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Preface

WALCOM 2008, the 2nd Workshop on Algorithms and Computation, held dur-
ing February 7–8, 2008 in Dhaka, Bangladesh, covered the areas of algorithms
and data structures, combinatorial algorithms, graph drawings and graph algo-
rithms, parallel and distributed algorithms, string algorithms, computational ge-
ometry, graphs in bioinformatics and computational biology. The workshop was
organized jointly by Bangladesh Academy of Sciences (BAS) and Bangladesh
University of Engineering and Technology (BUET), and the quality of the work-
shop was ensured by a Program Committee comprising researchers of interna-
tional repute from Australia, Bangladesh, Canada, Germany, India, Italy, Japan,
Taiwan and UK.

The Program Committee thoroughly reviewed each of the 57 submissions for
contributed talks and accepted 19 of them after elaborate discussions on review
reports. Three invited talks by Satoshi Fujita, Alejandro Lopez-Ortiz and Ryuhei
Uehara were included in the workshop.

We thank the invited speakers for joining us and presenting their talks on
recent research areas of computer science from which researchers of this field
could benefit immensely. We thank the members of the Program Committee
and external reviewers for their wonderful job in reviewing the manuscripts. We
thank the Steering Committee members Kyung-Yong Chwa, Costas S. Iliopoulos,
M. Kaykobad, Petra Mutzel, Takao Nishizeki and C. Pandu Rangan for their
continuous encouragement. We also thank the Advisory Committee Members
M. Shamsher Ali, Naiyyum Choudhury and A.M.M. Safiullah for their inspir-
ing support to this workshop. We are indebted to M. Kaykobad for his all-out
support throughout the whole process. We thank Md. Shamsul Alam, Masud
Hasan and M.A. Mazed for their prompt organizational support. Members of
the Organizing Committee worked hard for the success of the workshop; we also
thank them.

We would like to acknowledge the EasyChair system—a free conference man-
agement system that is flexible, easy to use, and has many features to make it
suitable for various conference models. Finally, we thank our sponsors for their
assistance and support.

February 2008 Shin-ichi Nakano
Md. Saidur Rahman
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Vertex Domination in Dynamic Networks�

Satoshi Fujita

Department of Information Engineering
Graduate School of Engineering, Hiroshima University

fujita@se.hiroshima-u.ac.jp

Abstract. This paper studies a vertex domination problem in dynamic
networks, which allows dynamic change of the set of vertices, the set of
edges, and the set of weights. In particular, we will examine the following
two theoretical issues arising in designing an adaptive vertex domination
scheme for such networks: 1) How can we transfer a given configuration
to a dominating configuration while keeping that any intermediate con-
figuration is safe? 2) How can we reduce the computational complexity of
the vertex domination problem by allowing defections in the domination?

Keywords: Dominating set, dynamic network, defection, regular graphs.

1 Introduction

Given a graph G = (V, E) with vertex set V and edge set E, a dominating
set for graph G is a subset of vertices such that for any u ∈ V , either u or at
least one neighbor of u is contained in the subset [15]. Mathematical proper-
ties of dominating set have been extensively investigated from various aspects
during the past three decades, which include graph theoretic characterization
[2,5,6,16,18,24], computational complexity of finding a dominating set with a
designated cardinality [13,17,20], and polynomial time algorithms to find mini-
mum dominating set for special graphs such as interval graphs and perfect graphs
[1,3,4,19,21]. It has also been pointed out that the notion of dominating set is
closely related with several resource allocation problems in networks, such as
file allocation problem [9], facility allocation problem [12], and path assignment
problem in wireless communication networks [7,14,22,23].

In this paper, we consider a vertex domination problem in dynamic networks,
which allows dynamic change of the set of vertices, the set of edges, and the
set of weights in the given network. A dynamism in network can commonly
be observed in actual applications. For example, in distributed systems such as
peer-to-peer and grid computers, node arrival and node departure dynamically
change the set of vertices; in wireless networks such as mobile ad hoc networks
and sensor networks, the node mobility can easily connect and disconnect links
in the wireless network; and even when the overall network configuration does

� This research was partially supported by the Grant-in-Aid for Scientific Research,
Priority Areas (B)(2) 16092219.

