

Lecture Notes in Computer Science 6595
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alberto Marchetti-Spaccamela
Michael Segal (Eds.)

Theory and Practice
of Algorithms
in (Computer) Systems
First International ICST Conference,TAPAS 2011
Rome, Italy, April 18-20, 2011
Proceedings

13

Volume Editors

Alberto Marchetti-Spaccamela
Sapienza University of Rome
Department of Computer Science and Systemics "Antonio Ruberti"
Via Ariosto 25, 00185 Rome, Italy
E-mail: alberto@dis.uniroma1.it

Michael Segal
Ben-Gurion University of the Negev
Communication Systems Engineering Department
POB 653, Beer-Sheva 84105, Israel
E-mail: segal@cse.bgu.ac.il

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19753-6 e-ISBN 978-3-642-19754-3
DOI 10.1007/978-3-642-19754-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922539

CR Subject Classification (1998): F.2, D.2, G.1-2, G.4, E.1, I.1.2, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the 25 papers presented at the First International ICST
Conference on Theory and Practice of Algorithms in (Computer) Systems
(TAPAS 2011), held in Rome during April 18-20 2011, including three papers
by the distinguished invited speakers Shay Kutten, Kirk Pruhs and Paolo Santi.

In light of the continuously increasing interaction between computing and
other areas, there arise a number of interesting and difficult algorithmic issues in
diverse topics including coverage, mobility, routing, cooperation, capacity plan-
ning, scheduling, and power control. The aim of TAPAS is to provide a forum
for the presentation of original research in the design, implementation and eval-
uation of algorithms. In total 45 papers adhering to the submission guidelines
were submitted. Each paper was reviewed by three referees. Based on the re-
views and the following electronic discussion, the committee selected 22 papers
to appear in final proceedings. We believe that these papers together with the
invited presentations made up a strong and varied program, showing the depth
and the breadth of algorithmic research.

TAPAS 2011 was sponsored by ICST (Institute for Computer Science, So-
cial Informatics and Telecommunications Engineering, Ghent, Belgium) and
Sapienza University of Rome. Besides the sponsor we wish to thank the peo-
ple from the EasyChair Conference Systems: their wonderful system saved us a
lot of time. Finally, we wish to thank the authors who submitted their work, all
Program Committee members for their hard work, and all reviewers who helped
the Program Committee in evaluating the submitted papers.

April 2011 Alberto Marchetti-Spaccamela
Michael Segal

Conference Organization

Program Committee

Stefano Basagni Northeastern University, USA
Andrei Broder Yahoo Inc., USA
Alon Efrat University of Arizona, USA
Stefan Funke University of Stuttgart, Germany
Michael Juenger University of Cologne, Germany
Alex Kesselman Google Inc., USA
Alberto Marchetti-Spaccamela Sapienza University of Rome, Italy

Co-chair
Alessandro Mei Sapienza University of Rome, Italy
Michael Segal Ben-Gurion University of the Negev, Israel

Co-chair
Hanan Shpungin University of Calgary, Canada
Jack Snoeyink University of North Carolina at Chapel

Hill, USA
Leen Stougie VU University, Amsterdam,

The Netherlands
Peng-Jun Wan Illinois Institute of Technology, USA
Peter Widmayer ETH, Switzerland
Gerhard Woeginger Eindhoven University of Technology,

The Netherlands

Steering Committee

Pankaj Agarwal Duke University, USA
Imrich Chlamtac University of Trento, Italy
Alberto Marchetti-Spaccamela Sapienza University of Rome, Italy
David Peleg Weizmann Institute, Israel
Michael Segal Ben-Gurion University of the Negev, Israel
Paul Spirakis University of Patras, Greece
Roger Wattenhofer ETH, Switzerland

External Reviewers

Nikhil Bansal
Vincenzo Bonifaci
Sylvia Boyd
Christoph Buchheim
Marek Chrobak

Daniel Dumitriu
Jochen Eisner
Martin Gronemann
Carsten Gutwenger
Cor Hurkens

VIII Conference Organization

Andreas Karrenbauer
Leo Kroon
Frauke Liers
Domagoj Matijevic
Sven Mallach
Nikola Milosavljevic
Matthias Mnich
Thomas Moscibroda
Rudi Pendavingh
Ugo Pietropaoli
Stefan Porschen

Kirk Pruhs
Ashikur Rahman
Johan M.M. van Rooij
Cyriel Rutten
Waqar Saleem
Daniel Schmidt
Andreas Schmutzer
Sabine Storandt
Zhu Wang
Xiaohua Xu

Conference Coordinator

Elena Fezzardi ICST

Table of Contents

Distributed Decision Problems: The Locality Angle (Invited Talk) 1
Shay Kutten

Managing Power Heterogeneity (Invited Talk) . 6
Kirk Pruhs

The Mathematics of Mobility (Invited Talk) . 8
Paolo Santi

Speed Scaling to Manage Temperature . 9
Leon Atkins, Guillaume Aupy, Daniel Cole, and Kirk Pruhs

Alternative Route Graphs in Road Networks . 21
Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders

Robust Line Planning in Case of Multiple Pools and Disruptions 33
Apostolos Bessas, Spyros Kontogiannis, and Christos Zaroliagis

Exact Algorithms for Intervalizing Colored Graphs 45
Hans L. Bodlaender and Johan M.M. van Rooij

L(2,1)-Labeling of Unigraphs (Extended Abstract) 57
Tiziana Calamoneri and Rossella Petreschi

Energy-Efficient Due Date Scheduling . 69
Ho-Leung Chan, Tak-Wah Lam, and Rongbin Li

Go with the Flow: The Direction-Based Fréchet Distance of Polygonal
Curves . 81

Mark de Berg and Atlas F. Cook IV

A Comparison of Three Algorithms for Approximating the Distance
Distribution in Real-World Graphs . 92

Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, and
Andrea Marino

Exploiting Bounded Signal Flow for Graph Orientation Based on
Cause–Effect Pairs . 104

Britta Dorn, Falk Hüffner, Dominikus Krüger,
Rolf Niedermeier, and Johannes Uhlmann

On Greedy and Submodular Matrices . 116
Ulrich Faigle, Walter Kern, and Britta Peis

X Table of Contents

MIP Formulations for Flowshop Scheduling with Limited Buffers 127
Janick V. Frasch, Sven Oliver Krumke, and Stephan Westphal

A Scenario-Based Approach for Robust Linear Optimization 139
Marc Goerigk and Anita Schöbel

Conflict Propagation and Component Recursion for Canonical
Labeling . 151

Tommi Junttila and Petteri Kaski

3-HITTING SET on Bounded Degree Hypergraphs: Upper and Lower
Bounds on the Kernel Size . 163

Iyad A. Kanj and Fenghui Zhang

Improved Taxation Rate for Bin Packing Games . 175
Walter Kern and Xian Qiu

Multi-channel Assignment for Communication in Radio Networks 181
Dariusz R. Kowalski and Mariusz A. Rokicki

Computing Strongly Connected Components in the Streaming Model . . . 193
Luigi Laura and Federico Santaroni

Improved Approximation Algorithms for the Max-Edge Coloring
Problem . 206

Giorgio Lucarelli and Ioannis Milis

New Bounds for Old Algorithms: On the Average-Case Behavior of
Classic Single-Source Shortest-Paths Approaches . 217

Ulrich Meyer, Andrei Negoescu, and Volker Weichert

An Approximative Criterion for the Potential of Energetic Reasoning . . . 229
Timo Berthold, Stefan Heinz, and Jens Schulz

Speed Scaling for Energy and Performance with Instantaneous
Parallelism . 240

Hongyang Sun, Yuxiong He, and Wen-Jing Hsu

Algorithms for Scheduling with Power Control in Wireless Networks 252
Tigran Tonoyan

Author Index . 265

Distributed Decision Problems:

The Locality Angle

Shay Kutten

Faculty of IE&M, Technion, Haifa 32000, Israel
kutten@ie.technion.ac.il

http://iew3.technion.ac.il/Home/Users/kutten.phtml

Abstract. The aim of this invited talk is to try to stimulate research in
the interesting and promising research direction of distributed verifica-
tion. This distributed bears some similarities to the task of solving deci-
sion problems in the context of sequential computing. There, the study
of decision problems proved very fruitful in establishing structured foun-
dations for the theory. There are some signs that the study of distributed
verification may be fruitful for the theory of distributed computing too.

1 Introduction

Traditional (non-distributed) computing is based on solid theoretical founda-
tions, which help to understand which problems are more difficult than others,
and what are the sources of difficulties. These foundations include, for example,
the notions of complexity measures and resource bounds, the theory of complex-
ity classes, and the concept of complete problems. We rely on familiarity with
these theories and their critical importance to the theory of computing and do
not give further details here. We just wish to remind the reader a point we refer
to in the sequel: the study of decision problems proved to be very fruitful in the
sequential context. For example, recall the theory of NP Completeness [7,26]. It
does not classify directly a problem such as “what is the minimum of the num-
ber of colors needed to color the graph legally?”, but rather studies its decision
counterpart: “Is the minimum number of colors needed to coloer the graph less
than k?”

The current state of the art in distributed computing, is very different than the
state of sequential computing. The number of models is very large (and many
of those come with several variations). Furthermore, most of the theoretical
research does not concern laying general foundations even for one such model,
but rather addresses concrete problems.

A specific partial exception is the study of reaching consensus in the face of the
uncertainty concerning process failures. The impossibility of solving this problem
in asynchronous systems was established in the seminal paper of [14]. The papers
of [12,6] pointed at specific aspects of asynchrony that cause this impossibility.
The work of [18] deals with these phenomena to some extent. In [19], a hierarchy
was suggested, where distributed objects were characterized according to their

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 1–5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Kutten

ability to solve consensus. It is not a coincidence that all of these five outstanding
papers won the prestigious Dijkstra award in distributed computing, and the
related [20,31] won the Gödel Prize. This reflects the growing awareness in the
community to the necessity of establishing a structural foundation, similar to
that existing in the area of general (non-distributed) copmputing.

Some researchers working on foundational aspects of asynchrony may feel that
this theory, or more generally, the theory of shared memory, suffices as a basis,
and that one can abstract away the “network” and its structure and implications.
In contrast, we claim that asynchronism is just one relevant aspect out of many in
distributed computing. Similarly, fail-stop failures (studied by the above papers)
are again but one property out of many. Consequently, focusing on the study of
the intersection of the above two aspects falls short of laying sufficiently solid
foundations for the very rich area of distributed computing. In particular, those
foundations must capture crucial aspects related to the underlying “network”
and its communication mechanismes, including aspects connected to the network
tolology, such as the effects of locality and distance.

As observed in the seminal paper of [18], a large part of what characterizes
distributed computing in general is the uncertainty that results from the fact
that there are multiple processes which need to cooperate with each other, and
each process may not know enough about the others. This uncertainty does not
exist, of course, in non-distributed computing. The theory of asynchrony and
failures mentioned above may capture the components of this uncertainty that
lie along the “time” (or “speed”) dimension; it explores uncertainties resulting
from not knowing whether some actions of the other processes have already taken
place, or are delayed (possibly indefinitely).

As pointed out by Fraigniaud in his (thought) provocative PODC’2010 in-
vited talk, the above theory studies asynchrony and failures often via studying
decision problems [13]. Possibly, it is not by chance only that this follows the ex-
ample set by the theory of sequential computing. Fraigniaud went on to propose
that the study of decision problems may be a good basis for a theory of dis-
tributed computing also when studying uncertainties arising from the dimension
of distance, or of locality. This may help to advance the yet very undeveloped
structural foundation of distributed computing along this dimension. Moreover,
he also speculated that the study of decision problems, if it becomes common to
both of these “branches” of distributed computing (“time” and “distance”) can
bridge the gap between them. It may help to create a unified foundation.

The aim of this note is to point at some research on decision problems the
belong to the other main source of uncertainty, associated with the dimension of
distance, or locality, or, maybe, topology. Namely, we consider here uncertainty
about the actions of other processes stemming not from asynchronism, but from
their being far away. A related source of uncertainty, also in the topology di-
mension, is that of congestion (namely, information being blocked by too much
other information heading the same

Many researchers have addressed these sources of uncertainty, Starting, possi-
bly, form the famous paper of [29], which proved that (Δ+1)-coloring cannot be

Distributed Decision Problems: The Locality Angle 3

achieved locally (i.e., in a constant number of communication rounds). compu-
tations that could be performed locally were addressed e.g. in [30]. The issue of
congestion was addressed too, e.g. in [29,17,11] and there have been even some
attempts to study the combination of several sources of uncertainty (e.g. [3]).

This line of research has addressed mostly specific problems, and has not
reached even the level of structural foundations reached by the time source of
uncertainty.

2 Distributed Verification

Consider first a typical distributed computation problem: given a network (e.g.,
a graph, with nodes names, edges weights, etc.), compute some structure on that
graph (e.g. a spanning tree, a unique leader node, a collection of routing tables,
etc.). Is verifying a given solution “easier” than computing one? Note that the
verification is a decision problem that resembles decision problems studied in the
context of sequential computing. That is, again, instead of addressing a problem
such as “color the network with the minimum possible number of colors”, in the
case of verification a coloring (for example) is is given, with some k colors, and
the task is to verify that this coloring is legal. The structure to verify plays here
the task played by a witness in the above sequential case.

Some initial results suggest that verifying may be easier than computing here
too. Moreover, they hint that a meaningful classification of problems according to
the “ease”; of their verification, may be possible here too. In [24], proof labeling
schemes where defined. The existence of “witnesses” to many problems was
shown too. Such a witness includes both a solution and a labeling of the nodes.
If the witness is correct, then the proposed solution does solve the problem.
Moreover, the verification of the witness is “easier” than computing the solution
in the sense that each node can perform its part in the verification locally (looking
only at its immediate neighbors). In [22], a non-trivial lower bound on the size
of the labels in such a witness for the problem of verifying a minimum spanning
tree (MST). This is an example of a classification of decision problems: some
verifications need less memory than others do. Some other related papers that
solve similar questions in the context of self stabilization include [1,4,8].

Several papers have concentrated on the limited case of verification when no
witnesses are given. In [15], they defined some classes of decision problems,
established separation results among them, and identified complete problems for
some of those classes. In [9], they analyzed complexities of verification for various
important problems. They have also shown that the study of this verification is
very useful for obtaining results on the hardness of distributed approximation.

To make this into a general theory, many additional directions should be
taken. For instance, one may classify problems according to the sizes of labels
necessary. Then, one could trade off label size with locality. That is, supposing
that each verifying node can consult other nodes to some distance t > 1 (param-
eterizing the distance topological dimension), does the label size shrink? This is
shown to be the case at least in one important special case [23]. Generalizing

4 S. Kutten

to another dimension of distributed computing, does taking congestion into ac-
count (limiting the ability of nodes to consult too much information even within
the above mentioned allowable radius-t neighborhood) change the answer to the
previous question? Some additional directions involve the following questions:
Is computing witnesses easier than computing the answer to the original com-
putation problem? Can randomization help? Suppose that the verification of a
solution to some problem P1 is easier than that of P2, is the computation for P1

also easier than that of P2?
This note (and the invited talk) are meant to try and stimulate research in

this interesting and promising direction.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self stabilization. Theoretical Computer Science 186(1-2), 199–230 (1997)

2. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election, and related problems. In: 19th ACM Symp. on Theory
of computing (STOC), pp. 230–240 (1987)

3. Awerbuch, B., Kutten, S., Peleg, D.: Competitive Distributed Job Scheduling. In:
STOC 1992, pp. 571–580 (1992)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Check-
ing and Correction. In: Proc. IEEE Symposium on the Foundations of Computer
Science (FOCS), pp. 268–277 (1991)

5. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In: IEEE Symp. on Foundations of Computer
Science, pp. 258–267 (1991)

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving
Consensus. J. ACM 43(4), 685–722 (1996)

7. Cook, S.: The complexity of theorem-proving procedures. In: Conference Record of
3rd Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM, New
York (1971)

8. Dolev, S., Gouda, M., Schneider, M.: Requirements for silent stabilization. Acta
Informatica 36(6), 447–462 (1999)

9. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed
Approximation, http://arxiv.org/pdf/1011.3049

10. Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analysis of mini-
mum spanning trees in linear time. SIAM J. Computing 21(6), 1184–1192 (1992)

11. Dwork, C., Herlihy, M., Waarts, O.: Contention in shared memory algorithms. In:
ACM PODC 1993, pp. 174–183 (1993)

12. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial
synchrony. In: Proc. 3rd ACM Symp. on Principles of Distributed Computing
(PODC), pp. 103–118 (1984)

13. Fraigniaud, P.: On distributed computational complexities: are you Volvo-driving
or NASCAR-obsessed? In: ACM PODC 2010 (2010) (invited talk)

14. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of Distributed Consensus
with One Faulty Process. J. ACM 32(2), 374–382 (1985)

15. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed verification: complexity
classes and complete problems (in progress)

Distributed Decision Problems: The Locality Angle 5

16. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

17. Garay, J., Kutten, S.A., Peleg, D.: A sub-linear time distributed algorithm for
minimum-weight spanning trees. SIAM J. Computing 27(1), 302–316 (1998)

18. Halpern, J., Moses, Y.: Knowledge and Common Knowledge in a Distributed
Environment. J. ACM 37(3), 549–587 (1990)

19. Herlihy, M.: Wait-Free Synchronization. ACM Trans. Programming Languages and
Systems 13(1), 124–149 (1991)

20. Herlihy, M., Shavit, N.: The Topological Structure of Asynchronous Computability.
Journal of the ACM 46(6) (1999)

21. Kor, L., Korman, A., Peleg, D.: Tight Bounds For Distributed MST Verification
(manuscript)

22. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees.
Distributed Computing 20, 253–266 (2006); Extended abstract in PODC 2006

23. Korman, A., Kutten, S., Masuzawa, T.: Fast and Compact Self-Stabilizing Verifi-
cation, Computation, and Fault Detection of an MST (submitted)

24. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Comput-
ing 22, 215–233 (2005); Extended abstract in PODC 2005

25. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In:
Proc. of the 25th ACM Symp. on Principles of Distributed Computing (PODC),
pp. 7–15 (2006)

26. Levin, L.: Universal search problems. Problemy Peredachi Informatsii 9(3),
265–266 (1973) (in Russian)

27. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally?
In: Proc. ACM Symp. on the Principles of Distributed Computing (PODC), pp.
300–309 (2004)

28. Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and
applications. J. Algorithms 28(1), 40–66 (1998)

29. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1),
193–201 (1992)

30. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc. 25th ACM
Symp. on Theory of Computing (STOC), pp. 184–193 (1993)

31. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology
of Public Knowledge. SIAM Journal on Computing 29(5) (2000)

Managing Power Heterogeneity

Kirk Pruhs�

Computer Science Department, University of Pittsburgh
kirk@cs.pitt.edu

A particularly important emergent technology is heterogeneous processors (or
cores), which many computer architects believe will be the dominant architec-
tural design in the future. The main advantage of a heterogeneous architecture,
relative to an architecture of identical processors, is that it allows for the inclu-
sion of processors whose design is specialized for particular types of jobs, and
for jobs to be assigned to a processor best suited for that job. Most notably,
it is envisioned that these heterogeneous architectures will consist of a small
number of high-power high-performance processors for critical jobs, and a larger
number of lower-power lower-performance processors for less critical jobs. Natu-
rally, the lower-power processors would be more energy efficient in terms of the
computation performed per unit of energy expended, and would generate less
heat per unit of computation. For a given area and power budget, heterogeneous
designs can give significantly better performance for standard workloads. More-
over, even processors that were designed to be homogeneous, are increasingly
likely to be heterogeneous at run time: the dominant underlying cause is the
increasing variability in the fabrication process as the feature size is scaled down
(although run time faults will also play a role). Since manufacturing yields would
be unacceptably low if every processor/core was required to be perfect, and since
there would be significant performance loss from derating the entire chip to the
functioning of the least functional processor (which is what would be required
in order to attain processor homogeneity), some processor heterogeneity seems
inevitable in chips with many processors/cores.

I will survey the limited theoretical literature on scheduling power heteroge-
neous multiprocessors.

[3] considered the objective of weighted response time plus energy, and as-
sumed that the ith processor had an arbitrary power function Pi(s) specifying
the power consumption when the processor is run at a speed s. Perhaps the
most interesting special case of this problem is when each processor i can only
run at a speed si with power Pi. This special case seems to capture much of
the complexity of the general case. [3] considered the natural greedy algorithm
for assigning jobs to processors: a newly arriving job is assigned to a processor
such that the increase in the cost to the online algorithm is minimized, given
whatever scheduling algorithm is being used to sequence the jobs on the individ-
ual processors. [3] then used the algorithm from [1] to schedule the jobs on the
individual processors. [3] showed using an amortized local competitiveness ar-
gument that this online algorithms is provably scalable. In this context, scalable
� Kirk Pruhs was supported in part by NSF grant CCF-0830558, and an IBM Faculty

Award.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 6–7, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Managing Power Heterogeneity 7

means that if the adversary can run processor i at speed s and power P (s), then
the online algorithm is allowed to run the processor at speed (1 + ε)s and power
P (s), and then for all inputs, the online cost is bounded some function of ε times
the optimal cost. So a scalable algorithm has bounded worst-case relative error
on those inputs where changing the processor speed by a small amount doesn’t
drastically change the optimum objective. Intuitively, inputs that don’t have this
property are those whose load is near or over the capacity of the processor. This
is analogous to the common assumption load is strictly less than server capacity
within the literature on queuing theory analysis of scheduling problems. Intu-
itively, a scalable algorithm can handle almost as much load as the processor
capacity, and an s-speed O(1)-competitive algorithm can handle a load 1/s of
the processor capacity. So intuitively [3] showed that the operating system can
manage power heterogeneous processors well, with a load almost equal to the
capacity of the server, if it knows the sizes of the jobs.

In some sense [3] shows that the natural greedy algorithm has the best possible
worst-case performance among online algorithms for scheduling heterogeneous
processors for the objective of weighted response time plus energy. Unfortunately,
this algorithm is clairvoyant, that is, it needs to know the job sizes when jobs
are released. Thus this algorithm is not directly implementable as in general
one cannot expect the system to know job sizes when they are released. Thus
the natural question left open in [3] is to determine whether there is a scalable
nonclairvoyant scheduling algorithm for scheduling power heterogeneous mul-
tiprocessors (or if not, to find the algorithm with the best possible worst case
guarantee). A modest step toward solving this open question in made in [2]. This
paper shows that a natural nonclairvoyant algorithm, which is in some sense is
a variation on Round Robin or Equipartition scheduling, is (2 + ε)-speed O(1)-
competitive for the objective of (unweighted) response time plus energy. So in
some sense, [2] showed how to get some reasonable algorithmic handle on power
heterogeneity when scheduling equi-important jobs.

References

1. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup
curves. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 685–692 (2009)

2. Gupta, A., Krishnaswamy, R., Pruhs, K.: Nonclairvoyantly scheduling power-
heterogeneous processors. In: IEEE International Green Computing Conference
(2010)

3. Gupta, A., Krishnaswamy, R., Pruhs, K.: Scalably scheduling power-heterogeneous
processors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 312–323. Springer, Heidel-
berg (2010)

The Mathematics of Mobility

Paolo Santi

Istituto di Informatica e Telematica del CNR
Pisa, Italy

paolo.santi@iit.cnr.it

Abstract. In this talk, we present a few synthetic mobility models
widely used in the wireless networking literature (most notably the Ran-
dom Waypoint model), and show how applied probability techniques
have been used to analyze their stationary properties, to discover limita-
tions of these models when used in wireless network simulation, and to
improve simulation methodology.

References

1. Bettstetter, C., Resta, G., Santi, P.: The node distribution of the random way-
point mobility model for wireless ad hoc networks. IEEE Transactions on Mobile
Computing 2(3), 257–269 (2003)

2. Diaz, J., Mitsche, D., Santi, P.: Theoretical Aspects of Graph Models for MANETs.
In: Theoretical Aspects of Distributed Computing in Sensor Networks. Springer,
Heidelberg (to appear)

3. LeBoudec, J.-Y., Vojnović, M.: The random trip model: Stability, stationary regime,
and perfect simulation. IEEE/ACM Trans. on Networking 14, 1153–1166 (2006)

4. Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: Proceeding
of he 21th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM). IEEE Computer Society, Los Alamitos (2003)

5. Yoon, J., Liu, M., Noble, B.: Sound mobility models. In: Proceedings of the Ninth
Annual International Conference on Mobile Computing and Networking (MOBI-
COM), pp. 205–216. ACM, New York (2003)

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, p. 8, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Speed Scaling to Manage Temperature

Leon Atkins1, Guillaume Aupy2, Daniel Cole3, and Kirk Pruhs4,�

1 Department of Computer Science, University of Bristol
atkins@compsci.bristol.ac.uk

2 Computer Science Department, ENS Lyon
guillaume.aupy@ens-lyon.fr

3 Computer Science Department, University of Pittsburgh
dcc20@cs.pitt.edu

4 Computer Science Department, University of Pittsburgh
kirk@cs.pitt.edu

Abstract. We consider the speed scaling problem where the quality of
service objective is deadline feasibility and the power objective is tem-
perature. In the case of batched jobs, we give a simple algorithm to com-
pute the optimal schedule. For general instances, we give a new online
algorithm, and obtain an upper bound on the competitive ratio of this
algorithm that is an order of magnitude better than the best previously
known bound upper bound on the competitive ratio for this problem.

1 Introduction

Speed scaling technology allows the clock speed and/or voltage on a chip to be
lowered so that the device runs slower and uses less power [11]. Current desktop,
server, laptop, and mobile class processors from the major manufacturers such
as AMD and Intel incorporate speed scaling technology. Further these manu-
facturers produce associated software, such as AMD’s PowerNow and Intel’s
SpeedStep, to manage this technology. With this technology, the operating sys-
tem needs both a scheduling policy to determine which job to run at each point
in time, as well as a speed scaling policy to determine the speed of the processor
at that time. The resulting optimization problems have dual objectives, a quality
of service objective (e.g. how long jobs have to wait to be completed), as well
as a power related objective (e.g. minimizing energy or minimizing maximum
temperature). These objectives tend to be in opposition as the more power that
is used, generally the better the quality of service that can be provided.

The theoretical study of such dual objective scheduling and speed scaling
optimization problems was initiated in [12]. [12] studied the problem where the
quality of service objective was a deadline feasibility constraint, that is, each
job has to be finished by a specified deadline, and the power objective was to
minimize to total energy used. Since [12] there have been a few tens of speed
scaling papers in the theoretical computer science literature [1] (and probably
� Kirk Pruhs was supported in part by NSF grant CCF-0830558, and an IBM Faculty

Award.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 9–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

10 L. Atkins et al.

hundreds of papers in the general computer science literature). Almost all of
the theoretical speed scaling papers have focused on energy management. We
believe that the main reason for the focus on energy, instead of temperature,
is mathematical; it seems to be much easier to reason about the mathematical
properties of energy than it is to reason about the mathematical properties of
temperature. From a technological perspective, temperature management is at
least on par with energy management in terms of practical importance.

Energy and temperature are intuitively positively correlated. That is, running
at a high power generally leads to both high temperatures and high energy
use. It is therefore tempting to presume that a good energy management policy
will also be a good temperature management policy. Unfortunately, the first
theoretical paper on speed scaling for temperature management [5] showed that
some algorithms that were proved to be good for energy management in [12], can
be quite bad for temperature management. The reason for this is the somewhat
subtle difference between energy and temperature.

To understand this, we need to quickly review the relationship between speed,
power, and energy. The well-known cube-root rule for CMOS-based processor
states that the dynamic power used by a processor is roughly proportional to the
speed of the processor cubed [6]. Energy is power integrated over time. Cooling
is a complex phenomenon that is difficult to model accurately. [5] suggested
assuming that all heat is lost via conduction, and that the ambient temperature
is constant. This is a not completely unrealistic assumption, as the purpose of
fans within computers is to remove heat via conduction, and the purpose of
air conditioning is to maintain a constant ambient temperature. Newton’s law
of cooling states that the rate of cooling is proportional to the difference in
temperature between the device and the ambient environment. This gives rise
to the following differential equation describing the temperature T of a device
as a function of time t:

dT (t)
dt

= aP (t) − bT (t) (1)

That is the rate of increase in temperature is proportional to the power P (t)
used by the device at time t, and the rate of decrease in temperature due to
cooling is proportional to the temperature (assuming that the temperature scale
is translated so the ambient temperature is zero). It can be assumed without
loss of generality that a = 1. The device specific constant b, called the cooling
parameter, describes how easily the device loses heat through conduction [5]. For
example, all else being equal, the cooling parameter would be higher for devices
with high surface area than for devices with low surface area. [5] showed that
the maximum temperature that a device reaches is approximately the maximum
energy used over any time period of length 1/b. So a schedule that for some
period of time of length 1/b used an excessive amount of power could still be a
near optimal schedule in terms of energy (if the aggregate energy used during
this time interval is small relative to the total energy used) but might reach a
much higher temperature than is necessary to achieve a certain quality of service.

Speed Scaling to Manage Temperature 11

In this paper we consider some algorithmic speed scaling problems where the
power objective is temperature management. Our high level goal is to develop
techniques and insights that allow mathematical researchers to more cleanly and
effective reason about temperature in the context of optimization.

We adopt much of the framework considered in [12] and [5], which we now
review, along with the most closely related results in the literature.

Preliminaries. We assume that a processor running at a speed s consumes power
P (s) = sα, where α > 1 is some constant. We assume that the processor can
run at any nonnegative real speed (using techniques in the literature, similar
results could be obtained if one assumed a bounded speed processor or a finite
number of speeds). The job environment consists of a collection of tasks, where
each task i has an associated release time ri, amount of work pi, and a deadline
di. A online scheduler does not learn about task i until time ri, at which point
it also learns the associated pi and di. A schedule specifies for each time, a job
to run, and a speed for the processor. The processor will complete s units of
work in each time step when running at speed s. Preemption is allowed, which
means that the processor is able to switch which job it is working on at any
point without penalty. The deadline feasibility constraints are that all of the
work on a job must be completed after its release time and before its deadline.
[12] and subsequent follow-up papers consider the online and offline problems of
minimizing energy usage subject to these deadline feasibility constraints. Like
[5], we will consider the online and offline problems of minimizing the maximum
temperature, subject to deadline feasibility constraints.

Related Results. [12] showed that there is a greedy offline algorithm YDS to
compute the energy optimal schedule. A naive YDS implementation runs in
time O(n3), which is improved in [9] to O(n2 log n). [12] suggested two online
algorithms OA and AVR. OA runs at the optimal speed assuming no more jobs
arrive in the future (or alternately plans to run in the future according to the
YDS schedule). AVR runs each job at an even rate between its release time and
deadline. In a complicated analysis, [12] showed that AVR is at most 2α−1αα-
competitive with respect to energy. A simpler competitive analysis of AVR, with
the same bound, as well as a nearly matching lower bound on the competitive
ratio for AVR can be found in [3]. [5] shows that OA is αα-competitive with
respect to energy. [5] showed how potential functions can be used to give rela-
tively simple analyses of the energy used by an online algorithm. [4] introduces
an online algorithm qOA, which runs at a constant factor q faster than OA, and
shows that qOA is at most 4α/(2

√
eα)-competitive with respect to energy. When

the cube root rule holds, qOA has the best known competitive ratio with respect
to energy, namely 6.7. [4] also gives the best known general lower bound on the
competitive ratio, for energy, of deterministic algorithms, namely eα−1/α.

Turning to temperature, [5] showed that a temperature optimal schedule could
be computed in polynomial time using the Ellipsoid algorithm. Note that this
is much more complicated than the simple greedy algorithm, YDS, for com-
puting an energy optimal schedule. [5] introduces an online algorithm, BKP,
that is simultaneously O(1)-competitive for both total energy and maximum

12 L. Atkins et al.

temperature. An algorithm that is c-competitive with respect to temperature
has the property that if the thermal threshold Tmax of the device is exceeded,
then it is not possible to feasibly schedule the jobs on a device with thermal
threshold Tmax/c. [5] also showed that the online algorithms OA and AVR, both
O(1)-competitive with respect to energy, are not O(1)-competitive for the objec-
tive of minimizing the maximum temperature. In contrast, [5] showed that the
energy optimal YDS schedule is O(1)-competitive for maximum temperature.

Besides [5], the only other theoretical speed scaling for temperature manage-
ment papers that we are aware of are [7] and [10]. In [7] it is assumed that the
speed scaling policy is fixed to be: if a particular thermal threshold is exceeded
then the speed of the processor is scaled down by a constant factor. Presum-
ably chips would have such a policy implemented in hardware for reasons of
self-preservation. The paper then considers the problem of how to schedule unit
work tasks, that generate varying amounts of heat, so as to maximize through-
put. [7] shows that the offline problem is NP-hard even if all jobs are released at
time 0, and gives a 2-competitive online algorithm. [10] provides an optimal algo-
rithm for a batched release problem similar to ours but with a different objective,
minimizing the makespan, and a fundamentally different thermal model.

Surveys on speed scaling can be found in [1], [2], and [8].

Our Results. A common online scheduling heuristic is to partition jobs into
batches as they arrive. Jobs that arrive, while jobs in the previous batch are
being run, are collected in a new batch. When all jobs in the previous batch
are completed, a schedule for the new batched is computed and executed. We
consider the problem of how to schedule the jobs in a batch. So this batched
problem is a special case of the general problem where all release times are zero.

In section 2.1, we consider the feasibility version of this batched problem.
That is, the input contains a thermal threshold Tmax and the problem is to
determine whether the jobs can be scheduled without violating deadlines or the
thermal threshold. We give a relatively simple O(n2) time algorithm. This shows
that temperature optimal schedules are easier to compute in the case of batched
jobs. Our algorithm maintains the invariant that after the ith iteration, it has
computed a schedule Si that completes the most work possible subject to the
constraints that the first i deadlines are met and the temperature never exceeds
Tmax. The main insight is that when extending Si to Si+1, one need only consider
n possibilities, where each possibility corresponds to increasing the speed from
immediately after one deadline before di until di in a particular way.

In section 2.2, we consider the optimization version of the batched problem.
That is, the goal is to find a deadline feasible schedule that minimizes the max-
imum temperature Tmax attained. One obvious way to obtain an algorithm for
this optimization problem would be to use the feasibility algorithm as a black
box, and binary search over the possible maximum temperatures. This would re-
sult in an algorithm with running time O(n2 log Tmax). Instead we give an O(n2)
time algorithm that in some sense mimics one run of the feasibility algorithm,
raising Tmax throughout so that it is always the minimum temperature necessary
to maintain feasibility.

Speed Scaling to Manage Temperature 13

We then move on to dealing with the general online setting. We assume that
the online speed scaling algorithm knows the thermal threshold Tmax of the
device. It is perfectly reasonable that an operating system would have knowl-
edge of the thermal threshold of the device on which it is scheduling tasks. In
section 3, we give an online algorithm A that runs at a constant speed (that
is a function of the known thermal threshold) until an emergency arises, that
is, it is determined that some job is in danger of missing its deadline. The
speed in the non-emergency time is set so that in the limit the temperature
of the device is at most a constant fraction of the thermal threshold. When
an emergency is detected, the online algorithm A switches to using the OA
speed scaling algorithm, which is guaranteed to finish all jobs by their deadline.
When no unfinished jobs are in danger of missing a deadline, the speed scal-
ing algorithm A switches from OA back to the nonemergency constant speed
policy. We show that A is e

e−1(� + 3eαα))-competitive for temperature, where
� = (2 − (α − 1) ln (α/(α − 1)))α ≤ 2. When the cube-root rule holds, this gives
a competitive ratio of around 350. That is, the job instance can not be feasibly
scheduled on a processor with thermal threshold Tmax/350. This compares to
the previous competitive ratio of BKP when α = 3 of around 6830. The insight
that allowed for a better competitive ratio was that it is only necessary to run
faster than this constant speed for brief periods of time, of length proportional
to the inverse of the cooling parameter. By analyzing these emergency and none-
mergency periods separately, we obtain a better bound on the competitive ratio
than what was obtained in [5].

In section 4 we also show, using the same analysis as for A, a slightly improved
bound on the temperature competitiveness of the energy optimal YDS schedule.

2 Batched Release

In this section, we consider the special case of the problem where all jobs are
released at time 0. Instead of considering the input as consisting of individual
jobs, each with a unique deadline and work, we consider the input as a series
of deadlines, each with a cumulative work requirement equal to the sum of the
work of all jobs due at or before that deadline. Formally, the input consists of
n deadlines, and for each deadline di, there is a cumulative work requirement,
wi =

∑i
j=1 pj , that must be completed by time di. With this definition, we then

consider testing the feasibility of some schedule S with constraints of the from
W (S, di) ≥ wi where W (S, di) is the total work of S by time di. We call these the
work constraints. We also have the temperature constraint that the temperature
in S must never exceed Tmax. Without loss of generality, we assume that the
scheduling policy is to always run the unfinished job with the earliest deadline.
Thus, to specify a schedule, it is sufficient to specify the processor speed at
each point in time. Alternatively, one can specify a schedule by specifying the
cumulative work processed at each point of time (since the speed is the rate of
change of cumulative work processed), or one could specify a schedule by giving
the temperature at this point of time (since the speed can be determined from
the temperature using Newton’s law and the power function).

14 L. Atkins et al.

Before beginning with our analysis it is necessary to briefly summarize the
equations describing the maximum work possible over an interval of time,
subject to fixed starting and ending temperatures. First we define the func-
tion UMaxW (0, t1, T0, T1)(t) to be the maximum cumulative work, up to any
time t, achievable for any schedule starting at time 0 with temperature exactly
T0 and ending at time t1 with temperature exactly T1. In [5] it is shown that:

UMaxW (0, t1, T0, T1)(t) =
(

1
a

) 1
α

(
T1−T0e−bt1

e−bt1−e
−bt1α
α−1

) 1
α (

b
α−1

) 1
α−1 (

1 − e
−bt
α−1

) (2)

The definition of the function MaxW (0, t1, T0, T1)(t) is identical to the definition
of UMaxW , with the additional constraint that the temperature may never ex-
ceed Tmax. Adding this additional constraint implies that MaxW (0, t1, T0, T1)(t)
≤ UMaxW (0, t1, T0, T1)(t), with equality holding if and only if the temperature
never exceeds Tmax in the schedule for UMaxW (0, t1, T0, T1)(t). A schedule or
curve is said to be a UMaxW curve if it is equal to UMaxW (0, t1, T0, T1)(t) for
some choice of parameters. A MaxW curve/schedule is similarly defined. We are
only concerned with MaxW curves that are either UMaxW curves that don’t
exceed Tmax or MaxW curves that end at temperature Tmax. It is shown in [5]
that these type of MaxW curves have the form:

MaxW (0, t1, T0, Tmax)(t) =

{
UMaxW (0, γ, T0, Tmax)(t) : t ∈ [0, γ)
UMaxW (0, γ, T0, Tmax)(γ) + (bTmax)

1
α (t − γ) : t ∈ (γ, t1]

(3)

Here γ is the largest value of t1 for which the curve UMaxW (0, t1, T0, Tmax)(t)
does not exceed temperature Tmax. It is show in [5] that γ is implicitly defined
by the following equation:

1
α − 1

T0e
−bγα
α−1 + Tmax − α

α − 1
Tmaxe

−bγ
α−1 = 0 (4)

2.1 Known Maximum Temperature

In this subsection we assume the thermal threshold of the device Tmax is known
to the algorithm, and consider batched jobs. If there is a feasible schedule, our
algorithm iteratively constructs schedules Si satisfying the following invariant:

Definition 1. Max-Work Invariant: Si completes the maximum work possi-
ble subject to:

– For all times t ∈ [0, dn], the temperature of Si does not exceed Tmax

– W (Si, dj) ≥ wj for all 1 ≤ j ≤ i

By definition, the schedule S0 is defined by MaxW (0, dn, 0, Tmax)(t). The inter-
mediate schedules Si may be infeasible because they may miss deadlines after di,

Speed Scaling to Manage Temperature 15

but Sn is a feasible schedule and for any feasible input an Si exists for all i. The
only reason why the schedule Si−1 cannot be used for Si is that Si−1 may violate
the ith work constraint, that is W (Si−1, di) < wi. Consider the constraints such
that for any j < i, W (Si−1, dj) = wj . We call these tight constraints in Si−1.
Now consider the set of possible schedules Si,j , such that j is a tight constraint
in Si−1, where intuitively during the time period [dj , di], Si,j speeds up to finish
enough work so that the ith work constraint is satisfied and the temperature at
time di is minimized. Defining the temperature of any schedule Si−1 at deadline
dj as T i−1

j , we formally define Si,j :

Definition 2. For tight constraint j < i in Si−1,

Si,j =

⎧
⎨

⎩

Si−1 : t ∈ [0, dj)
UMaxW (0, di − dj , T

i−1
j , T i,j

i)(t) : t ∈ (dj , di)
MaxW (0, (dn − di), T

i,j
i , Tmax)(t) : t ∈ (dj , dn]

where T i,j
i is the solution of UMaxW (0, di − dj , T

i−1
j , T i,j

i)(di − dj) = (wi −wj)

We show that if Si exists, then it is one of the Si,j schedules. In particular, Si

will be equal to the first schedule Si,j (ordered by increasing j) that satisfies the
first i work constraints and the temperature constraint.

Algorithm Description: At a high level the algorithm is two nested loops,
where the outer loop iterates over i, and preserves the max-work invariant. If
the ith work constraint is not violated in Si−1, then Si is set to Si−1. Otherwise,
for all tight constraints j in Si−1, Si is set to the first Si,j that satisfies the first
i work constraints and the temperature constraint. If such a Si,j doesn’t exist,
then the instance is declared to be infeasible. The following lemma establishes
the correctness of this algorithm.

Lemma 1. Assume a feasible schedule exists for the instance in question. If
Si−1 is infeasible for constraint i, then Si is equal to Si,j, where j is minimized
subject to the constraint that Si,j satisfies the first i work constraints and the
temperature constraint.

2.2 Unknown Maximum Temperature

In this section we again consider batched jobs, and consider the objective of
minimizing the maximum temperature ever reached in a feasible schedule. Let
Opt be the optimal schedule, and Tmax be the optimum objective value. We
know from the previous section that the optimum schedule can be described
by the concatenation of UMaxW curves C1, . . . , Ck−1, possibly with a single
MaxW curve, Ck, concatenated after Ck−1. Each Ci begins at the time of the
(i − 1)st tight work constraint and end at the time of the ith tight work con-
straint. Our algorithm will iteratively compute Ci. That is, on the ith iteration,
Ci will be computed from the input instance and C1, . . . , Ci−1. In fact, it is
sufficient to describe how to compute C1, as the remaining Ci can be computed
recursively. Alternatively, it is sufficient to show how to compute the first tight
work constraint in Opt.

16 L. Atkins et al.

To compute C1, we need to classify work constraints. We say that the ith

work constraint is a UMaxW constraint if the single cumulative work curve that
exactly satisfies the constraint with the smallest maximum temperature possible
corresponds to equation (2). Alternatively, we say that the ith work constraint
is a MaxW constraint if the single cumulative work curve that exactly satisfies
the constraint with the smallest maximum temperature possible corresponds to
equation (3). We know from the results in the last section every work constraint
must either be a MaxW constraint or a UMaxW constraint. In Lemma 2 we
show that it can be determined in O(1) time whether a particular work constraint
is a UMaxU constraint or a MaxW constraint. In Lemma 3 we show how to
narrow the candidates for UMaxW constraints that give rise to C1 down to one.
The remaining constraint is referred to as the UMaxW-winner. In Lemma 5 we
show how to determine if the UMaxW -winner candidate is a better option for
C1 than any of the MaxW candidates. If this is not the case, we show in Lemma
6 how to compute the best MaxW candidate.

Lemma 2. Given a work constraint W (S, di) ≥ wi, it can be determined in
O(1) time whether it is a UMaxW constraint or a MaxW constraint.

Proof. For initial temperature T0, we solve UMaxW (0, di, T0, Ti)(di) = wi for Ti

as in the known Tmax case. Now we consider equation (4) for γ with Tmax = Ti:

1
α − 1

T0e
−bγα
α−1 + Ti − α

α − 1
Tie

−bγ
α−1 = 0

If we plug in di for γ and we get a value larger than 0 then γ < di and thus
the curve UMaxW (0, di, T0, Ti)(t) must exceed Ti during some time t < di, thus
the constraint is a MaxW constraint. If the value is smaller than 0 then γ > di,
the curve UMaxW (0, di, T0, Ti)(t) never exceeds Ti, and thus the constraint is
a UMaxW constraint. ��
Lemma 3. All of the UMaxW constraints, but one, can be disqualified as a
candidate for C1 in time O(n).

Proof. Consider any two UMaxW constraints, i and j with i < j. We want
to show that the two work curves exactly satisfying constraints i and j must
be non-intersecting, except at time 0, and that we can determine which work
curve is larger in constant time. This together with Lemma 2 would imply we
can get rid of all UMaxW constraints but one in time O(n) for n constraints.
For initial temperature T0, can we can fully specify the two curves by solving
UMaxW (0, di, T0, Ti)(di) = wi and UMaxW (0, dj , T0, Tj)(dj) = wj for Ti and
Tj respectively. We can then compare them at all times prior to di using equa-
tion (2), i.e., UMaxW (0, di, T0, Ti)(t) and UMaxW (0, dj, T0, Tj)(t).

Note that for any two UMaxW curves defined by equation (2), a comparison
results in the time dependent terms (t-dependent) canceling and thus one curve
is greater than the other at all points in time up to di. Regardless of whether the
larger work curve corresponds to constraint i or j, clearly the smaller work curve
cannot correspond to the first tight constraint as the larger work curve implies

Speed Scaling to Manage Temperature 17

a more efficient way to satisfy both constraints. To actually determine which
curve is greater, we can simply plug in the values for the equations and check
the values of the non-time dependent terms. The larger term must correspond
to the dominating work curve. ��
In order to compare the UMaxW -winner’s curve to the MaxW curves, we
may need to extend the UMaxW -winner’s curve into what we call a UMaxW -
extended curve. A UMaxW -extended curve is a MaxW curve, describable by
equation (3), that runs identical to the UMaxW constraint’s curve on the
UMaxW interval, and is defined on the interval [0, dn]. We now show how to
find this MaxW curve for any UMaxW constraint.
Lemma 4. Any UMaxW constraint’s UMaxW-Extended curve can be described
by equation (3) and can be computed in O(1) time.

Proof. For any UMaxW curve satisfying a UMaxW constraint, the correspond-
ing speed function is defined for all times t ≥ 0 as follows:

S(t) =
b

(α − 1)

1
α

(
Ti − T0e

−bdi

e−bdi − e
−bdiα

α−1

) 1
α

e
−bt
α−1

Thus we can continue running according to this speed curve after di. As the speed
is a constantly decreasing function of time, eventually the temperature will stop
increasing at some specific point in time. This is essentially the definition of γ and
for any fixed γ there exists a Tmax satisfying it which can be found by solving
for Tmax in the γ equation. To actually find the time when the temperature
stops increasing, we can binary search over the possible values of γ, namely the
interval (di,

α−1
b ln α

α−1]. For each time we can directly solve for the maximum
temperature using the γ equation and thus the entire UMaxW curve is defined.
We then check the total work accomplished at di. If the total work is less than
wi, then γ is too small, if larger, then γ is too large. Our binary search is over a
constant-sized interval and each curve construction and work comparison takes
constant time, thus the entire process takes O(1) time. Once we have γ and the
maximum temperature, call it Tγ , we can define the entire extended curve as
UMaxW (0, γ, T0, Tγ)(t) for 0 ≤ t < γ and (bTγ)1/αt for t ≥ γ, in other words,
MaxW (0,∞, T0, Tγ)(t) with Tmax = Tγ. ��
Lemma 5. Any MaxW constraint satisfied by a UMaxW-Extended curve can’t
correspond to C1. If any MaxW constraint is not satisfied by a UMaxW-Extended
curve then the UMaxW constraint can’t correspond to C1.

Proof. To satisfy the winning UMaxW constraint exactly, we run according to
the UMaxW -extended curve corresponding to the UMaxW constraint’s exact
work curve. Thus if a MaxW constraint is satisfied by the entire extended curve,
then to satisfy the UMaxW constraint and satisfy the MaxW constraint it is
most temperature efficient to first exactly satisfy the UMaxW constraint then
the MaxW constraint (if it is not already satisfied). On the other hand, if some
MaxW constraint is not satisfied then it is more efficient to exactly satisfy that
constraint, necessarily satisfying the UMaxW constraint as well. ��

18 L. Atkins et al.

Lemma 6. If all UMaxW constraints have been ruled out for C1, then C1, and
the entire schedule, can be determined in time O(n).

Proof. To find the first tight constraint, we can simply create the MaxW curves
exactly satisfying each constraint. For each constraint, we can essentially use the
the same method as in Lemma 4 for extending the UMaxW winner to create
the MaxW curve. The difference here is that we must also add the work of the
constant speed portion to the work of the UMaxW portion to check the total
work at the constraint’s deadline. However this does not increase the construction
time, hence each curve still takes O(1) time per constraint.

Once we have constructed the curves, we can then compare any two at the
deadline of the earlier constraint. The last remaining work curve identifies the
first tight constraint and because we have the MaxW curve that exactly satisfies
it, we have specified the entire optimal scheduling, including the minimum Tmax

possible for any feasible schedule. As we can have at most n MaxW constraints
and construction and comparison take constant time, our total time is O(n). ��
Theorem 1. The optimal schedule can be constructed in time O(n2) when Tmax

is not known.

Proof. The theorem follows from using Lemma 3 which allows us to produce a
valid MaxW curve by Lemma 4. We then apply Lemma 5 by comparing the
UMaxW -winner’s work at each MaxW constraint. If all MaxW constraints are
disqualified, we’ve found the first tight constraint, else we apply Lemma 6 to
specify the entire schedule. In either case, we’ve defined the schedule up to at
least one constraint in O(n) time. ��

3 Online Algorithm

Our goal in this section is to describe an online algorithm A, and analyze its
competitiveness. Note that all proofs in this section have been omitted due to
space limitations but can be found in the full paper.

Algorithm Description: A runs at a constant speed of (�bTmax)
1/α until it de-

termines that some job will miss its deadline, where � = (2 − (α − 1) ln(α/(α −
1)))α ≤ 2. At this point A immediately switches to running according to the on-
line algorithm OA. When enough work is finished such that running at constant
speed (�bTmax)

1/α will not cause any job to miss its deadline, A switches back
to running at the constant speed.

Before beginning, we briefly note some characteristics of the energy optimal
algorithm, YDS, as well as some characteristics of the online algorithm OA. We
require one main property from YDS, a slight variation on Claim 2.3 in [5]:

Claim 1. For any speed s, consider any interval, [t1, t2] of maximal time such
that YDS runs at speed strictly greater than s. YDS schedules within [t1, t2],
exactly those jobs that are released no earlier than t1 and due no later than t2.

Speed Scaling to Manage Temperature 19

We also need that YDS is energy optimal within these maximal intervals. This
is a direct consequence of the total energy optimality of YDS. Lastly note that
YDS schedules jobs according to EDF. For more on YDS, see [12] and [5].

For the online algorithm OA, we need only that it always runs, at any time
t, at the minimum feasible constant speed for the amount of unfinished work at
time t and that it has a competitive ratio of αα for total energy [5].

We will first bound the maximum amount of work that the optimal tem-
perature algorithm can perform during intervals longer than the inverse of the
cooling parameter b. This is the basis for showing that the constant speed of A
is sufficient for all but intervals of smaller than 1/b.

Lemma 7. For any interval of length t > 1/b, the optimal temperature algo-
rithm completes strictly less than (�bTmax)1/α · (t) work.

We now know that if all jobs have a lifetime of at least 1/b, A will always run at
a constant speed and be feasible, thus we have essentially handled the competi-
tiveness of A in non-emergency periods. Now we need to consider A’s competi-
tiveness during the emergency periods, i.e., when running at speed (�bTmax)1/α

would cause A to miss a deadline. To do this, we will show that these emergency
periods are contained within periods of time where YDS runs faster than A’s
constant speed and that during these larger periods we can directly compare A
to YDS via OA. We start by bounding the maximal length of time in which YDS
can run faster than A’s constant speed.

Lemma 8. Any maximal time period where YDS runs at a speed strictly greater
than (�bTmax)1/α has length < 1/b.

We call these maximal periods in YDS fast periods as they are characterized by
the fact that YDS is running strictly faster than (�bTmax)1/α. Now we show that
A will never be behind YDS on any individual job outside of fast periods. This
then allows us to describe A during fast periods.

Lemma 9. At the beginning and ending of every fast period, A has completed
as much work as the YDS schedule on each individual job.

Lemma 10. A switches to OA only during fast periods.

We are now ready to upper bound the energy usage of A, first in a fast period,
and then in an interval of length 1/b. We then use this energy bound to upper
bound the temperature of A. We use a variation on Theorem 2.2 in [5] to relate
energy to temperature. We denote the maximum energy used by an algorithm,
ALG, in any interval of length 1/b, on input I, as C[ALG(I)] or simply C[ALG]
when I is implicit. Note that this is a different interval size than used in [5]. We
similarly denote the maximum temperature of ALG as T [ALG(I)] or T [ALG].

Lemma 11. For any schedule S, and for any cooling parameter b ≥ 0,

aC[S]
e

≤ T [S] ≤ e

e − 1
aC[S]

20 L. Atkins et al.

Lemma 12. A is αα-competitive for energy in any single maximal fast period.

Lemma 13. A uses at most (� + 3eαα)Tmax energy in an interval of size 1/b.

Theorem 2. A is (e
e−1 (� + 3eαα))-competitive for temperature.

4 Additional Results

Theorem 3. Using the technique from the previous section, it can be shown
that the energy optimal offline algorithm, YDS, is e

e−1(� + 3e)-competitive for
temperature, where 15.5 < e

e−1
(� + 3e) < 16.1.

References

1. Albers, S.: Algorithms for energy saving. In: Albers, S., Alt, H., Näher, S. (eds.)
Efficient Algorithms. LNCS, vol. 5760, pp. 173–186. Springer, Heidelberg (2009)

2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
3. Bansal, N., Bunde, D.P., Chan, H.L., Pruhs, K.: Average rate speed scaling. In:

Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 240–251. Springer, Heidelberg (2008)

4. Bansal, N., Chan, H.L., Pruhs, K., Katz, D.: Improved bounds for speed scaling
in devices obeying the cube-root rule. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp.
144–155. Springer, Heidelberg (2009)

5. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and tempera-
ture. J. ACM 54(1), 1–39 (2007)

6. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyukto-
sunoglu, A., Wellman, J.D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware
microarchitecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro 20(6), 26–44 (2000)

7. Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for temperature-aware
task scheduling in microprocessor systems. In: Fleischer, R., Xu, J. (eds.) AAIM
2008. LNCS, vol. 5034, pp. 120–130. Springer, Heidelberg (2008)

8. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. SIGACT
News 36(2), 63–76 (2005)

9. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for
variable voltage processors. Proceedings of the National Academy of Sciences of
the United States of America 103(11), 3983–3987 (2006)

10. Rao, R., Vrudhula, S.: Performance optimal processor throttling under thermal
constraints. In: Proceedings of the 2007 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, CASES 2007, pp. 257–266.
ACM, New York (2007)

11. Snowdon, D.C., Ruocco, S., Heiser, G.: Power management and dynamic voltage
scaling: Myths and facts. In: Proceedings of the 2005 Workshop on Power Aware
Real-time Computing, New Jersey, USA (September 2005)

12. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy.
In: FOCS 1995: Proceedings of the 36th Annual Symposium on Foundations of
Computer Science, p. 374. IEEE Computer Society Press, Washington, DC (1995)

Alternative Route Graphs in Road Networks�

Roland Bader1, Jonathan Dees1,2, Robert Geisberger2, and Peter Sanders2

1 BMW Group Research and Technology, 80992 Munich, Germany
2 Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Abstract. Every human likes choices. But today’s fast route planning
algorithms usually compute just a single route between source and tar-
get. There are beginnings to compute alternative routes, but there is a
gap between the intuition of humans what makes a good alternative and
mathematical definitions needed for grasping these concepts algorithmi-
cally. In this paper we make several steps towards closing this gap: Based
on the concept of an alternative graph that can compactly encode many
alternatives, we define and motivate several attributes quantifying the
quality of the alternative graph. We show that it is already NP-hard to
optimize a simple objective function combining two of these attributes
and therefore turn to heuristics. The combination of the refined penalty
based iterative shortest path routine and the previously proposed Plateau
heuristics yields best results. A user study confirms these results.

1 Introduction

The problem of finding the shortest path between two nodes in a directed graph
has been intensively studied and there exist several methods to solve it, e.g.
Dijkstra’s algorithm [1]. In this work, we focus on graphs of road networks and
are interested not only in finding one route from start to end but to find sev-
eral good alternatives. Often, there exist several noticeably different paths from
start to end which are almost optimal with respect to length (travel time).
There are several reasons why it can be advantageous for a human to choose
his or her route from a set of alternatives. A person may have personal pref-
erences or knowledge for some routes which are unknown or difficult to ob-
tain, e.g. a lot of potholes. Also, routes can vary in different attributes beside
travel time, for example in toll pricing, scenic value, fuel consumption or risk
of traffic jams. The trade-off between those attributes depends on the person
and the persons situation and is difficult to determine. By computing a set of
good alternatives, the person can choose the route which is best for his or her
needs.

There are many ways to compute alternative routes, but often with a very
different quality. In this work, we propose new ways to measure the quality of
a solution of alternative routes by mathematical definitions based on the graph
� Partially supported by DFG grant SA 933/5-1, and the ‘Concept for the Future’ of

Karlsruhe Institute of Technology within the framework of the German Excellence
Initiative.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 21–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

22 R. Bader et al.

structure. Also, we present several different heuristics for computing alternative
routes as determining an optimal solution is NP-hard in general.

1.1 Related Work

This paper is based on the MSc thesis of Dees [2]. A preliminary account of
some concepts has been published in [3]. Computing the k-shortest paths [4,5] as
alternative routes regards sub-optimal paths. The computation of disjoint paths
is similar, except that the paths must not overlap. [6] proposes a combination of
both methods: The computation of a shortest path, that has at most r edges in
common with the shortest path. However, such paths are expensive to compute.

Other researchers have used edge weights to compute Pareto-optimal paths
[7,8,9]. Given a set of weights, a path is called Pareto-optimal if it is better than
any other paths for respectively at least one criteria. All Pareto-optimal paths
can be computed by a generalized Dijkstra’s algorithm.

The penalty method iteratively computes shortest paths in the graph while
increasing certain edge weights [10]. [11] present a speedup technique for shortest
path computation including edge weight changes.

Alternatives based on two shortest paths over a single via node are considered
by the Plateau method [12]. It identifies fast highways (plateaus) which define
a fastest route from s to t via the highway (plateau). [13] presents a heuristic
to speedup this method using via node selection combined with shortest paths
speedup techniques and proposing conservative conditions of an admissible al-
ternative. Such a path should have bounded stretch, even for all subpaths, share
only little with the shortest path and every subpath up to a certain length should
be optimal.

2 Alternative Graphs

Our overall goal is to compute a set of alternative routes. However, in general,
they can share nodes and edges, and subpaths of them can be combined to new
alternative routes. So we propose the general definition of an alternative graph
(AG) that is the union of several paths from source to target. More formally,
let G = (V, E) be a graph with edge weight function w : E → R+. For a given
source node s and target node t an AG H = (V ′, E′) is a graph with V ′ ⊆ V
such that for every edge e ∈ E′ there exists a simple s-t-path in H containing
e, and no node is isolated. Furthermore, for every edge (u, v) in E′ there must
be a path from u to v in G; the weight of the edge w(u, v) must be equal to the
path’s weight.

A reduced AG is defined as an AG in which every node has indegree �= 1 or
outdegree �= 1 and thus provides a very compact encoding of all alternatives
contained in the AG. Here, we focus on the computation of (reduced) AGs. We
leave the extraction of actual paths from the AG as a separate problem but note
that even expensive algorithms can be used since the AGs will be very small.

Alternative Route Graphs in Road Networks 23

3 Attributes to Measure in AGs

For an AG H = (V ′, E′) we measure the following attributes

totalDistance :=
∑

e=(u,v)∈E′

w(e)
dH(s, u) + w(e) + dH(v, t)

averageDistance :=
∑

e∈E′ w(e)
dG(s, t) · totalDistance

decisionEdges :=
∑

v∈V ′\{t}
outdegree(v) − 1

where dG denotes the shortest path distance in graph G. The total distance
measures the extend to which the routes defined by the AG are nonoverlapping
– reaching its maximal value of k when the AG consists of k disjoint paths. Note
that the scaling by dH(s, u) + w(e) + dH(v, t) is necessary because otherwise,
long, nonoptimal paths would be encouraged. The average distance measures
the path quality directly as the average stretch of an alternative path. Here,
we use a way of averaging that avoids giving a high weight to large numbers of
alternative paths that are all very similar. Finally, the decision edges measure
the complexity of the AG which should be small to be digestible for a human.
Considering only two out of three of these attributes can lead to meaningless
results.

Usually, we will limit the number decisionEdges and averageDistance and un-
der these constraint maximize totalDistance − α(averageDistance − 1) for some
parameter α.

Optionally, we suggest a further attribute to measure based on

variance =
∫ 1

0

(totalDistance− #edges(x))2dx

where #edges(x) denotes the number of edges (u, v) at position x, i.e. for which
there is a path in the AG including (u, v) such that

dH(s, u)
dH(s, u) + dH(u, t)

≤ x <
dH (s, v)

dH(s, v) + dH (v, t)
.

For normalization, we compute the coefficient of variation

CoV =
√

variance/

∫ 1

0

#edges(x) dx .

Fig. 1 gives an example showing that small variance can distinguish between
AGs that would otherwise be indistinguishable.

There are also other attributes that seem reasonable at the first glance, but
they are problematic at a closer look:

– Counting the number of paths overestimates the influence of a large number
of variants of the same basic route that only differ in small aspects.

24 R. Bader et al.

s t

(a)

s t

(b)

Fig. 1. Left graph: better distribution of alternatives

– Averaging path lengths over all paths in the AG or looking at the expected
length of a random walk in the AG similarly overemphasizes small regions
in the AG with a large number of variants.

– The area of the alternative graph considering the geographical embedding of
nodes and edges within the plane is interesting because a larger area might
indicate more independent paths, e.g., with respect to the spread of traffic
jams. However, this requires additional data not always available.

It is also instructive to compare our attributes with the criteria for admissible
alternative paths used in [13]. Both methods limit the length of alternative paths
as some multiple of the optimal path length. The overlap between paths con-
sidered in [13] has a similar goal as our total distance attribute. An important
difference is that we consider entire AGs while [13] considers one alternative
path at a time. This has the disadvantage that the admissibility of a sequence
of alternative paths may depend on the order in which they are inserted. We do
not directly impose a limitation on the suboptimality of subpaths which plays
an important role in [13]. The reason is that it is not clear how to check such a
limitation efficiently – [13] develops approximations for paths of the form PP ′

where both P and P ′ are shortest paths but this is not the case for most of the
methods we consider. Instead, we have developed postprocessing routines that
remove edges from the AG that represent overly long subpaths, see Section 4.6.

4 Methods to Compute Alternatives

A meaningful combination of measurements is NP hard to optimize. Therefore,
we restrict ourselves to heuristics to compute an AG. These heuristics all start
with the shortest path and then gradually add paths to the AG. We present
several known methods and some new ones.

4.1 k-Shortest Paths

A widely used approach [4,5] is to compute the k shortest paths between s and
t. This follows the idea that also slightly suboptimal paths are good. However,
the computed routes are usually so similar to each other that they are not
considered as distinct alternatives by humans. Computing all shortest paths up
to a number k produces many paths that are almost equal and do not “look
good”. Good alternatives occur often only for k being very large. Consider the

Alternative Route Graphs in Road Networks 25

following situation: There exist two long different highways from s to t, where
the travel time on one highway is 5 minutes longer. To reach the highways we
need to drive through a city. For the number of different paths through the city
to the faster highway which travel time is not more than 5 minutes longer than
the fastest path, we have a combinatorial explosion. The number of different
paths is exponential in the number of nodes and edges in the city as we can
independently combine short detours (around a block) within the city. It is not
feasible to compute all shortest paths until we discover the alternative path on
the slightly longer highway. Furthermore, there are no practically fast algorithms
to compute the k shortest path. We consider this method rather impractical for
computing alternatives.

4.2 Pareto

A classical approach to compute alternatives is Pareto optimality. In general,
we can consider several weight functions for the edges like travel time, fuel con-
sumption or scenic value. But even if we restrict ourselves to a single primary
weight function, we can find alternatives by adding a secondary weight function
that is zero for edges outside the current AG and the identical to the primary
edge weight for edges inside the AG. Now a path is Pareto-optimal if there is
no other path which is better with respect to both weight functions. Computing
all Pareto-optimal paths now yields all sensible compromises between primary
weight function and overlap with the current AG. All Pareto-optimal paths in a
graph can be computed by a generalized Dijkstra algorithm [7,8] where instead
of a single tentative distance, each node stores a set of Pareto-optimal distance
vectors. The number of Pareto-optimal paths can be quite large (we observe up
to ≈ 5000 for one s-t-relation in our Europe graph). We decrease the number of
computed paths by tightening the domination criteria to keep only paths that
are sufficiently different. We suggest two methods for tightening described in
[9]. All paths that are 1 + ε times longer than the shortest path are dominated.
Furthermore, all paths whose product of primary and secondary weight is 1/γ
times larger than another path are dominated. This keeps longer paths only if
they have less sharing. ε and γ are tuning parameters. We compute fewer paths
for smaller ε and larger γ. But still we do not find suboptimal paths, as non-
dominant paths are ignored. Note that the Pareto-method subsumes a special
case where we look for completely disjoint paths.

As there may be too many Pareto-optimal alternatives, resulting in a large
decisionEdges variable, we select an interesting subset. We do this greedily by
iteratively adding that path which optimizes our objective function for the AG
when this path is added.

4.3 Plateau

The Plateau method [12] identifies fast highways (plateaus) and selects the best
routes based on the full path length and the highway length. In more detail, we
perform one regular Dijkstra [1] from s to all nodes and one backward Dijkstra
from t which uses all directed edges in the other direction. Then, we intersect the

26 R. Bader et al.

shortest path tree edges of both Dijkstra’s. The resulting set consists of simple
paths. We call each of those simple paths a plateau. All nodes not represented in
a simple path form each an plateau of length 0. As there are too many plateaus,
we efficiently need to select the best alternative paths derived from the plateau.
Therefore, we rank them by the length of the corresponding s-t-path and the
length of the plateau, i.e. rank = (path length − plateau length). A plateau
reaching from s to t would be 0, the best value. To ensure that the shortest path
in the base graph is always the first path, we can prefer edges in the shortest
path tree rooted at s during the backward Dijkstra of t on a tie.

Plateau routes look good at first glance, although they may contain severe
detours. In general, a plateau alternative can be described by a single via node.
This is the biggest limitation of this method.

4.4 Penalty

We extend the iterative Penalty approach of [10]. The basic idea is to compute
a shortest path, add it to our solution, increase the edge weights on this path
and start from the beginning until we are satisfied with our solution.

The new shortest path is likely to be different from the last one, but not
completely different, as some subpaths may still be shorter than a full detour
(depending on the increase). The crucial point of this method is how we adjust
the edge weights after each shortest path computation. We present an assortment
of possibilities with which the combination results in meaningful alternatives.

First, we want to increase the edge weights of the last computed shortest path.
We can add an absolute value on each edge of the shortest path [10], but this
depends on the assembly and structure of the graph and penalizes short paths
with many edges. We by-pass this by adding a fraction penalty-factor of the
initial edge weight to the weight of the edge. The higher the factor (penalty),
the more the new shortest path deviates from the last one.

Beside directly adding a computed shortest path to the solution, we can also
first analyse the path. If the path provides us with a good alternative (e.g. is
different and short enough), we add it to our solution. If not, we adjust the edge
weights accordingly and recompute another shortest path.

Consider the following case: The first part of the route has no meaningful
alternative but the second part has 5. That means that the first part of the route
is likely to be increased several times during the iterations (multiple-increase).
In this case, we can get a shortest path with a very long detour on the first part
of the route. To circumvent this problem, we can limit the number of increases
of a single edge or just lower successive increases. We are finished when a new
shortest path does not increase the weight of at least one edge. This provides us
with a natural saturation of the number of alternatives.

The main limitation of the previous Penalty algorithm [10] is that the new
shortest path can have many small detours (hops) along the route compared to
the last path. Consider the following example: The last path is a long motorway
and the new shortest path is almost equal to the last one, but at the middle
of the motorway, it contains a very short detour (hop) from the long motorway

Alternative Route Graphs in Road Networks 27

on a less important road (due to the increase). There can occur many of those
small hops; those look unpleasant for humans and contain no real alternative. In
the AG, this increases the number of decision edges while having no substantial
positive effect on other attributes. To alleviate this problem, we propose several
methods: First, we cannot only increase the weights of edges on the path, but also
of edges around the path (a tube). This avoids small hops, as edges on potential
hops are increased and are therefore probably not shorter. The increase of the
edges around the path should be decreasing with the distance to the path. Still,
we penalize routes that are close to the shortest path, although there can be a
long, meaningful alternative close to the shortest path. To avoid this, we can
increase only the weights of the edges, which leave and join edges of the current
AG. We call this increase rejoin-penalty. It should be additive and dependent
on the general increase factor k and the distance from s to t, e.g. rejoin-penalty
∈ [0..(penalty-factor)·0.5·d(s, t)]. This avoids small hops and reduces the number
of decision edges in the AG. The higher the rejoin-penalty, the less decision
edges in the alternative graph. In some cases, we want more decision edges at
the beginning or the end of the route, for example to find all spur routes to the
highways. Therefore, we can grade the rejoin-penalty according to the current
position (cf. variance in Section 3). Another possibility to get rid of small hops is
to allow them in the first place, but remove them later in the AG (Section 4.6).

A straightforward implementation of the Penalty method iteratively computes
shortest paths using the Dijkstra algorithm. However, there are more sophisti-
cated speedup techniques that can handle a reasonable number of increased edge
weights [11]. Therefore we hope that we can efficiently implement the Penalty
method.

4.5 Combinations

In general, the Penalty method operates on a preexisting set of alternative routes
and computes a new one. Therefore, a preprocess based on any other method
is possible. Furthermore, the greedy selection strategy developed for the Pareto
method could be applied to a set of paths computed by several methods. For
example, the combination of the Plateau and Penalty method can produce an
algorithm that is superior to a single one.

4.6 Refinements / Post Processing

The heuristics above often produce reduced alternative graphs that can be eas-
ily improved by local refinements that remove useless edges. We propose two
methods: Global Thinout focuses at the whole path from s to t, and Local
Thinout only looks at the path between the edges. Global Thinout identifies
useless edges (u, v) in the reduced alternative graph G = (V, E) by checking for
dG(s, u) + w(u, v) + dG(v, t) ≤ δ · dG(s, t) for some δ ≥ 1. Local Thinout iden-
tifies useless edges in the reduced alternative graph G = (V, E) by checking for
w(u, v) > δ · dG(u, v) for some δ ≥ 1. After having removed edges with Local
Thinout, we may further reduce G and find new locally useless edges. In con-
trast, Global Thinout finds all globally useless edges in the first pass. Also, we

28 R. Bader et al.

s

111

29
240

50 t
90

60

(a) Base graph, shortest path is 〈s, 2, t〉

s 1

11

29

t100

90

(b) Global thinout with δ = 1.2

Fig. 2. Global Thinout: The only, and therefore the shortest, s-t-path including edge
(1, 2) has length 121, which is greater than 1.2 · 100. Therefore, edge (1, 2) is removed.
Every other edge is included in a s-t-path with weight below 120.

can perform Global Thinout efficiently by computing dG(s, ·) and dG(·, t) using
two runs of Dijkstra’s algorithm. Fig. 2 illustrates Global Thinout by example.

5 Different Edge Weights

The methods to compute an AG depend only on a single edge weight function
(except Pareto). Therefore, we can use several different edge weight functions to
independently compute AGs. The different edge weights are potentially orthog-
onal to the alternatives and can greatly enhance the quality of our computed
alternatives. When we combine the different AGs into a single one, and want
to compute its attributes of Section 3, we need to specify a main edge weight
function, as the attributes also depend on the edge weights.

6 Experiments

We tested the proposed methods on a road network of Western Europe1 with
18 029 721 nodes and 42 199 587 directed edges, which has been made available
for scientific use by the company PTV AG. For each edge, its length and one out
of 13 road categories (e.g., motorway, national road, regional road, urban street)
is provided so that an expected travel time can be derived. As k-Shortest Paths
and normal Pareto are not feasible on this large graph, we also provide results
just on the network of Luxembourg (30 732 nodes, 71 655 edges).

Hardware/Software. Two Intel Xeon X5345 processors (Quad-Core) clocked
at 2.33 GHz with 16 GiB of RAM and 2x4MB of Cache running SUSE Linux 11.1.
GCC 4.3.2 compiler using optimization level 3. For k-shortest path, we use the
implementation from http://code.google.com/p/k-shortest-paths/ based
on [14], all other methods are new implementations.

Our experiments evaluate the introduced methods to compute AGs. We eval-
uate them by our base target function

totalDistance− (averageDistance)

with constraints
1 Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,

Norway, Portugal, Spain, Sweden, Switzerland, and the UK.

Alternative Route Graphs in Road Networks 29

averageDistance ≤ 1.1 and decisionEdges ≤ 10 .

So we want the average distance to be at most 10% larger than the shortest
path, providing us with short alternatives. Furthermore, there should not be
more than 10 decision edges resulting in an clearly representable AG.

To compute an AG for a source/target pair, each method iteratively computes
a new path until the constraints are violated and adds it to the AG. From this
evolving set of AGs, the one with the best target function is chosen. As the Pareto
method computes several paths at once, we use the greedy method to select the
next path to add to the AG: We iteratively add the path which maximizes the
target function while still satisfying the constraints. In our experiments with a
few different penalty-factors, a factor of 0.4 without multi-increase and a factor
of 0.3 with infinite multi-increase showed best performance. As rejoin-penalty,
we use 0.005·penalty-factor. We further combine the Penalty + Pareto method
using the greedy selection strategy.

We use Global Thinout for refinement; Local Thinout has similar effects but is
not as effective. As value for δ we choose 1.2 as it showed best performance. Our
experiments showed that Global Thinout only improves the Penalty method
with multi-increase, and the Plateau method. We will only report the best
results.

The results based on 100 randomly selected source/target pairs are presented
in Tab. 1. We see that the Penalty and Plateau method are clearly superior to
the other methods. On Europe, Penalty is slightly better, as the Plateau method
is limited to a single via node. We observe that the rejoin-penalty is a necessary
ingredient of the Penalty method, as it increases the target function value by up
to 48% on Europe. The best results are achieved when we combine Penalty and
Plateau. We counted the number of paths contributed by both methods, showing
that the Penalty method contributes 65% to the average AG and Plateau only
35%. The other tested methods are clearly dominated by these two methods.
The Pareto method is slightly better than Disjoint and k-Shortest Paths, but
the tightened domination criteria significantly reduces quality.

Table 1. Mean target function values

Method Thinout Luxembourg Europe
Penalty 0.4 rejoin + Plateau ∞ 3.29 3.70

Penalty 0.3 rejoin multi-increase 1.2 2.85 3.34
Penalty 0.4 rejoin ∞ 2.91 3.21
Penalty 0.3 multi-increase 1.2 2.77 2.25
Penalty 0.4 ∞ 2.75 2.47
Plateau 1.2 3.05 3.08
Pareto ∞ 2.39 -
Pareto (ε = 0.1, γ = 1.05) ∞ 1.69 2.02
Disjoint Paths ∞ 1.10 1.12
k-Shortest Paths ∞ 1.07 -

30 R. Bader et al.

6.1 User Study

The experiments from above show that the Penalty and the Plateau method
produce good results for our target function. However, we want to corroborate
more objectively that the graphs which perform well at our target function are
meaningful for humans. Every participant of the survey had to describe several
(at least 2) meaningful motor vehicle routes for a start and destination pair.
The described routes and the region should be known to the participant so that
hopefully the given routes are meaningful. There were no restrictions on the
length or on region of the routes. Given those routes, we assay whether our
methods find most of the alternative routes, i.e. whether most of the routes are
included in the (reasonable large) alternative graph. A methods perform well if
it finds the alternative paths given by the survey participants.

The survey includes 79 alternatives for 26 different start and destination pairs
(≈ 3 paths each), most of the routes are located in southern Germany. The
distance of the pairs varies from 5 km up to 150 km.

Table 2. Reason for alternative paths (Survey)

Reason Count
Faster at specific times 20
Route around (risk of) traffic jam 11
Proposed by route planer 12
Fast(er than proposed by route planer) 12
Relaxed driving/Easy route 10
n/a 14

Table 3. Penalty and Plateau Match Factor. The column “Matched” describes the
mean fraction of the edge weights in the user graph, which are covered by the method
graph. “Weight Factor” is the mean of the ratio, weight of the method graph to weight
of the user graph.

Iterations Method Matched Weight Factor
2 Penalty 69% 0.91
2 Plateau 65% 0.88
3 Penalty 76% 1.21
3 Plateau 73% 1.18
3 Penalty+Plateau 81% 1.47

Reason for alternatives. Tab. 2 shows a summary of the different reasons why
a path is considered as a meaningful alternative route by the participant. The
categories “Faster at specific times” and “Route around (risk of) traffic jam” are
very similar and are the most occurring reason (20+11), i.e. the alternative paths
are dynamically chosen based on the time of day (or weekday) or the current
traffic situation (sometimes even based on the current state of traffic lights).

Alternative Route Graphs in Road Networks 31

Survey Evaluation. In order to compare the routes given by the survey partici-
pants to the routes of our methods, we convert them to routes of our graph data.
For each start and destination pair, we obtain an alternative graph (called user
graph) by merging the edges of the routes. After that, we compute an alternative
graph for each s− t-pair with our method (called method graph). Note that the
edge weights are not given by the survey. We use edge weights based on the
travel time as it is the main reason to select an alternative. The Penalty method
uses a penalty-factor of 0.4, with rejoin-penalty, and without multiple-increase,
due to the best performance on Luxembourg (cf. Tab. 1).

Results. In Tab. 3 we illustrate results for all of our test cases. The matching rate
is around 70% for 2 iterations and and around 75% for 3. Penalty has a slightly
better mean match factor, but the weight of the method graph is also slightly
higher. The union of the method graphs increases the match factor to 81%. We
consider this matching rates as indication of the usefulness of both methods.

7 Conclusion and Outlook

Our main contribution is a new way to characterize alternative routes that may
look more natural to humans. The attributes defined for an alternative graph
allow to measure the quality of a set of alternative routes. Furthermore, we
compare methods to compute such AGs. The Plateau method and our improved
version of the Penalty method showed best performance and clearly dominate
the other tested methods.

The Penalty method has to be integrated with the dynamic speedup technique
of [11]. There may be potential for further improvements compared to [11], as
we we know that we have to consider all weight changes in the next query.

Also the Penalty method itself can be improved. The user often wants a choice
of highways, but also a choice to reach these highways. Further improvements to
the Penalty method can help to compute meaningful spur routes to the highways.

A geographic embedding of the AG allows a clearly representation of sev-
eral alternative paths. To further improve the user experience, highlighting the
differences between the alternatives could be added, e.g. showing points of in-
terest along the routes. This allows the user to make a sound choice for the path
along she will actually drive. The choice can be further supported by including
previous choices and recommendations of other users.

References

1. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

2. Dees, J.: Computing Alternative Routes in Road Networks. Master’s thesis,
Karlsruhe Institut für Technologie, Fakultät für Informatik (April 2010)

3. Dees, J., Geisberger, R., Sanders, P., Bader, R.: Defining and Computing
Alternative Routes in Road Networks. Technical report, ITI Sanders, Faculty of
Informatics, Karlsruhe Institute of Technology (2010)

32 R. Bader et al.

4. Eppstein, D.: Finding the k shortest paths. In: Proceedings of the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1994), pp. 154–165
(1994)

5. Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Management
Science 17(11), 712–716 (1971)

6. Scott, K.: Finding alternatives to the best path (1997)
7. Hansen, P.: Bricriteria Path Problems. In: Fandel, G., Gal, T. (eds.) Multiple Crite-

ria Decision Making – Theory and Application, pp. 109–127. Springer, Heidelberg
(1979)

8. Martins, E.Q.: On a Multicriteria Shortest Path Problem. European Journal of
Operational Research 26(3), 236–245 (1984)

9. Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA
2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)

10. Chen, Y., Bell, M.G.H., Bogenberger, K.: Reliable pre-trip multi-path planning
and dynamic adaptation for a centralized road navigation system. In: ITSC 2005 -
8th International IEEE Conference on Intelligent Transportation Systems, Vienna,
pp. 14–20. IEEE, Los Alamitos (2007)

11. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)
WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

12. CAMVIT: Choice routing (2009), http://www.camvit.com
13. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative routes in

road networks. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 23–34. Springer,
Heidelberg (2010)

14. de Queiros Vieira Martins, E., Queir, E., Martins, V., Margarida, M., Pascoal,
M.M.B.: A new implementation of yen’s ranking loopless paths algorithm (2000)

Robust Line Planning in Case of Multiple Pools
and Disruptions

Apostolos Bessas1,3, Spyros Kontogiannis1,2, and Christos Zaroliagis1,3

1 R.A. Computer Technology Institute, N. Kazantzaki Str., Patras University
Campus, 26500 Patras, Greece

2 Computer Science Department, University of Ioannina, 45110 Ioannina, Greece
3 Department of Computer Engineering and Informatics, University of Patras,

26500 Patras, Greece
mpessas@ceid.upatras.gr, kontog@cs.uoi.gr, zaro@ceid.upatras.gr

Abstract. We consider the line planning problem in public transporta-
tion, under a robustness perspective. We present a mechanism for robust
line planning in the case of multiple line pools, when the line operators
have a different utility function per pool. We conduct an experimen-
tal study of our mechanism on both synthetic and real-world data that
shows fast convergence to the optimum. We also explore a wide range of
scenarios, varying from an arbitrary initial state (to be solved) to small
disruptions in a previously optimal solution (to be recovered). Our ex-
periments with the latter scenario show that our mechanism can be used
as an online recovery scheme causing the system to re-converge to its
optimum extremely fast.

1 Introduction

Line planning is an important phase in the hierarchical planning process of every
railway (or public transportation) network1. The goal is to determine the routes
(or lines) of trains that will serve the customers along with the frequency each
train will serve a particular route. Typically, the final set of lines is chosen by a
(predefined) set of candidate lines, called the line pool. In certain cases, there may
be multiple line pools representing the availability of the network infrastructure
at different time slots or zones. This is due to variations in customer traffic (e.g.,
rush-hour pool, late evening pool), maintenance (some part of the network at
a specific time zone may be unavailable), dependencies between lines (e.g., the
choice of a high-speed line may affect the choice of lines for other trains), etc.

The line planning problem has been extensively studied under cost-oriented
or customer-oriented approaches (see e.g., [3,4,7,9]). Recently, robustness issues
have been started to be investigated. In the robust line planning problem, the
task is to provide a set of lines along with their frequencies, which are robust
to fluctuations of input parameters; typical fluctuations include, for instance,

1 For the sake of convenience, we concentrate in this work on railway networks, but the
methods and ideas developed can be applied to any public transportation network.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 33–44, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 A. Bessas, S. Kontogiannis, and C. Zaroliagis

disruptions to daily operations (e.g., delays), or varying customer demands. In
[8], a game-theoretic approach to robust line planning was presented that delivers
lines and frequencies that are robust to delays.

A different perspective of robust line planning was investigated in [1]. This
perspective stems form recent regulations in the European Union that introduce
competition and free railway markets. Under these rules the following scenario
emerges: there is a (usually state) authority that manages the railway network
infrastructure, referred to as the Network Operator (NOP), and a (potentially)
large number of Line Operators (LOPs) operating as commercial organizations
which want to offer services to their customers using the given railway network.
These LOPs act as competing agents for the exploitation of the shared infras-
tructure and are unwilling to disclose their utility functions that demonstrate
their true incentives. The network operator wishes to set up a fair cost sharing
scheme for the usage of the shared resources and to ensure the maximum possi-
ble level of satisfaction of the competing agents (by maximizing their aggregate
utility functions). The former implies a resource pricing scheme that is robust
against changes in the demands of the LOPs, while the latter establishes a notion
of a socially optimal solution, which could also be considered as a fair solution,
in the sense that the average level of satisfaction is maximized. In other words,
the NOP wishes to establish an incentive-compatible mechanism that provides
robustness to the system in the sense that it tolerates the agents’ unknown in-
centives and elasticity of demand requests and it eventually stabilizes the system
at an equilibrium point that is as close as possible to the social optimum.

The first such mechanism, for robust line planning in the aforementioned
scenario, was presented in [1]. In that paper, the following mechanism was inves-
tigated (motivated by the pioneering work of Kelly et al. [5,6] in communication
networks): the LOPs offer bids, which they (dynamically) update for buying fre-
quencies. The NOP announces an (anonymous) resource pricing scheme, which
indirectly implies an allocation of frequencies to the LOPs, given their own bids.
For the case of a single pool of lines, a distributed, dynamic, LOP bidding and
(resource) price updating scheme was presented, whose equilibrium point is the
unknown social optimum – assuming strict concavity and monotonicity of the
private (unknown) utility functions. This development was complemented by an
experimental study on a discrete variant of the distributed, dynamic scheme on
both synthetic and real-world data showing that the mechanism converges re-
ally fast to the social optimum. The approach to the single pool was extended
to derive an analogous mechanism for the case of multiple line pools, where it
was assumed that (i) the NOP can periodically exploit a whole set of (disjointly
operating) line pools and he decides on how to divide the whole infrastructure
among the different pools so that the resource capacity constraints are preserved;
(ii) each LOP may be interested in different lines from different pools; and (iii)
each LOP has a single utility function which depends on the aggregate frequency
that she gets from all the pools in which she is involved.

The aforementioned theoretical framework demonstrated the potential of con-
verging to the social optimum via a mechanism that exploits the selfishness of

Robust Line Planning in Case of Multiple Pools and Disruptions 35

LOPs. A significant issue is the speed or rate of convergence of this mechanism.
Since there was no theoretical treatment of this issue, its lack was covered in
[1] for the single pool case via a complementary experimental study. Despite,
however, the significance of the convergence rate issue, the mechanism for the
multiple pool case was not experimentally evaluated in [1].

For the case of multiple line pools, it is often more realistic to assume that each
LOP has a different utility function per pool, since different pools are expected to
provide different profits (e.g., intercity versus regional lines, or rush-hour versus
late-evening lines). Moreover, it seems more natural to assume that each LOP
has a different utility function per pool that depends on the frequency she gets
for that pool, rather than a single utility function that depends on the total
frequency she gets across all pools.

