-Line Test Selection with Test Purposes 105

known that TAs with silent transitions are strictly more expressive than stan-
dard TAs [3]. Therefore, our approximation can be coarse, but it performs as
well as possible with its available clock information.

Invariants: Modeling urgency is quite important and using invariants to this
aim is classical. Without the ability to express urgency, for instance, any in-
active system would conform to all specifications. Ignoring all invariants in the
approximation surely yields an io-abstraction: delays (considered as outputs) are
over-approximated. In order to be more precise while preserving �, with each
state of the game is associated the most restrictive invariant containing invari-
ants of all the configurations in the state. In the computation of the successors,
invariants are treated as guards and their validity is verified at both extremities
of the transition. A state whose invariant is strictly over-approximated is unsafe.

io-abstraction vs. over-approximation: Rather than over-approximating a given
TAIO A, we aim here at building a DTAIO B io-abstracting A (A � B). Succes-
sors by output are over-approximated as in the original game, while successors
by inputs must be under-approximated. The over-approximated closure by silent
transitions is not suitable to under-approximation. Therefore, states of the game
are extended to contain both over- and under-approximated closures. Thus, the
unsafe successors by an input are not built.

All in all, these modifications allow to deal with the full TAIO model with invari-
ants, silent transitions and inputs/outputs, consistently with the io-abstraction.
Fig.4 represents a part of this game for the TAIO of Fig.3. The new game then
enjoys the following nice property:

Proposition 2 ([5]3). Let A be a TAIO, k,MB ∈ N. For any strategy Π of
Determinizator in GA,(k,MB), B = Aut(Π) is a DTAIO over resources (k,MB)
with A � B. Moreover, if Π is winning, Traces(A) = Traces(B).

In other words, the approximations produced by our method are deterministic
io-abstractions of the initial specification, hence our approach preserves tioco
(Proposition 1) and soundness of test cases (Corollary 1). In comparison, the
algorithm proposed in [14] is an over-approximation, thus preserves tioco only
if the specification is input-complete. Moreover it does not preserve urgency.

5 Off-Line Test Case Generation

In this section we first define test purposes and then give the principles for off-line
test selection with test purposes and properties of generated test cases.

5.1 Test Purposes

Test purposes are practical means to select behaviors to be tested, either focusing
on usual behaviors, or on suspected errors in implementations. In this work we
choose the following definition, and discuss alternatives in the conclusion.
3 Note that the proof of this proposition in [5] considers a stronger refinement relation,

thus implies the same result for the present refinement relation.

106 N. Bertrand et al.

Definition 7 (Test purpose). For a specification TAIO A, a test purpose is a
pair (T P,Accept)whereT P = (LT P , �T P

0 , Σ?, Σ!, Στ , X
T P
p , XT P

o ,MT P , IT P , ET P)
is a complete OTAIO (in particular ∀� ∈ LT P , IT P (�) = true) with XT P

o = XA
p

(TP observes proper clocks of A), and Accept ⊆ LT P is a subset of trap locations.

�′0 �′1 �′2 �′3 Acc

�′4

x = 1, τ x < 1, a? b! b!

othw othw othw othw

ΣT P

ΣT P

Fig. 2. Test purpose T P

Fig. 2 represents a test purpose for the specification A of Fig. 1. It has no proper
clock and observes the unique clock x of A. It accepts sequences where τ occurs
at x = 1, followed by an input a? at x < 1 (thus focusing on the lower branch
of A where x is reset), and two subsequent b!’s. The label othw (for otherwise)
is an abbreviation for the complement of specified transitions.

5.2 Principle of Test Generation

Given a specification TAIO A and a test purpose (T P,AcceptT P), the aim is
to build a sound and, if possible strict test case (T C,Verdicts). It should also
deliver Pass verdicts on traces of sequences of A accepted by T P, as formalized
by the following property:

Definition 8. A test suite T S for A and T P is precise if ∀T C ∈ T S, ∀σ ∈
(ΣA

obs)
∗, Verdict(σ, T C) = Pass ⇐⇒ σ ∈ Traces(SeqT P

Accept(T P) ∩ Seq(A)).

The different steps of test generation are described in the following paragraphs.

Product: we first build the TAIO P = A×T P associated with the set of marked
locations AcceptP = LA × AcceptT P . Fig. 3 represents this product P for the
specification A in Fig. 1 and the test purpose T P in Fig. 2. The effect of the
product is to unfold A and to mark those sequences of A accepted by T P in loca-
tions AcceptT P . T P is complete, thus Seq(P) = Seq(A↑XT P

p ,XT P
o) (sequences of

the product are sequences of A lifted to XT P), and then Traces(P) = Traces(A),
which implies that P and A define the same sets of conformant implementations.
We also have SeqAcceptP (P) = Seq(A↑XT P

p ;XT P
o)∩SeqAcceptT P (T P) which induces

TracesAcceptP (P) = Traces(Seq(A) ∩ SeqAcceptT P (T P)).
Let ATraces(A, T P) = TracesAcceptP (P) and RTraces(A, T P) = Traces(A) \

pref (ATraces(A, T P)) where, for a set of traces T , pref (T) denotes the set of
prefixes of traces in T . The principle is to select traces in ATraces(A, T P) and
try to avoid or at least detect those in RTraces(A, T P) as these traces cannot
be prefixes of traces of sequences satisfying the test purpose.

Off-Line Test Selection with Test Purposes 107

�0�
′
0

�1�
′
1 �2�

′
4 �3�

′
4 �4�

′
4

�5�
′
1 �6�

′
2 �7�

′
3 �8Acc

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Fig. 3. Product P = A× T P

Approximate determinization of P into DP: If P is already deterministic, we
simply take DP = P . Otherwise, with the approximate determinization of Sec-
tion 4, we can build a deterministic io-abstraction DP of P with resources
(k,MDP) fixed by the user, thus P � DP . DP is equipped with the set of
marked locations AcceptDP consisting of locations in LDP containing some con-
figuration whose location is in AcceptP. If the determinization is exact, we get
Traces(DP) = Traces(P) and TracesAcceptDP (DP) = ATraces(A, T P). Fig. 4 par-
tially represents the game GP,(1,2) for the TAIO P of Fig. 3 where, for readability
reasons, some behaviors not co-reachable from AcceptDP are omitted. DP is sim-
ply obtained from GP,(1,2) by merging transitions of Spoiler and Determinizator.

Generating T C from DP: The next step consists in building (T C,Verdicts)
from DP , using an analysis of the co-reachability to locations AcceptDP in DP.

The test case built from DP = (LDP , �DP
0 , ΣDP

? , ΣDP

! , XDP
p , ∅,MDP , IDP , EDP)

and AcceptDP is the TAIO T C = (LT C, �T C
0 , ΣT C

? , ΣT C

! , XT C
p , ∅,MT C , IT C , ET C)

(�0�′0, x− y = 0,�) {0}
(�1�′1, x− y = 0,�) {1}
(�5�′1, x− y = −1,�)

(�6�′2, x− y = 0,�) {0}

(�6�′2, x− y = 0,�) {0}
(�2�′4, x− y = 0,�)
(�2�′4, x− y = −1,�) {1}
(�2�′4, x− y = −2,�) {2}
(�2�′4, x− y < −2,⊥) (2,∞)

(�7�′3, x− y = 0,�) {0}
(�3�′4, x− y = 0,�)

(�8Acc, x− y = 0,�) {0}
(�4�′4, x− y = 0,�)

(�7�′3, x− y = 0,�) {0}

(�8Acc, x− y = 0,�) {0}

�,�

�,⊥

�,�

�,�

y ≤ 1,�

y = 0,�

y = 0,�

y = 1, a?
{y}

∅1 < y < 2, a?

{y} ∅

y =
1, b!

y =
2, b!

y
>

2, b!

y = 0, b!

y = 0, b!

{y}

∅

{y}

∅
0 <

y
<

1,
b!

y
=

1,
b!

y = 0, b!

y = 0, b!

{y}

{y}

∅

∅

Fig. 4. Game GP,(1,2)

108 N. Bertrand et al.

such that LT C = LDP 	 {�Fail} where �Fail is a new location; �T C
0 = �DP

0 ; ΣT C

? =
ΣDP

! = ΣA
! and ΣT C

! = ΣDP

? = ΣA
? , i.e. input/output alphabets are mirrored in

order to reflect the opposite role of actions in the synchronization of T C and I;
XT C
p = XDP

p and XT C
o = ∅; MT C = MDP ; Verdicts is the partition of ST C with

Pass =
⋃
�∈AcceptDP {�}×IDP(�), None = coreach(DP ,Pass)\Pass, Inconc =

SDP \ coreach(DP ,Pass), and Fail = {�Fail}×R
XT C

+ 	 {(�,¬IDP (�))|� ∈ LDP};
IT C(�) = true for any � ∈ LT C; ET C = EDP

I 	 E�Fail where EDP

I = {(�, g ∧
IDP (�), a,X, �′) | (�, g, a,X, �′) ∈ EDP} and E�Fail = {(�, ḡ, a,XT C

p , �Fail) | � ∈
LDP , a ∈ ΣDP

! , ḡ = ¬
∨

(�,g,a,X,�′)∈EDP g}.
The important points to understand in the construction of T C are the com-

pletion to Fail and the computation of Inconc. For the completion, the idea is
to detect unspecified outputs and delays of DP . Outputs of DP being inputs of
T C, in any location �, for each input a ∈ ΣT C

? = ΣDP

! , a transition leading to
�Fail is added, labeled with a, and whose guard is the negation of the disjunction
of all guards of transitions labeled by a and leaving � (thus true if no a-action
leaves �). Authorized delays in DP being defined by invariants, all states in
(�,¬IDP (�)), � ∈ LDP , i.e. states where the invariant runs out, are put into Fail.
Moreover, in each location �, the invariant IDP (�) in DP is removed and shifted
to guards of all transitions leaving � in T C.

The computation of Inconc is based on an analysis of the co-reachability to
Pass. Inconc contains all states not co-reachable from locations in Pass. Notice
that coreach(DP ,Pass), and thus Inconc, can be computed symbolically in the
region graph of DP . Fig.5 represents the test case obtained from A and T P .

�”0

�”1 �”2 Accept1

�Fail

�”3 �”4 Accept2

Fail = {�Fail} × R+ 	 {�”1, �”2}×]0,∞[{�”4}×]1,∞[

Inconc = {�”0} × [2,∞[∪{�”3}×]0,∞[∪{�”4}×]0, 1]

Pass = {Accept1, Accept2} × R+

y = 1, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

y ≥ 0, b?

1 < y < 2, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

Fig. 5. Test case T C

Test selection: So far, the construction of T C determines Verdicts, but does
not perform any selection of behaviors. A last step consists in trying to
control the behavior of T C in order to avoid Inconc states (thus stay in
pref (ATraces(A, T P))), or produce an Inconc verdict when this is impossible.
To this aim, guards of transitions are refined in two complementary ways. First,
transitions leaving a verdict state are useless, thus for each transition, the guard
is intersected with the set of valuations associated with None in the source loca-
tion. Second, transitions arriving in Inconc states and carrying inputs are also
useless, thus for any transition labeled by an input, the guard is intersected with
the set of valuations associated with coreach(DP ,Pass) in the target location.

Off-Line Test Selection with Test Purposes 109

For example in T C (Fig. 5), the bottom-left state of the game in Fig. 4 has been
removed.

After these steps, generated test cases exhibit the following properties:

Theorem 2. Any test case T C built by the procedure is sound for A. If DP is
an exact approximation of P, T C is also strict and precise for A and T P.

The proof is given in the technical report[4]. Soundness comes from the construc-
tion of EFail in T C and preservation of soundness by the approximate deter-
minization DP of P given by Corollary 1. When DP is an exact determinization
of P , Traces(DP) = Traces(P) = Traces(A). Strictness then comes from the fact
that DP and A have the same non-conformant traces and from the definition of
EFail in T C. Precision comes from TracesAcceptDP (DP) = ATraces(A, T P) and
from the definition of Pass. When DP is not exact however, there is a risk that
some behaviors allowed in DP are not in P , thus some non-conformant behaviors
are not detected, even if they are executed by T C. Similarly, some Pass verdicts
may be produced for non-accepted or non-conformant behaviors.

Test execution. After test selection, it remains to execute test cases on a real
implementation. As the test case is a TAIO, a number of decisions still need to
be made at each node of the test case: (1) whether to wait for a certain delay,
to receive an input or emit an output (2) which output to send, in case there
is a choice. Some of these choices can be made either randomly, or according
to user-defined strategies, for example by applying a technique similar to the
control approach of [8] whose goal is to avoid RTraces(A, T P).

6 Conclusion

In this paper, we presented a complete formalization and operations for the au-
tomatic off-line generation of test cases from non-deterministic timed automata
with inputs and outputs (TAIOs). The model of TAIOs is general enough to take
into account non-determinism, partial observation and urgency. One main con-
tribution is the ability to tackle any TAIO, thanks to an original approximate
determinization procedure. Another main contribution is the selection of test
cases with expressive OTAIOs test purposes, able to precisely select behaviors
based on clocks and actions of the specification as well as proper clocks. Test
cases are generated as TAIOs using a symbolic co-reachability analysis of the
observable behaviors of the specification guided by the test purpose.

Related work and discussion: As mentioned in the introduction, off-line test
selection is in general limited to deterministic or determinizable timed automata,
except in [14] which relies on an approximate determinization. Compared to this
work, our approximate determinization is more precise (it is exact in more cases)
and preserves urgency in test cases as much as possible.

In several other works [13,9], test purposes are used for test case selection
from TAIOs. In all these works, test purposes only have proper clocks, thus

110 N. Bertrand et al.

cannot observe clocks of the specification. The advantage of our definition is
its generality and a fine tuning of selection. One could argue that the cost of
producing a test suite can be heavy, as for each test purpose, the whole sequence
of operations, including determinization, must be done. In order to avoid this,
an alternative would be to define test purposes recognizing timed traces and
perform selection on the approximate determinization B of A. But then, the test
purpose should not use A’s clocks as these are lost by determinization. Then,
test purposes are either defined after determinization and observe B’s clocks, or
their expressive power is further restricted by using only proper clocks in order
not to depend on B.

Concerning test selection, in [8], the authors propose a game approach which
effect can be understood as a way to completely avoid RTraces(A, T P), with
the possible risk to miss some or even all traces in pref (ATraces(A, T P)). Our
selection, which allows to lose the game and produce an Inconc verdict when
this happens, is both more liberal and closer to usual practice.

It should be noticed that selection by test purposes can be used for test
selection with respect to coverage criteria. Those coverage criteria define a set
of elements (generally syntactic ones) to be covered (e.g. locations, transitions,
branches, etc). Each element can then be translated into a test purpose, the
produced test suite covering the given criteria.

Acknowledgements. We wish to thank the reviewers for their helpful
comments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

3. Bérard, B., Gastin, P., Petit, A.: On the power of non-observable actions in timed
automata. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
255–268. Springer, Heidelberg (1996)

4. Bertrand, N., Jéron, T., Stainer, A., Krichen, M.: Off-line test selection with test
purposes for non-deterministic timed automata. Technical Report 7501, INRIA
(January 2011), http://hal.inria.fr/inria-00550923

5. Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize
timed automata. In: FOSSACS 2011 (to appear, 2011); Extended version as INRIA
report 7381, http://hal.inria.fr/inria-00524830

6. Briones, L.B., Brinksma, E.: A test generation framework for quiescent real-time
systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
64–78. Springer, Heidelberg (2005)

7. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: HSCC 2010, pp.
91–100. ACM Press, New York (2010)

8. David, A., Larsen, K.G., Li, S., Nielsen, B.: Timed testing under partial observ-
ability. In: ICST 2009, pp. 61–70. IEEE Computer Society, Los Alamitos (2009)

Off-Line Test Selection with Test Purposes 111

9. En-Nouaary, A., Dssouli, R.: A guided method for testing timed input output
automata. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644, pp.
211–225. Springer, Heidelberg (2003)

10. Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P.
(eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006)

11. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Software Tools for
Technology Transfer 7(4), 297–315 (2005)

12. Khoumsi, A., Jéron, T., Marchand, H.: Test cases generation for nondeterministic
real-time systems. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931,
pp. 131–145. Springer, Heidelberg (2004)

13. Koné, O., Castanet, R., Laurencot, P.: On the fly test generation for real time
protocols. In: ICCCN 1998, pp. 378–387. IEEE, Los Alamitos (1998)

14. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods in System Design 34(3), 238–304 (2009)

15. Nielsen, B., Skou, A.: Automated test generation from timed automata. Software
Tools for Technology Transfer 5(1), 59–77 (2003)

16. Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264. Springer, Hei-
delberg (2008)

17. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 3, 103–120 (1996)

18. Tripakis, S.: Folk theorems on the determinization and minimization of timed au-
tomata. Information Processing Letters 99(6), 222–226 (2006)

Quantitative Multi-objective

Verification for Probabilistic Systems

Vojtěch Forejt1, Marta Kwiatkowska1,
Gethin Norman2, David Parker1, and Hongyang Qu1

1 Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK
2 School of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK

Abstract. We present a verification framework for analysing multiple
quantitative objectives of systems that exhibit both nondeterministic
and stochastic behaviour. These systems are modelled as probabilistic
automata, enriched with cost or reward structures that capture, for ex-
ample, energy usage or performance metrics. Quantitative properties of
these models are expressed in a specification language that incorporates
probabilistic safety and liveness properties, expected total cost or re-
ward, and supports multiple objectives of these types. We propose and
implement an efficient verification framework for such properties and
then present two distinct applications of it: firstly, controller synthesis
subject to multiple quantitative objectives; and, secondly, quantitative
compositional verification. The practical applicability of both approaches
is illustrated with experimental results from several large case studies.

1 Introduction

Automated formal verification techniques such as model checking have proved
to be an effective way of establishing rigorous guarantees about the correctness
of real-life systems. In many instances, though, it is important to also take
stochastic behaviour of these systems into account. This might be because of
the presence of components that are prone to failure, because of unpredictable
behaviour, e.g. of lossy communication media, or due to the use of randomisation,
e.g. in distributed communication protocols such as Bluetooth.

Probabilistic verification offers techniques to automatically check quantita-
tive properties of such systems. Models, typically labelled transition systems
augmented with probabilistic information, are verified against properties speci-
fied in probabilistic extensions of temporal logics. Examples of such properties
include “the probability of both devices failing within 24 hours is less than 0.001”
or “with probability at least 0.99, all message packets are sent successfully”.

In this paper, we focus on verification techniques for probabilistic automata
(PAs) [23], which model both nondeterministic and probabilistic behaviour. We
augment these models with one or more reward structures that assign real values
to certain transitions of the model. In fact, these can associate a notion of either
cost or reward with the executions of the model and capture a wide range of
quantitive measures of system behaviour, for example “number of time steps”,
“energy usage” or “number of messages successfully sent”.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 112–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Quantitative Multi-objective Verification for Probabilistic Systems 113

Properties of PAs can be specified using well-known temporal logics such as
PCTL, LTL or PCTL* [6] and extensions for reward-based properties [1]. The
corresponding verification problems can be executed reasonably efficiently and
are implemented in tools such as PRISM, LiQuor and RAPTURE.

A natural extension of these techniques is to consider multiple objectives. For
example, rather than verifying two separate properties such as “message loss oc-
curs with probability at most 0.001” and “the expected total energy consumption
is below 50 units”, we might ask whether it is possible to satisfy both proper-
ties simultaneously, or to investigate the trade-off between the two objectives as
some parameters of the system are varied.

In this paper, we consider verification problems for probabilistic automata
on properties with multiple, quantitative objectives. We define a language that
expresses Boolean combinations of probabilistic ω-regular properties (which sub-
sumes e.g. LTL) and expected total reward measures. We then present, for prop-
erties expressed in this language, techniques both to verify that a property holds
for all adversaries (strategies) of a PA and to synthesise an adversary of a PA
under which a property holds. We also consider numerical queries, which yield
an optimal value for one objective, subject to constraints imposed on one or more
other objectives. This is done via reduction to a linear programming problem,
which can be solved efficiently. It takes time polynomial in the size of the model
and doubly exponential in the size of the property (for LTL objectives), i.e. the
same as for the single-objective case [14].

Multi-criteria optimisation for PAs or, equivalently, Markov decision processes
(MDPs) is well studied in operations research [13]. More recently, the topic has
also been considered from a probabilistic verification point of view [12,16,9].
In [16], ω-regular properties are considered, but not rewards which, as illus-
trated by the examples above, offer an additional range of useful properties. In,
[12] discounted reward properties are used. In practice, though, a large class of
properties, such as “expected total time for algorithm completion” are not ac-
curately captured when using discounting. Finally, [9] handles a complementary
class of long-run average reward properties. All of [12,16,9] present algorithms
and complexity results for verifying properties and approximating Pareto curves;
however, unlike this paper, they do not consider implementations.

We implement our multi-objective verification techniques and present two dis-
tinct applications. Firstly, we illustrate the feasibility of performing controller
synthesis. Secondly, we develop compositional verification methods based on
assume-guarantee reasoning and quantitative multi-objective properties.

Controller synthesis. Synthesis, which aims to build correct-by-construction
systems from formal specifications of their intended behaviour, represents a long-
standing and challenging goal in the field of formal methods. One area where
progress has been made is controller synthesis, a classic problem in control en-
gineering which devises a strategy to control a system such that it meets its
specification. We demonstrate the application of our techniques to synthesising
controllers under multiple quantitative objectives, illustrating this with experi-
mental results from a realistic model of a disk driver controller.

114 V. Forejt et al.

Compositional verification. Perhaps the biggest challenge to the practical ap-
plicability of formal verification is scalability. Compositional verification offers
a powerful means to address this challenge. It works by breaking a verification
problem down into manageable sub-tasks, based on the structure of the system
being analysed. One particularly successful approach is the assume-guarantee
paradigm, in which properties (guarantees) of individual system components are
verified under assumptions about their environment. Desired properties of the
combined system, which is typically too large to verify, are then obtained by
combining separate verification results using proof rules. Compositional anal-
ysis techniques are of particular importance for probabilistic systems because
verification is often more expensive than for non-probabilistic models.

Recent work in [21] presents an assume-guarantee framework for probabilis-
tic automata, based on a reduction to the multi-objective techniques of [16].
However, the assumptions and guarantees in this framework are restricted to
probabilistic safety properties. This limits the range of properties that can be
verified and, more importantly, can be too restrictive to express assumptions of
the environment. We use our techniques to introduce an alternative framework
where assumptions and guarantees are the quantitative multi-objective properties
defined in this paper. This adds the ability to reason compositionally about, for
example, probabilistic liveness or expected rewards. To facilitate this, we also
incorporate a notion of fairness into the framework. We have implemented the
techniques and present results from compositional verification of several large
case studies, including instances where it is infeasible non-compositionally.

Related work. Existing research on multi-objective analysis of MDPs and its
relationship with this work has been discussed above. On the topic of controller
synthesis, the problem of synthesising MDP adversaries to satisfy a temporal
logic specification has been addressed several times, e.g. [3,7]. Also relevant is
[11], which synthesises non-probabilistic automata based on quantitative mea-
sures. In terms of compositional verification, the results in this paper significantly
extend the recent work in [21]. Other related approaches include: [8,15], which
present specification theories for compositional reasoning about probabilistic sys-
tems; and [10], which presents a theoretical framework for compositional verifica-
tion of quantitative (but not probabilistic) properties. None of [8,15,10], however,
consider practical implementations of their techniques.

Contributions. In summary, the contributions of this paper are as follows:

– novel multi-objective verification techniques for probabilistic automata (and
MDPs) that include both ω-regular and expected total reward properties;

– a corresponding method to generate optimal adversaries, with direct appli-
cability to the problem of controller synthesis for these models;

– new compositional verification techniques for probabilistic automata using
expressive quantitative properties for assumptions and guarantees.

An extended version of this paper, with proofs, is available as [18].

Quantitative Multi-objective Verification for Probabilistic Systems 115

2 Background

We use Dist(S) for the set of all discrete probability distributions over a set S,
ηs for the point distribution on s ∈ S, and μ1×μ2 for the product distribution of
μ1 ∈ Dist(S1) and μ2 ∈ Dist(S2), defined by μ1×μ2((s1, s2)) = μ1(s1) · μ2(s2).

2.1 Probabilistic Automata (PAs)

Probabilistic automata [23] are a commonly used model for systems that ex-
hibit both probabilistic and nondeterministic behaviour. PAs are very similar to
Markov decision processes (MDPs).1 For the purposes of verification (as in Sec-
tion 3), they can often be treated identically; however, for compositional analysis
(as in Section 4), the distinction becomes important.

Definition 1 (Probabilistic automata). A probabilistic automaton (PA) is
a tupleM=(S, s, αM, δM) where S is a set of states, s ∈ S is an initial state, αM
is an alphabet and δM ⊆ S×αM×Dist(S) is a probabilistic transition relation.

In a state s of a PA M, a transition s
a−→ μ, where a is an action and μ is a

distribution over states, is available if (s, a, μ) ∈ δ. The selection of an available
transition is nondeterministic and the subsequent choice of successor state is
probabilistic, according to the distribution of the chosen transition.

A path is a sequence ω = s0
a0,μ0−−−→s1

a1,μ1−−−→· · · where s0=s, si
ai−→ μi is an

available transition and μi(si+1)>0 for all i ∈ N. We denote by IPaths (FPaths)
the set of all infinite (finite) paths. If ω is finite, |ω| denotes its length and last(ω)
its last state. The trace, tr(ω), of ω is the sequence of actions a0a1 . . . and we
use tr(ω)�α to indicate the projection of such a trace onto an alphabet α ⊆ αM.

A reward structure for M is a mapping ρ : αρ → R>0 from some alphabet
αρ ⊆ αM to the positive reals. We sometimes write ρ(a) = 0 to indicate that
a �∈ αρ. For an infinite path ω = s0

a0,μ0−−−→ s1
a1,μ1−−−→ · · · , the total reward for ω

over ρ is ρ(ω) =
∑
i∈N,ai∈αρ

ρ(ai).
An adversary of M is a function σ : FPaths→Dist(αM×Dist(S)) such that,

for a finite path ω, σ(ω) only assigns non-zero probabilities to action-distribution
pairs (a, μ) for which (last(ω), a, μ) ∈ δ. Employing standard techniques [20], an
adversary σ induces a probability measure PrσM over IPaths. An adversary σ
is deterministic if σ(ω) is a point distribution for all ω, memoryless if σ(ω) de-
pends only on last(ω), and finite-memory if there are a finite number of memory
configurations such that σ(ω) depends only on last(ω) and the current mem-
ory configuration, which is updated (possibly stochastically) when an action is
performed. We let AdvM denote the set of all adversaries forM.

IfMi = (Si, si, αMi , δMi) for i=1, 2, then their parallel composition, denoted
M1‖M2, is given by the PA (S1×S2, (s1, s2), αM1∪αM2 , δM1‖M2) where δM1‖M2

is defined such that (s1, s2)
a−→ μ1×μ2 if and only if one of the following holds: (i)

s1
a−→ μ1, s2

a−→ μ2 and a ∈ αM1 ∩αM2 ; (ii) s1
a−→ μ1, μ2 = ηs2 and a ∈ αM1\αM2 ;

or (iii) s2
a−→ μ2, μ1 = ηs1 and a ∈ αM2\αM1 .

1 For MDPs, δM in Definition 1 becomes a partial function S × αM → Dist(S).

116 V. Forejt et al.

When verifying systems of PAs composed in parallel, it is often essential to
consider fairness. In this paper, we use a simple but effective notion of fairness
called unconditional fairness, in which it is required that each process makes
a transition infinitely often. For probabilistic automata, a natural approach to
incorporating fairness (as taken in, e.g., [4,2]) is to restrict analysis of the system
to a class of adversaries in which fair behaviour occurs with probability 1.

IfM =M1‖ . . . ‖Mn is a PA comprising n components, then an (uncondition-
ally) fair path ofM is an infinite path ω ∈ IPaths in which, for each component
Mi, there exists an action a ∈ αMi that appears infinitely often. A fair adver-
sary σ ofM is an adversary for which PrσM{ω ∈ IPaths | ω is fair} = 1. We let
Adv fair

M denote the set of fair adversaries ofM.

2.2 Verification of PAs

Throughout this section, let M = (S, s, αM, δM) be a PA.

Definition 2 (Probabilistic predicates). A probabilistic predicate [φ]∼p
comprises an ω-regular property φ ⊆ (αφ)ω over some alphabet αφ ⊆ αM, a
relational operator ∼∈ {<,�, >,�} and a rational probability bound p. Satis-
faction of [φ]∼p by M, under adversary σ, denoted M, σ |= [φ]∼p, is defined as
follows:

M, σ |= [φ]∼p ⇔ PrσM(φ)∼p where PrσM(φ) def=PrσM({ω∈IPaths | tr(ω)�αφ
∈φ}).

Definition 3 (Reward predicates). A reward predicate [ρ]∼r comprises a
reward structure ρ : αρ → R>0 over some alphabet αρ ⊆ αM, a relational
operator ∼∈ {<,�, >,�} and a rational reward bound r. Satisfaction of [ρ]∼r
by M, under adversary σ, denoted M, σ |= [ρ]∼r, is defined as follows:

M, σ |= [ρ]∼r ⇔ ExpTotσM(ρ) ∼ r where ExpTotσM(ρ) def=
∫
ω
ρ(ω) dPrσM.

Verification of PAs is based on quantifying over all adversaries. For example, we
define satisfaction of probabilistic predicate [φ]∼p byM, denotedM|= [φ]∼p, as:

M|= [φ]∼p ⇔ ∀σ ∈ AdvM .M, σ |= [φ]∼p .

In similar fashion, we can verify a multi-component PA M1‖ . . . ‖Mn under
fairness by quantifying only over fair adversaries:

M1‖ . . . ‖Mn |=fair [φ]∼p ⇔ ∀σ ∈ Adv fair
M1‖...‖Mn

.M1‖ . . . ‖Mn, σ |= [φ]∼p .

Verifying whetherM satisfies a probabilistic predicate [φ]∼p or reward predicate
[ρ]∼r can be done with, for example, the techniques in [14,1]. In the remainder
of this section, we give further details of the case for ω-regular properties, since
we need these later in the paper. We follow the approach of [1], which is based
on the use of deterministic Rabin automata and end components.

An end component (EC) ofM is a pair (S′, δ′) comprising a subset S′⊆S of
states and a probabilistic transition relation δ′⊆δ that is strongly connected when
restricted to S′ and closed under probabilistic branching, i.e., {s ∈ S | ∃(s, a, μ) ∈

Quantitative Multi-objective Verification for Probabilistic Systems 117

δ′} ⊆ S′ and {s′ ∈ S |μ(s′)>0 for some (s, a, μ) ∈ δ} ⊆ S ′. An EC (S′, δ′) is
maximal if there is no EC (S′′, δ′′) such that δ′�δ′′.

A deterministic Rabin automaton (DRA) is a tuple A = (Q, q, α, δ, Acc) of
states Q, initial state q, alphabet α, transition function δ : Q×α → Q, and
acceptance condition Acc = {(Li,Ki)}ki=1 with Li,Ki ⊆ Q. Any infinite word
w ∈ (α)ω has a unique corresponding run q q1q2 . . . through A and we say that A
accepts w if the run contains, for some 1�i�k, finitely many states from Li and
infinitely many from Ki. For any ω-regular property φ ⊆ (αφ)ω we can construct
a DRA, say Aφ, over αφ that accepts precisely φ.

Verification of [φ]∼p onM is done by constructing the product ofM and Aφ,
and then identifying accepting end components. The product M⊗Aφ ofM and
DRA Aφ = (Q, q, αM, δ, {(Li,Ki)}ki=1) is the PA (S ×Q, (s, q), αM, δ′M) where
for all (s, a, μ) ∈ δM there is ((s, q), a, μ′) ∈ δ′M such that μ′(s′, q′) = μ(s′) for
q′ = δ(q, a) and all s′ ∈ S. An accepting EC for φ inM⊗Aφ is an EC (S′, δ′) for
which there exists an 1�i�k such that the set of states S′, when projected onto
Q, contains some state from Ki, but no states from Li. Verifying, for example,
that M|= [φ]∼p, when ∼∈ {<,�}, reduces to checking that M⊗Aφ |= [♦T]∼p,
where T is the union of states of accepting ECs for φ in M⊗Aφ.

Verification of such properties under fairness, e.g. checkingM|=fair [φ]∼p, can
be done by further restricting the set of accepting ECs. For details, see [2], which
describes verification of PAs under strong and weak fairness conditions, of which
unconditional fairness is a special case.

3 Quantitative Multi-objective Verification

In this section, we define a language for expressing multiple quantitative objec-
tives of a probabilistic automaton. We then describe, for properties expressed in
this language, techniques both to verify that the property holds for all adver-
saries of a PA and to synthesise an adversary of a PA under which the property
holds. We also consider numerical queries, which yield an optimal value for one
objective, subject to constraints imposed on one or more other objectives.

Definition 4 (Quantitative multi-objective properties). A quantitative
multi-objective property (qmo-property) for a PAM is a Boolean combination of
probabilistic and reward predicates, i.e. an expression produced by the grammar:

Ψ ::= true | Ψ ∧ Ψ | Ψ ∨ Ψ | ¬Ψ | [φ]∼p | [ρ]∼r
where [φ]∼p and [ρ]∼r are probabilistic and reward predicates forM, respectively.
A simple qmo-property comprises a single conjunction of predicates, i.e. is of the
form (∧ni=1[φi]∼ipi) ∧

(
∧mj=1[ρj]∼jrj

)
. We refer to the predicates occurring in a

formula as objectives. For property ΨP , we use αP to denote the set of actions
used in ΨP , i.e. the union of αφ and αρ over [φ]∼p and [ρ]∼r occurring in ΨP .

A quantitative multi-objective property Ψ is evaluated over a PA M and an
adversary σ of M. We say that M satisfies Ψ under σ, denoted M, σ |=Ψ ,
if Ψ evaluates to true when substituting each predicate x with the result of
M, σ |= x. Verification of Ψ over a PA M is defined as follows.

118 V. Forejt et al.

t0 t1 t2
fast 0.9

slow

0.1
fast 0.9

slow

0.1

on,off on,off done

s0

s1

off
on

off

done
slow
fast

ŝ0
ŝ1

ŝ2

choose

0.5

0.5

slow

fast,done

Fig. 1. PAs for a machineMm (left) and two controllers,Mc1 (centre) andMc2(right)

Definition 5 (Verification queries). For a PA M and a qmo-property Ψ , a
verification query asks whether Ψ is satisfied under all adversaries of M:

M|=Ψ ⇔ ∀σ ∈ AdvM . M, σ |=Ψ.

For a simple qmo-property Ψ , we can verify whetherM|=Ψ using standard tech-
niques [14,1] (since each conjunct can be verified separately). To treat the general
case, we will use multi-objective model checking, proceeding via a reduction to
the dual notion of achievability queries.

Definition 6 (Achievability queries). For a PAM and qmo-property Ψ , an
achievability query asks if there exists a satisfying adversary of M, i.e. whether
there exists σ ∈ AdvM such that M, σ |=Ψ .

Remark. Since qmo-properties are closed under negation, we can convert any
verification query into an equivalent (negated) achievability query. Furthermore,
any qmo-property can be translated to an equivalent disjunction of simple qmo-
properties (obtained by converting to disjunctive normal form and pushing nega-
tion into predicates, e.g. ¬([φ]>p) ≡ [φ]�p).

In practice, it is also often useful to obtain the minimum/maximum value of an
objective, subject to constraints on others. For this, we use numerical queries.

Definition 7 (Numerical queries). For a PA M, qmo-property Ψ and ω-
regular property φ or reward structure ρ, a (maximising) numerical query is:

Prmax
M (φ |Ψ) def= sup{PrσM(φ) | σ ∈ AdvM ∧M, σ |=Ψ},

or ExpTotmax
M (ρ |Ψ) def= sup{ExpTotσM(ρ) | σ ∈ AdvM ∧M, σ |=Ψ}.

If the property Ψ is not satisfied by any adversary ofM, these queries return ⊥.
A minimising numerical query is defined similarly.

Example 1. Figure 1 shows the PAs we use as a running example. A machine,
Mm, executes 2 consecutive jobs, each in 1 of 2 ways: fast , which requires 1
time unit and 20 units of energy, but fails with probability 0.1; or slow , which
requires 3 time units and 10 units of energy, and never fails. The reward struc-
tures ρtime={fast �→1, slow �→3} and ρpow={fast �→20, slow �→10} capture the time
elapse and power consumption of the system. The controllers,Mc1 andMc2 , can
(each) control the machine, when composed in parallel with Mm. Using qmo-
property Ψ = [♦done]≥1 ∧ [ρpow]≤20, we can write a verification queryMm |= Ψ

Quantitative Multi-objective Verification for Probabilistic Systems 119

(which is false) or a numerical query ExpTotmin
Mm

(ρtime |Ψ) (which yields 6). Be-
fore describing our techniques to check verification, achievability and numerical
queries, we first need to discuss some assumptions made about PAs. One of the
main complications when introducing rewards into multi-objective queries is the
possibility of infinite expected total rewards. For the classical, single-objective
case (see e.g. [1]), it is usual to impose assumptions so that such behaviour does
not occur. For the multi-objective case, the situation is more subtle, and requires
careful treatment. We now outline what assumptions should be imposed; later
we describe how they can be checked algorithmically.

A key observation is that, if we allow arbitrary reward structures, situations
may occur where extremely improbable (but non-zero probability) behaviour still
yields infinite expected reward. Consider e.g. the PA ({s0, s1, s2}, s0, {a, b}, δ)
with δ = {(s0, b, ηs1), (s0, b, ηs2), (s1, a, ηs1), (s2, b, ηs2)}, reward structure ρ =
{a�→1}, and the qmo-property Ψ = [�b]≥p ∧ [ρ]≥r. For any p, including values
arbitrarily close to 1, there is an adversary satisfying Ψ for any r ∈ R�0, because
it suffices to take action a with non-zero probability. This rather unnatural be-
haviour would lead to misleading verification results, masking possible errors in
the model design.

Motivated by such problems, we enforce the restriction below on multi-objective
queries. To match the contents of the next section, we state this for a maximising
numerical query on rewards. We describe how to check the restriction holds in the
next section.

Assumption 1. Let ExpTotmax
M (ρ |Ψ) be a numerical query for a PA M and

qmo-property Ψ which is a disjunction2 of simple qmo-properties Ψ1, . . . , Ψl. For
each Ψk = (∧ni=1[φi]∼ipi) ∧

(
∧mj=1[ρj]∼jrj

)
, we require that:

sup{ExpTotσM(ζ) | M, σ |=
∧n
i=1 [φi]∼ipi} <∞

for all ζ ∈ {ρ} ∪ {ρj | 1�j�m ∧ ∼j ∈ {>,≥}}.

3.1 Checking Multi-objective Queries

We now describe techniques for checking the multi-objective queries described
previously. For presentational purposes, we focus on numerical queries. It is
straightforward to adapt this to achievability queries by introducing, and then
ignoring, a dummy property to maximise (with no loss in complexity). As men-
tioned earlier, verification queries are directly reducible to achievability queries.

Let M be a PA and ExpTotmax
M (ρ |Ψ) be a maximising numerical query for

reward structure ρ (the cases for minimising queries and ω-regular properties
are analogous). As discussed earlier, we can convert Ψ to a disjunction of simple
qmo-properties. Clearly, we can treat each element of the disjunction separately
and then take the maximum. So, without loss of generality, we assume that Ψ
is simple, i.e. Ψ = (∧ni=1[φi]∼ipi)∧

(
∧mj=1[ρj]∼jrj

)
. Furthermore, we assume that

each ∼i is � or > (which we can do by changing e.g. [φ]<p to [¬φ]>1−p).
2 This assumption extends to arbitrary properties Ψ by, as described earlier, first

reducing to disjunctive normal form.

120 V. Forejt et al.

Our technique to compute ExpTotmax
M (ρ |Ψ) proceeds via a sequence of mod-

ifications to M, producing a PA M̂. From this, we construct a linear program
L(M̂), whose solution yields both the desired numerical result and a correspond-
ing adversary σ̂ of M̂. Crucially, σ̂ is memoryless and can thus be mapped to a
matching finite-memory adversary ofM. The structure of L(M̂) is very similar
to the one used in [16], but many of the steps to construct M̂ and the techniques
to establish a memoryless adversary are substantially different. We also remark
that, although not discussed here, L(M̂) can be adapted to a multi-objective
linear program, or used to approximate the Pareto curve between objectives.

In the remainder of this section, we describe the process in detail, which
comprises 4 steps: 1. checking Assumption 1; 2. building a PA M̄ in which
unneccessary actions are removed; 3. converting M̄ to a PA M̂; 4. building and
solving the linear program L(M̂). The correctness of the procedure is formalised
with a corresponding sequence of propositions (see [18] for proofs).

Step 1. We start by constructing a PAMφ =M⊗Aφ1⊗ · · · ⊗Aφn which is the
product ofM and a DRA Aφi for each ω-regular property φi appearing in Ψ . We
check Assumption 1 by analysing Mφ: for each maximising reward structure ζ
(i.e. letting ζ=ρ or ζ=ρj when ∼j ∈ {>,≥}) we use the proposition below. This
requires a simpler multi-objective achievability query on probabilistic predicates
only. In fact, this can be done with the techniques of [16].

Proposition 1. We have sup{ExpTotσM(ζ) | M, σ |=
∧n
i=1 [φi]∼ipi} = ∞ for a

reward structure ζ of M iff there is an adversary σ of Mφ such that Mφ, σ |=
[♦pos]>0 ∧

∧n
i=1 [φi]∼ipi where “pos” labels any transition (s, a, μ) that satisfies

ζ(a)>0 and is contained in an EC.

Step 2. Next, we build the PA M̄ fromMφ by removing actions that, thanks to
Assumption 1, will not be used by any adversary which satisfies Ψ and maximises
the expected value for the reward ρ. Let Mφ = (Sφ, s, αM, δ

φ
M). Then M̄ =

(S̄, s, αM, δ̄M) is the PA obtained fromMφ as follows. First, we remove (s, a, μ)
from δφM if it is contained in an EC and ζ(a)>0 for some maximising reward
structure ζ. Second, we repeatedly remove states with no outgoing transitions
and transitions that lead to non-existent states, until a fixpoint is reached. The
following proposition holds whenever Assumption 1 is satisfied.

Proposition 2. There is an adversary σ of Mφ where ExpTotσMφ(ρ)=x and
Mφ, σ |=Ψ iff there is an adversary σ̄ of M̄ where ExpTot σ̄M̄(ρ)=x and M̄, σ̄ |=Ψ .

Step 3. Then, we construct PA M̂ from M̄, by converting the n probabilistic
predicates [φi]∼ipi into n reward predicates [λi]∼ipi . For each R ⊆ {1, . . . , n},
we let SR denote the set of states that are contained in an EC (S′, δ′) that: (i)
is accepting for all {φi | i ∈ R}; (ii) satisfies ρj(a) = 0 for all 1 ≤ j ≤ m and
(s, a, μ) ∈ δ′. Thus, in each SR, no reward is gained and almost all paths satisfy
the ω-regular properties φi for i ∈ R. Note that identifying the sets SR can be
done in time polynomial in the size of M̄ (see [18] for clarification).

We then construct M̂ by adding a new terminal state sdead and adding transi-
tions from states in each SR to sdead , labelled with a new action aR. Intuitively,

Quantitative Multi-objective Verification for Probabilistic Systems 121

Maximise
∑

(s,a,μ)∈δ̂M,s �=sdead
ρ(a) · y(s,a,μ) subject to:

∑
(s,aR,μ)∈δ̂M,s �=sdead

y(s,aR,μ) = 1∑
(s,a,μ)∈δ̂M,s �=sdead

λi(a) · y(s,a,μ) ∼i pi for all 1≤i≤n∑
(s,a,μ)∈δ̂M,s�=sdead

ρj(a) · y(s,a,μ) ∼j rj for all 1≤j≤m∑
(s,a,μ)∈δ̂M y(s,a,μ) −

∑
(ŝ,â,μ̂)∈δ̂M μ′(s) · y(ŝ,â,μ̂) = init(s) for all s∈Ŝ\{sdead}

y(s,a,μ) ≥ 0 for all (s, a, μ)∈δ̂M
where init(s) is 1 if s = s and 0 otherwise.

Fig. 2. The linear program L(M̂)

taking an action aR in M̂ corresponds to electing to remain forever in the cor-
responding EC of M̄. Formally, M̂ = (Ŝ, s, α̂M, δ̂M) where Ŝ = S̄ ∪ {sdead},
α̂M = αM∪{aR | R ⊆ {1, . . . , n}}, and δ̂M = δ̄M∪{(s, aR, ηsdead) | s ∈ SR}. Fi-
nally, we create, for each 1 ≤ i ≤ n, a reward structure λi : {aR | i ∈ R} → R>0

with λi(aR) = 1 whenever λi is defined.

Proposition 3. There is an adversary σ̄ of M̄ such that ExpTot σ̄M̄(ρ)=x and
M̄, σ̄ |=Ψ iff there is a memoryless adversary σ̂ of M̂ such that ExpTot σ̂M̂(ρ)=x
and M̂, σ̂ |= (∧ni=1[λi]∼ipi) ∧

(
∧mj=1[ρj]∼jrj

)
∧ ([♦sdead]�1).

Step 4. Finally, we create a linear program L(M̂), given in Figure 2, which
encodes the structure of M̂ as well as the objectives from Ψ . Intuitively, in a
solution of L(M̂), the variables y(s,a,μ) express the expected number of times
that state s is visited and transition s a−→ μ is taken subsequently. The expected
total reward w.r.t. ρi is then captured by

∑
(s,a,μ)∈δ̂M,s	=sdead ρi(a) · y(s,a,μ). The

result of L(M̂) yields the desired value for our numerical query.

Proposition 4. For x ∈ R�0, there is a memoryless adversary σ̂ of M̂ where
ExpTot σ̂M̂(ρ)=x and M̂, σ̂ |= (∧ni=1[λi]∼ipi) ∧

(
∧mj=1[ρj]∼jrj

)
∧ ([♦sdead]≥1) iff

there is a feasible solution (y�(s,a,μ))(s,a,μ)∈δ̂M of the linear program L(M̂) such
that

∑
(s,a,μ)∈δ̂M,s	=sdead ρi(a) · y

�
(s,a,μ) = x.

In addition, a solution to L(M̂) gives a memoryless adversary σprod defined
by σprod(s)(a, μ) = y(s,a,μ)∑

a′,μ′ y(s,a′,μ′)
if the denominator is nonzero (and defined

arbitrarily otherwise). This can be converted into a finite memory adversary σ′

for Mφ by combining decisions of σ on actions in αM and, instead of taking
actions aR, mimicking adversaries witnessing that the state which precedes aR

in the history is in SR. Adversary σ′ can be translated into an adversary σ ofM
in standard fashion using the fact that every finite path inMφ has a counterpart
in M given by projecting states ofMφ to their first components.
The following is then a direct consequence of Propositions 2, 3 and 4.

Theorem 1. Given a PA M and numerical query ExpTotmax
M (ρ |Ψ) satisfying

Assumption 1, the result of the query is equal to the solution of the linear program

122 V. Forejt et al.

q0

q1

done

done

(s0,t0,q0)

(s1,t0,q0)

(s0,t1,q0)

(s1,t1,q0)

(s0,t2,q0)

(s0,t2,q1)
sdead

fast 0.9

slow

0.1
fast 0.9

slow

0.1

off
on

off

off
on

off

done

donea∅

a∅ a{1}

Fig. 3. A DRA Aφ for the property φ = ♦done and the PA M̂ for M =Mm‖Mc1

L(M̂) (see Figure 2). Furthermore, this requires time polynomial in the size of
M and doubly exponential in the size of the property (for LTL objectives).

An analogous result holds for numerical queries of the form ExpTotmin
M (ρ |Ψ),

Prmax
M (φ |Ψ) or Prmin

M (φ |Ψ). As discussed previously, this also yields a technique
to solve both achievability and verification queries in the same manner.

3.2 Controller Synthesis

The achievability and numerical queries presented in the previous section are
directly applicable to the problem of controller synthesis. We first illustrate these
ideas on our simple example, and then apply them to a large case study.

Example 2. Consider the composition M = Mc1‖Mm of PAs from Figure 1;
Mc1 can be seen as a template for a controller of Mm. We synthesise an
adversary for M that minimises the expected execution time under the con-
straints that the machine completes both jobs and the expected power con-
sumption is below some bound r. Thus, we use the minimising numerical query
ExpTotmin

M (ρtime | [ρpower]�r ∧ [♦done]�1). Figure 3 shows the corresponding PA
M̂, dashed lines indicating additions to construct M̂ from M̄. Solving the LP
problem L(M̂) yields the minimum expected time under these constraints. If
r=30, for example, the result is 49

11 . Examining the choices made in the corre-
sponding (memoryless) adversary, we find that, to obtain this time, a controller
could schedule the first job fast with probability 5

6 and slow with 1
6 , and the

second job slow. Figure 4(a) shows how the result changes as we vary the bound
r and use different values for the failure probability of fast (0.1 in Figure 1).

Case study. We have implemented the techniques of Section 3 as an extension
of PRISM [19] and using the ECLiPSe LP solver. We applied them to perform
controller synthesis on a realistic case study: we build a power manager for
an IBM TravelStar VP disk-drive [5]. Specific (randomised) power management
policies can already be analysed in PRISM [22]; here, we synthesise such policies,
subject to constraints specified as qmo-properties. More precisely, we minimise
the expected power consumption under restrictions on, for example, the expected
job-queue size, expected number of lost jobs, probability that a request waits
more than K steps, or probability that N requests are lost. Further details
are available from [24]. As an illustration, Figure 4(b) plots the minimal power
consumption under restrictions on both the expected queue size and number

Quantitative Multi-objective Verification for Probabilistic Systems 123

20 25 30 35 40 45 50 55 60 65 70 75
2

2.5

3

3.5

4

4.5

5

5.5

6

r

M
i
n
i
m
u
m

e
x
p
e
c
t
e
d

t
i
m
e

p_fail=0.1
p_fail=0.2
p_fail=0.3
p_fail=0.4

(a) Running example (see Ex. 2)

50

100

150

200

500

1000

1500

2000
0

500

1000

1500

2000

2500

expe
cted

 los
t cu

stom
ersqueue size

m
i
n

p
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

(b) IBM TravelStar disk-drive controller

Fig. 4. Experimental results illustrating controller synthesis

of lost customers. This shows the familiar power-versus-performance trade-off:
policies can offer improved performance, but at the expense of using more power.

4 Quantitative Assume-Guarantee Verification

We now present novel compositional verification techniques for probabilistic au-
tomata, based on the quantitative multi-objective properties defined in Section 3.
The key ingredient of this approach is the assume-guarantee triple, whose defi-
nition, like in [21], is based on quantification over adversaries. However, whereas
[21] uses a single probabilistic safety property as an assumption or guarantee, we
permit quantitative multi-objective properties. Another key factor is the incor-
poration of fairness.

Definition 8 (Assume-guarantee triples). If M = (S, s, αM, δM) is a PA
and ΨA, ΨG are qmo-properties such that αG ⊆ αA ∪ αM , then 〈ΨA〉M〈ΨG〉 is
an assume-guarantee triple with the following semantics:

〈ΨA〉M〈ΨG〉 ⇔ ∀σ∈AdvM[αA] . (M, σ |=ΨA →M, σ |=ΨG) .

where M[αA] denotes the alphabet extension [21] of M, which adds a-labelled
self-loops to all states of M for each a ∈ αA\αM.

Informally, an assume-guarantee triple 〈ΨA〉M〈ΨG〉, means “if M is a compo-
nent of a system such that the environment ofM satisfies ΨA, then the combined
system (under fairness) satisfies ΨG”.

Verification of an assume guarantee triple, i.e. checking whether 〈ΨA〉M〈ΨG〉
holds, reduces directly to the verification of a qmo-property since:

(M, σ |=ΨA →M, σ |=ΨG) ⇔ M, σ |= (¬ΨA ∨ ΨG) .

Thus, using the techniques of Section 3, we can reduce this to an achievability
query, solvable via linear programming. Using these assume-guarantee triples

124 V. Forejt et al.

as a basis, we can now formulate several proof rules that permit compositional
verification of probabilistic automata. We first state two such rules, then explain
their usage, illustrating with an example.

Theorem 2. If M1 and M2 are PAs, and ΨA1 , ΨA2 and ΨG are quantitative
multi-objective properties, then the following proof rules hold:

M1 |=fair ΨA1

〈ΨA1〉M2 〈ΨG〉
M1‖M2 |=fair ΨG

(ASym)

M2 |=fair ΨA2

〈ΨA2〉M1 〈ΨA1〉
〈ΨA1〉M2 〈ΨG〉

M1 ‖M2 |=fair ΨG

(Circ)

where, for well-formedness, we assume that, if a rule contains an occurrence
of the triple 〈ΨA〉M〈ΨG〉 in a premise, then αG ⊆ αA ∪ αM; similarly, for a
premise that checks ΨA against M, we assume that αA ⊆ αM

Theorem 2 presents two assume-guarantee rules. The simpler, (Asym), uses a
single assumption ΨA1 about M1 to prove a property ΨG on M1‖M2. This is
done compositionally, in two steps. First, we verify M1 |=fair ΨA1 . If M1 com-
prises just a single PA, the stronger (but easier) check M1 |=ΨA1 suffices; the
use of fairness in the first premise is to permit recursive application of the rule.
Second, we check that 〈ΨA1〉M2 〈ΨG〉 holds. Again, optionally, we can consider
fairness here.3 In total, these two steps have the potential to be significantly
cheaper than verifyingM1‖M2. The other rule, (Circ), operates similarly, but
using assumptions about both M1 andM2.

Example 3. We illustrate assume-guarantee verification using the PAs Mm

and Mc2 from Figure 1. Our aim is to verify that Mc2‖Mm |=fair [ρtime]� 19
6

,
which does indeed hold. We do so using the proof rule (ASym) of Theorem 2,
with M1=Mc2 and M2=Mm. We use the assumption A1=[ρslow]� 1

2
where

ρslow={slow �→1}, i.e. we assume the expected number of slow jobs requested is at
most 0.5. We verifyMc2 |= [ρslow]� 1

2
and the triple 〈[ρslow]� 1

2
〉Mm 〈[ρtime]� 19

6
〉.

The triple is checked by verifyingMm |=¬[ρslow]� 1
2
∨ [ρtime]� 19

6
or, equivalently,

that no adversary ofMm satisfies [ρslow]� 1
2
∧ [ρtime]> 19

6
.

Experimental Results. Using our implementation of the techniques in Sec-
tion 3, we now demonstrate the application of our quantitative assume-guarantee
verification framework to two large case studies: Aspnes & Herlihy’s randomised
consensus algorithm and the Zeroconf network configuration protocol. For con-
sensus, we check the maximum expected number of steps required in the first
R rounds; for zeroconf, we verify that the protocol terminates with probability
1 and the minimum/maximum expected time to do so. In each case, we use the
(Circ) rule, with a combination of probabilistic safety and liveness properties
for assumptions. All models and properties are available from [24]. In fact, we
execute numerical queries to obtain lower/upper bounds for system properties,
rather than just verifying a specific bound.
3 Adding fairness to checks of both qmo-properties and assume-guarantee triples is

achieved by encoding the unconditional fairness constraint as additional objectives.

Quantitative Multi-objective Verification for Probabilistic Systems 125

Table 1. Experimental results for compositional verification

Case study Non-compositional Compositional
[parameters] States Time (s) Result LP size Time (s) Result

consensus
(2 processes)
(max. steps)

[R K]

3 2 1,806 0.4 89.00 1,565 1.8 89.65
3 20 11,598 27.8 5,057 6,749 10.8 5,057
4 2 7,478 1.3 89.00 5,368 3.9 98.42
4 20 51,830 155.0 5,057 15,160 16.2 5,120
5 2 30,166 3.1 89.00 10,327 6.5 100.1
5 20 212,758 552.8 5,057 24,727 21.9 5,121

consensus
(3 processes)
(max. steps)

[R K]

3 2 114,559 20.5 212.0 43,712 12.1 214.3
3 12 507,919 1,361.6 4,352 92,672 284.9 4,352
3 20 822,607 time-out - 131,840 901.8 11,552
4 2 3,669,649 728.1 212.0 260,254 118.9 260.3
4 12 29,797,249 mem-out - 351,694 642.2 4,533
4 20 65,629,249 mem-out - 424,846 1,697.0 11,840

zeroconf
(termination)

[K]

4 57,960 8.7 1.0 155,458 23.8 1.0
6 125,697 16.6 1.0 156,690 24.5 1.0
8 163,229 19.4 1.0 157,922 25.5 1.0

zeroconf
(min. time)

[K]

4 57,960 6.7 13.49 155,600 23.0 16.90
6 125,697 15.7 17.49 154,632 23.1 12.90
8 163,229 22.2 21.49 156,568 23.9 20.90

zeroconf
(max. time)

[K]

4 57,960 5.8 14.28 154,632 23.7 17.33
6 125,697 13.3 18.28 155,600 24.2 22.67
8 163,229 18.9 22.28 156,568 25.1 28.00

Table 1 summarises the experiments on these case studies, which were run
on a 2.66GHz PC with 8GB of RAM, using a time-out of 1 hour. The table
shows the (numerical) result obtained and the time taken for verification done
both compositionally and non-compositionally (with PRISM). As an indication
of problem size, we give the size of the (non-compositional) PA, and the number
of variables in the linear programs for multi-objective model checking.

Compositional verification performs very well. For the consensus models, it is
almost always faster than the non-compositional case, often significantly so, and
is able to scale up to larger models. For zeroconf, times are similar. Encourag-
ingly, though, times for compositional verification grow much more slowly with
model size. We therefore anticipate better scalability through improvements to
the underlying LP solver. Finally, we note that the numerical results obtained
compositionally are very close to the true results (where obtainable).

5 Conclusions

We have presented techniques for studying multi-objective properties of PAs,
using a language that combines ω-regular properties, expected total reward
and multiple objectives. We described how to verify a property over all adver-
saries of a PA, synthesise an adversary that satisfies and/or optimises objectives,
and compute the minimum or maximum value of an objective, subject to con-
straints. We demonstrated direct applicability to controller synthesis, illustrated
with a realistic disk-drive controller case study. Finally, we proposed an assume-
guarantee framework for PAs that significantly improves existing ones [21], and
demonstrated successful compositional verification on several large case studies.

126 V. Forejt et al.

Possible directions for future work include extending our compositional ver-
ification approach with learning-based assumption generation, as [17] does for
the simpler framework of [21], and investigation of continuous-time models.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, EU FP7 project CONNECT and EPSRC grant EP/D07956X.
Vojtěch Forejt is also supported by a Royal Society Newton Fellowship and the
Institute for Theoretical Computer Science, project no. 1M0545.

References

1. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University (1997)

2. Baier, C., Größer, M., Ciesinski, F.: Quantitative analysis under fairness con-
straints. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 135–150.
Springer, Heidelberg (2009)

3. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems. In: Proc. IFIP TCS 2004, pp. 493–506 (2004)

4. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11(3), 125–155 (1998)

5. Benini, L., Bogliolo, A., Paleologo, G., De Micheli, G.: Policy optimization for
dynamic power management. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 8(3), 299–316 (2000)

6. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

7. Brázdil, T., Forejt, V., Kučera, A.: Controller synthesis and verification for
Markov decision processes with qualitative branching time objectives. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 148–159. Springer, Heidelberg
(2008)

8. Caillaud, B., Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.:
Compositional design methodology with constraint Markov chains. In: QEST
(2010)

9. Chatterjee, K.: Markov decision processes with multiple long-run average objec-
tives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 473–484.
Springer, Heidelberg (2007)

10. Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga,
M.: Compositional quantitative reasoning. In: Proc. QEST 2006 (2006)

11. Chatterjee, K., Henzinger, T., Jobstmann, B., Singh, R.: Measuring and synthe-
sizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

12. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-
tiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 325–336. Springer, Heidelberg (2006)

13. Cĺımaco, J. (ed.): Multicriteria Analysis. Springer, Heidelberg (1997)
14. Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.

IEEE Transactions on Automatic Control 43(10), 1399–1418 (1998)

Quantitative Multi-objective Verification for Probabilistic Systems 127

15. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: A compositional
reasoning methodology for the design of stochastic systems. In: ACSD 2010 (2010)

16. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. LMCS 4(4), 1–21 (2008)

17. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic
systems using learning. In: Proc. QEST 2010, pp. 133–142. IEEE, Los Alamitos
(2010)

18. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. Tech. Rep. RR-10-26, Oxford Uni-
versity Computing Laboratory (2010)

19. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

20. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
Heidelberg (1976)

21. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

22. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Using proba-
bilistic model checking for dynamic power management. FAC 17(2) (2005)

23. Segala, R.: Modelling and Verification of Randomized Distributed Real Time Sys-
tems. Ph.D. thesis, Massachusetts Institute of Technology (1995)

24. http://www.prismmodelchecker.org/files/tacas11/

Efficient CTMC Model Checking of
Linear Real-Time Objectives

Benoı̂t Barbot2, Taolue Chen3, Tingting Han1,
Joost-Pieter Katoen1,3, and Alexandru Mereacre1

1MOVES, RWTH Aachen University, Germany
2 ENS Cachan, France

3 FMT, University of Twente, The Netherlands

Abstract. This paper makes verifying continuous-time Markov chains (CTMCs)
against deterministic timed automata (DTA) objectives practical. We show that
verifying 1-clock DTA can be done by analyzing subgraphs of the product of
CTMC C and the region graph of DTA A. This improves upon earlier results
and allows to only use standard analysis algorithms. Our graph decomposition
approach naturally enables bisimulation minimization as well as parallelization.
Experiments with various examples confirm that these optimizations lead to sig-
nificant speed-ups. We also report on experiments with multiple-clock DTA ob-
jectives. The objectives and the size of the problem instances that can be checked
with our prototypical tool go (far) beyond what could be checked so far.

1 Introduction

For more than a decade, the verification of continuous-time Markov chains, CTMCs for
short, has received considerable attention, cf. the recent survey [7]. Due to unremitting
improvements on algorithms, (symbolic) data structures and abstraction techniques,
CTMC model checking has emerged into a valuable analysis technique which – sup-
ported by powerful software tools– has been adopted by various researchers for systems
biology, queueing networks, and dependability.

The focus of CTMC model checking has primarily been on checking stochastic ver-
sions of the branching temporal logic CTL, such as CSL [6]. The verification of LTL
objectives reduces to applying well-known algorithms [20] to embedded discrete-time
Markov chains (DTMCs). Linear objectives equipped with timing constraints, have just
recently been considered. This paper treats linear real-time specifications that are given
as deterministic timed automata (DTA). These include, e.g., properties of the form:
what is the probability to reach a given target state within the deadline, while avoiding
“forbidden” states and not staying too long in any of the “dangerous” states on the way.
Such properties can neither be expressed in CSL nor in dialects thereof [5,14]. Model
checking DTA objectives amounts to determining the probability of the set of paths
of CTMC C that are accepted by the DTA A, i.e., Prob (C |= A). We recently showed
in [12] that this equals the reachability probability in a finite piecewise deterministic
Markov process (PDP) that is obtained by a region construction on the product C ⊗ A.
This paper reports on how to make this approach practical, i.e., how to efficiently realize
CTMC model checking against DTA objectives.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 128–142, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Efficient CTMC Model Checking of Linear Real-Time Objectives 129

As a first step, we show that rather than taking the region graph of the product C⊗A,
which is a somewhat ad-hoc mixture of CTMCs and DTA, we can apply a standard
region construction on DTA A prior to building the product. This enables applying
a standard region construction for timed automata. The product of this region graph
with CTMC C yields the PDP to be analyzed. Subsequently, we exploit that for 1-
clock DTA, the resulting PDP can be decomposed into subgraphs—each of which is
a CTMC [12]. In this case, Prob (C |= A) is the solution of a system of linear equa-
tions whose coefficients are transient probability distributions of the (slightly amended)
subgraph CTMCs. We adapt the algorithm for lumping [13,19] on CTMCs to our set-
ting and prove that this preserves reachability probabilities, i.e., keeps Prob (C |= A)
invariant. As the graph decomposition naturally enables parallelization, our tool imple-
mentation also supports the distribution of computing transient probabilities over mul-
tiple multi-core computers. Finally, multi-clock DTA objectives –for which the graph
decomposition does not apply– are supported by a discretization of the product PDP.

Three case studies from different application fields are used to show the feasibility of
this approach. The first case study has been taken from [3] which considers 1-clock DTA
as time constraints of until modalities. Although using a quite different approach, our
verification results coincide with [3]. The running time of our implementation (without
lumping and parallelization) is about three orders of magnitude faster than [3]. Other
considered case studies are a randomly moving robot, and a real case study from sys-
tems biology [15]. Bisimulation quotienting (i.e., lumping) yields state space reduction
of up to one order of magnitude, whereas parallelizing transient analysis yields speed-
ups of up to a factor 13 on 20 cores, depending on the number of subgraphs in the
decomposition.

The discretization approach for multi-clock DTA may give rise to large models:
checking the robot example (up to 5,000 states) against a two-clock DTA yields a 40-
million state DTMC for which simple reachability probabilities are to be determined.

Related work. The logic asCSL [5] extends CSL by (time-bounded) regular expressions
over actions and state formulas as path formulas. CSLTA [14] allows 1-clock DTA as
time constraints of until modalities; this subsumes acCSL. The joint behavior of C and
DTA A is interpreted as a Markov renewal process. A prototypical implementation of
this approach has recently been reported in [3]. Our algorithmic approach for 1-clock
DTA is different, yields the same results, and is –as shown in this paper– significantly
faster. Moreover, lumping is not easily possible (if at all) in [3].

In addition, it naturally supports bisimulation minimization and parallelization.
Bisimulation quotienting in CSL model checking has been addressed in [18]. The
works [4,9] provide a quantitative interpretation to timed automata where delays of
unbounded clocks are governed by exponential distributions. Brazdil et al. present an
algorithmic approaches towards checking continuous-time stochastic games (support-
ing more general distributions) against DTA specifications [11]. To our knowledge, tool
implementations of [4,9,11] do not exist.

Organization of the paper. Section 2 provides the preliminaries and summarizes the
main results of [12]. Section 3 describes our bisimulation quotienting algorithm. Sec-
tion 4 reports on the experiments for 1-clock DTA objectives. Section 5 describes the

130 B. Barbot et al.

discretization approach and gives experimental results for multi-clock DTA. Finally,
Section 6 concludes. (Proofs are omitted and can be found in the full version available
at http://moves.rwth-aachen.de/i2/han.)

2 Preliminaries

2.1 Continuous-Time Markov Chains

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S,AP, L, α,P, E) where S is a finite set of states; AP is a finite set of atomic
propositions; L : S → 2AP is the labeling function; α ∈ Distr(S) is the initial
distribution; P : S × S → [0, 1] is a stochastic matrix; and E : S → R�0 is the exit
rate function.

Here, Distr(S) is the set of probability distributions on set S. The probability to exit
state s in t time units is given by

∫ t
0
E(s)·e−E(s)τdτ . The probability to take the transi-

tion s → s′ in t time units is P(s, s′)·
∫ t
0
E(s)e−E(s)·τdτ . The embedded DTMC of C

is (S,AP, L, α,P). A (timed) path in CTMC C is a sequence ρ = s0
t0−−→ s1

t1−−→ s2 · · ·
such that si ∈ S and ti ∈ R>0. Let PathsC be the set of paths in C and ρ[n] := sn be
the n-th state of ρ. The definitions of a Borel space on paths through CTMCs,and the
probability measure Pr follow [20,6].

s0 s1

1

0.5

s2

s3

0.2

0.3

1

1

{a} {a}
{b}

{c}r3

r2

r1r0

(a) An example CTMC

q0 q1

a, x < 1,∅

a, 1 < x < 2, {x}

b, x > 1,∅

(b) An example DTA

Fig. 1. Example CTMC and DTA

Example 1. Fig. 1(a) shows an example CTMC with AP = {a, b, c} and initial state s0,
i.e., α(s) = 1 iff s = s0. The exit rates are indicated at the states, whereas the transition
probabilities are attached to the edges. An example path is ρ = s0

2.5−−−→ s1
1.4−−−→ s0

2−→
s1

2π−−→ s2 · · · with ρ[2] = s0 and ρ[3] = s1.

Definition 2 (Bisimulation). Let C = (S,AP, L, α,P, E) be a CTMC. Equivalence
relationR on S is a (strong) bisimulation on C if for s1Rs2:

L(s1) = L(s2) and P(s1, C) = P(s2, C) for all C in S/R and E(s1) = E(s2).

Let s1 ∼ s2 if there exists a strong bisimulationR on C with s1Rs2.

The quotient CTMC under the coarsest bisimulation ∼ can be obtained by partition-
refinement with time complexity O(m log n) [13]. A simplified version with the same
complexity is recently proposed in [19].

Efficient CTMC Model Checking of Linear Real-Time Objectives 131

2.2 Deterministic Timed Automata

Clock variables and valuations. Let X = {x1, . . ., xn} be a set of clocks in R�0. An
X -valuation (valuation for short) is a function η : X → R�0; 0 is the valuation that
assigns 0 to all clocks. A clock constraint g on X has the form x �� c, or g′ ∧ g′′, where
x ∈ X , �� ∈ {<,�, >,�} and c ∈ N. Diagonal clock constraints like x−y �� c do
not extend the expressiveness [8], and are not considered. Let CC(X) denote the set of
clock constraints over X . An X -valuation η satisfies constraint g, denoted as η |= g if
η(x) �� c for g of the form x �� c, or η |= g′ ∧ η |= g′′ for g of the form g′ ∧ g′′. The
reset of η w.r.t.X ⊆ X , denoted η[X := 0], is the valuation η′ with ∀x ∈ X. η′(x) := 0
and ∀x /∈ X. η′(x) := η(x). For δ ∈ R�0, η+δ is the valuation η′′ such that ∀x ∈ X .
η′′(x) := η(x) + δ.

Definition 3 (DTA). A deterministic timed automaton (DTA) is a tuple A =
(Σ,X , Q, q0, QF ,→) where Σ is a finite alphabet; X is a finite set of clocks; Q is
a nonempty finite set of locations; q0 ∈ Q is the initial location; QF ⊆ Q is a set
of accepting locations; and→∈ (Q\QF)×Σ×CC(X)×2X×Q satisfies: q a,g,X−−−−→ q′

and q a,g′,X′
−−−−−→ q′′ with g 	= g′ implies g ∩ g′ = ∅.

We refer to q a,g,X−−−−→ q′ as an edge, where a ∈ Σ is the input symbol, the guard g is a
clock constraint on the clocks ofA,X ⊆ X is a set of clocks and q, q′ are locations. The
intuition is that the DTA A can move from location q to q′ on reading the input symbol
a if the guard g holds, while resetting the clocks in X on entering q′. By convention,
we assume q ∈ QF to be a sink, cf. Fig. 1(b).

Paths. A finite (timed) path in A is of the form θ = q0
a0,t0−−−−→ q1 · · · qn an,tn−−−−→ qn+1

with qi ∈ Q, ti > 0 and ai ∈ Σ (0 � i � n). The path θ is accepted by A if
θ[i] ∈ QF for some 0 � i � |θ| and for all 0 � j < i, it holds that η0 = 0,
ηj+tj |= gj and ηj+1 = (ηj+tj)[Xj := 0], where ηj is the clock valuation on entering
qj and gj the guard of qi−→ qi+1. The infinite path ρ = s0

t0−−→ s1
t1−−→· · · in CTMC

C is accepted by A if for some n ∈ N, s0
t0−−→ s1 · · · sn−1

tn−1−−−−→ sn induces the DTA

path ρ̂ = q0
L(s0),t0−−−−−−→ q1 · · · qn−1

L(sn−1),tn−1−−−−−−−−−→ qn, which is accepted by A. The set
of CTMC paths accepted by a DTA is measurable [12]; our measure of interest is given
by:

Prob(C |= A) = Pr{ ρ ∈ PathsC | ρ̂ is accepted by DTA A }.

Regions. Regions are sets of valuations, often represented as constraints. LetRe(X) be
the set of regions overX . For regionsΘ,Θ′ ∈ Re(X),Θ′ is the successor region ofΘ if
for all η |= Θ there exists δ ∈ R>0 such that η+δ |= Θ′ and ∀δ′ < δ. η+δ′ |= Θ∨Θ′.
The region Θ satisfies a guard g, denoted Θ |= g, iff ∀η |= Θ. η |= g. The reset
operation on region Θ is defined as Θ[X := 0] :=

{
η[X := 0] | η |= Θ

}
.

Definition 4 (Region graph [2]). Let A = (Σ,X , Q, q0, QF ,→) be a DTA. The re-
gion graph G(A) of A is (Σ,W,w0,WF , ���) with W = Q × Re(X) the set of
states; w0 = (q0,0) the initial state; WF = QF × Re(X) the set of final states;
and ���⊂W × ((Σ × 2X) { δ })×W the smallest relation such that:

132 B. Barbot et al.

(q,Θ)
δ��� (q,Θ′) if Θ′ is the successor region of Θ; and

(q,Θ)
a,X��� (q′, Θ′) if ∃g ∈ CC(X) s.t. q a,g,X−−−−→q′ with Θ |= g and Θ[X := 0] = Θ′.

Product. Our aim is to determine Prob(C |= A). This can be accomplished by comput-
ing reachability probabilities in the region graph of C ⊗ A where ⊗ denotes a product
construction between CTMC C and DTA A [12]. To ease the implementation, we con-
sider the product C ⊗ G(A).

Definition 5 (Product). The product of CTMC C = (S,AP, L, α,P, E) and DTA re-
gion graph G(A) = (Σ,W,w0,WF , ���), denoted C⊗G(A), is the tuple (V, α′, VF , Λ,
↪→) with V = S ×W , α′(s, w0) = α(s), VF = S ×WF , and

– ↪→⊆ V ×
((

[0, 1]× 2X
)
 {δ}

)
× V is the smallest relation such that:

• (s, w)
δ
↪→ (s, w′) iff w

δ��� w′; and

• (s, w)
p,X
↪→ (s′, w′) iff p = P(s, s′), p > 0, and w

L(s),X
��� w′.

– Λ : V → R�0 is the exit rate function where:

Λ(s, w) =

{
E(s) if (s, w)

p,X
↪→ (s′, w′) for some (s′, w′) ∈ V

0 otherwise.

The (reachable fragment of the) product of CTMC C in Fig. 1(a) and the region graph of
DTAA in Fig. 1(b) is given in Fig. 2. It turns out that C⊗G(A) is identical to G(C⊗A),
the region graph of C ⊗ A as defined in [12].

Theorem 1. For any CTMC C and any DTA A, C ⊗ G(A) = G(C ⊗ A).

As a corollary [12], it follows that Prob(C |= A) equals the reachability probability of
the accepting states in C ⊗ G(A). In addition, C ⊗ G(A) is a PDP.

2.3 Decomposition for 1-Clock DTA

Let A be a 1-clock DTA and {c0, . . . , cm} ⊆ N with 0 = c0 < c1 < · · · < cm the con-

s0, q0, 0�x<1 s0, q0, 1�x<2

s1, q0, 0�x<1 s1, q0, 1�x<2

1

1

v0, r0 v1, r0

v2, r1 v3, r1
0.5

δ

reset, 0.5

s2, q0, 0�x<1 s2, q0, 1�x<2

s2, q1, 1�x<2

s2, q0, x � 2

s2, q1, x � 2

1

v4, 0 v5, r2

v7, 0

δ

δ

1
v8, 0

reset,0.20.2

δ

v6, r2

δ

Fig. 2. Example C ⊗ G(A)

stants appearing in its clock con-
straints. Let Δci = ci+1−ci for 0 �
i < m. The product C ⊗ G(A) can
be split into m+1 subgraphs, denoted
Gi for 0 � i � m, such that any
state in Gi has a clock valuation in
[ci, ci+1) for 0 � i < m and in
[cm,∞) for i = m. Each column in
Fig. 2 constitutes such subgraph. Sub-
graph Gi thus captures the joint behav-
ior of CTMC C and DTA A in the in-
terval [ci, ci+1). All transitions within
Gi are probabilistic; delay-transitions,
i.e., δ-labeled transitions, yield a state
in Gi+1, whereas a clock reset (of the

Efficient CTMC Model Checking of Linear Real-Time Objectives 133

only clock) yields a state in G0. In fact subgraph Gi is a CTMC. To take the effect of “re-
set” transitions into account, define the CTMC Ci with state space Vi∪V0, with all edges
from Vi to V0, all edges between Vi-vertices, but no outgoing edges from V0-vertices.

Definition 6 (Augmented CTMC). Let G = C⊗G(A) = (V, α, VF , Λ, ↪→). Subgraph
Gi of G induces the CTMC Ci = (Vi ∪ V0,APi, Li, αi,Pa

i , Ei) with:

– APi =

{
{δv | v ∈ Vi+1} ∪ {Rstv | v ∈ V0} if i < m

{Rstv | v ∈ V0} ∪ {F} if i = m

– Li(v) = {δv′} if v
δ
↪→ v′ and Li(v) = {Rstv′} if v

p,X
↪→ v′, for i � m;

Lm(v) = {F} if v ∈ VF ∩ Vm;
– α0 = α, and for 0 � i < m, αi+1 is the transient distribution of Ci at Δci;

– Pa
i (v, v

′) =

⎧
⎪⎨

⎪⎩

p if v, v′ ∈ Vi ∧ v
p,∅
↪→ v′ or v ∈ Vi ∧ v′ ∈ V0 ∧ v

p,X
↪→ v′

1 if v = v′ ∈ V0

0 otherwise.
– Ei(s, w) = E(s) where E is the exit-rate function of CTMC C.

State v in CTMC Ci is labeled with Rstv′ if a clock reset in v yields v′; similarly it is
labeled with δv′ if a delay results in state v′ in the successor CTMC Ci+1. These labels
are relevant for bisimulation quotienting as explained later. The propositionF indicates
the “final” CTMC states in the CTMC Cm.

The matrix Pa
i can be split into the matrices Pi and P̂a

i where Pi contains only
(probabilistic) transitions inside Vi whereas P̂a

i contains transitions from Vi to V0.
The transient probability matrix for Ci is defined as the solution of the equation
Πa
i (x) =

∫ x
0 Ei·e−Eiτ ·Pa

i ·Πa
i (x−τ)dτ + e−Eix. The matrices Πi and Π̂a

i can be
defined in a similar way as P. Let Ai := Π0 · Π1 · . . . · Πi for 0 � i � m−1 and
Bi := Π̂a

0 if i = 0 and Bi := Ai−1 · Π̂a
i + Bi−1 if 1 � i < m. We can now define the

linear equation system x ·M = f with

M =

(
In0 −Bm−1 Am−1

P̂a
m Inm −Pm

)
and f(v) =

{
1 if v ∈ Vm ∧ F ∈ Lm(v)
0 othewise

Here In denotes the identity matrix of cardinality n. For details, consult [12].

Theorem 2 ([12]). For CTMC C with initial distribution α, 1-clock DTA A and linear
equation system x ·M = f with solution U , we have that Prob(C |= A) = α ·U .

Algorithm 1 summarizes the main steps needed to model-check a CTMC against a 1-
clock DTA, where as an (optional) optimization step, in line 7 all augmented CTMCs
are lumped by the adapted lumping algorithm as explained below.

3 Lumping

It is known that bisimulation minimization is quite beneficial for CSL model checking
as experimentally showed in [18]. Besides yielding a state space reduction, it may yield

134 B. Barbot et al.

Algorithm 1. Verifying a CTMC against a 1-clock DTA
Require: a CTMC C with initial distr. α, a 1-clock DTA A with constants c0, ..., cm
Ensure: Pr(C |= A)
1: G(A) := buildRegionGraph(A);
2: Product := buildProduct(C,G(A)); {C ⊗ G(A)}
3: subGraphs {Gi}0�i�m := partitionProduct(Product);
4: for each subGraph Gi do
5: Ci := buildAugmentedCTMC(Gi); {build augmented CTMC cf. Definition 6}
6: end for
7: {C′i}0�i�m := lumpGroupCTMCs({Ci}0�i�m); {lump a group of CTMCs, see Alg. 2}
8: for each CTMC C′i do TransProbi := computeTransientProb(C′i, Δci); end for
9: linearEqSystem := buildLinearSystem({TransProbi}0�i�m); {cf. Theorem 2}

10: probVector := solveLinearSystem(linearEqSystem);
11: return α · probVector;

substantial speed-ups. The decomposition of the product C ⊗ G(A) into the CTMCs Ci
naturally facilitates a bisimulation reduction of each Ci prior to computing the transient
probabilities in Ci. In order to do so, an amendment of the standard lumping algo-
rithm [13,19] is needed as the CTMCs to be lumped are connected by delay and reset
transitions. Initial states in CTMC Ci might be the target states of edges whose source
states are in a different CTMC, Cj , say, with i 	= j. The partitioning of the target states
in Ci will affect the partitioning of the source states in Cj . For delay edges, i=j+1
while for reset transition, i=0. The intra-CTMC edges thus cause a “cyclic affection”
between partitions among all sub-CTMCs. From the state labeling (cf. Def. 6), it fol-
lows that for any two states v, v′ ∈ Ci, if their respective successor states in Ci+1 (or
C0) can be lumped, then v and v′ might be lumped. This implies that any refinement on
the lumping blocks in Ci+1 might affect the blocks in Ci. Similarly, refining C0 might
affect any Ci, viz., the CTMCs that have a reset edge to C0.

We initiate the lumping algorithm (cf. Alg. 2) for CTMC Ci = (Vi ∪ V0,APi, Li,
αi,Pa

i , Ei) by taking as initial partition the quotient induced by {(v1, v2) ∈ (Vi ∪
V0)2 | Li(v1) = Li(v2)}. This initial partition is successively refined on each Ci by the
standard approach [13,19], see lines 5–6. We then use the blocks in Ci+1 to update APi
in Ci and use blocks in C0 to update APi in all the affected Ci’s, cf. lines 7–11. As a
result, the new APi

′ may be coarser than the old APi:

AP′i = {Rst[v]0 | Rstv ∈ APi} ∪ {δ[v]i⊕1 | δv ∈ APi}.

Here, [v]i is the equivalence class in CTMC Ci containing state v, and i ⊕ 1 = i+1 if
i < m and m ⊕ 1 = m. With the new APi

′, this approach (cf. while-loop) is repeated
until all CTMC partitions are stable.

Example 2. Let v1
δ→ v′1 and v2

δ→ v′2 be two delay transitions from CTMC Ci to Ci+1.
ThenL(v1) = δv′1 andL(v2) = δv′2 . Since v1 and v2 are labeled differently, they cannot
be in one equivalence class. However, if in Ci+1 it turns out that v′1 and v′2 are in one
equivalence class, then we can update APi to AP′i such that nowL(v1) = L(v2) = δv′1 .
In this case, v1 and v2 can be lumped together.

Efficient CTMC Model Checking of Linear Real-Time Objectives 135

Algorithm 2. LumpGroupCTMCs
Require: a set of CTMCs Ci with APi for 0 � i � m
Ensure: a set of lumped CTMCs C′i such that Ci ∼ C′i
1: notStable := true;
2: while notStable do
3: notStable := false;
4: for i = m to 0 do
5: oldAPSize := |APi|;
6: (Ci,APi) := lumpCTMC(Ci, APi) ; {lump Ci due to APi and update Ci,APi}
7: if oldAPSize > |APi| then {some states have been lumped in Ci}
8: notStable := true;
9: if i = 0 then

10: for j = 1 to m do updateResetEdge(AP0,APj) ; {update APj}
11: else updateDelayEdge(APi,APi−1) ; {update APi−1 according to APi}
12: return the new set of CTMCs lumped by the newest APi

If some states have been updated in Ci and APi has been updated (line 7), there are two
cases: if i=0, then we update all APj , j 	= 0 that have a reset edge to C0 (line 9-10);
otherwise, we update its directly predecessor APi−1 which has a delay edge to Ci (line
11). This procedure is repeated until all APi’s are stable.

Theorem 3. The transient probability distribution in Ci and its quotient C′i, obtained
by Alg. 2 are equal.

As a corollary, it follows that the reachability probabilities of the accepting states in
C ⊗ G(A), and its quotient obtained by applying Alg. 2 coincide.

4 Experimental Results

Implementation. We implemented our approach in approximately 4,000 lines of OCaml
code. Transient probabilities are computed using uniformization, linear equation sys-
tems are solved using the Gauss-Seidel algorithm, and lumping has been realized by
adapting [13] with the correction explained in [19]. Unreachable states (both forwards
from the initial and backwards from the final states) are removed in C⊗G(A) prior to the
analysis, and transient probabilities in Ci are only determined for its initial states, i.e.,
its entry points. The tool adopts the input format of the MRMC model checker [17].
Thanks to the output facility of PRISM [1], the verification of PRISM models is
possible.

Case studies. We conducted extensive experiments with three case studies. The first
case study has been taken from [3], and facilitates a comparison with the approach
of [14]. The second case study, a random robot, is (to our taste) a nice example showing
the need for DTA objectives. We use it for 1-clock as well as multi-clock objectives. The
specifications of this example cannot be expressed using any other currently available
techniques. The final case study originates from systems biology and is a more realis-
tic case study. We first present experimental results using a sequential algorithm, with

136 B. Barbot et al.

and without lumping. Section 4.4 presents the results when parallelizing the transient
analysis (but not the lumping). All results (one and four cores) have been obtained on
a 2 × 2.33GHz Intel Dual-Core computer with 32GB main memory. The experiments
on 20 cores have been obtained using a cluster of five such computers with a GigaBit
connection. All the results are obtained with precision 10−8.

4.1 Cyclic Polling Server

This case study facilitates a comparison with [3]. The cyclic polling server (CPS) sys-
tem [16] is a queuing system consisting of a server and N stations each equipped with
a queue of capacity 1, cf. Fig. 3 for N = 3. Jobs arrive with rate λ and the server polls
the stations in a round-robin order with rate γ. When the server is polling a station with
a full queue, it can either serve the job in the queue or it can poll the next station (both
with rate γ). Once the server decides to serve a job, it can successfully process the job
with rate μ or it will fail with rate ρ. The 1-clock DTA objective (adapted from [3], see
Fig. 4) requires that after consulting all queues for one round, the server should serve
each queue one after the other within T time units. The label sti indicates that the sys-
tem is at station i; srv means that the system is serving the job in the current station
and j arr means a new job arrives at some station. The DTA starts from station 1 at q0
and goes to q1 when polling the next station (st2). It stays at q1 for not polling station
1 –implicitly it goes sequentially from station 2 to N– until it sees station 1 again (and
goes to state q2). Note that the clock is reset before going to state q2. From state q2 to
state q5, it specifies serving stations 1, . . . , N one by one within the deadline T . The
dashed line indicates the intermediate transitions from station st2 to station stN−1.

Table 1 summarizes our results, where %transient and %lumping indicate the fraction
of time to compute transient probabilities and to lump all CTMCs, respectively. The
computed probabilities Prob(C |= A) are identical to [3] (that contains results up to
N=7); our verification times are, however, three orders of magnitude faster. If lumping
is not applied, then most of the time is spent on the transient analysis. Lumping can
save approximately 2

3
of the state space (#blocks

#product states), however, it has a major impact
on the verification times.

λ

λ

λ

γ

μ

Fig. 3. Cyclic polling server
(λ= μ

N
, μ=0.5, γ=10, ρ=1)

q0 q1

q2 q3 q4

q5

st1 ∧ ¬st2, true,∅

st2, true,∅

¬st1, true,∅

st1, true, {x}

j arr, x < T,∅

st1 ∧ srv, x < T,∅

j arr, x < T,∅

stN−1 ∧ srv, x < T,∅

j arr, x < T,∅

stN ∧ srv, x < T,∅

Fig. 4. DTA for the polling server system (T = 1)

Efficient CTMC Model Checking of Linear Real-Time Objectives 137

Table 1. Experimental results for polling server system (no parallelization)

#queues #CTMC No lumping With lumping
N states #product states time(s) %transient #blocks time(s) %transient %lumping
2 16 51 0 0% 21 0 0% 0%
3 48 143 0.01 0% 52 0.02 0% 60%
4 128 363 0.03 60% 126 0.08 13% 65%
5 320 875 0.13 84% 298 0.37 16% 79%
6 768 2043 0.57 88% 690 1.75 15% 82%
7 1792 4667 2.6 90% 1570 8.58 14% 84%
8 4096 10491 14.8 94% 3522 41.92 13% 85%
9 9216 23291 120 98% 7810 230 22% 77%
10 20480 51195 636 98% 17154 1381 25% 75%

4.2 Robot Navigation

A robot moves on a grid with N × N cells, see Fig. 5. It can move up, down, left and
right with rate λ. The black squares from the grid represent walls, i.e., the robot is
prohibited to pass through them. The robot is allowed to stay in consecutive C-cells for
at most T1 units of time, and in the D-cells for at most T2 units of time. There is no time
constraint on the residence times in the A-cells. The task is to compute the probability
to reach the B-cell from the A-cell labeled with↗. No time constraint is imposed on
reaching the target. The DTA objective is shown in Fig. 6. Intuitively, qA, qB, qC and
qD represent the states that the robot is in the respective cells. From qA, qC , and qD,
it is possible to go to the final state qB . The outgoing edges from qC and qD have the
guard x < T1 or x < T2; while their incoming edges reset the clock x.

Table 2 presents the results. Lumping is attractive as it reduces the state space by a
factor two, and speeds-up the verification. As opposed to the polling system case, most
time is spent on building the product and solving the linear equation system. The gray
rows in Table 1 and 2 refer to similar product size whereas the verification times differ
by two orders of magnitude (14.88 vs. 2433.31). This is due to the fact that there are
two and three subgraphs, respectively. The resulting linear equation system has 2 and 3

A

B

C C C

C C C

D

D

D D D

D D

A A A A

A

A

A

A

A A A A A

A

Fig. 5. Robot on a grid (λ =
1)

qA

qC

qD

qB

A, true,∅

C, true, {x}

D, true, {x}

B, true,∅

A,x < T1,∅

C, x < T1,∅

D, x < T1, {x}

B, x < T1,∅

A,x < T2,∅

D,x < T2,∅

C, x < T2, {x}

B, x < T2,∅

Fig. 6. DTA for robot case study (T1 = 3, T2 = 5)

138 B. Barbot et al.

Table 2. Experimental results for the robot example (without parallelization)

#CTMC No lumping With lumping
N states #product states time(s) %transient #blocks time(s) %transient %lumping
10 100 148 0.09 59% 78 0.09 43% 32%
20 400 702 6.7 18% 380 7.1 14% 7%
30 900 1248 32 17% 619 26 14% 6%
40 1600 2672 119 13% 1296 93 10% 5%
50 2500 4174 135 17% 2015 138 12% 7%
60 3600 4232 309 16% 1525 261 12% 7%
70 4900 8661 904 12% 4212 1130 7% 3%
80 6400 9529 1753 12% 4339 1429 14% 4%
90 8100 9812 2433 8% 2613 1922 6% 5%

variables accordingly and this influences the verification times. The number of blocks is
not monotonically increasing, as the robot grid (how the walls and regionsC andD are
located) is randomly generated. The structure of the grid, e.g., whether it is symmetric
or not, has a major influence on the lumping time and quotient size.

4.3 Systems Biology

The last case study stems from a real example [15] in systems biology. The goal is
to generate activated messengers. M ligands can bind with a number of receptors, cf.
Fig. 7). Initially each ligand binds with a free receptor R with rate k+1 and it forms a
ligand-receptor (LR) B0. The LR then undergoes a sequence ofN modifications with a
constant rate kp and becomes B1, . . . , BN . From every LR Bi (0 � i � N) the ligand
can separate from the receptor with rate k−1. The LR BN can link with an inactive
messenger with rate k+x and then forms a new component ligand-receptor-messenger
(LRM) (the lastBN in Fig. 7). The LRM can decompose into three separate components
in their initial forms with rate k−1, or the messenger can separate from LRM into an
inactive (resp. active) messenger with rate k−x (resp. kcat).

The 1-clock DTA objective is given in Fig. 8. Intuitively, it requires a transformation
fromR to LRBN directly without jumping back toR inbetween and manage to activate

Fig. 7. Kinetik proof reading with a messenger [15] (#R = 900,
#Inact. msg = 10000, N = 6, k+1 = 6, 7 × 10−3, k−1 = 0, 5,
kp = 0, 25, k+x = 1, 2× 10−3, k−x = 0, 01, kcat = 100)

q0

q1

q2

fwd ∧ ¬atBN , true, ∅

fwd ∧ atBN , true, {x}

fwd ∧ ¬actMsg, x < T, ∅

actMsg, true, ∅

Fig. 8. DTA for the biol-
ogy case study (T = 1)

Efficient CTMC Model Checking of Linear Real-Time Objectives 139

Table 3. Experimental results for the biology example (no parallelization)

#CTMC No lumping With lumping
M states #product states time(s) %transient #blocks time(s) %transient %lumping
1 18 31 0 0% 13 0 0% 0%
2 150 203 0.06 93% 56 0.05 58% 39%
3 774 837 1.36 94% 187 0.84 64% 30%
4 3024 2731 17.29 97% 512 9.19 73% 24%
5 9756 7579 152.54 97% 1213 73.4 76% 21%
6 27312 18643 1547.45 98% 2579 457.35 78% 20%
7 68496 41743 11426.46 99% 5038 3185.6 85% 14%
8 157299 86656 23356.5 99% 9200 11950.8 81% 18%
9 336049 169024 71079.15 99% 15906 38637.28 76% 22%
10 675817 312882 205552.36 99% 26256 116314.41 71% 26%

a messenger within T time units after reaching the LRBN . In the DTA, fwd means that
the last transformation is moving forward, i.e., not jumping back to R; atBN means that
the process reaches LRBN and actMsg means the active messenger is generated. In q0,
the process is on the way to reach LRBN . When it reaches LRBN , the DTA goes from
q0 to q1 and resets the clock x. In q1, there is no active messenger generated yet. It will
go to q2 when an active messenger is generated. Note that the time constraint x < T is
checked on the self-loop on q1. As Table 3 indicates, lumping works very well on this
example: it reduces both time and space by almost one order of magnitude.