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S. Fujita

not change, the change of traffic load would affect to the set of optimum config-
urations for the corresponding resource assignment problem. Among them, the
most critical issue we have to settle is that the disconnection of edges and the re-
moval of dominating vertices could generate a vertex which is not dominated by
any vertex in V . In order to apply the notion of dominating set to such dynamic
environments in a safe and efficient manner, we have to realize a procedure to
converge a given configuration to a dominating one by conducting appropriate
reassignments of dominating vertices over the network.

In this paper, we will consider the following concrete scenario to realize such
a recovering procedure: Initially, a given graph is dominated by several (disjoint)
dominating sets, each of which corresponds to a specific service provided by a set
of designated servers. By a dynamic change of the underlying network, some of
those dominating sets are “damaged” and several vertices become undominated
by those damaged sets. The objective of the recovering scheme is to transfer a
given configuration with damages to a normal configuration with no damages,
while supplementing the role of damaged sets by the undamaged ones during the
course of transfer. More specifically, in the following, we will focus our attention
to the following two theoretical issues which should appear in designing safe and
efficient recovering scheme:

1. What is a sufficient condition to realize a safe transfer to a normal config-
uration? To clarify this point, we will examine the number of dominating
vertices (i.e., the number of mobile servers to be prepared in some applica-
tions) which realizes a safe transfer between two dominating configurations,
while keeping that any intermediate configuration in the transfer is also
dominating one. It should be stressed here that although we do not directly
consider a transfer from an undominated configuration to a dominated con-
figuration, in many practical situations, it is very important to move the role
of dominating vertex from an instable node to a stable one beforehand, in
order to avoid (unnecessary) damages of the dominating sets.

2. The problem of partitioning the vertex set of a given graph into a maximum
number of dominating sets is known to be NP-hard [15]. So, it should be
interesting to ask how can we reduce the computational complexity of such
partitioning problem by allowing defections in the domination. Note that
this question is also important from practical point of view, because if the
answer is “yes”, then any configuration with some defections could be used
as a safe state to realize an efficient recovery scheme.

The remainder of this paper is organized as follows. In Section 2, we describe
preliminary results on the safe transfer between dominating configurations. Sec-
tion 3 describes basic properties of domatic partition with defections. Finally
Section 4 concludes the paper with future problems.

2 Convergence to a Given Configuration

In this section, we assume that each dominating set is a multiset, by techni-
cal reasons. Let D(G) denote an (infinite) set of all dominating (multi)sets for
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Fig. 1. A sequence of single-step transfers among dominating configurations for a ring
with four vertices (dominating vertices are painted gray)

G = (V, E). For any S1, S2 ∈ D(G), we say that S1 is single-step transferable
to S2 and denote it as S1 → S2, if there are two vertices u, v ∈ V such that
S1 −{u} = S2 −{v} and {u, v} ∈ E. In other words, single-step transfer from S1
to S2 is realized by moving the “role of dominating vertex” from u ∈ S1 to its
neighbor v ∈ S2, where each vertex can own more than one roles since each dom-
inating set is assumed to be a multiset. For example, in a ring network consisting
of four vertices a, b, c, and d arranged in this order, a dominating configuration
{a, c} is transferred to configuration {b, c} in a single-step by moving the role of
dominating vertex from a to b (see Figure 1 for illustration). A transitive clo-
sure of the relation of single-step transferability naturally defines the notion of
transferability, which is denoted as S1

∗→ S2, in what follows. Note that this
definition of transferability requests every subset appearing in a transfer from
S1 to S2 to be a dominating set for G.

2.1 Mutual Transferability

The notion of mutual transferability among dominating configurations is for-
mally defined as follows. A set D′ ⊆ D(G) is said to be mutually transferable
if it holds S1

∗→ S2 for any S1, S2 ∈ D′, where a sequence of single-step transfers
from S1 to S2 can contain a dominating configuration contained in D(G)−D′. In
[11], we have derived interesting results on the mutual transferability for several
classes of graphs. In this subsection, we will review some of those results. The
first theorem gives a tight bound for the class of trees [11]:

Theorem 1 (Trees). For any tree T with n vertices, the set of dominating sets
for T consisting of k ≥ �n/2� vertices is mutually transferable, and there is a
tree T0 with n vertices such that γ(T0) = �n/2�, where γ(T0) denotes the size of
a minimum dominating set for T0.