In this work, we continue this line of research by further investigating the
multiple pool case. In particular, we make the following contributions: (1) Con-
trary to the approach in [1], we consider the case where each LOP has a different
utility function for each line pool she is interested in, and show how the approach
in [1] can be extended in order to provide a mechanism for this case, too. (2)
We conduct an experimental study on a discrete variant of the new mechanism
on both synthetic and real-world data demonstrating its fast convergence to the
social optimum. (3) We conduct an additional experimental study, on both syn-
thetic and real-world data, to investigate the robustness of the system in the
case of disruptions that affect the available capacity, which may be reduced (due
to temporary unavailability of part of the network), or increased (by allowing
usage of additional infrastructure during certain busy periods). In this case, we
show that the NOP can re-converge (recover) the system to the social optimum
pretty fast, starting from a previous optimal solution.

Due to space limitations, the reader is referred to the full version [2] for the
missing details and proofs.

2 Multiple Line Pools: Different Utilities per Pool

The exposition in this section follows that in [1]. In the line planning problem,
the NOP provides the public transportation infrastructure in the form of a di-
rected graph G = (V, L), where V is the node set representing train stations and
important railway junctions, and L is the edge set representing direct connec-
tions (of railway tracks) between elements of V . Each edge � ∈ L is associated
with a capacity c� > 0, which limits the number of trains that can use this edge
in the period examined. A line p is a path in G. We assume that there is set
K of line pools, where each pool corresponds to a different period of the day
and represents a different set of possible routes. We envision the line pools to be
implemented in disjoint time intervals (e.g., via some sort of time division multi-
plexing), and also to concern different characteristics of the involved lines (e.g.,
high-speed pool, regular-speed pool, local-trains pool, rush-hour pool, night-shift
pool, etc.). The capacity of each resource (edge) refers to its usage (number of
trains) over the whole time period we consider (e.g., a day), and if a particular

36 A. Bessas, S. Kontogiannis, and C. Zaroliagis

pool consumes (say) 50% of the whole infrastructure, then this implies that for
all the lines in this pool, each resource may exploit at most half of its capacity.
It is up to the NOP to determine how to split a whole operational period of the
railway infrastructure among the different pools, so that (for the whole period)
the resource capacity constraints are not violated.

There is also a set P of LOPs, who choose their lines from K. We assume
that each LOP p ∈ P is interested only in one line in per pool (we can always
enforce this assumption by considering a LOP interested in more than one routes
as different LOPs distinguished by the specific route). Each line pool and the
preferences of LOPs to lines in it are represented by a routing matrix R(k) ∈
{0, 1}|L|×|P |, k ∈ K. Each row R�,�(k) corresponds to a different edge � ∈ L,
and each column R�,p(k) corresponds to a different LOP p ∈ P , showing which
edges comprise her line in pool k.

Each LOP p ∈ P acquires a frequency of trains that she wishes to route over
her paths in R�,p(k), k ∈ K, such that no edge capacity constraint is violated
by the aggregate frequency running through it by all LOPs and pools. A utility
function Up,k : R≥0 �→ R≥0 determines the level of satisfaction of LOP p ∈ P in
pool k ∈ K for being given an end-to-end frequency xp,k > 0. Having different
utility functions per pool instead of a single utility function across all pools, is
more generic and hence more realistic, since a LOP p can indeed have different
valuations for different periods of a day (rush-hour pool vs night-shift pool)
and/or different types of trains (high-speed pool vs local-trains pool). These
utility functions are assumed to be strictly increasing, strictly concave, non-
negative real functions of the end-to-end frequency xp,k allocated to LOP p ∈ P
in pool k ∈ K. The aggregate satisfaction level Up of LOP p ∈ P across all
pools is given by the sum of the individual gains she has in each pool, Up(xp) =
Up(xp,1, . . . , xp,k) =

∑
k∈K Up,k(xp,k) , where xp = (xp,k)k∈K is the vector of

frequencies that p gets for all the pools. The utility functions are private to the
LOP; she is not willing to share them for competitiveness reasons, not even with
the NOP. This has a few implications on the necessary approach to handle the
problem.

The NOP, on the other hand, wishes to allocate to each LOP a frequency
vector x̂p =

∑
k∈K x̂p,k such that the cumulative satisfaction of all the LOPs

is maximized, while respecting all the edge capacity constraint. To achieve this,
the NOP divides the whole railway infrastructure to the pools, using variables
fk, k ∈ K that determine the proportion of the total capacity of the edges that is
assigned to pool k. Hence, the NOP wishes to solve the following strictly convex
optimization problem:

max
∑

p∈P

Up(xp) =
∑

p∈P

∑

k∈K

Up,k (xp,k)

s.t.
∑

p∈P

R�,p(k) · xp,k ≤ c� · fk, ∀(�, k) ∈ L × K

∑

k∈K

fk ≤ 1 ; x, f ≥ 0

(MSC-II)

Robust Line Planning in Case of Multiple Pools and Disruptions 37

Clearly, the NOP cannot solve this problem directly for (at least) two reasons: (i)
the utility functions are unknown to him; (ii) the scale of the problem can be too
large (as it is typical with railway networks) so that it can be solved efficiently via
a centralized computation. The latter is particularly important when the whole
system is already at some equilibrium state and then suddenly a (small, relative
to the size of the whole problem) perturbation in the problem parameters occurs.
Rather than having a whole new re-computation of the new optimal solution from
scratch, it is particularly desirable that a dynamical scheme allows convergence
to the new optimal solution, starting from this warm start (of the previously
optimal solution). All the above reasons dictate searching for a different solution
approach, that has to be as decentralized as possible.

We adopt the approach in [1] to design a mechanism that will be run by the
NOP in order to solve the above problem. In particular, rather than having the
NOP directly deciding for the frequencies of all the LOPs in each pool, we first
let each LOP make her own bid for frequency in each pool. Then, the NOP
considers the solution of a convex program which is similar, but not identical
to (MSC-II) using a set of (strictly increasing, strictly concave) pseudo-utilities.
Our goal is to exploit the rational (competitive) behavior of the LOPs, in order
to assure that eventually the optimal solution reached for this new program is
identical to that of (MSC-II), as required.

In particular, each LOP p ∈ P announces (non-negative) bids wp,k ≥ 0 (one
per pool), which she is committed to spend for acquiring frequencies in the pools.
Then, the NOP replaces the unknown utility functions with the pseudo-utilities
wp,k log(xp,k) in order to determine a frequency vector that maximizes the ag-
gregate level of pseudo-satisfaction. Observe that these used pseudo-utilities are
also strictly increasing, strictly concave functions of the LOPs’ frequencies. This
means that NOP wishes to solve the following (strictly convex) optimization
problem that is completely known to him:

max
∑

p∈P

∑

k∈K

wp,k log(xp,k)

s.t.
∑

p∈P

R�,p(k) · xp,k ≤ c� · fk, ∀(�, k) ∈ L × K

∑

k∈K

fk ≤ 1 ; x, f ≥ 0

(MNET-II)

This problem can of course be solved in polynomial time, given the bid vector
of the LOPs w = (wp,k)(p,k)∈P×K , and let (x̄, f̄) be its optimal solution. From
the KKT-conditions of this program it follows that at optimality the NOP must
assign frequency x̄p,k = wp,k

μ̄p,k
, where μ̄p,k is the aggregation of Lagrange dual

values Λ̄p,k along the path requested by p in pool k, and is interpreted as the
(path) per-unit price μ̄p,k for acquiring frequency x̄p,k at a total cost of wp,k.
Now, (x̄, f̄) is the optimal solution for any bid vector declared by the LOPs,
and in particular it also holds for the true bid vector that the LOPs would really
wish to afford. Also from the KKT-conditions of (MSC-II) and (MNET-II), we
can easily observe that they would be identical iff U ′

p,k(x̄p,k) = wp,k

x̄p,k
. Our next

38 A. Bessas, S. Kontogiannis, and C. Zaroliagis

step is to somehow assure that this is indeed the case. To this direction, we
exploit the rational behavior of the LOPs: Each LOP wishes to maximize her
own aggregate level of satisfaction, therefore, she would declare a bid vector that
would actually achieve this.

In what follows, we assume that the LOPs are price takers meaning that each
of them considers the prices announced by the NOP as constants, with no hope
of affecting them by their own bid vector. This property is important in the
following analysis, and is realistic when there exist many LOPs, each controlling
only negligible fractions of the total flow (or bidding process) in the system. The
following theorem (whose proof can be found in [2]) guarantees the existence of
a mechanism for this problem.

Theorem 1. Given a transportation network G = (V, L), a set of line pools K
and a set P of selfish, price-taking LOPs, each having a private utility function
for each pool with parameter the frequency that is allocated to her in the particular
pool, there is a mechanism (a pair of a frequency allocation mechanism and a
resource pricing scheme) that computes in polynomial time the optimal solution
of the sum of the utility functions of the players, while respecting the capacities
of the edges.

This polynomially tractable mechanism, based on the solvability of (MNET-II),
is totally centralized and rather inconvenient for a dynamically changing (over
time), large-scale railway system. The following lemma (whose proof can be
found in [2]) is crucial in deriving a dynamic system for solving (MSC-II).

Lemma 1. For any (fixed) vector f of capacity proportions that completely di-
vides the railway infrastructure among the pools, the optimal value of (MSC-II)
exclusively depends on the optimal vector Λ̄ of the per-unit-of-frequency prices
of the resources.

The above lemma suggests the following mechanism.

1. For every line pool k ∈ K , solve an instance of the single-pool case, using the
decentralized mechanism in [1], obtaining the optimal solution (x�,k, Λ�,k).

2. The NOP calculates the cost of each pool and sets the variable ζ(t) to the
average pool cost: ζ(t) = 1

|K|
∑

k∈K cT ·Λ�,k(t). Then, he updates the capac-
ity proportion vector f and assigns a larger percentage of the total capacity
to the most “expensive” line pools, so that their cost decreases. This update
is described by the following differential equations:

∀k ∈ K, ḟk(t) = max{0, cT · Λ�,k(t) − ζ(t)}. (1)

Note that, at the end, the vector f must be normalized, such that
∑

k∈K fk =
1 (the proportion vector must completely divide the infrastructure at all
times). This is done by dividing each fk(t) by

∑
k∈K fk(t).

Roughly speaking, the convergence of the above mechanism for a specific ca-
pacity proportion vector f is guaranteed by the convergence of the single-pool

Robust Line Planning in Case of Multiple Pools and Disruptions 39

algorithm. When the |K| single-pool instances are solved, the NOP updates the
vector f , so that the expensive pools get cheaper. The goal is that all pools
should have the same cost. When this happens, we know for the optimal solu-
tion of both (MNET-II) and (MSC-II) (x̄, f̄) and the accompanying Lagrange
multipliers, (Λ̄, ζ̄), that:

– U ′
p,k(x̄p.k) = w̄p,k

x̄p,k
, due to the fact that each LOP computes its bid w̄p,k by

solving the convex optimization problem {max
∑

k∈K(Up,k(x̄p,k)−wp,k); wp,k

≥ 0, ∀k ∈ K}.
– All the remaining KKT conditions, which are identical for the KKT systems

of (MSC-II) and (MNET-II), are satisfied in the limit, due to the proper
choice of NOP’s updating scheme for the vector f allocating the infrastruc-
ture’s capacity to the pools. More details can be found in [2].

Hence, (x̄, f̄) is the optimal solution of both (MSC-II) and (MNET-II), and
thus the proposed mechanism solves (MSC-II). The next theorem summarizes
the preceding discussion.

Theorem 2. The above dynamic scheme of resource pricing, LOPs’ bid updat-
ing and capacity proportion updating assures the monotonic convergence of the
(MNET-II) problem to the optimal solution. The algorithm may start from any
initial state of resource prices, LOPs’ bids and capacity proportion vector.

3 Experimental Study of the Multiple-Line Pool Cases

In this section we present the experimental results for the multiple-line pool case
where the LOPs have different utilities per pool. We have implemented a discrete
version of the decentralized mechanism, whose pseudocode follows.

fk(0) = 1
|K| ;

repeat
t = t + 1;
for all k ∈ K do

Solve an instance of the single-pool case for each line pool k;
end for
costk(t) = cT · Λ�,k(t);
ζ =

∑
k∈K costk

|K| ;
for all k ∈ K do

ḟk(t) = max{0,costk(t)−ζ(t)}
ζ(t)

;

fk(t) = fk(t − 1) + 0.1 · ḟk(t);
end for
total f =

∑
k∈K fk(t);

for all k ∈ K do
fk(t) = fk(t)

total f
;

end for
until equal costs(cost(t))

40 A. Bessas, S. Kontogiannis, and C. Zaroliagis

The algorithm was implemented in C++ using the GNU g++ compiler (ver-
sion 4.4) with the second optimization level (-O2 switch) on. Experiments were
performed on synthetic and real-world data.

Synthetic data consisted of grid graphs having a number of 7 nodes on the
vertical axis and a number of nodes in [120, 360] along the horizontal axis; i.e.,
the size of the grid graphs varied from 7 × 120 to 7 × 360. The capacity of each
edge was randomly chosen from [10, 110). Four line pools were defined. In each
pool, there were three LOPs, each one interested in a different line. Those lines
had the first edge ((0, 3), (1, 3)) in common. The next edges of each line were
randomly chosen each time.

Real-world data concern parts of the German railway network (mainly inter-
city train connections), denoted as R1 (280 nodes and 354 edges) and R2 (296
nodes and 393 edges). The capacities of the edges were in [8, 16]. The total num-
ber of lines varies from 100 up to 1000, depending on the size of the networks.
For each network, we defined four line pools. The second, third and fourth pool
differed from the first in about 10% of the lines (the new lines in each pool were
randomly selected from the available lines in each network).

In the experiments we measured the number of iterations needed to find the
correct vector f of capacity proportions (we did not concentrate on the solutions
of the single-pool case, used as a subroutine, since this case was investigated in
[1]). We investigated the following four scenarios:

S1: Up,1(xp,1) = 104√xp,1 and Up,2(xp,2) = 104√xp,2, ∀p ∈ P .
S2: Up,1(xp,1) = 3

4 · 104 · √xp,1 and Up,2(xp,2) = 4
5 · 104 · √xp,2, ∀p ∈ P .

S3: Up,1(xp,1) = 104 · √xp,1 and Up,2(xp,2) = 1
2 · 104 · √xp,2, ∀p ∈ P .

S4: Up,1(xp,1) = 104 · √xp,1 and Up,2(xp,2) = 1
4 · 104 · √xp,2, ∀p ∈ P .

We report on experiments with the R1 network and two line pools for all four
scenarios, and on R2 for scenarios S1 and S2 (similar results hold for the other
scenarios). Table 1 shows the results for 100, 200 and 300 lines per pool for R1,
and for 100 to 500 lines per pool for R2. For S1 (same utility functions), we
observe a small number of necessary updates to the capacity proportion vector
f , until the system reaches the optimum. The main reason for this is the use
of the same utility function for every pool by the LOPs, because the algorithm

Table 1. Number of updates of f for different utility functions and number of lines
per pool (|K| = 2) for R1 (a) and R2 (b)

(a)

#Lines S1 S2 S3 S4

100 9 33 127 178
200 12 33 127 178
300 19 29 128 178

(b)

#Lines S1 S2

100 33 52
200 26 49
300 1 40
400 6 34
500 1 37

Robust Line Planning in Case of Multiple Pools and Disruptions 41

starts with the initial values fk = 1
|K| and the optimal values in this case are

quite close to these initial values. For the other scenarios with different utility
functions per pool (S2, S3, S4), we observe a larger number of the updates
required. We also observe that the more different the utility functions of each
LOP in the two pools are, the larger the number of updates required to reach
the optimum.

Another interesting observation in the case of the different utility functions
per line pool, is that the number of updates of f is almost equal. This is due
to the fact that the difference in utility functions across line pools has a more
significant effect on the required number of updates than the difference in lines
among the pools (in other words, more steps are required to reach the optimal
values due to the different utility functions than due to the different costs of the
line pools).

In conclusion, the number of updates required by our mechanism to converge
(to the optimal values of vector f) depends largely on the exact parameters of
the system of differential equations (1).

4 Experimental Study of Disruptions in the Network

We turn now to a different experimental study. We assume that the network is
currently operating at optimality and that a few disruptions occur. These dis-
ruptions affect the capacity of some edges. This can be due to technical problems
leading to reducing the capacity of those edges, or to increasing their capacity
for a particular period to handle increased traffic demand (e.g., during holidays,
or rush hours) by “releasing” more infrastructure.

We examine the behavior of the algorithms for the single and multiple pool
cases in such situations. We investigated three disruption scenarios:

D1: Reducing the capacity of a certain number of edges (chosen among the con-
gested ones).

D2: Increasing the capacity of a certain number of edges (chosen among the
congested ones).

D3: Reducing the capacity of a certain number of edges, while increasing the ca-
pacity of an equal number of a different set of edges (chosen among the
congested ones).

We start from a known optimal solution to the problem. Then, we add disrup-
tions to a few edges and apply the algorithm. The relative and absolute error
for the differential equations were set to 0.1.

These scenarios were tested on grid graphs and on the R1 network (similar
results hold for R2). For the grid graphs, the lines were chosen randomly, but
all of them shared the same first edge. The number of lines in each pool were 10
and the capacities of the edges were chosen randomly in [4, 20].

Single pool case. For this case, we chose randomly, among the congested ones,
4 edges in the case of grid graphs and 10 edges in the case of R1. Their capacity

42 A. Bessas, S. Kontogiannis, and C. Zaroliagis

Table 2. (a) Required number of updates of Λ for grid graphs with sizes 7×p, when the
algorithm starts from a previous optimal state, until the system reaches the equilibrium
point after the disruptions under scenarios D1, D2, and D3. (b) Required number of
updates of Λ for R1, when the algorithm starts from a previous optimal state, until
the system reaches the equilibrium point after the disruptions under scenarios D1, D2,
and D3.

(a)

Disruption p D1 D2 D3

10%

120 1292 340 9983
180 1235 395 550
240 317 453 407
300 4005 556 1337
360 163 8484 542

50%

120 403 480 1022
180 248 1116 875
240 409 498 533
300 3966 1284 1180
360 751 658 712

(b)

Disruption #lines D1 D2 D3

10%
100 10335 90085 464
200 32466 2806 5033
300 4171 276 5208

50%
100 8409 1057 1506
200 1042 1109 4314
300 5430 974 1058

was reduced (or increased) by 10% and 50%. In the experiments we measured
the number of updates required for finding the optimal values of Λ (resource
prices per-unit-of-frequency).

The number of iterations required for finding the optimal values of Λ for grid
graphs and R1, when we start from a previous optimal solution, is presented in
Tables 2(a) and 2(b). For comparison, the number of the required updates of Λ
when we start from a random initial state is given in Tables 3(a) and 3(b). We
observe the significantly less number of updates required when we start from a
previous optimal solution. This is due to the fact that the disruptions caused are
not very big, and hence the new optimal solution is quite close to the previous
one. There are, however, one or two exceptions; i.e., we observe in these cases a
smaller number of updates when we start from a random initial solution. This
happens, because the algorithms for solving differential equations are arithmetic
methods that depend greatly on the exact parameters given. This results in a
few pathological cases such as these. One can conclude, though, that in general
the use of the previous optimal solution leads to a smaller number of required
updates for Λ.

Multiple pool Case. We created two pools for these experiments. In the case
of grid graphs, the lines in each pool were chosen randomly, and in the case
of R1 there was a 10% difference in the lines between the two pools. In these
experiments we measured the number of updates of the bids of the LOPs (bid
vector w). In none case there was a need to update the capacity proportion
vector f .

Robust Line Planning in Case of Multiple Pools and Disruptions 43

Table 3. (a) Number of updates of Λ for grid graphs of size 7× p, when the algorithm
starts from a random initial state. (b) Number of updates of Λ for R1, when the
algorithm starts from a random initial state.

(a)

Case of Disruption p #Updates of Λ

10%

120 6701
180 6643
240 7835
300 6813
360 5854

50%

120 7381
180 7246
240 6468
300 6197
360 7617

(b)

#Lines #Updates of Λ

100 12393
200 6641
300 7817

Table 4. (a) Required number of updates of w for grid graphs of sizes 7×p for scenarios
D1, D2, D3, when the algorithm starts from a previous optimal state, so that the system
returns to an equilibrium point after a disruption. (b) Required number of updates of
w for R1 for scenarios D1, D2, D3, when the algorithm starts from a previous optimal
state, so that the system returns to an equilibrium point after a disruption.

(a)

Disruptions p D1 D2 D3

10%

120 0 0 0
180 0 0 0
240 0 0 0
300 0 0 0
360 0 0 0

50%

120 0 2 1
180 0 2 0
240 0 0 0
300 0 1 2
360 0 2 2

(b)

Disruption #Lines D1 D2 D3

10%
100 0 0 0
200 0 0 0
300 0 0 0

50%
100 0 0 0
200 0 0 0
300 0 0 0

90%
100 0 3 0
200 0 2 2
300 0 0 0

The results are shown in Tables 4(a) and 4(b). One can see that only rarely
there is a need to update the bid vector w. Especially for the R1 network, we
had to introduce disruptions of 90% of the original capacity to get the bid vector
to be updated. Hence, the algorithm reaches the optimal solution quite fast. The
important observation is that, starting from the previous optimal solution, we
avoid the update of the capacity proportion vector f , which is the most expensive
operation.

44 A. Bessas, S. Kontogiannis, and C. Zaroliagis

5 Conclusions

We have studied a variant of the robust multiple-pool line planning problem
defined in [1], where the LOPs have different utility functions per pool. We have
shown that a dynamic, decentralized mechanism exists for this problem that
eventually converges to the optimal solution.

We have also studied the above mechanism experimentally, showing that the
exact behavior of the algorithm greatly depends on the exact input parameters;
however, the convergence is in general quite fast.

Moreover, we studied the case that disruptions take place in the network. We
have seen that in most cases it is much better to take advantage of the previous
(optimal) solution to bootstrap the algorithm.

References

1. Bessas, A., Kontogiannis, S., Zaroliagis, C.: Incentive-compatible robust line
planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and
Online Large-Scale Optimization. LNCS, vol. 5868, pp. 85–118. Springer, Heidel-
berg (2009)

2. Bessas, A., Kontogiannis, S., Zaroliagis, C.: Robust Line Planning in case of
Multiple Pools and Disruptions (January 2011), http://arxiv.org/abs/1101.2770

3. Dienst, H.: Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuris-
tischen Verfahrens. PhD thesis, Technische Universität Braunschweig (1978)

4. Goossens, J., van Hoesel, C., Kroon, L.: A branch and cut approach for solving line
planning problems. Transportation Science 38, 379–393 (2004)

5. Kelly, F.: Charging and rate control for elastic traffic. European Transactions on
Telecommunications 8, 33–37 (1997)

6. Kelly, F., Maulloo, A., Tan, D.: Rate control in communication networks: shadow
prices, proportional fairness and stability. Journal of the Operational Research
Society 49, 237–252 (1998)

7. Schöbel, A., Scholl, S.: Line Planning with Minimal Traveling Time. In: Proc. 5th
Workshop on Algorithmic Methods and Models for Optimization of Railways –
ATMOS 2005 (2005)

8. Schöbel, A., Schwarze, S.: A Game-Theoretic Approach to Line Planning. In:
Proc. 6th Workshop on Algorithmic Methods and Models for Optimization of
Railways – ATMOS 2006 (2006)

9. Scholl, S.: Customer-oriented line planning. PhD thesis, Technische Universität
Kaiserslautern (2005)

Exact Algorithms for
Intervalizing Colored Graphs

Hans L. Bodlaender and Johan M.M. van Rooij

Department of Information and Computing Sciences, Utrecht University
P. O. Box 80.089, NL-3508 TB Utrecht, The Netherlands

{hansb,jmmrooij}@cs.uu.nl

Abstract. In the Intervalizing Colored Graphs problem, one must
decide for a given graph G = (V, E) with a proper vertex coloring of G
whether G is the subgraph of a properly colored interval graph. For the
case that the number of colors k is fixed, we give an exact algorithm
that uses O∗(2n/log1−ε(n)) time for all ε > 0. We also give an O∗(2n)
algorithm for the case that the number of colors k is not fixed.

1 Introduction

In this paper, we consider exact algorithms for the Intervalizing Colored

Graphs problem. This problem is defined in the following way. Given a graph
G = (V, E) together with a proper vertex coloring c : V → {1, . . . , k} of G (a
coloring c is proper if for all edges {v, w} ∈ E: c(v) �= c(w)), one must decide if
G is subgraph of a properly colored interval graph, i.e., can we add edges, such
that each edge is between vertices of different colors and the result is an interval
graph? The problem has its original motivation in DNA physical mapping [13]

This problem is NP-complete [13] (see also [16]), even when the number of
colors k equals 4 [5,6], and in addition, inputs are restricted to caterpillar trees
[1]. We denote the version of the problem where the number of colors k is fixed
by Intervalizing k-Colored Graphs, and the version with a potentially
unbounded number of colors by Intervalizing Colored Graphs.

If the number of colors k = 2, the problem is trivially solvable in linear time.
For three colors, the problem is solvable in quadratic time with a complicated
algorithm [7]; the case for three colors and biconnected graphs is described in [6].

Our first algorithm deals with the case that the number of colors is a constant
that is at least four. We give an algorithm that solves this version exactly, using
slightly less than exponential time.

Most NP-hard problems that have subexponential algorithms deal with planar
graphs and generalizations of planar graphs, see e.g., [12,14,21]. Typically, the
running time of such algorithms is of the form O∗(2O(

√
n)). The result of our

paper is a curious exception to the general pattern, both as inputs are general
graphs (but a positive answer implies bounded pathwidth of the input), and as
the running time is ‘just subexponential’: for every ε > 0, the running time is
O∗(2n/(log1−ε(n))).

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 45–56, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

46 H.L. Bodlaender and J.M.M. van Rooij

Our algorithm for Intervalizing k-Colored Graphs can be viewed as a
dynamic programming algorithm in Held-Karp style [19], resembling algorithms
for some graph layout problems given e.g., in [10], with one additional improve-
ment: an isomorphism step for certain parts of the graph during the dynamic
programming. Important concepts that facilitate the presentation of our results
are the notions of path decomposition and nice path decomposition. Our O∗(2n)
time algorithm for Intervalizing Colored Graphs is a simple dynamic pro-
gramming algorithm, also in Held-Karp style.

The main outline of the ideas behind the main algorithm are as follows. We
use the fact that the problem is equivalent to finding a path decomposition of
the graph with such that vertices in the same bag all have different colors. We
then introduce the notion of partial path decomposition: a path decomposition of
a subgraph of G, such that all vertices in the subgraph with neighbors outside
the subgraph belong to the last bag. We use dynamic programming to tabulate
characteristics of properly colored partial path decompositions. The number of
such characteristics is bounded by using the fact that isomorphic (for details, see
later sections) subgraphs behave in the same way and thus can have the same
characteristic.

2 Preliminaries

In this section, we introduce some standard notations, and give a few preliminary
results on path decompositions.

The graphs in this paper are considered to be undirected and simple. If not
stated otherwise, the graphs we consider are labeled graphs, i.e., two isomorphic
graphs with different labels are considered to be different. We also considered
unlabeled graphs: two isomorphic unlabeled graphs are considered to be the same
object. The number of vertices of graph G = (V, E) is denoted by n.

For a graph G = (V, E) and a set of vertices W ⊆ V , we denote G[W] as the
subgraph induced by W : G[W] = (W, {{v, w} ∈ E | v, w ∈ W}).

A graph G = (V, E) is an interval graph if we can associate to each vertex
v ∈ V an interval on the real line Iv = [�v, rv] such that, for all v, w ∈ V , v �= w:
{v, w} ∈ E, if and only if, Iv ∩ Iw �= ∅.

A graph H = (V, F) is an interval completion of a graph G = (V, E) if G
and H have the same vertex set, E ⊆ F , and H is an interval graph. More
background can be found in [15]; see also [18].

A path decomposition of a graph G = (V, E) is a sequence of subsets of V
called bags, (X1, X2, . . . , Xr) such that:

–
⋃

1≤i≤r Xi = V
– for all {v, w} ∈ E: there is an i, v, w ∈ Xi

– for all i0, i1, i2: 1 ≤ i0 ≤ i1 ≤ i2 ≤ r: Xi0 ∩ Xi2 ⊆ Xi1 .

The width of a path decomposition (X1, X2, . . . , Xr) is max1≤i≤r |Xi| − 1. The
pathwidth of a graph G is the minimum width of a path decomposition of G.

A path decomposition (X1, X2, . . . , Xr) is nice, if for all i, 1 ≤ i < r, one of
the following two cases holds:

Exact Algorithms for Intervalizing Colored Graphs 47

– There is a vertex v ∈ V with Xi+1 = Xi ∪ {v}. We call Xi+1 an introduce
node.

– There is a vertex v ∈ V with Xi−1 = Xi − {v}. We call Xi+1 a forget node.

If |X1| = 1, we also call 1 an introduce node. The following proposition is well
known. We give the proof for later reference.

Proposition 1 (Folklore). Each graph G = (V, E) with pathwidth k has a nice
path decomposition of width k with 2n bags, with |X1| = 1, and Xr = ∅.
Proof. Suppose we have a path decomposition (X1, X2, . . . , Xr). We can turn it
in a nice path decomposition as follows. First, remove all bags that are empty. If
for some i, 1 ≤ i < r, i+1 is not an introduce or forget bag, then we insert some
new bags between i and i+1: first forget nodes, one for each vertex in Xi−Xi+1,
and then we have one introduce node for each vertex in Xi+1 − Xi. Similarly,
we add introduce nodes before X1 when |X1| �= 1, and add forget nodes at the
end of the procedure till Xr = ∅. We have one introduce and one forget node
per vertex, so we have 2n bags.
�
Proposition 2. There are at most (k + 2k + 1)2n−1 unlabeled graphs with path-
width at most k that are pairwise non isomorphic.

Proof. Consider a nice path decomposition of a graph with n vertices, with
|X1| = 1, and with 2n bags. For each of the bags Xi, i > 1, there are at most
k + 2k + 1 possibilities: we can have a forget node, where we have the choice
which of the at most k + 1 vertices in Xi we forget, or we can have an introduce
node, where we have the choice to which of the at most k vertices in Xi the
introduced vertex has an edge, i.e., at most 2k choices for an introduce node. If
we have two graphs with two path decompositions that we can construct while
always making the same choices, then these graphs are isomorphic.
�
Proposition 3. Let G = (V, E) be a graph with proper vertex coloring c : V →
{1, 2, . . . , k}. The following are equivalent.
1. G has a properly colored interval completion.
2. G has a path decomposition (X1, X2, . . . , Xr) such that for all v, w ∈ V : if

v �= w and there is an i with v, w ∈ Xi, then c(v) �= c(w)
3. G has a nice path decomposition (X1, X2, . . . , X2|V |) of width at most k − 1

such that for all v, w ∈ V : if v �= w and there is an i with v, w ∈ Xi, then
c(v) �= c(w)

This proposition is also well known. Given a (nice) path decomposition
(X1, X2, . . . , Xr) from Proposition 3 (ii) or (iii), one obtains the correspond-
ing interval graph by making each Xi a clique. The corresponding interval graph
model is obtained by taking for a vertex v the interval [minv∈Xi i, maxv∈Xi i].
As all colors in a bag Xi are different, the width of the path decompositions is
bounded by k − 1.

Proposition 3 motivates the definition of a properly colored path decomposition:
(X1, . . . , Xr) is a properly colored path decomposition of G, if and only if it is
a path decomposition of G, and for all v, w ∈ V , if v �= w and there is an i with
v, w ∈ Xi, then c(v) �= c(w).

48 H.L. Bodlaender and J.M.M. van Rooij

3 Partial Path Decompositions

In this section, we introduce a number of notions that will be used for our
dynamic programming algorithm in the next section.

A partial path decomposition of a graph G = (V, E) is a sequence of subsets
of V (X1, X2, . . . , Xs) such that:

– (X1, X2, . . . , Xs) is a path decomposition of G[
⋃

1≤i≤s Xi]
– For each connected component of G[V −Xs] with vertex set W , either W ⊆

⋃
1≤i≤s−1 Xi or W ∩

(⋃
1≤i≤s−1 Xi

)
= ∅.

The following proposition follows from well known facts about path and tree
decompositions.

Proposition 4. Let (X1, X2, . . . , Xr) be a path decomposition of G. Then, for
each s, 1 ≤ s ≤ r, (X1, X2, . . . , Xs) is a partial path decomposition of G.

Consider a partial path decomposition (X1, X2, . . . , Xr) and a vertex set X .
Later, X will typically be the set Xr for some partial path decomposition
(X1, X2, . . . , Xr). A component of X is a vertex set that forms a connected
component of the graph G[V −Xr]. We say that two components Y and Z of X
are isomorphic components of X , if there is a graph isomorphism f of G[Y ∪X]
to G[Z ∪ X] that preserves colors and is the identity when restricted to X , i.e.,
f is a bijective function, such that:

1. for all v, w ∈ Y ∪ X : {v, w} ∈ E ⇔ {f(v), f(w)} ∈ E
2. for all v ∈ Y ∪ X : c(v) = c(f(v))
3. for all v ∈ X : f(v) = v.

A component W of Xr is said to be a left component of the partial path decompo-
sition (X1, . . . , Xr), if W ⊆ ⋃

1≤i≤r−1 Xi, and a right component of (X1, . . . , Xr),

if W ∩
(⋃

1≤i≤r−1 Xi

)
= ∅.

The following proposition follows directly from the definitions and well known
facts on path decompositions.

Proposition 5. Let (X1, X2, . . . , Xr) be a partial path decomposition of G. Each
component of Xr is either a left or a right component of (X1, X2, . . . , Xr).

We say that a partial path decomposition (X1, X2, . . . , Xs) of G = (V, E) is
properly colored, if for all v, w ∈ V , if v �= w and there exists an i with v, w ∈ Xi,
then c(v) �= c(w). We say that a (partial) path decomposition (Y1, Y2, . . . , Yr) is
an extension of a partial path decomposition (X1, X2, . . . , Xs) if r ≤ s and for
all i, 1 ≤ i ≤ r, Yi = Xi.

We define an equivalence relation on partial path decompositions as follows.
We say that the partial path decomposition (X1, X2, . . . , Xr) is equivalent to the
partial path decomposition (Y1, Y2, . . . , Ys), if the following two conditions hold:

Exact Algorithms for Intervalizing Colored Graphs 49

1. Xr = Ys.
2. Suppose W1, W2, . . . , Wq are the components of Xr. There is a bijective

function g : {1, . . . , q} → {1, . . . , q}, such that for all i, 1 ≤ i ≤ q: Wi is a
left component of (X1, X2, . . . , Xr), if and only if Wg(i) is a left component
of (Y1, Y2, . . . , Ys) and Wi and Wg(i) are isomorphic.

The main insight behind our dynamic programming algorithm is the following
result.

Proposition 6. If (X1, X2, . . . , Xr) and (Y1, Y2, . . . , Ys) are equivalent colored
partial path decompositions, then (X1, X2, . . . , Xr) has an extension that is a
properly colored path decomposition of G, if and only if, (Y1, Y2, . . . , Ys) has an
extension that is a properly colored path decomposition of G.

Proof. Suppose (X1, X2, . . . , Xr, Z1, Z2, . . . , Zr′) is a properly colored path de-
composition of G that is an extension of (X1, X2, . . . , Xr). Let g be the bijective
function as in the definition of equivalence. Let fi be a color preserving graph
isomorphism from G[Xr ∪ Wi] to G[Xr ∪ Wg(i)] that is the identity on Xr, as
implied by the definition of equivalence.

Let f : V → V be the function defined in the following way: for v ∈ Wi,
1 ≤ i ≤ r: f(v) = fi(v); and for v ∈ Xr, f(v) = v.

Simple case analysis (no, one or both endpoints in Xr) shows that f is an
automorphism of G. Define for i, 1 ≤ i ≤ r′, Z ′

i = {f(v) | v ∈ Zi}.

Claim. (Y1, Y2, . . . , Ys, Z
′
1, Z

′
2, . . . , Z

′
r′) is a properly colored path decomposition.

Proof. We first prove that (Y1, Y2, . . . , Ys, Z
′
1, Z

′
2, . . . , Z

′
r′) is a path decomposi-

tion. Clearly,
(⋃

1≤i≤s Yi

)
∪

(⋃
1≤i≤r′ Z ′

i

)
= V .

Second, we show that every edge {v, w} ∈ E is contained in some bag of
(Y1, Y2, . . . , Ys, Z

′
1, Z

′
2, . . . , Z

′
r′). If v, w ∈ Ys, then we can take the bag Ys; so

w.l.o.g., let v �∈ Ys. If v belongs to a left component Wi, then there must be a
bag Yj , 1 ≤ j ≤ s − 1 that contains v and w as (Y1, Y2, . . . , Ys) is a partial path
decomposition. If v belongs to a right component Wi, then {f−1(v), f−1(w)} ∈
E. It is not hard to see that that the bag in (X1, X2, . . . , Xr, Z1, Z2, . . . , Zr′) that
contains both v and w must be one of the Zj , 1 ≤ j ≤ r′, and thus v, w ∈ Z ′

j.
Third, we show that every v ∈ V only occurs in a series of consecutive bags.

For a vertex v ∈ Ys = Xr, we note that there are 1 ≤ α ≤ s, 0 ≤ β ≤ r′, such
that v belongs to bags Yα, Yα+1, . . . , Ys, and v belongs to bags Z1, Z2, . . . , Zβ ,
and no other bags. As f(v) = v, v also belongs to bags Z ′

1, Z
′
2, . . . , Z

′
β, and no

later bags. So, for a vertex v ∈ Ys = Xr, we are done.
If v ∈ Wg(i) where Wg(i) is a left component of (Y1, Y2, . . . , Ys). Then, f−1(v) ∈

Wi with Wi a left component of (X1, X2, . . . , Xr). Thus, f−1(v) belongs to one
or more consecutive bags in (X1, X2, . . . , Xr−1), and, as f−1(v) does not belong
to Xr, f−1(v) does not belong to Z1, Z2, . . . , Zr′ because otherwise (X1, X2, . . . ,
Xr, Z1, Z2, . . . , Zr′) is not a path decomposition. So, v belongs to one or more
consecutive bags in (Y1, Y2, . . . , Ys−1) and no others. And, if v ∈ Wg(i) where

50 H.L. Bodlaender and J.M.M. van Rooij

Wg(i) is a right component of (Y1, Y2, . . . , Ys), then the required result follows
from a similar analysis.

Finally, by assumption all vertices in a bag Yi have a different color, and, as
f is color preserving, as all vertices in a bag Zi have a different color, also all
vertices in a bag Z ′

i have a different color.
�
So, (Y1, Y2, . . . , Ys) has an extension that is a properly colored path decomposi-
tion of G. This shows one direction of implication of the proposition; the proof
of the other direction is identical.
�
We assume some ordering on the vertices. The characteristic of a partial path
decomposition (X1, X2, . . . , Xr) is the pair: (Xr,

⋃
1≤i≤r−1 Xi − Xr), where we

assume that both vertex sets are given as an ordered list of vertices.
Two properly colored partial path decompositions with the same character-

istic are trivially equivalent, using the identity for g. We remark that one can
obtain an O∗(2n) time algorithm for Intervalizing k-Colored Graphs by
tabulating all different characteristics of properly colored partial path decompo-
sitions; this is somewhat similar to the Held-Karp algorithm for TSP [19]. The
isomorphism check for components is the main ingredient of our improvement
upon this idea.

4 An Exact Algorithm for Intervalizing k-Colored Graphs

In this section, we give the algorithm for Intervalizing k-Colored Graphs,
building upon the notions and preliminary results of the previous sections.

First, we note that a positive instance has a path decomposition in which each
bag has size at most k (all vertices in a bag have a different color and there are k
colors). Thus, as a first step we use the linear time algorithm (for fixed k), that
tests if the pathwidth of the input graph is at most k − 1 from [4,11]. If not, we
are done, and can decide negatively. Thus, we can assume that G has pathwidth
at most k in the remainder. We consider k to be a constant.

We introduce some further notions.
We define the progress of a partial path decomposition (X1, X2, . . . , Xr) to

be 2 · |⋃1≤i≤r Xi| − |Xr|. Note that when we extend a nice partial path decom-
position with one additional introduce or one additional forget node, then the
progress always increases by exactly one. Also note that for a partial path decom-
position with characteristic (X, Z) and progress α, we have that α = 2|Z|− |X |.

The canonical characteristic of a properly colored partial path decomposition
is the lexicographically minimal characteristic over all characteristics of equiva-
lent properly colored partial path decompositions.

Proposition 7. Given a characteristic of a properly colored partial path decom-
position, we can compute in polynomial time its canonical characteristic.

Proof. The Graph Isomorphism problem is polynomial time solvable on graphs
of bounded treewidth, and thus also on graphs of bounded pathwidth [3]. It is

Exact Algorithms for Intervalizing Colored Graphs 51

straightforward to modify the algorithm of [3] such that it also works on colored
graphs while using the same running time.

Given a characteristic (Xr, Z), we first compute (with depth first search) the
connected components of G[V −Xr], say W1, W2, . . . , Wq. For each pair Wi, Wj ,
we can check in polynomial time if they are isomorphic: use the isomorphism
algorithm on colored graphs of bounded pathwidth discussed above, and take a
new, different color for each vertex in Xr. (Note the definition of isomorphism
for components, as given in Section 3.)

Thus, we can partition the components in equivalence classes dictated by
isomorphism. We can sort each component lexicographically, and then each class
lexicographically. Then, for each class, we determine how many components from
the class are a subset of Z (i.e., left components). In the canonical characteristic,
we take the same number of left components from the class, but now take this
number of lexicographically smallest elements. A simple last sorting step gives
the desired result.
�
We can now describe our algorithm.

– Check if the pathwidth of G is at most k−1. If not, answer no and terminate.
– Otherwise, for α = 1 · · · 2n, compute a table Tα of all canonical characteris-

tics of partial path decompositions of progress α.
– If T2n is empty, then answer no; otherwise, answer yes.

The output of the algorithm clearly is correct as a partial path decomposition
is a path decomposition, if and only if, its progress equals 2n.

We now describe how the tables Ti are computed. Computing T1 is simple:
for all v ∈ V , we have an entry in T1 of the form ({v}, ∅). Given a table Tα,
1 ≤ α < 2n, we compute table Tα+1 as follows. Initialize Tα+1 as empty set. For
each entry (X, Z) from Tα, do the following:

– Compute the new characteristics that result when the next node in the par-
tial path decomposition is an introduce node: for each v ∈ V − Z such that
there is no x ∈ X with c(v) = c(x), compute the canonical characteristic of
(X ∪ {v}, Z) and put it in Tα+1.

– Compute the new characteristics that result when the next node in the par-
tial path decomposition is a forget node: for each x ∈ X such that there
is no v ∈ Z − V with {v, x} ∈ E, compute the canonical characteristic of
(X − {v}, Z ∪ {v}).

Proposition 8. The procedure correctly computes table Tα+1.

Proof. Note that the characteristic of a partial path decomposition remains the
same when we apply the procedure of Proposition 1. So, we may assume that we
compute the canonical characteristics of the properly colored nice partial path
decompositions (X1, X2, . . . , Xr) with progress α + 1. Of these, we consider two
cases: the last node Xr can be an introduce node or a forget node.

If Xr is an introduce node with Xr = Xr−1∪{v}, then (X1, X2, . . . , Xr−1) is a
properly colored partial path decomposition of progress α. If (X1, X2, . . . , Xr−1)

52 H.L. Bodlaender and J.M.M. van Rooij

has characteristic (Xr−1, Z), then (X1, X2, . . . , Xr) has characteristic (Xr−1 ∪
{v}, Z). v must have a color different from the colors of vertices in Xr−1.

If Xr is a forget node with Xr = Xr−1 − {v}, then again (X1, X2, . . . , Xr−1)
is a properly colored partial path decomposition of progress α. As v is forgotten,
it cannot belong to bags right of Xr, and thus all neighbors of v must belong to⋃

1≤i≤r Xi. If (X1, X2, . . . , Xr−1) has characteristic (Xr−1, Z), then the charac-
teristic of (X1, X2, . . . , Xr) is (Xr−1 − {v}, Z ∪ {v}).
�
This completes the description of the algorithm. From our discussion, we see
that the algorithm indeed correctly decides if G has a properly colored interval
completion.

We now will analyse the running time of the algorithm. We remark that our
algorithm uses polynomial time per entry in a table Ti. Thus, the running time
of the algorithm equals the product of a polynomial in n and the number of
canonical characteristics of properly colored partial path decompositions. So, we
need to establish an upper bound on this number of canonical characteristics.
First, we obtain an upper bound on the number of nonisomorphic components
of a set X .

Proposition 9. Let (X1, X2, . . . , Xr) be a properly colored partial path decom-
position of G. There are at most 23kl · k� equivalence classes of the isomorphism
relation on components of G[V − Xr] that contain components with � vertices.

Proof. Each equivalence class can be identified by an uncolored unlabeled graph
on � vertices of pathwidth at most k − 1, a coloring with at most k colors of the
vertices of the graph, and the incidence relation between the vertices in the graph
and the vertices in Xr. This gives at most the following number of equivalence
classes:

(k − 1 + 2k−1 + 1)2�−1 · k� · 2k� ≤ k� · 23kl

because the first gives at most (k−1+2k−1+1)2�−1 possibilities by Proposition 2,
the second at most k� possibilities, and the last at most 2kl possibilities.
�
We fix some integer �, 1 ≤ � ≤ n, which we will determine more precisely later.

First, for a given X ⊆ V , we derive an upper bound on the number of canon-
ical characteristics of the form (X, Z). Consider the equivalence classes of the
isomorphism relation on the components of G[V −X]. The characteristic is com-
pletely determined if we know X , and for each of these classes how many left
components it contains, i.e., how many of the components are a subset of Z. In
counting the number of possibilities, we distinguish two cases:

– ‘Large’ components of G[V −X], i.e., components that contain more than �
vertices. For each, we have the possibility to be a left or a right component.
As there are at most n/� large components, this gives in total at most 2n/�

possibilities for the large components.
– ‘Small’ components of G[V − X], i.e., components that contain at most �

vertices. There are less than � ·23kl ·k� equivalence classes of the isomorphism
relation that contain small components, by Proposition 9. As there are less

Exact Algorithms for Intervalizing Colored Graphs 53

than n components, for each of these classes we have less than n possibilities
for the canonical characteristic (each possibility has a different number of
left components). So, we have less than n�23kl·k�

possibilities for the small
components.

This gives, for some fixed X , an upper bound of

2n/� · n�23kl·k�

characteristics of the form (X, Z). As we never consider sets X with more than k
vertices, we can multiply this number by (n+ 1)k to obtain the following result.

Lemma 1. The size of the table Ti is bounded by (n + 1)k · 2n/� · n�23kl·k�

.

Thus, the running time of our algorithm is bounded by O∗(2n/� · n�23kl·k�

). We
will now choose the value of �: set � = (log1−δ(n)). Then:

2n/� · n�23kl·k� ≤ 2n/ log1−δ(n) · 2log(n)·log1−δ(n)·23k log1−δ(n)·klog1−δ(n)

≤ 2n/ log1−δ(n)+log2(n)·23k log1−δ(n)·klog1−δ(n)

Note that for fixed k,

log2(n) · 23k log1−δ(n) · klog1−δ(n) = o

(
n

log1−δ(n)

)

(This can be seen as follows. The logarithm of the left term is Θ(log1−Δ n), for
fixed k, while log(n

log1−δn
) is Θ(log n).)

Thus, for fixed k and for every ε > 0, there is a δ > 0, and an n0 ∈ N such
that for all n ≥ n0:

2n/� · n�23kl·k� ≤ 2
n

log1−ε(n)

We have now shown that the size of the tables in our algorithm, and thus the
running time of our algorithm is, for every fixed k and every ε > 1, O∗(2

n

log1−εn).

Theorem 1. For every fixed k ≥ 4, there is an algorithm for Intervalizing

k-Colored Graphs that runs in time O∗(2
n

log1−εn) for every ε > 0.

We remark that there are inputs on which the algorithm uses Ω(2n/ log n) time:
suppose G has a vertex v that is a separator such that G[V −{v}] has Ω(n/ log n)
non-isomorphic components each of size �log n�.

5 An Algorithm for Intervalizing Colored Graphs with
an Arbitrary Number of Colors

In this section, we consider the case that the number of colors is not fixed. We
give a simple Held-Karp style dynamic programming algorithm for this problem.

54 H.L. Bodlaender and J.M.M. van Rooij

Suppose we are given a properly colored graph G = (V, E). For a given set of
vertices W ⊆ V , the border of W is the set of vertices in W with at least one
neighbor in V − W , i.e., we denote

B(W) = {v ∈ W | ∃w ∈ V − W : {v, w} ∈ E}
A set of vertices W ⊆ V is said to be fine, if there exists a properly colored path
decomposition (X1, X2, . . . , Xs) of G[W], such that B[W] ⊆ Xs, i.e., the last
bag contains all vertices in the border of W .

Lemma 2. For all W ⊆ V , W �= ∅, W is fine, if and only if, there exists a
v ∈ W , such that W − {v} is fine and all vertices in B(W − {v}) ∪ {v} have a
different color.

Proof. Suppose W is fine. Suppose (X1, X2, . . . , Xs) is a properly colored path
decomposition of G[W] with B(W) ⊆ Xs. If s = 1, the result follows directly
(any vertex in X1 can play the role of v). Suppose s > 1. If Xs ⊆ Xs−1,
then (X1, . . . , Xs−1) is also a properly colored path decomposition of G[W] with
B(W) ⊆ Xs, and we look at this path decomposition instead. Repeat the step
till Xs �⊆ Xs−1 or s = 1. So, we may suppose that Xs �⊆ Xs−1.

Take a vertex v ∈ Xs−Xs−1. Xs must contain each vertex w ∈ B(W−{v}), as
for each such w, either w ∈ B(W) or {v, w} ∈ E. So all vertices in B(W −{v})∪
{v} ⊆ Xs have a different color. W −{v} is fine, as (X1, X2, . . . , Xs−1, Xs−{v})
fulfills the stated condition.

For the other direction, suppose that W − {v} is fine, and all vertices in
B(W−{v})∪{v} have a different color. Let (Y1, Y2, . . . , Yr) be a properly colored
path decomposition with B(W − {v}) ⊆ Yr. A simple case analysis shows that
(Y1, Y2, . . . , Yr, B(W − {v}∪{v}) is a properly colored path decomposition of
G[W] with B(W) ⊆ B(W −{v})∪ {v}. E.g., each neighbor in v that belongs to
W − {v} belongs to B(W − {v}), and thus to the last bag.
�
Lemma 2 directly implies the existence of a dynamic programming algorithm
that uses O∗(2n) time. For i = 0, 1, . . . , n, we compute the collection of fine sets
W with |W | = i; call this collection F (i). For i = 0, we note that the empty set
is fine, i.e., F (0) = {∅}. If i > 0, initialize F (i) as an empty collection. Then,
perform the following step for each fine set Y ∈ F (i − 1):

– Compute the border of Y , B[Y]. This can be done in linear time using depth
first search.

– If B[Y] contains two vertices of the same color, we do not further process Y ,
otherwise continue with the next step.

– For all vertices v ∈ V − Y ,
• Check if B[Y] contains a vertex with the same color as v.
• If not, then Y ∪ {v} is a fine set of size i. If F (i) does not yet contain

Y ∪ {v}, then add Y ∪ {v} as a new element to F (i).

It is easy to see that the amount of work per fine set of vertices is polynomial.
Finally, G has a properly colored interval completion, if and only if F (n) �= ∅.
Thus, we have

Exact Algorithms for Intervalizing Colored Graphs 55

Theorem 2. The Intervalizing Colored Graphs problem can be solved in
O∗(2n) time.

6 Conclusions

In this paper, we gave dynamic programming algorithms for the Intervalizing

k-Colored Graphs problem. Our algorithm for the case that the number of
colors k is fixed uses subexponential time of a somewhat unusual form, and
thus, the result forms a somewhat curious exception to the types of results that
are usually obtained in the field. The result is merely of theoretical interest, as
values of n for which the algorithm can be run in practice can be expected to be
rather small, say below 100. Experiments with a somewhat similar Held-Karp
style algorithm for Treewidth [8,9] suggest that our algorithm can also be
practical for small values of n; probably a good modification would be to run
the isomorphism test only for very small components, and with a usual graph
isomorphism heuristic instead of the algorithm from [3].

A generalization of the Intervalizing k-Colored Graphs problem is the
Interval Graph Sandwich problem, in which we are given two graphs with G
and H with the same vertex set, and ask whether there exists an interval graph
G′ that is a subgraph of H and contains G as a subgraph. A well studied variant
has the additional condition that G′ has maximum clique size k. See e.g., [17,20].
The ideas of our paper seem not to give results better than an algorithm that
uses Θ∗(2n) time for this problem however, still assuming that k is fixed.

Other related problems are the version where we ask to find a properly colored
proper interval graph, which is polynomial for a fixed number of colors k [2], and
the problem to find a properly colored chordal graph, which is also polynomial
for a fixed number of colors [22].

An interesting open problem is whether it is possible to obtain faster exact
algorithms for Intervalizing k-Colored Graphs, e.g., is O∗(c

√
n) possible?

Also, are faster algorithms possible for the case without a bound on the number
of colors?

References

1. Àlvarex, C., Díaz, J., Serna, M.: The hardness of intervalizing four colored cater-
pillars. Discrete Mathematics 235, 19–27 (2001)

2. Àlvarex, C., Serna, M.: On the proper intervalization of colored caterpillar trees.
Informatique Théorique et Applications 43, 667–686 (2010)

3. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

5. Bodlaender, H.L., de Fluiter, B.: Intervalizing k-colored graphs. In: Fülöp, Z.,
Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 87–98. Springer, Heidelberg
(1995)

56 H.L. Bodlaender and J.M.M. van Rooij

6. Bodlaender, H.L., de Fluiter, B.: On intervalizing k-colored graphs for DNA
physical mapping. Discrete Applied Mathematics 71, 55–77 (1996)

7. Bodlaender, H.L., de Fluiter, B.L.E.: Intervalizing k-colored graphs. Technical
Report UU-CS-1995-15, Department of Computer Science, Utrecht University,
Utrecht, the Netherlands (1995)

8. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On
exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 672–683. Springer, Heidelberg (2006)

9. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On
exact algorithms for treewidth. Technical Report UU-CS-2006-032, Department of
Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands
(2006)

10. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: A
note on exact algorithms for vertex ordering problems on graphs. Technical Re-
port UU-CS-2009-023, Department of Information and Computer Sciences, Utrecht
University, Utrecht, the Netherlands (2009)

11. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. Journal of Algorithms 21, 358–402 (1996)

12. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. The Computer Journal 51, 292–302 (2008)

13. Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA physical mapping: Three ways
difficult (extended abstract). In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp.
157–168. Springer, Heidelberg (1993)

14. Fomin, F.V., Thilikos, D.M.: A simple and fast approach for solving problems on
planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp.
56–67. Springer, Heidelberg (2004)

15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

16. Golumbic, M.C., Kaplan, H., Shamir, R.: On the complexity of DNA physical
mapping. Advances in Applied Mathematics 15, 251–261 (1994)

17. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of
Algorithms 19, 449–472 (1995)

18. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal interval completions.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414.
Springer, Heidelberg (2005)

19. Held, M., Karp, R.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics 10, 196–210 (1962)

20. Kaplan, H., Shamir, R.: Bounded degree interval sandwich problems. Algorith-
mica 24, 96–104 (1999)

21. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM
Journal on Computing 9, 615–627 (1980)

22. McMorris, F.R., Warnow, T., Wimer, T.: Triangulating vertex-colored graphs.
SIAM Journal on Discrete Mathematics 7(2), 296–306 (1994)

L(2,1)-Labeling of Unigraphs

(Extended Abstract)

Tiziana Calamoneri and Rossella Petreschi

Department of Computer Science
“Sapienza” University of Rome - Italy
{calamo,petreschi}@di.uniroma1.it

Abstract. The L(2, 1)-labeling problem consists of assigning colors from
the integer set 0, . . . , λ to the nodes of a graph G in such a way that nodes
at a distance of at most two get different colors, while adjacent nodes
get colors which are at least two apart. The aim of this problem is to
minimize λ and it is in general NP-complete. In this paper the problem of
L(2, 1)-labeling unigraphs, i.e. graphs uniquely determined by their own
degree sequence up to isomorphism, is addressed and a 3/2-approximate
algorithm for L(2, 1)-labeling unigraphs is designed. This algorithm runs
in O(n) time, improving the time of the algorithm based on the greedy
technique, requiring O(m) time, that may be near to Θ(n2) for unigraphs.

1 Introduction

The L(2, 1)-labeling problem [11] consists of assigning colors from the integer
set 0, . . . , λ to the nodes of a graph G in such a way that nodes at a distance
of at most two get different colors, while adjacent nodes get colors which are
at least two apart. The aim is to minimize λ. This problem has its roots in
mobile computing. The task is to assign radio frequencies to transmitters at dif-
ferent locations without causing interference. This situation can be modelled by
a graph, whose nodes are the radio transmitters/receivers, and adjacencies indi-
cate possible communications and, hence, interference. The aim is to minimize
the frequency bandwidth, i.e. λ. In general, both determining the minimum num-
ber of necessary colors [11] and deciding if this number is < k for any fixed k ≥ 4
[10] is NP-complete. Therefore, researchers have focused on some special classes
of graphs. For some classes – such as paths, cycles, wheels, tilings and k-partite
graphs – tight bounds for the number of colors necessary for an L(2, 1)-labeling
are well known in the literature and so a coloring can be computed efficiently.
For many other classes of graphs – such as chordal graphs [14], interval graphs
[9], split graphs [2], outerplanar and planar graphs [2, 7], bipartite permutation
graphs [1], and co-comparability graphs [4] – approximate bounds have been
looked for. For a complete survey, see [5].

Unigraphs [12] are graphs uniquely determined by their own degree sequence
up to isomorphism and are a superclass including matrogenic graphs, matroidal
graphs, split matrogenic graphs and threshold graphs. The interested reader can

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 57–68, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

58 T. Calamoneri and R. Petreschi

find information related to these classes of graphs in [13]. In [6] all these sub-
classes are L(2, 1)-labeled: threshold graphs can be optimally L(2, 1)-labeled in
time linear in Δ with λ ≤ 2Δ, while for matrogenic graphs the upper bound
λ ≤ 3Δ holds, where Δ is the maximum degree of the graph. In the same paper
the problem of L(2, 1)-labeling the whole superclass of unigraphs is left open.

In this paper, a 3/2-approximate algorithm for the L(2, 1)-labeling of uni-
graphs is presented. This algorithm runs in O(n) time, which is the best possible.
Observe that a naive algorithm, based on the greedy technique, would obtain an
O(m) time complexity, that may be near to Θ(n2) for unigraphs.

The tecnique used in the algorithm takes advantage of the degree sequence
analysis. In particular, this algorithm exploits the concept of boxes, i.e. the
equivalence classes of nodes in a graph under equality of degree.

2 Preliminaries

Due to space limitations, only some definitions and one theorem, fundamental for
the rest of the paper, will be presented in this section. For all the non mentioned
definitions and results we refer to [13]. We consider only finite, simple, loopless
graphs G = (V, E), where V is the node set of G with cardinality n and E is the
edge set of G.

A graph G is said to be split if there is a partition V = VK ∪ VS of its nodes
such that the induced subgraphs K and S are complete and stable, respectively.

If G = (V, E) is a graph, its complement is G = (V, V ×V −E). If G = (VK ∪
VS, E) is a split graph, its inverse GI is obtained from G by deleting the set of
edges {{a1, a2} : a1, a2 ∈ VK} and adding the set of edges{{b1, b2} : b1, b2 ∈ VS}.

Given a graph G, if its node set V can be partitioned into three disjoint sets
VK , VS and VC such that K is a clique, S is a stable set and every node in VC is
adjacent to every node in VK and to no node in VS , then the subgraph induced
by VC is called crown.

In the following the definitions of some special graphs are recalled:
mK2: it is the union of m node-disjoint edges m ≥ 1, also called perfect

matching (see Fig. 1.a).
U2(m, s): it is the disjoint union of a perfect matching mK2 and a star K1,s,

for m ≥ 1, s ≥ 2 (see Fig. 1.b).
U3(m): for m ≥ 1, this graph is constructed as follows: fix a node in each

component of the graph obtained as disjoint union of the chordless cycle C4 and
m triangles K3, and merge all these nodes in one (see Fig. 1.c).

S2 = (p1, q1; . . . ; pt, qt): to obtain this graph, add all the edges connecting the
centers of l non isomorphic arbitrary stars K1,pi , i = 1, . . . , t, each one occurring
qi times, where pi, qi, t ≥ 1, q1 + . . . + qt = l ≥ 2 (see Fig. 2.a). Without loss of
generality, in the following we assume p1 ≤ . . . ≤ pt.

S3(p, q1; q2): take a graph S2(p, q1; p + 1, q2) where p ≥ 1, q1 ≥ 2 and q2 ≥ 1,
add a new node v to the stable part of the graph and add the set of q1 edges
{{v, w} : w ∈ VK , degVS

(w) = p}: the obtained graph is S3 (see Fig. 2.b).

L(2,1)-Labeling of Unigraphs 59

…

…

m

…

…

m

…

s

m…

a. b. c.

Fig. 1. a. mK2; b. U2(m, s); c. U3(m)

Fig. 2. a. S2(p1, q1; . . . ; pt, qt); b. S3(p, q1; q2); c. S4(p, q)

S4(p, q): it is constructed by taking a graph S3(p, 2; q), q ≥ 1, adding a new
node u to the clique part and connecting it with each node of the stable part
except v (see Fig. 2.c).

It is easy to see that S2, S3 and S4 are split graphs, where the clique part is
constituted by the centers of the stars for S2 and S3, and by the centers of the
stars and u for S4.

Theorem 2.1. [3] A graph G is a unigraph if and only if its node set can be
partitioned into three disjoint sets VK, VS and VC such that:

(i) VK ∪ VS induces a split unigraph F in which K is the clique and S is the
stable set;
(ii) VC induces a crown H and either H or H is one among C5, mK2, m ≥ 2,
U2(m, s), U3(m);
(iii) the edges of G can be colored red and black so that:

a. the red partial graph is the union of the crown H and of node-disjoint pieces
Pi, i = 1, . . . , z. Each piece Pi (or Pi, or P I

i or P I
i) is one among K1,

S2(p1, q1; . . . ; pt, qt), S3(p, q1; q2), S4(p, q), considered without the edges in
the clique;

b. the linear ordering P1, . . . , Pz is such that each node in VK belonging to Pi is
not linked to any node in VS belonging to Pj, j = 1, ..., i−1, but is linked by a
black edge to every node in VS belonging to Pj, j = i+1, . . . , z. Furthermore,
any edge connecting either two nodes in VK or a node in VK and a node in
VC is black.

60 T. Calamoneri and R. Petreschi

Fig. 3. A unigraph where its crown C5 and its pieces S3(1, 2; 1), K1 and S2(2, 2)I are
highlighted by dotted rectangles. Edges are colored according to Theorem 2.1 (edges
completely contained into the dotted rectangles and the edges of the crown C5 are red)

In Fig. 3 a unigraph is depicted, and its red and black partial graphs are high-
lighted. The pieces Pi defined by the previous theorem are included in dotted
rectangles. We avoid drawing all the edges of the clique, but we include the nodes
of VK in a rectangle to underline that they induce a clique.

3 An Algorithm for L(2,1)-Labeling Unigraphs

As already highlighted in the Introduction, the algorithm exploits the concept of
boxes. So let us call the degree sequence of the graph expressed in terms of boxes
as dm1

1 , . . . , dmr
r , where di is the degree of the mi nodes contained in box Bi(G),

1 ≤ mi ≤ n. The algorithm works by pruning the degree sequence and, at each
step, it checks the first p and the last q boxes for finding particular subgraphs Pi

of the given graph, according to the characterization Theorem 2.1. If there is not
an isolated or universal box (K1 in item (iii).a of Theorem 2.1), a group of boxes
can induce either a crown as specified in item (ii), or one of the graphs S2, S3,
S4 (or their complement, their inverse, or the inverse of their complement) as in
item (iii).a. The algorithm proceeds on the pruned graph G − Pi, that is still a
unigraph (part (iii).b of Theorem 2.1).The step is iterated until G is completely
pruned.

In order to design the L(2, 1)-labeling algorithm, we need to introduce the con-
cept of L′(2, 1)-labeling, i.e. a one-to-one L(2, 1)-labeling with colors in 0, . . . , λ′

≥ n− 1, with the objective is to minimize the span; in other words, an L′(2, 1)-
labeling is an L(2, 1)-labeling where each label is used at most once. So, we
consider how to optimally L′(2, 1)-label the pieces Pi and, for each of them, we
provide the number of used colors, taking into account the black connections.
The reason why we need to L′(2, 1)-label some pieces will be clear later.

To make easier the comprehension of the algorithm, we first present the color-
ing algorithm for unigraphs (in this section), supposing to have all the informa-
tion related to the coloring of the single pieces; only later (in the next section),
details on L′(2, 1) and L(2, 1)-label of the pieces will be presented. Namely, due

L(2,1)-Labeling of Unigraphs 61

to lack of space, we will detail only the L′(2, 1)- and L(2, 1)-labeling of piece S2

(and its complement, its inverse, and the inverse of its complement).
Let us call ki the larger color used for labeling the clique part of Pi, considering

that each split piece Pi must be colored using colors at mutual distance at least
two in the clique part.

The algorithm labels each recognized piece Pi of G in two phases. In the first
phase, only ki + 1 colors are considered, and in the second phase the labeling
is completed. In particular, it first puts in a queue S the pieces Pi, with clique
part Ki and stable part Si, and the crown H , if it exists. Then, the algorithm
partially labels each piece Pi dequeued from the queue according to its own
structure. Namely, let ci−1 − 1 be the last color used for the partial labeling of
pieces P1, . . . , Pi−1. We label with colors from ci−1 to ci − 1 = ci−1 + ki + 1
all nodes in the clique and possibly some nodes in the stable set according to
the rules of the next section. In general, some nodes in the stable set remain
unlabeled. Not used colors from ci−1 to ci − 1 will be inserted into a queue Q
together with the information that they have been enqueued by Pi.

If some nodes in Si remain uncolored, Pi is again queued in S together with
the information of the number of its uncolored nodes ui. The labeling of the
partially labeled pieces will be completed by the last part of the algorithm. Only
the crown and the first piece are immediately completely labeled.

The crown, if it is not the unique piece of G, is completely L′(2, 1)-labeled
while the first piece, independently from which piece it is, is completely L(2, 1)-
labeled since the nodes in its stable part are not extremes of any black edge.

In the next page, the whole L(2, 1)-labeling algorithm is detailed. Procedure
Recognize-Pieces(G, S, num) takes in input a unigraph G, recognizes its num
pieces Pi and put them in the queue S.

Theorem 3.1. Algorithm L(2, 1)-Label-Unigraphs correctly L(2, 1)-labels a
unigraph G in O(n) time.

Proof: The correctness of procedure Recognize-Pieces follows from [3]. We
will prove that the labeling found by the algorithm is feasible. Indeed, nodes
in VK are labeled with colors at mutual distance at least two. Moreover, each
node in VS cannot be colored with a color at distance ≤ 1 to the colors of all its
adjacent nodes (in VK) in view of the following three facts:

1. Each piece Pi is feasibly labeled according to Section 4;
2. The only L(2, 1)-labeled piece is the first one, since its nodes in the stable

part are not extreme of any black edge;
3. Each dequeued color d (enqueued by Pj) is used only for labeling nodes in

the stable part of piece Pi with i < j, so that black edges cannot join the node
labeled w with nodes labeled either w + 1 or w − 1.

In order to compute the time complexity, we have to add the contribution of
the following four actions: the recognition procedure – requiring O(n) time [3],
the labeling of P1, the partial labeling of each piece and the completion of the
labeling. In order to label each piece Pi with ni nodes we need O(ni) time.
Each piece Pi is enqueued in S at most twice, once when it is recognized and

62 T. Calamoneri and R. Petreschi

possibly a second time if it is only partially labeled. It follows that the algorithm,
without the recognition part, requires no more than

∑t
i=1 O(ni) = O(n) time;

consequently, the whole algorithm needs O(n) time.

ALGORITHM L(2, 1)-Label-Unigraphs
INPUT: a unigraph G by means of its boxes dm1

1 , . . . , dmr
r

OUTPUT: an L(2, 1)-labeling for G.
Initialize-QueueColors Q = ∅;
Recognize-Pieces(G,S,num);
PHASE 1.
REPEAT
DequeuePiece Pi from S;
Step 1 // P1 is completely L(2, 1)-labeled;
IF i = 1
THEN completely L(2, 1)-label P1;
ELSE
Step 2
IF Pi is a split component

THEN Partially L′(2, 1)-label Pi with new colors from ci−1 to ci−1 + ki + 1;
FOR EACH unused color d between ci−1 and ci−1 + ki + 1

EnqueueColor(d, Pi) in Q;
ci ← ci−1 + ki + 2;

IF Pi is partially L′(2, 1)-labeled and ui of its nodes are not labeled
THEN EnqueuePiece(Pi , ui) in S;

Step 3
IF Pi is a crown

THEN L′(2, 1)-label Pi with new colors starting from ci−1 ;
FOR EACH unused color u in the L′(2, 1)-labeling of the crown
EnqueueColor(d, Pi) in Q;

UNTIL(i = num);
PHASE 2.
REPEAT

DequeuePiece(Pi , ui) from S;
WHILE (ui > 0 AND Q �= ∅) DO
DequeueColor(d, Pj) from Q;
IF (j ≤ i)
THEN throw d out;
ELSE use d to L′(2, 1)-label one uncolored node in Pi;

decrease ui by 1;
IF Q = ∅
THEN L′(2, 1)-label the ui uncolored nodes of Pi with mi consecutive new colors

from
ci−1 to ci−1 + mi − 1;

UNTIL (S = ∅).

Theorem 3.2. Algorithm L(2, 1)−Label-Unigraphs has a performance ratio
of 3/2.

L(2,1)-Labeling of Unigraphs 63

Proof: The nodes of a unigraph are partitioned into three classes, VK , VS and VC .
Nodes of the clique induced by VK must be labeled with colors at mutual

distance at least two. Hence, 2|VK | − 1 colors are necessary in any labeling for
these nodes, but only |VK | of them are used to label VK . Due to the unigraph
structure, the VK − 1 remaining colors could be used for some nodes in VS but
not for the nodes in the crown, as each of them is connected to every node in
VK . For this reason, the nodes in VC must be at distance of at least two from
the colors used for VK . Hence the color successive to the maximum used for the
clique cannot be used for the crown, so one more color must be added.

Moreover, nodes in the crown induced by VC must all be different from each
other (except for the special case when the unigraph coincides with its crown).
Let |VC | + α, where 0 ≤ α ≤ |VC |/2 − 1, be the optimum number of colors
necessary for labeling these nodes. Among the |VC | + α colors, only |VC | are
really used, while α colors could be used for other nodes in VS .

As for nodes in VS , we have to distinguish whether they belong to P1 or not,
as only in the first case can some colors be repeated (cf. Section 4). Let us call β,
β ≤ |P1 ∩ S| the optimum number of colors necessary to label nodes of P1 ∩ VS

and S ′ the set of nodes in S not belonging to P1, i.e. S′ = S − {P1 ∩ S}.
In the worst case, algorithm L(2, 1)-Label-Unigraphs is not able to use colors

that remain unused after the coloring of VK and VC . So, the number of used colors
is upper bounded by 2|VK | − 1 + |VC | + α + 1 + β + |S ′|.

Let us now consider the optimum solution. We have to distinguish two cases
according to the fact that the number of colors not used in VK ∪ VC is sufficient
for labeling VS or not:

• If β + |S′| ≤ |VK |+ α, the number of colors used by the optimum solution is
lower bounded simply by 2|VK | − 1 + |VC | + α + 1.

• If, on the contrary, β + |S ′| > |VK | + α, we have to add |S ′| + β − |VK | − α
colors in order to obtain a lower bound for the optimum solution of 2|VK | −
1 + |VC | + α + 1 + (|S′| + β − |VK | − α)=|VK | + |VC | + |S ′| + β.

Now we compute the approximation ratio in the two cases, using as measure the
ratio between the number of colors used by our algorithm and the number of
colors used by the optimum solution, i.e. λ+1

λ∗+1
.

• If β + |S ′| ≤ |VK | + α then

λ + 1
λ∗ + 1

≤ 2|VK | + |VC | + |S′| + α + β

2|VK | + |VC | + α
≤ 1 +

|S′| + β

2|VK | + |VC | + α
≤ 3

2
.

• If β + |S ′| > |VK | + α then

λ + 1
λ∗ + 1

≤ 2|VK | + |VC | + |S′| + α + β

|VK | + |VC | + |S′| + β
≤ 1 +

|VK | + α

|VK | + |VC | + |S′| + β
≤ 3

2
.

Observe that when the unigraph is constituted only by its crown our algorithm
provides the optimum labeling.

64 T. Calamoneri and R. Petreschi

4 Labeling of the Crown and of the Pieces

The algorithm presented in the previous section works by coloring the single
pieces according to their own strucure. Due to the lack of space, here we have
not sufficient room for showing the labeling of all the pieces. So we choose to
detail the L′(2, 1)-label and the L(2, 1)-label of the graphs S2(p1, q1; . . . ; pt, qt)
(and their complement, their inverse, and the inverse of their complement) for
showing the used tecniques. For the other pieces only some figures with the right
colors are presented here while the proofs are omitted due to lack of space.

We underline that, from now on, in the figures, when we depict complement
and inverse graphs, we omit to draw all the edges, except the absent ones, repre-
sented by dotted lines. Moreover, the unused colors are highlighted in a queue.

We recall that our algorithm requires each split piece Pi (S2, S3 and S4) to
be colored using colors at mutual distance at least two in the clique part and
that ki is the larger color used for labeling the clique part of Pi.

For what concerns the stable part, we have to distinguish two cases, according
to the fact that Pi is the first piece in the linear ordering. Only colors in the
stable part of P1 can be eventually repeated.

Lemma 4.1. Let G be a unigraph. If one of its pieces Pi, i > 1, is

• S2(p1, q1; . . . ; pt, qt) then it can be optimally L′(2, 1)-labeled with
∑t

i=1(pi +
1)qi consecutive colors;

• S2(p1, q1; . . . ; pt, qt)
I

then it can be optimally L′(2, 1)-labeled with
∑t

i=1(pi +
1)qi colors; if q1 > 2 and p1 = 1 then it can be optimally L′(2, 1)-labeled with∑t

i=1(pi + 1)qi + �q1/2� colors and �q1/2� of them remain unused;
• S2(p1, q1; . . . ; pt, qt) then it can be optimally L′(2, 1)-labeled with 2

∑t
i=1 piqi−

1 colors and
∑t

i=1 qi(pi − 1) − 1of them remain unused; if p1 = 1 then both
the number of used and unused colors must be incremented by �q1/2�;

• S2(p1, q1; . . . ; pt, qt)I then it can be optimally L′(2, 1)-labeled with 2
∑t

i=1 piqi−
1 colors and

∑t
i=1 qi(pi−1)−1of them remain unused; if t = 1 and q1 = 1 then

it can be optimally L′(2, 1)-labeled with 2p1 + 1 colors and p1 of them remain
unused.

Proof: For the
∑t

i=1 qi centers of the stars of S2, that are connected in a clique,
2

∑t
i=1 qi − 1 colors are necessary, and

∑t
i=1 qi − 1 of them are unused. Let U

be the set of these unused colors. Colors from U are assigned to the leaves of
each star taking into account to avoid those colors at distance one from the
color assigned to the center (see Figure 4.a). In order to complete the labeling,
further

∑t
i=1(pi − 1)qi + 1 consecutive colors will be necessary. The number of

used colors is hence
∑t

i=1 piqi +
∑t

i=1 qi, that is exactly the number of nodes of
S2. Observe that, if

∑t
i=1 qi = 2, in order not to discard any color, the nodes in

the clique must be labeled with a different rule (see Figure 4.b). Indeed, if the
clique was labeled with 0 and 2, color 1 would be discarded.

For what concerns S2
I
, again a number of colors equal to the number of nodes

is necessary and sufficient, but the labeling must be performed in the following

L(2,1)-Labeling of Unigraphs 65

way: label the first of the pi leaves of each star with the first available color c;
label the center of the star with color c+1, and the remaining pi −1 leaves with
colors c + 2, . . . , c + pi (see Figure 4.c). This method works if p1 ≥ 2. But, if it
holds that q1 > 2 and p1 = 1, then the first q1 stars constitute a matching and
more colors are necessary. Namely, for each color g assigned to a node of the
matching in the clique, both g − 1 and g + 1 cannot be assigned to any node in
the clique and to any node in the stable set, except its mate; hence one between
g − 1 and g + 1 must remain unused (see Figure 4.d).

It is easy to see that for labeling S2(p1, q1; . . . ; pt, qt) and S2(p1, q1; . . . ; pt, qt)I ,
2

∑t
i=1 piqi − 1 colors are always necessary and sufficient. Indeed, they are nec-

essary for L′(2, 1)-labeling the clique containing all the leaves of the stars, and
each center of a star may be colored with one of the colors unused during
the labeling of the leaves opportunely chosen (see Figure 4.e). It follows that∑t

i=1 qi(pi − 1) − 1 colors remain unused. Observe that if p1 = 1 in S2, ar-
guments similar to those explained for S2 can be used, and the thesis follows.
Finally, if t = 1 and q1 = 1 in SI

2 , 2 colors more are needed since SI
2 is a clique

with p + 1 nodes.

Let us now consider the L(2, 1)-labeling of the pieces of kind S2. If t > 2, the struc-
ture of S2 and SI

2 is such that they cannot be labeled with repetitions as they have
diameter two. On the contrary, when t = 2 the centers of the stars are at distance
greater than two. Since S2 is a diameter 2 graph, if

∑t
i=1 qi > 2, hence there is no

difference between the L(2, 1)- and L′(2, 1)-labelings. Furthermore, if
∑t

i=1 qi = 2,
then the centers of the two stars are at distance three, but there is no way to as-
sign them the same color using the minimum number of colors. For what concerns
SI

2 , the number of used colors is the same as in the case without repetitions, as the
maximum number of necessary colors is given by the clique part, but some colors
can be replicated in the stable part, hence

∑t
i=1 piqi − 3 colors remain unused. SI

2

is a diamenter 2 graph, when
∑t

i=1 qi > 2 and hence its L(2, 1)-labeling coincides
with its L′(2, 1)-labeling. If

∑t
i=1 qi = 2, SI

2 coincides with S2.

0 2 4

3 5 6 7 1 8 9 10 1 5 9

0 2 4 6 8 10 12 14

a. b. c. d. e.

3

7

11

13

4 0

1 2 3

4

9

0 3 5 8 10 13

1 2 6 7 1112 14

1 4 7

0 2 3 5 6 8 9 10

Fig. 4. Optimal L′(2, 1)-labelings of: a. S2(2, 2; 4, 1); b. S2(1, 1; 2, 1); c. SI
2 (2, 2; 4, 1); d.

SI
2(1, 5; 2, 1); e. S2(2, 2; 4, 1)

Hence, in order to study the L(2, 1)-labeling of S2(p1, q1; . . . ; pt, qt) (and their
complement, their inverse, and the inverse of their complement), it is enough to
prove the following result.

66 T. Calamoneri and R. Petreschi

2 4 6 9 0

5 7 1 7 1 3 1 3 5 7 3 5 7 8

a. b. c.

2 4 6 8 10 0

 5 7 1 7 1 3 9 1 3 5 1 3 5 3 5 7

3 5 7 9 0

6 8 2 8 2 4 1 2 4 6 2 4 6

Fig. 5. Optimal L(2, 1)-labelings of: a. S2(2, 3; 4, 2); b. S3(2, 3; 3); c. S3(2, 3; 2)

a. b. c. d.

0 3 6 9

1 4 7 10

0 1 2 3

4 5 6 7

2

5

8

1 2 3 4 0

 5 6 7 8 9 10 11

6 9 12 15 1

 7 10 13 16 0 2 4

3

5

8

11

14

Fig. 6. Optimal L′(2, 1)-labeling of: a. a 4K2; b. a 4K2 (L(2, 1)- and L′(2, 1)-labeling
coincide); c. a U2(4, 3); d. U2(4, 3) (L(2, 1)- and L′(2, 1)-labelings coincide)

Lemma 4.2. Let G be a unigraph. If its first split piece P1 is S2(p1, q1; . . . ; pt, qt)
then it can be optimally L(2, 1)-labeled with (2

∑t
i=1 qi − 1) + max{0, pt + x −

(
∑t

i=1 qi − 1)} colors, where x = 1 if qt ≤ 2 and x = 2 otherwise.

Proof: S2 is composed by stars whose
∑t

i=1 qi centers are connected in a clique.
So, at least 2

∑t
i=1 qi − 1 colors are necessary. The first color must be assigned

to one among the qt centers of the maximum size stars. Each time two distance
2 colors are assigned in the clique, the color in between remains unused. All such
colors can be opportunely assigned to some nodes in the stable part, possibly
many times, paying attention that no leaf of a center of a star labeled c takes
label c − 1 or c + 1. Observe that the pi leaves of each star must receive all
different colors, as they are at mutual distance two. Consider now the qt stars of
maximum size pt. If the unused colors are not enough to label its leaves, some
colors must be added. Their number is pt − (

∑t
i=1 qi − 2) if qt ≤ 2 (indeed at

most one unused color must be discarded, see Figure 5.a) and is one color more
if qt ≥ 3. Finally, if pt is sufficiently small, the unused colors are enough to
label all the leaves of the maximum size stars and then no other colors must be
added.

We conclude this work by showing some figures (from 5.b to 9.b) that present
optimal labelings of the further pieces listed in Theorem 2.1. The complete the-
orems and proofs are omitted in this extended abstract due to lack of space.

L(2,1)-Labeling of Unigraphs 67

2 3 4

5 6 7

0

8

9

1

0 3 6

1 4 7

2

9

11

10

a. b.

5

8

Fig. 7. Optimal L′(2, 1)-labelings of: a. U3(3); b. U3(3)

0 2 4

3 6 5 7 8 1 9 10

4 6 0 2

 7 8 3 9 1 5 10 11 1 5 3 11

 0 2 4 6 8 10 12 14

a. b. c. d.

1 13 3 7 11

 0 2 4 6 8 10 12

5

v v

u v

u

v

u

9

7

9

13

Fig. 8. Optimal L′(2, 1)-labelings of: a. S3(2, 2; 1); b. S4(2, 1); c. S4(2, 1); d. S4(1, 2)

0 0 0 0

2 2 2 2

1

0 0 0 0 0

2 2 2 2 2 3 4

1

a. b.

Fig. 9. Optimal L(2, 1)-labelings of: a. 4K2; b. U2(4, 3)

References

[1] Araki, T.: Labeling bipartite permutation graphs with a condition at distance
two. Discrete Applied Mathematics 157(8), 1677–1686 (2009)

[2] Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: λ-Coloring of Graphs. In:
Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395–406. Springer,
Heidelberg (2000)

[3] Borri, A., Calamoneri, T., Petreschi, R.: Recognition of Unigraphs through Su-
perposition of Graphs. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS,
vol. 5431, pp. 165–176. Springer, Heidelberg (2009)

[4] Calamoneri, T., Caminiti, S., Olariu, S., Petreschi, R.: On the L(h,k)-labeling
Co-Comparability graphs and Circular-Arc graphs. Networks 53(1), 27–34 (2009)

[5] Calamoneri, T.: The L(h, k)-Labelling Problem: A Survey and Annotated Bibli-
ography. The Computer Journal 49(5), 585–608 (2006)

[6] Calamoneri, T., Petreschi, R.: Lambda-Coloring Matrogenic Graphs. Discrete
Applied Mathematics 154, 2445–2457 (2006)

68 T. Calamoneri and R. Petreschi

[7] Calamoneri, T., Petreschi, R.: L(h, 1)-Labeling Subclasses of Planar Graphs.
Journal on Parallel and Distributed Computing 64(3), 414–426 (2004)

[8] Cerioli, M., Posner, D.: On L(2, 1)-coloring P4 tidy graphs. In: 8th French
Combinatorial Conference (2010)

[9] Chang, G.J., Kuo, D.: The L(2,1)-labeling Problem on Graphs. SIAM J. Disc.
Math. 9, 309–316 (1996)

[10] Fiala, J., Kloks, T., Kratochv́ıl, J.: Fixed-parameter Complexity of λ-Labelings.
In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp.
350–363. Springer, Heidelberg (1999)

[11] Griggs, J.R., Yeh, R.K.: Labeling graphs with a Condition at Distance 2. SIAM
J. Disc. Math. 5, 586–595 (1992)

[12] Li, S.Y.: Graphic sequences with unique realization. Journal Comb. Theory,
B 19(1), 42–68 (1975)

[13] Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Ann.
Discrete Math. 56 (1995)

[14] Sakai, D.: Labeling Chordal Graphs: Distance Two Condition. SIAM J. Disc.
Math. 7, 133–140 (1994)

Energy-Efficient Due Date Scheduling

Ho-Leung Chan, Tak-Wah Lam, and Rongbin Li

The University of Hong Kong, Pokfulam Road, Hong Kong
{hlchan,twlam,rbli}@cs.hku.hk

Abstract. This paper considers several online scheduling problems that
arise from companies with made-to-order products. Jobs, which are prod-
uct requests, arrive online with different sizes and weights. A company
needs to assign a due date for each job once it arrives, and complete the
job by this due date. The (weighted) quoted lead time of a job equals
its due date minus its arrival time, multiplied by its weight. We focus on
companies that mainly rely on computers for production. In those com-
panies, energy cost is a large concern. For most modern processors, its
rate of energy usage equals sα, where s is the current speed and α > 1 is
a constant. Hence, reducing the processing speed can reduce the rate of
energy usage. Algorithms are needed to optimize the (weighted) quoted
lead time (for better user experience) and the energy usage (for a smaller
energy cost).

We propose an algorithm which is 4((log k)α−1 + α
α−1

)-competitive
for minimizing the sum of the quoted lead time and energy usage, where
k is the ratio between the maximum to minimum job density. Here, the
density of a job equals its weight divided by its size. We also consider the
setting where we may discard a job by paying a penalty, and the setting
of scheduling on a multiprocessor. We propose competitive algorithms
for both settings.

1 Introduction

This paper considers several online scheduling problems that arise from compa-
nies with made-to-order products. Given a request from a user, the most simple
response is to ask the user to wait until the product is ready. Yet, to improve
the user experience, some companies will reply immediately for each request a
guaranteed completion time, which is called the due date of the request. The
company must complete the request by the due date. Such a guarantee gives a
competitive advantage to the companies. For example, Atlas Door is a company
specializing on industrial doors. It replies to each request immediately with a
due date while most of its competitors need at least one week before know-
ing when the request can be served. Such an advantage allows Atlas door to
serve more urgent requests and charge a higher rate. Hence, in ten short years,
Atlas Door grew from a small startup to the largest door supplier in USA [13].
Other successful examples of due date usage include National Bicycle and Lutron
Electronics [9].