4.4 Parallelization

Model checking a CTMC against a 1-clock DTA can be parallelized in a natural man-
ner. In this section, we present the results when parallelization is applied on the above
three case studies. We experimented on distributing the tasks on 1 machine with 4 cores
as well as 5 machines with 4 cores each (20 cores in total). We focused on parallelizing
the transient analysis; as lumping is not parallelized, we determine the speedup without
lumping. For each CTMC Ci, we need to compute for each state its transient probability
vector which corresponds to a column in the transient probability matrix. We distribute
the computation of different columns to different cores (which might be on different ma-
chines). To do so, we launch N different processes and send them the rate matrix and
a list of initial states, and each process returns the transient probability vector for each
initial state. The speedup factor is computed by time without para.

time with para. . From Table 4, it follows
that parallelization mostly works well for larger models. For small models, it usually
does not pay off to distribute the computation tasks, due to overhead. For the polling
server system, as the number of stations N increases, the value of speedup for 20 cores

speedup for 4 cores ap-
proximates 20/4=5. The same applies to the biology example. The parallelization does
not work well on the robot example. The performance on 20 cores might even be worse
than on 4 cores. This is due to the fact that only the transient analysis is parallelized.
From Table 1 and 2, we can see that most of the computation time is spent on tran-
sient analysis for the polling and biology examples. This explains why paralleliza-
tion works well here. In the robot example, however, the transient analysis does not
dominate the computation time. This yields moderate speedups. An interesting future
work is to apply parallel lumping as in [10] to our setting.

140 B. Barbot et al.

Table 4. Parallel verification of polling (left), robot (mid), and biology example (right)

4 Cores 20 Cores
N time(s) speedup time(s) speedup
4 0.03 1.21 0.18 0.18
5 0.08 1.70 0.22 0.59
6 0.32 1.77 1.54 0.37
7 1.04 2.58 2.08 1.29
8 7.35 2.02 4.04 3.68
9 40.28 2.98 13.76 8.73
10 186.02 3.42 54.97 11.58
11 863.3 3.35 233.99 12.35
12 3940.42 3.65 1089 13.22

4 Cores 20 Cores
N time(s) speedup time(s) speedup
30 23.59 1.37 27.18 1.19
40 84.05 1.42 81.64 1.47
50 122.01 1.11 117.17 1.16
60 266.67 1.16 265.48 1.17
70 793.48 1.14 778.69 1.16
80 1474.88 1.19 1441.99 1.22
90 2498.34 0.97 1917.1 1.27
100 1667.78 1.14 1342.26 1.41
110 4614.92 1.32 5165.7 1.18

4 Cores 20 Cores
N time(s) speedup time(s) speedup
3 0.45 3.03 0.42 3.22
4 5.3 3.26 3.44 5.02
5 44.73 3.41 15.87 9.61
6 620.16 2.50 160.58 9.64
7 4142.19 2.76 949.32 12.04
8 8168.62 2.86 1722.63 13.56
9 23865.17 2.98 5457.01 13.03
10 70623.46 2.91 16699.22 12.31

5 Multi-clock DTA Objectives

The graph decomposition approach for 1-clock DTA fails in the multi-clock setting as in
case of a reset edge, it cannot be determined to which time point it will jump (unlike x =
0 in the 1-clock case). These time points, however, can be approximated by discretization
as shown below. W.l.o.g. assume there are two clocks x, y. The maximal constants cx, cy
to which x and y are compared in the DTA are discretized by h = 1

N
for some a priori

fixedN ∈ N>0. As a result, there are cxcy/h2 = N2cxcy areas (or grids). The behavior
of all the points in one grid can be regarded as approximately the same. For grid (i, j), it
can either delay to (i+1, j+1), or jump to (0, j) (resp. (i, 0)) by resetting clock x (resp.
y) or to (0, 0) by resetting both clocks. The following definition originates from [12].

Definition 7 (Product of CTMC and DTA). Let C = (S,AP, L, s0,P, E) be a
CTMC and A = (2AP ,X , Q, q0, QF ,→) be a DTA. Let C ⊗ A = (Loc,X , �0,
LocF , E,�), where Loc = S ×Q; �0 = (s0, q0); E(s, q) = E(s); LocF := S ×QF ,
and � is the smallest relation defined by:

P(s, s′) > 0 ∧ q
L(s),g,X−−−−−−→ q′

s, q
g,X �������� π

such that π(s′, q′) = P(s, s′).

Note that π ∈ Distr(S × Q) is a probability distribution. The symbolic edge

�
g,X �������� π with distribution π induces transitions of the form �

� g,X
p

�� �′ with

p = π(�′). C ⊗ A is a stochastic process that can be equipped with a probability mea-
sure on infinite paths, cf. [12]. We approximate the stochastic behavior by a discrete-
time Markov chain (DTMC). This is done by discretizing clock values in equidistant
step-sizes of size h = 1/N .

Definition 8 (Discretization). Let C ⊗ A = (Loc,X , �0, LocF , E,�), k = |X |, C be
the largest constant in A, C = Ck be a vector with all elements equal to C, h = 1/N
for some N ∈ N>0 and h = hk. The (unlabeled) DTMC Dh = (S, s0,P) is given by
S = Loc× ({i ·h | 0 � i � C·N+1})k, s0 = (�0, 0) and P((�, η), (�′, η′)) is given by:

– p ·
(
1− 1−e−E(�)·h

h·E(�)

)
iff �

� g,X

p
�� �′ ∧ η |= g ∧ η′ = η[X := 0] ∧ η �= C+h;

– p·
(

1
hE(�)

− (1 + 1
hE(�)

)e−E(�)h
)

iff �
� g,X

p
�� �′ ∧ η|=g ∧ η′=(η+h)[X:=0] ∧

η �=C+h;

Efficient CTMC Model Checking of Linear Real-Time Objectives 141

– e−E(�)·h iff � = �′ ∧ η′ = η + h ∧ η �= C+h;

– p iff �
� g,X

p
�� �′ ∧ η |= g ∧ η′ = η[X := 0] ∧ η = C+h;

– 0 otherwise.

The number of states in the derived DTMC is |S|·|Q|·(C ·N+1)k. The following result
states that for h approaching zero, Prob(C |= A) equals the reachability probability in
the DTMC Dh of a state of the form (�, ·) with � ∈ LocF .

Theorem 4. Let PDh (s0,�F) be the reachability probability in the DTMCDh to reach
a state (�, ·) with � ∈ LocF . Then limh→0 P

D
h (s0,�F) = Prob(C |= A).

To illustrate the performance of the discretization technique, we add a clock y to the
robot example, where y is never reset. The time constraint y < Ty is added to all in-
coming edges of qB . The results are shown in Table 5 with h=5 · 10−2. Although the
resulting DTMC size is quite large, the computation times are still acceptable, as com-
puting reachability probabilities in a DTMC is rather fast. For the sake of comparison,
we applied the discretization technique to the polling server system with a 1-clock DTA
objective. We obtain the same probabilities as before; results are given in Table 6 with
precision 0.001.

Table 5. Experimental results for the robot ex-
ample with 2-clock DTA (Ty = 3)

N CTMC size DMTA size DTMC size time (s)
10 100 105 865305 79
20 400 475 3914475 412
30 900 1003 8265723 868
40 1600 1669 13754229 1605
50 2500 2356 19415796 2416
60 3600 3411 28110051 3559
70 4900 4850 39968850 22427

Table 6. Polling example with 1-clock DTA
using discretization

N CTMC size DMTA size DTMC size time (s)
2 16 31 31031 15.89
3 48 89 89089 52.66
4 128 229 229229 152.2
5 320 557 557557 407.4
6 768 1309 1310309 1042
7 1792 3005 3008005 2577
8 4096 6781 6787781 6736
9 9216 15101 15116101 30865

6 Conclusion

We have presented a practical approach to verifying CTMCs against DTA objectives.
First, we showed that a standard region construction on DTA suffices. For 1-clock
DTA, we showed that the graph decomposition approach of [12] offers rather straight-
forward possibilities for optimizations, viz. bisimulation minimization and paralleliza-
tion. Several experiments substantiate this claim. The main result of this paper is that
it shows that 1-clock DTA objectives can be handled by completely standard means:
region construction of timed automata, transient analysis of CTMCs, graph analy-
sis, and solving linear equation systems. Our approach clearly outperforms alterna-
tive techniques for CSLTA [3,14], and allows for the verification of objectives that
cannot be treated with other CTMC model checkers. Our prototype is available at
http://moves.rwth-aachen.de/CoDeMoC. Finally, we remark that although
we only considered finite acceptance conditions in this paper, our approach can easily
be extended to DTA with Rabin acceptance conditions.

142 B. Barbot et al.

Acknowledgement. We thank Verena Wolf (Saarland University) for providing us with the
biology case study. This research is funded by the DFG research training group 1295 AlgoSyn,
the SRO DSN project of CTIT, University of Twente, the EU FP7 project QUASIMODO and the
DFG-NWO ROCKS project.

References

1. PRISM website, http://www.prismmodelchecker.org
2. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
3. Amparore, E.G., Donatelli, S.: Model checking CSLTA with deterministic and stochastic

Petri Nets. In: Dependable Systems and Networks (DSN), pp. 605–614 (2010)
4. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Grösser, M.: Almost-sure model checking of

infinite paths in one-clock timed automata. In: LICS, pp. 217–226 (2008)
5. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking Markov chains

with actions and state labels. IEEE TSE 33(4), 209–224 (2007)
6. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for

continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)
7. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation and model

checking join forces. Commun. of the ACM 53(9), 74–85 (2010)
8. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive power of silent

transitions in timed automata. Fund. Inf. 36(2-3), 145–182 (1998)
9. Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking of one-clock

timed automata under probabilistic semantics. In: QEST, pp. 55–64 (2008)
10. Blom, S., Haverkort, B.R., Kuntz, M., van de Pol, J.: Distributed Markovian bisimulation

reduction aimed at CSL model checking. ENTCS 220(2), 35–50 (2008)
11. Brázdil, T., Krčál, J., Křetı́nský, J., Kučera, A., Řehák, V.: Stochastic real-time games with

qualitative timed automata objectives. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010.
LNCS, vol. 6269, pp. 207–221. Springer, Heidelberg (2010)

12. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-
time Markov chains against timed automata specification. In: LICS, pp. 309–318 (2009)

13. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains.
Inf. Process. Lett. 87(6), 309–315 (2003)

14. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA. IEEE TSE 35(2), 224–240 (2009)

15. Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of
immune-receptor signalling. Nat. Reviews Immunology 4, 445–456 (2004)

16. Haverkort, B.R.: Performance evaluation of polling-based communication systems using
SPNs. In: Appl. of Petri Nets to Comm. Networks, pp. 176–209 (1999)

17. Katoen, J.-P., Hahn, E.M., Hermanns, H., Jansen, D.N., Zapreev, I.: The ins and outs of the
probabilistic model checker MRMC. In: QEST, pp. 167–176 (2009)

18. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.: Bisimulation minimisation mostly speeds
up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

19. Valmari, A., Franceschinis, G.: Simple O(m logn) time markov chain lumping. In: Esparza,
J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg
(2010)

20. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
FOCS, pp. 327–338 (1985)

Efficient Interpolant Generation in Satisfiability Modulo
Linear Integer Arithmetic

Alberto Griggio1,�, Thi Thieu Hoa Le2, and Roberto Sebastiani2,��

1 FBK-Irst, Trento, Italy
2 DISI, University of Trento, Italy

Abstract. The problem of computing Craig interpolants in SAT and SMT has re-
cently received a lot of interest, mainly for its applications in formal verification.
Efficient algorithms for interpolant generation have been presented for some the-
ories of interest —including that of equality and uninterpreted functions (EUF),
linear arithmetic over the rationals (LA(Q)), and their combination— and they
are successfully used within model checking tools. For the theory of linear arith-
metic over the integers (LA(Z)), however, the problem of finding an interpolant
is more challenging, and the task of developing efficient interpolant generators
for the full theory LA(Z) is still the objective of ongoing research.

In this paper we try to close this gap. We build on previous work and present
a novel interpolation algorithm for SMT(LA(Z)), which exploits the full power
of current state-of-the-art SMT(LA(Z)) solvers. We demonstrate the potential of
our approach with an extensive experimental evaluation of our implementation of
the proposed algorithm in the MATHSAT SMT solver.

1 Motivations, Related Work and Goals

Given two formulasA andB such thatA∧B is inconsistent, a Craig interpolant (simply
“interpolant” hereafter) for (A,B) is a formula I s.t. A entails I, I ∧B is inconsistent,
and all uninterpreted symbols of I occur in both A and B.

Interpolation in both SAT and SMT has been recognized to be a substantial
tool for formal verification. For instance, in the context of software model checking
based on counter-example-guided-abstraction-refinement (CEGAR) interpolants of
quantifier-free formulas in suitable theories are computed for automatically refining
abstractions in order to rule out spurious counterexamples. Consequently, the problem
of computing interpolants in SMT has received a lot of interest in the last years (e.g.,
[14,17,19,11,4,10,13,7,8,3,12]). In the recent years, efficient algorithms and tools for
interpolant generation for quantifier-free formulas in SMT have been presented for
some theories of interest, including that of equality and uninterpreted functions (EUF)
[14,7], linear arithmetic over the rationals (LA(Q)) [14,17,4], and for their combination
[19,17,4,8], and they are successfully used within model-checking tools.

For the theory of linear arithmetic over the integers (LA(Z)), however, the prob-
lem of finding an interpolant is more challenging. In fact, it is not always possible to

� Supported by the European Community’s FP7/2007-2013 under grant agreement Marie Curie
FP7 - PCOFUND-GA-2008-226070 “progetto Trentino”, project Adaptation.

�� Supported by SRC under GRC Custom Research Project 2009-TJ-1880 WOLFLING.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 143–157, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

144 A. Griggio, T.T.H. Le, and R. Sebastiani

obtain quantifier-free interpolants starting from quantifier-free input formulas in the
standard signature of LA(Z) (consisting of Boolean connectives, integer constants and
the symbols +, ·,≤,=) [14]. For instance, there is no quantifier-free interpolant for the
LA(Z)-formulas A

def= (2x− y + 1 = 0) and B
def= (y − 2z = 0).

In order to overcome this problem, different research directions have been explored.
One is to restrict to important fragments of LA(Z) where the problem does not oc-
cur. To this extent, efficient interpolation algorithms for the Difference Logic (DL)
and Unit-Two-Variables-Per-Inequality (UT VPI) fragments of LA(Z) have been pro-
posed in [4]. Another direction is to extend the signature of LA(Z) to contain modular
equalities =c (or, equivalently, divisibility predicates), so that it is possible to compute
quantifier-free LA(Z) interpolants by means of quantifier elimination —which is how-
ever prohibitively expensive in general, both in theory and in practice. For instance,
I

def= (−y + 1 =2 0) ≡ ∃x.(2x − y + 1 = 0) is an interpolant for the formulas
(A,B) above. Using modular equalities, Jain et al. [10] developed polynomial-time in-
terpolation algorithms for linear equations and their negation and for linear modular
equations. A similar algorithm was also proposed in [13]. The work in [3] was the first
to present an interpolation algorithm for the full LA(Z) (augmented with divisibility
predicates) which was not based on quantifier elimination. Finally, an alternative algo-
rithm, exploiting efficient interpolation procedures for LA(Q) and for linear equations
in LA(Z), has been recently presented in [12].

The obvious limitation of the first research direction is that it does not cover the full
LA(Z). For the second direction, the approaches so far seem to suffer from some draw-
backs. In particular, some of the interpolation rules of [3] might result in an exponential
blow-up in the size of the interpolants wrt. the size of the proofs of unsatisfiability
from which they are generated. The algorithm of [12] avoids this, but at the cost of sig-
nificantly restricting the heuristics commonly used in state-of-the-art SMT solvers for
LA(Z) (e.g. in the framework of [12] both the use of Gomory cuts [18] and of “cuts
from proofs” [5] is not allowed). More in general, the important issue of how to effi-
ciently integrate the presented techniques into a state-of-the-art SMT(LA(Z)) solver is
not immediate to foresee from the papers.

In this paper we try to close this gap. After recalling the necessary background
knowledge (§2), we present our contribution, which is twofold.

First (§3) we show how to extend the state-of-the art LA(Z)-solver of MATHSAT
[9] in order to implement interpolant generation on top of it without affecting its effi-
ciency. To this extent, we combine different algorithms corresponding to the different
submodules of the LA(Z)-solver, so that each of the submodules requires only mi-
nor modifications, and implement them in MATHSAT (MATHSAT-MODEQ hereafter).
An extensive empirical evaluation (§5) shows that MATHSAT-MODEQ outperforms in
efficiency all existing interpolant generators for LA(Z).

Second (§4), we propose a novel and general interpolation algorithm for LA(Z),
independent from the architecture of MATHSAT, which overcomes the drawbacks of
the current approaches. The key idea is to extend both the signature and the domain
of LA(Z): we extend the signature by adding the ceiling function �·� to it, and the
domain by allowing non-variable terms to be non-integers. This greatly simplifies the

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic 145

interpolation procedure, and allows for producing interpolants which are much more
compact than those generated by the algorithm of [3]. Also this novel technique was
easily implemented on top of the LA(Z)-solver of MATHSAT without affecting its ef-
ficiency. (We call this implementation MATHSAT-CEIL.) An extensive empirical eval-
uation (§5) shows that MATHSAT-CEIL drastically outperforms MATHSAT-MODEQ,
and hence all other existing interpolant generators for LA(Z), for both efficiency and
size of the final interpolant.

2 Background: SMT(LA(Z))

2.1 Generalities

Satisfiability Modulo Theory – SMT. Our setting is standard first order logic. We use
the standard notions of theory, satisfiability, validity, logical consequence. We call Sat-
isfiability Modulo (the) Theory T , SMT(T), the problem of deciding the satisfiability
of quantifier-free formulas wrt. a background theory T .1 Given a theory T , we write
φ |=T ψ (or simply φ |= ψ) to denote that the formula ψ is a logical consequence of
φ in the theory T . With φ � ψ we denote that all uninterpreted (in T) symbols of φ
appear in ψ. With a little abuse of notation, we might sometimes denote conjunctions
of literals l1 ∧ . . . ∧ ln as sets {l1, . . . , ln} and vice versa. If η is the set {l1, . . . , ln},
we might write ¬η to mean ¬l1 ∨ . . . ∨ ¬ln.

We call T -solver a procedure that decides the consistency of a conjunction of
literals in T . If S is a set of literals in T , we call T -conflict set w.r.t. S any subset
η of S which is inconsistent in T . We call ¬η a T -lemma (notice that ¬η is a T -valid
clause).

A standard technique for solving the SMT(T) problem is to integrate a DPLL-based
SAT solver and a T -solver in a lazy manner (see, e.g., [2] for a detailed description).
DPLL is used as an enumerator of truth assignments for the propositional abstraction
of the input formula. At each step, the set of T -literals in the current assignment is sent
to the T -solver to be checked for consistency in T . If S is inconsistent, the T -solver
returns a conflict set η, and the corresponding T -lemma ¬η is added as a blocking
clause in DPLL, and used to drive the backjumping and learning mechanism.

Interpolation in SMT. We consider the SMT(T) problem for some background the-
ory T . Given an ordered pair (A,B) of formulas such that A ∧ B |=T ⊥, a Craig
interpolant (simply “interpolant” hereafter) is a formula I s.t. (i) A |=T I, (ii) I ∧B is
T -inconsistent, and (iii) I � A and I � B.

Following [14], an interpolant for (A,B) in SMT(T) can be generated by combining
a propositional interpolation algorithm for the Boolean structure of the formula A ∧ B
with a T -specific interpolation procedure that deals only with negations of T -lemmas,
that is, with T -inconsistent conjunctions of T -literals. Therefore, in the rest of the pa-
per, we shall consider algorithms for conjunctions/sets of literals only, which can be
extended to general formulas by simply “plugging” them into the algorithm of [14].

1 The general definition of SMT deals also with quantified formulas. Nevertheless, in this paper
we restrict our interest to quantifier-free formulas.

146 A. Griggio, T.T.H. Le, and R. Sebastiani

2.2 Efficient SMT(LA(Z)) Solving

In this section, we describe our algorithm for efficiently solving SMT(LA(Z)) prob-
lems, as implemented in the MATHSAT 5 SMT solver [9]. They key feature of our
solver is an extensive use of layering and heuristics for combining different known
techniques, in order to exploit the strengths and to overcome the limitations of each of
them. Both the experimental results of [9] and the latest SMT solvers competition SMT-
COMP’102 demonstrate that it represents the current state of the art in SMT(LA(Z)).

The architecture of the solver is outlined in Fig. 1. It is organized as a layered
hierarchy of submodules, with cheaper (but less powerful) ones invoked earlier and
more often. The general strategy used for checking the consistency of a set of LA(Z)-
constraints is as follows.

First, the rational relaxation of the problem is checked, using a Simplex-based
LA(Q)-solver similar to that described in [6]. If no conflict is detected, the model
returned by the LA(Q)-solver is examined to check whether all integer variables are
assigned to an integer value. If this happens, the LA(Q)-model is also a LA(Z)-model,
and the solver can return sat.

Internal
Branch and Bound

Branch and Bound
lemmas generator

LA(Z)-solver

3

DPLL

21

2LA(Q)-solver

3no conflict

trail simplifications

4 conflict
5

5

timeout

Branch and Bound-lemma

1
Diophantine

equations handler

4

1

conflict

LA(Z)-conflict

no conflict
equality elimination

no conflict

LA(Z) model

conflict

LA(Z) model

sat

Fig. 1. Architecture of the LA(Z)-solver of MATHSAT

Otherwise, the spe-
cialized module for
handling linear LA(Z)
equations (Diophantine
equations) is invoked.
This module is similar
to the first part of the
Omega test described
in [16]: it takes all the
equations in the input
problem, and tries to
eliminate them by com-
puting a parametric so-
lution of the system and
then substituting each
variable in the inequal-
ities with its parametric
expression. If the system of equations itself is infeasible, this module is also able to
detect the inconsistency.

Otherwise, the inequalities obtained by substituting the variables with their paramet-
ric expressions are normalized, tightened and then sent to the LA(Q)-solver, in order
to check the LA(Q)-consistency of the new set of constraints.

If no conflict is detected, the branch and bound module is invoked, which tries to find
aLA(Z)-solution via branch and bound [18]. This module is itself divided into two sub-
modules operating in sequence. First, the “internal” branch and bound module is acti-
vated, which performs case splits directly within the LA(Z)-solver. The internal search
is performed only for a bounded (and small) number of branches, after which the “ex-
ternal” branch and bound module is called. This works in cooperation with the DPLL

2 http://www.smtcomp.org/2010/

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic 147

engine, using the “splitting on-demand” approach of [1]: case splits are delegated to
DPLL, by sending to it LA(Z)-valid clauses of the form (t−c ≤ 0)∨(−t+c+1 ≤ 0)
(called branch-and-bound lemmas) that encode the required splits. Such clauses are
generated with the “cuts from proofs” algorithm of [5]: “normal” branch-and-bound
steps – splitting cases on an individual variable – are interleaved with “extended” steps,
in which branch-and-bound lemmas involve an arbitrary linear combination of vari-
ables, generated by computing proofs of unsatisfiability of particular systems of Dio-
phantine equations.

3 From LA(Z)-Solving to LA(Z)-Interpolation

Our objective is that of devising an interpolation algorithm that could be implemented
on top of the LA(Z)-solver described in the previous section without affecting its ef-
ficiency. To this end, we combine different algorithms corresponding to the different
submodules of the LA(Z)-solver, so that each of the submodules requires only minor
modifications.

3.1 Interpolation for Diophantine Equations

An interpolation procedure for systems of Diophantine equations was given by Jain et
al. in [10]. The procedure starts from a proof of unsatisfiability expressed as a linear
combination of the input equations whose result is an equation (

∑
cixi + c = 0) in

which the greatest common divisor (GCD) of the coefficients ci of the variables is not
a divisor of the constant term c.

Given a proof of unsatisfiability for a system of equations partitioned into A and
B, let (

∑
xi∈A∩B cixi +

∑
yj �∈B ajyj + c = 0) be the linear combination of the

equations from A with the coefficients given by the proof of unsatisfiability. Then,
I

def=
∑
xi∈A∩B cixi+ c =g 0, where g is any integer that dividesGCD(aj), is an inter-

polant for (A,B) [10]. Jain et al. show that a proof of unsatisfiability can be obtained
by computing the Hermite Normal Form [18] of the system of equations. However, this
is only one possible way of obtaining such proof. In particular, as shown in [9], the sub-
module of ourLA(Z)-solver that deals with Diophantine equations can already produce
proofs of unsatisfiability directly. Therefore, we can apply the interpolation algorithm
of [10] without any modification to the solver.

3.2 Interpolation for Inequalities

The second submodule of our LA(Z)-solver checks the LA(Q)-consistency of a set of
inequalities, some of which obtained by substitution and tightening [9]. In this case, we
produce interpolants starting from proofs of unsatisfiability in the cutting-plane proof
system, a complete proof system for LA(Z) [18]. Similarly to previous work onLA(Q)
and LA(Z) [14,3], we produce interpolants by annotating each step of the proof of
unsatisfiability of A ∧B, such that the annotation for the root of the proof (deriving an
inconsistent inequality (c ≤ 0) with c ∈ Z

>0) is an interpolant for (A,B).

148 A. Griggio, T.T.H. Le, and R. Sebastiani

Definition 1 (Valid annotated sequent). An annotated sequent is a sequent in the form
(A,B) � (t ≤ 0)[I] where A and B are conjunctions of equalities and inequalities in
LA(Z), and where I (called annotation) is a set of pairs 〈(ti ≤ 0), Ei〉 in which Ei is a
(possibly empty) conjunction of equalities and modular equalities. It is said to be valid
when:

1. A |=
∨
〈ti≤0,Ei〉∈I((ti ≤ 0) ∧ Ei);

2. For all 〈ti ≤ 0, Ei〉 ∈ I, B ∧ Ei |= (t− ti ≤ 0);
3. For every element 〈(ti ≤ 0), Ei〉 of I, ti � A, (t− ti) � B, Ei � A and Ei � B.

Definition 2 (Interpolating Rules). The LA(Z)-interpolating inference rules that we
use are the following:

Hyp-A
(A,B) � (t ≤ 0)[{〈t ≤ 0,�〉}] if (t ≤ 0) ∈ A or (t = 0) ∈ A

Hyp-B
(A,B) � (t ≤ 0)[{〈0 ≤ 0,�〉}] if (t ≤ 0) ∈ B or (t = 0) ∈ B

Comb
(A,B) � t1 ≤ 0[I1] (A,B) � t2 ≤ 0[I2]

(A,B) � (c1t1 + c2t2 ≤ 0)[I]
where:

– c1, c2 > 0
– I

def= {〈c1t′1 + c2t
′
2 ≤ 0, E1 ∧ E2〉 | 〈t′1 ≤ 0, E1〉 ∈ I1 and 〈t′2 ≤ 0, E2〉 ∈ I2}

Strengthen
(A,B) �

∑
i cixi + c ≤ 0[{〈t′ ≤ 0,�〉}]

(A,B) �
∑
i cixi + c+ k ≤ 0[I]

where:

– k
def= d

⌈ c
d

⌉
− c, and d > 0 is an integer that divides all the ci’s;

– I
def= {〈t′ + j ≤ 0,∃(x �∈ B).(t′ + j = 0)〉 | 0 ≤ j < k} ∪ {〈t′ + k ≤ 0,�〉};

and
– ∃(x �∈ B).(t′ + j = 0) denotes the result of the existential elimination from

(t′ + j = 0) of all and only the variables x1, ..., xn not occurring in B.3

Theorem 1. All the interpolating rules preserve the validity of the sequents.

Corollary 1. If we can derive a valid sequent (A,B) � c ≤ 0[I] with c ∈ Z
>0, then

ϕI
def=

∨
〈ti≤0,Ei〉∈I((ti ≤ 0) ∧ Ei) is an interpolant for (A,B).

Notice that the first three rules correspond to the rules forLA(Q) given in [14], whereas
Strengthen is a reformulation of the k-Strengthen rule given in [3]. Moreover, although
the rules without annotations are refutationally complete for LA(Z), in the above for-
mulation the annotation of Strengthen might prevent its applicability, thus losing com-
pleteness. In particular, it only allows to produce proofs with at most one strengthening
per branch. Such restriction has been put only for simplifying the proofs of correct-
ness, and it is not present in the original k-Strengthen of [3]. However, for our purposes
this is not a problem, since we use the above rules only in the second submodule of
our LA(Z)-solver, which always produces proofs with at most one strengthening per
branch.

3 We recall that ∃(x1, . . . , xn).(
∑

i cixi +
∑

j djyj + c = 0) ≡ (
∑

j djyj + c =GCD(ci) 0),
and that (t =0 0) ≡ (t = 0).

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic 149

Generating cutting-plane proofs in the LA(Z)-solver. The equality elimination and
tightening step generates new inequalities (t′ + c′ + k ≤ 0) starting from a set of input
equalities {e1 = 0, . . . , en = 0} and an input inequality (t+c ≤ 0). Thanks to its proof-
production capabilities [9], we can extract from the Diophantine equations submodule
the coefficients {c1, . . . , cn} such that (

∑
i ciei + t+ c ≤ 0) ≡ (t′+ c′ ≤ 0). Thus, we

can generate a proof of (t′+ c′ ≤ 0) by using the Comb and Hyp rules. We then use the
Strengthen rule to obtain a proof of (t′ + c′ + k ≤ 0). The new inequalities generated
are then added to the LA(Q)-solver. If a LA(Q)-conflict is found, then, the LA(Q)-
solver produces a LA(Q)-proof of unsatisfiability (as described in [4]) in which some
of the leaves are the new inequalities generated by equality elimination and tightening.
We can then simply replace such leaves with the corresponding cutting-plane proofs to
obtain the desired cutting-plane unsatisfiability proof.

3.3 Interpolation with Branch-and-Bound

Interpolation via splitting on-demand. In the splitting on-demand approach, the
LA(Z) solver might not always detect the unsatisfiability of a set of constraints by it-
self; rather, it might cooperate with the DPLL solver by asking it to perform some case
splits, by sending to DPLL some additionalLA(Z)-lemmas encoding the different case
splits. In our interpolation procedure, we must take this possibility into account.

Let (t − c ≤ 0) ∨ (−t + c + 1 ≤ 0) be a branch-and-bound lemma added to the
DPLL solver by the LA(Z)-solver, using splitting on-demand. If t � A or t � B, then
we can exploit the Boolean interpolation algorithm also for computing interpolants in
the presence of splitting-on-demand lemmas. The key observation is that the lemma
(t− c ≤ 0)∨ (−t+ c+ 1 ≤ 0) is a valid clause in LA(Z). Therefore, we can add it to
any formula without affecting its satisfiability. Thus, if t � A we can treat the lemma
as a clause from A, and if t � B we can treat it as a clause from B.4

Thanks to the observation above, in order to be able to produce interpolants with
splitting on-demand the only thing we need is to make sure that we do not generate
lemmas containingAB-mixed terms.5 This is always the case for “normal” branch-and-
bound lemmas (since they involve only one variable), but this is not true in general for
“extended” branch-and-bound lemmas generated from proofs of unsatisfiability using
the “cuts from proofs” algorithm of [5]. The following example shows one such case.

Example 1. Let A and B be defined as

A
def= (x− 2y ≤ 0) ∧ (2y − x ≤ 0), B

def= (x− 2z − 1 ≤ 0) ∧ (2z + 1− x ≤ 0)

When solvingA∧B using extended branch and bound, we might generate the following
AB-mixed lemma: (y − z ≤ 0) ∨ (−y + z + 1 ≤ 0).

Since we want to be able to reuse the Boolean interpolation algorithm also for splitting
on-demand, we want to avoid generating AB-mixed lemmas. However, we would still
like to exploit the cuts from proofs algorithm of [5] as much as possible. We describe
how we do this in the following.

4 If both t � A and t � B, we are free to choose between the two alternatives.
5 That is, terms t such that t �� A and t �� B.

150 A. Griggio, T.T.H. Le, and R. Sebastiani

The cuts from proofs algorithm in a nutshell. The core of the cuts from proofs al-
gorithm is the identification of the defining constraints of the current solution of the
rational relaxation of the input set of LA(Z) constraints. A defining constraint is an in-
put constraint

∑
i cixi + c �� 0 (where ��∈ {≤,=}) such that

∑
i cixi + c evaluates to

zero under the current solution for the rational relaxation of the problem. After having
identified the defining constraintsD, the cuts from proofs algorithm checks the satisfia-
bility of the system of Diophantine equationsDE

def= {
∑
i cixi+c = 0 | (

∑
i cixi+c ��

0) ∈ D}. If DE is unsatisfiable, then it is possible to generate a proof of unsatisfiability
for it. The root of such proof is an equation

∑
i c
′
ixi + c′ = 0 such that the GCD g of

the c′i’s does not divide c′. From such equation, it is generated the extended branch and
bound lemma:

(
∑

i

c′i
g
xi ≤

⌈
−c′i
g

⌉
− 1) ∨ (

⌈
−c′i
g

⌉
≤

∑
i

c′i
g
xi).

Avoiding AB-mixed lemmas. If
∑
i

c′i
g
xi is not AB-mixed, we can generate the

above lemma also when computing interpolants. If
∑
i

c′i
g
xi is AB-mixed, instead,

we generate a different lemma, still exploiting the unsatisfiability of (the equations
corresponding to) the defining constraints. Since DE is unsatisfiable, we know that
the current rational solution μ is not compatible with the current set of defining con-
straints. If the defining constraints were all equations, the submodule for handling Dio-
phantine equations would have detected the conflict. Therefore, there is at least one
defining constraint

∑
i c̄ixi + c̄ ≤ 0. Our idea is that of splitting this constraint into

(
∑
i c̄ixi + c̄+ 1 ≤ 0) and (

∑
i c̄ixi + c̄ = 0), by generating the lemma

¬(
∑
i c̄ixi + c̄ ≤ 0) ∨ (

∑
i c̄ixi + c̄+ 1 ≤ 0) ∨ (

∑
i c̄ixi + c̄ = 0).

In this way, we are either “moving away” from the current bad rational solution μ
(when (

∑
i c̄ixi + c̄ + 1 ≤ 0) is set to true), or we are forcing one more element of

the set of defining constraints to be an equation (when (
∑
i c̄ixi + c̄ = 0) is set to

true): if we repeat the splitting, then, eventually all the defining constraints for the bad
solution μ will be equations, thus allowing the Diophantine equations handler to detect
the conflict without the need of generating more branch-and-bound lemmas. Since the
set of defining constraints is a subset of the input constraints, lemmas generated in this
way will never be AB-mixed.

It should be mentioned that this procedure is very similar to the algorithm used in the
recent work [12] for avoiding the generation of AB-mixed cuts. However, the criterion
used to select which inequality to split and how to split it is different (in [12] such
inequality is selected among those that are violated by the closest integer solution to
the current rational solution). Moreover, we don’t do this systematically, but rather only
if the cuts from proofs algorithm is not able to generate a non-AB-mixed lemma by
itself. In a sense, the approach of [12] is “pessimistic” in that it systematically excludes
certain kinds of cuts, whereas our approach is more “optimistic”.

Interpolation for the internal branch-and-bound module. From the point of view
of interpolation the subdivision of the branch-and-bound module in an “internal” and

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic 151

an “external” part poses no difficulty. The only difference between the two is that in the
former the case splits are performed by the LA(Z)-solver instead of DPLL. However,
we can still treat such case splits as if they were performed by DPLL, build a Boolean
resolution proof for the LA(Z)-conflicts discovered by the internal branch-and-bound
procedure, and then apply the propositional interpolation algorithm as in the case of
splitting on-demand.

4 A Novel General Interpolation Technique for Inequalities

The use of the Strenghen rule allows us to produce interpolants with very little modi-
fications to the LA(Z)-solver (we only need to enable the generation of cutting-plane
proofs), which in turn result in very little overhead at search time. However, the
Strengthen rule might cause a very significant overhead when generating the interpolant
from a proof of unsatisfiability. In fact, even a single Strengthen application results in
a disjunction whose size is proportional to the value of the constant k in the rule. The
following example, taken from [12], illustrates the problem.

Example 2. Consider the following (parametric) interpolation problem [12]:

A
def= (−y − 2nx− n+ 1 ≤ 0) ∧ (y + 2nx ≤ 0)

B
def= (−y − 2nz + 1 ≤ 0) ∧ (y + 2nz − n ≤ 0)

where the parameter n is an integer constant greater than 1. Using the rules of §3.2, we
can construct the following annotated cutting-plane proof of unsatisfiability:

y + 2nx ≤ 0
[{〈y + 2nx ≤ 0,�〉}]

−y − 2nz + 1 ≤ 0
[{〈0 ≤ 0,�〉}]

2nx− 2nz + 1 ≤ 0
[{〈y + 2nx ≤ 0,�〉}]

2nx− 2nz + 1 + (2n− 1) ≤ 0

[{〈y + 2nx+ j ≤ 0,
∃x.(y + 2nx+ j = 0)〉 |
0 ≤ j < 2n− 1}∪

{〈y + 2nx+ 2n− 1 ≤ 0,�〉}]

−y − 2nx− n+ 1 ≤ 0
[{〈−y − 2nx− n+ 1 ≤ 0,�〉}]

y + 2nz − n ≤ 0
[{〈0 ≤ 0,�〉}]

−2nx+ 2nz − 2n+ 1 ≤ 0
[{〈−y − 2nx− n+ 1 ≤ 0,�〉}]

1 ≤ 0
[{〈j − n+ 1 ≤ 0, ∃x.(y + 2nx+ j = 0)〉 | 0 ≤ j < 2n− 1}∪
{〈(2n− 1)− n+ 1 ≤ 0,�〉}]

By observing that (j − n+ 1 ≤ 0) |= ⊥ when j ≥ n, the generated interpolant is:

(y =2n −n+ 1) ∨ (y =2n −n+ 2) ∨ . . . ∨ (y =2n 0),

whose size is linear in n, and thus exponential wrt. the size of the input problem. In
fact, in [12], it is said that this is the only (up to equivalence) interpolant for (A,B) that
can be obtained by using only interpreted symbols in the signature Σ

def= {=,≤,+, ·}
∪ Z ∪ {=g |g ∈ Z

>0}.

In order to overcome this drawback, we present a novel and very effective way of com-
puting interpolants in LA(Z), which is inspired by a result by Pudlák [15]. The key idea

152 A. Griggio, T.T.H. Le, and R. Sebastiani

is to extend both the signature and the domain of the theory by explicitly introducing
the ceiling function �·� and by allowing non-variable terms to be non-integers.

As in the previous Section, we use the annotated rules Hyp-A, Hyp-B and Comb.
However, in this case the annotations are single inequalities in the form (t ≤ 0) rather
than (possibly large) sets of inequalities and equalities. Moreover, we replace the
Strenghten rule with the equivalent Division rule:

Division

(A, B) �∑
i aixi +

∑
j cjyj +

∑
k bkzk + c ≤ 0 [

∑
i aixi +

∑
j c′jyj + c′ ≤ 0]

(A,B) �∑
i

ai

d
xi +

∑
j

cj

d
yj +

∑
k

bk

d
zk +

⌈ c

d

⌉
≤ 0 [

∑
i

ai

d
xi +

⌈∑
j c′jyj + c′

d

⌉
≤ 0]

where:
– xi �∈ B, yj ∈ A ∩B, zk �∈ A
– d > 0 divides all the ai’s, cj’s and bk’s

As before, if we ignore the presence of annotations, the rules Hyp-A, Hyp-B, Comb
and Division form a complete proof systems for LA(Z) [18]. Notice also that all the
rules Hyp-A, Hyp-B, Comb and Division preserve the following invariant: the coeffi-
cients ai of the A-local variables are always the same for the implied inequality and its
annotation. This makes the Division rule always applicable. Therefore, the above rules
can be used to annotate any cutting-plane proof. In particular, this means that our new
technique can be applied also to proofs generated by other LA(Z) techniques used in
modern SMT solvers, such as those based on Gomory cuts or on the Omega test [16].

Definition 3. An annotated sequent (A,B) � (t ≤ 0)[(t′ ≤ 0)] is valid when:

1. A |= (t′ ≤ 0);
2. B |= (t− t′ ≤ 0);
3. t′ � A and (t− t′) � B.

Theorem 2. All the interpolating rules preserve the validity of the sequents.

Corollary 2. If we can derive a valid sequent (A,B) � c ≤ 0[t ≤ 0] with c > 0, then
(t ≤ 0) is an interpolant for (A,B).

Example 3. Consider the following interpolation problem:

A
def= (y = 2x), B

def= (y = 2z + 1).

The following is an annotated cutting-plane proof of unsatisfiability for A ∧B:

y = 2x

y − 2x ≤ 0[y − 2x ≤ 0]

y = 2z + 1

2z + 1− y ≤ 0[0 ≤ 0]

2z − 2x + 1 ≤ 0[y − 2x ≤ 0]

z − x + 1 ≤ 0[−x +
⌈

y
2

⌉ ≤ 0]

y = 2x

2x− y ≤ 0
[2x− y ≤ 0]

y = 2z + 1

y − 2z − 1 ≤ 0
[0 ≤ 0]

2x− 2z − 1 ≤ 0[2x − y ≤ 0]

1 ≤ 0[−y + 2
⌈

y
2

⌉ ≤ 0]

Then, (−y + 2
⌈y
2

⌉
≤ 0) is an interpolant for (A,B).

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic 153

Using the ceiling function, we do not incur in any blowup of the size of the gener-
ated interpolant wrt. the size of the proof of unsatisfiability.6 In particular, by using the
ceiling function we might produce interpolants which are up to exponentially smaller
than those generated using modular equations. The intuition is that the use of the ceiling
function in the annotation of the Division rule allows for expressing symbolically the
case distinction that the Strengthen rule of §3.2 was expressing explicitly as a disjunc-
tion of modular equations, which was the source of the exponential blowup.

Example 4. Consider again the parametric interpolation problem of Example 2:
A

def= (−y − 2nx− n+ 1 ≤ 0) ∧ (y + 2nx ≤ 0)

B
def= (−y − 2nz + 1 ≤ 0) ∧ (y + 2nz − n ≤ 0)

Using the ceiling function, we can generate the following annotated proof:

y + 2nx ≤ 0
[y + 2nx ≤ 0]

−y − 2nz + 1 ≤ 0
[0 ≤ 0]

2nx− 2nz + 1 ≤ 0
[y + 2nx ≤ 0]

2n · (x− z + 1 ≤ 0)

[x +
⌈

y
2n

⌉ ≤ 0]

−y − 2nx − n + 1 ≤ 0
[−y − 2nx − n + 1 ≤ 0]

y + 2nz − n ≤ 0
[0 ≤ 0]

−2nx + 2nz − 2n + 1 ≤ 0
[−y − 2nx− n + 1 ≤ 0]

1 ≤ 0 [2n
⌈

y
2n

⌉ − y − n + 1 ≤ 0]

The interpolant corresponding to such proof is then (2n
⌈ y

2n

⌉
−y−n+1≤ 0), whose

size is linear in the size of the input.

Solving and interpolating formulas with ceilings. Any SMT solver supportingLA(Z)
can be easily extended to support formulas containing ceilings. In fact, we notice that
we can eliminate ceiling functions from a formula ϕ with a simple preprocessing step
as follows:

1. Replace every term �ti� occurring in ϕ with a fresh integer variable x	ti
;
2. Set ϕ to ϕ ∧

∧
i{(x	ti
 − 1 < ti ≤ x	ti
)}.

Moreover, we remark that for using ceilings we must only be able to represent non-
variable terms with rational coefficients, but we don’t need to extend our LA(Z)-solver
to support Mixed Rational/Integer Linear Arithmetic. This is because, after the elimi-
nation of ceilings performed during preprocessing, we can multiply both sides of the
introduced constraints (x	ti
 − 1 < ti) and (ti ≤ x	ti
) by the least common multiple
of the rational coefficients in ti, thus obtaining two LA(Z)-inequalities.

For interpolation, it is enough to preprocess A and B separately, so that the elimina-
tion of ceilings will not introduce variables common to A and B.

5 Experimental Evaluation

The techniques presented in previous sections have been implemented within the MATH-
SAT 5 SMT solver [9]. In this section, we experimentally evaluate our approach.

6 However, we remark that, in general, cutting-plane proofs of unsatisfiability can be exponen-
tially large wrt. the size of the input problem [18,15].

154 A. Griggio, T.T.H. Le, and R. Sebastiani

IPRINCESS INTERPOLATINGOPENSMT SMTINTERPOL

M
A

T
H

S
A

T
-M

O
D

E
Q

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

M
A

T
H

S
A

T
-C

E
IL

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

Fig. 2. Comparison between MATHSAT and the other LA(Z)-interpolating tools, execution time

5.1 Description of the Benchmark Sets

We have performed our experiments on a subset of the benchmark instances in the
QF LIA (“quantifier-free LA(Z)”) category of the SMT-LIB.7 More specifically, we
have selected the subset of LA(Z)-unsatisfiable instances whose rational relaxation is
(easily) satisfiable, so thatLA(Z)-specific interpolation techniques are put under stress.
In order to generate interpolation problems, we have split each of the collected instances
in two parts A and B, by collecting about 40% of the toplevel conjuncts of the instance
to form A, and making sure that A contains some symbols not occurring in B (so that
A is never a “trivial” interpolant). In total, our benchmark set consists of 513 instances.

We have run the experiments on a machine with a 2.6 GHz Intel Xeon processor, 16
GB of RAM and 6 MB of cache, running Debian GNU/Linux 5.0. We have used a time
limit of 1200 seconds and a memory limit of 3 GB.

All the benchmark instances and the executable of MATHSAT used to perform
the experiments are available at http://es.fbk.eu/people/griggio/papers/
tacas11_experiments.tar.bz2

5.2 Comparison with the State-of-the-Art Tools Available

We compare MATHSAT with all the other interpolant generators for LA(Z) which are
available (to the best of our knowledge): IPRINCESS [3],8 INTERPOLATINGOPENSMT

7 http://smtlib.org
8 http://www.philipp.ruemmer.org/iprincess.shtml

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic 155

IPRINCESS INTERPOLATINGOPENSMT SMTINTERPOL

M
A

T
H

S
A

T
-M

O
D

E
Q

 1

 10

 100

 1 10 100

 1

 10

 100

 1 10 100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
A

T
H

S
A

T
-C

E
IL

 1

 10

 100

 1 10 100

 1

 10

 100

 1 10 100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

Fig. 3. Comparison between MATHSAT and the other LA(Z)-interpolating tools, interpolants
size (measured in number of nodes in the DAG of the interpolant). (See also footnote 11).

[12],9 and SMTINTERPOL10. We compare not only the execution times for generating
interpolants, but also the size of the generated formulas (measured in terms of number
of nodes in their DAG representation).

For MATHSAT, we use two configurations: MATHSAT-MODEQ, which produces
interpolants with modular equations using the Strengthen rule of §3, and MATHSAT-
CEIL, which uses the ceiling function and the Division rule of §4.

Results on execution times for generating interpolants are reported in Fig. 2. Both
MATHSAT-MODEQ and MATHSAT-CEIL could successfully generate an interpolant
for 478 of the 513 interpolation problems (timing out on the others), whereas IPRINCESS,
INTERPOLATINGOPENSMT and SMTINTERPOL were able to successfully produce an
interpolant in 62, 192 and 217 cases respectively. Therefore, MATHSAT can solve more
than twice as many instances as its closer competitor SMTINTERPOL, and in most cases
with a significantly shorter execution time (Fig. 2).

For the subset of instances which could be solved by at least one other tool, therefore,
the two configurations of MATHSAT seem to perform equally well. The situation is the
same also when we compare the sizes of the produced interpolants, measured in num-
ber of nodes in a DAG representation of formulas. Comparisons on interpolant size are
reported in Fig. 3, which shows that, on average, the interpolants produced by MATH-
SAT are comparable to those produced by other tools. In fact, there are some cases in

9 http://www.philipp.ruemmer.org/interpolating-opensmt.shtml
10 http://swt.informatik.uni-freiburg.de/research/tools/
smtinterpol. We are not aware of any publication describing the tool.

156 A. Griggio, T.T.H. Le, and R. Sebastiani

Execution Time Interpolants Size Execution Time
M

A
T

H
S

A
T

-C
E

IL

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

MATHSAT-MODEQ MATHSAT-MODEQ MATHSAT w/o interpolation
(a) (b)

Fig. 4. (a) Comparison between MATHSAT-MODEQ and MATHSAT-CEIL configurations for in-
terpolation. (b) Execution time overhead for interpolation with MATHSAT-CEIL.

which SMTINTERPOL produces significantly-smaller interpolants, but we remark that
MATHSAT can solve 261 more instances than SMTINTERPOL.11

The differences between MATHSAT-MODEQ and MATHSAT-CEIL become evident
when we compare the two configurations directly. The plots in Fig. 4(a) show that
MATHSAT-CEIL is dramatically superior to MATHSAT-MODEQ, with gaps of up to
two orders of magnitude in execution time, and up to four orders of magnitude in the
size of interpolants. Such differences are solely due to the use of the ceiling function in
the generated interpolants, which prevents the blow-up of the formula wrt. the size of the
proof of unsatisfiability. Since most of the differences between the two configurations
occur in benchmarks that none of the other tools could solve, the advantage of using
ceilings was not visible in Figs. 2 and 3.

Finally, in Fig. 4(b) we compare the execution time of producing interpolants with
MATHSAT-CEIL against the solving time of MATHSAT with interpolation turned off.
The plot shows that the restriction on the kind of extended branch-and-bound lemmas
generated when computing interpolants (see §3.3) can have a significant impact on indi-
vidual benchmarks. However, on average MATHSAT-CEIL is not worse than the “regu-
lar” MATHSAT, and the two can solve the same number of instances, in approximately
the same total execution time.

6 Conclusions

In this paper, we have presented a novel interpolation algorithm for LA(Z) that al-
lows for producing interpolants from arbitrary cutting-plane proofs without the need
of performing quantifier elimination. We have also shown how to exploit this algo-
rithm, in combination with other existing techniques, in order to implement an efficient

11 The plots of Fig. 3 show also some apparently-strange outliers in the comparison with INTER-
POLATINGOPENSMT. A closer analysis revealed that those are instances for which INTERPO-
LATINGOPENSMT was able to detect that the inconsistency of A ∧B was due solely to A or
to B, and thus could produce a trivial interpolant ⊥ or
, whereas the proof of unsatisfiability
produced by MATHSAT involved both A and B. An analogous situation is visible also in the
comparison between MATHSAT and SMTINTERPOL, this time in favor of MATHSAT.

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic 157

interpolation procedure on top of a state-of-the-art SMT(LA(Z))-solver, with almost
no overhead in search, and with up to orders of magnitude improvements – both in ex-
ecution time and in formula size – wrt. existing techniques for computing interpolants
from arbitrary cutting-plane proofs.

References

1. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand in SAT Modulo
Theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
512–526. Springer, Heidelberg (2006)

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In:
Handbook of Satisfiability, ch. 25. IOS Press, Amsterdam (2009)

3. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An Interpolating Sequent Calculus for
Quantifier-Free Presburger Arithmetic. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS,
vol. 6173, pp. 384–399. Springer, Heidelberg (2010)

4. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Generation of Craig Interpolants in Satisfi-
ability Modulo Theories. ACM Trans. Comput. Logic 12(1) (October 2010)

5. Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete and Practical Technique for
Solving Linear Inequalities over Integers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)

6. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

7. Fuchs, A., Goel, A., Grundy, J., Krstić, S., Tinelli, C.: Ground interpolation for the theory
of equality. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
413–427. Springer, Heidelberg (2009)

8. Goel, A., Krstić, S., Tinelli, C.: Ground Interpolation for Combined Theories. In: Schmidt,
R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 183–198. Springer, Heidelberg (2009)

9. Griggio, A.: A Practical Approach to SMT(LA(Z)). In: SMT 2010 Workshop (July 2010)
10. Jain, H., Clarke, E.M., Grumberg, O.: Efficient Craig Interpolation for Linear Diophantine

(Dis)Equations and Linear Modular Equations. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 254–267. Springer, Heidelberg (2008)

11. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: FSE 2005. ACM,
New York (2006)

12. Kroening, D., Leroux, J., Rümmer, P.: Interpolating Quantifier-Free Presburger Arithmetic.
In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 489–503. Springer,
Heidelberg (2010),
http://www.philipp.ruemmer.org/publications.shtml

13. Lynch, C., Tang, Y.: Interpolants for Linear Arithmetic in SMT. In: Cha, S(S.), Choi, J.-
Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 156–170.
Springer, Heidelberg (2008)

14. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1) (2005)
15. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computa-

tions. J. of Symb. Logic 62(3) (1997)
16. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for depen-

dence analysis. In: SC (1991)
17. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. J. Symb.

Comput. 45(11) (2010)
18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
19. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwen-

huis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg
(2005)

Generalized Craig Interpolation for

Stochastic Boolean Satisfiability Problems�

Tino Teige and Martin Fränzle

Carl von Ossietzky Universität, Oldenburg, Germany
{teige,fraenzle}@informatik.uni-oldenburg.de

Abstract. The stochastic Boolean satisfiability (SSAT) problem has
been introduced by Papadimitriou in 1985 when adding a probabilis-
tic model of uncertainty to propositional satisfiability through random-
ized quantification. SSAT has many applications, among them bounded
model checking (BMC) of symbolically represented Markov decision pro-
cesses. This paper identifies a notion of Craig interpolant for the SSAT
framework and develops an algorithm for computing such interpolants
based on SSAT resolution. As a potential application, we address the use
of interpolation in SSAT-based BMC, turning the falsification procedure
into a verification approach for probabilistic safety properties.

1 Introduction

Papadimitriou [1] has proposed the idea of modeling uncertainty within propo-
sitional satisfiability (SAT) by adding randomized quantification to the prob-
lem description. The resultant stochastic Boolean satisfiability (SSAT) problems
consist of a quantifier prefix followed by a propositional formula. The quantifier
prefix is an alternating sequence of existentially quantified variables and vari-
ables bound by randomized quantifiers. The meaning of a randomized variable
x is that x takes value true with a certain probability p and value false with
the complementary probability 1− p. Due to the presence of such probabilistic
assignments, the semantics of an SSAT formula Φ no longer is qualitative in the
sense that Φ is satisfiable or unsatisfiable, but rather quantitative in the sense
that we are interested in the maximum probability of satisfaction of Φ. Intu-
itively, a solution of Φ is a strategy for assigning the existential variables, i.e. a
tree of assignments to the existential variables depending on the probabilistically
determined values of preceding randomized variables, such that the assignments
maximize the probability of satisfying the propositional formula.

In recent years, the SSAT framework has attracted interest within the Ar-
tificial Intelligence community, as many problems from that area involving un-
certainty have concise descriptions as SSAT problems, in particular probabilistic
planning problems [2,3,4]. Inspired by that work, other communities have started

� This work has been supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 158–172, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Generalized Craig Interpolation for SSAT 159

to exploit SSAT and closely related formalisms within their domains. The Con-
straint Programming community is working on stochastic constraint satisfaction
problems [5,6] to address, a.o., multi-objective decision making under uncer-
tainty [7]. Recently, a technique for the symbolic analysis of probabilistic hybrid
systems based on stochastic satisfiability has been suggested by the authors [8,9].
To this end, SSAT has been extended by embedded theory reasoning over arith-
metic theories, as known from satisfiability modulo theories (SMT) [10], which
yields the notion of stochastic satisfiability modulo theories (SSMT). By the
expressive power of SSMT, bounded probabilistic reachability problems of un-
certain hybrid systems can be phrased symbolically as SSMT formulae yielding
the same probability of satisfaction. As this bounded model checking approach
yields valid lower bounds lb for the probability of reaching undesirable system
states along unbounded runs, it is able to falsify probabilistic safety requirements
of shape “a system error occurs with probability at most 0.1�”.

Though the general SSAT problem is PSPACE-complete, the plethora of
real-world applications calls for practically efficient algorithms. The first SSAT
algorithm, suggested by Littman [11], extends the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [12,13] for SAT with appropriate quantifier han-
dling and algorithmic optimizations like thresholding. Majercik improved the
DPLL-style SSAT algorithm by non-chronological backtracking [14]. Unlike these
explicit tree-traversal approaches and motivated by work on resolution for propo-
sitional and first-order formulae [15] and for QBF formulae [16], the authors have
recently developed an alternative SSAT procedure based on resolution [17].

In this paper, we investigate the concept of Craig interpolation for SSAT. Given
two formulae A and B for which A ⇒ B is true, a Craig interpolant [18] I is a
formula over variables common to A and B that “lies in between” A and B in the
sense that A ⇒ I and I ⇒ B. In the automatic hardware and software verifica-
tion communities, Craig interpolation has found widespread use in model check-
ing algorithms, both as a means of extracting reasons for non-concretizability of a
counterexample obtained on an abstraction as well as for obtaining a symbolic de-
scription of reachable state sets. In McMillan’s approach [19,20], interpolants are
used to symbolically describe an overapproximation of the step-bounded reach-
able state set. If the sequence of interpolants thus obtained stabilizes eventually,
i.e. no additional state is found to be reachable, then the corresponding state-set
predicateR has all reachable system states as its models. The safety property that
states satisfying B (where B is a predicate) are never reachable, is then verified
by checking R ∧B for unsatisfiability.

Given McMillan’s verification procedure for non-probabilistic systems, it is nat-
ural to ask whether a corresponding probabilistic counterpart can be developed,
i.e. a verification procedure for probabilistic systems based on Craig interpolation
for stochastic SAT. Such an approach would complement the aforementioned falsi-
fication procedure for probabilistic systems based on SSAT/SSMT. In this paper,
we suggest a solution to the issue above. After a formal introduction of SSAT in
Section 2, we recall (and adapt slightly) the resolution calculus for SSAT from
[17] in Section 3. We suggest a generalization of the notion of Craig interpolants

160 T. Teige and M. Fränzle

y = true

x = true

p = 0.3
y = true

p = 0.3

Pr = 1 Pr = 0 Pr = 0 Pr = 1

Pr = 0.3 · 0 + 0.7 · 1 = 0.7

x

Pr = 0.3 · 1 + 0.7 · 0 = 0.3
y y

Pr(Φ) = max(0.3, 0.7) = 0.7

x = false

y = false

p = 0.7p = 0.7

truetrue false false

Φ = ∃x R0.3y : (x ∨ ¬y) ∧ (¬x ∨ y)

y = false

Fig. 1. Semantics of an SSAT formula depicted as a tree

suitable for SSAT as well as an algorithm based on SSAT resolution to compute
such generalized interpolants (Section 4). Finally, we propose an interpolation-
based approach to probabilistic model checking that is able to verify probabilistic
safety requirements (Section 5) and illustrate the applicability of this verification
procedure on a small example.

2 Stochastic Boolean Satisfiability

A stochastic Boolean satisfiability (SSAT) formula is of the form Φ = Q : ϕ with
a prefix Q = Q1x1 . . .Qnxn of quantified propositional variables xi, where Qi is
either an existential quantifier ∃ or a randomized quantifier

Rpi with a rational
constant 0 < pi < 1, and a propositional formula ϕ s.t. Var(ϕ) ⊆ {x1, . . . , xn},
where Var(ϕ) denotes the set of all (necessarily free) variables occurring in ϕ.
W.l.o.g., we can assume that ϕ is in conjunctive normal form (CNF), i.e. a
conjunction of disjunctions of propositional literals. A literal � is a propositional
variable, i.e. � = xi, or its negation, i.e. � = ¬xi. A clause is a disjunction of
literals. Throughout the paper and w.l.o.g., we require that a clause does not
contain the same literal more than once as �∨ � ≡ �. Consequently, we may also
identify a clause with its set of literals. The semantics of Φ, as illustrated in
Fig. 1, is defined by the maximum probability of satisfaction Pr(Φ) as follows.

Pr(ε : ϕ) =
{

0 if ϕ is logically equivalent to false
1 if ϕ is logically equivalent to true

Pr(∃x Q : ϕ) = max(Pr(Q : ϕ[true/x]), P r(Q : ϕ[false/x]))
Pr(

Rpx Q : ϕ) = p · Pr(Q : ϕ[true/x]) + (1 − p) · Pr(Q : ϕ[false/x])
Note that the semantics is well-defined as Φ has no free variables s.t. all vari-
ables have been substituted by the constants true and false when reaching the
quantifier-free base case.

3 Resolution for SSAT

As basis of the SSAT interpolation procedure introduced in Section 4, we recall
the sound and complete resolution calculus for SSAT from [17], subsequently
called S-resolution. In contrast to SSAT algorithms implementing a DPLL-based

Generalized Craig Interpolation for SSAT 161

backtracking procedure, thereby explicitly traversing the tree given by the quan-
tifier prefix and recursively computing the individual satisfaction probabilities
for each subtree by the scheme illustrated in Fig. 1, S-resolution follows the idea
of resolution for propositional and first-order formulae [15] and for QBF for-
mulae [16] by deriving new clauses cp annotated with probabilities 0 ≤ p ≤ 1.
S-resolution differs from non-stochastic resolution, as such derived clauses cp

need not be implications of the given formula, but are just entailed with some
probability. Informally speaking, the derivation of a clause cp means that under
SSAT formula Q : ϕ, the clause c is violated with a maximum probability at
most p, i.e. the satisfaction probability of Q : (ϕ ∧ ¬c) is at most p. More intu-
itively, the minimum probability that clause c is implied by ϕ is at least 1− p.1
Once an annotated empty clause ∅p is derived, it follows that the probability of
the given SSAT formula is at most p, i.e. Pr(Q : (ϕ∧¬false)) = Pr(Q : ϕ) ≤ p.

The following presentation of S-resolution differs slightly from [17] in order
to avoid overhead in interpolant generation incurred when employing the origi-
nal definition, like the necessity of enforcing particular resolution sequences. For
readers familiar with [17], the particular modifications are: 1) derived clauses
cp may also carry value p = 1, 2) former rules R.2 and R.5 are joined into
the new rule R.2, and 3) former rules R.3 and R.4 are collapsed into rule R.3.
These modifications do not affect soundness and completeness of S-resolution (cf.
Corollary 1 and Theorem 1). The advantage of the modification is that derivable
clauses cp are forced to have a tight bound p in the sense that under each assign-
ment which falsifies c, the satisfaction probability of the remaining subproblem
exactly is p (cf. Lemma 1). This fact confirms the conjecture from [17, p. 14]
about the existence of such clauses (c ∨ �)p and allows for a generalized clause
learning scheme to be integrated into DPLL-SSAT solvers: the idea is that un-
der a partial assignment falsifying c, one may directly propagate literal � as the
satisfaction probability of the other branch, for which the negation of � holds, is
known to be p already.

In the sequel, let Φ = Q : ϕ be an SSAT formula with ϕ in CNF. W.l.o.g., ϕ
contains only non-tautological clauses2, i.e. ∀c ∈ ϕ : �|= c. Let Q = Q1x1 . . .Qnxn
be the quantifier prefix and ϕ be some propositional formula with Var(ϕ) ⊆
{x1, . . . , xn}. The quantifier prefix Q(ϕ) is defined to be shortest prefix of Q
that contains all variables from ϕ, i.e. Q(ϕ) = Q1x1 . . . Qixi where xi ∈ Var(ϕ)
and for each j > i : xj /∈ Var(ϕ). Let further be Var(ϕ) ↓k:= {x1, . . . , xk} for
each integer 0 ≤ k ≤ n. For a non-tautological clause c, i.e. if �|= c, we define the
unique assignment ff c that falsifies c as the mapping

ff c : Var(c)→ B such that ∀x ∈ Var(c) : ff c(x) =
{
true ; ¬x ∈ c,
false ; x ∈ c.

Consequently, c evaluates to false under assignment ff c.

1 We remark that Pr(Q : ψ) = 1 − Pr(Q′ : ¬ψ), where Q′ arises from Q by re-
placing existential quantifiers by universal ones, where universal quantifiers call for
minimizing the satisfaction probability.

2 Tautological clauses c, i.e. |= c, are redundant, i.e. Pr(Q : (ϕ ∧ c)) = Pr(Q : ϕ).

162 T. Teige and M. Fränzle

Starting with clauses in ϕ, S-resolution is given by the consecutive application
of rules R.1 to R.3 to derive new clauses cp with 0 ≤ p ≤ 1. Rule R.1 derives a
clause c0 from an original clause c in ϕ. Referring to the definition of Pr(Φ) in
Section 2, R.1 corresponds to the quantifier-free base case where ϕ is equivalent
to false under any assignment that falsifies c.

(R.1)
c ∈ ϕ
c0

Similarly, R.2 reflects the quantifier-free base case in which ϕ is equivalent to
true under any assignment τ ′ that is conform to the partial assignment τ since
|= ϕ[τ(x1)/x1] . . . [τ(xi)/xi]. The constructed clause c1 then encodes the oppo-
site of this satisfying (partial) assignment τ . We remark that finding such a τ in
the premise of R.2 is NP-hard (equivalent to finding a solution of a propositional
formula in CNF). This strong condition on τ is not essential for soundness and
completeness and could be removed3 but, as mentioned above, facilitates a less
technical presentation of generalized interpolation in Section 4. Another argu-
ment justifying the strong premise of R.2 is a potential integration of S-resolution
into DPLL-based SSAT solvers since whenever a satisfying (partial) assignment
τ of ϕ is found by an SSAT solver then τ meets the requirements of R.2.

(R.2)

c ⊆ {x,¬x|x ∈ Var(ϕ)}, �|= c,Q(c) = Q1x1 . . . Qixi,
for each τ : Var(ϕ) ↓i→ B with ∀x ∈ Var(c) : τ(x) = ff c(x) :

|= ϕ[τ(x1)/x1] . . . [τ(xi)/xi]
c1

Rule R.3 finally constitutes the actual resolution rule as known from the non-
stochastic case. Depending on whether an existential or a randomized variable is
resolved upon, the probability value of the resolvent clause is computed according
to the semantics Pr(Φ) defined in Section 2.

(R.3)

(c1 ∨ ¬x)p1 , (c2 ∨ x)p2 , Qx ∈ Q, Qx /∈ Q(c1 ∨ c2), �|= (c1 ∨ c2),

p =
{

max(p1, p2) ; Q = ∃
px · p1 + (1− px) · p2 ; Q =

Rpx

(c1 ∨ c2)p

The derivation of a clause cp by R.1 from c, by R.2, and by R.3 from cp11 , c
p2
2 is

denoted by c �R.1 c
p, by �R.2 c

p, and by (cp11 , c
p2
2) �R.3 c

p, respectively. Given
rules R.1 to R.3, S-resolution is sound and complete in the following sense.

Lemma 1. Let clause cp be derivable by S-resolution and let Q(c) = Q1x1 . . .
Qixi. For each τ : Var(ϕ) ↓i→ B with ∀x ∈ Var(c) : τ(x) = ff c(x) it holds that
Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = p.

Corollary 1 (Soundness of S-resolution). If the empty clause ∅p is derivable
by S-resolution from a given SSAT formula Q : ϕ then Pr(Q : ϕ) = p.
3 Then, Lemma 1 must be weakened (as for original S-resolution [17]) to
Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ (x1)/x1] . . . [τ (xi)/xi]) ≤ p.

Generalized Craig Interpolation for SSAT 163

Theorem 1 (Completeness of S-resolution). If Pr(Q : ϕ) = p for some
SSAT formula Q : ϕ then the empty clause ∅p is derivable by S-resolution.

The formal proofs of above and subsequent results can be found in [21].

Example. Consider the SSAT formula Φ =

R0.8x1 ∃x2

R0.3x3 : ((x1 ∨ x2) ∧
(¬x2) ∧ (x2 ∨ x3)) with Pr(Φ) = 0.24. Clauses (x1 ∨ x2)0, (¬x2)0, (x2 ∨ x3)0

are then derivable by R.1. As x1 = true, x2 = false, x3 = true is a satisfying
assignment, �R.2 (¬x1 ∨ x2 ∨ ¬x3)1. Then, ((¬x1 ∨ x2 ∨ ¬x3)1, (x2 ∨ x3)0) �R.3

(¬x1∨x2)0.3, ((¬x2)0, (¬x1∨x2)0.3) �R.3 (¬x1)0.3, ((¬x2)0, (x1∨x2)0) �R.3 (x1)0,
and finally ((¬x1)0.3, (x1)0) �R.3 ∅0.24.

4 Interpolation for SSAT

Craig interpolation [18] is a well-studied notion in formal logics which has several
applications in Computer Science, among them model checking [19,20]. Given
two formulae ϕ and ψ such that ϕ ⇒ ψ is valid, a Craig interpolant for (ϕ, ψ)
is a formula I which refers only to common variables of ϕ and ψ, and I is
“intermediate” in the sense that ϕ ⇒ I and I ⇒ ψ. Such interpolants do
trivially exist in all logics permitting quantifier elimination, e.g. in propositional
logic. Using the observation that ϕ ⇒ ψ holds iff ϕ ∧ ¬ψ is unsatisfiable, this
gives rise to an equivalent definition which we refer to in the rest of the paper:4

given an unsatisfiable formula ϕ ∧ ¬ψ, formula I is an interpolant for (ϕ, ψ) iff
both ϕ∧¬I and I∧¬ψ are unsatisfiable and I mentions only common variables.

In the remainder of this section, we investigate the issue of interpolation for
stochastic SAT. We propose a generalization of Craig interpolants suitable for
SSAT and show the general existence of such interpolants, alongside with an
automatic method for computing them based on S-resolution.

4.1 Generalized Craig Interpolants

When approaching a reasonable definition of interpolants for SSAT, the seman-
tics of the non-classical quantifier prefix poses problems: Let Φ = Q : (A ∧ B)
be an SSAT formula. Each variable in A∧B is bound by Q, which provides the
probabilistic interpretation of the variables that is lacking without the quantifier
prefix. This issue can be addressed by considering the quantifier prefix Q as the
global setting that serves to interpret the quantifier-free part, and consequently
interpreting the interpolant also within the scope of Q, thus reasoning about
Q : (A ∧ ¬I) and Q : (I ∧ B). A more fundamental problem is that a classical
Craig interpolant for Φ only exists if Pr(Φ) = 0, since A ∧B has to be unsatis-
fiable by definition of a Craig interpolant which applies iff Pr(Q : (A∧B)) = 0.
4 This is of technical nature as SSAT formulae are interpreted by the maximum prob-

ability of satisfaction. As the maximum probability that an implication ϕ ⇒ ψ
holds is inappropriate for our purpose, we reason about the maximum satisfaction
probability p of the negated implication, i.e. of ϕ∧¬ψ, instead. The latter coincides
with the minimum probability 1− p that ϕ ⇒ ψ holds, which is the desired notion.

164 T. Teige and M. Fränzle

The precondition that Pr(Q : (A ∧ B)) = 0 would be far too restrictive for ap-
plication of interpolation, as the notion of unsatisfiability of A ∧ B is naturally
generalized to satisfiability with insufficient probability, i.e. Pr(Q : (A ∧ B))
being “sufficiently small”, in the stochastic setting. Such relaxed requirements
actually appear in practice, e.g. in probabilistic verification where safety prop-
erties like “a fatal system error is never reachable” are frequently replaced by
probabilistic ones like “a fatal system error is reachable only with (sufficiently
small) probability of at most 0.1�”. Motivated by above facts, interpolants for
SSAT should also exist when A∧B is satisfiable with reasonably low probability.

The resulting notion of interpolation, which is to be made precise in Defi-
nition 1, matches the following intuition. In classical Craig interpolation, when
performed in logics permitting quantifier elimination, the Craig interpolants of
(A,¬B) form a lattice with implication as its ordering,A∃ = ∃a1, . . . aα : A as its
bottom element and B

∀
= ¬∃b1, . . . bβ : B as its top element, where the ai and

bi are the local variables of A and of B, respectively. In the generalized setting
required for SSAT5, A⇒ ¬B and thus A∃ ⇒ B

∀
may no longer hold such that

the above lattice can collapse to the empty set. To preserve the overall structure,
it is however natural to use the lattice of propositional formulae “in between”
A∃ ∧B∀ as bottom element and A∃ ∨B∀ as top element instead. This lattice is
non-empty and coincides with the classical one whenever A∧B is unsatisfiable.

Definition 1 (Generalized Craig interpolant). Let A,B be propositional
formulae and VA := Var(A)\Var(B) = {a1, . . . , aα}, VB := Var(B)\Var(A) =
{b1, . . . , bβ}, VA,B := Var(A) ∩ Var(B), A∃ = ∃a1, . . . , aα : A, and B

∀
=

¬∃b1, . . . , bβ : B. A propositional formula I is called generalized Craig inter-

polant for (A,B) iff Var(I) ⊆ VA,B,
(
A∃ ∧B∀

)
⇒ I, and I ⇒

(
A∃ ∨B∀

)
.

Given any two propositional formulae A and B, the four quantifier-free propo-
sitional formulae equivalent to A∃ ∧ B∀, to A∃, to B

∀
, and to A∃ ∨ B∀, are

generalized Craig interpolants for (A,B). These generalized interpolants always
exist since propositional logic has quantifier elimination.

While Definition 1 motivates the generalized notion of Craig interpolant from
a model-theoretic perspective, we will state an equivalent definition of general-
ized Craig interpolants in Lemma 2 that substantiates the intuition of generalized
interpolants and allows for an illustration of their geometric shape. Given two
formulae A and B, the idea of generalized Craig interpolant is depicted in Fig. 2.
The set of solutions of A is defined by the rectangle on the VA, VA,B-plane with
a cylindrical extension in VB-direction as A does not contain variables in VB .
Similarly, the solution set of B is given by the triangle on the VB , VA,B-plane
and its cylinder in VA-direction. The solution set of A∧B is then determined by
the intersection of both cylinders. Since A ∧ B ∧ ¬(A ∧ B) is unsatisfiable, the
sets A ∧ ¬(A ∧ B) and B ∧ ¬(A ∧ B) are disjoint. This gives us the possibility
to talk about interpolants wrt. these sets. However, a formula I over only com-
mon variables in VA,B may not exist when demanding A ∧ ¬(A ∧ B) ∧ ¬I and
5 Though the concept seems to be more general, this paper addresses SSAT only.

Generalized Craig Interpolation for SSAT 165

B

SA,B

A

I

VB

VA

VA,B

B

A ∧ B

A

SA,B

I

Fig. 2. Geometric interpretation of a generalized Craig interpolant I. VA-, VB-, and
VA,B-axes denote assignments of variables occurring only in A, only in B, and in both
A and B, respectively.

I ∧B ∧ ¬(A ∧B) to be unsatisfiable. This is indicated by Fig. 2 and proven by
the simple example A = (a), B = (b). As VA,B = ∅, I is either true or false. In
first case, true∧(b)∧¬(a∧b) is satisfiable, while (a)∧¬(a∧b)∧¬false is in sec-
ond case. If we however project the solution set of A∧B onto the VA,B-axis and
subtract the resulting hyperplane SA,B from A and B then such a formula I over
VA,B-variables exists. The next lemma formalizes such generalized interpolants
I and shows their equivalence to the ones from Definition 1.

Lemma 2 (Generalized Craig interpolant for SSAT). Let Φ = Q : (A∧B)
be some SSAT formula, VA, VB , VA,B be defined as in Definition 1, and SA,B be a
propositional formula with Var(SA,B) ⊆ VA,B s.t. SA,B ≡ ∃a1, . . . , aα, b1, . . . , bβ :
(A ∧B). Then, a propositional formula I is a generalized Craig interpolant for
(A,B) iff the following properties are satisfied.

1. Var(I) ⊆ VA,B
2. Pr(Q : (A ∧ ¬SA,B ∧ ¬I)) = 0
3. Pr(Q : (I ∧B ∧ ¬SA,B)) = 0

We remark that the concept of generalized Craig interpolants is a generalization
of Craig interpolants in the sense that whenever A∧B is unsatisfiable, i.e. when

166 T. Teige and M. Fränzle

Pr(Q : (A ∧ B)) = 0, then each generalized Craig interpolant I for (A,B)
actually is a Craig interpolant for A and B since SA,B ≡ false.

4.2 Computation of Generalized Craig Interpolants

In this subsection, we proceed to the efficient computation of generalized Craig
interpolants. The remark following Definition 1 shows that generalized inter-
polants can in principle be computed by explicit quantifier elimination methods,
like Shannon’s expansion or BDDs. We aim at a more efficient method based on
S-resolution, akin to resolution-based Craig interpolation for propositional SAT
by Pudlák [22], as has been integrated into DPLL-based SAT solvers featuring
conflict analysis and successfully applied to symbolic model checking [19,20].

Observe that on SSAT formulae Q : (A ∧ B), Pudlák’s algorithm, which
has unsatisfiability of A ∧ B as precondition, will not work in general. When
instead considering the unsatisfiable formula A ∧ B ∧ ¬SA,B with ¬SA,B in
CNF then Pudlák’s method would be applicable and would actually produce a
generalized interpolant. The main drawback of this approach, however, is the
explicit construction of ¬SA,B, again calling for explicit quantifier elimination.

We now propose an algorithm based on S-resolution for computing general-
ized Craig interpolants which operates directly on A∧B without adding ¬SA,B ,
and thus does not comprise any preprocessing involving quantifier elimination.
For this purpose, rules of S-resolution are enhanced to deal with pairs (cp, I)
of annotated clauses cp and propositional formulae I. Such formulae I are in a
certain sense intermediate generalized interpolants, i.e. generalized interpolants
for subformulae arising from instantiating some variables by partial assignments
that falsify c (cf. Lemma 3). Once a pair (∅p, I) comprising the empty clause is
derived, I thus is a generalized Craig interpolant for the given SSAT formula.
This augmented S-resolution, which we call interpolating S-resolution, is defined
by rules R’.1, R’.2, and R’.3. The construction of intermediate interpolants I in
R’.1 and R’.3 coincides with the classical rules by Pudlák [22], while R’.2 misses
a corresponding counterpart. The rationale is that R’.2 (or rather R.2) refers
to satisfying valuations τ of A ∧ B, which do not exist in classical interpola-
tion. As A ∧ B becomes a tautology after substituting the partial assignment
τ from R.2 into it, its quantified variant SA,B = ∃a1, . . . , b1, . . . : A ∧ B also
becomes tautological under the same substitution SA,B[τ(x1)/x1, . . . , τ(xi)/xi].
Consequently, ¬SA,B[τ(x1)/x1, . . . , τ(xi)/xi] is unsatisfiable, and so are (A ∧
¬SA,B)[τ(x1)/x1, . . . , τ(xi)/xi] and (B ∧ ¬SA,B)[τ(x1)/x1, . . . , τ(xi)/xi]. This
implies that the actual intermediate interpolant in R’.2 can be chosen arbitrarily
over variables in VA,B. This freedom will allow us to control the geometric ex-
tent of generalized interpolants within the “don’t care”-region provided by the
models of SA,B (cf. Corollary 3).

(R’.1)
c �R.1 c

p, I =
{
false ; c ∈ A
true ; c ∈ B

(cp, I)

Generalized Craig Interpolation for SSAT 167

(R’.2)
�R.2 c

p, I is any formula over VA,B
(cp, I)

(R’.3)

((c1 ∨ ¬x)p1 , I1), ((c2 ∨ x)p2 , I2),
((c1 ∨ ¬x)p1 , (c2 ∨ x)p2) �R.3 (c1 ∨ c2)p,

I =

⎧
⎨

⎩

I1 ∨ I2 ; x ∈ VA
I1 ∧ I2 ; x ∈ VB

(¬x ∨ I1) ∧ (x ∨ I2) ; x ∈ VA,B
((c1 ∨ c2)p, I)

The following lemma establishes the theoretical foundation of computing gener-
alized Craig interpolants by interpreting the derived pairs (cp, I).

Lemma 3. Let Φ = Q : (A ∧ B) with Q = Q1x1 . . .Qnxn be some SSAT for-
mula, and the pair (cp, I) be derivable from Φ by interpolating S-resolution, where
Q(c) = Q1x1 . . .Qixi. Then, for each τ : Var(A ∧ B) ↓i→ B with ∀x ∈ Var(c) :
τ(x) = ff c(x) it holds that

1. Var(I) ⊆ VA,B,
2. Pr(Qi+1xi+1 . . . Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0, and
3. Pr(Qi+1xi+1 . . . Qnxn : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0.

Completeness of S-resolution, as stated in Theorem 1, together with the above
Lemma, applied to the derived pair (∅p, I), yields

Corollary 2 (Generalized Craig interpolants computation). If Φ = Q :
(A∧B) is an SSAT formula then a generalized Craig interpolant for (A,B) can
be computed by interpolating S-resolution.

Note that computation of generalized interpolants does not depend on the actual
truth state of A ∧ B. The next observation facilitates to effectively control the
geometric extent of generalized Craig interpolants within the “don’t care”-region
SA,B . This result will be useful in probabilistic model checking in Section 5.

Corollary 3 (Controlling generalized Craig interpolants computation).
If I = true is used within each application of rule R’.2 then Pr(Q : (A∧¬I)) = 0.
Likewise, if I = false is used in rule R’.2 then Pr(Q : (I ∧B)) = 0.

Observe that the special interpolants I from Corollary 3 relate to the classical
strongest and weakest Craig interpolants A∃ and B

∀
, resp., in the following

sense: Pr(Q : (A ∧ ¬I)) = 0 iff |= A ⇒ I iff |= ∀a1, . . . , aα : (A ⇒ I) iff
|= (A∃ ⇒ I), as a1, . . . , aα do not occur in I. Analogously, Pr(Q : (I ∧B)) = 0
iff |= I ⇒ ¬B iff |= ∀b1, . . . , bβ : (I ⇒ ¬B) iff |= I ⇒ B

∀
.

5 Interpolation-Based Probabilistic Model Checking

In this section, we investigate the application of generalized Craig interpolation
in probabilistic model checking. As a model we consider symbolically repre-
sented finite-state Markov decision processes (MDPs), which we check wrt. to

168 T. Teige and M. Fränzle

probabilistic state reachability properties. That is, given a set of target states
T in an MDP M, the goal is to maximize the probability P πM(T) of reaching
T over all policies π resolving the non-determinism in M. When considering
T as bad states of M, e.g. as fatal system errors, this maximum probability
Pmax
M (T) := maxπ P πM(T) reveals the worst-case probability of bad system be-

havior. A safety property for M requires that this worst-case probability does
not exceed some given threshold value θ ∈ [0, 1), i.e. Pmax

M (T) ≤ θ.
In [8], we proposed a symbolic falsification procedure for such safety prop-

erties. Though the approach in [8] is based on SSMT (arithmetic extension of
SSAT) and considers the more general class of discrete-time probabilistic hy-
brid systems, which roughly are MDPs with arithmetic-logical transition guards
and actions, the same procedure restricted to SSAT is applicable for finite-state
MDPs. The key idea here is to adapt bounded model checking (BMC) [23] to the
probabilistic case by encoding step-bounded reachability as an SSAT problem:
like in classical BMC, the initial states, the transition relation, and the target
states of an MDP are symbolically encoded by propositional formulae in CNF,
namely by Init(s), Trans(s,nt,pt, s′), and Target(s), resp., where the proposi-
tional variable vector s represents the system state before and s′ after a transi-
tion step. To keep track of the non-deterministic and probabilistic selections of
transitions in Trans(s,nt,pt, s′), we further introduce propositional variables
nt and pt to encode non-deterministic and probabilistic transition choices, re-
spectively. Assignments to these variables determine which of possibly multiple
available transitions departing from s is taken. In contrast to traditional BMC,
all variables are quantified: all state variables s and s′ are existentially quanti-
fied in the prefixes Qs and Qs′ . The transition-selection variables nt encoding
non-deterministic choice are existentially quantified by Qnt, while the proba-
bilistic selector variables pt are bound by randomized quantifiers in Qpt.6 Let
be t := nt ∪ pt and Qt := QntQpt. Due to [8, Proposition 1], the maximum
probability of reaching the target sates in a given MDP from the initial states
within k transition steps is equivalent to the satisfaction probability

(1) lbk := Pr
(
Q(k) :

(
states reachable within k steps

︷ ︸︸ ︷
Init(s0) ∧

∧k

i=1
Trans(si−1, ti, si)∧

hit target states
︷ ︸︸ ︷(∨k

i=0
Target(si)

)))

with Q(k) := Qs0Qt1Qs1 . . .Qsk−1Qtk
Qsk

. The probability lbk can be deter-
mined by SSAT solvers. This symbolic approach, called probabilistic bounded
model checking (PBMC), produces valid lower bounds lbk for Pmax

M (T). Thus,
PBMC is able to falsify a safety property once lbk > θ for some k. However,
the development of a corresponding counterpart based on SSAT that is able to
compute safe upper bounds ubk for Pmax

M (T) was left as an open question. Such
an approach would permit to verify a safety property once ubk ≤ θ for some k.

We now propose such a verification procedure based on generalized Craig in-
terpolation. The algorithm proceeds in two phases. Phase 1 computes a symbolic
representation of an overapproximation of the backward reachable state set. This
can be integrated into PBMC, as used to falsify the probabilistic safety property.

6 Non-deterministic branching of n alternatives can be represented by a binary tree
of depth �log2 n� and probabilistic branching by a sequence of at most n− 1 binary
branches, yielding �log2 n� existential and n−1 randomized quantifiers, respectively.

Generalized Craig Interpolation for SSAT 169

Whenever this falsification fails for a given step depth k, we apply generalized
Craig interpolation to the (just failed) PBMC proof to compute a symbolic over-
approximation of the backward reachable state set at depth k and then proceed
to PBMC at some higher depth k′ > k. As an alternative to the integration
into PBMC, interpolants describing the backward reachable state sets can be
successively extended by “stepping” them by prepending another transition, as
explained below. In either case, phase 1 ends when the backward reachable state
set becomes stable, in which case we have computed a symbolic overapproxima-
tion of the whole backward-reachable state set. In the second phase, we construct
an SSAT formula with parameter k that forces the system to stay within the back-
ward reachable state set for k steps. The maximum satisfaction probability of
that SSAT formula then gives an upper bound on the maximum probability of
reaching the target states. The rationale is that system executions leaving the
backward reachable states will never reach the target states.
Phase 1. Given an SSAT encoding of an MDP M as above, the state-set predi-
cate Bk(s) for k ∈ N≥0 over state variables s is inductively defined as B0(s) :=
Target(s), and Bk+1(s) := Bk(s) ∨ Ik+1(s) where Ik+1(sj−1) is a generalized
Craig interpolant for (Trans(sj−1, tj , sj) ∧ Bk(sj), Init(s0) ∧

∧j−1
i=1

Trans(si−1, ti, si)) with j ≥ 1 wrt. to SSAT formula

(2) Q(j) :
(

j − 1 steps “forward”(=B)
︷ ︸︸ ︷
Init(s0) ∧

∧j−1

i=1
Trans(si−1, ti, si)∧

one step “backward”(=A)
︷ ︸︸ ︷
Trans(sj−1, tj , sj) ∧ Bk(sj)

)

Observe that each Ik+1(s) can be computed by interpolating S-resolution if we
rewrite Bk(s) into CNF (which is always possible in linear time by adding auxil-
iary VA-variables). When doing so, we take I = true in each application of R’.2
such that Bk(s) overapproximates all system states backward reachable from
target states within k steps due to Corollary 3. Whenever Bk(s) stabilizes, i.e.
Bk+1(s) ⇒ Bk(s), we can be sure that B̂Reach(s) := Bk(s) overapproximates
all backward reachable states.

Note that parameter j ≥ 1 can be chosen arbitrarily, i.e. the system may
execute any number of transitions until state sj−1 is reached since this does not
destroy the “backward-overapproximating” property of Bk(s). The rationale of
having parameter j is the additional freedom in constructing Ik(s) as j may
influence the shape of Ik(s) (cf. example below).

Phase 2. Having symbolically described all backward reachable states by B̂Reach(s),
we are able to compute upper bounds ubk of the maximum probability Pmax

M (T)
of reaching target states T by SSAT solving applied to

(3) ubk := Pr
(
Q(k) :

(
states reachable within k steps

︷ ︸︸ ︷
Init(s0) ∧

∧k

i=1
Trans(si−1, ti, si)∧

stay in back-reach set
︷ ︸︸ ︷∧k

i=0
B̂Reach(si)

))

First observe that the formula above excludes all system runs that leave the set
of backward reachable states. This is sound since leaving B̂Reach(s) means to
never reach the Target(s) states. Second, the system behavior becomes more and
more constrained for increasing k, i.e. the ubk’s are monotonically decreasing.

170 T. Teige and M. Fränzle

1

1

0.5

0.1

0.9

0.5

i

f

e

s

B0

B1,I1

B̂Reach

B3,B2, I2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

pr
ob

ab
ili

ty

PBMC step depth

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

pr
ob

ab
ili

ty

PBMC step depth

upper bounds
lower bounds

Fig. 3. A simple DTMCM (left) and lower and upper bounds on probability of reach-
ing s over the PBMC step depth (right)

Regarding model checking, a safety property Pmax
M (T) ≤ θ is verified by the

procedure above once ubk ≤ θ is computed for some k.

Example. Consider the simple discrete-time Markov chain (DTMC)7 M on the
left of Fig. 3, with s as the only target state. The (maximum) probability of
reaching s from the initial state i clearly is P = 0.9 ·(0.5+0.5 ·P) = 9

11 . Applying
the generalized interpolation scheme (2) for k = 0 with parameter j = 1 yields
the interpolant I1(s) = ¬i. If we proceed then the set B̂Reach(s) covers all states
though state f is not backward reachable. Thus, j = 1 is not a good choice as
each ubk in scheme (3) will then be 1. For j = 2, scheme (2) produces: B0(s) =
Target(s) = s, I1(s) = ¬i ∧ ¬f , B1(s) = B0(s) ∨ I1(s) = (¬i ∨ s) ∧ (¬f ∨ s),
I2(s) = (¬i ∨ ¬e) ∧ ¬f , B2(s) = B1(s) ∨ I2(s) = (¬i ∨ ¬e ∨ s) ∧ (¬f ∨ s),
I3(s) = (¬i∨¬e)∧¬f , B3(s) = B2(s)∨I3(s) = B2(s) (cf. left of Fig. 3). Thus,
B̂Reach(s) = B2(s).

We are now able to compute upper bounds of the reachability probability
P = 9

11
by scheme (3). The results are shown on the right of Fig. 3 where the

lower bounds are computed according to scheme (1). The figure indicates a fast
convergence of the lower and upper bounds: for depth k = 20 the difference
ubk − lbk is below 10−3 and for k = 100 below 10−15.

All 200 SSAT formulae were solved by the SSMT tool SiSAT [9] in 41.3 sec
on a 1.83 GHz Intel Core 2 Duo machine with 1 GByte physical memory run-
ning Linux. For the moment, the SSAT encoding ofM and all computations of
generalized interpolants from PBMC proofs were performed manually. Details
can be found in [21]. While the runtime of this first prototype does not com-
pare favorably to value or policy iteration procedures, it should be noted that
this is a first step towards a procedure embedding the same interpolation pro-
cess into SSMT [8] and thereby directly addressing probabilistic hybrid systems,
where the iteration procedures are only applicable after finite-state abstraction.
It should also be noted that the symbolic procedures provided by SSAT and
SSMT support compact representations of concurrent systems, thus alleviating
the state explosion problem [9].
7 A DTMC is an MDP without non-determinism.

Generalized Craig Interpolation for SSAT 171

6 Conclusion and Future Work

In this paper, we elaborated on the idea of Craig interpolation for stochastic
SAT. In consideration of the difficulties that arise in this stochastic extension of
SAT, we first proposed a suitable definition of a generalized Craig interpolant and
second presented an algorithm to automatically compute such interpolants. For
the latter purpose, we enhanced the SSAT resolution calculus by corresponding
rules for the construction of generalized interpolants. We further demonstrated
an application of generalized Craig interpolation in probabilistic model checking.
The resulting procedure is able to verify probabilistic safety requirements of the
form “the worst-case probability of reaching undesirable system states is smaller
than a given threshold”. This complements the existing SSAT-based bounded
model checking approach, which mechanizes falsification of such properties.

An essential issue for future work is the practical evaluation of interpolation-
based probabilistic model checking on realistic case studies. This involves, a.o.,
the integration of interpolating S-resolution into DPLL-based SSAT solvers and
a thorough empirical study of the results obtained from the interpolation scheme
(2). The latter includes the size and shape of generalized Craig interpolants as
well as the computational effort for computing them in practice.

Another interesting future direction is the adaptation of generalized Craig
interpolation to SSMT [8], i.e. the extension of SSAT with arithmetic theories.
Computing Craig interpolants for SSMT would lift schemes (2) and (3) to SSMT
problems, thus establishing a symbolic verification procedure for discrete-time
probabilistic hybrid systems.

References

1. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301
(1985)

2. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean Satisfiability. Jour-
nal of Automated Reasoning 27(3), 251–296 (2001)

3. Majercik, S.M., Littman, M.L.: MAXPLAN: A New Approach to Probabilistic
Planning. In: Artificial Intelligence Planning Systems, pp. 86–93 (1998)

4. Majercik, S.M., Littman, M.L.: Contingent Planning Under Uncertainty via
Stochastic Satisfiability. Artificial Intelligence Special Issue on Planning With Un-
certainty and Incomplete Information 147(1-2), 119–162 (2003)

5. Walsh, T.: Stochastic constraint programming. In: Proc. of the 15th European
Conference on Artificial Intelligence (ECAI 2002). IOS Press, Amsterdam (2002)

6. Balafoutis, T., Stergiou, K.: Algorithms for Stochastic CSPs. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 44–58. Springer, Heidelberg (2006)

7. Bordeaux, L., Samulowitz, H.: On the stochastic constraint satisfaction framework.
In: SAC, pp. 316–320. ACM, New York (2007)

8. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A
novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M.,
Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg
(2008)

172 T. Teige and M. Fränzle

9. Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent proba-
bilistic hybrid systems: An application to networked automation systems. Nonlin-
ear Analysis: Hybrid Systems (to appear, 2011)

10. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885.
IOS Press, Amsterdam (2009)

11. Littman, M.L.: Initial Experiments in Stochastic Satisfiability. In: Proc. of the 16th
National Conference on Artificial Intelligence, pp. 667–672 (1999)

12. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal
of the ACM 7(3), 201–215 (1960)

13. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Communications of the ACM 5, 394–397 (1962)

14. Majercik, S.M.: Nonchronological backtracking in stochastic Boolean satisfiability.
In: ICTAI, pp. 498–507. IEEE Computer Society, Los Alamitos (2004)

15. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1), 23–41 (1965)

16. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formu-
las. Inf. Comput. 117(1), 12–18 (1995)

17. Teige, T., Fränzle, M.: Resolution for stochastic Boolean satisfiability. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 625–639.
Springer, Heidelberg (2010)

18. Craig, W.: Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem. J.
Symb. Log. 22(3), 250–268 (1957)

19. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

20. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005)

21. Teige, T., Fränzle, M.: Generalized Craig interpolation for stochastic Boolean sat-
isfiability problems. Reports of SFB/TR 14 AVACS 67, SFB/TR 14 AVACS (2011)
ISSN: 1860-9821, http://www.avacs.org

22. Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and Monotone
Computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

23. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

Specification-Based Program Repair Using SAT

Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid

The University of Texas at Austin

Abstract. Removing bugs in programs – even when location of faulty statements
is known – is tedious and error-prone, particularly because of the increased like-
lihood of introducing new bugs as a result of fixing known bugs. We present
an automated approach for generating likely bug fixes using behavioral speci-
fications. Our key insight is to replace a faulty statement that has deterministic
behavior with one that has nondeterministic behavior, and to use the specifica-
tion constraints to prune the ensuing nondeterminism and repair the faulty state-
ment. As an enabling technology, we use the SAT-based Alloy tool-set to describe
specification constraints as well as for solving them. Initial experiments show the
effectiveness of our approach in repairing programs that manipulate structurally
complex data. We believe specification-based automated debugging using SAT
holds much promise.