This theorem indicates that if we can use �n/2� tokens, each of which represents
a dominating vertex, we can always realize a transfer between any dominating
configurations for a tree represented by the �n/2� tokens, and that there is a
tree which cannot be dominated by �n/2� − 1 vertices. In other words, �n/2� is
a tight bound for the class of trees.

The next theorem provides a lower bound on the number of dominating ver-
tices for the class of Hamiltonian graphs [11].
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removed edges

(a) An example of graph G′. (b) An example of graph G′′.

Fig. 2. Explanation of the proposed scheme

Theorem 2 (Lower Bound). For any r ≥ 2 and n ≥ 1, there is a Hamiltonian
r-regular graph G with more than n vertices such that the set of dominating sets
for G with cardinality at least �(n + 1)/3	 − 1 is not mutually transferable.

It should be noted that for any Hamiltonian graph G consisting of n vertices,
γ(G) ≤ �(n + 1)/3	−1, since it has a ring of size n as a subgraph. It is in contrast
to the case of trees, since the theorem claims that there is a Hamiltonian r-regular
graph such that �(n + 1)/3	 − 1 tokens are not sufficient to guarantee the mutual
transferability among dominating configurations, while �(n + 1)/3	−1 tokens are
sufficient to dominate it. By combining Theorem 2 with the following theorem, we
could derive a tightness of the bound for the class of Hamiltonian graphs [11].

Theorem 3 (Hamiltonian Graphs). For any Hamiltonian graph G with n
vertices, the set of dominating sets for G consisting of k ≥ �(n + 1)/3	 vertices
is mutually transferable.

In the next subsection, we provide an outline of the algorithm which connects
two given dominating configurations by a sequence of single-step transfers.

2.2 Algorithm

Let G = (V, E) be a Hamiltonian graph with n vertices, and R a Hamiltonian
cycle in it. In what follows, edges contained in R will be referred to as ring edges
and the other edges in G are referred to as chord edges . Let S ⊆ V be a domi-
nating set for G consisting of �(n + 1)/3	 vertices. The key idea of our scheme
is to transfer S to a dominating configuration for R by consecutively removing
chord edges and by moving the role of dominating vertices accordingly. Since it
is known that the set of dominating sets for R consisting of �(n + 1)/3	 vertices
is mutually transferable [10], the existence of such transfer implies that the set
of dominating sets for G with �(n + 1)/3	 vertices is also mutually transferable.



Vertex Domination in Dynamic Networks 5

An outline of the scheme is as follows [11]. In the first step of the transfer, we
apply the following rule until it could not be applied to the resultant graph:

Rule 1: If the removal of a chord edge does not violate the condition of domi-
nation for its end vertices, then remove it.

Let G′ be the resultant graph. Figure 2 (a) illustrates an example of G and
G′. Note that S is a dominating set for G′, and that G′ contains at most n −
�(n + 1)/3	 − 2 (= |V − S| − 2) chord edges, since there are at most |V − S|
vertices to be dominated by the vertices in S, and at least two of them have
already been dominated via ring edges. In addition, for any chord edge in G′, 1)
exactly one of the end vertices must be a member of S and 2) the other vertex
must be connected with exactly one chord edge (otherwise, Rule 1 can be applied
to remove a chord edge).

Next, we consider a subgraph G′′ of G′ which is obtained by removing all ring
edges incident to the vertices dominated via chord edges. Figure 2 (b) shows an
example of the resultant graph. By construction, G′′ is a forest of trees such that
every leaf is a member of V −S and every vertex with degree more than two is a
member of S. Since |S| = �(n + 1)/3	 is assumed, in at lease one of the resultant
trees, the number of dominating vertices exceeds one third of the number of
vertices. Let T be one of such trees and ST (⊆ S) be the set of dominating
vertices contained in T . The proof can be completed if we could show that in
graph G′′, ST can be transferred to a dominating configuration for T in which
at least one leaf is a dominating one. In fact, we can prove the claim by using
the fact that |ST | is greater than one third of the number of vertices in T . See
[11] for the details.