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 69–80, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

70 H.-L. Chan, T.-W. Lam, and R. Li

It is natural to assume that different user requests have different degrees of
importance or different weights. Let the (weighted) quoted lead time of a request
be the length of time between its arrival time and its due date, multiplied by its
weight. One of the most obvious objective is to minimize the average quoted lead
time. The problem is non-trivial as the due date of a job cannot be changed. For
example, if a large job arrives, setting it a large due date may be bad immediately,
yet setting it a small due date may prevent the algorithm from processing some
new and small jobs immediately.

In this paper, we are particularly interested in companies whose produc-
tion mainly involves large scale computing facilities, for example, bioinformatic
servers for genome comparison and rendering companies for outsourced graphical
processing. Energy efficiency has become a major concern for these companies,
since the cost for powering the servers and cooling them has increased dra-
matically. In fact, the energy cost of running a server for one year exceeds the
hardware cost of the server [7]. To reduce energy usage, one of the major method
is called dynamic speed scaling, where the speed of a processor can be changed
dynamically by the operating system depending on the current workload of the
system. Running at a slow speed reduces the rate of energy usage. For CMOS
based systems, the rate of energy usage can be modeled as sα, where s is the
current speed of the processor and α is approximately 3 due to the physical
properties. Hence, those companies are faced with the following questions.

– How to set the due date of each job to provide good average quoted lead
time?

– How to set the speed of the processor to reduce energy usage?
– How to schedule the requests so that each can be completed by its due date?

This paper aims at giving a provably good solution to the above questions.
We consider the following formal model. We have a single processor which

can run at any speed between [0,∞). When running at speed s, the rate of
energy usage is P (s) = sα, where α > 1 is a constant. We call P (s) the power
function. Jobs are coming online. For each job j, we denote its arrival time, size
and weight as r(j), p(j) and w(j), respectively, which are known once the job
arrives. Preemption is allowed and free. Once a job j arrives, we need to assign
it a due date d(j). We guarantee to complete each job by its due date. The
(weighted) quoted lead time of j, denoted by �(j), equals w(j) · (d(j)− r(j)). The
weighted flow time of j, denoted by f(j), equals w(j) · (e(j) − r(j)), where e(j)
denotes the completion time of j (note that e(j) ≤ d(j)). Let s(t) be the speed
of the processor at time t. Then the total energy usage equals

∫ ∞
0

(s(t))αdt. The
objective is to minimize the total (weighted) quoted lead time of all jobs plus
the total energy usage, i.e. min

∑
j �(j)+

∫ ∞
0

(s(t))αdt. We analyse an algorithm
by competitive analysis. Let Opt be the optimal offline algorithm that always
minimizes the total cost. An algorithm is said to be c-competitive if for any
sequence of jobs, its total cost is at most c times that of Opt.

Our results. We give an algorithm that is 4((log k)α−1 + α
α−1

)-competitive for
minimizing the total (weighted) quoted lead time plus the energy usage, where

Energy-Efficient Due Date Scheduling 71

k is the ratio of the maximum to the minimum density. Here, the density of a
job j equals w(j)/p(j).

We also extend our study in two directions. First, we consider a system where
the algorithm may choose to discard some jobs. In that case, each job j is
associated with a penalty c(j). When a job arrives, the algorithm needs to de-
cide whether to admit the jobs or discard it immediately. If a job is admitted,
the algorithm needs to assign it a due date. Let Ia and Ir be the set of jobs
admitted and discarded, respectively. The objective is to minimize the total
(weighted) quoted lead time for jobs admitted plus total penalty for jobs dis-
carded plus the total energy usage. For this problem, we give an algorithm that
is O(α2((log k)α−1 + α

α−1))-competitive.
Second, we consider multiprocessor scheduling. We consider a system with

m heterogeneous processors. For the i-th processors, its rate of energy usage is
sαi when running at speed s, where αi > 1 is a constant that may be different
between different processors. Let si(t) be the speed of the i-th processor at time t.
Then the total energy usage is

∑m
i=1

∫ ∞
0 (si(t))αdt. Migration is not allowed, i.e.

once a job is assigned to a processor, it can not be proceeded on other processors.
The objective is to minimize the total quoted lead time of all jobs plus the total
energy usage. Interestingly, we again give an algorithm that is O(α2((log k)α−1+

α
α−1

))-competitive, although this algorithm is not related to the previous one.
Due to the limited space, we leave the result of the multiprocessor setting to the
full paper.

Related work. Due date scheduling has been studied quite extensively by the
operation research community. See [11] and [12] and the references therein. To
the best of our knowledge, all these previous work are based on experimental
evaluation, stochastic analysis or analysed with queuing theory. The only work
with worst case analysis is [4]. In fact, this is the first work proposing the study
of due date scheduling in a competitive analysis setting. They consider a proces-
sor with a fixed speed and does not have energy concern. The objective is simply
minimizing the total quoted lead time. They observe that for any algorithm, the
competitive ratio is not bounded by any parameter. Hence, they consider the
resource augmentation setting where the online algorithm is given a processor
that is slightly faster than Opt. They show that by giving an algorithm a pro-
cessor that is (1 + ε) times faster, it can be O(log k

ε2)-competitive. Our work is
largely motivated by [4].

Energy efficient scheduling is first proposed by [14] and a significant amount
of work has been done in the last few years. We refer the readers to [1] for a
recent survey. Here we only mention the most related work. [2] proposed studying
energy-efficient flow time scheduling on a single processor. The objective is to
minimize the total unweighted flow time plus energy. They show that for unit-
size job, there is a batch algorithm that is O((3+

√
5

2
)α)-competitive. A number

of improvements have been obtained [5, 6] and finally [3] gives a 2-competitive
algorithm for jobs with arbitrary size. For minimizing the weighted flow time
plus energy, the currently best result is an O(α

log α
)-competitive algorithm [5].

72 H.-L. Chan, T.-W. Lam, and R. Li

2 Minimizing (Weighted) Quoted Lead Time Plus Energy

For each job j, denote the density of j by u(j), i.e. u(j) = w(j)/p(j). Note that
the offline optimal algorithm for minimizing total weighted quoted lead time plus
energy always sets the due date of each job to be its completion time, hence, this
algorithm is also the offline optimal algorithm for minimizing the total weighted
flow time plus energy. Therefore, we can use one Opt to denotes both algorithms.
We first restrict ourselves to the job instances in which all jobs have uniform
weight density, and later, we generalize the result to arbitrary job instances.

2.1 Uniform Weight Density

Suppose, in this subsection, every job has the uniform weight density. We will
show an online algorithm that can achieve 2(1+ α

α−1)-competitive for minimizing
energy plus weighted quoted lead time in this restricted case. First, we introduce
some notations. Suppose X is an algorithm, let E(X) be the energy usage of X ,
F (X) be the total weighted flow time of X , L(X) be the total (weighted) quoted
lead time of X , and cost(X) be the total cost of X , i.e., cost(X) = E(X)+L(X).

At any time, if a job j is unfinished, we call j a remaining job or an active
job at this time. Roughly speaking, the idea of our algorithm is that, we first
consider a similar objective of minimizing E+F (recall that Opt is also the offline
optimal algorithm for minimizing E + F). We use notation FCFS+AJW (FCFS
is short for First Come First Serve and AJW is short for Active Jobs Weight) to
denote the algorithm that at any time schedules the remaining job (active job)
with the earliest release time, and run at the speed such that the power (i.e. the
rate of energy usage) is equal to the sum of weights of all remaining jobs. Lemma
1 following shows that algorithm FCFS+AJW is 4-competitive for minimizing
E + F when all jobs have uniform weight density. This can be obtained directly,
by shrinking time, from the result in [6] which works for jobs with unit weight
density. Next, we transfer the objective to that of minimizing E + L, whose
optimal is also Opt. We still schedule jobs by FCFS+AJW, but now, we should
set due date for each job when it arrives. Actually, we can design a due date
setting strategy such that each job is guaranteed to be completed by its due
date (in the schedule of FCFS+AJW) and the total weighted quoted lead time
generated by this strategy is at most constant times of the total weighted flow
time generated by FCFS+AJW. Using the fact that F (Opt) = L(Opt), we can
conclude that our algorithm is O(1)-competitive for minimizing E + L when all
jobs have uniform weight density.

Lemma 1 (Extension of [6]). Assume that all jobs have uniform weight den-
sity, algorithm FCFS+AJW is 4-competitive for minimizing energy plus weighted
flow time.

Next, we define the online algorithm SA (simple A) for the objective of mini-
mizing energy plus weighted quoted lead time.

Energy-Efficient Due Date Scheduling 73

Algorithm SA
– Job execution. Using FCFS+AJW to schedule jobs, namely, at any

time t, schedule the remaining job (active job) with the earliest re-
lease time at speed s(t) such that the power P (s(t)) (i.e. s(t)α) equals
the sum of weights of all remaining jobs at time t.

– Due date setting. When a job j arrives, set due date of j to be the
completion time of j under the schedule of FCFS+AJW, assuming
that no jobs will arrive after j.

Note that, SA is well defined even for job instance in which different jobs have
different weight density. By its definition, each arrival of a job can only increase
the speed of every remaining jobs, hence SA can completes every jobs by its
due date. The weighted quoted lead time of SA can be upper bounded by the
weighted flow time of SA via the following important technical lemma.

Lemma 2. For any job instance (including the ones that different jobs have
different weight densities), the total weighted quoted lead time of SA is at most

α
α−1

times of the total weighted flow time of SA, i.e. L(SA) ≤ α
α−1

F (SA).

In order to prove Lemma 2, we need some notations first. Suppose that the job
instance consist of N jobs, j1, j2, . . . , jN . For simplicity, let ri = r(ji), pi = p(ji)
and wi = w(ji). W.L.O.G. we assume that r1 ≤ r2 ≤ ... ≤ rN . Next, we will
introduce a definition, called expected weighted flow time of a job (under SA
schedule), as follows: At any time t, for each job ji, if ji is completed by time t,
the expected weighted flow time of ji at time t is defined as the true weighted
flow time contributed by ji, i.e. wi(ei − ri), where ei denotes the completion
time of ji under SA schedule; otherwise, i.e. ji is not completed at time t, then
the expected weighted flow time of ji at time t is defined as the weighted flow
time contributed by ji after ji is completed under SA schedule in the future,
assuming that no new job arrive after t. For each n(1 ≤ n ≤ N), let f (n)(ji)
(1 ≤ i ≤ n) be the expected weighted flow time of ji at time rn (i.e. the time
that jn arrives). By the definition of SA, we can easy obtain the following facts.

– Fact 1. At time rn(1 ≤ n ≤ N) (i.e. the time that jn arrives), the weighted
quoted lead time of jn is set to be the excepted weighted flow time of jn, i.e.
�(jn) = f (n)(jn).

– Fact 2. For any 1 ≤ n ≤ N , during the time interval [rn, rn+1) (let rN+1 =
∞), the expected weighted flow time of any job ji (1 ≤ i ≤ n) is always
f (n)(ji).

– Fact 3. For each job ji, f (N)(ji) is equal to the weighted flow time con-
tributed by ji under SA schedule.

– Fact 4. For each job ji, once it is completed, its expected weighted flow time
can not be changed.

By Fact 3, in order to prove Lemma 2, it is equivalent to show that

N∑

i=1

�(ji) ≤ α

α − 1

N∑

i=1

f (N)(ji) (1)

74 H.-L. Chan, T.-W. Lam, and R. Li

Further, it is sufficient to prove the following lemma.

Lemma 3. For any 1 ≤ n ≤ N ,
∑n

i=1 �(ji) ≤ α
α−1

∑n
i=1 f (n)(ji)

Proof. We prove Lemma 3 by induction on n.

Basis. When n = 1, by Fact 1, the left hand side of the inequality in Lemma 3
is �(j1) = f (1)(j1) ≤ α

α−1f (1)(j1), the last term is exactly the right hand size of
the inequality.

Inductive assumption. Assume that Lemma 3 is holds for some n ≥ 1, i.e.∑n
i=1 �(ji) ≤ α

α−1

∑n
i=1 f (n)(ji). Following, we will show that it also holds for

n + 1.
We investigate the value of each job’s expected weighted flow time just before

and just after jn+1’s arrival. Just before jn+1’s arrival (i.e. just before time
rn+1), suppose there are exactly m(m ≤ n) remaining jobs. Since SA schedule
jobs using FCFS, these m remaining jobs must be jn−m+1, jn−m+2, . . . jn. For
simplicity, denote j′i = jn−m+i (hence, j′m+1 = jn+1), r′i = rn−m+i, p′i = pn−m+i

and w′
i = wn−m+i. In addition, let q′i be the remaining size of job j′i at time rn+1

(so, q′1 ≤ p′1 and q′i = p′i for 2 ≤ i ≤ m + 1). Let ai be the weighted flow time
accumulated by j′i from its release time to time rn+1, i.e. ai = w′

i(rn+1 − r′i).
By Fact 2, just before jn+1 = j′m+1’s arrival, the expected weighted flow time of
j′i(1 ≤ i ≤ m) are

f (n)(j′i) = ai + w′
i

(
i∑

k=1

q′k
(w′

k + w′
k+1 + · · · + w′

m)1/α

)

(1 ≤ i ≤ m) (2)

It follows that,
m∑

i=1

f (n)(j′i) =
m∑

i=1

ai +
m∑

i=1

q′i(w
′
i + · · · + w′

m)1−1/α (3)

Just after jn+1 = j′m+1’s arrival, the expected weighted flow time of j′i(1 ≤ i ≤
m + 1) are

f (n+1)(j′i) = ai+ w′
i

(
i∑

k=1

q′k
(w′

k + w′
k+1 + · · · + w′

m+1)1/α

)

(1 ≤ i ≤ m)(4)

f (n+1)(j′m+1) = w′
m+1

(
m+1∑

k=1

q′k
(w′

k + w′
k+1 + · · · + w′

m+1)1/α

)

(5)

It follow that
m+1∑

i=1

f (n+1)(j′i) =
m∑

i=1

ai +
m+1∑

i=1

q′i(w
′
i + · · · + w′

m+1)
1−1/α (6)

If follows from equations (3) and (6) that,

��
���

� �������� �

����
���

� �����������

����
���

���

�
���

� $ � � �$ ��

����
�����

� ���

� $ � � �$ ��

��
�����

�
(7)

where in (7) and the following, we define w′
i + · · · + w′

m = 0 if i > m.

Energy-Efficient Due Date Scheduling 75

Recall that j′i = jn−m+i (1 ≤ i ≤ m+1), and by Fact 4, for all 1 ≤ i ≤ n−m,
f (n)(ji) = f (n+1)(ji), hence,

n+1∑

i=1

�(ji) =
n∑

i=1

�(ji) + f (n+1)(jn+1) (by Fact 1)

≤ α

α − 1

(
n∑

i=1

f (n)(ji)

)

+ f (n+1)(jn+1)

=
α

α − 1

(
n−m∑

i=1

f (n+1)(ji) +
m∑

i=1

f (n)(j′i)

)

+ f (n+1)(jn+1) (8)

where the inequality is due to the inductive assumption. Putting (7) into (8),
obtain
����
���

����	 �
	

	� �

�
����
���

� ��������	�

����
���

��

�
���

� � � � � ��

���	
�����

� ���

� � � � �� ��

�	
�����

��

�� ����������	 (9)
Hence, in order to prove Lemma 3 is also holds for n + 1, it is sufficient to show
that

� ����������	 �
	

	� �

����
���

��

�
���

� � � � � ��

���	
�����

� ���

� � � � �� ��

�	
�����

�
(10)

Recall again that jn+1 = j′m+1. Together with (5), it is sufficient to show that
for any i(1 ≤ i ≤ m + 1),

��

�����
�

��� � ���
�

���	
����

�
	

	� �

�
���

� � � � �� ��

���	
�����

� ���

� � � � �� ��

�	
�����

�
(11)

Inequality (11) holds, since for any differentiable and concave function f(x),
inequality f(x2) − f(x1) ≥ (x2 − x1)f ′(x2) holds for any x1, x2 in the domain
of f(x), where f ′(x) denotes the derivative of f(x). Replace the function f(x)
by x1−1/α (note that for α > 1, x1−1/α is a differentiable and concave function),
replace x1 by (w′

i + . . . w′
m) and replace x2 by (w′

i + . . . w′
m+1), inequality (11)

follows immediately.
Therefore Lemma 3 also holds for n + 1, which completes the proof.

Theorem 1. Assume that all jobs have uniform weight density, algorithm SA
is 2(1 + α

α−1
)-competitive for minimizing energy plus weighted quoted lead time.

Proof. First note that the schedule of SA and FCFS+AJW are total the same,
i.e. at any time, these two algorithms schedule the same job at the same speed
(actually, SA is FCFS+AJW plus a due date setting strategy). Hence, by the
definition of FCFS+AJW, E(SA) = F (SA). Together with Lemma 1, it is easy
to see that F (SA) ≤ 2 (E(Opt)+F (Opt)) = 2(E(Opt)+L(Opt)). It follows that
E(SA) + L(SA) = F (SA) + L(SA) ≤ (1 + α

α−1
)F (SA) ≤ 2(1 + α

α−1
)(E(Opt) +

L(Opt)), where the first inequality is due to Lemma 2.

76 H.-L. Chan, T.-W. Lam, and R. Li

2.2 Arbitrary Weight Density

Next, we generalize our result to job instances with arbitrary weight density.
W.L.O.G. we assume that each job’s weight density is in a set {u1, u2, . . . , um},
where m is the number of different weight densities and the value of m is unnec-
essary to be known in advanced. (For job instance with arbitrary weight density,
we can round up the weight of each job by a factor at most 2, such that each
job’s weight density is a power of two, and finally there are at most log k differ-
ent weight densities, where k is the ratio of the maximum weight density to the
minimum weight density. By dong this, we lose competitive ratio to a factor at
most 2). We design an online algorithm A as follows.

Algorithm A
– A divides jobs into m classes so that each class consists of jobs with

same weight density. Let Ci denotes the class of jobs with weight
density ui.

– A divides its processing power into classes by time-sharing, and in
each class, schedules jobs (of this class) and sets due dates the same
as algorithm SA. In other words, let SAi be the simulated algorithm
for class Ci (1 ≤ i ≤ m). At any time, A processes all jobs which are
being processed by SAi’s (1 ≤ i ≤ m) by time-sharing, and its speed
is the sum of speeds of all SAi’s ((1 ≤ i ≤ m). For any job j in class
Ci, A and SAi set the same due date for j.

Since SA meets due date for each job, so does A. The following theorem gives
A’s performance.

Theorem 2. Algorithm A is 2(mα−1 + α
α−1)-competitive for minimizing en-

ergy plus weighted quoted lead time, where m is the number of different weight
densities.

In order to prove this theorem, we need some notations. For any algorithm X and
any job instance S, let E(X, S) and F (X, S), respectively, be the total energy
usage and total weight flow time of algorithm X for input S. These is a similar
meaning for notation L(X, S) and cost(X, S), respectively. Let I be the whole
job instance, hence, I = C1 ∪ C2 ∪ · · · ∪ Cm. We first introduce the famous
Hölder’s inequality which will be used later.

Lemma 4 (Hölder’s inequality). For any p, q (1 < p < ∞, 1
p

+ 1
q

= 1),

inequality
∑n

k=1 |xkyk| ≤ (
∑n

k=1 |xk|p)1/p · (∑n
k=1 |yk|q)1/q holds for all xk, yk ∈

R (k = 1..n).

Next, we bound the energy usage of A by the following lemma.

Lemma 5. E(A, I) ≤ mα−1
∑m

i=1 E(SA, Ci).

Proof. At any time t, let s(t) be the speed of A, and let si(t) be the speed of
SA on Ci. By the definition of A, s(t) =

∑m
i=1 si(t). In Hölder’s inequality, by

Energy-Efficient Due Date Scheduling 77

setting yk = 1(k = 1..n), we obtain (
∑n

k=1 |xk|)p ≤ np−1 (
∑n

k=1 |xk|p). In this
inequality, replacing n by m, p by α, and xk by sk(t), we can obtain (s(t))α =
(
∑m

i=1 si(t))α ≤ mα−1
∑m

i=1(si(t))α. Note that (s(t))α is the power of A at time
t, and (si(t))α (1 ≤ i ≤ m) is the power of SA for Ci at time t. Hence, by
integrating the last inequality over time, Lemma 5 follows immediately.

Now, we prove Theorem 2.

Proof (Proof of Theorem 2).

cost(A, I) = E(A, I) + L(A, I)

≤ mα−1
m∑

i=1

E(SA, Ci) +
m∑

i=1

L(SA, Ci) (Lemma 5)

≤ mα−1
m∑

i=1

E(SA, Ci) +
α

α − 1

m∑

i=1

F (SA, Ci) (Lemma 2)

=
(

mα−1 +
α

α − 1

) m∑

i=1

F (SA, Ci) (since E(SA, Ci) = F (SA, Ci))

≤ 2
(

mα−1+
α

α − 1

) m∑

i=1

cost(Opt, Ci)≤ 2
(

mα−1+
α

α − 1

)

cost(Opt, I)

The second last inequality holds since in the proof of Theorem 1, we show that
F (SA) ≤ 2 cost(Opt) for any job instance with uniform weight density. The last
inequality holds since the Opt’s cost on the union of disjointed job instances is
at least the sum of Opt’s cost on all individual job instances.

As we have mentioned earlier, for arbitrary job instance, we can round up the
weight of each job by a factor at most 2 such that the weight densities of all jobs
fall into log k different classes, where k is the ratio between the maximum and
minimum density, and lose competitive ratio at most 2 times. Therefore,

Theorem 3. For arbitrary job instance, algorithm A is 4
(
(log k)α−1 + α

α−1

)
-

competitive for minimizing energy plus weighted quoted lead time.

3 Setting with Admission Control

This section considers the setting with admission control. Recall that in this
setting, a job is allowed to be rejected exactly at the time that it arrives, and
the objective is to minimize E +

∑
j∈Ia

�(j)+
∑

j∈Ir
c(j), where E is the energy

usage, Ia is the set of jobs admitted and Ir is the set of jobs rejected, and c(j)
is the penalty of job j.

Let X be any algorithm, the meaning of E(X), F (X), L(X) is as before. In
addition, let penalty of X be the sum of the penalties of the jobs rejected by X,

78 H.-L. Chan, T.-W. Lam, and R. Li

and denoted it by R(X). Let cost′(X) denotes the total cost of X , i.e. cost′(X) =
E(X)+L(X)+R(X). Like No-admission-control model, our idea is first consider
the objective of min E + F + R, and then transfer the result to the objective
of min E + L + R. The following algorithm HDF-AC∗(ε) proposed by [8] is a
competitive algorithm for the objective of min E + F + R1:

Algorithm HDF-AC∗(ε) (ε is a parameter)
– HDF-AC∗(ε) simulates an algorithm called HDF-AC(ε), whose ac-

tion is as follows: HDF-AC(ε) runs on a (1 + ε)-speedup processor2.
It schedules job by HDF (Highest Density First), and at any time its
power is equal to the sum of fractional weights3 of remaining jobs.
When a job j arrives, if the increasing in the total fractional weighted
flow to serve the remaining jobs (assuming j is admitted) is at most
the penalty of j, admits j; otherwise, discards j forever.

– HDF-AC∗(ε) does the same job admission as HDF-AC(ε), and also
uses HDF to schedule its admitted jobs. At any time, its speed is
exactly (1 + ε) times of the speed of HDF-AC(ε).

[8] proves that HDF-AC∗(ε) (ε > 0) is (1 + 1
ε)(8 + 12

ε)-competitive for min E +
F +R when using a (1+ ε)2-speedup processor, comparing to the offline optimal
using normal(1-speedup) processor. Since the power function we consider is the
traditional one, i.e. P (s) = sα, hence, if we transfer HDF-AC∗(ε) from a (1 +
ε)2-speedup processor to a normal processor, the power(hence the energy) will
become (1 + ε)2α times(of the original), while the weighted flow time and the
penalty remain the same. Hence, the following lemma comes.

Lemma 6. For any ε > 0, HDF-AC∗(ε) is γα(ε)-competitive for minimizing
energy plus weighted flow time plus penalty, where γα(ε) = (1+ε)2α(1+ 1

ε
)(8+ 12

ε
).

Next, we transfer the objective from minE+F +R to minE+L+R. Like section
2, we can assume that each jobs’ weight density is in a set {u1, u2, . . . um}, where
m is the number of different weight densities. Let Ci(1 ≤ i ≤ m) be the class
of jobs with weight density ui. We design an online algorithm AA(ε) (A with
Admission control) as follows.

1 Actually, in Chan et al’s paper, the model they consider is a little different from
ours. They allow to reject a job at some time at or after its release time. But luckily,
the algorithm HDF-AC∗(ε) they designed has the property that it rejects a job only
at its release time. Hence, HDF-AC∗(ε) also works for our min E + F + R model.
Furthermore, the offline optimal algorithm(no matter in which model) rejects a job
only at its release time, hence, the performance result of HDF-AC∗(ε) in their model
also holds in our min E + F + R model.

2 a (1+ε)-speedup processor is a more energy efficient processor such that it consumes
the same power as the normal(1-speedup) processor while runing at (1 + ε) times of
speed as the normal processor.

3 At any time, the fractional weight of a job equals its weight times the ratio of its
unfinished work to its original size.

Energy-Efficient Due Date Scheduling 79

Algorithm AA(ε) (ε > 0 is a parameter)
– AA divides its processing power into classes by time-sharing.
– Let algorithm SAAi(ε) (simple AA) denotes the portion of AA(ε)

which schedules jobs in class Ci (1 ≤ i ≤ m), i.e. AA(ε) run all
SAAi(ε) (for i = 1..m) simultaneously by time-sharing. The behavior
of each SAAi(ε) is as follows: SAAi(ε) simulates a virtual copy of
HDF-AC∗(ε) on class Ci (For simplicity, we denote HDF-AC∗(ε) on
Ci by notation Hi(ε)). When a job of class Ci arrives, SAAi(ε) admits
this job if and only if Hi(ε) admits it. Let Di be the set of admitted
jobs in Ci. SAAi(ε) schedules and sets due dates for the jobs in Di

the same as algorithm SA, i.e. uses FCFS+AJW to schedule jobs
in Di, and when a job in Di arrives, the due date of this job will
be set to be the completion time of it under FCFS+AJW schedule
assuming no new job arrive in the future.

Obviously, for each class, a new job’s arrival of this class can only increase the
speeds of other jobs, hence, AA(ε) meets each job’s due date.

For any algorithm X and job instance S, let R(X, S) be the penalty of X when
the input is S. For notations E(X, S), F (X, S), L(X, S), the meanings are the
same as before. Let Opt’ denote the offline optimal algorithm for min E +L+R
(we still use Opt to denote the offline optimal algorithm for min E + L). Note
that similar to Opt, Opt’ is also the optimal algorithm for minE + F + R and
L(Opt′, S) = F (Opt′, S) for any job instance S. In order to get the performance
of AA(ε), we first state a technical lemma, the proof is given in the full paper.

Lemma 7. For any class Ci (1 ≤ i ≤ m), F (SSAi(ε), Ci)+2R(SSAi(ε), Ci) ≤
2γα(ε) · cost′(Opt′, Ci), where γα(ε) = (1 + ε)2α(1 + 1

ε)(8 + 12
ε).

Now, we show the performance of AA(ε).
Theorem 4. For any ε > 0, AA(ε) is 2γα(ε)(mα−1 + α

α−1
)-competitive for

minimizing energy plus weighted quoted lead time plus penalty, where γα(ε) =
(1 + ε)2α(1 + 1

ε)(8 + 12
ε), and m is the number of different densities.

Proof. Let I be the whole jobs instance, so I = C1∪C2∪· · ·∪Cm. It follows from a
similar argument to Lemma 5 that E(AA(ε), I) ≤ mα−1 (

∑m
i=1 E(SSAi(ε), Ci))

= mα−1 (
∑m

i=1 F (SSAi(ε), Ci)), where the equality is due to the definition of
SSAi(ε). By the definition of AA(ε), L(AA(ε), I) =

∑m
i=1 L(SSAi(ε), Ci) =∑m

i=1 L(SA, Di) ≤ α
α−1

∑m
i=1 F (SA, Di) = α

α−1

∑m
i=1 F (SAAi(ε), Ci), where the

inequality is due to Lemma 2. In addition, R(AA(ε), I) =
∑m

i=1 R(SSAi(ε), Ci).
So,

cost′(AA(ε), I) = E(AA(ε), I) + L(AA(ε), I) + R(AA(ε), I)

≤ (mα−1 +
α

α − 1
)

m∑

i=1

(F (SAAi(ε), Ci) +
m∑

i=1

R(SSAi(ε), Ci))

≤ (mα−1 +
α

α − 1
)

m∑

i=1

(
F (SAAi(ε), Ci) + 2R(SSAi(ε), Ci)

)

80 H.-L. Chan, T.-W. Lam, and R. Li

≤ 2γα(ε)(mα−1 +
α

α − 1
)

m∑

i=1

cost′(Opt′, Ci) (by Lemma 7)

Note that
∑m

i=1 cost′(Opt′, Ci) ≤ cost′(Opt′, I), which complete the proof.

For arbitrary job instance, rounding up each job’s weight by a factor at most 2
(so m = log K and the competitive ratio is lost at most 2 times), and setting
ε = 1

α in Theorem 4 (so rα(ε) = O(α2)), the following result comes immediately.

Theorem 5. For arbitrary job instance, algorithm ��� �
�
� �� 	

�
��
�
��� ����� � �

���

��

-competitive for minimizing energy plus weighted quoted lead time plus penalty,
where k is the ratio of the maximum density to the minimum density.

References

1. Albers, S.: Energy-efficient algorithms. Communications ACM 53(5), 86–96 (2010)
2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.

ACM Transactions on Algorithms 3(4) (2007)
3. Andrew, L., Wierman, A., Tang, A.: Optimal speed scaling under arbitrary

power functions. ACM SIGMETRICS Performance Evaluation Review 37(2), 39–
41 (2009)

4. Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date scheduling.
In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 28–39. Springer, Heidelberg (2007)

5. Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: SODA, pp. 693–701 (2009)

6. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In:
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 805–813 (2007)

7. Belady, C.: In the data center, power and cooling costs more than the
it equipment it supports. Electronics Cooling Magazine 13(1), 24–27 (2007),
http://electronics-cooling.com/articles/2007/feb/a3/

8. Chan, S.-H., Lam, T.-W., Lee, L.-K.: Scheduling for weighted flow time and energy
with rejection penalty. To appear in STACS 2011 (2011)

9. Fisher, M.: What is the right supply chain for your product. Harvard Business
Review, 105–116 (March 1997)

10. Gupta, A., Krishnaswamy, R., Pruhs, K.: Scalably scheduling power-heterogeneous
processors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 312–323. Springer,
Heidelberg (2010)

11. Kaminsky, P., Hochbaum, D.: Due date quotation models and algorithms. In:
Leung, J.Y.-T. (ed.) Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis, ch. 20. CRC Press, Inc., Boca Raton (2004)

12. Keskinocak, P., Tayur, S.: Due date mangement policies. In: Simchi-Levi, D.,
Wu, S.D., Shen, Z.-J.M. (eds.) Handbook of Quantitative Supply Chain Analysis:
Modeling in the E-Business Era, pp. 485–554. Springer, Heidelberg (2004)

13. Stalk, G.: Time — the next source of competitive advantage. Harvard Business
Review, 41–51 (July 1988)

14. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Foundations of Computer Science (FOCS), pp. 374–382 (1995)

Go with the Flow: The Direction-Based
Fréchet Distance of Polygonal Curves

Mark de Berg and Atlas F. Cook IV

Department of Computing Science, TU Eindhoven, The Netherlands
mdberg@win.tue.nl, a.f.cook@tue.nl

Abstract. We introduce a new distance measure for directed curves in R
d, called

the direction-based Fréchet distance. Like the standard Fréchet distance, this mea-
sure optimizes over all parameterizations for a pair of curves. Unlike the Fréchet
distance, it is based on differences between the directions of movement along the
curves, rather than on positional differences. Hence, the direction-based Fréchet
distance is invariant under translations and scalings. We describe efficient algo-
rithms to compute several variants of the direction-based Fréchet distance, and
we present an applet that can be used to compare the direction-based Fréchet
distance with the traditional Fréchet distance.

1 Introduction

Computing the similarity of two shapes is one of the most fundamental problems in
pattern recognition [13]. An important special case is when the shapes are (polygonal
or smooth) curves in R

d. This setting occurs in GIS when comparing the trajectories
followed by moving objects [14], and occurs in computational biology when comparing
the backbones of large proteins [10]. For GIS applications, the curves are typically in
R

2, while in computational biology the curves are in R
3.

One of the most popular ways to measure the similarity of two curves is the Fréchet
distance [1,5,6,9]. It is defined as follows. Let A and B be two curves in R

d. The curves
are assumed to be directed, that is, one endpoint is designated as the start of the curve
while the other endpoint is designated as the end of the curve. Now imagine a person
walking along A and another person walking along B. Both must walk from start to
finish along their respective curve, starting at the same time and finishing at the same
time. Neither person is allowed to stand still or travel backwards, but otherwise they
are free to vary their speed. The cost of any fixed walk is the maximum distance that is
attained between the two people at any time during the walk. Different walks can have
different costs, and the Fréchet distance between A and B, denoted δF (A, B), equals
the minimum possible cost over all walks. More formally, δF (A, B) is defined as

δF (A, B) = inf
μ

max
a∈A

dist(a, μ(a)),

where dist(·, ·) denotes Euclidean distance and μ : A → B is a continuous one-to-
one mapping that assigns to every point a ∈ A a point μ(a) ∈ B. The meaning of
μ is that when one person is located at a point a ∈ A, the other person is located at
μ(a) ∈ B. Alt and Godau [1] have shown that the Fréchet distance can be computed

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 81–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

82 M. de Berg and A.F. Cook IV

in O(nm log(nm)) time when A and B are polygonal curves with n and m vertices,
respectively.

Since the underlying distance function dist(·, ·) is typically Euclidean distance, the
traditional Fréchet distance is not invariant under translations of A and B. In some ap-
plications this may be desirable, but in other applications this is not the case. As an
example, suppose two given curves represent the movements of the left hands of two
people in a dance group. The fact that the two dancers occupy different locations on the
stage should not be relevant when measuring the similarity of their hand movements. To
resolve this, one could compute the minimum Fréchet distance under all possible trans-
lations of the curves, but this is expensive from a computational point of view. The best
known algorithm to compute the minimum Fréchet distance under translations requires
O((mn)3(m +n)2 log(m+n)) time [2]. Moreover, invariance under translations does
not really solve the underlying issue, namely that the direction of the motions is some-
times more important than the Euclidean distance between the curves. We therefore
propose the direction-based Fréchet distance.

To define the direction-based Fréchet distance we need for each point a ∈ A (and,
similarly, for each point b ∈ B) a vector dir(a) that specifies the direction of A at the
point a. When A is a smooth curve, dir(a) is the tangent at a. For polygonal curves,
the vector dir(a) is given by the curve segment on which a lies. When a is an interior
vertex, we define dir(a) to be the direction of the segment incident to and following the
point a. Furthermore, we define ∠(dir(a), dir(b)) as the smaller angle formed by the
two vectors dir(a) and dir(b). We define the direction-based Fréchet distance between
A and B as

δdirmax
F (A, B) = inf

μ
max
a∈A
∠(dir(a), dir(μ(a))),

where, as before, μ : A → B is a continuous one-to-one mapping that assigns to every
point a ∈ A a point μ(a) ∈ B. Note that the direction-based Fréchet distance minimizes
the maximum direction difference that is ever obtained between the two curves. For the
traditional Fréchet distance, it has been proposed to consider the integral (rather than
the maximum) of the distances that define δF (A, B) [6,7,9]. This makes the distance
measure more robust with respect to outliers. Similarly, we define the direction-based
integral Fréchet distance as

δdirint
F (A, B) = inf

μ

{�
a∈A
∠(dir(a), dir(μ(a)))

||A|| +

�
b∈B
∠(dir(μ−1(b)),dir(b))

||B||

}

where μ−1 : B → A is the inverse function of μ. (Taking the integrals over A and
over B, with normalizing constants 1

||A|| and 1
||B|| , is necessary to make the definition

symmetric and invariant under scalings.) The main goal of this paper is to study the
direction-based integral Fréchet distance for polygonal curves.

Related Work. Several other distance measures have been proposed that take the di-
rection of motion along the curves into account [3,11]. The one most closely related
to our work is the turning angle distance [4]. This distance measure is essentially the
same as our direction-based integral Fréchet distance, but with the following important

Go with the Flow: The Direction-Based Fréchet Distance of Polygonal Curves 83

a1
a10

b1
b13B

A

difference: the turning angle distance requires that
the two people move along A and B with constant
speed. In other words, the turning angle distance
does not minimize over all mappings μ and does not
consider complicated parameterizations such as the
one depicted in the figure to the right. The direction-
based Fréchet distance addresses this issue.

The turning angle distance is trivial to compute in O(m +n) time for two polygonal
curves with m and n vertices. It can also be minimized under translations, rotations, and
scalings in O(nm log nm) time for total matches [4] and in O(n2m2) time for partial
matches [8]. Our work can be seen as combining the direction-based approach of the
turning angle distance with the flexible mappings of the Fréchet distance.

A continuous version of dynamic time warping [9] can also be used to consider
non-vertical mappings between two polygonal curves in O(nm(n + m) log nm) time.
However, this algorithm computes shortest paths under the Lp metric on a universal
manifold. Our direction-based Fréchet distance considers angular distances, has an im-
proved O(nm) runtime, and is considerably simpler to implement because it uses dy-
namic programming.

Our Results. In Section 2, we study some basic properties of our distance measures
and describe the concept of speed limits. Section 3 contains an exact dynamic program-
ming algorithm for the direction-based integral Fréchet distance (without speed limits)
that runs in O(nm) time and O(m + n) space. Since it often makes sense for a pair
of motion-captured movements to occur at roughly the same speeds, we also develop a
(1 + ε)-approximation algorithm to compute the direction-based integral Fréchet dis-
tance when the mappings μ are restricted such that the speed difference when walking
along the curves is bounded. This algorithm runs in O(nm

ε2) time and space for any two
uniformly sampled polygonal curves that have equal length. The algorithm uses two
extra input parameters that specify upper and lower bounds on the ratio of the speeds
along the curves. This is similar to the traditional Fréchet distance with speed lim-
its [12]. Both the exact algorithm and the approximation algorithm can also be used to
compute the partial similarity between two paths. This partial similarity is determined
by a (connected) subcurve B′ ⊂ B that minimizes δdirint

F (A, B′).

2 Preliminaries

Let A and B be two polygonal curves in R
d with n and m vertices, respectively. We de-

note the vertices of A by a1, . . . , an and the vertices of B by b1, . . . , bm. The Euclidean
length of a segment s (or, more generally, of a polygonal curve s) is denoted by ||s||.
The Mapping Diagram. To encode all possible continuous one-to-one mappings be-
tween two polygonal curves A and B, we use a two-dimensional diagram M , which
we call the mapping diagram. (A similar diagram called the free space diagram is used
for computing the traditional Fréchet distance.) The mapping diagram is a rectangle
of width ||A|| and height ||B||. It is divided into n − 1 vertical columns whose widths
corresponds to the lengths of the segments of A: the leftmost column has width ||a1a2||,

84 M. de Berg and A.F. Cook IV

M [2, 1]

θ

a1

b1

a1
b1

A

B

μ

a2

a3

a4
b2

b3

a2 a3 a4

b2

b3

the next column has width ||a2a3||, etcetera.
Similarly, the mapping diagram is partitioned
into m − 1 rows whose heights corresponds to
the lengths of the segments of B. For exam-
ple, the height of the bottommost row is ||b1b2||.
The columns and rows together partition M into
(n−1)× (m−1) cells. We use M [i, j] to denote
the cell that is the intersection of the column cor-
responding to aiai+1 and the row corresponding
to bjbj+1.

By definition, any point on the bottom bound-
ary of M corresponds to a point on A, and any
point on the left boundary of M corresponds to
a point on B. A continuous one-to-one mapping
μ : A → B corresponds to a monotonically in-
creasing path in M that starts at the lower left
corner and finishes at the upper right corner. With a slight abuse of notation, we will use
μ to refer to both a mapping A → B as well as this mapping’s corresponding path in M .

Recall that we want to measure the similarity of curves A and B based on the differ-
ence in directions of movement along the curves. Consequently, we define the cost of a
cell M [i, j] as the angle between the two curve segments that define the cell:

cost(M [i, j]) = ∠(aiai+1, bjbj+1),

where ∠(aiai+1, bjbj+1) denotes the smaller angle between the two directed segments
aiai+1 and bjbj+1. To compute δdirmax

F (A, B) we want to find a path μ that minimizes
the maximum cost of any cell that is crossed. On the other hand, to compute δdirint

F (A, B)
we want to find a path μ whose weighted length is minimized. The weighted length of
the portion of μ inside some cell M [i, j] is cost(M [i, j]) · ||μ ∩ M [i, j]||1. Here, ||μ ∩
M [i, j]||1 denotes the length of the curve μ∩M [i, j] in the L1-metric. This value equals
the length of the subpath of A that is being traversed plus the length of the subpath of B
that is being traversed. This definition ensures that the cheapest path between any two
points in a cell is a straight line, so we obtain the following observation:

Observation 1. The values of both δdirmax
F (A, B) and δdirint

F (A, B) can always be real-
ized by a path μ that is piecewise linear and has vertices only on the cell boundaries of
the mapping diagram.

Speed Limits. A continuous mapping μ : A → B specifies the movements of two
persons, one moving along A and one moving along B, such that when one person is
located at a position a ∈ A the other is located at a position μ(a) ∈ B. Note that it can
be desirable to restrict the mapping such that the movements along A and B occur at
roughly the same speeds. In the mapping diagram M , this corresponds to restricting the
slope of the path μ. For example, if we want the speed along A to be exactly the same
as the speed along B then we should require that μ has slope exactly 1.

Go with the Flow: The Direction-Based Fréchet Distance of Polygonal Curves 85

In the remainder of this paper, we study δdirmax
F (A, B) and δdirint

F (A, B) both with
and without speed limits. The minimum speed limit is θmin, and the maximum speed
limit is θmax. To enforce these speed limits, we require that the angles between the
(positive) horizontal direction and every direction vector along the path μ are all in the
range [θmin, θmax]. Since μ is a one-to-one mapping, we assume throughout this paper
that 0◦ < θmin � θmax < 90◦. As in [12], θmin and θmax can either be global constants,
or they can be distinct constants for each cell in M . Note that Observation 1 still holds
when speed limits exist.

Computing the Direction-Based Fréchet Distance. The cost of a mapping for the
direction-based Fréchet distance equals the maximum angle on that mapping. With-
out speed limits, the direction-based Fréchet distance can be computed in O(nm) time
by a simple row-by-row dynamic programming procedure that determines the optimal
path cost that is needed to reach each cell in the mapping diagram. With speed lim-
its, the direction-based Fréchet distance can be computed in O(nm log2 nm) time by
a dynamic programming technique of Maheshwari et al. [12]. Their decision algorithm
implicitly determines all points on the cell boundaries that can be reached by some path
whose cost is at most a given threshold value. Parametric search is then used to obtain
an optimal solution. This implies the following result.

Theorem 1. Without speed limits, the value of δdirmax
F (A, B) can be computed in O(nm)

time and O(m+n) space. With speed limits, the value of δdirmax
F (A, B) can be computed

in O(nm log2 nm) time and O(nm) space.

Note that it would be difficult to apply the techniques of [12] to the direction-based
integral Fréchet distance because these techniques construct the set of reachable points
on the upper and right cell boundaries solely based on the set of reachable points on
the bottom and left cell boundaries. Although this technique works very well for path
costs that are based on some maximum value, they do not apply for path costs that
are based on an integral. The problem is that for integral-based costs simply know-
ing the reachable points on the bottom and left cell boundaries is insufficient to de-
termine the reachable points on the upper and right cell boundaries. Instead, the true
path cost to reach every point on the bottom and left cell boundaries is needed. Thus,
reducing the problem to a decision problem (which is a key step in [12]) is diffi-
cult. The next section describes how to compute the direction-based integral Fréchet
distance.

3 Computing δdirint
F (A, B)

Since the function δdirmax
F (A, B) returns the maximum difference in angles, it is not very

robust. If, for instance, the first segment along A is orthogonal to the first segment along
B, then δdirmax

F (A, B) is 90◦ even when these segments are quite short and the remaining
parts of the curves are identical. Hence, our main interest lies in the direction-based
integral Fréchet distance δdirint

F (A, B).

86 M. de Berg and A.F. Cook IV

3.1 Exact Algorithm without Speed Limits

In this section, we show how to compute δdirint
F (A, B) without speed limits for

q

p
20◦
45◦

8◦
25◦
76◦

...

...

4◦

M [i, j]

M [i + 1, j]

...

M [i + k, j]

M [iopt, j]

two polygonal curves A and B.

Lemma 1. The value of δdirint
F (A, B) can always be re-

alized by a path that follows the cell boundaries in the
mapping diagram.

Proof. Consider two points p and q on the left and right
boundaries of some fixed column in the mapping diagram.
Assume that there exists some monotone-increasing path
from p to q. We will show that there always exists an opti-
mal monotone-increasing path μ from p to q that follows
the cell boundaries in the mapping diagram.

Let S =M [i, j], M [i + 1, j],..., M [i + k, j] be the sequence of cells crossed by
any monotone-increasing path from p to q. Let M [iopt, j] be a minimum-cost cell in
S. Recall that the weighted length of the portion of μ inside a cell M [i, j] equals
cost(M [i, j]) · ||μ ∩ M [i, j]||1, where ||μ ∩ M [i, j]||1 denotes the length of the curve
μ ∩ M [i, j] in the L1-metric. This implies that the weighted length of μ is simply∑ i+k

r=icost(M [r, j]) · ||μ ∩ M [r, j]||1. Observe that the vertical component of this
weighted length is the same for every possible monotone-increasing path from p to q.
Thus, the weighted length of μ can always be minimized by choosing a rectilinear path
that travels vertically along the left column boundary from p to M [iopt, j], continues
travelling horizontally along a boundary of M [iopt, j], and concludes by travelling ver-
tically along the right column boundary to q. Since this process can be repeated for each
column in the mapping diagram M , the value of δdirint

F (A, B) can always be realized by
a path that follows the cell boundaries in M . Note that any path that follows the cell
boundaries in M can be made strictly monotone by infinitesimally perturbing each hor-
izontal and vertical line segment along the path. ��
Using Lemma 1 we can design a simple dynamic-programming algorithm to compute
δdirint
F (A, B). This yields the following result.

Theorem 2. The value of δdirint
F (A, B) (without speed limits) can be computed in

O(nm) time and O(m + n) space.

Note that Lemma 1 no longer holds when speed limits exist because all optimal paths
through the mapping diagram M can cut through the interior of some cell. For ex-
ample, if both θmin and θmax equal 45◦, then the only valid path through M is the
(non-rectilinear) line segment through the bottom-left corner of M that forms a 45◦

angle with the horizontal axis of M . Thus, a different approach is needed to compute
δdirint
F (A, B) when speed limits exist.

3.2 (1 + ε)-Approximation Algorithm with Speed Limits

This section describes an approximation algorithm for δdirint
F (A, B) (with speed lim-

its) with respect to a special class of polygonal curves A and B. Throughout this
section, A and B are assumed to be uniformly sampled polygonal curves such that

Go with the Flow: The Direction-Based Fréchet Distance of Polygonal Curves 87

||A|| = ||B|| = n and also such that every line segment in A ∪ B has length one. Two
arbitrary polygonal curves can be made to satisfy these conditions by scaling the curves
and constructing a (potentially dense) grid of Steiner points on A and B.

The main benefit of uniformly sampled polygonal curves is that they ensure that
every cell in the mapping diagram is a unit square. This means that there are no very
thin cells, and this is useful when proving that an optimal path in a Steiner graph is a
(1 + ε)-approximation of an optimal path in the mapping diagram. Another benefit of
uniformly sampled polygonal curves is that they always define a mapping diagram M
that is an n× n square. This implies that the line segment from the bottom-right corner
of M to the upper-right corner of M forms a 45◦ angle with the horizontal axis of M ;
therefore, we always assume that the speed limit constraints satisfy θmin � 45◦ � θmax.

Uniform Steiner Graph G. Assume that the mapping diagram M is created from two
uniformly sampled polygonal curves A and B. We define G as a directed acyclic Steiner
graph on M as follows. The vertices of G are constructed by placing k uniformly spaced
Steiner points on every cell boundary line segment in the mapping diagram M . Since M
is constructed from two uniformly sampled polygonal curves, the length of every cell
boundary segment is 1. Thus, the distance between consecutive Steiner vertices on any
cell boundary line segment is ε = 1

k
. The total number of Steiner vertices is O(nm

ε
).

A directed Steiner edge e is created between every pair of Steiner vertices such that
(1) both of these Steiner vertices lie on the boundary of the same cell and (2) the angle
between e and the horizontal axis of M is at least θmin −f(ε) and at most θmax +f(ε).
The total number of Steiner edges is consequently O(nm

ε2). The function f(ε) represents
the maximum possible change in angle that occurs when a line segment path eopt in a
fixed cell is snapped to a line segment eG in the Steiner graph G. We will see later that
f(ε) = tan−1(4ε), so f(ε) monotonically approaches zero as ε approaches zero.

Consider an optimal path μopt through the mapping diagram M , and let eopt = μopt ∩
M [i, j] be the portion of an optimal path μopt inside a fixed cell M [i, j]. An edge eopt is
considered to be short when either (1) both of its endpoints have L1 distance at most 1

4
to the upper-left corner of M [i, j] or (2) both of its endpoints have L1 distance at most
1
4 to the bottom-right corner of M [i, j]. This implies that the L1 length of a short edge
is at least 0 and at most 1

2
. By contrast, an edge eopt is considered to be long when at

least one of its endpoints has L1 distance greater than 1
4

to both the upper-left corner
and the bottom-right corner of M [i, j]. This means that the L1 length of a long edge is
greater than 1

4 and at most 2. See Figure 1(a).

Snapping a Short Edge to G. Our goal is to snap a short edge eopt = μopt ∩ M [i, j]
onto a line segment eG in the Steiner graph G. Since the length of a short edge eopt may
be arbitrarily close to zero, ||eopt||1 may also be arbitrarily close to zero. This means
that if we were to simply snap the endpoints of eopt onto the nearest Steiner vertices in

G, then the L1 length of eG might equal ||eopt||1 + 2ε and ||eG||1
||eopt||1 could be very large.

To get around this difficulty while still respecting the speed limits, we will show that
it is always possible to snap eopt onto eG such that two conditions are satisfied. First,
||eG||1 � ||eopt||1. Second, the angle between eG and the positive horizontal axis of M
is at least as close to 45◦ as the angle between eopt and the positive horizontal axis of M .

Let v be the nearest corner vertex of M [i, j] to eopt. If both endpoints of eopt are
within distance 2ε to v, then we snap both endpoints of eG to v—see Figure 1(b).

88 M. de Berg and A.F. Cook IV

eopt

eG = v

eopt

eG
eopt

eG

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

(a) (b) (c) (d)

M [i, j]

Long edge

Short edge

ε

vv
v

Fig. 1. (a) A “short” edge through a cell M [i, j] has both of its endpoints in one of the two
gray triangles of a fixed cell M [i, j]. A “long” edge through a cell M [i, j] has at least one of
its endpoints outside of a gray triangle. A short edge eopt can always be snapped onto a nearby
Steiner graph edge eG that is either (b) a vertex v ∈M [i, j], (c) a nearby 45◦ Steiner edge, or (d)
a nearby Steiner edge whose angle is at least as close to 45◦ as eopt.

Otherwise, if both endpoints of eopt can be snapped a distance of at most 2ε toward v
onto a Steiner edge that forms a 45◦ angle with the positive horizontal axis of M , then
we snap eG to this edge—see Figure 1(c). If neither of the above two cases hold, then
we snap the endpoint of eopt that is furthest from v a distance of at most 2ε toward v
and snap the other endpoint of eopt a distance of at most ε away from v—see Figure
1(d). These snapping operations ensure that eG is always shorter than eopt and has an
angle that is at least as close to 45◦ as eopt.

Lo
ng

ed
ge

Short edge

Long edge

M [i, j]

The figure to the right illustrates that it is always
safe to snap each short edge of μopt independently of
all other short edges on μopt. This follows because it
is not possible for any monotone path μopt that in-
tersects each cell in a line segment to contain two
consecutive short edges.

Snapping a Long Edge to G. After snapping all of
the short edges on an optimal path μopt to Steiner
edges in G, the endpoints of long edges that have
not yet been snapped to G can simply be snapped
to the nearest Steiner vertex that will not produce a
horizontal or vertical edge. After this snapping oper-
ation, each long edge eG satisfies ||eG||1 � ||eopt||1 + 4ε. Since a long edge must have
length greater than 1

4
, we know that ||eopt||1 > 1

4
. Consequently, 4 · ||eopt||1 > 1, so we

can write ||eG||1 � ||eopt||1 +4ε · (4 · ||eopt||1) = (1 + 16ε) · ||eopt||1. We can now state
the following result.

Theorem 3. A (1 + ε)-approximation of δdirint
F (A, B) that respects the speed limits

θmin − tan−1(4ε) and θmax + tan−1(4ε) can be computed in O(nm
ε2) time and space,

where A and B are uniformly sampled polygonal curves with n and m vertices,
respectively.

Proof. We have shown above that any optimal path μopt through the mapping diagram
M can be snapped to a path μG in the Steiner graph G such that every short edge

Go with the Flow: The Direction-Based Fréchet Distance of Polygonal Curves 89

eopt in μopt can be snapped to an edge eG in G that satisfies two conditions. First,
||eG||1 � ||eopt||1. Second, the angle between eG and the positive horizontal axis of M
is at least as close to 45◦ as the angle between eopt and the positive horizontal axis of M .
Furthermore, every long edge in μopt has its length increase by at most a multiplicative
factor of (1 + 16ε) when it is snapped to G. Since both μopt and μG pass through the
same sequence of cells in the mapping diagram, this guarantees that the cost of μG is
at most (1 + 16ε) times the cost of μopt. Although each snapping operation can change
the angle of a long edge, the maximum angle change equals f(ε) = tan−1(4ε). This
follows because the largest possible angle change occurs when a near-horizontal long
edge with one endpoint fixed at a distance 1

4
to the bottom-right corner v ∈ M [i, j] is

snapped so that its new vertical distance to v is roughly ε. This snapped edge has an
angle of tan−1(ε

1/4
).

The above arguments imply that some path μG in G has cost at most (1 + 16ε)
times the cost of μopt. Since every edge in G approximately satisfies the speed limit
constraints, the desired approximation for δdirint

F (A, B) can be returned by constructing
G in O(nm

ε2) time and space and using a breadth-first search to find a least cost path
through the directed acyclic Steiner graph G. ��
The partial similarity δdirint

F (A, B′) between a polygonal path A and a (connected)
subcurve B′ ⊂ B that minimizes δdirint

F (A, B′) can also be approximated by using a
breadth-first search to return a least cost path through G from any Steiner vertex on the
bottom-boundary of M to any Steiner vertex on the top-boundary of M . This yields the
following corollary.

Corollary 1. A (1+ε)-approximation ofδdirint
F (A, B′) the partial similarity δdirint

F (A, B′)
between a polygonal path A and a (connected) subcurve B′ ⊂ B that minimizes
δdirint
F (A, B′) and satisfies the speed limits θmin − tan−1(4ε) and θmax + tan−1(4ε)

can be computed in O(nm
ε2) time and space.

Although the above Steiner graph approximation algorithm is based on the L1

lengths of paths through the mapping diagram, we would like to point out that this
approach also works for any Lp distance measure.

4 Conclusion

This paper explores the similarity of two polygonal paths by integrating over the direc-
tional differences between curve segments. The purpose of measuring similarity with
directional differences (instead of positional differences) is to capture the flow of motion
for the two paths in a manner that is both translation and scale invariant. The purpose
of integrating over these directional differences is to ensure that small variations in one
path do not disproportionately affect the similarity measure. Speed limit constraints can
improve the returned mapping by allowing the user to bound the slope of legal param-
eterizations for a pair of curves. We have implemented a Steiner graph approximation
algorithm for both the traditional integral Fréchet distance and the direction-based inte-
gral Fréchet distance. This implementation is available as an online applet at

www.win.tue.nl/~acook/applets/directionfrechet/

90 M. de Berg and A.F. Cook IV

The below figures illustrate partial matches that map the entire left curve onto a (thick-
ened) connected subset of the right curve. The first set of figures illustrate both the
traditional approach and our direction-based approach. The second set of figures illus-
trate that if a partial match is too short to be useful, then speed limits can be used to
obtain longer matches.

Traditional Integral Fréchet Distance Direction-Based Integral Fréchet distance

Speed Limits and the Direction-Based Integral Fréchet distance

No speed limits θmin = 10◦, θmax = 80◦

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Interna-
tional Journal of Computational Geometry & Applications 5, 75–91 (1995)

2. Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the Fréchet dis-
tance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer,
Heidelberg (2001)

3. Apaydin, T., Ferhatosmanoglu, H.: Access structures for angular similarity queries. IEEE
Transactions on Knowledge and Data Engineering 18(11), 1512–1525 (2006)

4. Arkin, E.M., Chew, L., Huttenlocher, D., Kedem, K., Mitchell, J.: An efficiently computable
metric for comparing polygonal shapes. In: 1st Symposium on Discrete Algorithms (SODA),
pp. 129–137 (1990)

5. Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a tool for tra-
jectory analysis. Int. J. of Geographical Information Science 24(7), 1101–1125 (2010)

6. Buchin, K., Buchin, M., Wang, Y.: Exact algorithms for partial curve matching via the
Fréchet distance. In: 20th Symposium on Discrete Algorithms (SODA), pp. 645–654 (2009)

7. Buchin, M.: On the computability of the Fréchet distance between triangulated surfaces.
Dissertation, Freie Universität Berlin (2007)

8. Cohen, S., Guibas, L.: Partial matching of planar polylines under similarity transformations.
In: 8th Symposium on Discrete Algorithms (SODA), pp. 777–786 (1997)

9. Efrat, A., Fan, Q., Venkatasubramanian, S.: Curve matching, time warping, and light fields:
New algorithms for computing similarity between curves. Journal of Mathematical Imaging
and Vision (2007)

Go with the Flow: The Direction-Based Fréchet Distance of Polygonal Curves 91

10. Kolodny, R., Koehl, P., Levitt, M.: Comprehensive evaluation of protein structure alignment:
Scoring by geometric measures. J. of Molecular Biology 346, 1173–1188 (2005)

11. Li, H., Shen, I.: Similarity measure for vector field learning. In: Wang, J., et al. (eds.)
ISNN 2006. LNCS, vol. 3971, pp. 436–441. Springer, Heidelberg (2006)

12. Maheshwari, A., Sack, J.R., Shahbaz, K.: Computing Fréchet distance with speed limits. In:
21st Canadian Conf. on Computational Geometry (CCCG), pp. 107–110 (2009)

13. Veltkamp, R.C.: Shape matching: Similarity measures and algorithms. Shape Modeling and
Applications, 188–197 (2001)

14. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: Localizing
global curve-matching algorithms. In: 18th Conference on Scientific and Statistical Database
Management (SSDBM), pp. 379–388 (2006)

A Comparison of Three Algorithms for

Approximating the Distance Distribution in
Real-World Graphs

Pierluigi Crescenzi1, Roberto Grossi2, Leonardo Lanzi1, and Andrea Marino1

1 Dipartimento di Sistemi e Informatica, Università di Firenze
2 Dipartimento di Informatica, Università di Pisa

Abstract. The distance for a pair of vertices in a graph G is the length
of the shortest path between them. The distance distribution for G spec-
ifies how many vertex pairs are at distance h, for all feasible values h.
We study three fast randomized algorithms to approximate the distance
distribution in large graphs. The Eppstein-Wang (ew) algorithm ex-
ploits sampling through a limited (logarithmic) number of Breadth-First
Searches (bfses). The Size-Estimation Framework (sef) by Cohen em-
ploys random ranking and least-element lists to provide several estima-
tors. Finally, the Approximate Neighborhood Function (anf) algorithm
by Palmer, Gibbons, and Faloutsos makes use of the probabilistic count-
ing technique introduced by Flajolet and Martin, in order to estimate
the number of distinct elements in a large multiset. We investigate how
good is the approximation of the distance distribution, when the three
algorithms are run in similar settings. The analysis of anf derives from
the results on the probabilistic counting method, while the one of sef is
given by Cohen. For what concerns ew (originally designed for another
problem), we extend its simple analysis in order to bound its error with
high probability and to show its convergence. We then perform an exper-
imental study on 30 real-world graphs, showing that our implementation
of ew combines the accuracy of sef with the performance of anf.

1 Introduction

Consider a graph G = (V, E) with n = |V | vertices and m = |E| edges. The
distance d(u, v) for a pair of vertices u, v ∈ V is the length of the shortest
path between u and v.1 In this paper, we investigate the problem of computing
the distance distribution of G, if G is (strongly) connected, or of G’s largest
(strongly) connected component, otherwise. The distance distribution is defined
as the set of values Nh (1 ≤ h < n), where Nh is the normalized number of
ordered pairs of vertices having distance h:

Nh =
|{(u, v) ∈ V × V : d(u, v) = h}|

n(n − 1)
.

1 In the following, we will mainly focus our attention on unweighted graphs even if
some of the presented results hold also in the case of weighted ones.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 92–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Comparison of Three Algorithms 93

For example, if G is an undirected path with n vertices then, for any 1 ≤ h < n,
there are 2(n − h) ordered pairs of vertices at distance h: hence, in this case,
Nh = 2(n−h)

n(n−1)
. (Note that, as expected,

∑n−1
h=1 Nh = 1.) For any G, observe that

Nh = 0 for Δ < h < n, where Δ = maxu,v∈V d(u, v) denotes the diameter of G.
On the other hand, N1 is related to the number of edges: namely, N1 = 2m

n(n−1)

when G is undirected and N1 = m
n(n−1) when G is directed.

The distance distribution is a powerful tool to mine useful properties in social
networks, databases, and Internet, to name a few, and its computation is one
of the main bottlenecks in graph mining and networking when estimating fun-
damental measures, such as the effective diameter and similar statistics [12,13].
Some ad hoc solutions are available for special classes of graphs (see, for ex-
ample, [1,18]). The values Nh (1 ≤ h ≤ Δ) can be computed by executing a
Breadth-First Search (bfs) at each vertex of V as a source, or performing an
all-pairs shortest paths algorithm. These methods require Ω(nm) time: since the
output is formed by the Δ < n significant values of the distance distribution,
there is still potentially room for improvement.

In the general setting, the idea for faster methods is to provide a good approx-
imation of the distance distribution using general size-estimation techniques.
Major focus of previous work was on arbitrary directed graphs. Lipton and
Naughton [14] considered how to estimate the size of the transitive closure of
an unweighted graph in O(n

√
m) time. This is equivalent to estimate N ′(u, Δ)

for each vertex u ∈ V , where N ′(u, h) denotes the cumulative function called
individual neighborhood

N ′(u, h) = |{v ∈ V : 0 < d(u, v) ≤ h}|.
As a byproduct, it is easy to obtain the cumulative neighborhood function

N ′
h = |{(u, v) ∈ V × V : 0 < d(u, v) ≤ h}|,

which counts how many pairs have distance at most h: indeed, we have that
N ′

h =
∑

u∈V N ′(u, h). For example, N ′
h = 2nh−h(h+1) when G is an undirected

path. In general, N ′
h = n(n − 1)

∑h
i=1 Ni and so Nh = N ′

h−N ′
h−1

n(n−1)
for h ≥ 1.

The bound in [14] was improved by Cohen [3,4] et al. [7,6,5,8] using a Monte
Carlo sampling technique that performs a random ranking (permutation) of the
vertices and builds least-element lists to provide estimators, where the latter
lists are built by running a truncated (reverse) bfs for each vertex in rank
order. Among other things, this technique, called Size-Estimation Framework
(sef) or k-min sketches, permits to compute a compact approximation of the
values N ′(u, h) for all u ∈ V and 1 < h < n, by running k random rankings
in O(km log n) expected time and O(kn log n) expected space (see Section 2.2).
As suggested by the analysis in [4], fixing k = Θ(ε−2 log n) provides a relative
error bounded by ε for the estimation of N ′(u, h). Recent advancements for
sef have been made by using bottom-k sketches techniques for summarization
tasks, such as in [7]. Interestingly, the analysis of these methods proves that the
approximation has good theoretical accuracy, bias, variance, and relative error.

94 P. Crescenzi et al.

Palmer, Gibbons, and Faloutsos [17] observed that sef (which they called
RI approximation) is slower in practice. They proposed an alternative, called
Approximate Neighborhood Function (anf), that is based on the probabilistic
counting method described by Flajolet and Martin [11], in order to estimate the
number of distinct elements in a large multiset (see Section 2.3). According to
[17], even if the running time of anf is O(mΔ), this method guarantees accuracy,
it scales with n and m, it requires O(n) additional storage, it can use bucketing
to be cache efficient, it is parallelizable, and it provides estimates for each vertex.

Our contribution. Eppstein and Wang [10] studied how to approximate cen-
trality of vertices v ∈ V , defined as Cv = (n − 1)/

∑
u d(v, u), by sampling

through a limited (logarithmic) number of bfses, and averaging on the resulting
distances with guaranteed error. We show in this paper that even though this
algorithm was originally designed for the centrality measure Cv, it can approxi-
mate the distance distribution Nh with bounded absolute error (see Section 2.1).
We call the resulting method the ew algorithm, which can be considered as a
simple textbook algorithm based on bfs, whose analysis and implementation are
at the level of a typical course on randomized algorithms. This is valuable [9]
because bfs has good external-memory and distributed implementations [15,16],
and can work on large graphs stored in compressed format [2].

The running time of ew is O(km), where k is the number of bfses executed.
Fixing k = Θ(ε−2 log n) gives a bounded absolute value of ε for the approxima-
tion of the distance distribution Nh. The occupied space is always linear O(n):
in this way we are able to study huge graphs with limited resources. More-
over, ew is experimentally accurate, exhibiting faster convergence and smaller
variance than anf. We performed tests on 30 real-world graphs: by using a well-
engineered implementation of bfs, we observe that ew can compete with the
accuracy of sef and the running time of anf (see Section 3).

Our experimental results suggest a suitable setting for the above algorithms:
ew is the choice when computing the distance distribution Nh while sef and
anf are more accurate when considering the neighborhood function N ′

h. More-
over, sef and its variants such as bottom-k sketches can solve other size esti-
mation problems. Algorithm ew has limitations, of course. It cannot guarantee
an approximation for the individual neighborhood function N ′(u, h), and is less
accurate than sef and anf in estimating N ′

h. Moreover, it cannot provide an
approximation with bounded relative error but, while the relative error of N ′

h is
still bounded, we are not aware of any linear-time and linear-space algorithm in
the worst case that is able to guarantee it for Nh.

2 Algorithms for Estimating the Distance Distribution

2.1 The EW Algorithm

We now describe and analyze a simple algorithm that we call the ew algo-
rithm since it is inspired by the Eppstein-Wang approach in [10]. This algorithm
performs a random sample of kEW vertices from V obtaining, say, the multiset
U = {u1, u2, . . . , ukEW} ⊆ V . It then runs iteration i = 1, 2, . . . , kEW, where it

A Comparison of Three Algorithms 95

computes the distances d(ui, v) for all v ∈ V , by executing a bfs traversal of G
starting from vertex ui. Each iteration takes O(m) time and O(n) space. Finally,
it returns an approximation of Nh, for 1 ≤ h < n, defined as

Nh(U) =
|{(u, v) ∈ U × V : d(u, v) = h}|

kEW (n − 1)
.

The running time of the algorithm is O(kEW m) for unweighted graphs, with a
space occupancy of O(n) since we can accumulate the partial counts from one
iteration to another.

Note that Nh(V) = Nh: our goal, however, is to keep kEW as small as possible

still ensuring a bounded error. To this aim, observe that Nh(U) =
∑ kEW

i=1 Nh({ui})
kEW

,

since Nh({ui}) = |{(ui,v):v∈V ∧d(ui,v)=h}|
n−1

. If vertex ui is randomly chosen in V ,
then E[Nh({ui})] = Nh. Indeed,

E[Nh({ui})] =
1
n

∑

v∈V

Nh({v}) = Nh(V) = Nh.

Hence, if all elements of U are randomly chosen, we have that, by the linearity
of the expectation,

E[Nh(U)] = E

[∑kEW
i=1 Nh({ui})

kEW

]

=
∑kEW

i=1 E[Nh({ui})]
kEW

= Nh.

In order to estimate the error, similarly to what has been done in [10], we will now
make use of a well-known Hoeffding bound, which states that, if x1, x2, . . . , xk

are independent random variables such that μ = E[
∑

xi/k] and for each i there
exist ai and bi such that ai < xi < bi, then, for any ξ > 0,

Pr

{∣
∣
∣
∣
∣

∑k
i=1 xi

k
− μ

∣
∣
∣
∣
∣
≥ ε

}

≤ 2e−2k2ε2/
∑k

i=1(bi−ai)
2
.

In our case, k = kEW, xi = Nh({ui}), and μ = Nh, since we have just shown that
μ = Nh = E[

∑kEW
i=1 Nh({ui})/kEW] = E[

∑
xi/k]. Moreover, for 1 ≤ i ≤ kEW, we

have 0 ≤ Nh({ui}) ≤ 1 and so ai = 0 and bi = 1. Hence,

Pr

{∣
∣
∣
∣
∣

∑kEW
i=1 Nh({ui})

kEW

− Nh

∣
∣
∣
∣
∣
≥ ε

}

≤ 2e−2kEW ε2 .

If we choose kEW = α
2 ε−2 lnn for any constant α > 0, we have that this proba-

bility is bounded by 2/nα: hence, this number of iterations (bfses) guarantees
that the absolute error is bounded by ε with high probability.

Theorem 1. Let G be a (strongly) connected graph with n vertices and m edges.
For any arbitrarily small ε > 0, the ew algorithm with kEW = Θ(ε−2 log n)
computes in time O(kEW m) an approximation of the distance distribution Nh

of G whose absolute error is bounded by ε, with high probability.

96 P. Crescenzi et al.

Observe that the previous analysis can be easily extended to the case of
weighted (strongly) connected graphs, by making use of the Dijkstra’s algorithm:
the running time in Theorem 1 becomes O(kEW (m+n log n)) = O(ε−2(m log n+
n log2 n)). Moreover, in a similar way, we can compute an approximation of the
average distance of G, which is defined as d =

∑
u∈V

∑
v∈V, v �=u d(u, v)/n(n−1):

even in this case, the error can be arbitrarily bounded with high probability by
performing a sufficient number of bfses. Finally, a similar analysis allows us
to approximate the α-diameter of G, which is defined as the minimum h for
which

∑h
i=1 Nh ≥ α: indeed, it suffices to repeat the analysis with respect to

∑h
i=1 Nh = N ′

h

n(n−1)
= |{(u,v)∈V ×V :u�=v, d(u,v)≤h}|

n(n−1)
.

2.2 The SEF Algorithm

Algorithm sef is based on the truncated (reverse) bfs introduced in [3,4] and
successfully applied to k-min and bottom-k sketches based estimators [5,6,7,8].
Here we define an iteration of sef2 as described in [4].

Iteration of sef. First, assign a random ranking to the vertices of V , and
number the vertices u1, u2, . . . , un accordingly, where uj has better rank than
ul if and only if j < l. Second, build a least-element list for each vertex
v ∈ V , denoted L[v], as follows. Perform a bfs starting from u1, and initial-
ize L[ul] := 〈d(u1, ul), u1〉 for 1 ≤ l ≤ n. Next, for j = 2, 3, . . . , n, perform a
truncated bfs starting from uj . Specifically, let ul be the current traversed ver-
tex, and 〈d′, u′〉 be the last entry in its least-element list L[ul]. If d(uj , ul) < d′,
then L[ul] := L[ul] + 〈d(uj , ul), uj〉, where + denotes the list append operation.
Otherwise, stop expanding the bfs at ul (i.e. do not insert ul’s neighbors into
the bfs queue).

Algorithm sef performs kSEF such iterations. In particular, at iteration i =
1, 2, . . . , kSEF, each of the vertices in G is assigned a key using a random mapping
Ri : V → IR+, which is chosen either from an exponential distribution or from a
uniform distribution in [0, 1]: this naturally induces the aforementioned ranking
on the vertices. For 1 ≤ i ≤ kSEF and for any u ∈ V , let

Li[u] = 〈di
u,1, v

i
u,1〉 · · · 〈di

u,si
u
, vi

u,si
u
〉

be the resulting least-element list for u at iteration i. Moreover, for 1 ≤ h < n,
let x∗ denote the maximum x with 1 ≤ x ≤ si

u such that di
u,x ≤ h, and let

ri(u, h) = Ri

(
vi

u,x∗
)
. The averaging-based estimator for N ′(u, h) is defined as

sefE(u, h) =
kSEF − 1

∑kSEF
i=1 ri(u, h)

if Ri is chosen from an exponential distribution, and as
2 The original algorithm in [4] applies to the directed graph obtained by reversing

the direction of the input edges. Here we apply it to undirected graphs, since our
experiments are performed on these graphs.

A Comparison of Three Algorithms 97

sefU (u, h) =
kSEF

∑kSEF
i=1 ri(u, h)

if Ri is chosen from a uniform distribution in [0, 1]. Cohen [4] proved that choos-
ing kSEF = Θ(ε−2 log n) gives a relative error bounded by ε while estimating N ′

h

with high probability.
Concerning the time and space complexity, Cohen [4] also proved that each

least-element list has expected size O(log n), and that an iteration runs in
O(m log n) expected time. The resulting total expected complexity is, hence,
O(kSEF m log n) time and O(kSEF n log n) space: if kSEF = Θ(ε−2 log n), this lat-
ter complexity turns out to be too much memory in the case of real-world large
graphs. Since the diameter Δ of the majority of the graphs examined in our
experiments is much smaller than kSEF log n, we opted for an implementation of
the sef algorithm which runs in O(nΔ) space.

Observe that although the k-min and the k-bottom sketches approaches [5,6,7,8]
provide the above averaging-based estimation with improved time complexity, we
could not devise an implementation using O(nΔ) or less space, and so we could not
experiment them on our large graphs due to memory overflow.

2.3 The ANF Algorithm

We now sketch the anf algorithm [17]. As already stated in the introduction, this
algorithm is based on the probabilistic counting method described by Flajolet
and Martin [11], in order to estimate the number N of distinct elements in a large
collection C of data. This latter method assumes that the set X of possible data
values is mapped to the set of binary strings of a given length L by means of a
function hash, so that the values hash(x), for x ∈ X , are uniformly distributed.
The probabilistic counting method scans C and, any time a value x ∈ X is read,
it sets the h-th bit of an output mask M equal to 1, where h is the position of
the leftmost 1 in hash(x). Once all elements in C have been read, the algorithm
outputs the value 2b/ϕ, where b is the index of the leftmost 0 in M and ϕ ≈ 0.774
is a “correction” factor. It can be proved that the expected value of b is close
to log2(ϕN) and that, under reasonable probabilistic assumptions, the standard
deviation of b is close to 1.12. This performance can be improved by making
use of the so-called stochastic averaging method, which consists in making use
of kANF output masks in parallel and returning the value 2b/ϕ, where b is the
average index of the leftmost 0 among the kANF masks.

The anf algorithm exploits the probabilistic counting method idea in the
following way (once again we limit ourselves to the undirected graph case).

1. At step h = 0, each vertex v creates kANF binary masks Mh
v,r (1 ≤ r ≤ kANF)

of length L = log n + c, for some small constant c. Each mask has only one
bit set: the probability that this bit is the one in position j is approximately
equal to 1/2j+1. At the end of the step, h is incremented by 1.

2. For 1 ≤ r ≤ kANF, each vertex v sets Mh
v,r equal to Mh−1

v,r and then updates
Mh

v,r by executing a bitwise OR operation between Mh
v,r and Mh−1

w,r , for each
vertex w adjacent to v.

98 P. Crescenzi et al.

3. It computes, for each vertex v, the value bv which is the average index
of the leftmost 0 among the kANF masks Mh

v,r, and outputs the value
Sh =

∑
v∈V 2bv/ϕ, which is an approximation of N ′

h. If Sh = Sh−1, where
we assume S0 = 0, then the algorithm ends. Otherwise, it increments h by 1
and repeats steps 2–3.

It is easy to verify that the anf algorithm runs in time O(kANF Δ (m + n)).
Its approximation performance derives from the analysis of the probabilistic
counting method (with stochastic averaging). In particular, it is possible to prove
that the expected output values Sh are equal to N ′

h. Moreover, the larger is the
number kANF of masks, the smaller is the standard error (see Table II in [11]):
in particular, if kANF = 32 then the standard error is equal to 13.8%, while if
kANF = 256 then the standard error is equal to 4.8%.

3 Experimental Study

3.1 Datasets

Our experiments are based on more than seventy real-world graphs, which
have been chosen in order to cover the largest possible taxonomy as
in [9]: a detailed description of each graph can be found in our website
(diameter.algoritmica.org), where the sources from which the graphs have
been obtained are also indicated. All these graphs are undirected and can be con-
sidered sparse, that is, m = O(n). For the sake of brevity, we will limit ourselves
to describe and comment the experimental results relative to a subset of thirty
representative graphs, as shown in the first three columns of Table 1, where the
number of vertices and edges of each graph is also indicated.

3.2 Algorithms’ Implementation and Computing Platform

We implemented ew, sefE , and sefU , in C language. We obtained the anf
source code in C from the authors: this code is highly optimized and works
on multi-core machines. All the source codes are available on our website. Our
computing platform is composed of two machines with 2 × 6 cores each (AMD
Opteron(tm) Processor 2427), where each core has 512KB L2 cache and 6MB L3
cache, with a 32GB shared memory. The operating system is Red Hat Enterprise
Linux Server rel. 5.5, with a Linux kernel version 2.6.18 and gcc version 4.1.2.

3.3 Methodology and Error Estimation

As previously mentioned, sef and anf are methods designed to estimate N ′
h:

even though Nh can be computed by using N ′
h, both methods do not guarantee

a bounded relative error on the values of Nh (as far as we know no such method
is currently known). Thus, we decided to proceed in our experiments as follows.

We first considered the accuracy in terms of the absolute error for the three
algorithms while computing Nh. In particular, each algorithm has been executed
E = 10 times, and N̂e

h indicates the approximate value of Nh computed by the
algorithm after execution e = 1, 2, . . . , E. We employed the following formula to
evaluate the absolute error:

A Comparison of Three Algorithms 99

– MQE (mean quadratic error): 1
E

∑E

e=1

√
∑

Δ
h=1(Nh−N̂e

h)2

Δ .

We also evaluated the maximum absolute error maxE
e=1 maxΔ

h=1 |Nh− N̂e
h|. How-

ever, we do not report these values since they can be so summarized: that error
for ew is always smaller than the theoretical bound by an order of magnitude.

We then considered the accuracy in terms of the relative error for the three
algorithms while computing N ′

h. Here, N̂ ′e
h denotes the approximate value of N ′

h

computed by the algorithm after execution e = 1, 2, . . . , E, and we adopt the
following formula to evaluate the relative error:

– MRE (average maximum relative error): 1
E

∑E

e=1
maxΔ

h=1

{ |N ′
h−N̂ ′e

h|
N ′

h

}
.

3.4 EW versus ANF

The comparison between ew and anf was not immediate. We decided to start
on a common ground, namely, tuning their parameters so as to compare their
accuracy. Since there is no clear notion of number of iterations (i.e. the number
kEW of bfses executed by ew) in anf, we tuned anf using the number kANF of
masks. Since the length of each mask is approximately log n, it seemed to be fair
to compare the two algorithms with kEW = kANF log n. Indeed, we performed a
first evaluation by running 100 experiments on five graphs, which is summarized
in the following table, where the MRE of the two algorithms is shown.

kANF
kEW/ log n

1
2
4
8

16
32
64

128
256

ADVO

ew anf

0.49 1.15
0.35 0.69
0.26 0.46
0.19 0.27
0.15 0.17
0.11 0.13
0.08 0.11
0.05 0.07
0.04 0.05

CAH2

ew anf

0.59 1.00
0.43 0.84
0.34 0.39
0.18 0.28
0.17 0.19
0.10 0.13
0.08 0.10
0.05 0.07
0.03 0.05

EMA1

ew anf

0.57 1.13
0.55 0.60
0.34 0.40
0.26 0.27
0.21 0.20
0.14 0.14
0.11 0.10
0.07 0.08
0.06 0.06

HEPT

ew anf

0.44 1.24
0.30 0.66
0.18 0.39
0.13 0.27
0.10 0.18
0.08 0.13
0.06 0.10
0.04 0.07
0.03 0.04

META

ew anf

0.33 1.87
0.25 0.76
0.18 0.44
0.13 0.36
0.09 0.26
0.07 0.23
0.06 0.20
0.03 0.16
0.03 0.18

As it can be seen, the MRE of ew is always smaller than the MRE of anf.
In other words, ew seems to outperform anf with respect to the computation
of N ′

h. Note that this feature did not come at the cost of making ew run slower
than anf, as discussed next for Nh. Our goal was mainly to discover which values
of kEW and kANF produce similar accuracies. To this aim, we performed another
evaluation by running 100 experiments on the same previous five graphs, which
is summarized in the next table, where the MQE of the two algorithms is shown.

kANF
kEW/ log n

1
2
4
8

16
32
64

128
256

ADVO

ew anf

0.0240 0.0528
0.0164 0.0425
0.0123 0.0333
0.0087 0.0227
0.0056 0.0166
0.0040 0.0118
0.0032 0.0076
0.0022 0.0054
0.0014 0.0038

CAH2

ew anf

0.0181 0.0424
0.0124 0.0356
0.0082 0.0242
0.0065 0.0160
0.0043 0.0132
0.0026 0.0087
0.00200 0.0061
0.0014 0.0046
0.0009 0.0031

EMA1

ew anf

0.0173 0.0459
0.0135 0.0366
0.0093 0.0291
0.0067 0.0194
0.0051 0.0148
0.0036 0.0109
0.0026 0.0076
0.0017 0.0057
0.0012 0.0039

HEPT

ew anf

0.0172 0.0520
0.0113 0.0347
0.0086 0.0265
0.0062 0.0196
0.0046 0.0141
0.0033 0.0107
0.0022 0.0070
0.0016 0.0050
0.0010 0.0034

META

ew anf

0.0103 0.0265
0.0079 0.0195
0.0051 0.0143
0.0038 0.0109
0.0024 0.0075
0.0020 0.0056
0.0014 0.0043
0.0009 0.0030
0.0007 0.0021

100 P. Crescenzi et al.

As it can be seen, the MQE of ew with kEW = 32 logn is very close to that of anf
with kANF = 256, which is twice the maximum number of masks experimented
in [17]. We thus compared ew with kEW = 32 logn to anf with kANF = 256
on all graphs, to evaluate both the accuracy with respect to the MQE, and the
running times.3 To our surprise, ew is consistently almost as accurate as anf
but significantly faster, as reported in the last four columns of Table 1, where the
time columns represent the average running time of one experiment, expressed
in seconds. Here, at approximately the same value of MQE, ew outperforms anf
in terms of running time by an order of magnitude. Even if it is not shown in
the table, it is worth observing that, in some cases, the absolute error of anf is
even greater than the theoretical bound proved for the ew algorithm.

3.5 EW versus SEF

We recall that ew requires O(kEW n) time and O(n) space, while sef requires
O(kSEF n log n) time and O(nΔ) space on our sparse graphs:4 in both algorithms,
the theoretical analysis suggests to fix kEW = kSEF = ε−2 log n.

In order to compare the accuracy (MQE and MRE) of the two algorithms in
practice, a first choice is to fix kEW = kSEF as mentioned above. By choosing
the best performance of either sefE or sefU , it can be experimentally observed
that, in this case, the MQE of ew is comparable to (and slightly better than)
that of sef, while the MRE of ew is worse than that of sef: this might suggest
that ew is accurate in estimating Nh, while sef is better with N ′

h.
However, the above choice is too punitive for ew: at each iteration, sef has

a factor of log n more time (and Δ more space) than ew. To balance the time
resource, a better choice is kEW = kSEF log n, where kSEF = ε−2 log n as before.
Now both ew and sef conceptually take O(n log2 n) time, whereas ew still uses
O(n) space. In our experiments, we simplified this choice by setting kSEF = 32
(in place of ε−2 log n) and so kEW = kSEF log n = 32 logn (in place of ε−2 log2 n)
to be consistent with the choice of kEW performed in Section 3.4. The results
of these experiments are summarized in the central columns of Table 1: ew
performs better than sef with respect to its measured running time and to both
MQE and MRE. This shows that we can increase ew’s accuracy while keeping its
actual running time much better than sef’s (and anf’s). Note that some entries
of the sef columns are empty: either its execution caused an out-of-memory
error on our machines or its running time was more than half an hour.5

One final observation is in order. More recent versions of sef are based on
bottom-k and k-min sketches [7,6,5,8]. However, they require O(kn log n) space,
where k = Ω(ε−2 log n), and we do not know how to implement them in O(nΔ)

3 The anf code is quite optimized and makes use of multi-thread programming, which
allows it to be executed faster on multi-core platforms (12 cores in our case).

4 As already observed, we actually experimented our variation of sef that requires
O(nΔ) space, since Δ� kSEF log n whenever kSEF = Ω(log n).

5 This time limit is far beyond the maximum average time required by anf and ew
on all graphs, apart from ROA1, which is the largest one we considered and which, in
the case of anf, required more than 15 hours.

A Comparison of Three Algorithms 101

Table 1. Summary of our experimental results, where the entries in the sef columns
are set by choosing the best performance of either sefE or sefU whenever the time or
space limits are not exceeded.