1 Introduction

The process of debugging, which requires (1) fault localization, i.e., finding the location
of faults, and (2) program repair, i.e., fixing the faults by developing correct statements
and removing faulty ones, is notoriously hard and time consuming, and automation
can significantly reduce the cost of debugging. Traditional research on automated de-
bugging has largely focused on fault localization [3, 10, 20], whereas program repair
has largely been manual. The last few years have seen the development of a variety
of exciting approaches to automate program repair, e.g., using game theory [9], model
checking [18], data structure repair [11] and evolutionary algorithms [19]. However,
previous approaches do not handle programs that manipulate structurally complex data
that pervade modern software, e.g., perform destructive updates on program heap sub-
ject to rich structural invariants.

This paper presents a novel approach that uses rich behavioral specifications to auto-
mate program repair using off-the-shelf SAT technology. Our key insight is to transform
a faulty program into a nondeterministic program and to use SAT to prune the nonde-
terminism in the ensuing program to transform it into a correct program with respect to
the given specification. The key novelty of our work is the support for rich behavioral
specifications, which precisely specify expected behavior, e.g., the remove method of
a binary search tree only removes the given key from the input tree and does not in-
troduce spurious key into the tree, as well as preserves acyclicity of the tree and the
other class invariants, and the use of these specifications in pruning the state space for
efficient generation of program statements.

We present a framework that embodies our approach and provides repair of Java
programs using specifications written in the Alloy specification language [6]. Alloy

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 173–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

174 D. Gopinath, M.Z. Malik, and S. Khurshid

is a relational, first-order language that is supported by a SAT-based tool-set, which
provides fully automatic analysis of Alloy formulas. The Alloy tool-set is the core en-
abling technology of a variety of systematic, bounded verification techniques, such as
TestEra [12] for bounded exhaustive testing, and JAlloy [7] and JForge [4] for scope-
bounded static checking. Our framework leverages JForge to find a smallest fault re-
vealing input, which yields an output structure that violates the post-condition. Given
such a counterexample and a candidate list of faulty statements, we parameterize each
statement with variables that take a nondeterministic value from the domain of their
respective types. A conjunction of the fixed pre-state, nondeterministic code, and post-
condition is solved using SAT to prune the nondeterminism. The solution generated by
SAT is abstracted to a list of program expressions, which are then iteratively filtered
using bounded verification.

This paper makes the following contributions:

– Alloy (SAT) for program repair. We leverage the SAT-based Alloy tool-set to
repair programs that operate on structurally complex data.

– Rich behavioral specifications for program repair. Our support for rich behav-
ioral specifications for synthesizing program statements enables precise repair for
complex programs.

– Framework. We present an automated specification-based framework for program
repair using SAT, and algorithms that embody the framework.

– Evaluation. We use a textbook data structure and an application to evaluate the ef-
fectiveness and efficiency of our approach. Experimental results show our approach
holds much promise for efficient and accurate program repair.

2 Basic Principle

The basic concept of bounded verification of Java programs using SAT is based on
the relational model of the Java Heap. First proposed in the JAlloy technique [7], this
involves encoding the data, the data-flow and control-flow of a program in relational
logic. Every user-defined class and in-built type is represented as a set or a domain con-
taining a bounded number of atoms(objects). A field of a class is encoded as a binary
function that maps from the class to the type of the field. Local variables and argu-
ments are encoded as singleton scalars. Data-flow is encoded as relational operations
on the sets and relations. For instance, a field deference x.f, where x is an object of
class A and f is a field of type B, is encoded as a relational join of the scalar ’x’ and
the binary relation f : A→B. Encoding control-flow is based on the computation graph
obtained by unrolling the loops in the control flow graph a specified number of times.
The control flow from one statement to the next is viewed as a relational implication,
while at branch statements, the two branch edges are viewed as relational disjunctions.
The entire code of a method can thus be represented as a formula in first-order rela-
tional logic such as Alloy [6], P(st,s′t) relating the output state s′t to its input st. The
conjunction of the pre-condition, the formula representing the code and the negation
of the post-condition specification of the method is fed into a relational engine such as
Kodkod [16]. The formula is translated into boolean logic and off-the-shelf SAT solvers

Specification-Based Program Repair Using SAT 175

item = 2N0

1

N1

2

List 0

Size = 2
header

Size = 1

N0

1

N1

2

List 0
header

(a) (b)

void remove(int item){
if (header == null) return;
Node ptr = header.next;
Node prevP = header;
while (ptr!= null){
if (ptr.elem == item){

prevP.next = ptr;//Error
//prevP.next = ptr.next;//Correct
if (ptr.next != null)

ptr.next.prev = prevP;
size = size -1;

}else{
prevP = prevP.next;
ptr = ptr.next;

}}
if (header.elem == item){

this.header = header.next;
size = size -1;
if (header != null)
header.prev = null;

}}

(c)

Fig. 1. Faulty remove from Doubly Linked List(DLL) (a) Pre-state with input argument 2 (b) Post-
state, size updated but node not removed. (c) Faulty DLL remove method.

are used to solve it. A solution represents a counter-example to the correctness speci-
fication, showing the presence of an input satisfying the pre-condition, tracing a valid
path through the code and producing an output that does not satisfy the post-condition.
Our technique builds on this idea to employ SAT to automatically perform alterations
to program statements which would correct program errors leading to the specification
violations. The technique can be best explained using a simple example.

The code snippet in Fig. 1c shows a faulty remove method of a doubly linked list
data structure. The data structure is made up of nodes, each comprising of a next

pointer, pointing to the subsequent node in the list, a prev pointer pointing to the
previous node and an integer element. The header points to the first node in the
list and size keeps a count of the number of nodes. The remove method removes
the node which has its element value equal to input value. It uses two local pointers,
ptr and prevP, to traverse the list and bypass the relevant node by setting the next

of prevP to the next of ptr. A typical correctness specification (post-condition) for
this method would check that the specified value has been removed from the list in
addition to ensuring that the invariants such as acyclicity of the list are maintained.
In the erroneous version, prevP.next is assigned to ptr instead of ptr.next. A
scope bounded verification technique ([4]) can verify this method against the post-
condition (specified in Alloy) to yield the smallest input structure which exposes the
error. Figures 1a and 1b show the fault revealing input and the erroneous output. The
pre-state is a doubly linked list with two nodes (List0 is an instance of a list from the
List domain, N0 and N1 are instances from the Node domain). In the correspond-
ing erroneous post-state, node N1 with element value 2 is still present in the list since
the next pointer of N0 points to N1 rather than null. Let us assume the presence of
a fault localization technique which identifies the statement prevP.next = ptr as
being faulty. Our aim is to correct this assignment such that for the given input in the
pre-state, the relational constraints of the path through the code yield an output that sat-
isfies the post-condition. To accomplish this, we replace the operands of the assignment
operator with new variables which can take any value from the Node domain or can be

176 D. Gopinath, M.Z. Malik, and S. Khurshid

null. The statement would get altered to Vlhs.next = Vrhs, where Vlhs and Vrhs are
the newly introduced variables. We then use SAT to find a solution for the conjunction
of the new formula corresponding to the altered code and the post-condition specifi-
cation. The values of the relations in the pre-state are fixed to correspond to the fault
revealing input as follows, (header=(List0,N0), next=(N0,N1), prev=(N1,N0),
elem=(N0,1),(N1,2)). The solver searches for suitable valuations to the new vari-
ables such that an output is produced that satisfies the post-condition for the given
fixed pre-state. In our example, these would be Vlhs = N0 and Vrhs = null. These
concrete state values are then abstracted to programming language expressions. For
instance, in the example, the value of the local variables before the erroneous state-
ment would be, ptr = N1,prevP = N0 and t = List0. The expressions yielding
the value for Vrhs = null would be prevP.prev, prevP.next.next, ptr.next,
ptr.prev.prev, t.header.prev, t.header.next.next. Similarly, a list of pos-
sible expressions can be arrived at for Vlhs = N0. Each of these expressions yield an
altered program statement yielding correct output for the specific fault revealing input.
The altered program is then validated for all inputs using scope bounded verification to
filter out wrong candidates. In our example, counter-examples would get thrown when
any of the following expressions prevP.prev, ptr.prev.prev, t.header.prev,
and t.header.next.next(for scope greater than 2) are used on the right hand side
of the assignment. When no counter-example is obtained, it indicates that the pro-
gram statement is correct for all inputs within the bounds specified. In this example,
prevP.next = prevP.next.next and prevP.next = ptr.next would emerge
as the correct statements satisfying all inputs.

3 Our Framework

Fig. 2 gives an overview of our framework for program repair. We assume the pres-
ence of a verification module indicating the presence of faults in the program. In our
implementation, we have employed bounded verification (Forge framework [4]) which
takes in a Java method, bounds on the input size(scope) and number of times to un-
roll loops and inline recursive calls(unrolls) and generates the smallest fault revealing
input(st) within the given scope that satisfies the pre-condition of the method and yields
an output(s′t) that violates the post-condition. A trace, comprising of the code statements
in the path traversed for the given input, is also produced. We also assume the presence
of a fault localization scheme, which yields a minimal list of possibly faulty statements.
Please note that the technique works on the Control Flow Graph(CFG) representation
of the program and the relational model view of the state.

Given a counter-example from the verification module and a list of suspicious state-
ments S1, . . . , Sm, the first step performed by the repair module is to parameterize each
of these statements. The operands in the statement are replaced with new variables. For
instance, consider an assignment statement of the form, x.{f1.f2. · · · .fn−1}.fn = y.
The presence of a commission error locally in this statement indicates that either the
source variable x, one or more of the subsequently de-referenced fields f1, f2, . . . , fn−1

or the target variable y have been specified wrongly. If the field being updated, fn, has

Specification-Based Program Repair Using SAT 177

Scope

Generate new SAT
 Formula

Fault
Localization

Fault Revealing
Trace

Fault?
Same

Abstraction

KodKod − SAT

New Fault
Revealing

Trace

Validate new CFG
for all Inputs None?

No

Counter
Example?

Repaired
CFG

No

Yes

Yes

Yes

No

N
ex

t V
al

ua
tio

n

Next Abstraction

 CFG
Parameterized

Repair

CFG Unrolls

Bounded Verification

Fig. 2. Overview of our repair framework

been specified erroneously, it indicates that the statement to update the correct field
(say f ′n) has been omitted. Handling of omission errors requires additional user input
and is explained later in this section. The altered statement would be Vlhs.fn = Vrhs,
where Vlhs and Vrhs can be null or can take any value from the domains A and B
respectively, if fn is a relation mapping type A to B. Similarly a branch statement such
as x > y, would be altered to Vlhs > Vrhs and a variable update y = x to y = Vrhs.
Please note that we attempt to correct a statement by changing only the values read
or written by it and not by altering the operators or constant values specified in the
statement. We hypothesize that such syntactic and semantic errors can be caught by
the programmer during his initial unit testing phase itself, whereas detection of errors
relating to the state depends on the input being used. This may get missed during manual
review or testing and a bounded verification technique which systematically checks for
all possible input structures is adept in detecting such errors. However, if by altering
the placement of the operands, the semantics of a wrongly specified operator can be
made equivalent to the correct operator, then we can correct such errors. For instance,
if x < y has been wrongly specified as x > y, the corrected statement would be
y > x. A new set of variables would thus get defined for each statement in suspect list,
{V Si

lhs, V
Si

rhs}, ∀i ∈ {1, . . . , m}.
New constraints for the code with the newly introduced variables are generated in

the next step. The input is fixed to the fault revealing structure by binding the pre-
state relations exactly to the values in st when supplying the formula to the Kodkod
engine. A formula made up of the conjunction of the fixed pre-state, the new code for-
mula and the post-condition, pre-state∧ code-constraints ∧ post-condition, is fed
to the SAT solver. The solver looks for suitable valuations to the new variables such
that a valid trace through the code is produced for the specified input(st) that yields
an output(s′′t) that satisfies the post-condition. If V Si

lhs is a variable of type Node, then a

178 D. Gopinath, M.Z. Malik, and S. Khurshid

possible solution could bind it to any concrete state value in its domain, V Si

lhs = n, ∀n ∈
{N0, . . . , Nscope−1}. Hence every new variable in every statement in the suspect list
would be bound to a concrete state value as follows, V Si

lhs = CSi

lhs, V
Si

rhs = CSi

rhs, ∀i ∈
{1, . . . , m}, where CSi

lhs and CSi

rhs are the state values are every statement.
The ensuing abstraction module attempts to map every concrete valuation to local

variables or expressions that contain that value at that particular program point. The ex-
pressions are constructed by applying iterative field de-references to local variables. For
example, if t is a local variable containing an instance of a Tree and the left pointer
of its root node contains the required concrete value, then t.root.left would be the
expression constructed. We ensure that we do not run into loops by hitting the same ob-
ject repeatedly. Stating it formally, if for variable v, and fields f1, . . . , fk, v.f1. · · · .fk

evaluates to v, then for any expression e that evaluates to v, the generated expression
will not take the form e.f1. · · · .fk.e′ , rather it will take the form v.e′. Please note
that when a parameterized statement occurs inside a loop there would be several occur-
rences of it in the unrolled computation graph. Each occurrence could have different
state valuations, however, their abstractions should yield the same expression. Hence
we only consider the last occurrence to perform the abstraction. A new CFG is gen-
erated with the altered statements. In the event that no abstractions can be produced
for a particular concrete valuation, we invoke SAT again to check if there are alternate
correct valuations for the given input.

Please note that if SAT is unable to find suitable valuations that yield a satisfying so-
lution for the given input or none of the valuations produced by SAT can be abstracted,
it indicates that the fault cannot be corrected by altering the statements in the suspect
list. The reason for this could either be that some statements had been omitted in the
original code or that the initial list of suspicious statements is inaccurate. At this stage,
manual inspection is required to determine the actual reason. Omission errors could be
corrected by the tool using ”templates” of the missing statements inserted by the user
at appropriate locations. In case of the suspect list being incomplete, a feedback could
be provided to the localization module to alter the set of possibly faulty statements.

In the validation phase, we use scope bounded checking to systematically ensure that
all inputs covering the altered statements yield outputs satisfying the post-condition. If a
counter-example is detected, the new fault revealing input and the corresponding trace,
along with the altered CFG are fed back into the fault localization module. Based on
the faults causing the new counter-example, an altered or the same set of statements
would get produced and the process is repeated until no counter-example is detected in
the validation phase. There could be faults in the code not detected during the initial
verification or during the above mentioned validation process. These may be present in
a portion of code not covered by the traces of the previously detected faults. Hence as
a final step, we verify that the CFG is correct for all inputs covering the entire code.
Thus, the repair process iteratively corrects all faults in the code. In case, all the faulty
statements can be guaranteed to be present in the suspect list, the entire CFG can be
checked whenever an abstraction is generated. When a counter-example is detected, the
subsequent abstractions for the same set of statements could be systematically checked
until one that satisfies all inputs is produced.

Specification-Based Program Repair Using SAT 179

bool insert(Tree t, int k){
Node y = null;
Node x = t.root;
while (x != null)
//while(x.left != null) (4c)
{ y = x;

//y = t.root; (3b)(8)(9)
if (k < x.key)
//if(k < t.root.key) (9)(13)

x = x.left;
//x = x.right; (3a)
//x = x.left.right (13)

else
{ if (k > x.key)

//if (k < x.key) (4a)
//if(k > t.root.key) (4b)

x = x.right;
else

return false;}}
x = new Node();
x.key = k;
if (y == null)
//if(x != null) (10)

t.root = x;
else
{ if (k < y.key)

//if(k > y.key) (2a)
//if(k < x.key) (2b)(5)(11)(12)

y.left = x;
//y.left = y; (6)(10)(11)

else
y.right = x;}
//y.right = y;}(10)(12)

x.parent = y;
//x.parent = x; (1)(7)(8)
//y.parent = x; (5)(6)(10)
/*x.parent = y;*/ //Omission Err(14)
t.size += 1;
return true;}

void addChild(Tree t){
if (t == null} return;
BaseTree childTree = (BaseTree)t;
if (childTree.isNil()) {

if (this.children != null &&
this.children == childTree.children)

throw new RuntimeException("...");
if (childTree.children != null) {

int n = childTree.children.size();
for (int i = 0; i < n; i++) {
//for (int i = 0,j = 0; i < n; (i = j + 1)) { (1)

Tree c = childTree.children.get(i);//list get
this.children.add(c);//list add
c.setParent(this);
//j = i + 1; (1)}}

else this.children = childTree.children;}
else {

if (children == null)
//if (childTree.children == null) (2)

children = createChildrenList();
children.add(t); //list add
childTree.setParent(this);
//childTree.setParent(childTree); (2)}}

(a) (b)

Fig. 3. Code Snippets of (a) BST.insert (b) ANTLR BaseTree.addChild with error
numbers. Repaired version produced in the CFG form, manually mapped back to source code.

4 Evaluation

This section presents two case studies on (i) Binary Search Tree insert method and
(ii) addChild method of the ANTLR application [13]. The aim of the first study was
to simulate an exhaustive list of error scenarios and measure the ability of the technique
to repair faulty statements accurately and efficiently. The second evaluation focuses on
studying the efficacy of the technique to scale to real world program sizes.

4.1 Candidates

Binary Search Tree (BST) is a commonly used text-book data structure. BST has
complex structural invariants, making it non-trivial to perform correct repair actions to
programs that manipulate its structure. The tree is made up of nodes, each comprising of
an integer key, left, right and a parent pointer. Every tree has a root node which
has no parent and a size field which stores the number of nodes reachable from the
root. The data structure invariants include uniqueness of each element, acyclicity with

180 D. Gopinath, M.Z. Malik, and S. Khurshid

respect to left,right and parent pointers, size and search constraints (key value
of every node needs to be greater than the key values of all nodes in its left sub-
tree and lesser than all keys in its right sub-tree). Insert(int item) is one of the
most important methods of the class, which adds a node to the tree based on the input
item value. The post-condition specification checks if the functionality of the method
is met in addition to ensuring that the data structure invariants are preserved. It has
considerable structural and semantic complexity, performing destructive updates to all
fields of the tree class and comprising of 20 lines of code (4 branch statements and 1
loop).

ANother Tool for Language Recognition (ANTLR) [13], a part of the DaCapo bench-
mark [2], is a tool used for building recognizers, interpreters, compilers and translators
from grammars. Rich tree data structures form the backbone of this application, which
can be major sources of errors when manipulated incorrectly. Hence ANTLR is an ex-
cellent case study for repair on data structure programs. BaseTree class implements
a generic tree structure to parse input grammars. Each tree instance maintains a list
of children as its successors. Each child node is in turn a tree and has a pointer to its
parent and a childIndex representing its position in the children list. Every node
may also contain a token field which represents the payload of the node. Based on
the documentation and the program logic, we derived invariants for the BaseTree data
structure such as acyclicity, accurate parent-child relations and correct value of child
indices. The addChild(Tree node) is the main method used to build all tree struc-
tures in ANTLR. The respective post-conditions check that the provided input has been
added without any unwarranted perturbations to the tree structure.

4.2 Metrics

The efficiency of the technique was measured by the total time taken to repair a pro-
gram starting from the time a counter-example and suspect list of statements were fed
into the repair module. This included the time to correct all faults (commission) in the
code satisfying all inputs within the supplied scope. Since the time taken by the SAT
solver to systematically search for correct valuations and validate repair suggestions is a
major factor adding to the repair time, we also measured the number of calls to the SAT
solver. The repaired statements were manually verified for accuracy. They were con-
sidered to be correct if they were semantically similar to the statements in the correct
implementation of the respective algorithms.

Our repair technique is implemented on top of the Forge framework [4]. The pre,
post-conditions and CFG of the methods were encoded in the Forge Intermediate
Representation(FIR). Scope bounded verification using Forge was used to automati-
cally detect code faults. The suspect list of possibly faulty statements was generated
manually. The input scope and number of loop unrolling were manually fixed to the
maximum values required to produce repaired statements that would be correct for all
inputs irrespective of the bounds. MINISAT was the SAT solver used. We ran the ex-
periments on a system with 2.50GHz Core 2 Duo processor and 4.00GB RAM running
Windows 7.

Specification-Based Program Repair Using SAT 181

4.3 Results

Table 1 enlists the different types of errors seeded into the BST insert and ANTLR

addChild methods. Figures 3a and 3b show the code snippets of the methods with
the errors seeded. The errors have been categorized into 3 scenarios as described below.

Table 1. Case Study Results: P1 - BST.insert, P2 - ANTLR BaseTree.addChild. Errors
categorized into 3 scenarios described in section 4.3. The number of actually faulty and correct
statements in the suspect list of fault localization(FL) scheme are enumerated. Description high-
lights the type of the faulty statements. Efficiency measured by Repair Time and number of SAT
Calls. Accuracy measured by (i) whether a fix was obtained, (ii) was the repaired statement ex-
actly same as in correct implementation. Every result is an average of 5 runs(rounded to nearest
whole number).

Name Scr# Error# FL Scheme Output Type of Stmts Repair # SAT Accuracy
Faulty # Correct Time(secs) Calls

P1

1

1 1 0 Assign Stmt 3 2
√

, Same
2a 1 0 Branch stmt 34 114

√
, Diff

2b 1 0 Branch stmt 4 2
√

, Same
3a 1 0 Assign stmt 5 2

√
, Diff

3b 1 0 Assign stmt 5 4
√

, Same
4a 1 0 Branch stmt 12 96

√
, Diff

4b 1 0 Branch stmt 4 2
√

, Same
4c 1 0 Loop condition 1 2

√
, Same

5 2 0 Branch, Assign stmts 7 5
√

, Same
6 2 0 Assign stmts 5 3

√
, Same

2 7 1 2 Branch, Assign stmts 15 21
√

, Same
8 2 1 Branch, Assign stmts 6 2

√
, Same

9 1 1 Assign stmts 11 2
√

, Same
3 10 4 0 Branch, Assign stmts 6 8

√
, Same

11 2 0 Branch, Assign stmts 26 9
√

, Same
12 2 1 Branch, Assign stmts 33 14

√
, Same

13 2 1 Assign, Branch stmts 14 24
√

, Same
14 0 2 Omission error NA NA NA

P2 1 1 2 0 Assign Stmt 71 2
√

, Diff
2 2 2 2 Branch, Assign stmts 1 5

√
, Same

Binary Search Tree insert
Scenario 1: All code faults identified in the initial verification, suspect list contains the
exact list of faulty statements. In the first eight errors only 1 statement is faulty. In er-
rors 1 and 3, the fault lies in the operands of an assignment statement. Error 1 involves
a wrong update to the parent field causing a cycle in the output tree. The faults in the
latter case, assign wrong values to local variables x and y respectively, which impact
the program logic leading to errors in the output structure. For instance, in error 3a, the
variable x is assigned to x.right instead of x.left if the input value k < x.key

inside the loop. This impacts the point at which the new node gets added thus break-
ing the constraints on the key field. The repaired statement produced is x = y.left

which is semantically similar to the expected expression, since the variable y is always
assigned to x before this statement executes. In error 3, both the faults being inside a
loop, require a higher scope to get detected as compared to the fault in error 1. This
increases the search space for the solver to find correct valuations for the fault revealing
input, resulting in higher repair time. Errors 2 and 4 involve faulty branch statements
present outside and inside a loop respectively. In Errors 2a and 4a, the comparison op-
erator is wrong and both the operands are parameterized as Vlhs > Vrhs. The search is

182 D. Gopinath, M.Z. Malik, and S. Khurshid

on the integer domain and passes through many iterations before resulting in valuations
that produce an abstraction satisfying all inputs. The final expression is semantically
same as the correct implementation, with the operands interchanged (y.key > k vs

k < y.key). In errors 2b and 4b, the expression specified in the branch condition is
faulty. Hence only the variable in the expression is parameterized (k < Vrhs.key). The
search on the node domain results in correctly repaired statements with lesser number
of SAT calls than a search on the bigger integer domain. In errors 5 and 6, combina-
tions of branch and assignment statements are simultaneously faulty. Since the number
of newly introduced variables are higher, the repair times are higher than the previous
errors. Also, when there are more than one statements in fault, combinations of abstrac-
tions and valuations corresponding to each statement, need to be parsed to look for a
solution satisfying all inputs.

Scenario 2: Fault localization scheme produces a possibly faulty list. In this scenario,
the suspect list also includes statements which are actually correct. For instance, in error
7, the fault lies in an assignment statement which wrongly updates the parent of the
inserted node similar to error 1, but the suspect list also includes 2 branch statements
before this statement. In this case, all the operands of the 3 statements are parameterized
leading to an increase in the state space and hence the repair time. It can be observed
that as the percentage of actually faulty statements increases, the number of SAT calls
decreases. In error 9, an assignment statement inside a loop wrongly updates a vari-
able which is used by a subsequent branch statement. Owing to the data dependency
between the statements, the number of possible combinations of correct valuations are
less resulting in just 2 SAT calls, however, the large size of the fault revealing input
increases the search time. The results were manually verified to ensure that the expres-
sions assigned to the actually correct statements in the final repaired program were the
same as before.

Scenario 3: There could be other faults than those revealed by the initial verification.
Not all code faults may get detected in the initial verification stage. For instance, in
error 10, an input structure as small as an empty tree can expose the fault in the branch
statement. However, when the correction for this fault is validated using a higher scope,
wrong updates to the parent and the right fields get detected. The new fault-revealing
input and the CFG corrected for the first fault are fed back into fault localization scheme
and the process repeats until a program which is correct for all inputs passing through
the repaired statements is produced. However, when the entire program is checked, a
wrong update to the left field of the inserted node gets detected. Since this assign-
ment statement is control dependent on the branch which directs flow towards the up-
date of the right field, it is not covered by the traces of the previous fault revealing
inputs. The process repeats as explained before until the last fault is corrected. This
explains the 8 calls to SAT to correct this error scenario. Owing to the small size of
the fault revealing inputs, the suspect list containing only the erroneous statements and
the fact that in most runs, the first abstraction for every faulty statement happened to
be the correct ones, the total repair took only 5 seconds. However, correction of subse-
quent errors necessitate more number of iterations leading to higher repair times, which
got exacerbated when the suspect list also included statements not in error. In the last

Specification-Based Program Repair Using SAT 183

case (error 14), the statement to update the parent field is omitted from the code, the
localization scheme wrongly outputs the statements which update the left and right

fields as being possibly faulty. The repair module is unable to find a valuation which
produces a valid output for the fault revealing input. It thus displays a message stating
that it could possibly be an omission error or the statements output by the localization
scheme could be wrong.

ANTLR addChild: The addChild method is much more complex than BST insert
consisting of calls to 4 other methods, nested branch structures and total source code
LOC of 45 (including called methods). The first fault consists of a faulty increment to
the integer index of a loop. An extra local variable j is assigned the value of integer
index (i) plus 1 inside the loop. After every iteration, i is assigned j + 1, erroneously
incrementing the index by 2 instead of 1. This fault requires an input of size 4 nodes and
2 unrolls of the loop to get detected. The error can be corrected by assigning i instead of
i + 1 to j, or j to i after every iteration, or i + 1 to i(original implementation). We
assumed that the suspect list includes both the assignment statements. In the repaired
version, i was assigned i + 1 after every iteration and the assignment to j was not
altered. The correction was performed in just 2 SAT calls but consumed 71 seconds due
to the large state space. The second scenario simulates a case wherein both a branch
statement checking whether the current tree has any children or not and a statement
updating the parent field of the added child tree are faulty. These faults are detected
with a scope of 3 and unrolls 1. Two actually correct update statements are also included
in the suspect list. Our technique is able to repair all the statements in one second.

5 Discussion

As can be observed from the results of the evaluation, our repair technique was success-
ful in correcting faults in different types of statements and programming constructs. The
technique was able to correct up to 4 code faults for BST insert within a worst case
time of 33 seconds. The technique consumed a little more than a minute (worst case) to
correct faults in ANTLR addChild, highlighting its ability to scale to code sizes in real
world applications. Overall, we can infer that the repair time is more impacted by the
size of the fault revealing input rather than the number of lines of source code. It has
been empirically validated that faults in most data structure programs can be detected
using small scopes [1]. This is an indication that our technique has the potential to be
applicable for many real world programs using data structures.

One of the shortcomings of the technique is that the accuracy of the repaired state-
ments is very closely tied to the correctness and completeness of the post-condition
constraints and the maximum value of scope used in the validation phase. For instance,
in the second error scenario of ANTLR addChild(3b), when the post-condition just
checked the addition of a child tree, an arbitrary expression yielding true was substi-
tuted in place of the erroneous branch condition. However, only when the constraints
were strengthened to ensure that the child had been inserted in the correct position in the
children list of the current tree, an accurate branch condition same as that in the original
correct implementation was obtained. This limitation is inherited from specification-
based bounded verification techniques which consider a program to be correct as long

184 D. Gopinath, M.Z. Malik, and S. Khurshid

as the output structure satisfies the user-specified post-condition constraints. Hence, the
technique can be relied upon to produce near accurate repair suggestions, which need to
be manually verified by the user. However, the user can either refine the constraints or
the scope supplied to the tool to refine the accuracy of the corrections. Following points
are avenues for improvements in the repair algorithm; Erroneous constant values in a
statement could be corrected by parameterizing them to find correct replacements but
avoiding the abstraction step. Erroneous operators in a statement could be handled with
the help of user-provided templates of possibly correct operators, similar to the han-
dling of omission errors as described in Section 3. The number of iterations required to
validate the abstractions for a particular valuation can be decreased by always starting
with those involving direct use of local variables declared in the methods. Methods that
manipulate input object graphs often use local variables as pointers into the input graphs
for traversing them and accessing their desired components. Hence the probability of
them being the correct abstractions would increase.

6 Correctness Argument

In this section, we present a brief argument that our repair algorithm is accurate, ter-
minates and handles a variety of errors. We make the assumptions that the faults are
not present in the operator or constant values specified in a statement. The basic intu-
ition behind parameterizing possibly faulty statements is that any destructive update to
a linked data structure should be through wrong updates to one or more fields of the
objects of the structure. Hence we try to correct the state by altering the values read and
written by statements directly updating fields. We also cover cases where wrong local
variable values may indirectly lead to wrong field updates. We also consider erroneous
branch condition expressions which may direct the flow towards a wrong path. The
variables introduced during parameterizations are constrained exactly at the location
of the faulty statements. Further, the state values assigned to them need to be reach-
able from the local variables at that program point. The fact that the input is fixed to
a valid structure and that the statements before and after the faulty statements are cor-
rect, ensures that finding an abstraction at the respective program points should lead to
a valid update to the state such that the output apart from being structurally correct, is
in alignment with the intended program logic. An abstraction yielding a correct output
for a particular input structure need not be correct for all input structures covering that
statement. There could be bigger structures with higher depth or traversing a different
path before reaching the repaired statement, which may require a different abstraction.
There could also be more than one correct valuation which yield correct output for a
particular input. For instance, when both operands of a branch statement are parame-
terized, the variables could take any value that results in the correct boolean output to
direct the control flow in the right direction. These cases are detected in the abstraction
and validation stages and other valuations and/or abstractions for a particular valuation
are systematically checked. Provided that there are no new code faults and all the faulty
statements are guaranteed to be in the suspect list, a valuation and/or abstraction satisfy-
ing all inputs should be in the list obtained from the initial fault revealing input. Hence,
the repair process would terminate.

Specification-Based Program Repair Using SAT 185

The guarantee on the completeness and correctness of the repaired statements is the
same as that provided by other scope bounded verification techniques. The repaired
statements are correct with respect to the post-condition specifications for all inputs
within the highest scope used to validate the repaired program.

7 Related Work

We first discuss two techniques most closely related to our work: program sketching
using SAT [15] (Section 7.1) and program repair based on data structure repair [11]
(Section 7.2). We next discuss other related work (Section 7.3).

7.1 Program Sketching Using SAT

Program synthesis using sketching [15] employs SAT solvers to generate parts of pro-
grams. The user gives partial programs that define the basic skeleton of the code. A SAT
solver completes the implementation details by generating expressions to fill the ”holes”
of the partial program. A basic difference between our work and program sketching
stems from the intention. We are looking to perform repair or modifications to state-
ments identified as being faulty while sketching aims to complete a given partial but
fixed sketch of a program. A key technical difference is our support for specifications
or constraints on the concrete state of the program. Therefore, the search space for the
SAT solver is the bounded state space of the program, instead of the domain of all pos-
sible program expressions as in sketching. To illustrate the difference between repair
and sketching, consider the doubly linked list example. The sketching process starts
with a random input structure. Assume that this is the same input structure with two
nodes as in Fig. 1. Assume also that the user specified the details for the entire remove
method except for the statement that updates prevP.next). The user would then need
to specify a generator stating all possible program expressions that can occur at the
”hole” (RHS of the assignment statement). Following the sketch language described in
the synthesis paper, this would be specified using generators as shown:

#define LOC = {(head|ptr|prevP).(next|prev)?.(next|prev)?|null}
prevP.ptr = LOC;

This bounds the possible expressions to be all values obtained by starting from header,
ptr, prevP and subsequent de-referencing of next or prev pointers (header,
header.next, ptr.next.prev, prevP.prev.prev so on). Even for this small
example with just 1 unknown in 1 statement, the number of possible program expres-
sions to be considered is more than the list obtained by mapping back from the correct
concrete state. As the program size and complexity increases, the set of all possible pro-
gram expressions that could be substituted for all the holes can become huge. Further,
to obtain a correct program, the user needs to estimate and accurately specify all the
possible expressions. In such cases, it would be faster to look for a correct structure in
the concrete state space. The number of expressions mapping to the correct state value
at a program point would be much lesser in number. Our technique automatically infers
the correct expressions at a point and does not require the user to specify them. The
synthesis technique employs an iterative process of validation and refinement (CEGIS)

186 D. Gopinath, M.Z. Malik, and S. Khurshid

to filter out sketches that do not satisfy all inputs, similar to our validation phase. How-
ever since synthesis starts with a random input which may have poor coverage, it would
require higher number of iterations to converge to a correct sketch. Since we start with
the input that covers the faulty statement, the iterations should converge to a correct
abstraction faster. Further, if the statements produced by fault localization can be guar-
anteed to be the only ones faulty, the correct expression must be present in the list of
abstractions for the first input. Hence scanning this list would be faster than having to
feedback every new counter-example into the system.

7.2 Program Repair Using Data Structure Repair

On-the-fly repair of erroneous data structures is starting to gain more attention in the
research community. Juzi [5] is a tool which performs symbolic execution of the class
invariant to determine values for fields that would yield a structurally correct program
state. A recent paper [11] presents a technique on how the repair actions on the state
could be abstracted to program statements and thus aid in repair of the program. The
main drawback of this technique is that it focuses on class invariants and does not handle
the specification of a particular method. Hence the repaired program would yield an
output that satisfies the invariants but may be fairly different from the intended behavior
of the specific method. Further, in cases where the reachability of some nodes in the
structure gets broken, Juzi may be unable to parse to the remaining nodes of the tree and
hence fail to correct the structure. Error 4c (3a) in the BST insert method, highlights
such a scenario wherein the loop condition used to parse into the tree structure being
wrong, the new node gets wrongly added as the root of the tree. Our technique looks
for a structure that satisfies the specific post-condition of method, which requires that
the nodes in the pre-state also be present in the output structure. Hence a correct output
tree structure gets produced.

7.3 Other Recent Work on Program Correction

Our technique bears similarities with that of Jobstmann et al [9]. Given a list of suspect
statements, their technique replaces the expressions of the statements with unknowns. It
then uses a model checker to find a strategy that can yield a solution to the product of a
model representing the broken program and an automaton of its linear time logic (LTL)
specifications. Though the basic method of formulating the problem is similar, their
problem space is very different from ours since their technique is targeted and evaluated
on concurrent, finite state transition systems against properties written in temporal logic,
whereas our technique is developed for sequential programs that operate on complex
data structures. Extending their approach to the domain of complex structures is non-
trivial due to the dissimilarity in the nature of programs under repair as well as the
specifications. Moreover, our approach of bounded modular debugging of code using
declarative specifications likely enables more efficient modeling and reasoning about
linked structures. Additionally, translation of the specifications and the entire code into
a SAT formula aids in exploiting the power of SAT technology in handling the size and
complexity of the underlying state space.

In contrast to specification-based repair, some recently developed program repair
techniques do not require users to provide specifications and instead multiple passing

Specification-Based Program Repair Using SAT 187

and failing runs with similar coverage. Machine learning [8] and genetic programming
based techniques [19] fall in this category. However, these techniques have a high sen-
sitivity to the quality of the given set of tests and do not address repairing programs
that operate on structurally complex data. The recently proposed AutoFix-E tool [17]
attempts to bridge the gap between specification-based and test-based repair. Boolean
queries of a class are used to build an abstract notion of the state which forms the basis
to represent contracts of the class, fault profile of failing tests and a behavioral model
based on passing tests. A comparison between failing and passing profiles is performed
for fault localization and a subsequent program synthesis effort generates the repaired
statements. This technique however only corrects violations of simple assertions, which
can be formulated using boolean methods already present in the class, but not rich
post-conditions.

8 Conclusion

This paper presents a novel technique to repair data structure programs using the SAT-
based Alloy tool-set. Given a fault revealing input and a list of possibly faulty state-
ments, the technique introduces nondeterminism in the statements and employs SAT
to prune the nondeterminism to generate an output structure that satisfies the post-
condition. The SAT solution is abstracted to program expressions, which yield a list of
possible modifications to the statement, which are then iteratively refined using bounded
verification. We performed an experimental validation using a prototype implementa-
tion of our approach to cover a variety of different types and number of faults on the
subject programs. The experimental results demonstrate the efficiency, accuracy of our
approach and the promise it holds to scale to real world applications.

Our tool can act as a semi-automated method to produce feedback to fault local-
ization schemes such as [14] to refine the accuracy of localization. The concept of
searching a bounded state space to generate program statements can also be used to
develop more efficient program synthesis techniques. The idea of introducing nondeter-
minism in code can aid in improving the precision of data structure repair as well. We
also envisage a possible integration of our technique with other contract and test suite
coverage based techniques like AutoFix-E [17]. We believe our approach of modeling
and reasoning about programs using SAT can aid in improving the repair efficiency and
accuracy of existing tools.

Acknowledgements

This material is based upon work partially supported by the NSF under Grant Nos.
IIS-0438967 and CCF-0845628, and AFOSR grant FA9550-09-1-0351.

References

1. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.: Evaluating the ”Small Scope Hypothe-
sis”. Technical report, MIT CSAIL (2003)

2. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In: OOPSLA (2006)

188 D. Gopinath, M.Z. Malik, and S. Khurshid

3. Collofello, J.S., Cousins, L.: Towards automatic software fault location through decision-to-
decision path analysis

4. Dennis, G., Chang, F.S.-H., Jackson, D.: Modular verification of code with SAT. In: ISSTA
(2006)

5. Elkarablieh, B., Khurshid, S.: Juzi: A tool for repairing complex data structures. In: ICSE
(2008)

6. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT-P, Cambridge
(2006)

7. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA (2000)
8. Jeffrey, D., Feng, M., Gupta, N., Gupta, R.: BugFix: A learning-based tool to assist develop-

ers in fixing bugs. In: ICPC (2009)
9. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K., Ra-

jamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005)
10. Jones, J.A.: Semi-Automatic Fault Localization. PhD thesis, Georgia Institute of Technology

(2008)
11. Malik, M.Z., Ghori, K., Elkarablieh, B., Khurshid, S.: A case for automated debugging using

data structure repair. In: ASE (2009)
12. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of Java

programs (2001)
13. Parr, T., et al.: Another tool for language recognition, http://www.antlr.org/
14. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE (2003)
15. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.) APLAS

2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009)
16. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.)

TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)
17. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated

fixing of programs with contracts. In: ISSTA (2010)
18. Weimer, W.: Patches as better bug reports. In: GPCE (2006)
19. Weimer, W., Nguyen, T., Goues, C.L., Forrest, S.: Automatically finding patches using ge-

netic programming. In: ICSE (2009)
20. Weiser, M.: Programmers use slices when debugging. Commun. ACM (1982)

Optimal Base Encodings for

Pseudo-Boolean Constraints�

Michael Codish1, Yoav Fekete1, Carsten Fuhs2, and Peter Schneider-Kamp3

1 Department of Computer Science, Ben Gurion University of the Negev, Israel
2 LuFG Informatik 2, RWTH Aachen University, Germany

3 IMADA, University of Southern Denmark, Denmark

Abstract. This paper formalizes the optimal base problem, presents
an algorithm to solve it, and describes its application to the encod-
ing of Pseudo-Boolean constraints to SAT. We demonstrate the im-
pact of integrating our algorithm within the Pseudo-Boolean constraint
solver MiniSat+. Experimentation indicates that our algorithm scales
to bases involving numbers up to 1,000,000, improving on the restriction
in MiniSat+ to prime numbers up to 17. We show that, while for many
examples primes up to 17 do suffice, encoding with respect to optimal
bases reduces the CNF sizes and improves the subsequent SAT solving
time for many examples.

1 Introduction

The optimal base problem is all about finding an efficient representation for a
given collection of positive integers. One measure for the efficiency of such a
representation is the sum of the digits of the numbers. Consider for example
the decimal numbers S = {16, 30, 54, 60}. The sum of their digits is 25. Taking
binary representation we have S(2) = {10000, 11110, 110110, 111100} and the
sum of digits is 13, which is smaller. Taking ternary representation gives S(3) =
{121, 1010, 2000, 2020} with an even smaller sum of digits, 12. Considering the
mixed radix base B = 〈3, 5, 2, 2〉, the numbers are represented as S(B) = {101,
1000, 1130, 10000} and the sum of the digits is 9. The optimal base problem is to
find a (possibly mixed radix) base for a given sequence of numbers to minimize
the size of the representation of the numbers. When measuring size as “sum
of digits”, the base B is indeed optimal for the numbers of S. In this paper we
present the optimal base problem and illustrate why it is relevant to the encoding
of Pseudo-Boolean constraints to SAT. We also present an algorithm and show
that our implementation is superior to current implementations.

Pseudo-Boolean constraints take the form a1x1 +a2x2+ · · ·+anxn ≥ k, where
a1, . . . , an are integer coefficients, x1, . . . , xn are Boolean literals (i.e., Boolean
variables or their negation), and k is an integer. We assume that constraints are
in Pseudo-Boolean normal form [3], that is, the coefficients ai and k are always
positive and Boolean variables occur at most once in a1x1 + a2x2 + · · ·+ anxn.
� Supported by GIF grant 966-116.6 and the Danish Natural Science Research Council.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 189–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

190 M. Codish et al.

Pseudo-Boolean constraints are well studied and arise in many different contexts,
for example in verification [6] and in operations research [5]. Typically we are
interested in the satisfiability of a conjunction of Pseudo-Boolean constraints.
Since 2005 there is a series of Pseudo-Boolean Evaluations [11] which aim to
assess the state of the art in the field of Pseudo-Boolean solvers. We adopt these
competition problems as a benchmark for the techniques proposed in this paper.

Pseudo-Boolean constraint satisfaction problems are often reduced to SAT.
Many works describe techniques to encode these constraints to propositional for-
mulas [1,2,9]. The Pseudo-Boolean solverMiniSat+ ([9], cf. http://minisat.se)
chooses between three techniques to generate SAT encodings for Pseudo-Boolean
constraints. These convert the constraint to: (a) a BDD structure, (b) a network
of sorters, and (c) a network of (binary) adders. The network of adders is the most
concise encoding, but it has the weakest propagation properties and often leads
to higher SAT solving times than the BDD based encoding, which, on the other
hand, generates the largest encoding. The encoding based on sorting networks is
often the one applied and is the one we consider in this paper.

x5 y8
x5 y7
x5 y6
x4 y5
x4 y4 = 1
x3 y3 = 1
x2 y2 = 1
x1 y1 = 1

To demonstrate how sorters can be used to
translate Pseudo-Boolean constraints, consider the
constraint ψ = x1 +x2 +x3 +2x4 +3x5 ≥ 4 where
the sum of the coefficients is 8. On the right, we
illustrate an 8× 8 sorter where x1, x2, x3 are each
fed into a single input, x4 into two of the inputs,
and x5 into three of the inputs. The outputs are
y1, . . . , y8. First, we represent the sorting network as a Boolean formula, ϕ, which
in general, for n inputs, will be of size O(n log2 n) [4]. Then, to assert ψ we take
the conjunction of ϕ with the formula y1 ∧ y2 ∧ y3 ∧ y4.

But what happens if the coefficients in a constraint are larger than in this
example? How should we encode 16x1 + 30x2 + 54x3 + 30x4 + 60x5 ≥ 87? How
should we handle very large coefficients (larger than 1,000,000)? To this end, the
authors in [9] generalize the above idea and propose to decompose the constraint
into a number of interconnected sorting networks. Each sorter represents a digit
in a mixed radix base. This construction is governed by the choice of a suitable
mixed radix base and the objective is to find a base which minimizes the size of
the sorting networks. Here the optimal base problem comes in, as the size of the
networks is directly related to the size of the representation of the coefficients.
We consider the sum of the digits (of coefficients) and other measures for the size
of the representations and study their influence on the quality of the encoding.

In MiniSat+ the search for an optimal base is performed using a brute force
algorithm and the resulting base is constructed from prime numbers up to 17.
The starting point for this paper is the following remark from [9] (Footnote 8):

This is an ad-hoc solution that should be improved in the future. Finding
the optimal base is a challenging optimization problem in its own right.

In this paper we take the challenge and present an algorithm which scales to find
an optimal base consisting of elements with values up to 1,000,000. We illustrate
that in many cases finding a better base leads also to better SAT solving time.

Optimal Base Encodings for Pseudo-Boolean Constraints 191

Section 2 provides preliminary definitions and formalizes the optimal base
problem. Section 3 describes how MiniSat+decomposes a Pseudo-Boolean con-
straint with respect to a given mixed radix base to generate a corresponding
propositional encoding, so that the constraint has a solution precisely when
the encoding has a model. Section 4 is about (three) alternative measures with
respect to which an optimal base can be found. Sections 5–7 introduce our algo-
rithm based on classic AI search methods (such as cost underapproximation) in
three steps: Heuristic pruning, best-first branch and bound, and base abstrac-
tion. Sections 8 and 9 present an experimental evaluation and some related work.
Section 10 concludes. Proofs are given in [8].

2 Optimal Base Problems

In the classic base r radix system, positive integers are represented as finite
sequences of digits d = 〈d0, . . . , dk〉 where for each digit 0 ≤ di < r, and for
the most significant digit, dk > 0. The integer value associated with d is v =
d0 + d1r + d2r

2 + · · ·+ dkr
k. A mixed radix system is a generalization where a

base is an infinite radix sequence B = 〈r0, r1, r2, . . .〉 of integers where for each
radix, ri > 1 and for each digit, 0 ≤ di < ri. The integer value associated with d
is v = d0w0 +d1w1 +d2w2 + · · ·+dkwk where w0 = 1 and for i ≥ 0, wi+1 = wiri.
The sequence weights(B) = 〈w0, w1, w2, . . .〉 specifies the weighted contribution
of each digit position and is called the weight sequence of B. A finite mixed
radix base is a finite sequence B = 〈r0, r1, . . . , rk−1〉 with the same restrictions
as for the infinite case except that numbers always have k + 1 digits (possibly
padded with zeroes) and there is no bound on the value of the most significant
digit, dk.

In this paper we focus on the representation of finite multisets of natural
numbers in finite mixed radix bases. Let Base denote the set of finite mixed
radix bases and ms(N) the set of finite non-empty multisets of natural numbers.
We often view multisets as ordered (and hence refer to their first element, second
element, etc.). For a finite sequence or multiset S of natural numbers, we denote
its length by |S|, its maximal element bymax(S), its ith element by S(i), and the
multiplication of its elements by

∏
S (if S is the empty sequence then

∏
S = 1).

If a base consists of prime numbers only, then we say that it is a prime base.
The set of prime bases is denoted Basep.

Let B ∈ Base with |B| = k. We denote by v(B) = 〈d0, d1, . . . , dk〉 the repre-
sentation of a natural number v in base B. The most significant digit of v(B),
denoted msd(v(B)), is dk. If msd(v(B)) = 0 then we say that B is redundant for
v. Let S ∈ ms(N) with |S| = n. We denote the n × (k + 1) matrix of digits of
elements from S in base B as S(B). Namely, the ith row in S(B) is the vector
S(i)(B). The most significant digit column of S(B) is the k + 1 column of the
matrix and denoted msd(S(B)). If msd(S(B)) = 〈0, . . . , 0〉T , then we say that B
is redundant for S. This is equivalently characterized by

∏
B > max(S).

Definition 1 (non-redundant bases). Let S ∈ ms(N). We denote the set
of non-redundant bases for S, Base(S) =

{
B ∈ Base

∣∣∏B ≤ max(S)
}
. The

192 M. Codish et al.

set of non-redundant prime bases for S is denoted Basep(S). The set of non-
redundant (prime) bases for S, containing elements no larger than �, is denoted
Base�(S) (Base�p(S)). The set of bases in Base(S)/Base�(S)/Base�p(S), is often
viewed as a tree with root 〈 〉 (the empty base) and an edge from B to B′ if and
only if B′ is obtained from B by extending it with a single integer value.

Definition 2 (sum digits). Let S ∈ ms(N) and B ∈ Base. The sum of the
digits of the numbers from S in base B is denoted sum digits(S(B)).

Example 3. The usual binary “base 2” and ternary “base 3” are represented as
the infinite sequencesB1 = 〈2, 2, 2, . . .〉 andB2 = 〈3, 3, 3, . . .〉. The finite sequence
B3 = 〈3, 5, 2, 2〉 and the empty sequence B4 = 〈 〉 are also bases. The empty base
is often called the “unary base” (every number in this base has a single digit).
Let S = {16, 30, 54, 60}. Then, sum digits(S(B1)) = 13, sum digits(S(B2)) = 12,
sum digits(S(B3)) = 9, and sum digits(S(B4)) = 160.

Let S ∈ ms(N). A cost function for S is a function costS : Base → R which
associates bases with real numbers. An example is costS(B) = sum digits(S(B)).
In this paper we are concerned with the following optimal base problem.

Definition 4 (optimal base problem). Let S ∈ ms(N) and costS a cost
function. We say that a base B is an optimal base for S with respect to costS, if
for all bases B′, costS(B) ≤ costS(B′). The corresponding optimal base problem
is to find an optimal base B for S.

The following two lemmata confirm that for the sum digits cost function, we
may restrict attention to non-redundant bases involving prime numbers only.

Lemma 5. Let S ∈ ms(N) and consider the sum digits cost function. Then, S
has an optimal base in Base(S).

Lemma 6. Let S ∈ ms(N) and consider the sum digits cost function. Then, S
has an optimal base in Basep(S).

How hard is it to solve an instance of the optimal base problem (namely, for
S ∈ ms(N))? The following lemma provides a polynomial (in max(S)) upper
bound on the size of the search space. This in turn suggests a pseudo-polynomial
time brute force algorithm (to traverse the search space).

Lemma 7. Let S ∈ ms(N) with m = max(S). Then,
∣∣Base(S)

∣∣ ≤ m1+ρ where
ρ = ζ−1(2) ≈ 1.73 and where ζ is the Riemann zeta function.

Proof. Chor et al. prove in [7] that the number of ordered factorizations of a
natural number n is less than nρ. The number of bases for all of the numbers in
S is hence bounded by

∑
n≤m n

ρ, which is bounded by m1+ρ.

3 Encoding Pseudo-Boolean Constraints

This section presents the construction underlying the sorter based encoding of
Pseudo-Boolean constraints applied in MiniSat+[9]. It is governed by the choice
of a mixed radix base B, the optimal selection of which is the topic of this paper.
The construction sets up a series of sorting networks to encode the digits, in base

Optimal Base Encodings for Pseudo-Boolean Constraints 193

B, of the sum of the terms on the left side of a constraint ψ = a1x1 +a2x2 + · · ·+
anxn ≥ k. The encoding then compares these digits with those from k(B) from
the right side. We present the construction, step by step, through an example
where B = 〈2, 3, 3〉 and ψ = 2x1 + 2x2 + 2x3 + 2x4 + 5x5 + 18x6 ≥ 23.

Step one - representation in base

S(B) =

⎛

⎜⎜⎝

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
1 2 0 0
0 0 0 1

⎞

⎟⎟⎠
The coefficients of ψ form a multiset S = {2, 2, 2, 2, 5, 18}
and their representation in base B, a 6 × 4 matrix, S(B),
depicted on the right. The rows of the matrix correspond
to the representation of the coefficients in base B.

Step two - counting: Representing the coefficients as four digit numbers in
base B = 〈2, 3, 3〉 and considering the values weights(B) = 〈1, 2, 6, 18〉 of the
digit positions, we obtain a decomposition for the left side of ψ:

2x1 + 2x2 + 2x3 + 2x4 + 5x5 + 18x6 =
1 · (x5) + 2 · (x1 + x2 + x3 + x4 + 2x5) + 6 · (0) + 18 · (x6)

To encode the sums at each digit position (1, 2, 6, 18), we set up a series of four
sorting networks as depicted below. Given values for the variables, the sorted

x5

x1
x2
x3
x4
x5
x5 x6

count 1′s count 2′s count 6′s count 18′s

outputs from these net-
works represented unary
numbers d1, d2, d3, d4 such
that the left side of ψ
takes the value 1 · d1 + 2 ·
d2 + 6 · d3 + 18 · d4.

Step three - converting to base: For the outputs d1, d2, d3, d4 to represent
the digits of a number in base B = 〈2, 3, 3〉, we need to encode also the “carry”
operation from each digit position to the next. The first 3 outputs must rep-
resent valid digits for B, i.e., unary numbers less than 〈2, 3, 3〉 respectively.
In our example the single potential violation to this restriction is d2, which
is represented in 6 bits. To this end we add two components to the encod-
ing: (1) each third output of the second network (y3 and y6 in the diagram)
is fed into the third network as an additional (carry) input; and (2) clauses
are added to encode that the output of the second network is to be consid-
ered modulo 3. We call these additional clauses a normalizer. The normalizer

x5

x1 y6 y6
x2 y5
x3 y4
x4 y3 y3
x5 y2 r1
x5 y1 r2 x6

count 1′s count 2′s count 6′s count 18′s

defines two outputsR =
〈r1, r2〉 and introduces
clauses specifying that
the (unary) value of
R equals the (unary)
value of d2 mod 3.

Step four - comparison: The outputs from these four units now specify a
number in base B, each digit represented in unary notation. This number is now
compared (via an encoding of the lexicographic order) to 23(B) (the value from
the right-hand side of ψ).

194 M. Codish et al.

4 Measures of Optimality

We now return to the objective of this paper: For a given Pseudo-Boolean con-
straint, how can we choose a mixed radix base with respect to which the encoding
of the constraint via sorting networks will be optimal? We consider here three
alternative cost functions with respect to which an optimal base can be found.
These cost functions capture with increasing degree of precision the actual size
of the encodings.

The first cost function, sum digits as introduced in Definition 2, provides a
coarse measure on the size of the encoding. It approximates (from below) the
total number of input bits in the network of sorting networks underlying the
encoding. An advantage in using this cost function is that there always exists an
optimal base which is prime. The disadvantage is that it ignores the carry bits
in the construction, and as such is not always a precise measure for optimality.
In [9], the authors propose to apply a cost function which considers also the
carry bits. This is the second cost function we consider and we call it sum carry .

Definition 8 (cost function: sum carry). Let S ∈ ms(N), B ∈ Base with
|B| = k and S(B) = (aij) the corresponding n × (k + 1) matrix of digits. De-
note the sequences s̄ = 〈s0, s1, . . . , sk〉 (sums) and c̄ = 〈c0, c1, . . . , ck〉 (carries)
defined by: sj =

∑n
i=1 aij for 0 ≤ j ≤ k, c0 = 0, and cj+1 = (sj+cj) div B(j) for

0 ≤ j ≤ k. The “sum of digits with
carry” cost function is defined by the
equation on the right.

sum carry(S(B)) =
k∑

j=0

(sj + cj)

The following example illustrates the sum carry cost function and that it pro-
vides a better measure of base optimality for the (size of the) encoding of Pseudo-
Boolean constraints.

Example 9. Consider the encoding of a Pseudo-Boolean constraint with coeffi-
cients S =

{
1, 3, 4, 8, 18, 18

}
with respect to bases: B1 = 〈2, 3, 3〉, B2 = 〈3, 2, 3〉,

and B3 = 〈2, 2, 2, 2〉. Figure 1 depicts the sizes of the sorting networks for each
of these bases. The upper tables illustrate the representation of the coefficients
in the corresponding bases. In the lower tables, the rows labeled “sum” indicate
the number of bits per network and (to their right) their total sum which is the
sum digits cost. With respect to the sum digits cost function, all three bases are
optimal for S, with a total of 9 inputs. The algorithm might as well return B3.

The rows labeled “carry” indicate the number of carry bits in each of the
constructions and (to their right) their totals. With respect to the sum carry
cost function, bases B1 and B2 are optimal for S, with a total of 9 + 2 = 11 bits
while B3 involves 9 + 5 = 14 bits. The algorithm might as well return B1.

The following example shows that when searching for an optimal base with
respect to the sum carry cost function, one must consider also non-prime bases.

Example 10. Consider again the Pseudo Boolean constraint ψ = 2x1 + 2x2 +
2x3 + 2x4 + 5x5 + 18x6 ≥ 23 from Section 3. The encoding with respect to

Optimal Base Encodings for Pseudo-Boolean Constraints 195

B1 = 〈2, 3, 3〉
S 1’s 2’s 6’s 18’s
1 1 0 0 0
3 1 1 0 0
4 0 2 0 0
8 0 1 1 0
18 0 0 0 1
18 0 0 0 1

sum 2 4 1 2 9
carry 0 1 1 0 2
comp 1 9 1 1 12

B2 = 〈3, 2, 3〉
S 1’s 3’s 6’s 18’s
1 1 0 0 0
3 0 1 0 0
4 1 1 0 0
8 2 0 1 0
18 0 0 0 1
18 0 0 0 1

sum 4 2 1 2 9
carry 0 1 1 0 2
comp 5 3 1 1 10

B3 = 〈2, 2, 2, 2〉
S 1’s 2’s 4’s 8’s 16’s
1 1 0 0 0 0
3 1 1 0 0 0
4 0 0 1 0 0
8 0 0 0 1 0
18 0 1 0 0 1
18 0 1 0 0 1

sum 2 3 1 1 2 9
carry 0 1 2 1 1 5
comp 1 5 3 1 3 13

Fig. 1. Number of inputs/carries/comparators when encoding S = {1, 3, 4, 8, 18, 18}
and three bases B1 = 〈2, 3, 3〉, B2 = 〈3, 2, 3〉, and B3 = 〈2, 2, 2, 2〉

B1 = 〈2, 3, 3〉 results in 4 sorting networks with 10 inputs from the coefficients
and 2 carries. So a total of 12 bits. The encoding with respect to B2 = 〈2, 9〉 is
smaller. It has the same 10 inputs from the coefficients but no carry bits. Base
B2 is optimal and non-prime.

We consider a third cost function which we call the num comp cost function.
Sorting networks are constructed from “comparators” [10] and in the encoding
each comparator is modeled using six CNF clauses. This function counts the
number of comparators in the construction. Let f(n) denote the number of
comparators in an n×n sorting network. For small values of 0 ≤ n ≤ 8, f(n) takes
the values 0, 0, 1, 3, 5, 9, 12, 16 and 19 respectively which correspond to the sizes
of the optimal networks of these sizes [10]. For larger values, the construction uses
Batcher’s odd-even sorting networks [4] for which f(n) = n ·
log2 n� · (
log2 n�−
1)/4 + n− 1.

Definition 11 (cost function: num comp). Consider the same setting as in
Definition 8. Then,

num comp(S(B)) =
k∑

j=0

f(sj + cj)

Example 12. Consider again the setting of Example 9. In Figure 1 the rows la-
beled “comp” indicate the number of comparators in each of the sorting networks
and their totals. The construction with the minimal number of comparators is
that obtained with respect to the base B2 = 〈3, 2, 3〉 with 10 comparators.

It is interesting to remark the following relationship between the three cost
functions: The sum digits function is the most “abstract”. It is only based on
the representation of numbers in a mixed radix base. The sum carry function
considers also properties of addition in mixed-radix bases (resulting in the carry
bits). Finally, the num comp function considers also implementation details of
the odd-even sorting networks applied in the underlying MiniSat+ construction.
In Section 8 we evaluate how the alternative choices for a cost function influence
the size and quality of the encodings obtained with respect to corresponding
optimal bases.

196 M. Codish et al.

5 Optimal Base Search I: Heuristic Pruning

This section introduces a simple, heuristic-based, depth-first, tree search algo-
rithm to solve the optimal base problem. The search space is the domain of
non-redundant bases as presented in Definition 1. The starting point is the brute
force algorithm applied in MiniSat+. For a sequence of integers S, MiniSat+

applies a depth-first traversal of Base17
p (S) to find the base with the optimal

value for the cost function costS(B) = sum carry(S(B)).
Our first contribution is to introduce a heuristic function and to identify

branches in the search space which can be pruned early on in the search. Each
tree node B encountered during the traversal is inspected to check if given the
best node encountered so far, bestB, it is possible to determine that all de-
scendants of B are guaranteed to be less optimal than bestB. In this case, the
subtree rooted at B may be pruned. The resulting algorithm improves on the one
of MiniSat+ and provides the basis for the further improvements introduced in
Sections 6 and 7. We need first a definition.

Definition 13 (base extension, partial cost, and admissible heuristic).
Let S ∈ ms(N), B,B′ ∈ Base(S), and costS a cost function. We say that: (1)
B′ extends B, denoted B′ � B, if B is a prefix of B′, (2) ∂costS is a partial
cost function for costS if ∀B′ � B. costS(B′) ≥ ∂costS(B), and (3) hS is an
admissible heuristic function for costS and ∂costS if ∀B′ � B. costS(B′) ≥
∂costS(B′) + hS(B′) ≥ ∂costS(B) + hS(B).

The intuition is that ∂costS(B) signifies a part of the cost of B which will be a
part of the cost of any extension of B, and that hS(B) is an under-approximation
on the additional cost of extendingB (in any way) given the partial cost ofB. We
denote costαS(B) = ∂costS(B) + hS(B). If ∂costS is a partial cost function and
hS is an admissible heuristic function, then costαS(B) is an under-approximation
of costS(B). The next lemma provides the basis for heuristic pruning using the
three cost functions introduced above.

Lemma 14. The following are admissible heuristics for the cases when:

1. costS(B) = sum digits(S(B)): ∂costS(B) = costS(B)−
∑
msd(S(B)).

2. costS(B) = sum carry(S(B)): ∂costS(B) = costS(B)−
∑
msd(S(B)).

3. costS(B) = num comp(S(B)): ∂costS(B) = costS(B)− f(s|B| + c|B|).

In the first two settings we take hS(B) =
∣∣{ x ∈ S

∣∣x ≥
∏
B
}∣∣.

In the case of num comp we take the trivial heuristic estimate hS(B) = 0

The algorithm, which we call dfsHP for depth-first search with heuristic pruning,
is now stated as Figure 2 where the input to the algorithm is a multiset of
integers S and the output is an optimal base. The algorithm applies a depth-
first traversal of Base(S) in search of an optimal base. We assume given: a cost
function costS , a partial cost function ∂costS and an admissible heuristic hS .
We denote costαS(B) = ∂costS(B) + hS(B). The abstract data type base has
two operations: extend(int) and extenders(multiset). For a base B and an

Optimal Base Encodings for Pseudo-Boolean Constraints 197

/*input*/ multiset S

/*init*/ base bestB = 〈2, 2, ..., 2〉
/*dfs*/ depth-first traverse Base(S)

at each node B, for the next value p ∈ B.extenders(S) do

base newB = B.extend(p)

if (costα
S(newB) > costS(bestB)) prune

else if (costS(newB) < costS(bestB)) bestB = newB

/*output*/ return bestB;

Fig. 2. dfsHP: depth-first search for an optimal base with heuristic pruning

integer p, B.extend(p) is the base obtained by extending B by p. For a multiset
S, B.extenders(S) is the set of integer values p by which B can be extended
to a non-redundant base for S, i.e., such that

∏
B.extend(p) ≤ max(S). The

definition of this operation may have additional arguments to indicate if we seek
a prime base or one containing elements no larger than �.

Initialization (/*init*/ in the figure) assigns to the variable bestB a finite bi-
nary base of size �log2(max(S))�. This variable will always denote the best base
encountered so far (or the initial finite binary base). Throughout the traversal,
when visiting a node newB we first check if the subtree rooted at newB should be
pruned. If this is not the case, then we check if a better “best base so far” has
been found. Once the entire (with pruning) search space has been considered,
the optimal base is in bestB.

To establish a bound on the complexity of the algorithm, denote the number of
different integers in S by s andm = max(S). The algorithm has space complexity
O(log(m)), for the depth first search on a tree with height bound by log(m) (an
element of Base(S) will have at most log2(m) elements). For each base considered
during the traversal, we have to calculate costS which incurs a cost of O(s). To
see why, consider that when extending a base B by a new element giving base
B′, the first columns of S(B′) are the same as those in S(B) (and thus also the
costs incurred by them). Only the cost incurred by the most significant digit
column of S(B) needs to be recomputed for S(B′) due to base extension of B to
B′. Performing the computation for this column, we compute a new digit for
the s different values in S. Finally, by Lemma 7, there are O(m2.73) bases and
therefore, the total runtime is O(s ∗m2.73). Given that s ≤ m, we can conclude
that runtime is bounded by O(m3.73).

6 Optimal Base Search II: Branch and Bound

In this section we further improve the search algorithm for an optimal base. The
search algorithm is, as before, a traversal of the search space using the same
partial cost and heuristic functions as before to prune the tree. The difference
is that instead of a depth first search, we maintain a priority queue of nodes for
expansion and apply a best-first, branch and bound search strategy.

Figure 3 illustrates our enhanced search algorithm. We call it B&B. The ab-
stract data type priority queue maintains bases prioritized by the value of

198 M. Codish et al.

base findBase(multiset S)

/*1*/ base bestB = 〈2, 2, ..., 2〉; priority queue Q =
˘ 〈 〉¯;

/*2*/ while (Q �= {} && costα
S(Q.peek()) < costS(bestB))

/*3*/ base B = Q.popMin();

/*4*/ foreach (p ∈ B.extenders(S))

/*5*/ base newB = B.extend(p);

/*6*/ if (costα
S(newB) ≤ costS(bestB))

/*7*/ { Q.push(newB); if (costS(newB) < costS(bestB)) bestB = newB; }
/*8*/ return bestB;

Fig. 3. Algorithm B&B: best-first, branch and bound

costαS . Operations popMin(), push(base) and peek() (peeks at the minimal en-
try) are the usual. The reason to box the text “priority queue” in the figure
will become apparent in the next section.

On line /*1*/ in the figure, we initialize the variable bestB to a finite binary
base of size �log2(max(S))� (same as in Figure 2) and initialize the queue to
contain the root of the search space (the empty base). As long as there are still
nodes to be expanded in the queue that are potentially interesting (line /*2*/),
we select (at line /*3*/) the best candidate base B from the frontier of the tree
in construction for further expansion. Now the search tree is expanded for each
of the relevant integers (calculated at line /*4*/). For each child newB of B (line
/*5*/), we check if pruning at newB should occur (line /*6*/) and if not we check
if a better bound has been found (line /*7*/) Finally, when the loop terminates,
we have found the optimal base and return it (line /*8*/).

7 Optimal Base Search III: Search Modulo Product

This section introduces an abstraction on the search space, classifying bases
according to their product. Instead of maintaining (during the search) a priority
queue of all bases (nodes) that still need to be explored, we maintain a special
priority queue in which there will only ever be at most one base with the same
product. So, the queue will never contain two different bases B1 and B2 such
that

∏
B1 =

∏
B2. In case a second base, with the same product as one already

in, is inserted to the queue, then only the base with the minimal value of costαS
is maintained on the queue. We call this type of priority queue a hashed priority
queue because it can conveniently be implemented as a hash table.

The intuition comes from a study of the sum digits cost function for which
we can prove the following Property 1 on bases: Consider two bases B1 and
B2 such that

∏
B1 =

∏
B2 and such that costαS(B1) ≤ costαS(B2). Then for any

extension of B1 and of B2 by the same sequence C, costS(B1C) ≤ costS(B2C).
In particular, if one of B1 or B2 can be extended to an optimal base, then B1

can. A direct implication is that when maintaining the frontier of the search
space as a priority queue, we only need one representative of the class of bases
which have the same product (the one with the minimal value of costαS).

Optimal Base Encodings for Pseudo-Boolean Constraints 199

A second Property 2 is more subtle and true for any cost function that has
the first property: Assume that in the algorithm described as Figure 3 we at
some stage remove a base B1 from the priority queue. This implies that if in the
future we encounter any base B2 such that

∏
B1 =

∏
B2, then we can be sure

that costS(B1) ≤ costS(B2) and immediately prune the search tree from B2.
Our third and final algorithm, which we call hashB&B (best-first, branch and

bound, with hash priority queue) is identical to the algorithm presented in
Figure 3, except that the the boxed priority queue introduced at line /*1*/ is
replaced by a hash priority queue .

The abstract data type hash priority queue maintains bases prioritized by
the value of costαS . Operations popMin() and peek() are as usual. Operation
push(B1) works as follows: (a) if there is no base B2 in the queue such that∏
B1 =

∏
B2, then add B1. Otherwise, (b) if costαS(B2) ≤ costαS(B1) then do

not add B1. Otherwise, (c) remove B2 from the queue and add B1.

Theorem 15
(1) The sum digits cost function satisfies Property 1; and (2) the hashB&B

algorithm finds an optimal base for any cost function which satisfies Property 1.

We conjecture that the other cost functions do not satisfy Property 1, and
hence cannot guarantee that the hashB&B algorithm always finds an optimal
base. However, in our extensive experimentation, all bases found (when searching
for an optimal prime base) are indeed optimal.

A direct implication of the above improvements is that we can now provide
a tighter bound on the complexity of the search algorithm. Let us denote the
number of different integers in S by s and m = max(S). First note that in
the worst case the hashed priority queue will contain m elements (one for each
possible value of a base product, which is never more than m). Assuming that
we use a Fibonacci Heap, we have a O(log(m)) cost (amortized) per popMin()
operation and in total a O(m ∗ log(m)) cost for popping elements off the queue
during the search for an optimal base.

Now focus on the cost of operations performed when extracting a base B
from the queue. Denoting

∏
B = q, B has at most m/q children (integers which

extend it). For each child we have to calculate costS which incurs a cost of O(s)
and possibly to insert it to the queue. Pushing an element onto a hashed priority
queue (in all three cases) is a constant time operation (amortized), and hence
the total cost for dealing with a child is O(s).

Finally, consider the total number of children created during the search which
corresponds to the following sum:

O(
m∑

q=1

m/q) = O(m
m∑

q=1

1/q) = O(m ∗ log(m))

So, in total we get O(m ∗ log(m)) +O(m ∗ log(m) ∗ s) ≤ O(m2 ∗ log(m)). When
we restrict the extenders to be prime numbers then we can further improve this
bound to O(m2 ∗ log(log(m))) by reasoning about the density of the primes. A
proof can be found in [8].

200 M. Codish et al.

8 Experiments

Experiments are performed using an extension to MiniSat+ [9] where the only
change to the tool is to plug in our optimal base algorithm. The reader is invited
to experiment with the implementation via its web interface.1 All experiments
are performed on a Quad-Opteron 848 at 2.2 GHz, 16 GB RAM, running Linux.

Our benchmark suite originates from 1945 Pseudo-Boolean Evaluation [11]
instances from the years 2006–2009 containing a total of 74,442,661 individual
Pseudo-Boolean constraints. After normalizing and removing constraints with{

0, 1
}

coefficients we are left with 115,891 different optimal base problems where
the maximal coefficient is 231 − 1. We then focus on 734 PB instances where at
least one optimal base problem from the instance yields a base with an element
that is non-prime or greater than 17. When solving PB instances, in all experi-
ments, a 30 minute timeout is imposed as in the Pseudo-Boolean competitions.
When solving an optimal base problem, a 10 minute timeout is applied.

Experiment 1 (Impact of optimal bases): The first experiment illustrates the ad-
vantage in searching for an optimal base for Pseudo-Boolean solving. We compare
sizes and solving times when encoding w.r.t. the binary base vs. w.r.t. an optimal
base (using the hashB&B algorithm with the num comp cost function). Encoding
w.r.t. the binary base, we solve 435 PB instances (within the time limit) with an
average time of 146 seconds and average CNF size of 1.2 million clauses. Using
an optimal base, we solve 445 instances with an average time of 108 seconds,
and average CNF size of 0.8 million clauses.

Experiment 2 (Base search time): Here we focus on the search time for an opti-
mal base in six configurations using the sum carry cost function. Configurations
M17, dfsHP17, and B&B17, are respectively, the MiniSat+ implementation, our
dfsHP and our B&B algorithms, all three searching for an optimal base from
Base17

p , i.e., with prime elements up to 17. Configurations hashB&B1,000,000,
hashB&B10,000, and hashB&B17 are our hashB&B algorithm searching for a base
from Base�p with bounds of � = 1,000,000, � = 10,000, and � = 17, respectively.

Results are summarized in Fig. 4 which is obtained as follows. We cluster
the optimal base problems according to the values
log1.9745M� where M is the
maximal coefficient in a problem. Then, for each cluster we take the average run-
time for the problems in the cluster. The value 1.9745 is chosen to minimize the
standard deviation from the averages (over all clusters). These are the points on
the graphs. Configuration M17 times out on 28 problems. For dfsHP17, the max-
imal search time is 200 seconds. Configuration B&B17 times out for 1 problem.
The hashB&B configurations have maximal runtimes of 350 seconds, 14 seconds
and 0.16 seconds, respectively for the bounds 1,000,000, 10,000 and 17.

Fig. 4 shows that: (left) even with primes up to 1,000,000, hashB&B is faster
than the algorithm from MiniSat+ with the limit of 17; and (right) even with
primes up to 10,000, the search time using hashB&B is essentially negligible.

1 http://aprove.informatik.rwth-aachen.de/forms/unified_form_PBB.asp

Optimal Base Encodings for Pseudo-Boolean Constraints 201

Fig. 4. Experiment 2: the 3 slowest configurations (left) (from back to front) M17(blue),
hashB&B1,000,000(orange) and dfsHP17(yellow). The 4 fastest configurations (right)
(from back to front) dfsHP17(yellow), B&B17(green), hashB&B10,000(brown) and
hashB&B17(azure). Note the change of scale for the y-axis with 50k ms on the left
and 8k ms on the right. Configuration dfsHP17 (yellow) is lowest on left and highest
on right, setting the reference point to compare the two graphs.

Experiment 3 (Impact on PB solving): Fig. 5 illustrates the influence of improved
base search on SAT solving for PB Constraints. Both graphs depict the number
of instances solved (the x-axis) within a time limit (the y-axis). On the left, total
solving time (with base search), and on the right, SAT solving time only.

Fig. 5. Experiment 3: total times (left), solving times (right)

Both graphs consider the 734 instances of interest and compare SAT solving
times with bases found using five configurations. The first is MiniSat+with
configuration M17, the second is with respect to the binary base, the third to
fifth are hashB&B searching for bases from Base10,000

p (S) with cost functions:
sum digits , sum carry , and num comp, respectively. The average total/solve
run-times (in sec) are 150/140, 146/146, 122/121, 116/115 and 108/107 (left
to right). The total number of instances solved are 431, 435, 442, 442 and 445
(left to right). The average CNF sizes (in millions of clauses) for the entire test
set/the set where all algorithms solved/the set where no algorithm solved are
7.7/1.0/18, 9.5/1.2/23, 8.4/1.1/20, 7.2/0.8/17 and 7.2/0.8/17 (left to right).

202 M. Codish et al.

The graphs of Fig. 5 and average solving times clearly show: (1) SAT solving
time dominates base finding time, (2) MiniSat+ is outperformed by the trivial
binary base, (3) total solving times with our algorithms are faster than with the
binary base, and (4) the most specific cost function (comparator cost) outper-
forms the other cost functions both in solving time and size. Finally, note that
sum of digits with its nice mathematical properties, simplicity, and application
independence solves as many instances as cost carry.

Fig. 6. Experiment 4: Number (x-axis) of instances
encoded within number of clauses (y-axis) on 4
configurations. From top line to bottom: (yellow)
� = 17, i = 5, (red) � = 17, i = 2, (green) � = 31,
i = 5, and (blue) � ∈ {17, 31}, i = 0.

Experiment 4 (Impact of high
prime factors): This experi-
ment is about the effects of
restricting the maximal prime
value in a base (i.e. the value
� = 17 of MiniSat+). An
analysis of the our bench-
mark suite indicates that coef-
ficients with small prime fac-
tors are overrepresented. To
introduce instances where co-
efficients have larger prime
factors we select 43 instances
from the suite and multiply
their coefficients to introduce
the prime factor 31 raised to
the power i ∈ {0, . . . , 5}. We
also introduce a slack variable
to avoid gcd-based simplifica-
tion. This gives us a collection
of 258 new instances. We used the B&B algorithm with the sum carry cost func-
tion applying the limit � = 17 (as in MiniSat+) and � = 31. Results indicate
that for � = 31, both CNF size and SAT-solving time are independent of the
factor 31i introduced for i > 0. However, for � = 17, both measures increase as
the power i increases. Results on CNF sizes are reported in Fig. 6 which plots
for 4 different settings the number of instances encoded (x-axis) within a CNF
with that many clauses (y-axis).

9 Related Work

Recent work [2] encodes Pseudo-Boolean constraints via “totalizers” similar to
sorting networks, determined by the representation of the coefficients in an un-
derlying base. Here the authors choose the standard base 2 representation of
numbers. It is straightforward to generalize their approach for an arbitrary mixed
base, and our algorithm is directly applicable. In [12] the author considers the
sum digits cost function and analyzes the size of representing the natural num-
bers up to n with (a particular class of) mixed radix bases. Our Lemma 6 may
lead to a contribution in that context.

Optimal Base Encodings for Pseudo-Boolean Constraints 203

10 Conclusion

It has been recognized now for some years that decomposing the coefficients in
a Pseudo-Boolean constraint with respect to a mixed radix base can lead to
smaller SAT encodings. However, it remained an open problem to determine if
it is feasible to find such an optimal base for constraints with large coefficients.
In lack of a better solution, the implementation in the MiniSat+ tool applies a
brute force search considering prime base elements less than 17.

To close this open problem, we first formalize the optimal base problem and
then significantly improve the search algorithm currently applied in MiniSat+.
Our algorithm scales and easily finds optimal bases with elements up to 1,000,000.
We also illustrate that, for the measure of optimality applied in MiniSat+, one
must consider also non-prime base elements. However, choosing the more simple
sum digits measure, it is sufficient to restrict the search to prime bases.

With the implementation of our search algorithm it is possible, for the first
time, to study the influence of basing SAT encodings on optimal bases. We show
that for a wide range of benchmarks, MiniSat+ does actually find an optimal
base consisting of elements less than 17. We also show that many Pseudo-Boolean
instances have optimal bases with larger elements and that this does influence
the subsequent CNF sizes and SAT solving times, especially when coefficients
contain larger prime factors.

Acknowledgement. We thank Daniel Berend and Carmel Domshlak for useful
discussions.

References

1. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo boolean con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT) 2(1-4), 191–200 (2006)

2. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009)

3. Barth, P.: Logic-based 0-1 constraint programming. Kluwer Academic Publishers,
Norwell (1996)

4. Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint
Computing Conference. AFIPS Conference Proceedings, vol. 32, pp. 307–314.
Thomson Book Company, Washington, D.C (1968)

5. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: A test set of mixed integer
programming problems. SIAM News 25, 16 (1992)

6. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Deciding CLU logic formulas via boolean
and pseudo-boolean encodings. In: Proc. Intl. Workshop on Constraints in Formal
Verification, CFV 2002 (2002)

7. Chor, B., Lemke, P., Mador, Z.: On the number of ordered factorizations of natural
numbers. Discrete Mathematics 214(1-3), 123–133 (2000)

8. Codish, M., Fekete, Y., Fuhs, C., Schneider-Kamp, P.: Optimal Base Encodings
for Pseudo-Boolean Constraints. Technical Report, arXiv:1007.4935 [cs.DM],
http://arxiv.org/abs/1007.4935

204 M. Codish et al.

9. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation (JSAT) 2(1-4), 1–26 (2006)

10. Knuth, D.: The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, Reading (1973)

11. Manquinho, V.M., Roussel, O.: The first evaluation of Pseudo-Boolean solvers (PB
2005). Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2(1-
4), 103–143 (2006)

12. Sidorov, N.: Sum-of-digits function for certain nonstationary bases. Journal of
Mathematical Sciences 96(5), 3609–3615 (1999)

Predicate Generation for Learning-Based
Quantifier-Free Loop Invariant Inference�

Yungbum Jung1, Wonchan Lee1, Bow-Yaw Wang2, and Kwangkuen Yi1

1 Seoul National University
2 INRIA and Academia Sinica

Abstract. We address the predicate generation problem in the context of loop
invariant inference. Motivated by the interpolation-based abstraction refinement
technique, we apply the interpolation theorem to synthesize predicates implicitly
implied by program texts. Our technique is able to improve the effectiveness and
efficiency of the learning-based loop invariant inference algorithm in [14]. Ex-
periments excerpted from Linux, SPEC2000, and Tar source codes are reported.

1 Introduction

One way to prove that an annotated loop satisfies its pre- and post-conditions is by
giving loop invariants. In an annotated loop, pre- and post-conditions specify intended
effects of the loop. The actual behavior of the annotated loop however does not neces-
sarily conform to its specification. Through loop invariants, verification tools can check
whether the annotated loop fulfills its specification automatically [10, 5].

Finding loop invariants is tedious and sometimes requires intelligence. Recently, an
automated technique based on algorithmic learning and predicate abstraction is pro-
posed [14]. Given a fixed set of atomic predicates and an annotated loop, the learning-
based technique can infer a quantifier-free loop invariant generated by the given atomic
predicates. By employing a learning algorithm and a mechanical teacher, the new tech-
nique is able to generate loop invariants without constructing abstract models nor com-
puting fixed points. It gives a new invariant generation framework that can be less
sensitive to the number of atomic predicates than traditional techniques.

As in other techniques based on predicate abstraction, the selection of atomic pred-
icates is crucial to the effectiveness of the learning-based technique. Oftentimes, users
extract atomic predicates from program texts heuristically. If this simple strategy does
not yield necessary atomic predicates to express loop invariants, the loop invariant in-
ference algorithm will not be able to infer a loop invariant. Even when the heuristic
does give necessary atomic predicates, it may select too many redundant predicates and
impede the efficiency of loop invariant inference algorithm.

� This work was supported by the Engineering Research Center of Excellence Program of Korea
Ministry of Education, Science and Technology(MEST) / National Research Foundation of
Korea(NRF) (Grant 2010-0001717), National Science Council of Taiwan Grant Numbers 97-
2221-E-001-003-MY3 and 97-2221-E-001-006-MY3, the FORMES Project within LIAMA
Consortium, and the French ANR project SIVES ANR-08-BLAN-0326-01.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 205–219, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

206 Y. Jung et al.

One way to circumvent this problem is to generate atomic predicates by need. Several
techniques have been developed to synthesize atomic predicates by interpolation [11,
12,17,18,9]. Let A and B be logic formulae. An interpolant I of A and B is a formula
such thatA⇒ I and I∧B is inconsistent. Moreover, the non-logical symbols in I must
occur in bothA andB. By Craig’s interpolation theorem, an interpolant I always exists
for any first-order formulae A and B when A ∧B is inconsistent [6]. The interpolant I
can be seen as a concise summary ofAwith respect toB. Indeed, interpolants have been
used to synthesize atomic predicates for predicate abstraction refinement in software
model checking [11, 12, 17, 18, 9].

Inspired by the refinement technique in software model checking, we develop an
interpolation-based technique to synthesize atomic predicates in the context of loop
invariant inference. Our algorithm does not add new atomic predicates by interpolating
invalid execution paths in control flow graphs. We instead interpolate the loop body
with purported loop invariants from the learning algorithm. Our technique can improve
the effectiveness and efficiency of the learning-based loop invariant inference algorithm
in [14]. Constructing sets of atomic predicates can be fully automatic and on-demand.

Example. Consider the following annotated loop:

{ n ≥ 0∧x = n∧ y = n } while x > 0 do x = x− 1; y = y− 1 done { x+ y = 0 }

Assume that variables x and y both have the value n ≥ 0 before entering the loop. In
the loop body, each variable is decremented by one until the variable x is zero. We want
to show that x + y is zero after executing the loop. Note that the predicate x = y is
implicitly implied by the loop. The program text however does not reveal this equality
explicitly. Moreover, atomic predicates from the program text can not express loop
invariants that establish the specification. Using atomic predicates in the program text
does not give necessary atomic predicates.

Any loop invariant must be weaker than the pre-condition and stronger than the dis-
junction of the loop guard and the post-condition. We use the atomic predicates in an
interpolant of n ≥ 0 ∧ x = n ∧ y = n and ¬(x + y = 0 ∨ x > 0) to obtain the initial
atomic predicates {x = y, 2y ≥ 0}. Observe that the interpolation theorem is able to
synthesize the implicit predicate x = y. In fact, x = y ∧ x ≥ 0 is a loop invariant that
establishes the specification of the loop.

Related Work. Loop invariant inference using algorithmic learning is introduced in [14].
In [15], the learning-based technique is extended to quantified loop invariants. Both
algorithms require users to provide atomic predicates. The present work addresses this
problem for the case of quantifier-free loop invariants.

Many interpolation algorithms and their implementations are available [17, 3, 7].
Interpolation-based techniques for predicate refinement in software model checking are
proposed in [11,12,18,9,13]. Abstract models used in these techniques however may re-
quire excessive invocations to theorem provers. Another interpolation-based technique
for first-order invariants is developed in [19]. The paramodulation-based technique does
not construct abstract models. It however only generates invariants in first-order logic
with equality. A template-based predicate generation technique for quantified invariants

Learning-Based Quantifier-Free Loop Invariant Inference 207

is proposed [20]. The technique reduces the invariant inference problem to constraint
programming and generates predicates in user-provided templates.

This paper is organized as follows. After Introduction, preliminaries are given in Sec-
tion 2. We review the learning-based loop invariant inference framework in Section 3.
Our technical results are presented in Section 4. Section 5 gives the loop invariant infer-
ence algorithm with automatic predicate generation. We report our experimental results
in Section 6. Section 7 concludes this work.

2 Preliminaries

Let QF denote the quantifier-free logic with equality, linear inequality, and uninter-
preted functions [17, 18]. Define the domain D = Q ∪ B where Q is the set of rational
numbers and B = {F ,T} is the Boolean domain. Fix a set X of variables. A valuation
over X is a function from X to D. The class of valuations over X is denoted by ValX .
For any formula θ ∈ QF and valuation ν over free variables in θ, θ is satisfied by ν
(written ν |= θ) if θ evaluates to T under ν; θ is inconsistent if θ is not satisfied by
any valuation. Given a formula θ ∈ QF , a satisfiability modulo theories (SMT) solver
returns a satisfying valuation ν of θ if θ is not inconsistent [8, 16].

For θ ∈ QF , we denote the set of non-logical symbols occurred in θ by σ(θ). Let
Θ = [θ1, . . . , θm] be a sequence with θi ∈ QF for 1 ≤ i ≤ m. The sequence Θ is
inconsistent if θ1 ∧ θ2 ∧ · · · ∧ θm is inconsistent. The sequence Λ = [λ0, λ1, . . . , λm]
of quantifier-free formulae is an inductive interpolant of Θ if

– λ0 = T and λm = F ;
– for all 1 ≤ i ≤ m, λi−1 ∧ θi ⇒ λi; and
– for all 1 ≤ i < m, σ(λi) ⊆ σ(θi) ∩ σ(θi+1).

The interpolation theorem states that an inductive interpolant exists for any inconsistent
sequence [6, 17, 18]. We consider the following imperative language in this paper:

Stmt
�
= nop | Stmt; Stmt | x := Exp | x := nondet | if BExp then Stmt else Stmt

Exp
�
= n | x | Exp + Exp | Exp− Exp

BExp
�
= F | x | ¬BExp | BExp ∧ BExp | Exp < Exp | Exp = Exp

Two basic types are available: natural numbers and Booleans. A term in Exp is a natural
number; a term in BExp is of Boolean type. The keyword nondet denotes an arbitrary
value in the type of the assigned variable. An annotated loop is of the form:

{δ} while κ do S1;S2; · · · ;Sm done {ε}

The BExp formula κ is the loop guard. The BExp formulae δ and ε are the precondition
and postcondition of the annotated loop respectively.

Define X〈k〉 = {x〈k〉 : x ∈ X}. For any term e over X , define e〈k〉 = e[X �→
X〈k〉]. A transition formula [[S]] for a statement S is a first-order formula over variables
X〈0〉 ∪X〈1〉 defined as follows.

208 Y. Jung et al.

[[nop]]
�
=

∧
x∈X

x〈1〉 = x〈0〉 [[x := nondet]]
�
=

∧
y∈X\{x}

y〈1〉 = y〈0〉

[[x := e]]
�
= x〈1〉 = e〈0〉 ∧

∧
y∈X\{x}

y〈1〉 = y〈0〉

[[S0;S1]]
�
= ∃X.[[S0]][X〈1〉 �→ X] ∧ [[S1]][X〈0〉 �→ X]

[[if p then S0 else S1]]
�
= (p〈0〉 ∧ [[S0]]) ∨ (¬p〈0〉 ∧ [[S1]])

Let ν and ν′ be valuations, and S a statement. We write ν
S−→ ν′ if [[S]] evaluates to

true by assigning ν(x) and ν′(x) to x〈0〉 and x〈1〉 for each x ∈ X respectively. Given a

sequence of statements S1;S2; · · · ;Sm, a program execution ν0
S1−→ ν1

S2−→ · · · Sm−→
νm is a sequence [ν0, ν1, . . . , νm] of valuations such that νi

Si−→ νi+1 for 0 ≤ i < m.
A precondition Pre(θ : S1;S2; · · · ;Sm) for θ ∈ QF with respect to the state-

ment S1;S2; · · · ;Sm is a first-order formula that entails θ after executing the statement
S1;S2; · · · ;Sm. Given an annotated loop {δ} while κ do S1;S2; · · · ;Sm done {ε},
the loop invariant inference problem is to compute a formula ι ∈ QF satisfying (1)
δ ⇒ ι; (2) ι ∧ ¬κ ⇒ ε; and (3) ι ∧ κ ⇒ Pre(ι : S1;S2; · · · ;Sm). Observe that the
condition (2) is equivalent to ι⇒ ε ∨ κ. The first two conditions specify necessary and
sufficient conditions of any loop invariants respectively. The formulae δ and ε ∨ κ are
called the strongest and weakest approximations to loop invariants respectively.

3 Inferring Loop Invariants with Algorithmic Learning

Given an annotated loop {δ} while κ do S1;S2; · · · ;Sm done {ε}, we would like
to infer a loop invariant to establish the pre- and post-conditions. Given a set P of
atomic predicates, the work in [14] shows how to apply a learning algorithm for Boolean
formulae to infer quantifier-free loop invariants freely generated by P . The authors first
adopt predicate abstraction to relate quantifier-free and Boolean formulae. They then
design a mechanical teacher to guide the learning algorithm to a Boolean formula whose
concretization is a loop invariant.

QF

ValX

Γ

γ

α
Bool [BP]

ValBP

α∗

γ∗

Fig. 1. Relating QF and Bool [BP]

Let QF [P] denote the set of quantifier-
free formulae generated from the set of
atomic predicates P . Consider the set of
Boolean formulae Bool [BP] generated

by the set of Boolean variables BP
�
=

{bp : p ∈ P}. An abstract valuation
is a function from BP to B. We write
ValBP for the set of abstract valuations.
A Boolean formula in Bool [BP] is a
canonical monomial if it is a conjunction
of literals, where each Boolean variable
in BP occurs exactly once. Formulae in
QF [P] and Bool [BP] are related by the
following functions [14] (Figure 1):

Learning-Based Quantifier-Free Loop Invariant Inference 209

γ(β)
�
= β[BP �→ P]

α(θ)
�
=

∨
{β ∈ Bool [BP] : β is a canonical monomial and θ ∧ γ(β) is satisfiable}

γ∗(μ)
�
=

∧
µ(bp)=T

{p} ∧
∧

µ(bp)=F

{¬p}

α∗(ν)
�
= μ where μ(bp) =

{
T if ν |= p
F if ν �|= p

Consider, for instance, P = {n ≥ 0, x = n, y = n} and BP = {bn≥0, bx=n, by=n}.
We have γ(bn≥0 ∧ ¬bx=n) = n ≥ 0 ∧ ¬(x = n) and

α(¬(x = y)) =
(bn≥0 ∧ bx=n ∧ ¬by=n) ∨ (bn≥0 ∧ ¬bx=n ∧ by=n)∨
(bn≥0 ∧ ¬bx=n ∧ ¬by=n) ∨ (¬bn≥0 ∧ bx=n ∧ ¬by=n)∨
(¬bn≥0 ∧ ¬bx=n ∧ by=n) ∨ (¬bn≥0 ∧ ¬bx=n ∧ ¬by=n).

Moreover, α∗(ν)(bn≥0) = α∗(ν)(bx=n) = α∗(ν)(by=n) = T when ν(n) = ν(x) =
ν(y) = 1. And γ∗(μ) = n ≥ 0 ∧ x = n ∧ ¬(y = n) when μ(bn≥0) = μ(bx=n) = T
but μ(by=n) = F . Observe that the pair (α, γ) forms the Galois correspondence in
Cartesian predicate abstraction [2].

After formulae in QF and valuations in ValX are abstracted to Bool [BP] and ValBP

respectively, a learning algorithm is used to infer abstractions of loop invariants. Let ξ
be an unknown target Boolean formula in Bool [BP]. A learning algorithm computes a
representation of the target ξ by interacting with a teacher. The teacher should answer
the following queries [1, 4]:

– Membership queries. Let μ ∈ ValBP be an abstract valuation. The membership
query MEM (μ) asks if the unknown target ξ is satisfied by μ. If so, the teacher
answers YES ; otherwise, NO .

– Equivalence queries. Let β ∈ Bool [BP] be an abstract conjecture. The equivalence
query EQ(β) asks if β is equivalent to the unknown target ξ. If so, the teacher
answers YES . Otherwise, the teacher gives an abstract valuation μ such that the
exclusive disjunction of β and ξ is satisfied by μ. The abstract valuation μ is called
an abstract counterexample.