3 Domatic Partition with Defections

Let G = (V, E) be an undirected graph with vertex set V and edge set E. For
each u ∈ V , let N [u] denote the closed neighbor of u in G; i.e., N [u]={u}∪{v ∈
V : {u, v} ∈ E}. A partition V of V is said to be a domatic partition (DP) of
G if each element in V is a dominating set for G. In the following, we refer to
a DP of size d as d-DP. A DP with maximum cardinality is called a maximum
DP, and the cardinality of which is referred to as the domatic number. In this
section, we introduce the notion of defective domatic partition (DDP) of
graph G, and investigate basic properties of that. A partition V of V is said to
be a (d, k)-DDP of G if it satisfies: 1) |V| = d, and 2) for any u ∈ V ,

|{W ∈ V : N [u] ∩ W 
= ∅}| ≥ d − k.

In other words, in a (d, k)-DDP of G, each vertex is dominated by at least d − k
dominating sets, and allows at most k defections among prepared d dominating
sets. Note that (d, 0)-DDP is equivalent to d-DP.

3.1 Basic Properties

This subsection describes basic properties of (d, k)-DDP. The first lemma is
related with the sufficiency on the number of defections.
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Lemma 1. If G has a (d, k)-DDP, then for any 1 ≤ i ≤ |V | − d, G has a
(d + i, k + i)-DDP.

Proof. We may repeat the following process for i times: 1) select an element W
in V consisting of at least two vertices, 2) remove any vertex u from W , and 3)
add a new element W ′ = {u} to V . In each iteration, 1) the number of defections
at a vertex not in N [u] increases by one, and 2) that of vertices in N [u] does not
increase. Thus the lemma follows.

The above lemma implies that, for example, every graph with no isolated vertex
has a (2 + i, i)-DDP for any 1 ≤ i ≤ |V | − d, since such graph has a 2-DP
consisting of a maximal independent set and its complement.

Let Δ(G) and δ(G) be the maximum and minimum vertex degree of graph G,
respectively. Since every vertex can be dominated by at least δ(G) + 1 different
dominating sets in a partition of V of size |V |, we have the following claim:

Property 1. Any graph G has a (|V |, |V | − (δ(G) + 1))-DDP.

The above claim can be improved by using the notion of “square” of graphs,
which is formally defined as follows:

Definition 1. A square of graph G = (V, E), denoted by G2, is defined as fol-
lows: 1) V (G2) = V and 2) E(G2) = {{u, v} ∈ V × V : {u, v} ∈ E or there
exists w such that {u, w}, {w, v} ∈ E}.

Since any two vertices contained in an independent set of G2 are not contained
in a closed neighborhood of a vertex in G, we can reduce the size of partition
shown in Property 1 from |V | to χ(G2), while keeping the gap between d and k,
where χ(G) denotes the chromatic number of G. By the Brooks’ theorem, it is
known that χ(G) ≤ Δ(G) unless G is complete, and that such a coloring can be
found in a polynomial time. Thus, we have the following theorem.

Theorem 4. If G is a graph such that a square of G is not complete and consists
of at least Δ2 + 1 vertices, then G has a (Δ2, Δ2 − (δ + 1))-DDP, where Δ and
δ denote the maximum and minimum vertex degree of graph G.

By this theorem, we can immediately have a corollary such that any 3-regular
(i.e., cubic) graph with at least twelve vertices has a (9, 5)-DDP, any 4-regular
graph with at least 18 vertices has a (16, 11)-DDP, and so on. Figure 3 shows a
cubic graph consisting of ten vertices which does not have a (9, 5)-DDP.

Finally, when d > δ(G) + 1, the number of defections at a vertex with degree
δ(G) is at least d − (δ(G) + 1). Thus, we have the following negative claim:

Property 2. Any graph G has no (δ(G) + 2 + i, i)-DDP for any i ≥ 0.