SEF (kSEF = 32) EW (kEW = 32 log n) ANF (kANF = 256)
G n m MRE MQE Time (s) MRE MQE Time (s) MQE Time (s)

PLAN 1412 1941 0.14 0.005 0.1 0.06 0.002 0.1 0.002 0.7
META 3078 4667 0.13 0.007 0.6 0.09 0.002 0.1 0.002 2.0
HCBI 4039 10321 0.17 0.007 1.3 0.05 0.002 0.1 0.002 1.6
CAGR 4158 13422 0.12 0.007 1.3 0.06 0.002 0.1 0.003 1.4
ADVO 5272 42816 0.15 0.017 2.0 0.12 0.005 0.1 0.004 1.0
WIK2 7066 100735 0.09 0.013 3.6 0.06 0.004 0.2 0.004 1.3
CAH2 8638 24806 0.15 0.01 5.6 0.06 0.002 0.2 0.002 2.8
CAH1 11204 117619 0.12 0.009 9.4 0.09 0.004 0.3 0.003 3.5
CAAS 17903 196972 0.18 0.013 25.8 0.07 0.004 0.7 0.003 6.6
DIP2 19928 41202 0.16 0.007 32.5 0.09 0.002 0.4 0.002 10.0
CACO 21363 91286 0.13 0.009 36.2 0.04 0.003 0.6 0.003 6.3
HEPT 27400 352021 0.18 0.013 59.9 0.07 0.003 1.7 0.006 11.8
EMA1 33695 180810 0.17 0.012 87.2 0.13 0.003 0.8 0.004 8.8
CIT1 34401 420783 0.09 0.01 93.1 0.05 0.002 2.7 0.004 13.2
TRUS 49288 381036 0.12 0.012 187.7 0.20 0.004 2.5 0.003 15.0
P2PG 62561 147877 0.17 0.009 303.1 0.05 0.003 3.0 0.003 13.4
SOCE 75877 405738 0.14 0.011 447.2 0.11 0.003 3.4 0.004 23.9
SOC3 77360 469180 0.14 0.012 463.1 0.10 0.003 4.6 0.004 22.4
SOC2 82140 500480 0.14 0.013 526.9 0.15 0.004 5.7 0.004 25.1
SOC1 119130 704267 0.24 0.004 10.0 0.003 42.9
ITDK 190914 607610 0.11 0.002 21.2 0.002 101.1
CITE 220997 505327 0.07 0.002 27.3 0.002 204.4
EMA2 224832 339924 0.54 0.002 18.3 0.004 62.7
AMA1 262111 899791 0.05 0.001 29.9 0.002 183.7
CN20 325557 2738969 0.44 0.002 14.3 0.002 262.9
AMA3 410236 2439436 0.07 0.002 62.2 0.004 212.4
DBLP 511163 1871070 0.06 0.002 66.9 0.003 238.7
EU20 862664 32276936 0.23 0.003 62.6 0.004 593.6
IMDB 880455 74989272 0.09 0.003 358.6 0.006 918.5
ROA1 1957027 5520776 0.67 2e-4 129.5 3e-4 55733.1

space. A simple back-of-the-envelope calculation shows that their space usage
significantly exceeds the size of the main memory available for the experiments
on some of the large graphs (e.g. ROA1). This in contrast to the fact that both
ew and anf have no particular problem with space usage.

3.6 EW versus the Exact Distribution

Figure 1 shows the plots for some graphs to compare the results of E = 10
executions of ew against the exact distribution. In particular each plot shows
the exact value of Nh (the continuous line) on the y-axis, along with the values
approximated by the executions of ew (the starred points). Note that the h val-
ues on the x-axis are normalized as h/Δ for uniform presentation of experimental
data. Each execution of ew performs kEW = 32 logn bfses in order to guarantee
an absolute error bounded by 0.17: the average running times of these executions
and the MQE values are those shown in Table 1. As it can be visually inspected
in Figure 1, the starred points fit the continuous line well. We reported also one
exception in our dataset, where the starred points in ROA1 deviates significantly
from the continuous line when h is larger than nearly 30% of the diameter Δ.

102 P. Crescenzi et al.

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

h/Δ

ADVO

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8 1

h/Δ

CAH2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

h/Δ

EMA1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

h/Δ

HEPT

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

h/Δ

META

 0

 0.05

 0.1

 0.15

 0 0.2 0.4 0.6 0.8 1

h/Δ

DIP2

 0

 0.001

 0.002

 0.003

 0 0.2 0.4 0.6 0.8 1

h/Δ

ROA1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

h/Δ

EU20

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

h/Δ

IMDB

Fig. 1. Approximate distribution (starred points) computed by ew versus actual dis-
tribution of Nh (continuous line). The x-axis represents the normalized value h/Δ.

4 Conclusions

We presented a competitive textbook algorithm ew to estimate the distribution
distance on undirected graphs. Its accuracy competes with that of algorithms
sef and anf described in Section 2. Its running time is better than that of sef
and anf: a possible reason lies in the fact that sef has to maintain the least-
element list for each vertex and anf has to maintain a number of masks for each
vertex, whereas ew has just to update a simple partial counter for each value
1 ≤ h ≤ Δ. Since the diameter Δ is much smaller than the number of vertices in
our real-word graphs, we expect that the major advantage of ew is that of having
a very simple and fast bookkeeping task during the graph traversal. It would be
interesting to extend its field of applications to directed graphs (by running, for
example, the bfses first on the outgoing edges and then on the reversed incoming
edges), and to experiment an external-memory implementation that works for
massive graphs residing on disks.

Acknowledgments. We are deeply in debt with Edith Cohen and Haim Kaplan
for their helpful clarification of sef and its variants, and with Christos Faloutsos
for letting us to re-distribute an updated version of anf in our website. We wish
to thank Riccardo Detti for his effort to provide us with powerful machines to run
the experiments. Last but not least, the first author would like to thank Andrea
Pietracaprina and Geppino Pucci for several interesting discussions on anf.

A Comparison of Three Algorithms 103

References

1. Blondel, V., Guillaume, J.L., Hendrickx, J., Jungers, R.: Distance Distribution in
Random Graphs and Applications to Network Exploration. Phys. Rev. E 76 (2007)

2. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:
Proc. of the 13th International World Wide Web Conference, pp. 595–601 (2004)

3. Cohen, E.: Estimating the size of the transitive closure in linear time. In: Annual
IEEE Symposium on Foundations of Computer Science, pp. 190–200 (1994)

4. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci. 55(3), 441–453 (1997)

5. Cohen, E., Kaplan, H.: Bottom-k sketches: better and more efficient estimation of
aggregates. In: ACM SIGMETRICS, pp. 353–354. ACM, New York (2007)

6. Cohen, E., Kaplan, H.: Spatially-decaying aggregation over a network. J. Comput.
Syst. Sci. 73(3), 265–288 (2007)

7. Cohen, E., Kaplan, H.: Summarizing data using bottom-k sketches. In: ACM
PODC, pp. 225–234 (2007)

8. Cohen, E., Kaplan, H.: Tighter estimation using bottom k sketches. PVLDB 1(1),
213–224 (2008)

9. Crescenzi, P., Grossi, R., Imbrenda, C., Lanzi, L., Marino, A.: Finding the Diameter
in Real-World Graphs: Experimentally Turning a Lower Bound into an Upper
Bound. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 302–313.
Springer, Heidelberg (2010)

10. Eppstein, D., Wang, J.: Fast approximation of centrality. In: ACM/SIAM SODA,
pp. 228–229 (2001)

11. Flajolet, P., Martin, G.N.: Probabilistic Counting Algorithms for Data Base Ap-
plications. Journal of Computer Systems Science 31(2), 182–209 (1985)

12. Latapy, M., Magnien, C.: Measuring Fundamental Properties of Real-World Com-
plex Networks. CoRR abs/cs/0609115 (2006)

13. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph Evolution: Densification and
Shrinking Diameters. ACM Trans. Knowl. Discov. Data 1(1) (2007)

14. Lipton, R.J., Naughton, J.F.: Query size estimation by adaptive sampling. J. Com-
put. Syst. Sci. 51(1), 18–25 (1995)

15. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
16. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear

I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–
735. Springer, Heidelberg (2002)

17. Palmer, C.R., Gibbons, P.B., Faloutsos, C.: ANF: a Fast and Scalable Tool for
Data Mining in Massive Graphs. In: ACM SIGKDD, pp. 81–90 (2002)

18. Wang, L., Subramanian, S., Latifi, S., Srimani, P.: Distance Distribution of Nodes
in Star Graphs. Applied Mathematics Letters 19(8), 780–784 (2006)

Exploiting Bounded Signal Flow for Graph
Orientation Based on Cause–Effect Pairs�

Britta Dorn1, Falk Hüffner2, Dominikus Krüger3, Rolf Niedermeier4,
and Johannes Uhlmann4,��

1 Fakultät für Mathematik und Wirtschaftswissenschaften,
Universität Ulm, Helmholtzstr. 18, D-89081 Ulm, Germany

britta.dorn@uni-ulm.de
2 Institut für Informatik, Humboldt-Universität zu Berlin,

D-10099 Berlin, Germany
hueffner@informatik.hu-berlin.de

3 Institut für Theoretische Informatik, Universität Ulm,
James-Franck-Ring O27, D-89081 Ulm, Germany

dominikus.krueger@uni-ulm.de
4 Institut für Softwaretechnik und Theoretische Informatik,

TU Berlin, D-10857 Berlin, Germany
{rolf.niedermeier,johannes.uhlmann}@tu-berlin.de

Abstract. We consider the following problem: Given an undirected net-
work and a set of sender–receiver pairs, direct all edges such that the
maximum number of “signal flows” defined by the pairs can be routed
respecting edge directions. This problem has applications in communi-
cation networks and in understanding protein interaction based cell reg-
ulation mechanisms. Since this problem is NP-hard, research so far con-
centrated on polynomial-time approximation algorithms and tractable
special cases. We take the viewpoint of parameterized algorithmics and
examine several parameters related to the maximum signal flow over ver-
tices or edges. We provide several fixed-parameter tractability results,
and in one case a sharp complexity dichotomy between a linear-time
solvable case and a slightly more general NP-hard case. We examine the
value of these parameters for several real-world network instances. For
many relevant cases, the NP-hard problem can be solved to optimality.
In this way, parameterized analysis yields both deeper insight into the
computational complexity and practical solving strategies.

1 Introduction

Consider a communication network, with a given list of one-way connection
request pairs. Each link between two network nodes can only be used in one
direction. The task is now to orient the links such that as many communication
requests as possible can be fulfilled. We formalize this as follows.
� Main work done while BD and DK were with the Universität Tübingen, and RN

and JU were with the Universität Jena.
�� Supported by the Deutsche Forschungsgemeinschaft (DFG), research project PABI

(NI 369/7).

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 104–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Exploiting Bounded Signal Flow for Graph Orientation 105

Problem Formalization. Let G = (V, E) be an undirected graph. An orienta-
tion �G of G is a directed graph �G = (V, �E) obtained from G by replacing every
undirected edge {u, v} ∈ E by a directed one, i. e., either by (u, v) ∈ �E or by
(v, u) ∈ �E. Let P ⊆ V × V be a set of ordered source–target pairs, which we
sometimes refer to as “signals”. In order to distinguish pairs from edges or arcs,
we use the notation [a, b] ∈ P to denote the pair starting in a and ending in b.
We say that a pair [a, b] ∈ P is satisfied by a given orientation �G if there exists
a directed path from a to b in �G. The central problem considered in this work is
to find an orientation of a given graph maximizing the number of satisfied pairs.
As pointed out by Medvedovsky et al. [9], we can assume that the given graph
is a tree: it is clearly optimal to orient the edges of a cycle to form a directed
cycle, and, hence, one can contract each cycle to a single vertex, obtaining a
tree. Thus, formalized as a decision problem, Maximum Tree Orientation is
defined as follows.

Maximum Tree Orientation (MTO)
Given an undirected tree T , a set P of ordered pairs of vertices of T , and
an integer k ≤ |P |, is it possible to find an orientation of T such that at
most k pairs in P are not satisfied?

We also consider the weighted version, called Weighted Maximum Tree Ori-
entation (W-MTO), where every pair [a, b] ∈ P is associated with a rational
weight ω([a, b]) ≥ 1, and the goal is to maximize the sum of weights of the
satisfied pairs.

MTO also has applications in network biology [1,13], more specifically, in the
inference of causal relations in biological networks. Often experimental tech-
niques do not yield (enough) information concerning causal relations. This is
particularly true for protein–protein interaction (PPI) networks: current tech-
nologies like two-hybrid screening can find many protein interactions, but can-
not decide the direction of the interaction. Medvedovsky et al. [9] introduced
a graph-theoretic model to study signal transmission in PPI networks and the
corresponding inference of causal relations. Roughly speaking, the challenge is
to orient a given network by combining causal information on cellular events.
Medvedovsky et al. [9] formalized this as MTO.

Previous Work. MTO was introduced by Medvedovsky et al. [9]; they showed
that the problem is NP-complete even when the underlying tree is a star (that is,
a diameter-two tree) or a tree with maximum vertex degree three. Moreover, they
provided a cubic-time algorithm for MTO restricted to paths. Seeing MTO as the
task to maximize the number of satisfied pairs, Medvedovsky et al. also provided
polynomial-time approximation algorithms with approximation factor 1/4 in the
case of stars and O(1/ log n) in the case of general n-vertex trees. The latter
approximation factor was recently improved to O(log log n/ logn) by Gamzu
et al. [6], who furthermore extended the studies of MTO to “mixed graphs”
where some of the edges are already oriented based on causal relations known
in advance. Besides these theoretical investigations, Medvedovsky et al. [9] also
provided some experimental results based on a yeast PPI network and some

106 B. Dorn et al.

synthetic data. Silverbush et al. [14] very recently did experiments on mixed
graphs using integer linear programming. In earlier work Hakimi et al. [8] studied
the special case of MTO where the list of pairs to be satisfied contains all possible
pairs; they developed a quadratic-time algorithm for this case.

Our Contributions. We mainly continue and complement the so far mostly
theoretical studies on MTO [9,6] by starting a parameterized and multivariate
complexity analysis of MTO. That is, we try to better understand the border
between tractable and intractable cases of MTO while sticking to optimal (in-
stead of approximate) solutions. In particular, our focus is on the “amount of
signal flow” over vertices and edges, respectively, and how this influences the
computational complexity of MTO. First, we show that W-MTO can be solved
in O(2mv · |P | + n3) time on an n-vertex tree, where mv denotes the maximum
number of connections paths (one-to-one corresponding to the input vertex pairs)
over any tree vertex. In other words, W-MTO is fixed-parameter tractable with
respect to the parameter mv. Second, we introduce the concept of cross pairs
and show that cross-pair-free instances of W-MTO can be solved in quadratic
time, as a corollary also improving the cubic-time algorithm of Medvedovsky et
al. [9] for MTO on paths to quadratic time. Third, we additionally show that
W-MTO is fixed-parameter tractable with respect to the parameter qv which is
the maximum number of cross pairs over any vertex; namely, it can be solved
in O(2qv · n2 · qv) time. Fourth, shifting the focus from “maximum vertex signal
flow” to “maximum edge signal flow”, we show a sharp complexity dichotomy:
W-MTO can be solved in linear time if no tree edge has to carry more than two
signals, but if this maximum edge signal flow is three, MTO already becomes
NP-hard. Finally, we briefly discuss some practical aspects of exactly solving
the so far very few considered real-world instances and conclude that these can
be already solved to optimality within milliseconds (via at least three different
strategies). However, we also make the point that with the future availability
of further real-world data, our new algorithms can be of significant practical
relevance beyond so far known or straightforward approaches.

Because of space constraints, some proofs and details are deferred to the full
version of this paper.

2 Preliminaries, Basic Facts, and Simple Observations

For ease of presentation, for a W-MTO instance (T, P, ω), we always assume
that ω([s, t]) = 0 for all pairs s, t ∈ V with [s, t] �∈ P . Moreover, subsequently
mostly referring to MTO, the presented concepts and definitions clearly apply
to W-MTO as well. Note that in a tree T = (V, E), for each ordered pair [a, b]
of vertices, there exists a uniquely determined path connecting these vertices.
We will therefore often write the path defined by the pair [a, b] when we refer to
the unique path in the tree starting in vertex a and ending in vertex b, or talk
about pairs and paths interchangeably. Sometimes, we also talk about paths in
the tree which do not necessarily correspond to pairs. We denote the undirected
path connecting vertices v and w in T by pathT (v, w). Moreover, Pv := {[s, t] ∈

Exploiting Bounded Signal Flow for Graph Orientation 107

P | v ∈ V (pathT (s, t))} denotes the set of paths passing through a vertex v. An
MTO instance is called rooted if the underlying tree T is rooted. In a rooted
tree T = (V, E), if vertex a ∈ V is an ancestor of vertex b ∈ V , then we use the
notation a ≺ b. The subtree of T rooted at v ∈ V is denoted Tv.

Let (T = (V, E), P) be an MTO instance, and let x, y ∈ P be two pairs. We
say that x conflicts with y if there exists no orientation of T for which both x
and y are satisfied. From an n-vertex MTO instance, we build in O(n3) time a
conflict graph in which each vertex corresponds to an input pair of the MTO
instance, and where there is an edge between two pairs if and only if they conflict
with each other. More formally, given an MTO instance (T = (V, E), P), the
corresponding conflict graph Gc(T, P) is defined as Gc(T, P) := (P, Ec) where
Ec := {{u, v} | u, v ∈ P ∧ u conflicts with v}.

Clearly, for an orientation of (T, P), in Gc there are no edges (that is, conflicts)
between the vertices corresponding to the satisfied source–target pairs, and hence
the vertices corresponding to the non-satisfied source–target pairs form a vertex
cover for Gc, that is, a vertex set V ′ ⊆ P such that for every edge e ∈ Ec at
least one endpoint of e is in V ′. This yields the following useful observation.

Proposition 1. Finding a minimum-weight vertex cover in the conflict graph
Gc(T, P) one-to-one corresponds to determining a minimum-weight set of pairs
that cannot be satisfied in (T, P).

Parameterized complexity is a two-dimensional framework for the analysis of
computational complexity [4,5,10]. One dimension is the input size n, and the
other one is the parameter (usually a positive integer). A problem is called
fixed-parameter tractable (fpt) with respect to a parameter k if it can be solved
in f(k) · nO(1) time, where f is a computable function only depending on k.
For instance, it is well-known that finding an optimal (weighted) vertex cover is
NP-hard but fixed-parameter tractable with respect to the parameter “solution
size”. Due to Proposition 1 we can immediately conclude that MTO and W-
MTO are fixed-parameter tractable with respect to the parameters “number of
unsatisfied vertex pairs” or “total weight of unsatisfied vertex pairs”, respectively
(parameter k).

3 Bounded Signal Flow over Vertices

In this section, we investigate how the vertex-wise structure of the source–target
pairs influences the computational complexity of Maximum Tree Orienta-
tion. More specifically, first we consider the parameter mv denoting the max-
imum number of source–target paths passing through a vertex. We show that
MTO can be solved in O(2mv · |P | + n3) time. In other words, MTO is fixed-
parameter tractable with respect to the parameter mv. Motivated by this pos-
itive result, we explore in more depth the structure of the source–target paths
that pass through a vertex. To this end, we introduce the concept of “cross
pairs” and show that for cross-pair-free instances MTO can be solved in O(n2)
time. Informally speaking, an instance is cross-pair-free if the input tree can be

108 B. Dorn et al.

rooted such that for each source–target pair one endpoint is an ancestor of the
other one. Then, for a rooted MTO instance a cross pair is a source–target pair
such that none of its endpoints is the ancestor of the other endpoint. By refin-
ing the solving strategy for cross-pair-free instances, we show that Maximum
Tree Orientation can be solved in O(2qv ·n2 · qv) time, where qv denotes the
maximum number of cross pairs passing through a vertex.

All algorithms in this section are based on dynamic programming, and, hence,
since source–target pair weights can easily be incorporated, extend to W-MTO.

3.1 Parameter “Maximum Number of Pairs per Vertex”

Here, we show that W-MTO is fixed-parameter tractable for the parameter mv

denoting the maximum number of source–target pairs passing through a vertex.
To this end, we construct in polynomial time a tree decomposition of the con-
flict graph of treewidth at most mv (proof omitted). Informally speaking, the
treewidth [10] measures the “tree-likeness” of a graph, and a tree decomposition
is the “embedding” of a graph into a tree depicting the tree-like structure of the
graph. Recall that (weighted) MTO is equivalent to (weighted) Vertex Cover
on the conflict graph (see Proposition 1). Thus, the running time follows by the
fact that (weighted) Vertex Cover can be solved in O(2twn) time, given a
tree decomposition of width tw [10].

Theorem 1. On n-vertex trees, Weighted Maximum Tree Orientation is
solvable in O(2mv · |P | + n3) time, where mv denotes the maximum number of
source–target pairs passing through a vertex.

3.2 Cross Pairs

In the previous subsection, we have shown that W-MTO is fixed-parameter
tractable with respect to the parameter mv. In the following two subsections, we
will strengthen this result by showing that W-MTO is fixed-parameter tractable
with respect to the parameter “number of a special type of source–target pairs
(the so-called cross pairs) passing through a vertex”. The idea in the next two
subsections is to identify a “trivial” (that is, polynomial-time solvable) special
case of the problem and then to investigate instances that are close to these
trivial instances, their closeness measured in terms of a certain parameter which
is referred to as distance from triviality [7,11].

In the following, we will always consider rooted trees. Informally speaking, a
cross-pair-free instance only contains source–target pairs whose corresponding
paths are directed either towards the root or towards the leaves, but do not
change their direction. Cross-pair-free instances of W-MTO are of special interest
since they constitute our “trivial instances”.

Definition 1. Let (T = (V, E), P, ω) be an instance of W-MTO where T is a
rooted tree. A source–target pair p = [a, b] ∈ P is called cross pair if neither a
is an ancestor of b nor b an ancestor of a. An instance of W-MTO is called
cross-pair-free if T can be rooted such that P does not contain any cross pairs.

Exploiting Bounded Signal Flow for Graph Orientation 109

3.3 Cross-Pair-Free Instances

Now, we devise a dynamic-programming-based algorithm solving W-MTO in
quadratic time on cross-pair-free instances.

Theorem 2. On n-vertex trees, Weighted Maximum Tree Orientation
for cross-pair-free instances with given root can be solved in O(n2) time.

Proof. We present a dynamic programming algorithm with quadratic running
time solving a cross-pair-free W-MTO instance (T = (V, E), P, ω) with root r.
For the presentation of the algorithm, we use the following notation. For all v, w∈
V with v ≺ w (that is, v is an ancestor of w) let T v

w denote the subtree of T
induced by V v

w := V (Tw) ∪ V (pathT (v, w)). For ease of presentation, let V w
w :=

V (Tw). Moreover, let P v
w := {[s, t] ∈ P | s, t ∈ V v

w}. That is, T v
w is the tree

consisting of the path pathT (v, w) and the subtree Tw rooted at w, and P v
w are

the pairs with both endpoints in T v
w. Finally, the weight of an orientation �T v

w

of (T v
w, P v

w) is the sum of the weights of the pairs in P v
w satisfied by �T v

w.
The algorithm maintains an n× n dynamic programming table S, containing

for each v, w ∈ V with v ≺ w or v = w the two entries S(v, w) and S(w, v). The
goal of the dynamic programming procedure is to fill S in accordance with the
following definition.

For all v, w ∈ V with v ≺ w, entry S(v, w) is the maximum weight of an
orientation of (T v

w, P v
w) among all orientations of (T v

w, P v
w) orienting the path

between v and w from v to w (that is, away from the root). Analogously, S(w, v)
is the maximum weight of an orientation of (T v

w, P v
w) among all orientations

of (T v
w, P v

w) orienting the path between v and w from w to v (that is, towards
the root). Note that in the case v = w, we have that S(v, v) is the weight of an
optimal orientation of the subtree rooted at v.

Next, we describe how our algorithm computes the entries of S in accordance
with this definition. The weight of an optimal orientation of (T, P) can then be
found in S(r, r).

To compute the entries of S, visit all vertices w ∈ V in a bottom-up traversal.
Then, for each w consider all vertices v ∈ V with v = w or v ≺ w and set (omit
the sum if w is a leaf):

S(v, w) := A(v, w) +
∑

u is a child of w

max {S(u, w), S(v, u) − A(v, w)} ,

S(w, v) := A(w, v) +
∑

u is a child of w

max {S(w, u), S(u, v) − A(w, v)} .

Herein, A(v, w) denotes the sum of the weights of the source–target pairs with
both endpoints on pathT (v, w) that are satisfied when orienting the path be-
tween v and w from v to w, that is,

A(v, w) := ω({[s, t] ∈ P | s, t ∈ V (pathT (v, w)) ∧ s ≺ t}).
Analogously, A(w, v) := ω({[s, t] ∈ P | s, t ∈ V (pathT (v, w))∧t ≺ s}). Moreover,
for ease of presentation we assume that A(v, v) = 0.

110 B. Dorn et al.

For the correctness of the algorithm note the following. For a leaf w and an
ancestor v of w, the tree T v

w is identical to the path pathT (v, w). Hence, the sum
of the weights of pairs that can be satisfied by orienting the path either from v
to w or from w to v is A(v, w) and A(w, v), respectively. Next, consider the case
that w is an inner vertex and let v be an ancestor of w. Moreover, let u1, . . . , u�

denote the children of w. We argue that the maximum weight of an orientation
of (T v

w, P v
w) orienting the edges on pathT (v, w) towards w equals

A(v, w) +
�∑

i=1

max {S(ui, w), S(v, ui) − A(v, w)} , (1)

and, hence, S(v, w) is computed correctly. To this end, consider a maximum-
weight orientation �T v

w of (T v
w, P v

w) orienting the edges on pathT (v, w) towards w.
If, for a child ui, �T v

w contains the arc (ui, w), then the contribution of the source–
target pairs in P v

w with at least one endpoint in Tui to the weight of �T v
w is S(ui, w);

note that no source–target pair of P v
w with exactly one endpoint in T w

ui
is satisfied

by �T v
w, and, thus, the contribution of these pairs is S(ui, w) (a smaller contri-

bution would contradict the optimality of �T v
w). Moreover, if for a child ui the

oriented tree �T v
w contains the arc (w, ui), then it follows by a similar argument

that the contribution of the paths in P v
w with at least one endpoint in V (Tui)

is S(v, ui) − A(v, w). The only difference is that the contribution of the source–
target pairs with both endpoints in V (pathT (v, w)) is already considered in the
above formula, and, hence, must be subtracted from S(v, ui).

We omit the proof of the running time.
�
Note that if the root of a cross-pair-free W-MTO instance is not known, it can
be calculated in O(n|P |) time by trying all roots and then checking for each pair
if the least common ancestor is one of the two endpoints.

As an immediate consequence of Theorem 2, we can improve the cubic-time
algorithm for MTO on paths by Medvedovsky et al. [9] to quadratic time. Herein,
we use that every path rooted at one of its endpoints results in a cross-pair-free
instance of MTO.

Corollary 1. Weighted Maximum Tree Orientation on n-vertex paths
can be solved in O(n2) time.

3.4 Parameter “Maximum Number of Cross Pairs Passing through
a Vertex”

Next, we show that W-MTO is fixed-parameter tractable with respect to the
parameter qv by extending the dynamic programming algorithm for cross-pair-
free instances. Formally, qv is defined as follows. For a rooted W-MTO in-
stance (T = (V, E), P) with root r, let Q denote the set of cross pairs. Moreover,
for v ∈ V let Qv := Pv ∩ Q be the set of cross pairs passing through v. With
respect to the root r the maximum number qv(r) of cross pairs passing through
a vertex is given by maxv∈V |Qv|. Then, qv is the minimum value of qv(r) over
all possible choices r to root T .

Exploiting Bounded Signal Flow for Graph Orientation 111

Theorem 3. On n-vertex trees, Weighted Maximum Tree Orientation
with given root can be solved in O(2qv ·qv·n2) time, where qv denotes the maximum
number of cross pairs passing through a vertex.

The basic idea of the algorithm is to incorporate the cross pairs by trying for
every vertex all possibilities to realize the cross pairs passing through this ver-
tex. To this end, we extend the matrix S by an additional dimension. As a
consequence, the dynamic programming update step becomes significantly more
intricate. The details are omitted for space constraints.

4 Bounded Signal Flow over Edges

We now consider MTO instances where the number me of paths that pass
through an edge is limited. We show that the problem is linear-time solvable
for me ≤ 2, but NP-hard for me ≥ 3, thereby establishing a dichotomy on the
complexity of MTO with respect to me.

First, we note that if me ≤ 2, then the conflict graph has treewidth at most
two (proof omitted). Since width-two tree decompositions can be constructed
in linear time [2] and weighted Vertex Cover can be solved in linear time
on graphs with constant treewidth [10], this yields linear-time solvability for
Weighted Maximum Tree Orientation with me ≤ 2.

Theorem 4. If me ≤ 2, then Weighted Maximum Tree Orientation can
be solved in linear time.

We can further prove that for me ≥ 3, MTO is NP-hard even on stars, that
is, on trees where all leaves are attached to the same vertex. The proof is by
reduction from MaxDiCut.

Theorem 5. Maximum Tree Orientation on stars with me ≥ 3 is
NP-complete.

5 Observations on Protein Networks

The goal in this section is to explore the space of practically meaningful pa-
rameterizations, here focusing on biological applications. We first performed
experiments based on the same data as used by Medvedovsky et al. [9]. The
network is a yeast protein–protein interaction network from the Database of In-
teracting Proteins (DIP) [12], containing 4 737 vertices and 15 147 edges. The
cause–effect pairs were obtained from gene knockout experiments by Yeang et
al. [15] and contain 14 502 pairs. After discarding small connected components
and contracting cycles, we obtained a tree with 1 278 vertices and 5 569 pairs.1

1 These numbers differ slightly from the ones stated by Medvedovsky et al. [9]. We do
not use the additional kinase–substrate data, which is only meaningful to evaluate
the orientations obtained, and requires an arbitrary parameter choice not docu-
mented by Medvedovsky et al. [9].

112 B. Dorn et al.

Table 1. Values for various parameters for the protein interaction network instance
from Medvedovsky et al. [9]

Parameter Value

n Number of network vertices 4 654
m Number of network edges 15 104
p Number of pairs 14 155
nt Vertices in MTO instance 1 278
pt Number of pairs in MTO instance 5 569
n∗ Number of vertices in star 1 049
mv Max. number of pairs per vertex 5 569
me Max. number of pairs per edge 371
q Number of cross pairs 417
qv Max. number of cross pairs per vertex 417
q′ Number of cross pairs after data reduction 306
q′

v Max. number of cross pairs per vertex after data reduction 306
nc Number of vertices in conflict graph 1 287
mc Number of edges in conflict graph 4 626
k Number of unsatisfiable pairs 77

The resulting tree is, as already observed by Medvedovsky et al. [9], very star-
like: there is one vertex of degree 1151 and 1048 degree-one vertices attached to
it. The remaining 229 vertices have degree 1 to 4. All paths connecting cause–
effect pairs pass through the central vertex.

We first note that this MTO instance is actually fairly easy to solve exactly.
The Integer Linear Program (ILP) by Medvedovsky et al. [9, Sect. 3.1] and
Vertex Cover on the conflict graph (see Section 2) solved by either an ILP
or a simple branching strategy with data reduction all solve the instance in less
than a second.2 The branching strategy finds a vertex v of maximum degree
and branches into the two cases of taking v into the vertex cover or taking all
neighbors of v into the vertex cover. Before each branch, degree-1 vertices are
eliminated by taking their neighbor into the vertex cover. The search in the
second branch is cut short when the accumulated vertex cover is larger than
that of the first branch.

The reason that these strategies work so well is probably due to the low value
of the parameter k: only 77 cause–effect pairs cannot be satisfied. This limits
the size of the branch-and-bound tree that underlies all three methods.

In Table 1, we examine several other parameters. Since there are still p = 5 569
pairs left, using this parameter for a fixed-parameter algorithm seems infeasible.
Unfortunately, since all paths run through a single vertex, the parameter mv is
not any more useful. Only about 5% of the pairs are cross pairs, so q is already a
more promising parameter. However, with a value of q = 417, direct application

2 The running times are 0.09 s, 0.02 s, and 0.13 s, respectively, on a 2.67 GHz Intel
Xeon W3520 machine, using GLPK 4.44 for the ILPs, and with the branching strat-
egy implemented in Objective Caml.

Exploiting Bounded Signal Flow for Graph Orientation 113

Table 2. Parameters for the largest connected component of the protein interaction
network assembled by Nir Yosef [3] with different thresholds for the edge probability.
The uneven gaps in the sizes of the instances are because many edges have identical
weights.

threshold n m p nt pt n∗ mv me q qv q′ q′v nc mc k

0.000000 5385 39921 14393 799 2014 750 2014 59 7 7 3 3 115 292 17
0.154420 4530 35041 11522 747 2203 705 2203 298 27 27 20 20 475 1632 40
0.371369 4254 32135 10740 796 2443 749 2443 275 47 47 35 35 528 2424 46
0.573290 3871 27128 9445 777 2225 704 2225 268 32 32 13 13 140 311 32
0.573313 2546 8977 5279 638 2311 477 2310 208 252 252 151 151 561 2394 68
0.830093 2206 7136 4346 643 2206 449 2206 192 304 304 193 193 727 4017 83
0.886308 1407 3646 1607 441 787 260 785 45 106 106 88 88 311 1876 75
0.943001 1135 3069 920 361 464 195 463 32 57 57 42 42 179 801 44
0.954421 1039 2504 843 350 489 175 461 45 85 73 71 61 215 3001 81
0.957338 895 2060 681 304 405 119 375 39 64 54 58 50 240 3092 89
0.965986 874 2018 666 299 477 103 411 165 90 78 85 75 358 12284 110
0.984753 668 1676 312 206 163 95 162 20 7 7 6 6 55 222 15
0.989212 581 1322 188 192 167 69 161 86 24 24 24 24 141 1088 32
0.989233 307 681 71 121 70 32 66 36 21 21 11 11 52 219 7
0.990409 294 666 28 114 27 26 26 21 2 2 2 2 9 8 2

of Theorem 3, with a worst-case running time bound of O(n3 + 2q · (|P | + n2))
seems not practical. Even if we eliminate pairs that do not conflict with any
other pairs, leaving only nc = 1 287 pairs, we still find at least 306 cross pairs
(parameter q′). Again, because all paths run through a single vertex, considering
cross pairs per vertex does not help. In summary, for this particular instance the
number of unsatisfiable pairs k is clearly the most useful parameter.

To examine the effect of the sparseness of the input instance on the various
parameters, we investigated another yeast protein interaction network assembled
by Nir Yosef from various sources (see references in [3]). In this network, each
edge is annotated with a probability of interaction. Thus, by thresholding, we
can obtain graphs of different sparseness. The results are shown in Table 2.

We see that, here, the parameter k is not always a clear winner. When the
network becomes sparser, the components that will be shrunk to a single vertex
by the cycle contraction will be smaller, leaving fewer pairs with both endpoints
on the same tree vertex, and thereby increasing the number of potential conflicts.
Only for very high thresholds, the parameter becomes small again, since then
the original instance is already much smaller. Still, all instances can be solved
in less than one second by the three algorithms mentioned above, which exploit
low values of k.

We also see that for denser graphs, the parameter values based on the num-
ber of cross pairs are quite low, e. g. q′v = 3 for the whole graph. Thus, it seems
very likely that these instances can be quickly solved by the algorithm from

114 B. Dorn et al.

Theorem 3, running in O(2q′
v · n2 · q′v) time. One possible explanation for the

low value for these parameters is that the networks exhibit a linear structure.
For example, if each protein can be assigned a distance to the nucleus, and
interactions mostly transport information to or from the nucleus, then we would
expect to have only few cross pairs.

The parameter mv could be expected to be not too high in biological net-
works, since otherwise this would make the network less robust, since elimina-
tion of one vertex would disrupt too many paths. However, one vertex in the
tree under consideration can actually correspond to a very large component in
the original graph, which weakens this effect. Therefore, this parameter is more
useful in sparser graphs, where not too many graph vertices are joined into a tree
vertex. However, for the given instances, it seems small enough to be exploited
only for fairly small instances, where other parameters would give good results,
too.

The parameter me could similarly be expected to be low in sparse networks;
however, the NP-hardness result already for me ≥ 3 (Theorem 5) makes practical
use of this parameter unlikely.

6 Conclusion

We started a parameterized complexity analysis of (Weighted) Maximum
Tree Orientation, obtaining a more fine-grained view on the computational
complexity of this NP-hard problem. In this line, there are still several challenges
for future investigations. For instance, in the spirit of “distance-from-triviality
parameterization” [7,11] it would be interesting to study the parameterized com-
plexity of MTO with respect to the parameter “number of all possible pairs mi-
nus the number of input pairs”—recall that for parameter value zero MTO is
polynomial-time solvable [8]. MTO restricted to stars is still NP-hard, but then
at least one quarter of all input pairs can always be satisfied [9]. Hence, it would
be interesting to study above guarantee parameterization [10,11] with respect to
the number of satisfied pairs. MTO can be translated into a vertex covering prob-
lem (see Proposition 1) on a graph class that is K4-free—this motivates to study
whether vertex covering on this graph class can be done faster than on general
graphs. Clearly, MTO brings along numerous further parameters and parameter
combinations which can make a more comprehensive multivariate complexity
analysis [11] very attractive. Often, it is desirable to not only list a single solu-
tion, but to enumerate all optimal solutions. Our dynamic-programming-based
algorithms seem suitable for this. Following Gamzu et al. [6] and extending the
studies for MTO as pursued here to the more general case of mixed graphs with
partially already oriented edges is of high interest. First steps in this direction
have very recently been undertaken by Silverbush et al. [14]. Finally, it seems
promising to examine the parameters based on cross pairs in other networks
such as communication networks, and to try to apply the concept to other hard
network problems.

Exploiting Bounded Signal Flow for Graph Orientation 115

References

1. Alm, E., Arkin, A.P.: Biological networks. Current Opinion in Structural Biol-
ogy 13(2), 193–202 (2003)

2. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM Journal on Algebraic and Discrete Methods 7(2), 305–314 (1986)

3. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free query-
ing of protein interaction networks. Journal of Computational Biology 17(3), 237–
252 (2010)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

6. Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In:
Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer,
Heidelberg (2010)

7. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.)
IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)

8. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reach-
ability. Information Processing Letters 63(5), 229–235 (1997)

9. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orient-
ing graphs based on cause-effect pairs and its applications to orienting protein
networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI),
vol. 5251, pp. 222–232. Springer, Heidelberg (2008)

10. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford
(2006)

11. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameter-
ization. In: Proc. 27th STACS. Leibniz International Proceedings in Informatics,
vol. 5, pp. 17–32. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)

12. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg,
D.: The database of interacting proteins: 2004 update. Nucleic Acids Research
32(Database issue), D449–D451 (2004)

13. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnology 24, 427–433 (2006)

14. Silverbush, D., Elberfeld, M., Sharan, R.: Optimally orienting physical networks.
In: Proc. 15th RECOMB. LNCS. Springer, Heidelberg (to appear, 2011)

15. Yeang, C.H., Ideker, T., Jaakkola, T.: Physical network models. Journal of Com-
putational Biology 11(2-3), 243–262 (2004)

On Greedy and Submodular Matrices

Ulrich Faigle1, Walter Kern2, and Britta Peis3

1 Math. Institut, Universität zu Köln, Weyertal 80, D-50931 Köln
2 Universiteit Twente, P.O. Box 217, NL-7500 AE Enschede

3 Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin

Abstract. We characterize non-negative greedy matrices, i.e., (0,1)-matrices A
such that the problem max{cT x | Ax ≤ b, x ≥ 0} can be solved greedily. We
identify so-called submodular matrices as a special subclass of greedy matrices.
Finally, we extend the notion of greediness to {−1,0,1}-matrices. We present
numerous applications of these concepts.

Keywords: Submodularity, linear programming, max flow.

1 Introduction

Discrete optimization problems can often be formulated as linear programs of type

max{cT x | a ≤ Ax ≤ b, x ≥ 0} (1)

with constraint vectors a,b ∈R
m, a cost vector c ∈ R

n
+, and a matrix A with coefficients

in {−1,0,1}. Having ordered the columns so that c1 ≥ . . . ≥ cn ≥ 0 holds, one of the
most natural approaches to solve (1) is the greedy algorithm, which starts with x = 0 (if
feasible) and subsequently increases in each step the variable x j with the lowest possible
index j until one of the constraints gets tight. If this procedure eventually comes to an
end, the resulting final x̄ ∈ R

n
+ is called the greedy solution of (1). To ensure that the

initial solution x = 0 is always feasible, we assume that a ≤ 0 ≤ b. We say that A is
greedy if the greedy algorithm applied to (1)

(G1) increases x1, ...,xn each at most once without ever stepping back
(G2) the resulting solution x̄ is optimal

for any choice of a ≤ 0 ≤ b and c1 ≥ ... ≥ cn ≥ 0.
In this paper, we seek to determine greedy (−1,0,1)-matrices. Of particular interest

is the case of the all one vector c = � in the LP (1). We call a matrix A ∈ {−1,0,1}m×n

�-greedy if
max {�T x | a ≤ Ax ≤ b, x ≥ 0} (2)

can be solved greedily for any a ≤ 0 ≤ b.
In order to identify characterizing or, at least, sufficient conditions for a matrix to

be greedy, we first restrict our considerations to binary matrices (i.e., A ∈ {0,1}m×n) in
Sections 2 and 3, before we turn to the more general case with possibly negative matrix
entries in Section 4.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 116–126, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Greedy and Submodular Matrices 117

Let us take a closer look at binary matrices and note that the linear programs (1)
and (2), as well as the description of the greedy-algorithm become considerably eas-
ier: In the case A ∈ {0,1}m×n, we may assume a = 0 (recall that we required a ≤ 0).
Furthermore, we observe that property (G1) is trivially satisfied whenever A has only
(0,1)-entries.

It follows that the greedy algorithm for binary matrices can be described as follows:
Start with x = 0 and then raise x1 until one of the constraints becomes tight, then raise
x2, etc.1

1.1 Our Contribution and Related Results

Our contribution goes in two directions. We answer an open question of [3] by char-
acterizing greedy binary matrices in Section 2. Furthermore, we provide the “missing
link” between the stream of research on greedy matrices (see, e.g., [3], [4], [5]) and sub-
modular optimization (such as [6], [7],[8]) by introducing the concept of a submodular
matrix, which turns out to be a special kind of greedy matrix (Section 3). Max flow in
(s,t)-planar graphs (with supermodular weights) can easily be seen to fit in our model,
as well as Frank’s very general model of greedily solvable linear programs [6]. Frank’s
model itself covers various discrete optimization structures such as polymatroids, super-
modular systems, or cut packings. In contrast to previous models, our condition relies
only on the ordering of the columns of A and does not necessarily need a lattice struc-
ture on the columns. In particular, we do not require the matrix to be ”consecutive” in
any sense.

In Section 4, we open our model to ternary matrices and introduce the concept of
ordered compatibility, which ensures that the greedy algorithm never steps backward
(property (G1)). It will turn out that the max-flow problem in general graphs, as well as
Gröflin and Hoffman’s ternary lattice polyhedra [10] fit into this model.

As a consequence of ordered compatibility, we show that the greedy algorithm solves
the max flow problem optimally as long as the paths are ordered in an appropriate way
(for example, via a simple “left/right”-relation, or by non-increasing path-lengths).

To give some intuition on our greedy algorithm in both the binary and ternary model,
let us consider the max flow problem (with and without weights on the paths).

1.2 (Weighted) Max Flow

Let G = (V,E) be a (directed or undirected) graph with source and sink node s,t ∈ V ,
and let P ⊆ 2E denote the collection of all simple (s,t)-paths in G (if G is directed,
P consists of all directed paths). If A ∈ {0,1}|E|×|P | is the edge-path incidence matrix

(i.e., A has entries aeP = 1 iff e ∈ P), and b ∈ R
|E|
+ encodes certain edge capacities,

then (2) reduces to the classical max flow problem on G, and (1) reduces to a max
flow problem on G with certain weights c(P) on the paths P ∈ P . Several efficient
max flow algorithms exist for the unweighted case in general graphs (see, e.g., [12]).
For the special case of (s,t)-planar graphs, already Ford and Fulkerson [9] have shown
that the simple greedy strategy of iteratively sending as much flow as possible along
the uppermost path in the residual graph works well also for path weights c that are in

1 The greedy solution x̄ constructed this way is the lexicographically maximal feasible solution.

118 U. Faigle, W. Kern, and B. Peis

a sense supermodular. Borradaile and Klein [1] proved that an extension of Ford and
Fulkerson’s uppermost path algorithm yields the optimum flow (in time O(n logn)) also
on planar graphs that are not necessarly (s,t)-planar if no path weights are given (see
also [13]). They make use of a lattice structure on the paths induced by the so-called
“left/right”-relation (defined below).

For directed graphs, we obtain more structure when we formulate the max flow prob-
lem as an LP on a ternary matrix (i.e., with coefficients in {−1,0,+1}). In this case,
we let P consist of all (directed or undirected) simple (s,t)-paths and consider the cor-
responding edge-path incidence matrix A ∈ {−1,0,1}|E|×|P | with coefficients aeP = 1
resp. −1 if P traverses e in forward resp. backward direction, and aeP = 0 otherwise.
It turns out that the well-known successive shortest path algorithm [12] corresponds to
our greedy algorithm described above if the columns of A are ordered by non-increasing
path-lengths (see Section 4).

2 Binary Greedy Matrices

We first restrict ourselves to binary matrices and consider linear programs of type

max {cT x | Ax ≤ b, x ≥ 0} (3)

with A ∈ {0,1}m×n, c1 ≥ . . . ≥ cn ≥ 0 and b ≥ 0.
We are interested in binary greedy matrices, i.e., {0,1}-matrices A that guarantee (3)

to be greedily solvable for any c1 ≥ . . . ≥ cn ≥ 0 and b ≥ 0 by starting with x = 0 and
raising the variable x j in iteration j until one of the constraints becomes tight (for all
j = 1, . . . ,n).

As mentioned in the Introduction, the problem of characterizing greedy matrices
can be reduced to characterizing �-greedy matrices. Let A j denote the j-th column of
matrix A.

Proposition 1. A is greedy ⇐⇒ each initial segment [A1, . . . ,A j] is �-greedy.

Proof. Write c ∈ R
n with c1 ≥ . . . ≥ cn ≥ 0 as a conic combination of vectors (�T ,0T).

So we aim at characterizing �-greedy matrices in the following. (In [3], another char-
acterization of �-greedy matrices is derived, which we present below).

To start with, it is not difficult to obtain sufficient conditions for �-greediness. For
example, it suffices to exclude

[
1 1 0
1 0 1

]

and

[
1 0 1
1 1 0

]

as submatrices (cf. [4]). We will refer to these two 2× 3 matrices as the 2× 3 non-
greedy matrices. If A contains a non-greedy 2× 3 submatrix AIJ , then we will always
assume that I = {i1, i2} and J = { j0, j1, j2} with j0 < j1 < j2. (As usual, AIJ denotes
the submatrix arising from A by deleting all rows with indices not in I ⊆ {1, . . . ,m},
and all columns with indices not in J ⊆ {1, . . . ,n}).

On Greedy and Submodular Matrices 119

The mere existence of a non-greedy 2× 3 submatrix AIJ is not necessarly harmful:
For example, if

A j < A j0 +A j1 +A j2 for some j < j0 (4)

holds, then the greedy algorithm will tighten one of the constraints i ∈ supp(A j) as soon
as it raises x j (or even earlier). (Here, and in the following, the ”≤”-relation between
two vectors denotes the componentwise ”≤”-relation). As a consequence, even before
it reaches x j0 at least one of the variables x j0 ,x j1 or x j2 is bound to zero and the greedy
algorithm will thus proceed as if AIJ were not there (cf. the proof of Theorem 1 below
for a rigorous argument).

We therefore call a non-greedy (2×3)-submatrix AIJ uncritical if (4) holds and criti-
cal otherwise. The following result tells us when a critical AIJ destroys the �-greediness
of A and when it does not.

Theorem 1. A is �-greedy iff for every critical AIJ there exists j > j0 such that

A j0 +A j ≤ max{A j0 ,A j1 +A j2} (5)

holds. (The maximum is taken componentwise).

Proof. ”⇒”: Assume A is �-greedy and AIJ is a critical submatrix. Consider (3) with
b := max{A j0 ,A j1 + A j2}. The greedy solution x̄ has x̄1 = . . . = x̄ j0−1 = 0 (as AIJ is
critical) and, obviously, x̄ j0 = 1. Thus, the greedy solution can only maximize �T x if it
also raises some variable x j with j > j0 and A j0 +A j ≤ max{A j0 ,A j1 + A j2}.

”⇐”: Assume that A ∈ {0,1}m×n satisfies the condition and let b ≥ 0. We are to show
that the greedy solution x̄ of (2) is optimal. If x̄ = 0, then x = 0 is the unique feasible
solution and hence trivially optimal. Otherwise, let k ≤ n be the last index with x̄k > 0.
For j ∈ {1, . . . ,n}, let Tj ⊆ {1, . . . ,m} denote the set of constraints that became tight
when raising the jth component to x̄ j > 0. Let T = Tk and T< be the (disjoint) union
of all Tj with j ∈ supp(x̄) and j < k. Furthermore, let U := {1, . . . ,m} \ (T ∪T<). We
concentrate on those A j, j > k that have supp(A j) ⊆U ∪T .

We first show that among all such A j , there exists a unique one with supp(A j)∩T
inclusion-wise minimal. If not, we could choose two such columns, say A j1 and A j2 ,
with both supp(A j1)∩T and supp(A j2)∩T inclusion-wise minimal. Then with j0 = k,
there is a (critical!) submatrix AIJ . Let j > j0 as in the condition of Theorem 1, i.e.,
such that property (5) holds. In particular, for i ∈ T (implying ai j0 = 1) we find that

ai j1 = 0 =⇒ ai j = 0.

Together with ai j = 0 for i ∈ {i1, i2}, we thus conclude

supp(A j)∩T ⊂ supp(A j1)∩T,

which contradicts the choice of A j1 . Hence this case cannnot occur and we know that
among all A j with j > k and supp(A j) ⊆ U ∪ T , there exists a unique one, say A j∗
with supp(A j∗)∩T inclusion-wise minimal. We show by induction on k that the greedy
solution is optimal:

120 U. Faigle, W. Kern, and B. Peis

Choose any i ∈ supp(A j∗)∩T and decrease bi by ε = x̄k > 0. The greedy solution
for this modified LP would differ from x̄ only in the kth component, which is now set to
zero. (Note that raising x̄ j for j > k is impossible for any j: If supp(A j)∩T< �= /0, this is
clear anyway, and if supp(A j) ⊆U ∪T , then i ∈ supp(A j∗)∩T ⊆ supp(A j)∩T by our
assumption, which prevents us from raising x̄ j). By induction, the new greedy solution
for this modified LP is optimal. But then also x̄ must have been optimal (w.r.t. the right
hand side b), since increasing a single bi by ε can never increase the objective value by
more than ε .

A similar condition was established in[3]:

Theorem 2 ([3]). A ∈ {0,1}m×n is �-greedy iff for every critical AIJ there exists j > j0
such that

ai j = 0 if i ∈ I, and ai j ≤ ai j1 +ai j2 otherwise. (6)

Condition (6) follows easily from (5). So our condition appears to be stronger. The
converse implication (6) ⇒ (5) is less obvious. We have a slight preference for (5), due
to its formal similarity with the submodularity concept introduced below.

As a straightforward corollary we observe:

Theorem 3. The matrix A ∈ {0,1}m×n is greedy iff for all critical AIJ there exists j
with j0 < j ≤ j2 such that

A j0 +A j ≤ max{A j0 ,A j1 + A j2}.
Proof. Theorem 1 and Proposition 1.

3 Submodular Matrices

A particularly simple class of greedy matrices which we encounter in many applications
is provided by the class of so-called submodular matrices as defined below.

Definition 1 (Submodular pair/matrix.). Relative to a given A ∈ {0,1}m×n, a pair
(j,k) of column indices is submodular if there exist column indices j∧ k < j,k < j∨ k
such that

A j∧k + A j∨k ≤ A j + Ak (7)

holds. The matrix A is submodular if for any critical submatrix AIJ the pair (j1, j2) is
submodular.

Remarks: (1) In practice, the indices j ∧ k and j∨ k are usually unique for each sub-
modular pair (j,k). We do not require any uniqueness here, but assume that indices j∧k
and j∨ k are somehow fixed for any submodular pair (j,k).

(2) To show that a given matrix A is submodular, it suffices to verify that for each
(not necessarily critical) non-greedy 2× 3 submatrix AIJ at least one of the three pairs
(j0, j1),(j0, j2) and (j1, j2) is submodular: Indeed, if either (j0, j1) or (j0, j2) is sub-
modular, then A cannot be critical.

On Greedy and Submodular Matrices 121

Relative to a given submodular A ∈ {0,1}m×n, we call c ∈ R
n supermodular if

c j∧k + c j∨k ≥ c j + ck

holds for any submodular pair (j,k). For example, the constant vector c = � is always
supermodular. So the following Theorem says in particular that submodular matrices
are greedy:

Theorem 4. If A ∈ {0,1}m×n is submodular and c ∈ R
n
+ is monotone decreasing (i.e.,

c1 ≥ . . . ≥ cn) and supermodular, then

max{cT x | Ax ≤ b, x ≥ 0}
can be solved greedily.

Proof. Let x̄ denote the greedy solution and let x∗ be the (unique) lexicographically
maximal optimal solution. Assume that x̄ �= x∗ and let j0 be the smallest index with
x̄ j0 �= x∗j0 . Then x̄ j0 > x∗j0 must hold (as x̄ is the lexicographically maximal feasible
solution). As c is monotone decreasing, increasing x∗j0 to x̄ j0 must be compensated
by decreasing x∗ on at least two further indices j1, j2 > j0 (in order to stay feasi-
ble) corresponding to some non-greedy (2× 3)-submatrix AIJ of A. We claim that AIJ

is critical. Indeed, assume to the contrary that there exists j < j0 with supp(A j) ⊆
supp(A j0)∪ supp(A j1)∪ supp(A j2). Then the greedy algorithm would have tightened
some constraint i ∈ supp(A j0)∪ supp(A j1)∪ supp(A j2) when raising x j or even before,
so that certainly there cannot be any feasible solution x which coincides with x̄ in com-
ponents 1, ..., j0−1 and is strictly positive in components j0, j1 and j2. But x = 1

2 (x̄+x∗)
has these properties, a contradiction. Hence submodularity of A implies that (j1, j2) is
submodular.

But then x∗ could be increased on j1 ∧ j2 and j1 ∨ j2, and decreased on j1 and j2,
giving rise to another feasible solution, which is lexicographically larger and has an
objective value larger than or equal to that of x∗, contradicting the choice of x∗, and
completing the proof.

3.1 Example: Max Flow in (s,t)-Planar Graphs

Let G = (V,E) with s,t ∈ V be a (directed or undirected) graph given in a planar em-
bedding with s,t on the outer boundary (i.e., G is a so-called (s,t)-planar graph). Let
P = {P1, . . . ,Pm} denote the collection of all (s,t)-paths in G, ordered from the left-
most to the rightmost path (the ”leftmost” path is uniquely constructed by starting at
s and always traversing the leftmost (directed) edge), and consider the edge-path inci-
dence matrix A ∈ {0,1}|E|×|P |. We claim that A is submodular. Indeed, as mentioned
in the above Remark, it suffices to show that for any non-greedy (2×3)-submatrix AIJ

at least one of the three pairs (j0, j1),(j0, j2) and (j1, j2) is submodular. Thus, assume
that AIJ is such a non-greedy submatrix with I = {e1,e2}. Assume that, say, the path Pj1
contains e1 (but not e2) and that Pj2 contains e2 (but not e1). Any two (s,t)-paths form
a submodular pair unless one is ”to the left” of the other. Thus if none of the three pairs
is submodular, then Pj0 is left of Pj1 and Pj1 is left of Pj2 . But then, due to planarity, Pj1
being in between Pj0 and Pj2 must also pass through e2, a contradiction.

122 U. Faigle, W. Kern, and B. Peis

3.2 Example: Frank’s Model [6]

A very far-reaching generalization of Edmonds’ polymatroids as well as several other
classes of greedily solvable linear programs is provided by Frank’s model [6]:

Interpret the {0,1}-matrix A as the incidence matrix of a (multi-) set family F ⊆ 2E ,
i.e., A∈ {0,1}|E|×|F | has entries aeF = 1 if e ∈ F and aeF = 0 otherwise. Frank assumes
the set family F to be endowed with some partial order (F ,�). A pair {S,T} ⊆ F
is called intersecting if there exists some C ∈ F with C ≺ S,T . Two binary operations
”∧” and ”∨” are defined on all comparable and intersecting pairs and assume to satisfy

(P1) if S � T then S∧T = S and S∨T = T ;
(P2) if S,T intersecting, then S∧T ≺ S,T ≺ S∨T .

A function c ∈ R
F
+ is called intersecting supermodular if

c(S)+ c(T) ≤ c(S∧T)+ c(S∨T)

holds for every intersecting pair S,T ∈ F with c(S),c(T) > 0. Moreover, c is called
decreasing if

S � T =⇒ c(S) ≥ c(T) ∀S,T ∈ F .

Frank proved that max{cT x | Ax ≤ b, x ≥ 0} can be solved greedily for any intersecting
supermodular decreasing function c ∈ R

F
+ and every b ∈ R

E
+ if the set system (F ,�)

satisfies for all S,T,U ∈ F :

(P3) if S � T �U , then S∩U ⊆ T ;
(P4) if S,T are intersecting, then (S∧T)∪ (S∨T) ⊆ S∪T ;
(P5) if S∩T �= /0, then S,T are either intersecting or comparable.

Frank’s result follows from Theorem 4. Indeed, order the columns of A according to a
linear extension (also known as ”topological sorting”) of (F ,�) such that c1 ≥ . . . ≥
c|F | (which is possible as c is decreasing on (F ,�)). Now it suffices to prove that A is
a submodular matrix:

Let AIJ be a non-greedy submatrix with I = {e1,e2} and J = {F0,F1,F2}. Then F0 ∩
F1 �= /0 �= F0 ∩F2. Thus, by property (P5), the pairs {F0,F1} and {F0,F2} are either
intersecting or comparable. If one of the pairs is intersecting, it is submodular by (P2)
and we are done. Else both pairs are comparable, i.e., F0 ≺ F1,F2, and hence F1 ∧F2

exists. Hence, A is submodular unless F1 and F2 are comparable. But then F0 ≺ F1 ≺ F2

in contradiction to property (P3).

4 Ternary Matrices

Some combinatorial optimization problems allow (or even ask for) an LP-formulation
with ternary constraint matrix. Recall from the Introduction that the greedy algorithm
for

max{�T x | a ≤ Ax ≤ b, x ≥ 0} (8)

with A ∈ {−1,0,1}m×n and a ≤ 0≤ b starts at x = 0 and increases the variable of lowest
possible index in each iteration until one of the constraints becomes tight. A ternary

On Greedy and Submodular Matrices 123

matrix is �-greedy if the greedy algorithm never steps backward (property (G1)) and
the resulting greedy solution x̄ is optimal (property (G2)).

We first need some notation. As usual, we split any v ∈ R
n into its positive and

negative part v+ ∈ R
n resp. v− ∈ R

n, where

v+
i := max{vi,0} and v−i := |min{vi,0}|.

Thus, v = v+ − v− holds for all v ∈ R
n. We write v � w if v+ ≤ w+ and v− ≤ w−. Two

vectors v and w are said to be compatible if

(supp v+∩ supp w−)∪ (supp v− ∩ supp w+) = /0.

Definition 2 (Compatible solution). A feasible solution x of (8) is compatible if the
columns A j, j ∈ supp(x), are pairwise compatible. The linear program (8) is compatible
if it has a compatible optimal solution.

Definition 3 (Compatible matrix). The matrix A ∈ {−1,0,1}m×n is compatible if for
any two non-compatible columns j < k there exist two column indices j∧k < j∨k such
that A j∧k and A j∨k are compatible and

A j∧k + A j∨k � A j + Ak

holds (implying that A j∧k,A j∨k � A j,Ak).

Proposition 2. If A is compatible then so is the linear program (8).

Proof. Let x∗ be optimal for (8). If x∗ is incompatible, say ε := min{x∗j ,x∗k} > 0 for
some incompatible pair of columns A j and Ak, then increasing x∗j∧k and x∗j∨k by ε , and
decreasing x∗j and x∗k by ε does not create any new incompatibilities so that, after a
number of such modifications, a compatible optimum x∗ is reached.

Definition 4 (Ordered compatible.). We say that A ∈ {−1,0,1}m×n is ordered com-
patible if, in addition, the column index j∧ k satisfies j∧ k < k.

Remark: As we did in the (0,1)-case, we assume throughout that some suitable in-
dices j∧ k < j∨ k are fixed. The above ordered compatibility condition is weaker than
requiring submodularity in the sense that

j∧ k < j,k < j∨ k

should hold for each non-compatible pair (j,k).

4.1 Example: Edge-Path Incidence Matrices in General Graphs

Incidence matrices of (s,t)-paths (appropriately ordered) are ordered compatible: In-
deed, let D = (V,E) be a digraph with source s and sink t. Assume w.l.o.g. that s and t
have both degree 1. For each vertex i choose a cyclic ordering πi of the edges incident
to i. The πi’s induce a ordering on the set P of (s,t)-paths in a natural way:

124 U. Faigle, W. Kern, and B. Peis

t s
Pk

jP

Fig. 1. Two non-compatible (s,t)-paths in a planar graph

For example, if D is planar, we may chose each πi to be the clockwise ordering of
the edges around i, which induces the canonical “left to right” ordering on P , starting
with the leftmost path and ending with the rightmost path from s to t.

For (s,t)-planar graphs, the corresponding path incidence matrix is even submodular,
which explains why flow is never reduced during the augmentation and non-directed
paths may be disregarded completely. For other graphs only ordered compatibility can
be deduced (see Figure 1 for the planar case).

Proposition 3. Any (s, t)-path incidence matrix with the path order induced by cyclic
orderings on the edges around each vertex is ordered compatible.

Proof. As above, we assume that s and t have both degree 1. Let P1, ...,Pr be the order-
ing of the s− t paths induced by cyclic orders πi on the edges incident with vertex i.
Consider two paths Pj and Pk and let P denote the maximal initial subpath contained in
both Pj and Pk. Let e denote the last edge in P and let e j , ek denote the edges succeeding
e on Pj resp. Pk. Let i denote the vertex in which Pj and Pk split. Then j < k if and only
if πi = (...,e, ...,e j, ...,ek, ..).. (Note that existence of e is guaranteed by our assumption
that s has degree 1).

Now assume that P+
j ∩ P−

k �= /0. Consider F = Pj + Pk (as sum of two vectors in
R

n). After removing directed cycles from F (in case there are any), the resulting 2-flow
decomposes into Pj∧k and Pj∨k, both following P until the last edge e and then splitting
into e j resp. ek. So Pj∧k (following e j) has a smaller index than Pk (following ek).

An alternative compatible ordering of P can be obtained by ordering the paths accord-
ing to non-increasing length. The straightforward proof is left to the reader.

4.2 Example: Lattice Polyhedra [10]

The matrices in lattice polyhedra theory as defined by Gröflin and Hoffman [10] are
not only ordered compatible but satisfy the stronger submodularity condition. (These
matrices are also called submodular in [11]). These associated polyhedra are of type

{x ∈ R
E | e ≤ x ≤ d, Ax ≤ r}

and based on some ternary matrix A ∈ {−1,0,1}L×E whose row set L forms a lattice
(L �,∧,∨) relative to which r is submodular, e,d ∈ R

E
+, and each column f of A is

supermodular on L, and satisfies the consecutivity conditions

On Greedy and Submodular Matrices 125

| f (j)− f (k)| ≤ 1 ∀ j,k ∈ L with j � k

| f (j)− f (k)+ f (l)| ≤ 1 ∀ j,k, l ∈ L with j � k � l.

(The consecutivity conditions ensure that on any chain in L, a column f takes either non-
negative or non-positive values, and whenever j ≺ k ≺ l and f (j) = f (l) = 1 or = −1,
then f (k) = 1 or f (k) = −1, respectively). Gröflin and Hoffman proved that lattice
polyhedra are totally dual integral. However, no combinatorial algorithm is known for
lattice polyhedra in general (not even in the case of binary matrices).

4.3 Ordered Compatibility and Greediness

In the following we show that ordered compatible matrices fulfill the first requirement
in the definition of �-greediness:

Proposition 4. Let A be ordered compatible. Then the greedy algorithm applied to (8)
never steps back.

Proof. When processing x j for the first time, the greedy algorithm raises x j until some
constraint gets tight. We say that x j is blocked by this constraint. We claim that x j

remains blocked (by either constraint i or some other constraint) from that point on.
Assume to the contrary that x j is unblocked by xk, k > j (i.e., while the greedy algorithm
increases xk). Just before increasing xk, variable x j was blocked by some constraint,
say, aix ≤ bi. Increasing xk can only unblock x j if i ∈ supp(A+

j)∩ supp(A−
k), so that A j

and Ak are incompatible and A j∧k exists. Since j∧k < k, also variable x j∧k is blocked by
some constraint i′ (at the same point in time, just before increasing xk). But A j∧k � Ak,
hence i′ must also block xk, a contradiction.

In particular, the greedy algorithm, when applied to 8 with an ordered compatible A,
simply raises the variables x1,x2, . . . ,xn in this order until they get blocked, just like in
the (0,1)-case. (Note that, in contrast to the (0,1)-case, however, x̄ is in general not
lexicographically maximal). This simple observation immediately implies

Corollary 1. Path incidence matrices (with path orders induced by cyclic orders πi

around each vertex i) are �-greedy.

Proof. The greedy algorithm raises x1, ...,xn in this order and the resulting x̄ is a max
flow (otherwise there were an augmenting path, i.e., a variable x j that could still be
raised).

For planar graphs, the number of augmentations can be shown to be O(m) ([13,1]). The
case of bounded genus is not yet analyzed. For general graphs, it would be interesting to
study the running time of the path augmentation method when the ordering of the path
is induced by cyclical orderings πi around each vertex i. Is it polynomial, at least for
appropriate choices of πi? Note that the corresponding greedy algorithm coincides with
the well-known ”shortest augmenting path method” if the paths are ordered according
to non-decreasing lengths.

126 U. Faigle, W. Kern, and B. Peis

References

1. Borradaile, G., Klein, P.: An O(nlogn) algorithm for maximum st-flow in a directed planar
graph. In: SODA 2006 Proceedings, pp. 524–533 (2006)

2. Hoffman, A.J.: On greedy algorithms for series parallel graphs. Math. Progr. 40, 197–204
(1988)

3. Hoffman, A.J.: On greedy algorithms that succeed. In: Anderson, I. (ed.) Surveys in Combi-
natorics, pp. 97–112. Cambridge Univ. Press, Cambridge (1985)

4. Hoffman, A.J., Kolen, A.W.J., Sakarovitch, M.: Totally balanced and greedy matrices. SIAM
Journal Alg. Discr. Methods 6, 721–730 (1985)

5. Faigle, U., Hoffman, A.J., Kern, W.: A characterization of non-negative greedy matrices.
SIAM Journal on Discrete Mathematics 9, 1–6 (1996)

6. Frank, A.: Increasing the rooted connectivity of a digraph by one. Math. Programming 84,
565–576 (1999)

7. Faigle, U., Peis, B.: Two-phase greedy algorithm for some classes of combinatorial linear
programs. In: SODA 2008 Proceedings (2008)

8. Faigle, U., Kern, W., Peis, B.: A Ranking Model for Cooperative Games, Convexity and the
Greedy Algorithm. To appear in Math. Programming, Ser. A (2010)

9. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J. Math. 8, 399–404
(1956)

10. Gröflin, H., Hoffman, A.j.: Lattice polyhedra II: generalizations, constructions and examples.
Annals of Discrete Mathematics 15, 189–203 (1982)

11. Gaillard, A., Groeflin, H., Hoffman, A.J., Pulleyblank, W.R.: On the submodular matrix rep-
resentation of a digraph. Theoretical Computer Science 287, 563–570 (2002)

12. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applica-
tions. Prentice-Hall, Englewood Cliffs (1993)

13. Weihe, K.: Maximum (s,t)-flows in planar networks in O(|V | log |V |) time. JCSS 55, 454–476
(1997)

MIP Formulations for Flowshop Scheduling with
Limited Buffers

Janick V. Frasch1,2, Sven Oliver Krumke2, and Stephan Westphal3

1 Interdisciplinary Center for Scientific Computing, University of Heidelberg,
Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

janick.frasch@iwr.uni-heidelberg.de
2 Department of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 14,

D-67663 Kaiserslautern, Germany
krumke@mathematik.uni-kl.de

3 Institute for Numerical and Applied Mathematics, Georg-August University,
Lotzestr. 16-18, D-37083 Göttingen, Germany

s.westphal@math.uni-goettingen.de

Abstract. We focus on MIP-formulations for flowshop scheduling prob-
lems of the kind Fm|lwt|γ, with the restriction lwt indicating that jobs
are allowed to wait on a fixed limited number of buffers between machine
levels. Most of the models discussed in literature only consider permu-
tation schedules, i.e., schedules in which jobs are processed in identical
order on all machines. As these are not necessarily optimal in the gen-
eral case, there is a need for models which are not restricted in this way.
In this paper, we try to fill this gap by presenting a new model which
allows overtaking of jobs between different machine levels. We introduce
position-tracking variables, variables that describe the paths of the jobs
between the positions on succeeding machine levels, and allow for a spe-
cial branching strategy exploiting the particular structure of this model.

In order to exemplify our model’s applicability to various objectives,
we consider three different objective functions. In particular, we dis-
cuss the minimization of the makespan, the sum of completion times,
and the number of strand interruptions, an objective function which is
highly important in steel industry. For all of these we present specific im-
provements to the formulation, yielding reasonable computation times on
instances of practically relevant size and setting.

Keywords: Unrestricted flowshop scheduling, Overtaking permitting,
Strand interruption minimization.

1 Introduction

In the area of steel production comparatively few results that are based on exact
mathematical models can be found in literature. It is the goal of this paper to
point out a new model for the benefit of improved efficiency.

Precisely, the sequencing of individual molten steel loads, so called ladles,
through the production process will be analyzed. The ladles have to pass through

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 127–138, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

128 J.V. Frasch, S.O. Krumke, and S. Westphal

a technically given sequence of processing stages in the correct order. Between
the different stages, ladles are allowed to wait on a certain amount of buffers or
waiting positions, since the cooling progress can be slowed down and steel can be
reheated to a certain extend, as well as up to a certain number of ladles, due to
spatial restrictions. The general mathematical framework for dealing with such
sequencing problems is flowshop scheduling. Processing stages will be referred to
as machines and ladles will be abstracted to jobs, requiring a certain processing
time on each machine. The restriction to a fixed number of buffers between
machine levels will be included in the model as well. The temporal restrictions
on buffering of ladles between subsequent stages will not be included explicitly
into the considered model; however due to the MIP nature of the presented
model, such an extension would be realizable with little effort.

Besides classic flowshop objectives like minimizing the makespan, the overall
time until the last job finishes or the sum of completion times, another objective,
the minimization of the number of the so called strand interruptions (SIs), is
of major significance for steel production scheduling. We denote this objective
function by G. Mathematically and technically, an SI is a proper (non-zero) idle
time of the last stage (the so called continuous casting plant) between two jobs
(ladles). The primary objective of trying to avoid such unwanted SIs originates
from the functionality of the continuous casting plant. The molten steel is casted
into its final form, e.g. bars, sheets or slabs. This is achieved by chilling the steel
and thus conserving the desired form. If however there is an interruption in the
supply of molten steel the continuous casting plant is fouled instantly, which
requires a time-consuming and thus costly cleaning process.

Using standard scheduling notation (see, e.g., [1]), this paper focuses on MIP-
formulations for the problems Fm|lwt|Cmax, Fm|lwt|∑ Cj , and Fm|lwt|G. The
restriction lwt stands for limited waiting and means that after being processed
on one machine level, jobs are allowed to wait on buffers (of limited number)
associated with the next level. Additionally blocking (denoted by restriction blck)
can be allowed, allowing a job to wait on the machine it has previously been
processed on, yet blocking it for other jobs to be processed. The option prmu
indicates that only permutation schedules shall be considered, i.e., schedules
with identical processing order of jobs on all machines.

1.1 Previous Work

First of all, it should be mentioned that the considered problems, Fm|lwt|Cmax,
Fm|lwt|∑ Cj , and Fm|lwt|G are NP-hard. For the makespan objective, a proof
can be found in [2]. The proof was extended in [3] for the SI-minimization objec-
tive. Finally, NP-hardness of F2||

∑
Cj was shown in [4] under the additional

restriction of constant processing times on the first machine; choosing a suffi-
ciently large processing time of jobs on the first machine, the proof only requires
one buffer, which implies NP-hardness of Fm|lwt|∑ Cj .

Numerous mixed integer programming approaches have been developed for
flowshop scheduling problems and many evaluations have been undertaken to
compare these different models [5,6,7,8,9,10,11]. Pinedo [12] for example gives

MIP Formulations for Flowshop Scheduling with Limited Buffers 129

an MIP formulation for the Fm|prmu|Cmax problem, that is, the problem of
minimizing the makespan among all permutation schedules in an m machine
flowshop environment with unconstrained inter-machine waiting, using O(n2)
binary sequence-position variables, assigning each job to a position in the job
order. Job-noninterference (i.e., only one job at a time on each machine) and
level-precedence (i.e., each job only on one machine at a time) are combined to a
single condition for each job and machine. Buffer restrictions cannot be handled
and overtaking is not permitted.

No-wait flowshop scheduling problems are modeled by asymmetric traveling
salesman problems (ATSPs) on directed, simple and complete graphs, in [12] for
the makespan objective and by Höhn in [13] for the SI objective. The job set of
the flowshop problem is identified with the vertex set of the ATSP. Edge costs
were chosen as the head jobs’ processing times plus induced inter-job idle time
for the makespan objective and binary representing SI-occurrence between head
and tail job for the SI objective.

When considering permutation schedules with blocking, buffers can be mod-
eled as ancillary machines with processing time 0 for each job in the makespan
ATSP model. For the SI objective this fails though, as edge costs cannot be set
to fixed values, but rather depend on the overall job arrangement. An example
showing that the occurrence of an SI is not solely dependent on the two adjacent
jobs is quite straightforward to construct.

Sawik [14] presented several MIP formulations for Fs|lwt, prmu, blck|Cmax

and FFs|lwt, prmu, blck|Cmax. Considerations are restricted to permutation
schedules and no-wait problems, modeling limited buffers also by ancillary ma-
chines. In contrast to Pinedo’s no-wait MIP formulation, binary variables yk,l

defining a half-order between two jobs k and l are used instead of sequence-
position variables, in order to simplify generalizations to the multi-processor
case. Level-precedence constraints are implemented directly for each job, while
job-noninterference constraints are implemented using the yk,l variables in com-
bination with big-M constants. Sawik [14] also gives a more advanced model,
which allows for left out machine levels by individual jobs in a multi-processor
environment, using binary variables assigning a processing route to each job from
the set of all possible processing routes for this job.

1.2 Our Results

All presented approaches have in common that they restrict to permutation
schedules. However, permutation schedules are not optimal in general as it will
be shown in Section 2.

The aim of this paper is to fill this gap and present an MIP formulation which
is not restricted to permutation schedules in Section 3. This formulation is suit-
able to be applied to any kind of flowshop problems of the kind Fm|lwt|γ. In
Section 4, we present improvements to this formulation and address the solu-
tion strategy, yielding reasonable computation times on instances of practically
relevant size and setting, as demonstrated in Section 6.

130 J.V. Frasch, S.O. Krumke, and S. Westphal

As the considered problems Fm|lwt|Cmax, Fm|lwt|∑Cj and Fm|lwt|G are
NP-hard, we cannot hope for an efficient algorithm. Therefore choosing an MIP
model seems reasonable, as mixed integer programming is a well studied problem
both in theoretical mathematical literature and in particular as a framework
for computer-based solutions of real-world optimization problems. Numerous
efficient computer-based MIP solvers are available, whose qualities can be made
use of to achieve high-performance numerical results while focusing on the high-
level mathematical modeling.

Another reason for the application of an MIP comes from the applicatory na-
ture of this problem. Since flowshop problems are motivated by and abstracted
from real-world concerns, it is desirable to provide solution strategies as directly
applicable to the original application problem as possible. To achieve this goal,
the developed solution approach needs to be flexible in order to allow for addi-
tional minor constraints and objectives. For an example from steel processing
just think of an upper limit on the time a job is allowed to wait between two
subsequent machine levels, due to heat dissipation of the steel. MIP formulations
provide a good basis for such objectives.

2 Suboptimality of Permutation Schedules

For the makespan objective the general existence of an optimal permutation
schedule can be shown for a setting of up to three machines. A proof for the case
of unconstrained waiting, which also works if only a limited number of buffers
is present, can be found in [1]. For four machines, a counterexample showing
that permitting overtaking may lead to an improvement can be constructed by
considering two jobs with processing times as given by Table 1 with at least one
buffer in front of level 3. It is straightforward to see that Figure 1a shows an
optimal permutation schedule, while Figure 1b shows an optimal unrestricted
schedule. Note that the instance given by Table 1 also shows suboptimality of
permutation schedules for the

∑
Cj objective (cf. Figure 1).

For the SI objective, instances having no optimal permutation schedule can be
stated even for two machines when only permitting one intermediate buffer. An
example is given by the job set of Table 2. An optimal permutation schedule and
an optimal unrestricted schedule are drawn in Figures 2a and 2b respectively.

M 1 1 2

M 2 1 2

Wpos 2 2

M 3 1 2

M 4 1 2

(a) Optimal permutation schedule, C∗
max =

18,
∑

Cj
∗ = 31.

M 1 1 2

M 2 1 2

Wpos 2 1

M 3 2 1

M 4 2 1

(b) Optimal unrestricted schedule,
C∗

max = 15,
∑

Cj
∗ = 29.

Fig. 1. Showing Cmax/
∑

Cj -suboptimality of permutation schedules

MIP Formulations for Flowshop Scheduling with Limited Buffers 131

M 1 1 23 45

Wpos 2 3 1 2

M 2 1 23 45

(a) Optimal permutation solution, G∗ = 1.

M 1 1 43 2 5

Wpos 2 3 1 4

M 2 1 43 2 5

(b) Optimal unrestricted solution, G∗ = 0.

Fig. 2. Showing G-suboptimality of permutation schedules

Table 1. 4-machine job system for
objectives Cmax/

∑
Cj

Job 1 2
pi,1 2 5
pi,2 5 1
pi,3 5 1
pi,4 1 5

Table 2. 2-machine job system for ob-
jective G

Job 1 2 3 4 5
pi,1 6 2 20 2 8
pi,2 6 2 2 2 1

3 The Model

Basing on the classic MIP formulation for permutation flowshops given in [12]
(which itself is based on the ideas from [5]), the intuitive extension to allow
overtaking would be to simply use binary sequence-position variables xi,j,k for
assigning each job j ∈ J to a position k ∈ K on each machine level i ∈ M.
Level-precedence constraints could then be enforced directly for each job and
start dates of jobs and positions be synchronized using “big-M” constants.

We present such an extension of the classic model exemplarily for Fm|lwt|G.
For the ease of readability, all variables referring to positions are indicated by
a prime. We record the occurrence of an SI after position k (on machine m) by
binary variables y′

k. Note that binarization of idle times is necessary in order
to yield an objective independent of the length of the idle times. The number
of buffers in before level i is denoted by li. If we define Mm := M\{m} and
Kn := K\{n} and assume variables S·,·, S′·,· and I ′·,· to live in the space of
non-negative Reals R

+
0 , the model reads

min
∑

k∈K
y
′
k (1a)

s.t.
n∑

j=1

xi,j,k = 1 ∀ i ∈ M, k ∈ K (1b)

n∑

k=1

xi,j,k = 1 ∀ i ∈ M, j ∈ J (1c)

n∑

j=1

(pi,j · xi,j,k) = p
′
i,k ∀ i ∈ M, k ∈ K (1d)

Ci,j = Si,j + pi,j ∀ i ∈ M, j ∈ J (1e)

C
′
i,k = S

′
i,k + p

′
i,k ∀ i ∈ M, k ∈ K (1f)

Si,j + (1 − xi,j,k) · M
s
i,k,s ≥ S

′
i,k ∀ i ∈ M, j ∈ J , k ∈ K (1g)

132 J.V. Frasch, S.O. Krumke, and S. Westphal

S
′
i,k + (1 − xi,j,k) · M

s
i,k,e ≥ Si,j ∀ i ∈ M, j ∈ J , k ∈ K (1h)

Ci,j ≤ Si+1,j ∀ i ∈ Mm
, j ∈ J (1i)

C
′
i,k ≤ S

′
i,k+1 ∀ i ∈ M, k ∈ Kn

(1j)

S
′
i+1,k−li+1

≤ C
′
i,k ∀ i ∈ Mm

, li + 1 < k ≤ n (1k)

C
′
m,k + I

′
m,k = S

′
m,k+1 ∀ k ∈ Kn

(1l)

I
′
m,k ≤ M

y · y
′
k ∀ k ∈ Kn

. (1m)

The objective function (1a) minimizes the number of occurring SIs y′
k. Con-

straints (1b) and (1c) ensure that each position is occupied by exactly one job
and each job is assigned to exactly one position. (1d) couple the jobs’ and the
positions’ processing times. (1e) and (1f) define completion times for notational
convenience. As mentioned earlier, start dates of jobs and positions are coupled
in (1g) and (1h) using sufficiently large constants M s

·,·,·. Then, level-precedence
and job-noninterference constraints can be enforced by (1i) and (1j), respec-
tively. With respect to adherence of buffer restrictions, note that all jobs that
are completed on some machine i−1 are either waiting in front of level i or have
already started being processed (and possibly completed) on machine i. Thus,
before a job on position k+ li completes on machine i−1, at least k jobs already
need to be beyond the buffers on level i (i.e., they were started, and possibly
completed, on machine i). This is expressed by (1k). Finally, (1l) grip the idle
times between each two subsequent positions on level m and (1m) binarize those
for the purpose of defining SI-variables y′

k.
As an alternative to the extended classic model, we propose a “position-

tracking” model, which only works on positions. The central idea of this model
is to enforce level-precedence constraints for the actual jobs by using binary
“position-tracking” variables z′

i,k1,k2
, which are set to 1 iff position k1 on level i

and position k2 on level i + 1 are allocated by the same job.
Again, we state our MIP formulation exemplarily for Fm|lwt|G. Additionally

defining K2+
i := {(k1, k2) ∈ K2 | k1−li+1 ≤ k2} ∀ i ∈ Mm and K2t

i := {(k1, k2) ∈
K2 | k1 − li+1 ≤ k2 ≤ k1} ∀ i ∈ Mm, the position-tracking model reads

min
∑

k∈K
y
′
k (2a)

s.t.

n∑

j=1

xi,j,k = 1 ∀ i ∈ M, k ∈ K (2b)

n∑

k=1

xi,j,k = 1 ∀ i ∈ M, j ∈ J (2c)

n∑

k1=1

z
′
i,k1,k2

= 1 ∀ i ∈ Mm
, k2 ∈ K2+

(2d)

n∑

k2=1

z
′
i,k1,k2

= 1 ∀ i ∈ Mm
, k1 ∈ K2+

(2e)

xi,j,k1 + xi+1,j,k2 − 1 ≤ z
′
i,k1,k2

∀ i ∈ Mm
, j ∈ J , k1, k2 ∈ K (2f)

n∑

j=1

(pi,j · xi,j,k) = p
′
i,k ∀ i ∈ M, k ∈ K (2g)

C′
i,k = S

′
i,k + p

′
i,k ∀ i ∈ M, k ∈ K (2h)

MIP Formulations for Flowshop Scheduling with Limited Buffers 133

S
′
i+1,k2

+ (1 − z
′
i,k1,k2

) · M
z
i,k1−k2

≥ C
′
i,k1

∀ i ∈ Mm, (k1, k2) ∈ K2t
i (2i)

C
′
i,k ≤ S

′
i,k+1 ∀ i ∈ Mm

, k ∈ Kn
(2j)

S
′
i+1,k−li+1

≤ C
′
i,k ∀ i ∈ Mm

, li + 1 < k ≤ n (2k)

C
′
m,k + I

′
m,k = S

′
m,k+1 ∀ k ∈ Kn

(2l)

I
′
m,k ≤ M

y · y
′
k ∀ k ∈ Kn

. (2m)

Constraints (2a)-(2c), (2g)-(2h) and (2j)-(2m) are identical to Model (1). (2d)
and (2e) further ensure that each position has exactly one predecessor and one
successor. The position-tracking variables are defined by inequalities (2f). As
already mentioned, logical level-precedence constraints are enforced in (2i) by
using the position-tracking variables in combination with big-M constants. Note
that (2i) are redundant for k2 < k1 − li+1 (a job cannot overtake more jobs
than there exist buffers, thus z′

i,k1,k2
= 0 has to hold in this case) and implicitly

covered for k2 > k1 (for each overtaken job there is an overtaking job). Proper
choices for M · will be discussed in Section 5.

For dealing with the Problem classes Fm|lwt|Cmax and Fm|lwt|∑ Cj instead,
clearly (1a)/(2a) need to be replaced by minC′

m,n and min
∑

j∈J C′
m,j , respec-

tively. Furthermore, constraints (1m)/(2m) are obsolete in both cases and can
hence be removed from the respective model.

4 Model Refinements and Solution Strategies

With O(n3 · m), constraints (2f) dominates the size of problem formulation (2).
However, we can exploit their sparsity and condense these constraints to a magni-
tude of O(n2 ·m) by clever summation. (2f) are satisfied iff the logical expression

z′i,k1,k2
= 1 ⇔ T :=

∑

j∈J
(j · xi,j,k1 + (n − j) · xi+1,j,k2) = n (3)

holds for all machines i ∈ Mm and for all position k1, k2 ∈ K. This is valid,
since the sum over all jobs is exactly equal to n only in the case that both
sequence-position variables xi,j,k1 and xi,j,k2 were 1 for the same j. Condition
(3) can further be expressed by the following linear constraints, replacing (2f) in
MIP (2).

1 +
1
n

(T − n) ≥ z′
i,k1,k2

∀ i ∈ Mm, k1, k2 ∈ K (4a)

1 − 1
n

(T − n) ≥ z′
i,k1,k2

∀ i ∈ Mm, k1, k2 ∈ K, (4b)

These modification seems awkward and inefficient at first sight. Yet, the reduced
problem size leads to vastly increased LP solution times (assuming a Branch-
and-Bound solution scheme). Also, constraints (2f) typically do not have a strong
handle on variables z′·,·,· in the LP relaxation, as variables x·,·,· might all be far
off 1 themselves. Therefore, further worsened LP relaxation properties of (4) are
likely to be outweighed by vastly increased LP solution times, as it was confirmed
by practical evaluations.

134 J.V. Frasch, S.O. Krumke, and S. Westphal

We further present several sets of additional strengthening inequalities. In par-
ticular the first set will show highly valuable in combination with the branching
strategy to be specified later on. It is given by

C′
i,k ≤ S′

i+1,k ∀i ∈ Mm, k ∈ K (5)

and can be interpreted as demanding the kth job on level i+1 to start not before
at least k jobs are available for that level, which obviously needs to hold for any
feasible solution. It is easy to see that these inequalities indeed cut off fractional
values.

Furthermore, we propose inequalities (6), (7) and (8) which all aim at tighten-
ing the relaxation by further restricting “fractional overtaking”, i.e., by forcing
a fractional solution to stronger adherence of integral buffer restrictions.