With predicate abstraction and a learning algorithm for Boolean formulae at hand, it re-
mains to design a mechanical teacher to guide the learning algorithm to the abstraction
of a loop invariant. The key idea in [14] is to exploit approximations to loop invari-
ants. An under-approximation to loop invariants is a quantifier-free formula ι which is
stronger than some loop invariants of the given annotated loop; an over-approximation
is a quantifier-free formula ι which is weaker than some loop invariants.

To see how approximations to loop invariants can be used in the design of the me-
chanical teacher, let us consider an equivalence query EQ(β). On the abstract conjec-
ture β ∈ Bool [BP], the mechanical teacher computes the corresponding quantifier-free
formula θ = γ(β). It then checks if θ is a loop invariant. If so, we are done. Other-
wise, the algorithm compares θ with approximations to loop invariants. If θ is stronger
than the under-approximation or weaker than the over-approximation, a valuation ν
satisfying ¬(ι ⇒ θ) or ¬(θ ⇒ ι) can be obtained from an SMT solver. The abstract

210 Y. Jung et al.

MEM (μ)

YES ,NO

EQ(β)

YES , ξ

algorithm
learning

mechanical
teacher

program
text

Fig. 2. Learning-based Framework

valuation α∗(ν) gives an abstract counterexample. Approximations to loop invariants
can also be used to answer membership queries. For a membership query MEM (μ)
with μ ∈ ValBP , the mechanical teacher computes its concretization θ = γ∗(μ). It
returns YES if θ ⇒ ι; it returns NO if θ �⇒ ι. Otherwise, a random answer is returned.

Figure 2 shows the learning-based loop invariant inference framework. In the frame-
work, a learning algorithm is used to drive the search of loop invariants. It “learns”
an unknown loop invariant by inquiring a mechanical teacher. The mechanical teacher
of course does not know any loop invariant. It nevertheless can try to answer these
queries by the information derived from program texts. In this case, approximations
to loop invariants are used. Observe the simplicity of the learning-based framework.
By employing a learning algorithm, it suffices to design a mechanical teacher to find
loop invariants. Moreover, the new framework does not construct abstract models nor
compute fixed points. It can be more scalable than traditional techniques.

4 Predicate Generation by Interpolation

One drawback in the learning-based approach to loop invariant inference is to require
a set of atomic predicates. It is essential that at least one quantifier-free loop invariant
is representable by the given set P of atomic predicates. Otherwise, concretization of
formulae in Bool [BP] cannot be loop invariants. The mechanical teacher never answers
YES to equivalence queries. To address this problem, we will synthesize new atomic
predicates for the learning-based loop invariant inference framework progressively.

The interpolation theorem is essential to our predicate generation technique [6, 19,
18,12]. LetΘ = [θ1, θ2, . . . , θm] be an inconsistent sequence of quantifier-free formula
andΛ = [λ0, λ1, λ2, . . . , λm] its inductive interpolant. By definition, θ1 ⇒ λ1. Assume
θ1 ∧ θ2 ∧ · · · ∧ θi ⇒ λi. We have θ1 ∧ θ2 ∧ · · · ∧ θi+1 ⇒ λi+1 since λi ∧ θi+1 ⇒ λi+1.
Thus, λi is an over-approximation to θ1∧θ2∧· · ·∧θi for 0 ≤ i ≤ m. Moreover,σ(λi) ⊆
σ(θi)∩ σ(θi+1). Hence λi can be seen as a concise summary of θ1 ∧ θ2 ∧ · · · ∧ θi with
restricted symbols. Since each λi is written in a less expressive vocabulary, new atomic
predicates among variables can be synthesized. We therefore apply the interpolation
theorem to synthesize new atomic predicates and refine the abstraction.

Our predicate generation technique consists of three components. Before the learning
algorithm is invoked, an initial set of atomic predicates is computed (Section 4.1). When

Learning-Based Quantifier-Free Loop Invariant Inference 211

the learning algorithm is failing to infer loop invariants, new atomic predicates are gen-
erated to refine the abstraction (Section 4.2). Lastly, conflicting answers to queries may
incur from predicate abstraction. We further refine the abstraction with these conflict-
ing answers (Section 4.3). Throughout this section, we consider the annotated loop
{δ} while κ do S1;S2; · · · ; Sm done {ε} with the under-approximation ι and over-
approximation ι.

4.1 Initial Atomic Predicates

The under- and over-approximations to loop invariants must satisfy ι ⇒ ι. Otherwise,
there cannot be any loop invariant ι such that ι ⇒ ι and ι ⇒ ι. Thus, the sequence
[ι,¬ι] is inconsistent. For any interpolant [T , λ,F] of [ι,¬ι], we have ι⇒ λ and λ⇒ ι.
The quantifier-free formula λ can be a loop invariant if it satisfies λ ∧ κ ⇒ Pre(λ :
S1;S2; · · · ;Sm). It is however unlikely that λ happens to be a loop invariant. Yet our
loop invariant inference algorithm can generalize λ by taking the atomic predicates in λ
as the initial atomic predicates. The learning algorithm will try to infer a loop invariant
freely generated by these atomic predicates.

4.2 Atomic Predicates from Incorrect Conjectures

Consider an equivalence query EQ(β) where β ∈ Bool [BP] is an abstract conjecture.
If the concretization θ = γ(β) is not a loop invariant, we interpolate the loop body
with the incorrect conjecture θ. For any quantifier-free formula θ over variablesX〈0〉 ∪
X〈1〉, define θ〈k〉 = θ[X〈0〉 �→ X〈k〉, X〈1〉 �→ X〈k+1〉]. The desuperscripted form
of a quantifier-free formula λ over variables X〈k〉 is λ[X〈k〉 �→ X]. Moreover, if ν is
a valuation over X〈0〉 ∪ · · · ∪ X〈m〉, ν↓X〈k〉 represents a valuation over X such that
ν ↓X〈k〉 (x) = ν(x〈k〉) for x ∈ X . Let φ and ψ be quantifier-free formulae over X .
Define the following sequence:

Ξ(φ, S1, . . . , Sm, ψ)
�
= [φ〈0〉, [[S1]]〈0〉, [[S2]]〈1〉, . . . , [[Sm]]〈m−1〉,¬ψ〈m〉].

Observe that

– φ〈0〉 and [[S1]]〈0〉 share the variables X〈0〉;
– [[Sm]]〈m−1〉 and ¬ψ〈m〉 share the variablesX〈m〉; and
– [[Si]]〈i−1〉 and [[Si+1]]〈i〉 share the variables X〈i〉 for 1 ≤ i < m.

Starting from the program states satisfying φ〈0〉, the formula

φ〈0〉 ∧ [[S1]]〈0〉 ∧ [[S2]]〈1〉 ∧ · · · ∧ [[Si]]〈i−1〉

characterizes the images of φ〈0〉 during the execution of S1;S2; · · · ;Si.

Lemma 1. Let X denote the set of variables in the statement S1;S2; · · · ;Si, and φ a
quantifier-free formula over X . For any valuation ν over X〈0〉 ∪ X〈1〉 ∪ · · · ∪ X〈i〉,
the formula φ〈0〉 ∧ [[S1]]〈0〉 ∧ [[S2]]〈1〉 ∧ · · · ∧ [[Si]]〈i−1〉 is satisfied by ν if and only if

ν↓X〈0〉
S1−→ ν↓X〈1〉

S2−→ · · · Si−→ ν↓X〈i−1〉 is a program execution and ν↓X〈0〉 |= φ.

212 Y. Jung et al.

By definition, φ ⇒ Pre(ψ : S1;S2; · · · ;Sm) implies that the image of φ must satisfy
ψ after the execution of S1;S2; · · · ;Sm. The sequence Ξ(φ, S1, . . . , Sm, ψ) is incon-
sistent if φ⇒ Pre(ψ : S1;S2; · · · ;Sm). The following proposition will be handy.

Proposition 1. Let S1;S2; · · · ;Sm be a sequence of statements. For any φ with φ ⇒
Pre(ψ : S1;S2; · · · ;Sm), Ξ(φ, S1, . . . , Sm, ψ) has an inductive interpolant1.

Let Λ = [T , λ1, λ2, . . . , λm+1,F] be an inductive interpolant of Ξ(φ, S1, . . . , Sm, ψ).
Recall that λi is a quantifier-free formula over X〈i−1〉 for 1 ≤ i ≤ m+ 1. It is also an
over-approximation to the image of φ after executing S1;S2; · · · ;Si−1. Proposition 1
can be used to generate new atomic predicates. One simply finds a pair of quantifier-
free formulae φ and ψ with φ ⇒ Pre(ψ : S1;S2; · · · ;Sm), applies the interpolation
theorem, and collects desuperscripted atomic predicates in an inductive interpolant of
Ξ(φ, S1, . . . , Sm, ψ). In the following, we show how to obtain such pairs with under-
and over-approximations to loop invariants.

Interpolating Over-Approximation. It is not hard to see that an over-approximation to
loop invariants characterizes loop invariants after the execution of the loop body. Recall
that ι⇒ ι for some loop invariant ι. Moreover, ι∧κ⇒ Pre(ι : S1;S2; · · · ;Sm). By the
monotonicity of Pre(• : S1;S2; · · · ;Sm), we have ι ∧ κ⇒ Pre(ι : S1;S2; · · · ;Sm).

Proposition 2. Let ι be an over-approximation to loop invariants of the annotated loop
{δ} while κ do S1;S2; · · · ;Sm done {ε}. For any loop invariant ι with ι⇒ ι, ι∧κ⇒
Pre(ι : S1;S2; · · · ;Sm).

Proposition 2 gives a necessary condition to loop invariants of interest. Recall that
θ = γ(β) is an incorrect conjecture of loop invariants. If ν |= ¬(θ ∧ κ ⇒ Pre(ι :
S1;S2; · · · ;Sm)), the mechanical teacher returns the abstract counterexample α∗(ν).
Otherwise, Proposition 1 is applicable with the pair θ ∧ κ and ι.

Corollary 1. Let ι be an over-approximation to loop invariants of the annotated loop
{δ} while κ do S1;S2; · · · ;Sm done {ε}. For any θ with θ ∧ κ ⇒ Pre(ι :
S1;S2; · · · ;Sm), the sequenceΞ(θ∧κ, S1, S2, . . . , Sm, ι) has an inductive interpolant.

Interpolating Under-Approximation. For under-approximations, there is no neces-
sary condition. Nevertheless, Proposition 1 is applicable with the pair ι ∧ κ and θ.

Corollary 2. Let ι be an under-approximation to loop invariants of the annotated
loop {δ} while κ do S1;S2; · · · ;Sm done {ε}. For any θ with ι ∧ κ ⇒ Pre(θ :
S1;S2; · · · ;Sm), the sequenceΞ(ι∧κ, S1, S2, . . . , Sm, θ) has an inductive interpolant.

Generating atomic predicates from an incorrect conjecture θ should now be clear (Al-
gorithm 1). Assuming that the incorrect conjecture satisfies the necessary condition in
Proposition 2, we simply collect all desuperscripted atomic predicates in an inductive
interpolant of Ξ(θ ∧ κ, S1, S2, . . . , Sm, ι) (Corollary 1). More atomic predicates can
be obtained from an inductive interpolant ofΞ(ι∧κ, S1, S2, . . . , Sm, θ) if additionally
ι ∧ κ⇒ Pre(θ : S1;S2; · · · ;Sm) (Corollary 2).

1 The existential quantifiers in [[S; S′]] are eliminated by introducing fresh variables.

Learning-Based Quantifier-Free Loop Invariant Inference 213

/* {δ} while κ do S1; · · · ;Sm done {ε} : an annotated loop */
/* ι, ι : under- and over-approximations to loop invariants */
Input: a formula θ ∈ QF [P] such that θ ∧ κ⇒ Pre(ι : S1;S2; · · · ;Sm)
Output: a set of atomic predicates
I := an inductive interpolant of Ξ(θ ∧ κ, S1, S2, . . . , Sm, ι);
Q := desuperscripted atomic predicates in I ;
if ι ∧ κ⇒ Pre(θ : S1;S2; · · · ;Sm) then

J := an inductive interpolants of Ξ(ι ∧ κ, S1, S2, . . . , Sm, θ);
R := desuperscripted atomic predicates in J ;
Q := Q ∪R;

end
return Q

Algorithm 1. PredicatesFromConjecture (θ)

4.3 Atomic Predicates from Conflicting Abstract Counterexamples

Because of the abstraction, conflicting abstract counterexamples may be given to the
learning algorithm. Consider the example in Section 1. Recall that n ≥ 0 ∧ x = n ∧
y = n and x + y = 0 ∨ x > 0 are the under- and over-approximations respectively.
Suppose there is only one atomic predicate y = 0. The learning algorithm tries to infer
a Boolean formula λ ∈ Bool [by=0]. Let us resolve the equivalence queries EQ(T) and
EQ(F). On the equivalence query EQ(F), we check if F is weaker than the under-
approximation by an SMT solver. It is not, and the SMT solver gives the valuation
ν0(n) = ν0(x) = ν0(y) = 1 as a witness. Applying the abstraction function α∗ to ν0,
the mechanical teacher returns the abstract counterexample by=0 �→ F . The abstract
counterexample is intended to notify that the target formula λ and F have different
truth values when by=0 is F . That is, λ is satisfied by the valuation by=0 �→ F .

On the equivalence query EQ(T), the mechanical teacher checks if T is stronger
than the over-approximation. It is not, and the SMT solver now returns the valuation
ν1(x) = 0, ν1(y) = 1 as a witness. The mechanical teacher in turn computes by=0 �→ F
as the corresponding abstract counterexample. The abstract counterexample notifies that
the target formula λ and T have different truth values when by=0 is F . That is, λ is not
satisfied by the valuation by=0 �→ F . Yet the target formula λ cannot be satisfied and
unsatisfied by the valuation by=0 �→ F . We have conflicting abstract counterexamples.

Such conflicting abstract counterexamples arise because the abstraction is too coarse.
This gives us another chance to refine the abstraction. Define

Γ (ν)
�
=

∧

x∈X

x = ν(x).

The function Γ (ν) specifies the valuation ν in QF (Figure 1). For distinct valuations ν
and ν′, Γ (ν)∧Γ (ν′) is inconsistent. For instance,Γ (ν0) = (n = 1)∧(x = 1)∧(y = 1),
Γ (ν1) = (x = 0) ∧ (y = 1), and Γ (ν1) ∧ Γ (ν0) is inconsistent.

Algorithm 2 generates atomic predicates from conflicting abstract counterexamples.
Let ν and ν′ be distinct valuations in ValX . We compute formulae χ = Γ (ν) and χ′ =
Γ (ν′). Since ν and ν′ are conflicting, they correspond to the same abstract valuation
α∗(ν) = α∗(ν′). Let ρ = γ∗(α∗(ν)). We have χ ⇒ ρ and χ′ ⇒ ρ [14]. Recall that

214 Y. Jung et al.

Input: distinct valuations ν and ν′ such that α∗(ν) = α∗(ν′)
Output: a set of atomic predicates
χ := Γ (ν);
χ′ := Γ (ν′);
/* χ ∧ χ′ is inconsistent */
ρ := γ∗(α∗(ν));
Q := atomic predicates in an inductive interpolant of [χ, χ′ ∨ ¬ρ];
return Q;

Algorithm 2. PredicatesFromConflict (ν, ν′)

χ ∧ χ′ is inconsistent. [χ, χ′ ∨ ¬ρ] is also inconsistent for χ ⇒ ρ. Algorithm 2 returns
atomic predicates in an inductive interpolant of [χ, χ′ ∨ ¬ρ].

5 Algorithm

Our loop invariant inference algorithm is given in Algorithm 3. For an annotated loop
{δ} while κ do S1;S2; · · · ;Sm done {ε}, we heuristically choose δ ∨ ε and ε ∨ κ as
the under- and over-approximations respectively. Note that the under-approximation is
different from the strongest approximation δ. It is reported that the approximations δ∨ε
and ε ∨ κ are more effective in resolving queries [14].

/* {δ} while κ do S1;S2; · · · ;Sm done {ε} : an annotated loop */
Output: a loop invariant for the annotated loop
ι := δ ∨ ε;
ι := ε ∨ κ;
P := atomic predicates in an inductive interpolant of [ι,¬ι];
repeat

try
call a learning algorithm for Boolean formulae where membership and
equivalence queries are resolved by Algorithms 4 and 5 respectively;

catch conflict abstract counterexamples→
find distinct valuations ν and ν′ such that α∗(ν) = α∗(ν′);
P := P ∪ PredicatesFromConflict(ν, ν′);

until a loop invariant is found ;

Algorithm 3. Loop Invariant Inference

We compute the initial atomic predicates by interpolating ι and ¬ι (Section 4.1).
The main loop invokes a learning algorithm. It resolves membership and equivalence
queries from the learning algorithm by under- and over-approximations (detailed later).
If there is a conflict, the loop invariant inference algorithm adds more atomic predicates
by Algorithm 2. Then the main loop reiterates with the new set of atomic predicates.

For membership queries, we compare the concretization of the abstract valuation
with approximations to loop invariants (Algorithm 4). The mechanical teacher returns
NO when the concretization is inconsistent. If the concretization is stronger than the
under-approximation, the mechanical teacher returns YES ; if the concretization is

Learning-Based Quantifier-Free Loop Invariant Inference 215

/* ι, ι : under- and over-approximations to loop invariants */
Input: a membership query MEM (μ) with μ ∈ ValBP

Output: YES or NO
θ := γ∗(μ);
if θ is inconsistent then return NO ;
if θ ⇒ ι then return YES ;
if ν |= ¬(θ ⇒ ι) then return NO ;
return YES or NO randomly;

Algorithm 4. Membership Query Resolution

/* τ : a threshold to generate new atomic predicates */
/* {δ} while κ do S1;S2; · · · ;Sm done {ε} : an annotated loop */
/* ι, ι : under- and over-approximations to loop invariants */
Input: an equivalence query EQ(β) with β ∈ Bool [BP]
Output: YES or an abstract counterexample
θ := γ(β);
if δ ⇒ θ and θ ⇒ ε ∨ κ and θ ∧ κ⇒ Pre(θ : S1;S2; · · · ;Sm) then return YES ;
if ν |= ¬(ι⇒ θ) or ν |= ¬(θ ⇒ ι) or ν |= ¬(θ ∧ κ⇒ Pre(ι : S1;S2; · · · ;Sm)) then

record ν; return α∗(ν);
if the number of random abstract counterexamples ≤ τ then

return a random abstract counterexample;
else

P := P ∪ PredicatesFromConjecture(θ); τ := 	1.3|P |
; reiterate the main loop;
end

Algorithm 5. Equivalence Query Resolution

weaker than the over-approximation, it returns NO . Otherwise, a random answer is
returned [14].

The equivalence query resolution algorithm is given in Algorithm 5. For any equiva-
lence query, the mechanical teacher checks if the concretization of the abstract
conjecture is a loop invariant. If so, it returns YES and concludes the loop invariant
inference algorithm. Otherwise, the mechanical teacher compares the concretization of
the abstract conjecture with approximations to loop invariants. If the concretization is
stronger than the under-approximation, weaker than the over-approximation, or it does
not satisfy the necessary condition given in Proposition 2, an abstract counterexample
is returned after recording the witness valuation [14,15]. The witnessing valuations are
needed to synthesize atomic predicates when conflicts occur.

If the concretization is not a loop invariant and falls between both approximations
to loop invariants, there are two possibilities. The current set of atomic predicates is
sufficient to express a loop invariant; the learning algorithm just needs a few more
iterations to infer a solution. Or, the current atomic predicates are insufficient to express
any loop invariant; the learning algorithm cannot derive a solution with these predicates.
Since we cannot tell which scenario arises, a threshold is deployed heuristically. If
the number of random abstract counterexamples is less than the threshold, we give
the learning algorithm more time to find a loop invariant. Only when the number of
random abstract counterexamples exceeds the threshold, can we synthesize more atomic
predicates for abstraction refinement. Intuitively, the current atomic predicates are likely

216 Y. Jung et al.

to be insufficient if lots of random abstract counterexamples have been generated. In this
case, we invoke Algorithm 2 to synthesize more atomic predicates from the incorrect
conjecture, update the threshold to �1.3|P |�, and then restart the main loop.

6 Experimental Results

We have implemented the proposed technique in OCaml2. In our implementation, the
SMT solver YICES and the interpolating theorem prover CSISAT [3] are used for query
resolution and interpolation respectively. In addition to the examples in [14], we add
two more examples: riva is the largest loop expressible in our simple language from
Linux3, and tar is extracted from Tar4. All examples are translated into annotated
loops manually. Data are the average of 100 runs and collected on a 2.4GHz Intel Core2
Quad CPU with 8GB memory running Linux 2.6.31 (Table 1).

Table 1. Experimental Results.
P : # of atomic predicates, MEM : # of membership queries, EQ : # of equivalence queries, RE
: # of the learning algorithm restarts, T : total elapsed time (s).

case SIZE
PREVIOUS [14] CURRENT BLAST [18]

P MEM EQ RE T P MEM EQ RE T P T

ide-ide-tape 16 6 13 7 1 0.05 4 6 5 1 0.05 21 1.31(1.07)
ide-wait-ireason 9 5 790 445 33 1.51 5 122 91 7 1.09 9 0.19(0.14)

parser 37 17 4,223 616 13 13.45 9 86 32 1 0.46 8 0.74(0.49)
riva 82 20 59 11 2 0.51 7 14 5 1 0.37 12 1.50(1.17)
tar 7 6 ∞ ∞ ∞ ∞ 2 2 5 1 0.02 10 0.20(0.17)

usb-message 18 10 21 7 1 0.10 3 7 6 1 0.04 4 0.18(0.14)
vpr 8 5 16 9 2 0.05 1 1 3 1 0.01 4 0.13(0.10)

In the table, the column PREVIOUS represents the work in [14] where atomic pred-
icates are chosen heuristically. Specifically, all atomic predicates in pre- and post-
conditions, loop guards, and conditions of if statements are selected. The column
CURRENT gives the results for our automatic predicate generation technique. Interest-
ingly, heuristically chosen atomic predicates suffice to infer loop invariants for all ex-
amples except tar. For the tar example, the learning-based loop invariant inference
algorithm fails to find a loop invariant due to ill-chosen atomic predicates. In contrast,
our new algorithm is able to infer a loop invariant for the tar example in 0.02s. The
number of atomic predicates can be significantly reduced as well. Thanks to a smaller
number of atomic predicates, loop invariant inference becomes more economical in
these examples. Without predicate generation, four of the six examples take more than
one second. Only one of these examples takes more than one second using the new
technique. Particularly, the parser example is improved in orders of magnitude.

2 Available at http://ropas.snu.ac.kr/tacas11/ap-gen.tar.gz
3 In Linux 2.6.30 drivers/video/riva/riva hw.c:nv10CalcArbitration()
4 In Tar 1.13 src/mangle.c:extract mangle()

Learning-Based Quantifier-Free Loop Invariant Inference 217

The column BLAST gives the results of lazy abstraction technique with interpolants
implemented in BLAST [18]. In addition to the total elapsed time, we also show the
preprocessing time in parentheses. Since the learning-based framework does not con-
struct abstract models, our new technique outperforms BLAST in all cases but one
(ide-wait-ireason). If we disregard the time for preprocessing in BLAST, the
learning-based technique still wins three cases (ide-ide-tape, tar, vpr) and ties
one (usb-message). Also note that the number of atomic predicates generated by the
new technique is always smaller except parser. Given the simplicity of the learning-
based framework, our preliminary experimental results suggest a promising outlook for
further optimizations.

6.1 tar from Tar

This simple fragment is excerpted from the code for copying two buffers. M items in
the source buffer are copied to the target buffer that already has N items. The variable
size keeps the number of remaining items in the source buffer and copy denotes the
number of items in the target buffer after the last copy. In each iteration, an arbitrary
number of items are copied and the values of size and copy are updated accordingly.

{ size = M ∧ copy = N }
1 while size > 0 do
2 available := nondet;
3 if available > size then
4 copy := copy + available ;
5 size := size − available ;
6 done
{ size = 0 =⇒ copy = M +N }

Fig. 3. A Sample Loop in Tar

Observe that the atomic predicates in the
program text cannot express any loop invari-
ant that proves the specification. However, our
new algorithm successfully finds the follow-
ing loop invariant in this example:

M+N ≤ copy+size∧copy+size ≤M+N

The loop invariant asserts that the number of
items in both buffers is equal toM +N . It re-
quires atomic predicates unavailable from the
program text. Predicate generation is essential
to find loop invariants for such tricky loops.

6.2 parser from SPEC2000 Benchmarks

For the parser example (Figure 4), 9 atomic predicates are generated. These atomic
predicates are a subset of the 17 atomic predicates from the program text. Every loop in-
variant found by the loop invariant inference algorithm contains all 9 atomic predicates.
This suggests that there are no redundant predicates. Few atomic predicates make loop
invariants easier to comprehend. For instance, the following loop invariant summarizes
the condition when success or give up is true:

(success ∨ give up)⇒
(valid �= 0 ∨ cutoff = maxcost ∨ words < count)∧
(¬search ∨ valid �= 0 ∨ words < count)∧
(linkages = canonical ∧ linkages ≥ valid ∧ linkages ≤ 5000)

218 Y. Jung et al.

{ phase = F ∧ success = F ∧ give up = F ∧ cutoff = 0 ∧ count = 0 }
1 while ¬(success ∨ give up) do
2 entered phase := F;
3 if ¬phase then

4 if cutoff = 0 then cutoff := 1;
5 else if cutoff = 1 ∧maxcost > 1 then cutoff := maxcost ;
6 else phase := T; entered phase := T; cutoff := 1000;
7 if cutoff = maxcost ∧ ¬search then give up := T;
8 else

9 count := count + 1;
10 if count > words then give up := T;
11 if entered phase then count := 1;
12 linkages := nondet;
13 if linkages > 5000 then linkages := 5000;
14 canonical := 0; valid := 0;
15 if linkages �= 0 then

16 valid := nondet;
17 assume 0 ≤ valid ∧ valid ≤ linkages ;
18 canonical := linkages ;
19 if valid > 0 then success := T;
20 done

{ (valid > 0 ∨ count > words ∨ (cutoff = maxcost ∧ ¬search))∧
valid ≤ linkages ∧ canonical = linkages ∧ linkages ≤ 5000 }

Fig. 4. A Sample Loop in SPEC2000 Benchmark PARSER

Fewer atomic predicates also lead to a smaller standard deviation of the execution
time. The execution time now ranges from 0.36s to 0.58s with the standard devia-
tion equal to 0.06. In contrast, the execution time for [14] ranges from 1.20s to 80.20s
with the standard deviation equal to 14.09. By Chebyshev’s inequality, the new algo-
rithm infers a loop invariant in one second with probability greater than 0.988. With
a compact set of atomic predicates, loop invariant inference algorithm performs rather
predictably.

7 Conclusions

A predicate generation technique for learning-based loop invariant inference was pre-
sented. The technique applies the interpolation theorem to synthesize atomic predicates
implicitly implied by program texts. To compare the efficiency of the new technique,
examples excerpted from Linux, SPEC2000, and Tar source codes were reported. The
learning-based loop invariant inference algorithm is more effective and performs much
better in these realistic examples.

More experiments are always needed. Especially, we would like to have more re-
alistic examples which require implicit predicates unavailable in program texts. Addi-
tionally, loops manipulating arrays often require quantified loop invariants with linear
inequalities. Extension to quantified loop invariants is also important.

Learning-Based Quantifier-Free Loop Invariant Inference 219

Acknowledgment. The authors would like to thank Wontae Choi, Soonho Kong, and
anonymous referees for their comments in improving this work.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information and
Computation 75(2), 87–106 (1987)

2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model checking
c programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 268–283.
Springer, Heidelberg (2001)

3. Beyer, D., Zufferey, D., Majumdar, R.: CSISAT: Interpolation for LA+EUF. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer, Heidelberg (2008)

4. Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Information and
Computation 123, 146–153 (1995)

5. Canet, G., Cuoq, P., Monate, B.: A value analysis for c programs. In: Source Code Analysis
and Manipulation, pp. 123–124. IEEE, Los Alamitos (2009)

6. Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957)

7. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: Barthe,
G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer,
Heidelberg (2010)

8. Dutertre, B., Moura, L.D.: The Yices SMT solver. Technical report, SRI International (2006)
9. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with craig interpolation and

symbolic pushdown systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp.
489–503. Springer, Heidelberg (2006)

10. Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In: Davies, J., Schulte, W.,
Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer, Heidelberg (2004)

11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
POPL 2004, pp. 232–244. ACM, New York (2004)

12. Jhala, R., Mcmillan, K.L.: A practical and complete approach to predicate refinement. In:
Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg
(2006)

13. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

14. Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants by algorithmic learning, decision
procedures, and predicate abstraction. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010.
LNCS, vol. 5944, pp. 180–196. Springer, Heidelberg (2010)

15. Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically inferring quantified loop
invariants by algorithmic learning from simple templates. In: Ueda, K. (ed.) APLAS 2010.
LNCS, vol. 6461, pp. 328–343. Springer, Heidelberg (2010)

16. Kroening, D., Strichman, O.: Decision Procedures an algorithmic point of view. EATCS.
Springer, Heidelberg (2008)

17. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1),
101–121 (2005)

18. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

19. McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer,
Heidelberg (2008)

20. Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstraction.
In: PLDI, pp. 223–234. ACM, New York (2009)

Next Generation LearnLib�

Maik Merten1, Bernhard Steffen1, Falk Howar1, and Tiziana Margaria2

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany

{maik.merten,steffen,falk.howar}@cs.tu-dortmund.de
2 University Potsdam, Chair for Service and Software Engineering, Potsdam,

D-14482, Germany
tiziana.margaria@cs.uni-potsdam.de

Abstract. The Next Generation LearnLib (NGLL) is a framework for
model-based construction of dedicated learning solutions on the basis
of extensible component libraries, which comprise various methods and
tools to deal with realistic systems including test harnesses, reset mech-
anisms and abstraction/refinement techniques. Its construction style al-
lows application experts to control, adapt, and evaluate complex learning
processes with minimal programming expertise.

1 Introduction

Creating behavioral models of un(der)specified systems, e.g., for documentation-
or verification-purposes, using (semi-)automated learning algorithms, has be-
come a viable method for quality assurance. Its practical impact increases with
the advances in computer resources and, in particular, with the ability to exploit
application-specific frame conditions for optimization. Still, creating fitting learn-
ing setups is laborious, in part because available learning methods in practice are
not engineered to be versatile, often being hard-coded for specific use cases and
thus showing limited potential for adaptability towards new fields of application.
The Next Generation LearnLib (NGLL) is designed to ease this task by offering
an extensive and extensible component library comprising various methods and
tools to deal with realistic systems including test harnesses, reset mechanisms
and abstraction/refinement techniques. A modeling layer based on the NGLL
allows for model-based construction of easily refinable learning solutions. Being
internet-enabled, NGLL supports the integration of remote components. Thus
learning solutions can be composed of mixtures of components running locally or
anywhere in the world, a fact that can in particular be exploited to learn remote
systems or to flexibly distribute the learning effort on distributed resources.

In the remainder of this paper, we will describe the technology underlying the
NGLL in Section 2, present model-driven creation of learning setups in Section
3, and outline the usefulness in a competitive environment in Section 4, before
we conclude in Section 5.

� This work is supported by the European FP 7 project CONNECT (IST 231167).

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 220–223, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Next Generation LearnLib 221

2 Base Technology

The NGLL is the result of an extensive reengineering effort on the original
LearnLib [7], which has originally been designed to systematically build finite
state machine models of unknown real world systems (Telecommunications Sys-
tems, Web Services, etc.). The experience with the LearnLib soon led to the
construction of a platform for experimentation with different learning algorithms
and to statistically analyze their characteristics in terms of learning effort, run
time and memory consumption. The underlying learning technology is active
learning following the pattern of Angluin’s L∗ algorithm [2], which introduced
active system interrogation to automata learning. One of the main obstacles in
practical learning is the implementation of the idealized form of interrogation in
terms of membership and equivalence queries proposed by Angluin. This requires
an application-specific interplay of testing and abstraction technology, driving
the reengineering effort that created the NGLL.

The foundation of NGLL is a new extensive Java framework of data structures
and utilities, based on a set of interface agreements extensively covering concerns
of active learning from constructing alphabets to tethering target systems. This
supports the development of new learning components with little boilerplate
code and the integration of third-party learning technology, such as libalf [3].

All learning solutions we know of, like libalf, focus on providing fixed sets of
learning algorithms. In contrast, the component model of the NGLL extends into
the core of the learning algorithms, enabling application-fit tailoring of learning
algorithms, at design- as well as at runtime. In particular, it is unique in
– comprising features for addressing real-world or legacy systems, like instru-

mentation, abstraction, and resetting,
– resolving abstraction-based non-determinism by alphabet abstraction refine-

ment, which would otherwise lead to the failure of learning attempts [4],
– supporting execution and systematic experimentation and evaluation, even

including remote learning and evaluation components, and, most notably, in
– its high-level modeling approach described in the next section.

3 Modeling Learning Solutions

LearnLib Studio, which is based on jABC [9], our service-oriented framework
for the modeling, development, and execution of complex applications and pro-
cesses, is NGLL’s graphical interface for designing and executing learning and
experimentation setups.

A complete learning solution is usually composed of several components,
some of which are optional: learning algorithms for various model types, system
adapters, query filters and caches, model exporters, statistical probes, abstrac-
tion providers, handlers for counterexamples etc.. Many of these components are
reusable in nature. NGLL makes them available as easy-to-use building blocks
for the graphical composition of application-fit learning experiments.

Figure 1 illustrates the graphical modeling style typical for LearnLib Studio
along a very basic learning scenario. One easily identifies a common three phase

222 M. Merten et al.

Fig. 1. Executable model of a simple learning experiment in LearnLib Studio

pattern recurring in most learning solutions: The learning process starts with a
configuration phase, where in particular the considered alphabet and the system
connector are selected, before the learner itself is created and started. The subse-
quent central learning phase is characterized by the L∗-typical iterations, which
organize the test-based interrogation of the system to be learned. These itera-
tions are structured in phases of exploration, which end with the construction
of a hypothesis automaton, and the (approximate) realization of the so-called
equivalence query, which in practice searches for counterexamples separating the
hypothesis automaton from the system to be learned. If this search is successful,
a new phase of exploration is started in order to take care of all the consequences
implied by the counterexample. Otherwise the learning process terminates after
some postprocessing in the third phase, e.g., to produce statistical data.

Most learning experiments follow this pattern, usually enriched by application-
specific refinements. Our graphical modeling environment is designed for devel-
oping such kinds of refinements by supporting, e.g., component reuse, versioning,
optimization and evaluation.

4 Fast-Cycle Experimentation: The ZULU Experience

The ability to quickly design and extend learning setups, coupled with statis-
tical probes and visualizations, was invaluable during the ZULU competition
[1]. Various learning setups, involving different learning algorithms and strate-
gies for finding counterexamples, were evaluated in a time-saving manner in the

Next Generation LearnLib 223

graphical environment. The NGLL allows one to configure whole experimenta-
tion series for automatic evaluation in batch mode, resulting in aggregated sta-
tistical charts highlighting the various profiles. This way we were able to identify
the winning setup for the ZULU competition, by playing with variants of find-
ing and evaluating counterexamples [8,6] and combining them to a continuous
evolution process for the construction of learning hypotheses [5].

5 Conclusion

The NGLL provides a machine learning framework, designed for flexibility, ex-
tensibility and reusability. It comprises LearnLib Studio, which enables quick ex-
perimentation with learning methods in research and practice, and thus helps to
design fitting learning setups for application-specific contexts. Being executable
jABC graphs, learning setups in LearnLib Studio can use every facility of the
jABC-framework. This includes step-by-step execution, transformation of learn-
ing setups into standalone applications using code generation, parallel and hier-
archical structuring of the models, model-checking, and automatic deployment
on various platforms. Many concepts only briefly mentioned, but not discussed
here in detail due to limited space, will be demonstrated during the tool demo.
In experiments the NGLL demonstrated the ability to learn models with approx-
imately 40,000 systems states and 50 alphabet symbols. The NGLL is available
for download at the http://www.learnlib.de website.

References

1. Zulu - Active learning from queries competition (2010),
http://labh-curien.univ-st-etienne.fr/zulu/

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information
and Computation 2(75), 87–106 (1987)

3. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)

4. Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet
Abstraction Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

5. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - Lessons learned in the
ZULU challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415,
Springer, Heidelberg (2010)

6. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

7. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapo-
lating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407 (2009)

8. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

9. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven Develop-
ment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383,
pp. 92–108. Springer, Heidelberg (2007)

Applying CEGAR to the Petri Net State Equation

Harro Wimmel and Karsten Wolf

Universität Rostock, Institut für Informatik

Abstract. We propose a reachability verification technique that combines the
Petri net state equation (a linear algebraic overapproximation of the set of reach-
able states) with the concept of counterexample guided abstraction refinement.
In essence, we replace the search through the set of reachable states by a search
through the space of solutions of the state equation. We demonstrate the excellent
performance of the technique on several real-world examples. The technique is
particularly useful in those cases where the reachability query yields a negative
result: While state space based techniques need to fully expand the state space
in this case, our technique often terminates promptly. In addition, we can derive
some diagnostic information in case of unreachability while state space methods
can only provide witness paths in the case of reachability.

Keywords: Petri Net, Reachability Problem, Integer Programming, CEGAR,
Structure Analysis, Partial Order Reduction.

1 Introduction

Reachability is the fundamental verification problem. For place/transition Petri nets
(which may have infinitely many states), it is one of the hardest decision problems known
among the naturally emerging yet decidable problems in computer science. General so-
lutions have been found by Mayr [12] and Kosaraju [7] with later simplifications made
by Lambert [9], but there are complexity issues. All these approaches use coverability
graphs which can have a non-primitive-recursive size with respect to the correspond-
ing Petri net. A new approach by Leroux [10] not using such graphs gives some hope,
but a concrete upper bound for the worst case complexity so far eludes us. In a sense
even worse, Lipton [11] has shown that the problem is EXPSPACE-hard, so any try at
programming a tool efficiently solving this problem to the full extent must surely fail.

Nevertheless, efficient tools exist that are applicable to a considerable number of
problem instances. Model checkers, symbolic [2] or with partial order reduction [17],
have been used successfully to solve quite large reachability problems. On a positive
answer, a model checker can typically generate a trace, i.e. a firing sequence leading
to the final marking. In contrast, negative answers are usually not accompanied by any
diagnostic information. Such information, i.e. a counterexample or reasoning why the
problem has a negative solution would require a deep analysis of the structure of the
Petri net. So far, no tools are known that analyze the structure of a net and allow for
such reasoning.

This paper presents an approach to the reachability problem that combines two exist-
ing methods. First, we employ the state equation for Petri nets. This is a linear-algebraic

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 224–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Applying CEGAR to the Petri Net State Equation 225

overapproximation on the set of reachable states. Second, we use the concept of coun-
terexample guided abstraction refinement (CEGAR) [3] for enhancing the expressive-
ness of the state equation. In essence, we iteratively analyse spurious solutions of the
state equation and add constraints that exclude a solution found to be spurious but do not
exclude any real solution. The approach has several advantages compared to (explicit
or symbolic) purely state space based verification techniques:

– The search is quite focussed from the beginning as we traverse the solution space
of the state equation rather than the set of reachable states;

– The search is close to breadth-first traversal, so small witness traces are generated;
– The method may perform well on unreachable problem instances (where state space

techniques compute maximum size state spaces);
– In several unreachable problem instances, some kind of diagnostic information can

be provided;
– A considerable workload can be shifted to very mature tools for solving linear

programming problems.

In Sect. 2 we give the basic definitions. Section 3 shows how to use integer program-
ming tools to find candidates for a solution. Section 4 deals with the analysis of the
Petri net structure that is needed to push the integer programming onto the right path.
In Sect. 5 we use methods of partial order reduction to mold the results of the integer
programming into firing sequences solving the reachability problem. Finally, section 6
compares the results of an implementation with another model checker, showing that
structure analysis can compete with other approaches.

2 The Reachability Problem

Definition 1 (Petri net, marking, firing sequence). A Petri net N is a tuple (S, T, F)
with a set S of places, a set T of transitions, where S �= ∅ �= T and S ∩ T = ∅, and a
mapping F : (S × T) ∪ (T × S)→ N defining arcs between places and transitions.

A marking or state of a Petri net is a map m: S → N. A place s is said to con-
tain k tokens under m if m(s) = k. A transition t ∈ T is enabled under m, m[t〉, if
m(s) ≥ F (s, t) for every s ∈ S. A transition t fires under m and leads to m′, m[t〉m′,
if additionallym′(s) = m(s)− F (s, t) + F (t, s) for every s ∈ S.

A word σ ∈ T ∗ is a firing sequence underm and leads to m′, m[σ〉m′, if eitherm =
m′ and σ = ε, the empty word, or σ = wt, w ∈ T ∗, t ∈ T and ∃m′′: m[w〉m′′[t〉m′. A
firing sequence σ under m is enabled under m, i.e. m[σ〉. The Parikh image of a word
σ ∈ T ∗ is the vector ℘(σ): T → N with ℘(σ)(t) = #t(σ), where #t(σ) is the number
of occurrences of t in σ. For any firing sequence σ, we call ℘(σ) realizable.

As usual, places are drawn as circles (with tokens as black dots inside them), transitions
as rectangles, and arcs as arrows with F (x, y) > 0 yielding an arrow pointing from x
to y. If an arc has a weight of more than one, i.e. F (x, y) > 1, the number F (x, y) is
written next to the arc. In case F (x, y) = F (y, x) > 0, we may sometimes draw a line
with arrowheads at both ends.

Note, that the Parikh image is not an injective function. Therefore, ℘(σ) can be
realizable even if σ is not a firing sequence (provided there is another firing sequence
σ′ with ℘(σ) = ℘(σ′)).

226 H. Wimmel and K. Wolf

t

s2

t′

s1

u′

u

s3
⎛

⎜⎜⎝

⎞

⎟⎟⎠
1 −1 0 0
−1 1 1 −1

0 0 −1 1

s1

s2

s3

t t′ u u′

Fig. 1. The word tt′ cannot fire, but we can borrow a token from the circle uu′, so utt′u′ can fire
and leads to the same marking as tt′. The incidence matrix of the net is shown on the right.

Definition 2 (Reachability problem). A marking m′ is reachable from a marking m
in a net N = (S, T, F) if there is a firing sequence σ ∈ T ∗ with m[σ〉m′. A tuple
(N,m,m′) of a net and two markings is called a reachability problem and has the
answer “yes” if and only ifm′ is reachable fromm inN . The set RP = {(N,m,m′) |N
is a Petri net,m′ is reachable fromm inN} is generally called the reachability problem,
for which membership is to be decided.

It is well-known that a necessary condition for a positive answer to the reachability
problem is the feasibility of the state equation.

Definition 3 (State equation). For a Petri net N = (S, T, F) let C ∈ N
S×T , defined

by Cs,t = F (t, s)−F (s, t), be the incidence matrix of N . For two markingsm andm′,
the system of linear equations m + Cx = m′ is the state equation of N for m and m′.
A vector x ∈ N

T fulfilling the equation is called a solution.

Remark 1. For any firing sequence σ of a net N = (S, T, F) leading fromm to m′, i.e.
m[σ〉m′, holds m + C℘(σ) = m′, i.e. the Parikh vector of σ is a solution of the state
equation for N , m, and m′. This is just a reformulation of the firing condition for σ.

It is possible to have a sequence σ such that its Parikh image fulfills the state equa-
tion but it is not a firing sequence. The easiest example for this occurs in a net N =
({s}, {t}, F) with F (s, t) = 1 = F (t, s). Let m and m′ be the empty marking, i.e.
one with zero tokens overall, then m[t〉m′ is obviously wrong but m + C℘(σ) = m′

holds since C = (0). The effect can occur whenever the Petri net contains a cycle of
transitions. Interestingly, certain cycles of transitions can also help to overcome this
problem, see Fig. 1. Here, we would like to fire a word tt′ from the marking m with
m(s1) = m(s2) = 0 and m(s3) = 1, but obviously, this is impossible. If we borrow a
token from s3, we can fire tt′, or more precisely utt′u′. As we return the borrowed to-
ken to s3 in the end we reach the same marking tt′ would have reached (if enabledness
were neglected).

Definition 4 (T-invariant). Let N = (S, T, F) be a Petri net and C its incidence ma-
trix. A vector x ∈ N

T is called a T -invariant if Cx = 0.

A realizable T -invariant corresponds to a cycle in the state space. Its occurrence does
not change the marking. However, its interleaving with another sequence σ may turn σ
from unrealizable to realizable. The reason is that the partial occurrence of the

Applying CEGAR to the Petri Net State Equation 227

t s2

t′s1

u s4

u′s3

Fig. 2. Neither the T -invariant ℘(tt′) nor ℘(uu′) is realizable, but ℘(tt′uu′) is, by the sequence
tut′u′

T-invariant may “lend” tokens to the otherwise blocked σ and can be completed after σ
has produced another token on the same place later on.

Solving the state equation is a non-negative integer programming problem. From
linear algebra we know that the solution space is semi-linear.

Corollary 1 (Solution space). For a given state equation m + Cx = m′ over a net
N = (S, T, F), there are numbers j, k ∈ N and finite sets of vectors B = {bi ∈
N
T | 1 ≤ i ≤ j} (base vectors) and P = {pi ∈ N

T | 1 ≤ i ≤ k} (period vectors) such
that:

– all bi ∈ B are pairwise incomparable (by standard componentwise comparison for
vectors) and thus minimal solutions,

– P forms a basis for the non-negative solution space P ∗ = {
∑k
i=1 nipi |ni ∈

N, pi ∈ P} of Cx = 0,
– for all solutions x there are ni ∈ N for 1 ≤ i ≤ k and n ∈ {1, . . . , j} such that
x = bn +

∑k
i=1 nipi,

– for every solution x, all vectors of the set x+ P ∗ are solutions as well.

Note that only linear combinations with nonnegative coefficients are considered in this
representation.

So we know that all solutions can be obtained by taking a minimal solution b of
the state equation and adding a linear combination of T -invariants from some basis P .
Usually, not all the elements fromB and P we use for a solution are realizable, though.
While the sum of two realizable T -invariants remains realizable (just concatenate the
according firing sequences as they have identical initial and final marking), the sum
of two non-realizable T -invariants may well become realizable. This can be seen in
Fig. 2, where neither ℘(tt′) nor℘(uu′) is realizable under the markingmwithm(s1) =
m(s4) = 1 and m(s2) = m(s3) = 0, but the sequence tut′u′ realizes ℘(tt′uu′).
The matter is even more complicated when a minimal solution from B is introduced,
because positive minimal solutions are never T -invariants (unless m = m′), i.e. they
change the marking of the net, so their realizations cannot just be concatenated.

3 Traversing the Solution Space

For solving the state equation an IP solver can be used. Fast IP solvers like lp solve [1]
allow to define an objective function – in our case to minimize the solution size and

228 H. Wimmel and K. Wolf

obtain firing sequences that are as short as possible – and yield a single solution, at
least if a solution exists. Fortunately, we can force an IP solver to produce more than
just one solution — this is the CEGAR part of our approach. If a solution found is
not realizable, we may add an inequation to our state equation to forbid that solution.
Starting the IP solver again will then lead to a different solution. The trick is, of course,
to add inequations in such a way that no realizable solution is lost.

Definition 5 (Constraints). Let N = (S, T, F) be a Petri net. We define two forms of
constraints, both being linear inequations over transitions:

– a jump constraint takes the form t < n with n ∈ N and t ∈ T .
– an increment constraint takes the form

∑k
i=1 niti ≥ n with ni ∈ Z, n ∈ N, and

ti ∈ T .

Jump constraints can be used to switch (jump) to another base solution, exploiting the
incomparability of different minimal base solutions, while increment constraints are
used to force non-minimal solutions. To understand the idea for differentiating between
these two forms of constraints, it is necessary to introduce the concept of a partial
solution first. A partial solution is obtained from a solution of the state equation under
given constraints by firing as many transitions as possible.

Definition 6 (Partial solution). Let N = (S, T, F) be a Petri net and Ω a total order
over N

T that includes the partial order given by x < y if
∑
t∈T x(t) <

∑
t∈T y(t).

A partial solution of a reachability problem (N,m,m′) is a tuple (C, x, σ, r) of

– a family of (jump and increment) constraints C = (c1, . . . , cn),
– the Ω-smallest solution x fulfilling the state equation of (N,m,m′) and the con-

straints of C,
– a firing sequence σ ∈ T ∗ with m[σ〉 and ℘(σ) ≤ x,
– a remainder r with r = x− ℘(σ) and ∀t ∈ T : (r(t) > 0 =⇒ ¬m[σt〉).

The vectors x and r are included for convenience only, they can be computed from C, σ,
Ω, and the problem instance.

A full solution is a partial solution (C, x, σ, r) with r = 0. In this case, σ is a firing
sequence solving our reachability problem (with answer ’yes’).

We choose Ω such that an IP solver can be assumed to always produce the Ω-smallest
solution that does not contradict its linear system of equations.

Corollary 2 (Realizable solutions are full solutions). For any realizable solution x
of the state equation we find a full solution (C, x, σ, ∅) where C consists of constraints
t ≥ x(t) for every t with x(t) > 0, and ℘(σ) = x.

Note, that x is the smallest solution fulfilling c and therefore also the Ω-smallest
solution.

By adding a constraint to a partial solution we may obtain new partial solutions
(or not, if the linear system becomes infeasible). Any full solution can eventually be
reached by consecutively extending an Ω-minimal partial solution with constraints.

Applying CEGAR to the Petri Net State Equation 229

b

Fig. 3. Paths from theΩ-minimal solution b to any solution. Black dots represent solutions, cones
stand for linear solution spaces over such solutions, which may or may not intersect or include
each other. Normal arrows increment a solution by adding a T -invariant, dashed arrows are jumps
to an incomparable Ω-greater solution. Such jumps can also occur on higher levels of linear
solution spaces, shown by the dotted arrow.

Lemma 1 (A path to a full solution). Let b be theΩ-minimal solution of the state equa-
tion of a reachability problem (N,m,m′) and ps′ = ((cj)1≤j≤�, b′+

∑k
i=1 nipi, σ

′, 0)
a full solution of the problem. For 0 ≤ n ≤ �, there are partial solutions psn =
((cj)1≤j≤n, xn, σn, rn) with ps0 = (∅, b, σ0, r0), ps� = ps′, and xn1 ≤Ω xn2 for
n1 ≤ n2.

Proof. Let Cn = (cj)1≤j≤n. If psn1 , psn2 are two partial solutions (with 1 ≤ n1 <
n2 ≤ �) then xn2 is a solution of the state equation plus Cn1 , since it even fulfills the
state equation plus Cn2 with Cn1 ⊆ Cn2 . As xn1 is the Ω-smallest solution of the state
equation plus Cn1 , xn1 ≤Ω xn2 holds. Therefore, b ≤Ω x1 ≤Ω . . . ≤Ω x�. Since
x� = b′ +

∑k
i=1 nipi is an existing solution of the strictest system, i.e. state equation

plus C�, each system of state equation plus one family of constraints Cn is solvable.
As a σn can be determined by just firing transitions as long as possible, all the partial
solutions psn exist.

Now, let us assume a partial solution ps = (C, x, σ, r) that is not a full solution, i.e.
r �= 0. Obviously, some transitions cannot fire often enough. There are three possible
remedies for this situation:

1. If x is realizable, we can find a full solution ps′ = (C, x, σ′, 0) with ℘(σ′) = x.
2. We can add a jump constraint to obtain an Ω-greater solution vector for a different

partial solution.
3. If r(t) > 0 for some transition t, we can add an increment constraint to increase

the maximal number of tokens available on a place in the preset of t. Since the final
marking remains the same, this means to borrow tokens for such a place. This can
be done by adding a T -invariant containing the place to the solution.

A visualization of these ideas can be seen in Fig. 3 where b denotes the Ω-smallest
solution. The cone over b represents all solutions b+P ∗ with P being the set of period
vectors, i.e. T -invariants. Jump constraints lead along the dashed or dotted lines to the
next Ω-minimal solution while normal arrows representing increment constraints lead
upwards to show the addition of a T -invariant. How to build constraints doing just what
we want them to do is the content of the next section.

230 H. Wimmel and K. Wolf

4 Building Constraints

Let us first argue that for a state equation, any of the minimal solution vectors in B can
be obtained by using jump constraints.

Lemma 2 (Jumps to minimal solutions). Let b, b′ ∈ B be base vectors of the solution
space of the state equationm+Cx = m′ plus some set of constraints C. Assume b to be
the Ω-minimal solution of the system. Then, we can obtain b′ as output of our IP solver
by consecutively adding jump constraints of the form ti < ni with ni ∈ N to C.

Proof. We know b ≤Ω b′ holds, but since b′ is a minimal solution, b ≤ b′ cannot
hold. Therefore, a transition t with b′(t) < b(t) must exist. After adding the constraint
t < b(t) to C the IP solver can no longer generate b as a solution. Assume b′′ is the
newly generated solution. If b′ = b′′ we are done. Otherwise, since b′ fulfills t < b(t), it
is still a solution of our system, and also a minimal one as the solution space is restricted
by the added constraint. Thus, b′′ ≤Ω b′ holds and we may recursively use the same
argument as above for b := b′′. Since there are only finitely many solutions Ω-smaller
than b′, the argument must terminate reaching b′.

Non-minimal solutions may not be reachable this way, since the argument “b′(t) <
b(t) for some t” does not necessarily hold. We will need increment constraints for this,
but unluckily, increment constraints and jump constraints may contradict each other.
Assume our state equation has a solution of the form b′ + p with a period vector p ∈ P
and to obtain b′ ∈ B from the Ω-minimal solution b ∈ B we need to add (at least) a
jump constraint ti < ni to the state equation. If p contains ti often enough, we will find
that (b′ + p)(ti) ≥ ni holds. Therefore, b′ + p is not a solution of the state equation
plus the constraint ti < ni, i.e. adding an increment constraint demanding enough
occurrences of ti for b′ + p will render the linear equation system infeasible. The only
way to avoid this problem is to remove the jump constraints before adding increment
constraints.

Lemma 3 (Transforming jumps). Let z be the Ω-minimal solution of the state equa-
tion m+ Cx = m′ plus some constraints C. Let C′ consist of all increment constraints
of C plus a constraint t ≥ z(t) for each transition t. Then, for all y ≥ z, y is a solution
of m+Cx = m′ plus C ∩C′ if and only if y is a solution of m+Cx = m′ plus C ′. Fur-
thermore, no Ω-smaller solution of m+ Cx = m′ plus C than z solves m+ Cx = m′

plus C′.

Proof. Let y ≥ z be a solution ofm+Cx = m′ plus C ∩C′. The additional constraints
in C′ only demand y(t) ≥ z(t), which is obviously the case. The other direction is
trivial. For the second part, let z′ ≤Ω z with z �= z′ be some solution of m+Cx = m′

plus C. Since
∑

t z
′(t) ≤

∑
t z(t) (following from Ω) but z �= z′, for at least one

transition t holds z′(t) < z(t). Due to the constraint t ≥ z(t) in C′, z′ cannot be a
solution of m+ Cx = m′ plus C′.

As a consequence, if we are only interested in solutions of the cone z + P ∗ over z,
we can add increment constraints guaranteeing solutions greater or equal than z and
remove all jump constraints without any further restriction. Our IP solver will yield z

Applying CEGAR to the Petri Net State Equation 231

as the Ω-minimal solution for both families of constraints, C and C′, and we can add
further constraints leading us to any solution in the cone z + P ∗ now.

Let ps = (C, x, σ, r) now be a partial solution with r > 0. We would like to deter-
mine sets of places that need additional tokens (and the number of these tokens) that
would enable us to fire the remainder r of transitions. Obviously, this problem is harder
than the original problem of finding out if a transition vector is realizable, i.e. just test-
ing if zero additional tokens are sufficient. A recursive approach would probably be
very inefficient as for every solution x there may be many different remainders r. Even
though the remainders are smaller than the solution vector x, the number of recursion
steps might easily grow exponentially with the size of x, i.e.

∑
t x(t). We therefore

adopt a different strategy, namely finding good heuristics to estimate the number of
tokens needed. If a set of places actually needs n additional tokens with n > 0, our
estimate may be any number from one to n. If we guess too low, we will obtain a new
partial solution allowing us to make a guess once again, (more or less) slowly approach-
ing the correct number. We propose a two-part algorithm, the first part dealing with sets
of places and transitions that are of interest.

input: Reachability prob. (N,m,m′); partial solution ps = (C, x, σ, r)
output: A set of tuples (Si, Ti,Xi) with Si ⊆ S, Ti ∪Xi ⊆ T
Determine m̂ with m[σ〉m̂;
Build a bipartite graph G = (S0 ∪ T0, E) with

T0 := {t ∈ T | r(t) > 0}; S0 := {s ∈ S | ∃t ∈ T0: F (s, t) > m̂(s)};
E := {(s, t) ∈ S0 × T0 |F (s, t) > m̂(s)} ∪ {(t, s) ∈ T0 × S0 |F (t, s) > F (s, t)};
Calculate the strongly connected components (SCCs) of G;

i := 1;

for each source SCC (i.e. one without incoming edges):

Si := SCC ∩ S0;

Ti := SCC ∩ T0;

Xi := {t ∈ T0\SCC | ∃s ∈ Si : (s, t) ∈ E};
i := i+ 1;

end for

The edges of the graph G constructed in the algorithm have a different meaning de-
pending on their direction. Edges from transitions to places signal that the transition
would increase the number of tokens on the place upon firing, while edges in the other
direction show the reason for the non-enabledness of the transition. A source SCC, i.e.
a strongly connected component without incoming edges from other components, can
therefore not obtain tokens by the firing of transitions from other SCCs. This means,
tokens must come from somewhere else, that is, from firing transitions not appearing
in the remainder r. For each set of places Si such identified as non-markable by the
remainder itself, there are two sets of transitions. If one transition from the set Ti would
become firable, it is possible that all other transitions could fire as well, since the former
transition effectively produces tokens on some place in the component. If the set Ti is
empty (the SCC consisting of a single place), the token needs of all the transitions inXi

together must be fulfilled, since they cannot activate each other. We can thus calculate
how many tokens we need at least:

232 H. Wimmel and K. Wolf

input: A tuple (Si, Ti,Xi); (N,m,m′) and m̂ from above

output: A number of tokens n (additionally needed for Si)

if Ti �= ∅
then n := mint∈Ti(

∑
s∈Si

(F (s, t)− m̂(s)))

else sort Xi in groups Gj := {t ∈ Xi |F (t, s) = j} (with Si = {s});
n := 0; c := 0;

for j with Gj �= ∅ downwards loop
c := c− j ∗ (|Gj | − 1) +

∑
t∈Gj

F (s, t);

if c > 0 then n := n+ c end if;
c := −j

end for
end if

Note that the transitions in Xi all effectively consume tokens from s ∈ Si, but they
may leave tokens on this place due to a loop. By firing those transitions with the lowest
F (t, s)-values last, we minimize the leftover. Transitions with the same F (t, s)-value j
can be processed together, each consuming effectively F (s, t)− j tokens except for the
“first” transition which will need j more tokens. If some group Gj of transitions leaves
tokens on s, the next group can consume them, which is memorized in the variable c
(for carryover or consumption). Observe, that the algorithm cannot return zero: There
must be at least one transition in Ti ∪ Xi, otherwise there would be no transition that
cannot fire due to a place in Si and the places in Si would not have been introduced at
all. If Ti is not empty, line 4 in the algorithm will minimize over positive values; if Ti is
empty, line 8 will set c to a positive value at its first execution, yielding a positive value
for n. Overall, our argumentation shows:

Corollary 3. For each set of places Si that need additional tokens according to the first
part of the algorithm, the second part estimates that number of tokens to be in a range
from one to the actual number of tokens necessary.

We can thus try to construct a constraint from a set of places Si generated by the first
part of the algorithm and the token number calculated in the second part. Since our
state equation has transitions as variables, we must transform our condition on places
into one on transitions first.

Corollary 4. Let N = (S, T, F) be a Petri net, (N,m,m′) the reachability problem to
be solved, ps = (C, x, σ, r) a partial solution with r > 0, and m̂ the marking reached
by m[σ〉m̂. Let Si be a set of places and n a number of tokens to be generated on Si.
Further, let Ti := {t ∈ T | r(t) = 0 ∧

∑
s∈Si

(F (t, s) − F (s, t)) > 0}. We define a
constraint c by

∑

t∈Ti

∑

s∈Si

(F (t, s) − F (s, t))t ≥ n+
∑

t∈Ti

∑

s∈Si

(F (t, s)− F (s, t))℘(σ)(t).

Then, for the systemm+Cx = m′ plus C plus c, if our IP solver can generate a solution
x + y (y being a T -invariant) we can obtain a partial solution ps′ = (C ∪ {c}, x +
y, στ, r+z) with ℘(τ)+z = y. Furthermore,

∑
t∈T

∑
s∈Si

(F (t, s)−F (s, t))y(t) ≥ n.

Applying CEGAR to the Petri Net State Equation 233

First, note that Ti contains the transitions that produce more on Si than they consume,
but we have explicitly excluded all transitions of the remainder r, since we do not want
the IP solver to increase the token production on Si by adding transitions that could
not fire anyway. I.e., we would like to have a chance to fire the additional transitions in
y at some point, though there are no guarantees. The left hand side of c contains one
instance of a transition t for each token that t effectively adds to Si. If we apply some
transition vector x to the left hand side of c, we therefore get the number of tokens added
to Si by the transitions from Ti in x. Of course, other transitions in x might reduce this
number again. For the right hand side of c, we calculate how many tokens are actually
added to Si by the transitions from Ti in the firing sequence σ (and therefore also in the
solution x) and increase that number by the n extra tokens we would like to have. Since
the extra tokens cannot come from x in a solution x + y, they must be produced by y,
i.e.
∑
t∈T

∑
s∈Si

(F (t, s) − F (s, t))y(t) ≥ n. We might be able to fire some portion
of y after σ, resulting in the obvious ℘(τ) + z = y. When we apply our constraint we
might get less or more than the n extra tokens, depending on the T -invariants in the net.
Further constraints may or may not help. At this point we can state:

Theorem 1 (Reachability of solutions). Every realizable solution of the solution space
of a state equation can be reached by consecutively adding constraints to the system of
equations, always transforming jump constraints before adding increment constraints.

5 Finding Partial Solutions

Producing partial solutions ps = (C, x, σ, r) from a solution x of the state equation
(plus C) is actually quite easily done by brute force. We can build a tree with marking-
annotated nodes and the firing of transitions as edges, allowing at most x(t) instances
of a transition t on any path from the root of the tree to a leaf. Any leaf is a new
partial solution from which we may generate new solutions by adding constraints to
the state equation and forwarding the evolving linear system to our IP solver. If we just
make a depth-first-search through our tree and backtrack at any leaf, we build up all
possible firing sequences realizable from x. This is obviously possible without explicitly
building the whole tree at once, thus saving memory. Of course, the tree might grow
exponentially in the size of the solution vector x and so some optimizations are in order
to reduce the run-time. We would like to suggest a few ones here, especially partial
order reductions.

1. The stubborn set method [8] determines a set of transitions that can be fired before
all others by investigating conflicts and dependencies between transitions at the
active marking. The stubborn set is often much smaller than the set of enabled
transitions under the same marking, leading to a tree with a lower degree. In our
case, in particular the version of [13] is useful as, using this method, the reduced
state space contains, for each trace to the target marking, at least one permution
of the same trace. Hence, the reduction is consistent with the given solution of the
state equation.

2. Especially if transitions should fire multiple times (x(t) > 1) we observe that the
stubborn set method alone is not efficient. The situation in Fig. 4 may occur quite

234 H. Wimmel and K. Wolf

m m̂α

m̂1

m̂2

t

u

m̃1

m̃2

σ

σ

m̃

m̃

u

t

Fig. 4. If both sequences αtσu and αuσt can be fired, the subtrees after the nodes with marking
m̃ are identical. Only one of the subtrees needs to be evaluated, the other one may be omitted.
Snaked lines denote firing sequences.

often. Assume we reach some marking m̂ by a firing sequence α, so that transitions
t and u are enabled. After proceeding through the subtree behind t we backtrack
to the same point and now fire u followed by some sequence σ after which t is en-
abled, leading tom[α〉m̂[uσt〉m̃. If m̂[tσu〉 holds, we know that it reaches the same
marking m̃ and the same remainder r of transitions still has to fire. Therefore, in
both cases the future is identical. Since we have already investigated what happens
after firing αtσu, we may backtrack now omitting the subtree after αuσt. Note
that a test if m̂[tσu〉 holds is quite cheap, as only those places s with Cs,t < Cs,u
can prevent the sequence tσ. Enabledness of u after tσ can be tested by reverse
calculating m̃1 = m̃ − Cu and checking whether m̃1 is a marking and m̃1[u〉m̃
holds.

3. There are situations where a leaf belongs to a partial solution ps′ that cannot lead to
a (new) full solution. In this case the partial solution does not need to be processed.
If we already tried to realize x yielding a partial solution ps = (C, x, σ, r) and
ps′ = (C ∪ {c}, x + y, σ, r + y) is our new partial solution with an increment
constraint c and a T -invariant y, any realizable solution x+ y + z obtainable from
ps′ can also be reached from ps by first adding a constraint c′ for the T -invariant z
(and later c, y). If no transition of z can be fired after σ, y+ z is also not realizable
after firing σ. We may be able to mingle the realization of z with the firing of σ, but
that will be reflected by alternate partial solutions (compared to both, ps and ps′).
Therefore, not processing ps′ will not lose any full solutions.

4. A similar situation occurs for ps′ = (C ∪ {c}, x+ y, στ, r) with ℘(τ) = y. There
is one problem, though. Since we estimated a token need when choosing c and that
estimate may be too low, it is possible that while firing τ we get closer to enabling
some transition t in r without actually reaching that limit where t becomes firable.
We thus have to check for such a situation (by counting the minimal number of
missing tokens for firing t in the intermediate markings occurring when firing σ
and τ). If τ does not help in approaching enabledness of some t in r, we do not
need to process ps′ any further.

5. Partial solutions should be memorized if possible to avoid using them as input for
CEGAR again if they show up more than once.

6 Experimental Results

The algorithm presented here has been implemented in a tool named Sara [16]. We
compare Sara to LoLA [17], a low level analyzer searching the (reduced) state space

Applying CEGAR to the Petri Net State Equation 235

of a Petri net. According to independent reports, e.g. [15], LoLA performs very well
on reachability queries and possibly is the fastest tool for standard low level Petri nets.
The following tests, real-world examples as well as academic constructions, were run
on a 2.6GHz PC with 4GB RAM under Windows XP and Cygwin. While the CPU had
four cores, only one was used for the tools. Tests on a similar Linux system lead to
comparable but slightly faster results.

– 590 business processes with about 20 up to 300 actions each were tested for “re-
laxed soundness”. The processes were transformed into Petri nets and for each ac-
tion a test was performed to decide if it was possible to execute the action and reach
the final state of the process afterwards. Successful tests for all actions/transitions
yield relaxed soundness. Sara was able to decide relaxed soundness for all of the
590 nets together (510 were relaxed sound) in 198 seconds, which makes about a
third of a second per net. One business process was especially hard and took 12278
calls to lp solve and 24 seconds before a decision could be made. LoLA was un-
able to solve 17 of the problems (including the one mentioned above) and took 24
minutes for the remaining 573.

– Four Petri nets derived in the context of verifying parameterized boolean programs
(and published on a web page [6]) were presented to us to decide coverability. Sara
needed less than one time slice of the CPU per net and solved all instances correctly.
LoLA was not able to find the negative solution to one of the problems due to
insufficient memory (here, tests were made with up to 32GB RAM), the remaining
three problems were immediately solved.

– In 2003, H. Garavel [5] proposed a challenge on the internet to check a Petri net
derived from a LOTOS specification for dead (i.e. never firable) transitions. The net
consisted of 776 transitions and 485 places, so 776 tests needed to be made. Of the
few tools that succeeded, LoLA was the fastest with about 10 minutes, but it was
necessary to handle two of the transitions separately with a differently configured
version of LoLA. In our setting, seven years later, LoLA needed 41 seconds to
obtain the same result. Sara came to the same conclusions in 26 seconds. In most
cases the first solution of lp solve was sufficient, but for some transitions it could
take up to 15 calls to lp solve. Since none of the 776 transitions is dead, Sara also
delivered 776 firing sequences to enable the transitions, with an average length of
15 and a longest sequence of 28 transitions. In 2003 the best upper bound for the
sequences lengths was assumed to be 35, while LoLA found sequences of widely
varying length, though most were shorter than 50 transitions.

– Using specifically constructed nets with increasing arc weights (and token num-
bers) it was possible to outsmart Sara – the execution times rose exponentially
with linearly increasing arc weights, the first five times being 0.1, 3.3, 32, 180, and
699 seconds. LoLA, on the other hand, decided reachability in less than 3 seconds
(seemingly constant time) in these cases.

We also checked our heuristics from Sec. 5 with some of the above nets by switching
the former off and comparing the results (see Table 1). Our implementation needs both
forms of constraints, jump and increment, to guarantee that all solutions of the state
equation can be visited. Going through these solutions in a different order, e.g. the total
order Ω, is difficult and a comparison was not possible so far.

236 H. Wimmel and K. Wolf

Table 1. Results for shutting down one heuristic. Inst. is the number of problem instances to be
solved for the net, Sol? the average solution length or “-” if no solution exists. Columns Full, ¬1,
¬2, ¬3/4, and ¬5 contain the result with all optimizations, without stubborn sets, without subtree
cutting, without partial solution cutting, and without saving intermediate results (numbers are
according to Sec. 5). Each entry shows the elapsed time and the number of necessary CEGAR
steps (average), or NR if no result could be obtained in less than a day.

Net Inst. Sol? Full ¬1 ¬2 ¬3/4 ¬5
garavel 776 15 26s (0.11) 25s (0.11) 26s (0.11) 26s (0.11) 26s (0.11)
bad-bp 142 - 24s (85) 24s (85) 24s (85) 24s (85) NR
good-bp 144 53 1.7s (0) 1.7s (0) 1.7s (0) 1.7s (0) 1.7s (0)
test7 10 175 29s (13) 990s (22) NR 49s (14) 29s (13)
test8-1 1 40 0.1s (13) 0.35s (22) 49s (13) 0.2s (14) 0.11s (13)
test8-2 1 76 3.3s (21) 24s (51) NR 11s (34) 3.8s (21)
test8-3 1 112 32s (27) 390s (80) NR 175s (71) 33s (27)
test9 1 - 0.4s (53) 22s (464) NR NR 0.9s (65)

The nets tested fall in two categories. Garavel’s net and the business processes are
extensive nets with a low token count and without much concurrency that could be
tackled by partial order reduction. The heuristics have no effect here, short runtimes
result from finding a good solution to the state equation early on. Only for the hardest
of the business processes (bad-bp) memorizing intermediate results to avoid checking
the same partial solution over and over made sense – without it we did not get a result
at all.

The other category are compact nets. In our test examples a high number of tokens
is produced and then must be correctly distributed, before the tokens can be removed
again to produce the final marking. With a high level of concurrency in the nets, partial
order reduction is extremely useful, the cutting off of already seen subtrees(2) even
more than the stubborn set method(1). In the last net (test9), the sought intermediate
token distribution is unreachable but the state equation has infinitely many solutions.
Only by cutting off infinite parts of the solution tree with the help of optimization 3
and 4 it becomes possible to solve the problem at all. Without them, the number of
outstanding CEGAR steps reaches 1000 within less than a minute and continues to
increase monotonically. The algorithm slows down more and more then as the solutions
to the state equation and thus the potential firing sequences become larger.

Beyond what other tools can do, namely solving the problem and – in the positive
case – present a witness path, i.e. firing sequence, Sara can also provide diagnostic infor-
mation in the negative case as long as the state equation has a solution. This feature was
tested e.g. with the hardest of the 590 business processes from above, which provides
such a negative case for some of its 142 transitions. Since we cannot present such a
large net here, a condensed version with the same important features is shown in Fig. 5.

Sara provides a partitioning of the net showing where the relaxed soundness test (for
any of the transitions k1, k2, or x2) fails, e.g. it is impossible to fire x2 and afterwards
reach the final marking with exactly one token on place o (other places being empty).
The solution d+k1 +k2 +x2 of the state equation can neither be realized nor extended
to a “better” solution. The ascending pattern shows a region of the net (given by Sara)

Applying CEGAR to the Petri Net State Equation 237

i

u

d

c1

a1

k1 c2 k2

x2

a2

�

x1 o

Fig. 5. A condensed, flawed business process. One token should flow from the initial place i to the
output place o with all other places empty finally. Non-white transitions appear in Sara’s solution
to the state equation, but only the dark gray one is firable. Ascending stripes show the area with
non-firable transitions where additional tokens could not be generated.

where tokens are needed but cannot be generated without violating the state equation.
The descending pattern marks areas that are affected by the former ones, i.e. areas with
also non-firable transitions. The gray transition d is the only firable transition occurring
in the solution. When analyzing the net we can see that the cycle c1−k1−c2−k2 indeed
constitutes a flaw for a business process: if the cycle gets marked and then emptied later,
at least two tokens must flow through a2, one of which can never be removed. Using
u instead of d is therefore impossible, i.e. dx1 is the only firing sequence reaching the
final marking.

7 Conclusion

We proposed a promising technique for reachability verification. For reachable problem
instances, it tends to yield short witness paths. For unreachable instances, it may termi-
nate early, without an exhaustive search. Furthermore, it may provide some diagnostic
information in that case. Our approach applies the concept of counterexample guided
abstraction refinement in a novel context: the abstraction is not given as a transition sys-
tem but as a linear-algebraic overapproximation of the reachable states. In essence, we
replace the search in the set of states by the more focussed search through the solutions
of the state equation.

The state equation as such has been used earlier for verification purposes, see for
instance [4]. In [14], it is used as an initial way of narrowing the state space exploration
but not refined according to the CEGAR.

References

1. Berkelaar, M., Eikland, K., Notebaert, P.: lp solve Reference Guide (2010),
http://lpsolve.sourceforge.net/

2. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for symbolic state
space exploration. Software Tools for Technology Transfer 8(1), 4–25 (2006)

238 H. Wimmel and K. Wolf

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Hei-
delberg (2000)

4. Esparza, J., Melzer, S., Sifakis, J.: Verification of safety properties using integer program-
ming: Beyond the state equation. Formal Methods in System Design 16 (2), 159–189 (2000)

5. Garavel, H.: Efficient Petri Net tool for computing quasi-liveness (2003),
http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/
getpost?id=2003/07/2709

6. Geeraerts, G., Raskin, J.F., Van Begin, L.: Expand, enlarge and check (2010),
http://www.ulb.ac.be/di/ssd/ggeeraer/eec/

7. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Proceedings of
the 14th Annual ACM STOC, pp. 267–281 (1982)

8. Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided Stubborn Set Methods for State
Properties. Formal Methods in System Design 29(3), 215–251 (2006)

9. Lambert, J.L.: A structure to decide reachability in Petri nets. Theoretical Computer
Science 99, 79–104 (1992)

10. Leroux, J.: The General Vector Addition System Reachability Problem by Presburger Induc-
tive Invariants. In: Proceedings of the 24th Annual IEEE Symposium on Logic in Computer
Science, pp. 4–13. IEEE Computer Society, Los Alamitos (2009)

11. Lipton, R.J.: The Reachability Problem Requires Exponential Space. Research Report 62
(1976)

12. Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM Journal of
Computing 13(3), 441–460 (1984)

13. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN
1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999)

14. Schmidt, K.: Narrowing petri net state spaces using the state equation. Fundamenta Informat-
icae 47(3-4), 325–335 (2001)

15. Talcott, C., Dill, D.: The pathway logic assistent. In: Third International Workshop on Com-
putational Methods in Systems Biology (2005)

16. Wimmel, H.: Sara – Structures for Automated Reachability Analysis (2010),
http://service-technology.org/tools/download

17. Wolf, K.: Generating Petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

Biased Model Checking Using Flows

Muralidhar Talupur1 and Hyojung Han2

1 Strategic CAD Labs, Intel
2 University of Colorado at Boulder

Abstract. We describe two new state exploration algorithms, called biased-dfs
and biased-bfs, that bias the search towards regions more likely to have error
states using high level hints supplied by the user. These hints are in the form
of priorities or markings describing which transitions are important and which
aren’t. We will then describe a natural way to mark the transitions using flows
or partial orders on system events. Apart from being easy to understand, flows
express succinctly the basic organization of a system. An advantage of this ap-
proach is that assigning priorities does not involve low level details of the system.
Using flow-derived priorities we study the performance of the biased algorithms
in the context of cache coherence protocols by comparing them against standard
bfs, dfs and directed model checking. Preliminary results are encouraging with
biased-bfs finding bugs about 3 times faster on average than standard bfs while
returning shortest counter examples almost always. Biased-dfs on the other hand
is couple of orders of magnitude faster than bfs and slightly faster than even stan-
dard dfs while being more robust than it.

1 Introduction

We present two new state exploration procedures, called biased-bfs and biased-dfs, that
steer the search towards regions more likely to have error states by using high level user
supplied hints. These hints take the form of marking transitions as important or not. In
practice, model checking problems often have high level structure that is completely
ignored by the standard model checkers. The basic premise behind our work is that this
high level information, if used properly, can help model checkers scale to the complex
real world systems.

More concretely, consider the class of distributed message passing protocols, an im-
portant and industrially relevant class of systems. These protocols are often built around
a set of transactions or flows [12]. In other words, the protocol follows an implicit set
of partial order on actions/events, such as sending and receipt of messages. Even very
large industrial protocols have a fairly concise and easy to understand set of flows1.

Empirically, not all the flows are equally critical to the functioning of a protocol. By
identifying the important flows and eagerly exploring those regions of the state space
where these flows are active we can increase the chances of hitting deep bugs. The
information about important flows is transferred to the model checkers by marking (or
assigning higher priorities) to actions involved in those flows.

1 This is what makes designing a distributed protocol 5000 lines long possible in the first place.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 239–253, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

240 M. Talupur and H. Han

Given a set of marked transitions biased model checking algorithms work as follows.
Biased-bfs, a variant of breadth first search(bfs), begins by exploring the model in stan-
dard breadth first manner. But when computing the next frontier, that is, states reachable
from the current frontier, it accumulates all the states that have marked transitions en-
abled. For each such state s, biased-bfs explores the part of state space reachable from
s using only the marked transitions. All the states encountered during this specialized
sub-search are added to the next frontier and the search continues from the next fron-
tier. As an effect of firing marked transitions eagerly, the states reachable using those
transitions are explored much quicker than other states.

While biased-bfs does not assume anything about the underlying system, biased-
dfs on the other hand is targeted specifically towards systems composed of multiple
agents executing asynchronously. For these systems it helps to not just explore the
marked transitions early, but also explore the different inter-leavings of marked tran-
sitions early. For instance, suppose we have a system with two agents A and B. A trace
tA1 , t

B
2 , t

A
3 , t

B
4 , ...t

A
n with inter-leaved firing of important transitions of A,B is much

more likely to have a bug than a trace tA1 , t
A
2 , ...t

A
m, t

B
m+1, ...t

B
n that has a series of

marked transitions of A followed by a series of marked transitions of B. To reach such
traces quickly, biased-dfs starts like standard dfs but it avoids switching to a different
agent unless the currently executing agent has reached a state where it has some marked
transitions enabled. That is, biased-dfs forces each agent to a state where it has a marked
transition enabled. Once a state s that has a desired percentage of agents with marked
actions enabled is reached, a specialized sub search which does a more thorough ex-
ploration is invoked on s. Thus, biased-dfs tries to co-ordinate execution of multiple
agents. Like biased-bfs, biased-dfs will explore a system exhaustively if let to run to
completion.

An advantage of biased model checking is that, unlike heuristic functions in dmc,
priority functions in our case do not involve low level details of the system. They simply
amount to saying which transitions, more specifically which syntactic rules occurring
in the protocol description, are marked. As we will demonstrate in Section 6, figuring
out which transitions to mark is not hard.

1.1 Applications to Distributed Message Passing Protocols

In this paper we apply the above general algorithms to an important class of systems
namely distributed message passing protocols, in particular, cache coherence protocols.
For these protocols, we show how to derive markings on transitions using flows or
partial orders on system events.

As shown in [12,7], these systems have implicit partial orders on system events, like
sending and receiving messages, built into them. In fact, the protocol architects explic-
itly reason in terms of flows and they are readily available in the design documents.

Given the flows of a protocol, we can identify which flows are important for finding
violations to properties we are checking and within the flows which specific rules or
transitions are important. This involves some human insight – just as is in dmc – but
since flows are high level artifacts involving only names of rules they tend to be far
easier to reason about than the protocol itself.

Biased Model Checking Using Flows 241

1.2 Evaluation

We introduced a series of bugs into German’s and Flash cache coherence protocols and
evaluated the biased model checkers by comparing them against bfs, dfs and also dmc.

Our preliminary results indicate that biased-bfs runs around 3 times faster than stan-
dard breadth first search on deep bugs and returns shortest counter examples in most
cases.

Biased-dfs, is much faster – in many cases up to couple of orders of magnitude faster
– than standard bfs and faster than even dfs in most cases. Moreover, unlike dfs the
performance of biased-dfs is stable and does not fluctuate too much with the order of
transitions in the system.

The rest of the paper is organized as follows. The next section covers the related work
and the section after that introduces the preliminary concepts and the system model.
Section 4 presents the biased-bfs and Section 5 presents biased-dfs. The section follow-
ing that presents our experimental results and Section 8 concludes the paper.

2 Related Work

The idea of providing guidance to state exploration is a natural one and several forms
of guided model checkers have been proposed over the years, including works by Ha-
jek [4], by Yang and Dill [13], work by Ravi and Somenzi [9] and by Edelkamp et al.
on symbolic dmc [10] and on explicit dmc [3,2].

The key idea in dmc, the most well known of the above approaches, is to adapt the A*
algorithm to state exploration. The A* algorithm works by reordering the work queue
(containing the states to be explored) according a cost function, which is a measure
of the “goodness” of the state. For dmc, the user has to provide a cost function that
gives for each state an approximate measure of how close it is to a buggy state. Tuning
the cost function provides a way for controlling the search. In theory we can use cost
functions on states to mark transitions as well (by making the cost function correspond
to the guard of a transition). But this will be very tedious in practice as the guards can
be complicated.

Another work that prioritizes finding bugs over full coverage is iterative context
bounded execution [6], which explores a concurrent system starting from traces with
the lowest number of context switches and working upwards towards those with more
context switches. Biased-dfs generalizes the algorithm in [6]: the main exploration loop
of biased-dfs avoids switching contexts (i.e. the executing agent) till it reaches a state s
where multiple marked transitions are enabled. Once at s, a different exploration mech-
anism is invoked that does a thorough exploration of states reachable from s. Thus, the
main outer search follows the context switching order but the sub-search does not. If
we did not specify any special transitions then biased-dfs would be same as context
bounded execution.

Recently randomized exploration routines, such as Cuzz [5], have been successfully
applied to concurrent software. The idea is to sample the different inter-leavings (for
the same input to the system) efficiently. These methods have not yet been extended to
message passing systems as far as we are aware.

242 M. Talupur and H. Han

BT Murphi [1] also uses the notion of transactions, which are similar to flows, to
speed up bug hunting. But the notion of transaction is central to their algorithm which
bounds the search by limiting the number and types of transactions active. Biased-bfs
and biased-dfs on the other hand do not limit the number of flows active but only guide
the search to those regions where more flows are active.

3 Preliminaries

Given a set of state variables V , each system P we consider is given as a collectionR
of guard-action pairs (called rules in Murphi). Each rule is of the form

rl : ρ→ a

where rl is the name of the rule, ρ is a condition on the current state and action a is a
piece of sequential code specifying next state values of the variables in V . A subset of
these rules are marked to indicate that they can be used to bias the state exploration.

For biased-dfs, we require that P be composed of a collection of asynchronously
executing agents, not necessarily all identical, with indices from an ordered set I. The
examples considered in this paper are directory based cache coherence protocols, which
consist of a collection of asynchronously executing (and identical) caching agents. Thus,
the set of state variables of V is

⋃
i Vi where Vi is the state variables of agent i.

Semantically viewed, each system P is a quadruple of form (S, I, T, T ∗) where S is
a collection of states, I ⊆ S is the set of initial states and T ⊆ S × S is the transition
relation. In addition to these standard components, a subset T ∗ ⊂ T consisting of
marked transitions is also specified. Each transition t ∈ T corresponds to unique a
rl ∈ R.

For the biased-dfs procedure the underlying system P is a collection of agents. Thus,
S = Πi∈ISi where each Si is the set of states of agent i. We can then identify, for agent
i, the set Ti ⊆ T of transitions that change the state of agent i. Thus, T =

⋃
i Ti. To

keep the presentation of the biased-dfs algorithm simple, we assume that the T ′is are
disjoint, that is, each transition in T can affect the state of only one agent. Extension of
our work to the general case is not difficult.

We denote by next the successor function that takes a collection of states S′ ⊆ S
and a collection of transitions T ′ ⊆ T and returns all states reachable from S′ in one
step using transitions from T ′. If the set of transitions is not specified it is assumed to
be T and we write next(S′) instead of next(S′, T). In case of singleton sets, we just
write next(s) instead of next({s}, T) and next(s, t) instead of next({s}, {t}).

4 Biased BFS Algorithm

Biased-bfs works by trying to reduce the number of times bfs has to compute the next
frontier. The size of the new frontier in bfs increases very rapidly with the depth of the
search and if biased-bfs is able to reduce this depth by even a small number, say 3 or 4,
the savings in terms of states explored and time would be significant. This reduction in
depth is achieved by eagerly exploring marked transitions before exploring others.

Biased Model Checking Using Flows 243

Given a system P = (S, I, T, T ∗) biased bfs works as follows: the main outer ex-
ploration loop, shown in Figure 1, does standard breadth first search starting with the
initial set of states and computing the next frontiernext front from the current frontier
curr front. While next front is being computed biased-bfs collects states that have
marked transitions enabled into another queue frontred. Before going onto the next
frontier, the outer loop invokes a reduced breadth first search bfsredon frontred which
does bfs search using only marked transitions. The set of states reached by this reduced
search are added to the next frontier and the outer loop then proceeds as before.

Note that the search frontier during biased-bfs does not grow by the shortest path
order but parts of state space reachable using the marked transitions are explored faster
than the rest of the state space. Another way to view is to consider the marked transitions
as having 0 weight while computing the path length. With this definition of shortest path
the states are indeed explored according to the shortest path order.

The reduction in the search depth is obtained at the expense of making next front
larger (by adding states returned by bfsred). Having more marked transitions means
more transitions in a counter example trace are likely to be marked, which means it will
be found in fewer iterations of the main while loop in Figure 1. But, as the number of
markings goes up, the number of states bfsred returns will also go up. This would make
next front large and negate the benefits of reduction in search depth. Thus, we have
to mark as few rules as possible while marking as many of the important ones, that is,
the ones that are likely to be present on counter example traces, as possible.

Theorem 1. Biased bfs algorithm given above terminates for finite systems and fully
explores the state space.

Note that biased-bfs makes no assumption about the underlying system except for assum-
ing that some of the transitions are marked. If no transitions are marked then it reduces
to normal bfs and if all transitions are marked then its equivalent to doing bfs twice.

4.1 Optimizations

There are two different ways of realizing the basic outline presented above: we can
either accumulate all the states in current frontier that have marked transitions enabled
and call reduced bfs on them in one step (as shown in Figure 1) or call reduced bfs
on the individual states as and when they are discovered. We found that the version
presented is slightly faster than the greedy version.

Adding frontadd to next front can make it grow quickly, especially if there are
many states with marked rules enabled in the current frontier. This growth can be con-
trolled by limiting how many states are added to frontred and indirectly limiting the
size of frontadd. Remarkably, we found during our experiments that limiting the size
of frontred to just 5 states gives all the benefits of biasing!

5 Biased DFS Algorithm

A straight-forward analogue of biased-bfs would be to modify standard dfs so that it
fires marked rules first before firing un-marked rules. This would be equivalent to sort-
ing the list of transitions so that marked rules appear before unmarked rules. But most

244 M. Talupur and H. Han

Function bfsred(frontred) {
curr frontred= frontred

next frontred= φ
frontreturn= frontred

while (curr frontred �= φ) do
while (curr frontred �= φ) do

pick s from curr frontred

if (s /∈ visitedred) then
add s to visitedred and

to frontreturn

successors set = next(s,transred)
add successors set

to next frontred

end if
end while
curr frontred:= next frontred

end while
return frontreturn

}

Procedure biased-bfs () {
visited= φ
{Set of visited states}
curr front= I
{Queue holding states in the current

frontier. Holds initial states at start}

next front= φ
{Queue holding states in the

next frontier}
visitedred= φ
curr frontred= φ
next frontred= φ
while (curr front �= φ) do

while (curr front �= φ) do
pick s from curr front
if (s /∈ visited) then

successors set = next(s)
add successors set

to next front
if (s has marked transitions

enabled) then
add s to frontred

end if
end if

end while
frontadd= bfsred(frontred)
add frontaddto the front

of next front
curr front:= next front
next front:= φ

end while
}

Fig. 1. Biased-bfs algorithm

bugs in concurrent protocols happen when multiple processes & multiple flows are ac-
tive in a trace and this procedure would only ensure that marked rules for an agent get
fired before other rules but would not ensure co-ordination between agents.

Consider for instance a system S with three processes A,B and C. Consider a state
(a∗, b, c), where a, b, c are local states of A,B,C and ∗ denotes that agent A has a
marked transition enabled. Naive biasing will result in marked transitions of A be-
ing greedily fired first. Consequently, the traces we will see first will have a stretch of
marked transitions from A perhaps followed by a stretch of marked transitions from B
and so on. The traces with tight interleaving of marked transitions from A,B,C won’t
be seen until the former traces have been explored whereas the correct thing to do would
be to explore the interleaved traces first.

Biased-dfs presented in Figure 2 rectifies this by actively seeking out and explor-
ing regions where multiple processes with marked rules enabled are present. It accom-
plishes this by having two sub-routines, namely, bounded-execution, which seeks out
states with multiple processes having marked rules enabled, and dfs-explore, which does
a thorough exploration once such a state is found.

To see how bounded-execution works consider a state (a0, b0, c0) in which none
of the processes has a marked transition enabled. Bounded-execution starts executing

Biased Model Checking Using Flows 245

transitions of A until it reaches a state (a∗m, b0, c0) where A has a marked rule enabled.
Now it switches to executing transitions from the next process2, B in this case, un-
til the system reaches a state (a∗m, b∗m, c0) where A,B both have marked transitions
enabled. Depending on how many processes in marked states we consider sufficient,
bounded-execution can either switch to executing transitions from processC or call dfs-
explore to thoroughly explore inter-leavings of A,B starting from (a∗m, b

∗
m, c0). Once

dfs-explore is invoked on a state s it explores the descendants of s using all the transi-
tions stopping only at those states in which none of the processes has any marked tran-
sitions enabled. All these border states at which dfs-explore stops are transferred over
to bounded-execution which again tries to find interesting states starting from them.

Note that the set of transitions bounded-execution picks to explore at a state depends
on the process it is currently executing. So in addition to storing states in the visited state
set (visited in Figure 2) we also need to store for which ids a state can be considered
visited. Thus, at a state s = (am, bn, ck) if bounded-execution is currently executing
transitions fromA then (s,A) is added to visited. The exploration of transitions ofB,C
starting from s is deferred to later by adding (s,B), (s, C) to nextstage. Intuitively,
(s,B) and (s, C) would correspond to switching contexts at s and these are deferred to
later.

Unlike bounded-execution, dfs-explore considers all the transitions enabled at a state.
If any of them is a marked transition then all the transitions are taken. If it reaches a
states s = (am, bn, ck) where none of the processes has a marked transition enabled
then dfs-explore adds (s,A), (s,B) and (s, C) to currstagefor bounded-execution to
explore further. Since dfs-explore does not track which process it is executing, once it
is done all the states it visited will be added to visited paired with all possible ids.

Finally, the main procedure biased-dfs in Figure 2 initializes currstagewith all initial
states paired with all process ids and invokes bounded-execution on them. Note that if
no transition is marked then dfs-explore never gets invoked and the resulting search is
just context bounded execution [6]3.

Theorem 2. Biased dfs terminates and explores all the states of a given model.

6 Flows and Markings

For an important class of systems, namely distributed message passing protocols, we
show a simple way to derive markings on transitions by considering flows [12]. Recall
that the systems we consider are described as a collection of guarded action rules. A
flow [12] is simply a partial order on interesting system events or rule firings.

Figure 3 shows a couple of flows from German’s cache coherence protocol. The
ReqShar flow on left says that first event is agent i sending a request for shared access
(by firing rule SndReqS). The second event is directory receiving that request (by firing
RecvReqS), followed by directory granting the access to i (by firing SndGntS). The flow
terminates with i firing RecvGntS to receive the grant message. The ReqExcl flow on
right i similar.

2 Bounded execution also switches to a different process if the current process reaches a dead-
end state.

3 If all the transitions are marked then biased-dfs reduces to plain dfs.

246 M. Talupur and H. Han

Function bounded-execution (st, pid) {
if ((st,pid) ∈ visited) then

do nothing
else

if (number of processes with marked tran-
sitions enabled in st crosses threshold)
then dfs-explore(st)

else
let transen= all transitions enabled

for process pid in state st
if (transen= φ) then

if (pid is not the last id in I and
next id is pid’)
for all(id ∈ pids and

id notin {pid,pid’}) do
add (st,id) to nextstage

end for
add (st,pid) to visited
bounded-execution(st,pid’)

else
return

end if
else

for all(id ∈ pids) do
add (st,id) to nextstage

end for
add (st,pid) to visited
for all(t ∈ transen) do

nxt st = next(st,t)
bounded-execution(nxt st,pid)

end for
end if

end if
end if

}

Function dfs-explore (st) {
if (∀ id. (st,id) /∈ visited) then

if (no process has a marked transition
enabled in state st) then

for all(id ∈ pids) do
add (st,id) to currstage

end for
else

for all(id ∈ pids) do
add (st, id) to visited

end for
let transen= enabled transitions

in state st
for all(t ∈ transen) do

nxt st = next(st,t)
dfs-explore(nxt st)

end for
end if

end if
}

Procedure biased-dfs () {
visited= φ
{Set of (state,id) pairs visited so far}
currstage= φ
{Queue of (state,id) pairs to explore
in the current stage}
nextstage= φ
{Queue of pairs deferred to the next

stage}
for all(id ∈ pids) do

for all(stinit∈ I) do
add (stinit, id) to currstage

end for
end for
while (currstage �= φ) do

while (currstage �= φ) do
pick (st,id) from currstage

bounded-execution(st,id)
end while
currstage= nextstage

nextstage= φ
end while

}

Fig. 2. Biased-dfs algorithm

It is easy to see that flows capture succinctly and intuitively the basic organization of
the protocol in terms of events such as sending and receiving of messages. In fact the
protocol designers explicitly use the flows during design and for the distributed proto-
cols we are interested the full set of flows are already available in design documents.
So there is no effort on our part in coming up with the flows.