3.2 Regular Graphs

This subsection examines (d, k)-DDP for regular graphs, in more detail. In the
following, we first consider the class of rings, and then extend it to cubic graphs.
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Fig. 3. A cubic graph consisting of ten vertices which does not have a (9, 5)-DDP

The domatic number of a ring is at least two and at most three. In addition,
a ring has a 3-DP (i.e., (3, 0)-DDP) iff the number of vertices is a multiple of
three. As for the existence of (4, 1)-DDP, the following lemma holds (note that
although it is true that a ring has a (4, 1)-DDP if the number of vertices is a
multiple of three, the reverse is not true):

Lemma 2 (Ring). Any ring has a (5, 2)-DDP, and a ring has a (4, 1)-DDP iff
the number of vertices in the ring is not equal to five.

Proof. By Theorem 4, a ring with more than five vertices has a (4, 1)-DDP,
since a square of such ring is not complete (note that Δ = δ = 2 for rings). In
addition, by Lemma 1 (resp. Property 1), a ring with three (resp. four) vertices
has a (4, 1)-DDP. Thus, the sufficiency follows.

The necessity could be verified as follows. First, if a ring with five vertices
has a (4, 1)-DDP, each vertex in N [u] must belong to different dominating sets
for any u. Let v1, v2, . . . , v5 be five vertices arranged in this order in the ring,
and without loss of generality, let us assume that vertices v1, v2, v3 belong to
different dominating sets W1, W2, W3, respectively. Now, we have v4 
∈ W2 ∪ W3
since three vertices in N [v3] must belong to different dominating sets, and we
have v4 
∈ W1 since three vertices in N [v5] must belong to different dominating
sets. Thus, vertex v4 must belong to a new dominating set, say W4. However,
the same is true for vertex v5, i.e., {v4, v5} ⊆ W4 must hold, a contradiction.

Finally, the proof on (5, 2)-DDP is trivial. Hence the lemma follows.

Note that by combining the above results with Property 2, we can check the
existence of (d, k)-DDP in a ring with a designated number of vertices, for any
combination of d and k.

Now, let us proceed to the examination of cubic graphs. The domatic number
of a cubic graph is at least two and at most four, and it is known that the
complexity of asking if a given cubic graph has a i-DP is NP-hard for i = 3, 4.
In fact, we can prove the NP-hardness for 3-DP by using a reduction from the
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3-dimensional matching, and that for 4-DP by using a reduction from 3-edge-
coloring problem.

As for (4, 1)-DDP, we have the following positive result.

Theorem 5. Any cubic graph G has a (4, 1)-DDP.

Proof. First, let us consider bridgeless cases. It is known that the set of edges
in a bridgeless cubic graph can be partitioned into a collection of one- and two-
factors, where a one-factor is a matching and a two-factor is a collection of rings.
Let C be the resultant collection of rings, where we may assume |C| ≥ 2 without
loss of generality. Let G′ be a connected subgraph of G which is obtained from
C by adding minimum number of edges (i.e., |C|− 1 edges) contained in the one-
factor, in such a way that the resultant graph is a tree of rings (i.e., a cactus).
By Lemma 2, each element in C has a (4, 1)-DDP if it consists of less than or
more than five vertices, and moreover, even if it consists of five vertices, we can
construct a (4, 1)-DDP for the overall graph G by “supplementing” defective
dominating sets between neighboring rings connected by an edge.

If G contains a bridge vertex, on the other hand, we can construct a (4, 1)-
DDP of G as follows. Let G′′ be a collection of connected components obtained
by removing bridge vertices from G. In the first step, it constructs a (4, 1)-DDP
for each connected component in G′′. It then associates a dominating set for each
bridge vertex, and “relabels” the partition for each component, if necessary. Note
that such a relabeling always terminates since there are no cyclic dependence
among connected components, and it is clear that such a relabeling correctly
terminates the labeling procedure. Hence, the theorem follows.

Thus, by Lemma 1, any cubic graph has a (4 + i, 1 + i)-DDP for any i ≥ 0.
Next, as for (8, 4)-DDP, we have the following positive result.