∑

k1<k<k2

zi−1,k1,k2 ≤ li ∀i ∈ M\{1}, k ∈ K (6)

xi−1,j,k +
∑

k2<k−li

xi,j,k2 ≤ 1 ∀j ∈ J , i ∈ M\{1}, k ∈ K (7)

∑

k3≥k

xi−1,j,k3 +
∑

k2<k−li

xi,j,k2 ≤ 1 ∀j ∈ J , i ∈ M\{1}, k ∈ K (8)

Again, we will only affirm the existence of cut off fractional values. While in-
equalities (6) impose additional fractional restrictions on the position-tracking
variables z·,·,·, constraints (7) and (8) work directly on the job-position assign-
ments x·,·,·. (6) can only be applied for problem class Fm|lwt|G. Note that even
though (8) are generally stronger than (7), the latter still showed better results
in certain test settings due to the increased sparsity of the constraint matrix.

For the fast solution of the stated model using a Branch-and-Bound based
algorithm the choice of an appropriate branching strategy is highly important.
We propose three priority levels; again we consider problem class Fm|lwt|G first.

Those nodes of the branching tree corresponding to the SI variables y′
k, k ∈ Kn

should be selected with highest priority and fixed to 0 first (it is intuitively clear
that typically G∗ � n). It is important to note that by using Constraints (5),
the LP-relaxations of subproblems with (partially) fixed y′

k can be seen as proper
(permutation) flowshop scheduling problems themselves, having convexified jobs,
i.e., jobs of (slightly) variable length (defined by p′i,k) as inputs. Note that due
to equations (2b), (2c) and (2g) the processing time p′i,k is bounded:

min
j∈J

pi,j ≤ p′i,k ≤ max
j∈J

pi,j ∀i ∈ M, k ∈ K. (9)

This means that even despite the extensive use of big-M constants, the nonex-
istence of a feasible schedule for a certain y′

· assignment in the original problem
is likely to imply infeasibility of the LP-relaxation, too. By branching to 0 first,
local infeasibility, i.e., a certain number of jobs that cannot be processed SI-free
in a row, can be detected early and large parts of the Branch-and-Bound tree
can be pruned at a depth of O(n), thus quickly producing lower bounds.

MIP Formulations for Flowshop Scheduling with Limited Buffers 135

Second priority should be given to variables z′i,k,k whose values should be fixed
to 1 first. It is intuitively clear, that overtaking will only for few jobs lead to an
improvement in the objective function, as it is delaying one job for a large time
interval in favor of bringing another forward by a short time interval. Therefore,
assuming permutation schedules as “initial feasibility guesses” seems reasonable.
All remaining variables should be selected with lowest priority.

In case of minimizing the makespan or the sum of completion times, the first
priority level is redundant due to non-existence of variables y·; however we do
recommend to stick to priority levels two and three.

5 Suitable Choice of Big-M Values

MIP (2) involves two different big-M values, which have to be chosen smallest
possible while maintaining feasibility of all potentially optimal solutions. There-
fore, My needs to be chosen greater than or equal to the length of the largest
possible SI in an optimal (active) schedule. Algorithm 1 shows a computation
scheme for a reasonable choice of My. As a computational relaxation, we only
consider “pseudojobs” instead of actual jobs. A pseudojob k is defined by pro-
cessing requirements (p̃i,k)i∈M with p̃i,k ∈ Pi := {pi,j | j ∈ J }. If a pseudojob
is marked as used on a machine i, the respective pool of available processing
requirements Pi is reduced by one occurrence of the respective processing time.

For My, we assume the shortest possible pseudojob to be processed first, while
all buffers are empty; then, all buffers are filled up in a cascade-like scheme using
the largest pseudojobs available, while keeping the gap until the subsequent
pseudojob is assumed to start minimal (with regard to activeness), yet exactly
as large as necessary to ensure feasibility of any subsequent pseudojob. This goes
w.l.o.g. due to the relaxation to pseudojobs. It is intuitively clear that filling up
all buffers before starting the next job on level m does not worsen the objective;
previously filled buffers would only imply a potential shortening of the SI gap.

Note that it is not directly possible to restrict the number of considered pseu-
dojobs with increasing position k (i.e., to define specific My

k), as some buffers
might already be filled at the time pseudojob k is processed on machine m.

Algorithm 1. Determining My

My ← 0− ShortestPseudojob(2, m);
/* subtract shortest tasks on machine levels 2 to m */;

for i← 1 to m− 1 do
for j′ ← 1 to li+1 do

My ←My + LongestAvailablePseudojob(1, i);
MarkPseudojobAsUsed(1, i);
My ←My − ShortestPseudojobFeasible(1, i− 1);

end

end
My ← My + LongestAvailablePseudojob(1, m− 1);

/* add one more job to trigger level m production */;

136 J.V. Frasch, S.O. Krumke, and S. Westphal

Algorithm 2. Determining Mz
i,d for d ≥ 1

M tmp ← 0− ShortestPseudojob(2, i);
for i0 ← 1 to i− 1 do

for j′ ← 1 to li0+1 do
M tmp ←M tmp + LongestAvailablePseudojob(1, i0);
MarkPseudojobAsUsed(1, i0);
M tmp ←M tmp − ShortestPseudojobFeasible(1, i0 − 1);

end

end
for d← 1 to li+1 do

M tmp ←M tmp + LongestAvailablePseudojob(1, i);
MarkPseudojobAsUsed(1, i);
Mz

i,d ←M tmp;
M tmp ←M tmp − ShortestPseudojobFeasible(1, i− 1);

end

For Mz
i,d, with d = k1−k2, an upper bound estimate on C′

i,k1
−S′

i+1,k2
, where

k1− li+1 ≤ k2 ≤ k1 holds, needs to be found. Since S′
i+1,k ≥ C′

i,k obviously needs
to hold in any case, Mz

i,0 is set to 0. For all other d, we pursue the same idea as
for the computation of My (cf. Algorithm 2). W.l.o.g. we assume the shortest
possible pseudojob was processed without interruption on position k2 = 1, while
all buffers are empty. Subsequently, all buffers are filled in increasing order (using
the largest pseudojobs available) up to those of level i+1. The completion times
on level i determine Mz

i,·.
The computation of M s·,·,s and M s·,·,e (maximum distances from any position

to the start and end, respectively) for Model (1) works analogously to Mz
i,d.

However, instead of filling buffers only up to level i, potentially all buffers need
to be filled and emptied repetitiously for covering all distances d ≤ n. Particu-
lar care needs to be taken to handle peculiarities like underruns of the sets of
available processing requirements.

6 Numerical Results

To demonstrate the effectiveness of the position-tracking model (2), we include
a short performance comparison to the extended classic model (1).

Problem settings are specified by a 3- and 4-tuple (m, n, li{, [c, d]}) respec-
tively, denoting number of machines, jobs, buffers in front of each level and a pa-
rameter specifying the “difficulty” of the problem in the case of SI-minimization.
Processing times are generated randomly according to a uniform distribution,
Ci,j ∼ U(0, 2Ei) ∀i ∈ M, j ∈ J . In the difficulty parameter, c stands for con-
stant processing time expectation Ei = const ∀i ∈ M, while d stands for a
processing time expectation decreasing linearly down to Em = 2

3
E1. It is clear

that decreasing processing time expectation tends to produce instances with a
larger optimal objective value G∗.

MIP Formulations for Flowshop Scheduling with Limited Buffers 137

Table 3. Numerical comparison between the classic and the position tracking model
for three different objectives

(a) Results for minimization
of O := G.

Instance Model N∗ O − O+

(4, 15, 1, c)

P 17 0.67
P(6) 18 0
C(7) 2 1.39
C(8) 2 1.50

(4, 15, 1, d)

P 5 0.4
P(6) 4 1.13
C(7) 1 2.58
C(8) 0 2.50

(3, 20, 1, d)

P 7 0.15
P(6) 4 1.0
C(7) 0 3.5
C(8) 0 3.4

(3, 20, 2, d)

P 3 1.0
P(6) 3 1.24
C(7) 0 4.7
C(8) 0 4.35

(b) Results for minimiza-
tion of O = Cmax.

Instance Model N∗ O−O+

O+

(4, 12, 1)

P 2 0.5%
P(6) 2 1.04%
C(7) 7 6.07%
C(8) 6 5.97%

(4, 12, 2)

P 3 0.98%
P(6) 2 0.6%
C(7) 2 7.75%
C(8) 3 8.13%

(4, 15, 1)

P 5 1.55%
P(6) 5 0.76%
C(7) 0 13.42%
C(8) 0 12.35%

(4, 15, 2)

P 2 0.35%
P(6) 2 0.63%
C(7) 0 10.88%
C(8) 1 11.05%

(c) Results for minimiza-
tion of O :=

∑
Cj.

Instance Model N∗ O−O+

O+

(4, 8, 1)

P(7) 16 0.31%
P(8) 16 0.39%
C(7) 19 0
C(8) 19 0

(4, 10, 1)

P(7) 0 0.30%
P(8) 0 0.59%
C(7) 0 0.69%
C(8) 0 0.65%

(4, 12, 2)

P(7) 0 0.54%
P(8) 0 0.33%
C(7) 0 1.88%
C(8) 0 1.93%

(4, 15, 1)

P(7) 0 0.85%
P(8) 0 0.53%
C(7) 0 2.08%
C(8) 0 2.52%

For each setting N = 20 instances were generated according to these param-
eters. Optimal unrestricted schedules were computed using two configurations
each of the classic model C· and our position tracking model (2), abbreviated
by P·; possible indices refer to usage of the respective additional inequalities.
All models and strategies were implemented in IBM ILOG OPL Studio 6.3 and
solved with IBM ILOG CPLEX 12.1 using a single execution thread per in-
stance and a time limit of 600s on a 2010 desktop computer (Intel i7 CPU at
2.66GHz, 1.5GB RAM per thread). A performance comparison between the po-
sition tracking model and the classic model for each of the objectives G, Cmax

and
∑

Cj can be seen from Tables 3a, 3b and 3 respectively. N∗ ≤ N stands
for the number of instances solved to optimality within the time limit. O − O+

measures the average over all instances which failed to be proven optimal within
the time limit of the absolute distance from the respective formulation’s best
feasible solution value, denoted by O, to the best feasible solution found using
any formulation (w.r.t. the time limit), O+, which might also be optimal.

In a nutshell, with increasing complexity of the problem instances, the posi-
tion tracking model tends to perform better than the classic model on all three
objectives. Note that model configurations were chosen for best performance
w.r.t. each objective function (on basis of a prior numerical comparison); using
neither inequalities (7) nor (8), the classic model failed to even produce any fea-
sible solution at all within the time limit. Inequalities 6 seemed to be beneficial
for instances with constant processing time expectation. It is interesting to see
that both classic formulations outperformed the position tracking model on the
comparatively easy problem setting (4, 8, 1) for the

∑
Cj objective, yet loose

their high ground for larger problems to the position tracking model.

138 J.V. Frasch, S.O. Krumke, and S. Westphal

7 Conclusions

In this paper, we have shown an alternative MIP modeling approach for flowshop
problems with a fixed limited number of intermediate buffers that does not
restrict considerations to suboptimal permutations schedules. A detailed solution
approach was proposed that leads to comparatively fast computational results,
as demonstrated in Section 6.

It should be said that even when restricting considerations to permutation
schedules the model canonically induced by our unrestricted MIP formulations
still possesses the advantage of being able to model buffer restrictions explicitly
over previous approaches, which typically modeled buffers as additional machine
levels, thus directly increased the size of the MIP description.

Note that even though – contrary to most literature on the makespan objective
– we did not include the concept of blocking in our models (as a result from the
steel production background of our problems), modifications of the proposed
MIP model leading to a formulation including blocking are straightforward.

References

1. Brucker, P.: Scheduling Algorithms, 5th edn. Springer, Heidelberg (2007)
2. Papadimitriou, C.H., Kanellakis, P.C.: Flowshop scheduling with limited tempo-

rary storage. Journal of the ACM 27, 533–549 (1980)
3. Frasch, J.: Algorithms and Complexity for Steel Production Scheduling. Master’s

thesis, Technical University of Kaiserslautern (2009)
4. Hoogeveen, H., Kawaguchi, T.: Minimizing total completion time in a two-

machine flowshop: Analysis of special cases. In: Cunningham, W.H., Queyranne,
M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 374–388. Springer,
Heidelberg (1996)

5. Wagner, H.M.: An integer linear-programming model for machine scheduling. Naval
Research Logistics Quarterly 6(2), 131–140 (1959)

6. Wilson, J.M.: Alternative formulations of a flow-shop scheduling problem. Journal
of the Operational Research Society 40, 395–399 (1989)

7. Manne, A.S.: On the job-shop scheduling problem. Operations Research 8(2), 219–
223 (1960)

8. Pan, C.H.: A study of integer programming formulations for scheduling problems.
International Journal of Systems Science 85, 33–41 (1995)

9. Kim, Y.D.: Minimizing total tardiness in permutation flowshops. European Journal
of Operational Research 28, 541–555 (1995)

10. Stafford, E.F.: On the development of a mixed-integer linear programming model
for the flowshop sequencing problem. Journal of the Operational Research Soci-
ety 39, 1163–1174 (1988)

11. Stafford, E.F., Tseng, F.T., Gupta, J.N.D.: Comparative evaluation of milp flow-
shop models. Journal of the Operational Research Society 56, 88–101 (2005)

12. Pinedo, M.: Scheduling: Theory, Algorithms and Systems, 2nd edn. Prentice-Hall,
Englewood Cliffs (2006)

13. Höhn, W.: Flowshop-Scheduling in der Stahlindustrie. Master’s Thesis, Technical
University of Berlin (2007)

14. Sawik, T.: Mixed integer programming for scheduling flexible flow lines with limited
intermediate buffers. Mathematical and Computer Modelling 31, 39–52 (2000)

A Scenario-Based Approach for Robust Linear

Optimization�

Marc Goerigk and Anita Schöbel

Institut für Numerische und Angewandte Mathematik
Georg-August Universität Göttingen, Germany

m.goerigk@math.uni-goettingen.de

Abstract. Finding robust solutions of an optimization problem is an
important issue in practice. The established concept of Ben-Tal et al.
[2] requires that a robust solution is feasible for all possible scenarios.
However, this concept is very conservative and hence may lead to so-
lutions with a bad objective value and is in many cases hard to solve.
Thus it is not suitable for most practical applications. In this paper we
suggest an algorithm for calculating robust solutions that is easy to im-
plement and not as conservative as the strict robustness approach. We
show some theoretical properties of our approach and evaluate it using
linear programming problems from NetLib.

Keywords: Robust Optimization, Algorithm Engineering, Location
Theory, Linear Programming.

1 Introduction

In many applications optimization tools can nowadays be used to calculate good
(or even optimal) solutions. Unfortunately, there is one major drawback that pre-
vents many solutions from being established in real-world applications: nearly
always there will be some kind of disturbance, e.g., input data changes, disrup-
tions, delays or any other unforeseen event. To overcome such difficulties and
make solutions applicable for real-world problems, researchers are working on
various concepts of robustness. The goal of these concepts is not to find the best
solution to the (undisturbed) problem but to calculate a robust solution which
is still ”good” in case of a disturbance. In robust optimization the objective is
purely deterministic. It aims to find a solution to an optimization problem which
keeps (maybe relaxed) feasibility when some disturbing events occur. Hence one
solves a suitably defined robust counterpart of the given optimization problem
which takes the uncertainty in the input data into account and which is supposed
to produce more robust solutions. There are many promising concepts on how
such a robust counterpart can be defined, see Section 2 for an overview.

However, most robustness concepts lead to hard optimization problems for
which new algorithms need to be developed. It is hence hard to quickly apply
� partially supported by grant SCHO 1140/3-1 within the DFG programme Algorithm

Engineering.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 139–150, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

140 M. Goerigk and A. Schöbel

these robust approaches to a specific problem. However, in most cases an algo-
rithm is at hand which is able to solve the problem if the data was known exactly.
This can be an exact approach or a heuristic procedure. It would be desirable if
such an existing algorithm could also be used to produce robust solutions in case
of uncertain data. In this paper we will propose exactly this: a simple algorithm
that can be applied whenever a solution algorithm for the original optimization
problem is at hand and that finds solutions that are robust but not too conser-
vative. Our approach has been suggested for timetabling problems in [11] where
it has been compared with various other robustness concepts and has shown to
be suitable for real-world examples. In this paper we extend and evaluate it for
solving robust linear programming problems.

It will turn out that our approach is closely related to the new concept of
recovery robustness (see Liebchen et al. [15]): We aim at finding a solution which
can be recovered to an optimal solution of the scenario (when it becomes known)
with minimal recovery costs in the worst case.

The remainder of the paper is structured as follows. In Section 2 we briefly
review robustness concepts for linear programming problems. In Section 3 we
present our robust algorithm and discuss some of its properties in Section 4.
Numerical results using examples from NetLib and a real-world example are
presented in Section 5. Our results are summarized in Section 6.

2 Review of Robustness Concepts

We consider linear optimization problems

(LP) min{ctx : Ax ≤ b, x ∈ IRn}

with parameters given by an m×n matrix A, b ∈ IRm, and c ∈ IRn. To indicate
that (LP) depends on these parameters we write LP(A, b, c) instead of just (LP).
It is enough to indicate the uncertain parameters, i.e., if we write LP(b) this
means that the values for b may be uncertain, but the coefficients of A and c are
known exactly. Let M be the number of uncertain parameters, and let ξ ∈ IRM

be the unknown parameters of (A, b, c). These parameters are not known exactly
but one can often give some uncertainty set U ⊆ IRM where they are likely to
come from. Different structures of U , which can contain a nominal scenario
that represents the most likely parameters, may be investigated. The uncertain
optimization problem corresponding to LP(ξ) is hence denoted as

LP (A, b, c), (A, b, c) ∈ U , or LP (ξ), ξ ∈ U , respectively. (1)

The question arising is how to specify the robustness of a solution. The first
concept (which we will call strict robustness here) was introduced in [17,4,10]
and extensively described in [2]. It requires that a solution to an optimization
problem has to be feasible for all possibly expected scenarios of a given set. Let
SR = {x ∈ IRn : Ax ≤ b for all (A, b, c) ∈ U} denote the set of strictly robust

A Scenario-Based Approach for Robust Linear Optimization 141

solutions. Then the concept of strict robustness aims at finding a solution x ∈ SR
which minimizes the worst case of the objective function:

(RC) min
x∈SR

sup
(A,b,c)∈U

ctx

(RC) is not feasible if SR = ∅; and even if strictly robust solutions exist, the
resulting robust counterparts produce solutions that are often too conservative
in the sense that too much optimality has to be given up in order to ensure
robustness. To overcome this problem and to better control the price of robust-
ness (defined in [6]) different concepts have been proposed, among them the
approaches of reliability (Ben-Tal and Nemirovski [5]), the approach of Bertsi-
mas and Sim [6], or the concept of adjustable robustness by Ben-Tal et al [3]
and recently the extension to light robustness by Fischetti and Monaci [9], and
to recovery robustness (Erera et al., Liebchen et al. [1,15,18]), see also Cicerone
at al. [7] for an overview on applications in shunting and timetabling.

However, the major drawback of most robust approaches is the complexity of
the resulting robust counterpart which is usually much harder to solve than the
original problem. Our approach compensates this disadvantage by making use
of existing algorithms for the original problem.

3 A Scenario-Based Approach to Robust Linear
Optimization

In this section we present a simple procedure which can be applied whenever
an (exact or heuristic) solution algorithm for the original optimization problem
is at hand. The idea is the following: First, choose a set of scenarios from the
uncertainty set U . Then use the given algorithm to generate an optimal (or
approximate) solution for each of these scenarios. The solutions can be regarded
as a set of points S ⊆ IRn. In the third step we calculate one point x ∈ IRn

which represents the set S by solving a location problem.
In location theory (see, e.g., [8]), a set of existing points {x1, . . . , xN} ⊆ IRn

and a distance measure d : IRn × IRn → IR are given. The goal of a location
problem is to find a point x ∈ IRn which minimizes the distances to the set of
existing points. Formally, a location problem is given as

(Loc) min
x∈F

loc(x) = h(d(x1, x), . . . , d(xN , x))

where F ⊆ IRn is a feasible set and h is a function that is usually monoton-
ically increasing in each of its arguments. Widely investigated problem classes
include the median problem (also known as Weber problem) in which loc(x) =
∑N

i=1 d(xi, x) or the center problem in which loc(x) = maxN
i=1 d(xi, x). A point

x minimizing
∑

i=1,...,N d(xi, x) is called median of x1, . . . , xN , and a mini-
mizer of maxi=1,...,N d(xi, x) is called a center. Moreover, minimizing loc(x) =
∑N

i=1 d2(xi, x) for the Euclidean distance d = l2 can be done easily by taking

142 M. Goerigk and A. Schöbel

the average of every coordinate and leads to the center of gravity of x1, . . . , xN ,
the centroid.

We are now in the position to specify our approach formally.

Algorithm RecOpt:

Input:
– An uncertain problem LP(ξ) with uncertainty set U .
– An algorithm Alg(ξ) for solving LP(ξ) if the data ξ ∈ U is known.

Step 1: Choose a set of scenarios {ξ1, . . . , ξN} ⊆ U .
Step 2: Use Alg(ξ) to solve LP(ξi) for all i = 1, . . . , N . Let xi, i = 1, . . . , N

be the resulting optimal solutions.
Step 3: Find a robust solution x∗ by solving a location problem (Loc) in

which the existing points are x1, . . . , xN .
Output: A robust solution x∗.

Figure 1 illustrates the approach for a finite set U = {ξ1, ξ2, ξ3}, where x(ξi)
denotes the optimum solution for scenario ξi, i = 1, 2, 3.

Note that RecOpt so far is only a general scheme for our approach which
needs to be specified. In particular, we have to describe which scenarios should
be chosen in step 1, and which parameters h, d, and F of the location problem
should be used in step 3.

In contrast to strict robustness our approach does not require the set of strictly
robust solutions SR to be non-empty, but it will always output some solution (if
the single scenarios are feasible). Note that even if SR �= ∅, the outcome of
RecOpt need not be contained in SR as it is shown in Figure 2. This is in many
applications an advantage since the objective value of the solution which will
be realized after the scenario becomes known is in these cases much better than
the objective value of a strictly robust solution. In particular for timetabling and
project scheduling problems this turns out to be an important feature. Note that
feasibility for special scenarios (e.g., the most likely one) can easily be included
in RecOpt by choosing F such that only “desirable” solutions are included. Thus,
if it is required that a robust solution has to be feasible in certain cases, we only
have to change the location problem slightly. It would even be possible to include
feasibility in every single scenario as constraints, if this was really necessary -

Fig. 1. Find a location that minimizes the worst-case distance to the optimal solution

A Scenario-Based Approach for Robust Linear Optimization 143

Fig. 2. The output x∗ of RecOpt using the Euclidean center is far away from the set
of strictly robust solutions SR; it hence has a much better objective function value

but the focus of our scenario-based approach is more on the recovery distance
to the optimal solutions.

In the following we will investigate RecOpt for norm-based distance functions
d given as d(x, y) = ‖y − x‖ for some norm ‖ · ‖. We will discuss the quality of
the resulting solutions theoretically and numerically.

4 Analysis of Solutions Generated with RecOpt

Recovery-to-Feasibility: A Robustness Concept behind RecOpt. Let us
first assume that the location problem is a center problem and the set of generated
scenarios U = {ξ1, . . . , ξN} is finite, i.e., the location problem is given as

(Loc) min
x∈F

loc(x) =
N

max
i=1

d(xi, x).

Let us further assume that the optimal solutions x1, . . . , xN obtained in step 2 are
uniquely determined. In step 3 let us choose a distance measure d representing
the costs for updating a solution to another one; i.e., d(x, x′) is an approximation
on how much it costs to change the solution x to another solution x′. Then our
algorithm RecOpt finds a solution x∗ with the following property: x∗ minimizes
the recovery costs to an optimal solution for the worst-case scenario. In general,
this leads to a new concept called recovery to optimality. Denoting x(ξ) as an
optimal solution to LP(ξ) we can formulate this concept as

(RecOpt) min
x∈IRn

max
ξ∈U

d(x, x(ξ)).

Algorithm RecOpt can hence be interpreted as a heuristic for solving the problem
(RecOpt). We will call r = maxξ∈U d(x, x(ξ)) the recovery radius of solution
x with respect to U . We remark that recovery to optimality has been defined
and successfully implemented for timetabling problems (which are special linear
programming problems) in [11], using a variant of RecOpt as a heuristic to
generate robust timetables.

144 M. Goerigk and A. Schöbel

This leads to similar solution as would be obtained for the concept of recovery
robustness (as introduced in [15]), where also solutions are sought that can be
updated to more desirable ones. In the recovery robust counterpart [15], Liebchen
et al. do not only look for a robust solution x, but also for a recovery algorithm
A which is able to update the solution x when the scenario ξ becomes known.
The algorithm A has to be chosen from a given class A of algorithms with certain
limitations, e.g., on the running time or on the quality of the resulting solution.
The concept leads in general to hard problems even for linear programming with
uncertainty only in their right-hand side, see [18]. In our approach we replace
the properties of A by the distance measure d, and we recover to optimality and
not to feasibility.

There is also some similarity to minmax-regret robustness (see [14] for an
overview) where one considers the problem of minimizing the difference between
the objective value of the current solution and the objective value that would
have been best for the scenario. In contrast to this, our approach aims at mini-
mizing the distance between the current solution x and the solution that would
have been best for the scenario. Minmax-regret robustness is hence a special case
of (RecOpt) by using the difference in the objectives as a distance measure.

We now turn our attention to the median objective function and consider the
problem

(Loc) min
x∈F

loc(x) =
N∑

i=1

d(xi, x)

which means that the average distance to the optimal solution of the scenarios
is minimized instead of the maximum distance. This makes sense if scenarios
may change often, or if the expected reaction time (or the expected recovery
cost) is more relevant than the time (or the costs) needed in the worst case.
For the median location problem, our concept is hence a bridge between robust
optimization and stochastic optimization.

Properties of the Solutions Obtained by RecOpt. We now discuss some
properties of the robust solution obtained by RecOpt. Suppose that the optimal
solutions x1, . . . , xN all satisfy some property, or lie within some specific set.
This may be the case, e.g., if some constraints of the linear program LP(A, b, c)
are certain, or if they are likely to hold. We show that, under some conditions,
the output x∗ of RecOpt also satisfies this property. We denote a distance d to
be linear equivalent to the Euclidean distance l2 if for all x, y ∈ IRn it holds
d(x, y) = l2(Tx, T y) for a regular linear transformation T .

Theorem 1. Let x1, . . . , xN be optimal solutions to the scenarios ξ1, . . . , ξN

chosen in RecOpt and let x∗ be the output of RecOpt. Let Q(xi) ≤ δ, i = 1, . . . , N ,
for some convex function Q : IRn → IR, δ ∈ IR. Then

Q(x∗) ≤ δ

if the objective function loc(x) that has to be minimized in (Loc) in step 3 takes
the following form:

A Scenario-Based Approach for Robust Linear Optimization 145

1. loc(x) =
∑N

i=1 d2(xi, x), where d2 is the squared Euclidean distance.
2. loc(x) =

∑N
i=1 d(xi, x), where d is linear equivalent to the Euclidean distance.

3. loc(x) = maxN
i=1 d(xi, x), where d is linear equivalent to the Euclidean dis-

tance.
4. loc(x) =

∑N
i=1 d(xi, x), where d is any lp-norm for 1 < p < ∞ and n = 2.

Proof. In case 1, x∗ is the center of gravity, i.e., x∗ = 1
N

∑N
i=1 xi. Hence x∗ lies in

the convex hull of the existing facilities. For the Euclidean norm and any norm
which is linear equivalent to the Euclidean norm, it is shown in [16] that the same
property holds in the cases stated in 2. and 3., i.e., x∗ ∈ conv({x1, . . . , xN}. For
case 4, the same holds due to [13]. We thus find positive λi, i = 1, . . . , N with
∑N

i=1 λi = 1 and x∗ =
∑N

i=1 λix
i. From this we obtain

Q(x∗) = Q

(
N∑

i=1

λix
i

)

≤
N∑

i=1

λi︸︷︷︸
≥0

Q(xi)
︸ ︷︷ ︸

≤δ

≤ δ

N∑

i=1

λi = δ.
�

The proof is based on the property that x∗ ∈ conv{x1, . . . , xN}, which does in
general only hold for the cases mentioned in the theorem. For n > 2 and d not
linear equivalent to the Euclidean distance, counterexamples to this property can
be constructed (see [16]) and hence Theorem 1 does not hold in these cases. The
following consequences follow directly from the theorem and are useful properties
of the solutions obtained by RecOpt.

Corollary 1. Let x1, . . . , xN be optimal solutions to the scenarios ξ1, . . . , ξN

chosen in RecOpt and let x∗ be the output of RecOpt. Let loc(x) be as described
in Theorem 1. Then we have:

1. If the objective function value of all xi is better than α then also the objective
value of x∗ is better than α.

2. If some of the constraints of LP(A,b,c) are certain, i.e., if dtxi ≤ δi (or
dtxi = δi) holds for i = 1, . . . , N then also dtx∗ ≤ δ (or dtx∗ = δ).

3. If F is a convex set and xi ∈ F for all i = 1, . . . , N then it is sufficient to
solve

min
x∈IRn

h(d(x1, x), . . . , d(xN , x))

instead of minx∈F h(d(x1, x), . . . , d(xN , x)) in step 3.

Choosing the Scenarios Set for RecOpt. We finally discuss how to choose
a finite set of scenarios for step 1 of RecOpt. If the uncertainty set U is finite
(and not too large) we might be able to solve LP(ξ) for all ξ ∈ U . But how to
proceed if U contains very many or an infinite number of possible scenarios?

The easiest answer is to run RecOpt with a large set of randomly generated
scenarios ξ1, . . . , ξN in this case and proceed with steps 2 and 3 as before. The
outcome is an approximate solution whose quality will be numerically investi-
gated in Section 5.

146 M. Goerigk and A. Schöbel

In the following we analyze RecOpt with

(Loc) min
x∈F

loc(x) = max{d(x1, x), . . . , d(xN , x)},

and assume that we are interested in finding an optimal solution to the problem
(RecOpt). In some cases we do not need to generate a large set of scenarios in
step 1, but a finite subset {ξ1, . . . , ξN} ⊆ U suffices to solve (RecOpt) exactly.
This holds, e.g., in the case of linear programming problems in standard form
with uncertain right hand side, i.e., for problems of type

LP (b) min{ctx : Ax = b, x ≥ 0, x ∈ IRn}, b ∈ U (2)

in the following situation.

Lemma 1. Consider LP(b) with a convex uncertainty set U = conv{b1, . . . , bN}
and assume that the interior int(U) is not empty. Then the output of RecOpt with
scenario set b1, . . . , bN , and a location problem with objective function

loc(x) =
N

max
i=1

d(xi, x)

for any norm and F = IRn in step 3 solves (RecOpt) exactly if there exists a
basis B ⊆ {1, . . . , n} with non-negative reduced costs and x−1

B b ≥ 0 for all b ∈ U .

Proof. Let B be such a basis. Since the reduced costs ct
n − ct

BA−1
B An ≥ 0 are

independent of b and feasibility of the corresponding basic solution is ensured
for all b ∈ U we know from linear programming theory that x(b) := (A−1

B b, 0) is
optimal for LP(b). Hence, x(b) is an affine linear function.

Let b ∈ U , i.e., there exist λi, i = 1, . . . , N with 0 ≤ λi ≤ 1,
∑N

i=1 λi = 1 and
b =

∑N
i=1 λib

i. Since x is an affine linear function, we obtain

x(b) = x

(
N∑

i=1

λib
i

)

=
N∑

i=1

λix(bi) =
N∑

i=1

λix
i,

i.e., x(b) ∈ conv{x1, . . . , xN}.
Define r := maxi=1,...,N d(x, xi) as the radius corresponding to center x and

let r∗ be the best possible objective value for (RecOpt). Since r ≤ r∗ it remains
to show that the recovery radius of x with respect to U equals r, i.e., that
d(x, x(b)) ≤ r for all b ∈ U .

To this end, let b ∈ U again. As we have shown, x(b) ∈ conv{x1, . . . , xN},
and hence there are λi, i = 1, . . . , N , with 0 ≤ λi ≤ 1,

∑N
i=1 λi = 1 and

∑N
i=1 λix

i = x(b). Convexity of d(x, ·) yields

d(x, x(b)) = d(x,

N∑

i=1

λix
i) ≤ N

max
i=1

d(x, xi) = r,

hence x is in fact optimal for (RecOpt).
�

A Scenario-Based Approach for Robust Linear Optimization 147

5 Evaluation of RecOpt Using Examples from NetLib

In this section we present numerical results for the performance of RecOpt by
randomly disturbed problems taken from the NetLib library.

As stated in Section 3, we have to decide on how to measure distances between
two solutions, representing the ”costs” for updating a solution. This measure
depends on the problem under consideration. In our experiments, we decided to
use the Manhattan distance l1 as a canonic choice for testing purposes.

Our goal is to compare our robust solutions according to RecOpt with the
nominal solution, i.e., the solution for the undisturbed scenario, and with the
strictly robust solution. We hence modified the constraints of the NetLib prob-
lems in step 2 and 3 using the following scheme.

1. Choose an LP and consider it as nominal instance.
2. Modify every ”=”-constraint to a ”≤”-constraint.
3. Add the constraint that all variables are positive.
4. Check if there is still a finite optimum. If not, neglect this LP.
5. Create an index set J = {j1, . . . , jN} by selecting a ratio of 0 ≤ p ≤ 1 of the

indices of the coefficient matrix A, restricted to its nonzero entries.
6. The uncertainty set for this instance is then given by

U = {Â : (1 − q)aj ≤ âj ≤ (1 + q)aj ∀j ∈ J, âj = aj ∀j /∈ J},
where q represents the allowed deviation.

7. Calculate
– the nominal solution,
– the strictly robust solution,

and apply RecOpt for
– the center with respect to the Manhattan norm l1,
– the center with respect to l1 with additional nominal feasibility, i.e., with

feasibility to the nominal scenario,
– and for the centroid.

Our modification in step 2 increases the probability that a strictly robust solution
exists, while the modification in step 3 helps us to calculate the strictly robust
solution: If all variables are greater or equal to zero, the worst case scenario and
hence the strictly robust solution can be easily calculated.

To find the l1 centers, we used linear programming formulations. All LPs were
solved using Gurobi 3.0 ([12]). Furthermore, to avoid exceptional long computa-
tion times, we added a time limit of 180 seconds to each LP.

Of the 94 problems from NetLib, 22 had to be neglected by step 4. Of the
remaining 72 problems, 52 had a strictly robust solution and all solutions were
found within the time limit. For each of these 52 instances we calculated the five
solutions mentioned in step 7. Table 1 gives an overview on the evaluation of these
solutions for two choices of the parameters p, q: For the first set of experiments,
we set p = 0.4 and q = 0.4, meaning that 40% of the nonzero entries can deviate
by up to 40%. An interpretation would depend on the respective problem the LP

148 M. Goerigk and A. Schöbel

Table 1. Average feasibility, objective value ratio and recovery radius ratio of the 52
NetLib instances. ”w.n.f.” abbreviates ”with nominal feasibility”.

p = 0.4, q = 0.4 p = 0.2, q = 0.8
feasibility objective radius feasibility objective radius

nominal 0.27 0.00 0.00 0.28 0.00 0.00
l1 center 0.28 2.18 -0.33 0.26 1.89 -0.40
l1 center w.n.f. 0.30 2.96 -0.32 0.31 2.55 -0.37
centroid 0.29 -0.98 -0.19 0.29 0.20 -0.14
strict robustness 1.00 5.92 2.37 1.00 95.30 1.92

models - say, bad weather conditions that disturb routes in a routing problem.
For the second set, we set p = 0.2 and q = 0.8. In the former example, this could
be caused by traffic jam on some routes.

For the column “feasibility” we evaluated every solution x∗ as follows: We
randomly picked 1,000 scenarios from the uncertainty set and counted for how
many of them x∗ is feasible; the average feasibility over all scenarios is shown. As
expected, the strictly robust solution is always feasible. The l1 centers and the
centroid nearly always have slightly better feasibility than the nominal solution.

The column ”objective” represents the relative change of the objective value.
For a solution with objective value xsol, we calculated

objective =
xsol − xnom

|xnom| ,

where xnom denotes the objective value of the nominal optimum. This means
that higher values represent more costly solutions. The table shows that the
costs of the strictly robust solutions dramatically increase, while the solutions
calculated by RecOpt have only slightly higher costs than the nominal solution, or
even smaller ones. (This is possible, since a solution to RecOpt is not necessarily
feasible for the nominal scenario, cf. Figure 2).

The values of the column ”radius” represent the approximate maximum re-
covery costs. As it was the case in the objective column, we calculated the radius
in relation to the recovery radius of the nominal solution, i.e.,

radius =
rsol − rnom

rnom
,

where rnom denotes the recovery costs for the nominal solution, and rsol the
recovery costs for the solution under consideration. It turns out that the recov-
ery radius for the strictly robust solutions is even higher than for the nominal
solutions, while RecOpt yields solutions with smaller recovery costs.

Summarizing, Table 1 shows that RecOpt is a good choice for robust solutions
that do not need to be feasible for every scenario and combines the advantages
of good objective values with low repair costs.

To conclude this section, we remark again that both our scenario-based ap-
proach and strict robustness aim at different objectives: While RecOpt minimizes
the recovery distance to the respective optimal solutions, strict robustness min-
imizes the objective value under maximum feasibility. Therefore, each method

A Scenario-Based Approach for Robust Linear Optimization 149

excels in its own domain. What the presented computational results show is the
trade-off between these different objectives, which shows a good performance
for out approach.

Finally, we want to point out that for 33 of the 42 omitted NetLib instances,
no strictly robust solution exists. Hence, in particular for these instances the
solution calculated by our new approach RecOpt is the better choice.

6 Conclusion

In this work the approach RecOpt, which had been successfully applied to time-
tabling instances in [11], has been generalized and applied to linear programs.
We explored several analytical properties of the obtained solutions and compared
them experimentally to the well-known concept of strict robustness and to the
nominal solution using linear programs from the NetLib. While the application
of many other robustness concepts is intricate and computationally complex,
the presented approach can be used whenever there is a solution method for the
original problem at hand.

Further research includes a simulation using other types of problems including
NP-hard ones that can only be solved heuristically. A similar approach is under
research, in which we aim at recovering to feasibility (and not to optimality),
also minimizing the recovery costs.

References

1. Erera, A.L., Morales, J.C., Svalesbergh, M.: Robust optimization for empty repo-
sitioning problems. Operations Research 57(2), 468–483 (2009)

2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton
University Press, Princeton (2009)

3. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust
solutions of uncertain linear programs. Math. Programming A 99, 351–376 (2003)

4. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Mathematics of Opera-
tions Research 23(4), 769–805 (1998)

5. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems
contaminated with uncertain data. Math. Programming A 88, 411–424 (2000)

6. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53
(2004)

7. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck,
M., Schöbel, A.: Recoverable robustness in shunting and timetabling. In: Ahuja,
R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Opti-
mization. LNCS, vol. 5868, pp. 28–60. Springer, Heidelberg (2009)

8. Drezner, Z., Klamroth, K., Schöbel, A., Wesolowsky, G.: The weber problem. In:
Drezner, Z., Hamacher, H.W. (eds.) Location Theory - Applications and Theory,
ch. 1, pp. 1–36. Springer, Heidelberg (2001)

9. Fischetti, M., Monaci, M.: Light robustness. In: Ahuja, R.K., Möhring, R.H., Zaro-
liagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868,
pp. 61–84. Springer, Heidelberg (2009)

150 M. Goerigk and A. Schöbel

10. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncer-
tain data. SIAM Journal of Matrix Anal. Appl. 18, 1034–1064 (1997)

11. Goerigk, M., Schöbel, A.: An empirical analysis of robustness concepts for
timetabling. In: Erlebach, T., Lübbecke, M. (eds.) Proceedings of the 10th Work-
shop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, Dagstuhl, Germany. OpenAccess Series in Informatics (OASIcs), vol. 14,
pp. 100–113. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)

12. Gurobi Optimization, Inc., Houston, Texas. Gurobi Optimizer Reference Manual
Version 3.0 (September 2010)

13. Juel, H., Love, R.F.: Hull properties in locationproblems. European Journal of
Operational Research 12, 262–265 (1983)

14. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, Dordrecht (1997)

15. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable ro-
bustness, linear programming recovery, and railway applications. In: Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009)

16. Plastria, F.: Localization in single facility location. European Journal of Opera-
tional Research 18, 215–219 (1984)

17. Soyster, A.L.: Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations Research 21, 1154–1157 (1973)

18. Stiller, S.: Extending concepts of reliability. Network creation games, real-time
scheduling, and robust optimization. PhD thesis, TU Berlin (2008)

Conflict Propagation and Component Recursion for
Canonical Labeling

Tommi Junttila� and Petteri Kaski

Aalto University and Helsinki Institute for Information Technology
Department of Information and Computer Science

PO Box 15400, FI-00076 Aalto, Finland
{Tommi.Junttila,Petteri.Kaski}@tkk.fi

Abstract. The individualize and refine approach for computing automorphism
groups and canonical forms of graphs is studied. Two new search space pruning
techniques, conflict propagation based on recorded failure information and recur-
sion over nonuniformly joined components, are presented. Experimental results
show that the techniques can result in substantial decrease in both search space
sizes and run times.

1 Introduction

Given as input a graph G with vertex set {1, 2, . . . , n}, the canonical labeling problem
asks us to compute a permutation κ(G) : {1, 2, . . . , n} → {1, 2, . . . , n} such that the
graph Gκ(G), obtained by relabeling the vertices of G with κ(G), is independent of the
labeling of the vertices in the input. Put otherwise, for any two isomorphic graphs, G
and H , it is required that Gκ(G) = Hκ(H).

It is currently not known whether the canonical labeling problem admits an algorithm
that runs in time polynomial in n. This observation withstanding, canonical labeling
tasks are recurrent in combinatorial computation, which has warranted the develop-
ment of backtracking algorithms tailored for performance on practical instances, even
if there are crafted instances where the running time scales exponentially in n. (We
refer to [1,2,3] for a further discussion of the theoretical and practical background of
the problem.) Currently the fastest algorithm implementations, such as nauty [4,5] and
bliss [3], are based on the paradigm of recording the state of the search in an ordered
partition of the vertices, whereby two basic operations are applied to drive the search:
(i) individualization of vertices, and (ii) refinement of the ordered partition using iso-
morphism invariants. The standard invariant used in a refinement step is the so-called
color-degree invariant (the invariant value at a vertex lists, for each cell of the ordered
partition, the number of neighbors the vertex has in the cell).

In this paper our objective is to augment the basic paradigm of individualization and
refinement with two further heuristics:

Conflict Propagation based on Recorded Failure Information. Conflict propaga-
tion is a technique encountered in many backtrack algorithms: whenever a conflicting

� Financially supported by the Academy of Finland (project 122399).

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 151–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

152 T. Junttila and P. Kaski

search state is encountered, one tries to propagate the conflict upwards in the search
tree beyond the most recent branching point. Our implementation of conflict propaga-
tion occurs in the process of finding symmetries (automorphisms) of the input graph.
In particular, whenever we discover that the current node in the search tree conflicts
with (is not isomorphic to) the corresponding “first-path node” (and thus cannot pro-
duce any automorphisms), we attempt to propagate the conflict to the parent node of
the current node. This propagation is carried out by (iteratively) checking the current
node against recorded invariant values of the child nodes of first-path nodes that also
conflicted; if the node conflicts in a different way, we can deduce that its parent node
cannot be isomorphic to its corresponding first-path node, either.

Component recursion. Component recursion attempts to partition the search state into
“components” that can be searched independently of each other. Here it is important to
note that nontrivial components need not always exist, which sets the technique some-
what apart from the classical divide-and-conquer paradigm. In particular, one needs to
be able to quickly detect the absence of nontrivial components.

An immediate notion of a component in the context of canonical labeling are the
connected components of a graph. Our implementation of component recursion is based
on the following notion of a nontrivial component. An ordered partition is equitable if
its cells cannot be split further using the color-degree invariant. We say that two cells
of an equitable ordered partition are nonuniformly joined if each vertex in one cell
has both neighbors and non-neighbors in the other cell. A nonuniform component is a
connected component in the graph with the cells as vertices, and with edges joining the
cells that are nonuniformly joined. We show that nonuniform components enable a form
of component recursion where canonical labeling reduces to the task of canonically
labeling the nonuniform components. We also note that similar concepts have been
used previously in the design of graph isomorphism algorithm with a vertex-exponential
upper bound on the running time [6].

The main practical motivation for these two heuristics is that they are computation-
ally cheap to incorporate into existing algorithm implementations, such as bliss [3] and
nauty [4,5], because they rely on information that is already computed but not fully
exploited by the implementations. For example, conflict propagation utilizes only in-
formation that is already computed when traversing first-path nodes in the search tree,
so it merely suffices to store the information for later use. Similarly, the nonuniform
components are obtained as a side-effect of executing the heuristic for selecting which
cell to split in an individualization step.

Based on an implementation of the heuristics in the tool bliss, we find that the heuris-
tics significantly improve the performance of bliss on a number of families of bench-
mark graphs, yet the overhead of evaluating the heuristics is negligible for all the bench-
mark graphs.

2 Preliminaries

A graph is an ordered pair G = (V, E), where V is a finite set and E is a set of 2-
element subsets of V . The elements of V are called vertices and the elements of E
edges. We write G(V) for the set of all graphs with vertex set V . Throughout this paper

Conflict Propagation and Component Recursion for Canonical Labeling 153

we assume that V = {1, 2, . . . , n}. We denote by Sym(V) the group of all permutations
of V . The image of x ∈ V under γ ∈ Sym(V) is denoted by xγ . The composition
of permutations γ1, γ2 ∈ Sym(V) is defined for all x ∈ V by x(γ1γ2) = (xγ1)γ2 .
For example, in cycle notation, (1 2)(2 3) = (1 3 2). A permutation acts on a subset
W ⊆ V by W γ = {xγ : x ∈ W} and on a graph G by Gγ = (V γ , Eγ), V γ = V , and
Eγ = {{xγ , yγ} : {x, y} ∈ E}.

A partition of V is a set of nonempty pairwise disjoint subsets of V whose union
is V . An ordered partition of V is a list π = (W1, W2, . . . , Wm) such that the set
{W1, W2, . . . , Wm} is a partition of V . We write Π(V) for the set of all ordered par-
titions of V . Each set Wi is called a cell of the partition. A partition is discrete if all
its cells are singleton sets and unit if it has only one cell (the set V). An ordered par-
tition π associates with each x ∈ V the index π(x) of the cell of π in which x occurs,
that is, π(x) = i if and only if x ∈ Wi. If π is discrete, the mapping π̄ : x �→ π(x)
is a permutation of V . Conversely, a permutation γ ∈ Sym(V) corresponds to the
discrete ordered partition ({1γ−1}, {2γ−1}, . . . , {nγ−1}). We identify discrete ordered
partitions with permutations in this manner. For example, if π = ({3}, {1}, {2}), then
the corresponding permutation is π̄ = (1 2 3). A permutation γ ∈ Sym(V) acts on an
ordered partition π = (W1, W2, . . . , Wm) by πγ = (W γ

1 , W γ
2 , . . . , W γ

m). In particular,
if π is discrete, πγ = γ−1π̄.

For ordered partitions π1, π2 ∈ Π(V), we say that π1 is at least as fine as π2 and
write π1 � π2 if π2 can be obtained from π1 by replacing zero or more times two
consecutive cells with the union of the cells. If π1 � π2 and π1 �= π2, we say that π1

is finer than π2 and write π1 ≺ π2. For π = (W1, ..., Wi−1, Wi, Wi+1, ..., Wm) and
∅ �= S � Wi, let π↓S = (W1, ..., Wi−1, S, Wi \ S, Wi+1, ..., Wm) ≺ π. For S = Wi,
let π↓S = π. Intuitively, π↓S is the ordered partition obtained by “individualizing” the
elements in S. If A is a union of cells of π, we denote by πA the ordered partition of A
obtained by restricting π to A.

Two graphs G1, G2 are isomorphic if there exists a permutation γ ∈ Sym(V) such
that Gγ

1 = G2. Such a permutation γ is called an isomorphism of G1 onto G2. We
write G1

∼= G2 to indicate that G1 and G2 are isomorphic. An isomorphism of a graph
onto itself is an automorphism. The automorphism group Aut(G) of a graph G con-
sists of all automorphisms of G with composition as the group operation. We extend
these notions of isomorphism and automorphism to ordered tuples of objects on which
Sym(V) acts element-wise. For example, for G1, G2 ∈ G(V) and π1, π2 ∈ Π(V), we
have (G1, π1) ∼= (G2, π2) if and only if there exists a permutation γ ∈ Sym(V) with
Gγ

1 = G2 and πγ
1 = π2.

2.1 Colored Graphs, Equitable Colorings, Refinement Functions

A colored graph is an ordered pair (G, π) ∈ G(V) × Π(V), where π associates a
“color” π(x) with every x ∈ V . A colored graph (G, π) is equitable if every two
vertices of the same color have the same number of adjacent vertices of each color. If
G is clear from the context, we say that π is equitable.

Given a colored graph (G, π), one can attempt to refine the coloring in an isomor-
phism preserving way by applying a refinement function to the coloring. Formally, a
function R : G(V) × Π(V) → Π(V) is a refinement function if for all (G, π)

154 T. Junttila and P. Kaski

∈ G(V)×Π(V) and all γ ∈ Sym(V) it holds that (i) R(G, π) � π and (ii) R(G, π)γ =
R(Gγ , πγ). In the rest of the paper, we always assume that R(G, π) is equitable. The
refinement function applied in tools such as nauty [4,5] and bliss [3] is a performance-
wise optimized version of the following classic coarsest equitable refinement function.

1

2

3

4

5

6

7

8

9

10 12

11

W1

W3 W2

W4

Fig. 1. A colored graph with equitable color
classes (W1, W2, W3, W4)

Let (G, π) be a colored graph with
π = (W1, W2, . . . , Wm). Associate with
each vertex x ∈ V the color-degree vector
d(G, π, x) = (|{y ∈ Wi : {x, y} ∈ E}| :
i = 1, 2, . . . , m). Each color-degree vec-
tor is thus a vector of m nonnegative in-
tegers, where the ith component of the
vector gives the number of neighbors of
x that have color i. The coarsest equi-
table refinement is obtained by repeating
the following iteration until termination.
Given (G, π) as input, we consider the
cells W1, W2, . . . , Wm in order. If it holds for all the cells that the vertices in the cell
have identical color-degree vectors, then (G, π) is equitable and we are done. Other-
wise, let Wi be the first cell that contains vertices with differing color-degree vectors.
We partition Wi to maximal cells of vertices with identical color-degree vectors, and
order the cells according to lexicographic ordering of the color-degree vectors. We then
replace Wi in π with the new cells, and iterate the procedure.

As an example, consider the graph G shown in Fig. 1 (solid lines only). If we apply
the coarsest equitable refinement function to (G, {1, ..., 12}), we obtain the equitable
coloring ({1, 2, 3, 4}, {11, 12}, {9, 10}, {5, 6, 7, 8}) shown in the figure (dashed lines).

2.2 Individualize and Refine Depth-First Search

We now review basics of the “individualize and refine” approach for automorphism
group finding and canonical labeling; for further details, see e.g. [4,5,3].

First, we need an additional concept of a cell selector function; it is a function S
that, given a graph G ∈ G(V) and a non-discrete π ∈ Π(V), returns a non-singleton
cell in π in an isomorphism-respecting way; that is, for all γ ∈ Sym(V) it holds that
S(G, π)γ = S(Gγ , πγ). Two examples of cell selector functions are (a) the first cell
selector: relative to the ordering of the cells, take the first non-singleton cell of π; and
(b) the maximum nonuniformly joined cell selector: take the first non-singleton cell of
π that is nonuniformly joined in (G, π) to the maximum number of cells.

In what follows we assume a fixed refinement function R and a fixed cell selector
function S. The search tree of a graph G ∈ G(V) is the tree T (G) defined inductively
as follows.

1. The root node of the tree is the coloring R(G, (V)).
2. If ρ is a node in the tree and ρ is discrete, then ρ is a leaf node.
3. If ρ = (W1, W2, . . . , Wm) is a node in the tree and ρ is not discrete, then it has at

least two children defined as follows. Assume S(G, ρ) = Wj = {v1, v2, . . . , vk};
note that k ≥ 2 by definition. Now ρ has exactly k children, the ith child being the

Conflict Propagation and Component Recursion for Canonical Labeling 155

node ρi = R(G, ρ↓{vi}). The fact that ρi is the child of ρ obtained by individualiz-
ing vi and refining is denoted with ρ[vi〉ρi.

As an example, a part of the search tree for the graph in Fig. 1 is shown in Fig. 2 (for
each node, please ignore the ω component for now): individualizing the vertex 1 in the
root node π0 = ({1, 2, 3, 4}, {11, 12}, {9, 10}, {5, 6, 7, 8}) and refining gives the child
node π1 = ({1}, {2, 4}, {3}, {11, 12}, {9, 10}, {7, 8}, {5, 6}).

The fundamental property of search trees is that isomorphic graphs have isomor-
phic search trees. In particular, for all γ ∈ Sym(V) it holds that if π1[x〉π2 in T (G),
then πγ

1 [xγ〉πγ
2 in T (Gγ). As a consequence, for each γ ∈ Sym(V), (a) if p =

ρ0[x1〉ρ1 . . . [xk〉ρk is a path in T (G), then pγ = ργ
0 [xγ

1〉ργ
1 . . . [xγ

k〉ργ
k is a path in

T (Gγ), (b) if ρ is a node in T (G), then ργ is a node in T (Gγ). We say that a node π in
T (G) is isomorphic to the node ρ in T (H) if (G, π) ∼= (H, ρ).

To find automorphisms and canonical labelings, the nodes in a tree are labeled with
invariant values. A function I with domain G(V) × Π(V) × Π(V) is an invariant if
for all γ ∈ Sym(V), G ∈ G(V), and π1, π2 ∈ Π(V) with π1 � π2 it holds that
I(G, π1, π2) = I(Gγ , πγ

1 , πγ
2). For a path p = ρ0[x1〉ρ1 . . . [xk〉ρk starting at the root

of T (G), let I(G, ρk) = I(G, p) = (I(G, (V), ρ0), I(G, ρ0, ρ1), . . . , I(G, ρk−1, ρk)).
An invariant I is a leaf certificate if for all graphs G, H ∈ G(V) and all leaf nodes π ∈
T (G) and ρ ∈ T (H) it holds that I(G, π) = I(H, ρ) if and only if (G, π) ∼= (H, ρ). As
an example of a leaf certificate, recall the following from [3]. Let S ⊆ V be the set of
vertices that occur in singleton cells in a coloring π2 � π1 but not in π1 and let λ � π2

be any discrete coloring. Now C(G, π1, π2) =
{{uλ̄, vλ̄} : u ∈ S, {u, v} ∈ E

}
is a leaf

certificate whenever π1 and π2 are equitable (which is the case in our search trees as the
refinement function always returns an equitable partition). As an example, for the search
tree in Fig. 2, C(G, π0, π1) = C(G, π0, π2) = {{1, 11}, {1, 12}, {4, 9}, {4, 10}}; for
intuition, observe that C(G, π0, π1) includes a subset of the edges in Gλ̄ for any leaf
node λ that is descendant of π1. The leaf certificate in bliss is a combination of a leaf
certificate of this type and an invariant value derived when evaluating the refinement
function.

The search tree in nauty and bliss is traversed using two interleaved depth-first
searches. (a) The “automorphism search” looks for leaf nodes ρ that have the same

(π1,1,2, ω1,1,2) =
([1|2|4|3|12|11|9|10|8|7|5|6],
[2 4 5 6 7 8|1 3|9 10 11 12])

(π1,1,1, ω1,1,1) =
([1|2|4|3|11|12|10|9|8|7|5|6],
[2 4 5 6 7 8|1 3|9 10 11 12])

11 12

(π1,1, ω1,1) =
([1|2|4|3|11 12|9 10|8|7|5|6],
[2 4 5 6 7 8|1 3|9 10 11 12])

(π1, ω1) =
([1|2 4|3|11 12|9 10|7 8|5 6],
[1 2 3 4 5 6 7 8|9 10 11 12])

(π0, ω0) =
([1 2 3 4|11 12|9 10|5 6 7 8],
[1 2 3 4 5 6 7 8 9 10 11 12])

... ...

(π1,2, ω1,2) =
([1|4|2|3|11 12|9 10|7|8|6|5],
[2 4 5 6 7 8|1 3|9 10 11 12])

42

(π2,1, ω2,1) =
([2|1|3|4|11 12|9 10|8|5|7|6],
[1 2 3 4 5 6 7 8|9 10 11 12])

11 12 11 12

... ...

2
......(π2, ω2) =

([2|1 3|4|11 12|9 10|5 8|6 7],
[1 2 3 4 5 6 7 8|9 10 11 12])

1

...
3

3
41

Fig. 2. A part of the search tree for the graph in Fig. 1 under the coarsest equitable refinement
function and a cell selector function

156 T. Junttila and P. Kaski

certificate value as the leaf node π in the first full path (that is, a path from the root to
a leaf) traversed by the search. Whenever such a leaf node ρ is found, we have discov-
ered the automorphism π̄ρ̄−1. Indeed, I(G, π) = I(G, ρ) implies (G, π) ∼= (G, ρ) and
thus Gπ̄ρ̄−1

= G. For example, in the search tree in Fig. 2 we have C(G, π1,1,2) =
C(G, π1,1,1) and thus the automorphism (9, 10)(11, 12) is discovered at π1,1,2. (b)
The “canonical labeling search” looks for a leaf node ρ that has the lexicographi-
cally largest certificate value I(G, ρ); the canonical labeling is then the permutation
ρ̄ (if γ ∈ Sym(V), then T (Gγ) has the node (Gγ , ργ) with I(Gγ , ργ) = I(G, ρ) and
Gγργ = Gγγ−1ρ̄ = Gρ̄). Both searches are pruned by the automorphisms discovered
during the search and various other techniques [3,4].

3 Pruning with Recorded First-Path Failures

We now present our first new pruning technique that aims at reducing the search space
traversed by the “automorphism search”. The idea is to record some information about
the children of each first-path node ν that are not isomorphic to the first-path child of
ν; that is, those children that did not result in the discovery of an automorphism. This
information can in some cases be used to infer that a node is not isomorphic to the
corresponding first-path node and thus can be skipped together with its subtree.

Let us fix a graph G ∈ G(V) and consider the search tree T (G). Let I be an in-
variant and assume that p = ν0[x1〉ν1 . . . [xl〉νl is the first full path in T (G) traversed
by the depth-first search. For each node νi on p, define the failing set by fail (νi) =
{I(G, ρ) : νi[x〉ρ and (G, ρ) �∼= (G, νi+1)}. In other words, fail (νi) consists of the in-
variant values of the children of νi that are not isomorphic to the first-path child νi+1 of
νi. We compute the sets incrementally during the depth-first search so that if the search
has backtracked above the first-path node νi, then fail(νi) has been fully computed.
Note that it is possible to have I(G, νi+1) ∈ fail(νi) as there can be another child ρ of
νi such that (G, ρ) �∼= (G, νi+1) but I(G, ρ) = I(G, νi+1).

Consider the situation when the search is traversing a path q = ρ0[y1〉ρ1 . . . [yk〉ρk

with (a) j + 2 ≤ k ≤ l, (b) νi = ρi and xi = yi for all i ≤ j, (c) I(G, ρi) = I(G, νi)
for all j + 1 ≤ i ≤ k − 1, and (d) I(G, ρk) �= I(G, νk). It thus follows from (d) that q
cannot be, or be extended into, a full path isomorphic to p.

Now, if it also holds that I(G, ρk) /∈ fail (νk−1), then we can infer that (G, ρk−1) is
not isomorphic to (G, νk−1) as, by the definition of fail , (G, νk−1) does not have any
(failing) child with an I-value equal to I(G, ρk). Therefore, we can skip the other chil-
dren of ρk−1 and backtrack to ρk−2. If ρk−2 is on the first path, then we add I(G, ρk−1)
to fail (ρk−2); note that I(G, ρk−1) = I(G, νk−1) in this case. If ρk−2 is not on the first
path and I(G, ρk−1) = I(G, νk−1) /∈ fail (νk−2), we can again infer that (G, ρk−2) is
not isomorphic to (G, νk−2) and can thus backtrack to ρk−3. This procedure is repeated
until we either (i) backtrack to a node ρi with i > j and I(G, ρi+1) ∈ fail(νi) or (ii)
backtrack to the node νj , in which case we add I(G, ρj+1) to fail (νj).

For example, consider the search tree in Fig. 3, where we use the symbols a, b, . . . , h
following the colon to denote invariant values at the nodes. Suppose that (G, π1,1,1,1) ∼=
(G, π1,1,1,2) holds. Then fail(π1,1,1) = ∅. Because I(G, π1,1,2)=c �=b= I(G, π1,1,1)

Conflict Propagation and Component Recursion for Canonical Labeling 157

... ...
...

...

π0 : g

π1 : f

π1,1,1 : b π1,1,2 : c π1,2,1 : b

π1,2 : d

π1,2,1,1 : eπ1,1,1,1 : a π1,1,1,2 : a

π1,1 : d

π2,1,1 : h

π2,1 : d

π2 : f

Fig. 3. An example for pruning with recorded first-path failures

it follows that (G, π1,1,2) �∼= (G, π1,1,1) and thus fail (G, π1,1) = {c}. Suppose we are
visiting the node π1,2,1,1 and observe that I(G, π1,2,1,1) = e /∈ fail (π1,1,1). It follows
that π1,2,1 is not isomorphic to π1,1,1. Furthermore, from I(G, π1,2,1) = b /∈ fail (π1,1)
it follows that π1,2 is not isomorphic to π1,1. We can thus backtrack directly to π1 and
add d to fail (π1). When we are visiting π2,1,1, we can backtrack past π2,1 as h /∈
fail (π1,1) but not past π2 as d ∈ fail (π1). Indeed, it may be the case that (G, π2,1) ∼=
(G, π1,2) and thus we have to check whether there is a child of π2 isomorphic to π1,1

leading to a leaf node isomorphic to π1,1,1,1.
In the current implementation of bliss, the invariant I is a hash value of the leaf

certificate. Thus, as fail (G, νi) for each first-path node νi has at most n elements, this
pruning technique requires a quadratic amount of memory in n in the worst-case. How-
ever, in practise we have not found a family of benchmark graphs where the memory
consumption would be significant.

4 Pruning with Nonuniform Component Recursion

Let (G, π) be a colored graph with π = (W1, W2, . . . , Wm). For 1 ≤ i �= j ≤ m
we say that Wi is uniformly joined to Wj if either (i) every vertex in Wi is adjacent to
all the vertices in Wj , or (ii) no vertex in Wi is adjacent to any vertex in Wj . Observe
that this is a symmetric relation. Furthermore, observe that any two singleton cells are
uniformly joined. As an example, consider the colored graph in Fig. 1. The color class
W1 is uniformly joined to all the other color classes except W4. The color class W3 is
uniformly joined to all the other color classes except W2.

Define an undirected graph with vertex set W1, W2, . . . , Wm and edges joining
nonuniformly joined cells. This graph is called the nonuniformity graph of (G, π), and
its connected components are called nonuniform components. In what follows we will
identify a nonuniform component in the nonuniformity graph with the corresponding set
of vertices in (G, π). That is, we say that C ⊆ V is a nonuniform component of (G, π)
if C = ∪j∈JWj where {Wj : j ∈ J} is the set of vertices of a connected component
in the nonuniformity graph of (G, π). Observe that if C is a nonuniform component of
(G, π), then Cγ is a nonuniform component in (Gγ , πγ) for each γ ∈ Sym(V).

Consider again the colored graph in Fig. 1. The associated nonuniformity graph con-
sists of the vertices {W1, W2, W3, W4} and the edges {{W1, W4}, {W2, W3}}. The
nonuniform components of the colored graph are thus W1 ∪ W4 and W2 ∪ W3.

158 T. Junttila and P. Kaski

The uniform join relation is hereditary, that is, any cells obtained by splitting uni-
formly joined cells remain uniformly joined. As a consequence, nonuniform compo-
nents are monotone. Formally:

Lemma 1. Let (G, π) be a colored graph and let σ � π. If W and Z are uniformly
joined cells in (G, π), then for all cells X ⊆ W and Y ⊆ Z in σ it holds that X and Y
are uniformly joined in (G, σ). Furthermore, every nonuniform component of (G, σ) is
a subset of a nonuniform component of (G, π).

A central property of nonuniform components is that the automorphism group of a
colored graph is the direct product of the automorphism groups of the colored sub-
graphs induced by the nonuniform components.

Lemma 2. Let C be a nonuniform component of a colored graph (G, π). If α is an
automorphism of (G, π), then so is β defined by (i) β(v) = α(v) when v ∈ C, and (ii)
β(v) = v when v ∈ V \ C.

We now show how to exploit the nonuniform components to prune the search space.
The idea is to traverse the components one by one and recursively; this allows us to use
the component boundaries for earlier detection of automorphisms and improvements in
the canonical labeling.

First, we have to redefine cell selector functions to be component sensitive. In what
follows, a cell selector function is a function S that, given a graph G ∈ G(V), an ordered
partition π of V , and a union U of some non-trivial nonuniform components of (G, π),
returns a non-singleton cell in π that is a subset of U in a way that S(G, π, U)γ =
S(Gγ , πγ , Uγ) for each γ ∈ Sym(V). A cell selector function S factors over non-
uniform components if in addition it holds that S(G, π, U) = S(G, σ, U) for all σ � π
such that σU = πU . That is, the components outside of U do not influence the cell
selection. Two examples of cell selector functions are (a) the first cell selector: relative
to the ordering of the cells, we take the first non-singleton cell of π in U ; and (b) the
maximum nonuniformly joined cell selector: we take the first non-singleton cell of π in
U that is nonuniformly joined in (G, π) to the maximum number of cells. Both of these
selectors factor over nonuniform components.

We now redefine search trees so that the nodes carry additional information on the
components. A node in the tree will now be a pair (π, ω), where π ∈ Π(V) is a coloring
as earlier and ω ∈ Π(V) is a component stack; it is required that each nonuniform
component of (G, π) is a subset of a cell in ω. The search tree T (G) of G is now
redefined inductively as follows:

1. The root node of the tree is the pair (R(G, (V)), (V)).
2. If (π, ω) is a node in the tree and π is discrete, then (π, ω) is a leaf node.
3. If N = (π, ω) is a node in the tree and π is not discrete, then N has at least

two children defined as follows. Let Vj be the first cell in ω such that the induced
coloring πVj is not discrete. Assume S(G, π, Vj) = W = {v1, v2, . . . , vk} and
let C ⊆ Vj be the nonuniform component of (G, π) that contains W . We say
that C is opened at (π, ω). Now N has exactly k children, the ith child being the
node Ni = (R(G, π↓{vi}), ω↓C). The fact that Ni is the child of N obtained by
individualizing vi is denoted with N [vi〉Ni.

Conflict Propagation and Component Recursion for Canonical Labeling 159

The fact that the tree is well-defined, that is, the requirements on component stacks are
fulfilled, follows quite directly by recalling the monotonicity property of nonuniform
components (Lemma 1). Symmetry properties similar to those on the basic search trees
hold because (π1, ω1)[x〉(π2, ω2) in T (G) if and only if (πγ

1 , ωγ
1)[xγ〉(π2

γ , ω2
γ) in

T (Gγ) for each γ ∈ Sym(V).
As an example, consider the search tree shown in Fig. 2 for the graph in Fig. 1 but

now including the ω partitions. The vertex 1 belongs to the nonuniform component
C0 = {1, 2, . . . , 8} of (G, π0) and thus ω1 includes it before the other component
{9, . . . , 12}. Now the vertex 2 belongs to the component C1 = {2, 4, 5, 6, 7, 8} ⊆ C0

of (G, π1) and thus (π1, ω1)[2〉(π1,1, ω1,1) with ω1,1 further refining the component C1

into {2, 4, 5, 6, 7, 8}. In (π1,1, ω1,1) the component C0 is discrete and the search then
focuses on the other component {9, . . . , 12} of (G, π0).

We say that a refinement function R is closed if R(G, π) = R(G, R(G, π)) holds
for all colored graphs (G, π). Note that an arbitrary refinement function can be trans-
formed into a closed function by iterating the function at most n− 1 times until a fixed
point is reached. A colored graph (G, π) is R-stable if R(G, π) = π. Observe that if
R is closed, then (G, R(G, π)) is always R-stable. A refinement function R factors
over uniform components if for all R-stable colored graphs (G, π), for all nonuni-
form components C of (G, π), and for all σ, τ � π it holds that σC = τC im-
plies R(G, σ)C = R(G, τ)C . Observe that if R factors over uniform components,
(G, π) is R-stable, C is a nonuniform component in (G, π), and σ � π with σC =
πC , then R(G, σ)C = R(G, π)C = πC . That is, if we split some cells of an
R-stable coloring and then refine the obtained partition, then only the nonuniform com-
ponents with splits get refined and the refinement does not depend on the other compo-
nents. The coarsest equitable refinement function is closed and factors over nonuniform
components.

In what follows we assume a fixed cell selector function S and a fixed, closed refine-
ment function R, both of which factor over nonuniform components.

Let (π, ω)[x1〉(π1, ω1) . . . [xk〉(πk, ωk) be a full path in T (G) and let C be the com-
ponent opened at (G, π). We say that C is closed at the first node (πi, ωi) in which πC

i

is discrete. As an example, the component {1, 2, . . . , 8} opened at π0 and the compo-
nent {2, 4, 5, 6, 7, 8} opened at π1 are both closed at π1,2 in the search tree in Fig. 2.
Furthermore, starting from any non-leaf node in the tree, the nonuniform component
opened at the node is closed before any other components are refined at all:

Lemma 3 (Localization). Let (π, ω)[x1〉(π1, ω1) . . . [xk〉(πk, ωk) be a path in T (G)
and let C be the nonuniform component opened at (π, ω). Then, for all 1 ≤ i ≤ k it
holds that either (i) πC

i is discrete (in which case πC
j is discrete and xj /∈ C for all

i < j ≤ k), or (ii) xi ∈ C, π
V \C
i = πV \C , and ω

V \C
i = ω

V \C
1 .

Furthermore, paths operating on different components are switchable as follows:

Lemma 4 (Switching). Let p = (π, ω)[xp,1〉(πp,1, ωp,1) . . . [xp,k〉(πp,k, ωp,k) and q =
(π, ω)[xq,1〉(πq,1, ωq,1) . . . [xq,m〉(πq,m, ωq,m) be two paths in T (G) such that the non-
uniform component C opened at (π, ω) is closed at both (πp,k, ωp,k) and (πq,m, ωq,m).
Then p[y1〉(πr,1, ωr,1) . . . [yh〉(πr,h, ωr,h) is a path in T (G) if and only if q[y1〉(πs,1,ωs,1)

160 T. Junttila and P. Kaski

. . . [yh〉(πs,h, ωs,h) is a path in T (G) with π
V \C
r,i = π

V \C
s,i and ω

V \C
r,i = ω

V \C
s,i for all

1 ≤ i ≤ h.

For compactness in what follows we will omit the recursion stack components from
the notation. In what follows let p = π0[x1〉 . . . [xi〉πi[xi+1〉πi+1 . . . [xk〉πk and q =
π0[x1〉 . . . [xi〉πi[yi+1〉ρi+1 . . . [ym〉ρm be rooted paths in T (G) such that the nonuni-
form component C of (G, πi) opened at πi is closed both at πk and ρm.

An invariant I factors over nonuniform components if, informally, its value depends
only on the refined components. Formally, we require that for all R-stable colored
graphs (G, π), all nonuniform components C of (G, π), all ρ � π with ρC = πC ,
and all R-stable σ � π with σV \C = πV \C , it must hold that I(G, π, ρ) = I(G, σ, τ)
for the coloring τ � π with τC = σC and τV \C = ρV \C . The leaf certificate C de-
fined in Sect. 2.2 factors over nonuniform components. If I is a also a leaf certificate,
from Lemmas 3 and 4 it follows that I(G, p) = I(G, q) if and only if (G, πk) ∼=
(G, ρm). (To establish the “only if” direction, consider any extension of p to a full
path, and apply Lemma 4 to obtain a full path extending q. Suppose κ and λ are
the leaf nodes at the ends of these paths. Then α = κ̄λ̄−1 ∈ Aut(G, πi) satisfies
πα

k = ρm. Below we assume that I is a leaf certificate that factors over nonuniform
components.

Early automorphism detection. We can apply the previous observation as follows. (a)
If p is a prefix of the first path and q is the current path traversed in the “automorphism
search” with I(G, p) = I(G, q), then we have found the automorphism α = κ̄λ̄−1. We
can now report α, skip the sub-tree rooted at ρm, backtrack the “automorphism search”
to πi, and consider the next sibling of the child ρi+1. (b) Similarly, if p is a prefix of the
current best path and q is the current path traversed in the “canonical labeling search”
with I(G, p) = I(G, q), we can skip the subtree rooted at ρm, backtrack the search to
πi, and consider the next sibling of ρi+1.

For example, in the search tree in Fig. 2 we have that (G, π1,1) ∼= (G, π1,2). There-
fore, the “automorphism search” can skip the subtree rooted at π1,2 and report the found
the automorphism (2, 4)(5, 6)(7, 8) of G.

Early best path improvement detection. When the applied leaf certificate function I
factors over nonuniform components, we can use Lemma 4 to get further pruning. If p
is a prefix of the current best path p[z1〉κ1 . . . [zl〉κl, q is the current path traversed in
the “canonical labeling search”, and I(G, q) > I(G, p), then, by applying Lemma 4,

r = q[z1〉ν1 . . . [zl〉νl with ν
V \C
i = κ

V \C
i for all 1 ≤ i ≤ l and I(G, νl) > I(G, κl)

is the best path in T (G) visiting the node ρm and that I(G, νi−1, νi) = I(G, κi−1, κi)
(define ν0 = κ0 = πk) for all 1 ≤ i ≤ l. Therefore, the “canonical labeling search”
does not have to traverse the sub-tree rooted at ρm but can set r as the new best
path and νl as the new candidate for the canonical labeling, backtrack one level, and
consider the next sibling of ρm. As an example, if the first path in the search tree
in Fig. 2 is the best path found so far, the “canonical labeling search” is traversing
the node π2,1, and C(G, π0[1〉π1[2〉π1,1) < C(G, π0[2〉π2[1〉π2,1), then the search can
skip the sub-tree rooted at π2,1 and set the canonical labeling candidate to ν̄, where
ν = ({2}, {1}, {3}, {4}, {11}, {12}, {10}, {9}, {8}, {5}, {7}, {6}), and the best path
certificate to (C(G, [V], π0), C(G, π0, π2), C(G, π2, π2,1), C(G, π1,1, π1,1,1)).

Conflict Propagation and Component Recursion for Canonical Labeling 161

5 Experimental Evaluation of the Pruning Techniques

As the benchmark set of graphs we use the collection of graphs downloadable at the
bliss web site 〈http://www.tcs.hut.fi/Software/bliss〉. The experimen-
tal version 0.65 of bliss used here, as well as some more detailed result graphs, are avail-
able at 〈http://users.ics.tkk.fi/tjunttil/experiments/TAPAS2011〉. To
see that our base line (bliss version 0.65 without the new pruning techniques but with
the ones in [3]) is comparable to state-of-the-art, consult Fig. 4 showing a compari-
son to nauty version 2.4 〈http://cs.anu.edu.au/˜bdm/nauty/〉 on the same
benchmark set of graphs. In all experiments, we permute and run each benchmark twice
and use time limit of ten minutes; the timed-out runs are plotted on the lines at 700 sec-
onds (time plots) and 108 nodes (search space plots). Due to space limits and to the fact
that our purpose is to evaluate the proposed pruning techniques, we omit the comparison
to a similar tool saucy [7] (no canonical labeling, only automorphism group computa-
tion) and to traces [8] (which uses a mixed depth-first/breadth-first search instead of
depth-first and also considers a computationally more intensive refinement function).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65

nauty 2.4

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65

nauty 2.4

search space

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

nauty 2.4 canon

time

(a) automorphism group
computation only

(b) automorphism group
computation only

(c) canonical labeling and
automorphism group

Fig. 4. Base comparison to nauty version 2.4 (using sparse representation of graphs)

Fig. 5 shows the results of activating the proposed pruning techniques one-by-one.
Here we consider only automorphism group computation, i.e. the “canonical labeling
search” is not run. We see that the failure recording technique provides up to one order
of magnitude run-time and search space size improvement on some families (including
Hadamard matrix and Steiner triple system graphs). The component recursion technique
only produces pruning on some graph families but when it does, the reduction in search
space and run time is substantial. Fig. 6 shows the results when canonical labeling
computation is enabled as well. As failure recording can only deduce non-isomorphism,
not that a subtree contains only paths that provide worse canonical labelings, it does
not help in pruning the “canonical labeling search”. The effect of of the component
recursion is as before; when it helps, the reduction is substantial.

To sum up, the proposed search space pruning techniques can provide substantial
reduction in both search spaces and in run times. And, equally importantly, the proposed
techniques do not significantly increase run time when they cannot produce any search
space pruning.

162 T. Junttila and P. Kaski

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 +

fr

bliss 0.65

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 +

cr

bliss 0.65

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 +

fr
 +

cr

bliss 0.65

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65
 +

fr

bliss 0.65

search space

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65
 +

cr

bliss 0.65

search space

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65
 +

fr
 +

cr

bliss 0.65

search space

(a) with failure recording (b) with component recursion (c) with both.

Fig. 5. Effect of the proposed techniques on automorphism group computation

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

 +
fr

bliss 0.65 canon

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

 +
cr

bliss 0.65 canon

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

 +
fr

 +
cr

bliss 0.65 canon

time

(a) with failure recording (b) with component recursion (c) with both.

Fig. 6. Effect of the proposed techniques on canonical labeling

References

1. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proc. STOC 1983, pp. 171–183.
ACM, New York (1983)

2. Babai, L., Codenotti, P.: Isomorhism of hypergraphs of low rank in moderately exponential
time. In: Proc. FOCS 2008, pp. 667–676. IEEE, Los Alamitos (2008)

3. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse
graphs. In: Proc. ALENEX 2007. SIAM, Philadelphia (2007)

4. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
5. McKay, B.D.: Nauty user’s guide (version 2.4). Technical report, Department of Computer

Science, Australian National University (2009)
6. Goldberg, M.K.: A nonfactorial algorithm for testing isomorphism of two graphs. Discrete

Applied Mathematics 6, 229–236 (1983)
7. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of sym-

metries. In: Proc. DAC 2008, pp. 149–154. ACM, New York (2008)
8. Piperno, A.: Search space contraction in canonical labeling of graphs (preliminary version).

CoRR report abs/0804.4881, arXiv.org (2008), http://arxiv.org/abs/0804.4881

3-hitting set on Bounded Degree Hypergraphs:

Upper and Lower Bounds on the Kernel Size

Iyad A. Kanj1,� and Fenghui Zhang2

1 School of Computing, DePaul University, 243 S. Wabash Avenue,
Chicago, IL 60604, USA
ikanj@cs.depaul.edu

2 Google Kirkland, 747 6th Street South, Kirkland, WA 98033, USA
fhzhang@gmail.com

Abstract. We study upper and lower bounds on the kernel size for the
3-hitting set problem on hypergraphs of degree at most 3, denoted 3-
3-hs. We first show that, unless P=NP, 3-3-hs on 3-uniform hypergraphs
does not have a kernel of size at most 35k/19 > 1.8421k. We then give
a 4k − k0.2692 kernel for 3-3-hs that is computable in time O(k1.2692).1

This result improves the upper bound of 4k on the kernel size for 3-
3-hs, given by Wahlström. We also show that the upper bound results
on the kernel size for 3-3-hs can be generalized to the 3-hs problem on
hypergraphs of bounded degree Δ, for any integer-constant Δ > 3.

Keywords: hitting set, kernel, upper bounds, lower bounds, parame-
terized complexity.

1 Introduction

A hitting set in a hypergraph H = (V, E) is a set of vertices S such that every hy-
peredge in H contains at least one vertex from S. The size of a hitting set S is |S|.
The hitting set problem is: Given a hypergraph H = (V, E) and a nonnegative
integer k, decide if there exists a hitting set for H of size at most k. Therefore,
the hitting set problem is a generalization of the vertex cover problem
(given a graph G and a nonnegative integer k, decide if there exists a subset
of vertices C in G such that every edge in G is incident on at least one vertex
of C) to hypergraphs. The vertex cover problem, one of the first few prob-
lems proven to be NP-complete [12], has very important applications in different
areas of science and engineering, where it usually models conflict-resolution prob-
lems, and has received considerable interest from researchers in several areas of
theoretical computer science (approximation, exact/parameterized algorithms,
kernelization, etc).

� The work of this author was partially supported by a DePaul University Competitive
Research Grant.

1 We do not assume that the hypergraph is 3-uniform for the kernel upper bound
results.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 163–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

164 I.A. Kanj and F. Zhang

The hitting set problem seems to be much more difficult than the ver-
tex cover problem, at least from the approximation theory and parameterized
complexity points of view. Whereas the vertex cover problem can be ap-
proximated (in polynomial time) to within ratio 2, the hitting set problem is
not approximable to within ratio c lg n for some constant c > 0, where n is the
number of vertices in the hypergraph [2]. From the parameterized complexity
perspective, whereas the vertex cover problem is fixed-parameter tractable,
the hitting set problem is W[2]-complete [10], and hence is unlikely to be
solvable in time f(k)nO(1), for any recursive function f .

The parameterized intractability of the hitting set problem led researchers
in parameterized complexity to consider the special case in which the size of
the hyperedge (the number of vertices in the hyperedge) is at most d, for some
integer constant d; this problem is referred to as the d-hitting set problem,
and can be easily seen to be fixed-parameter tractable. In particular, the 3-
hitting set problem, denoted 3-hs, received a lot of attention. Niedermeier
and Rosmanith [13] gave an algorithm for 3-hs running in time O∗(2.27k).2

Subsequently, Fernau [11] improved Niedermeier and Rosmanith’s result by giv-
ing an algorithm for 3-hs that runs in time O∗(2.179k). This result was further
improved by Wahlström [15], who gave an algorithm for 3-hs that runs in time
O∗(2.07k) [15]. In terms of kernelization, the 3-hs problem was shown to admit
a kernel of size O(k3) [13]. This result was recently improved by Abu-Khzam,
who gave a kernel of size O(k2) for 3-hs [1]; this upper bound currently stands
as the best upper bound on the kernel size for 3-hs. Therefore, in contrast to the
vertex cover problem, which is equivalent to the 2-hs problem and hence is a
special case of 3-hs, the 3-hs problem seems to be more difficult—modulo param-
eterized complexity—than vertex cover: Whereas vertex cover is solvable
in time O∗(1.274k) [9] and admits a kernel of size 2k [3,7], the currently-best
algorithm for 3-hs runs in time O∗(2.07k) [15], and the currently-best upper
bound on the kernel size for 3-hs is O(k2) [1].

The 3-hs problem on bounded-degree hypergraphs has been considered as
well, especially from the kernelization point of view.3 Wahlström [15] showed
that the 3-hs problem on hypergraphs of degree at most Δ has a kernel of size
at most (Δ + 1)k. He also claimed a lower bound of (Δ + 5)k/(Δ + 1) on the
size of the kernel for the problem [15]. However, the proof that he provided is
flawed. Recently, under the assumption that P �= NP, Cai proved a lower bound
of (1 + 1/(

√
2Δ + 1 − 1) − ε)k, for any ε > 0, on the size of the kernel for

the 3-hs problem on 3-uniform hypergraphs of degree at most Δ [4]. Cai also
gave upper and lower bounds on the kernel size for the 3-hs problem on planar
hypergraphs [4].

In this paper we study upper and lower bounds on the kernel size for 3-hs
on hypergraphs of degree at most 3, denoted 3-3-hs. We note that the vertex

2 The asymptotic notation O∗(f(k)) denotes time complexity of the form f(k) · p(),
where p is a polynomial of the input size.

3 Clearly the problem remains NP-complete because vertex cover on graphs of
maximum degree at most 3 is NP-complete [12].

3-hitting set on Bounded Degree Hypergraphs 165

cover problem on graphs of degree at most 3, denoted vc-3, which is a spe-
cial case of 3-3-hs, has received considerable attention from the parameterized
complexity point of view (for example, see [7,8,14]). We start by showing that,
unless P=NP, the 3-3-hs problem on 3-uniform hypergraphs does not have a
kernel of size at most 35k/19 > 1.8421k; this improves the lower bound result of
(1 + 1/(

√
7 − 1) − ε)k < 1.608k, given by Cai [4].

We then present an algorithm that computes a kernel of size at most 4k −
k0.2692 for 3-3-hs, and that runs in time O(k1.2692). (We note that for these
results we do not assume that the hypergraph is 3-uniform.) This improves the
upper bound of 4k on the kernel size for 3-3-hs, given by Wahlström [15]. We
note that, even though the improvement in the upper bound for the kernel size
is small, the techniques involved rely on deep structural observations. We also
show that these upper bound results can be generalized to the 3-hs problem on
hypergraphs of degree at most Δ, for any integer constant Δ > 3.

2 Preliminaries

We describe some of the notations and terminologies used in the paper. The
reader is referred to Downey and Fellows’ book [10] for more details about pa-
rameterized complexity theory, and to West [16] for more information on graphs
and hypergraphs.

For a graph G, V (G) and E(G) are the sets of vertices and edges of G;
n(G) = |V (G)| and e(G) = |E(G)| are the number of vertices and edges in G.
For a vertex v, we let N(v) be the set of vertices adjacent to v. The degree of a
vertex v, deg(v), is the number of edges incident to v in G. The subgraph G− v
of G is obtained from G by removing v ∈ V (G) and its incident edges.

A hypergraph H = (V, E) consists of a vertex set V = V (H) and an edge set
E = E(H) so that e ⊆ V for every e ∈ E. The degree of a vertex v in H, denoted
deg(v), is defined as the number of edges in E that contain v. Two vertices u
and v are adjacent or neighbors in H if there exists an edge e ∈ H such that
{u, v} ⊆ e. The distance between two vertices u and v in H is the length of a
shortest path between u and v in H, where a path in H is naturally defined
using the adjacency relationship described above. An edge e is called an i-edge
if |e| = i. A hypergraph H is i-uniform if every edge in H is an i-edge. We say
that a vertex u dominates a vertex v if every edge containing v also contains u.
A set of vertices Γ is said to be dominated by a set of vertices Γ ′ if every edge
in H containing a vertex of Γ also contains a vertex of Γ ′. An edge e is said to
dominate another edge e′ in H if e′ is a subset of e (i.e., e′ ⊆ e). For a vertex
v ∈ H, H − v is the hypergraph resulting from removing vertex v from every
edge in H. For an edge e ∈ H, H− e is the hypergraph resulting from removing
edge e from H (note that the vertices contained in e remain in H).