Biased Model Checking Using Flows 247

Dir i

SndReqS

SndGntS

RecvReqS

RecvGntS

Dir i

SndReqE

SndGntE

RecvReqE

RecvGntE

Fig. 3. Linear sequence events illustrating ReqShar (left) and ReqExcl (right) flows in German’s
protocol

Finally, even a large industrial protocol has only about 40 different flows and the full
set of flows is orders of magnitude smaller than the protocol itself. Reasoning in terms
of flows consequently tends to be a lot simpler than reasoning in terms of the protocol
variables. A full treatment of flows is beyond the scope of this paper and the reader is
referred to [12,7] for more information. For the rest of this section, we will assume we
have the full set of flows available.

Using these flows, we identify which rules to mark as important and this in turn gives
us markings for transitions with the interpretation that if a rule rl is marked then all the
transitions in T corresponding to rl are marked.

Note that more the number of marked rules greater the overhead on biased model
checkers. So we should to mark only a small number to reduce the overhead while
ensuring that as many of the “important” ones as possible are marked. To mark rules we
proceed backwards from the property which are verifying . The property we considered
was the standard MESI property

∀i, j.i �= j ⇒ (Excl[i]⇒ ¬(Shar[j] ∨Excl[j]))

where Shar[i] mean i is in shared state and similarly for Excl[i].

Markings for biased-bfs. Given flows and the property to be verified, we identify
the flows that are likely to involved in the potential violations of the property. In our
case, a counter example to safety property is most likely to involve the flow for getting
exclusive access as at least one agent must be in exclusive state. For German’s protocol
this is ReqExcl flow and the rules present in it, namely, RecvReqE, SendGntE and
RecvGntE are marked. We did not mark the first rule, SndReqS, for sending request,
because this rule can fire without any constraint, and the core of the flow begins with
directory receiving the request.

248 M. Talupur and H. Han

For Flash protocol, ni local getx putx (corresponding to the directory receiving a
request for exclusive and sending a grant message) and ni remote putx (correspond-
ing to an agent receiving a grant exclusive message) were marked. The first rule for
sending the request is not marked again. Thus, for German’s protocol 3 out of 12 rules
were marked and for Flash 2 out 33 were marked. The Murphi models of the protocols
along with the bugs we introduced are available at [11].

Markings for biased-dfs. Markings are derived slightly differently in this case. Here
the focus is on multi-agent interactions that are likely to expose safety violations. So we
identify flows whose interaction is likely to cause property violations. In our case, the
violation to mutual exclusion will most likely involve flows for gaining exclusive and
shared accesses, we mark rules appearing in these flows. For German’s this means, in
addition to the above marking, we should also markRecvReqS, SndGntS,RecvGntS
and for Flash ni local get put and ni remote put in addition to the ones above. To
keep the experimental section brief we will use the markings used for biased-bfs for
biased-dfs as well. Even with these sub-optimal markings biased-dfs performs extremely
well.

Finally, note that to derive markings we are reasoning based on the property and not
based on any specific bug. Though deriving markings requires user intuition, having
flows makes the job quite a lot simpler.

7 Experimental Evaluation

We wrote prototype implementations of the biased procedures and also of the bfs and
dfs routines in OCaml. While OCaml is relatively slow and not amenable to low level
optimizations required to make model checkers run fast, it is adequate to study the rel-
ative performance of the biased procedures versus the standard procedures. There were
no optimizations except for symmetry reduction which was common to all procedures.
The input protocols models were also in OCaml – they were translated from Murphi to
OCaml automatically using a translator we wrote.

To study the performance of the biased procedures, we introduced bugs into Ger-
man’s and Flash protocols. These are standard examples in protocol verification and are
non-trivial protocols – in terms of lines of Murphi code German’s protocol is about 150
lines and Flash about 1000 lines. The bugs were introduced consecutively and they all
led to violations of the MESI property.

7.1 Results

Tables 1 and 2 summarize the results of our experiments for German’s and Flash proto-
cols respectively. Each entry is either of the form trace-length/time-in-seconds or gives
the number of states in thousands (k) rounded to the nearest integer. Apart from con-
sidering different bugs, we also considered systems with 4, 5, and 6 agents to study the
scaling behavior of the biased procedures. The columns bbfs, bdfs and dmc stand for
biased-bfs, biased-dfs and directed model checking respectively. Fastest running times
are shown in bold and the second fastest times are italicized. All the experiments were
run on a 2.6 GHz and 8GB Intel Xeon machine with a time out of 10 mins.

Biased Model Checking Using Flows 249

Performance of bfs. Standard bfs finishes on all the examples and in one case (Flash
bug 3) it is close to being fastest. Apart from returning the shortest counter example
always, performance of bfs is predictable and does not vary much with the order in
which the transitions are presented. The markings on transitions have no effect on the
performance of bfs.

Performance of dfs. Standard dfs, when it finishes within the time out, finds bugs ex-
tremely quickly but the counter examples it returns are extremely long. The other major
disadvantage of dfs is that its performance fluctuates wildly with the order in which
the transitions are listed. For instance, when we reverse the order of the transitions for
Flash protocol, bugs 1 and 2 were caught by dfs in under a second with relatively short
counter examples (< 25 states long). But performance on bug 3 deteriorated dramati-
cally, with dfs timing out on 6 agent system and on 5 agent system it returned a counter
example that was more than 50K states long after 130 seconds.

Performance of biased-bfs. Biased-bfs also finishes on all the examples within time
out and it returns the shortest counter examples in all the cases. On two bugs (Flash
bugs 1 and 2) it is the second fastest.

Significantly, biased-bfs outperforms standard bfs on the deeper bugs (bugs 1 and 4
in German and bugs 1 and 2 in Flash) by a factor of around three and this factor gets
better as the number of processes increases. On shallower bugs standard bfs is faster
than biased bfs.

This result validates the basic premise behind biased-bfs: reducing the number of
frontier expansions required by standard bfs search leads to bugs quicker but at the cost
of increased frontier sizes. Thus, for deeper bugs we see big gains for biased-bfs but not
so much for shallower bugs, where the increase in frontier sizes seems to outweigh the
decrease in the exploration depth.

While depth-first routines outperform biased-bfs, performance of biased-bfs is more
robust and predictable with all the bugs being found within the time out. Further, counter
examples returned by biased-bfs are considerably shorter. In fact, on all the examples,
biased bfs returns the shortest counter examples (though this need not be the case al-
ways).

Performance of biased-dfs. Biased-dfs is the fastest in most cases except for bug 2 in
German (where it is the second fastest) and bug 3 in Flash. It finishes within time out
on all cases except Flash bug 3 on system with 6 agents.

Further, biased-dfs is less fickle than standard dfs. To see if the order of transitions
has any effect on biased-dfs, we reversed the transitions lists in both German and Flash
protocol. Biased-dfs continued taking around the same time as before, indicating that it
is relatively immune to changes in the transition order.

The only disadvantage of biased-dfs is that it does not return short counter examples.

Performance of dmc. The original paper on dmc [3] presented several different varia-
tions of dmc with varying performance different examples. We implemented the straight
forward adaptation of A* algorithm. The priority of each state is given by 100 minus

250 M. Talupur and H. Han

Table 1. Results for German’s protocol

Trace length and run times States explored
Bug procs

bfs bbfs dfs bdfs dmc bfs bbfs dmc

4 12/7.8 12/2.8 70/0.06 >75/0.05 12/24 19k 6k 25k
1 5 12/38.2 12/10.6 86/0.09 >91/0.07 12/111 60k 15k 97k

6 12/249.3 12/55.6 102/0.16 >107/0.1 t.o 172k 37k -

4 9/1.0 9/1.6 34/0.05 >23/0.05 13/6 2k 3k 9.2k
2 5 9/3.14 9/5.4 35/0.05 >24/0.06 10/23.5 5k 8k 34k

6 9/14.6 9/24.5 36/0.11 >25/0.15 13/135 10k 17k 118k

4 9/1.1 9/1.6 58/0.06 >28/0.05 13/4.4 2k 3k 7k
3 5 9/3.5 9/5.3 71/0.09 >28/0.06 11/16 5k 8k 25k

6 9/16.7 9/24.5 84/0.15 >28/0.1 14/82 12k 17k 92k

4 12/9.3 12/3.3 240/0.17 >31/ 0.1 14/29 22k 7k 34k
4 5 12/45.6 12/12.5 256/0.22 >31/ 0.13 13/147 69k 17k 133k

6 12/283.5 12/62.1 272/0.36 >31/ 0.2 t.o 193k 40k -

the number marked transitions enabled at the state. Thus, larger the number of marked
transitions enabled the lower the priority and the earlier the state will be picked for con-
sideration. As Tables 1 and 2 show dmc comes last in almost all the examples. The first
four routines, bfs, bbfs, dfs, bdfs all use the same data structure to store the states and
perform similar state related operations. So the time taken is also a good indication of
number of states explored. But the underlying data structure used by dmc4 is different
and to get another view we compare the number of states explored by bbfs and dmc.
We don’t show numbers for dmc as in almost all the cases the entry for bdfs would be
0k after rounding to nearest integer. As the last two columns of the tables show dmc
explores a lot more states than bbfs before finding the bug5.

7.2 Biased Procedures in Murphi

Encouraged by the performance of OCaml implementations, we recently modified the
Murphi model checker to perform biased-bfs, biased-dfs. This speeds up the perfor-
mance considerably and also allows us to access a wider set of models.

We tried out modified Murphi on a large micro-architectural model of the core-ring
interface (CRI) used in one of the multi-processors developed at Intel. The model, writ-
ten in Murphi, captures the various in and out buffers, arbiters and other control struc-
tures managing the traffic between a core and the communication ring. The model also
includes L1 and L2 caches of the core and is parameterized by the number of addresses

4 It requires a structure for storing sets of states that supports membership queries and minimum
priority extraction.

5 The amount of computation for each visited state also differ with dmc taking the most re-
sources.

Biased Model Checking Using Flows 251

Table 2. Results for Flash protocol

Trace length and run times States Explored
Bug procs

bfs bbfs dfs bdfs dmc bfs bbfs dmc

4 9/2.0 9/0.9 t.o >13/0.04 >8/2.6 2k 0k 3k
1 5 9/7.3 9/2.5 t.o >13/0.05 >8/7.4 3k 1k 8k

6 9/23.7 9/7.6 t.o >13/0.1 >8/30 7k 2k 22k

4 9/5.1 9/1.8 t.o >23/0.04 >5/4.8 3k 1k 5.5k
2 5 9/21.4 9/5.8 t.o >23/0.07 >5/15.4 9k 2k 15k

6 9/77.6 9/20.6 t.o >23/0.15 >5/65 21k 5k 45k

4 7/0.54 7/1.4 119/0.12 >11K/6.7 7/1.1 0k 1k 1k
3 5 7/1.5 7/4.6 476/0.43 >34K/ 34.9 7/3.3 1k 1k 3k

6 7/4.6 7/13.5 1996/2.8 t.o 7/13 3k 3k 9k

in the system. The property we considered was the inclusion property, namely, if a data
item is present in L1 cache then it is present in the L2 cache as well.

We asked the designer who wrote the model to specify 4 rules that he thought were
most relevant to the inclusion property and also to introduce a bug into the model.
Coming up with 4 rules took the designer, who did not know the details of our approach,
just couple of minutes.

Table 3 shows the result of this experiment. We ran bfs, dfs and biased-bfs on models
with 4, 6 and 8 addresses with a time out of 20 hrs. Biased-dfs is not applicable to this
model which deals with a single agent system. The table shows the number of states
explored by bfs, dfs and biased-bfs. With the exception of the model with 4 addresses,
bfs runs out of memory on all cases (after exploring considerably more states than
biased-bfs) even when Murphi is given 12GB of memory. Interestingly, dfs hits the
bug fairly quickly after exploring between 2-4M states but it fails to generate a counter
example trace even after 20 hrs. This is because Murphi has to undo the symmetry
reduction applied during the search phase to generate a counter example and for large
models with deep counter examples this can be a very expensive operation6. In contrast,
even for the largest model, biased-bfs generates a counter example trace in under 3.5 hrs
after exploring less than 20M states. This result confirms that biased model checking
does scale to industrial strength systems.

7.3 Discussion

Experimental results presented above amply demonstrate that the biased procedures can
be very effective in catching bugs. When dealing with systems with asynchronously
executing agents, biased-dfs is probably the best choice for checking existence of bugs.
Random simulation is often used during early debugging but, at least for concurrent

6 This is a relatively unknown facet of dfs that only people who have dealt with large models
seem to be aware of.

252 M. Talupur and H. Han

Table 3. Results for CRI model

Addr bfs dfs bbfs

4 16M t.o 12M

6 >25M t.o 17M

8 >25M t.o 18M

protocols, they are good only at finding shallow bugs and quickly get overwhelmed by
the non-determinism.

For debugging, which requires short counter example traces, biased-bfs seems to be
the best bet, especially for deep bugs. Apart from getting significant speed up compared
to standard bfs and also standard dfs on some examples, biased bfs returns more or less
the shortest counter example.

8 Conclusion

We have described two new biased model checking algorithms that use high level in-
formation implicit in protocols to reach error states faster. The mechanism of marking
transitions as important or not is used to pass the high level information in flows to the
biased model checkers.

Our early results indicates that the direction holds promise in tackling large model
checking problems. A natural extension of this work is to combine priorities on tran-
sitions with priorities on states. This will provide us finer control on the exploration
process potentially leading to an even more powerful method.

For instance, consider communication fabrics on a modern multi-core processor. One
worrying scenario is the high water-mark scenario where all the buffers are full, poten-
tially resulting in a deadlock. To bias the search towards such scenarios we can mark
all those actions that add or delete some entry from a buffer. This will bias the search
towards the corner cases where the buffer is full or empty. To gain finer control we can
make the marking dependent on the state as well. Thus, an add action will be marked
only in states where the buffer is already close to being full and a delete action will be
marked only for those states where the buffer is close to empty. This will ensure that we
hit the corner case scenarios and potential bugs even more quickly.

References

1. Chen, X., Gopalakrishnan, G.: Bt: a bounded transaction model checking for cache coherence
protocols. Technical report UUCS-06-003, School of Computing, University of Utah (2006)

2. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed Explicit state model checking in vali-
dation of Communication protocols. In: Proceedings of STTT (2004)

Biased Model Checking Using Flows 253

3. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Protocol Verification with Heuristic Search. In:
AAAI Symposium on Model-based validation of Intelligence (2001)

4. Hajek, J.: Automatically verified data transfer protocols. In: Proceedings of the International
Computer Communications Conference (1978)

5. Musuvathi, M., Burckhardt, S., Kothari, P., Nagarakatte, S.: A randomized scheduler with
probabilistic guarantees of finding bugs. In: ASPLOS (2010)

6. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded
programs. In: PLDI (2007)

7. O’Leary, J., Talupur, M., Tuttle, M.R.: Protocol Verification using Flows: An Industrial Ex-
perience. In: Proc. FMCAD (2009)

8. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI (2004)
9. Ravi, K., Somenzi, F.: Hints to accelerate Symbolic Traversal. In: Proceedings of the 10th

IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (1999)

10. Reffel, F., Edelkamp, S.: Error detection with directed symbolic model checking. In: Wood-
cock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 195–211. Springer, Heidelberg
(1999)

11. Talupur, M.: Murphi models of German’s and Flash protocols along with the bugs,
www.cs.cmu.edu/˜tmurali/fmcad10

12. Talupur, M., Tuttle, M.R.: Going with the Flow: Parameterized Verification using Message
Flows. In: Proc. FMCAD (2008)

13. Yang, C.H., Dill, D.L.: Validation with guided search of the state space. In: Proceedings of
the 35th Annual Design Automation Conference (1998)

S-TaLiRo: A Tool for Temporal Logic

Falsification for Hybrid Systems�

Yashwanth Annapureddy1, Che Liu1,
Georgios Fainekos1, and Sriram Sankaranarayanan2

1 Arizona State University, Tempe, AZ
{Yashwanthsingh.Annapureddy,Che.Liu,fainekos}@asu.edu

2 University of Colorado, Boulder, CO
srirams@colorado.edu

Abstract. S-TaLiRo is a Matlab (TM) toolbox that searches for tra-
jectories of minimal robustness in Simulink/Stateflow diagrams. It can
analyze arbitrary Simulink models or user defined functions that model
the system. At the heart of the tool, we use randomized testing based
on stochastic optimization techniques including Monte-Carlo methods
and Ant-Colony Optimization. Among the advantages of the toolbox is
the seamless integration inside the Matlab environment, which is widely
used in the industry for model-based development of control software. We
present the architecture of S-TaLiRo and its working on an application
example.

1 Introduction

Temporal verification involves the ability to prove as well as falsify temporal
logic properties of systems. In this paper, we present our tool S-TaLiRo for
temporal logic falsification. S-TaLiRo searches for counterexamples to Metric
Temporal Logic (MTL) properties for non-linear hybrid systems through global
minimization of a robustness metric [4]. The global optimization is carried out
using stochastic optimization techniques that perform a random walk over the
initial states, controls and disturbances of the system. In particular, the ap-
plication of Monte-Carlo techniques that use sampling biased by robustness is
described in our HSCC 2010 paper [6]. In [1], we report on our experience with
other optimization techniques including Ant-Colony Optimization.

At its core, S-TaLiRo integrates robustness computation for traces of hybrid
systems (TaLiRo) [4,6] with stochastic simulation [9]. The search returns the
simulation trace with the smallest robustness value that was found. In practice,
traces with negative robustness are falsifications of temporal logic properties.
Alternatively, traces with positive - but low - robustness values are closer in dis-
tance to falsifying traces using a mathematically well defined notion of distance
� This work was partially supported by a grant from the NSF Industry/University

Cooperative Research Center (I/UCRC) on Embedded Systems at Arizona State
University and NSF awards CNS-1017074 and CNS-1016994.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 254–257, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems 255

Convex
Optimization

TaLiRo
Stochastic
Sampling

Simulink/Stateflow Environment

Temporal Prop.

(string)

Robustness

Metric

falsifying

min robust trace

S/S Model

(.mdl file)

Trace Input

S-TaLiRo

Fig. 1. The architecture of the S-TaLiRo tool

between trajectories and temporal logic properties. Such traces may provide valu-
able insight to the developer on why a given property holds or how to refocus a
failed search for a counter-example.

S-TaLiRo supports systems implemented as Simulink/Stateflow (TM) mod-
els as well as general m-functions in Matlab. Other frameworks can be readily
supported, provided that a Matlab (TM) interface is made available to their
simulators. S-TaLiRo has been designed to be used by developers with some
basic awareness of temporal logic specifications. Simulink/Stateflow (TM) mod-
els are the de-facto standard amongst developers of control software in many
domains such as automotive control and avionics. S-TaLiRo also supports the
easy input of MTL formulae through an in-built parser. It has been designed and
packaged as a Matlab toolbox with a simple command line interface. S-TaLiRo
also contains an optimized implementation of the computation of the robustness
metric (TaLiRo) over the previous version [3] along with the ability to plug-in
other stochastic optimization algorithms.

2 The S-TaLiRo Tool

Figure 1 shows the overall architecture of our toolbox. The toolbox consists
of a temporal logic robustness analysis engine (TaLiRo) that is coupled with
a stochastic sampler. The sampler suggests input signals/parameters to the
Simulink/Stateflow (TM) simulator which returns an execution trace after the
simulation. The trace is then analyzed by the robustness analyzer which returns
a robustness value. The robustness is computed based on the results of convex
optimization problems used to compute signed distances. In turn, the robustness
score computed is used by the stochastic sampler to decide on a next input to
analyze. If a falsifying trace is found in this process, it is reported to the user.
The trace itself can be examined inside the Simulink/Stateflow modeling envi-
ronment. If, on the other hand, the process times out, then the least robust trace
found by the tool is output for user examination.

256 Y. Annapureddy et al.

Scope1

Scope

Reshape1

Reshape

Relay

>

<=

<=

AND

AND

1
s

Integrator

u*K

K*u

-K-

u*K

-K-

-K-

double

0

Amat

dif

get

Constant1

dif

get
h

K*u

1
In1

(a) Simulink model

main 1

[id2<rooms]

1

[id1<rooms]

1

[get[id1]&!h[id1]]
1

[dif[id1][id2]&h[id2]]

1

{id2=0;}
22

{id2++;}2

{h[id1]=1;h[id2]=0;}

{id1=0;id2=0;}

2

{id1++;}

(b) Stateflow subsystem (green block)

0 5 10 15 20 25
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(c) Input signal

0 5 10 15 20 25
12

14

16

18

20

22

24

(d) Falsifying State Trajectories

Fig. 2. Room heating benchmark HEAT30 and results obtained from S-TaLiRo run

3 Usage

S-TaLiRo has been designed to be seamlessly integrated in the model based
design process of Matlab/Simulink (TM). The user designs the model in the
Simulink/Stateflow (TM) environment as before. At present, the only require-
ment is that input signals must be provided to the Simulink model through
input ports. Then S-TaLiRo is executed with the name of the Simulink model
as a parameter along with the set of initial conditions, the constraints on the
input signals (if any) and the MTL specification. Currently, the user may select
one of the two available stochastic optimization algorithms: Monte Carlo or Ant
Colony Optimization. However, the architecture of S-TaLiRo is modular and,
thus, any other stochastic optimization method can be readily implemented.

As a demonstration, we applied S-TaLiRo to the room heating benchmark
from [5] (see Fig. 2). We chose the benchmark instance HEAT30. This is a hy-
brid system with 10 continuous variables (10 rooms) and 3360 discrete locations
((104)24 where 4 is the number of the heaters). The set of initial conditions is
[17, 18]10 and input signal u can range in [1, 2]. The goal is to verify that no
room temperature drops below [14.50 14.50 13.50 14.00 13.00 14.00 14.00 13.00
13.50 14.00]T . The input signal was parameterized using a piecewise cubic Her-
mite interpolating polynomial with 4 control points evenly distributed in the
simulation time. S-TaLiRo found a falsifying trace with robustness value of
−0.429. Figure 2 shows the trace and the input signal discovered by S-TaLiRo.
In detail, the initial conditions were x0 = [17.4705 17.2197 17.0643 17.8663
17.4316 17.5354 17.9900 17.6599 17.8402 17.2036]T .

S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems 257

4 Related Work

The problem of testing hybrid systems has been investigated by many researchers
(see the related research section in [6]). Most of the research focuses on parameter
estimation [8,2]. Recently, however, the problem of temporal logic falsification
for hybrid systems has received some attention [7,6]. Unfortunately, the pub-
licly available tool support has been fairly low in this space. The only other
publicly available toolbox that supports computation of robustness for tempo-
ral logic formulas with respect to real-valued signals is BREACH [2]. However,
BREACH currently does not support temporal logic falsification for arbitrary
Simulink/Stateflow models. Along the lines of commercial products, Mathworks
provides a number of tools such as SystemTest1 (TM) and Simulink Design Ver-
ifier2 (TM). S-TaLiRo does not attempt to be a comprehensive test tool suite
as the above, but rather to solve a very targeted problem, i.e., the problem of
temporal logic falsification for hybrid systems. In the future, we hope to extend
S-TaLiRo and the theory of robustness to estimate properties such as worst-case
timings and integrate it into the statistical model checking framework.

References

1. Annapureddy, Y.S.R., Fainekos, G.: Ant colonies for temporal logic falsification of
hybrid systems. In: Proceedings of the 36th Annual Conference of IEEE Industrial
Electronics (2010)

2. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010)

3. Fainekos, G.E., Pappas, G.J.: A user guide for TaLiRo. Technical report, Dept. of
CIS, Univ. of Pennsylvania (2008)

4. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009)

5. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg
(2004)

6. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivančić, F., Gupta, A., Pappas,
G.: Monte-Carlo techniques for the falsification of temporal properties of non-linear
systems. In: Hybrid Systems: Computation and Control, pp. 211–220. ACM Press,
New York (2010)

7. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL Safety Properties in
Hybrid Systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 368–382. Springer, Heidelberg (2009)

8. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of
temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrma-
cher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer,
Heidelberg (2008)

9. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. Wiley
Series in Probability and Mathematical Statistics (2008)

1 http://www.mathworks.com/products/systemtest/
2 http://www.mathworks.com/products/sldesignverifier/

GAVS+: An Open Platform for the Research of
Algorithmic Game Solving

Chih-Hong Cheng1, Alois Knoll1, Michael Luttenberger1, and Christian Buckl2

1 Department of Informatics, Technische Universität München
Boltzmann Str. 3, Garching D-85748, Germany

2 Fortiss GmbH, Guerickestr. 25, D-80805 München, Germany
http://www6.in.tum.de/˜chengch/gavs

Abstract. This paper presents a major revision of the tool GAVS. First, the num-
ber of supported games has been greatly extended and now encompasses in addi-
tion many classes important for the design and analysis of programs, e.g., it now
allows to explore concurrent / probabilistic / distributed games, and games played
on pushdown graphs. Second, among newly introduced utility functions, GAVS+
includes features such that the user can now process and synthesize planning
(game) problems described in the established STRIPS/PDDL language by intro-
ducing a slight extension which allows to specify a second player. This allows
researchers in verification to profit from the rich collection of examples coming
from the AI community.

1 Introduction

We present a major revision of the open-source tool GAVS1, called GAVS+, which now
targets to serve as an open platform for the research community in algorithmic game
solving. In addition, GAVS+ is meant to serve as a playground for researchers thinking
of mapping interesting problems to game solving.

GAVS+ has three main goals: (i) support of game types currently under active re-
search; many times an implementation of a solver is only hard to come by, or only
partial implementations exist; (ii) support of different input and output formats in order
to allow for both interoperability with other tools and for easy access of existing col-
lections of models, examples, and test cases in concrete application domains; (iii) ease
of use by a unified graphical user interface (GUI) which allows to graphically specify
the game and explore the computed solution. The last requirement is partially fulfilled
by the previous version of GAVS+: the GUI allows to visualize two-player, turn-based
games on finite graph, solve the game, and store intermediate results in order to visual-
ize the algorithms step-by-step. This also makes it a very useful tool for teaching these
algorithms. In this release, we have concentrated on goals (i) and (ii).

Regarding goal (i), we have added support for several games of practical relevance:
we have introduced support for stochastic [10], concurrent [6], distributed [9] games, as
well as games played on pushdown graphs [2]. We opted for these games as they arise

1 Short for “Game Arena Visualization and Synthesis”.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 258–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

GAVS+: An Open Platform for the Research of Algorithmic Game Solving 259

Game type (visualization) Implemented algorithms
Fundamental game Symbolic: (Co-)reachability, Büchi, Weak-parity, Staiger-Wagner

Explicit state: Parity (discrete strategy improvement)
Reduction: Muller, Streett

Concurrent game Sure reachability, Almost-sure reachability, Limit-sure reachability
Pushdown game‡ Reachability (positional min-rank strategy, PDS strategy),

Büchi (positional min-rank strategy), Parity (reduction)
Distributed game Reachability (bounded distributed positional strategy for player-0)
Markov decision process Policy iteration, Value iteration, Linear programming (LP)
Simple stochastic game Shapley (value iteration), Hoffman-Karp (policy iteration)

Fig. 1. Game types and implemented algorithms in GAVS+ (games marked bold are extensions
to the previous version [3]), where ”‡” indicates that visualization is currently not available

either naturally in the context of parallel resp. recursive programs, or a widely used for
systems with uncertainties.

As to goal (ii), one feature amongst newly introduced utilities in GAVS+ is the ability
to be applied to existing planning problems formalized in PDDL (level 1; the STRIPS

fragment) [8]. We consider it as an interesting feature, as it allows researchers in the
verification community to access the huge collection of planning problems coming from
the artificial intelligence (AI) and the robotics community.

Although a large collection of PDDL specific solvers is available, only one tool [7]
is based on a similar approach combining planning and games. Unfortunately, this tool
is not publicly available. Furthermore, the goal of [7] is to “study the application and
extension of planning technology for general game playing” whereas our goal is rather
to allow researchers in the verification community to profit from the rich collection of
models coming from the AI community.

In the rest of the paper, first we give a very brief overview on the newly supported
games, and then illustrate our integration and extension of STRIPS/PDDL into GAVS+.
Due to space limit we only outline two tiny examples using GAVS+; for details and
complete functionalities we refer interested readers to our website.

2 Supported Games in GAVS+

For a complete overview on all supported games we refer the reader to Figure 1, here,
we only give a brief description of the newly added games.

Concurrent games [6] are used to capture the condition when the next location is
based on the combined decision simultaneously made by control and environment.
When considering randomized strategies in reachability games (CRG), efficient algo-
rithms to compute sure, almost-sure, and limit-sure winning regions are available [6].

Stochastic games model systems with uncertainty. The classical model of Markov
decision process (MDP, 1 1

2
-player game) [12] is widely used in economics and ma-

chine learning and considers a single player who has to work against an environment
exhibiting random behavior. Adding an opponent to MDPs, one obtains stochastic (2 1

2
-

player) games [10]. Currently we focus on the subclass of simple stochastic games
(SSG) [5]; many complicated games can be reduced to SSGs or solved by algorithms

260 C.-H. Cheng et al.

similar to algorithms solving SSG. For implemented algorithms for MDP and SSG, we
refer readers to two survey papers [12,5] for details.

Games on pushdown graphs (APDS) arise naturally when recursive programs are
considered. Symbolic algorithms exist for reachability and Büchi winning conditions
[2], and for parity conditions, a reduction2 to two-player, finite-state parity games based
on summarization is possible [2]. An example for the interactive reachability simulation
of an APDS using GAVS+ is illustrated with Figure 2: the user can act as the role of
player-1 (environment) by selecting the rewriting rule, while GAVS+ updates the cost
for the positional min-rank strategy and output the next move for player-0 (control).

Comments used in the .pds file
P0_STATE = {P0}
P1_STATE = {P1}
ALPHABET = {a}
RULE = { P0 a -> P0; P0 a -> P0 a a;

 P1 a -> P0; P1 a -> P0 a}
INIT = { P1 a a}
GOAL = { P0 a a}

Fig. 2. An APDS in textual form and screenshots of the interactive simulation using GAVS

Distributed games [9] are games formulating multiple processes with no interactions
among themselves but only with the environment. Generating strategies for such a game
is very useful for distributed systems, as a strategy facilitates orchestration of interacting
components. Although the problem is undecidable in general [9], finding a distributed
positional strategy for player-0 of such a system (PositionalDG0), if it exists, is a
practical problem. As PositionalDG0 is NP-complete for reachability games [4], we
modify the SAT-based witness algorithms in [1] and implement a distributed version [4]
for bounded reachability games.

3 Extension of STRIPS/PDDL for Game Solving: An Example

To connect the use of games with concrete application domains, GAVS+ offers the
translation scheme from PDDL to symbolic representation of games. Here we consider
a simplified scenario of a robot with two humanoid arms3. For details (game domain
and problem as PDDL files, synthesized strategies), we refer readers to the GAVS+
software package in the website.

– (Fault-free planning) In the case of fault-free planning, GAVS+ reads the normal
PDDL file, performs the forward symbolic search and generates a totally ordered
plan (action sequence) similar to other tools.

2 Currently, as the algorithm introduces an immediate exponential blowup in the graph, it is
difficult to solve the game using the built-in algorithm specified in [11].

3 Motivated by the scenario in our chair: http://www6.in.tum.de/Main/ResearchEccerobot

GAVS+: An Open Platform for the Research of Algorithmic Game Solving 261

– (Fault-tolerant strategy generation) We outline steps for game creation and solv-
ing when faults are introduced in GAVS+ using this example.
1. (Fault modeling) When an arm is out-of-service, the tension over the artificial

muscle is freed, and the object under grasp falls down to the ground (fault-
effect). It is also assumed that for the robot, at most one arm can be out-of-
service during its operation cycle (fault-frequency). The above behavior can be
modeled as a fault action in the PDDL domain.

2. (State Partitioning) Currently in GAVS+, we simply introduce a binary predi-
cate P0TRAN on each action in the domain to partition player-0 and player-1
states and transitions.

3. (Synthesis) By modeling the domain and problem using PDDL, GAVS+ syn-
thesizes strategies to perform tasks while resisting the potential loss of one arm:
the strategy is a FSM outputted to a separate file using Java-like formats.

References

1. Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games.
International Journal on Software Tools for Technology Transfer (STTT) 7(2), 118–128
(2005)

2. Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen (2003)
3. Cheng, C.-H., Buckl, C., Luttenberger, M., Knoll, A.: GAVS: Game arena visualization and

synthesis. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 347–352.
Springer, Heidelberg (2010)

4. Cheng, C.-H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of fault-tolerant embedded systems
using games: From theory to practice. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 118–133. Springer, Heidelberg (2011)

5. Condon, A.: On algorithms for simple stochastic games. Advances in Computational Com-
plexity theory 13, 51–73 (1993)

6. De Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. Theoretical
Computer Science 386(3), 188–217 (2007)

7. Edelkamp, S., Kissmann, P.: Symbolic exploration for general game playing in pddl. In:
ICAPS-Workshop on Planning in Games (2007)

8. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains.
Journal of Artificial Intelligence Research 20(1), 61–124 (2003)

9. Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan, J. (eds.)
FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)

10. Shapley, L.: Stochastic games. Proceedings of the National Academy of Sciences of the
United States of America 39, 1095 (1953)

11. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer,
Heidelberg (2000)

12. White, C., et al.: Markov decision processes. European Journal of Operational Re-
search 39(1), 1–16 (1989)

Büchi Store: An Open Repository of

Büchi Automata�

Yih-Kuen Tsay, Ming-Hsien Tsai, Jinn-Shu Chang, and Yi-Wen Chang

Department of Information Management, National Taiwan University, Taiwan

Abstract. We introduce the Büchi Store, an open repository of Büchi
automata for model-checking practice, research, and education. The repos-
itory contains Büchi automata and their complements for common spec-
ification patterns and numerous temporal formulae. These automata are
made as small as possible by various construction techniques, in view that
smaller automata are easier to understand and often help in speeding up
the model-checking process. The repository is open, allowing the user to
add new automata or smaller ones that are equivalent to some existing au-
tomaton. Such a collection of Büchi automata is also useful as a benchmark
for evaluating complementation or translation algorithms and as examples
for studying Büchi automata and temporal logic.

1 Introduction

Büchi automata [1] are finite automata operating on infinite words. They play a
fundamental role in the automata-theoretic approach to linear-time model check-
ing [20]. In the approach, model checking boils down to testing the emptiness
of an intersection automaton A∩B¬ϕ, where A is a Büchi automaton modeling
the system and B¬ϕ is another Büchi automaton representing all behaviors not
permitted by a temporal specification formula ϕ. In general, for a given system,
the smaller B¬ϕ is, the faster the model-checking process may be completed.

To apply the automata-theoretic approach, an algorithm for translating a tem-
poral formula into an equivalent Büchi automaton is essential. There has been a
long line of research on such translation algorithms, aiming to produce smaller
automata. According to our experiments, none of the proposed algorithms out-
performs the others for every temporal formula tested. The table below shows a
comparison of some of the algorithms for three selected cases.

Formula LTL2AUT[4] Couvreur[3] LTL2BA[5] LTL2Buchi[6] Spin[7]
state tran. state tran. state tran. state tran. state tran.

¬p W q 4 16 3 12 3 12 3 12 4 16
�(p→ �q) 4 30 3 20 6 41 3 20 4 28
��p ∨��q 8 38 5 28 5 28 5 28 3 12

� This work was supported in part by National Science Council, Taiwan, under the
grant NSC97-2221-E-002-074-MY3.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 262–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Büchi Store: An Open Repository of Büchi Automata 263

Given that smaller automata usually expedite the model-checking process, it
is certainly desirable that one is always guaranteed to get the smallest possible
automaton for (the negation of) a specification formula. One way to provide
the guarantee is to try all algorithms or even manual construction and take
the best result. This simple-minded technique turns out to be feasible, as most
specifications use formulae of the same patterns and the tedious work of trying
all alternatives needs only be done once for a particular pattern instance.

To give the specification as a temporal formula sometimes may not be practical,
if not impossible (using quantification over propositions). When the specification
is given directly as an automaton, taking the complement of the specification au-
tomaton becomes necessary. Consequently, in parallel with the research on trans-
lation algorithms, there has also been substantial research on algorithms for Büchi
complementation. The aim again is to produce smaller automata.

Several Büchi complementation algorithms have been proposed that achieve
the lower bound of 2Ω(n log n) [11]. However, the performances of these “optimal”
algorithms differ from case to case, sometimes quite dramatically. The table
below shows a comparison of some of the complementation algorithms for four
selected Büchi automata (identified by equivalent temporal formulae). In the
literature, evaluations of these algorithms usually stop at a theoretical-analysis
level, partly due to the lack of or inaccessibility to actual implementations. This
may be remedied if a suitable set of benchmark cases becomes available and
subsequent evaluations are conducted using the same benchmark.

Formula Safra[13] Piterman[12] Rank-Based[9,14] Slice-Based[8]
state tran. state tran. state tran. state tran.

�(p→ �(q ∧�r)) 76 662 90 777 96 917 219 2836
��(−�p→ q) 35 188 13 62 13 72 24 119
�(p→ p U (q U r)) 17 192 8 76 7 54 7 49
p U q ∨ p U r 5 34 5 34 8 23 3 12

The Büchi Store was thus motivated and implemented as a website, accessible
at http://buchi.im.ntu.edu.tw. One advantage for the Store to be on the
Web is that the user always gets the most recent collection of automata. Another
advantage is that it is easily made open for the user to contribute better (smaller)
automata. The initial collection contains over six hundred Büchi automata. In
the following sections we describe its implementation and main features, suggest
three use cases, and then conclude by highlighting directions for improvement.

2 Implementation and Main Features

The basic client-server interactions in accessing the Büchi Store are realized by
customizing the CodeIgniter [2], which is an open-source Web application frame-
work. To perform automata and temporal formulae-related operations, such as
equivalence checking and formula to automaton translation, the Store relies on
the GOAL tool [19] and its recent extensions. One particularly important (and
highly nontrivial) task is the classification of temporal formulae that identify

264 Y.-K. Tsay et al.

the Büchi automata in the Store into the Temporal Hierarchy of Manna and
Pnueli [10]. To carry out the task automatically, we implemented the classifica-
tion algorithm described in the same paper, which is based on characterization
of a Streett automaton equivalent to the temporal formula being classified.

The main features of the current Büchi Store include:

– Search: Every automaton in the Store is identified by a temporal formula
(in a variant of QPTL [15,16], which is expressively equivalent to Büchi au-
tomata). The user may find the automata that accept a particular language
by posing a query with an equivalent temporal formula. Propositions are au-
tomatically renamed to increase matches (semantic matching between whole
formulae is not attempted due to its high cost). This is like asking for a trans-
lation from the temporal formula into an equivalent Büchi automaton. A big
difference is that the answer automata, if any, are the best among the re-
sults obtained from a large number of translation algorithms, enhanced with
various optimization techniques such as simplification by simulation [17] or
even manually optimized (and machine-checked for correctness).

– Browse: The user may browse the entire collection of Büchi automata by
having the collection sorted according to temporal formula length, number
of states, class in the Temporal Hierarchy, or class in the Spec Patterns [18].
While classification in the Temporal Hierarchy has been automated, the
classification for the last sorting option has not. Rather, the Store relies on
the user to provide suggestions, based on which a final classification could
be made. This may be useful for educational purposes.

– Upload: The user may upload a Büchi automaton for a particular temporal
formula. The automaton is checked for correctness, i.e., if it is indeed equiv-
alent to the accompanying temporal formula. If it is correct and smaller
than the automata for the formula in the Store, the repository is updated
accordingly, keeping only the three smallest automata.

3 Use Cases

We describe three cases that we expect to represent typical usages of the Store.

– Linear-time model checking: The user may shop in the Store for the
automata that are equivalent (with probable propositions renaming) to the
negations of the temporal formulae which he wants to verify. The automata
may be downloaded in the Promela format, for model checking using Spin.

– Benchmark cases for evaluating complementation algorithms: Ev-
ery Büchi automaton in the initial collection has a complement, which is
reasonably well optimized. A subset of the collection could serve as a set
of benchmark cases for evaluating Büchi complementation algorithms. This
use case can certainly be adapted for evaluating translation algorithms.

– Classification of temporal formulae: The look of a temporal formula
may not tell immediately to which class it belongs in the Temporal Hierarchy.
It should be educational to practice on the cases that do not involve the

Büchi Store: An Open Repository of Büchi Automata 265

complication of going through Streett automata. For example, �(p → �q)
is a recurrence formula because it is equivalent to ��(¬p B q) (where B
means “back-to”, the past version of wait-for or weak until).

Concluding Remarks. To further improve the Store, first of all, we as the de-
velopers will continue to expand the collection, besides hoping for the user to
do the same. Explanatory descriptions other than temporal formulae should be
helpful additions for searching and understanding. Automatic classification of
temporal formulae into the various specification patterns should also be useful.

References

1. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Int’l
Congress on Logic, Methodology and Philosophy of Science, pp. 1–11 (1962)

2. CodeIgniter, http://codeigniter.com/
3. Couvreur, J.M.: On-the-fly verification of linear temporal logic. In: Woodcock,

J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer,
Heidelberg (1999)

4. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 249–260. Springer, Heidelberg (1999)

5. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

6. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)

7. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

8. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 724–735. Springer, Heidelberg (2008)

9. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408–429 (2001)

10. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC, pp. 377–408.
ACM, New York (1990)

11. Michel, M.: Complementation is more difficult with automata on infinite words.
In: CNET, Paris (1988)

12. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: LICS, pp. 255–264. IEEE, Los Alamitos (2006)

13. Safra, S.: On the complexity of ω-automta. In: FOCS, pp. 319–327. IEEE, Los
Alamitos (1988)

14. Schewe, S.: Büchi complementation made tight. In: STACS, pp. 661–672 (2009)
15. Sistla, A.P.: Theoretical Issues in the Design and Verification of Distributed Sys-

tems. PhD thesis, Harvard (1983)

266 Y.-K. Tsay et al.

16. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. TCS 49, 217–237 (1987)

17. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

18. The Spec Patterns repository, http://patterns.projects.cis.ksu.edu/
19. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Chan, W.-C., Luo, C.-J.: GOAL extended:

Towards a research tool for omega automata and temporal logic. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 346–350. Springer,
Heidelberg (2008)

20. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 332–344. IEEE, Los Alamitos (1986)

QUASY: Quantitative Synthesis Tool

Krishnendu Chatterjee1, Thomas A. Henzinger1,2,
Barbara Jobstmann3, and Rohit Singh4

1 Institute of Science and Technology Austria, Austria
2 École Polytechnique Fédéral de Lausanne, Switzerland

3 CNRS/Verimag, France
4 Indian Institute of Technology Bombay, India

Abstract. We present the tool QUASY, a quantitative synthesis tool. QUASY

takes qualitative and quantitative specifications and automatically constructs a
system that satisfies the qualitative specification and optimizes the quantitative
specification, if such a system exists. The user can choose between a system that
satisfies and optimizes the specifications (a) under all possible environment be-
haviors or (b) under the most-likely environment behaviors given as a probability
distribution on the possible input sequences. QUASY solves these two quantitative
synthesis problems by reduction to instances of 2-player games and Markov De-
cision Processes (MDPs) with quantitative winning objectives. QUASY can also
be seen as a game solver for quantitative games. Most notable, it can solve lexico-
graphic mean-payoff games with 2 players, MDPs with mean-payoff objectives,
and ergodic MDPs with mean-payoff parity objectives.

1 Introduction

Quantitative techniques have been successfully used to measure quantitative proper-
ties of systems, such as timing, performance, or reliability (cf. [1,9,2]). We believe that
quantitative reasoning is also useful in the classically Boolean contexts of verification
and synthesis because they allow the user to distinguish systems with respect to “soft
constraints” like robustness [4] or default behavior [3]. This is particularly helpful in
synthesis, where a system is automatically derived from a specification, because the
designer can use soft constraints to guide the synthesis tool towards a desired imple-
mentation.

QUASY1 is the first synthesis tool taking soft constraints into account. Soft con-
straints are specified using quantitative specifications, which are functions that map
infinite words over atomic propositions to a set of values. Given a (classical) qualitative
specification ϕ and a quantitative specification ψ over signals I ∪O, the tool constructs
a reactive system with input signals I and output signals O that satisfies ϕ (if such a
system exists) and optimizes ψ either under the worse-case behavior [3] or under the
average-case behavior [7] of the environment. The average-case behavior of the envi-
ronment can be specified by a probability distribution μ of the input sequences.

In summary, QUASY is the first tool for quantitative synthesis, both under adversarial
environment as well as probabilistic environment. The underlying techniques to achieve

1 http://pub.ist.ac.at/quasy/

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 267–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

268 K. Chatterjee et al.

2-player lex.
mean-payoff

solver

2-player
mean-payoff

solver

1 1
2 -player

mean-payoff
solver

1 1
2 -player

mean-payoff
parity solver

Safety
automaton

Lex. mean-payoff
automaton

Mean-payoff
automaton

Input
distribution

Parity
automaton

Not realizable/Mealy machine/Two mealy machines

Q
U
A
S
Y

Formula

Goal

Mean-payoff
automaton

. . . Mean-payoff
automaton

Specification combinatorsQUASY

Fig. 1. Overview of input/output structure

s0 s1

gi w1

¬gi ri w0

¬gi w0

gi w1
¬gi ¬ri w1

Fig. 2. An automaton re-
warding a quick response to
Client i

k Spec Game System Time(s)

3 8 35 4 0.81
4 16 97 8 1.64
5 32 275 16 3.43
6 64 793 32 15.90
7 128 2315 64 34.28

Fig. 3. Results for MDPs

quantitative synthesis are algorithms to solve two-player games and MDPs with quan-
titative objectives. QUASY is the first tool that solves lexicographic mean-payoff games
and ergodic MDPs with mean-payoff parity objectives.

2 Synthesis from Combined Specifications

QUASY handles several combinations of qualitative and quantitative specifications. We
give a brief description of the input format the tool expects. Then, we summarize the
implemented combinations (see Figure 1 for an overview) and give some results.

Specifications. QUASY accepts qualitative specifications given as deterministic safety
or parity automaton in GOAL2 format. LTL properties can be translated into the re-
quired format using GOAL. Quantitative properties are specified by (lexicographic)
mean-payoff automata. A mean-payoff automaton A is a deterministic automaton with
weights on edges that maps a word v to the average over the weights encountered along
the run of A on v. Lexicographic mean-payoff automata [3] are a generalization of
mean-payoff automata. They map edges to tuples of weights. Figure 2 shows a mean-
payoff automaton with alphabet 2{ri,gi} in the accepted format (GOAL). Labels of the
form wk, for k ∈ N, state that the edge has weight k. E.g., the edge from state s0 to
s1 labeled ¬gi ¬ri w1 states that if ri and gi are false, then we can follow this edge
and encoder a weight of 1. QUASY can combine a set of mean-payoff automata to (i)
a lexicographic mean-payoff automaton or (ii) a mean-payoff automaton representing
the sum of the weights.

Optimality. The user can choose between two modes: (1) the construction of a
worst-case optimal system, or (2) the construction of an average-case optimal sys-
tem. In the latter case, the user needs to provide a text file that assigns to each state of the

2 GOAL is a graphical tool for manipulating Büchi automata and temporal formulae. It is avail-
able at http://goal.im.ntu.edu.tw/. We use it as graphical front-end for QUASY.

QUASY: Quantitative Synthesis Tool 269

specification a probability distribution over the possible input values. For states that do
not appear in the file, a uniform distribution over the input values is assumed.

Combinations and Results. The tool can construct worst-case optimal systems for
mean-payoff and lexicographic mean-payoff specifications combined with safety spec-
ifications. For the average-case, QUASY accepts mean-payoff specifications combined
with safety and parity specifications. Figure 3 shows (in Column 5) the time needed
to construct a resource controller for k clients that (i) guarantees mutually exclusive
access to the resource and (ii) optimizes the reaction time in a probabilistic environ-
ment, in which clients with lower id are more likely to send requests than clients with
higher id. The quantitative specifications were built from k copies of the automaton
shown in Figure 2. Column 2-4 in Figure 3 show the size of the specifications, the
size of the corresponding game graphs, and the size of the final Mealy machines, re-
spectively. These specifications were also used for preliminary experiments reported
in [7]. QUASY significantly improves these runtimes, e.g., from 5 minutes to 16 sec-
onds for game graphs with 800 states (6 clients). We provide more examples and results
at http://pub.ist.ac.at/quasy/

3 Implementation Details

QUASY is implemented in the programming language SCALA[10] with an alternative
mean-payoff MDP solver in C++. It transforms the input specifications into a game
graph. States are represented explicitly. Labels are stored as two pairs of sets pos and
neg corresponding to the positive and negative literals, respectively, for both input and
output alphabets to facilitate efficient merging and splitting of edges during the game
transformations. The games are solved using one of the game solvers described below.
If a game is winning for the system, QUASY constructs a winning strategy, transforms
it into a reactive system, and outputs it in GOAL format.

Two-Player Mean-Payoff Games. For two-player games with mean-payoff objec-
tives, we have implemented the value iteration algorithm of [12]. The algorithm
runs in steps. In every step k, the algorithm computes for each state s the minimal
reward rk player system can obtain within the next k steps starting from state s
independent of the choice of the other player. The reward is the sum of the weights
seen along the next k steps. The k-step value vk, obtained by dividing the reward
rk by k, converges to the actual value of the game. After n3 · W steps, where n is
the size of the state space and W is the maximal weight, the k-step value uniquely
identifies the value of the game [12]. Since the theoretical bound can be large and
the value often converges before the theoretical bound is reached, we implemented
the following early stopping criteria. The actual value of a state is a rational e

d
with

d ∈ {1, . . . , n} and e ∈ {1, . . . , d · W}, and it is always in a n·W
k -neighbourhood

of the approximated value vk [12]. So, we can fix the value of a state, if, for all
d, there is only one integer in the interval [d · (vk − n·W

k
), d · (vk + n·W

k
)] and

the integers obtained by varying d correspond to the same rational number. Fix-
ing the value of these states, leads to a faster convergence. We implemented this
criterion alternatively also by storing all possible values in an array and performing

270 K. Chatterjee et al.

a binary search for a unique value. This method requires more memory but increases
the speed of checking convergence.

Two-Player Lexicographic Mean-Payoff Games. For two-player lexicographic mean-
payoff games, we have implemented three variants of value iterations. First, a straight
forward adaption of the reduction described in [3]: given a lexicographic weight func-
tion −→w with two components −→w |1 and −→w |2, we construct a single weight function w
defined by w = c · −→w |1 + −→w |2, where the constant c = n2 ·W + 1 depends on the
maximal weight W in −→w |2 and the number n of states of the automaton. The other two
variants keep the components separately and iterate over tuples. In the second version,
we add the tuples component-wise and compare two tuples by evaluating them as a sum
of successive division by powers of the base c. This avoids handling large integers but
requires high precision. In the third version, we use the following addition modulo c on
tuples to obtain a correct value iteration:

(
a1

a2

)
+

(
b1
b2

)
=

(
a1 + b1 + ((a2 + b2) div c)

(a2 + b2) mod c

)
.

We use lexicographic comparison because in many cases we do not need to compare
all components to decide the ordering between two tuples. Furthermore, it allows us to
handle large state spaces and large weights, which would lead to an overflow otherwise.

MDPs with Mean-Payoff and Mean-Payoff-Parity Objective. For ergodic MDPs
with mean-payoff-parity objective, we implemented the algorithm described in [7].
QUASY produces two mealy machines A and B as output: (i) A is optimal wrt the
mean-payoff objective and (ii) B almost-surely satisfies the parity objective. The actual
system corresponds to a combination of the two mealy machines based on inputs from
the environment switching over from one mealy machine to another based on a counter
as explained in [7]. For MDPs with mean-payoff, QUASY implements the strategy im-
provement algorithm (cf. [8], Section 2.4) using two different methods to compute an
improvement step of the algorithm: (i) Gaussian elimination that requires the complete
probability matrix to be stored in memory (works well for dense and small game graphs)
and (ii) GMRES iterative sparse matrix equation solver (works very well for sparse and
large game graphs with optimizations as explained in [6]). The strategy for parity ob-
jective is computed using a reverse breadth first search from the set of least even-parity
states ensuring that in every state we choose an action which shortens the distance to a
least even-parity state.

4 Future Work

We will explore different directions to improve the performance of QUASY. In partic-
ular, a recent paper by Brim and Chaloupka [5] proposes a set of heuristics to solve
mean-payoff games efficiently. It will be interesting to see if these heuristics can be ex-
tended to lexicographic mean-payoff games. Furthermore, Wimmer et al. [11] recently
developed an efficient technique for solving MDP with mean-payoff objectives based
on combining symbolic and explicit computation. We will investigate if symbolic and
explicit computations can be combined for MDPs with mean-payoff parity objectives
as well.

QUASY: Quantitative Synthesis Tool 271

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation and model
checking join forces. Commun. ACM 53(9) (2010)

2. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL imple-
mentation secrets. In: Formal Techniques in Real-Time and Fault Tolerant Systems (2002)

3. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis
through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

4. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In:
FMCAD (2009)

5. Brim, L., Chaloupka, J.: Using strategy improvement to stay alive. CoRR, 1006.1405 (2010)
6. Černý, P., Chatterjee, K., Henzinger, T., Radhakrishna, A., Singh, R.: Quantitative synthesis

for concurrent programs. Technical Report IST-2010-0004, IST Austria (2010)
7. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing sys-

tems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

8. Feinberg, E.A., Shwartz, A.: Handbook of Markov Decision Processes: Methods and Appli-
cations. Springer, Heidelberg (2001)

9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verifi-
cation of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp.
441–444. Springer, Heidelberg (2006)

10. The Scala programming language, http://www.scala-lang.org/
11. Wimmer, R., Braitling, B., Becker, B., Hahn, E.M., Crouzen, P., Hermanns, H., Dhama, A.,

Theel, O.: Symblicit calculation of long-run averages for concurrent probabilistic systems.
In: QEST (2010)

12. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput.
Sci. 158(1-2), 343–359 (1996)

Unbeast: Symbolic Bounded Synthesis�

Rüdiger Ehlers

Reactive Systems Group
Saarland University

Abstract. We present Unbeast v.0.6, a tool for synthesising finite-
state systems from specifications written in linear-time temporal logic
(LTL). We combine bounded synthesis, specification splitting and sym-
bolic game solving with binary decision diagrams (BDDs), which allows
tackling specifications that previous tools were typically unable to han-
dle. In case of realizability of a given specification, our tool computes
a prototype implementation in a fully symbolic way, which is especially
beneficial for settings with many input and output bits.

1 Introduction

Specification engineering is known to be a tedious and error-prone task. During
the development of complex systems, the early versions of the specifications for
the individual parts of the system often turn out to be incomplete or unrealisable.
In order to effectively detect such problems early in the development cycle,
specification debugging tools have been developed.

One particularly well-known representative of this class are synthesis tools for
reactive systems. These take lists of input and output bits and a temporal logic
formula in order to check whether there exists a reactive system reading from
the specified input signals and writing to the given output signals that satisfies
the specification. In case of a positive answer, they also generate a finite-state
representation of such a system. Then, by simulating the resulting system and
analysing its behaviour, missing constraints in the specification can often be
found.

In this work, we report on the Unbeast tool, which performs this task for
specifications written in linear-time temporal logic (LTL). By combining the
merits of the bounded synthesis approach [7] with using binary decision dia-
grams (BDDs) as the symbolic reasoning backbone and the idea of splitting the
specification into safety and non-safety parts, we achieve competitive computa-
tion times in the synthesis process. Our approach extracts implementations for
realisable specifications in a fully symbolic manner, which is especially fruitful
for systems with many input and output bits. As a consequence, even in the
development of comparably complex systems that typically fall into this class,
our tool is applicable to at least the initial versions of a successively built speci-
fication, despite the fact that the synthesis problem is 2EXPTIME-complete.
� This work was partially supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 272–275, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Unbeast: Symbolic Bounded Synthesis 273

2 Tool Description

Input language: The tool takes as input XML files that provide all informa-
tion necessary for the synthesis process. We assume that the specification of
the system has the form (a1 ∧ . . . ∧ an) → (g1 ∧ . . . ∧ gm), where each of
a1, . . . , an, g1, . . . , gm is an LTL formula. Such formulas are typical for cases
in which a component of a larger system is to be synthesised: the assumptions
a1, . . . , an represent the behaviour of the environment that the system can as-
sume, whereas the guarantees g1, . . . , gn reflect the obligations that the system
to be synthesised needs to fulfil.

Tool output: In case of a realisable specification, a system implementation in
form of a NuSMV [2] model is produced (if wanted). Alternatively, the user has
the possibility to run a simulation of a system satisfying the specification, where
the user provides the input to the system. If the specification is unrealisable, the
roles in the simulation are swapped – the tool then demonstrates interactively
which environment behaviour leads to a violation of the specification.

2.1 Technology

The Unbeast v.0.6 tool implements the synthesis techniques presented in [7,3].
We use the library Cudd v.2.4.2 [8] for constructing and manipulating BDDs
during the synthesis process. We constrain its automatic variable reordering
feature by enforcing that predecessor and successor variables in the transition
relation are pairwise coupled in the ordering.

The first step is to determine which of the given assumptions and guarantees
are safety formulas. In order to detect also simple cases of pathological safety
[6], this is done by computing an equivalent Büchi automaton using the external
LTL-to-Büchi converter ltl2ba v.1.1 [5] and examining whether all maximal
strongly connected components in the computed automaton do not have infinite
non-accepting paths. We take special care of bounded look-ahead safety formulas:
these are of the form G(ψ) for the LTL globally operator G and some formula
ψ in which the only temporal operator allowed is the next-time operator. They
are immediately identified as being safety formulas.

In a second step, for the set of bounded look-ahead assumptions and the set of
such guarantees, we build two safety automata for their respective conjunctions.
Both of them are represented in a symbolic way, i.e., we allocate predecessor and
successor state variables that encode the last few input/output bit valuations and
compute a transition relation for this automaton in BDD form. For the remaining
safety assumptions and guarantees, safety automata are built by taking the Büchi
automata computed in the previous step and applying a subset construction for
determinisation in a symbolic manner. For the remaining non-safety parts of the
specification, a combined universal co-Büchi automaton is computed by calling
ltl2ba again.

In the next phase, the given specification is checked for realisability. Here, for
a successively increasing so-called bound value, the bounded synthesis approach
[7] is performed by building a safety automaton from the co-Büchi automaton

274 R. Ehlers

Table 1. Running times (in seconds) of Unbeast v.0.6 and Acacia v.0.3.9.9 on
the load balancing case study on a Sun XFire computer with 2.6 Ghz AMD Opteron
processors running an x64-version of Linux. All tools considered are single-threaded.
We restricted the memory usage to 2 GB and set a timeout of 3600 seconds.

Tool Setting / # Clients 2 3 4 5 6 7 8 9

A
1

+ 0.4 + 0.5 + 0.7 + 0.9 + 1.4 + 2.7 + 5.5 + 12.7
U+S + 0.0 + 0.1 + 0.0 + 0.0 + 0.1 + 0.1 + 0.1 + 0.1
U−S + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.1 + 0.1

A
1 ∧ 2

+ 0.4 + 0.4 + 0.4 + 0.5 + 0.6 + 0.9 + 1.6 + 3.0
U+S + 0.0 + 0.1 + 0.0 + 0.0 + 0.0 + 0.0 + 0.1 + 0.1
U−S + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.0 + 0.1

A
1 ∧ 2 ∧ 3

- 21.8 - 484.3 timeout timeout timeout memout memout timeout
U - 0.1 - 0.1 - 0.1 - 0.1 - 0.3 - 1.0 - 6.8 - 73.2

A
1 ∧ 2 ∧ 4

+ 0.7 + 1.4 + 8.5 memout memout memout memout timeout
U+S + 0.2 + 0.3 + 1.0 + 35.5 + 214.1 timeout timeout timeout
U−S + 0.1 + 0.2 + 0.3 + 2.5 + 3.1 + 11.2 + 48.3 + 386.4

A
1 ∧ 2 ∧ 4 ∧ 5

- 148.7 timeout timeout timeout memout memout memout timeout
U - 0.2 - 0.5 - 909.4 timeout timeout timeout timeout timeout

A
6→ 1 ∧ 2 ∧ 4 ∧ 5

- 179.1 timeout timeout timeout memout memout timeout timeout
U - 0.1 - 0.7 - 585.5 timeout timeout timeout timeout timeout

A
6 ∧ 7→ 1 ∧ 2 ∧ 4 ∧ 5

- 182.7 memout timeout timeout timeout timeout timeout timeout
U - 0.2 - 1.5 - 787.9 timeout timeout timeout timeout timeout

A
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8

+ 11.6 + 68.8 + 406.6 memout timeout timeout timeout timeout
U+S + 0.1 + 0.4 + 1.4 + 86.6 + 1460.4 timeout timeout timeout
U−S + 0.1 + 0.2 + 0.4 + 3.7 + 3.9 + 17.7 + 84.1 + 1414.3

A
6 ∧ 7→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

- 41.0 - 1498.9 timeout memout timeout timeout timeout timeout
U - 0.1 - 0.1 - 0.2 - 0.9 - 15.8 - 427.9 timeout timeout

A
6 ∧ 7 ∧ 10→ 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

+ 67.5 + 660.1 memout timeout timeout timeout timeout timeout
U+S + 0.3 + 2.2 + 36.0 + 899.3 timeout timeout timeout timeout
U−S + 0.2 + 0.6 + 11.6 + 16.9 + 1222.2 timeout timeout timeout

for the non-safety part of the specification and solving the safety games induced
by a special product of the automata involved [3].

Finally, if the specification is found to be realisable (i.e., the game computed
in the previous phase is winning for the player representing the system to be syn-
thesised), the symbolic representation of the winning states of the system is used
to compute a prototype implementation satisfying the specification. Intuitively,
this is done by constructing a circuit that keeps track of the current position in
the game and computes a transition to another winning position whose input
matches the one observed after each computation cycle. At the same time, the
output labelling along the transition is used as the output for the system. For
this computation, only the BDD representation of the winning positions is used.

3 Experimental Results

We use a load balancing system [3] as our case study. The specification is sup-
posed to be successively built by an engineer who applies a synthesis tool after
each modification of the specification. The setting is parametrised by the number
of servers the balancer is meant to work for. For some number of servers n ∈ IN,
the load balancer has n+ 1 input bits and n output bits.

Table 1 surveys the results. The individual assumptions and guarantees in the
specification are numbered as in [3]. For example, the setting 6 → 1 ∧ 2 ∧ 4 ∧ 5

Unbeast: Symbolic Bounded Synthesis 275

corresponds to a specification with the assumption no. 5 and the guarantees
no. 2, 4, and 6. For every setting, the table describes whether the specification
was found to be realisable (“+”) or not (“−”) and the running times for the
Acacia v.0.3.9.9 [4] tool (abbreviated by “A”) and Unbeast (abbreviated
by “U”). Both tools can only check for either realisability or unrealisabilty at a
time. Thus, we ran them for both cases concurrently and only report the running
times of the instances that terminated with a positive answer. For realisable
specifications, for our tool, we distinguish between the cases that a system is to
be synthesised (“+S“) or just realisability checking is to be performed (”−S“).
We did not configure Acacia to construct an implementation.

4 Conclusion

We presented Unbeast, a tool for the synthesis of reactive systems from LTL
specifications. In the experimental evaluation, we compared our tool against
Acacia on a case study from [3] and found it to be faster in all cases, some-
times even orders of magnitude. For academic purposes, the tool can freely be
downloaded from http://react.cs.uni-saarland.de/tools/unbeast.

Especially when only realisability of a specification is to be checked, the BDD-
based bounded synthesis approach turns out to work well. However, it can be
observed that extracting a prototype implementation significantly increases the
computation time. This is in line with the findings in [1], where the same ob-
servation is made in the context of synthesis from a subset of LTL. We see this
as a strong indication that the problem of extracting winning strategies from
symbolically represented games requires further research.

References

1. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. ENTCS 190(4), 3–16 (2007)

2. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

3. Ehlers, R.: Symbolic bounded synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)

4. Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

5. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

6. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

7. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

8. Somenzi, F.: CUDD: CU Decision Diagram package release 2.4.2 (2009)

Abstractions and Pattern Databases:
The Quest for Succinctness and Accuracy

Sebastian Kupferschmid and Martin Wehrle

University of Freiburg
Department of Computer Science

Freiburg, Germany
{kupfersc,mwehrle}@informatik.uni-freiburg.de

Abstract. Directed model checking is a well-established technique for detect-
ing error states in concurrent systems efficiently. As error traces are important
for debugging purposes, it is preferable to find as short error traces as possible.
A wide spread method to find provably shortest error traces is to apply the A∗

search algorithm with distance heuristics that never overestimate the real error
distance. An important class of such distance estimators is the class of pattern
database heuristics, which are built on abstractions of the system under consid-
eration. In this paper, we propose a systematic approach for the construction of
pattern database heuristics. We formally define a concept to measure the accuracy
of abstractions. Based on this technique, we address the challenge of finding ab-
stractions that are succinct on the one hand, and accurate to produce informed pat-
tern databases on the other hand. We evaluate our approach on large and complex
industrial problems. The experiments show that the resulting distance heuristic
impressively advances the state of the art.

1 Introduction

When model checking safety properties of large systems, the ultimate goal is to prove
the system correct with respect to a given property. However, for practically relevant
systems, this is often not possible because of the state explosion problem. Complemen-
tary to proving a system correct, model checking is often used to detect reachable error
states. To be able to debug a system effectively, it is important to have short or prefer-
ably shortest possible error traces in such cases. Directed model checking (DMC) is a
well established technique to find reachable error states in concurrent systems and has
recently found much attention[4, 6, 7, 10, 14, 15, 19–23]. The main idea of DMC is
to focus on those parts of the state space that show promise to contain reachable error
states. Thus, error states can often be found by only exploring a small fraction of the
entire reachable state space. DMC achieves this by applying a distance heuristic that es-
timates for each state encountered during the search the distance to a nearest error state.
These heuristics are usually based on abstractions and computed fully automatically.
One important discipline in DMC is to find optimal, i. e., shortest possible error traces.
This can be achieved by applying an admissible distance heuristic, i. e., a heuristic that
never overestimates the real error distance, with the A∗ search algorithm [8, 9].

An important class of admissible distance heuristics is based on pattern databases
(PDB). They have originally been introduced in the area of Artificial Intelligence [2, 5].

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 276–290, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 277

A pattern in this context is a subset of the variables or the predicates that describe the
original systemM. A PDB is essentially the state space of an abstraction ofM based
on the selected pattern. The heuristic estimate for a state encountered during the model
checking process is the error distance of the corresponding abstract state. The most cru-
cial part in the design of a pattern database heuristic is the choice of the pattern, which
determines the heuristic’s behavior and therefore the overall quality of the resulting
heuristic. Ultimately, one seeks for patterns that are as small as possible to be able to
handle large systems on the one hand. On the other hand, the corresponding abstract
system that is determined by the pattern should be as similar to the original system as
possible to appropriately reflect the original system behavior. This is equivalent to max-
imizing the distance estimates of the pattern database, as higher distance values lead to
more informed admissible heuristics. More precisely, for admissible heuristics h1 and
h2, it is known that A∗ with h1 performs better than with h2 if h1 delivers greater dis-
tance values than h2 [18]. Therefore, it is desirable to have admissible heuristics that
deliver as high distance values as possible.

In this paper, we present downward pattern refinement, a systematic approach to
the pattern selection problem. Complementary to other approaches, we successively
abstract the original system as long as only little spurious behavior is introduced. For
this purpose we developed a suitable notion to measure the similarity of systems which
corresponds to the accuracy of abstractions. This often results in small patterns that
still lead to very informed pattern database heuristics. We demonstrate that downward
pattern refinement is a powerful approach, and we are able to handle large problems
that could not be solved optimally before. In particular, we show that the resulting
pattern database heuristic recognizes many dead end states. Correctly identifying dead
end states is useful to reduce the search effort significantly, since such states can be
excluded from the search process without losing completeness. This even allows us to
efficiently verify correct systems with directed model checking techniques.

The remainder of this paper is structured as follows. Section 2 provides notations
and the necessary background in directed model checking. In Sec. 3 we detail the main
part of our contribution. This is followed by a discussion of related work. Afterwards,
in Sec. 5 we empirically evaluate our approach by comparing it to other state-of-the-art
PDB heuristics. Section 6 concludes the paper.

2 Preliminaries

In this section we introduce the notations used throughout this paper. This is followed
by a short introduction to directed model checking and pattern database heuristics.

2.1 Notation

The approach we are presenting here is applicable to a broad class of transition systems,
including systems featuring parallelism and interleaving, shared variables or binary
synchronization. For the sake of presentation, we decided to define systems rather gen-
erally. The systems considered here consist of parallel processes using a global synchro-
nization mechanism. Throughout this paper, Σ denotes a finite set of synchronization
labels.

278 S. Kupferschmid and M. Wehrle

Definition 1 (Process). A process p = 〈L,L∗, T 〉 is a labeled directed graph, where
L �= ∅ is a finite set of locations,L∗ ⊆ L is a set of error locations, and T ⊆ L×Σ×L
is a set of local transitions.

For a local transition (l, a, l′) ∈ T we also write l
a−→ l′. The systems we are dealing

with are running in lockstep. This means that a process can only perform a local transi-
tion, if all other processes of the system simultaneously perform a local transition with
the same label. In this paper, a system M is just the parallel composition of a finite
number of processes p1, . . . , pn, the components ofM.

Definition 2 (Parallel composition). Let p1, . . . , pn be a finite number of processes
with pi = 〈Li, L

∗
i , Ti〉 for i ∈ {1, . . . , n}. The parallel composition p1 ‖ . . . ‖ pn of

these processes is the process 〈S, S∗, Δ〉, where S = L1×· · ·×Ln, S∗ = L∗1×· · ·×L∗n,
and Δ ⊆ S × Σ × S is a transition relation. There is a transition (l1, . . . , ln) a−→
(l′1, . . . , l

′
n) ∈ Δ, if and only if li

a−→ l′i ∈ Ti for each i ∈ {1, . . . , n}.

Note that parallel composition as defined above is an associative and commutative op-
eration. This gives rise to the following definition of systems.

Definition 3 (System). A system M = {p1, . . . , pn} is a set of processes, the com-
ponents of M. The semantics of M is given as the composite process 〈S, S∗, Δ〉 =
p1 ‖ . . . ‖ pn. We use S(M) and Δ(M) to denote the set of system states and global
transitions, respectively. We denote the set of error states with S∗(M).

To distinguish between local states of an atomic process and the global state of the
overall system, we use the term location for the former and state for the latter. The
problem we address in this paper is the detection of reachable error states s ∈ S∗(M)
for a given systemM. Formally, we define model checking tasks as follows.

Definition 4 (Model checking task). A model checking task is a tuple 〈M, s0〉, where
M is a system and s0 ∈ S(M) is the initial state. The objective is to find a sequence
π = t1, . . . , tn, of transitions, so that ti = si−1

ai−→ si ∈ Δ(M) for i ∈ {1, . . . , n}
and sn ∈ S∗(M).

We call a sequence π of successively applicable transitions leading from s ∈ S(M)
to s′ ∈ S(M) a trace. If s′ ∈ S∗(M), then π is an error trace. The length of a trace,
denoted with ‖π‖, is the number of its transitions, e. g., the length of π from the last
definition is n.

We conclude this section with a short remark on the close correspondence between
solving model checking tasks and the nonemptiness problem for intersections of regular
automata. From this perspective, a system component corresponds to a regular automa-
ton and the error locations correspond to accepting states of the automaton. Parallel
composition corresponds to language intersection. This view is not necessarily useful
for efficiently solving model checking tasks, but it shows that deciding existence of
error traces is PSPACE-complete [11].

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 279

2.2 Directed Model Checking

Directed model checking (DMC) is the application of heuristic search [18] to model
checking. DMC is an explicit search strategy which is especially tailored to the fast
detection of reachable error states. This is achieved by focusing the search on those
parts of the state space that show promise to contain error states. More precisely, DMC
applies a distance heuristic to influence the order in which states are explored. The most
successful distance heuristics are fully automatically generated based on a declarative
description of the given model checking task. A distance heuristic for a system M is
a function h : S(M) → N0 ∪ {∞} which maps each state s ∈ S(M) to an integer,
estimating d(s), the distance from s to a nearest error state in S∗(M). When we want
to stress that h(s) is a heuristic estimate for s ∈ S(M), we write h(s,M). Typically,
heuristics in DMC are based on abstractions, i. e., the heuristic estimate for a states s is
the length of a corresponding error trace in an abstraction ofM. During search, such
a heuristic is used to determine which state to explore next. There are many different
ways how to prioritize states, e. g., the wide-spread methods A∗ [8, 9] and greedy search
[18]. In the former, states are explored by increasing value of c(s) + h(s), where c(s)
is the length of the trace on that state s was reached. If h is admissible, i. e., if it never
overestimates the real error distance, then A∗ is guaranteed to return a shortest possible
error trace. In greedy search, states are explored by increasing value of h(s). This gives
no guarantee on the length of the detected error trace, but tends to explore fewer states
in practice. Figure 1 shows a basic directed model checking algorithm.

1 function dmc(M, h):
2 open = empty priority queue
3 closed = ∅
4 open.insert(s0, priority(s0))
5 while open �= ∅ do:
6 s = open.getMinimum()
7 if s ∈ S∗(M) then:
8 return False
9 closed = closed ∪ {s}

10 for each transition t = s
a−→ s′ ∈ Δ(M) do:

11 if s′ �∈ closed then:
12 open.insert(s′, priority(s′))
13 return True

Fig. 1. A basic directed model checking algorithm

The algorithm takes a systemM and a heuristic h as input. It returns False if there
is a reachable error state, otherwise it returns True. The state s0 is the initial state of
M. The algorithm maintains a priority queue open which contains visited but not yet
explored states. When open.getMinimum is called, open returns a minimum element,
i. e., a state with minimal priority value. States that have been explored are stored in
closed. Every encountered state is first checked if it is an error state. If this is not the
case, its successors are computed. Every successor that has not been visited before is
inserted into open according to its priority value. The priority function depends on the

280 S. Kupferschmid and M. Wehrle

applied version of directed model checking, i. e., if applied with A∗ or greedy search
(cf. [8, 18]). As already mentioned, for A∗, priority(s) returns h(s) + c(s), where c(s)
is the length of the path on which s was reached for the first time. For greedy search, it
simply evaluates to h(s). When every successor has been computed and prioritized, the
process continues with the next state from open with lowest priority value.

2.3 Pattern Database Heuristics

Pattern database (PDB) heuristics [2] are a family of abstraction-based heuristics. Orig-
inally, they were proposed for solving single-agent problems. Today they are one of the
most successful approaches for creating admissible heuristics.

For a given system M = {p1, . . . , pn} a PDB heuristic is defined by a pattern
P ⊆M, i. e., a subset of the components ofM. The pattern P can be interpreted as an
abstraction ofM. To stress that P is an abstraction ofM, we will denote this system
withM|P . It is not difficult to see that this kind of abstraction is a projection, and the
abstract system is an overapproximation ofM. A PDB is built prior to solving the actual
model checking task. For this, the entire reachable state space of the abstract system is
enumerated. Every reachable abstract state is then stored together with its abstract error
distance in some kind of lookup table, the so-called pattern database. Typically, these
distances are computed by a breadth-first search. Note that abstract systems have to
be chosen so that they are much smaller than their original counterparts and hence are
much easier to solve.

When solving the original model checking task with such a PDB, distances of con-
crete states are estimated as follows. A concrete state s is mapped to its corresponding
abstract state s|P ; the heuristic estimate for s is then looked up in the PDB. This is
given formally in the definition of PDB heuristics.

Definition 5 (Pattern database heuristic). LetM be a system and P be a pattern for
M. The heuristic value for a state s ∈ S(M) induced by P is defined as follows:

hP(s) = min{‖π‖ | π is error trace of model checking task 〈M|P , s|P〉},

where s|P is the projection of s onto P .

The main problem with PDB heuristics is the pattern selection problem. The informed-
ness of a PDB heuristic crucially depends on the selected pattern. For instance, if the
selected pattern P contains all processes, i. e., M = M|P , then we obtain a perfect
heuristic, i. e., a heuristic that returns the real error distance for all states of the sys-
tem. On the other hand, since we have to enumerate the reachable abstract state space
exhaustively, which coincides with the concrete one, this exactly performs like blind
breadth-first search. On the other end of an extreme spectrum, the PDB heuristic in-
duced by the empty pattern can be computed very efficiently, but on the negative side,
the resulting heuristic constantly evaluates to zero and thus also behaves like unin-
formed search. Good patterns are somewhere in between and how to find good patterns
is the topic of this paper.

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 281

3 Pattern Selection Based on Downward Refinement

In this section, we describe our approach for the pattern selection that underlies the pat-
tern database heuristic. On the one hand, as the abstract state space has to be searched
exhaustively to build the pattern database, the ultimate goal is to find patterns that lead
to small abstractions to be able to handle large systems. On the other hand, the patterns
should yield abstractions that are as similar to the original system as possible to retain
as much of the original system behavior as possible. An obvious question in this con-
text is the question about similarity: what does it mean for a system to be “similar” to
an abstract system? In Sec. 3.1 and Sec. 3.2, we derive precise, but computationally
hard properties of similarity of abstract systems. Furthermore, based on these consid-
erations, we provide ways to efficiently approximate these notions in practice. Based
on these techniques, we finally describe an algorithm for the pattern selection based on
downward pattern refinement in Sec. 3.3.

3.1 Sufficiently Accurate Distance Heuristics

In this section, we derive a precise measure for abstractions to obtain informed pattern
database heuristics. As already outlined above, the most important question in this con-
text is the question about similarity. At the extreme end of the spectrum of possible ab-
stractions, one could choose a pattern that leads to bisimilar abstractions to the original
system. This yields a pattern database heuristic hP that is perfect, i. e., hP(s) = d(s)
for all states s, where d is the real error distance function. However, apart from being
not feasible in practice, we will see that this condition is stricter than needed for obtain-
ing perfect search behavior. It suffices to require hP(s) = d(s) only for states s that
are possibly explored by A∗. In this context, Pearl [18] gives a necessary and sufficient
condition for a state to be explored by A∗. Consider a model checking task 〈M, s0〉
and let d(s0) denote the length of a shortest error trace ofM. Recall that the priority
function of A∗ is priority(s) = h(s)+ c(s), where c(s) is the length of a shortest trace
from s0 to s. Pearl shows that if priority(s) < d(s0), then s is necessarily explored
by A∗, whereas exploring s implies that priority(s) ≤ d(s0). This gives rise to the
following definition for a distance heuristic to be sufficiently accurate.

Definition 6 (Sufficiently accurate). Let M be a system with shortest error trace
length d(s0), P ⊆ M be a pattern of M, and hP be the pattern database heuristic
for P . If hP(s) = d(s) for all states s with hP(s) + c(s) ≤ d(s0), thenM|P is called
a sufficiently accurate abstraction ofM, and hP is called sufficiently accurate distance
heuristic forM.

Obviously, the requirement for a distance heuristic hP to be sufficiently accurate is
weaker than the requirement hP(s) = d(s) for all possible states. However, with the
results given by Pearl, we still know that A∗ with a sufficiently accurate distance heuris-
tic delivers perfect search behavior, i. e., the same search behavior as that of A∗ with d.
This justifies Def. 6 and is stated formally in the following proposition.

Proposition 1. LetM be a system, hP be a distance heuristic that is sufficiently accu-
rate forM. Then the set of explored states with A∗ applied with d is equal to the set of
explored states of A∗ applied with hP .

282 S. Kupferschmid and M. Wehrle

Proof. The claim follows immediately from the results given by Pearl [18]. As hP is
sufficiently accurate, we know that for every state s that is possibly explored by A∗

applied with hP it holds hP(s) = d(s). Therefore, the behavior of A∗ with d and hP is
identical.

As a first and immediate result of the above considerations, it suffices to have patterns
that lead to sufficiently accurate distance heuristics to obtain perfect search behavior
with A∗. On the one hand, this notion is intuitive and reasonable. On the other hand, it is
still of rather theoretical nature. It should be obvious that a sufficiently accurate heuristic
is hard to compute as it relies on exact error distances d; as a side remark, if d was
given, the overall model checking problem would be already solved, and there would
be no need to compute a pattern database heuristic. However, Def. 6 also provides a
first intuitive way for approximating this property, an approximation which is described
next.

According to Def. 6, an abstractionM|P is sufficiently accurate if hP(s) = d(s) for
all states s that are possibly explored by A∗. In this case, the pattern database heuristic
based on M|P is sufficiently accurate for M. For the following considerations, note
that hP(s) = d(s|P ,M|P), and therefore, a direct way to approximate this test is to
use a distance heuristic h instead of d. This is reasonable as distance heuristics are
designed exactly for the purpose of approximating d, and various distance heuristics
have been proposed in the directed model checking literature. Furthermore, as checking
all states that are possibly explored by A∗ is not feasible either, we check this property
only for the initial system state. This is the only state for which we know a priori that
it is explored by A∗. Overall, this gives rise to the following definition of relatively
accurate abstractions.

Definition 7 (Relatively accurate). Let 〈M, s0〉 be a model checking task with system
M and initial state s0. Further, let P ⊆ M be a pattern ofM, and let M|P be the
corresponding abstraction to P with abstract initial state s0|P . Furthermore, let h be a
distance heuristic, h(s0,M) the distance estimate of s0 ∈ S(M), and h(s0|P ,M|P)
the distance estimate of s0|P ∈ S(M|P). If

h(s0,M) = h(s0|P ,M|P),

thenM|P is called the relatively accurate abstraction ofM induced by h and P .

Obviously, the quality of this approximation strongly depends on the quality of the ap-
plied distance heuristic h. We want to emphasize that, according to the above definition,
we apply a second distance heuristic h to determine our pattern database heuristic hP .
In the experimental section, we will see that even this rather simple approximation of
sufficient accurateness yields very informed abstract systems for sophisticated h.

3.2 Concretizable Traces and Safe Abstractions

In addition to the criterion from the last section, we derive a sufficient criterion for a
distance heuristic to be sufficiently accurate that is still weaker than the requirement
hP(s) = d(s) for all states s. It is based on the observation that abstract systems where
every spurious error trace is longer than d(s0) are not harmful. This is stated formally
in the following proposition.

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 283

Proposition 2. LetM be a system, P ⊆M be a pattern such that every spurious error
trace π in the corresponding abstractionM|P is longer than a shortest possible error
trace inM, i. e., ‖π‖ > d(s0). Then hP is sufficiently accurate forM.

Proof. First, recall that hP(s) ≤ d(s) for all states s ∈ S(M) because M|P is an
overapproximation ofM. We show that hP(s) + c(s) > d(s0) for all states s ∈ S(M)
with hP(s) < d(s). Assume hP(s) < d(s) for a state s ∈ S(M). Let s|P ∈ S(M|P)
be the corresponding abstract state to s. As hP(s) < d(s), there is an abstract trace πP
that is spurious and contains s|P . As all spurious error traces are longer than d(s0) by
assumption, we have ‖πP‖ > d(s0). Therefore, ‖πP‖ = cP(s|P) + dP(s|P) > d(s0),
where cP(s|P) denotes the length of a shortest abstract trace from the initial abstract
state to s|P , and dP(s|P) denotes the abstract error distance of s|P ∈ S(M|P). As
dP(s|P) = hP(s) and c(s) ≥ cP(s|P), we have c(s) + hP(s) > d(s0).

Again, identifying abstractions with the property given by the above proposition is com-
putationally hard as it relies on checking all possible spurious error traces. In the fol-
lowing, we show that a subclass of abstractions for a slightly stronger condition can be
identified efficiently. To be more precise, we focus on abstractions that only introduce
spurious error traces that can be concretized in the following sense.

Definition 8 (Concretizable Trace). Let M be a system, P ⊆ M be a pattern, and
M|P be the corresponding abstraction of M. Let πP = t#1 , . . . , t

#
n be an abstract

error trace ofM|P with corresponding concrete transitions t1, . . . , tn ofM. Let πP
be spurious, i. e., t1, . . . , tn is not a concrete error trace ofM. The error trace πP is
concretizable inM if and only if there is a concrete error trace

π = π0, t1, π1, t2, π2, . . . , πn−1, tn, πn

inM that embeds t1, . . . , tn. The πi are traces inM with ‖πi‖ ≥ 0, for i ∈ {0, . . . , n}.

Informally speaking, an abstract trace πP in M|P is concretizable in M if there is
a concrete trace inM so that the corresponding abstract trace inM|P is equal to πP .
Note that from the above definition, concretizable error traces are a subclass of spurious
error traces; as a side remark, these are exactly those error traces that preserve dead-ends
inM, i. e., states from which no error state is reachable. In the following, we focus on
finding abstractions that do not introduce error traces that are not concretizable. We
observe that safe abstraction is an effective technique for this purpose.

Safe abstraction for directed model checking has been introduced by Wehrle and
Helmert [21]. Essentially, processes identified by safe abstraction can change their lo-
cations independently of and without affecting any other process, and every possible
location is reachable. We briefly give the formal definitions in the following, starting
with the notion of independent processes.

Definition 9 (Independent process). LetM be a system and let p ∈ M be a process.
Process p = 〈L,L∗, T 〉 is independent inM if for every (l1, a, l2) ∈ T with l1 �= l2
and every process 〈L′, L∗′, T ′〉 = p′ ∈ M \ {p}, the following two conditions hold:
For every l′ ∈ L′, there is (l′, a, l′′) ∈ T ′, and for every (l′, a, l′′) ∈ T ′: l′ = l′′.

284 S. Kupferschmid and M. Wehrle

According to the above definition, independent processes p can change their locations
independently of the current locations of other processes, and changing locations in
p has no side effect on other processes either. Based on this notion, we define safe
processes as follows.

Definition 10 (Safe process). LetM be a system and let 〈L,L∗, T 〉 = p ∈ M be a
process. Process p is safe inM if p is independent inM, and for all locations l, l′ ∈ L
there is a sequence of local transitions in T that leads from l to l′, i. e., p is strongly
connected.

Safe processes can be efficiently identified by an analysis of the system processes’
causal dependencies. Wehrle and Helmert exploited this property by performing di-
rected model checking directly on the safe abstracted system. Corresponding abstract
error traces inM|P have been finally extended to a concrete error trace inM. Doing
so, however, is not optimality preserving: shortest abstract error traces inM|P may not
correspond to any shortest error trace inM.

In this work, we use safe abstraction in a different context, namely to select patterns
for a pattern database. For the following proposition, we assume without loss of gener-
ality that for every process p the target location set for p is not empty, and each label
a that occurs in a transition of any process also occurs in a transition of p. Under these
assumptions, every abstract error trace can be concretized. This is summarized in the
following proposition. A proof is given by Wehrle and Helmert [21].

Proposition 3. LetM be a system and let p ∈ M be a safe process ofM. Let P =
M\{p} be the pattern obtained by removing p fromM, andM|P be the corresponding
abstract system. Then every abstract error trace inM|P is concretizable.

We observe that under the assumptions of Prop. 3, the set of unconcretizable abstract
error traces is empty, and of course, so is the set of shorter or equally long abstract
traces {πP | πP is not concretizable and ‖πP‖ ≤ d(s0)}. In other words, abstract-
ing safe variables does not introduce error traces that are longer than d(s0) and are
not concretizable. We observe that safe abstraction provides an effective technique to
approximate Prop. 2, where the condition of spuriousness is strengthened to concretiz-
ablility. The causal analysis required for safe abstraction can be done statically, is cheap
to compute, and identifies processes that have the property that corresponding abstract
systems approximate the conditions of Prop. 2. At this point, we emphasize again that
we do not claim to introduce safe abstraction; however, we rather apply this technique
for a different purpose than it was originally introduced.

Overall, based on the computationally hard notion of sufficiently accurate distance
heuristics and Prop. 2, we have introduced ways to find abstract systems that are similar
to the original system. Based on these techniques, we propose an algorithm for the
pattern selection in the next section.

3.3 An Algorithm for Pattern Selection Based on Downward Refinement

In this section, we put the pieces together. So far, we have identified the notion of suf-
ficiently accurate abstractions, and proposed techniques for approximating these con-
cepts. Based on these techniques, we introduce an algorithm for the pattern selection

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 285

1 function dpr(M, s0, h):
2 P :=M\ {p | p safe process inM}
3 for each p ∈ P do:
4 if h(s0,M) = h(s0|P\{p},M|P\{p}) then:
5 P := P \ {p}
6 goto 3
7 return P

Fig. 2. The downward pattern refinement algorithm

which we call downward pattern refinement. It starts with the full pattern, and itera-
tively refines it as long as the confidence is high enough that the resulting abstraction
yields an informed pattern database. The algorithm is shown in Figure 2.

Roughly speaking, the overall approach works as follows. We start with the pattern
that contains all system processes. In this case, the resulting pattern database heuristic
would deliver perfect search behavior. However, as we have already discussed, such
systems usually become too huge and cannot be handled in general due to the state
explosion problem. Therefore, we iteratively remove processes such that the resulting
abstraction is still similar to the original system.

We start with identifying all processes that do not introduce error traces that are not
concretizable. Therefore, we remove all processes that are safe according to the safe
abstraction approach (line 2). From the resulting abstract systemM|P , we iteratively
remove processes p that lead to relatively accurate abstractions for the given distance
heuristic h, i. e., for which the distance estimate of the initial abstract state does not
decrease (lines 3–6). In particular, in line 4, we check for the current abstractionM|P
if it can be further abstracted without reducing the distance estimation provided by h.
The search stops when no more processes can be removed without decreasing h, i. e.,
when a fixpoint is reached. Termination is guaranteed after at most |P| iterations as we
remove one process from the pattern in each iteration. We finally return the obtained
pattern (line 7). We remark that the order in which the processes are considered may in-
fluence the resulting pattern. However, in our experiments, we observed that the pattern
is invariant with respect to this order.

4 Related Work

Directed model checking has recently found much attention in different versions to
efficiently detect error states in concurrent systems [4, 6, 7, 10, 14, 15, 19–23]. In the
following, we give a very brief comparison of downward pattern refinement with other
PDB heuristics. Overall, they mainly differ from our approach in the pattern selection
scheme. The hrd heuristic [15] uses a counterexample-guided pattern selection scheme,
where those variables that occur in a certain abstract error trace are selected. The pattern
selection mechanism of the hcoi heuristic [19] is based on a cone of influence analysis.
It is based on the idea that variables that occur “closer” to those variables of the property
are more important than other ones. The hpa heuristic [10] splits a system into several
parts and uses predicate abstraction to build a PDB heuristic for each of the parts. The
resulting heuristic is the sum of all these heuristics.

286 S. Kupferschmid and M. Wehrle

Further admissible non-PDB heuristics are the hL and haa heuristics. The underlying
abstraction of the haa heuristic [4] is obtained by iteratively replacing two components
of a system by an overapproximation of their cross product. The hL heuristic is based
on the monotonicity abstraction [14]. The main idea of this abstraction is that variables
are set-valued and these sets grow monotonically over transition application. In the
following section, we will provide an experimental comparison of these heuristics with
our approach.

5 Evaluation

We have implemented downward pattern refinement into our model checker MCTA [16]
and empirically evaluated its potential on a range of practically relevant systems com-
ing from an industrial case study. We call the resulting heuristic hdpr . We compare it
with various other admissible distance heuristics as implemented in the directed model
checking tools UPPAAL/DMC [13] and MCTA.

5.1 Implementation Details

As outlined in the preliminaries, we chose our formalism mainly to ease presentation.
Actually, our benchmarks are modeled as timed automata consisting of finitely many
parallel automata with clocks and bounded integer variables. The downward pattern
refinement algorithm works directly on timed automata. In a nutshell, automata and in-
teger variables correspond to processes in our formalism. As it is not overly important
how abstractions of timed automata systems are built, we omit a more detailed descrip-
tion here for lack of space. We remark that this formalism is handled as in Kupferschmid
et al.’s Russian doll approach [15].

To identify relatively accurate abstractions, we use the (inadmissible) hU heuristic
[14] for the following reasons. First, it is one of MCTA’s fastest to compute heuristics for
this purpose. This is an important property since the heuristic is often called for different
patterns during the downward pattern refinement procedure. Second, among MCTA’s
fastest heuristics, the hU heuristic is the most informed one. The more informed a
heuristic is the better it is suited for the evaluation of patterns. As in the computation
of the hU heuristic clocks are ignored, we always include all clocks from the original
system in the selected pattern. By doing so, the resulting hdpr is able to reason about
clocks. We will come back to this in Sec. 6.

To identify safe variables, each automaton and each bounded integer variable corre-
sponds essentially to a process p in the sense of Def. 1. Both kinds of processes can be
subject to safe abstraction as described in Sec. 3.2.

5.2 Experimental Setup

We evaluate the hdpr distance heuristic with A∗ search by comparing it with other dis-
tance heuristics implemented in MCTA or UPPAAL/DMC. In more details, we compare
to hrd , hcoi , hpa , haa and hL heuristics as described in the related work section. Fur-
thermore, we compare to UPPAAL’s1 breadth-first search (BFS) as implemented in the

1 http://www.uppaal.com/

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 287

current version (4.0.13). Note that we do not compare our method with inadmissible
heuristics like the hU heuristic, as we do not necessarily get shortest error traces when
applied with A∗. All experiments have been performed on an AMD Opteron 2.3 GHz
system with 4 GByte of memory.

As benchmarks, we use the Single-tracked Line Segment case study, which comes
from an industrial project partner of the UniForM-project [12]. The case study models
a distributed real-time controller for a segment of tracks where trams share a piece of
track. A distributed controller has to ensure that never two trams are simultaneously in
the critical section driving in different directions. The controller was modeled in terms
of PLC automata [3], which is an automata-like notation for real-time programs. With
the tool MOBY/RT [17], we transformed the PLC automata system into abstractions
of its semantics in terms of timed automata [1]. For the evaluation of our approach we
chose the property that never both directions are given permission to enter the shared
segment simultaneously. We use three problem families to evaluate our approach, de-
noted with C, D, and E. They have been obtained by applying different abstractions
to the case study. For each of them, we constructed nine models of increasing size by
decreasing the number of abstracted variables. Note that all these problems are very
large. The number of variables in the C instances ranges from 15 to 28, the number
of automata ranges from 5 to 10. The corresponding numbers in the D problems range
from 29 to 54 (variables) and from 7 to 13 (automata). The E instances have 44 to 54
variables and 9 to 13 automata. We injected an error into the C andD examples by ma-
nipulating an upper time bound. The E instances are correct with respect to the chosen
property.