Theorem 6. Any cubic graph with at least twelve vertices has a (8, 4)-DDP.

Proof. The basic idea of the proof is to introduce the notion of layer of vertices,
and to assign labels to the vertices according to the order of layers. Given a
subgraph G′ of G = (V, E), a chain C is said to be a chordless chain with
respect to G′ if it satisfies the following two conditions:

1. If C is a simple path, then each of its two end vertices is adjacent with at
least one and at most three vertices in V (G′). Otherwise, the shape of C
is a concatenation of a cycle and a simple path, and the end vertex of C
in the path part is adjacent with at least one and at most two vertices in
V (G′).

2. Let v1, v2, . . . , vp be a sequence of vertices appearing in C in this order,
where v1 is a vertex adjacent with a vertex in V (G′) and if the shape
of C is a concatenation of a cycle and a simple path, then vertex vp is
adjacent with a vertex in C. For any 2 ≤ i ≤ p − 1, there is no vertex
u ∈ V (G′) ∪ {v1, v2, . . . , vi−2} such that {vi, u} ∈ E(G).
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A layering of V is a sequence of subsets of V , which is defined as follows:

1. V0 is a set of vertices which induces a chordless cycle in G.
2. For any i ≥ 1, Vi is the vertex set of a chordless chain with respect to a

subgraph of G induced by
⋃i−1

j=0 Vj .

Note that any cubic graph has at least one layering, which could be found in a
linear time by using depth-first search. Let V0, V1, . . . , Vq be a layering of V such
that

⋃q
j=0 Vj = V . In the following, we will assign eight labels to the vertices in

V in such a way that for each u ∈ V , four vertices in N [u] are assigned different
labels (in what follows, we refer to it as Condition A, to clarify the exposition).

At first, we label vertices in V0 with five colors in such a way that Condition
A is satisfied for the subgraph induced by V0. We then try to assign labels to
vertices in layers V1, V2, . . . in this order. More concretely, the labeling of vertices
in Vi is conducted as follows:

Case 1: First, let us consider cases in which |Vi| ≥ 2 and the subgraph C of G
induced by Vi is a simple path. If each of the end vertices of C is not adjacent
with two vertices in

⋃i−1
j=0 Vj with the same label, then we can easily label

vertices in Vi in such a way that Condition A is satisfied for the subgraph
induced by

⋃i
j=0 Vj . On the other hand, if an end vertex of C is adjacent

with two vertices with the same label, then we may label the end vertex to
satisfy Condition A after “flipping” the label of one of its adjacent vertices
appropriately. Note that eight labels are sufficient not to cause a propagation
of such flippings, and that the labeling of intermediate vertices of C can be
substituted without causing a propagation of flippings.

Case 2: When the shape of subgraph C is concatenation of a cycle and a path,
we can complete the labeling by using the same argument to above.

Case 3: Finally, let us consider the case in which |Vi| = 1, i.e., when the unique
vertex u ∈ Vi is adjacent with three vertices v1, v2, v3 ∈

⋃i−1
j=0 Vj . Such case

can be reduced to the first case by removing the label assigned to v1 and
considering V ′i = {u, v1} as the chordless chain to be examined in the ith

round.

Hence the theorem follows.

On the other hand, we have the following negative results on the existence of
(d, k)-DDP. First, by Property 2, any cubic graph has no (6, 1)-DDP (thus by
Lemma 1, it has no (5, 0)-DDP). Figure 4 shows a part of a cubic graph which
has no (7, 3)-DDP. Since the non-existence of (7, 3)-DDP immediately indicates
the non-existence of (6, 2)-DDP and (5, 1)-DDP, the above claim implies that
for each 4 ≤ d ≤ 7, there exists a cubic graph which does not have a (d, d − 4)-
DDP. On the other hand, we can show that there exists a cubic graph to have
a (d, d − 4)-DDP for any d ≥ 4 (we may consider a cubic graph which has a
perfect domination [15]). Thus, at least in the range of 4 ≤ d ≤ 7, the problem
of asking if a given instance has a (d, d − 4)-DDP is non-trivial in the sense that
it is neither trivially “yes” nor trivially “no”.
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Fig. 4. A component of cubic graph which does not have a (7, 3)-DDP