A hitting set in a hypergraph H = (V, E) is a set of vertices S such that every
hyperedge in H contains at least one vertex from S. The size of a hitting set
S is |S|. A hitting set S is minimum if its size is minimum among all hitting
sets of H. The hitting set problem is: Given a hypergraph H = (V, E) and a

166 I.A. Kanj and F. Zhang

nonnegative integer k, decide if there exists a hitting set S of H whose size is
at most k. The 3-hitting set problem, denoted 3-hs, is the set of instances
(H, k) of the hitting set problem in which every edge in H has cardinality at
most 3. For an integer constant Δ ≥ 2, the Δ-3-hs problem refers to the 3-hs
problem on hypergraphs of degree at most Δ.

A parameterized problem is a set of instances of the form (x, k), where x ∈ Σ∗

for a finite alphabet set Σ, and k is a non-negative integer called the parameter.
A parameterized problem Q is fixed parameter tractable, or simply FPT, if there
exists an algorithm that on input (x, k) decides if (x, k) is a yes-instance of
Q in time f(k)nO(1), where f is a recursive function independent of n = |x|.
A parameterized problem Q is kernelizable if there exists a polynomial-time
reduction that maps an instance (x, k) of Q to another instance (x′, k′) of Q
such that: (1) |x′| ≤ g(k) for some recursive function g, (2) k′ ≤ f(k) for some
recursive function f , and (3) (x, k) is a yes-instance of Q if and only if (x′, k′) is
a yes-instance of Q. The instance x′ is called the kernel of x.

3 The Lower Bound

In this section we derive a lower bound on the size of the kernel for the 3-3-hs
problem on 3-uniform hypergraphs.

Using the techniques in [6], Cai proved that unless P=NP, 3-hs on 3-uniform
hypergraphs of degree at most Δ, has no kernel of size at most (1+1/(

√
2Δ + 1−

1) − ε)k, for any ε > 0 [4]. Assuming that P �= NP, Cai’s result implies a lower
bound of (1+1/(

√
7−1)−ε)k < 1.608k on the kernel size of 3-3-hs on 3-uniform

hypergraphs. Using the results in [6], and a more accurate analysis than that
performed in [4], we shall improve on this lower bound next.

An independent set in a hypergraph H is a set of vertices I ⊆ V (H) such that
no edge in H is completely contained in I; that is, for every edge e ∈ E(H):
e ∩ (V \ I) �= ∅. The independent set problem on hypergraphs is: given a
hypergraph H and a nonnegative integer k, decide if there is an independent
set in H of size at least k. It can be readily seen that a set I ⊆ V (H) is an
independent set in H if and only if V (H) \ I is a hitting set of H. Therefore,
the hitting set and the independent set problem on hypergraphs are dual
problems [6], in the same sense that vertex cover and independent set are
dual problems on graphs.

The results of Caro and Tuza [5] imply that, for any 3-uniform hypergraph H
of degree at most 3, the independence number of H (i.e., the size of a maximum
independent set in H), denoted α(H), satisfies the following inequality:

α(H) ≥
∑

v∈V (H)

deg(v)∏

i=1

2i

2i + 1
. (1)

Theorem 1. The independent set problem on 3-uniform hypergraphs of de-
gree at most 3 has a kernel of size 35k/16 that is computable in O(k) time.

3-hitting set on Bounded Degree Hypergraphs 167

Proof. Inequality (1) implies that the independence number of a 3-uniform hy-
pergraph H of degree at most 3 satisfies:

α(H) ≥ (16/35)|V (H)|. (2)

Consider the following kernelization algorithm for independent set on 3-
uniform hypergraphs of degree at most 3: Given an instance (H, k), if |V (H)| ≥
(35/16)k then accept; otherwise, output the original instance as the kernel.

Clearly, the above algorithm can be implemented to run in time linear in k.
The correctness of the algorithm, as well as the upper bound on the kernel size,
follow from Inequality (2).
�

Using the notion of duality introduced in [6], and the fact that the independent
set on hypergraphs and the hitting set are dual problems, Theorem 1 implies
the following result:

Theorem 2. Unless P=NP, the 3-3-hs problem on 3-uniform hypergraphs does
not have a kernel of size at most 35k/19 > 1.8421k.

4 The Kernel

In this section we present a kernelization algorithm for 3-3-hs. Note that we
do not assume that the hypergraph is 3-uniform. As we showed in the previous
section, unless P=NP, no kernel of size at most (35/19)k > 1.842k exists for the
3-3-hs problem. A kernel of size at most 4k for the 3-3-hs problem is implied
from the results in [15]. We shall improve on the 4k upper bound on the kernel
size for 3-3-hs.

The following reduction operations are folklore (see [15], for example), and
can be easily verified by the reader:

Reduction Rule 1: If there is a 1-edge e = {v} then include v in the solution
set S, set H := H− e and H := H− v, and decrement k by 1.

Reduction Rule 2: If edge e is dominated by edge e′ then set H := H− e′.

Reduction Rule 3: If vertex u is dominated by vertex v then set H := H− u.

We assume that we have a subroutine Reduce (H, k) that applies Reduction
Rules 1–3 to the instance (H, k). We say that the instance (H, k) is reduced
if none of Reduction Rules 1–3 applies to (H, k). We shall assume in what
follows that the instance (H, k) is reduced.

Definition 1. An edge e ∈ H is good if it contains exactly one degree-3 and two
degree-2 vertices; otherwise, edge e is bad. A vertex v ∈ H is good if every edge
containing v is good; otherwise, vertex v is bad.

168 I.A. Kanj and F. Zhang

Before we present the technical results of this section, we briefly and intuitively
describe the ideas behind these results.

We will show that if the number of bad vertices is “large”, say larger than a
certain function g(k), then the size of the instance has to be at most 4k−g(k)/6,
in order for a solution (i.e., a hitting set of size at most k) to exist (Lemma 6),
thus improving on the 4k upper bound on the kernel size in this case.4 This
allows us to upper bound the number of bad vertices in the instance. On the
other hand, we show that if the number of degree-2 vertices in the solution is
“large”, say at least g(k), then the size of the instance must be upper bounded
by 4k−g(k) (Lemma 7), again improving on the 4k upper bound in this case. We
then proceed to show that if a degree-2 good vertex whose distance from every
bad vertex is more than some positive integer h, is contained in every solution,
then this vertex forces at least 2�h/2�+2 − 3 degree-2 vertices to be in a solution
(Lemma 9), thus upper bounding the size of the instance by 4k − 2�h/2�+2 + 3
(Lemma 7). Therefore, if the size of the instance is larger than 4k−2�h/2�+2 +3,
then no degree-2 good vertex whose distance is more than h from every bad
vertex can be contained in every solution, and hence, any such vertex can be
discarded from the instance (Lemma 10). After discarding all such vertices, every
good degree-2 vertex (resp. good degree-3 vertex) must be within distance h +1
(resp. h + 2) from some bad vertex. Since the number of bad vertices has been
upper bounded by g(k), this allows us to derive an upper bound on the total
number of vertices (both good and bad), and hence on the size of the instance. By
choosing g(k) and h appropriately, we can derive an upper bound of 4k−k0.2692

on the size of the kernel. We now proceed to the technical details.
The following lemma follows from Definition 1:

Lemma 1. No two degree-3 good vertices are adjacent.

Lemma 2. Let u be a good degree-2 vertex, and let v and w be its degree-3
neighbors. If every minimum hitting set of H contains u, then no minimum
hitting set of H contains v or w.

Proof. If there is a minimum hitting set that contains both u and v (resp. u and
w), then we can replace u by w (resp. v) to obtain a minimum hitting set that
does not contain u, contradicting the hypothesis.
�
Lemma 3. A degree-3 good vertex has exactly 6 degree-2 neighbors.

Proof. Let v be a degree-3 good vertex, and let edges {v, x, y}, {v, u, w}, {v, p, q}
be the three edges containing v.

By Definition 1, vertices x, y, u, w, p, q are all of degree 2. Therefore, it suffices
to show that all these vertices are distinct. Suppose not, then there exists a
vertex among x, y, u, w, p, q that is dominated by v. This contradicts the fact
that the instance (H, k) is reduced.
�
4 It may sound counterintuitive to call such vertices “bad” since they allow us to upper

bound the size of the instance. However, as will be shown later, it turns out that
the existence of such vertices, and more specifically, the proximity of other vertices
to the bad vertices, is what prohibits us from simplifying the instance further.

3-hitting set on Bounded Degree Hypergraphs 169

The following lemma is straightforward.

Lemma 4. Let u be a good degree-3 vertex. If a hitting set S excludes u, then
S must contain at least one degree-2 vertex from every edge containing u, and
hence, at least three distinct degree-2 vertices that are neighbors of u must be
in S.

Lemma 5. Let S be a hitting set of H. Then there exists a hitting set S′ of H of
size at most |S| such that: (a) no two degree-2 good vertices in S′ are neighbors,
and (b) no good degree-2 vertex in S′ is a neighbor of a degree-3 vertex in S′.

Proof. Among all hitting sets of H of size at most |S|, let S′ be one with the
minimum number of good degree-2 vertices. We claim that S ′ satisfies properties
(a) and (b) above.

Suppose that S′ does not satisfy property (a), and let u and v be two good
degree-2 vertices in S′ that are neighbors. Let e = {u, v, x} be the edge containing
u and v, and let e′ = {v, w, y} be the other edge containing v. Since u and v
are good vertices, e and e′ are good edges. From the definition of a good edge,
it follows that x is a degree-3 vertex, and exactly one vertex in {w, y}, say y,
must be of degree 3. By excluding v from S′ and including y (if y is not already
included), we obtain a hitting set of H of size at most |S′| ≤ |S|, in which the
number of degree-2 good vertices is strictly less than that of S′, contradicting
the minimality of S′. This proves part (a).

To prove that S′ satisfies part (b), suppose not, and let v be a good degree-2
vertex in S ′ that is a neighbor of a degree-3 vertex x in S′. Let e = {u, v, x}
and e′ = {v, w, y} be the good edges containing v, and assume, without loss of
generality, that y is of degree 3. Then by replacing v in S′ by y, we obtain a
hitting set of size at most |S′| ≤ |S| that contains fewer degree-2 good vertices
than S′, contradicting the minimality of S′. This proves the lemma.
�
Let g(k) be a function of k to be determined later.

Lemma 6. If the number of bad vertices in H is at least g(k), then either |V | ≤
4k − g(k)/6, or H does not have a hitting set of size at most k.

Proof. Suppose that H has a hitting set S of size at most k. The set of bad edges
in H can be partitioned into the following sets:

1. the set of 2-edges, denoted E2;
2. the set of 3-edges whose vertices are all of degree 2, denoted E2

3 ; and
3. the set of 3-edges that each contains at least two degree-3 vertices, denoted

E3.

We define an occurrence of a vertex v to be an edge e that contains v. Clearly, the
number of occurrences of a vertex is equal to its degree. We call the occurrences
of vertices in S the normal occurrences, and those of vertices not in S the extra
occurrences. We count the total number of extra occurrences next.

Let E′
3 ⊆ E3 be the set of 3-edges that contain at least two vertices in S, and

let E′′
3 = E3 \ E′

3.

170 I.A. Kanj and F. Zhang

Each edge in E2
3 forces at least one degree-2 vertex to be in S, and at most

2 edges in E2
3 can be covered by the same degree-2 vertex in S. On the other

hand, an edge in E′
3 forces two vertices in S to cover the same edge. Since S

has size at most k, and since the degree of H is at most 3, it follows from the
previous statements that the total number of edges that S can cover is at most
3k − |E2

3 |/2 − |E′
3|. Since each of these edges contains at least one vertex from

S, and since each edge in E2 has size 2, the number of extra occurrences is at
most 2(3k − |E2

3 |/2 − |E′
3|) − |E2|.

Since every vertex in H has degree at least 2, every vertex not in S must
contribute at least 2 extra occurrences. Moreover, since each edge in E′′

3 contains
at least one degree-3 vertex that is not in S, at least one vertex in each edge of
E′′

3 contributes 3 extra occurrences. Therefore, the number of vertices not in S,
i.e. |V (H) \ S|, is at most:

|V (H) \ S| ≤ (2(3k − |E2
3 |/2 − |E′

3|) − |E2| − |E′′
3 |)/2

= 3k − |E2
3 |/2 − |E′

3| − |E2|/2 − |E′′
3 |/2

= 3k − (|E2
3 |/2 + |E′

3|/2 + |E′′
3 |/2 + |E2|/2) − |E′

3|/2
≤ 3k − (|E2

3 |/2 + |E3|/2 + |E2|/2). (3)

The number of bad edges is |E2
3 | + |E3| + |E2|. Moreover, since each bad edge

can induce at most 3 bad vertices, the number of bad vertices is at most 3 times
the number of bad edges, and hence |E2

3 |+ |E3|+ |E2| ≥ g(k)/3. Combining the
last inequality with Inequality (3), we derive that |V (H) \ S| ≤ 3k − g(k)/6.

It follows that if H has a hitting set of size at most k then |V (H)| = |V (H) \
S| + |S| ≤ 4k − g(k)/6. This completes the proof.
�
Lemma 7. Suppose that H has a hitting set S of size at most k. Let S2 be the
set of degree-2 vertices in S. If |S2| ≥ g(k), then |V | ≤ 4k − g(k).

Proof. Let S3 be the set of degree-3 vertices in S. The number of edges that S
can cover is at most 2|S2| + 3|S3|. Since S is a hitting set, S covers all edges in
H. Since each edge must contain at least one vertex from S, the total number
of extra occurrences (defined in the proof of Lemma 6) of all vertices is at
most 4|S2|+6|S3|. Each vertex not in S contributes at least 2 extra occurrences.
Therefore, the number of vertices in V \S is at most 2|S2|+3|S3| = 3|S|−|S2| ≤
3k − |S2| ≤ 3k − g(k). It follows that |V | = |V \ S| + |S| ≤ 4k − g(k).
�

Let h be a nonnegative integer, and let v be a degree-2 good vertex whose
distance from every bad vertex is at least h + 1. Suppose that v is contained in
every minimum hitting set of H, and let S be a minimum hitting set of H. By
Lemma 5, we can assume that no two good degree-2 vertices in S are neighbors,
and that no good degree-2 vertex in S is a neighbor of a degree-3 vertex in S.
We define a layered graph Tv (we prove next that Tv is a tree rooted at v), with
respect to the minimum hitting set S. The graph Tv consists of exactly h + 1
layers L0, . . . , Lh, defined as follows. Layer L0 consists of the vertex v. For odd
i ∈ {1, . . . , h}, layer Li consists of the degree-3 (good) vertices that are neighbors

3-hitting set on Bounded Degree Hypergraphs 171

of the vertices in Li−1, and that do not appear in a previous layer Lj for j < i.
For even i ∈ {1, . . . , h}, layer Li consists of the good degree-2 neighbors of the
vertices in layer Li−1 that are in S, and that do not appear in a previous layer
Lj for j < i. There is an edge between two vertices in Tv if and only if they are
neighbors in H. The following lemma describes the structural properties of Tv.

Lemma 8. The following are true:

(i) Vertex v has exactly two good degree-3 neighbors that form layer L1.
(ii) No two degree-2 vertices in Tv are adjacent, and no two degree-3 vertices

in Tv are adjacent.
(iii) For odd i ∈ {0, . . . , h}, every vertex in layer Li is a good degree-3 vertex

that is not in S, and that has exactly one neighbor in layer Li−1. For even
i ∈ {1, . . . , h}, every vertex in layer Li is a good degree-2 vertex that is in
S, and that has exactly one neighbor in layer Li−1.

(iv) For odd i ∈ {0, . . . , h − 1}, every vertex in layer Li has two neighbors in
layer Li+1. For even i ∈ {1, . . . , h−1}, every vertex in layer Li has exactly
one neighbor in layer Li+1. Moreover, two distinct vertices in layer Li have
distinct neighbors in layer Li+1.

(v) Tv is a tree.

By Lemma 8, Tv is a tree rooted at v. Therefore, we can now refer to the parent
of a vertex w ∈ Tv, denoted π(w), and the children of w, in the usual sense.

Lemma 9. Let n2 be the number of degree-2 vertices in Tv. Then n2 =2�h/2�+2−3.

Proof. Note that the degree-2 vertices appear only in even layers of Tv. Layer
L0 contains exactly one degree-2 vertex, namely v. By Lemma 8, every vertex in
an even layer Li, 0 < i < h, has exactly one child in layer Li+1, and every vertex
in an odd layer Li, 0 < i < h, has exactly two children in layer Li+1. Therefore,
we can write the following recurrence to describe the number of vertices in layer
L2i, denoted |L2i|, for i = 0, . . . , �h/2
:

|L2i| =

⎧
⎨

⎩

1 if i = 0,
4 if i = 1,
2|L2i−2| for i = {2, . . . , �h/2
}.

Solving the above recurrence relation, we obtain |L2i| = 2i+1, for i={1,. . ., �h/2
}.
The total number of degree-2 vertices in Tv, n2, is then:

n2 = |L0| +
�h/2�∑

i=1

|L2i| = 1 +
�h/2�∑

i=1

2i+1 = 1 + 4(2�h/2� − 1) = 2�h/2�+2 − 3.

�
Lemma 10. Let h be a nonnegative integer, and let v be a good degree-2 vertex
whose distance from every bad vertex is at least h+1. If |V | > 4k−2�h/2�+2 +3,
then there is minimum hitting set of H that does not contain v.

172 I.A. Kanj and F. Zhang

Proof. Proceed by contradiction. Suppose that every minimum hitting set con-
tains v. Consider a minimum hitting set S of H, and assume, without loss of
generality, that S satisfies the properties in Lemma 5. We construct the tree
Tv as described above. By Lemma 9, the number of degree-2 vertices that are
in Tv, and hence in S, is 2�h/2�+2 − 3. By Lemma 7, |V | ≤ 4k − 2�h/2�+2 + 3,
contradicting the hypothesis in the statement of the theorem.
�
Lemma 11. Let B be the set of bad vertices in H. If every degree-2 good vertex
in H is of distance at most h + 1 from some bad vertex in B, then |V (H)| ≤
4|B|2.562h+1 + |B|.
Consider the following algorithm:

Algorithm. Kernel-3-3-hs (H, k)

if |V (H)| > 9k then reject;
else repeat the following:

0. call Reduce(H, k); if |V (H)| > 4k then reject;
1. if |V (H)| ≤ 4k − g(k) then return the resulting instance;
2. let B be the set of bad vertices in H; if |B| > 6g(k) then reject;
3. grow a Breadth-First Search (BFS) forest F rooted at the vertices in B and
stop at depth h(k);
4. if all the degree-2 vertices in H are also in F then return the resulting in-
stance;
5. let v be a degree-2 vertex in V (H) − V (F); remove v from H;

To optimize the upper bound on the size of the kernel, we choose g(k) = k0.2692

and h(k) = log3.6235 k in the algorithm Kernel-3-3-hs. Let (H′, k′) be the in-
stance returned by the algorithm Kernel-3-3-hs.

Theorem 3. Given an instance (H, k) of 3-3-hs, in time O(k1.2692) the algo-
rithm Kernel-3-3-hs returns an equivalent instance (H′, k′) such that |V (H′)| ≤
4k′ − k′0.2692.

Proof. Observe that since the size of each edge in H is at most 3, and since
every vertex in H has degree at most 3, the total number of edges and vertices
in H must be at most 9k if a solution of size k exists. Otherwise, we can reject
the original instance directly. With this observation in mind, it is not difficult
to see that the subroutine Reduce(H, k) can be implemented to run in O(k)
time using the proper data structures. If after the application of Reduce more
than 4k vertices remain in H, then the instance can be rejected by Lemma 6.
Clearly, steps 1–5 of the algorithm can be implemented to run in O(k) time.
Therefore, each execution of steps 0–5 of the algorithm takes O(k) time. After
the first application of Reduce, at most 4k vertices remain in H or the instance
is rejected. Since in each execution the algorithm either returns a kernel (step
1 or step 4), rejects the instance (step 2), or removes a vertex from H (step

3-hitting set on Bounded Degree Hypergraphs 173

5), and since the algorithm stops once the number of vertices in H is at most
4k − k0.2692, the number of executions of steps 0–5 is at most k0.2692. It follows
that the algorithm runs in O(k1.2692) time.

To prove the correctness of the algorithm, note that since Reduction Rules
1–3 are sound, the subroutine Reduce(H, k) is correct, and step 1 of the algo-
rithm is valid. If in step 2 |B| > 6k0.2692, then since |V | > 4k − k0.2692 (from
step 1), it follows from Lemma 6 that H does not have a hitting set of size at
most k, and the algorithm can reject the instance. Therefore, step 2 is correct.
If the algorithm removes a vertex v in step 5, then since v ∈ V (H) − V (F),
the distance between v and any bad vertex in B is more than log3.6235 k. Since
|V | > 4k − k0.2692, by Lemma 10, there is a solution that excludes v, and hence
v can be safely removed from H. It follows that step 5 is correct, and so is
the algorithm Kernel-3-3-HS. Therefore, the instance (H′, k′) returned by the
algorithm is equivalent to the instance (H, k).

To prove that the algorithm returns an instance of size at most 4k′− k′0.2692,
note that the algorithm returns an equivalent instance only in steps 2 and 4.
Clearly, if the algorithm returns an instance in step 2 then the size of the in-
stance is at most 4k′ − k′0.2692. If the algorithm returns an instance in step 4,
then the number of vertices in H is bounded by 4|B|2.562log3.6235 k′+1 + |B| <
9.076|B|k′0.73075 + |B| < 4k′ − k′0.2692.

Therefore we conclude that the size of the instance is at most 4k′ − k′0.2692.
This completes the proof.
�

5 Generalization to Bounded Degree Δ

The kernelization results in the previous section can be generalized to hyper-
graphs of degree at most Δ, for Δ > 3. We modify the definition of bad and
good edges and vertices as follows. Let (H, k) be an instance of 3-hs, where H
has degree at most Δ. An edge e is good if e is a 3-edge in which exactly two
vertices are of degree 2 and the third vertex is of degree more than 2; otherwise,
e is bad. A vertex v is good if every edge containing v is good; otherwise, v is
bad. With the modified definition of good and bad edges and vertices, and using
a parallel approach to the one used in the previous section, we can show the
following:

Theorem 4. The 3-hs problem on hypergraphs of degree at most Δ > 3 has a
kernel of size 4k−O(k

1
2+4 log(Δ−1)) that is computable in time O(k1+ 1

2+4 log (Δ−1)).

6 Concluding Remarks

In this paper we gave upper and lower bounds on the kernel size for 3-3-hs.
Although our improvement on the upper bound of the kernel size for 3-3-hs is
small, the techniques involved are highly nontrivial. This hints at the level of
difficulty of the problem, and may suggest that a linear improvement on the
kernel size for 3-3-hs may not be easy. We leave this as an open problem.

174 I.A. Kanj and F. Zhang

References

1. Abu-Khzam, F.: Kernelization algorithms for d-hitting set problems. In: Dehne, F.,
Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer,
Heidelberg (2007)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation: Combinatorial optimization problems
and their approximability properties. Springer, Heidelberg (1999)

3. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the Weighted
Vertex Cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)

4. Cai, X.: Linear kernelizations for restricted 3-hitting set problems. Inf. Process.
Lett. 109(13), 730–738 (2009)

5. Caro, Y., Tuza, Z.: Improved lower bounds on k-independence. Journal of Graph
Theory 15, 99–107 (1991)

6. Chen, J., Fernau, H., Kanj, I., Xia, G.: Parametric duality and kernelization: Lower
bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)

7. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improve-
ments. Journal of Algorithms 41, 280–301 (2001)

8. Chen, J., Kanj, I., Xia, G.: Labeled search trees and amortized analysis: improved
upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005)

9. Chen, J., Kanj, I., Xia, G.: Improved parameterized upper bounds for vertex cover.
Theoretical Computer Science 411, 3736–3756 (2010)

10. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
11. Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-

hitting set. In: Electronic Colloquium on Computational Complexity (ECCC),
vol. (073) (2004)

12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York (1979)

13. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-
hitting set. J. Discrete Algorithms 1(1), 89–102 (2003)

14. Razgon, I.: Faster computation of maximum independent set and parameterized
vertex cover for graphs with maximum degree 3. J. Discrete Algorithms 7(2), 191–
212 (2009)

15. Wahlström, M.: Algorithms, measures, and upper bounds for satisfiability and
related problems, Ph.D. Thesis (Linköping Studies in Science and Technology, PhD
Dissertation no 1079) (2007),
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:23420

16. West, D.: Introduction to graph theory. Prentice Hall Inc., Upper Saddle River
(1996)

Improved Taxation Rate for Bin Packing Games

Walter Kern and Xian Qiu

Department of Applied Mathematics, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

kern@math.utwente.nl, x.qiu@utwente.nl

Abstract. A cooperative bin packing game is a N-person game, where
the player set N consists of k bins of capacity 1 each and n items of
sizes a1, · · · , an. The value of a coalition of players is defined to be the
maximum total size of items in the coalition that can be packed into
the bins of the coalition. We present an alternative proof for the non-
emptiness of the 1/3-core for all bin packing games and show how to
improve this bound ε = 1/3 (slightly). We conjecture that the true best
possible value is ε = 1/7.

1 Introduction

A cooperative game is defined by a tuple 〈N, v〉, where N is a set of players and
v : 2N → R is a value function satisfying v(∅) = 0. A subset S ⊆ N is called a
coalition and N itself is the grand coalition. The usual goal in cooperative games
is to ‘fairly’ allocate the total gain v(N) of the grand coalition N among the
individual players. A well known concept is the core of a cooperative game (see
von Neumann, Morgenstern [4]), defined by

(i) x(N) ≤ v(N),
(ii) x(S) ≥ v(S) for all S ⊆ N .

As usual, we abbreviate x(S) =
∑

i∈S xi.
When the core is empty, one may want to relax the condition (ii) above in such

a way that the modified core becomes nonempty. Faigle and Kern [1] introduced
the multiplicative ε-core as follows. Given ε > 0, the ε-core consists of all vectors
x ∈ R

N satisfying condition (i) above together with

(ii’) x(S) ≥ (1 − ε)v(S) for all subsets S ⊆ N .

We can regard ε as a tax rate, so that coalition S is allowed to keep only
(1 − ε)v(S) on its own. If the value function v is nonnegative, the 1-core is
obviously nonempty. In order to approximate the core as close as possible, one
would like to have the taxation rate ε as small as possible while keeping the
ε-core nonempty.

A bin packing game is defined by a set of k bins, of capacity 1 each, and n
items 1, 2, · · · , n of sizes a1, a2, · · · , an, where we assume, w.l.o.g, 0 ≤ ai ≤ 1.

Let A be the set of items and B be the set of bins. A feasible packing of an
item set A′ ⊆ A into a set of bins B′ ⊆ B is an assignment of some (or all)

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 175–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

176 W. Kern and X. Qiu

elements in A′ to the bins in B′ such that the total size of items assigned to any
bin does not exceed the bin capacity one. Items that are assigned to a bin are
called packed and items that are not assigned are called not packed. The value
of a feasible packing is the total size of packed items.

The player set N consists of all items and all bins. The value v(S) of a coalition
S ⊆ N , where S = AS ∪ BS with AS ⊆ A and BS ⊆ B, is the maximum value
of all feasible packings of AS into BS . A corresponding feasible packing is called
an optimum packing.

An intriguing problem is to find the ‘minimal’ taxation rate εmin such that the
εmin-core is nonempty for all bin packing games. It was shown in Faigle and Kern
[1] that 1/7 ≤ εmin ≤ 1/2. Woeginger [5] improved this result to εmin ≤ 1/3.
Kuipers [3] showed that εmin = 1/7 if all item sizes are strictly larger than 1/3.

The rest of the paper is organized as follows. In section 2, we introduce the
integer linear program of v(N) for the bin packing game and the corresponding
fractional packing v′(N). In section 3, we present an alternative proof for the re-
sult εmin ≤ 1/3 based on a straightforward greedy packing heuristic. In section 4,
we apply the same greedy heuristic w.r.t. modified (“virtual”) item sizes to derive
a slightly better bound. In section 5, we conjecture that εmin = 1/7 and draw
the reader’s attention to the connection with the well-known 3-PARTITION
problem.

2 Fractional Packings

We start with some definitions and notations. A set F of items is called a feasible
set if its total size does not exceed 1. Denote by F the set of all feasible sets.
Let σF be the value of a feasible set and let σ = (σF) ∈ R

F for all F ∈ F , then
the total earning v(N) of the grand coalition N equals

max σT y

s.t.
∑

F∈F
yF ≤ k,

∑

F�i

yF ≤ 1 (i = 1, 2, · · · , n),

y ∈ {0, 1}F .

(2.1)

The value v′(N) of an optimum fractional packing is defined by the relaxation
of (2.1), i.e.,

max σT y

s.t.
∑

F∈F
yF ≤ k,

∑

F�i

yF ≤ 1 (i = 1, 2, · · · , n),

y ∈ [0, 1]F .

(2.2)

Improved Taxation Rate for Bin Packing Games 177

A fractional packing of our bin packing problem is a vector y satisfying the
constraints of the linear program (2.2). Accordingly, we refer to the original
‘feasible packing’ as the integer packing, which meets the constraints of (2.1).
We call item i fully packed if

∑
F�i yF = 1. Observe that for an optimal basic

solution y of (2.2) the number of non-zero components yF > 0 can be bounded
by m ≤ 1+ number of fully packed items. For technical reasons we also allow
non-integral values of k If k is non-integral, an integral packing is understood to
be one with all but one component in {0, 1}.

Faigle and Kern [2] have given a sufficient and necessary condition for the
non-emptiness of the ε-core of a bin packing game.

Lemma 21 ([2]). The ε-core is nonempty if and only if ε ≥ 1 − v/v′.

If all items are packed in a feasible integer packing, we obviously have v′ = v,
thus the core is nonempty. For convenience of description in later sections, we
always ignore this trivial case. As a consequence, v > v′/2 can always be achieved
by filling each bin to 1/2. So the 1/2-core is nonempty for all bin packing games.
Denote by εN = 1 − v/v′ the minimal taxation rate of a bin packing game N .
We thus seek for good lower bounds on v/v′.

The first step in [5] is to reduce the analysis to item sizes ai > 1/3. Similarly, if
we aim for a bound εN ≤ ε with ε ∈ [1/4, 1/3), it suffices to investigate instances
with item sizes ai > 1/4, as can be seen from the following two lemmas:

Lemma 22. Let A be a set of items disjoint from N and v(N)+ σ(A) ≤ v(N ∪
A). Then εN∪A ≤ εN .

Proof. From Lemma 21 we know εN = 1 − v(N)/v′(N). Thus,

εN∪A = 1 − v(N ∪ A)
v′(N ∪ A)

≤ 1 − v(N) + σ(A)
v′(N) + σ(A)

≤ 1 − v(N)
v′(N)

= εN .

For δ ∈ (0, 1), let Nδ denote the restriction of N to items of size ai > δ.

Lemma 23. If δ, εNδ
≤ ε, then εN ≤ ε.

Proof. Assume εNδ
≤ ε, i.e., there exists an integral packing of Nδ with value

v(Nδ) ≥ (1 − ε)v′(Nδ). Let A = N\Nδ be the set of “small” items. If we can
put all of A on top of the already packed Nδ-items, we have v(N) = v(Nδ ∪ A)
and εN ≤ ε follows from Lemma 22. Else, i.e. if some of the small items remain
unpacked, then each bin must be filled to at least 1 − δ ≥ 1 − ε and v(N) ≤
(1 − ε)v′(N) must hold.

Thus in what follows, when seeking for an upper bound εN ≤ ε with ε ∈
[1/4, 1/3), we may assume that all item sizes are at least ai > 1/4. (This
is actually a rather interesting class anyway, as it contains all instances of
3 − PARTITION , c.f. section 5).

178 W. Kern and X. Qiu

3 Alternative Proof of the Non-emptiness of 1/3-Core

We present an alternative proof for the fact that the 1/3-core of any bin packing
game is nonempty. Consider any bin packing game with k bins and item sizes
a1, · · · , an with all ai > 1/4. Let y = (yF) be an optimal fractional packing. We
order the support F = {F | yF > 0} according to non-decreasing values of σF :
Assume that, say, F = {F1, · · · , Fm} and

σF1 ≥ σF2 ≥ · · · ≥ σFm .

Note that the number of fully packed items is at most 3k (3 items per bin), so
that m ≤ 3k + 1. The basic idea is to construct an integral solution “greedily”
as follows:

Let Fi1 := F1 and Fi1 := {F ∈ F | F ∩ Fi1 �= 0}. Then choose the largest size
feasible set Fi2 in F\Fi1 , let Fi2 = {F ∈ F\Fi1 | F ∩ Fi2 �= ∅} etc. As each Fis

contains at most 3 items, we find that
∑

F∈Fis

yF ≤
∑

F∩Fis �=∅
yF ≤ 3. (3.1)

Hence in each step, when removing Fis , we remove at most 3 from the total sum∑
F yF = k, so that our construction yields Fi1 , · · · , Fir with r ≥ k/3. Define the

length of Fis to be lis :=
∑

F∈Fis
yF and the value to be vis :=

∑
F∈Fis

yF σF .
By the greedy choice of Fis we have lisσFis

≥ vis . Hence

σFis
=

lis

3
σFis

+ (1 − lis

3
)σFis

≥ 1
3
vis + (1 − lis

3
)
2
3
.

Here we assume σF ≥ 2/3 for each F . (Otherwise cut off the part of the fractional
solution for which σF < 2/3 as this is well enough approximated by any trivial
integer packing filling each bin to at least 1/2. This is where we need non-integral
k.) Summation yields

σFi1
+ · · · + σFir

≥ 1
3
v′ + (r − k

3
)
2
3
.

Extending our greedy selection by k− r bin, each at least filled to 1/2, we arrive
at an integer packing of value

v ≥ 1
3
v′ + (r − k

3
)
2
3

+ (k − r)
1
2
≥ 2

3
v′. (3.2)

4 Modified Greedy Selection

First note that actually the inequalities (3.1) must be strict, since all 3 items
occur together in yFis

, i.e., we actually have
∑

F∈Fis

yF ≤ 3 − 2yFis
< 3. (4.1)

Improved Taxation Rate for Bin Packing Games 179

Summation thus yields
r∑

s=1

(3 − 2yFis
) = 3r − 2

r∑

s=1

yFis
≥ k. (4.2)

Thus, if α =
∑r

s=1 yFis
, we find

r ≥ 1
3
(k + 2α). (4.3)

The estimate in section 3 can be (slightly) improved by modifying the greedy
selection so as to give higher priority to feasible sets F ∈ F with comparatively
large yF – and thus hopefully increasing α. Consider the modified (“virtual”) size
σ̃F := σF + 1

9yF . We order the F ∈ F according to non-increasing σ̃-values, i.e.,

σF1 +
1
9
yF1 ≥ σF2 +

1
9
yF2 · · · ≥ σFm +

1
9
yFm

and apply greedy selection w.r.t the modified size.
The factor 1/9 is due to the following: Any increase Δα in α = yFi1

+· · ·+yFir

results in an increase of Δr = 2
3Δα in the lower bound for r (c.f. (4.3)). This in

turn raises the lower bound for v by Δr(2/3−1/2) (c.f. (3.2)). Thus any increase
Δα in the total α-value of the selected Fi1 , · · · , Fir yields a gain (i.e., increase
in the lower bound for v) of Δα/9.

Now let us analyze the greedy selection w.r.t. the modified ordering. The
selected sets Fi1 , · · · , Fir will have a total σ̃ value (c.f. Section 3) of

σ̃Fi1
+ · · · + σ̃Fir

≥ 1
3

∑

F

yF σ̃F =
1
3
(
∑

F

yF σF +
1
9

∑

F

y2
F)

≥ 1
3
v′ +

1
3
· 1
9
· 1
4
k =

1
3
v′ +

1
108

k,

(4.4)

since the number of feasible sets F ∈ F is bounded by m ≤ 3k + 1 ≤ 4k, so the
minimum in

∑
F y2

F is achieved when all yF have size 1/4 (and their number is
4k). Now let β ∈ R be defined by

σFi1
+ · · · + σFir

=
1
3
v′ +

β

108
k.

Thus, compared to the standard estimate we have a gain (possibly a loss in case
β < 0) of βk/108 based on the σ-sizes of the selected sets. Then (4.4) implies

1
9
(yFi1

+ · · · + yFir
) ≥ 1 − β

108
k, (4.5)

i.e., the gain that we experience due to the length of the selected items is Δα/9 ≥
(1 − β)k/108. Summing up, we find that the lower bound increases by at least

β

108
k +

1 − β

108
k =

1
108

k ≥ 1
108

v′,

resulting in a slightly improved lower bound of ε ≤ 1/3− 1/108 = 35/108.

180 W. Kern and X. Qiu

The above proof also indicates an approximation algorithm for the value func-
tion v. Observe that the fractional optimum solution of (2.2) can be computed in
poly-time as the number of feasible sets is bounded by O(n3), and the modified
greedy selection can be done in O(m log m) = O(n log n) (to find an ordering
of the feasible sets based on their “virtual” sizes), hence this is a polynomial
approximation algorithm, which guarantees a packing of value ≥ (1 − ε)v, with
ε ≤ 35/108.

5 Remarks and Open Problems

Clearly the most straightforward problem is to determine the smallest ε such
that all bin packing games have non-empty ε -core. We conjecture that 1/7 is
best possible (c.f. [1] for an example showing that ε < 1/7 is impossible and a
proof that the ε-core is non-empty for any sufficiently large (in terms of k) bin
packing game).

A further challenging conjecture due to Woeginger states that v′−v is bounded
by a universal constant.

We finally would like to draw the attention of the reader to the well-known
3−PARTITION problem: Given a set of items of sizes a1, · · · , a3k with 1/4 <
ai < 1/2 and k bins, can we pack all items? If the fractional optimum is less
than k, the answer is clearly “no”. Note that the fractional optimum can be
computed efficiently as there are only O(k3) feasible sets. Thus if P �= NP , then
there must be instances with fractional optimum equal to k and integral optimum
< k. Although we tried hard, we could not exhibit a single such instance.

References

1. Faigle, U., Kern, W.: On some approximately balanced combinatorial cooperative
games. Methods and Models of Operation Research 38, 141–152 (1993)

2. Faigle, U., Kern, W.: Approximate core allocation for binpacking games. SIAM J.
Discrete Math. 11, 387–399 (1998)

3. Kuipers, J.: Bin packing games. Mathematical Methods of Operations Research 47,
499–510 (1998)

4. Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Prince-
ton University, Princeton (1947)

5. Woeginger, G.J.: On the rate of taxation in a cooperative bin packing game. Math-
ematical Methods of Operations Research 42, 313–324 (1995)

Multi-channel Assignment for Communication in

Radio Networks�

Dariusz R. Kowalski and Mariusz A. Rokicki

University of Liverpool, United Kingdom
{D.Kowalski,M.A.Rokicki}@liverpool.ac.uk

Abstract. We study three communication primitives in wireless radio
networks: Connectivity, One-Receiver, and Gossiping. Radio net-
works are modeled by undirected graphs of general topology. We consider
centralized solutions to the abovementioned problems. In Connectivity
and One-Receiver problems, we study the impact of multi-channel as-
signment to the hardness and approximation of computing of assignments
with the minimum number of channels. More precisely, we show that both
Connectivity and One-Reciver are Ω(log n)-inapproximable, unless
NP ⊂ Dtime(nlog log n). We also give polynomial time algorithms com-
puting multi-channel assignments using at most 3(Δ + ln2 n) channels
for connectivity and at most Δ channels for one-receiver problem, where
n is the number of nodes and Δ is the maximum node degree in the
graph. Finally, in case of the classical gossiping problem, related to the
connectivity problem, we show that it is NP-complete.

1 Introduction

Wireless networks have become very popular for their numerous advantages from
the user perspective. On the other hand, these properties, attractive to the users,
pose several challenges to the designers of wireless network architectures and
protocols. One of the main such problems is how to schedule interfering trans-
missions to accomplish specific communication tasks. In wireless networks where
only one or a constant number of channels are used, the most popular way to
resolve colliding transmissions is to use time/code division; this is often im-
plemented using complex coding techniques, but in any case there are several
provable limitations incurred in this setting, c.f., [5]. One of the solutions to this
problem is to use larger number of transmission channels to resolve collisions.
In this paper we study the impact of channel assignment to two communication
problems: connectivity and one-receiver. In each of these problems the goal is to
minimize the total number of used channels to complete communication task.
We allow many channels to be assigned to a single node, which corresponds to
a simultaneous transmission on many channels. It is however worth noting that
most of techniques used in this work can be easily transformed to the restricted

� This work was supported by the Engineering and Physical Sciences Research Council
[grant numbers EP/G023018/1, EP/H018816/1].

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 181–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

182 D.R. Kowalski and M.A. Rokicki

model with single-channel transmissions. Those techniques that cannot be easily
transformed, such as the algorithm for connectivity, benefit from the fact that
they rely on a small number of channels assigned to a node (e.g., 2).

In this paper we work in the graph based model of radio networks. This model
is more general than the geometric radio network model (GRN), as it captures
more general scenarios modeling for example directional antennas, the impact
of obstacles and various realistic physical parameters. In the general setting
considered in this work, radio network is represented by an undirected graph.
Message delivery is constrained by the property that a transmission from node
v successfully reaches a neighbor u of node v if there is no other neighbor of u
transmitting at the same time and on the same channel as v.

Our contribution. We consider two channel assignment problems: Connectiv-
ity and One-Receiver, in the graph based model of radio networks. We study
centralized solutions. In each of these problems our goal is to minimize the total
number of used channels to complete the communication task. We also study
the classical problem of Gossiping, in which the goal is to minimize the length
of the schedule accomplishing this communication task.

The first considered problem is Connectivity(G). For a given network G of
n nodes and maximum degree Δ, our goal is to compute a multi-channel assign-
ment that spans strongly connected subgraph of G of successful transmissions.
The objective is to minimize the total number of used channels. We show that
this problem is NP-complete and cannot be approximated with factor (c ln n)/6,
for any constant 0 < c < 1, unless NP ⊂ Dtime(nlog log n). Additionally, we
show that this problem can be solved with at most 3(Δ + ln2 n) channels in
polynomial time.

The second considered problem is One-Receiver(G). For a given network G,
our goal is to compute a multi-channel assignment guaranteeing that each node
transmits successfully to at least one of its out-neighbours, regardless of other
transmitting nodes. As in the previous problem, our objective is to minimize the
total number of used channels. We show that this problem cannot be approxi-
mated with factor (c ln n)/2, unless NP ⊂ Dtime(nlog log n). We also present a
polynomial time algorithm to obtain at most Δ channels in the multi-channel
assignment for one-receiver.

The third considered problem is Gossiping. As opposed to the previous prob-
lems, all the nodes operate on the same channel. Our goal is to compute the
shortest schedule guaranteeing dissemination of a rumor from each node to all
other nodes. Although this classical problem was intensively studied, also in
the context of radio networks (c.f., [10]), it was never shown that Gossiping
is NP-complete. In this paper we present a formal proof of NP-completness for
this problem. The motivation for studying gossiping together with the previous
problems involving multi-channel assignment is its close relation to the connec-
tivity problem; we will explore it further when proving NP-completeness and
discussing upper bounds for these problems.

Related work. The connectivity problem and a related link-scheduling problem
were intensively studied in the context of the SINR model. Connectivity problem

Multi-channel Assignment for Communication in Radio Networks 183

was introduced by Moscibroda and Wattenhofer [17]. The authors showed how
to compute, in polynomial time, transmission powers and channel assignment
of complexity O(log4 n) achieving strong connectivity of the obtained network
of successful transmissions. The upper bound O(log4 n) was later improved to
O(log2 n) by Moscibroda [16], and recently to O(log n) by Kowalski and Ro-
kicki [15]. The goal in the link-scheduling problem is to minimize the length of
transmission schedules guarantying successful transmission along each of the re-
quested links. In [12], the authors showed that link-scheduling in SINR model is
NP-complete. A polynomial time algorithm with a constant approximation fac-
tor was given in [13], which was an improvement over the O(log n)-approximation
given in [11]. We are not aware of any work on the connectivity problem in general
radio networks, although O(log n) channel and power assignments guarantying
connectivity were found and discussed in the context of related geometric radio
networks (GRN) [8,15].

The classical problems of broadcasting and gossiping were widely considered
in the radio model. In case of broadcasting, the goal is to find the shortest sched-
ule that disseminates message from one distinguished node to all other nodes.
It is known that broadcasting is an NP-complete problem, c.f., [2,3]. In [1] it
was shown that there exists a bipartite graph that requires at least Ω(log2 n)
rounds. The shortest known schedule for broadcasting in undirected networks
is of length O(D + log2 n), and can be computed by a polynomial-time algo-
rithm, as shown by Kowalski and Pelc [14]. Kortsarz and Elkin [6] showed that
computing the shortest broadcast schedule is Ω(log n)-inapproximable, unless
NP ⊂ Btime(nlog log n). The shortest known centralized schedule for gossiping
in undirected networks is of length min(O(D + Δ log n

log Δ−log log n), n), and can be
computed by a polynomial-time algorithm, as shown by Cicalese et al. [4]. This
is an improvement over the construction by Gasieniec at al. [10], which produces,
in polynomial time, a gossiping schedule of length min{O(D + Δ log n), n}.

2 Technical Preliminaries

We consider wireless radio networks modeled as undirected graphs G(V, E),
where V is the set of nodes and E is the set of undirected edges. The largest
node degree is denoted by Δ. We assume that all nodes are synchronized and op-
erate in discrete rounds.1 There is an unlimited number of transmission channels
available in the system, though in this work we focus on minimizing the number
of used channels, or even consider a single channel in case of gossiping. Each
node can transmit on some subsets of available channels (this is why we consider
multi-channel assignments) and listen to all available channels. A transmission
from node v can reach node u if there is an edge {v, u} in E. This however does
not necessarily mean that the content of the transmitted message will be suc-
cessfully obtained by node u. Therefore we say that node v successfully transmits
1 This assumption is not necessarily required in case of the considered multi-channel

assignment problems, as they guarantee no collision regardless of the set of trans-
mitting nodes.

184 D.R. Kowalski and M.A. Rokicki

to node u in a round on channel c if v is the only neighbor of u transmitting
in this round on channel c. In such case we also say that u successfully receives
a transmission from node v, which means that u can decode the content of the
message transmitted by node v. Otherwise, i.e., if there are at least two neigh-
bors of u transmitting in the same round on the same channel, a collision occurs
at node u and none of the messages is successfully received by u in this round.
We say that node v successfully transmits in a round if its transmission in this
round is successfully received by at least one of its neighbors.

We study three communication problems in the centralized setting, that is,
where the information about network topology is known to all nodes (or alterna-
tively, there is a centralized scheduler equipped with such knowledge, which can
find a solution for the considered communication tasks). The first two commu-
nication tasks aim to compute multi-channel assignment for each node in order
to guarantee specific communication properties. Multi-channel assignment is a
function F : V → 2[k] from the set of nodes to the family of all subsets of set
[k] = {1, 2, . . . , k}, where k is the number of used channel; here 2[k] stands for
the family of all possible subsets of channels from [k]. For a given multi-channel
assignment, we are interested in successful transmissions from one node to the
other under the assumption that all nodes simultaneously transmit on all the
channels assigned to them. In this scenario, a transmission from u to v is suc-
cessful if u is a neighbor of v in graph G and there is a channel c ∈ F (u) such
that c /∈ F (w) for any other neighbor w of v. For a given multi-channel assign-
ment, we will consider the directed graph of all successful transmissions, which is
a subgraph of the underlying network G (in the sense that (v, w) in the former
implies {v, w} in the latter).

Connectivity problem. For a given undirected network G(V, E) the goal is to
find a channel assignment such that the graph of all successful transmissions is
a strongly connected subgraph of G. This intuitively means that we want to find
a channel assignment F such that if in every round each node u transmits on
all channels in F (u) then eventually a message originated from any node will be
delivered to all other nodes (possibly through many intermediate nodes). The
objective is to minimize the number k of used channels.

One-Receiver problem. For a given undirected network G = (V, E) the goal
is to compute a channel assignment guaranteeing that each node transmits suc-
cessfully (i.e., each node has at least one out-neighbor in the graph of successful
transmissions). The objective is to minimize the total number k of used channels.

Gossiping problem. Unlike the previous two problems, gossiping is specified to
use only a single channel. In this problem, each node has its unique rumor, and
the goal is to disseminate all rumors to all other nodes in a given undirected
network G(V, E). It is assumed that all nodes start in the same round, and that
all nodes transmit on the same channel throughout the whole computation. This
means that collisions are resolved by time division (unlike in the previous two
problems where they are resolved using combinations of different channels). Each
message can carry any number of rumors. The goal is to minimize the number
of rounds till the end of the dissemination process.

Multi-channel Assignment for Communication in Radio Networks 185

One reason to study gossiping together with the previous two problems in
the multi-channel setting is that we use similar techniques to argue about NP-
completeness of these problems. Another reason is the following relation between
gossiping and connectivity: a solution to the connectivity problem using k chan-
nels can accomplish gossiping within time k · n using just one channel. This
can be done by using time division to simulate channels in rounds modulo k,
i.e., rounds t, for t = i mod k, are scheduled to transmit by nodes u such that
i ∈ F (u), where F is the channel allocation for the connectivity problem.

3 Optimal Channel Assignment

In this section we consider the first two problems: connectivity and one-receiver,
in the context of computing multi-channel assignment.

3.1 Connectivity Problem

We start by showing that computing optimal channel assignment for the con-
nectivity problem is NP-complete. We will resort to NP-completeness of the
following problem (c.f., [9]).

Problem: Exact Cover by 3-Sets (3XC)
Instance: A set S = {x1, . . . , x3m} and a family of sets C = {C1, . . . , Cp}, where

each Ci is a subset of S of size three.
Question: Can S be covered by all sets in some H ⊆ C in such a way that each

xi ∈ S belongs to exactly one Cj ∈ H?

Before showing that connectivity problem is NP-complete we will show NP-
completeness of the following modified version of the 3XC problem.

Problem: Exact Cover by 3-Sets with 3-Set Removal (3XC-3SR)
Instance: A set S = {x1, . . . , xl} and a family of sets C = {C1, . . . , Cp}, where

each Ci is a subset of S of size 3.
Question: Does there exist a 3-subset Ct ∈ C such that St = S\Ct can be covered

by all sets in some H ⊆ (C \ {Ct}) in such a way that each xi ∈ St belongs
to exactly one Cj ∈ H?

Fact 1. The 3XC-3SR problem is NP-complete.

Consider the following 5-channel-connectivity problem.

Problem: 5-Channel-Connectivity
Instance: An undirected network G = (V, E).
Question: Is there a channel assignment using at most 5 channels that spans

strongly connected subgraph of G.

We show that 5-channel-connectivity, which is a decision version of the consid-
ered optimization problem of connectivity, is NP-complete.

Theorem 1. The 5-Channel-Connectivity problem is NP-complete.

186 D.R. Kowalski and M.A. Rokicki

Proof. Consider an instance < S, C > of the 3XC-3SR problem, where S =
{x1, . . . , xl} and C = {C1, . . . , Cp}. Based on it, we construct a network G
— an instance to the 5-Channel-Connectivity problem. We build network
G in three steps. First, we define the following three layer network H1. The
first layer contains one root node r. The second layer consists of 2p set nodes
{v1, v

′
1, v2, v

′
2, . . . , vp, v

′
p} and two disturbing nodes z0 and z1. Each subset Ci is

represented by a pair of set nodes Pi = {vi, v
′
i}, where vi is called a main set

node and v′
i is called a minor set node. The third layer consists of l element nodes

{u1, . . . , ul}. Each element node ui represents the original element xi from set S
of the 3XC-3SR instance. The set of edges of graph H1 is defined as follows:

– there is an edge between each node in the second layer and root r;
– there are edges {vi, uj} and {v′i, uj} if and only if xj ∈ Ci.

Next we define another graph H2. It consists of nodes {w1, w
′
1, w2, w

′
2,. . ., wp, w

′
p}

and a binary tree of 2p leaves. We assume that the set of nodes in H1 and H2

are disjoint. Each node in {w1, w
′
1, w2, w

′
2, . . . , wp, w

′
p} is connected by an edge

with its unique leaf of the binary tree. Finally, to obtain the final network G we
connect by an edge each node vi from H1 with node wi from H2, and each node
v′

i from H1 with node w′
i from H2. We note that the goal of graph H2 attached

to H1 in this way is to connect all the set nodes from the second layer of H1

through a structure of degree at most 3.
Clearly the above reduction is polynomial in the size of the input l, p. In the

remainder we prove that it is also correct.
Assume that there exists an exact cover by 3-sets with the removal of one

3-set Ci. The 5-channel connectivity for the built network G can be obtained
in the following way (in this particular case, the assignment we propose will
schedule only one out of 5 channels to each node, therefore we will call it channel
assignment instead of multi-channel assignment).

We start by assigning channels to nodes in graph H1. The only possibility
for disturbing nodes is to transmit on channels different than the one assigned
to the root r. Therefore we can schedule the disturbing node z0 to transmit on
channel 1 and node z1 on channel 2. This implies that none of the set nodes
can use channels 1 and 2. Thus, the set nodes can use the remaining channels
3, 4 and 5. One of the set nodes has to successfully transmit to the root r on a
unique channel, say w.l.o.g. 3, and the remaining set nodes have to use channels
4 and 5. Additionally channel assignment of the set nodes has to guarantee that
each of the element nodes receives a successful transmission from some set node.
Since after removal set Ci there exists an exact 3-set cover, we can fulfill the
above mentioned requirements by assigning unique channel 3 to the main node
in the pair representing Ci and channel 4 to each main set node of a pair that is
in the 3-set cover. The remaining set nodes are assigned channel 5. Next, let us
assign channels to the element nodes in the third layer. Each main set node vj

with channel 4 covers three element nodes in Cj . We can assign channels 1, 2, 3
to the three element nodes in Cj , respectively.

Consider nodes in graph H2. Each node wi, w
′
i is assigned channel 4. The nodes

of the binary tree get assigned channels 1, 2, 3, which is necessary and enough

Multi-channel Assignment for Communication in Radio Networks 187

for them to span the same binary tree of successful connections. Therefore such
assignment guarantees that every two set nodes can successfully communicate
through the binary tree. Finally, we assign channel 5 to the root node r. Hence
5 channels are enough to guarantee connectivity in network G.

Now assume that connectivity in graph G can be achieved by using 5 channels.
We show that there exists an exact cover by 3-sets with the removal of one 3-set
Ci for the instance < S, C >. Observe that disturbing nodes z0 and z1 have to
transmit on different channels, say w.l.o.g. 1 and 2, respectively. Additionally,
none of the set nodes can transmit on channels 1, 2, since such transmissions
would disconnect z0 or z1. Thus, the set nodes can transmit only on channels
from set {3, 4, 5}. There must exist one set node vi that transmits on the unique
channel from {3, 4, 5}, say w.l.o.g. 3, that is, no other set node transmit on
channel 3. This is because otherwise none of the set nodes would reach root r.
The remaining set nodes can use at most two of the remaining channels 4, 5.
Each element node uj has to successfully receive a transmission from one of
the set nodes adjacent to it. The element nodes adjacent to set node vi always
receive successful transmission from vi. Therefore, consider only an element node
uj not adjacent to vi. Observe that uj cannot be adjacent to the two pairs of set
nodes such that in the first pair both nodes transmit on channel 4 and in the
second pair both nodes transmit on channel 5. This is because there would be a
collision on both channels at uj. Additionally, element node cannot be adjacent
to two pairs of set nodes that transmit on different channel. This is because there
would be a collision on both channels at uj as well. Thus, the only possibility
for the element node is to be adjacent to one pair of set nodes that transmit on
different channels and each of the remaining adjacent pairs transmit on channel 4
or on channel 5 (i.e., both nodes in each pair transmits on the same channel). We
argue that all pairs transmitting only on channel 4 can be reassigned to transmit
only on channel 5. Such reassignment guarantees that each element node uj still
receives its successful transmission from some set node on channel 4. In order
to justify such reassignment, assume that element node uj received a successful
transmission on channel 5 from pair Pi′ of set nodes that transmit on different
channels 4 and 5, respectively. One can see that after reassignment channel 5
can collide at element node uj. However, after reassignment the set node in pair
Pi′ transmitting on channel 4 will successfully reach uj , instead of the other
one that successfully transmitted to uj on channel 5 before the reassignment.
Thus, all the element nodes not adjacent to vi receive successful transmission
on channel 4 after reassignment. Observe that now all set nodes transmitting
on channel 4 form exact cover with 3-sets of all the element nodes remaining
after excluding element nodes adjacent to vi. This is because if an element node
was connected to the two set nodes transmitting on channel 4 then it could not
have received a successful transmission on channel 4, unless a node is adjacent
to the set nodes vi. This clearly corresponds to a 3-set exact cover of elements
in S after excluding set Ci, by elements Cj corresponding to pairs Pj containing
exactly one set node with assigned channel 4. This completes the proof that the
proposed reduction is correct. ��

188 D.R. Kowalski and M.A. Rokicki

Next, we present a polynomial time algorithm that assigns at most 3(Δ + ln2 n)
channels to form a strongly connected network of successful transmissions. This
number of channels is optimal in a star topology, or in general in graphs where
the max degree of a separating node is Δ. Our algorithm relies on the following
lemma used in the context of centralized gossiping algorithm in [10].

Lemma 1. [10] Let G(U, V, E) be a bipartite graph with two sets of nodes U, V
and a set of edges E between these two sets. Let Δ denote the max degree of a
node in V . Then there exists a channel assignment using at most Δ channels,
which guarantees that each node in U successfully transmits its message to some
node in V .

Theorem 2. There exists a polynomial time algorithm solving the connectivity
problem and using at most 3(Δ + ln2 n) channels.

Proof. Consider graph G(V, E). First we show how to choose a channel assign-
ment to guarantee paths of successful transmissions from each node to some
(arbitrarily selected) node; one channel per node will be sufficient in this case.
For this we use channels from domain {1, 2, . . . , 3Δ}. Fix a root node r and par-
tition the network into D disjoint layers, for some parameter D, by using a BFS
search, starting from the root. Note that layer Li contains nodes at distance i
to root r, i.e., such that the shortest path from v ∈ Li to r is of length i. Let us
denote by Δi the max degree of a node in the bipartite subgraph of G containing
nodes in Li ∪ Li+1 and all edges between sets Li+1 and Li. By Lemma 1, we
can assign Δi channels so that each node in layer Li+1 transmits successfully to
some node in layer Li. Note that Δi ≤ Δ and that we can use the same domain
of Δ channels for every third layer, as two nodes located in layers of distance
at least 3 cannot cause any collision by definition of layers. Therefore at most
3Δ channels is sufficient to assure that every node v in any layer Li transmits
successfully to one of its neighbors in the previous layer Li−1. This however im-
plies existence of directed paths of successful transmissions from any node to the
root, by a straightforward inductive argument on the number of layers.

Next, we show how to construct a channel assignment that guarantees paths
of successful transmissions from r to each node in the network; again one channel
per node will be sufficient in this case. For this we use channels from domain
{3Δ+1, 3Δ+2, . . . , 3Δ+3 ln2 n}. In [3] the authors presented a polynomial time
algorithm computing a broadcast schedule of length ln2 n in a given bipartite
graph. If we interpret each round of this schedule as a separate channel then we
get a proper channel assignment between layer Li and Li+1, guarantying that
each node in Li+1 successfully receives a transmission from some node in Li.
Similar arguments as in the first part of the proof (i.e., for paths towards the
root) apply in this case showing that at most 3 ln2 n channels suffice to assure
progress in successful transmissions from some node in the previous layer to the
currently considered node, and again by inductive argument it also guarantees
paths of successful transmissions from the root to any other node.

In the final multi-channel assignment, we assign to each node two channels:
one from domain {1, 2, . . . , 3Δ} assigned in the first path of the proof and the

Multi-channel Assignment for Communication in Radio Networks 189

other one from domain {3Δ+1, 3Δ+2, . . . , 3Δ+3 ln2 n} assigned in the second
part. Note that transmissions on channels from domain {1, 2, . . . , 3Δ}, which are
used to assure connectivity from nodes to the root r, do not interfere with trans-
missions on channels from domain {3Δ + 1, 3Δ+ 2, . . . , 3Δ+ 3 ln2 n}, which are
used to guarantee connectivity from the root to all other nodes. Therefore all suc-
cessful transmissions resulted from the assignment of channels in {1, 2, . . . , 3Δ}
(forming paths towards the root) and all transmissions resulted from the assign-
ment of channels in {3Δ + 1, 3Δ + 2, . . . , 3Δ + 3 ln2 n} (forming paths outwards
the root) are in the graph of the successful transmissions, and hence this graph
is strongly connected (via the root). Thus, we use at most 3(Δ + ln2 n) channels
to form a strongly connected sub-network of successful transmissions in G. ��
Unfortunately, the approximation factor of this algorithm can be as bad as Θ(n).
This is because there are networks where Δ = Θ(n), in which connectivity can
be achieved by using a constant number of channels. Consider for example a
complete bipartite graph of Θ(n) nodes on each side, and additionally on the
top of each of these two sets we build a binary tree of Θ(n) nodes and with the
nodes in the set being leaves of this tree. Although the maximum node degree
Δ is Θ(n), using bipartite trees we can connect each of these sets through the
tree link using a constant number of channels. Finally, in order to connect both
sided of the bipartite graph, it is enough to add an extra channel to one of the
nodes on one side and another extra channel to some node on the other side.

3.2 One-Receiver Problem

In this problem the goal is to compute a multi-channel assignment guaranteeing
that each node transmits successfully to at least one of its neighbors, while
minimizing the total number of used channels.

We will use in-approximability result of the set-cover problem due to Feige [7]
to show that it is impossible to achieve c ln n

2
-approximation factor for one-

receiver problem, for any constant 0 < c < 1, unless NP ⊂ Dtime(nlog log n).
More precisely, we rely on the following theorem.

Theorem 3. [7] For any constant 0 < c < 1, the set-cover problem cannot be ap-
proximated within factor c ln n in polynomial time unless NP ⊂Dtime(nlog log n).

The set cover problem is similar to 3XC, with two differences: we do not require
sets to have exactly three elements, and we want each element to be covered
by at least one set rather than by exactly one set. Theorem 3 can be used for
proving the following result.

Theorem 4. No polynomial time algorithm for One-Receiver problem
achieves approximation factor c ln n

2 unless NP ⊂ Dtime(nlog log n), for any con-
stant 0 < c < 1.

Let us observe that, for a given network G = (V, E), we can also solve one-
receiver problem with Δ channels based on Lemma 1. More precisely, for a given
undirected network G = (V, E) we construct a bipartite graph B = (V1, V2),

190 D.R. Kowalski and M.A. Rokicki

where V1 = V2 = V as follows. There is an edge {v, u}, where v ∈ V1 and u ∈ V2,
provided {v, u} ∈ E. By Lemma 1 we can assign Δ channels so that each node
in V1 transmits successfully to some node V2. Thus we proved the following.

Fact 2. There is a polynomial time algorithm computing a multi-channel as-
signment with Δ channels for accomplishing One-Receiver task.

This result is asymptotically optimal in star topology networks. Note however,
there are networks where Δ = Θ(n), for which the one-receiver problem can be
completed with a constant number of channels (see the discussion after the proof
of Theorem 2).

The One-Reciver problem can be used to solve Connectivity problem
with a logarithmic overhead in the number of used channels. The algorithm
works in at most log n phases, and in each phase One-Receiver algorithm is
applied. Initially we start with the input graph G0 = G. After the first phase
there are at most n/2 connected components. We choose a representative in each
component. Each representative has to be adjacent to some node in some other
component. The representatives induce the graph G1 for the second phase. We
can see that in each phase we connect at least two components. Thus, after at
most log n phases the network of successful transmissions becomes connected.

On the other hand, the inaproximability result in Theorem 4 can be trans-
formed to the connectivity problem as follows.

Theorem 5. No polynomial time algorithm for the Connectivity problem
achieves approximation factor c ln n

12 , for any constant 0 < c < 1, unless NP ⊂
Dtime(nlog log n).

4 Gossiping

Although the gossiping problem was intensively studied in the context of radio
networks, also in centralized setting, it was never formally proved to be NP-
complete. In this section we present the formal proof that gossiping problem is
NP-complete. We consider the following version of the gossiping problem.

Problem: (Δ + 2)-Gossiping
Instance: An undirected network G = (V, E), where Δ is the max degree.
Question: Is there a schedule that completes gossiping in Δ+2 rounds ?

Theorem 6. The (Δ + 2)-Gossiping problem is NP-complete.

Proof. We use a reduction from 3XC. For a given instance of 3XC problem, with
the domain set S = {x1, x2, . . . , x3m} and the family of sets C = {C1, C2, . . . , Cl},
let us construct the following network G. The network consist of two subnetworks
H1 and H2. The subnetwork H1 consists of 3 layers. The first layer contains only
one root node r. The second layer consists of l set nodes {v1, . . . , vl}. Each set
node vi, for 1 ≤ i ≤ l, represents a 3-subset Ci. The third layer consists of 3m
element nodes {u1, . . . , u3m}. Each element node uj represents an element xj .

Multi-channel Assignment for Communication in Radio Networks 191

There is an edge between vi and uj if and only if xj ∈ Ci. Each node in the
second layer is connected to the root node r. The second subnetwork H2 is a
star of l + 4 nodes. Node s is the center of the star and there are l + 3 nodes
attached to s. The two subnetworks are connected by an edge between nodes s
and r. We can see that the maximum degree of the network is Δ = l + 4.

Let us first assume the there exists an exact cover by 3-sets for the instance
< S, C >. We can yield the gossiping in G in time Δ + 2 = l + 6 in the following
way. In the beginning, node s collects all the messages from its l + 3 neighbors
in H2. Simultaneously node r collects all the messages in its subnetwork H1 in
the following way. First, each element node in the third layer passes its message
to some set node in the second layer. This operation can be done in at most 3
rounds, by Lemma 1. Next each set node vi transmit its messages to the root r.
This operation can be implemented in at most l rounds, by Lemma 1. It follows
that after l+3 rounds node r learns all the messages in its subnetwork H1. Next
observe that at most 3 rounds are sufficient to broadcast messages from r and
s to all the nodes. Indeed, in the first round s and r exchange their messages.
In the second round nodes r and s transmit all messages. This guarantees that
all set nodes in the second layer of H1 and all nodes in H2 learn all messages.
In the third round all set nodes that belong to the 3-set cover transmit. This
guarantees that there are no conflicts, and consequently all element nodes in the
third layer of H1 learn all messages. Therefore, after at most (l + 3)+3 = Δ +2
rounds gossiping is accomplished in G.

Now, let us assume that (Δ+2)-gossiping exists. First observe that each node
in H2 adjacent to s has to pass its rumor to s. This requires exactly l+3 different
rounds in the gossiping process. Hence, there is a node w in H2 that passes its
rumor to s in round l+3 or later. This rumor has to be disseminated to all nodes
in H1. Broadcasting w’s rumor requires at least 3 rounds. In the first of these
rounds, node s transmits w’s rumor to r. In the second of these rounds, node
r transmits w’s rumor to all set nodes. In the third of these rounds, selected
set nodes transmit w’s rumor to element nodes. Since the whole process must
accomplish within Δ+2 = l+6 rounds, the third broadcasting round must be in
fact round l+6 of the gossip process, and therefore all element nodes must receive
w’s rumor in that round, that is, each element node is a neighbor of exactly one
node transmitting in round l + 6. This implies that sets Ci corresponding to set
nodes vi that are scheduled to transmit in round l + 6 form an exact 3-set cover
of set S corresponding to the set of all element nodes. ��

5 Conclusions

We have studied two channel assignment problems: connectivity and one-receiver,
and the classical problem of gossiping.The connectivity and one-receiver problems
can be solved with 3(Δ+ ln2 n) and Δ channels, respectively, in polynomial time.
This is optimal in graphs in which the maximum degree of a separating node is
Δ, e.g., in star topology. Unfortunately, generally the approximation factor can
be as bad as O(n), and improving it in general case is the major open problem

192 D.R. Kowalski and M.A. Rokicki

in this area. On the other hand, we have also shown that these two problems are
Ω(log n)-inapproximable unless NP ⊂ Dtime(nlog log n).

In case of gossiping we have shown that this problem is NP-complete. The open
problem is to improve its approximation factor, as the existing protocols may pro-
vide approximation factor as bad as O(n) in the worst case.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast.
Journal of Computer and System Sciences 43, 290–298 (1991)

2. Chlamtac, I., Kutten, S.: Tree-based broadcasting in multihop radio networks.
IEEE Transactions on Computers 36, 1209–1223 (1987)

3. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in mul-
tihop radio networks. IEEE Trans. on Communications 39, 426–433 (1991)

4. Cicalese, F., Manne, F., Xin, Q.: Faster deterministic communication in radio net-
works. Algorithmica 54, 226–242 (2009)

5. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks, in. In: Proc., 12ve Annual Sympo-
sium on Discrete Algorithms (SODA), pp. 709–718 (2001)

6. Elkin, M., Kortsarz, G.: Logarithmic inapproximability of the radio broadcast prob-
lem. J. Algorithms 52, 8–25 (2004)

7. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

8. Fussen, M., Wattenhofer, R., Zollinger, A.: Interference arises at the receiver. In:
Proc., Int. Con. on Wireless Networks, Communications, and Mobile Computing,
WIRELESSCOM (2005)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

10. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. In: Proc., 24th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 129-137 (2005)

11. Goussevskaia, O., Halldorsson, M., Wattenhofer, R., Welzl, E.: Capacity of arbi-
trary wireless networks. In: Proc., 28th IEEE Conference on Computer Communi-
cations (INFOCOM) (2009)

12. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR.
In: Proc. 8th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing
(MobiHoc), pp. 100–109 (2007)

13. Halldorsson, M., Wattenhofer, R.: Wireless communication is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

14. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology
radio networks. Distributed Computing 19, 185–195 (2007)

15. Kowalski, D.R., Rokicki, M.A.: Connectivity problem in wireless networks. In:
Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 344–358.
Springer, Heidelberg (2010)

16. Moscibroda, T.: The worst-case capacity of wireless sensor networks. In: Proc., 6th
Int. Conf. on Information Processing in Sensor Networks (IPSN), pp. 1–10 (2007)

17. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In Proc., 25th IEEE Conference on Computer Communications (INFO-
COM), pp. 1–13 (2006)

Computing Strongly Connected Components

in the Streaming Model

Luigi Laura1 and Federico Santaroni2

1 Dep. of Computer Science and Systems, Sapienza Univ. Of Rome
Via Ariosto, 25 - 00185 Roma

laura@dis.uniroma1.it
2 Dep. of Computer Science, Systems and Production. Univ. of Rome “Tor Vergata”

Via del Politecnico 1 - 00133 Roma
santaroni@disp.uniroma2.it

Abstract. In this paper we present the first algorithm to compute the
Strongly Connected Components of a graph in the datastream model
(W-Stream), where the graph is represented by a stream of edges and
we are allowed to produce intermediate output streams. The algorithm
is simple, effective, and can be implemented with few lines of code: it
looks at each edge in the stream, and selects the appropriate action with
respect to a tree T , representing the graph connectivity seen so far.

We analyze the theoretical properties of the algorithm: correctness,
memory occupation (O(n log n)), per item processing time (bounded by
the current height of T), and number of passes (bounded by the maximal
height of T). We conclude by presenting a brief experimental evaluation
of the algorithm against massive synthetic and real graphs that confirms
its effectiveness: with graphs with up to 100M nodes and 4G edges, only
few passes are needed, and millions of edges per second are processed.

1 Introduction

The computation of the Strongly Connected Components (SCCs) of a directed
graph is an essential problem for the structural analysis of directed graphs.
We recall that a directed graph is strongly connected if there is a path from
each vertex in the graph to every other vertex, and the Strongly Connected
Components of a graph are its maximal strongly connected subgraphs. If we are
able to store the graph in main memory, it is easy to compute SCCs in linear
time by Tarjan’s classical algorithm [25] that uses, as a core routine, a depth-first
search (DFS) visit of the graph; note that all the known efficient SCCs algorithms
are based on DFS visit [2,8]. However, if we deal with massive graphs, things
change considerably: if the graph is stored in external memory, where a disk
access is about 106 times slower than a memory access, then the DFS becomes
the paradigmatic example of what we can not do, i.e. forcing the disk head to
jump repeatedly back and forth.

As a natural consequence, so far no provably I/O efficient algorithms appeared
for directed graph problems, while several results have been proved for undirected

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 193–205, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

194 L. Laura and F. Santaroni

graphs (e.g. see the surveys [1,27]). This forced the research community to focus
on heuristic techniques, like the semi-external DFS of Sibeyn et al. [24], and the
recent fully-external SCCs of Cosgaya-Lozano and Zeh [10].

In this paper we present the first algorithm to compute SCCs in the W-Stream
model that allows an I/O efficient implementation; this algorithm, called Look
and Select (LS), is very simple: it looks at the current edge from the stream and it
selects, among five cases, which is the one this edge belongs; the selection is made
against a tree, representing the graph connectivity seen so far, and, depending
on the case, the edge can either be dropped, or processed properly. The data
structures needed are only the tree and a union/find structure; this lead to a
simple code. However, the analysis is not trivial; in particular, we prove the LS
correctness, and analyze it in terms of number of passes and per item processing
time; the memory requirement is O(n · logn), with n being the number of nodes
in the graph. We also present a brief experimental evaluation that confirm its
effectiveness against real world massive graphs: with graphs with up to 100M
nodes and 4G edges, only few passes are needed, and it is achieved a rate of
millions of edges per second.

The paper is organized as follows: in the rest of this section we briefly discuss
datastream models and related graph results. In the next section we describe the
algorithm, while the theoretical analysis is presented in Section 3. In Section 4 we
show the results of a small experimental evaluation, that confirm the effectiveness
of this approach. Concluding remarks are addressed in Section 5.

1.1 Streaming Models and Graph Problems

In classical streaming, implicitly defined in the early work of Munro and Paterson
[20] and later diffusely adopted (see e.g. [18,21]), the input is a data stream, to
be accessed sequentially (in an adversarial order), and to be processed with a
working memory that is small with respect to the length of the stream. The key
parameters of this model are the number of passes p and the memory size s,
together with the per item processing time that must be kept small if there is a
real time costraint.

The restrictions imposed by the classical streaming proved to be too strict
to allow efficient solution for basic graph problems [18], and Feigenbaum et al.
[15], exploiting the idea introduced by Muthukrishnan [21], proposed the Semi-
streaming model, in which the working memory size is O(n polylog (n)), where
n is the number of vertices of the streaming graph: like in semi-external memory
models [1,26], the main memory allows to store data related to the nodes but not
to the edges; Muthukrishnan defines this memory requirements a “sweet spot” for
graph problems, and in this model several results appeared recently, including:
connected components, bipartiteness, bipartite matching, minimum spanning tree
[15,16], triangle counting [5], matching [19], t-spanners [14,16], and articulation
points, bridges, and biconnected components [4]. .

A common limitation of both classical streaming and Semi-streaming is the
impossibility to modify the stream among different passes; motivated by today’s
availability of large and inexpensive disks, optimized for sequential read/write,

Computing Strongly Connected Components in the Streaming Model 195

Demetrescu et al. introduced the W-Stream model [12], which allows algorithms
to produce intermediate output streams: in a pipelined fashion, in each pass the
algorithm reads an input stream and writes an output stream, that will be the
input stream in the following pass. Many graph problems have been addressed
in this model, including: Euler tour of a tree, connected components, biconnected
components, maximal independent set, multiple source shortest-paths, minimum
spanning tree [3,12,11,22,23].

2 The Algorithm

Let us begin by presenting informally a high level view of the algorithm, while the
missing details will be covered later. We want to compute the SCCs of a streaming
graph G, represented by the stream S0 of its edges, in any order. As in the W-
Stream model, we are allowed to write intermediate streams S1, S2, . . . Sk, and, in
phase i, Si−1 and Si are, respectively, the input and output stream.

The main idea behind LS (pseudo code in Algorithm 1) is the combination of the
properties of a spanning forest over a directed graph G and the equivalence classes
induced by the strong connectivity equivalence relation (defined over the nodes of
G); we will use this property to prove the algorithm’s invariant (Lemma 1). We
keep in main memory a tree T in which each node is representative of a single
SCC. Initially, i.e. before the first stream S0, in T there is one node for each node
of the streaming graph G; each node is indeed representing one SCC, made only by
the node itself. All the nodes are connected to a dummy vertex r, that is the root
of the tree. Besides the tree T , we use a union/find data structure1 U to address
node contraction and edge translation: when we read the edge e = (u, v) and
u and v belong to the sets of U , indexed respectively by u′, v′, e is translated in
e′ = (u′, v′). As a matter of fact, the nodes in T are called index-nodes because
they are (also) used to index the sets of U which they belong to.

As depicted in Figure 1, we distinguish five different edges types with respect
to the tree T , that can be seen as the “state” of the graph connectivity seen so
far; at each step, the algorithm looks at the current edge from the stream, and
it selects the corresponding action:

1. Backward edge: we found a directed cycle. All the involved nodes are
contracted into a single one, modifying U accordingly.

2. Cross Forward edge: we do not know, at this time, whether this edge will
be useful or not; it is put into the next stream.

3. Cross NON Forward edge: this is the crucial point of the whole algorithm;
we use this edge to modify the tree in order “to make it deeper” (the deeper
the tree, the easier to find backward edges); therefore, we add this edge to the
tree and we add to the next stream the edge we just removed from the tree.

4. Forward edge: this edge does not provide useful information about the
graph connectivity. We can get rid of it, i.e. we do nothing and, in particular,
we do not add the edge to the next stream.

1 The union/find structure is also known as disjoint-set data structure or merge-find
set [17].

196 L. Laura and F. Santaroni

The edge e = (u, v) is,
with respect to the tree:
Forward if u is an ancestor of v

Backward if u is a descendent of v

Cross Forward if u and v belong
to different subtrees and h(u) ≥ h(v)
Cross NON-Forward if u and v belong
to different subtrees and h(u) < h(v)
Self-loop if v=u

Forward

Cross Forward

Self-loop

Backward

Cross NON Forward

Fig. 1. Types of edges distinguished

5. Self-loop: also in this case this edge does not provide useful information, so
we drop it.

Note that, even if G does not have this kind of edges, when we read an
edge from the stream, it could become a self-loop after the edge translation.

As we see, in some cases (1, 4, and 5) we drop the current edge, in others we
add it (2) (or another one (3)), to the next stream. The algorithm ends after
the first streaming pass that do not alter the tree structure2. At the end of the
algorithm, the sets in U are the SCCs of the graph G. In the pseudo code of LS
(Algorithm 1), we can see a sixth case (i.e. case 0) that addresses the situation in
which the current edge points to a node son of the dummy vertex r: the current
edge is added to the tree and the (dummy) edge from r is discarded.

As we mentioned before, we have to keep in main memory only the two struc-
tures U and T , and therefore the occupation is O(n log n). This is the typical
space complexity in the Semi-streaming model and, in some sense, we could call
this model, i.e. the one in which we study the LS algorithm, Semi-W-stream:
it couples the Semi-streaming memory occupation together with the W-Stream
ability of writing/reading intermediate streams.

Observation 1. We conclude the description by observing an interesting prop-
erty of LS. At the end of the algorithm, if we consider the graph G′, induced by
the edges of the tree T and the last output stream (translated by U), we note
that it is a DAG (Directed Acyclic Graph), and it includes all of the connec-
tivity information of G (i.e. whether a node can be reached by another). Thus,
the LS algorithm can be used as a sieve, in a preliminary step of more complex
algorithms, like the transitive closure.

3 Theoretical Analysis

We first introduce some preliminary definitions and notation, useful in the fol-
lowing. We will denote with r � f the oriented path between nodes r and f ,

2 Obviously, if all the edge from the current stream are dropped, the algorithm ends.
In the following, for uniformity, we will consider this case as an empty stream, in
order to deal, in the analysis, with only one halting condition.

Computing Strongly Connected Components in the Streaming Model 197

while(there are changes in the structure of T)
{

read from the stream Si the current graph edge i
translate i into a tree edge e = (u, v) (using U)
{

if (v is a son of the dummy vertex r) then add e = (u, v) to T and remove (r, v) from T (0)
else if (e is a backward edge) then collapse nodes from u to v in T (1)
else if (e is a cross forward edge) then add e to next stream Si+1 (2)
else if (e is a cross non-forward edge) then (3)

let F (v) be the father of v in T
remove the edge (F (v), v) from T
add the edge (F (v), v) to next stream Si+1

add e = (u, v) to T
else if (e is a forward edge) then do nothing (i.e. drop e) (4)
else /*e is a self-loop */ then do nothing (i.e. drop e) (5)

}
i++

}

Algorithm 1. Look and Select (LS); it computes the strongly connected components
of a streaming graph, represented by a stream of edges

while a � b denotes both the oriented paths a � b and b � a (thus the
nodes a and b are strongly connected). Throughout this analysis the union/find
structure U is represented by a partition of the set V , and we write U = P(V)
(this holds by construction).

Definition 1. Given G = (V, E) , we call Strongly Connected Component a set
of nodes S ⊆ V such that the following holds: for all a, b ∈ S there exists a � b,
i.e. both the oriented paths between a and b and between b and a.

We call SCCG the set of all of the Strongly Connected Components defined over
G. In this way, the above property can be expressed by the notation: S ∈ SCCG

Definition 2. Given G = (V, E) , we call Maximal Strongly Connected Com-
ponent a set M ⊆ V such that the following holds: M ∈ SCCG and there is no
other set N ⊆ V , N ∈ SCCG, such that M ⊂ N .

We call MSCCG the unique set of all of the Maximal Strongly Connected Com-
ponents defined over G. In this way, the above property can be expressed by the
notation: M ∈ MSCCG. Furthermore, with the expression “Computing SCCs”
of a graph G, we mean the computation of the set MSCCG.

3.1 Correctness

In order to prove the correctness of LS , we show that:

1. LS ends in a finite number of steps (Corollary 1, in the next section).
2. At each step of algorithm LS the sets of U belong to SCCG (Lemma 1); this

is an invariant.
3. Any maximal SCC in G can be obtained by the union of some SCCs in the

set U (Lemma 2).

198 L. Laura and F. Santaroni

4. When the algorithm LS ends, U is the set of all the maximal SCCs
(Theorem 1).

In this extended abstract, we omit the proofs of the following results.

Lemma 1. At each step of algorithm LS the sets of U are SCCs of G. [Invariant]

Lemma 2. Given G = (V, E) and a set U = P(V), if there exists M ∈MSCCG,
which is not in U , then there exists a set A ⊂ U such that M =

⋃
s∈A s, i.e. M

is the union of some sets in U .

Theorem 1. When the algorithm LS ends, U = MSCCG.

3.2 Number of Streaming Passes

We now prove the bound on the number of streaming passes needed by the
LS algorithm. We will show that it is limited by the maximum height reached
by the tree T . In order to do so, we first need to introduce the definition of
Deep-Cycle ; then we show that

i) the overall number of passes is bounded by the size of the maximal Deep-
Cycle and

ii) the maximum height of the tree T is a bound on the size of any Deep-Cycle
Together the last two statement prove the bound.

Definition 3. Deep-Cycle : given as input stream the sequence of edges L =
e1e2 . . . em, a Deep-Cycle D is a subsequence of L D = ei1ei2 . . . eik

, with i1 <
i2 < . . . < ik, where, with respect to the tree T :

1. the last edge, eik
= 〈ub, vb〉, is a backward edge;

2. the first k − 1 edges are cross forward edges;
3. together the first k − 1 edges form the longest (i.e. deepest) possible path

between vb and ub in the graph induced by T and the edges just considered.

Note that, by the above properties, it follows that the last edge closes an oriented
cycle with the other k − 1 edges.

1

2

3

4

Fig. 2. An example of a Deep-Cycle with respect to a tree: the edges of the Deep-
Cycle are the dashed ones and, according to the types of edges considered, there is one
backward edge and all the other are cross forward

Computing Strongly Connected Components in the Streaming Model 199

We now denote with ND the subset of the index-nodes in T that are incident to
the k edges of D. In Figure 2 it is depicted a Deep-Cycle of size 4. Note that,
since D is a cycle, it follows that |D| = |ND|. With the previous definitions, it
is now easy to prove the following lemma:

Lemma 3. The algorithm LS merges, in at most k streaming passes, the sets
ci ∈ U indexed by the index-nodesND of the Deep-Cycle D, with |D| = k, in an
equivalence class Z.

Proof. Let us assume that in the stream Si there is a Deep-Cycle D, |D| = k.
From the definition of Deep-Cycle the k−1 cross forward edges will be put in the
next stream3 Si+1, while the backward edge eik

= (ub, vb) will cause the merging
of the equivalence classes indexed by index-nodes between ub and vb included.
Now, during stream Si+1, among the k − 1 forward edges, there exists at least
one of them which is a cross non-forward, so we will change the tree accordingly
(case 3). This situation can occur at most for other k − 3 passes: at most one
edge from each stream will be a cross non-forward edge, and will change the
tree structure. Finally, the last remaining edge will now be, in phase i + k − 1,
a backward edge that will cause all the sets in U indexed by the index-nodes of
ND to be merged in Z. ��
It is important to note that, with a different ordering of the same set of edges
of D, all the involved nodes can be merged in one pass.

Lemma 4. For any Deep-Cycle D, |D| = k, it holds that k � hmax(T), where
hmax(T) is the maximum height reached by the tree T .

Proof. If there is a Deep-CycleD in Si, from the definition of Deep-Cycle it
follows that its nodes are at different levels of the tree, since they are connected
by k − 1 cross forward edges (and a backward one), and therefore the size of D
is bounded by the maximum height reached by T . ��
Theorem 2. The number of streaming steps needed by LS to process the input
graph is at most the size of the maximal Deep-Cycle .

Proof. From Theorem 1, algorithm LS halts if there are no more sets of U to
be merged into a bigger SCC. Let p = |Dmax| be the size of the maximal Deep-
Cycle . Therefore there are no more Deep-Cycles to be processed after stream
Sp. Let us assume that in the stream Sp+1 there is still one SCC C that was
not detected in the previous steps; this implies there exists a set E′ ⊆ E, E′ in
the stream Sp+1, such that it strongly connects v1v2...vj ∈ T : C =

⋃j
i=1 vi, in

the graph induced by T and E′. Therefore there exists e ∈ E′ such that e is a
backward edge, and ∀e′ ∈ E it holds that e′
= e and e′ is a cross forward edge,
otherwise e′ would be in the tree Tp. This means that E′ is a Deep-Cycle, and
this goes against the initial assumption that after stream Sp there are no more
Deep-Cycles . ��
3 This holds if no other union operations occur among the nodes in ND due to other

edges in the stream. But in this case the problem is simplified, i.e. less streaming
steps are needed.