5.3 Experimental Results

Our experimental results are presented in Table 1. We compare hdpr with the other
heuristics and UPPAAL’s breadth-first search (BFS) in terms of total runtime (including
the preprocessing to build the pattern database for the PDB heuristics) and in terms
of number of explored concrete states during the actual model checking process. The
results are impressive. Most strikingly, hdpr is the only heuristic that is able to solve
every (erroneous and correct) problem instance. Looking a bit more closely, we also
observe that hdpr is always among the fastest approaches. In the C instances, only hrd

is faster, whereas in the smaller D instances, hdpr outperforms the other approaches
except for D1. The larger D instances cannot be handled by any of the other heuristics
at all. Moreover, we observe that the pruning power of hdpr is high, and hence, we
are able to verify correct systems that are even out of scope for the current version
of UPPAAL. In many cases, the initial system state s0 is already evaluated to infinity;
this means that there is provably no concrete error trace from s0 and there is no need
to search in the concrete system at all. In particular, this results in a total number of
explored states of zero. We will discuss these points in more details in the next section.

5.4 Directed Model Checking for Correct Systems?

As outlined in the introduction, directed model checking is tailored to the fast detec-
tion of reachable error states. The approach is sound and complete as only the order is

288 S. Kupferschmid and M. Wehrle

Table 1. Experimental results for A∗ search. Abbreviations: “runtime”: overall runtime including
any preprocessing in seconds, “explored states”: number of explored states before an error state
was encountered or the instance was proven correct, dashes indicate out of memory (> 4 GByte)

runtime in s explored states trace
Inst. hdpr hrd hcoi hpa haa hL BFS hdpr hrd hcoi hpa haa hL BFS length

erroneous instances

C1 1.8 0.7 0.6 1.1 0.1 0.1 0.2 55 130 130 7088 8649 8053 21008 54
C2 2.3 1.0 1.6 1.2 0.4 0.2 0.4 55 89813 187 15742 21719 21956 55544 54
C3 2.2 0.6 2.6 1.2 0.4 0.4 0.6 55 197 197 15586 28753 24951 74791 54
C4 2.5 0.7 23.4 2.2 1.9 2.3 5.3 253 1140 466 108603 328415 170325 553265 55
C5 2.6 0.9 223.9 6.8 12.6 18.2 46.7 1083 7530 2147 733761 2.5e+6 1.2e+6 4.0e+6 56

C6 4.1 0.8 227.4 53.6 176.2 165.2 464.7 2380 39436 6229 7.4e+6 2.5e+7 1.0e+7 3.4e+7 56
C7 3.7 1.3 227.7 – – – – 3879 149993 16357 – – – – 56
C8 3.7 1.3 182.3 – – – – 5048 158361 16353 – – – – 56
C9 3.3 1.3 – – – – – 12651 127895 – – – – – 57

D1 5.9 81.1 217.6 9.0 2.3 28.0 76.6 2450 4.6e+6 414 475354 2.6e+6 888779 4.1e+6 78
D2 6.7 218.5 213.5 35.6 11.5 134.0 458.4 4401 4223 4223 2.5e+6 1.4e+6 4.0e+6 2.2e+7 79
D3 6.7 222.7 215.0 36.3 11.8 152.3 466.5 4713 2993 2993 2.5e+6 1.4e+6 4.6e+6 2.2e+7 79

D4 7.1 218.7 216.3 27.9 9.9 79.7 404.4 979 2031 2031 2.0e+6 1.3e+6 2.4e+6 1.8e+7 79
D5 48.9 – – – – – – 75631 – – – – – – 102
D6 52.6 – – – – – – 255486 – – – – – – 103
D7 55.5 – – – – – – 131275 – – – – – – 104
D8 52.6 – – – – – – 22267 – – – – – – 104

D9 55.3 – – – – – – 11960 – – – – – – 105

error-free instances

E1 5.9 – 1.5 1.6 0.2 0.3 0.3 0 – 59210 22571 24842 18533 43108 n/a
E2 23.4 – – 91.6 65.7 140.1 157.0 0 – – 6.1e+6 6.4e+6 4.6e+6 1.1e+7 n/a

E3 53.1 – – – – – – 1 – – – – – – n/a
E4 156.1 – – – – – – 1 – – – – – – n/a
E5 158.0 – – – – – – 0 – – – – – – n/a
E6 161.9 – – – – – – 0 – – – – – – n/a
E7 168.1 – – – – – – 0 – – – – – – n/a

E8 172.8 – – – – – – 13 – – – – – – n/a
E9 180.1 – – – – – – 0 – – – – – – n/a

influenced in which the states are explored. However, one may wonder why a technique
that influences the order of explored states is also capable of efficiently proving a sys-
tem correct. The answer is that admissible distance heuristics like hdpr , i. e., heuristics
h with h(s) ≤ d(s) for all states s and the real error distance function d, also admit
pruning power in the following sense. If h(s) = ∞ for an admissible heuristic h and a
state s, then there is no abstract error trace that starts from the corresponding abstract
state of s. Therefore, s can be pruned without losing completeness because d(s) =∞ as
well, as there is no concrete error trace starting from s either. Therefore, the absence of
error states might be shown without actually exploring the entire reachable state space.
In our experiments, we observe that hdpr is very successful for this purpose as well.
This is caused by the suitable abstraction found by our downward refinement algorithm
that preserves much of the original system behavior. The other distance heuristics do not
perform as well in this respect. This is either because the underlying abstraction is too
coarse (and hence, not many states are recognized that can be pruned), or it is too large

Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy 289

such that no pattern database could be built because of lack of memory. Obviously, the
abstractions of hdpr identify a sweet spot of the trade-off to be as succinct as possible
on the one hand, and as accurate as possible on the other hand.

6 Conclusions

We have introduced an approach to find abstractions and to build pattern database
heuristics by systematically exploiting a tractable notion of system similarity. Based
on these techniques, we presented a powerful algorithm for selecting patterns based
on downward refinement. The experimental evaluation shows impressive performance
improvements compared to previously proposed, state-of-the-art distance heuristics on
a range of large and complex real world problems. In particular, we have learned that
directed model checking with admissible distance heuristics can also be successfully
applied to verify correct systems. For both erroneous and correct systems, we are able
to solve very large problems that could not be optimally solved before. Overall, we
observe that directed model checking with abstraction based distance heuristics faces
similar problems as other (abstraction based) approaches to solve model checking tasks.
In all these areas, the common problem is to find abstractions that are both succinct and
accurate. This is also reflected in the future work, where it will be interesting to fur-
ther investigate the class of pattern database heuristics and, in particular, to find suitable
abstractions for pattern databases. In this context, counterexample-guided abstraction
refinement could serve as a technique to further push our approach. Moreover, for the
class of timed automata, we expect that the development of heuristics that consider
clocks in the computation of heuristic values (rather than ignoring them) will improve
our approach as such heuristics are better suited for the evaluation of patterns.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
2. Culberson, J.C., Schaeffer, J.: Pattern databases. Comp. Int. 14(3), 318–334 (1998)
3. Dierks, H.: Time, Abstraction and Heuristics – Automatic Verification and Planning of Timed

Systems using Abstraction and Heuristics. Habilitation Thesis, University of Oldenburg,
Germany (2005)

4. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving
abstractions. STTT 11(1), 27–37 (2009)

5. Edelkamp, S.: Planning with pattern databases. In: Proc. ECP, pp. 13–24 (2001)
6. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the

validation of communication protocols. STTT 5(2), 247–267 (2004)

290 S. Kupferschmid and M. Wehrle

7. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.: Survey on
directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS,
vol. 5348, pp. 65–89. Springer, Heidelberg (2009)

8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of min-
imum cost paths. IEEE Trans. Systems Science and Cybernetics 4(2), 100–107 (1968)

9. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to a formal basis for the heuristic determi-
nation of minimum cost paths. SIGART Newsletter 37, 28–29 (1972)

10. Hoffmann, J., Smaus, J.-G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using predi-
cate abstraction to generate heuristic functions in UPPAAL. In: Edelkamp, S., Lomuscio, A.
(eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 51–66. Springer, Heidelberg (2007)

11. Kozen, D.: Lower bounds for natural proof systems. In: Proc. FOCS, pp. 254–266. IEEE
Computer Society, Los Alamitos (1977)

12. Krieg-Brückner, B., Peleska, J., Olderog, E.R., Baer, A.: The UniForM workbench, a uni-
versal development environment for formal methods. In: Woodcock, J.C.P., Davies, J. (eds.)
FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)

13. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski, A.,
Behrmann, G.: UPPAAL/DMC – abstraction-based heuristics for directed model checking.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 679–682. Springer,
Heidelberg (2007)

14. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuris-
tic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp.
35–52. Springer, Heidelberg (2006)

15. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll
abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
203–217. Springer, Heidelberg (2008)

16. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than UPPAAL? In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer, Heidelberg (2008)

17. Olderog, E.R., Dierks, H.: Moby/RT: A tool for specification and verification of real-time
systems. J. UCS 9(2), 88–105 (2003)

18. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, Reading (1984)

19. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic
pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
497–511. Springer, Heidelberg (2004)

20. Smaus, J.-G., Hoffmann, J.: Relaxation refinement: A new method to generate heuristic func-
tions. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 147–
165. Springer, Heidelberg (2009)

21. Wehrle, M., Helmert, M.: The causal graph revisited for directed model checking. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 86–101. Springer, Heidelberg (2009)

22. Wehrle, M., Kupferschmid, S.: Context-enhanced directed model checking. In: van de Pol,
J., Weber, M. (eds.) Model Checking Software. LNCS, vol. 6349, pp. 88–105. Springer,
Heidelberg (2010)

23. Wehrle, M., Kupferschmid, S., Podelski, A.: Transition-based directed model checking. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 186–200. Springer,
Heidelberg (2009)

The ACL2 Sedan Theorem Proving System

Harsh Raju Chamarthi, Peter Dillinger, Panagiotis Manolios, and Daron Vroon

College of Computer and Information Science
Northeastern University

360 Huntington Ave., Boston MA 02115, USA
{harshrc,pcd,pete}@ccs.neu.edu, daron.vroon@gmail.com

Abstract. The ACL2 Sedan theorem prover (ACL2s) is an Eclipse plug-
in that provides a modern integrated development environment, supports
several modes of interaction, provides a powerful termination analysis
engine, and includes fully automatic bug-finding methods based on a
synergistic combination of theorem proving and random testing. ACL2s
is publicly available and open source. It has also been used in several
sections of a required freshman course at Northeastern University to
teach over 200 undergraduate students how to reason about programs.

1 Introduction

ACL2 is a powerful system for integrated modeling, simulation, and theorem
proving [5,4,6]. Think of ACL2 as a finely-tuned racecar. In the hands of experts,
it has been used to prove some of the most the complex theorems ever proved
about commercially designed systems. Novices, however, tend to have a different
experience: they crash and burn. Our motivation in developing ACL2s, the ACL2
Sedan, was to bring computer-aided reasoning to the masses by developing a
user-friendly system that retained the power of ACL2, but made it possible for
new users to quickly, easily learn how to develop and reason about programs.

Usability is one of the major factors contributing to ACL2’s steep learning
curve. To address the usability problem, ACL2s provides a modern graphical in-
tegrated development environment. It is an Eclipse plug-in that includes syntax
highlighting, character pair matching, input command demarcation and classifi-
cation, automatic indentation, auto-completion, a powerful undo facility, various
script management capabilities, a clickable proof-tree viewer, clickable icons and
keybindings for common actions, tracing support, support for graphics develop-
ment, and a collection of session modes ranging from beginner modes to advanced
user modes. ACL2s also provides GUI support for the “method,” an approach
to developing programs and theorems advocated in the ACL2 book [5]. Most of
these features have been described previously, so we will not dwell on them any
further [3].

The other major challenge new users are confronted with is formal reasoning.
A major advantage of ACL2 is that it is based on a simple applicative program-
ming language, which is easy to teach. What students find more challenging is
the ACL2 logic. The first issue they confront is that functions must be shown

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 291–295, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

292 H.R. Chamarthi et al.

to terminate. Termination is used to both guarantee soundness and to introduce
induction schemes. We have developed and implemented Calling-Context Graph
termination analysis (CCG), which is able to automatically prove termination
of the kinds of functions arising in undergraduate classes [7]. However, begin-
ners often define non-terminating functions. A new feature of ACL2s is that it
provides support for the interactive use of CCG analysis. In particular, we pro-
vide termination counterexamples and a powerful interface for users to direct
the CCG analysis. This is described in Section 2.

Once their function definitions are admitted, new users next learn how to rea-
son about such functions, which first requires learning how to specify properties.
We have seen that beginners often make specification errors. ACL2s provides a
new lightweight and fully automatic synergistic integration of testing and the-
orem proving that often generates counterexamples to false conjectures. The
counterexamples allow users to quickly fix specification errors and to learn the
valuable skill of generating correct specifications. This works well pedagogically
because students know how to program, so they understand evaluation. Inval-
idating a conjecture simply involves finding inputs for which their conjecture
evaluates to false. This is similar to the unit testing they do when they develop
programs, except that it is automated. An overview of our synergistic integration
of testing and theorem proving is given in Section 3.

ACL2s has been successfully used to teach novices. We have used ACL2s at
Northeastern University to teach eight sections of a required second-semester
freshman course entitled “Logic and Computation.” The goal of the class is to
teach fundamental techniques for describing and reasoning about computation.
Students learn that they can gain predictive power over the programs they write
by using logic and automated theorem proving. They learn to use ACL2s to
model systems, to specify correctness, to validate their designs using lightweight
methods, and to ultimately prove theorems that are mechanically checked. For
example, students reason about data structures, circuits, and algorithms; they
prove that a simple compiler is correct; they prove equivalence between various
programs; they show that library routines are observationally equivalent; and
they develop and reason about video games.

ACL2s is freely available, open-source, and well supported [1]. Installation
is simple, e.g., we provide prepackaged images for Mac, Linux, and Windows
platforms. In addition, everything described in this paper is implemented and
available in the current version of ACL2s.

2 Termination Analysis Using Calling Context Graphs

Consider the function definitions in Figure 1, where zp is false iff its argument
is a positive integer and expt is exponentiation.

This program was generated by applying weakest precondition analysis to a
triply-nested loop. An expert with over a decade of theorem proving experience

The ACL2 Sedan Theorem Proving System 293

(defun f1 (w r z s x y a b zs)

(if (not (zp z))

(f2 w r z 0 r w 0 0 zs)

(= w (expt r zs))))

(defun f2 (w r z s x y a b zs)

(if (not (zp x))

(f3 w r z s x y y s zs)

(f1 s r (- z 1) 0 0 0 0 0 zs)))

(defun f3 (w r z s x y a b zs)

(if (not (zp a))

(f3 w r z s x y (- a 1) (+ b 1) zs)

(f2 w r z b (- x 1) y 0 0 zs)))

Fig. 1. An interesting termination problem

spent 4–6 hours attempting to construct a measure function that could be used
to prove termination, before giving up. Readers are encouraged to construct
a measure and to mechanically verify it. (It took us about 20 minutes.) We
also tried our CCG termination analysis, as implemented in ACL2s: it proved
termination in under 2 seconds, fully automatically with no user guidance.

We have found that if beginners write a terminating function, our CCG
analysis will almost certainly prove termination automatically. Unfortunately,
beginners often write non-terminating programs, and then want to know why
termination analysis failed. This lead us to develop an algorithm that generates
a simplified version of the user’s program that highlights the reason for the fail-
ure. We call the simplified program that is generated a termination core, and
it corresponds to a single simple cycle of the original program which the CCG
analysis was unable to prove terminating.

The termination core can be seen as an explanation of why the CCG analysis
failed. After examining the termination core, a user has three options. First,
the user can change the function definition. This is the logical course of action
if the loop returned by CCG reveals that the program as defined is really not
terminating. Second, the user can guide the CCG analysis by providing hints
that tell the CCG analysis what local measures to consider. We provide a hint
mechanism for doing this. The user can provide either the CONSIDER hint or
the CONSIDER-ONLY hint. The former tells CCG to add the user-provided local
measures to the local measures it heuristically guesses, while the latter tells CCG
to use only the user-provided local measures. This is an effective means of guiding
CCG if its heuristics fail to guess the appropriate local measures, and is much
simpler than the previous alternative which was to construct a global measure.
Finally, it may be the case that the CCG analysis guessed the appropriate local
measures but was unable to prove the necessary theorems to show that those
measures decrease from one step to the next. In this case, the user can prove the
appropriate lemmas.

The result of integrating CCG with ACL2s is a highly automated, intuitive,
and interactive termination analysis that eases the steep learning curve for new

294 H.R. Chamarthi et al.

users of ACL2 and streamlines the ACL2 development process for expert users.
The ACL2 Sedan includes extensive documentation of CCG analysis.

3 Random Testing and Proving: Synergistic Combination

Users of ACL2 spend much of their time and effort steering the theorem prover
towards proofs of conjectures. During this process users invariably consider con-
jectures that are in fact false. Often, it is difficult even for experts to determine
whether the theorem prover failed because the conjecture is not true or because
the theorem prover needs further user guidance.

ACL2s provides a lightweight method based on the synergistic combination
of random testing [2] and theorem proving, for debugging and understanding
conjectures. This has turned out to be invaluable in helping beginners become
effective users of formal methods. We have integrated random testing into ACL2s
in a deep way: it is enabled by default and requires no special syntax so that
users get the benefit of random testing without any effort on their part.

Since ACL2 formulas are executable, random testing in ACL2 involves ran-
domly instantiating the free variables in a formula and then evaluating the result.
This is a small part of the picture because this naive approach is unlikely to find
counterexamples in all but the simplest of cases. This is especially true in a theo-
rem prover for an untyped logic, like ACL2, where every variable can take on any
value. As might be expected, conjectures typically contain hypotheses that con-
strain variables. Therefore, we randomly instantiate variables subject to these
constraints. We do this by introducing a flexible and powerful data definition
framework in ACL2s which provides support for defining union types, product
types, list types, record types, enumeration types, and mutually-recursive data
definitions. It allows the use of macros inside definitions and supports custom
data definitions (e.g., primes). The data definition framework is integrated with
our random testing framework in several important ways. For example, we guar-
antee that random testing will automatically generate examples that satisfy any
hypothesis restricting the type of a variable.

Complex conjectures often involve many variables with many hypotheses and
intricate propositional structure involving complex hierarchies of user-defined
functions. Testing such conjectures directly is unlikely to yield counterexamples.
We address this by integrating our testing framework with the core theorem
proving engine in a synergistic fashion, using the full power of ACL2 to simplify
conjectures for better testing. The main idea is to let ACL2 use all of the proof
techniques at its disposal to simplify conjectures into subgoals, and to then test
the “interesting” subgoals. This winds up requiring lots of care. For example,
ACL2 employs proof techniques that can generate radically transformed sub-
goals, where variables disappear or are replaced with new variables that are
related to the original variables via certain constraints. Finally, our analysis is
sound, i.e., any counterexamples generated truly are counterexamples to the
original conjecture.

The ACL2 Sedan Theorem Proving System 295

References

1. Chamarthi, H.R., Dillinger, P.C., Manolios, P., Vroon, D.: ACL2 Sedan homepage,
http://acl2s.ccs.neu.edu/

2. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP, pp. 268–279 (2000)

3. Dillinger, P.C., Manolios, P., Vroon, D., Strother Moore, J.: ACL2s: “The ACL2
Sedan”. Electr. Notes Theor. Comput. Sci. 174(2), 3–18 (2007)

4. Kaufmann, M., Manolios, P., Strother Moore, J. (eds.): Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Publishers, Dordrecht (2000)

5. Kaufmann, M., Manolios, P., Strother Moore, J.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, Dordrecht (2000)

6. Kaufmann, M., Strother Moore, J.: ACL2 homepage,
http://www.cs.utexas.edu/users/moore/acl2

7. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg
(2006)

On Probabilistic Parallel Programs with
Process Creation and Synchronisation�

Stefan Kiefer and Dominik Wojtczak

Oxford University Computing Laboratory, UK
{stefan.kiefer,dominik.wojtczak}@comlab.ox.ac.uk

Abstract. We initiate the study of probabilistic parallel programs with dynamic
process creation and synchronisation. To this end, we introduce probabilistic
split-join systems (pSJSs), a model for parallel programs, generalising both prob-
abilistic pushdown systems (a model for sequential probabilistic procedural pro-
grams which is equivalent to recursive Markov chains) and stochastic branching
processes (a classical mathematical model with applications in various areas such
as biology, physics, and language processing). Our pSJS model allows for a pos-
sibly recursive spawning of parallel processes; the spawned processes can syn-
chronise and return values. We study the basic performance measures of pSJSs,
especially the distribution and expectation of space, work and time. Our results
extend and improve previously known results on the subsumed models. We also
show how to do performance analysis in practice, and present two case studies
illustrating the modelling power of pSJSs.

1 Introduction

The verification of probabilistic programs with possibly recursive procedures has been
intensely studied in the last years. The Markov chains or Markov Decision Processes
underlying these systems may have infinitely many states. Despite this fact, which pre-
vents the direct application of the rich theory of finite Markov chains, many positive
results have been obtained. Model-checking algorithms have been proposed for both
linear and branching temporal logics [11,15,23], algorithms deciding properties of sev-
eral kinds of games have been described (see e.g. [14]), and distributions and expecta-
tions of performance measures such as run-time and memory consumption have been
investigated [12,4,5].

In all these papers programs are modelled as probabilistic pushdown systems (pPDSs)
or, equivalently [9], as recursive Markov chains. Loosely speaking, a pPDS is a push-
down automaton whose transitions carry probabilities. The configurations of a pPDS
are pairs containing the current control state and the current stack content. In each step,
a new configuration is obtained from its predecessor by applying a transition rule, which
may modify the control state and the top of the stack.

The programs modelled by pPDSs are necessarily sequential: at each point in time,
only the procedure represented by the topmost stack symbol is active. Recursion, how-
ever, is a useful language feature also for multithreaded and other parallel programming

� The first author is supported by a postdoctoral fellowship of the German Academic Exchange
Service (DAAD). The second author is supported by EPSRC grant EP/G050112/1.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 296–310, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Probabilistic Parallel Programs with Process Creation and Synchronisation 297

languages, such as Cilk and JCilk, which allow, e.g., for a natural parallelisation of
divide-and-conquer algorithms [7,8]. To model parallel programs in probabilistic sce-
narios, one may be tempted to use stochastic multitype branching processes, a classical
mathematical model with applications in numerous fields including biology, physics
and natural language processing [17,2]. In this model, each process has a type, and
each type is associated with a probability distribution on transition rules. For instance,

a branching process with the transition rules X
2/3
↪−−→ {}, X

1/3
↪−−→ {X,Y }, Y 1

↪−→ {X}
can be thought of describing a parallel program with two types of processes, X and Y .
A process of type X terminates with probability 2/3, and with probability 1/3 stays
active and spawns a new process of type Y . A process of type Y changes its type to X .
A configuration of a branching process consists of a pool of currently active processes.
In each step, all active processes develop in parallel, each one according to a rule which
is chosen probabilistically. For instance, a step transforms the configuration 〈XY 〉 into
〈XYX〉 with probability 1

3
· 1, by applying the secondX-rule to the X-process and, in

parallel, the Y -rule to the Y -process.
Branching processes do not satisfactorily model parallel programs, because they lack

two key features: synchronisation and returning values. In this paper we introduce prob-
abilistic split-join systems (pSJSs), a model which offers these features. Parallel spawns
are modelled by rules of the form X ↪−→ 〈Y Z〉. The spawned processes Y and Z de-
velop independently; e.g., a rule Y ↪−→ Y ′ may be applied to the Y -process, replacing
Y by Y ′. When terminating, a process enters a synchronisation state, e.g. with rules
Y ′ ↪−→ q and Z ↪−→ r (where q and r are synchronisation states). Once a process termi-
nates in a synchronisation state, it waits for its sibling to terminate in a synchronisation
state as well. In the above example, the spawned processes wait for each other, until
they terminate in q and r. At that point, they may join to form a single process, e.g.
with a rule 〈qr〉 ↪−→ W . So, synchronisation is achieved by the siblings waiting for each
other to terminate. All rules could be probabilistic. Notice that synchronisation states
can be used to return values; e.g., if the Y -process returns q′ instead of q, this can be
recorded by the existence of a rule 〈q′r〉 ↪−→ W ′, so that the resulting process (i.e.,
W or W ′) depends on the values computed by the joined processes. For the notion of
siblings to make sense, a configuration of a pSJS is not a set, but a binary tree whose
leaves are process symbols (such as X,Y, Z) or synchronisation states (such as q, r). A
step transforms the leaves of the binary tree in parallel by applying rules; if a leaf is not
a process symbol but a synchronisation state, it remains unchanged unless its sibling
is also a synchronisation state and a joining rule (such as 〈qr〉 ↪−→ W) exists, which
removes the siblings and replaces their parent node with the right hand side.

Related work. The probabilistic models closest to ours are pPDSs, recursive Markov
chains, and stochastic branching processes, as described above. The non-probabilistic
(i.e., nondeterministic) version of pSJSs (SJSs, say) can be regarded as a special case
of ground tree rewriting systems, see [19] and the references therein. A configuration
of a ground tree rewriting system is a node-labelled tree, and a rewrite rule replaces
a subtree. The process rewrite system (PRS) hierarchy of [21] features sequential and
parallel process composition. Due to its syntactic differences, it is not obvious whether
SJSs are in that hierarchy. They would be above pushdown systems (which is the se-
quential fragment of PRSs), because SJSs subsume pushdown systems, as we show in

298 S. Kiefer and D. Wojtczak

Section 3.1 for the probabilistic models. Dynamic pushdown networks (DPNs) [3] are a
parallel extension of pushdown systems. A configuration of a DPN is a list of configu-
rations of pushdown systems running in parallel. DPNs feature the spawning of parallel
threads, and an extension of DPNs, called constrained DPNs, can also model joins via
regular expressions on spawned children. The DPN model is more powerful and more
complicated than SJSs. All those models are non-probabilistic.

Organisation of the paper. In Section 2 we formally define our model and provide fur-
ther preliminaries. Section 3 contains our main results: we study the relationship be-
tween pSJSs and pPDSs (Section 3.1), we show how to compute the probabilities for
termination and finite space, respectively (Sections 3.2 and 3.3), and investigate the dis-
tribution and expectation of work and time (Section 3.4). In Section 4 we present two
case studies illustrating the modelling power of pSJSs. We conclude in Section 5. All
proofs are provided in a technical report [18].

2 Preliminaries

For a finite or infinite word w, we write w(0), w(1), . . . to refer to its individual letters.
We assume throughout the paper that B is a fixed infinite set of basic process symbols.
We use the symbols ‘〈’ and ‘〉’ as special letters not contained in B. For an alphabetΣ,
we write 〈ΣΣ〉 to denote the language {〈σ1σ2〉 | σ1, σ2 ∈ Σ} and Σ1,2 to denote
Σ ∪ 〈ΣΣ〉. To a set Σ we associate a set T (Σ) of binary trees whose leaves are la-
belled with elements of Σ. Formally, T (Σ) is the smallest language that contains Σ
and 〈T (Σ)T (Σ)〉. For instance, 〈〈σσ〉σ〉 ∈ T ({σ}).

Definition 1 (pSJS). Let Q be a finite set of synchronisation states disjoint from B
and not containing ‘〈’ or ‘〉’. Let Γ be a finite set of process symbols, such that Γ ⊂
B∪ 〈QQ〉. Define the alphabetΣ := Γ ∪Q. Let δ ⊆ Γ ×Σ1,2 be a transition relation.
Let Prob : δ → (0, 1] be a function so that for all a ∈ Γ we have

∑
a↪−→α∈δ Prob(a ↪−→

α) = 1. Then the tuple S = (Γ,Q, δ,Prob) is a probabilistic split-join system (pSJS).
A pSJS with Γ ∩ 〈QQ〉 = ∅ is called branching process.

We usually write a
p
↪−→ α instead of Prob(a ↪−→ α) = p. For technical reasons we

allow branching processes of “degree 3”, i.e., branching processes where Σ1,2 may be
extended to Σ1,2,3 := Σ1,2 ∪ {〈σ1σ2σ3〉 | σ1, σ2, σ3 ∈ Σ}. In branching processes, it
is usually sufficient to have |Q| = 1.

A Markov chain is a stochastic process that can be described by a triple
M = (D,−→,Prob) whereD is a finite or countably infinite set of states,−→ ⊆ D×D is
a transition relation, and Prob is a function which to each transition s −→ t ofM assigns
its probability Prob(s −→ t) > 0 so that for every s ∈ D we have

∑
s−→t Prob(s −→

t) = 1 (as usual, we write s
x−→ t instead of Prob(s −→ t) = x). A path (or run)

in M is a finite (or infinite, resp.) word u ∈ D+ ∪ Dω , such that u(i−1) −→ u(i)
for every 1 ≤ i < |u|. The set of all runs that start with a given path u is denoted by
Run[M](u) (or Run(u), if M is understood). To every s ∈ D we associate the prob-
ability space (Run(s),F ,P) where F is the σ-field generated by all basic cylinders
Run(u) where u is a path starting with s, and P : F → [0, 1] is the unique proba-

bility measure such that P(Run(u)) = Π
|u|−1
i=1 xi where u(i−1) xi−→ u(i) for every

On Probabilistic Parallel Programs with Process Creation and Synchronisation 299

1 ≤ i < |u|. Only certain subsets of Run(s) are P-measurable, but in this paper
we only deal with “safe” subsets that are guaranteed to be in F . If Xs is a random
variable over Run(s), we write E [Xs] for its expectation. For s, t ∈ D, we define
Run(s↓t) := {w ∈ Run(s) | ∃i ≥ 0 : w(i) = t} and [s↓t] := P (Run(s↓t)).

To a pSJS S = (Γ,Q, δ,Prob) with alphabet Σ = Γ ∪ Q we associate a Markov
chain MS with T (Σ) as set of states. For t ∈ T (Σ), we define Front(t) = a1, . . . , ak
as the unique finite sequence of subwords of t (read from left to right) with ai ∈ Γ for
all 1 ≤ i ≤ k. We write |Front(t)| = k. If k = 0, then t is called terminal. The Markov

chain MS has a transition t
p−→ t′, if: Front(t) = a1, . . . , ak; ai

pi
↪−→ αi are transitions

in S for all i; t′ is obtained from t by replacing ai with αi for all i; and p =
∏k
i=1 pi.

Note that t
1−→ t, if t is terminal. For branching processes of degree 3, the set T (Σ) is

extended in the obvious way to trees whose nodes may have two or three children.
Denote by Tσ a random variable over Run(σ) where Tσ(w) is either the least i ∈ N

such that w(i) is terminal, or ∞, if no such i exists. Intuitively, Tσ(w) is the num-
ber of steps in which w terminates, i.e., the termination time. Denote by Wσ a random
variable over Run(σ) where Wσ(w) :=

∑∞
i=0 |Front(w(i))|. Intuitively, Wσ(w) is

the total work in w. Denote by Sσ a random variable over Run(σ) where Sσ(w) :=
sup∞i=0 |w(i)|, and |w(i)| is the length of w(i) not counting the symbols ‘〈’ and ‘〉’. In-
tuitively, Sσ(w) is the maximal number of processes during the computation, or, short,
the space of w.

Example 2. Consider the pSJS with Γ = {X, 〈qr〉} and Q = {q, r} and the transitions

X
0.5
↪−−→ 〈XX〉, X 0.3

↪−−→ q, X
0.2
↪−−→ r, 〈qr〉 1

↪−→ X . Let u = X 〈XX〉 〈qr〉 X q q. Then

u is a path, because we have X
0.5−−→ 〈XX〉 0.06−−→ 〈qr〉 1−→ X

0.3−−→ q
1−→ q. Note that q is

terminal. The set Run(u) contains only one run, namely w := u(0)u(1)u(2)u(3)u(4)
u(4) · · · . We have P (Run(u)) = 0.5 · 0.06 · 0.3, and TX(w) = 4, WX(w) = 5,
and SX (w) = 2. The dags in Figure 1 graphically represent this run (on the left), and
another example run (on the right) with TX = 3, WX = 5, and SX = 3.

X

X X

q r

X

q

X

X X

q X X

r q

Fig. 1. Two terminating runs

Remark 3. Our definition of pSJSs may be more general than needed from a modelling
perspective: e.g., our rules allow for both synchronisation and splitting in a single step.
We choose this definition for technical convenience and to allow for easy comparisons
with pPDSs (Section 3.1).

300 S. Kiefer and D. Wojtczak

The complexity-theoretic statements in this paper are with respect to the size of the
given pSJS S = (Γ,Q, δ,Prob), which is defined as |Γ | + |Q| + |δ| + |Prob|, where
|Prob| equals the sum of the sizes of the binary representations of the values of Prob.
A formula of ExTh(R), the existential fragment of the first-order theory of the reals, is
of the form ∃x1 . . . ∃xmR(x1, . . . , xn), whereR(x1, . . . , xn) is a boolean combination
of comparisons of the form p(x1, . . . , xn) ∼ 0, where p(x1, . . . , xn) is a multivariate
polynomial and ∼ ∈ {<,>,≤,≥,=, �=}. The validity of closed formulas (m = n)
is decidable in PSPACE [6,22]. We say that one can efficiently express a value c ∈
R associated with a pSJS, if one can, in polynomial space, construct a formula φ(x)
in ExTh(R) of polynomial length such that x is the only free variable in φ(x), and
φ(x) is true if and only if x = c. Notice that if c is efficiently expressible, then c ∼ τ
for τ ∈ Q is decidable in PSPACE for ∼ ∈ {<,>,≤,≥,=, �=}.

For some lower bounds, we prove hardness (with respect to P-time many-one reduc-
tions) in terms of the PosSLP decision problem. The PosSLP (Positive Straight-Line
Program) problem asks whether a given straight-line program or, equivalently, arith-
metic circuit with operations +, −, ·, and inputs 0 and 1, and a designated output gate,
outputs a positive integer or not. PosSLP is in PSPACE. More precisely, it is known
to be on the 4th level of the Counting Hierarchy [1]; it is not known to be in NP. The
PosSLP problem is a fundamental problem for numerical computation; it is complete
for the class of decision problems that can be solved in polynomial time on models with
unit-cost exact rational arithmetic, see [1,15] for more details.

3 Results

3.1 Relationship with Probabilistic Pushdown Systems (pPDSs)

We show that pSJSs subsume pPDSs. A probabilistic pushdown system (pPDS)
[11,12,4,5] is a tuple S = (Γ,Q, δ,Prob), where Γ is a finite stack alphabet, Q is
a finite set of control states, δ ⊆ Q×Γ ×Q×Γ≤2 (where Γ≤2 = {α ∈ Γ ∗, |α| ≤ 2})
is a transition relation, and Prob : δ → (0, 1] is a function so that for all q ∈ Q and
a ∈ Γ we have

∑
qa↪−→rαProb(qa ↪−→ rα) = 1. One usually writes qa

p−→ rα instead
of Prob(qa −→ rα) = p. To a pPDS S = (Γ,Q, δ,Prob) one associates a Markov chain

MS with Q× Γ ∗ as set of states, and transitions q
1−→ q for all q ∈ Q, and qaβ

p−→ rαβ

for all qa
p
↪−→ rα and all β ∈ Γ ∗.

A pPDS SP with ΓP as stack alphabet, QP as set of control states, and transi-

tions
p
↪−→P can be transformed to an equivalent pSJS S: TakeQ := QP ∪ΓP as synchro-

nisation states; Γ := {〈qa〉 | q ∈ QP , a ∈ ΓP } as process symbols; and transitions

〈qa〉 p
↪−→ 〈〈rb〉c〉 for all qa

p
↪−→P rbc, 〈qa〉 p

↪−→ 〈rb〉 for all qa
p
↪−→P rb, and 〈qa〉 p

↪−→ r

for all qa
p
↪−→P r. The Markov chains MSP and MS are isomorphic. Therefore, we

occasionally say that a pSJS is a pPDS, if it can be obtained from a pPDS by this trans-
formation. Observe that in pPDSs, we have T = W, because there is no parallelism.

Conversely, a pSJS S with alphabetΣ = Γ ∪Q can be transformed into a pPDS SP
by “serialising” S: Take QP := {�} ∪ {q | q ∈ Q} as control states; ΓP := Γ ∪Q ∪
{q̃ | q ∈ Q} as stack alphabet; and transitions �a p

↪−→P �σ1σ2 for all a
p
↪−→ 〈σ1σ2〉,

On Probabilistic Parallel Programs with Process Creation and Synchronisation 301

�a p
↪−→P �σ for all a

p
↪−→ σ with σ ∈ Σ \ 〈QQ〉, and �q 1

↪−→P q for all q ∈ Q, and

qσ
1
↪−→P �σq̃ for all q ∈ Q and σ ∈ Σ, and rq̃

1
↪−→P �〈qr〉 for all q, r ∈ Q. The Markov

chains MS and MSP are not isomorphic. However, we have:

Proposition 4. There is a probability-preserving bijection between the runs Run(σ↓q)
in MS and the runs Run(�σ↓q) in MSP . In particular, we have [σ↓q] = [�σ↓q].

For example, the pSJS run on the left side of Figure 1 corresponds to the pPDS run

�X 0.5−−→ �XX 0.3−−→ �qX 1−→ qX
1−→ �Xq̃ 0.2−−→ �rq̃ 1−→ rq̃

1−→ �〈qr〉 1−→ �X 0.3−−→
�q 1−→ q

1−→ q
1−→ . . .

3.2 Probability of Termination

We call a run terminating, if it reaches a terminal tree. Such a tree can be a single syn-
chronisation state (e.g., q on the left of Figure 1), or another terminal tree (e.g., 〈q〈rq〉〉
on the right of Figure 1). For any σ ∈ Σ, we denote by [σ↓] the termination probability
when starting in σ; i.e., [σ↓] =

∑
t is terminal[σ↓t]. One can transform any pSJS S into

a pSJS S′ such that whenever a run in S terminates, then a corresponding run in S′

terminates in a synchronisation state. This transformation is by adding a fresh state q̌,

and transitions 〈rs〉 1
↪−→ q̌ for all r, s ∈ Q with 〈rs〉 �∈ Γ , and 〈q̌r〉 1

↪−→ q̌ and 〈rq̌〉 1
↪−→ q̌

for all r ∈ Q. It is easy to see that this keeps the probability of termination unchanged,
and modifies the random variables Tσ and Wσ by at most a factor 2. Notice that the
transformation can be performed in polynomial time. After the transformation we have
[σ↓] =

∑
q∈Q[σ↓q]. A pSJS which satisfies this equality will be called normalised in

the following. From a modelling point of view, pSJSs may be expected to be normalised
in the first place: a terminating program should terminate all its processes.

We set up an equation system for the probabilities [σ↓q]. For each σ ∈ Σ and
q ∈ Q, the equation system has a variable of the form �σ↓q� and an equation of the
form �σ↓q� = f�σ↓q�, where f�σ↓q� is a multivariate polynomial with nonnegative co-
efficients. More concretely: If q ∈ Q, then we set �q↓q� = 1; if r ∈ Q \ {q}, then we
set �r↓q� = 0; if a ∈ Γ , then we set

�a↓q� =
∑

a
p

↪−→〈σ1σ2〉
〈q1q2〉∈Γ∩〈QQ〉

p · �σ1↓q1� · �σ2↓q2� · �〈q1q2〉↓q� +
∑

a
p

↪−→σ′
σ′∈Σ\〈QQ〉

p · �σ′↓q� .

Proposition 5. Let σ ∈ Σ and q ∈ Q. Then [σ↓q] is the value for �σ↓q� in the least
(w.r.t. componentwise ordering) nonnegative solution of the above equation system.

One can efficiently approximate [σ↓q] by applying Newton’s method to the fixed-point
equation system from Proposition 5, cf. [15]. The convergence speed of Newton’s
method for such equation systems was recently studied in detail [10]. The simpler
“Kleene” method (sometimes called “fixed-point iteration”) often suffices, but can be
much slower. In the case studies of Section 4, using Kleene for computing the termina-
tion probabilities up to machine accuracy was not a bottleneck. The following theorem
essentially follows from similar results for pPDSs:

302 S. Kiefer and D. Wojtczak

Theorem 6 (cf. [13,15]). Consider a pSJS with alphabet Σ = Γ ∪Q. Let σ ∈ Σ and
q ∈ Q. Then (1) one can efficiently express (in the sense defined in Section 2) the value
of [σ↓q], (2) deciding whether [σ↓q] = 0 is in P, and (3) deciding whether [σ↓q] < 1 is
PosSLP-hard even for pPDSs.

3.3 Probability of Finite Space

A run w ∈ Run(σ) is either (i) terminating, or (ii) nonterminating with Sσ < ∞, or
(iii) nonterminating with Sσ = ∞. From a modelling point of view, some programs
may be considered incorrect, if they do not terminate with probability 1. As is well-
known, this does not apply to programs like operating systems, network servers, system
daemons, etc., where nontermination may be tolerated or desirable. Such programs may
be expected not to need an infinite amount of space; i.e., Sσ should be finite.

Given a pSJS S with alphabetΣ = Γ ∪Q, we show how to construct, in polynomial
time, a normalised pSJS S with alphabet Σ = Γ ∪Q ⊇ Σ where Q = Q ∪ {q} for a
fresh synchronisation state q, and P (Sa <∞ = Ta | Run(a)) = [a↓q] for all a ∈ Γ .
Having done that, we can compute this probability according to Section 3.2.

For the construction, we can assume w.l.o.g. that S has been normalised using the
procedure of Section 3.2. Let U := {a ∈ Γ | ∀n ∈ N : P (Sa > n) > 0}.
Lemma 7. The set U can be computed in polynomial time.

Let B := {a ∈ Γ \ U | ∀q ∈ Q : [a↓q] = 0}, so B is the set of process symbols
a that are both “bounded above” (because a �∈ U) and “bounded below” (because a
cannot terminate). By Theorem 6 (2) and Lemma 7 we can compute B in polynomial
time. Now we construct S by modifying S as follows: we set Q := Q ∪ {q} for a fresh
synchronisation state q; we remove all transitions with symbols b ∈ B on the left hand

side and replace them with a new transition b
1
↪−→ q; we add transitions 〈q1q2〉

1
↪−→ q for

all q1, q2 ∈ Q with q ∈ {q1, q2}. We have the following proposition.

Proposition 8. (1) The pSJS S is normalised; (2) the value [a↓q] for a ∈ Γ and q ∈ Q
is the same in S and S; (3) we haveP (Sa <∞ = Ta | Run(a)) = [a↓q] for all a ∈ Γ .

Proposition 8 allows for the following theorem.

Theorem 9. Consider a pSJS with alphabet Σ = Γ ∪ Q and a ∈ Γ . Let s :=
P (Sa <∞). Then (1) one can efficiently express s, (2) deciding whether s = 0 is
in P, and (3) deciding whether s < 1 is PosSLP-hard even for pPDSs.

Theorem 9, applied to pPDSs, improves Corollary 6.3 of [12]. There it is shown for
pPDSs that comparing P (Sa <∞) with τ ∈ Q is in EXPTIME, and in PSPACE if
τ ∈ {0, 1}. With Theorem 9 we get PSPACE for τ ∈ Q, and P for τ = 0.

3.4 Work and Time

We show how to compute the distribution and expectation of work and time of a given
pSJS S with alphabet Σ = Γ ∪Q.

Distribution. For σ ∈ Σ and q ∈ Q, let Tσ↓q(k) := P (Run(σ↓q), Tσ = k | Run(σ)).
It is easy to see that, for k ≥ 1 and a ∈ Γ and q ∈ Q, we have

On Probabilistic Parallel Programs with Process Creation and Synchronisation 303

Ta↓q(k) =
∑

a
p
↪−→〈σ1σ2〉

〈q1q2〉∈Γ∩〈QQ〉

p ·
∑

�1,�2,�3≥0

max{�1,�2}+�3=k−1

Tσ1↓q1 (�1) · Tσ2↓q2(�2) · T〈q1q2〉↓q(�3) +

∑

a
p
↪−→σ′

σ′∈Σ\〈QQ〉

p · Tσ′↓q(k − 1) .

This allows to compute the distribution of time (and, similarly, work) using dynamic
programming. In particular, for any k, one can compute

−→
T σ↓q(k) :=

P (Tσ > k | Run(σ↓q)) = 1− 1
[σ↓q]

∑k
i=0 Tσ↓q(k).

Expectation. For any random variableZ taking positive integers as value, it holds EZ =∑∞
k=0 P (Z > k). Hence, one can approximate E [Tσ | Run(σ↓q)] =

∑∞
k=0

−→
T σ↓q(k)

by computing
∑�
k=0

−→
T σ↓q(k) for large �. In the rest of the section we show how to

decide on the finiteness of expected work and time. It follows from Propositions 10
and 11 below that the expected work E [Wσ | Run(σ↓q)] is easier to compute: it is the
solution of a linear equation system.

We construct a branching process S with process symbols Γ = {�aq� | a ∈ Γ, q ∈
Q, [a↓q] > 0}, synchronisation states Q = {⊥} and transitions as follows. For nota-
tional convenience, we identify ⊥ and �qq� for all q ∈ Q. For �aq� ∈ Γ , we set

– �aq�
y/[a↓q]
↪−−−−→ 〈�σ1q1��σ2q2��〈q1q2〉q�〉 for all a

p
↪−→ 〈σ1σ2〉 and 〈q1q2〉 ∈ Γ∩〈QQ〉,

where y := p · [σ1↓q1] · [σ2↓q2] · [〈q1q2〉↓q] > 0 ;

– �aq�
y/[a↓q]
↪−−−−→ �σ′q� for all a

p
↪−→ σ′ with σ′ ∈ Σ \ 〈QQ〉, where y := p · [σ′↓q] > 0 .

The following proposition (inspired by a statement on pPDSs [5]) links the distribu-
tions of Wσ and Tσ conditioned under termination in q with the distributions of W�σq�

and T�σq�.

Proposition 10. Let σ ∈ Σ and q ∈ Q with [σ↓q] > 0. Then

P (Wσ = n | Run(σ↓q)) = P
(
W�σq� = n | Run(�σq�)

)
for all n ≥ 0 and

P (Tσ ≤ n | Run(σ↓q)) ≤ P
(
T�σq� ≤ n | Run(�σq�)

)
for all n ≥ 0.

In particular, we have [�σq�↓] = 1.

Proposition 10 allows us to focus on branching processes. For X ∈ Γ and a finite
sequence σ1, . . . , σk with σi ∈ Σ, define |σ1, . . . , σk|X := |{i | 1 ≤ i ≤ k, σi = X}|,
i.e., the number of X-symbols in the sequence. We define the characteristic matrix
A ∈ R

Γ×Γ of a branching process by setting

AX,Y :=
∑

X
p

↪−→〈σ1σ2σ3〉

p · |σ1, σ2, σ3|Y +
∑

X
p

↪−→〈σ1σ2〉

p · |σ1, σ2|Y +
∑

X
p

↪−→σ1

p · |σ1|Y .

It is easy to see that the (X,Y)-entry of A is the expected number of Y -processes after
the first step, if starting in a single X-process. If S is a branching process and X0 ∈ Γ ,
we call the pair (S,X0) a reduced branching process, if for all X ∈ Γ there is i ∈ N

such that (Ai)X0,X > 0. Intuitively, (S,X0) is reduced, if, starting in X0, all process

304 S. Kiefer and D. Wojtczak

symbols can be reached with positive probability. If (S,X0) is not reduced, it is easy to
reduce it in polynomial time by eliminating all non-reachable process symbols.

The following proposition characterises the finiteness of both expected work and
expected time in terms of the spectral radius ρ(A) of A. (Recall that ρ(A) is the largest
absolute value of the eigenvalues of A.)

Proposition 11. Let (S,X0) be a reduced branching process. Let A be the associated
characteristic matrix. Then the following statements are equivalent:

(1) EWX0 is finite; (2) ETX0 is finite; (3) ρ(A) < 1 .

Further, if EWX0 is finite, then it equals the X0-component of (I − A)−1 · 1, where I
is the identity matrix, and 1 is the column vector with all ones.

Statements similar to Proposition 11 do appear in the standard branching process lit-
erature [17,2], however, not explicitly enough to cite directly or with stronger assump-
tions1. Our proof adapts a technique which was developed in [4] for a different purpose.
It uses only basic tools and Perron-Frobenius theory, the spectral theory of nonnegative
matrices. Proposition 11 has the following consequence:

Corollary 12. Consider a branching process with process symbols Γ and X0 ∈ Γ .
Then EWX0 and ETX0 are both finite or both infinite. Distinguishing between those
cases is in P.

By combining the previous results we obtain the following theorem.

Theorem 13. Consider a pSJS S with alphabetΣ = Γ ∪Q. Let a ∈ Γ . Then EWa and
ETa are both finite or both infinite. Distinguishing between those cases is in PSPACE,
and PosSLP-hard even for pPDSs. Further, if S is normalised and EWa is finite, one
can efficiently express EWa.

Theorem 13 can be interpreted as saying that, although the pSJS model does not impose
a bound on the number of active processes at a time, its parallelism cannot be used to do
an infinite expected amount of work in a finite expected time. However, the “speedup”
E [W] /E [T] may be unbounded:

Proposition 14. Consider the family of branching processes with transitions X
p
↪−→

〈XX〉 and X
1−p
↪−−→ ⊥, where 0 < p < 1/2. Then the ratio E [WX] /E [TX] is un-

bounded for p→ 1/2.

4 Case Studies

We have implemented a prototype tool in the form of a Maple worksheet, which allows
to compute some of the quantities from the previous section: the termination probabil-
ities, and distributions and expectations of work and time. In this section, we use our
tool for two case studies2, which also illustrate how probabilistic parallel programs can
be modelled with pSJSs. We only deal with normalised pSJSs in this section.

1 For example, [2] assumes that there is n ∈ N such thatAn is positive in all entries, a restriction
which is not natural for our setting.

2 Available at http://www.comlab.ox.ac.uk/people/Stefan.Kiefer/
case-studies.mws

On Probabilistic Parallel Programs with Process Creation and Synchronisation 305

4.1 Divide and Conquer

The pSJS model lends itself to analyse parallel divide-and-conquer programs. For sim-
plicity, we assume that the problem is already given as a binary tree, and solving it
means traversing the tree and combining the results of the children. Figure 2 shows
generic parallel code for such a problem.

function divCon(node)
if node.leaf() then return node.val()
else parallel 〈 val1 := divCon(node.c1), val2 := divCon(node.c2) 〉

return combine(val1, val2)

Fig. 2. A generic parallel divide-and-conquer program

For an example, think of a routine for numerically approximating an integral∫ 1

0
f(x) dx. Given the integrand f and a subinterval I ⊆ [0, 1], we assume that there

is a function which computes oscf (I) ∈ N, the “oscillation” of f in the interval I , a
measure for the need for further refinement. If oscf (I) = 0, then the integration routine
returns the approximation 1 · f(1/2), otherwise it returns I1 + I2, where I1 and I2 are

recursive approximations of
∫ 1/2

0
f(x) dx and

∫ 1

1/2
f(x) dx, respectively.3

We analyse such a routine using probabilistic assumptions on the integrand: Let
n, n1, n2 be nonnegative integers such that 0 ≤ n1+n2 ≤ n. If oscf ([a, b]) = n, then
oscf ([a, (a+b)/2]) = n1 and oscf ([(a+b)/2, b]) = n2 with probabilityx(n, n1, n2) :=(
n
n1

)
·
(
n−n1
n2

)
·
(
p
2

)n1 ·
(
p
2

)n2 · (1−p)n−n1−n2 , where 0 < p < 1 is some parameter.4

Of course, other distributions could be used as well. The integration routine can then be
modelled by the pSJS with Q = {q} and Γ = {〈qq〉, 0, . . . , nmax } and the following
rules:

0
1
↪−→ q and 〈q q〉 1

↪−→ q and n
x(n,n1,n2)
↪−−−−−−−→ 〈n1 n2〉 for all 1 ≤ n ≤ nmax ,

where 0 ≤ n1+n2 ≤ n. (Since we are merely interested in the performance of the
algorithm, we can identify all return values with a single synchronisation state q.)

Using our prototype, we computed E [Wn] and E [Tn] for p = 0.8 and n = 0, 1, . . . ,
10. Figure 3 shows that E [Wn] increases faster with n than E [Tn]; i.e., the parallelism
increases.

4.2 Evaluation of Game Trees

The evaluation of game trees is a central task of programs that are equipped with “ar-
tificial intelligence” to play games such as chess. These game trees are min-max trees
(see Figure 4): each node corresponds to a position of the game, and each edge from a
parent to a child corresponds to a move that transforms the position represented by the

3 Such an adaptive approximation scheme is called “local” in [20].
4 That means, the oscillation n in the interval [a, b] can be thought of as distributed between

[a, (a + b)/2] and [(a + b)/2, b] according to a ball-and-urn experiment, where each of the
n balls is placed in the [a, (a+b)/2]-urn and the [(a+b)/2, b]-urn with probability p/2, re-
spectively, and in a trash urn with probability 1−p.

306 S. Kiefer and D. Wojtczak

0 1 2 3 4 5 6 7 8 9 10

20

40

60

80

E [Tn]

E [Wn]

n

Fig. 3. Expectations of time and work

∨
3

∧
3

∧
≤3

∧
≤2

∨
3

∨
≥3

∨

≥4

∨
3

∨ ∨ ∨
2

∨ ∨

3 2 2 3 4 3 3 1 2 1 1

Fig. 4. A game tree with value 3

parent to a child position. Since the players have opposing objectives, the nodes alter-
nate between max-nodes and min-nodes (denoted ∨ and ∧, respectively). A leaf of a
game tree corresponds either to a final game position or to a position which is evaluated
heuristically by the game-playing program; in both cases, the leaf is assigned a number.
Given such a leaf labelling, a number can be assigned to each node in the tree in the
straightforward way; in particular, evaluating a tree means computing the root value.

In the following, we assume for simplicity that each node is either a leaf or has
exactly three children. Figure 5 shows a straightforward recursive parallel procedure
for evaluating a max-node of a game tree. (Of course, there is a symmetrical procedure
for min-nodes.)

function parMax(node)
if node.leaf() then return node.val()
else parallel 〈 val1 := parMin(node.c1), val2 := parMin(node.c2), val3 := parMin(node.c3) 〉

return max{val1, val2, val3}
Fig. 5. A simple parallel program for evaluating a game tree

Notice that in Figure 4 the value of the root is 3, independent of some missing leaf
values. Game-playing programs aim at evaluating a tree as fast as possible, possibly
by not evaluating nodes which are irrelevant for the root value. The classic technique
is called alpha-beta pruning: it maintains an interval [α, β] in which the value of the

On Probabilistic Parallel Programs with Process Creation and Synchronisation 307

current node is to be determined exactly. If the value turns out to be belowα or above β,
it is safe to returnα or β, respectively. This may be the case even before all children have
been evaluated (a so-called cut-off). Figure 6 shows a sequential program for alpha-beta
pruning, initially to be called “seqMax(root,−∞, +∞)”. Applying seqMax to the tree
from Figure 4 results in several cut-offs: all non-labelled leaves are pruned.

function seqMax(node, α, β)
if node.leaf() then if node.val() ≤ α then return α

elsif node.val() ≥ β then return β
else return node.val()

else val1 := seqMin(node.c1, α, β)
if val1 = β then return β
else val2 := seqMin(node.c2, val1, β)

if val2 = β then return β
else return seqMin(node.c3, val2, β)

Fig. 6. A sequential program for evaluating a game tree using alpha-beta pruning

Although alpha-beta pruning may seem inherently sequential, parallel versions have
been developed, often involving the Young Brothers Wait (YBW) strategy [16]. It relies
on a good ordering heuristic, i.e., a method that sorts the children of a max-node (resp.
min-node) in increasing (resp. decreasing) order, without actually evaluating the chil-
dren. Such an ordering heuristic is often available, but usually not perfect. The tree in
Figure 4 is ordered in this way. If alpha-beta pruning is performed on such an ordered
tree, then either all children of a node are evaluated or only the first one. The YBW
method first evaluates the first child only and hopes that this creates a cut-off or, at
least, decreases the interval [α, β]. If the first child fails to cause a cut-off, YBW spec-
ulates that both “younger brothers“ need to be evaluated, which can be done in parallel
without wasting work. A wrong speculation may affect the performance, but not the
correctness. Figure 7 shows a YBW-based program. Similar code is given in [7] using
Cilk, a C-based parallel programming language.

function YBWMax(node, α, β)
if node.leaf() then if node.val() ≤ α then return α

elsif node.val() ≥ β then return β
else return node.val()

else val1 := YBWMin(node.c1, α, β)
if val1 = β then return β
else parallel 〈 val2 := YBWMin(node.c2, val1, β), val3 := YBWMin(node.c3, val1, β) 〉

return max{val2, val3}
Fig. 7. A parallel program based on YBW for evaluating a game tree

We evaluate the performance of these three (deterministic) programs using proba-
bilistic assumptions about the game trees. More precisely, we assume the following:
Each node has exactly three children with probability p, and is a leaf with probabil-
ity 1−p. A leaf (and hence any node) takes as value a number from N4 := {0, 1, 2, 3, 4},

308 S. Kiefer and D. Wojtczak

according to a distribution described below. In order to model an ordering heuris-
tic on the children, each node carries a parameter e ∈ N4 which intuitively corre-
sponds to its expected value. If a max-node with parameter e has children, then they are
min-nodes with parameters e, e�1, e�2, respectively, where a�b := max{a−b, 0};
similarly, the children of a min-node with parameter e are max-nodes with parame-
ters e, e⊕1, e⊕2, where a⊕b := min{a+b, 4}. A leaf-node with parameter e takes
value k with probability

(
4
k

)
· (e/4)k · (1−e/4)4−k; i.e., a leaf value is binomially

distributed with expectation e. One could think of a game tree as the terminal tree of
a branching process with Γ = {Max (e),Min(e) | e ∈ {0, . . . , 4}} and Q = N4

and the rules Max (e)
p
↪−→ 〈Min(e) Min(e�1) Min(e�2)〉 and Max (e)

x(k)
↪−−→ k, with

x(k) := (1−p)·
(
4
k

)
·(e/4)k ·(1−e/4)4−k for all e, k ∈ N4, and similar rules for Min(e).

We model the YBW-program from Figure 7 running on such random game trees by
the pSJS with Q = {0, 1, 2, 3, 4, q(∨), q(∧)} ∪ {q(α, β,∨, e), q(α, β,∧, e) | 0 ≤ α <
β ≤ 4, 0 ≤ e ≤ 4} ∪ {q(a, b) | 0 ≤ a, b ≤ 4} and the following rules:

Max(α, β, e)
x(0)+···+x(α)
↪−−−−−−−−−→ α, Max (α, β, e)

x(β)+···+x(4)
↪−−−−−−−−−→ β, Max (α, β, e)

x(k)
↪−−→ k

Max(α, β, e)
p
↪−→ 〈Min(α, β, e) q(α, β,∨, e	1)〉

〈β q(α, β,∨, e)〉 1
↪−→ β, 〈γ q(α, β,∨, e)〉 1

↪−→ 〈Max2(γ, β, e) q(∨)〉
Max2(α, β, e)

1
↪−→ 〈Min(α, β, e) Min(α, β, e	1)〉

〈a b〉 1
↪−→ q(a, b), 〈q(a, b) q(∨)〉 1

↪−→ max{a, b} ,

where 0 ≤ α ≤ γ < β ≤ 4 and α < k < β and 0 ≤ e ≤ 4 and 0 ≤ a, b ≤ 4. There are
analogous rules with Min and Max exchanged. Notice that the rules closely follow the
program from Figure 7. The programs parMax and seqMax from Figures 5 and 6 can
be modelled similarly.

Let T (YBW, p) := E
[
TMax(0,4,2) | Run(Max (0, 4, 2)↓2)

]
; i.e., T (YBW, p) is the

expected time of the YBW-program called with a tree with value 2 and whose root is a
max-node with parameter 2. (Recall that p is the probability that a node has children.)
LetW (YBW, p) defined similarly for the expected work, and define these numbers also
for par and seq instead of YBW, i.e., for the programs from Figures 5 and 6. Using our
prototype we computed W (seq, p) = 1.00, 1.43, 1.96, 2.63, 3.50, 4.68, 6.33 for p =
0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. Since the program seq is sequential, we have
the same sequence for T (seq, p). To assess the speed of the parallel programs par and
YBW, we also computed the percentaged increase of their runtime relative to seq, i.e.,
100 ·(T (par, p)/T (seq, p)−1), and similarly for YBW. Figure 8 shows the results. One
can observe that for small values of p (i.e., small trees), the program par is slightly faster
than seq because of its parallelism. For larger values of p, par still evaluates all nodes in
the tree, whereas seq increasingly benefits from cut-offs of potentially deep branches.
Using Proposition 11, one can prove W (par, 1

3
) = T (par, 1

3
) = ∞ > W (seq, 1

3
).5

5 In fact,W (seq, p) is finite even for values of p which are slightly larger than 1
3

; in other words,
seq cuts off infinite branches.

On Probabilistic Parallel Programs with Process Creation and Synchronisation 309

par

YBW

p

0.05 0.1 0.15 0.2 0.25 0.3

−10%

+10%

+20%

+30%

+40%

+50%

Fig. 8. Percentaged runtime increase of par and YBW relative to seq

The figure also shows that the YBW-program is faster than seq: the advantage of YBW
increases with p up to about 10%.

We also compared the work of YBW with seq, and found that the percentaged in-
crease ranges from 0 to about +0.4% for p between 0 and 0.3. This means that YBW
wastes almost no work; in other words, a sequential version of YBW would be almost
as fast as seq. An interpretation is that the second child rarely causes large cut-offs. Of
course, all of these findings could depend on the exact probabilistic assumptions on the
game trees.

5 Conclusions and Future Work

We have introduced pSJSs, a model for probabilistic parallel programs with process
spawning and synchronisation. We have studied the basic performance measures of ter-
mination probability, space, work, and time. In our results the upper complexity bounds
coincide with the best ones known for pPDSs, and the lower bounds also hold for
pPDSs. This suggests that analysing pSJSs is no more expensive than analysing pPDSs.
The pSJS model is amenable to a practical performance analysis. Our two case studies
have demonstrated the modelling power of pSJSs: one can use pSJSs to model, analyse,
and compare the performance of parallel programs under probabilistic assumptions.

We intend to develop model-checking algorithms for pSJSs. It seems to us that a
meaningful functional analysis should not only model-check the Markov chain induced
by the pSJS, but rather take the individual process “histories” into account.

Acknowledgements. We thank Javier Esparza, Alastair Donaldson, Barbara König,
Markus Müller-Olm, Luke Ong and Thomas Wahl for helpful discussions on the non-
probabilistic version of pSJSs. We also thank the anonymous referees for valuable
comments.

310 S. Kiefer and D. Wojtczak

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of
numerical analysis. In: IEEE Conf. on Computational Complexity, pp. 331–339 (2006)

2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Heidelberg (1972)
3. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic networks of

pushdown systems. In: Jayaraman, K., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653,
pp. 473–487. Springer, Heidelberg (2005)

4. Brázdil, T., Esparza, J., Kiefer, S.: On the memory consumption of probabilistic pushdown
automata. In: Proceedings of FSTTCS, pp. 49–60 (2009)

5. Brázdil, T., Kiefer, S., Kučera, A., Vařeková, I.H.: Runtime analysis of probabilistic programs
with unbounded recursion (2010) (submitted for publication),
http://arxiv.org/abs/1007.1710

6. Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC 1988, pp.
460–467 (1988)

7. Dailey, D., Leiserson, C.E.: Using Cilk to write multiprocessor chess programs. The Journal
of the International Computer Chess Association (2002)

8. Danaher, J.S., Lee, I.A., Leiserson, C.E.: Programming with exceptions in JCilk. Science of
Computer Programming (SCP) 63(2), 147–171 (2006)

9. Esparza, J., Etessami, K.: Verifying probabilistic procedural programs. In: Lodaya, K., Ma-
hajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 16–31. Springer, Heidelberg (2004)

10. Esparza, J., Kiefer, S., Luttenberger, M.: Computing the least fixed point of positive polyno-
mial systems. SIAM Journal on Computing 39(6), 2282–2335 (2010)

11. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In:
LICS 2004, pp. 12–21. IEEE, Los Alamitos (2004)

12. Esparza, J., Kučera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown automata:
Expectations and variances. In: LICS 2005, pp. 117–126. IEEE, Los Alamitos (2005)

13. Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic state ma-
chines. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 253–270.
Springer, Heidelberg (2005)

14. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. Logical Methods in
Computer Science 4(4) (2008)

15. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars, and monotone
systems of nonlinear equations. Journal of the ACM 56(1), 1–66 (2009)

16. Feldmann, R., Monien, B., Mysliwietz, P., Vornberger, O.: Distributed game-tree search.
ICCA Journal 12(2), 65–73 (1989)

17. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)
18. Kiefer, S., Wojtczak, D.: On probabilistic parallel programs with process creation and

synchronisation. Technical report, arxiv.org (2010), http://arxiv.org/abs/1012.
2998

19. Löding, C.: Reachability problems on regular ground tree rewriting graphs. Theory of Com-
puting Systems 39, 347–383 (2006)

20. Malcolm, M.A., Simpson, R.B.: Local versus global strategies for adaptive quadrature. ACM
Transactions on Mathematical Software 1(2), 129–146 (1975)

21. Mayr, R.: Process rewrite systems. Information and Computation 156(1-2), 264–286 (2000)
22. Renegar, J.: On the computational complexity and geometry of the first-order theory of the

reals. Parts I–III. Journal of Symbolic Computation 13(3), 255–352 (1992)
23. Yannakakis, M., Etessami, K.: Checking LTL properties of recursive Markov chains. In:

QEST 2005, pp. 155–165 (2005)

Confluence Reduction for Probabilistic Systems

Mark Timmer, Mariëlle Stoelinga, and Jaco van de Pol�

Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands
{timmer,marielle,vdpol}@cs.utwente.nl

Abstract. This paper presents a novel technique for state space reduc-
tion of probabilistic specifications, based on a newly developed notion of
confluence for probabilistic automata. We prove that this reduction pre-
serves branching probabilistic bisimulation and can be applied on-the-fly.
To support the technique, we introduce a method for detecting confluent
transitions in the context of a probabilistic process algebra with data,
facilitated by an earlier defined linear format. A case study demonstrates
that significant reductions can be obtained.

1 Introduction

Model checking of probabilistic systems is getting more and more attention, but
there still is a large gap between the number of techniques supporting tradi-
tional model checking and those supporting probabilistic model checking. Espe-
cially methods aimed at reducing state spaces are greatly needed to battle the
omnipresent state space explosion.

In this paper, we generalise the notion of confluence [8] from labelled transi-
tion systems (LTSs) to probabilistic automata (PAs) [14]. Basically, we define
under which conditions unobservable transitions (often called τ -transitions) do
not influence a PA’s behaviour (i.e., they commute with all other transitions).
Using this new notion of probabilistic confluence, we introduce a symbolic tech-
nique that reduces PAs while preserving branching probabilistic bisimulation.

The non-probabilistic case. Our methodology follows the approach for LTSs
from [4]. It consists of the following steps: (i) a system is specified as the parallel
composition of several processes with data; (ii) the specification is linearised to
a canonical form that facilitates symbolic manipulations; (iii) first-order logic
formulas are generated to check symbolically which τ -transitions are confluent;
(iv) an LTS is generated in such a way that confluent τ -transitions are given
priority, leading to an on-the-fly (potentially exponential) state space reduc-
tion. Refinements by [12] make it even possible to perform confluence detection
on-the-fly by means of boolean equation systems.

The probabilistic case. After recalling some basic concepts from probability the-
ory and probabilistic automata, we introduce three novel notions of probabilistic
� This research has been partially funded by NWO under grant 612.063.817 (SYRUP)

and grant Dn 63-257 (ROCKS), and by the European Union under FP7-ICT-2007-1
grant 214755 (QUASIMODO).

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 311–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

312 M. Timmer, M. Stoelinga, and J. van de Pol

confluence. Inspired by [3], these are weak probabilistic confluence, probabilistic
confluence and strong probabilistic confluence (in decreasing order of reduction
power, but in increasing order of detection efficiency).

We prove that the stronger notions imply the weaker ones, and that τ -transi-
tions that are confluent according to any of these notions always connect branch-
ing probabilistically bisimilar states. Basically, this means that they can be given
priority without losing any behaviour. Based on this idea, we propose a reduc-
tion technique that can be applied using the two stronger notions of confluence.
For each set of states that can reach each other by traversing only confluent
transitions, it chooses a representative state that has all relevant behaviour. We
prove that this reduction technique yields a branching probabilistically bisimilar
PA. Therefore, it preserves virtually all interesting temporal properties.

As we want to analyse systems that would normally be too large, we need to
detect confluence symbolically and use it to reduce on-the-fly during state space
generation. That way, the unreduced PA never needs to be generated. Since
it is not clear how not to detect (weak) probabilistic confluence efficiently, we
only provide a detection method for strong probabilistic confluence. Here, we
exploit a previously defined probabilistic process-algebraic linear format, which is
capable of modelling any system consisting of parallel components with data [10].
In this paper, we show how symbolic τ -transitions can be proven confluent by
solving formulas in first-order logic over this format. As a result, confluence can
be detected symbolically, and the reduced PA can be generated on-the-fly. We
present a case study of leader election protocols, showing significant reductions.

Proofs for all our propositions and theorems can be found in an extended
version of this paper [17].

Related work. As mentioned before, we basically generalise the techniques pre-
sented in [4] to PAs.

In the probabilistic setting, several reduction techniques similar to ours exist.
Most of these are generalisations of the well-known concept of partial-order re-
duction (POR) [13]. In [2] and [5], the concept of POR was lifted to Markov
decision processes, providing reductions that preserve quantitative LTL\X. This
was refined in [1] to probabilistic CTL, a branching logic. Recently, a revision of
POR for distributed schedulers was introduced and implemented in PRISM [7].

Our confluence reduction differs from these techniques on several accounts.
First, POR is applicable on state-based systems, whereas our confluence reduc-
tion is the first technique that can be used for action-based systems. As the
transformation between action- and state-based blows up the state space [11],
having confluence reduction really provides new possibilities. Second, the defini-
tion of confluence is quite elegant, and (strong) confluence seems to be of a more
local nature (which makes the correctness proofs easier). Third, the detection
of POR requires language-specific heuristics, whereas confluence reduction acts
at a more semantic level and can be implemented by a generic theorem prover.
(Alternatively, decision procedures for a fixed set of data types could be devised.)

Our case study shows that the reductions obtained using probabilistic conflu-
ence exceed the reductions obtained by probabilistic POR [9].

Confluence Reduction for Probabilistic Systems 313

2 Preliminaries

Given a set S, an element s ∈ S and an equivalence relation R ⊆ S × S, we
write [s]R for the equivalence class of s under R, i.e., [s]R = {s′ ∈ S | (s, s′) ∈ R}.
We write S/R = {[s]R | s ∈ S} for the set of all equivalence classes in S.

2.1 Probability Theory and Probabilistic Automata

Definition 1 (Probability distributions). A probability distribution over a
countable set S is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. Given

S′ ⊆ S, we write μ(S′) to denote
∑
s′∈S′ μ(s′). We use Distr(S) to denote the

set of all probability distributions over S, and Distr*(S) for the set of all sub-
stochastic probability distributions over S, i.e., where 0 ≤

∑
s∈S μ(s) ≤ 1.

Given a probability distribution μ with μ(s1) = p1, μ(s2) = p2, . . . (pi �= 0),
we write μ = {s1 �→ p1, s2 �→ p2, . . . } and let spt(μ) = {s1, s2, . . . } denote its
support. For the deterministic distribution μ determined by μ(t) = 1 we write �t.

Given an equivalence relation R over S and two probability distributions μ, μ′

over S, we say that μ ≡R μ′ if and only if μ(C) = μ′(C) for all C ∈ S/R.

Probabilistic automata (PAs) are similar to labelled transition systems, except
that transitions do not have a fixed successor state anymore. Instead, the state
reached after taking a certain transition is determined by a probability distribu-
tion [14]. The transitions themselves can be chosen nondeterministically.

Definition 2 (Probabilistic automata). A probabilistic automaton (PA) is
a tuple A = 〈S, s0, L,Δ〉, where S is a countable set of states of which s0 ∈ S is
initial, L is a countable set of actions, and Δ ⊆ S ×L×Distr(S) is a countable
transition relation. We assume that every PA contains an unobservable action
τ ∈ L. If (s, a, μ) ∈ Δ, we write s −a→ μ, meaning that state s enables action a,
after which the probability to go to s′ ∈ S is μ(s′). If μ = �t, we write s −a→ t.

Definition 3 (Paths and traces). Given a PA A = 〈S, s0, L,Δ〉, we define a
path of A to be either a finite sequence π = s0

a1,μ1� s1
a2,μ2� s2

a3,μ3� . . .
an,μn� sn,

or an infinite sequence π′ = s0
a1,μ1� s1

a2,μ2� s2
a3,μ3� . . ., where for finite paths

we require si ∈ S for all 0 ≤ i ≤ n, and si −ai+1−−→ μi+1 as well as μi+1(si+1) > 0
for all 0 ≤ i < n. For infinite paths these properties should hold for all i ≥ 0.
A fragment s a,μ� s′ denotes that the transition s −a→ μ was chosen from state s,
after which the successor s′ was selected by chance (so μ(s′) > 0).

– If π = s0
a,�s1� s1

a,�s2� . . .
a,�sn� sn is a path of A (n ≥ 0), we write s0 −a� sn.

In case we also allow steps of the form si
a,�si+1�si+1, we write s0 a�� sn. If

there exists a state t such that s −a� t and s′ −a� t, we write s −a��a− s′.
– We use prefix(π, i) to denote s0

a1,μ1� . . .
ai,μi� si, and step(π, i) to denote the

transition (si−1, ai, μi). When π is finite we define |π| = n and last(π) = sn.
– We use finpathsA to denote the set of all finite paths of A, and finpathsA(s)

for all finite paths where s0 = s.
– A path’s trace is the sequence of actions obtained by omitting all its states,

distributions and τ-steps; given π = s0
a1,μ1� s1

τ,μ2� s2
a3,μ3� . . .

an,μn� sn, we de-
note the sequence a1a3 . . . an by trace(π).

314 M. Timmer, M. Stoelinga, and J. van de Pol

2.2 Schedulers

To resolve the nondeterminism in PAs, schedulers are used [16]. Basically, a
scheduler is a function defining for each finite path which transition to take
next. The decisions of schedulers are allowed to be randomised, i.e., instead of
choosing a single transition a scheduler might resolve a nondeterministic choice
by a probabilistic choice. Schedulers can be partial, i.e., they might assign some
probability to the decision of not choosing any next transition.

Definition 4 (Schedulers). A scheduler for a PA A = 〈S, s0, L,Δ〉 is a
function

S : finpathsA → Distr({⊥} ∪ Δ),

such that for every π ∈ finpathsA the transitions (s, a, μ) that are scheduled by
S after π are indeed possible after π, i.e., S(π)(s, a, μ) > 0 implies s = last(π).
The decision of not choosing any transition is represented by ⊥.

We now define the notions of finite and maximal paths of a PA given a scheduler.

Definition 5 (Finite and maximal paths). Let A be a PA and S a scheduler
for A. Then, the set of finite paths of A under S is given by

finpathsSA = {π ∈ finpathsA | ∀0 ≤ i < |π| . S(prefix(π, i))(step(π, i+ 1)) > 0}.

We define finpathsSA(s) ⊆ finpathsSA as the set of all such paths starting in s.
The set of maximal paths of A under S is given by

maxpathsSA = {π ∈ finpathsSA | S(π)(⊥) > 0}.

Similarly, maxpathsSA(s) is the set of maximal paths of A under S starting in s.

We now define the behaviour of a PA A under a scheduler S. As schedulers
resolve all nondeterministic choices, this behaviour is fully probabilistic. We can
therefore compute the probability that, starting from a given state s, the path
generated by S has some finite prefix π. This probability is denoted by PSA,s(π).

Definition 6 (Path probabilities). Let A be a PA, S a scheduler for A, and
s a state of A. Then, we define the function PSA,s : finpathsA(s)→ [0, 1] by

PSA,s(s) = 1; PSA,s(π
a,μ� t) = PSA,s(π) · S(π)(last(π), a, μ) · μ(t).

Based on these probabilities we can compute the probability distribution FSA(s)
over the states where a PA A under a scheduler S terminates, when starting in
state s. Note that FSA(s) is potentially substochastic (i.e., the probabilities do
not add up to 1) if S allows infinite behaviour.

Definition 7 (Final state probabilities). Let A be a PA and S a scheduler
for A. Then, we define the function FSA : S → Distr*(S) by

FSA(s) =
{
s′ �→

∑

π∈maxpathsSA(s)

last(π)=s′

PSA,s(π) · S(π)(⊥) | s′ ∈ S
}

∀s ∈ S.

Confluence Reduction for Probabilistic Systems 315

3 Branching Probabilistic Bisimulation

The notion of branching bisimulation for non-probabilistic systems was first in-
troduced in [19]. Basically, it relates states that have an identical branching
structure in the presence of τ -actions. Segala defined a generalisation of branch-
ing bisimulation for PAs [15], which we present here using the simplified defi-
nitions of [16]. First, we intuitively explain weak steps for PAs. Based on these
ideas, we then formally introduce branching probabilistic bisimulation.

3.1 Weak Steps for Probabilistic Automata

As τ -steps cannot be observed, we want to abstract from them. Non-probabilis-
tically, this is done via the weak step. A state s can do a weak step to s′ under
an action a, denoted by s a=⇒ s′, if there exists a path s −τ→ s1 −τ→ . . . −τ→ sn −a→ s′

with n ≥ 0 (often, also τ -steps after the a-action are allowed, but this will
not concern us). Traditionally, s a=⇒ s′ is thus satisfied by an appropriate path.

In the probabilistic setting, s a=⇒ μ is satisfied by an appropriate scheduler. A
scheduler S is appropriate if for every maximal path π that is scheduled from s
with non-zero probability, trace(π) = a and the a-transition is the last transition
of the path. Also, the final state distribution FSA(s) must be equal to μ.

Example 8. Consider the PA shown in Figure 1(a). We demonstrate that s a=⇒ μ,
with μ = {s1 �→ 8

24 , s2 �→
7
24 , s3 �→

1
24 , s4 �→

4
24 , s5 �→

4
24}. Take the scheduler S:

S(s) = {(s, τ,�t2) �→ 2/3, (s, τ,�t3) �→ 1/3}
S(t2) = {(t2, a,�s1) �→ 1/2, (t2, τ,�t4) �→ 1/2}
S(t3) = {(t3, a, {s4 �→ 1/2, s5 �→ 1/2}) �→ 1}
S(t4) = {(t4, a,�s2) �→ 3/4, (t4, a, {s2 �→ 1/2, s3 �→ 1/2}) �→ 1/4}
S(t1) = S(s1) = S(s2) = S(s3) = S(s4) = S(s5) = �⊥

Here we used S(s) to denote the choice made for every possible path ending in s.
The scheduler is depicted in Figure 1(b). Where it chooses probabilistically

between two transitions with the same label, this is represented as a combined
transition. For instance, from t4 the transition (t4, a, {s2 �→ 1}) is selected with
probability 3/4, and (t4, a, {s2 �→ 1/2, s3 �→ 1/2}) with probability 1/4. This
corresponds to the combined transition (t4, a, {s2 �→ 7/8, s3 �→ 1/8}).

s t2

t3

t1

τ
τ

b

t4

s1

s2

s4 s3

s5

τ

a
a

1
2

1
2

a

1
2

1
2

a

(a) A PA A.

s t2

t3

τ

2
3

1
3

t4

s1

s2

s4 s3

s5

1
2

1
2

τ

a

1
2

1
2

a

7
8

1
8

a

(b) Tree of s a=⇒ μ.

Fig. 1. Weak steps

316 M. Timmer, M. Stoelinga, and J. van de Pol

Clearly, all maximal paths enabled from s have trace a and end directly after
their a-transition. The path probabilities can also be calculated. For instance,

PSA,s(s
τ,{t2 �→1}� t2

τ,{t4 �→1}� t4
a,{s2 �→1}� s2) =

(
2
3
· 1
)
·
(

1
2
· 1
)
·
(

3
4
· 1
)

= 6
24

PSA,s(s
τ,{t2 �→1}� t2

τ,{t4 �→1}� t4
a,{s2 �→1/2,s3 �→1/2}� s2) =

(
2
3
· 1
)
·
(

1
2
· 1
)
·
(

1
4
· 1

2

)
= 1

24

As no other maximal paths from s go to s2, FSA(s)(s2) = 6
24

+ 1
24

= 7
24

= μ(s2).
Similarly, it can be shown that FSA(s)(si) = μ(si) for every i ∈ {1, 3, 4, 5}, so
indeed FSA(s) = μ. ��

3.2 Branching Probabilistic Bisimulation

Before introducing branching probabilistic bisimulation, we need a restriction
on weak steps. Given an equivalence relation R, we let s a=⇒R μ denote that
(s, t) ∈ R for every state t before the a-step in the tree corresponding to s a=⇒ μ.

Definition 9 (Branching steps). Let A = 〈S, s0, L,Δ〉 be a PA, s ∈ S, and R
an equivalence relation over S. Then, s a=⇒R μ if either (1) a = τ and μ = �s,
or (2) there exists a scheduler S such that FSA(s) = μ and for every maximal
path s

a1,μ1� s1
a2,μ2� s2

a3,μ3� . . .
an,μn� sn ∈ maxpathsSA(s) it holds that an = a, as

well as ai = τ and (s, si) ∈ R for all 1 ≤ i < n.

Definition 10 (Branching probabilistic bisimulation). Let A=〈S, s0, L,Δ〉
be a PA, then an equivalence relation R ⊆ S × S is a branching probabilistic
bisimulation for A if for all (s, t) ∈ R

s −a→ μ implies ∃μ′ ∈ Distr(S) . t a=⇒R μ
′ ∧ μ ≡R μ′.

We say that p, q ∈ S are branching probabilistically bisimilar, denoted p �bp q,
if there exists a branching probabilistic bisimulation R for A such that (p, q) ∈ R.

Two PAs are branching probabilistically bisimilar if their initial states are (in
the disjoint union of the two systems; see Remark 5.3.4 of [16] for the details).

This notion has some appealing properties. First, the definition is robust in the
sense that it can be adapted to using s a=⇒R μ instead of s −a→ μ in its condition.
Although this might seem to strengthen the concept, it does not. Second, the
relation �bp induced by the definition is an equivalence relation.

Proposition 11. Let A = 〈S, s0, L,Δ〉 be a PA. Then, an equivalence relation
R ⊆ S × S is a branching probabilistic bisimulation for A if and only if for all
(s, t) ∈ R

s
a=⇒R μ implies ∃μ′ ∈ Distr(S) . t a=⇒R μ

′ ∧ μ ≡R μ′.

Proposition 12. The relation �bp is an equivalence relation.

Moreover, Segala showed that branching bisimulation preserves all properties
that can be expressed in the probabilistic temporal logic WPCTL (provided that
no infinite path of τ -actions can be scheduled with non-zero probability) [15].

Confluence Reduction for Probabilistic Systems 317

4 Confluence for Probabilistic Automata

As branching probabilistic bisimulation minimisation cannot easily be performed
on-the-fly, we introduce a reduction technique based on sets of confluent
τ -transitions. Basically, such transitions do not influence a system’s behaviour,
i.e., a confluent step s −τ→ s′ implies that s �bp s

′. Confluence therefore paves
the way for state space reductions modulo branching probabilistic bisimulation
(e.g., by giving confluent τ -transitions priority). Not all τ -transitions connect
bisimilar states; even though their actions are unobservable, τ -steps might dis-
able behaviour. The aim of our analysis is to efficiently underapproximate which
τ -transitions are confluent.

For non-probabilistic systems, several notions of confluence already exist [3].
Basically, they all require that if an action a is enabled from a state that also
enables a confluent τ -transition, then (1) a will still be enabled after taking that
τ -transition (possibly requiring some additional confluent τ -transitions first),
and (2) we can always end up in the same state traversing only confluent τ -steps
and the a-step, no matter whether we started by the τ - or the a-transition.

Figure 2 depicts the three notions of confluence we will generalise [3]. Here,
the notation τc is used for confluent τ -transitions. The diagrams should be in-
terpreted as follows: for any state from which the solid transitions are enabled
(universally quantified), there should be a matching for the dashed transitions
(existentially quantified). A double-headed arrow denotes a path of zero of more
transitions with the corresponding label, and an arrow with label a denotes
a step that is optional in case a = τ (i.e., its source and target state may
then coincide). The weaker the notion, the more reduction potentially can be
achieved (although detection is harder). Note that we first need to find a subset of
τ -transitions that we believe are confluent; then, the diagrams are checked.

For probabilistic systems, no similar notions of confluence have been defined
before. The situation is indeed more difficult, as transitions do not have a sin-
gle target state anymore. To still enable reductions based on confluence, only
τ -transitions with a unique target state might be considered confluent. The next
example shows what goes wrong without this precaution. For brevity, from now
on we use bisimilar as an abbreviation for branching probabilistically bisimilar.

Example 13. Consider two people each throwing a die. The PA in Figure 3(a)
models this behaviour given that it is unknown who throws first. The first

•

•

•

•

•

•

a

τc

τc

ā

τcτc

(a) Weak confluence.

•

•

•

•

•

a

τc

ā

τcτc

(b) Confluence.

•

•

•

•

a

τc

ā

τc

(c) Strong confluence.

Fig. 2. Three variants of confluence

318 M. Timmer, M. Stoelinga, and J. van de Pol

XX

XHTXHX XT

HH THTH TT HT TTHH HT

1
2 1

2τ
1
2

1
2

t2

1
2

1
2

t2

1
2

1
2

t2

1
2

1
2

τ

1
2

1
2

τ

(a) The original specification.

XX

TXHX

TH TTHH HT

1
2

1
2

τ

1
2

1
2

t2

1
2

1
2

t2

(b) A wrong reduction.

Fig. 3. Two people throwing dice

character of each state name indicates whether the first player has not thrown
yet (X), or threw heads (H) or tails (T), and the second character indicates the
same for the second player. For lay-out purposes, some states were drawn twice.

We hid the first player’s throw action, and kept the other one visible. Now, it
might appear that the order in which the t2- and the τ -transition occur does not
influence the behaviour. However, the τ -step does not connect bisimilar states
(assuming HH, HT, TH, and TT to be distinct). After all, from state XX it is
possible to reach a state (XH) from where HH is reached with probability 0.5 and
TH with probability 0.5. From HX and TX no such state is reachable anymore.
Giving the τ -transition priority, as depicted in Figure 3(b), therefore yields a
reduced system that is not bisimilar to the original system anymore. ��

s t0 t

s1 s2

μ 1
2

1
2

a

τ τ

t2t1 t3

1
6

1
3

1
2 νa

Another difficulty arises in the probabilistic set-
ting. Although for LTSs it is clear that a path
aτ should reach the same state as τa, for PAs
this is more involved as the a-step leads us to
a distribution over states. So, how should the
model shown here on the right be completed for the τ -steps to be confluent?

Since we want confluent τ -transitions to connect bisimilar states, we must
assure that s, t0, and t are bisimilar. Therefore, μ and ν must assign equal prob-
abilities to each class of bisimilar states. Basically, given the assumption that the
other confluent τ -transitions already connect bisimilar states, this is the case if
μ ≡R ν for R = {(s, s′) | s −τ��τ− s′ using only confluent τ -steps}. The following
definition formalises these observations. Here we use the notation s −τc−→ s′, given
a set of τ -transitions c, to denote that s −τ→ s′ and (s, τ, s′) ∈ c.

We define three notions of probabilistic confluence, all requiring the target
state of a confluent step to be able to mimic the behaviour of its source state. In
the weak version, mimicking may be postponed and is based on joinability (Def-
inition 14a). In the default version, mimicking must happen immediately, but
is still based on joinability (Definition 14b). Finally, the strong version requires
immediate mimicking by directed steps (Definition 16).

Definition 14 ((Weak) probabilistic confluence). Let A = 〈S, s0, L,Δ〉 be
a PA and c ⊆ {(s, a, μ) ∈ Δ | a = τ, μ is deterministic} a set of τ-transitions.
(a) Then, c is weakly probabilistically confluent if R = {(s, s′) | s −τc−��τc−− s′} is
an equivalence relation, and for every path s −τc−� t and all a ∈ L, μ ∈ Distr(S)

Confluence Reduction for Probabilistic Systems 319

s t0 t

s1 s2

μ 1
2

1
2

a

τc τc

t2t1 t3

1
6

1
3

1
2

νa

τc

τc

τc

τc

(a) Weak probabilistic confluence.

s t

s2s1 s3

μ 1
3

1
3

1
3

a

τc

t2 t1

2
3

1
3

νa

τc
τc

τc

(b) Strong probabilistic confluence.

Fig. 4. Weak versus strong probabilistic confluence

s −a→ μ =⇒ ∃t′ ∈ S . t −τc−� t′ ∧((
∃ν ∈ Distr(S) . t′ −a→ ν ∧ μ ≡R ν

)
∨ (a = τ ∧ μ ≡R �t′)

)
.

(b) If for every path s −τc−� t and every transition s −a→ μ the above implication
can be satisfied by taking t′ = t, then we say that c is probabilistically confluent.

For the strongest variant of confluence, moreover, we require the target states
of μ to be connected by direct τc-transitions to the target states of ν:

Definition 15 (Equivalence up to τc-steps). Let μ, ν be two probability dis-
tributions, and let ν = {t1 �→ p1, t2 �→ p2, . . . }. Then, μ is equivalent to ν up
to τc-steps, denoted by μ τc� ν, if there exists a partition spt(μ) =

⊎n
i=1 Si such

that n = |spt(ν)| and ∀1 ≤ i ≤ n . μ(Si) = ν(ti) ∧ ∀s ∈ Si . s −τc−→ ti.

Definition 16 (Strong probabilistic confluence). Let A = 〈S, s0, L,Δ〉 be a
PA and c ⊆ {(s, a, μ) ∈ Δ | a = τ, μ is deterministic} a set of τ-transitions, then
c is strongly probabilistically confluent if for all s −τc−→ t, a ∈ L, μ ∈ Distr(S)

s −a→ μ =⇒
((
∃ν ∈ Distr(S) . t −a→ ν ∧ μ τc� ν

)
∨ (a = τ ∧ μ = �t)

)
.

Proposition 17. Strong probabilistic confluence implies probabilistic confluence,
and probabilistic confluence implies weak probabilistic confluence.

A transition s −τ→ t is called (weakly, strongly) probabilistically confluent if there
exists a (weakly, strongly) probabilistically confluent set c such that (s, τ, t) ∈ c.

Example 18. Observe the PAs in Figure 4. Assume that all transitions of s,
t0 and t are shown, and that all si, ti, are potentially distinct. We marked all
τ -transitions as being confluent, and will verify this for some of them.

In Figure 4(a), both the upper τc-steps are weakly probabilistically confluent,
most interestingly s −τc−→ t0. To verify this, first note that t0 −τc−→ t is (as t0 has no
other outgoing transitions), from where the a-transition of s can be mimicked.
To see that indeed μ ≡R ν (using R from Definition 14), observe that R yields
three equivalence classes: C1 = {s2, t1, t2}, C2 = {s1, t3} and C3 = {s, t0, t}. As
required, μ(C1) = 1

2
= ν(C1) and μ(C2) = 1

2
= ν(C2). Clearly s −τc−→ t0 is not

probabilistically confluent, as t0 cannot immediately mimic the a-transition of s.

320 M. Timmer, M. Stoelinga, and J. van de Pol

In Figure 4(b) the upper τc-transition is strongly probabilistically confluent
(and therefore also (weakly) probabilistically confluent), as t is able to directly
mimic the a-transition from s via t −a→ ν. As required, μ τc� ν also holds, which
is easily seen by taking the partition S1 = {s1}, S2 = {s2, s3}. ��

The following theorem shows that weakly probabilistically confluent τ -transi-
tions indeed connect bisimilar states. With Proposition 17 in mind, this also
holds for (strong) probabilistic confluence. Additionally, we show that confluent
sets can be joined (so there is a unique maximal confluent set of τ -transitions).

Theorem 19. Let A = 〈S, s0, L,Δ〉 be a PA, s, s′ ∈ S two of its states, and c
a weakly probabilistically confluent subset of its τ-transitions. Then,

s τc�� s′ implies s �bp s
′.

Proposition 20. Let c, c′ be (weakly, strongly) probabilistically confluent sets of
τ-transitions. Then, c ∪ c′ is also (weakly, strongly) probabilistically confluent.

5 State Space Reduction Using Probabilistic Confluence

As confluent τ -transitions connect branching probabilistic bisimilar states, all
states that can reach each other via such transitions can be merged. That is,
we can take the original PA modulo the equivalence relation τc�� and obtain a
reduced and bisimilar system. The downside of this method is that, in general, it
is hard to compute the equivalence classes according to τc��. Therefore, a slightly
adapted reduction technique was proposed in [3], and later used in [4]. It chooses
a representative state s for each equivalence class, such that all transitions leaving
the equivalence class are directly enabled from s. This method relies on (strong)
probabilistic confluence, and does not work for the weak variant.

To find a valid representative, we first look at the directed (unlabeled) graph
G = (S,−τc−→). It contains all states of the original system, and denotes pre-
cisely which states can reach each other by taking only τc-transitions. Because
of the restrictions on τc-transitions, the subgraph of G corresponding to each
equivalence class [s] τc��has exactly one terminal strongly connected component
(TSCC), from which the representative state for that equivalence class should be
chosen. Intuitively, this follows from the fact that τc-transitions always lead to
a state with at least the same observable transitions as the previous state, and
maybe more. (This is not the case for weak probabilistic confluence, therefore
the reduction using representatives does not work for that variant of confluence.)
The next definition formalises these observations.

Definition 21 (Representation maps). Let A = 〈S, s0, L,Δ〉 be a PA and
c a subset of its τ-transitions. Then, a function φc : S → S is a representation
map for A under c if

– ∀s, s′ ∈ S . s −τc−→ s′ =⇒ φc(s) = φc(s′);
– ∀s ∈ S . s −τc−� φc(s).

Confluence Reduction for Probabilistic Systems 321

The first condition ensures that equivalent states are mapped to the same rep-
resentative, and the second makes sure that every representative is in a TSCC.
If c is a probabilistically confluent set of τ -transitions, the second condition and
Theorem 19 immediately imply that s �bp φc(s) for every state s.