200 L. Laura and F. Santaroni

From the previous Theorem and Lemma 4 it easily derives the following result:

Corollary 1. The algorithm LS ends after a number of passes p bounded by the
maximum height reached by the tree T : p � hmax(T).

Observation 2. We first note that the height of the tree is marginally related
on the underlying graph, while it mostly depends on the sequence in which the
edges appear in the stream S0; we already mentioned that also the Deep-Cycle
structure depends on the order of the edges in S0 too; thus, the (above proved)
worst case refers, in general, to a particular sequence of edges such that both the
above conditions hold. Any permutation of this peculiar sequence might reduce
sensibly the number of passes, as already observed. Therefore, considering that,
in practice, S0 can be any permutation of E, on one side, the above result holds in
the sense that we can build a proper adversarial sequence, but, on the other side,
we strongly believe that, in practice, this algorithm performs effectively. With
this we mean that p ≤ hmax(T) should be closer to log n than to n. This intuition
is supported by the preliminary experimental results discussed in Section 4.

3.3 Per Item Processing Time (PIPT)

Theorem 3. The amortized processing time of the algorithm LS for the item
e ∈ Si is O(h + n·log n

m + 1), where h is the average of the height of the tree
during the whole execution of the algorithm.

Proof. As we can see from the pseudo code of LS (Algorithm 1), when we see
the current edge from the stream we need to: i) Find the index-nodes tu, tv of
the nodes (u, v) in e, ii) find, in the tree T , the relative position of tu and tv,
and iii) execute the case relative action. It is easy to see that the first operation
needs 2 find, and the second operation is bounded by 2 · h(T e

i), where h(T e
i) is

the height of the tree during stream Si, before reading of element e; we denote
by h the average of h(T e

i) during the whole execution of the algorithm. The third
one, depending on the case, needs the union of the nodes involved (case 1), and
a constant time (all the other cases). The PIPT depends on the efficiency of
the find and union operation, therefore if we implement the Union/Find with
a QuickFind with Union by size [17], we know that the find costs O(1) per
operation, and the union costs O(n log n) for the union of at most n − 1 sets.
Note that the number of union operations is bounded by the number n of nodes in
G, and we see at least m edges (the length of S0), therefore the overall amortized
time (PIPT) is O(h + n·log n

m + 1). ��
As we will see in the next section, the above bound seems too pessimistic since
our results show that h, theoretically bounded by n, is in practice close to log n.

4 Experimental Evaluation

In this section we briefly describe the results of an experimental evaluation of
the Algorithm LS . We emphasise that the goal of these experiments is to give

Computing Strongly Connected Components in the Streaming Model 201

a first impression about the effectiveness of LS , and the engineering of a high-
performance implementation goes beyond our scope.

It is important to underline that the streams are read/written from secondary
storage disks, in order to simulate the characteristics of the W−Stream model.
This allows us (end of this section) to compare the effectiveness of this ap-
proach with the already mentioned heuristics [24,10] for SCC in external memory
model.

The algorithms. We compare the performance of LS against the well known
Boost library (www.boost.org) implementation of the classical algorithm of Tar-
jan based on DFS. This is a traditional offline algorithm, where all the input is
stored in main memory. Note that, in our implementation, to save space we used
a hybrid structure able to code both the information of T and U . In particular,
we remark that this structure needs just 2 vectors of integers (4 Bytes) both of
length n = |V | (thus the occupation is ≈ 2n logn bits). To achieve this space im-
provement we pay a little degradation of the PIPT. We then recall that Tarjan’s
algorithm needs, in theory, ≈ n(2 + g) log n bits, where g is the average degree
of the graph. It follows that LS memory occupation is optimal for any g ≥ 1 and
the theoretical gain is ≈ ng log n = m log n. We expect Boost to perform better
than LS but, as the input size grows, there will be some instances that Boost
will not be able to process.

The machines. We conducted the same set of experiments on three different
kind of machines. We list their characteristics below, highlighting the RAM
quantity, because it will be the discriminant parameter for the off-line solution
(Boost).

1. Desktop [2GB RAM]. This is an Intel Pentium IV, 3 GHz, running Linux
Mandriva. It has two drives with the XFS filesystem, especially suited to
sequentially read/write huge files (that will simulate our streams).

2. Server [16GB RAM]. This is a quadri-processor, dual-core AMD Opteron
8212, 2GHz, running Linux Debian. It has one internal drive (ext3 filesystem)
and one external drive (ntfs filesystem) connected through an USB 2.0 port.

3. Laptop [3GB RAM]. This is a completely off-the-shelf solution, with an
Intel dual-core P8600, 2.4Ghz, running Linux Ubuntu. It has an internal
drive (ReiserFS filesystem) and the already mentioned external drive (ntfs
filesystem) connected through an USB 2.0 port.

It is important to note that in all the above machines we used two different disks
to simulate the streams: in every step the input is read from one drive and the
output written on the other.

Datasets. The datasets used belong to two different classes:

1. Synthetic graphs: generated according to a pseudo random technique that
allowed to decide the number and the size of the SCCs and the average degree
of the graphs.

202 L. Laura and F. Santaroni

Table 1. Characteristics of the datasets and their static memory allocation

Dataset # nodes # edges Avg. degree Size Size MM Size MM
(approx.) (approx.) (approx.) (disk) Boost LS

Synth-1 52k 167k 3.20 1.3 MB 3 MB 1 MB
Synth-2 103k 483k 4.69 3.7 MB 6 MB 2 MB
Synth-3 203k 1.4M 7.13 11.1 MB 15 MB 3 MB
cnr-2000 325k 3.2M 9.88 24.5 MB 56 MB 4 MB
eu-2005 862k 19.2M 22.30 146.8 MB 288 MB 8 MB
Synth-4 2M 6M 3.15 49.2 MB 86 MB 17 MB
Synth-5 5M 25.5M 5.04 195.1 MB 276 MB 40 MB

indochina-2004 74M 194M 2.62 1.4 GB 2.8 GB 58 MB
uk-2002 18M 298M 16.1 2.2 GB 4.3 GB 145 MB

arabic-2005 22M 639M 28.14 4.8 GB 9.2 GB 175 MB
webbase-2001 118M 1G 8.63 7.6 GB > 16 GB !! 903 MB

it-2004 41M 1.1G 27.87 8.6 GB > 16 GB !! 316 MB
uk-2007-02 110M 3.9G 35.82 29.4 GB > 16 GB !! 841 MB

2. Webgraphs: this are samples of the webgraph [7,13], made available by Lab-
oratory of Web Algorithmic (law.dsi.unimi.it), and collected by
Ubicrawler [6] and the Webbase Project [9]. This are, to the best of our
knowledge, the largest real world graphs publicly available. Some of these
graphs have been also used in the experimental evaluation of [10].

In Table 1 we show the characteristics of the datasets, i.e. number of nodes,
edges, and average degree, together with their statical memory allocation: the
size needed to store the file in the disk, and the main memory occupation for
both the algorithms tested. As we can see, the graphs range from 52k nodes and
167k edges up to 110M nodes and 3.9G edges. The last three graphs require
more than 16GB RAM, and therefore Boost was not able to process them.

The time performance, in seconds, are shown in Table 2. As we expected, in
all the machines, if the graph can be stored in main memory, Boost is faster. On
the other hand we notice that the maximum memory required by LS is 841MB
for the largest graph analysed. As a matter of fact we can see that, amongst
the three machines, LS run faster on the Desktop, which has the optimized file
system and hard disk configuration, but it is not the most powerful machine.
This confirms the dominant role of the I/O time in this kind of computation.

The most interesting results are, probably, the relative values in the last two
columns of Table 2: as we can see the number of passes required in all the
computation is smaller than log(hmax(T)), as opposed to the theoretical bound
proved (Corollary 1: p � hmax(T)). Note that, for each graph, we repeated the
experiment many times by changing randomly the order of the edges in the
stream, but we did not observe significant variations on the number of passes
(rarely, only one pass more or less than the values reported in the table). This
supports the considerations expressed in observation 2.

Comparison with related result. We conclude by observing that three of
the graphs ("uk-2002”, "webbase-2001”, and "it-2004”) have been used also
in the experimental evaluation of the fully-external SCC heuristic of Cosgaya-
Lozano and Zeh [10]; if we (naively) compare the running time reported in [10]

Computing Strongly Connected Components in the Streaming Model 203

Table 2. Time comparison of the two algorithms, Boost and LS, on the three machines
used in these experiments. The last column reports the number of passes of LS. NO
RAM means that there were not enough RAM in the machine to run the algorithm.

Dataset Desktop Laptop Server hmax(T) # passes
(RAM: 2 GB) (RAM: 3 GB) (RAM: 16 GB) (approx.)
Boost LS Boost LS Boost LS (LS) (LS)

Synth-1 1 1 1 1 1 1 28 4

Synth-2 1 1 1 1 1 1 29 5

Synth-3 2 2 2 2 2 2 28 4

cnr-2000 3 3 3 3 2 3 28 5

eu-2005 10 12 9 15 9 13 27 5

Synth-4 15 42 17 43 13 49 210 6

Synth-5 35 125 33 133 23 127 211 5

indochina-2004 NO RAM 160 64 186 52 175 211 9

uk-2002 NO RAM 180 NO RAM 192 97 186 29 6

arabic-2005 NO RAM 225 NO RAM 225 184 243 211 7

webbase-2001 NO RAM 3543 NO RAM 3816 NO RAM 3798 211 10

it-2004 NO RAM 782 NO RAM 853 NO RAM 823 211 8

uk-2007-02 NO RAM 8069 NO RAM 8416 NO RAM 8344 212 8

with the values shown in Table 2, we can see that LS is between 2 and 9 times
faster (their experiments run on a Desktop comparable architecture); obviously,
a formal experimental comparison, that is beyond the scope of this paper, is
needed to assess the relative performance of the two approaches.

5 Conclusion

In this paper we presented the first algorithm in the (Semi-)W-Stream model to
compute the strongly connected components of a (directed) graph, represented
as a stream of edges. The algorithm, called Look and Select, uses a simple and
novel approach if compared to all the traditional SCC algorithms, that rely on
a Depth First Search (DFS).

We proved its correctness, per item processing time, and a bound on the
number of passes. In particular, this last result seems too pessimistic, depend-
ing on a peculiar adversarial order of the edges in the stream, and the small
experimental evaluation we performed supports this impression. To the best of
our knowledge no previous algorithm for SCCs computation was known nor in
datastream neither in external memory [27] (for which there are the mentioned
heuristics [24,10]). Furthermore, this algorithm can be used as a sieve to filter
a streaming graph, preserving its connectivity properties: more complex algo-
rithms can be designed by using it in a pre-processing step.

References

1. Abello, J., Buchsbaum, A., Westbrook, J.: A functional approach to external graph
algorithms. Algorithmica 32(3), 437–458 (2002)

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

204 L. Laura and F. Santaroni

3. Ausiello, G., Demetrescu, C., Franciosa, P., Italiano, G., Ribichini, A.: Small stretch
spanners in the streaming model: New algorithms and experiments. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 605–617. Springer,
Heidelberg (2007)

4. Ausiello, G., Firmani, D., Laura, L.: Real-time monitoring of undirected networks:
Articulation points, bridges, and connected and biconnected components. Networks
(to appear, 2011)

5. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2002)

6. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully dis-
tributed web crawler. Software: Practice & Experience 34(8), 711–726 (2004)

7. Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.L.: Graph structure in the web. Computer Networks 33(1-
6), 309–320 (2000)

8. Cheriyan, J., Mehlhorn, K.: Algorithms for dense graphs and networks on the
random access computer. Algorithmica 15(6), 521–549 (1996)

9. Cho, J., Garcia-Molina, H., Haveliwala, T., Lam, W., Paepcke, A., Raghavan, S.,
Wesley, G.: Stanford webbase components and applications. ACM Trans. Inter.
Tech. 6(2), 153–186 (2006)

10. Cosgaya-Lozano, A., Zeh, N.: A faster heuristic for strong connectivity of mas-
sive graphs. In: Proceedings of the 8th International Symposium on Experimental
Algorithms, SEA (2009)

11. Demetrescu, C., Escoffier, B., Moruz, G., Ribichini, A.: Adapting Parallel Algo-
rithms to the W-Stream Model, with Applications to Graph Problems. In: Kučera,
L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 194–205. Springer, Heidel-
berg (2007)

12. Demetrescu, C., Finocchi, R., Ribichini, A.: Trading off space for passes in graph
streaming problems. In: Proc. of SODA 2006, pp. 714–723 (2006)

13. Donato, D., Laura, L., Leonardi, S., Millozzi, S.: The web as a graph: How far we
are. ACM Trans. Internet Techn. 7(1) (2007)

14. Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing
and maintaining sparse spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 716–727. Springer, Heidelberg (2007)

15. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)

16. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the streaming model: the value of space. In: Proceedings of the 16th ACM/SIAM
Symposium on Discrete Algorithms (SODA), pp. 745–754 (2005)

17. Galil, Z., Italiano, G.: Data structures and algorithms for disjoint set union prob-
lems. ACM Comput. Surv. 23(3), 319–344 (1991)

18. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. In:
External Memory algorithms. DIMACS series in Discrete Mathematics and Theo-
retical Computer Science, vol. 50, pp. 107–118 (1999)

19. McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS,
vol. 3624, pp. 170–181. Springer, Heidelberg (2005)

20. Munro, I., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

Computing Strongly Connected Components in the Streaming Model 205

21. Muthukrishnan, S.: Data streams: Algorithms and applications. Foundations and
Trends in Theoretical Computer Science 1(2) (2005)

22. Ribichini, A.: Streaming Algorithms for Graph Problems. PhD thesis, Sapienza
University of Rome, Italy (2007)

23. Ruhl, J.: Efficient Algorithms for New Computational Models. PhD thesis, Mas-
sauchussets Institute of Technology (September 2003)

24. Sibeyn, J., Abello, J., Meyer, U.: Heuristics for semi-external depth first search on
directed graphs. In: Proceedings of SPAA 2002 (2002)

25. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

26. Vitter, J.: External memory algorithms and data structures: Dealing with massive
data. ACM Computing Surveys 33(2), 209–271 (2001)

27. Vitter, J.: Algorithms and data structures for external memory. Foundations and
Trends in Theoretical Computer Science 2(4) (2006)

Improved Approximation Algorithms for the

Max-Edge Coloring Problem

Giorgio Lucarelli1 and Ioannis Milis2

1 LAMSADE, Université Paris-Dauphine and CNRS
lucarelli@lamsade.dauphine.fr

2 Department of Informatics, Athens University of Economics and Business
milis@aueb.gr

Abstract. The max edge-coloring problem asks for a proper edge-colo-
ring of an edge-weighted graph minimizing the sum of the weights of the
heaviest edge in each color class. In this paper we present a PTAS for
trees and an 1.74-approximation algorithm for bipartite graphs; we also
adapt the last algorithm to one for general graphs of the same, asymp-
totically, approximation ratio. Up to now, no approximation algorithm
of ratio 2− δ, for any constant δ > 0, was known for general or bipartite
graphs, while the complexity of the problem on trees remains an open
question.

1 Introduction

In several communication systems messages are to be transmitted directly from
senders (input ports) to receivers (output ports) through direct connections es-
tablished by an underlying switching network (e.g., SS/TDMA [10], IQ switch ar-
chitectures [14]). Any node of such a system cannot participate in more than one
transmissions at the same time, while messages between different pairs of senders
and receivers can be transmitted simultaneously. A scheduler establishes succes-
sive configurations of the switching network, each one routing a non-conflicting
subset of the messages from senders to receivers. Given the transmission time of
each message, the transmission time of each configuration equals to the longest
message transmitted. The aim is to find a sequence of configurations such that
all the messages are transmitted and the total transmission time is minimized.

It is easy to see that this situation corresponds directly to the following gen-
eralized coloring problem: Given a graph G = (V, E) and a positive integer
weight w(e), for each edge e ∈ E, we seek for a proper edge-coloring of G,
M = {M1, M2, . . . , Mk}, where each color class (matching) Mi ⊆ E is assigned
the weight of the heaviest edge in this class, i.e., wi = max{w(e)|e ∈ Mi},
1 ≤ i ≤ k, and the sum of all color classes’ weights, W =

∑k
i=1 wi, is mini-

mized. In fact, senders and/or receivers correspond to the vertices of the graph
G, (transmission times of) messages correspond to (weights of) edges of G and
configurations correspond to matchings.

Although the graph G obtained is originally a weighted directed multi-graph
it can be considered as an undirected one, since the directions of its edges do
not play any role in the objective function.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 206–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improved Approximation Algorithms for the Max-Edge Coloring Problem 207

The above coloring problem is known as the Max Edge-Coloring (MEC) prob-
lem; clearly, for unit edge weights it reduces to the classical edge-coloring problem.
The analogous weighted generalization of the classical vertex-coloring problem
has been also addressed in the literature as Max (Vertex-)Coloring (MVC)
problem [19].

Remark that the MEC problem on a general graph, G, is equivalent to the
MVC problem on the line graph, L(G), of G. Thus, the results for the MVC
problem on a graph G apply also to the MEC problem on the graph L(G) and
vice versa, if both G and L(G) are in the same graph class. Note, however,
that this is true for general graphs and chains, but not for other special graph
classes, including bipartite graphs and trees, since they are not closed under line
graph transformation (e.g., the line graph of a bipartite graph is not anymore a
bipartite one).

The MEC problem can be also viewed as a parallel batch scheduling prob-
lem with conflicts between jobs [5,8]. According to the standard three field
notation for scheduling problems, the MEC problem is equivalent to 1 | p −
batch, E(G) | Cmax: Jobs correspond to the edges E(G) of a weighted graph
G and edge weights to processing times of jobs. The graph G describes incom-
patibilities between jobs, i.e., jobs corresponding to adjacent edges cannot be
scheduled (resp., colored) in the same batch (resp., by the same color).

Related work. It is well known that for general graphs it is NP-hard to ap-
proximate the classical edge-coloring problem within a factor less than 4/3 [12];
for bipartite graphs the problem becomes polynomial [15]. The MEC problem
is known to be non approximable within a factor less than 7/6 even for cubic
planar bipartite graphs with edge weights w(e) ∈ {1, 2, 3}, unless P=NP [3].
It is also NP-complete for complete graphs with bi-valued edge weights [2]. On
the other hand, the MEC problem is known to be polynomial for a few spe-
cial cases including bipartite graphs with edge weights w(e) ∈ {1, t} [5], chains
[7,11,13], stars of chains [17] and bounded degree trees [2]. It is interesting that
the complexity of the MEC problem on trees remains open.

Concerning the approximability of the MEC problem, a natural greedy (2 −
1
Δ

)-approximation algorithm for a general graph of maximum degree Δ has been
proposed in [14]. For bipartite graphs of Δ = 3, an algorithm that attains the
7/6 inapproximability bound has been presented in [3]. For bipartite graphs of
small maximum degrees, algorithms which improve the 2 − 1

Δ approximation
ratio have been also presented. However, the ratios of these algorithms either
exceed 2 [7,17] or they also tend asymptotically to 2 [2] as the maximum degree
of the input graph increases. In [2] has been also presented a 3/2-approximation
algorithm for trees, and an asymptotic 4/3-approximation algorithm for general
graphs with bi-valued edge weights and arbitrarily large maximum degree Δ.

The MVC problem has been also studied extensively during last years. It is
known to be non approximable within a factor less than 8/7 even for planar
bipartite graphs, unless P=NP [5,18]. This bound is tight for general bipartite
graphs as an 8/7-approximation algorithm is also known [3,18]. For the MVC
problem on trees a PTAS has been presented in [18,7], while the complexity of

208 G. Lucarelli and I. Milis

this case is open. Other results for the MVC problem on several graph classes
have been also presented in [5,3,19,18,7,6,13].

Our results and organization of the paper. Two interesting open questions
about the MEC problem concern the existence of an approximation algorithm
of ratio 2 − δ, for any constant δ > 0, for general or bipartite graphs, and the
complexity of the problem on trees. In this paper we present substantial improve-
ments towards these questions. To derive our results we efficiently exploit the
standard idea of repeatedly partitioning the input graph into a number of edge
induced subgraphs, concatenating the solutions for each of them and selecting
the best solution found. Up to now this idea has lead only to approximation
ratios that tend to 2 as the maximum degree of the input graph increases.

In the next section we present a PTAS for the MEC problem on trees; recall
that the situation for the MVC problem on trees is the same: a PTAS is known
while its complexity remains unknown. In Section 3, we succeed in beating the
2 − 1

Δ
approximation ratio of the natural greedy algorithm [14] for the MEC

problem in bipartite graphs by presenting an 1.74-approximation algorithm. In
addition, in Section 4, we adapt our algorithm for bipartite graphs to general
graphs yielding an approximation ratio which also tends asymptotically to 1.74
as the maximum degree of the input graph increases. Finally, we conclude in
Section 5.

Notation. In the following, we consider the MEC problem on an edge-weighted
graph G = (V, E), |V | = n, |E| = m, where a positive integer weight w(e) is
associated with each edge e ∈ E. We denote by M = {M1, M2, . . . , Mk} a proper
k-edge-coloring of G of weight W =

∑k
i=1 wi, where wi = max{w(e)|e ∈ Mi},

1 ≤ i ≤ k. By M∗ = {M∗
1 , M∗

2 , . . . , M∗
k∗} we denote an optimal solution to

the MEC problem on the graph G of weight OPT =
∑k∗

i=1 w∗
i . W.l.o.g., we

consider the matchings of any solution in non-increasing order of their weights,
i.e., w1 ≥ w2 ≥ · · · ≥ wk, and for the optimal solution w∗

1 ≥ w∗
2 ≥ · · · ≥ w∗

k∗ .
By dG(u) (or simply d(u)) we denote the degree of vertex u ∈ V and by Δ(G)

(or simply Δ) the maximum degree of the graph G. For a subset of edges of G,
E′ ⊆ E, |E′| = m′, we denote by G[E′] the subgraph of G induced by the edges
in E′ and by 〈E′〉 = 〈e1, e2, . . . , em′〉 an ordering of the edges in E′ such that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em′).

2 A PTAS for Trees

To obtain our scheme we use two basic ingredients: a transformation of the
MEC problem to the List Edge-Coloring problem [16] and a 2-approximation
algorithm for the MEC problem presented in [2].

The List Edge-Coloring problem is stated as follows.

List Edge-Coloring (LEC)
Instance: A graph G = (V, E), a set of k colors and a list of colors φ(e) ⊆
{1, 2, . . . , k} for each e ∈ E.

Improved Approximation Algorithms for the Max-Edge Coloring Problem 209

Question: Is there a proper k-edge-coloring of G such that each edge e is
assigned a color in its list φ(e)?

Given an instance of the MEC problem on a edge-weighted graph G = (V, E),
consider the following instance of the LEC problem: Choose a set of k edges of
G of weights w1 ≥ w2 ≥ · · · ≥ wk and let φ(e) = {i : w(e) ≤ wi, 1 ≤ i ≤ k}.
Then, a “yes” answer to this instance corresponds to a solution for the MEC
problem of weight W =

∑k
i=1 wi. There are

(|E|
k

)
, that is O(|E|k), different sets

of k edges of G to be considered and an optimal solution to the MEC problem
corresponds to such a set minimizing the weight W .

It is known that the LEC problem can be solved in O(|E| · Δ3.5) time for
trees [4], while it becomes NP-complete for bipartite graphs even for three colors
(k = 3) [16].

Therefore, the next proposition follows.

Proposition 1. For a fixed number of matchings k the MEC problem on trees
is polynomial.

In [2] a 2-approximation algorithm for the MEC problem on trees has been
presented. This algorithm combined with the 2 − 1

Δ -approximation algorithm
for general graphs [14] has led to a 3

2
ratio for trees. Here, we also exploit the

same algorithm to derive a PTAS. For the sake of completeness, we give below
the 2-approximation algorithm of [2] and its key property.

Algorithm TREES

1: Root the tree in an arbitrary vertex r;
2: for each vertex u in a pre-order traversal of the tree do
3: Let 〈Eu〉 = 〈eu

1 , eu
2 , . . . , eu

d(u)〉, and eu
j , 1 ≤ j ≤ d(u), be the edge between

u, u �= r, and its parent;
4: for i = 1 to d(u), i �= j, do
5: Insert edge eu

i into the first matching not containing other edge in Eu;

Proposition 2. [2] Algorithm Trees constructs a solution of exactly Δ match-
ings in O(|V | ·Δ · log Δ) time. For the weights of the matchings in this solution
it holds that w1 = w∗

1 and wi ≤ w∗
i−1, 2 ≤ i ≤ Δ.

To obtain our scheme, we repeatedly split a tree T = (V, E) into subtrees T [E1,j]
and T [Ej+1,m], j = 0, 1, . . . , m, induced by the j heaviest and the n− j lightest
edges of T , respectively (by convention, we consider T [E1,0] as an empty subtree).
Our scheme depends on a parameter p which bounds the number of available
colors (matchings) to be used for the subtree T [E1,j]. We obtain a solution for
the whole tree by concatenating an optimal solution of at most p − 1 colors
for T [E1,j], if there is one, and the solution obtained by Algorithm Trees for
T [Ej+1,m].

210 G. Lucarelli and I. Milis

Algorithm Scheme(p)
1: Let 〈E〉 = 〈e1, e2, . . . em〉;
2: for j = 0 to m do
3: Split the tree into two edge induced subtrees:

- T [E1,j] induced by edges e1, e2, . . . , ej

- T [Ej+1,n] induced by edges ej+1, ej+2, . . . , em

4: if there is a solution for T [E1,j] with at most p− 1 matchings then
5: Find an optimal solution for T [E1,j] with at most p− 1 matchings;
6: Run Algorithm Trees for T [Ej+1,m];
7: Concatenate the two solutions found in Lines 5 and 6;
8: Return the best solution found;

Theorem 1. Algorithm Scheme(p) is a PTAS for the MEC problem on trees.

Proof. Consider the iteration j, j ≤ m, of the algorithm where the weight of
the heaviest edge in T [Ej+1,m] equals to the weight of the i-th matching of an
optimal solution, i.e. w(ej+1) = w∗

i , 1 ≤ i ≤ p.
The edges of T [E1,j] are a subset of those appeared in the i − 1 heaviest

matchings of the optimal solution. Thus, an optimal solution for T [E1,j] is of
weight

OPT1,j ≤ w∗
1 + w∗

2 + . . . + w∗
i−1.

The edges of T [Ej+1,m] are a superset of those that belong in the k∗ − (i − 1)
lightest matchings of the optimal solution. The extra edges of T [Ej+1,m] are of
weight at most w∗

i and are contained in at most i − 1 matchings of an optimal
solution. Thus, an optimal solution for T [Ej+1,m] is of weight

OPTj+1,m ≤ w∗
i + w∗

i+1 + . . . + w∗
k∗ + (i − 1) · w∗

i = i · w∗
i + w∗

i+1 + . . . + w∗
k∗ .

By Proposition 2, Algorithm Trees returns a solution for T [Ej+1,m] of weight

Wj+1,m ≤ OPTj+1,m + w∗
i − w∗

Δ

≤ i · w∗
i + w∗

i+1 + . . . + w∗
k∗ + w∗

i

≤ (i + 1) · w∗
i + w∗

i+1 + . . . + w∗
k∗ .

Therefore, the solution found in this iteration j for the whole tree T is of weight

Wi = OPT1,j +Wj+1,m ≤ w∗
1 + w∗

2 + . . .+w∗
i−1 + (i +1) ·w∗

i +w∗
i+1 + . . .+ w∗

k∗ .

As the algorithm returns the best among the solutions found, we have p bounds
on the weight W of this best solution, i.e.,

Wi ≤ w∗
1 + w∗

2 + . . . + w∗
i−1 + (i + 1) · w∗

i + w∗
i+1 + . . . + w∗

k∗ , 1 ≤ i ≤ p.

To derive our ratio we denote by cji, 1 ≤ i, j ≤ p, the coefficient of the weight
w∗

j in the i-th bound on W and we find the solution of the system of linear
equations C ·xT = 1T . Using the standard Gaussian elimination method, we get
the following solution:

Improved Approximation Algorithms for the Max-Edge Coloring Problem 211

xi =
1

i · (Hp + 1)
, 1 ≤ i ≤ p.

By multiplying both sides of the i-th, 1 ≤ i ≤ p, inequality by xi and adding up

all of them we have

(
p∑

i=1

1
i · (Hp + 1)

)

· W ≤ OPT , that is
W

OPT
≤ Hp + 1

Hp
=

1 +
1

Hp
.

Algorithm Scheme(p) iterates |E| times. In each iteration: (i) an optimal solu-
tion, if any, with at most p−1 matchings for T [E1,j] is found by Proposition 1 in
O(|E|p−1 ·|E|·Δ3.5) time and (ii) Algorithm Trees of complexity O(|V |·Δ·log Δ)
is called for T [Ej+1,m]. Choosing p such that ε = 1

Hp
we get p = O(2

1
ε). Conse-

quently, we have a PTAS for the MEC problem on trees, that is an approxima-
tion ratio of 1+ 1

Hp
= 1+ε within time O

(|E| (|V | · Δ · log Δ + |E|p · Δ3.5
))

. �	

3 Beating the 2-approximation Ratio for Bipartite
Graphs

A promising idea in order to create an approximation algorithm for the MEC
problem on bipartite graphs is to repeatedly partition the input graph into
a number of edge induced subgraphs and then to find a solution for each of
them independently. This idea has led to the tight 8/7-approximation algorithm
for the MVC problem on bipartite graphs [3,18] as well as to the tight 7/6-
approximation algorithm for the MEC problem on bipartite graphs of maximum
degree Δ = 3 [3]. Moreover, it has been used by approximation algorithms for
the MEC problem on bipartite graphs that achieve ratios depending on their
maximum degree [7,17,2]. In this section we are able to give a tighter analysis of
the same idea based on a generalized graph-theoretic lemma (Lemma 1 below)
for the existence and finding of a (g, f)-factor in a graph. This analysis leads to
an 1.74-approximation ratio for the MEC problem on bipartite graphs of any
maximum degree.

Consider an ordering 〈E〉 = 〈e1, e2, . . . , em〉 of the edges of G. Let us denote
by (p, q), 0 ≤ p < q ≤ m, a partition of G into subgraphs G[E1,p], G[Ep+1,q] and
G[Eq+1,m]; by convention, we define E1,0 = ∅ and E0,q = E1,q. By d1,q(u) we
denote the degree of vertex u in the subgraph G[E1,q] and by Δ1,q the maximum
degree of this subgraph. It is well known that bipartite graphs are Δ-colorable
[15]; such a coloring can be found in polynomial time and yields a Δ-coloring
solution for the MEC problem. For a partition (p, q) of G, we define a critical set
of edges A ⊆ Ep+1,q , such that each vertex u ∈ V of degree d1,q(u) > Δ1,p has
degree d1,q(u) − Δ1,p ≤ dA(u) ≤ Δ1,q − Δ1,p. The proposed algorithm relies on
the existence of such a critical set of edges A: a solution for the subgraph G[E1,q]
is found by concatenating a Δ1,p-coloring solution for the subgraph G[E1,q \ A]
and a (Δ1,q −Δ1,p)-coloring solution for the subgraph G[A], if A exists, and by
a Δ1,q-coloring of the subgraph G[E1,q], otherwise. For each partition (p, q), the

212 G. Lucarelli and I. Milis

algorithm computes a solution for the input graph G by concatenating a solution
for G[E1,q] and a Δ-coloring solution for G[Eq+1,m]. The algorithm computes
also a Δ-coloring solution for the input graph and returns the best among them.

Algorithm Bipartite

1: Find a Δ-coloring solution for G;
2: for p = 0 to m− 1 do
3: for q = p + 1 to m do
4: Find, if any, a critical set of edges A in G[Ep+1,q];
5: if A exists then
6: Find a Δ1,p-coloring solution for G[E1,q \ A];
7: Find a (Δ1,q −Δ1,p)-coloring solution for G[A];
8: else
9: Find a Δ1,q-coloring solution for G[E1,q];

10: Find a Δ-coloring solution for G[Eq+1,m];
11: Find a solution for G by concatenating the solutions found either in Lines 6,7

or in Line 9 with the one found in Line 10;
12: Return the best among the solutions found in Lines 1 and 11;

The following lemma shows that the check in Line 4 of Algorithm Bipartite
can be done in polynomial time.

Lemma 1. For a partition (p, q) of a graph G = (V, E), a critical set of edges
A, if any, can be found in O(|V |3) time.

Proof. A (g, f)-factor of a graph G is a spanning subgraph F such that g(u) ≤
dF (u) ≤ f(u), for all u ∈ V . Recall that A ⊆ Ep+1,q and consider the subgraph
G[Ep+1,q]. For each vertex u of G[Ep+1,q] we define g(u) = max{0, d1,q(u)−Δ1,p}
and f(u) = Δ1,q − Δ1,p. Then, there exists a critical set of edges A ⊆ Ep+1,q

if and only if there exists a (g, f)-factor in G[Ep+1,q]. It is known that such a
factor, if any, can be found in O(|V |3) time [1]. �	
Theorem 2. Algorithm Bipartite achieves an 1.74-approximation ratio for
the MEC problem on bipartite graphs.

Proof. The solution obtained by a Δ-coloring of the input graph computed in
Line 1 of the algorithm is of weight W1 ≤ Δ · w∗

1 .
Consider the partition (p, q) of G where w(ep+1) = w∗

� i
2� and w(eq+1) = w∗

i ,

for 2 ≤ i ≤ Δ (recall that w∗
1 ≥ w∗

2 ≥ · · · ≥ w∗
k∗ and k∗ ≥ Δ). In such an

iteration, all the edges in E1,p belong to
⌈

i
2

⌉−1 ≥ Δ1,p matchings of an optimal
solution M∗, and all the edges in E1,q belong to i−1 ≥ Δ1,q colors of an optimal
solution M∗.

If Δ1,q = Δ1,p then the set A does not exist. Hence, a Δ1,q-coloring of G[E1,q]
yields a solution of weight at most

(⌈
i
2

⌉− 1
) · w∗

1 for this subgraph.
If Δ1,q > Δ1,p then a critical set of edges A exists. Indeed, in this case

the matchings M∗
� i

2�, M
∗
� i

2�+1
, . . . , M∗

i−1 of M∗ always contain some edges from

Improved Approximation Algorithms for the Max-Edge Coloring Problem 213

Ep+1,q, for otherwise all the edges in E1,q belong to
⌈

i
2

⌉ − 1 matchings of M∗,
a contradiction; these edges of Ep+1,q could be a critical set of edges A for the
partition (p, q). Thus, a Δ1,p-coloring solution of G[E1,q \A] and a (Δ1,q −Δ1,p)-
coloring solution for G[A] yield a solution for the subgraph G[E1,q] of weight
at most Δ1,p · w∗

1 + (Δ1,q − Δ1,p) · w∗
� i

2� ≤ (⌈ i
2

⌉− 1
) · w∗

1 +
⌊

i
2

⌋ · w∗
� i

2�, since

Δ1,p ≤ ⌈ i
2

⌉− 1, Δ1,q ≤ i − 1 and w∗
1 ≥ w∗

� i
2�.

Finally, a Δ-coloring solution for G[Eq+1,m] is of weight at most Δ · w∗
i .

Hence, for such a partition (p, q) the algorithm finds a solution for the whole
input graph of weight

Wi ≤
(⌈

i

2

⌉

− 1
)

· w∗
1 +
⌊

i

2

⌋

· w∗
� i

2� + Δ · w∗
i , 2 ≤ i ≤ Δ.

As in the case of trees, the algorithm returns the best among the solutions found.
Hence, we have Δ bounds on the weight W of this best solution, i.e.,

W1 ≤ Δ · w∗
1 , if i = 1, and

Wi ≤
(⌈

i

2

⌉

− 1
)

· w∗
1 +
⌊

i

2

⌋

· w∗
� i

2� + Δ · w∗
i , if 2 ≤ i ≤ Δ.

Solving again the system of linear equations C ·xT = 1T , where cji, 1 ≤ i, j ≤ Δ,
is the coefficient of the weight w∗

j in the i-th bound on W , we get the following
solution for the case where the maximum degree of the graph is a power of 2:

xi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⌊
log Δ

i

⌋

∑

j=0

⎛

⎝−
(−1

Δ

)j+1 2j
∑

y=1

⎛

⎝
j∏

z=1

(

2
z−1

(i − 1) +

⌈
y

2j−z+1
− 1

2

⌉)
⎞

⎠

⎞

⎠ , if Δ ≥ i ≥ 2

1

Δ

⎛

⎝1 − x2 −
Δ∑

j=3

(⌈
j

2

⌉

− 1

)

xj

⎞

⎠ , if i = 1.

For the case where the maximum degree of the input graph is not a power of 2
the solution of the system becomes more complicated:

xi =

⌊
log Δ

i

⌋

∑

j=0

⎛

⎝−
(−1

Δ

)j+1 2j
∑

y=1

⎛

⎝
j∏

z=1

(

2
z−1

(i − 1) +

⌈
y

2j−z+1
− 1

2

⌉)
⎞

⎠

⎞

⎠ −

(−1

Δ

)⌊log Δ
i

⌋
+2

⎛

⎝Δ−i+1−∑
⌊
log Δ

i

⌋

r=0 ((i−1)2r)

⎞

⎠

∑

y=1

⎛

⎜
⎜
⎝

⌊
log Δ

i

⌋
+1

∏

z=1

(

2z−1(i − 1) +

⌈
y

2

⌊
log Δ

i

⌋
+2−z

− 1

2

⌉)
⎞

⎟
⎟
⎠

while x1 is the same as in the previous case.

The approximation ratio of our algorithm is clearly
W

OPT
≤ 1
∑Δ

i=1 xi

.

Given the above formulas for the values of the multipliers xi, i = 1, 2, ..., Δ, we
studied the behavior of this ratio using Mathematica and it is found to tend to
1.74 as Δ increases. In Table 1 in our concluding section, we give some indicative
values of our approximation ratio. �	

214 G. Lucarelli and I. Milis

4 An Adaptation for General Graphs

The idea of splitting the input graph into three edge induced subgraphs and
creating a Δ-coloring solution for each of them can be also exploited for general
graphs. However, in this case, it is NP-complete to find, if any, a Δ-coloring
solution of the input graph [12]. Instead of this, a (Δ + 1)-coloring solution can
be found in polynomial time [9]. Note that Lemma 1 holds for general graphs,
and hence a critical set of edges A, if any, can be found in polynomial time.

Theorem 3. There is an asymptotic 1.74-approximation ratio for the MEC
problem on general graphs.

Proof. The analysis is almost the same as in the bipartite case. Considering the
partition (p, q) where w(ep+1) = w∗

� i
2� and w(eq+1) = w∗

i ; the difference is that if

the set A exists then at most (i) a
⌈

i
2

⌉
-coloring solution is created for G[E1,q \A],

(ii) a
(⌊

i
2

⌋
+ 1
)
-coloring solution is created for G[A], and (iii) a (Δ+1)-coloring

solution is created for G[Eq+1,m].
Therefore, as in the previous case we have Δ bounds on the weight W of this

best solution, i.e.,

W1 ≤ (Δ + 1) · w∗
1 , if i = 1,

W2 ≤ w∗
1 + (Δ + 1) · w∗

2 , if i = 2,

W3 ≤ w∗
1 + w∗

2 + (Δ + 1) · w∗
3 , if i = 3,

W4 ≤ w∗
1 + 3w∗

2 + (Δ + 1) · w∗
4 , if i = 4, and

Wi ≤
⌈

i

2

⌉

· w∗
1 +
(⌊

i

2

⌋

+ 1
)

· w∗
� i

2� + (Δ + 1) · w∗
i , if 5 ≤ i ≤ Δ.

Note that, for i = 2, 3 or 4, the subgraph G[E1,q \ A] is of maximum degree at
most one, and hence an optimal solution of one matching is created in this case.
Analogous remark can be done for the subgraph G[A] for i = 3.

Solving the adapted system of linear equations as in the proof of Theorem 2,

we find a solution xi, 1 ≤ i ≤ Δ, such that
W

OPT
≤ 1
∑Δ

i=1 xi

. For the case where

the maximum degree of the graph is a power of 2, this solution is:

xi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
⌊
log Δ

i

⌋

j=0

(

−
(

−1
Δ+1

)j+1∑ 2j

y=1

(∏ j
z=1

(
2z−1(i − 1) +

⌈
y

2j−z+1 + 1
2

⌉)))

, if Δ ≥ i ≥ 5

1−4x7−5x8
Δ+1 , if i = 4

1−3x5−4x6
Δ+1 , if i = 3

1−x3−3x4
Δ+1 , if i = 2

1
Δ+1

(
1 − x2 − x3 − x4 −∑Δ

j=5

⌈
j
2

⌉
xj

)
, if i = 1.

Studying again the ratio
W

OPT
using Mathematica it is found to tend to 1.74 as

Δ decreases (see Table 1 below). �	

Improved Approximation Algorithms for the Max-Edge Coloring Problem 215

Table 1. Approximation ratios for the MEC problem on general and bipartite graphs
for different values of Δ

Δ 23 26 29 212 215 218

Bipartite graphs 1.60188 1.71809 1.73409 1.73612 1.73637 1.73640
General graphs 1.99605 1.78855 1.74345 1.73730 1.73652 1.73642

5 Conclusions

We presented improved results towards two open questions for the MEC prob-
lem: its complexity on trees and the existence of an approximation algorithm for
general and bipartite graphs of ratio 2 − δ, for any constant δ. We decrease the
approximability gaps for both questions by presenting a PTAS for trees (improv-
ing the known 3/2 approximation ratio), and an 1.74-approximation algorithm
for bipartite and general graphs (see Table 1).

Note that our ratios for bipartite graphs are better than the 2− 1
Δ

ratio of the
greedy algorithm in [14] for any Δ ≥ 4; recall that for Δ = 3 a 7/6-approximation
algorithm [3] is known. For general graphs our ratios outperform the 2− 1

Δ ratio
for any Δ ≥ 13.

To explain the behavior of our approximation ratios it is worth to observe
that the ratio for general graphs decreases with Δ, while for bipartite graphs
increases with Δ. This is because in polynomial time we can find a (Δ + 1)-
coloring for general graphs, instead of a Δ-coloring for bipartite graphs. Note that
the standard Δ+1

Δ
-approximation ratio for the classical edge-coloring problem of

general graphs (implied by Vizing’s Theorem [20]) exhibits the same behavior
and also decreases with Δ.

Acknowledgement. We would like to thank Professor Paris Vassalos for his
help on the linear algebra used in this paper.

References

1. Anstee, R.P.: An algorithmic proof of Tutte’s f -factor theorem. Journal of Algo-
rithms 6, 112–131 (1985)

2. Bourgeois, N., Lucarelli, G., Milis, I., Paschos, V.T.: Approximating the max-edge-
coloring problem. Theoretical Computer Science 411, 3055–3067 (2010)

3. de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted
coloring on planar, bipartite and split graphs: Complexity and approximation.
Discrete Applied Mathematics 157, 819–832 (2009)

4. de Werra, D., Hoffman, A.J., Mahadev, N.V.R., Peled, U.N.: Restrictions and pre-
assignments in preemptive open shop scheduling. Discrete Applied Mathematics 68,
169–188 (1996)

5. Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling of
compatible jobs. Journal of Scheduling 10, 111–127 (2007)

6. Epstein, L., Levin, A.: On the max coloring problem. In: Kaklamanis, C., Skutella,
M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)

216 G. Lucarelli and I. Milis

7. Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and
approximability results. Information Processing Letters 97, 98–103 (2006)

8. Finke, G., Jost, V., Queyranne, M., Sebő, A.: Batch processing with interval graph
compatibilities between tasks. Discrete Applied Mathematics 156, 556–568 (2008)

9. Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edge-
coloring graphs. Technical Report TRECIS-8501, Tohoku University (1985)

10. Gopal, I.S., Wong, C.: Minimizing the number of switchings in a SS/TDMA system.
IEEE Transactions On Communications 33, 497–501 (1985)

11. Halldorsson, M.M., Shachnai, H.: Batch coloring flat graphs and thin. In: Gud-
mundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 198–209. Springer, Heidelberg
(2008)

12. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10,
718–720 (1981)

13. Kavitha, T., Mestre, J.: Max-coloring paths: Tight bounds and extensions. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 87–96.
Springer, Heidelberg (2009)

14. Kesselman, A., Kogan, K.: Nonpreemptive scheduling of optical switches. IEEE
Transactions on Communications 55, 1212–1219 (2007)

15. König, D.: Über graphen und ihre anwendung auf determinantentheorie und men-
genlehre. Mathematische Annalen 77, 453–465 (1916)

16. Kubale, M.: Some results concerning the complexity of restricted colorings of
graphs. Discrete Applied Mathematics 36, 35–46 (1992)

17. Lucarelli, G., Milis, I., Paschos, V.T.: On the max-weight edge coloring problem.
Journal of Combinatorial Optimization 20, 429–442 (2010)

18. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring
problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)

19. Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-
coloring. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2004), pp. 562–571 (2004)

20. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3,
25–30 (1964)

New Bounds for Old Algorithms:

On the Average-Case Behavior of Classic
Single-Source Shortest-Paths Approaches�

Ulrich Meyer, Andrei Negoescu, and Volker Weichert

Institut für Informatik, Goethe-Universität Frankfurt am Main, Germany

Abstract. Despite disillusioning worst-case behavior, classic algorithms
for single-source shortest-paths (SSSP) like Bellman-Ford are still being
used in practice, especially due to their simple data structures. However,
surprisingly little is known about the average-case complexity of these
approaches. We provide new theoretical and experimental results for the
performance of classic label-correcting SSSP algorithms on graph classes
with non-negative random edge weights. In particular, we prove a tight
lower bound of Ω(n2) for the running times of Bellman-Ford on a class of
sparse graphs with O(n) nodes and edges; the best previous bound was
Ω(n4/3−ε). The same improvements are shown for Pallottino’s algorithm.
We also lift a lower bound for the approximate bucket implementation
of Dijkstra’s algorithm from Ω(n log n/ log log n) to Ω(n1.2−ε). Further-
more, we provide an experimental evaluation of our new graph classes in
comparison with previously used test inputs.

1 Introduction

Shortest-paths problems are among the most fundamental and also the most
commonly encountered graph problems, both in themselves and as subprob-
lems in more complex settings [1]. We consider the Single-Source Shortest-Paths
(SSSP) version on directed graphs G = (V, E) with |V | nodes and |E| weighted
edges. SSSP requires the computation of a shortest path weight dist(v) from one
specified source node s to every other node v in the graph.

Shortest-paths algorithms are usually based on iterative labeling methods. For
each node v in the graph they maintain a tentative distance label tent(v); tent(v)
is an upper bound on dist(v). The value of tent(v) refers to the weight of the
lightest path from s to v found so far (if any). Initially, the methods set tent(s) :=
0, and tent(v) := ∞ for all other nodes v �= s.

The simplest possible SSSP labeling approach repeatedly selects an arbi-
trary edge (u, v) with weight c(u, v) where tent(u) + c(u, v) < tent(v), and re-
sets tent(v) := tent(u) + c(u, v); this is called an edge relaxation. The method
stops if all edges satisfy tent(v) ≤ tent(u) + c(u, v) ∀(u, v) ∈ E. By then,

� Partially supported by the DFG grant ME 3250/1-2, and by MADALGO – Center for
Massive Data Algorithmics, a Center of the Danish National Research Foundation.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 217–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

218 U. Meyer, A. Negoescu, and V. Weichert

dist(v) = tent(v) for all nodes v. If dist(v) = tent(v) then the label tent(v) is
said to be permanent (or final); the node v is said to be settled in that case.

Improved labeling algorithms perform the selection in a more structured way:
they select nodes rather than edges. In order to do so they keep a candidate node
set Q of “promising” nodes. The algorithms repeatedly select a node u ∈ Q and
apply the following scan operation to it until Q finally becomes empty.

procedure SCAN(u)
Q := Q \ {u}
for all (u, v) ∈ E do

if tent(u) + c(u, v) < tent(v) then
tent(v) := tent(u) + c(u, v)
if v �∈ Q then
Q := Q ∪ {v}

The labeling methods can be subdivided into two major classes depending on
how they select the next node to be scanned: Label-setting methods exclusively
select nodes u with final distance value, i.e., tent(u) = dist(u) whereas label-
correcting methods may select nodes with non-final tentative distances as well.

1.1 Previous Work

A huge amount of SSSP results has appeared during the last 50 years. Most label-
setting approaches refine Dijkstra’s method [4] (considering nodes according to
increasing tentative distances) by improving the applied priority queue data
structure; see, e.g., the review by Zwick [18] for more details. By now, advanced
label-setting approaches manage to solve SSSP for non-negative edge weights
using close to linear worst-case time.

In contrast, classic label-correcting SSSP algorithms apply very simple data
structures but suffer from huge worst-case complexities: e.g., O(|V | · |E|) for
Bellman-Ford [2,6] (late 1950s / early 1960s), O(|V |2 · |E|) for Pallottino’s al-
gorithm [15] (from 1984), or even exponential for Pape’s approach [16] (from
1974). Nevertheless, some of these classic algorithms are still being used, often
due to their simplicity (e.g. Bellman-Ford within the Routing Information Pro-
tocol [11]). On certain inputs good implementations of simple label-correcting
algorithms also outperform more complicated label-setting approaches with bet-
ter worst-case bounds [3,17].

Average-case analysis is often applied to explain better-than-expected practi-
cal behavior of algorithms with poor worst-case guarantees. A survey of average-
case results for SSSP can be found in [13]. In particular, it has been shown that
SSSP on arbitrary directed graphs with random edge weights can be solved
in linear expected time using dedicated label-setting or label-correcting ap-
proaches [7,9,13]. Unfortunately, relatively little is known about the average-case
performance of more classic label-correcting SSSP algorithms like the ones men-
tioned above. The existence of sparse graph classes with random edge-weights
that require super-linear expected running time for Bellman-Ford and a few
other approaches has been shown in [13]. The asymptotic bounds, however, are
rather weak and the constant factors are not really convincing.

New Bounds for Old Algorithms 219

1.2 New Results

We significantly strengthen lower-bounds on the average-case complexity of a
number of label-correcting SSSP algorithms on sparse graph classes with O(n)
nodes and edges and random weights. For two representatives of the list class,
i.e. algorithms that apply simple list data structures like FIFO queues, we im-
prove the respective bounds from Ω(n4/3−ε) to Ω(n2): Bellman-Ford and Pal-
lottino’s algorithm (Section 2). Then (Section 3) we improve results for SSSP
algorithms with approximate priority queues: for the approximate bucket imple-
mentation of Dijkstra’s algorithm (aka ABI-Dijkstra) we lift the lower bound
from Ω(n log n/ log log n) to Ω(n1.2−ε). For Δ-stepping, which can be seen as a
refinement of ABI-Dijkstra, the bound is raised from Ω(n

√
log n/ log log n) to

Ω(n1.1−ε).
All previous constructions from [13] rely on a number of independent gadget

paths P1,P2, . . . such that traversing Pi takes less edges than Pi+1 but with
sufficiently high probability the shortest path weight of Pi is larger than that of
Pi+1. In contrast by using a new gadget design we can make Pi a subpath of
Pi+1 and hence much better utilize the whole set of graph nodes to force a huge
number of (expected) edge-relaxations.

Finally, in Section 4 we provide the results of some experiments that nicely
demonstrate that our new constructions do not only provide asymptotic im-
provements but also feature favorable constants. For example, our new worst-
case graphs cause Bellman-Ford to perform approximately 200 times more edge
relaxations than grid graphs, even for small n of about 6000.

2 Algorithms of the List Class

In the following we assume independent real random edge weights uniformly
chosen from the interval [0, 1].

Bellman-Ford Algorithm. The shortest-paths algorithm of Bellman-Ford
[2,6] , BF for short, is the classical label-correcting approach. It maintains the
set of promising vertices in a FIFO queue Q. The next node to be scanned is
removed from the head of the queue; a node v �∈ Q whose tentative distance is
reduced after an edge relaxation is appended to the tail of the queue.

The triangle subgraph (Figure 1) allows a simple recursive lower bound on
the number of scans of a given node. We assume that edge (u, v) appears before
edge (u, x) in the adjacency list of node u. Let #scan(u) denote the total amount

u v

x

Fig. 1. Triangle Subgraph

u v

x

Fig. 2. Alternative Subgraph

u v

Fig. 3. (u, v, k)-gadget

220 U. Meyer, A. Negoescu, and V. Weichert

of scans of a node u performed by Bellman-Ford. Further we denote by Zv the
random variable with value 1 if c(u, x) + c(x, v) < c(u, v) and 0 otherwise.

Lemma 1
#scan(v) ≥ #scan(u) + Zv

Proof. Since (u, x) is the only edge entering x, each scan of u will decrease
the tentative distance of x and node x is queued. Because of the FIFO order,
node x is scanned before the next scan of node u, therefore we obviously have
#scan(x) = #scan(u). In the case Zv = 0 a scan of x never decreases tent(v)
and we get #scan(v) = #scan(u). If Zv = 1, each scan of x results in a change of
tent(v) and thus v is scanned at least once between two scans of x and once after
the last scan of x. The first scan of u results in queueing v before x implying
#scan(v) ≥ 1 + #scan(x) = #scan(u) + Zv. �

Note the restriction about the order of edges in the adjacency lists of the tri-
angle subgraph. If we use the alternative subgraph from Figure 2 instead, this
restriction is not needed any more. All our constructions based on the triangle
subgraph can be modified to use the alternative subgraph, where the probability
for Zv = 1 differs, but this has only impact on constant factors of the runtime.
Using the triangle subgraph makes the proofs shorter and easier to understand.

Lemma 2. If the edge weights are real and drawn uniformly at random from
the interval [0, 1] and are independent of each other, we have P [Zv = 1] = 1

6
.

Proof. Let Y be the random variable denoting the weight of the path (u, x, v).
Variable Y is the sum of two independent uniform random variables, and it
follows P [Y < y] = 0.5y2 if 0 ≤ y ≤ 1 from [8]. Since the density function of
edge(u, v) is f(y) = 1 for 0 ≤ y ≤ 1 and f(y) = 0 otherwise, we get

P (Zv = 1) =
∫ ∞

−∞
f(y)P (Y < y)dy =

∫ 1

0

1/2y2dy = 1/6. �

Based on the triangle subgraph (Figure 1) we provide a graph class GBF on
which BF has quadratic runtime with high probability. This construction is also
the basis for further lower bound constructions. The graph class GBF (Figure 4)
with source node v0 consists of a chain of r triangle subgraphs, where node vr is
connected to 2r + 1 further nodes. The amount of nodes is n = 4r + 2 = Θ(r).

v2

x2

v1

x1

v0 vr

xr

vr-1

Fig. 4. Graph GBF

New Bounds for Old Algorithms 221

Theorem 1. There are input graphs with n nodes and O(n) edges and random
edge weights such that the Bellman-Ford algorithm with a FIFO queue requires
Θ(n2) operations with probability higher than 1 − exp (−Θ(n)).

Proof. We have to show that node vr is scanned Θ(n) times with high probability.
Each such scan involves Θ(n) edge relaxations. We define r random variables
Z1, . . . , Zr, where Zi = 1 if the path (vi−1, xi, vi) has a smaller weight than
the direct edge (vi−1, vi), and Zi = 0 otherwise. Let Z = Z1 + · · · + Zr be the
corresponding sum. By Lemma 1 we have #scan(vi) ≥ #scan(vi−1) + Zi. Since
the source node v0 is scanned once, we get #scan(vr) ≥ Z + 1. The random
variable Z follows the binomial distribution with parameter p = 1/6 (Lemma 2)
and has an expected value of 1

6
r. We apply the Chernoff bound [10]:

P

[

Z < (1 − 0.5)
1
6
r

]

< exp
(
− r

48

)
= exp(−Θ(n)),

showing that vr is scanned at least 1
12

r = Θ(n) times with high probability. �

Implementations of the BF algorithm often apply the parent-checking heuristic:
the outgoing edges of a node v in the queue are only relaxed if v’s parent, u,
concerning the current shortest path tree is not in the queue as well; otherwise
v is discarded from the queue. The heuristic improves the performance of the
Bellman-Ford algorithm on graph GBF, but if we use the alternative subgraphs
(Figure 2) instead of triangle subgraphs, the heuristic has no effect. We denote
this graph class as GALT.

The Algorithm of Pallottino. Pallottino’s algorithm [15], PAL for short,
works similar to Bellman-Ford, the only difference is that PAL maintains two
FIFO queues Q1 and Q2 instead of one. A node is inserted in Q2 if it has not been
scanned before and otherwise in Q1. The next node to be scanned is chosen from
Q1 and in the case that Q1 is empty, PAL uses Q2. This approach has worst-case
execution time O(n2 ·m) but performs very well on many practical inputs. The
algorithm requires linear time on our graph class GBF. In order to construct a
difficult graph class we modify GBF to force PAL to behave like BF. But first
we need the notion of gadgets (see Figure 3) from [13]:

Definition 1. A (u, v, k)-gadget consists of k + 2 nodes u, v, w1, . . . , wk and
the 2 · k edges (u, wi) and (wi, v). The parameter k is called the blow-up factor.

The expected shortest path weight between u and v in a (u, v, 1)-gadget is 1, in
a (u, v, 2)-gadget it is 23/30 [13].

The new graph GPAL (Figure 5) contains a new source node s, which is con-
nected to v0 by a chain C2 of 15r (u,v,1)-gadgets, and to a hub node u∗ by
a second chain C1 of 15r − 1 (u,v,2)-gadgets. Additionally, u∗ is connected to
every node in the original GBF except v0 by a single edge. Graph GPAL contains
n = Θ(r) nodes and is sparse.

222 U. Meyer, A. Negoescu, and V. Weichert

vr

xr

vr-1v1

x1

v0

C2

s

u∗
C1

GBF

Fig. 5. Graph GPAL

Lemma 3. Let W1 and W2 be random variables denoting the shortest path
weight from s to u∗ via C1 resp. v0 via C2. We have W1−W2 > r with probability
at least 1 − exp(−Θ(n)).

Proof. Variables W1 and W2 can be considered as the sum of Θ(r) random
variables, each denoting the distance between u and v in a single (u, v, 1)-gadget
(in the case of W2, (u, v, 2)-gadget) with their expected values of 1 and 23/30,
respectively [13]. By linearity of expectation we have E[W1] = 15r − 1 and
E[W2] = 11.5r, leading to E[W1] − E[W2] > 3r. We bound the probability that
W1 and W2 deviate at least r from expectation by Hoeffding’s inequality [5,12]:

P [|W1 − E[W1]| ≥ r] ≤ 2 · exp
(

− 2r2

60r − 4

)

= exp (−Θ(r)) = exp(−Θ(n)),

P [|W2 − E[W2]| ≥ r] ≤ 2 · exp
(

−2r2

40r

)

= exp (−Θ(r)) = exp(−Θ(n)).

The probability that at least one of the two random variables deviates more
than r from its expected value is by Boole’s inequality at most 2 · exp(−Θ(n)) =
exp(−Θ(n)). The complementary event implies W1 − W2 > r. �

Theorem 2. There are input graphs with n nodes and O(n) edges and random
edge weights such that PAL requires Θ(n2) operations with probability higher
than 1 − exp (−Θ(n)).

Proof. As long as all nodes from subgraph GBF are unreached, PAL scans the
nodes in the two parallel chains C1 and C2 in a breadth first search manner.
Since C2 contains one more gadget than C1, node u∗ will be scanned before v0

is queued the first time. Let VBF be the set of nodes from GBF. After the scan of
u∗ all nodes from VBF \{v0} will be inserted in Q2. When node v0 is scanned the
first time, both queues are empty, all nodes from VBF\{v0} are labeled with their
minimal distance via node u∗ and have been scanned at least once. From this
time step on, PAL will use only Q1 and behave like BF on graph GBF, where the
nodes from VBF \ {v0} initially are not labeled ∞, but with a tentative distance
of at least dist(u∗). To transfer the result of Theorem 1, it is sufficient that we
showed in Lemma 3 that dist(u∗)−dist(v0) > r holds with high probability and
that the size of GPAL exceeds that of GBF by only a constant factor. �

New Bounds for Old Algorithms 223

3 Algorithms with Approximate Priority Queues

ABI Dijkstra and Δ-Stepping. The ABI-Dijkstra algorithm [3] maintains a
one-dimensional array B of buckets where B[i] stores the set {v ∈ V : v is queued
and tent(v) ∈ [i · Δ, (i + 1) · Δ)}. The parameter Δ is a positive real number,
which is also called the bucket width. The algorithm scans nodes from the first
nonempty bucket (current bucket) in FIFO order and relaxes all outgoing edges
of these nodes. The runtime is lower bounded by the number of relaxations and
by the number of traversed buckets. A variant of ABI-Dijkstra is the Δ-Stepping
algorithm [14], which distinguishes light edges and heavy edges: a light edge has
weight at most Δ, the weight of a heavy edge is larger than Δ. When a node
is scanned, Δ-Stepping relaxes the light edges and postpones the relaxation of
heavy edges to the time when the current bucket finally gets empty.

We adapt our graph class GBF containing r triangle subgraphs by replacing
each edge in the triangles with a (u, v, k)-gadget, where k = r4. Let n = r5 denote
the total amount of nodes (up to constant factors). Additionally, a parallel chain
C̃ of 4n edges is added to source node v0 and node vr is connected to n nodes
(and not Θ(r) like in GBF). We denote the new graph class GABI (Figure 6).
The blow up factor k shall ensure that nodes v0, . . . , vr and x1, . . . , xr from the
triangle-gadget chain have small tentative distances (smaller than bucket width
Δ). In this case ABI behaves analogously to BF. On the other hand, if Δ is very
small, the chain C̃ forces many bucket traversals.

Lemma 4. The distance between nodes u and v in a (u, v, n4/5)-gadget is at
most n−2/5+ε with probability at least 1 − exp(−0.5n2ε), for 0 < ε < 2/5.

Proof. Let Y1, . . . , Yk be random variables denoting the length of the k = n4/5

parallel and independent two edge paths between u and v and Z = min{Yi} the
distance between u and v. A variable Yi is the sum of two independent uniform
random variables and thus the distribution function for 0 ≤ y ≤ 1 is given by
P (Yi ≤ y) = 1/2y2, [8]. It is clear that Z > z iff for all i the event Yi > z holds.
Therefore, using the inequality 1 + α ≤ exp(α) we get:

P

[

Z >
1

n2/5−ε

]

=

(

1 − 0.5
(

1
n2/5−ε

)2
)n4/5

≤ exp(−0.5n2ε)). �

vrv0

x1

v1

x2

v2 vr-1

xr

C̃

Fig. 6. Graph GABI with blow up factor k = 5

224 U. Meyer, A. Negoescu, and V. Weichert

Lemma 5. Let D1, D2 and D3 be random variables denoting the shortest path
weight between u and v in three different (u, v, k)-gadgets, where k ≥ 1. There
exists a constant c > 0, such that P [D1 + D2 < D3] ≥ c, for large k.

Proof. We look at the events D1 ≤ 1√
k
, D2 ≤ 1√

k
and D3 > 2√

k
which imply

D1+D2 < D3. The probability that the shortest path weight of a gadget is larger
than a value between 0 and 1 can be computed as in the proof of Lemma 4:

p1,2 = P

[

D1,2 ≤ 1√
k

]

= 1 − P

[

D1,2 >
1√
k

]

= 1 −
(

1 − 0.5
k

)k

p3 = P

[

D3 >
2√
k

]

=
(

1 − 0.5
(

4
k

))k

.

Using the identity ex = limk→∞(1 + x
k)k we get limk→∞(p1 · p2 · p3) =

(1 − e−0.5)2 · e−2 ≈ 0.021 > 0. The convergence implies the existence of the
desired constant c > 0. One has to note that we regarded just one special
case, where D1 + D2 < D3 holds. Simulations reveal that P [D1 + D2 < D3]
is about 0.08 for k = 1 and quickly converges to 0.13. �
Theorem 3. There are input graphs with O(n) nodes and edges and random
edge weights such that ABI-Dijkstra requires Ω(n1.2−ε) operations, with proba-
bility at least 1 − exp(−Θ(nε)), independent of the bucket size Δ.

Proof. First assume that the algorithm chooses Δ ≤ 2n−1/5+ε. Since C̃ consists
of a chain of 4n edges, it has an expected length of 2n. By applying the Chernoff
bound we get that the distance of the last node in C̃ is larger than n with
probability at least 1 − exp(−Θ(n)). In this case n/Δ = 0.5n1.2−ε buckets need
to be traversed. Now we assume Δ > 2n−1/5+ε. By Lemma 4 the weight of a
(u, v, n4/5)-gadget is at most n−2/5+ε with probability at least 1−exp(−0.5n2ε).
Applying Boole’s inequality the probability that this holds for all 3n1/5 gadgets
is at least 1 − 3n1/5 exp(−0.5n2ε) = 1 − exp(−Θ(nε)). Nodes v1, . . . , vr and
x1, . . . , xr are reachable from v0 by paths containing at most 2n1/5 gadgets.
Thus their maximal tentative distance is bounded by 2n−1/5+ε which is smaller
than Δ. This means that ABI acts like BF on nodes v1, . . . , vr and x1, . . . , xr.
Therefore #scan(vr) follows the binomial distribution with parameter p, where
0 < c < p < 1 (Lemma 5). A similar analysis to Lemma 1 reveals that node vr is
scanned Θ(n1/5) times with probability at most 1 − exp(−Θ(n1/5)). Each scan
of vr involves n edge relaxations leading to a runtime of Θ(n1.2) in this case. �
Theorem 4. There are input graphs with O(n) nodes and edges and random
edge weights such that the Δ-Stepping algorithm requires Ω(n1.1−ε) operations
with high probability, independent of bucket size Δ.

Proof. Unlike ABI-Dijkstra, the Δ-Stepping algorithm initially relaxes only lr
light edges out of node vr on each scan, not Θ(n). We have E[lr] = n · Δ for
Δ < 1, and it can be shown that lr = Ω(n ·Δ) with high probability. Repeating
the proof of Theorem 3 for Δ > n−0.1+ε we obtain Ω(n0.2) scans of vr, each
relaxing Ω(n0.9+ε) light edges. A choice of Δ ≥ n−0.1+ε results in the traversal
of n1.1−ε buckets. �

New Bounds for Old Algorithms 225

4 Experiments

We conducted our experiments on the Loewe-CSC 1. However, we measure per-
formance in terms of operations performed by the algorithm on the input graph.
In effect, our measurements are hardware independent. For most algorithms we
used a modified version of the source code by Cherkassky et. al [3] as well as their
grid generators. We wrote our own implementations of ABI-Dijkstra, to make Δ
a user controlled parameter, and Δ-Stepping as well as graph generators for GBF,
GALT and GPAL. We also implemented a graph generator for graph GM(ε), the
previous worst case graph for Bellman-Ford and Pallottino introduced in [13].

4.1 List Class Algorithms

We analyze the performance of BF on graphs GBF and GM(ε) produced by our
own generators and two-dimensional long grid graphs produced by the SPGRID
generator from [3], where the length in the first dimension exceeds the length
in the second dimension by a factor of 10. Bellman-Ford with parent checking
(BFP) on GALT and grid graphs and PAL on GPAL and grid graphs. For these
algorithms, the total number of edge relaxations rel is a measure for the overall
performance of the algorithm.

Table 1. Results of experiments on different graph classes. The relevant types of
operations are given in brackets.

Algorithm Graph Least squares fit Theoretical
of operation count bound

BF GBF 0.032·n1.99 [rel] Ω(n2)
BFP GALT 0.005·n1.99 [rel] Ω(n2)
PAL GPAL 0.0019·n1.995 [rel] Ω(n2)
BF GM(ε), ε = 0.1 0.450·n1.21 [rel] Ω(n4/3−ε)
BF Long grid 0.293·n1.53 [rel] –

BFP Long grid 0.201·n1.51 [rel] –
PAL Long grid 4.760·n [rel] –

ABI-Dijkstra GABI 0.031·n1.195 [rela + bt] Ω(n1.2−ε)
Δ-Stepping GABI 0.243·n1.087 [rela + bt] Ω(n1.1−ε)

The results of our experiments with these algorithms are presented in Figure 7
and in Table 1. The worst performance is shown by BF, which exceeds BFP by a
factor of 5 and PAL by a factor of approximately 178. A least squares fit yields for
all three an approximate growth of Θ(n2), as detailed in Table 1. The grid graphs’
bad performance is more owed to the relatively bad constants than the exponent,
and GM(ε) nearly reaches its expected number of scans, that is Ω(n4/3−ε) with
ε = 0.1. Both the grid graphs and GM(ε) are obviously much easier to handle
than our new worst-case graphs, especially for Pallottino’s algorithm.
1 See http://csc.uni-frankfurt.de/csc/index.php?id=51 for details.

226 U. Meyer, A. Negoescu, and V. Weichert

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 0 100000 200000 300000 400000 500000

ed

ge
 r

el
ax

at
io

ns

Input size

Bellman-Ford
Bellman-Ford with PC
Bellman-Ford on grid

Bellman-Ford with PC on grid
Pallottino

Bellman-Ford on GM(ε), ε=0.1

Fig. 7. Plot of total number of edge relaxations for different algorithms and graph
classes

4.2 Algorithms with Approximate Priority Queues

These two algorithms differ from the list class algorithms studied in 4.1 in the
data structures used and their impact on overall performance of the algorithm.
The total number of edge relaxations alone is not an appropriate measure of total
runtime in this case, therefore we look at the number of edge relaxations rel and
the number of traversed buckets bt . Both values depend heavily on the bucket
size Δ, and the optimal trade-off between rel and bt can be found at Δ = Θ(1/r)
in ABI-Dijkstra and Δ = Θ(1/

√
r) in Δ-Stepping, with r = Θ(n1/5).

A problem we encountered when testing our graph classes was memory con-
sumption. Since the number of nodes in GABI is in O(r5) and the expected
number of #scan(vr) ≈ r · 0.14 the graph sizes required for testing exceeded our
computers’ capacities. Therefore we ran tests on reduced graphs that simulated
the chain C̃ and the fan of vertices adjacent to vr and replaced the main graph
by a chain of our alternative subgraphs, with each (u, v, 1)-gadget having the
shortest path length of the corresponding (u, v, r4)-gadget.

The number of traversed buckets bt is determined by the length of chain C̃.
Since the chain length is simply the sum of 4n edges that are stochastically inde-
pendent random variables, it is feasible to simulate C̃ by a normally distributed
random variable with parameters μ = 4 · n · 0.5 with 0.5 being the expected
weight of one edge, and σ2 = 4 ·n ·1/12 with 1/12 being the variance of the edge
weight.

A lower bound on the number of edge relaxations for ABI-Dijkstra is estab-
lished as follows: For each scan of a major node except vr, major nodes being
nodes vi and xi, at least r4 edges are relaxed. Also, each scan of node vr results
in Ω(n) edge relaxations for ABI-Dijkstra and chain C̃ is good for another 4n
edge relaxations. For Δ-Stepping the calculation is modified to fit the partition
of edges in light and heavy: every edge is relaxed at least once, except for the
light edges exiting node vr, which are relaxed as often as vr is scanned. Their

New Bounds for Old Algorithms 227

 0

 5e+13

 1e+14

 1.5e+14

 2e+14

 0 5e+12 1e+13 1.5e+13 2e+13 2.5e+13 3e+13

O

pe
ra

tio
ns

Input size

ABI-Dijkstra
n * log(n)/log(log(n)

Δ-Stepping
n * (log(n)/log(log(n))0.5

Fig. 8. Operations performed by ABI-Dijkstra and Δ-Stepping on GABI. Even disre-
garding small constants in previous lower bounds, our new constructions cause higher
operation counts.

number, l(vr), is simulated by a Gaussian random variable. We denote these
approximate numbers of edge relaxations as rela. Figure 8 shows the number
of operations both ABI-Dijkstra and Δ-Stepping perform as #ops = rela + bt
(see also Table 1). While #opsABI grows with almost Ω(n1.2), #opsDST keeps
the expected bound of Ω(n1.1−ε). Both bounds are polynomial and therefore
an improvement over the previous lower bound of Ω(n · log n/ log log n) and
Ω(n · √log n/ log log n) respectively [13].

5 Conclusions

We have presented a number of improvements on average-case lower-bounds
for label-correcting SSSP algorithms. Our experiments have revealed that the
constructions not only feature better asymptotic bounds but also favorable con-
stants. Still, some questions remain open. While our Ω(n2) bound is tight for
Bellman-Ford, it is not clear whether even stronger results could be shown for
other algorithms of the list-class. Similarly, now that we managed to clearly raise
the bar for approximate bucket approaches beyond Θ(n log n), it is an interesting
question, whether ω(n1.2−ε) or even Ω(n2) could be reached.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs (1993)

2. Bellman, R.: On a routing problem. Quart. Appl. Math. 16, 87–90 (1958)
3. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest path algorithms: Theory

and experimental evaluation. Math. Programming 73, 129–174 (1996)

228 U. Meyer, A. Negoescu, and V. Weichert

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Num. Math. 1,
269–271 (1959)

5. Dubhashi, D.P., Panconesi, A.: Concentration of measure for the analysis of ran-
domized algorithms. Draft Manuscript (October 1998),
http://www.brics.dk/~ale/papers.html

6. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton Univ. Press, Princeton
(1963)

7. Goldberg, A.V.: A practical shortest path algorithm with linear expected time.
SIAM J. Comput. 37(5), 1637–1655 (2008)

8. Grinstead, C.M., Snell, L.J.: Grinstead and Snell’s Introduction to Probability.
American Mathematical Society, Providence (2006) (version dated July 4, 2006
edn.)

9. Hagerup, T.: Simpler computation of single-source shortest paths in linear average
time. Theory Comput. Syst. 39(1), 113–120 (2006)

10. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing
Letters 33, 305–308 (1990)

11. Hedrick, C.L.: Routing Information Protocol, RFC 1058 (1988)
12. Hoeffding, W.: Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association 58, 13–30 (1964)
13. Meyer, U.: Average–case complexity of single–source shortest–paths algorithms:

Lower and upper bounds. Journal of Algorithms 48(1), 94–131 (2003)
14. Meyer, U., Sanders, P.: Δ-stepping: A parallelizable shortest path algorithm. Jour-

nal of Algorithms 49, 114–152 (2003)
15. Pallottino, S.: Shortest-path methods: Complexity, interrelations and new propo-

sitions. Networks 14, 257–267 (1984)
16. Pape, U.: Implementation and efficiency of Moore-algorithms for the shortest route

problem. Math. Programming 7, 212–222 (1974)
17. Zhan, F.B., Noon, C.E.: Shortest path algorithms: An evaluation using real road

networks. Transportation Science 32, 65–73 (1998)
18. Zwick, U.: Exact and approximate distances in graphs - a survey. In: Meyer auf

der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg
(2001)

An Approximative Criterion for the Potential

of Energetic Reasoning�

Timo Berthold1, Stefan Heinz1, and Jens Schulz2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{berthold,heinz}@zib.de

2 Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany

jschulz@math.tu-berlin.de

Abstract. Energetic reasoning is one of the most powerful propagation
algorithms in cumulative scheduling. In practice, however, it is not com-
monly used because it has a high running time and its success highly
depends on the tightness of the variable bounds. In order to speed up
energetic reasoning, we provide an easy-to-check necessary condition for
energetic reasoning to detect infeasibilities.

We present an implementation of energetic reasoning that employs
this condition and that can be parametrically adjusted to handle the
trade-off between solving time and propagation overhead. Computational
results on instances from the PSPLib are provided. These results show
that using this condition decreases the running time by more than a half,
although more search nodes need to be explored.

1 Introduction

Many real-world scheduling problems rely on cumulative restrictions. In this
paper, we consider a cumulative scheduling problem with non-preemptable jobs
and fix resource demands. Such a problem is determined by earliest start and
latest completion times to all jobs, the resource demands, and a resource capacity
for each resource. Besides that precedence constraints between different jobs
might be present. The goal is to find start times for each job, a schedule, such
that the cumulative demands do not exceed the capacities and the precedence
constraints are satisfied. Computing such a schedule is known to be strongly
NP-hard [1].

Several exact approaches were developed that solve the problem by branch-
and-bound, using techniques from constraint programming, integer program-
ming, or satisfiability testing. In constraint programming, the main task is to
design efficient propagation algorithms that adjust variable bounds or detect in-
feasibility of a search node, in order to keep the search tree small. Such algorithms
are usually executed more than once per search node. The most powerful and

� Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 229–239, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

230 T. Berthold, S. Heinz, and J. Schulz

widely used algorithms in cumulative scheduling are time-tabling, edge-finding,
and energetic reasoning, see [2].

This paper concentrates on the evaluation of the energetic reasoning algo-
rithm. Its merit lies in a drastic reduction of the number of search nodes by
detecting infeasible nodes early. It has, however, a cubic running time in the
number of jobs and is only capable to find variable bound adjustments for rather
tight variable bounds.

Related work. Baptiste et.al. [2] provide a detailed overview on the main con-
straint programming techniques for cumulative scheduling. Therein, several the-
oretical properties of energetic reasoning are proven. A more general idea of
interval capacity consistency tests is given by Dorndorf et.al. [3]. In the same
paper, unit-size intervals are considered as a special case, which leads to the
time-tabling algorithm [4]. Recently, Kooli et.al. [5] used integer programming
techniques in order to improve the energetic reasoning algorithm. This approach
extends the method presented by Hidri et.al. [6], where the parallel machine
scheduling problem has been considered. In both works only infeasibility of a
subproblem is checked; variable bound adjustments are not performed.

Contribution. We derive a necessary condition for energetic reasoning to detect
infeasibilities. The condition is based on a relative energy histogram, which can
be computed efficiently. We show that this histogram underestimates the true
energy requirement of an interval by a factor of at most 1/3. We embed this
approximative result in a parametrically adjustable propagation algorithm which
detects variable bound adjustments and infeasibilities in the same run.

As our computational results reveal, the presented algorithm drastically re-
duces the total computation time for solving instances from the PSPLib [7] in
contrast to the pure energetic reasoning algorithm.

Outline. We introduce the resource-constrained project scheduling prob-
lem (RCPSP) and the general idea of energetic reasoning in Section 2. In Sec-
tion 3 we derive a necessary condition for energetic reasoning to be successful
and embed it into a competitive propagation algorithm. Experimental results on
instances from PSPLib [7] are presented in Section 4.

2 Problem Description and Energetic Reasoning

In resource-constrained project scheduling (RCPSP) we are given a set J of non-
preemptable jobs and a set R of renewable resources. Each resource k ∈ R has
bounded capacity Ck ∈ N. Every job j ∈ J has a processing time pj ∈ N and
resource demands rjk ∈ N for each resource k ∈ R. The start time Sj of job j is
constrained by its predecessors that are given by a precedence graph D = (V, A)
with V = J . An arc (i, j) ∈ A represents a precedence relationship, i.e., job i
must be finished before job j starts. The goal is to schedule all jobs with respect
to resource and precedence constraints, such that the makespan, i.e., the latest
completion time of all jobs, is minimized.

An Approximative Criterion for the Potential of Energetic Reasoning 231

The RCPSP can be modeled as a constraint program:

min max
j∈J

Sj + pj

subject to Si + pi ≤ Sj for all (i, j) ∈ A (1)
cumulative(S, p, r.k, Ck) ∀ k ∈ R (2)

The constraints (1) represent the precedence conditions. The cumulative con-
straints (2) enforce that at each point in time t, the cumulated demand of the
set of jobs running at that point, does not exceed the given capacities, i.e.,

∑

j∈J :t∈[Sj,Sj+pj)

rjk ≤ Ck for all k ∈ R.

Energetic reasoning is a technique to detect infeasibility or to adjust variable
bounds for one cumulative constraint k ∈ R, based on the amount of work that
must be executed in a specified time interval. The term energetic reasoning has
been defined for partially or fully elastic scheduling problems [2]. This procedure
is also known as Left-Shift/Right-Shift technique in case of cumulative scheduling
with non-interruptible jobs.

Due to the precedence constraints and an upper bound on the latest com-
pletion time of all jobs, we obtain earliest start times estj , earliest comple-
tion times ectj , latest start times lstj , and latest completion times lctj for
each job j ∈ J . Since the propagation algorithm is used during branch-and-
bound search, we usually refer to lower bounds (corresponding to estj) and
upper bounds (corresponding to lstj) of the start time variable Sj . The required
energy E(a, b) of all jobs in interval [a, b) is given by E(a, b) :=

∑
j∈J ej(a, b),

with

ej(a, b) := max{0, min{b − a, pj , ectj −a, b − lstj}} · rj .

Hence, ej(a, b) is the non-negative minimum of (i) the jobs maximum possible
energy in the interval [a, b), i.e., (b − a) · rj , (ii) the energy of job j, i.e., pj · rj ,
(iii) the left shifted energy, i.e., (ectj −a) · rj and (iv) the right shifted energy,
i.e., (b − lstj) · rj . Throughout the paper, we assume that intervals [a, b) are
non-empty, i.e., that a < b. With respect to ej(a, b), a problem is infeasible if
more energy is required than available. For a < b and a resource capacity C we
can deduce:

Corollary 1 ([2]). If E(a, b) > (b − a) · C, then the problem is infeasible.

Example 1. Consider a cumulative resource of capacity 2 and four jobs each
with a resource demand of 1, an earliest start time of 0 and a latest completion
time of 4. Three of these jobs have a processing time of 2. The fourth job has a
processing time of 3 instead. Figure 1 illustrates this setup. For the interval [1, 3),
the available energy is (3 − 1) · 2 = 4 . The first three jobs contribute one unit
each, whereas the fourth job adds two units to the required energy. This sums
up to E(1, 3) = 5. This shows that these jobs cannot be scheduled.

232 T. Berthold, S. Heinz, and J. Schulz

estj lstj ectj lctj

job 1 0 2 2 4

job 2 0 2 2 4

job 3 0 2 2 4

job 4 0 1 3 4

t
0 1 2 3 4

Fig. 1. Problem setup of Example 1

In order to detect infeasibility, O(n2) time-intervals need to be considered [2].
These intervals correspond to the start and completion times of the jobs and are
precisely determined in the following way:

O1 :=
⋃

j

({estj} ∪ {estj +pj} ∪ {lctj −pj}
)
,

O2 :=
⋃

j

({lctj} ∪ {estj +pj} ∪ {lctj −pj}
)

and

O(t) :=
⋃

j

{estj + lctj −t}.

The relevant intervals to be checked for energetic tests are given by (a, b) ∈
O1 ×O2, for a fixed a ∈ O1 : (a, b) ∈ O1 ×O(a), and for a fixed b ∈ O2 : (a, b) ∈
O(b) × O2, with a < b. These are O(n2) such intervals.

Besides detecting infeasibilities, variable bounds can be adjusted by energetic
reasoning. Due to symmetry reasons, we just consider the adjustments of lower
bounds (estj). Let

eleft
j (a, b) := max{0, min{b, ectj} − max{a, estj}} · rj

be the required energy in the interval [a, b) of job j if it is left-shifted, i.e., it
starts as early as possible. If [a, b) intersects with [estj , ectj) and the required
energy E(a, b)− ej(a, b) + eleft

j (a, b) exceeds the available energy in [a, b), then j
cannot start at its earliest start time and the lower bound estj of Sj can be
updated according to Theorem 1 which was proved in Baptiste et.al. [2].

Theorem 1 (Baptiste et.al. [2]). Let [a, b) with a < b and j ∈ J
with [estj , ectj) ∩ [a, b) �= ∅. If E(a, b) − ej(a, b) + eleft

j (a, b) > (b − a) · C holds,
then the earliest start time of job j can be updated to

estj = a +
⌈

1
rj

(
E(a, b) − ej(a, b) − (b − a) · (C − rj)

)
⌉

.

An Approximative Criterion for the Potential of Energetic Reasoning 233

In case of feasibility tests, we are able to restrict the set of intervals that need
to be considered. Whether such restrictions can also be made for variable bound
adjustments is an open problem. The currently fastest energetic reasoning prop-
agation algorithm runs in O(n3).

3 Restricted Energetic Reasoning

Energetic reasoning compares the available energy to the requested energy for
certain intervals. Therefore, it is more likely to detect variable bound adjustments
if the bounds are tight, i.e., the interval [estj , lstj], from which to choose Sj , is
small. If the bounds are loose and small intervals are considered, a job may
contribute almost no energy to that interval or in case of large intervals not
enough energy is required in order to derive any adjustments. This is a clear
drawback as we are faced with a very time-consuming algorithm. In order to come
up with a practical competitive propagation algorithm, we identify intervals that
seem promising to detect infeasibilities and variable bound adjustments.

3.1 Estimation of Relevant Intervals

Let us consider one resource with capacity C and cumulative demands rj for
each job j. The total energy requirement of job j is given by ej = pj · rj . We
measure the relative energy consumption ẽj := ej

lctj − estj
.

We define the relative energy histogram Ẽ : N → R and the relative en-
ergy Ẽ(a, b) of an interval [a, b) by:

Ẽ(t) :=
∑

j∈J :estj≤t<lctj

ej

lctj −estj
and Ẽ(a, b) :=

b−1∑

t=a

Ẽ(t).

This histogram approximates the required energy E(a, b) computed by energetic
reasoning for each point in time, as we prove in Theorem 2.

Theorem 2. Let an arbitrary non-empty interval [a, b) be given. Then

α · E(a, b) ≤ Ẽ(a, b)

with α > 1/3.

Proof. We show the approximation factor α for each job separately. By linearity
of summation, the theorem follows.

First, we show that we can restrict the study to the case where
estj ≤ a < b ≤ lctj . Therefore, let

ẽj(a, b) =
pj · rj

lctj −estj
· (min{lctj , b} − max{estj , a}).

If the energy is underestimated in [a, b), then it follows that estj < a or lctj > b,
since otherwise ẽj(a, b) = ej(a, b). Assume estj ≤ a < lctj < b. Then, ej(a, b)

234 T. Berthold, S. Heinz, and J. Schulz

= ej(a, lctj) and ẽj(a, b) = ẽj(a, lctj) holds. Applying a symmetrical argument
to a < estj < b ≤ lctj , we can restrict the setting to estj ≤ a < b ≤ lctj , such
that ẽj(a, b) = pj · rj · (b− a)/(lctj − estj). Note that in this case the energy gets
underestimated, i.e., 0 < ẽj(a, b) < ej(a, b).

Case 1. Consider the case ej(a, b) = pj ·rj . That means the job is fully contained
in [a, b). This is a contradiction to the fact that ẽj(a, b) < ej(a, b).

Case 2. Assume the following two properties:

(i) 1 ≤ min{ectj −a, b − lstj} < min{b − a, pj}
(ii) ej(a, b) = min{ectj −a, b − lstj} · rj .

Thus, α′ := ẽj(a, b)/ej(a, b) yields:

α′ =
pj(b − a)

(lctj − estj) · min{ectj −a, b − lstj} >
max{pj, b − a}

lctj − estj
.

Minimizing α′ with respect to 1 ≤ min{ectj −a, b − lstj} yields b − a = k
and pj := k + 1 for some k ∈ N, such that α′ = max{k + 1, k}/(3k) > 1/3.

Case 3. Finally, consider the case b − a < min{pj, ectj −a, b − lstj}. Thus,
ej(a, b) = (b − a) · rj . That means, the job is completely executed in [a, b),
i.e., [a, b) ⊆ [lstj , ectj). This yields the condition ectj ≥ lstj +(b − a), which is
equivalent to 2 pj − (b − a) ≥ lctj − estj . Thus,

ẽj(a, b) =
pj · rj

lctj − estj
(b − a) ≥ pj

2 pj − (b − a)
(b − a) · rj =

1
2 − b−a

pj
︸ ︷︷ ︸

=:α′′

ej(a, b).

We obtain α := min{α′, α′′} > 1/3. �

The proof shows that an underestimation of E(a, b) happens if the core of a
job, i.e., [lstj , ectj), overlaps this interval or if a job is associated with a large
interval [estj , lctj) and intersects just slightly with [a, b). The following corollary
states the necessary condition that we use in our propagation algorithm.

Corollary 2. Energetic reasoning cannot detect any infeasibility, if one of the
following conditions holds

(i) for all [a, b), a < b, Ẽ(a, b) ≤ 1
3 (b − a) C

(ii) for all t: Ẽ(t) ≤ 1
3 C.

The histogram Ẽ can be computed in O(n log n) by first sorting the earliest start
times and latest completion times of all jobs and then creating the histogram
chronologically from earliest event to latest event. Since there are O(n) event
points (the start and completion times of the jobs) only O(n) changes in the
histogram need to be stored.

An Approximative Criterion for the Potential of Energetic Reasoning 235

Algorithm 1. Restricted energetic reasoning propagation algorithm for
lower bounds
Input: Resource capacity C, set J of jobs with earliest start times estj , and a

scaling factor α.
Output: Earliest start times est′j for each job j or an infeasibility is detected.
Create relative energy histogram Ẽ.1

Compute and sort event points and sets O1 and O2.2

forall jobs j do3

est′j := estj .4

forall event points t in increasing order do5

if Ẽ(t) ≤ α ·C then6

continue.7

t1 := t.8

Let t2 be the first event point after t with Ẽ(t1) ≤ α · C.9

forall (a, b) ∈ O1 ×O2 : [a, b) ⊆ [t1, t2) do10

if E(a, b) > (b− a) · C then11

stop: infeasible.12

forall jobs j with [a, b) ∩ [estj , ectj) �= ∅ do13

if E(a, b)− ej(a, b) + eleft
j (a, b) > (b− a) · C then14

leftover := E(a, b)− ej(a, b)− (b− a) · (C − rj).15

est′j := max{est′j , a + �leftover /rj	}.16

if est′j > lstj then17

stop: infeasible.18

t := t2.19

3.2 Restricted Energetic Reasoning Propagation Algorithm

We now present a restricted version of energetic reasoning which is based on the
results of the previous section. Due to Theorem 2, only intervals [a, b) containing
points in time t with Ẽ(t) > 1/3 C need to be checked. Note that the cardinality
of this set may still be cubic in the number of jobs. We introduce an approach,
in which we only execute the energetic reasoning algorithm on interval [t1, t2) if

∀ t ∈ [t1, t2) : Ẽ(t) > α · C

holds. For given Ẽ, this condition can be checked in O(n). If it holds, we check
each pair (a, b) ∈ O1 ×O2 with [a, b) ⊆ [t1, t2) in order to detect infeasibility or
to find variable bound adjustments.

The procedure is captured in Algorithm 1. Here only the propagation of lower
bounds is shown, upper bound adjustments work analogously.

As mentioned before, the relative energy histogram Ẽ(t) can be computed
in O(n log n) and needs O(n) space. The sets O1 and O2 also need O(n) space
and are sorted in O(n log n). Loops 5 and 10 together consider at most all O(n2)
intervals O1 × O2. Loop 13 runs over at most O(n) jobs. The computed value
for E(a, b) in line 11 can be used in the remaining inner loops and all other

236 T. Berthold, S. Heinz, and J. Schulz

calculations can be done in constant time, such that we are able to bound the
total running time.

Corollary 3. Algorithm 1 can be implemented in O(n3).

Asymptotically, it has the same running time as pure energetic reasoning, but the
constants are much smaller. Compared to the pure energetic reasoning algorithm
we only consider large intervals if the relative energy consumption is huge over
a long period. The savings in running time and further influences on the solving
process will be discussed in the following section.

4 Computational Results

We performed our computational experiments on the RCPSP test sets J30 and J60

from the PSPLib [7]. Each test set contains 480 instances with 30 and 60 jobs
per instance, respectively. The implementation was done in scip version 1.2.1.5,
which integrates cplex release version 12.1.0 as underlying LP solver. We used
the implementation of the cumulative constraint presented in [8].

The only scheduling specific propagation algorithm used was energetic reason-
ing and its parametric variants, using the necessary condition from Corollary 2.
A time limit of one hour was enforced for each instance. All computations were
obtained on Dual QuadCore Xeon X5550 2.67GHz computers (in 64 bit mode),
24GB of main memory, running a Linux system.

Parameter settings. According to Theorem 2, it suffices to consider only α > 1/3.
Choosing a value close to 1/3, however, results in checking the vast majority of
the intervals, similar to energetic reasoning. To evaluate the impact of different
values of α, we ran the algorithm with α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}. For
comparison, we further show results for α = 0.0 which refers to pure energetic
reasoning.

Evaluation of all instances. Table 1 shows aggregated computational results for
all instances from the test sets J30 and J60 that were solved by at least one

Table 1. Overview for 473 instances from J30 and 397 instances from J60. Only those
instances are considered that are solved by at least one solver.

J30 J60

α solved outs better worse bobj wobj solved outs better worse bobj wobj
0.0 465 8 – – – – 393 4 – – – –
0.5 467 6 69 77 3 1 387 10 43 45 1 6
0.6 471 2 81 64 3 0 388 9 45 43 1 5
0.7 472 1 89 53 3 0 388 9 49 37 1 4
0.8 473 0 94 51 3 0 391 6 55 34 1 3
0.9 473 0 105 40 3 0 392 5 59 30 1 4
1.0 472 1 102 40 3 1 392 5 57 31 1 3
1.1 465 8 72 84 3 4 375 22 45 39 1 19
1.2 443 30 52 110 3 13 358 39 38 56 1 35

An Approximative Criterion for the Potential of Energetic Reasoning 237

algorithm. These were 473 and 397 for J30 and J60, respectively. In both cases
the pure energetic reasoning algorithm, which corresponds to α = 0.0, serves as
reference solver. For J30, pure energetic reasoning failed to compute a proven
optimal solution on eight out of the 473 instances. This is shown in the column
“outs” while column “solved” displays the number of instances solved to proven
optimality. Choosing α = 0.8 or 0.9 solved all 473 instances, whereas a smaller
or larger value decreased the number of solved instances. Column “better” tells
how many instances were solved more than 10% faster than the reference solver
(pure energetic reasoning). Accordingly, “worse” expresses how often a solver
was more than 10% slower than the reference setting α = 0.0. Here, choosing
α = 0.9 performed best. Since some instances timed out, we show how often
better (“bobj”) or worse (“wobj”) primal bounds were found. Using the weak
propagation factor α = 1.2 yielded worst results. In this case, 30 instances could
not be solved, 110 were more than 10% slower, and 13 instances had a worse
primal bound compared to the reference solver.

For the test set J60, the results are similar, except that pure energetic rea-
soning performs best w.r.t. the number of solved instances. In contrast, for all
settings with α between 0.6 and 1.1, the number of “better” instances is greater
than the number of “worse” instances.

Evaluation of all optimal solved instances. Since many instances are either trivial
or could not be solved, Table 2 presents the results only for those instances that

(i) could be solved to optimality by all solvers,
(ii) at least one solver needed more than one search node, and
(iii) at least one solver needed more that one second of computational running

time.

That means, we exclude all extremely easy instances and those which at least
one of the solver was not able to solve. There are 112 and 32 instances remaining
for the test sets J30 and J60, respectively.

Columns “better” and “worse” (which have the same meaning as in Table 1)
reveal that values α ∈ {0.9, 1.0} are dominating all other settings w.r.t. the

Table 2. Overview on those instances (i) which are solved with all settings, (ii) where
at least one solver needed more than one search node, and (iii) at least one solver
needed more than one second. This results in 112 instances for the J30 test set and 32
for the J60 test set.

J30 J60

α better worse shnodes[k] shtime [sec] better worse shnodes[k] shtime [sec]
0.0 – – 314 12.7 – – 171 8.5
0.5 49 54 1664 16.1 8 17 1098 16.4
0.6 54 45 1676 10.8 10 15 1005 11.0
0.7 59 33 1679 7.6 11 13 1102 9.0
0.8 60 35 1883 6.3 14 11 1237 6.8
0.9 66 28 2174 5.1 17 9 1240 4.9
1.0 66 24 2895 5.3 16 9 1274 3.4
1.1 47 56 10336 14.4 15 9 2271 6.6
1.2 34 74 52194 54.4 10 20 18050 30.9

238 T. Berthold, S. Heinz, and J. Schulz

setting for α

time [sec]

0.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

5

15

25

35

45

55

(a) Running times for test set J30

setting for α

time [sec]

0.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

5

15

25

35

45

55

(b) Running times for test set J60

Fig. 2. Comparison of the running times shown in Table 2

running time, independently of the test set. This behavior can be seen in more
detail in the columns “shnodes” and “shtime” which state the shifted geometric
mean1 of all nodes and of the running time, respectively. These columns show
that pure energetic reasoning needs by far the fewest number of nodes. For each
instance of the parametric algorithm the number of nodes increases by at least a
factor of 5. The more we relax the value of α, the more nodes are needed. Besides
that, the weak propagation factor α = 1.2 performs worst for all criteria. The
best running times are gained with values 0.9 and 1.0 for α. In these cases the
restricted energetic reasoning was more than twice as fast as the pure energetic
reasoning algorithm. Finally, the development of the running times in shifted
geometric mean are illustrated in Figure 2.

5 Conclusions

We presented a necessary condition for energetic reasoning to detect infeasibili-
ties or to derive variable bound adjustments. This result was incorporated into
a parametrical adjustable version of energetic reasoning. By checking this condi-
tion, we only apply this powerful but expensive algorithm, when the estimated
energy is above a certain threshold α.

Computational results revealed that choosing α close to 1.0 can speed up the
search by a factor of two though the number of nodes drastically increases.

References

1. Blazewicz, J., Lenstra, J.K., Kan, A.H.G.R.: Scheduling subject to resource con-
straints: classification and complexity. Discrete Applied Mathematics 5(1), 11–24
(1983)

1 The shifted geometric mean of values t1, . . . , tn is defined as
(∏

(ti + s)
)1/n− s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.

An Approximative Criterion for the Potential of Energetic Reasoning 239

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling: applying con-
straint programming to scheduling problems. International Series in Operations Re-
search & Management Science, vol. 39, p. 198. Kluwer Academic Publishers, Boston
(2001)

3. Dorndorf, U., Phan-Huy, T., Pesch, E.: 10. In: Weglarz, J. (ed.) A survey of interval
capacity consistency tests for time- and resource-constrained scheduling, pp. 213–
238. Kluwer Academic, Boston (1999)

4. Klein, R., Scholl, A.: Computing lower bounds by destructive improvement: An
application to resource-constrained project scheduling. European Journal of Oper-
ational Research 112(2), 322–346 (1999)

5. Kooli, A., Haouari, M., Hidri, L., Néron, E.: IP-based energetic reasoning for the
resource constrained project scheduling problem. Electronic Notes in Discrete Math-
ematics 36, 359–366 (2010); ISCO 2010 - International Symposium on Combinatorial
Optimization

6. Hidri, L., Gharbi, A., Haouari, M.: Energetic reasoning revisited: application to
parallel machine scheduling. Journal of Scheduling 11, 239–252 (2008)

7. PSPLib: Project Scheduling Problem LIBrary, http://129.187.106.231/psplib/
8. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint inte-

ger programming approach for resource-constrained project scheduling. In: Lodi, A.,
Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 313–317. Springer,
Heidelberg (2010)

Speed Scaling for Energy and Performance with

Instantaneous Parallelism

Hongyang Sun1, Yuxiong He2, and Wen-Jing Hsu1

1 School of Computer Engineering, Nanyang Technological University, Singapore
{sunh0007,hsu}@ntu.edu.sg

2 Microsoft Research, Redmond, WA, USA
yuxhe@microsoft.com

Abstract. We consider energy-performance tradeoff for scheduling par-
allel jobs on multiprocessors using dynamic speed scaling. The objective
is to minimize the sum of energy consumption and certain performance
metric, including makespan and total flow time. We focus on designing
algorithms that are aware of the jobs’ instantaneous parallelism but not
their characteristics in the future. For total flow time plus energy, it is
known that any algorithm that does not rely on instantaneous paral-
lelism is Ω(ln1/α P)-competitive, where P is the total number of proces-
sors. In this paper, we demonstrate the benefits of knowing instantaneous
parallelism by presenting an O(1)-competitive algorithm. In the case of
makespan plus energy, which is considered in the literature for the first
time, we present an O(ln1−1/α P)-competitive algorithm for batched jobs
consisting of fully-parallel and sequential phases. We show that this al-
gorithm is asymptotically optimal by providing a matching lower bound.

Keywords: Energy, Flow time, Instantaneous parallelism, Makespan,
Multiprocessors, Parallel jobs, IP-clairvoyant, Speed scaling.

1 Introduction

Energy consumption has become a key consideration in the design of modern
high-performance computer systems. One popular approach to controlling energy
is by dynamically scaling the speeds of the processors, or dynamic speed scaling
[5, 9]. Since the seminal paper by Yao, Demers and Shenker [16], most researchers
have assumed the power function of sα when a processor runs at speed s, where
α > 1 is the power parameter. As this power function is strictly convex, the
energy consumption when executing a job can be significantly reduced by slowing
down the processor speed at the expense of the job’s performance. Thus, how to
optimally tradeoff energy and performance has become an active research topic.
(See [10, 1] for two surveys of the field.)

We study energy-performance tradeoff for scheduling parallel jobs on mul-
tiprocessors. A scheduling algorithm needs to have both a processor allocation
policy, which decides the number of processors allocated to each job at any time,
and a speed scaling policy, which decides the speeds of the allocated proces-
sors. We assume that the parallel jobs under consideration have time-varying

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 240–251, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Speed Scaling for Energy and Performance with Instantaneous Parallelism 241

parallelism over different phases of execution [8, 7, 14]. This poses additional
challenges compared to the speed scaling problem for sequential jobs. Our goal
is to minimize sum of energy consumption and some performance metric, which
in this paper includes either total flow time or makespan for a set of jobs. The
flow time of a job is the duration between its release and completion, and the
total flow time for a set of jobs is the sum of flow time of all jobs. The makespan
is the completion time of the last completed job. Both metrics are widely used
in scheduling literature. Although energy and flow time (or makespan) have dif-
ferent units, optimizing a combination of the two can be justified by looking at
both objectives from a unified point of view in terms of economic costs.

Since Albers and Fujiwara [2] initiated minimizing total flow time plus energy,
many results (e.g., [4, 11, 3, 6, 7, 14]) have been obtained under different online
settings. Some results assume that the scheduling algorithm is clairvoyant, that
is, it gains complete knowledge of a job, such as its total work, immediately upon
the job’s arrival; the other results are based on a more practical non-clairvoyant
setting, where the scheduler knows nothing about the job. Most of these results,
however, only concern scheduling sequential jobs on a single processor, and to the
best of our knowledge, no previous work has considered makespan plus energy.
The closest results to ours are by Chan, Edmonds and Pruhs [7], and Sun,
Cao and Hsu [14], who studied non-clairvoyant scheduling for parallel jobs on
multiprocessors to minimize total flow time plus energy. In both work, it is
shown that any non-clairvoyant algorithm that allocates processors of uniform
speed to a job will perform poorly, or Ω(P (α−1)/α2

)-competitive, where P is
the total number of processors. Intuitively, any non-clairvoyant algorithm may
allocate a “wrong” number of processors to a job compared to its parallelism,
thus either incurs excessive energy waste or causes severe execution delay. It turns
out that non-uniform speed scaling can alleviate the problem. A lower bound of
Ω(log1/α P) has been shown in this case for any non-clairvoyant algorithm that
allocates processors of different speeds to a job [7, 15].

In this paper, we consider a setting that lies in between clairvoyant and non-
clairvoyant settings. In particular, a scheduling algorithm is allowed to know
the available parallelism of a job at the immediate next step, or the instanta-
neous parallelism (IP). Any characteristic of the job in the future, such as its
remaining parallelism and work, is still unknown. Hence, we call such algorithms
IP-clairvoyant. In many parallel systems using centralized task queue or thread
pool, instantaneous parallelism is simply the number of ready tasks in the queue
or the number of ready threads in the pool, which is information practically
available to the scheduler. Our contributions include the following algorithmic
results that use instantaneous parallelism to schedule jobs:

– We present an O(1)-competitive algorithm with respect to total flow time
plus energy. This significantly improves upon any non-clairvoyant algorithm
and is the first O(1)-competitive algorithm for multiprocessor speed scaling
on parallel jobs.

– We present an O(ln1−1/α P)-competitive algorithm with respect to makespan
plus energy for batched parallel jobs consisting of sequential and fully-parallel

242 H. Sun, Y. He, and W.-J. Hsu

phases. We also give a matching lower bound of Ω(ln1−1/α P) for any IP-
clairvoyant algorithm.

For total flow time plus energy, the improved result of our IP-clairvoyant algo-
rithm over any non-clairvoyant algorithm comes from the fact that the knowledge
of instantaneous parallelism enables a scheduling algorithm to allocate a “right”
number of processors to a job at any time. This ensures no energy waste while
at the same time guaranteeing sufficient execution rate for the jobs. Moreover,
our IP-clairvoyant algorithm only requires allocating uniform-speed processors
to a job, thus may have better feasibility in practice.

In addition, compared to minimizing total flow time plus energy, where the
common practice is to set the power proportionally to the number of active
jobs [4, 11, 3, 6] at any time, we show that the optimal strategy for minimizing
makespan plus energy is to set the power consumption at a constant level, or
precisely 1

α−1 at any time, where α is the power parameter.

2 Models and Objective Functions

We consider a set J = {J1, J2, · · · , Jn} of n jobs to be scheduled on P processors.
Adopting the notations in [8, 7], we assume that each job Ji ∈ J contains ki

phases 〈J1
i , J2

i , · · · , Jki
i 〉, and each phase Jk

i has an amount of work wk
i and a

speedup function Γ k
i . Unlike [8, 7], which assumed that each phase admits an

arbitrary non-decreasing and sub-linear speedup, we consider the case where each
phase has a linear speedup function up to a certain parallelism hk

i ≥ 1. Suppose
that at any time t, job Ji is in its k-th phase and is allocated ai(t) processors of
speed si(t). Then, only āi(t) = min{ai(t), hk

i } processors are effectively utilized,
and the speedup or the execution rate of the job at time t is given by Γ k

i (t) =
āi(t)si(t). The span lki of phase Jk

i , which is a convenient parameter representing
the time to execute the phase with hk

i or more processors of unit speed, is given by
lki = wk

i /hk
i . We say that phase Jk

i is fully-parallel if hk
i = ∞ and it is sequential

if hk
i = 1. Moreover, if job Ji consists of only sequential and fully-parallel phases,

we call it (Par-Seq)* job [13]. Finally, for each job Ji, we define its total work
to be w(Ji) =

∑ki

k=1 wk
i and define its total span to be l(Ji) =

∑ki

k=1 lki .
At any time t, a scheduling algorithm needs to specify the number ai(t) of

processors allocated to each job Ji, as well as the speed si(t) of the allocated
processors. The algorithm is said to be IP-clairvoyant if it is only aware of the
instantaneous parallelism (IP) of the job, i.e., hk

i if job Ji is in phase Jk
i at time

t. Any characteristic of the job in the future, including the remaining work of
the phase and the existence of any subsequent phase is not available. We require
that the total processor allocations cannot be more than the total number of
processors at any time, i.e.,

∑n
i=1 ai(t) ≤ P . Let ri and ci denote the release

time and completion time of job Ji, respectively. If all jobs arrive in a batch,
then their release times are all assumed to be 0. Otherwise, we assume without
loss of generality that the first released job arrives at time 0. We require that
any phase of a job cannot be executed unless all its preceding phases have been

Speed Scaling for Energy and Performance with Instantaneous Parallelism 243

completed, i.e., ri = c0
i ≤ c1

i ≤ · · · ≤ cki

i = ci, and
∫ ck

i

ck−1
i

Γ k
i (t)dt = wk

i for all

1 ≤ k ≤ ki, where ck
i denotes the completion time of phase Jk

i .
The flow time fi of job Ji is the duration between its release and completion,

i.e., fi = ci − ri. The total flow time F (J) of all jobs in J is given by F (J) =∑n
i=1 fi, and the makespan M(J) is the completion time of the last completed

job, i.e., M(J) = maxi=1,···,n ci. Job Ji is said to be active at time t if it is
released but not completed at t, i.e., ri ≤ t ≤ ci. An alternative expression for
total flow time is F (J) =

∫∞
0

ntdt, where nt is the number of active jobs at
time t. For each processor at a particular time, its power consumption is given
by sα if it runs at speed s, where α > 1 is the power parameter. Let ui(t) denote
the power consumed by job Ji at time t, i.e., ui(t) = ai(t)si(t)α. The energy
consumption ei of the job is then given by ei =

∫∞
0

ui(t)dt, and the total energy
consumption E(J) of the job set is E(J) =

∑n
i=1 ei, or alternatively E(J) =∫∞

0
utdt, where ut =

∑n
i=1 ui(t) denotes the total power consumption of all jobs

at time t. We consider total flow time plus energy G(J) = F (J) + E(J) and
makespan plus energy H(J) = M(J)+E(J) of the job set, and use competitive
analysis to bound G(J) or H(J) by comparing them with the performances of
the optimal offline algorithms, denoted by G∗(J) and H∗(J) respectively.

3 Total Flow Time Plus Energy

3.1 Preliminaries

We first derive a lower bound on the total flow time plus energy, which will help
conveniently bound the performance of an online algorithm through indirect
comparing with the optimal.

Lemma 1. The optimal total flow time plus energy of a job set J satisfies
G∗(J) ≥ G∗

1(J) = α
(α−1)1−1/α

∑n
i=1

∑ki

k=1
wk

i

(hk
i)1−1/α .

Proof. Consider any phase Jk
i of any job Ji ∈ J . The optimal scheduler will

allocate a fixed number, say ai, processors of the same speed, say si, to the
phase throughout its execution. This is because, by the convexity of the power
function, if different numbers of processors or different speeds are used, then
averaging the processor numbers or the speeds will result in the same execution
rate hence flow time but less energy consumption [16]. Moreover, we have ai ≤
hk

i , since allocating more processors to a phase than its parallelism incurs more
energy without improving flow time. The flow time plus energy introduced by
the execution of Jk

i is then given by wk
i

aisi
+ wk

i

aisi
· ais

α
i = wk

i

(
1

aisi
+ sα−1

i

)
≥

α
(α−1)1−1/α · wk

i

a
1−1/α
i

≥ α
(α−1)1−1/α · wk

i

(hk
i)1−1/α . Extending this lower bound to all

phases of all jobs proves the lemma. �	
We now describe an amortized local competitiveness argument [4] to prove the
competitive ratio of our online scheduling algorithm. We first define some nota-
tions. For any job set J at time t, let dGA(J (t))

dt and dG∗(J ∗(t))
dt denote the rates

244 H. Sun, Y. He, and W.-J. Hsu

of change for the total flow time plus energy under an online scheduler A and the
optimal offline scheduler, respectively. Apparently, we have dGA(J (t))

dt = nt + ut,
and dG∗(J ∗(t))

dt = n∗
t + u∗

t , where n∗
t and u∗

t denote the number of active jobs
and power consumption under the optimal at time t. Moreover, let dG∗

1(J (t))
dt

denote the rate of change for the lower bound given in Lemma 1 with respect
to the execution of the job set under online algorithm A at time t. Lastly, we
need to define a potential function Φ(t) associated with the status of the job
set at any time t under both the online algorithm and the optimal. Then, we
can similarly define dΦ(t)

dt to be the rate of change for the potential function at
t. The following lemma shows that the competitive ratio of algorithm A can be
obtained by bounding the performance of A at any time t with respect to the
optimal scheduler through these rates of change.

Lemma 2. Suppose that an online algorithm A schedules a set J of jobs. Then
A is (c1 + c2)-competitive with respect to total flow time plus energy, if given a
potential function Φ(t), the execution of the job set under A satisfies

- Boundary condition: Φ(0) ≤ 0 and Φ(∞) ≥ 0;
- Arrival condition: Φ(t) does not increase when a new job arrives;
- Completion condition: Φ(t) does not increase when a job completes;
- Running condition: dGA(J (t))

dt
+ dΦ(t)

dt
≤ c1 · dG∗(J ∗(t))

dt
+ c2 · dG∗

1(J (t))
dt

.

Proof. Let T denote the set of time instances when a job arrives or completes
under either the online algorithm A or the optimal. Integrating the running
condition over time, we get GA(J) + Φ(∞) − Φ(0) +

∑
t∈T (Φ(t−) − Φ(t+)) ≤

c1 · G∗(J) + c2 · G∗
1(J), where t− and t+ denote the time right before and

after t. Now, applying boundary, arrival and completion conditions to the above
inequality, we get GA(J) ≤ c1 · G∗(J) + c2 · G∗

1(J). Since G∗
1(J) is a lower

bound on the total flow time plus energy of job set J according to Lemma 1,
the performance of algorithm A satisfies GA(J) ≤ (c1 + c2) · G∗(J). �	

3.2 U-CEQ and Performance

We present and analyze a IP-clairvoyant algorithm U-Ceq (Uniform Conserva-
tive Equi-partitioning), which is shown in Algorithm 1. U-Ceq uses a conser-
vative version of the well-known Equi (Equi-partitioning) algorithm [8], which
at any time t divides the total number P of processors equally among the nt

active jobs. However, U-Ceq makes sure that no job is allocated more proces-
sors than its instantaneous parallelism, which essentially avoids any waste of
processor cycle hence energy consumption. Moreover, the speed of all allocated
processors in U-Ceq is set in a uniform manner, and is therefore more feasible
to implement in practice than the best known non-clairvoyant algorithms that
rely on non-uniform speed scaling [7, 14].

We can see that each job Ji at any time t under U-Ceq consumes power
ui(t) = 1

α−1
. Therefore, the overall power consumption is ut = nt

α−1
, which has

been a common practice to minimize total flow time plus energy in the speed
scaling literature (see, e.g., [4, 11, 3, 6]). The intuition is that an efficient online

Speed Scaling for Energy and Performance with Instantaneous Parallelism 245

Algorithm 1. U-Ceq

1: At any time t, allocate ai(t) = min{hk
i , P/nt} processors to each active job

Ji, where hk
i is the instantaneous parallelism of Ji at time t.

2: set the speed of the allocated processors to si(t) =
(

1
(α−1)ai(t)

)1/α

.

algorithm should balance total flow time and energy. Since the rate of increase for
the total flow time at time t is the number of active jobs nt, having proportional
increase for the energy consumption provides a good balance.

At time t, when job Ji is in its k-th phase, we say that it is satisfied if
its processor allocation is exactly the instantaneous parallelism, i.e., ai(t) = hk

i .
Otherwise, the job is deprived if ai(t) < hk

i . Let JS(t) and JD(t) denote the set of
satisfied and the set of deprived jobs at time t, respectively. For convenience, we
let nS

t = |JS(t)| and nD
t = |JD(t)|. Apparently, we have nt = nS

t +nD
t . Moreover,

we define xt = nD
t /nt to be the deprived ratio. Since there is no energy waste,

we will show that the execution rate for each job Ji, given by Γ k
i (t) = ai(t)

1−1/α

(α−1)1/α ,
is sufficient to ensure the competitive performance of U-Ceq.

To apply the amortized local competitiveness argument shown in Lemma 2,
we adopt the potential function by Lam et al. [11] in the analysis of online speed
scaling algorithm for sequential jobs. Let nt(z) denote the number of active jobs
whose remaining work is at least z at time t under U-Ceq, and let n∗

t (z) denote
the number of active jobs whose remaining work is at least z under the optimal.
The potential function is defined to be

Φ(t) = η

∫ ∞

0

⎡

⎣

⎛

⎝
nt(z)∑

i=1

i1−1/α

⎞

⎠− nt(z)1−1/αn∗
t (z)

⎤

⎦ dz, (1)

where η = η′

P 1−1/α and η′ = 2α2

(α−1)1−1/α . We also need to apply the following
lemma in our proof, which gives us an important inequality.

Lemma 3. n
1−1/α
t s∗j ≤ λP 1−1/α

α

(
s∗j
)α + 1−1/α

λ1/(α−1)P 1/α nt for any nt, s
∗
j ≥ 0 and

P, λ > 0.

Proof. The lemma is a direct result of Young’s Inequality, which has been
previously applied in [4, 11, 7, 6]. It is formally stated as follows. If f is a
continuous and strictly increasing function on [0, c] with c > 0, f(0) = 0, a ∈
[0, c] and b ∈ [0, f(c)], then ab ≤ ∫ a

0 f(x)dx +
∫ b

0 f−1(x)dx, where f−1 is the
inverse function of f . In this case, by setting f(x) = λP 1−1/αxα−1, a = s∗j and

b = n
1−1/α
t , the lemma can be implied. �	

Theorem 1. U-Ceq is O(1)-competitive with respect to total flow time plus
energy for any set of parallel jobs.

Proof. We will show that, with the potential function defined in Eq. (1), the
execution of any job set under U-Ceq (UC for short) satisfies boundary, arrival

246 H. Sun, Y. He, and W.-J. Hsu

and completion conditions shown in Lemma 2, as well as the running condition
dGUC(J (t))

dt + dΦ(t)
dt ≤ c1 · dG∗(J ∗(t))

dt + c2 · dG∗
1(J (t))
dt , where c1 = max{ 2α2

α−1 , 2αα}
and c2 = 2α. Since both c1 and c2 are constants with respect to P , the theorem
is proved. We now examine each of these conditions in the following.

- Boundary condition: At time 0, no job exists. The terms nt(z) and n∗
t (z)

are both 0 for all z. Therefore, we have Φ(0) = 0. At time ∞, all jobs have
completed, so again we have Φ(∞) = 0. Hence, the boundary condition holds.

- Arrival condition: Suppose that a new job with work w arrives at time
t. Let t− and t+ denote the time right before and after t. Thus, we have
nt+(z) = nt−(z) + 1 for z ≤ w and nt+(z) = nt−(z) for z > w, and similarly
n∗

t+(z) = n∗
t−(z) + 1 for z ≤ w and n∗

t+(z) = n∗
t−(z) for z > w. For conve-

nience, we define φt(z) =
(∑nt(z)

i=1 i1−1/α
)
− nt(z)1−1/αn∗

t (z). It is obvious that
for z > w, we have φt+ (z) = φt−(z). For z ≤ w, we can get φt+ (z) − φt−(z) =
n∗

t−(z)
(
nt−(z)1−1/α − (nt−(z) + 1)1−1/α

) ≤ 0. Hence, Φ(t+) = η
∫∞
0

φt+ (z)dz ≤
η
∫∞
0

φt−(z)dz = Φ(t−), and the arrival condition holds.
- Completion condition: When a job completes under either U-Ceq or the

optimal, Φ(t) is unchanged since n(t) or n∗(t) is unchanged for all z > 0. Hence,
the completion condition holds.

- Running condition: At any time t, suppose that the optimal offline sched-
uler sets the speed of the j-th processor to s∗j , where j = 1, · · · , P . We have
dGUC(J (t))

dt = nt + ut = α
α−1nt and dG∗(J ∗(t))

dt = n∗
t + u∗

t = n∗
t +

∑P
j=1

(
s∗j
)α.

To bound the rate of change dG∗
1(J (t))
dt

, which only depends on the portions
of the jobs executed under U-Ceq at t, we focus on the set JS(t) of satisfied
jobs. Since each job Ji ∈ JS(t) has processor allocation ai(t) = hk

i , we can get
dG∗

1(J (t))
dt

≥ α
(α−1)1−1/α

∑
Ji∈JS(t)

Γ k
i (t)

(hk
i)

1−1/α = α
α−1

|JS(t)| = α
α−1

(1 − xt)nt. We

now focus on finding an upper bound for dΦ(t)
dt

. In this case, we consider the set
JD(t) of deprived jobs, which in the worst case may have the most remaining
work. In addition, each job Ji ∈ JD(t) has processor allocation ai(t) = P/nt.
The rate of change for the potential function can then be shown to satisfy

dΦ(t)
dt

≤ η′

P 1−1/α

⎛

⎝−
nD

t∑

i=1

i1−1/αΓ k
i (t) + n

1−1/α
t

P∑

j=1

s∗j

⎞

⎠

+
η′

P 1−1/α

(

n∗
t

nt∑

i=1

(
i1−1/α − (i − 1)1−1/α

)
Γ k

i (t)

)

. (2)

More details on the above derivation can be found in the full version of this paper
[15]. Now, to simplify Inequality (2), we have

∑nt

i=1

(
i1−1/α − (i − 1)1−1/α

)
=

n
1−1/α
t and by approximating summation with integral, we get

∑nD
t

i=1 i1−1/α ≥
∫ nD

t

0
i1−1/αdi = (nD

t)2−1/α

2−1/α
≥ x2

tn
2−1/α
t

2
. According to Lemma 3, we also have

n
1−1/α
t

∑P
j=1 s∗j ≤ λP 1−1/α

α

∑P
j=1

(
s∗j
)α+ (1−1/α)P 1−1/α

λ1/(α−1) nt, where λ is any positive

constant. Finally, we have Γ k
i (t) = P 1−1/α

(α−1)1/αn
1−1/α
t

for each job Ji ∈ JD(t). Thus,

Speed Scaling for Energy and Performance with Instantaneous Parallelism 247

we get dΦ(t)
dt

≤ η′
(
− x2

t

2(α−1)1/α nt + λ
α

∑P
j=1

(
s∗j
)α + 1−1/α

λ1/(α−1) nt + n∗
t

(α−1)1/α

)
. Set

λ = 2α−1(α − 1)1−1/α and substitute various rates of change as well as c1, c2

into the running condition, we can verify that it holds for all values of xt. �	

4 Makespan Plus Energy

4.1 Performance of the Optimal

We first show that as far as minimizing makespan plus energy for batched jobs,
the optimal (online/offline) strategy maintains a constant total power 1

α−1 at
any time. This corresponds to the power equality property shown in [12], which
applies to any optimal offline algorithm for the makespan minimization problem
with an energy budget.

Lemma 4. For any schedule A on a set J of batched jobs, there exists a sched-
ule B that executes J with a constant total power 1

α−1
at any time, and performs

no worse than A with respect to makespan plus energy, i.e., HB(J) ≤ HA(J).

Proof. For any schedule A on a set J of batched jobs, consider an interval
Δt during which the speeds of all processors, denoted as (s1, s2, · · · , sP), remain
unchanged. The makespan plus energy of A incurred by executing this portion
of the job set is given by HA = Δt(1 + u), where u =

∑P
j=1 sα

j is the power
consumption of all processors during Δt. We now construct schedule B such
that it executes the same portion of the job set by running the j-th processor at

speed k ·sj , where k =
(

1
(α−1)u

)1/α

. This portion will then finish under schedule

B in Δt
k time, and the power consumption at any time in this interval is given by

1
α−1

. The makespan plus energy of B incurred by executing the same portion of
the job set is HB = Δt

k (1 + 1
α−1) = α

(α−1)1−1/α Δtu1/α. Since 1+u
u1/α is minimized

when u = 1
α−1

, we have HA

HB
= (α−1)1−1/α

α
· 1+u

u1/α ≥ 1, i.e., HA ≥ HB . Extending
this argument to all such intervals in schedule A proves the lemma. �	

Compared to total flow time plus energy, where the completion time of each
job contributes to the overall objective function, makespan for a set of jobs
is the completion time of the last job. The other jobs only contribute to the
energy consumption part of the objective, thus can be slowed down to consume
less energy, which eventually results in better overall performance. Based on this
observation as well as Lemma 4, we derive the performance of the optimal offline
scheduler for any batched (Par-Seq)* job set in the following lemma.

Lemma 5. The optimal makespan plus energy for any batched set J of (Par-

Seq)* jobs satisfies H∗(J) ≥ α
(α−1)1−1/α · max{

∑n
i=1 w(Ji)

P 1−1/α , (
∑n

i=1 l(Ji)α)1/α}.

Proof. Given any job Ji ∈ J , define Ji,P to be a job with a single fully-parallel
phase of the same work as Ji, and define Ji,S to be a job with a single sequential
phase of the same span as Ji. Moreover, we define JP = {Ji,P : Ji ∈ J } and
JS = {Ji,S : Ji ∈ J }. Clearly, the optimal makespan plus energy for JP and JS

248 H. Sun, Y. He, and W.-J. Hsu

will be no worse than that for J , i.e., H∗(J) ≥ H∗(JP) and H∗(J) ≥ H∗(JS),
since the optimal schedule for J is a valid schedule for JP and JS .

For job set JP , the optimal scheduler can execute the jobs in any order since
all jobs are fully-parallel in this case. Moreover, by the convexity of the power
function, all P processors are run with constant speed s. According to Lemma 4,

we have Psα = 1
α−1

, hence s =
(

1
(α−1)P

)1/α

. The makespan plus energy is

therefore H∗(JP) =
∑n

i=1 w(Ji)

Ps
(1 + Psα) = α

(α−1)1−1/α ·
∑n

i=1 w(Ji)

P 1−1/α .
For job set JS , the optimal can execute each job on a single processor with

constant speed. Moreover, all jobs are completed simultaneously, since otherwise
jobs completed earlier can be slowed down to save energy without affecting
makespan. Let si denote the speed by the optimal for job Ji,S , so l(J1)

s1
= l(J2)

s2
=

· · · = l(Jn)
sn

, and
∑n

i=1 sα
i = 1

α−1
according to Lemma 4. Therefore, we have

si = 1
(α−1)1/α · l(Ji)

(∑n
i=1 l(Ji)α)1/α for i = 1, 2, · · · , n. The makespan plus energy is

H∗(JS) = l(J1)
s1

+ l(J1)
s1

(
∑n

i=1 sα
i) = α

(α−1)1−1/α (
∑n

i=1 l(Ji)α)1/α. �	

4.2 P-FIRST and Performance

We now present and analyze a IP-clairvoyant algorithm P-First (Parallel-First)
for any batched set J of (Par-Seq)* jobs. As shown in Algorithm 2, P-First
will first execute the fully-parallel phases of any job whenever possible, and then
executes the sequential phases of all jobs at the same rate.

Algorithm 2. P-First

1: if there is at least one active job in fully-parallel phase at any time t then

2: execute any such job on P processors, each with speed
(

1
(α−1)P

)1/α

.
3: else
4: execute all nt active jobs on P ′ = min{nt, P} processors by equally sharing

the processors among the jobs; each processor runs at speed
(

1
(α−1)P ′

)1/α

.

P-First ensures that the overall energy consumption E(J) and the makespan
M(J) of job set J satisfies E(J) = 1

α−1M(J), since at any time t, the total

power is given by ut = 1
α−1

, and E(J) =
∫M(J)

0
utdt. The makespan plus

energy of the job set thus satisfies H(J) = E(J) + M(J) = α
α−1

M(J). The
performance of P-First is shown in the following theorem.

Theorem 2. P-First is O(ln1−1/α P)-competitive with respect to makespan
plus energy for any set of batched (Par-Seq)* jobs, where P is the total number
of processors.

Proof. Since the makespan plus energy of job set J scheduled by P-First
satisfies H(J) = α

α−1M(J), we only focus on the makespan M(J) by bounding

Speed Scaling for Energy and Performance with Instantaneous Parallelism 249

separately the time M ′(J) when all P processors are utilized and the time
M ′′(J) when less than P processors are utilized. Obviously, we have M(J) =
M ′(J) + M ′′(J).

According to P-First, the execution rate when all P processors are utilized
is given by P 1−1/α

(α−1)1/α . The total work completed in this case is upper bounded

by
∑n

i=1 w(Ji). Hence, we have M ′(J) ≤ (α − 1)1/α
∑n

i=1 w(Ji)

P 1−1/α . We now bound
M ′′(J) when less than P processors are used, which only occurs while P-First
executes sequential phases. Since all jobs are batch released, the number of active
jobs monotonically decreases. Let T denote the first time when the number of
active jobs drops below P , and let m = nT . Therefore, we have m < P . For
each of the m active job Ji at time T , let l̄i denote the remaining span of the
job. Rename the jobs such that l̄1 ≤ l̄2 ≤ · · · ≤ l̄m. Since P-First executes the
sequential phases of all jobs at the same speed, the sequential phases of the m jobs
will complete exactly in the above order. Define l̄0 = 0, then we have M ′′(J) =
∑m

i=1
l̄i−l̄i−1

(1
(α−1)(m−i+1))

1/α = (α − 1)1/α
∑m

i=1

(
(m − i + 1)1/α − (m − i)1/α

)
l̄i. For

convenience, define ci = (m − i + 1)1/α − (m − i)1/α for 1 ≤ i ≤ m, and we can
get ci ≤ 1

(m−i+1)1−1/α . Let R =
∑m

i=1 l̄αi , and subject to this condition and the

ordering of l̄i,
∑m

i=1 ci · l̄i is maximized when l̄i = R1/α · c
1

α−1
i(

∑m
i=1 c

α
α−1
i

)1/α . Hence,

we have M ′′(J) ≤ (α− 1)1/αR1/α
(∑m

i=1 c
α

α−1
i

)1−1/α

≤ (α− 1)1/αR1/αH
1−1/α
m ,

where Hm = 1 + 1/2 + · · · + 1/m denotes the m-th harmonic number.
The makespan plus energy of the job set scheduled under P-First thus sat-

isfies H(J) ≤ α
(α−1)1−1/α

(∑n
i=1 w(Ji)

P 1−1/α + R1/αH
1−1/α
m

)
. Since it is obvious that

∑n
i=1 l(Ji)α ≥ ∑m

i=1 l̄αi = R, comparing the performance of P-First with
that of the optimal in Lemma 5, we have H(J) ≤ (1 + H

1−1/α
m) · H∗(J) =

O(ln1−1/α P) · H∗(J), as m < P and it is well-known that Hm = O(ln m). �	
From the proof of Theorem 2, we observe that the competitive ratio of P-First
is dominated by the execution of sequential phases of the (Par-Seq)* jobs.
Without knowing the jobs’ future work, the optimal strategy for any online
algorithm does seem to execute their sequential phases at the same rate. In the
following theorem, we confirm this intuition by proving a matching lower bound
for any IP-clairvoyant algorithm using sequential jobs only. It also implies that
P-First is asymptotically optimal with respect to makespan plus energy.

Theorem 3. Any IP-clairvoyant algorithm is Ω(ln1−1/α P)-competitive with re-
spect to makespan plus energy, where P is the total number of processors.

Proof. Consider a batched set J of P sequential jobs, where the i-th job has
span l(Ji) = 1

(P−i+1)1/α . Since the number of jobs is the same as the num-
ber of processors, any reasonable algorithm will assign one job to one proces-
sor. From Lemma 5, the optimal offline scheduler has makespan plus energy
H∗(J) = α

(α−1)1−1/α H
1/α
P , where HP is the P -th harmonic number. We will

250 H. Sun, Y. He, and W.-J. Hsu

show that P-First performs no worse than any IP-clairvoyant algorithm A.
From proof of Theorem 2, we can get HPF (J) = α

α−1M(J) = α
(α−1)1−1/α ·

∑P
i=1

(
(P − i + 1)1/α − (P − i)1/α

)
l(Ji) ≥ α

(α−1)1−1/α · ∑P
i=1

l(Ji)
α(P−i+1)1−1/α =

1
(α−1)1−1/α HP . Comparing the performances of P-First and the optimal proves
the theorem, since it is also well-known that HP = Ω(ln P).

To show HPF (J) ≤ HA(J), we construct schedules from A to P-First in
three steps without increasing the total cost. For schedule A, the adversary al-
ways assigns the i-th job to the processor that first completes 1

(P−i+1)1/α amount
of work with ties broken arbitrarily. For convenience, we let the i-th job assigned
to the i-th processor. First, we construct schedule A′ from A by executing each
job Ji with constant speed s′i derived by taking the average speed of proces-
sor i in A. Based on the convexity of the power function, the completion time
of each job remains the same in A′ but the energy may be reduced. Thus, we
have HA′(J) ≤ HA(J). According to the adversarial strategy, the processor
speeds in A′ satisfy s′1 ≥ s′2 ≥ · · · ≥ s′P . We then construct schedule A′′ by ex-
ecuting each job Ji with speed s′P throughout its execution. Since we also have
l(J1) < l(J2) < · · · < l(JP), the makespan in A′′ is still determined by job JP

and is the same as that in A′, but the energy may be reduced by slowing down
other jobs. Thus, we have HA′′(J) ≤ HA′(J). Note that the speeds of all pro-
cessors are the same in A′′. According to Lemma 4, we can construct schedule
B from A′′ such that it consumes constant total power 1

α−1 at any time and
HB(J) ≤ HA′′(J). By observing that B is identical to P-First, the proof is
complete. �	

5 Discussion

For the objective of makespan plus energy, we have only studied the performance
of IP-clairvoyant algorithms on (Par-Seq)* jobs. How to deal with jobs with
arbitrary parallelism profile and what is the performance in the non-clairvoyant
setting remain interesting problems to consider. In particular, comparing the
known performance ratios of IP-clairvoyant and non-clairvoyant algorithms with
respect to both objective functions as shown in Table 1, we conjecture that min-
imizing makespan plus energy is inherently more difficult than minimizing total
flow time plus energy, hence is likely to incur a much larger lower bound in the
non-clairvoyant setting. Intuitively, a non-clairvoyant algorithm for makespan
plus energy can potentially make mistakes not only in speed assignment, but

Table 1. Performance comparison for total flow time plus energy and makespan plus
energy under IP-clairvoyant setting and non-clairvoyant setting

Total flow time plus energy Makespan plus energy

IP-clairvoyant O(1) Ω(ln1−1/α P)
Non-clairvoyant Ω(log1/α P) ?

Speed Scaling for Energy and Performance with Instantaneous Parallelism 251

also in processor allocation. The former mistake leads to bad performance since
jobs that complete early may in fact be slowed down to save energy, and this
has contributed to the lower bound of IP-clairvoyant algorithms shown in this
paper. The situation may deteriorate further in the non-clairvoyant setting as
more energy will be wasted or slower execution rate will result if a wrong number
of processors is also allocated to a job.

References

[1] Albers, S.: Energy-efficient algorithms. Communications of the ACM 53(5), 86–96
(2010)

[2] Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–633.
Springer, Heidelberg (2006)

[3] Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power func-
tion. In: SODA, pp. 693–701 (2009)

[4] Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: SODA,
pp. 805–813 (2007)

[5] Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyukto-
sunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware
microarchitecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro 20(6), 26–44 (2000)

[6] Chan, H.-L., Edmonds, J., Lam, T.-W., Lee, L.-K., Marchetti-Spaccamela, A.,
Pruhs, K.: Nonclairvoyant speed scaling for flow and energy. In: STACS 2009, pp.
409–420 (2009)

[7] Chan, H.-L., Edmonds, J., Pruhs, K.: Speed scaling of processes with arbitrary
speedup curves on a multiprocessor. In: SPAA, pp. 1–10 (2009)

[8] Edmonds, J.: Scheduling in the dark. In: STOC, pp. 179–188 (1999)
[9] Grunwald, D., Morrey III, C.B., Levis, P., Neufeld, M., Farkas, K.I.: Policies for

dynamic clock scheduling. In: OSDI, pp. 6 (2000)
[10] Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT

News 36(2), 63–76 (2005)
[11] Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Speed scaling functions for

flow time scheduling based on active job count. In: Halperin, D., Mehlhorn, K.
(eds.) ESA 2008. LNCS, vol. 5193, pp. 647–659. Springer, Heidelberg (2008)

[12] Pruhs, K.R., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879,
pp. 307–319. Springer, Heidelberg (2006)

[13] Robert, J., Schabanel, N.: Non-clairvoyant batch sets scheduling: Fairness is fair
enough. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 741–753. Springer, Heidelberg (2007)

[14] Sun, H., Cao, Y., Hsu, W.-J.: Non-clairvoyant speed scaling for batched parallel
jobs on multiprocessors. In: CF, pp. 99–108 (2009)

[15] Sun, H., He, Y., Hsu, W.-J.: Energy-Efficient Multiprocessor Scheduling for Flow
Time and Makespan. CoRR abs/1010.4110 (2010)

[16] Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy.
In: FOCS, pp. 374–382 (1995)

Algorithms for Scheduling with Power Control

in Wireless Networks

Tigran Tonoyan�

TCS Sensor Lab
Centre Universitaire d’Informatique

Route de Drize 7, 1227 Carouge, Geneva, Switzerland
tigran.tonoyan@unige.ch

http://tcs.unige.ch

Abstract. In this work we study the following problem of scheduling
with power control in wireless networks: given a set of communication
requests, one needs to assign the powers of the network nodes, and sched-
ule the transmissions so that they can be done in a minimum time, tak-
ing into account the signal interference of parallelly transmitting nodes.
The signal interference is modeled by SINR constraints. We correct and
complement one of recent papers on this theme, by giving approxima-
tion algorithms for scheduling with power control for the case, when the
nodes of the network are located in a doubling metric space.

Keywords: wireless network, scheduling, algorithm.

1 Introduction

One of the basic issues in wireless networks is that concurrent transmissions may
cause interference. We are interested in the problem of scheduling with power
control, i.e. we choose the power levels of the nodes and then schedule the set of
communication requests with respect to the chosen power settings.

The scheduling problem has been studied in several communication models.
It has been shown that the results obtained in different models differ essentially.
One of the factors on which the scheduling problem depends crucially is the
model of interference. Wireless networks have often been modeled as graphs.
The nodes of this communication graph represent the physical devices, two nodes
being connected by an edge if and only if the respective devices are within mutual
transmission range. In this graph-theoretic model a node is assumed to receive
a message correctly if and only if no other node in close physical proximity
transmits at the same time. Clearly, the graph-theoretic model fails to capture
the accumulative nature of actual radio signals. If the power levels of the nodes
are chosen properly, then a node may successfully receive a message in spite of
being in the transmission range of other simultaneous transmitters.

In contrast, in last several years there has been a significant research done
considering the problem of scheduling in models of wireless networks which are
� Research partially founded by FRONTS 215270.

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 252–263, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algorithms for Scheduling with Power Control in Wireless Networks 253

more realistic (and more efficient, see [16]) than graph-theoretic models. The
standard model is the signal-to-interference-plus-noise (SINR) model. The SINR
model reflects physical reality more accurately and is therefore often simply
called the physical model.

More formally, given is an arbitrary set of links, each a sender-receiver pair of
points on a metric space. We seek an assignment of powers to the senders and a
partition of the linkset into a minimum number of subsets or slots, so that the
links in each slot satisfy the SINR-constraints. We refer to this as the problem
of scheduling with power control, or simply as PC-scheduling problem in directed
model. In the bidirectional model both nodes in a link may be transmitting, which
implies stronger constraints. We are trying to design algorithms that result in
efficient schedules.

We are particularly interested in schedules using so-called oblivious power
assignments, which depend only on the length of the given link. Oblivious as-
signments appear unavoidable in the distributed setting of the problem, as the
nodes in that case “do not know” the topology of the whole network. So it is
desirable to find short schedules using these power assignments, or find out how
much worse can perform such power assignments in comparison to the optimal
power assignment.

Related Work and Our Results. The body of algorithmic work on the schedul-
ing problem is mostly on graph-based models. The inefficiency of graph-based
protocols is well documented and has been shown theoretically as well as exper-
imentally (see [7] and [16] for example). The algorithmic study of the problem
from the perspective of SINR model started recently, with papers as [17], [14]
and [4]. Here the performance ratio of the algorithms is evaluated, and it depends
on some structural properties of the network which can grow linearly with the
number of nodes/links. In [1] an O(log Λ)-approximation algorithm is given for
the Single-Slot scheduling problem, which is to find the maximum SINR feasible
subset of links. Here Λ is the ratio between the longest and the shortest link
lengths. In [6] a randomized algorithm is given for the scheduling problem using
the linear power assignment that uses O(OPT log Λ + log2 n) slots, where OPT
is the number of slots in the optimum schedule and n is the number of all links.
All these results are for the directed model of scheduling. In [5] a construction is
given, that shows that schedules based on any oblivious power assignment can
be a factor of n from the optimum. However, in [8] it is shown that in terms of
Λ, the gap is actually Ω(log log Λ), using similar constructions. In [5] the bidi-
rectional version of PC-scheduling problem is considered, and a O(log4.5+α n)-
approximation algorithm is given, using the mean power assignment in general
metrics, where α > 0 is the so called path loss exponent.

Properties of wireless networks in SINR setting has been investigated also from
the point of view of network connectivity, as in [15] and [3]. In [2] so called SINR-
diagrams are considered, which are the reception zones of the sender nodes, and
particularly the convexity and fatness of these zones is shown when the powers
are uniform, and α = 2.

254 T. Tonoyan

In this work we discuss the results from [8]. They consider the problem of
PC-scheduling in the SINR model. Among others, they state results regarding
scheduling links with arbitrary length: 1. there is an algorithm approximating
PC-scheduling within a factor of O(log n log log Λ) using the mean power as-
signment in the directed model, and 2. there is an algorithm approximating
PC-scheduling within a factor O(log n) using the mean power assignment in the
bidirectional model. Here we give a counter-example for a key lemma from [8],
which shows that the statements 1. and 2. are still unproven. Next we prove
the non-constructive versions of 1. and 2.: the mean power assignment is a
O(log n)-approximation for the problem of PC-scheduling in the bidirectional
model, and O(log n log log Λ)-approximation in the directed model, when the
network is placed in a fading metric. Next we present a O(log n)-approximation
algorithm for the bidirectional model, which uses the mean power assignment,
and O(log2 n log log Λ)-approximation algorithm for the directed model1. These
algorithms both can be used as O(log n)-approximation algorithms for scheduling
problem with mean power assignment.

2 Preliminaries

Here we mainly follow the definitions used in [8].
Given is a set L = {1, 2, . . . , n} of links, where each link v represents a com-

munication request between a sender node sv and a receiver node rv. The nodes
are located in a metric space with distance function d. The asymmetric distance
dvw from a link v to a link w is defined as follows: when the directed model of
communication is adopted, then

dvw = d(sv, rw),

and when the bidirectional model of communication is adopted, then

dvw = min{d(sv, rw), d(sv, sw), d(rv, rw), d(rv , sw)}.
Note that in the latter case dvw = dwv (i.e. the distance is actually symmetrical),
but in the former case for some pairs v,w it can be dvw �= dwv.

The length of a link v is lv = d(sv, rv). Each node v is assigned a transmitting
power Pv > 0. In the bidirectional model of communication both sender and
receiver nodes of a link are assigned the same power, as in this case during a
data transmission the receiver also sends some information to the sender. We
adopt the path loss radio propagation model for the reception of signals, where
the signal received from a node x of the link v at some node y is Pv/d(x, y)α,
where α > 2 denotes the path loss exponent. We adopt the physical interference
model, where a communication v is done successfully if and only if the following
condition holds:

Pv/lαv∑
w∈S\{v} Pw/dα

wv + N
≥ β, (1)

1 In the same setting, a better, O(log n log log Λ)-approximation is achieved by M.M.
Halldórsson, see [9].

Algorithms for Scheduling with Power Control in Wireless Networks 255

where N is the ambient noise, S is the set of concurrently scheduled links in the
same slot, and β ≥ 1 denotes the minimum SINR(signal-to-interference-plus-
noise-ratio) required for the transmission to be successfully done. We say that
S is SINR-feasible if (1) holds for each link in S. As in [8], we assume N = 0
(i.e. there is no ambient noise), β = 1, and strict inequality in (1). We will show
that thanks to Theorem 4 those assumptions do not have essential effect on the
results.

In the problem of scheduling with power control given the set L of links, one
needs to assign the powers of the nodes, and split L into SINR-feasible subsets
(slots) with respect to the chosen power assignment, such that the number of
slots is the minimum. The collection of such subsets is called schedule, and the
number of slots in a schedule is called the length of the schedule. We will refer
to this problem as PC-scheduling problem. In the problem of scheduling with
given powers given the set L and the power assignments, one needs to schedule
L into minimum number of slots with respect to the given power assignment. In
this work we are interested in the problem of PC-scheduling. Note that each of
these problems can be stated for both directed and bidirectional model. If for
some statement we don’t explicitly mention the model, then it is stated for both
models.

The affectance of a link v caused by a set of links S is the sum of the inter-
ferences of the links in S on v relative to the signal between the nodes of v:

aS(v) =
∑

w∈S\{v}

Pw/dα
wv

Pv/lαv
=

∑

w∈S\{v}

Pw

Pv
· lαv
dα

wv

Note that the affectance is additive, i.e. if there are two disjoint sets S1 and S2,
then aS1∪S2(v) = aS1(v) + aS2(v).

A p-signal set or schedule is one where the affectance of any link is less than
1/p. Note that a set is SINR-feasible if and only if it is a 1-signal set. We will
call 1-signal schedule a SINR-feasible schedule.

We describe the doubling metric spaces. Consider a metric space X with met-
ric d. The ball of radius r centered at a point x ∈ X is the set B(x, r) =
{y ∈ X |d(x, y) < r}. A set Y ⊂ X is an r-packing if d(x, y) > 2r for any
pair x, y ∈ Y of different points. The packing number Π(X, r) is the size of
the largest r-packing. The doubling dimension of X is the value t, such that
supx∈X,R>0 Π(B(x, R), eR) = C/et as e → 0, where C is an absolute constant.
The doubling metric spaces are precisely the spaces with finite doubling dimen-
sion. It is known that the k-dimensional Euclidean space is a doubling metric
with doubling dimension k (see [11]).

Usually we will consider the nodes of the network on a doubling space, and the
path loss exponent α being greater than the doubling dimension of the space. The
pair of a doubling space and the path loss exponent greater than the dimension
is called a fading metric.

In [8] for approximating the problem PC-scheduling the mean power assign-
ment is considered, which is given by assigning to a node of the link v a power

256 T. Tonoyan

Pv = cl
α/2
v , where c > 0 is a constant. In this case the affectance of a link v by

a link w is aw(v) =
(√

lvlw/dwv

)α
.

We call two links lv and lw q-independent with power scheme {Pv}, if the
affectance (with the specified powers) of each of those links by the other one is
less than qα.

It is easy to check, that two links lv and lw are q-independent with the mean
powers if and only if the following condition holds:

dvw > q
√

lwlv and dwv > q
√

lwlv.

As for the bidirectional case the distances dwv and dvw are the same, the links
lv and lw are q-independent with the mean powers if and only if

dvw > q
√

lwlv.

We call two links lv and lw q-independent, if the following inequality holds:

dvwdwv > q2lwlv.

Note that for the bidirectional model two links are q-independent if and only if
they are q-independent with the mean power assignment.

A set S of links is a q-independent set if each pair of links in S is q-independent.
The following fact immediately follows from the definition of q-independence.

Lemma 1. A set of links that belong to the same qα-signal slot in some schedule,
is q-independent.

We say that a set of links is nearly equilength, if the lengths of any pair of links
in the set differ not more than two times.

The following theorem from [8] shows that each q-independent set S of nearly
equilength links in a fading metric is a Ω(qα)-signal slot when the uniform powers
are used, i.e. all nodes have the same power P , for some P > 0.

Theorem 1. [8] Let L be a q-independent set of nearly equilength links in a
fading metric. Then L is a Ω(qα)-signal set when the powers are uniform.

We say that a set S of links is well-separated, if for each two links from S the
ratio between the longer link length and the shorter link length is not more than
2 or not less than n2.

Two links v and w are said to be τ-close under the mean power assignments
if max{av(w), aw(v)} ≥ τ , i.e. at least one affects the other one more than by τ .

We call a set of links S ⊆ L p-bounded for p > 0, if for each link lv ∈ L, there

are at most p links lw in S, such that n2lv ≤ lw and lw is
1
2n

-close to lv.
Let Λ denote the ratio between the maximum and the minimum length of

links. The following theorem is proven (in a slightly different statement) in [8].

Theorem 2. In the case of directed scheduling each 3-independent set of links
is p-bounded with p = O(log log Λ). In the case of bidirectional scheduling each
2-independent set of links is 1-bounded.

Algorithms for Scheduling with Power Control in Wireless Networks 257

Note that in [8] the first part of Theorem 2 is stated for well-separated SINR-
feasible sets, but with exactly the same proof the result holds for just 3-
independent sets.

With the stronger assumption of q-independence with mean powers, in fading
metrics a stronger bound holds for the directed model.

Theorem 3. In the directed model each 3-independent set of links is
O(1)-bounded.

The following result demonstrates the robustness of schedules in the model we
use, and is proven in [10]. We assume the power assignment of the nodes is given.

Theorem 4. [10] There is a polynomial-time algorithm that takes a p-signal
schedule and refines into a p′-signal schedule, for p′ > p, increasing the number
of slots by a factor of at most
2p′/p�2.
The algorithm described in Theorem 4 works for both communication models.

3 The Counterexample

In [8] the following claim is stated, which is used as a key feature in the proofs
of a number of theorems.

Claim. [8] Let L be a set of links partitioned into length groups L1, L2, . . . , Lt

such that links in the same group differ by a factor of at most 2 but links in
different groups differ by a factor of at least n2. Suppose each group Li has
been scheduled with uniform powers using Γi slots. Then, there is an algorithm
that produces a combined schedule of L with the mean power assignment using
O(log log Λ · maxi Γi) slots in the directed model and O(maxi Γi) slots in the
bidirectional model.

We bring an example that shows that the claim does not hold. The example is
for the directed model, but the same works for the bidirectional model.

Let each Lv consist of only one link v: Lv = {v}, so that we have maxi Γi = 1.
We also assume t = n. We define d(rv , rw) = 0 for all pairs v, w, i.e. all receiver
nodes are at the same point. It follows then that each link must be scheduled
in a separate slot (using any power assignment), which gives n slots. But then
we can choose the lengths of the links, so that they are still well-separated, but
log log Λ << n. For example, choose li = n2i: it is easy to see that in this case
the links are well-separated, i.e. the conditions of the claim hold, but L cannot
be scheduled in O(log log Λ) = O(log n) slots.

In [8] the claim above was used in the proofs of the following propositions.

Proposition 1. [8] Consider the directed model of scheduling. Suppose there
is a ρ-approximate algorithm for PC-scheduling on nearly equilength links. Then
there exists a O(ρ log log Λ log n)-approximate algorithm for PC-scheduling which
uses mean power assignment.

258 T. Tonoyan

Proposition 2. [8] Consider the bidirectional model. Suppose there is a ρ-appro-
ximate algorithm for PC-scheduling on nearly equilength links. Then there exists
a O(ρ log n)-approximate algorithm for PC-scheduling which uses mean power
assignment.

Those propositions remain unproven, but in this paper, using similar techniques
as in [8], but somewhat different approach, we prove similar results for fading
metrics.

4 Scheduling q-independent Sets

We consider the scheduling problem in a fading metric. Let q ≥ 1 be a constant.
Consider a q-independent subset Q of L. We describe a procedure, which, if Q
is p-bounded for some p > 0, schedules Q into O(p log n) slots with the mean
power assignment. A similar algorithm was used in [8] for proving the erroneous
claim above. We modify their algorithm, and prove that it is an approximation
algorithm for scheduling q-independent sets. The description of the procedure
follows. We will refer to the algorithm as ScheduleIndependent.

1. Input: a q-independent p-bounded set Q, for some p > 0 and q ≥ 1
2. Let Q = ∪iQi, where Qi = {t ∈ Q|lt ∈ [2i−1lmin, 2ilmin)}
3. Assign Bi = ∪jQi+j·2 log n, for i = 1, 2, . . . , 2 logn
4. Schedule each Bi = ∪jKj , where Kj = Qi+j·2 log n, the following way

4.1 Using the algorithm from Theorem 4 transform each Kj into an f -signal
schedule Σj = {Ss

j}kj

s=1 with f = 2α/2+1

4.2 s ← 1
4.3 Assign S ← ∪jS

s
j : if for some j, kj < s, then we take Ss

j = ∅
4.4 Sort S in the non-increasing order of link lengths: l1 ≥ l2 ≥ . . . l|S|
4.5 T r

s ← ∅, r = 1, 2, . . . , p + 1
4.6 For k = 1, 2, . . . , |S| do: find a T r

s not containing links u with lu > n2lk
which are 1/(2n)-close to lk, and assign T r

s ← T r
s ∪ {lk}

4.7 s ← s + 1: if s ≤ max kj , then go to step 4.3, otherwise the schedule for
Bi is {T r

s |T r
s �= ∅}

5. Output the union of the schedules of all Bi

The algorithm splits the input set into a logarithmic number of well-separated
subsets Bi, then schedules each Bi separately. First Bi is split into maximal
equilength subsets Qj. Then each Qj is scheduled into a constant number of
slots with the mean power assignment, using Theorem 1. To schedule Bi, the
algorithm takes the union of the first slots of the schedules for all Qj (which
are contained in Bi), and schedules them into p + 1 slots, using the p-bounded
property. So we get a schedule with O(p) slots for each Bi, and a schedule with
O(p log n) slots for Q. The correctness of the algorithm is proven in the following
theorem.

Theorem 5. Let Q = {1, 2, . . . , k} be a q-independent p-bounded subset of L
for q ≥ 1. Then ScheduleIndependent schedules Q into O(p log n) slots with the
mean power assignment.

Algorithms for Scheduling with Power Control in Wireless Networks 259

Using the above mentioned algorithm one gets “short” schedules for a given q-
independent set of links, so the next step is to split the set L into a small number
of q-independent subsets.

At this point we already can prove bounds for the mean power assignments.
Note that according to Lemma 1 a SINR-feasible set is a 1-independent set, i.e.
each schedule splits the set L into 1-independent subsets, with the number of
subsets equal to the length of the schedule. So we have the following corollary
of Theorem 5.

Corollary 1. For the directed model of communication the mean power as-
signment is a O(log n log log Λ)-approximation for the problem PC-scheduling
in fading metrics. For bidirectional model of communication the mean power as-
signment is a O(log n)-approximation for the problem PC-scheduling in fading
metrics.

Proof. We prove the claim for the directed model, the other case can be proven
similarly. Suppose we are given the optimal power assignment and the opti-
mal schedule Σ for that power assignment. Obviously, Σ is a 1-signal schedule
(according to our notation). Using the algorithm from Theorem 4, Σ can be
converted to a 3α-signal schedule Σ′ = (S1, S2, . . . , Sk), by increasing the length
only by a constant factor. Then according to Lemma 1 each Si is a 3-independent
set. According to Theorem 2 the set Si is p-bounded with p = O(log log Λ), so
by applying Theorem 5, each Si can be scheduled into O(log n log log Λ) slots, so
the whole set L can be scheduled using O(log n log log Λ · k) slots with the mean
power assignment, which completes the proof. ��

5 Splitting L into a Small Number of q-independent
Subsets

First we present an algorithm for coloring a certain class of graphs, which we
call t-strong graphs.

Let G be a simple undirected graph. We denote by V (G) the vertex-set of
G. For a vertex v of G we denote by NG(v)(or simply N(v)) the subgraph of G
induced by the set of neighbors of v in G. For an integer t > 0 we say G is a
t-strong graph if for each induced subgraph G′ of G there is a vertex v in G′,
such that the graph NG′(v) does not have independent sets of size more than t.

Using the ideas of [13] for coloring Unit Disk Graphs, we prove that there is a
t-approximation algorithm for coloring a t-strong graph. The following theorem
from [12] describes the algorithm which we use. It is based on the results of [18].

Theorem 6. [12] Let G = (V, E) be a simple undirected graph and let δ(G)
denote the largest δ such that G contains a subgraph in which every vertex has
a degree at least δ. Then there is an algorithm coloring G with δ(G) + 1 colors,
with running time O(|V | + |E|).
We will refer to the algorithm from Theorem 6 as Hochbaum’s algorithm. The
proof of the following theorem is similar to the proof of Theorem 4.5 of [13].

260 T. Tonoyan

Theorem 7. Hochbaum’s algorithm applied to a t-strong graph G gives a t-
approximation to the optimal coloring.

Next we apply Hochbaum’s algorithm to split L into a small number of q-
independent sets.

For q ≥ 1, when the directed model of communication is considered, let Dq(L)
be the graph with vertex set L (i.e. the vertices are the links from L), where
two vertices v and w are adjacent in Dq(L) if and only if v and w are not
q-independent with the mean power assignment, i.e.

either dvw ≤ q
√

lwlv or dwv ≤ q
√

lwlv. (2)

For the bidirectional model let Bq(L) be the graph with vertex set L and with
two vertices v and w adjacent if and only if they are not q-independent, i.e.

dvw ≤ q
√

lwlv. (3)

We show that Bq(L) is t-strong, and Dq(L) is t′-strong for some constants
t, t′ > 0, so that Hochbaum’s algorithm finds colorings for those graphs, which
approximate the respective optimal colorings within constant factors. We will
need the following lemma.

Lemma 2. Let {t0, t1, t2, . . . , tk} be a set of points in an m-dimensional dou-
bling metric space and c1, c2, c3 and {b0, b1, b2, . . . , bk} be positive reals, such that

1) b0 ≤ c1bi, for i = 1, 2, . . . , k,
2) d(t0, ti) ≤ c2b0bi for i = 1, 2, . . . , k and
3) d(ti, tj) > c3bibj for i, j = 1, 2, . . . , k, i �= j.

Then k ≤ C(
4c2

c1c2
3

+ 1)m + 1.

Theorem 8. The graph Bq(L) is O(1)-strong.

Proof. We need the following lemma. Consider the vertex v with lv being min-
imum over all links. Then for each vertex w of the subgraph N(v) we have
lw ≥ lv. On the other hand, from (3) we have dvw ≤ q

√
lvlw. Consider a subset

I = {1, 2, . . . , k} of vertices of N(v), which is an independent set in N(v). Our
goal is to show that |I| = O(1).

Consider the set of nodes R = {t1, t2, . . . , tk}, where ti is the node (sender or
receiver) of the link i, closest to the link v (in terms of the distance between two
sets of points). R can be split into two subsets, first with nodes for which the
closest node of v is the sender of v, and the others for which the receiver of v is
closer. We assume that R is anyone of that subsets: if we show that |R| = O(1),
then the proof follows. We denote by t0 the node of v which is closer to R than
the other one.

Let us denote bi =
√

li for each link i, and b0 =
√

lv. According to (3) we have

d(t0, ti) ≤ qb0bi (4)

Algorithms for Scheduling with Power Control in Wireless Networks 261

d(ti, tj) > qbibj, for i, j = 1, 2, . . . , k, i �= j, (5)

which means that we can apply Lemma 2 with points t0, t1, . . . , tk, real numbers
b0, b1, . . . , bk and c1 = 1, c2 = c3 = q, getting

|R| = k ≤ C (4/q + 1)m + 1,

thus completing the proof. ��
The following theorem is proven using similar technique.

Theorem 9. For a constant q the graph Dq(L) is O(1)-strong.

Now let us go back to the problem of PC-scheduling in a fading metric. Consider
the following algorithm for scheduling L. We refer to it as Schedule.

1. Construct the graph B2(L) (respectively D3(L) for the directed model)
2. Applying the algorithm from Theorem 6 on the resulting graph, split L into

2-independent (3-independent) subsets S1, S2, . . . , Sk

3. For i = 1, 2, . . . , k apply the algorithm ScheduleIndependent to the set Si,
getting a schedule Σi = {S1

i , S2
i , . . . , Ski

i }
4. Output the schedule ∪iΣi

Theorem 10. In the bidirectional model of communication the algorithm Sche-
dule approximates PC-scheduling within a factor O(log n) in fading metrics. For
the directed model the algorithm Schedule approximates PC-scheduling within a
factor O(log2 n log log Λ) in fading metrics.

Proof. Consider the bidirectional model. According to Theorem 4, for a con-
stant q ≥ 1 an optimal qα-signal schedule is a constant factor approximation for
an optimal SINR-feasible schedule. But from Lemma 1 we know that each qα-
signal schedule induces a coloring of the graph Bq(L), so the chromatic number
of Bq(L) is not more than the length of the optimal qα-signal schedule. So if we
denote the length of an optimal SINR-feasible schedule by OPT , then on the
second step of the algorithm we have k = O(OPT). According to Theorem 2, on
the third step of the algorithm for all i = 1, 2, . . . , k we have ki = O(log n), so the
length of the resulting schedule on the fourth step is

∑k
i=1 ki = O(log nOPT)

for the bidirectional model. Now consider the directed model. It is easy to see,
that for q ≥ 1 each qα-signal schedule, which uses the mean power assignment,
induces a coloring of the graph Dq(L), so the chromatic number of Dq(L) is
not more than the optimal qα-signal schedule with the mean power assignment.
On the other hand, from Corollary 1 we know that the mean power assignment
approximates the problem of PC-scheduling within a factor of O(log n log log Λ),
so if the optimal SINR-feasible schedule length (with the optimal power assign-
ment) is OPT , then on the second step we have k = O(log n log log ΛOPT).
According to Theorem 3, on the third step of the algorithm for all i = 1, 2, . . . , k
we have ki = O(log n), so the length of the resulting schedule on the fourth step
is

∑k
i=1 ki = O(log2 n log log ΛOPT) for the directed model. ��

262 T. Tonoyan

6 Introducing the Noise Factor

All the results we derived are for the case when there is no ambient noise factor
in SINR formula. To see how much is the impact of introducing the noise factor
into the formula on the schedule length, first let us notice that if there is a
noise N , then for each power assignment, which is a solution for the problem
PC-scheduling, the following must hold:

Pv/lαv ≥ N , for each link v. (6)

This is the minimum power needed to deliver a message to the receiver of v even
if there are no other transmissions. Then, if there is a set S, which is SINR-
feasible with powers {Pv} and without a noise, then for each v ∈ S we have
Pv/lαv >

∑
w∈S\v Pw/dα

wv. Then 2Pv/lαv >
∑

w∈S\v Pw/dα
wv +N , which means if

we introduce the noise factor, then for S the SINR condition holds with β = 1/2,
and using Theorem 4 we can split S into 4 subsets for which the SINR condition
holds with β = 1 and the noise factor N included. Thus we have:

Proposition 3. If (6) holds, then each zero-noise schedule of length T can be
transformed into a non-zero-noise schedule of length no more than 4T .

This comes to show that all above results hold also for the case with a non-zero
noise, as we didn’t do any assumptions on the coefficients of the mean power
assignment we used.

7 Conclusion

In this work we pointed out a flaw in proofs in paper [8], and tried to prove
their claims which were dependent on the erroneous statement. Thus we showed
that in fading metrics the mean power assignment approximates the problem of
PC-scheduling for bidirectional and directed models with factors O(log n) and
O(log n log log Λ) respectively. Moreover, we presented approximation algorithms
for both models with approximation guarantee O(log n) and O(log2 n log log Λ)
respectively. Note that both algorithms can be used as O(log n)-approximation
algorithms for the problem of scheduling with mean power assignment. As the
scheduling problem is interesting in general metrics, it is an open problem to
find good approximation for PC-scheduling problem for networks placed in gen-
eral metric spaces. It is also desirable to further investigate the capabilities of
oblivious power assignments.

Acknowledgment

Author thanks Prof. M.M. Halldórsson for helpful discussions.

Algorithms for Scheduling with Power Control in Wireless Networks 263

References

1. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in
the SINR model: Complexity and game theory. In: 29th Annual IEEE Conference
on Computer Communications, INFOCOM (2009)

2. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR Diagrams:
Towards Algorithmically Usable SINR Models of Wireless Networks. In: 28th An-
nual Symposium on Principles of Distributed Computing, PODC (2009)

3. Avin, C., Lotker, Z., Pasquale, F., Pignolet, Y.-A.: A note on uniform power connec-
tivity in the SINR model. In: 5th International Workshop on Algorithmic Aspects
of Wireless Sensor Networks, ALGOSENSORS (2009)

4. Chafekar, D., Kumar, V., Marathe, M., Parthasarathi, S., Srinivasan, A.: Cross-
layer Latency Minimization for Wireless Networks using SINR Constraints. In:
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc (2007)

5. Fanghänel, A., Keßelheim, T., Räcke, H., Vöking, B.: Oblivious interference
scheduling. In: Proc. 28th Symposium on Principles of Distributed Computing,
PODC (2009)

6. Fanghänel, A., Keßelheim, T., Vöcking, B.: Improved algorithms for latency min-
imization in wireless networks. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 447–458.
Springer, Heidelberg (2009)

7. Gronkvist, J., Hansson, A.: Comparison between Graph-Based and Interference-
Based STDMA scheduling. In: ACM International Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc (2001)

8. Halldórsson, M.M.: Wireless scheduling with power control. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 361–372. Springer, Heidelberg (2009)

9. Halldórsson, M.M.: Wireless Scheduling with Power Control,
http://arxiv.org/abs/1010.3427

10. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

11. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, Heidelberg (1999)
12. Hochbaum, D.S.: Efficient bounds for the Stable Set, Vertex Cover and Set Packing

problems. Diskrete Applied Mathematics 6 (1983)
13. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple

heuristics for Unit Disk Graphs. Networks 25 (1995)
14. Moscibroda, T., Oswald, Y.A., Wattenhofer, R.: How optimal are wireless schedul-

ing protocols? In: 26th Annual IEEE Conference on Computer Communications,
INFOCOM (2006)

15. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless
Networks. In: 26th Annual IEEE Conference on Computer Communications, IN-
FOCOM (2006)

16. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design beyond Graph-Based
models. In: Hot Topics in Networks, HotNets (2006)

17. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control meets SINR: The
Scheduling Complexity of Arbitrary Topologies. In: ACM International Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc (2006)

18. Szekeres, G., Wilf, H.S.: An Inequality for the Chromatic Number of a Graph.
Journal of Combinatorial Theory 4(1) (1968)

Author Index

Atkins, Leon 9
Aupy, Guillaume 9

Bader, Roland 21
Berthold, Timo 229
Bessas, Apostolos 33
Bodlaender, Hans L. 45

Calamoneri, Tiziana 57
Chan, Ho-Leung 69
Cole, Daniel 9
Cook IV, Atlas F. 81
Crescenzi, Pierluigi 92

de Berg, Mark 81
Dees, Jonathan 21
Dorn, Britta 104

Faigle, Ulrich 116
Frasch, Janick V. 127

Geisberger, Robert 21
Goerigk, Marc 139
Grossi, Roberto 92

He, Yuxiong 240
Heinz, Stefan 229
Hsu, Wen-Jing 240
Hüffner, Falk 104

Junttila, Tommi 151

Kanj, Iyad A. 163
Kaski, Petteri 151
Kern, Walter 116, 175
Kontogiannis, Spyros 33
Kowalski, Dariusz R. 181
Krüger, Dominikus 104
Krumke, Sven Oliver 127
Kutten, Shay 1

Lam, Tak-Wah 69
Lanzi, Leonardo 92
Laura, Luigi 193
Li, Rongbin 69
Lucarelli, Giorgio 206

Marino, Andrea 92
Meyer, Ulrich 217
Milis, Ioannis 206

Negoescu, Andrei 217
Niedermeier, Rolf 104

Peis, Britta 116
Petreschi, Rossella 57
Pruhs, Kirk 6, 9

Qiu, Xian 175

Rokicki, Mariusz A. 181

Sanders, Peter 21
Santaroni, Federico 193
Santi, Paolo 8
Schöbel, Anita 139
Schulz, Jens 229
Sun, Hongyang 240

Tonoyan, Tigran 252

Uhlmann, Johannes 104

van Rooij, Johan M.M. 45

Weichert, Volker 217
Westphal, Stephan 127

Zaroliagis, Christos 33
Zhang, Fenghui 163

	Cover
	Lecture Notes in Computer Science 6595
	Theory and Practice
of Algorithms
in (Computer) Systems
	ISBN 9783642197536
	Preface
	Conference Organization
	Table of Contents
	Distributed Decision Problems: The Locality Angle
	Introduction
	Distributed Verification
	References

	Managing Power Heterogeneity
	References

	The Mathematics of Mobility
	References

	Speed Scaling to Manage Temperature
	Introduction
	Batched Release
	Known Maximum Temperature
	Unknown Maximum Temperature

	Online Algorithm
	Additional Results
	References

	Alternative Route Graphs in Road Networks
	Introduction
	Related Work

	Alternative Graphs
	Attributes to Measure in AGs
	Methods to Compute Alternatives
	k-Shortest Paths
	Pareto
	Plateau
	Penalty
	Combinations
	Refinements / Post Processing

	Different Edge Weights
	Experiments
	User Study

	Conclusion and Outlook
	References

	Robust Line Planning in Case of Multiple Pools and Disruptions
	Introduction
	Multiple Line Pools: Different Utilities per Pool
	Experimental Study of the Multiple-Line Pool Cases
	Experimental Study of Disruptions in the Network
	Conclusions
	References

	Exact Algorithms for Intervalizing Colored Graphs
	Introduction
	Preliminaries
	Partial Path Decompositions
	An Exact Algorithm for Intervalizing k-Colored Graphs
	An Algorithm for Intervalizing Colored Graphs with an Arbitrary Number of Colors
	Conclusions
	References

	L(2,1)-Labeling of Unigraphs (Extended Abstract)
	Introduction
	Preliminaries
	An Algorithm for L(2,1)-Labeling Unigraphs
	Labeling of the Crown and of the Pieces
	References

	Energy-Efficient Due Date Scheduling
	Introduction
	Minimizing (Weighted) Quoted Lead Time Plus Energy
	Uniform Weight Density
	Arbitrary Weight Density

	Setting with Admission Control
	References

	Go with the Flow: The Direction-Based Fr\'{e}chet Distance of Polygonal Curves
	Introduction
	Preliminaries
	Computing Fdirint(A,B)
	Exact Algorithm without Speed Limits
	(1+)-Approximation Algorithm with Speed Limits

	Conclusion
	References

	A Comparison of Three Algorithms for Approximating the Distance Distribution in Real-World Graphs
	Introduction
	Algorithms for Estimating the Distance Distribution
	The EW Algorithm
	The SEF Algorithm
	The ANF Algorithm

	Experimental Study
	Datasets
	Algorithms' Implementation and Computing Platform
	Methodology and Error Estimation
	EW versus ANF
	EW versus SEF
	EW versus the Exact Distribution

	Conclusions
	References

	Exploiting Bounded Signal Flow for Graph Orientation Based on Cause–Effect Pairs
	Introduction
	Preliminaries, Basic Facts, and Simple Observations
	Bounded Signal Flow over Vertices
	Parameter ``Maximum Number of Pairs per Vertex''
	Cross Pairs
	Cross-Pair-Free Instances
	Parameter ``Maximum Number of Cross Pairs Passing through a Vertex''

	Bounded Signal Flow over Edges
	Observations on Protein Networks
	Conclusion
	References

	On Greedy and Submodular Matrices
	Introduction
	Our Contribution and Related Results
	(Weighted) Max Flow

	Binary Greedy Matrices
	Submodular Matrices
	Example: Max Flow in (s,t)-Planar Graphs
	Example: Frank's Model frank99

	Ternary Matrices
	Example: Edge-Path Incidence Matrices in General Graphs
	Example: Lattice Polyhedra GH82
	Ordered Compatibility and Greediness

	References

	MIP Formulations for Flowshop Scheduling with Limited Buffers
	Introduction
	Previous Work
	Our Results

	Suboptimality of Permutation Schedules
	The Model
	Model Refinements and Solution Strategies
	Suitable Choice of Big-M Values
	Numerical Results
	Conclusions
	References

	A Scenario-Based Approach for Robust Linear Optimization
	Introduction
	Review of Robustness Concepts
	A Scenario-Based Approach to Robust Linear Optimization
	Analysis of Solutions Generated with RecOpt
	Evaluation of RecOpt Using Examples from NetLib
	Conclusion
	References

	Conflict Propagation and Component Recursion for Canonical Labeling
	Introduction
	Preliminaries
	Colored Graphs, Equitable Colorings, Refinement Functions
	Individualize and Refine Depth-First Search

	Pruning with Recorded First-Path Failures
	Pruning with Nonuniform Component Recursion
	Experimental Evaluation of the Pruning Techniques
	References

	3-hitting set on Bounded Degree Hypergraphs: Upper and Lower Bounds on the Kernel Size
	Introduction
	Preliminaries
	The Lower Bound
	The Kernel
	Generalization to Bounded Degree
	Concluding Remarks
	References

	Improved Taxation Rate for Bin Packing Games
	Introduction
	Fractional Packings
	Alternative Proof of the Non-emptiness of 1/3-Core
	Modified Greedy Selection
	Remarks and Open Problems
	References

	Multi-channel Assignment for Communication in Radio Networks
	Introduction
	Technical Preliminaries
	Optimal Channel Assignment
	Connectivity Problem
	One-Receiver Problem

	Gossiping
	Conclusions
	References

	Computing Strongly Connected Components in the Streaming Model
	Introduction
	Streaming Models and Graph Problems

	The Algorithm
	Theoretical Analysis
	Correctness
	Number of Streaming Passes
	Per Item Processing Time (PIPT)

	Experimental Evaluation
	Conclusion
	References

	Improved Approximation Algorithms for the Max-Edge Coloring Problem
	Introduction
	A PTAS for Trees
	Beating the 2-approximation Ratio for Bipartite Graphs
	An Adaptation for General Graphs
	Conclusions
	References

	New Bounds for Old Algorithms: On the Average-Case Behavior of Classic Single-Source Shortest-Paths Approaches
	Introduction
	Previous Work
	New Results

	Algorithms of the List Class
	Algorithms with Approximate Priority Queues
	Experiments
	List Class Algorithms
	Algorithms with Approximate Priority Queues

	Conclusions
	References

	An Approximative Criterion for the Potential of Energetic Reasoning
	Introduction
	Problem Description and Energetic Reasoning
	Restricted Energetic Reasoning
	Estimation of Relevant Intervals
	Restricted Energetic Reasoning Propagation Algorithm

	Computational Results
	Conclusions
	References

	Speed Scaling for Energy and Performance with Instantaneous Parallelism
	Introduction
	Models and Objective Functions
	Total Flow Time Plus Energy
	Preliminaries
	U-CEQ and Performance

	Makespan Plus Energy
	Performance of the Optimal
	P-FIRST and Performance

	Discussion
	References

	Algorithms for Scheduling with Power Control in Wireless Networks
	Introduction
	Preliminaries
	The Counterexample
	Scheduling q-independent Sets
	Splitting L into a Small Number of q-independent Subsets
	Introducing the Noise Factor
	Conclusion
	References

	Author Index