The next proposition states that for finite-state PAs and probabilistically con-
fluent sets c, there always exists a representation map. As τc-transitions are re-
quired to always have a deterministic distribution, probabilities are not involved
and the proof is identical to the proof for the non-probabilistic case [3].
Proposition 22. Let A = 〈S, s0, L,Δ〉 be a PA and c a probabilistically con-
fluent subset of its τ-transitions. Moreover, let S be finite. Then, there exists a
function φc : S → S such that φc is a representation map for A under c.

We can now define a PA modulo a representation map φc. The set of states
of such a PA consists of all representatives. When originally s −a→ μ for some
state s, in the reduced system φc(s) −a→ μ′ where μ′ assigns a probability to each
representative equal to the probability of reaching any state that maps to this
representative in the original system. The system will not have any τc-transitions.

Definition 23 (A/φc). Let A = 〈S, s0, L,Δ〉 be a PA and c a set of τ-transi-
tions. Moreover, let φc be a representation map for A under c. Then, we write
A/φc to denote the PA A modulo φc. That is,

A/φc = 〈φc(S), φc(s0), L,Δφc〉,

where φc(S) = {φc(s) | s ∈ S}, and Δφc ⊆ φc(S) × L × Distr(φc(S)) such that
s −a→φc

μ if and only if a �= τc and there exists a transition t −a→ μ′ in A such that
φc(t) = s and ∀s′ ∈ φc(S) . μ(s′) = μ′({s′′ ∈ S | φc(s′′) = s′}).

From the construction of the representation map it follows that A/φc �bp A if
c is (strongly) probabilistically confluent.

Theorem 24. Let A be a PA and c a probabilistically confluent set of τ-transi-
tions. Also, let φc be a representation map for A under c. Then, (A/φc) �bp A.

Using this result, state space generation of PAs can be optimised in exactly the
same way as has been done for the non-probabilistic setting [4]. Basically, every
state visited during the generation is replaced on-the-fly by its representative. In
the absence of τ -loops this is easy; just repeatedly follow confluent τ -transitions
until none are enabled anymore. When τ -loops are present, a variant of Tarjan’s
algorithm for finding SCCs can be applied (see [3] for the details).

6 Symbolic Detection of Probabilistic Confluence

Before any reductions can be obtained in practice, probabilistically confluent
τ -transitions need to be detected. As our goal is to prevent the generation of
large state spaces, this has to be done symbolically.

We propose to do so in the framework of prCRL and LPPEs [10], where
systems are modelled by a process algebra and every specification is linearised

322 M. Timmer, M. Stoelinga, and J. van de Pol

to an intermediate format: the LPPE (linear probabilistic process equation).
Basically, an LPPE is a process X with a vector of global variables g of type G
and a set of summands. A summand is a symbolic transition that is chosen
nondeterministically, provided that its guard is enabled (similar to a guarded
command). Each summand i is of the form

∑

di:Di

ci(g,di)⇒ ai(g,di)
∑
•

ei:Ei

fi(g,di,ei) : X(ni(g,di,ei)).

Here, di is a (possibly empty) vector of local variables of type Di, which is
chosen nondeterministically such that the condition ci holds. Then, the action
ai(g,di) is taken and a vector ei of type Ei is chosen probabilistically (each ei

with probability fi(g,di, ei)). Then, the next state is set to ni(g,di,ei).
The semantics of an LPPE is given as a PA, whose states are precisely all

vectors g ∈ G. For all g ∈ G, there is a transition g −a→ μ if and only if for at
least one summand i there is a choice of local variables di ∈Di such that

ci(g,di) ∧ ai(g,di) = a ∧ ∀ei ∈ Ei . μ(ni(g,di, ei)) =
∑

e′
i∈Ei

ni(g,di,ei)=ni(g,di,e
′
i)

fi(g,di,e
′
i).

Example 25. As an example of an LPPE, observe the following specification:

X(pc : {1, 2}) =
∑

n:{1,2,3}
pc = 1⇒ output(n)

∑
•

i:{1,2}

i
3
: X(i) (1)

+ pc = 2⇒ beep
∑
•

j:{1}
1: X(j) (2)

The system has one global variable pc (which can be either 1 or 2), and consists of
two summands. When pc = 1, the first summand is enabled and the system non-
deterministically chooses n to be 1, 2 or 3, and outputs the chosen number. Then,
the next state is chosen probabilistically; with probability 1

3 it will be X(1), and
with probability 2

3
it will be X(2). When pc = 2, the second summand is enabled,

making the system beep and deterministically returning to X(1).
In general, the conditions and actions may depend on both the global variables

(in this case pc) and the local variables (in this case n for the first summand), and
the probabilities and expressions for determining the next state may additionally
depend on the probabilistic variables (in this case i and j). ��

Instead of designating individual τ -transitions to be probabilistically confluent,
we designate summands to be so in case we are sure that all transitions they
might generate are probabilistically confluent. For a summand i to be confluent,
clearly ai(g,di) = τ should hold for all possible values of g and di. Also, the next
state of each of the transitions it generates should be unique: for every possible
valuation of g and di, there should be a single ei such that fi(g,di, ei) = 1.

Moreover, a confluence property should hold. For efficiency, we detect a strong
variant of strong probabilistic confluence. Basically, a confluent τ -summand i has
to commute properly with every summand j (including itself). More precisely,

Confluence Reduction for Probabilistic Systems 323

when both are enabled, executing one should not disable the other and the order
of their execution should not influence the observable behaviour or the final state.
Additionally, i commutes with itself if it generates only one transition. Formally:
(
ci(g,di) ∧ cj(g,dj)

)
→
(
i = j ∧ ni(g,di) = nj(g,dj)

)
∨

⎛

⎜⎜⎝

cj(ni(g,di),dj) ∧ ci(nj(g,dj , ej),di)
∧ aj(g,dj) = aj(ni(g,di),dj)
∧ fj(g,dj ,ej) = fj(ni(g,di),dj ,ej)
∧ nj(ni(g,di),dj , ej) = ni(nj(g,dj , ej),di)

⎞

⎟⎟⎠
(3)

where g,di,dj and ej universally quantify over G, Di, Dj , and Ej , respectively.
We used ni(g,di) to denote the unique target state of summand i given global
state g and local state di (so ei does not need to appear).

As these formulas are quantifier-free and in practice often trivially false or
true, they can easily be solved using an SMT solver for the data types involved.
For n summands, n2 formulas need to be solved; the complexity of this depends
on the data types. In our experiments, all formulas could be checked with fairly
simple heuristics (e.g., validating them vacuously by finding contradictory condi-
tions or by detecting that two summands never use or change the same variable).

Theorem 26. Let X be an LPPE and A its PA. Then, if for a summand i we
have ∀g ∈ G,di ∈ Di . ai(g,di) = τ ∧ ∃ei ∈ Ei . fi(g,di,ei) = 1 and for-
mula (3) holds, the set of transitions generated by i is strongly probabilistically
confluent.

7 Case Study

To illustrate the power of probabilistic confluence reduction, we applied it on
two leader election protocols. We implemented a prototype tool in Haskell for
confluence detection using heuristics and state space generation based on con-
fluence information, relying on Theorem 26 and Theorem 24. The results were
obtained on a 2.4 GHz, 2 GB Intel Core 2 Duo MacBook1.

First, we analysed the leader election protocol introduced in [10]. This proto-
col, between two nodes, decides on a leader by having both parties throw a die
and compare the results. In case of a tie the nodes throw again, otherwise the one
that threw highest will be the leader. We hid all actions needed for rolling the
dice and communication, keeping only the declarations of leader and follower.
The complete model in LPPE format can be found in [17].

In [10] we showed the effect of dead-variable reduction [18] on this system.
Now, we apply probabilistic confluence reduction both to the LPPE that was al-
ready reduced in this way (basicReduced) and the original one (basicOriginal).

The results are shown in Table 1; we list the size of the original and reduced
state space, as well as the number of states and transitions that were visited
1 The implementation, case studies and a test script can be downloaded from
http://fmt.cs.utwente.nl/~timmer/prcrl/papers/TACAS2011

324 M. Timmer, M. Stoelinga, and J. van de Pol

Table 1. Applying confluence reduction to two leader election protocols

Original Reduced Visited Runtime (sec)
Specification States Trans. States Trans. States Trans. Before After
basicOriginal 3,763 6,158 631 758 3,181 3,290 0.45 0.22
basicReduced 1,693 2,438 541 638 1,249 1,370 0.22 0.13
leader-3-12 161,803 268,515 35,485 41,829 130,905 137,679 67.37 31.53
leader-3-15 311,536 515,328 68,926 80,838 251,226 264,123 145.17 65.82
leader-3-18 533,170 880,023 118,675 138,720 428,940 450,867 277.08 122.59
leader-3-21 840,799 1,385,604 187,972 219,201 675,225 709,656 817.67 211.87
leader-3-24 1,248,517 2,055,075 280,057 326,007 1,001,259 1,052,235 1069.71 333.32
leader-3-27 out of memory 398,170 462,864 1,418,220 1,490,349 – 503.85
leader-4-5 443,840 939,264 61,920 92,304 300,569 324,547 206.56 75.66
leader-4-6 894,299 1,880,800 127,579 188,044 608,799 655,986 429.87 155.96
leader-4-7 1,622,682 3,397,104 235,310 344,040 1,108,391 1,192,695 1658.38 294.09
leader-4-8 out of memory 400,125 581,468 1,865,627 2,005,676 – 653.60
leader-5-2 208,632 561,630 14,978 29,420 97,006 110,118 125.78 30.14
leader-5-3 1,390,970 3,645,135 112,559 208,170 694,182 774,459 1504.33 213.85
leader-5-4 out of memory 472,535 847,620 2,826,406 3,129,604 – 7171.73

during its generation using confluence. Probabilistic confluence reduction clearly
has quite an effect on the size of the state space, as well as the running time.
Notice also that it nicely works hand-in-hand with dead-variable reduction.

Second, we analysed several versions of a leader election protocol that uses
asynchronous channels and allows for more parties (Algorithm B from [6]). We
denote by leader-i-j the variant with i parties each throwing a j-sided die,
that was already optimised using dead-variable reduction. Confluence addition-
ally reduces the number of states and transitions by 77% – 92% and 84% – 94%,
respectively. Consequently, the running times more than halve. With probabilis-
tic POR, relatively smaller reductions were obtained for similar protocols [9].

For each experiment, linearisation and confluence detection only took a frac-
tion of time. For the larger state spaces swapping occured, explaining the growth
in running time. Confluence clearly allows us to do more before reaching this limit.

8 Conclusions

This paper introduced three new notions of confluence for probabilistic au-
tomata. We first established several facts about these notions, most importantly
that they identify branching probabilistically bisimilar states. Then, we showed
how probabilistic confluence can be used for state space reduction. As we used
representatives in terminal strongly connected components, these reductions can
even be applied to systems containing τ -loops. We discussed how confluence can
be detected in the context of a probabilistic process algebra with data by prov-
ing formulas in first-order logic. This way, we enabled on-the-fly reductions when
generating the state space corresponding to a process-algebraic specification. A
case study illustrated the power of our methods.

References

[1] Baier, C., D’Argenio, P.R., Größer, M.: Partial order reduction for probabilistic
branching time. In: Proc. of the 3rd Workshop on Quantitative Aspects of Pro-
gramming Languages (QAPL). ENTCS, vol. 153(2), pp. 97–116 (2006)

Confluence Reduction for Probabilistic Systems 325

[2] Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: Proc. of the 1st International Conference on Quantitative Evaluation of
Systems (QEST), pp. 230–239. IEEE Computer Society, Los Alamitos (2004)

[3] Blom, S.C.C.: Partial τ -confluence for efficient state space generation. Technical
Report SEN-R0123, CWI, Amsterdam (2001)

[4] Blom, S.C.C., van de Pol, J.C.: State space reduction by proving confluence.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609.
Springer, Heidelberg (2002)

[5] D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: Proc. of the 1st International Conference on Quantitative Evaluation
of Systems (QEST), pp. 240–249. IEEE Computer Society, Los Alamitos (2004)

[6] Fokkink, W., Pang, J.: Simplifying Itai-Rodeh leader election for anonymous rings.
In: Proc. of the 4th International Workshop on Automated Verification of Critical
Systems (AVoCS). ENTCS, vol. 128(6), pp. 53–68 (2005)

[7] Giro, S., D’Argenio, P.R., Ferrer Fioriti, L.M.: Partial order reduction for proba-
bilistic systems: A revision for distributed schedulers. In: Bravetti, M., Zavattaro,
G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg
(2009)

[8] Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theoretical
Computer Science 170(1-2), 47–81 (1996)

[9] Größer, M.: Reduction Methods for Probabilistic Model Checking. PhD thesis,
Technische Universität Dresden (2008)

[10] Katoen, J.-P., van de Pol, J.C., Stoelinga, M.I.A., Timmer, M.: A linear process-
algebraic format for probabilistic systems with data. In: Proc. of the 10th Interna-
tional Conference on Application of Concurrency to System Design (ACSD), pp.
213–222. IEEE Computer Society, Los Alamitos (2010)

[11] De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

[12] Pace, G.J., Lang, F., Mateescu, R.: Calculating τ -confluence compositionally. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 446–459.
Springer, Heidelberg (2003)

[13] Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

[14] Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology (1995)

[15] Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes.
Nordic Journal of Computation 2(2), 250–273 (1995)

[16] Stoelinga, M.I.A.: Alea jacta est: verification of probabilistic, real-time and para-
metric systems. PhD thesis, University of Nijmegen (2002)

[17] Timmer, M., Stoelinga, M.I.A., van de Pol, J.C.: Confluence reduction for prob-
abilistic systems (extended version). Technical Report 1011.2314, ArXiv e-prints
(2010)

[18] van de Pol, J.C., Timmer, M.: State space reduction of linear processes using
control flow reconstruction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS,
vol. 5799, pp. 54–68. Springer, Heidelberg (2009)

[19] van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

Model Repair for Probabilistic Systems

Ezio Bartocci1, Radu Grosu2, Panagiotis Katsaros3,
C.R. Ramakrishnan2, and Scott A. Smolka2

1 Department of Applied Math and Statistics, Stony Brook University
Stony Brook, NY 11794-4400, USA

2 Department of Computer Science, Stony Brook University
Stony Brook, NY 11794-4400, USA

3 Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

Abstract. We introduce the problem of Model Repair for Probabilistic
Systems as follows. Given a probabilistic system M and a probabilistic
temporal logic formula φ such that M fails to satisfy φ, the Model Re-
pair problem is to find an M ′ that satisfies φ and differs from M only
in the transition flows of those states in M that are deemed control-
lable. Moreover, the cost associated with modifying M ’s transition flows
to obtain M ′ should be minimized. Using a new version of parametric
probabilistic model checking, we show how the Model Repair problem
can be reduced to a nonlinear optimization problem with a minimal-cost
objective function, thereby yielding a solution technique. We demon-
strate the practical utility of our approach by applying it to a number of
significant case studies, including a DTMC reward model of the Zeroconf
protocol for assigning IP addresses, and a CTMC model of the highly
publicized Kaminsky DNS cache-poisoning attack.

Keywords: Model Repair, Probabilistic Model Checking, Nonlinear
Programming.

1 Introduction

Given a model M and a temporal logic formula φ, the Model Checking problem
is to determine if M |= φ, i.e. does M satisfy φ? In the case of a positive result, a
model checker returns true and may also provide further diagnostic information
if vacuity checking is enabled [9]. In the case of a negative result, a model checker
returns false along with a counterexample in the form of an execution path in
M leading to the violation of φ. One can then use the counterexample to debug
the system model (assuming the problem lies within M as opposed to φ) and
ultimately repair the model so that revised version satisfies φ.

Even in light of model checking’s widespread success in the hardware, soft-
ware, and embedded systems arenas (see, e.g., [6]), one can argue that existing
model checkers do not go far enough in assisting the user in repairing a model
that fails to satisfy a formula. Automating the repair process is the aim of the
Model Repair problem, which we consider in the context of probabilistic systems

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 326–340, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Model Repair for Probabilistic Systems 327

such as discrete-time Markov chains (DTMCs), continuous-time Markov chains
(CTMCs), and Markov decision processes (MDPs).

The Model Repair problem we consider can be stated as follows. Given a
probabilistic system M and a probabilistic temporal logic formula φ such that
M fails to satisfy φ, the probabilistic Model Repair problem is to find an M ′ that
satisfies φ and differs from M only in the transition flows1 of those states in M
that are deemed controllable. Moreover, the cost associated with modifying M ’s
transition flows to obtain M ′ should be minimized. A related but weaker version
of the Model Repair problem was first considered in [5], in the (non-probabilistic)
context of Kripke structures and the CTL temporal logic. See Section 8 for a
discussion of related work.

Our main contributions to the probabilistic Model Repair problem can be
summarized as follows:
– Using a new version of parametric probabilistic model checking [7,13], we

show how the Model Repair problem can be reduced to a nonlinear opti-
mization problem with a minimal-cost objective function, thereby yielding
a solution technique.

– We consider related solution feasibility and optimality conditions, and pro-
vide an implementation of our solution technique using the PARAM tool for
parametric model checking [15] and the Ipopt open-source software package
for large-scale nonlinear optimization [2].

– We also consider a Max-Profit version of the Model Repair problem for
reward-based systems, where profit is defined as the difference between the
expected reward and the cost of model repair.

– We also provide a control-theoretic characterization of the probabilistic Model
Repair problem, and in the process establish a formal link between model re-
pair and the controller-synthesis problem for linear systems.

– We demonstrate the practical utility of our approach by applying it to a
number of significant case studies, including a DTMC reward model of the
Zeroconf protocol for assigning IP addresses, and a CTMC model of the
highly publicized Kaminsky DNS cache-poisoning attack [1].

The rest of the paper develops along the following lines. Section 2 provides back-
ground on parametric model checking. Section 3 contains our formulation of the
probabilistic Model Repair problem, while Section 4 characterizes Model Repair
as a nonlinear optimization problem. Section 5 considers related feasibility and
optimality conditions. Section 6 examines the link between model repair and
optimal controller synthesis. Section 7 presents our case studies, while Section 8
discusses related work. Section 9 offers our concluding remarks and directions
for future work.

2 Parametric Probabilistic Model Checking

In this section, we show how the model-checking problem for parametric DTMCs
can be reduced to the evaluation of a multivariate rational function. The
1 For a DTMC, each row of the probability transition matrix represents the transition

flow out of the corresponding state.

328 E. Bartocci et al.

definition of a parametric DTMC is from [13] and the definition of the finite
state automaton derived from a parametric DTMC is from [7].

Definition 1. A (labeled) Discrete-Time Markov Chain (DTMC) is a tuple D =
(S, s0,P, L) where:

– S is a finite set of states
– s0 ∈ S is the initial state
– P : S × S → [0, 1] is a function such that ∀s ∈ S,

∑
s′∈S P(s, s′) = 1

– L : S → 2AP is a labeling function assigning to each state a set of atomic
propositions from the denumerable set of atomic propositions AP .

Probabilistic model checking is based on the definition of a probability measure
over the set of paths that satisfy a given property specification [20]. In the
PCTL [17] temporal logic, property specifications are of the form P∼b(ψ), with
∼∈ {<,≤, >,≥}, 0 ≤ b ≤ 1, and ψ a path formula defined using the X (next) and
U≤h (bounded/unbounded until) operators for h ∈ N ∪ {∞}. A state s satisfies
P∼b(ψ), denoted as s |= P∼b(ψ), if P(Paths(s, ψ)) ∼ b; i.e. the probability of
taking a path from s that satisfies ψ is ∼ b.

Definition 2. Let V = {v1, · · · , vr} be a set of real variables and let v =
(v1, . . . , vr). A multivariate rational function f over V is a function of the form

f(v) =
f1(v)
f2(v)

where f1, f2 are two polynomials in v.

Let FV (v) be the field of real-valued rational functions. Given f ∈ FV and an
evaluation function u : V → R, we denote by f [V/u] the value obtained by
substituting each occurrence of v ∈ V with u(v).

Definition 3. A parametric DTMC (PDTMC) is a tuple D = (S, s0,P, V)
where S, s0 are as in Def. 1 and P : S × S → FV , where V = {v1, · · · , vr} is a
finite set of parameters.

Given a PDTMC D over parameters V , an evaluation u of V is said to be valid
for D if the induced probability transition matrix Pu : S × S → [0, 1] is such
that

∑
s′∈S Pu(s, s′)[V/u] = 1, ∀s ∈ S.

Definition 4. For a PDTMC D and PCTL formula φ = P∼b(ψ), the derived
finite state automaton (dFSA) AD,ψ is given by AD,ψ = {S,Σ, s0, δ, Sf}, where:

– S is the same set of states of D
– Σ = {f ∈ FV | ∃i, j,P(i, j) = f(v) �= 0} is the finite alphabet
– s0 is D’s initial state
– δ : S×Σ �→ 2S is the transition function derived from P such that δ(s, f) = Q

implies ∀q ∈ Q, P(s, q) = f(v)
– Sf ⊆ S is the set of final states and depends on ψ.

Model Repair for Probabilistic Systems 329

The set R(Σ) of regular expressions over alphabet Σ can be translated into a
multivariate rational function. The composition function comp : R �→ FV is
defined inductively by the following rules:

comp(f) = f(v) comp(x|y) = comp(x) + comp(y)
comp(x.y) = comp(x) · comp(y) comp(x∗) = 1

1−comp(x)

It can be proved that comp(α) yields the probability measure of the set⋃
sf∈Sf

Paths(s0, sf) of paths in AD,ψ from s0 to some state sf in Sf . In [7],
Daws characterizes the set of paths satisfying an unbounded formula φ = P∼b(ψ),
but without nested probabilistic quantifiers, as a dFSA AD,ψ, and proves:

Proposition 1. For a PDTMC D and PCTL formula φ = P∼b(ψ), with ψ a
path formula, let α be the regular expression for L(AD,ψ). Then,

s0 |= φ iff there is an evaluation u s.t. u is valid for D and comp(α) ∼ b

Given a PDTMC D and bounded reachability property φ, Hahn [14] presents
a simple recursive algorithm for deriving the multivariate function f that com-
putes the probability by which D satisfies φ. Since the only arithmetic operators
appearing in f are addition and multiplication, f ∈ FV , as FV is a field.

3 The Model Repair Problem

Given a set of parameters V , we write span(V) for the set of linear combinations
of the elements in V . A n-state DTMC D can be turned into a controllable
DTMC D̃ by pairing it with an n× n matrix Z that specifies which states of D
are controllable, and how the transitions out of these states are controlled using
elements of span(V).

Definition 5. A controllable DTMC over a set of parameters V is a tuple D̃ =
(S, s0,P,Z, L) where (S, s0,P, L) is a DTMC and Z : S × S → span(V) is
an |S| × |S| matrix such that ∀s ∈ S,

∑
t∈S Z(s, t) = 0. A state s ∈ S is a

controllable state of D̃ if ∃t ∈ S such that Z(s, t) �= 0.

Matrix Z can be understood as a strategy for altering or controlling the be-
havior of a DTMC, typically for the purpose of repair; i.e. forcing a particular
property to hold for the DTMC. The constraint on Z implies that the control
strategy embodied in Z should neither change the structure of the DTMC nor its
stochasticity. Which states of the DTMC are controllable depends on the model
parameters that can be tuned. In general, a model may be repaired by a number
of different strategies.

Example 1. Fig. 1 shows a DTMC in (a), the controllable DTMC in (b), with
s0, s2 controllable, and the associated matrix Z in (c).

330 E. Bartocci et al.

Z =
0 v1 −v1
0 0 0

v2 v3 −(v2 + v3)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Fig. 1. A DTMC (a) and the controllable DTMC (b), with s0, s2 controllable by Z (c)

Definition 6. Let D̃ = (S, s0,P,Z, L) be a controllable DTMC over parameters
V , D = (S, s0,P, L) the DTMC underlying D̃, φ a PCTL formula for which
D, s0 � φ, and g(v) a possibly nonlinear cost function, which is always positive,
continuous, and differentiable. The Model Repair problem is to find a DTMC
D′ = (S, s0,P′ = P + Z[V/u], L), where u : V → R is an evaluation function
satisfying the following conditions:

u = arg min g (1)

D′, s0 |= φ (2)

P(i, j) = 0 iff P′(i, j) = 0, 1 ≤ i, j ≤ |S| (3)

The repair process seeks to manipulate the parameters of D̃ to obtain a DTMC
D′ such that D′, s0 |= φ and the cost of deriving probability transition matrix
P′ from P is minimized. A typical cost function is g(v) = w1v

2
1 + · · · + wrv

2
r ,

w ∈ R
r
+: a weighted sum of squares of the parameters with weightswk, 1 ≤ k ≤ r,

specifying that some parameters affect the model to a greater extent than others.
For w = 1r, g is the square of the L2-norm ‖v‖22. The insertion of new transitions
and the elimination of existing ones are not allowed by Condition (3).

The repair process as specified by Def. 6 is robust in the following sense.

Proposition 2. A controllable DTMC D̃ and its repaired version D′ are
ε-bisimilar, where ε is the largest value in the matrix Z[V/u].

Proof. The result immediately follows from Def. 5 and the definition of ε-bisim-
ulation [11].

Example 2. As an example of the repair process, consider the Die problem pro-
posed by Knuth et al. in [19], where a fair coin is tossed three or more times to
obtain the face of a die; see Fig. 2(a). We wish to repair the model so that the
formula P≤1/8F [die = 1] is satisfied, thereby imposing a probability bound of
1
8

to eventually obtain a 1. In the original model, the probability to eventually
reach any face of the die is 1

6 , and the property is not satisfied.

Model Repair for Probabilistic Systems 331

Fig. 2. Two different model-repair strategies for the Knuth Die problem

To repair the model, we need to decide by how much the coin should be
biased each time it is tossed. Figs. 2(b) and (c) provide two different model-
repair strategies. In Fig. 2(b), we use a single biased coin (controllable DTMC
with one parameter), while in Fig. 2(c), we use three differently biased coins
(three parameters). In the latter case, the third coin can be tossed again if
state 3 or 6 is reached. The case with three parameters gives us the opportunity
to prioritize the parameters according to the impact they should have on the
repaired model’s state space using the weighted sum-of-squares cost function
described above.

3.1 The Max-Profit Model Repair Problem

Definition 7. A controllable Markov Reward Model (MRM) is a tuple R =
(D̃, ρ, ι) where D̃ = (S, s0,P,Z, L) is a controllable DTMC, ρ : S → R≥0 a state
reward function, and ι : S×S → R≥0 a transition reward function.

During the repair process, the Max-Profit Model Repair problem seeks to max-
imize the expected profit, as measured in terms of the difference between the
expected reward and the expected cost.

Definition 8. Let R = (D̃, ρ, ι) be a controllable MRM with D̃ = (S, s0,P,Z, L)
the associated controllable DTMC and D = (S, S0,P, L) D̃’s underlying DTMC.
Also, let φ be a PCTL formula such that D, s0 � φ, g(v) a possibly nonlinear cost
function, and e(v) an expected reward function, which, using ρ and ι, measures
the expected reward accumulated along any path in R that eventually reaches a
state in a given set of states B, B ⊆ S [13]. We assume that e(v) − g(v) is
always positive, continuous, and differentiable. The Max-Profit Model Repair
problem is to find a DTMC D′ = (S, s0,P′ = P + Z[V/u], L) with u : V → R

an evaluation function that satisfies the Conditions (2) and (3) of Def. 6, and
the following condition:

u = arg max e− g (4)

332 E. Bartocci et al.

4 Model Repair as a Nonlinear Programming Problem

The controllable DTMC D̃ = (S, s0,P,Z, L) over set of parameters V corre-
sponds to a PDTMC with probability matrix P + Z. If D̃ � P∼b(ψ), by para-
metric model checking, we derive the nonlinear constraint f(v) ∼ b, where f is
a multivariate rational function. Let Y be the set of linear combinations in V
defined as Y = {y(v) = P(i, j) + Z(i, j) : Z(i, j) �= 0, 1 ≤ i, j ≤ |S|}.
Proposition 3. A solution to the Model Repair problem of Def. 6 satisfies the
constraints of the following nonlinear program (NLP):

min g(v) (5)

f(v) ∼ b (6)
∀y ∈ Y : 0 < y(v) < 1 (7)

Proof. Cost function (5) ensures that if there is a solution to the NLP, this
yields an evaluation u such that the resulting DTMC is the closest to D̃ with
the desired property, as implied by Condition (1) of Def. 6. Constraint (6) en-
forces requirement (2) of Def. 6. Constraint (7), along with the selection of Z
in Def. 5, assure that evaluation u is valid and preserves the stochasticity of
the new transition probability matrix, while the strict inequalities also enforce
constraint (3) of Def. 6. If the NLP has no solution, then model repair for D̃ is
infeasible. For the solution of the Max Profit repair problem, we only have to
replace cost function (5) with profit function (4).
Example 3. To find a solution for the Model Repair problem of Example 2 with
the strategy shown in Fig. 2(b), the associated NLP is formulated as follows:

min w1v
2
1 + w2v

2
2 + w3v

2
3

8v1v2v3 − 4(v2v1 − v2v3 − v1v3)− 2(v1 + v2 − v3)− 1
8v2v3 + 4v2 + 4v3 − 6

− 1
8
≤ 0

∀i ∈ {1, · · · , 3},−0.5 < vi < 0.5

Fig. 3 shows two different solutions based on the choice of the vector w of
weights associated with the cost function. In Fig. 3(a), we consider the same
cost for changing each transition probability, i.e. w = [1 1 1]. In Fig. 3(b), we
provide a solution where the cost of v1 is ten times the cost of v3 and two times
the cost of v2, i.e. w = [10 5 1].

We denote by DNLP = Dom(g) ∩ Dom(f) ∩
⋂
y∈Y Dom(y) the domain of the

NLP problem. A solution v∗ ∈ DNLP is a local minimizer if there is ε > 0 such
that g(v∗) ≤ g(v) for all |v − v∗| < ε with v ∈ DNLP . If g(v∗) < g(v), v∗

is a strict local minimizer. A local minimizer v∗ ∈ DNLP is a globally optimal
solution if g(v∗) ≤ g(v) for all v ∈ DNLP .

All nonlinear optimization algorithms search for a locally feasible solution to
the problem. Such a solution can be found by initiating the search from the point
01×r, representing the no-change scenario. If no solution is found, the problem
is locally infeasible and the analyst has to initiate a new search from another
point or else to prove that the problem is infeasible.

Model Repair for Probabilistic Systems 333

Fig. 3. Model Repair solutions for Knuth Die problem

5 Model Repair Feasibility and Optimality

For a Model Repair problem with property constraint f(v) ∼ b, we denote:

h(v) =
{
f(v)− b, if ∼∈ {<,≤}
b− f(v), if ∼∈ {>,≥}

such that the constraint is written as h(v) ≤ 0, with the inequality becoming
strict if ∼∈ {<,>}.

Definition 9. For the NLP problem, the Lagrangian function X : DNLP ×
R

2|Y |+1 → R is defined as:

X (v, λ) = g(v) + λ0 · h(v) +
|Y |∑

k=1

λk · (yk(v)− 1)−
2|Y |∑

k=|Y |+1

λk · yk−|Y |(v)

The vector λ is the Lagrange multiplier vector. The Lagrange dual function

w(λ) = inf
v∈DNLP

(X (v, λ))

yields the minimum of the Lagrangian function over v.

It is easy to verify that for λ ≥ 0, the Lagrangian dual function w yields lower
bounds on the optimal cost g(v∗) of the NLP problem, since h(v∗) ≤ 0, y(v∗)−
1 < 0, and y(v∗) > 0, for all y ∈ Y .

Proposition 4. The best lower bound on the the NLP cost function is the cost
for the solution of the following Lagrangian dual problem:

max w(λ)

λ ≥ 0

λk �= 0, k = 1, . . . , 2 · |Y |
The constraints for λk correspond to the strict inequalities in constraint (7), and
if ∼∈ {<,>}, we eventually have λ > 0.

334 E. Bartocci et al.

P≤b[F s = 2 ∨ s = 5]

P≤0.3[F s = 2 ∨ s = 5] ⇔
8v1

2 + 2

4v1
2 + 3

≤ 0.3

8v1
2 + 2

4v1
2 + 3

≤ b

Fig. 4. Feasibility analysis for a probabilistic Model Repair problem

In [4], the authors developed a criterion for analyzing the feasibility of nonlinear
optimization programs, based on the theory of Lagrange duality. More precisely,
the system of inequalities in (6) (Prop. 3) is feasible when the NLPf

min 0 (8)

h(v) ∼ 0 (9)

∀y ∈ Y : y(v)− 1 < 0 (10)

∀y ∈ Y : −y(v) < 0 (11)

is also feasible. The optimal cost for the NLPf is:

p∗ =
{

0 if NLPf is feasible
∞ if NLPf is infeasible (12)

The Lagrangian dual function wf for this program with zero cost is:

wf (λ) = inf
v∈DNLP

(X (v, λ) − g(v)) (13)

We note that wf is positive homogeneous in λ, i.e. ∀α > 0, wf (α ·λ) = α ·wf (λ).
The associated Lagrange dual problem is to maximize wf (λ) subject to the
constraints λ ≥ 0 and λk �= 0, k = 1, . . . , 2 · |Y |. The optimal cost for the
homogeneous wf in the dual problem is:

d∗ =
{
∞ if λ ≥ 0, λk �= 0, wf (λ) > 0 is feasible
0 if λ ≥ 0, λk �= 0, wf (λ) > 0 is infeasible (14)

for k = 1, . . . , 2 · |Y |. By taking into account the property

d∗ ≤ p∗

Model Repair for Probabilistic Systems 335

which is known as weak duality [22], we conclude:

Proposition 5. If the Lagrange dual problem of NLPf , with the NLP con-
straints and cost is feasible, then the NLP for model repair is infeasible. Con-
versely, if NLP is feasible, then the Lagrange dual problem of NLPf is infeasible.

Example 4. For the controllable DTMC D̃ of Fig. 4, we show that Model Repair
is not always feasible. For path formula ψ = F [s = 2 ∨ s = 5], from Prop. 1 we
have:

D, s0 |= P≤bψ iff
8v2

1 + 2
4v2

1 + 3
≤ b

The Lagrangian dual function for the NLPf program is:

wf (λ) = inf
v1∈]−0.5,0.5[

(
λ0

(
8v2

1 + 2
4v2

1 + 3
− b

)
+ λ1(v1 − 1) + λ2(−v1)

)

where λ0 ≥ 0 and λ1, λ2 > 0. The rational function for ψ is minimized in v1 = 0
(Fig. 4) and therefore

wf (λ) = λ0

(
2
3
− b

)
− λ1

The nonlinear program in (14) becomes feasible when b < 2/3 and from Prop. 5
the NLP for repairing D̃ is infeasible for these values of b.

From [4], if v∗ is a local minimizer that also fulfills certain constraint qualifi-
cations, then the Karush-Kuhn-Tucker (KKT) conditions are satisfied. On the
other hand, if for some feasible point v′ there is a Lagrange multiplier vector
λ∗ such that the KKT conditions are satisfied, sufficient conditions are provided
which guarantee that v′ is a strict local minimizer. Since all the parameters
are bounded it is possible to check global optimality by using an appropriate
constraint solver, such as RealPaver [12].

6 Model Repair and Optimal Control

We show how the Model Repair problem is related to the optimal-controller
synthesis problem for linear systems. Given a (right-)linear system

x(n+ 1) = x(n)A+ u(n)B, x(0) = x0

where x is the state vector, u is a vector of inputs, and A and B are matrices rep-
resenting the system dynamics, the synthesis of an optimal controller is typically
performed in a compositional way as follows: (1) Synthesize a linear quadratic
regulator; (2) Add a Kalman filter state estimator; (3) Add the reference input.

For (1), the input can be written as u(n) = x(n)K , where K is the controller
matrix to be synthesized. Then:

x(n+ 1) = x(n)(A +KB)

336 E. Bartocci et al.

An optimal K is then obtained by minimizing the cost function

J = 1/2
∞∑

k=0

(xT (k)Qx(k) + uT (k)Ru(k))

where Q and R are nonnegative definite symmetric weighting matrices to be
selected by the designer, based on the relative importance of the various states
xi and controls uj .

The purpose of (2) is to add an optimal state estimator, which estimates the
current state based on the previous input and the previously measured output.
This is typically done in a recursive fashion with the help of a Kalman filter.

Finally, in (3), the reference input is added, which drives the overall behav-
ior of the controlled system. Typically, the addition of the reference input is
complemented with an integral control.

Although not immediately apparent, all the above steps are related to the
Model Repair problem (Definition 6). First, matrix Z contains in each entry
a linear combination of the parameters in V . This linear combination can be
obtained by decomposing Z as Z = KB, where K is a matrix of parameters (to
be synthesized) and B is a matrix defining the contribution of each parameter
to the next state of the system.

Note however, that the above optimization problem for J does not encode
the stochasticity requirement of Z. Hence, using the available tools for optimal-
controller synthesis, one cannot impose this requirement.

Second, the reference input can be related to the PCTL formula φ. Adding
the reference input to the system is, in many ways, the same as imposing the
satisfaction of φ. Note, however, that the reference input is added after K is
synthesized. In contrast, we synthesize the parameters in Z with φ included as
a constraint of the nonlinear optimization problem.

Finally, the variables occurring in the PCTL formula can be seen as the ob-
servables of the system, i.e., as the outputs of the system. In the model repair
case, we assume that we have full access to the state variables and the model
precisely captures the output.

Overall, our approach seems to be a generalization of the optimal-controller
synthesis problem for the class of linear systems represented by DTMCs. We
also perform a nonlinear multivariate optimization which is by necessity more
powerful than the one used for linear systems.

7 Applications

We present two Model Repair applications: (i) the Kaminsky DNS cache-
poisoning attack, along with the proposed fix (repair), and (ii) the Zeroconf pro-
tocol as a Max-Profit problem. Model Repair was performed using the PARAM
tool for parametric model checking [15] and the Ipopt software package for large-
scale nonlinear optimization [2].

Model Repair for Probabilistic Systems 337

Example 5. The Kaminsky DNS attack makes clever use of cache poisoning, so
that when a victim DNS server is asked to resolve URLs within a non-malicious
domain, it replies with the IP address of a malicious web server. The proposed
fix is to randomize the UDP port used in name-resolution requests. As such, an
intruder can corrupt the cache of a DNS server with a falsified IP address for
a URL, only if it manages to guess a 16-bit source-port id, in addition to the
16-bit query id assigned to the name-resolution request.

Our CTMC model for the Kaminsky attack [1] implements a victim DNS
server that generates times to request url queries to resolve one or more
resource names within some domain. While the victim waits for a legitimate
response to its query, the intruder tries with rate guess to provide a fake re-
sponse that, if correctly matching the query id, will be accepted by the victim,
thus corrupting its cache.

The only parameter the victim can control is the range of port-id values used
by the proposed fix, which affects the rate at which correct guesses arrive at
the victim. Other parameters that affect the rate of correct guesses, but are
not controlled by the victim are the popularity of the requested names, and
the rate at which other legitimate requests arrive at the victim. If the fix
is disabled, the number of port ids is one, and experiments show that for guess
≥ 200, the attack probability is greater than 0.9 if times to request url ≥ 6.

By applying model repair on the controllable embedded DTMC, we determined
the minimum required range of port ids such that P≤0.05F cache poisoned. While
the value of times to request url determines the size of the state space, we
observed that nonlinear optimization with Ipopt is not affected by state-space
growth. This is not the case, however, for the parametric model-checking times
given in Table 1 (popularity=3,guess=150,other legitimate requests=150).
The model was successfully repaired for all values of times to request url from 1
to 10.

Example 6. According to the Zeroconf protocol for assigning IP addresses in a
network, when a new host joins the network it randomly selects an IP address
among K possible ones. With m hosts in the network, the collision probability
is q = m/K. A new host asks the other hosts whether the randomly selected IP
address is already used and waits for an answer. The probability that the new
host does not get any answer is p, in which case it repeats the query. If after
n tries there is still no answer, the host will erroneously consider the chosen
address as valid.

We used Max Profit model repair on the DTMC model of [7] to determine
the collision probability q that optimizes the trade-off between (a) the expected
number of tries until the algorithm terminates, and (b) the cost of changing
q from its default value. The change applied to q is the only parameter used
in our Max Profit model; all other transition probabilities were maintained as
constants as in the original model. For n = 3, p = 0.1, and initial q = 0.6, we
determined the optimal q to be 0.5002, which reduced the expected number of
steps to termination from 6.15 to 5.1.

338 E. Bartocci et al.

Table 1. Model Repair of the Kaminsky CTMC

times to request States Transitions CPU PARAM PORT ID P=? [F cache poisoned]

1 10 13 0m0.390s 5 0.04498
2 60 118 0m0.430s 10 0.04593
3 215 561 0m0.490s 14 0.04943
4 567 1759 0m1.750s 19 0.04878
5 1237 4272 0m15.820s 24 0.04840
6 2350 8796 1m56.650s 28 0.0498
7 4085 16163 10m55.150s 33 0.0494
8 6625 27341 47m21.220s 38 0.0491
9 10182 43434 167m58.470s 42 0.0499
10 14992 65682 528m32.720s 47 0.0496

8 Related Work

Prior work has addressed a related version of the Model Repair problem in the
nonprobabilistic setting. In [5], abductive reasoning is used to determine a suit-
able modification of a Kripke model that fails to satisfy a CTL formula. Addition
and deletion of state transitions are considered, without taking into account the
cost of the repair process. The problem of automatically revising untimed and
real-time programs with respect to UNITY properties is investigated in [3], such
that the revised program satisfies a previously failed property, while preserving
the other properties. A game-based approach to the problem of automatically
fixing faults in a finite-state program is considered in [18]. The game consists of
the product of a modified version of the program and an automaton representing
an LTL specification, such that every winning finite-state strategy corresponds
to a repair. In [23], the authors introduce an algorithm for solving the paramet-
ric real-time model-checking problem: given a real-time system and temporal
formula, both of which may contain parameters, and a constraint over the pa-
rameters, does every allowed parameter assignment ensure that the real-time
system satisfies the formula?

In related work for probabilistic models, a Bayesian estimator based on run-
time data is used in [10] to address the problem of model evolution, where
model parameters may change over time. The authors of [21] consider paramet-
ric models for which they show that finding parameter values for a property to
be satisfied is in general undecidable. In [8], a model checker together with a
genetic algorithm drive the parameter-estimation process by reducing the dis-
tance between the desired behavior and the actual behavior. The work of [16]
addresses the parameter-synthesis problem for parametric CTMCs and time-
bounded properties. The problem is undecidable and the authors provide an
approximation method that yields a solution in most cases.

Model Repair for Probabilistic Systems 339

9 Conclusions

We have defined, investigated, implemented, and benchmarked the Model Repair
problem for probabilistic systems. Ultimately, we show how Model Repair can be
seen as both a nontrivial extension of the parametric model-checking problem for
probabilistic systems and a nontrivial generalization of the controller-synthesis
problem for linear systems. In both cases, its solution requires one to solve a non-
linear optimization problem with a minimal-cost (or maximal-profit) objective
function.

The problem we considered is one of offline model repair. As future work,
we would like to investigate the online version of the problem, where an online
controller runs concurrently with the system in question, appropriately adjusting
its parameters whenever a property violation is detected. Meeting this objective
will likely require a better understanding of the similarities between the model
repair and controller synthesis problems.

Acknowledgements. We thank the anonymous referees for their valuable com-
ments. Research supported in part by NSF Grants CCF-0926190, CCF-1018459,
CNS 0831298, CNS 0721665, ONR grant N00014-07-1-0928, and AFOSR Grant
FA0550-09-1-0481. The research of Professor Katsaros was conducted while on
Sabbatical leave at Stony Brook University.

References

1. Alexiou, N., Deshpande, T., Basagiannis, S., Smolka, S.A., Katsaros, P.: Formal
analysis of the kaminsky DNS cache-poisoning attack using probabilistic model
checking. In: Proceedings of the 12th IEEE International High Assurance Systems
Engineering Symposium, pp. 94–103. IEEE Computer Society, Los Alamitos (2010)

2. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT:
An integrating framework for enterprise-wide dynamic optimization. Computers
& Chemical Engineering 33(3), 575–582 (2009)

3. Bonakdarpour, B., Ebnenasir, A., Kulkarni, S.S.: Complexity results in revising
UNITY programs. ACM Trans. Auton. Adapt. Syst. 4(1), 1–28 (2009)

4. Boyd, S., Vandenberghe, L.: Convex Optimization. Camb. Univ. Press, Cambridge
(2004)

5. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by AI techniques. Artif. Intell. 112(1-2), 57–104 (1999)

6. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: Algorithmic verification
and debugging. Communications of the ACM 52(11), 74–84 (2009)

7. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

8. Donaldson, R., Gilbert, D.: A model checking approach to the parameter estimation
of biochemical pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008.
LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)

9. Dong, Y., Sarna-Starosta, B., Ramakrishnan, C.R., Smolka, S.A.: Vacuity checking
in the modal mu-calculus. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002.
LNCS, vol. 2422, pp. 147–162. Springer, Heidelberg (2002)

340 E. Bartocci et al.

10. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: ICSE 2009: Proceedings of the 31st International
Conference on Software Engineering, pp. 111–121. IEEE Computer Society Press,
Washington, DC, USA (2009)

11. Giacalone, A., Chang Jou, C., Smolka, S.A.: Algebraic reasoning for probabilistic
concurrent systems. In: Proc. of the IFIP TC2 Working Conference on Program-
ming Concepts and Methods, pp. 443–458. North-Holland, Amsterdam (1990)

12. Granvilliers, L., Benhamou, F.: RealPaver: an interval solver using constraint sat-
isfaction techniques. ACM Trans. Math. Softw. 32, 138–156 (2006)

13. Hahn, E., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. International Journal on Software Tools for Technology Trans-
fer, 1–17 (April 2010)

14. Hahn, E.M.: Parametric Markov model analysis. Master’s thesis, Saarland Univer-
sity (2008)

15. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A Model Checker for
Parametric Markov Models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

16. Han, T., Katoen, J.-P., Mereacre, A.: Approximate parameter synthesis for proba-
bilistic time-bounded reachability. In: IEEE International Real-Time Systems Sym-
posium, pp. 173–182 (2008)

17. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 102–111 (1994)

18. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

19. Knuth, D., Yao, A.: The complexity of nonuniform random number generation. In:
Algorithms and Complexity: New Directions and Recent Results. Academic Press,
London (1976)

20. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

21. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system sesign and analysis. Formal Aspects of Computing 19(1), 93–109
(2007)

22. Sinha, S.M.: Duality in nonlinear programming. In: Mathematical Programming,
pp. 423–430. Elsevier Science, Burlington (2006)

23. Zhang, D., Cleaveland, R.: Fast on-the-fly parametric real-time model checking.
In: Proceedings of the 26th IEEE International Real-Time Systems Symposium,
pp. 157–166. IEEE Computer Society, Los Alamitos (2005)

Boosting Lazy Abstraction for SystemC
with Partial Order Reduction

Alessandro Cimatti, Iman Narasamdya, and Marco Roveri

Fondazione Bruno Kessler — Irst
{cimatti,narasamdya,roveri}@fbk.eu

Abstract. The SystemC language is a de-facto standard for the description of
systems on chip. A promising technique, called ESST, has recently been pro-
posed for the formal verification of SystemC designs. ESST combines Explicit
state techniques to deal with the SystemC Scheduler, with Symbolic techniques,
based on lazy abstraction, to deal with the Threads. Despite its relative effective-
ness, this approach suffers from the potential explosion of thread interleavings.

In this paper we propose the adoption of partial order reduction (POR) tech-
niques to alleviate the problem. We extend ESST with two complementary POR
techniques (persistent set, and sleep set), and we prove the soundness of the ap-
proach in the case of safety properties. The extension is only seemingly trivial:
the POR, applied to the scheduler, must be proved not to interfere with the lazy
abstraction of the threads.

We implemented the techniques within the software model checker KRATOS,
and we carried out an experimental evaluation on benchmarks taken from the
SystemC distribution and from the literature. The results showed a significant
improvement in terms of the number of visited abstract states and run times.

1 Introduction

SystemC is widely used for the design of systems on chip. Executable models written
in SystemC are amenable for high-speed simulation before synthesizing the RTL hard-
ware description. Formal verification of SystemC designs can help to pinpoint errors,
preventing their propagation down to the hardware, but can also help to reveal errors in
the specifications.

Despite its importance, however, formal verification of SystemC is a very hard chal-
lenge. Indeed, a SystemC design is a very complex entity. In addition to rich data, Sys-
temC features a form of multi-threading, where scheduling is cooperative and carried
out according to a specific set of rules [20], and the execution of threads is mutually
exclusive.

A promising technique, called ESST [7], has recently been proposed for the verifi-
cation of SystemC designs. ESST combines Explicit state techniques to deal with the
SystemC Scheduler, with Symbolic techniques, based on lazy abstraction [2], to deal
with the Threads. Despite its relative effectiveness, this technique requires the explo-
ration of a large number of thread interleavings, many of which are redundant, with
subsequent degradations in the run time performance and high memory consumption.

Partial-order reduction (POR) [11,18,22] is a well known model checking technique
that tackles the state explosion problem by exploring only representative subset of all

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 341–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

342 A. Cimatti, I. Narasamdya, and M. Roveri

possible schedules. In general, POR exploits the commutativity of concurrent transi-
tions that result in the same state when they are executed in different orders. POR tech-
niques have successfully been integrated in explicit-state software model checkers like
SPIN [13] and VERISOFT [10], and also applied in symbolic model checking [15,23,1].

In this paper we boost ESST with two complementary POR techniques [11], persis-
tent set and sleep set. The POR techniques are used in the ESST algorithm to limit the
expansion of the transitions in the explicit scheduler, while the nature of the symbolic
search of the threads, based on lazy abstraction, remains unchanged. Notice that the
application of POR in ESST algorithm is only seemingly trivial, because POR could
in principle interact negatively with the lazy abstraction used for the search within the
threads. In fact, we prove that the pruning carried out by POR in the abstract space
preserves the reachability in the concrete space, which yields the soundness of the ap-
proach in the case of safety properties.

We implemented these POR techniques within the KRATOS software model checker.
KRATOS implements the ESST algorithm, and is at the core of the tool chain described
in [7], which also includes a SystemC front-end derived from PINAPA [17]. We perform
an experimental evaluation on the benchmark set used in [7], that includes problems
from the SystemC distribution and from the literature. The results show that POR tech-
niques can yield substantial improvements on the performance of the ESST algorithm
in terms of the number of visited abstract states and run times.

This paper is structured as follows. In Sec. 2 we briefly introduce SystemC and we
briefly describe the ESST algorithm. In Sec. 3 we show by means of an example the
possible state explosion problem that may arise. In Sec. 4 we show how to lift POR
techniques to the ESST algorithm. In Sec. 5 we revise the related work. Finally, in
Sec. 7 we draw some conclusions and we outline future work.

2 Background

The SystemC language. SystemC is a C++ library that consists of (1) a core language
that allows one to model a System-on-Chip (SoC) by specifying its components and ar-
chitecture, and (2) a simulation kernel (or scheduler) that schedules and runs processes
(or threads) of components. SoC components are modeled as SystemC modules that
communicate through channels (that are bound to the ports specified in the modules).

A module consists of one or more threads that describe the parallel behavior of the
SoC design. SystemC provides general-purpose events as a synchronization mechanism
between threads. For example, a thread can suspend itself by waiting for an event or by
waiting for some specified time. A thread can perform immediate notification of an
event or delayed notification.

The SystemC scheduler is a cooperative non-preempting scheduler that runs at most
one thread at a time. During a simulation, the status of a thread changes from sleeping,
to runnable, and to running. A running thread will only give control back to the sched-
uler by suspending itself. The scheduler runs all runnable threads, one at a time, in a
single delta cycle, while postponing the channel updates made by the threads. When
there are no more runnable threads, the scheduler materializes the channel updates, and
wakes up all sleeping threads that are sensitive to the updated channels. If, after this

Boosting Lazy Abstraction for SystemC with Partial Order Reduction 343

1 SC MODULE(numgen) {
2 sc out<int> o ; / / ou tput po r t .
3 sc in<bool> ck ; / / i npu t po r t f o r c lock .
4
5 / / Reads inp u t from environment .
6 void gen () { i n t x = read inpu t () ; o . w r i t e (x) ; }
7
8 SC CTOR(numgen) {
9 / / dec lare ” gen ” as a method thread .

10 SC METHOD(gen) ;
11 d o n t i n i t i a l i z e () ;
12 sensit ive << ck . pos () ;
13 }
14 }
15
16 SC MODULE(stage1) {
17 sc in<int> i ; / / i npu t po r t .
18 sc out<int> o ; / / ou tput po r t .
19 sc in<bool> ck ; / / i npu t po r t f o r c lock .
20
21 / / Pass value from inp u t po r t to output po r t .
22 void pass () { i n t x = i . read () ; o . w r i t e (x) ; }
23
24 SC CTOR(stage1) {
25 / / dec lare ” pass ” as a method thread
26 SC METHOD(pass) ;
27 d o n t i n i t i a l i z e () ;
28 sensit ive << ck . pos () ;
29 }
30 }

31 SC MODULE(stage2) {
32 sc in<int> i ; / / i npu t po r t .
33 sc in<bool> ck ; / / i npu t po r t f o r c lock .
34
35 / / Method f o r checking value .
36 void check () { i n t x = i . read () ; assert (x == 0) ; }
37
38 SC CTOR(stage2) {
39 / / dec lare ” check ” as a method thread
40 SC METHOD(check) ;
41 d o n t i n i t i a l i z e () ;
42 sensit ive << ck . pos () ;
43 }
44 }
45
46 i n t sc main () {
47 sc signal<int> gen to s1 , s1 to s2 ;
48 sc signal<bool> ck ;
49
50 numgen N; N. o (gen to s1) ; N. ck (ck) ;
51
52 stage1 S1 ; S1 . i (gen to s1) ; S1 . o (s1 to s2) ; S1 . ck (ck) ;
53
54 stage2 S2 ; S2 . i (s1 to s2) ; S2 . ck (ck) ;
55
56 sc star t (0) ;
57 for (i n t i =0; i < 3; ++ i) {
58 ck . w r i t e (1) ; sc star t (0) ; ck . w r i t e (0) ; sc star t (0) ;
59 }
60 }

Fig. 1. Example of SystemC design

step, there are some runnable threads, then the scheduler moves to the next delta cycle.
Otherwise, it accelerates the simulation time to the nearest time point where a sleep-
ing thread or an event can be woken up. The scheduler quits when there are no more
runnable threads after time acceleration.

An example of SystemC design is shown in Fig. 1. It consists of three modules:
numgen, stage1, and stage2. In the sc main function we create an instance for each
module, and we connect them such that the instances of numgen and stage1 are con-
nected by the signal gen to s1 and the instances of stage1 and stage2 are con-
nected by the signal s1 to s2. The thread gen of numgen reads an integer value from
the environment and sends it to stage1 through the signal gen to s1. The thread
pass of stage1 simply reads the value from the signal gen to s1 and sends it to
stage2 through the signal s1 to s2. The thread check of stage2 reads the value
from s1 to s2 and asserts that the read value equals 0. All threads are made sensitive
to the positive edge of the clock ck (modeled as a boolean signal): they become runnable
when the value of the ck changes from 0 to 1. The function dont initialize makes
the most-recently declared thread sleep initially. The clock cycle is controlled by the
loop in the sc main function. The function sc start runs a simulation until there are
no more runnable threads. The property that we want to check is that the value read by
numgen from the environment reaches stage2 in three clock cycle.

The Explicit Scheduler + Symbolic Threads (ESST) approach. The ESST tech-
nique [7] is a counter-example guided abstraction refinement [8] based technique that
combines explicit-state technique with lazy predicate abstraction [2]. In the same way
as the classical lazy abstraction, the data path of the threads is analyzed by means of
predicate abstraction, while the flow of control of each thread and the state of the sched-
uler are analyzed with explicit-state techniques.

344 A. Cimatti, I. Narasamdya, and M. Roveri

We assume that the SystemC design has been translated into a threaded C pro-
gram [7] in which each SystemC thread is represented by a C function. Each function
corresponding to a thread is represented by a control-flow automaton (CFA), which is
a pair (L,G), where L is the set of control locations and G ⊆ L ×Ops× is the set of
edges such that each edge is labelled by an operation from the set Ops of operations.

Threads in a threaded C program communicate with each other by means
of shared global variables, and use primitive functions and events as synchro-
nization mechanism. For SystemC we have the following primitive functions:
wait event(e),wait time(t), notify event(e), notify event at time(e,t),
and cancel event(e) for an event e and a time unit t.

The ESST algorithm is based on the construction and analysis of an abstract reacha-
bility forest (ARF) that describes the reachable abstract states of the threaded program.
An ARF consists of connected abstract reachability trees (ART’s), each of which is
obtained by unwinding the CFA corresponding to the running thread.

For a threaded program with n threads, a node in an ARF is a tuple
(〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S), where li and ϕi are, respectively, the program location
and the region of thread i, ϕ is the region of global variables, and S is the state of the
scheduler. Regions are formulas describing the values of variables. Information main-
tained in the scheduler state S includes the status of threads and events, the events that
sleeping threads are waiting for their notifications, and the delays of event notifications.

An ARF is constructed by unwinding the CFA’s of threads, and by executing the
scheduler. Unwinding a CFA involves computing the abstract strongest post-condition
SPπ(ϕ, op) of a region ϕ with respect to the operation op labelling the unwound CFA
edge and the precision π. In the ESST approach, the precision π can contain a set of
predicates that are tracked for the global region and for the thread regions.

Unwinding the CFA by executing primitive functions is performed by the function
SEXEC that takes as inputs a scheduler state and a call to a primitive function p, and
returns the updated scheduler state obtained from executing p. For example, the state
S′ = SEXEC(S,wait event(e)) is obtained from the state S by changing the status
of the running thread to sleep, and noting that the now sleeping thread is waiting for the
event e.

We implement the scheduler by the function SCHED that, given a scheduler state
where all threads are sleeping, outputs a set of scheduler states representing all possible
schedules such that each of the output scheduler states has exactly one running thread.

We expand a node (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S) by means of the following rules [7]:

E1. If there is a running thread i in S such that the thread performs an operation op and
(li, op, l′i) is an edge of the CFA of thread i, then

– If op is not a call to primitive function, then the successor node is
(〈l1, ϕ′1〉, . . . , 〈l′i, ϕ′i〉, . . . , 〈ln, ϕ′n〉, ϕ′, S), where ϕ′i = SPπ(ϕi ∧ ϕ, op),
ϕ′j = SPπ(ϕj ∧ ϕ, HAVOC(op))) for j �= i, and ϕ′ = SPπ(ϕ, op). The func-
tion HAVOC collects all global variables possibly updated by op, and builds a
new operation where these variables are assigned with fresh variables.

– If op is a primitive function, then the successor node is
(〈l1, ϕ1〉, . . . , 〈l′i, ϕi〉, . . . , 〈ln, ϕn〉, ϕ, SEXEC(S, op)).

Boosting Lazy Abstraction for SystemC with Partial Order Reduction 345

E2. If there is no running thread in S, then, for each S′ ∈ SCHED(S), we create a
successor node (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S′), such that the node becomes the root
node of a new ART that is then added to the ARF. Such a connection between two
nodes is called ARF connector.

In the construction of an ARF, one stops expanding a node if the node is covered
by other nodes or if the conjunction of all its thread regions and the global region is
unsatisfiable. We say that a node (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S) is covered by a node
(〈l′1, ϕ′1〉, . . . , 〈l′n, ϕ′n〉, ϕ′, S′) if (1) li = l′i for i = 1, . . . , n, (2) S = S′, and (3)
ϕ ⇒ ϕ′ and

∧
i=1,...,n(ϕi ⇒ ϕ′i) are valid. An ARF is complete if it is closed under

the expansion of the above rules. An ARF is safe if it is complete and, for every node
(〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S) in the ARF such that ϕ ∧

∧
i=1,...,n ϕi is satisfiable, none

of the locations l1, . . . , ln are error locations.
The construction of an ARF starts with a single ART representing reachable states of

the main function. In the root node of that ART all regions are initialized with True, all
thread locations are set to the entries of the corresponding threads and the only running
thread in the scheduler state is the main function. The main function then suspends itself
by calling a primitive function that starts the simulation. We expand the ARF using the
rules E1 and E2 until either the ARF is complete or we reach a node where one of
the thread’s location is an error location. In the latter case we build a counterexample
consisting of paths in the trees of the ARF and check if the counterexample is feasible.
If it is feasible, then we have found a real counterexample witnessing that the program is
unsafe. Otherwise, we use the spurious counterexample to discover predicates to refine
the ARF. We refer to [7] for further details.

3 The Problem of Multiple Interleavings

The ESST algorithm often has to explore a large number of possible schedules. How-
ever, some of them might be redundant because the order of interleavings of some
threads is irrelevant.

Fig. 2 depicts, for the example in Fig. 1, the ARF constructed by the ESST algorithm
in every delta cycle. This figure clearly shows that there are 6=3! possible schedules.
These threads communicate with each other using signals. A signal s in SystemC can be
viewed as a pair (sold, snew) of variables such that writing to s is modeled by writing to
snew while reading from s is modeled by reading from sold. Thus, these threads access
disjoint sets of variables: gen writes to gen to s1new , pass reads from gen to s1old
and writes to s1 to s2new, and check reads from s1 to s2old. Therefore, when all the
threads become runnable, the order of running them is irrelevant. Consequently, instead
of exploring all 3! possible schedules, it is sufficient to explore only one of them.

Partial order reduction techniques (POR) [11,18,22] can be used to avoid exploring
redundant schedules. However, we need to ensure that in the construction of the ARF
the partial order reduction does not remove all counter-example paths witnessing that
the SystemC design is unsafe. In the following we will see how to extend the the ESST
algorithm to exploit POR in the construction of the ARF guaranteeing that the above
condition is satisfied.

346 A. Cimatti, I. Narasamdya, and M. Roveri

sleeping thread/scheduler

running thread/scheduler
runnable threadscheduler transition

thread transition

s=scheduler g=generate p=pass c=check

p

g p c

c

c

g

s

s g p c

g

s g c

s g p c

p

p

c p

cpgs

c

s g p

cpgs

c

g p g

cpgs

c

s g p

cpgs

c

p c g

s g p c

c

cpg

s g p c

s

g

s g

s g p c

p

cpg

s g p c

s

c s g

s g p c

pcpg

cpgs

s cg p

cpgs

c cpg

cpgs

ssgs

cpgs

p cpg

s g p c

sc

p

p

s g p c

c

gs p

s g

s

Fig. 2. The 6 possible interleavings for threads of the example in Fig. 1

4 Reduction Algorithms in ESST

Partial-order reduction (POR) [11,18,22] is a model checking technique that is aimed
at combating the state explosion by exploring only representative subset of all possible
interleavings. In this paper we apply POR to the ESST technique.

4.1 Partial-Order Reduction Techniques

For presentation of POR in this section we follow the standard notions and notations
used in other literature [11,9]. We represent a concurrent program as a transition system
M = (S, S0, T), where S is the finite set of states, S0 ⊂ S is the set of initial states,
and T is a set of transitions such that for each α ∈ T , we have α ⊂ S × S. We say that
α(s, s′) holds and often writes it as s

α→ s′ if (s, s′) ∈ α. A state s′ is a successor of
a state s if s

α→ s′ for some transition α ∈ T . In the following we will only consider
deterministic transitions A transition α is enabled in a state s if there is a state s′ such
that α(s, s′) holds. The set of transitions enabled in a state s is denoted by enabled(s).
A path from a state s in a transition system is a finite or infinite sequence s0

α0→ s1
α1→ · · ·

such that s = s0 and si
αi→ si+1 for all i. A path is empty if the sequence consists only

of a single state. The length of a finite path is the number of transitions in the path.
Let M = (S, S0, T) be a transition system, we denote by Reach(S0, T) ⊆ S the

set of states reachable from the states in S0 by the transitions in T . In this work we
are interested in verifying safety properties in the form of program assertion. To this
end, we assume that there is a set Terr ⊆ T of error transitions such that the set

EM,Terr = {s ∈ S | ∃s′ ∈ S.∃α ∈ Terr . α(s′, s) holds }
is the set of error states of M with respect to Terr . A transition system M is safe with
respect to the set Terr ⊆ T of error transitions iff Reach(S0, T) ∩ EM,Terr = ∅.

Selective search in POR exploits the commutativity of concurrent transitions. The
concept of commutativity of concurrent transitions can be formulated by defining an
independence relation on pairs of transitions.

Boosting Lazy Abstraction for SystemC with Partial Order Reduction 347

DEFINITION 4.1 (INDEPENDENCE RELATION, INDEPENDENT TRANSITIONS). An
independence relation I ⊆ T × T is a symmetric, anti-reflexive relation such that
for each state s ∈ S and for each (α, β) ∈ I the following conditions are satisfied:
(Enabledness) If α is in enabled(s), then β is in enabled(s) iff β is in enabled(α(s)).
(Commutativity) If α and β are in enabled(s), then α(β(s)) = β(α(s)).

We say that two transitions α and β are independent of each other if for every state s
they satisfy the enabledness and commutativity conditions. We also say that two transi-
tions α and β are independent in a state s of each other if they satisfy the enabledness
and commutativity conditions in s. ��
In the sequel we will use the notion of valid dependence relation to select a representa-
tive subset of transitions that need to be explored.

DEFINITION 4.2 (VALID DEPENDENCE RELATION). A valid dependence relation
D ⊆ T × T is a symmetric, reflexive relation such that for every (α, β) �∈ D, the
transitions α and β are independent of each other. ��

The Persistent Set approach. To reduce the number of possible interleavings, in every
state visited during the state space exploration one only explores a representative subset
of transitions that are enabled in that state. However, to select such a subset we have to
avoid possible dependencies that can happen in the future. To this end, we appeal to the
notion of persistent set [11].

DEFINITION 4.3 (PERSISTENT SET). A set P ⊆ T of enabled transitions in a state s
is persistent in s if for every finite nonempty path s = s0

α0→ s1 · · · sn
αn→ sn+1 such that

αi �∈ P for all i = 0, . . . , n, we have αn independent of any transition in P in sn. ��

Note that the persistent set in a state is not unique. To guarantee the existence of succes-
sor state, we impose the successor-state condition on the persistent set: the persistent
set in s is empty iff so is enabled(s). For simplicity, in the sequel whenever we speak
about persistent sets, then the sets satisfy the successor-state condition. We say that a
state s is fully expanded if the persistent set in s equals enabled(s). It is easy to see that,
for any transition α not in the persistent set P in a state s, the transition α is disabled in
s or independent of any transition in P .

We denote by Reachred(S0, T) ⊆ S the set of states reachable from the states in
S0 by the transitions in T such that, during the state space exploration, in every visited
state we only explore the transitions in the persistent set in that state. It is easy to see
that Reachred(S0, T) ⊆ Reach(S0, T).

To preserve safety properties of a transition system we need to guarantee that the re-
duction by means of persistent set does not remove all interleavings that lead to an error
state. To this end, we impose the so-called cycle condition on Reachred(S0, T) [9,18]:
a cycle is not allowed if it contains a state in which a transition α is enabled, but α is
never included in the persistent set of any state s on the cycle.

THEOREM 4.4. A transition system M = (S, S0, T) is safe w.r.t. a set Terr ⊆ T of
error transitions iff Reachred(S0, T) that satisfies the cycle condition does not contains
any error state from EM,Terr . ��

348 A. Cimatti, I. Narasamdya, and M. Roveri

The Sleep Set approach. We consider also the sleep set POR technique. This tech-
nique exploits independencies of enabled transitions in the current state. For example,
suppose that in some state s there are two enabled transitions α and β, and they are in-
dependent of each other. Suppose further that the search explores α first from s. Then,

when the search explores β from s such that s
β→ s′ for some state s′, we associate

with s′ a sleep set containing only α. From s′ the search only explores transitions that
are not in the sleep set of s′. That is, although the transition α is still enabled in s′, it
will not be explored. Both persistent set and sleep set techniques are orthogonal and
complementary, and thus can be applied simultaneously.

Note that the sleep set technique only removes transitions, and not states. Thus
Theorem 4.4 still holds when the sleep set technique is applied.

4.2 Applying POR to ESST

Applying POR to the ESST algorithm is not trivial. The ESST algorithm is based on
the construction of an ARF that describes the reachable abstract states of the threaded
program, while the description of POR in Sec. 4.1 is based on the analysis of reachable
concrete states. One then needs to guarantee that the original ARF is safe iff. the reduced
ARF, obtained by applying POR in the construction of ARF, is safe. That is, we have
to ensure that the selective search performed during the construction of ARF does not
remove all non-spurious paths that lead to error locations. In particular, the construction
of reduced ARF has to check if the cycle condition is satisfied in its concretization.

To integrate POR techniques into the ESST algorithm we first need to identify tran-
sitions in the threaded program. In the above description of POR the execution of a
transition is atomic. We introduce the notion of atomic block as the notion of transition
in the threaded program. Intuitively an atomic block is a block of operations between
calls to primitive functions that can suspend the thread. For simplicity, let us call such
primitive functions wait functions.

An atomic block of a thread is a rooted sub-graph of the CFA satisfying the following
conditions: (1) its unique entry is the entry of the CFA or the location that immediately
follows a call to a wait function; (2) its exit is the exit of the CFA or the location that
immediately follows a call to a wait function; and (3) there is no call to a wait function
in any CFA path from the entry to an exit except the one that precedes the exit. Note
that an atomic block has a unique entry, but can have multiple exits. We often identify
an atomic block by its entry.

void thread t() {
while (...) {
...
wait event(e);
lab: ...

}
}

Fig. 3. Fragment of code

For example, consider the thread code of Fig. 3. One
atomic block starts from the entry of the thread and ends at
the label lab and at the exit of the thread. The other atomic
block starts from the label lab and ends at the label lab
too and at the exit of the thread. In the sequel we will use
the terms transition and atomic block interchangeably.

We use static analysis techniques to compute a valid
dependence relation. In particular, a pair (α, β) of atomic
blocks are in a valid dependence relation if one of the following criteria is satisfied: (1)
The atomic block α contains a write to a shared (or global) variable g, and the atomic
block β contains a write or a read to g. (2) The atomic block α contains an immediate

Boosting Lazy Abstraction for SystemC with Partial Order Reduction 349

Algorithm 1. Persistent set.

Input: a set TE of enabled atomic blocks.
Output: a persistent set P .

1. Let TP := {α}, where α ∈ TE .
2. For each atomic block α ∈ TP :

(a) If α ∈ TE (α is enabled): Add into TP every atomic block β such that (α, β) ∈ D.
(b) If α �∈ TE (α is disabled): Add into TP a set of atomic blocks whose executions guar-

antee α to become enabled.
3. Repeat step 2 until no more transition can be added into TP .
4. P := TP ∩ TE .

notification of an event e, and the atomic block β contains a wait for e. (3) The atomic
block α contains a delayed notification of an event e, and the atomic block β contains a
cancellation of a notification of e.

Persistent sets are computed using a valid dependence relation. Let D be a valid
dependence relation. Algorithm 1 computes persistent sets. It is easy to see that the
persistent set computed by this algorithm satisfies the successor-state condition.

Algorithm 1 is a variant of the stubborn set algorithm presented in [11], that is, we
use a valid dependence relation as the interference relation described in [11].

We apply POR to the ESST algorithm by modifying the ARF node expansion
rule E2 (see Section 2) by first computing a persistent set from a set of scheduler states
output by the function SCHED; and then by ensuring that the cycle condition is satisfied
by the concretization of the constructed ARF.

First, we assume that a valid dependence relation D has been produced by static
analysis on the threaded program. Second, we introduce the function PERSISTENT that
computes a persistent set of a set of scheduler states. PERSISTENT takes as inputs an
ARF node and a set S of scheduler states, and outputs a subset S′ of S. The input ARF
node keeps track of the thread locations, which are used to identify atomic blocks, while
the input scheduler states keep track of the status of the threads. From the ARF node
and the set S, the function PERSISTENT extracts the set TE of enabled atomic blocks.
PERSISTENT then computes a persistent set P from TE using Algorithm 1. Finally
PERSISTENT constructs back a subset S ′ of the input set S of scheduler states from the
persistent set P .

Let A = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S) be an ARF node that is going to be ex-
panded. We replace the rule E2 in the following way: instead of creating a new
ART for each state S′ ∈ SCHED(S), we create a new ART whose root is the
node (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S′) for each state S ′ ∈ PERSISTENT(A, SCHED(S))
(rule E2’).

To guarantee the preservation of safety properties, following [9], instead of checking
that the cycle condition is satisfied we check a stronger condition: at least one state
along the cycle is fully expanded.

In the ESST algorithm a potential cycle occurs if an ARF node is covered by one
of its predecessors in the ARF. Let A = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ, S) be an ARF node.
We say that the scheduler state S is running if there is a running thread in S. Recall our
assumption that there is at most one running thread in the scheduler state. We also say

350 A. Cimatti, I. Narasamdya, and M. Roveri

Algorithm 2. ARF expansion algorithm for non-running node.

Input: a non-running ARF node A that contains no error locations.
1. Let NonRunning(ARFPath(A,F)) be A0, . . . , Am such that A = Am

2. If there exists i < m such that Ai covers A:
(a) Let Am−1 = (〈l′1, ϕ′

1〉, . . . , 〈l′n, ϕ′
n〉, ϕ′, S′).

(b) If PERSISTENT(Am−1, SCHED(S′)) ⊂ SCHED(S′):
– For all S′′ ∈ SCHED(S′) \ PERSISTENT(Am−1, SCHED(S′)):
• Create a new ART with root node (〈l′1, ϕ′

1〉, . . . , 〈l′n, ϕ′
n〉, ϕ′, S′′).

3. If A is covered: Mark A as covered.
4. If A is not covered: Expand A by rule E2’.

that the node A is running if its scheduler state S is. Note that during ARF expansion
the input of SCHED is always a non-running scheduler state.

A path in an ARF can be represented as a sequence A0, . . . , Am of ARF nodes
such that for all i, we have Ai+1 is a successor of Ai in the same ART or there is
an ARF connector from Ai to Ai+1. Given an ARF node A of ARF F , we denote by
ARFPath(A,F) the ARF path A0, . . . , Am such that (1) A0 has neither a predecessor
ARF node nor an incoming ARF connector, and (2) Am = A. Let Π be an ARF path,
we denote by NonRunning(Π) the maximal sub-sequence of non-running node in Π .

Algorithm 2 shows how a non running ARF node A (containing no error locations)
is expanded in the presence of POR. We fully expand the immediate non-running pre-
decessor node of A when a potential cycle is detected. Otherwise the node is expanded
as usual.

Our POR technique differs from that one described in [9], and implemented in
SPIN [14]. The technique in [9] tries to select a persistent set that does not create a
cycle, and if it does not succeed, then it fully expands the node. In the context of ESST
such a technique is expensive. To detect a cycle one has to expand a node by a transition.
As explained before, a transition or an atomic block in our case can span over multiple
operations in CFA. Thus, a cycle detection often requires expensive computations of
abstract strongest post condition.

In addition to coverage check, in the above algorithm one can also check if the de-
tected cycle is spurious or abstract. We only fully expand a node iff the detected cycle
is not spurious. As cycles are rare, the benefit of POR can be defeated by the price of
generating and solving the constraints that encode the cycle.

In SystemC cycles can occur because there is a chain of wait and immediate notifi-
cations of events. For SystemC cycle detection can be optimized by only considering
the sequence of non-running ARF node that belongs to the same delta-cycle.

POR based on sleep set can also be applied to ESST by extending the ARF node to
include a sleep set. The application of sleep set technique into the ESST algorithm is
similar to that of in the case of explicit-state model checking. Due to lack of space we
refer to the appendix for a detailed discussion on the application of sleep set to ESST.

4.3 Correctness of Reduction in ESST

The correctness of POR with respect to verifying program assertions of transition sys-
tems has been shown by Theorem 4.4. The correctness proof relies on the enabledness

Boosting Lazy Abstraction for SystemC with Partial Order Reduction 351

and commutativity of independent transitions. However, the proof is applied in concrete
state space of the transition system, while the ESST algorithm works in abstract state
space represented by an ARF. The following observation shows that two transition that
are independent in the concrete state space may not commute in the abstract state space.

A5 (p)

A2 (p)

A3 (p ∨ q)

β

α
A1 (p)

β

α

A4 (p ∨ q)

Fig. 4. Independent transitions do not
commute in abstract state space

For simplicity of presentation, we represent an
abstract state by a formula representing a region.
Let g1, g2 be global variables, and p, q be predi-
cates such that p ⇔ (g1 < g2) and q ⇔ (g1 =
g2). Let α be the transition g1 := g1 - 1 and β
be the transition g2 := g2 - 1. It is obvious that
α and β are independent of each other. However,
Fig. 4 shows that the two transition do no com-
mute when we start from an abstract state A1 such
thatA1 ⇔ p. The edges in the figure represent the
computation of abstract strongest post condition of the corresponding abstract states
and transitions.

Even though two independent transitions do not commute in abstract state space,
they still commute in the concrete state space over-approximated by the abstract state
space, as shown by the lemma below. For a concrete state s and an abstract state A, we
write s |= A iff A holds in s.

LEMMA 4.5. Let α and β be transitions that are independent of each other such that
for concrete states s1, s2, s3 and abstract state A we have s1 |= A, and both α(s1, s2)
and β(s2, s3) holds. Let A′ be the abstract successor state of A by applying the abstract
strongest post operator to A and β, and A′′ be the abstract successor state of A′ by
applying the abstract strongest post operator toA′ and α. Then, there are concrete states
s4 and s5 such that: (1) β(s1, s4) holds, (2) s4 |= A′, (3) β(s4, s5) holds, (4) s5 |= A′′,
and (5) s3 = s5. ��
The above lemma shows that POR can be applied in abstract state space. The following
theorem states the correctness of the reduction in the ESST technique.

THEOREM 4.6. Let ARF F1 be obtained by node expansion without POR and ARF F2

be obtained with POR. F1 is safe iff F2 is safe. ��

5 Related Work

It is discussed in [3] an approach aiming at the generation of a SystemC scheduler
from a SystemC design that at run time will use race analysis information to speed up
the simulation by reducing the number of possible interleavings. The race condition it-
self is formulated as a guarded independence relation. The independence relation used
in [3] is more precise than the one defined in this paper. In our work two transitions are
independent if they are independent in any state. While in [3] two transitions are inde-
pendent in some state if the guard associated with the pair of transitions is satisfied by
the state. The guards of two transitions are computed using model checking techniques.
The soundness of the synthesized scheduler relies on the assumption that the SystemC
threads cannot enable each other during the evaluation phase. Therefore, immediate

352 A. Cimatti, I. Narasamdya, and M. Roveri

event notifications are not allowed. Our work does not have such an assumption. More-
over, unlike our work, the search in [3] is stateless and it is bounded on the number of
simulation steps: cycle condition cannot be detected, and thus this approach cannot be
used to verify program assertions.

Dynamic POR techniques for scalable testing of SystemC designs are described
in [16,12]. Unlike other works on dynamic POR that collect and analyze run time in-
formation to determine dependency of transitions, the work in [16] uses information
obtained by static analysis to construct persistent set. For SystemC the criteria that they
use to determine dependency of transitions are similar to the criteria we used in this
paper. However, similar to [3], the simulation is bounded and stateless, and thus cannot
be used to verify program assertions.

POR has been successfully implemented in explicit-state model checkers, like
SPIN [13,14,19] and VERISOFT [10]. Despite the inability of explicit-state model
checkers to handle non-deterministic inputs, there have been several attempts to en-
code SystemC designs in PROMELA, the input language of SPIN. Examples of such
attempts include the works described in [21,5]. The aim of those work is to take ad-
vantages of search optimizations provided by SPIN, including POR. However, those
works cannot fully benefit from the POR implemented in SPIN due to the limitations
of the encodings themselves and the limitations of SPIN with respect to the intrinsic
structure of SystemC designs. The encoding in [21] is unaware of atomic blocks in the
SystemC design. The PROMELA encoding in [5] groups each atomic block in the Sys-
temC design as an indivisible transition using SPIN atomic facility. Such an encoding
can reduce the number of visited states, and thus relieves the state explosion problem.
It is also shown in that paper that the application of POR reduces the number of visited
states. However, the reductions that SPIN can achieve is not at the level of the atomic
blocks of threads: SPIN still explores redundant interleavings. Moreover, to be able to
handle cycle conditions similarly to Algorithm 2, one has to modify SPIN itself.

There have been some works on applying POR to symbolic model checking tech-
niques as shown in [15,23,1]. In these works POR during state-space exploration is
obtained by statically adding constraints describing the reduction technique into the en-
coding of the program. The work in [1] applies POR to symbolic BDD-based invariant
checking. The work in [23] can be considered as symbolic sleep-set based technique.
The work also introduces the notion of guarded independence relation, where a pair
of transitions are independent of each other if certain conditions specified in the pair’s
guards are satisfied. Such an independence relation is used in [3] for race analysis. Our
work in this paper can be extended to use guarded independence relation by exploiting
the thread and global regions, but we leave it as future work. The work in [15] consid-
ers patterns of lock acquisition to refine the notion of independence transition, which
subsequently yields better reductions.

6 Experiments

We have implemented the persistent and sleep sets based POR within the tool chain
for SystemC verification described in [7]. It consists of a SystemC front-end, and a
model checker called KRATOS which implements the ESST approach. The front-end

Boosting Lazy Abstraction for SystemC with Partial Order Reduction 353

Table 1. Results of the experimental evaluation

Visited ARF nodes Run time (.sec)
Name V No-POR P-POR S-POR PS-POR No-POR P-POR S-POR PS-POR
toy S 896 856 624 592 1.900 1.900 1.890 1.900
toy-bug-1 U 834 794 562 530 1.800 1.800 1.800 1.700
toy-bug-2 U 619 589 415 391 0.600 0.600 0.600 0.600
token-ring-1 S 60 60 60 60 0.000 0.010 0.010 0.000
token-ring-2 S 161 153 127 119 0.090 0.090 0.100 0.090
token-ring-3 S 417 285 259 195 0.190 0.090 0.100 0.090
token-ring-4 S 1039 480 538 296 0.400 0.200 0.200 0.200
token-ring-5 S 2505 1870 961 742 0.800 0.690 0.390 0.400
token-ring-6 S 5883 1922 2114 556 2.000 0.600 0.800 0.300
token-ring-7 S 13533 4068 4324 948 4.600 1.200 1.500 0.400
token-ring-8 S 30623 7781 8264 1293 12.400 2.390 2.800 0.600
token-ring-9 S 68385 17779 15938 3262 40.190 5.600 5.690 1.300
token-ring-10 S 151075 41517 30192 4531 155.390 16.500 12.600 1.900
token-ring-11 S 330789 78229 59310 9564 595.640 43.590 34.590 3.800
token-ring-12 S M.O. 119990 121616 11106 M.O. 85.990 107.590 4.490
token-ring-13 S M.O. M.O. 230479 108783 M.O. M.O. 344.360 96.280
transmitter-1 U 32 32 32 32 0.010 0.010 0.010 0.010
transmitter-2 U 83 45 67 45 0.010 0.010 0.010 0.010
transmitter-3 U 209 66 114 66 0.010 0.010 0.010 0.010
transmitter-4 U 509 176 254 98 0.090 0.010 0.010 0.010
transmitter-5 U 1205 88 478 88 0.190 0.010 0.090 0.010
transmitter-6 U 2789 483 918 172 0.400 0.100 0.100 0.010
transmitter-7 U 6341 307 2124 121 1.000 0.000 0.300 0.010
transmitter-8 U 14213 3847 4540 337 2.690 0.700 0.690 0.100
transmitter-9 U 31493 1209 7964 214 8.390 0.200 1.500 0.010
transmitter-10 U 69125 2053 13943 290 32.890 0.400 2.800 0.100
transmitter-11 U 150533 3298 36348 289 130.690 0.690 9.690 0.100
transmitter-12 U M.O. 9784 50026 640 M.O. 2.200 21.390 0.200
transmitter-13 U M.O. 4234 108796 334 M.O. 1.000 75.590 0.100
pipeline S 25347 7135 8568 7135 205.270 54.690 61.000 54.690
kundu S 1004 1004 1004 1004 1.190 1.200 1.180 1.200
kundu-bug-1 U 221 221 221 221 0.390 0.400 0.390 0.390
kundu-bug-2 U 866 866 866 866 1.090 1.100 1.200 1.200
bistcell S 305 305 305 305 0.500 0.500 0.490 0.500
pc-sfifo-1 S 152 152 152 152 0.290 0.300 0.300 0.290
pc-sfifo-2 S 197 197 197 197 0.300 0.300 0.290 0.300
mem-slave-1 S 556 556 556 556 3.390 3.400 3.400 3.400
mem-slave-2 S 992 992 992 992 15.000 15.090 15.390 15.190
mem-slave-3 S 1414 1414 1414 1414 181.980 173.080 183.770 193.180
mem-slave-4 - T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O.
mem-slave-5 - T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O.

translates SystemC designs into sequential C programs and into threaded C programs.
KRATOS can verify the sequential C programs using the classical lazy abstraction algo-
rithm, or it can verify the threaded C programs using the ESST algorithm (extended
with the two POR techniques). KRATOS is built on top of an extended version of
NUSMV [6] that integrates the MATHSAT SMT solver [4] and provides advanced
predicate abstraction techniques by combining BDDs and SMT formulas.

We have performed an experimental evaluation on the same benchmarks used in [7].
We run the experiments on an Intel-Xeon DC 3GHz running Linux, equipped with
4GB RAM. We fixed the time limit to 1000 seconds and the memory limit to 2GB. We
experimented without any POR technique (No-POR), enabling only the persistent set
reduction (P-POR), enabling only the sleep set reduction (S-POR), and finally enabling
both the persistent and the sleep set reductions (PS-POR).

354 A. Cimatti, I. Narasamdya, and M. Roveri

The results of the experimental evaluation are reported in Table 1. The first column
lists the name of the benchmarks. The second column shows the status of the verifica-
tion: S for safe, U for unsafe, - for unknown. Then we report for each experimented tech-
nique the number of visited ARF nodes, and the run time. On the table we indicate out
of time with T.O., and out of memory with M.O. All the material to reproduce the exper-
iments can be found at http://es.fbk.eu/people/roveri/tests/tacas2011.

The table clearly shows that with POR we can verify more benchmarks. With-
out POR the verifications of token-ring-x, and, transmitter-x, with x ∈
{12, 13} resulted in out of memory. For some benchmarks, like bist-cell, kundu,
mem-slave-x, the POR defined in this work is not applicable. In such benchmarks
atomic blocks of threads access the same global variables, and thus are dependent on
each other. When POR is not applicable, we can see from the table that there is no
reduction in the number of visited ARF nodes. However, the times spent for the verifi-
cation are almost identical. It means that the time spent for the computation of persistent
and sleep sets when POR is enabled is negligible.

The table also shows that, on the pipeline, token-ring-x and transmitter-x

POR results in a significant reduction in the number of visited ARF nodes, and in a
reduction of run time. Moreover, the combination of persistent and sleep sets gives the
best results in terms of visited nodes and run time.

With POR enabled, we are still not able to verify mem-slave-4 and mem-slave-5
given the resource limits. This is because KRATOS employs a precise predicate abstrac-
tion for expanding ARF nodes. Such an abstraction is expensive when there are a large
number of predicates involved. For verifying mem-slave-3, we already discovered 65
predicates associated with the global region and 37 predicates associated with the thread
regions, with an average of 5 predicates per location associated with the thread CFA.

POR, in principle, could interact negatively with the ESST algorithm. The construc-
tion of ARF in ESST is sensitive to the explored scheduler states and to the tracked
predicates. POR prunes some scheduler states that ESST has to explore. However, ex-
ploring such scheduler states can yield a smaller ARF than if they are omitted. In partic-
ular, for an unsafe benchmark, exploring omitted scheduler states can lead to the short-
est counter-example path. Furthermore, exploring the omitted scheduler states could
lead to spurious counter-example ARF paths that yield predicates that allow ESST to
perform less refinements and construct a smaller ARF.

Regardless of the fact that there is no guarantee that POR always boosts the ESST
algorithm, Table 1 shows that POR can be useful in improving the performance of
the ESST algorithm. In the future we will investigate the effectiveness of POR in the
ESST algorithm by using randomization on deciding the set of omitted scheduler states
to improve the quality of the analysis.

7 Conclusion and Future Work

In this paper we have shown how to extend the ESST approach with POR techniques
for the verification of SystemC designs. We proved the correctness of the approach
for the verification of program assertions, implemented the approach in the KRATOS

model checker, and experimentally evaluated the approach. The proposed techniques

Boosting Lazy Abstraction for SystemC with Partial Order Reduction 355

significantly reduces the number of visited nodes and the verification time, and allows
for the verification of designs that could not be verified without POR.

As future work, we will investigate how to extend the ESST approach to deal with
symbolic primitive functions. This requires a generalization of the scheduler explo-
ration with a hybrid (explicit-symbolic) approach, and the use of AllSMT techniques
to enumerate all possible next states. We will also apply the ESST techniques to the
verification of concurrent C programs from other application domains (e.g. robotics,
railways), where different scheduling policies have to be taken into account.

References

1. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction
in symbolic state-space exploration. Formal Methods in System Design 18(2), 97–116 (2001)

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.
STTT 9(5-6), 505–525 (2007)

3. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In: ICCAD, pp.
356–363. IEEE, Los Alamitos (2008)

4. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MATHSAT 4 SMT
solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 299–303. Springer,
Heidelberg (2008)

5. Campana, D., Cimatti, A., Narasamdya, I., Roveri, M.: SystemC verification via an encoding
in Spin (submitted for publication)

6. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic Model
Checker. STTT 2(4), 410–425 (2000)

7. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: a Software Model
Checking Approach. In: FMCAD 2010 (to appear)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

10. Godefroid, P.: Software Model Checking: The VeriSoft Approach. F. M. in Sys. Des. 26(2),
77–101 (2005)

11. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems - An Ap-
proach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidelberg (1996)

12. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic generation of
schedulings for improving the test coverage of systems-on-a-chip. In: FMCAD, pp. 171–
178. IEEE Computer Society, Los Alamitos (2006)

13. Holzmann, G.J.: Software model checking with SPIN. Advances in Computers 65, 78–109
(2005)

14. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: 7th IFIP WG6.1 Int.
Conf. on Formal Description Techniques VII, London, UK, UK, pp. 197–211 (1995)

15. Kahlon, V., Gupta, A., Sinha, N.: Symbolic model checking of concurrent programs using
partial orders and on-the-fly transactions. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 286–299. Springer, Heidelberg (2006)

16. Kundu, S., Ganai, M.K., Gupta, R.: Partial order reduction for scalable testing of systemC
TLM designs. In: DAC, pp. 936–941. ACM, New York (2008)

17. Moy, M., Maraninchi, F., Maillet-Contoz, L.: Pinapa: an extraction tool for SystemC descrip-
tions of systems-on-a-chip. In: EMSOFT, pp. 317–324. ACM, New York (2005)

356 A. Cimatti, I. Narasamdya, and M. Roveri

18. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

19. Peled, D.: Combining partial order reductions with on-the-fly model-checking. Formal Meth-
ods in System Design 8(1), 39–64 (1996)

20. Tabakov, D., Kamhi, G., Vardi, M.Y., Singerman, E.: A Temporal Language for SystemC.
In: FMCAD, pp. 1–9. IEEE, Los Alamitos (2008)

21. Traulsen, C., Cornet, J., Moy, M., Maraninchi, F.: A SystemC/TLM Semantics in PROMELA

and Its Possible Applications. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS,
vol. 4595, pp. 204–222. Springer, Heidelberg (2007)

22. Valmari, A.: Stubborn sets for reduced state generation. In: Rozenberg, G. (ed.) APN 1990.
LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

23. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In: Ramakr-
ishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396. Springer,
Heidelberg (2008)

Modelling and Verification of Web Services

Business Activity Protocol

Anders P. Ravn, Jǐŕı Srba�, and Saleem Vighio��

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark

{apr,srba,vighio}@cs.aau.dk

Abstract. WS-Business Activity specification defines two coordination
protocols in order to ensure a consistent agreement on the outcome of
long-running distributed applications. We use the model checker Uppaal
to analyse the Business Agreement with Coordination Completion pro-
tocol type. Our analyses show that the protocol, as described in the stan-
dard specification, violates correct operation by reaching invalid states
for all underlying communication media except for the perfect FIFO.
Based on this result, we propose changes to the protocol. A further in-
vestigation of the modified protocol suggests that messages should be
received in the same order as they are sent so that a correct protocol
behaviour is preserved. Another important property of communication
protocols is that all parties always reach their final states. Based on
the verification with different communication models, we prove that our
enhanced protocol satisfies this property for asynchronous, unreliable,
order-preserving communication whereas the original protocol does not.

1 Introduction

Numerous protocols from the web services protocol stack [9] are currently in
active development in order to support communication schemes that guarantee
consistent and reliable executions of distributed transactions. As applications
depend on the correctness of these protocols, guarantees about their functionality
should be given prior to the protocols being put into industrial use. However,
design and implementation of these protocols is an error-prone process, partly
because of the lack of details provided in their standards [7,17]. Therefore, formal
approaches provide a valuable supplement during the discussion and clarification
phases of protocol standards. The advantage of formal methods is that automatic
tools like Uppaal [3] and TLC [7] can be applied to analyse protocol behaviours
and verify general correctness criteria.

In this paper we consider the WS-Coordination framework [12] which, among
others, includes the WS-Atomic Transaction (WS-AT) [10] and WS-Business
� The author is partially supported by the Ministry of Education of Czech Republic,

grant no. MSM 0021622419.
�� The author is supported by Quaid-e-Awam University of Engineering, Science, and

Technology, Nawabshah, Pakistan, and partially by the Nordunet3 project COSoDIS.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 357–371, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

358 A.P. Ravn, J. Srba, and S. Vighio

Activity (WS-BA) [11] standards. The WS-AT specification provides protocols
used for simple short-lived activities, whereas WS-BA provides protocols used for
long-lived business activities. The WS-AT protocol has recently been in focus in
the formal methods community and its correctness has been verified using both
the TLC model checker [7] where the protocol was formalized in the TLA+ [8]
language as well as using the Uppaal tool and networks of communicating timed
automata [15]. In [15], we discussed the key aspects of the two approaches,
including the characteristics of the specification languages, the performances of
the tools, and the robustness of the specifications with respect to extensions.

In the present work we analyse the WS-BA standard which (to the best of our
knowledge) has not yet been automatically verified in the literature. It consists
of two coordination protocols: Business Agreement with Participant Completion
(BAwPC) and Business Agreement with Coordinator Completion (BAwCC).
We focus on BAwCC in our analysis. It is more complex in its behaviour and
has a larger number of states, transitions and messages than BAwPC. We de-
velop several Uppaal [3] models related to the WS-BA protocols based on the
state-tables provided in the standard specification (see [11] or the appendix for
the complete tables). We use with advantage the C-like constructs available in
Uppaal and the model of the BAwCC protocol contains more than 600 lines of
C code. Our tool supported analysis unexpectedly reveals several problems. The
safety property, that the protocol never enters an invalid state, is checked for
a range of communication mechanisms. The main result is that the property is
violated by all considered communication mechanisms but perfect FIFO (queue).

Based on a detailed analysis of the error traces produced by Uppaal, we sug-
gest fixes to the protocol. Moreover, in contrast to [7,15], we do not limit our
analyses to only one type of asynchronous communication policy where messages
can be reordered, lost and duplicated, but study different communication mech-
anisms (see e.g. [1]). This fact appears crucial as even the fixed protocol behaves
correctly only for some types of communication media, whereas for others it still
violates the correctness criteria.

Another important property of web services applications is that they should
terminate in consistent end states, irrelevant of the actual behaviour of the other
participating parties [6]. This kind of property is usually called liveness and
for most nontrivial protocols it cannot be established without some fairness
assumptions, such that if a particular transition is infinitely often enabled then
it is also executed. In our setting we use a more engineering-like approach by
introducing tire-outs (delays before an alternative action is chosen, essentially
the “execution delay” of ATP [13]) on the resubmission of messages, as this is
a likely way this situation is handled in practice. Uppaal enables us to specify
the timing information in a simple and elegant way and our verification results
show that under suitable timing constraints used for tire-outs, we can guarantee
the termination property for the fixed protocol, at least for the communication
policies where the protocol is correct.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the web services business activity protocol and discuss different types of

Modelling and Verification of Web Services Business Activity Protocol 359

communication policies. Section 3 introduces the Uppaal modeling approach
used in the case study. Properties of the original and the fixed protocols are
discussed in Sections 4 and 5. Section 6 describes the termination property and
its verification. Finally, Section 7 gives a summary and suggestions for the future
research. The appendix contains a full overview of the state-transition tables of
the original and modified BAwCC protocol.

2 WS-Business Activity Protocol

WS-Business Activity (WS-BA) [11] and WS-Atomic Transaction (WS-AT) [10]
both built on top of WS-Coordination specification [12] form the Web Ser-
vices Transaction Framework (WSTF). WS-Coordination describes an extensible
framework for coordinating transactional web services. It enables an application
service to create a context needed to propagate an activity to other services and
to register for coordination protocols. These coordination protocols are described
in WS-AT and WS-BA specifications. WS-AT provides protocols based on the
ACID (atomicity, consistency, isolation, durability) principle [5] for simple short-
lived activities, whereas WS-BA provides protocols used for long-lived business
activities with relaxation of ACID properties.

WS-BA [11] describes two coordination types: AtomicOutcome and Mixed-
Outcome. In AtomicOutcome the coordinator directs all participants to the same
outcome, i.e. either to close or to cancel/compensate. In MixedOutcome some
participants may be directed to close and others to cancel/compensate. Each of
these coordination types can be used in two coordination protocols: WS-Business
Agreement with Participant Completion (BAwPC) and WS-Business Agreement
with Coordination Completion (BAwCC) that we shall focus on. A participant
registers for one these two protocols, which are managed by the coordinator of
the activity.

2.1 Business Agreement with Coordination Completion

A state-transition diagram for BAwCC is shown in Figure 1. Note that the figure
depicts a combined view and the concrete coordinator and participant states are
abstracted away. The complete transition tables are listed in the appendix.

A participant registered for this protocol is informed by its coordinator that
it has received all requests to perform its work and no more work will be re-
quired. In this version of the protocol the coordinator decides when an activity
is terminated, so completion notification comes from the coordinator: It sends
a Complete message to the participant to inform it that it will not receive any
new requests within the current business activity and it is time to complete the
processing. The Complete message is followed by the Completed message by the
participant, provided it can successfully finish its work. This protocol also in-
troduces a new Completing state between Active and Completed states. Once the
coordinator reaches the Completed state, it can reply with either a Close or a
Compensate message. A Close message informs the participant that the activity

360 A.P. Ravn, J. Srba, and S. Vighio

Active Completing Completed Closing Ended

Compensating

Failing

Canceling

Exiting

NotCompleting

Complete Completed Close Closed

Exit

Exit

Cann
otC

om
ple

te

Ca
nn

ot
Co

m
ple

te

Exited

N
otC

om
pleted

Exit

Compensate

Fail

Compensa
ted

Fai
led

Fail
Can

cel
ed

Fail

Fail

Cancel

Cancel

Coordinator generated Participant generated

Fig. 1. Business Agreement with Coordinator Completion

has completed successfully. A participant then sends a Closed notification and
forgets about the activity. Upon receipt of a Closed notification the coordinator
knows that the participant has successfully completed its work and forgets about
the participant’s state.

A Compensate message, on the other hand, instructs the participant to undo
the completed work and to restore the recorded data to its initial state. A partic-
ipant in response can either send a Compensated or a Fail notification. The Com-
pensated message informs the coordinator that the participant has successfully
compensated its work for the business activity, the participant then forgets about
the activity and the coordinator forgets about the participant. Upon receipt of
a Fail message, the coordinator knows that the participant has encountered a
problem and has failed during processing of the activity. The coordinator then
replies with a Failed message and forgets about the state of the participant. The
participant in turn also forgets about the activity. A participant can also send
CannotComplete or Exit messages while being in Active, or Completing states. A
CannotComplete notification informs the coordinator that the participant can
not successfully complete its work and any pending work will be discarded and
completed work will be canceled. The coordinator replies with a NotCompleted
message and forgets about the state of the participant. The participant also
forgets about the activity in turn. In case of an Exit message the coordinator

Modelling and Verification of Web Services Business Activity Protocol 361

knows that the participant will no longer engage in the business activity and
the pending work will be discarded and any work performed will be canceled.
The coordinator will reply with the Exited message and will forget about the
participant. The participant will also forget about the activity. In Active and
Completing states the coordinator can end a transaction by sending a Cancel
message. A participant can either reply with a Canceled or a Fail notification. A
Canceled message informs the coordinator that the work has been successfully
canceled and then the participant forgets about the activity.

2.2 Communication Policies

FIFO

BAG

STUTT-FIFO

LOSSY-FIFO

SET

Fig. 2. Communication media

The WS-BA specification is not explicit about
the concrete type of communication medium
for exchanging messages apart from implicitly
expecting that the communication is asyn-
chronous. In [7] the authors (two of them were
designers of the specification) studied WS-AT
and agreed that one should consider asyn-
chronous communication where messages can
be lost, duplicated and reordered. Indeed, the
WS-AT protocol was proved correct in this
setting. It seems natural to adopt the same
communication assumptions also for WS-BA,
however, as we show later on, the BAwCC protocol is not correct under such a
liberal communication policy. We therefore consider a hierarchy of five different
communication policies for asynchronous message passing in our study.

– Unreliable Unordered Asynchronous Communication. In this type of asyn-
chronous communication the messages may arrive in different order than
they were sent and the communication medium is assumed to be unreliable
as messages can be lost and duplicated. It corresponds well with the ele-
mentary UDP protocol of TCP/IP. As argued in [7], this kind of policy is
conveniently implemented as a pool of messages mathematically represented
by a set. Adding more messages of the same sort to a set has no additional
effect and as our correctness property is a safety property, lossiness is im-
plicitly included by the fact that protocol participants are not in any way
forced to read messages contained in the pool (see [7,15] for further discus-
sion on this issue). In the rest of the paper we call this kind of communication
implementation SET.

– Reliable Unordered Asynchronous Communication. This kind of communi-
cation still does not preserve the order of messages but it is a completely
reliable medium where a message can only be received as many times as it
was sent. Therefore we have to keep track of the number of messages of the
same type currently in transit. We can model this communication medium
as a multiset (also called a bag) of messages. We refer to this particular
implementation of the communication medium as BAG.

362 A.P. Ravn, J. Srba, and S. Vighio

– Reliable Ordered Asynchronous Communication. This type of communica-
tion channel represents the perfect communication medium where messages
are delivered according to the FIFO (first in, first out) policy and they can be
neither duplicated nor lost. The problem with this medium is that for most
nontrivial protocols there is no bound on the size of the communication
buffer storing the queue of messages in transit (thanks to the asynchronous
nature of the communication) and automatic verification of protocols using
this communication policy is often impossible due to the infinite state-space
of possible protocol configurations. We refer to this communication as FIFO.
It is essentially implemented by the FTP protocol of TCP/IP.

– Lossy Ordered Asynchronous Communication. Here we assume an order pre-
serving communication policy like in FIFO but messages can now be also lost
before their delivery. The problem with unbounded size of this communica-
tion channel remains for most of interesting protocols. We call this policy
LOSSY-FIFO.

– Stuttering Ordered Asynchronous Communication. In order to overcome the
infinite state-space problem mentioned in the FIFO and LOSSY-FIFO com-
munication policies, we introduce an abstraction that ignores stuttering, i.e.
repetition of the same message inside of an ordered sequence of messages.
We can also consider it as a lossy and duplicating medium which, how-
ever, preserves the order among different types of messages. In practice this
means that if a message is sent and the communication buffer contains the
same message as the most recently sent one, then the message will be ig-
nored. Symmetrically, if a message is read from the buffer, it can be read as
many times as required providing it is of the same type. This means that
the communication buffer can remain finite even if the protocol includes re-
transmission of messages, as e.g. both protocols from WS-BA specification
do. We call this communication type STUTT-FIFO.

Figure 2 shows the relationship among the different communication media. The
arrows indicate the inclusions (in the sense of possible behaviours) of the pre-
sented media. Hence any protocol execution with the FIFO communication policy
is possible also in any other communication type above it. This means that if we
can introduce the validity of any safety property for e.g. the SET medium, this
result will hold also for any other medium below it and finding an error trace
in the protocol with e.g. the FIFO medium implies the presence of such a trace
also in any other medium above it.

While the communication policies SET, BAG, FIFO and LOSSY-FIFO are well
studied, the STUTT-FIFO communication we introduce in this paper is nonstan-
dard and not implemented in any of industrial applications that we are aware
of. Although, as remarked above, FTP will work this way if the application level
avoids retransmission of data. The main reason why we consider this kind of
communication is that it allows us to validate the protocols in question while
preserving the finiteness of the state-space. Hence we can establish safety guar-
antees also for the FIFO and LOSSY-FIFO communication policies, which would
be otherwise impossible as the size of such channels is not bounded in our setting.

Modelling and Verification of Web Services Business Activity Protocol 363

a) WS-BA (BAwCC):
Coordinator View for Inbound Events (received messages).

Inbound Events
States

. . . Closing . . . Exiting . . .
...

...
... . . .

...
...

Complete . . . resend Close
goto Closing

...
...

... . . .
...

...
CannotComplete . . . goto Invalid-State

c) Uppaal encoding with SET Communication (simplified):
Send Msg() and Receive Msg() functions for the coordinator.

typedef int[0,6] MsgsTC; typedef int[0,6] MsgsP;

const MsgsTC CANCEL TC = 0; const MsgsP EXIT P = 0;

const MsgsTC COMPLETE TC = 1; const MsgsP COMPLETED P = 1;

const MsgsTC CLOSE TC = 2; const MsgsP FAIL P = 2;

const MsgsTC COMPENSATE TC =3; const MsgsP CANNOT COMPLETE P = 3;

const MsgsTC FAILED TC = 4; const MsgsP CANCELED P = 4;

const MsgsTC EXITED TC = 5; const MsgsP CLOSED P = 5;

const MsgsTC NOT COMPLETED TC = 6; const MsgsP COMPENSATED P = 6;

bool msgTC[MsgsTC]; bool msgP[MsgsP];

void Send Msg(MsgsTC s) { bool Receive Msg(MsgP r) {
msgTC[s] = true; } return msgP[r]; }

Behaviour of transaction coordinator upon the receipt of the message Complete is
modelled by a loop transition with the following guard and update (action).

bool guard() {
return Receive Msg(COMPLETE P) && stTC == TC CLOSING; }
void action() { Send Msg(CLOSE TC); stTC = TC CLOSING; }
Behaviour of transaction coordinator upon the receipt of the message CannotCom-
plete is modelled by a transition to a new error-state called INVALID with the fol-
lowing guard and with no update.

bool guard() {
return Receive Msg(CANNOT COMPLETE P) && stTC == TC CLOSING; }

Fig. 3. Implementation of selected WS-BA rules in Uppaal

3 Formal Modelling of BAwCC in UPPAAL

The WS-BA standard [11] provides a high-level description of the WSwCC pro-
tocol. It is essentially a collection of protocol behaviours described in English
accompanied by diagrams like the graph shown in Figure 1 and state-transition

364 A.P. Ravn, J. Srba, and S. Vighio

tables for the parties involved in the protocol. See Figure 3 a) for a fragment of
such a table and the appendix for a complete collection of the tables.

Figure 3 a) describes how the transaction coordinator, being in its internal
state Closing, handles the message Complete arriving from the participant. It
will simply resend to the participant the message Close and remain in the state
Closing. The table also describes that while being in the state Closing, the co-
ordinator does not expect to receive the message CannotCompensate from the
participant, and should this happen, it will enter an invalid state.

The Uppaal implementation of this behaviour is given in Figure 3 b). The
syntax should be readable even without any prior knowledge of the tool, but
we refer the interested reader to [3] for a thorough introduction to Uppaal.
The code in the figure first lists the names of constants that represent messages
sent from the transaction coordinator to the participant and vice versa. Then it
defines two functions Send Msg and Receive Msg that take care of sending and
receiving of messages via the bit-vectors msgTC and msgP. The code is shown
only for the simplest SET implementation. For BAG, FIFO, LOSSY-FIFO and
STUTT-FIFO the code is more complex but implemented in a standard way.
The only complication is that the data structures representing these four types
of communication are in general unbounded, so to ensure automatic verification
we introduce a constant upper bound on the buffer size and we register a buffer
overflow in a boolean variable called overflow.

The transitions described in the state tables are then implemented in the
expected way as shown by the two examples in Figure 3 b). The final timed
automata model then consists of a process for the coordinator with two locations
(normal execution and invalid state) and a similar process for the participant
running in parallel with the coordinator process. All data management (states,
buffer content, etc.) is performed via C-like data structures, as this is an efficient
and manageable way to handle this relatively large model. In total the C part
of the implementation contains more than 600 nonempty lines of code. The
complete Uppaal model can be downloaded at [14].

4 Analysis of BAwCC

As already noted, WS-BA relaxes the ACID principles and allows for a mixed
outcome of a transaction. Therefore, we cannot expect that all parties of the
protocol agree on the outcome, as it was the case for WS-AT protocols [7,15].
Instead, we focus on the analysis of the actual state-transition tables w.r.t. reach-
ability of invalid states. Invalid states appear in the tables both for inbound and
outbound messages. The meaning of these states is not clearly stated in WS-
BA specification but we contacted the designers via their discussion forum and
received (citing [16]):

“For outbound events, an Invalid State cell means that this is not
a valid state for the event to be produced. ... For inbound events, an
Invalid State cell means that the current state is not a valid state for the

Modelling and Verification of Web Services Business Activity Protocol 365

Coordinator

Active
Cancel

Canceling-Active

Medium

Cancel

Participant

Active

Canceling
Canceled

EndedCompensated

EndedCompensated

INVALID

Fig. 4. Error trace in BAwCC leading to an invalid state

inbound message. For example, for Participants in BusinessAgreement-
WithCoordinationCompletion (table B.3) the Canceling state is not a
valid state for receiving a Close message. There are no circumstances
where a Participant in this state should ever receive a Close message,
indicating an implementation error in the Coordinator which sent the
message. This is a protocol violation ...”

This means that in the tables for outbound events, messages that lead to in-
valid states are never sent (and hence omitted in the Uppaal model) and for
inbound events the possibility to enter an invalid state is a protocol violation.
This requirement is easily formulated in the Uppaal query language (a subset
of TCTL) as follows.

E<> (tc.INVALID || par.INVALID) && !overflow

This is a safety property asking whether there is a protocol execution in which
either the transaction coordinator (process called tc) or the participant (process
called par) enters the state INVALID while at the same time there was no buffer
overflow. We have checked this property for all five communication policies we
consider and the property surprisingly turned out to be true for all of them except
for FIFO. The tool automatically generated an error trace, seen in Figure 4.
It is easy to see that this trace is executable both for LOSSY-FIFO and BAG
communication (and hence also for any other above them in the hierarchy in
Figure 2). The main point in this trace is that the message Canceled that is sent
by the participant is either lost (possible in LOSSY-FIFO) or reordered with the
message Compensated (possible in BAG).

It is also clear that this error trace cannot be executed in the perfect FIFO
communication policy. For FIFO we were able to verify that the protocol is correct
for up to six messages in transit (three from coordinator to participant and three
in the opposite direction). As perfect FIFO communication is known to have the

366 A.P. Ravn, J. Srba, and S. Vighio

full Turing power [4], there is no hope to establish the correctness of the protocol
with unbounded FIFO communication in a fully automatic way.

Another interesting question we can ask about the protocol is whether the
communication medium is bounded for BAwCC or not. This can be done by
asking the following Uppaal query.

E<> overflow

Verification results show that all communication media except for SET can al-
ways reach a buffer overflow for any given buffer size that we were able to verify
(up to 20 messages in transit). This is a good indication that the communica-
tion buffer is indeed unbounded and a simple (manual) inspection of the protocol
confirms this fact.

5 Enhanced BAwCC

Given the verification results in the previous section, we found the BAwCC proto-
col not completely satisfactory as even a simple relaxation of the perfect communi-
cation policy results in incorrect behaviour. Taking into account that the protocols
in WS-AT avoided invalid states even under the most generalSET communication,
we shall further analyze the protocol and suggest an improvement.

The error trace in Figure 4 hints at the source of problems. Once a participant
reaches the Ended state, it it instructed to forget all state information and just
send the last message by which the transition to the Ended state was activated.
The problem is that there are three different reasons for reaching the Ended
state, but BAwCC allows for the retransmission of all three messages at the same
time, whenever the participant is in the state Ended. As seen in Figure 4, the
participant after receiving the message Cancel correctly answers with the message
Canceled, but then sends the message Compensated. This causes confusion on the
coordinator side. A similar problem can occur in a symmetric way.

In our proposed fix to the BAwCC protocol, we introduce three additional end
states, both for the participant as well as for the coordinator, in order to avoid
the confusion. The complete state tables of the enhanced protocol are given in
the appendix. We modelled and verified the enhanced protocol in Uppaal and
the results are as follows.

Under the STUTT-FIFO communication, the medium is bounded with no over-
flow, so all verification results are conclusive. We also established that there is
no execution of the modified protocol that leads to an invalid state. As this is
a safety property, the positive result holds automatically also for LOSSY-FIFO
and FIFO.

However, when considering the media BAG and SET representing a commu-
nication where messages can be reordered, the tool still returns error traces like
the one depicted in Figure 5. This problem is more inherent to the protocol
design and the reason for the confusion is the fact that the messages Canceled
and Fail sent be the participant are delivered in the opposite order.

Modelling and Verification of Web Services Business Activity Protocol 367

Coordinator

Active
Complete

Completing
Cancel

Canceling-Completing

Medium

Cancel

Participant

Active

Canceling
Canceled

Ended-Canceled
Complete

Fail

Ended-Canceled
Fail

Failing-Canceling
Canceled

INVALID

Fig. 5. Error trace in enhanced BAwCC leading to an invalid state

To conclude, our enhanced protocol, unlike the original one, is immune to
lossiness and duplication of messages (stuttering) as long as their order is pre-
served. Making the protocol robust w.r.t. reordering of messages would, in our
opinion, require a substantial and nontrivial redesign of the BAwCC protocol.

6 Termination under Fairness

In this section we shall turn our attention to another important property of
distributed protocols, namely the termination property. Termination means that
as long as the communication parties follow the protocol, any concrete execution
will always bring them to their end states. In Uppaal this property for our
protocol can be formulated as follows.

A<> stTC == TC ENDED && stP == P ENDED

The semantics is that in any maximal computation of the protocol, we will
eventually reach a situation where the states of the transaction coordinator as
well as the participant are TC ENDED and P ENDED, respectively. Termination is
hence a liveness property.

It is clear that the original BAwCC fails to satisfy termination as we can
reach invalid states from which there is no further continuation. This is true for

368 A.P. Ravn, J. Srba, and S. Vighio

all types of communication, except for FIFO, where on the other hand we cannot
prove termination due to the unboundedness of the medium. We shall there-
for focus on our enhanced BAwCC protocol and the communication medium
STUTT-FIFO where the protocol is correct and the medium bounded. A positive
result will imply termination also for LOSSY-FIFO and FIFO.

A quick query about termination in Uppaal shows that it fails the property
and the tool returns error traces that reveal the reason: there is no bound on
the number of retransmissions of messages and this can create infinite process
executions where the same message is retransmitted over and over. This is to
be expected for any nontrivial protocol and in theory the issue is handled by
imposing an additional assumption on fairness of the protocol execution. This
can for example mean that we require that whenever during an infinite execution
some action is infinitely often enabled then it has to be also executed. Such
assumptions will guarantee that there is a progress in the protocol execution
and are well studied in the theory (see e.g. [2]).

The complication is that fairness concerns infinite executions and is therefore
difficult to implement in concrete applications. Software engineers would typi-
cally use only a limited number of retransmissions within a fixed time interval
and give up resending messages after a certain time has passed.

So far, we have used Uppaal only for verification of discrete systems, but
the tool allows us to specify also timed automata models and supports their
automatic verification. By introducing the timing aspects into the protocol be-
haviour, we will be able to argue about fairness properties like termination.

We model the retransmission feature using tire-outs. A tire-out imposes a
progress in the model and as already outlined in the introduction it is essentially
the “execution delay” of ATP [13]. In our model we introduce two clocks x and
y local both for the coordinator and the participant. We also assume two global
constants MIN-DELAY and TIRE-OUT, representing the minimal possible delay
between two retransmissions and a tire-out time after which the protocol will not
attempt to retransmit the message any more. Figure 6 shows the implementation
of this feature in the protocol model. We already explained that the rules of the
protocol are modelled using loops in Uppaal automata and the discrete data
are handled using guards and updates (not shown in the illustration). In the
figure we can separate all transitions into two categories: progress transitions
and retransmission transitions. Retransmission transitions retransmit a message
and remain in the same state, while progress transitions change the state of
the participant or the coordinator. The clock x represents the time delay since
the last progress transition occurred (it is reset to 0 by any progress transition)
and clock y represents the time elapsed since the last retransmission. These two
clocks restrict the behaviour of the retransmission transitions so that they are
enabled only if at least the minimal delay has passed since last retransmission
and the clock x has not exceeded the tire-out limit. The presence of the invariant
x ≤ TIRE-OUT then ensures a progress.

Using the tire-out modeling as described above we were able to automatically
verify that the enhanced BAwCC protocol with the STUTT-FIFO communication

Modelling and Verification of Web Services Business Activity Protocol 369

x ≤ TIRE-OUT

x:=0

P

y ≥ MIN-DELAY and x ≤TIRE-OUT

y:=0

R

Fig. 6. Tire-outs modelling; P is a progress transition, R is a retransmission transition

BAwCA Protocol

Buffer Type Properties Original Enhanced

SET

Correctness No No

Boundedness Yes Yes

Termination No No

BAG

Correctness No No

Boundedness No No

Termination No No

STUTT-FIFO

Correctness No Yes

Boundedness No Yes

Termination No Yes

LOSSY-FIFO

Correctness No Yes

Boundedness No No

Termination No Yes

FIFO

Correctness Yes? Yes

Boundedness No No

Termination Yes? Yes

Fig. 7. Overview of verification results for BAwCC and enhanced BAwCC

policy satisfies the termination property for suitable constants MIN-DELAY and
TIRE-OUT where, for example, the minimal delay is set to one time unit and
the tire-out deadline to 30 time units. By changing the two constants we can
experiment with different timing options while making (automatically) sure that
the termination property is preserved.

7 Conclusion and Future Work

We provided a formal Uppaal model of the Business Agreement with Coordina-
tor Completion (BAwCC) protocol from the WS-BA specification. The model is
based on the state-transition tables provided in the specification. We also intro-
duced several ways to model the communication medium, starting with perfect

370 A.P. Ravn, J. Srba, and S. Vighio

FIFO channels and ending up with lossy, duplicating and orderless medium. We
have verified that the protocol may enter invalid states for all communication
policies apart from the FIFO. For FIFO we verified that no invalid states are
reachable for up to six messages in transit (three in each direction), however, this
is not a guarantee that the protocol is correct for any size of the FIFO buffer.

Based on the analysis of the protocol in Uppaal, we suggested an enhanced
protocol which distinguishes among three different ways of entering the ended
states. This protocol is correct also for all imperfect media based on FIFO but
may still reach invalid states if more liberal communication is assumed. By in-
troducing timing constraints (tire-outs) to the protocol behaviour, we were also
able to verify the termination property for imperfect FIFO communication. Fig-
ure 7 gives the summary of the results for all five communication policies and the
original and enhanced protocols. Correctness stands for the absence of invalid
states in protocol executions, boundedness describes whether the communica-
tion channels have bounded size and termination guarantees that during any
protocol behaviour, all parties eventually reach their final (ended) states.

To conclude, the BAwCC protocol seems correct for the perfect FIFO commu-
nication as provided e.g. by the FTP of TCP/IP. We assume that the protocol
was also mainly tested in this setting and hence the tests did not discover any
problematic behaviour. On the other hand, the protocol contains a number of
message retransmissions, which would not be necessary for the perfect medium.
This signals that the designers planned to extend the applicability of the proto-
col also to frameworks with unreliable communication but as we demonstrated,
some fixes have to be applied to the protocol in order to guarantee the correct op-
eration also in this case. In any case, WS-BA specification is not explicit about
the assumptions on the communication medium, but this should be perhaps
considered for the future design of protocols.

Finally, the manual creation of UPPAAL models for WS-BA protocols was a
long and time demanding process and in our future work we will try to auto-
mate the process of creating timed automata templates directly from the state-
transition tables. For widely used, standardized protocols, this is probably not
going to find defects. Yet, in concrete implementations some optimizations and
specializations may be included, and here a tool support may assist in validating
the effect of presumably small innocent changes.

Acknowledgement. The authors are grateful to the anonymous reviewers for their
comments on the perspective of this work.

References

1. Afek, Y., Attiya, H., Fekete, A., Fischer, M., Lynch, N., Mansour, Y., Wang, D.-
W., Zuck, L.: Reliable communication over unreliable channels. J. ACM 41(6),
1267–1297 (1994)

2. Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for distributed
programming. Distributed Computing 2, 226–241 (1988)

Modelling and Verification of Web Services Business Activity Protocol 371

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983)

5. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco (1993)

6. Greenfield, P., Kuo, D., Nepal, S., Fekete, A.: Consistency for web services appli-
cations. In: VLDB 2005: Proceedings of the 31st International Conference on Very
Large Data Bases, pp. 1199–1203. VLDB Endowment (2005)

7. Johnson, J.E., Langworthy, D.E., Lamport, L., Vogt, F.H.: Formal specification of
a web services protocol. Journal of Logic and Algebraic Programming 70(1), 34–52
(2007)

8. Lamport, L.: Specifying Systems. Addison-Wesley, Reading (2003)
9. Mathew, B., Juric, M., Sarang, P.: Business Process Execution Language for Web

Services, 2nd edn. Packt Publishing (2006)
10. Newcomer, E., Robinson, I. (chairs): Web services atomic transaction (WS-atomic

transaction) version 1.2 (2009),
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html

11. Newcomer, E., Robinson, I. (chairs): Web services business activity (WS-
businessactivity) version 1.2 (2009),
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/

wstx-wsba-1.2-spec-os.html

12. Newcomer, E., Robinson, I. (chairs): Web services coordination (WS-coordination)
version 1.2 (2009),
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/

wstx-wscoor-1.2-spec-os.html

13. Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: Theory and appli-
cation. Information and Computation 114(1), 131–178 (1994)

14. Ravn, A.P., Srba, J., Vighio, S.: UPPAAL model of the WS-BA protocol, Available
in the UPPAAL example section at http://www.uppaal.org

15. Ravn, A.P., Srba, J., Vighio, S.: A formal analysis of the web services atomic
transaction protocol with uppaal. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010.
LNCS, vol. 6416, pp. 579–593. Springer, Heidelberg (2010)

16. Robinson, I.: Answer in WS-BA discussion forum, July 14 (2010),
http://markmail.org/message/wriewgkboaaxw66z

17. Vogt, F.H., Zambrovski, S., Gruschko, B., Furniss, P., Green, A.: Implementing
web service protocols in SOA: WS-coordination and WS-businessactivity. In: Pro-
ceedings of the Seventh IEEE International Conference on E-Commerce Technol-
ogy Workshops (CECW 2005), pp. 21–28. IEEE Computer Society, Los Alamitos
(2005)

CADP 2010: A Toolbox for the Construction

and Analysis of Distributed Processes�

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe

Inria Laboratoire d’Informatique de Grenoble, Vasy team
655, avenue de l’Europe, 38330 Montbonnot St Martin, France

{Hubert.Garavel,Frederic.Lang,Radu.Mateescu,Wendelin.Serwe}@inria.fr

Abstract. Cadp (Construction and Analysis of Distributed Processes)
is a comprehensive software toolbox that implements the results of con-
currency theory. Started in the mid 80s, Cadp has been continuously de-
veloped by adding new tools and enhancing existing ones. Today, Cadp
benefits from a worldwide user community, both in academia and indus-
try. This paper presents the latest release Cadp 2010, which is the result
of a considerable development effort spanning the last four years. The
paper first describes the theoretical principles and the modular architec-
ture of Cadp, which has inspired several other recent model checkers.
The paper then reviews the main features of Cadp 2010, including com-
pilers for various formal specification languages, equivalence checkers,
model checkers, performance evaluation tools, and parallel verification
tools running on clusters and grids.

1 Introduction

Among all the scientific issues related to the reliability of computer systems,
concurrency has a major place, because the design of parallel systems is a com-
plex, error-prone, and largely unmastered activity. Thirty years after the first
attempts at building automated verification tools for concurrent systems, the
problem is still there; it has even gained in relevance because system complex-
ity has increased, and because concurrency is now ubiquitous, from multicore
microprocessors to massively parallel supercomputers.

To ensure the reliability of a concurrent system under design, it is understood
that the first step consists in establishing a precise model of the system behavior,
this model usually consisting of several concurrent processes, together with a
description of the data types, constants, variables, and functions manipulated
by these processes. This opens the debate on the most appropriate languages
to express system models, with a large choice of candidates ranging from semi-
formal to formal languages.

� This work has been partly funded by Bull, by the French National Agency for Re-
search (project OpenEmbedd), by the French Ministry of Economics and Industry
(Aerospace Valley project Topcased), and by the Conseil Général de l’Isère (Mina-
logic project Multival).

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 372–387, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Toolbox for the Construction and Analysis of Distributed Processes 373

Once a precise, if not formal, model is available, one needs automated meth-
ods to prove the correctness of the system with respect to its specification or, at
least, to search for the presence of certain mistakes. Without neglecting recent
progresses in theorem proving and static analysis, state space exploration tech-
niques (among which reachability analysis and model checking) remain the most
successful approaches for dealing with complex concurrent systems, especially
during the design phase, when system specifications are evolving frequently.

State space exploration techniques are usually grouped in two classes: enumer-
ative (or explicit state) techniques consider each state of the system separately,
whereas symbolic (or implicit state) techniques manipulate sets of states rep-
resented using decision diagrams (Bdds and their variants) or logical formulas
whose satisfiability is determined using Sat and Smt solvers. In this paper, we
will use the term enumerative instead of explicit-state in order to avoid possible
confusions with the terminology about explicit and implicit models (see Sect. 2).
Enumerative techniques are based on a forward exploration of the transition re-
lation between states (post function), making them suitable for the on-the-fly
verification of specifications written in languages with arbitrary data types. Al-
though they enable exploration of a priori fewer states than their symbolic
counterparts, enumerative techniques prove to be adequate for the analysis of
asynchronous parallel systems containing complex data structures. Among the
enumerative model checkers developed in the 80s, Spin [33] and Cadp are the
two oldest that are still available on the latest 64-bit architectures and being
used in an industrial setting. The principles underlying these two model check-
ers are a source of inspiration for other recent verification tools based on similar
concepts.

Cadp (Construction and Analysis of Distributed Processes)1 is a toolbox for
verifying asynchronous concurrent systems. The toolbox, whose development
started in 1986, is at the crossroads between several branches of computer sci-
ence: concurrency theory, formal methods, and computer-aided verification. Ini-
tially, Cadp consisted of only two tools: Cæsar [14], a compiler and explicit state
space generator for the Lotos language, and Aldébaran [11,13], an equiva-
lence checker based on bisimulation minimization. Over the past 25 years, Cadp
has been continuously improved and extended [12,19,20]. This paper presents
the latest release, Cadp 2010 “Zurich”, which currently contains 45 tools.

Cadp offers now a comprehensive set of functionalities covering the entire de-
sign cycle of asynchronous systems: specification, interactive simulation, rapid
prototyping, verification, testing, and performance evaluation. For verification,
it supports the three essential approaches existing in the field: model check-
ing, equivalence checking, and visual checking. To deal with complex systems,
Cadp implements a wide range of verification techniques (reachability analysis,
on-the-fly verification, compositional verification, distributed verification, static
analysis) and provides scripting languages for describing elaborated verification
scenarios. In addition, Cadp 2010 brings deep changes with respect to previous
releases, especially the support for many different specification languages.

1 http://vasy.inria.fr/cadp

374 H. Garavel, F. Lang, R. Mateescu, and W. Serwe

This paper gives an overview of Cadp 2010, highlighting new tools and recent
enhancements. It is organized as follows. Sect. 2 presents the core semantic mod-
els of Cadp. Sect. 3 describes the three languages now supported by Cadp and
lists translations developed for other languages. Sect. 4, 5, 6, and 7 respectively
present the Cadp tools for model checking, equivalence checking, performance
evaluation, and distributed verification. Finally, Sect. 8 summarizes the achieve-
ments and indicates directions for future work.

2 Architecture and Verification Technology

Compared to other explicit-state model checkers, Cadp has the following prin-
ciples and distinctive features (some of which were already present in inspiring
tools rooted in concurrency theory, such as Cwb [8] and Cwb-Nc [7]):

– Cadp supports both high-level languages with a formal semantics (process
calculi) and lower level formalisms (networks of communicating automata);
it also accepts connections from informal or semi-formal languages that have
a means to compute the post transition function.

– Contrary to most model checkers supporting only scalar types, Cadp has
from the outset supported concurrent programs with complex and/or dy-
namic data structures (records, unions, lists, trees, etc.) provided that these
data structures are not shared by concurrent processes.

– Cadp relies on action-based (rather than state-based) semantic models inher-
ited from concurrency theory, in which one can only refer to the observable
actions performed by a system instead of the internal contents of states,
which are supposed to be hidden and implementation dependent, and thus
are not abstract enough. This encompasses the classical concepts of Ltss (for
verification), discrete- and continuous-time Markov chains (for performance
evaluation), and extended Markovian models, such as Interactive Markov
Chains (Imcs) [31], which combine Ltss and Markov chains.

– Relying on action-based models enables equivalence checking, i.e., the com-
parison of specifications for equality or inclusion; this corresponds to the
notions of bisimulations for Ltss and aggregation/lumpability for Markov
chains. Also, the possibility of replacing a state space by an equivalent but
smaller one is fundamental in compositional verification.

– As a consequence, the model checkers of Cadp are based on branching-
time (rather than linear-time) logics, which are adequate with bisimulation
reductions.

– Cadp is equipped with an original software architecture, which has widely in-
spired recent competing model checkers developed in the 2000s. Early model
checkers were “monolithic” in the sense that they tightly combined (1) the
source language used to describe the concurrent system under verification
and the compiling algorithms used to generate/explore the state space of
the concurrent system, and (2) the temporal logic language used to spec-
ify correctness formulas and the verification algorithms that evaluate these
formulas over the state space. Cadp took a different approach and adopted

A Toolbox for the Construction and Analysis of Distributed Processes 375

a modular architecture with a clear separation between language-dependent
and language-independent aspects. Different verification functionalities are
implemented in different tools, which can be reused for several languages and
which are built upon well-specified interfaces that enable code factoring.

– Cadp 2010 can manage state spaces as large as 1010 explicit states; by em-
ploying compositional verification techniques on individual processes, much
larger state spaces can be handled, up to sizes comparable to those reached
using symbolic techniques, such as Bdds.

Cadp can be seen as a rich set of powerful, interoperating software components
for manipulating automata and Markov chains. All these tools are integrated in
two ways: for interactive use, a graphical user-interface (named Eucalyptus)
with contextual menus is provided; for batch-mode use, a scripting language
named Svl [18] was designed, with user-friendly syntax and powerful verification
strategies that make of Svl a unique feature of Cadp.

Explicit state spaces. In the terminology of Cadp, an explicit state space is a
state-transition graph defined extensively, meaning that the sets of states and
transitions are entirely known, because they have been already computed.

In the early 90s, most verification tools represented explicit state spaces using
textual file formats, which were only adequate for small graphs but would not
scale satisfactorily, e.g., to millions of states. To solve this issue, Cadp was
equipped in 1994 with Bcg (Binary-Coded Graphs), a portable file format for
storing Ltss. Bcg is a binary format, which was designed to handle large state
spaces (up to 108 states and transitions initially — this limit was raised to 1013

in Cadp 2010 to take into account 64-bit machines). Because the Bcg format
is not human readable, it comes with a collection of code libraries and utility
programs for handling Bcg files.

Two key design goals for Bcg are file compactness and the possibility to en-
code/decode files quickly and dynamically (i.e., without requiring knowledge of
the entire state space in advance); these goals are achieved using dedicated com-
pression techniques that give significant results: usually, two bytes per transition
on average, as observed on Vlts (Very Large Transition Systems)2, a benchmark
suite used in many scientific publications. A third design goal is the need to pre-
serve in Bcg files the source-level information (identifiers, line numbers, types,
etc.) present in the source programs from which Bcg files are generated, keeping
in mind that these programs could be written in different languages.

Implicit state spaces. In the terminology of Cadp, an implicit state space is
a state-transition graph defined comprehensively, meaning that only the initial
state and the post transition function are given, such that (a fragment of) the
graph is progressively explored and discovered on demand, depending on the
verification goals. Handling implicit state spaces properly is a prerequisite for
on-the-fly verification.

In addition to Bcg, which only applies to explicit state spaces, Cadp
provides Open/Cæsar [16], a software framework for implicit state spaces,

2 http://vasy.inria.fr/cadp/resources/benchmark_bcg.html

376 H. Garavel, F. Lang, R. Mateescu, and W. Serwe

which enforces modularity by clearly separating language-dependent aspects
(i.e., compiler algorithms) from language-independent aspects (i.e., verification
algorithms). Open/Cæsar is organized around three components: the graph
module (which encapsulates all language-dependent aspects, typically code gen-
erated from a high-level source program to compute states and transitions), the
library module (which provides useful generic data structures, e.g., stacks, ta-
bles, hash functions, etc.), and the exploration module (which gathers language-
independent aspects, typically verification and state exploration algorithms). All
the internal details of the graph module are hidden behind a programming inter-
face, which provides an abstraction for states and transition labels (making them
available as opaque types) and implements the transition relation by means of
a higher-order iterator.

Since the introduction of the Open/Cæsar architecture in 1992, each of its
three modules has been progressively extended. Regarding the graph module,
only Lotos was supported at first, but support for more languages has been
added, either by Vasy or other research teams. Regarding the library module,
its data structures and algorithms have been continuously optimized and en-
riched. Regarding the exploration module, many Open/Cæsar tools have been
developed for simulation, random execution, model checking, equivalence check-
ing, and test case generation.

Boolean equation systems (Bess [39]). These are a useful low-level formalism for
expressing analysis problems on Ltss, i.e., model checking, equivalence checking,
partial order reductions, test case generation, and behavioral adaptation. A Bes
is a collection of equation blocks, each defining a set of Boolean variables (left-
hand sides) by propositional formulas (right-hand sides). All equations in a block
have the same fixed point sign: either minimal (μ) or maximal (ν). Bess can be
represented as Boolean graphs [1] and are closely related to game graphs [51] and
parity games [50].

The Cæsar Solve library [43] of Open/Cæsar contains a collection of
linear-time algorithms for solving alternation-free Bess using various explo-
ration strategies of its underlying Boolean graph (depth-first search, breadth-
first search, etc.). The resolution works on the fly, the Bes being constructed
(e.g., from the evaluation of a temporal logic formula on an Lts, or from the
comparison of two Ltss) at the same time it is solved, new equations being
added to the Bes and solved as soon as they are discovered. All algorithms of
Cæsar Solve can generate diagnostics, i.e., compute a minimal (in the sense
of graph inclusion) Boolean subgraph explaining why a given Boolean variable
is true or false [42].

New strategies have been added to Cadp 2010 for solving conjunctive Bess
(arising from equivalence checking) and disjunctive Bes (arising from model
checking), keeping in memory only the vertices (and not the edges) of the Boolean
graphs. Currently, Cadp 2010 offers nine resolution strategies, which can solve
Bess containing 107 variables in ten minutes. Recently, a new linear-time al-
gorithm generalizing the detection of accepting cycles in Büchi automata was
added [47], which serves for model checking fairness properties. For testing and

A Toolbox for the Construction and Analysis of Distributed Processes 377

benchmarking purposes, Cadp 2010 provides the new Bes Solve tool, which
can evaluate Bess entirely constructed and stored in (gzipped) files, or built on
the fly randomly according to fourteen parameters (number of variables, equa-
tion length, percentage of disjunctive and conjunctive operators, etc.).
Parameterized Boolean equation systems. Cadp also uses internally the Pbes
(Parameterized Bes) model [41], which extends the Bes model by adding typed
data parameters and arbitrary Boolean expressions over these parameters. The
Pbes model was originally invented as a means to represent the model check-
ing of Mcl formulas (μ-calculus extended with typed data), implemented in
the Evaluator 4.0 model checker now available in Cadp 2010 (see Sect. 4).
Recently, this model received much attention from the model checking commu-
nity, which investigates two approaches: symbolic resolution or instantiations
towards Bess followed by on-the-fly resolution, the latter being somehow close
to Sat-solving. Beyond verification, Pbess can express other problems such as
evaluation of parameterized Horn clauses or Datalog queries over data bases.

3 Specification Languages

A major difference of Cadp 2010 compared with earlier versions is the support
for several specification languages, while previously only Lotos was supported.

3.1 Support for the LOTOS Language

Lotos [34] is a formal specification language standardized by Iso to describe
communication protocols. It is composed of two different languages in one: a
data part, based on algebraic abstract data types, and a control part, which is a
process calculus combining the best features of Ccs, Csp, and Circal. For this
reason, Cadp provides two Lotos compilers, both sharing a common front-end.
Compiling the data part. The Cæsar.adt compiler [15,28] translates the data
part of a Lotos program (i.e., a collection of sorts, constructors, and functions
defined by algebraic equations) into executable C code. The translation aims at
verification efficiency, by first optimizing memory (which is essential for state
space exploration, where every bit counts), then time. The compiler automati-
cally recognizes certain classes of usual types (natural numbers, enumerations,
tuples, etc.), which are implemented optimally. The algebraic equations of Lotos
are translated using a pattern-matching compilation algorithm for rewrite sys-
tems with priority. Amusingly, most of the compiler is written using Lotos
abstract data types, so that Cæsar.adt is used to bootstrap itself.

The version of Cæsar.adt included in Cadp 2010 allows values of complex
types (such as tuples, unions, lists, trees, strings, sets, etc.) to be represented
“canonically”, meaning that these values are stored in tables, represented in nor-
mal form as table indexes and thus are stored only once in memory. A technical
challenge was to make this feature optional: the user can selectively store certain
types in tables, while other types remain implemented as before.

378 H. Garavel, F. Lang, R. Mateescu, and W. Serwe

Compiling the control part. The Cæsar compiler [25,24] translates an entire
Lotos program (reusing the C code generated by Cæsar.adt) into C code
that can be used either for generating an explicit Lts (encoded in the Bcg
format) or an implicit Lts (represented using the Open/Cæsar programming
interface), or for rapid prototyping (using the Exec/Cæsar programming inter-
face, which enables the connection with a real-world environment). The subset
of Lotos accepted by Cæsar must obey certain constraints, which forbid un-
bounded dynamic creation of processes and non-terminal recursion in process
calls; practically, these constraints are acceptable in most cases.

The translation is done using several intermediate steps, so as to perform,
for efficiency reasons, as many computations as possible at compile-time. The
Lotos program is first translated into a simplified language named SubLotos,
then into a (hierarchical) Petri net extended with atomic transitions, typed lo-
cal/global variables, and arbitrary combinations of conditions and actions at-
tached to Petri net transitions. This Petri net is then simplified by applying a
collection of optimizations on its control and data flows, and finally transformed
into a C program, which is then compiled and executed.

In addition to various bug fixes, the version of Cæsar included in Cadp 2010
delivers increased performance, especially by introducing dynamically resizable
state tables and by optimizing the generated C code for the amount of physical
memory available. Also, the reduction techniques based on data flow analy-
sis [24], which typically reduce state spaces by several orders of magnitude, have
been enhanced by applying data-flow optimizations iteratively, following the hi-
erarchical structure of the Petri net: for 22% of the benchmarks, the number of
states is divided by 2.4 on average (on certain benchmarks, it is divided by 25).

3.2 Support for the FSP Language

Fsp (Finite State Process) is a concise algebraic notation for concurrent pro-
cesses [40], supported by the Ltsa (Labelled Transition System Analyser) veri-
fication tool designed at Imperial College (London, United Kingdom). Fsp and
Ltsa are particularly suited for students to practice with academic examples.

Although Fsp and Lotos share many fundamental concepts, they differ
slightly in their expressiveness. On the one hand, Fsp provides a priority opera-
tor that has no equivalent in Lotos. On the other hand, Lotos allows abstract
data types to be defined by the user, while Fsp provides Booleans, integers, la-
bels, and predefined numeric functions only. Also, Lotos allows sequential and
parallel composition operators to be combined with only few restrictions, while
Fsp imposes a strict separation between sequential and parallel processes, so
that parallel processes cannot be composed in sequence.

Cadp 2010 supports the Fsp language, following the translation approach
of [38], implemented in two new tools. The Fsp2Lotos tool translates each
sequential Fsp process into a Lotos process, and each parallel Fsp process
into an Exp.Open [37] network of communicating processes with priorities.
The Fsp.Open tool provides a transparent interface between Fsp and the
Open/Cæsar environment.

A Toolbox for the Construction and Analysis of Distributed Processes 379

For the Fsp user community, Cadp 2010 brings the following advantages:
it can handle Fsp programs with non-guarded process recursion; it can handle
larger Fsp programs than Ltsa, due to the particular attention to performance
issues in Cadp and to the support of 64-bit architectures, whereas Ltsa suffers
from Java’s 32-bit limitations; finally, Cadp offers many tools that complement
the functionalities provided by Ltsa.

3.3 Support for the LOTOS NT Language

A major new feature of Cadp 2010 is the support of Lotos NT [5], a speci-
fication language derived from the Iso standard E-Lotos [35]. Lotos NT is
an attempt [17] at merging the most salient features of process calculi (concur-
rency, abstraction, congruence results) into mainstream programming languages
(imperative and functional languages for sequential programming). Contrary to
Lotos, which gathers two different languages into one, Lotos NT exhibits a
single unified language, in which the data part can be seen as a subset of the
control part (i.e., functions are a particular case of processes): absence of such a
nice symmetry in Lotos is a drawback and a cause for its steep learning curve.

Lotos NT has convenient features that Lotos is lacking: it has a set of pre-
defined data types (Booleans, natural numbers, integers, reals, characters, and
strings); it provides short-hand notations for lists, sets, and arrays; it eases the
definition of inductive types by automatically generating common operations
(equality and order relations, field accessors, etc); it enables typing of commu-
nication channels; it introduces the notion of modules. Similar to the Lotos
compilers of Cadp, Lotos NT can import hand-written, external C code that
implements Lotos NT types and functions; under some conditions, it is also
possible to combine Lotos and Lotos NT code into the same specification.

The feedback received about Lotos NT from both academia and industry
is highly positive: it is observed that people quickly start writing meaningful
Lotos NT specifications without the need for a long prior training. As of Jan-
uary 2010, the Vasy team has switched from Lotos to Lotos NT for all its
modeling activities, and Lotos NT is used internally in companies such as Bull,
CEA/Leti, and STMicroelectronics.

Cadp 2010 includes a set of tools (Lpp preprocessor, Lnt2Lotos transla-
tor, and Lnt.Open connector to Open/Cæsar) that implement Lotos NT by
translation to Lotos, which enables one to reuse the Cæsar and Cæsar.adt
compilers to analyze and execute Lotos NT specifications. To reduce the trans-
lation complexity, many semantic checks are deferred to the Cæsar.adt and
Cæsar compilers that will run on the generated, possibly incorrect Lotos code.

The translation of Lotos NT data part into Lotos (which is, to some extent,
the reverse of the translation performed by Cæsar.adt) requires compilation
of functions defined in imperative-style into rewrite systems with priorities. It
reuses an existing algorithm [48] for translating a subset of the C language
into Horn clauses, but largely extends this algorithm to handle reference-
passing parameters, pattern matching (“case” statements), loop interruptions

380 H. Garavel, F. Lang, R. Mateescu, and W. Serwe

(“break” statements), multiple “return” statements within function bodies,
uncatchable exceptions (“raise” statements), and overloading of function names.

The translation of the Lotos NT control part into Lotos process algebraic
terms borrows from a prior translation of Chp into Lotos [23], which was
adapted and optimized for Lotos NT. The translation is tricky because Lotos
is much less “regular” than Lotos NT for certain aspects (sequential compo-
sition, functionality typing for process termination) and because Lotos lacks
certain concepts (graphical parallel composition [26], type checking for commu-
nication channels). Surprisingly, the state spaces generated from Lotos NT pro-
grams are in general not larger than those generated from “equivalent” Lotos
programs, due to the precise analysis and sharing of continuations during the
translation.

3.4 Support for Other Languages

Numerous other languages have been connected to Cadp 2010. Fig. 1 gives a
global picture; dark grey boxes indicate the languages and software components
included in Cadp 2010; light grey boxes indicate the languages for which Vasy
has developed translators and connections to Cadp 2010, these translators be-
ing distributed separately from Cadp 2010; arcs are labeled with bibliographic
references; arcs without labels correspond to work in progress.

[3]

[5]

[37]

[36]

[27]

[38]

[45]

[23]

[29]

[3]

[15, 25, 24]
[30, 49]

[52][6]

Open/Cæsar

Fiacre Chp

Sdl Aadlπ-calculusWsdl-Bpeleb3

Fsp Lotos NT

LotosExp SystemC/Tlm

Sam

Bip

Fig. 1. Connection of the input languages of Cadp 2010

4 Model Checking

Cadp contains three model checkers operating on explicit and implicit Ltss.
Xtl (eXecutable Temporal Language) [44] is a functional language dedicated
to the exploration and querying of an explicit Lts encoded in the Bcg format.
Xtl handles (sets of) states, labels, and transitions as basic data types, enabling
temporal logic operators to be implemented using their fixed point characteriza-
tions. Temporal logic operators can be mixed with non-standard properties (e.g.,
counting states, transitions, etc.) and, more generally, with arbitrary computa-
tions described as recursive functions exploring the Lts. Xtl specifications can

A Toolbox for the Construction and Analysis of Distributed Processes 381

include reusable libraries of operators (15 such libraries are available in Cadp)
and can also be interfaced with external C code for specific computations.

Evaluator 3.x [46] evaluates formulas of Rafmc (the regular alternation-
free μ-calculus) on an implicit Lts on the fly. Rafmc incorporates the Pdl
modalities containing regular formulas over transition sequences, which are much
more concise and intuitive than their fixed point counterparts: for instance, safety
properties are simply expressed using the modality [R] false, which forbids the
transition sequences characterized by the regular formula R. The tool works by
reformulating the model checking problem as a Bes resolution, which is per-
formed using the linear-time local algorithms of the Cæsar Solve library [43].
According to the shape of the formula, the most memory-efficient algorithm
of the library is selected automatically. The tool produces examples and coun-
terexamples, which are general Lts subgraphs (i.e., may contain branches and/or
cycles), and also enables the definition of reusable libraries of property patterns.

Evaluator 4.0 [47] is a new model checker handling formulas written in
Mcl (Model Checking Language), which conservatively extends Rafmc with
two kinds of features. First, Mcl adds data-handling mechanisms to parse and
exploit structured transition labels (containing a channel/gate name and a list
of values exchanged), generated from value-passing specification languages. Mcl
contains action predicates with value extraction, fixed point operators parame-
terized with data values, quantifiers over finite data domains, regular formulas
extended with counters, and constructs inspired from functional programming
languages (“let”, “if-then-else”, “case”, “while”, “repeat”, etc.).

Second, Mcl adds fairness operators, inspired from those of Pdl-Δ, which
characterize complex, unfair cycles consisting of infinite repetitions of regular
subsequences. These operators belong to Lμ2, the μ-calculus fragment of al-
ternation depth two and were shown to subsume Ctl∗. Although Lμ2 has, in
the worst case, a quadratic model checking complexity, the fairness operators
of Mcl are evaluated in linear-time using an enhanced resolution algorithm of
Cæsar Solve [47].

5 Equivalence Checking

Equivalence checking is useful to guarantee that some properties verified on one
graph are also satisfied by another. Alternatively, equivalence checking can be
used to minimize a graph by collapsing its equivalent states. Concurrency the-
ory produced many graph equivalence relations, including strong bisimulation,
branching bisimulation, as well as stochastic/probabilistic extensions of strong
and branching bisimulations (which take into account the notion of lumpabil-
ity) for models combining features from Ltss and Markov chains. From the
beginning, equivalence checking has been a key feature of Cadp, first with the
Aldébaran tool [11,13] and, since 1999, with the Bcg Min 1.0 tool for min-
imization of explicit graphs using various partition-refinement algorithms. The
functionalities of these two tools have been progressively subsumed by improved
tools, namely Bcg Min 2.0 and Bisimulator, available in Cadp 2010.

382 H. Garavel, F. Lang, R. Mateescu, and W. Serwe

Bcg Min 2.0 enables an explicit Lts to be minimized according to various
equivalence relations. It implements partition-refinement algorithms based on
the notion of state signature [4]. Intuitively, the signature of a state is the set
of all couples “(transition label, block of the target state)” of the outgoing tran-
sitions (possibly following some compressed sequence of internal transitions in
the case of branching bisimulation). Refinement of the state partition consists
in dispatching states with different signatures to different blocks until the fix-
point has been reached, each block thus corresponding to a class of equivalent
states. Bcg Min 2.0 extends this algorithm to the stochastic/probabilistic ex-
tensions of strong and branching bisimulations, by incorporating lumpability in
the computation of signatures.

For strong and branching bisimulations, tests on more than 8000 Bcg graphs
show that Bcg Min 2.0 is 20 times faster and uses 1.3 times less memory than
Bcg Min 1.0. For stochastic/probabilistic bisimulations, Bcg Min 2.0 is more
than 500 (occasionally, 8500) times faster and uses 4 times less memory. Large
graphs of more than 108 states and 109 transitions have been minimized in a
few hours, using less than 100 Gbytes Ram.

Bisimulator [2,43] compares an implicit Lts (usually, describing a proto-
col) with an explicit Lts (usually, describing the expected service) on the fly,
by encoding the problem as a Bes, which is solved using the linear-time local
algorithms of the Cæsar Solve [43] library of Cadp. This encoding generalizes
and, due to optimizations applied on the fly depending on the Lts structure,
outperforms the pioneering on-the-fly equivalence checking algorithms [13]. For
typical cases (e.g., when the service Lts is deterministic and/or τ -free, τ denot-
ing the hidden/invisible action), the tool automatically chooses an appropriate
memory-efficient Bes resolution algorithm, which stores only the states, and not
the transitions.

Bisimulator implements seven equivalence relations (strong, weak, branch-
ing, τ∗.a [13], safety, trace, and weak trace) and their associated preorders, and
is one of the richest on-the-fly equivalence checkers available. For non-equivalent
Ltss, the tool can generate a counterexample, i.e., a directed acyclic graph con-
taining the minimal set of transition sequences that, if traversed simultaneously
in the two Ltss, lead to couples of non-equivalent states. Minimal-depth coun-
terexamples can be obtained using breadth-first strategies for Bes resolution.
The tool is also equipped with reductions modulo τ -compression (collapse of
τ -cycles) and τ -confluence (elimination of redundant interleavings), which pre-
serve branching equivalence and can improve performance by several orders of
magnitude.

6 Performance Evaluation

During the last decade, Cadp has been enhanced for performance evaluation op-
erating on extended Markovian models encoded in the Bcg format (see details
in [9]). Besides Bcg Min, the Exp.Open tool [37] now supports also the parallel
composition of extended Markovian models, implementing maximal progress of

A Toolbox for the Construction and Analysis of Distributed Processes 383

internal transitions in choice with stochastic transitions. New tools have been
added, namely Determinator [32], which eliminates stochastic nondetermin-
ism in extended Markovian models on the fly using a variant of the algorithm
presented in [10], and the Bcg Steady and Bcg Transient tools, which com-
pute, for each state s of an extended Markovian model, the probability of being
in s either on the long run (i.e., in the “steady state”) or at each time instant t
in a discrete set provided by the user.

More recently, the new Cunctator on-the-fly steady-state simulator for ex-
tended Markovian models has been added to Cadp. The tool explores a random
execution sequence in the model until a non-Markovian transition or a deadlock
state is found, or the sequence length or virtual time (obtained by summing
up the Markovian information present on transitions) reaches a maximum value
specified by the user, or the user interactively halts the simulation. Upon termi-
nation, the throughputs of labeled transitions chosen by the user are displayed,
together with information such as the number of τ -transitions encountered and
the presence of nondeterminism (i.e., states with more than one outgoing τ -
transition). The context of a simulation can be saved and restored for starting
subsequent simulations, enabling one to implement convergence criteria (e.g.,
based on confidence intervals) by executing series of increasingly long simula-
tions in linear time. For nondeterministic models, Cunctator selects between
conflicting τ -transitions according to one of three scheduling policies (the first,
the last, or a randomly chosen transition). Thus, launching simulations using
different scheduling policies provides more insight about the stochastic behavior
of the model. Compared to Bcg Steady, which computes exact throughputs,
Cunctator consumes less memory but achieving the same accuracy may re-
quire more time.

7 Parallel and Distributed Methods

Verification algorithms based on state space exploration have high computing
and memory requirements and, thus, are often limited by the capabilities of
one single sequential machine. However, the limits can be pushed forward by
new algorithms capable of exploiting processing resources offered by networks of
workstations, clusters, grids, etc.

Cadp was among the first toolboxes to release tools for distributed model
checking. The first step was to parallelize the state space construction, which is
a bottleneck for verification because storing all reachable states requires a consid-
erable amount of memory. For this purpose, the Distributor and Bcg Merge
tools [22,21] split the generation of an Lts across several machines, each machine
building only a fragment of the entire Lts. Interestingly, essential Distributor
features, such as the Pbg (Partitioned Bcg Graph) format and the graphical
monitor that displays in real-time the progress of generation across all the ma-
chines, have been replicated in competing verification toolsets.

The second step was the integration into Cadp 2010 of a collection of new
software tools (Pbg Cp, Pbg Mv, Pbg Rm, and Pbg Open) to manipulate an
Lts in the Pbg format, and their connection to Open/Cæsar.

384 H. Garavel, F. Lang, R. Mateescu, and W. Serwe

The third step was the parallelization of on-the-fly verification itself. There-
fore we designed a distributed version of the Cæsar Solve library to solve
Boolean equation systems on the fly using several machines, thus enabling the
development of parallel model and equivalence checkers.

8 Conclusion

Concurrency theory is now 40-year old; formal methods are 35-year old; model
checking verification is nearly 30-year old. To push theoretical ideas into reality
and to obtain new scientific results, significant effort must be put into software
development and confrontation with industrial applications.

This was indeed the case with Cadp 2010 which, besides all aforementioned
new tools and major enhancements, also required large amounts of program-
ming work: porting to various processors (Itanium, PowerPC, Sparc, x86, x64),
operating systems (Linux, MacOS X, Solaris, Windows) and C compilers (gcc 3,
gcc 4, Intel, and Sun); careful code cleanup to remove all compiler and lint
warnings, not only in the C code of the Cadp tools themselves, but also in the
C code that they may generate (this ensures that all compiler warnings received
by end-users are related to some mistakes in their Lotos or Lotos NT code);
significant documentation effort; intensive nonregression testing using thousands
of Lotos and Lotos NT programs, Bcg files, temporal logic formulas, Boolean
equation systems, etc. together with a new tool named Contributor that will
allow Cadp users to send such test cases to the Vasy team.

The relevance of these efforts and the maturity of Cadp can be estimated
from its dissemination and impact figures. As of December 2010, academic and
commercial licences have been signed with more than 435 universities, public
research institutes, and global corporations; 137 case-studies have been tackled
using Cadp; 58 research software applications have been developed using Cadp;
numerous academic courses are using Cadp to teach concurrency; the Cadp user
forum gathers more than 150 registered members with 1000 messages exchanged.

Regarding future work, we plan to develop a native Lotos NT compiler,
to connect even more concurrent languages to Cadp, and add new verification
tools that exploit massively parallel computing platforms. The latter research
area is especially difficult, because it superposes the algorithmic complexities
of verification and distributed programming; yet this is the only way to exploit
parallel computing resources, which are becoming pervasive.

References

1. Andersen, H.R.: Model Checking and Boolean Graphs. TCS 126(1), 3–30 (1994)
2. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: BISIMULATOR: A Mod-

ular Tool for On-the-Fly Equivalence Checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 581–585. Springer, Heidelberg (2005)

3. Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: An Intermediate Language for Model Verification
in the Topcased Environment. In: ERTS (2008)

A Toolbox for the Construction and Analysis of Distributed Processes 385

4. Blom, S., Orzan, S.: Distributed state space minimization. STTT 7, 280–291 (2005)
5. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Lang, F.,

Serwe, W., Smeding, G.: Reference Manual of the Lotos NT to Lotos Translator
(Version 5.1). Tech. Report INRIA/VASY, 117 pages (2010)

6. Chossart, R.: Évaluation d’outils de vérification pour les spécifications de systèmes
d’information. Mémoire mâıtre ès sciences, Univ. de Sherbrooke, Canada (2010)

7. Cleaveland, R., Li, T., Sims, S.: The Concurrency Workbench of the New Century
(Version 1.2). User’s Manual (2000)

8. Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench. In: Sifakis,
J. (ed.) CAV 1989. LNCS, vol. 407. Springer, Heidelberg (1990)

9. Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten Years
of Performance Evaluation for Concurrent Systems Using CADP. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 128–142. Springer, Heidelberg
(2010)

10. Deavours, D.D., Sanders, W.H.: An Efficient Well-Specified Check. In: 8th Inter-
national Workshop on Petri Nets and Performance Models, PNPM 1999 (1999)

11. Fernandez, J.-C.: ALDEBARAN : un système de vérification par réduction de
processus communicants. Thèse de Doctorat, Univ. J. Fourier, Grenoble (1988)

12. Fernandez, J.-C., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighire-
anu, M.: Cadp (Cæsar/Aldébaran Development Package): A Protocol Valida-
tion and Verification Toolbox. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS. vol. 1102, Springer, Heidelberg (1996)

13. Fernandez, J.-C., Mounier, L.: “On the Fly” Verification of Behavioural Equiva-
lences and Preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575,
Springer, Heidelberg (1992)

14. Garavel, H.: Compilation et vérification de programmes Lotos. Thèse de Doctorat,
Univ. J. Fourier, Grenoble (1989)

15. Garavel, H.: Compilation of Lotos Abstract Data Types. In: FORTE (1989)
16. Garavel, H.: OPEN/CAESAR: An Open Software Architecture for Verification,

Simulation, and Testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 68.
Springer, Heidelberg (1998)

17. Garavel, H.: Reflections on the Future of Concurrency Theory in General and Pro-
cess Calculi in Particular. In: LIX Colloquium on Emerging Trends in Concurrency
Theory. ENTCS, vol. 209 (2008)

18. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: FORTE. IFIP (2001)

19. Garavel, H., Lang, F., Mateescu, R.: An Overview of Cadp 2001. EASST Newslet-
ter 4, 13–24 (2002)

20. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

21. Garavel, H., Mateescu, R., Bergamini, D., Curic, A., Descoubes, N., Joubert, C.,
Smarandache, I., Stragier, G.: DISTRIBUTOR and BCGMERGE: Tools for dis-
tributed explicit state space generation. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 445–449. Springer, Heidelberg (2006)

22. Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction
for model-checking. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, p. 217.
Springer, Heidelberg (2001)

23. Garavel, H., Salaün, G., Serwe, W.: On the Semantics of Communicating Hardware
Processes and their Translation into Lotos for the Verification of Asynchronous
Circuits with Cadp. SCP 74(3), 100–127 (2009)

386 H. Garavel, F. Lang, R. Mateescu, and W. Serwe

24. Garavel, H., Serwe, W.: State Space Reduction for Process Algebra Specifications.
TCS 351(2), 131–145 (2006)

25. Garavel, H., Sifakis, J.: Compilation and Verification of Lotos Specifications. In:
PSTV. IFIP (1990)

26. Garavel, H., Sighireanu, M.: A Graphical Parallel Composition Operator for Pro-
cess Algebras. In: FORTE/PSTV (1999)

27. Garavel, H., Thivolle, D.: Verification of GALS systems by combining synchronous
languages and process calculi. In: Păsăreanu, C.S. (ed.) Model Checking Software.
LNCS, vol. 5578, pp. 241–260. Springer, Heidelberg (2009)

28. Garavel, H., Turlier, P.: Cæsar.adt : un compilateur pour les types abstraits
algébriques du langage Lotos. In: Actes du CFIP (1993)

29. Helmstetter, C.: Tlm.Open: a SystemC/Tlm Front-End for the Cadp Verification
Toolbox, http://hal.archives-ouvertes.fr/hal-00429070/

30. Helmstetter, C., Ponsini, O.: A Comparison of Two SystemC/TLM Semantics for
Formal Verification. In: MEMOCODE (2008)

31. Hermanns, H.: Interactive Markov Chains and the Quest for Quantified Quality. In:
Hermanns, H. (ed.) Interactive Markov Chains. LNCS, vol. 2428, p. 57. Springer,
Heidelberg (2002)

32. Hermanns, H., Joubert, C.: A Set of Performance and Dependability Analysis
Components for CADP. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 425–430. Springer, Heidelberg (2003)

33. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

34. ISO/IEC. Lotos— A Formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. International Standard 8807, International Or-
ganization for Standardization, Geneva (1989)

35. ISO/IEC. Enhancements to Lotos(E-Lotos). International Standard 15437:2001,
International Organization for Standardization, Geneva (2001)

36. Khan, A.M.: Connection of Compositional Verification Tools for Embedded Sys-
tems. Mémoire master 2 recherche, Univ. J. Fourier, Grenoble (2006)

37. Lang, F.: Exp.Open 2.0: A flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

38. Lang, F., Salaün, G., Hérilier, R., Kramer, J., Magee, J.: Translating FSP into
LOTOS and Networks of Automata. FACJ 22(6), 681–711 (2010)

39. Mader, A.: Verification of Modal Properties Using Boolean Equation Systems.
Bertz, Berlin (1997)

40. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley,
Chichester (2006)

41. Mateescu, R.: Vérification des propriétés temporelles des programmes parallèles.
Thèse de Doctorat, Institut National Polytechnique de Grenoble (April 1998)

42. Mateescu, R.: Efficient Diagnostic Generation for Boolean Equation Systems. In:
Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, p. 251. Springer, Heidelberg (2000)

43. Mateescu, R.: Cæsar Solve: A Generic Library for On-the-Fly Resolution of
Alternation-Free Boolean Equation Systems. STTT 8(1), 37–56 (2006)

44. Mateescu, R., Garavel, H.: Xtl: A Meta-Language and Tool for Temporal Logic
Model-Checking. In: STTT. BRICS (1998)

45. Mateescu, R., Salaün, G.: Translating Pi-Calculus into LOTOS NT. In: Méry, D.,
Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 229–244. Springer, Heidelberg
(2010)

A Toolbox for the Construction and Analysis of Distributed Processes 387

46. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. SCP 46(3), 255–281 (2003)

47. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-
Passing Systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
148–164. Springer, Heidelberg (2008)

48. Ponsini, O., Fédèle, C., Kounalis, E.: Rewriting of imperative programs into logical
equations. SCP 56(3), 363–401 (2005)

49. Ponsini, O., Serwe, W.: A Schedulerless Semantics of TLM Models Written in
SystemC Via Translation into LOTOS. In: Cuellar, J., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 278–293. Springer, Heidelberg (2008)

50. Schewe, S.: Solving Parity Games in Big Steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

51. Stevens, P., Stirling, C.: Practical Model-Checking Using Games. In: Steffen, B.
(ed.) TACAS 1998. LNCS, vol. 1384, p. 85. Springer, Heidelberg (1998)

52. Thivolle, D.: Langages modernes pour la vérification des systèmes asynchrones.
PhD thesis, Univ. J. Fourier Grenoble and Polytechnic. Univ. of Bucharest (2011)

GameTime: A Toolkit for Timing Analysis of Software

Sanjit A. Seshia and Jonathan Kotker

EECS Department, UC Berkeley
{sseshia,jamhoot}@eecs.berkeley.edu

Abstract. Timing analysis is a key step in the design of dependable real-time em-
bedded systems. In this paper, we present GameTime, a toolkit for execution time
analysis of software. GameTime is based on a combination of game-theoretic on-
line learning and systematic testing using satisfiability modulo theories (SMT)
solvers. In contrast with many existing tools for timing analysis, GameTime can
be used for a range of tasks, including estimating worst-case execution time, pre-
dicting the distribution of execution times of a task, and finding timing-related
bugs in programs. We describe key implementation details of GameTime and il-
lustrate its usage through examples.

1 Introduction

Timing properties of embedded systems are determined by the behavior of both the
control software and the platform the software executes on. The verification of such
properties is made difficult by their heavy dependence on characteristics of the platform,
including details of the processor and memory hierarchy.

Several kinds of timing analysis problems arise in practice. First, for hard real-time
systems, a classic problem is to estimate the worst-case execution time (WCET) of a ter-
minating software task. Such an estimate is relevant for verifying if deadlines or timing
constraints are met as well as for use in scheduling strategies. Second, for soft real-time
systems, it can be useful to estimate the distribution of execution times exhibitable by
a task. Third, it can be very useful to find a test case on which the program exhibits
anomalous timing behavior; e.g., a test case causing a task to miss its deadline. Fi-
nally, in “software-in-the-loop” simulation, the software implementation of a controller
is simulated along with a model of the continuous plant it controls, with the simulations
connected using execution time estimates. For scalability, such simulation must be per-
formed on a workstation, not on the target embedded platform. Consequently, during
the workstation-based simulation, it is necessary to predict the timing of the program
along a particular execution path on the target platform.

All of the problems mentioned in the preceding paragraph are instances of predicting
a particular execution time property of a terminating software task. In this paper, we
present GAMETIME, a toolkit for timing analysis of software. In contrast with existing
tools for timing analysis (see, e.g., [4]), GAMETIME can predict not only extreme-case
behavior, but also certain execution time statistics (e.g., the distribution) as well as
a program’s timing along particular execution paths. Additionally, it is measurement-
based, making it easy to port to new platforms. The GAMETIME approach, along with
an exposition of theoretical and experimental results, including comparisons with other

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 388–392, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

GameTime: A Toolkit for Timing Analysis of Software 389

methods, is described in existing papers [5,6]. The goal of this paper is to describe the
overall tool flow along with aspects of the implementation not described in detail in
those papers. We also illustrate, with a running example, how GAMETIME can be used
to make various execution time predictions.

2 Running Example

We consider programs Pwhere loops have statically-known finite loop bounds and func-
tion calls have known finite recursion depths. Thus P can be unrolled to an equivalent
program Q where every execution path in the (possibly cyclic) control-flow graph of P
is mapped 1-1 to a path in the acyclic control-flow graph of Q. Our running example is
the modular exponentiation code given in Figure 1(a). Modular exponentiation is a nec-
essary primitive for implementing public-key encryption and decryption. The unrolled
version of this code for a 2-bit exponent is given in Figure 1(b).

1 modexp(base, exponent) {
2 result = 1;
3 for(i=EXP_BITS; i>0; i--) {
4 // EXP_BITS = 2
5 if ((exponent & 1) == 1) {
6 result = (result * base) % p;
7 }
8 exponent >>= 1;
9 base = (base * base) % p;

10 }
11 return result;
12 }

(a) Original code P

1 modexp_unrolled(base, exponent) {
2 result = 1;
3 if ((exponent & 1) == 1) {
4 result = (result * base) % p;
5 }
6 exponent >>= 1;
7 base = (base * base) % p;
8 // unrolling below
9 if ((exponent & 1) == 1) {

10 result = (result * base) % p;
11 }
12 exponent >>= 1;
13 base = (base * base) % p;
14 return result;
15 }

(b) Unrolled code Q

Fig. 1. Modular exponentation. Both programs compute the value of baseexponent modulo p

3 The GAMETIME Approach

We begin with a brief overview of the approach taken by GAMETIME and a description
of one of the core components, the generation of basis paths of a program (Sec. 3.1).
Sec. 3.2 gives a sample experimental result on the running example described in Sec. 2.

Figure 2 depicts the operation of GAMETIME. As shown in the top-left corner, the
process begins with the generation of the control-flow graph (CFG) corresponding to
the program, where all loops have been unrolled to the maximum loop bound, and
all function calls have been inlined into the top-level function. The CFG is assumed
to have a single source node (entry point) and a single sink node (exit point); if not,
dummy source and sink nodes are added. The next step is a critical one, where a subset
of program paths, called basis paths are extracted. These basis paths are those that
form a basis for the set of all paths, in the standard linear algebra sense of a basis. A
satisfiability modulo theories (SMT) solver is invoked to ensure that the generated basis
paths are feasible. We discuss this step in more detail in Sec. 3.1.

390 S.A. Seshia and J. Kotker

PROGRAM CONTROL-FLOW
GRAPH (DAG)

i1

i2
i3

PREDICT
TIMING

PROPERTIES
(worst-case,

distribution, etc.)

LEARNING
ALGORITHM

i1

i2

i3

…

42
75

101

…

online

Generate Control-Flow
Graph, Unroll Loops, Inline

Functions, etc.

Extract FEASIBLE
BASIS PATHS with

corresponding Test Cases

SMT SOLVER

Compile Program
for Platform

TEST
SUITE

Measure timing on
Test Suite directed by

Learning Algorithm

Fig. 2. GAMETIME overview

The basis paths are generated along
with the corresponding test cases that
drive execution down those paths. The
program is then compiled for the tar-
get platform, and executed on these test
cases. In the basic GAMETIME algo-
rithm (described in [5,6]), the sequence
of tests is randomized, with basis paths
being chosen uniformly at random to
be executed. The overall execution time
of the program is recorded for each
test case. From these end-to-end execu-
tion time measurements, GAMETIME’s
learning algorithm generates a weighted
graph model that is used to make predic-

tions about timing properties of interest. The predictions hold with high probability; see
the previous papers on GAMETIME [5,6] for details.

In principle, GAMETIME can be set up to use any compiler front-end to generate the
CFG and perform test generation along basis paths using an SMT solver; we have ex-
perimented with using both CIL [2] and the Microsoft Phoenix compiler front-end [1].
Similarly, any SMT solver for the combination of bit-vector arithmetic and arrays can
be used. The core GAMETIME algorithms (involving linear algebra to generate basis
paths and the learning algorithm) are implemented separately in Python.

3.1 Generating Basis Paths

In the CFG extracted from a program, nodes correspond to program counter locations,
and edges correspond to basic blocks or branches.

(a) CFG for
modexp

(unrolled)

1

2
3

4

5

6

7

8

9

1

2

5

6

9

1

3

4

5

6

9

1

2

5

7

8

9

(b) Basis paths
x1, x2, x3

1

3

4

5

7

8

9

(c) Additional
path x4

x1 = (1, 1, 0, 0, 1, 1, 0, 0, 1)
x2 = (1, 0, 1, 1, 1, 1, 0, 0, 1)
x3 = (1, 1, 0, 0, 1, 0, 1, 1, 1)

x4 = (1, 0, 1, 1, 1, 0, 1, 1, 1)

x4 = x2 + x3 - x1

(d) Vector
representations

Edge labels indicate
Edge IDs, and

positions in vector
representation

Fig. 3. CFG and Basis Paths for Code in Fig. 1(b)

Figure 3(a) denotes the
control-flow graph for the code
in Figure 1(b). Each source-sink
path in the CFG can be repre-
sented as a 0-1 vector with m
elements, where m is the num-
ber of edges. The interpretation
is that the ith entry of a path vec-
tor is 1 iff the ith edge is on the
path (and 0 otherwise). For ex-
ample, in the graph of Fig. 3(a),
each edge is labeled with its
index in the vector representa-
tion of the path. For example,
edge 2 and 3 correspond to the
else (0th bit of exponent = 0)
and then branches of the condi-
tion statements at lines 3 and 9

GameTime: A Toolkit for Timing Analysis of Software 391

respectively in the code, while edge 5 corresponds to the basic block comprising lines
6 and 7. We denote by P the subset of {0, 1}m corresponding to valid program paths.
Note that this set can be exponentially large in m.

A key feature of GAMETIME is the ability to exploit correlations between paths so
as to be able to estimate program timing along any path by testing a relatively small
subset of paths. This subset is a basis of the path-space P , with two valuable properties:
any path in the graph can be written as a linear combination of the paths in the basis,
and the coefficients in this linear combination are bounded in absolute value. The first
requirement says that the basis is a good representation for the exponentially-large set
of possible paths; the second says that timings of some of the basis paths will be of
the same order of magnitude as that of the longest path. These properties enable us
to repeatedly sample timings of the basis paths to reconstruct the timings of all paths.
As GAMETIME constructs each basis path, it ensures that it is feasible by formulating
and checking an SMT formula that encodes the semantics of that path; a satisfying
assignment yields a test case that drives execution down that path.

Fig. 3(b) shows the basis paths for the graph of Fig. 3(a). Here x1, x2, and x3 are the
paths corresponding to exponent taking values 00, 10, and 01 respectively. Fig. 3(c)
shows the fourth path x4, expressible as the linear combination x2 + x3 − x1 (see
Fig. 3(d)).

Fig. 4. Actual (striped) and Predicted (shaded) Execution
Times for Code in Fig. 1.

The number of feasible basis
paths b is bounded by m−n+2
(where n is the number of CFG
nodes). Note that our example
graph has a “2-diamond” struc-
ture, with 4 feasible paths, any
3 of which make up a basis. In
general, an “N -diamond” graph
with 2N feasible paths has at
most N + 1 basis paths.

Computing tests for all ba-
sis paths can be viewed as a
structural test coverage crite-
rion. Covering all basis paths
(for any basis) gives full state-
ment and branch coverage, but

not full path coverage. Also, generating tests for basis paths can be viewed as a way
of exploiting the structure of the program’s CFG for systematic test generation. We
have found basis path coverage to be valuable for the prediction of timing properties of
a program.

3.2 Sample Experimental Result

We used GAMETIME to estimate the distribution of execution times of modexp func-
tion for an 8-bit exponent (256 program paths) by testing only the (9) basis paths.
The experiments were performed for the StrongARM-1100 processor – which imple-
ments the ARM instruction set with a 5-stage pipeline and both data and instruction

392 S.A. Seshia and J. Kotker

caches – using the SimIt-ARM cycle-accurate simulator [3]. Fig. 4 shows the predicted
and actual distribution of execution times – we see that GAMETIME predicts the dis-
tribution perfectly. Also, GAMETIME correctly predicts the WCET (and produces the
corresponding test case: exponent=255).

Acknowledgments. This work was supported in part by NSF grants CNS-0644436
CNS-0627734, and CNS-1035672, an Alfred P. Sloan Research Fellowship, and the
Multiscale Systems Center (MuSyC), one of six research centers funded under the Fo-
cus Center Research Program (FCRP), a Semiconductor Research Corporation entity.
We also acknowledge the contributions of Andrew Chan, Sagar Jain, and Min Xu to the
development of GAMETIME.

References

1. Phoenix software optimization and analysis framework,
https://connect.microsoft.com/Phoenix

2. Necula, G., et al.: CIL - infrastructure for C program analysis and transformation,
http://manju.cs.berkeley.edu/cil/

3. Qin, W., Malik, S.: Simit-ARM: A series of free instruction-set simulators and micro-
architecture simulators,
http://embedded.eecs.berkeley.edu/mescal/forum/2.html

4. Wilhelm, R., et al.: The Determination of Worst-Case Execution Times—Overview of the
Methods and Survey of Tools. ACM Transactions on Embedded Computing Systems, TECS
(2007)

5. Seshia, S.A., Rakhlin, A.: Game-theoretic timing analysis. In: Proc. IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 575–582 (2008)

6. Seshia, S.A., Rakhlin, A.: Quantitative analysis of systems using game-theoretic learning.
ACM Transactions on Embedded Computing Systems (TECS) (to appear)

Author Index

Alglave, Jade 41
Annapureddy, Yashwanth 254

Barbot, Benôıt 128
Bartocci, Ezio 326
Bertrand, Nathalie 96
Buckl, Christian 258
Burnim, Jabob 11

Chamarthi, Harsh Raju 291
Chang, Jinn-Shu 262
Chang, Yi-Wen 262
Chatterjee, Krishnendu 267
Chen, Taolue 128
Cheng, Chih-Hong 258
Cimatti, Alessandro 341
Codish, Michael 189
Conchon, Sylvain 45
Contejean, Evelyne 45

Dillinger, Peter 291

Ehlers, Rüdiger 272

Fainekos, Georgios 254
Fekete, Yoav 189
Forejt, Vojtěch 112
Fränzle, Martin 158
Fuhs, Carsten 189

Garavel, Hubert 372
Garbervetsky, Diego 65
Garg, Pranav 26
Gopinath, Divya 173
Goŕın, Daniel 65
Griggio, Alberto 143
Grosu, Radu 326

Han, Hyojung 239
Han, Tingting 128
Henzinger, Thomas A. 267
Hoder, Kryštof 60
Holzmann, Gerard J. 1
Howar, Falk 220

Iguernelala, Mohamed 45

Jéron, Thierry 96
Jobstmann, Barbara 267
Jung, Yungbum 205

Katoen, Joost-Pieter 128
Katsaros, Panagiotis 326
Khurshid, Sarfraz 173
Kiefer, Stefan 296
Knoll, Alois 258
Kotker, Jonathan 388
Kovács, Laura 60
Krichen, Moez 96
Kroening, Daniel 81
Kupferschmid, Sebastian 276
Kwiatkowska, Marta 112

Lang, Frédéric 372
Le, Thi Thieu Hoa 143
Lee, Wonchan 205
Liu, Che 254
Luttenberger, Michael 258

Madhusudan, P. 26
Malik, Muhammad Zubair 173
Manolios, Panagiotis 291
Maranget, Luc 41
Margaria, Tiziana 220
Mateescu, Radu 372
Mereacre, Alexandru 128
Merten, Maik 220

Narasamdya, Iman 341
Neisen, Ariel 65
Norman, Gethin 112

Parker, David 112
Podelski, Andreas 3

Qu, Hongyang 112

Ramakrishnan, C.R. 326
Ravn, Anders P. 357
Roveri, Marco 341
Rybalchenko, Andrey 3

394 Author Index

Sankaranarayanan, Sriram 254
Sarkar, Susmit 41
Schneider-Kamp, Peter 189
Sebastiani, Roberto 143
Sen, Koushik 11
Serwe, Wendelin 372
Seshia, Sanjit A. 388
Sewell, Peter 41
Sharygina, Natasha 81
Singh, Rohit 267
Smolka, Scott A. 326
Srba, Jǐŕı 357
Stainer, Amélie 96
Steffen, Bernhard 220
Stergiou, Christos 11
Stoelinga, Mariëlle 311

Talupur, Muralidhar 239
Teige, Tino 158

Timmer, Mark 311
Tsai, Ming-Hsien 262
Tsay, Yih-Kuen 262
Tsitovich, Aliaksei 81

van de Pol, Jaco 311
Vighio, Saleem 357
Voronkov, Andrei 60
Vroon, Daron 291

Wang, Bow-Yaw 205
Wehrle, Martin 276
Wimmel, Harro 224
Wintersteiger, Christoph M. 81
Wojtczak, Dominik 296
Wolf, Karsten 224

Yi, Kwangkuen 205

	Cover
	Lecture Notes in Computer Science 6605
	Tools and Algorithmsfor the Constructionand Analysis of Systems
	ISBN 9783642198342
	Foreword
	Preface
	Conference Organization
	Table of Contents
	Reliable Software Development: Analysis-Aware Design
	References

	Transition Invariants and Transition Predicate Abstraction for Program Termination
	Introduction
	Preliminaries
	Disjunctively Well-Founded Transition Invariants
	Transition Predicate Abstraction (TPA)
	Conclusion
	References

	Sound and Complete Monitoring of Sequential Consistency for Relaxed Memory Models
	Introduction
	Preliminaries
	Programming Model

	Operational Memory Models
	Violations of Sequential Consistency
	Execution Traces
	Sequential Consistency and the Happens-Before Relation

	Monitoring Algorithms
	Comparison to SOBER
	Experimental Evaluation
	References

	Compositionality Entails Sequentializability
	Introduction
	A Compositional Abstract Semantics for Programs
	A High Level Overview of the Sequentialization
	Sequential and Concurrent Programs
	The Sequentialization
	Experience
	Future Directions
	References

	Litmus: Running Tests against Hardware
	Introduction
	High Level Overview
	Test Infrastructure and Parameters
	The Impact of Test Parameters
	References

	Canonized Rewriting and Ground AC Completion Modulo Shostak Theories
	Introduction
	Ground AC-Completion
	Shostak Theories and Global Canonization
	Ground AC-Completion Modulo X
	Canonized Rewriting
	The AC(X) Algorithm

	Correctness
	Soundness
	Completeness
	Termination

	Experimental Results
	Conclusion and Future Works
	References

	Invariant Generation in Vampire
	Introduction
	Invariant Generation in Vampire: Overview
	Conclusion
	References

	Enforcing Structural Invariants Using Dynamic Frames
	Introduction
	Dynamic Frames
	Inferring Regions Automatically

	Verifiably Acyclic Data Structures
	A Characterization of acyclicity
	Preserving the Acyclicity Invariant

	Trees and Similar Data Structures
	Improving Precision
	Evaluation
	Related Work
	Conclusions
	References

	Loop Summarization and Termination Analysis
	Introduction
	Background
	Termination
	Loop Summarization

	Loop Summarization with Transition Invariants
	Selection of Candidate Invariants
	Evaluation
	Related Work
	Relation to Size-Change Termination Principle
	Relation to Other Research Using Transition Invariants

	Conclusion and Future Work
	References

	Off-Line Test Selection with Test Purposes for Non-deterministic Timed Automata
	Introduction
	A Model of Open Timed Automata with Inputs/Outputs
	Open Timed Automata with Inputs/Outputs
	The Semantics of OTAIOs
	Properties and Operations

	Conformance Testing Theory
	The tioco Conformance Theory
	Refinement Preserving tioco

	Approximate Determinization Preserving tioco
	A Game Approach to Determinize Timed Automata
	Extensions to TAIOs and Adaptation to tioco

	Off-Line Test Case Generation
	Test Purposes
	Principle of Test Generation

	Conclusion
	References

	Quantitative Multi-objective Verification for Probabilistic Systems
	Introduction
	Background
	Probabilistic Automata (PAs)
	Verification of PAs

	Quantitative Multi-objective Verification
	Checking Multi-objective Queries
	Controller Synthesis

	Quantitative Assume-Guarantee Verification
	Conclusions
	References

	Efficient CTMC Model Checking of Linear Real-Time Objectives
	Introduction
	Preliminaries
	Continuous-Time Markov Chains
	Deterministic Timed Automata
	Decomposition for 1-Clock DTA

	Lumping
	Experimental Results
	Cyclic Polling Server
	Robot Navigation
	Systems Biology
	Parallelization

	Multi-clock DTA Objectives
	Conclusion
	References

	Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic
	Motivations, Related Work and Goals
	Background: SMT(LA(Z))
	Generalities
	Efficient SMT(LA(Z)) Solving

	From LA(Z)-Solving to LA(Z)-Interpolation
	Interpolation for Diophantine Equations
	Interpolation for Inequalities
	Interpolation with Branch-and-Bound

	A Novel General Interpolation Technique for Inequalities
	Experimental Evaluation
	Description of the Benchmark Sets
	Comparison with the State-of-the-Art Tools Available

	Conclusions
	References

	Generalized Craig Interpolation for Stochastic Boolean Satisfiability Problems
	Introduction
	Stochastic Boolean Satisfiability
	Resolution for SSAT
	Interpolation for SSAT
	Generalized Craig Interpolants
	Computation of Generalized Craig Interpolants

	Interpolation-Based Probabilistic Model Checking
	Conclusion and Future Work
	References

	Specification-Based Program Repair Using SAT
	Introduction
	Basic Principle
	Our Framework
	Evaluation
	Candidates
	Metrics
	Results

	Discussion
	Correctness Argument
	Related Work
	Program Sketching Using SAT
	Program Repair Using Data Structure Repair
	Other Recent Work on Program Correction

	Conclusion
	References

	Optimal Base Encodings for Pseudo-Boolean Constraints
	Introduction
	Optimal Base Problems
	Encoding Pseudo-Boolean Constraints
	Measures of Optimality
	Optimal Base Search I: Heuristic Pruning
	Optimal Base Search II: Branch and Bound
	Optimal Base Search III: Search Modulo Product
	Experiments
	Related Work
	Conclusion
	References

	Predicate Generation for Learning-Based Quantifier-Free Loop Invariant Inference
	Introduction
	Preliminaries
	Inferring Loop Invariants with Algorithmic Learning
	Predicate Generation by Interpolation
	Initial Atomic Predicates
	Atomic Predicates from Incorrect Conjectures
	Atomic Predicates from Conflicting Abstract Counterexamples

	Algorithm
	Experimental Results
	tar from Tar
	parser from SPEC2000 Benchmarks

	Conclusions
	References

	Next Generation LearnLib
	Introduction
	Base Technology
	Modeling Learning Solutions
	Fast-Cycle Experimentation: The ZULU Experience
	Conclusion
	References

	Applying CEGAR to the Petri Net State Equation
	Introduction
	The Reachability Problem
	Traversing the Solution Space
	Building Constraints
	Finding Partial Solutions
	Experimental Results
	Conclusion
	References

	Biased Model Checking Using Flows
	Introduction
	Applications to Distributed Message Passing Protocols
	Evaluation

	Related Work
	Preliminaries
	Biased BFS Algorithm
	Optimizations

	Biased DFS Algorithm
	Flows and Markings
	Experimental Evaluation
	Results
	Biased Procedures in Murphi
	Discussion

	Conclusion
	References

	S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems
	Introduction
	The S-TaLiRo Tool
	Usage
	Related Work
	References

	GAVS+: An Open Platform for the Research of Algorithmic Game Solving
	Introduction
	Supported Games in GAVS+
	Extension of Strips/PDDL for Game Solving: An Example
	References

	Büchi Store: An Open Repository of Büchi Automata
	Introduction
	Implementation and Main Features
	Use Cases
	References

	QUASY: Quantitative Synthesis Tool
	Introduction
	Synthesis from Combined Specifications
	Implementation Details
	Future Work
	References

	Unbeast: Symbolic Bounded Synthesis
	Introduction
	Tool Description
	Technology

	Experimental Results
	Conclusion
	References

	Abstractions and Pattern Databases: The Quest for Succinctness and Accuracy
	Introduction
	Preliminaries
	Notation
	Directed Model Checking
	Pattern Database Heuristics

	Pattern Selection Based on Downward Refinement
	Sufficiently Accurate Distance Heuristics
	Concretizable Traces and Safe Abstractions
	An Algorithm for Pattern Selection Based on Downward Refinement

	Related Work
	Evaluation
	Implementation Details
	Experimental Setup
	Experimental Results
	Directed Model Checking for Correct Systems?

	Conclusions
	References

	The ACL2 Sedan Theorem Proving System
	Introduction
	Termination Analysis Using Calling Context Graphs
	Random Testing and Proving: Synergistic Combination
	References

	On Probabilistic Parallel Programs with Process Creation and Synchronisation
	Introduction
	Preliminaries
	Results
	Relationship with Probabilistic Pushdown Systems (pPDSs)
	Probability of Termination
	Probability of Finite Space
	Work and Time

	Case Studies
	Divide and Conquer
	Evaluation of Game Trees

	Conclusions and Future Work
	References

	Confluence Reduction for Probabilistic Systems
	Introduction
	Preliminaries
	Probability Theory and Probabilistic Automata
	Schedulers

	Branching Probabilistic Bisimulation
	Weak Steps for Probabilistic Automata
	Branching Probabilistic Bisimulation

	Confluence for Probabilistic Automata
	State Space Reduction Using Probabilistic Confluence
	Symbolic Detection of Probabilistic Confluence
	Case Study
	Conclusions
	References

	Model Repair for Probabilistic Systems
	Introduction
	Parametric Probabilistic Model Checking
	The Model Repair Problem
	The Max-Profit Model Repair Problem

	Model Repair as a Nonlinear Programming Problem
	Model Repair Feasibility and Optimality
	Model Repair and Optimal Control
	Applications
	Related Work
	Conclusions
	References

	Boosting Lazy Abstraction for SystemC with Partial Order Reduction
	Introduction
	Background
	The Problem of Multiple Interleavings
	Reduction Algorithms in ESST
	Partial-Order Reduction Techniques
	Applying POR to ESST
	Correctness of Reduction in ESST

	Related Work
	Experiments
	Conclusion and Future Work
	References

	Modelling and Verification of Web Services Business Activity Protocol
	Introduction
	WS-Business Activity Protocol
	Business Agreement with Coordination Completion
	Communication Policies

	Formal Modelling of BAwCC in UPPAAL
	Analysis of BAwCC
	Enhanced BAwCC
	Termination under Fairness
	Conclusion and Future Work
	References

	CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes
	Introduction
	Architecture and Verification Technology
	Specification Languages
	Support for the LOTOS Language
	Support for the FSP Language
	Support for the LOTOS NT Language
	Support for Other Languages

	Model Checking
	Equivalence Checking
	Performance Evaluation
	Parallel and Distributed Methods
	Conclusion
	References

	GameTime: A Toolkit for Timing Analysis of Software
	Introduction
	Running Example
	The GameTime Approach
	Generating Basis Paths
	Sample Experimental Result

	References

	Author Index