In other words, the remaining problem we have to solve is what is the com-
putational complexity of the problem of finding a (5, 1)-DDP, (6, 2)-DDP, and
(7, 3)-DDP of cubic graphs. Note that since the problem of asking if a given
cubic graph has a 4-DP (i.e., (4, 0)-DDP) is NP-hard, and the decision problem
is in P for (8, 4)-DDP by the above results, in the course of increasing the size
of partition from four to eight by keeping the gap to four, the complexity of the
problem changes from NP-hard to P (if the gap is three, the problem is NP-hard
for k = 0 and in P for k ≥ 1; and if the gap is five or more, there are no such
DDPs in cubic graphs).

4 Concluding Remarks

In this paper, we examined two theoretical issues in designing adaptive ver-
tex domination problem for dynamic networks. There remain several interesting
open problems to be investigated:

– We have to clarify the computational complexity of the problem of finding a
(5, 1)-DDP, (6, 2)-DDP, and (7, 3)-DDP of cubic graphs. A natural conjecture
is that a cubic graph has no (7, 3)-DDP iff it includes the graph shown in
Figure 4 as a subgraph (if the conjecture is true, then the decision problem
is in P for (7, 3)-DDP).

– We should design an efficient distributed algorithm to find a (8, 4)-DDP for
given cubic graphs with at least twelve vertices. Is it difficult to parallelize?

– We should design a distributed algorithm to converge a given configuration
to a dominating one. A promising approach to realize such an autonomous
convergence is to apply the notion of self-stabilization invented by Dijkstra
in [8], which has been extensively investigated in the field of distributed
algorithms.
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– Defections could be introduced to the notion of r-configurations [9]. How can
we realize mutual transfers between domatic partitions with defections and
r-configurations with defections?
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Abstract. We compare the theory and practice of online algorithms,
and show that in certain instances there is a large gap between the pre-
dictions from theory and observed practice. In particular, the competi-
tive ratio which is the main technique for analysis of online algorithms
is known to produce unrealistic measures of performance in certain set-
tings. Motivated by this we examine first the case of paging. We present
a study of the reasons behind this apparent failure of the theoretical
model. We then show that a new measure derived from first principles
and introduced by [Angelopoulos, Dorrigiv and López-Ortiz, SODA 2007]
better corresponds to observed practice. Using these ideas, we derive a
new framework termed the cooperative ratio that generalizes to all other
online analysis settings and illustrate with examples in list update1.

1 Introduction

Competitive analysis has long been established as the canonical approach for
the analysis of on-line algorithms. Informally, an on-line algorithm processes the
input in an on-line manner; that is, the input is a sequence of requests that
arrive sequentially in time and the algorithm must make irrevocable decisions
with only partial or no knowledge about future requests.

The competitive ratio was formally introduced by Sleator and Tarjan [33],
and it has served as a practical framework for studying on-line algorithms. An
algorithm (assuming a cost-minimization problem) is said to be α-competitive if
the cost of serving any specific request sequence never exceeds α times the op-
timal cost (up to some additive constant) of an off-line algorithm which knows
the entire sequence. The competitive ratio has been applied to a variety of prob-
lems and settings such as on-line paging, list update, geometric searching/motion
planning and on-line approximation of NP-complete problems. Indeed the growth
and strength of the field of on-line algorithms is due in no small part to the ef-
fectiveness of this measure in the course of practical analysis: the measure is
1 This paper presents the unifying concepts behind a series of papers on on-line al-

gorithm analysis by the authors, which as a whole lead to a new model for on-line
algorithm analysis. See [4,5,18,19,20,21] where aspects of this proposal are discussed
separately and at length on their own.

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 13–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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relatively simple to define yet powerful enough to quantify, to a large extent,
the performance of an on-line algorithm. Furthermore computing the competi-
tive ratio has proven to be effective—even in cases where the exact shape of the
off-line optimum opt is unknown.

On the other hand, there are known applications in which competitive analysis
yields unsatisfactory results. In some cases it results in unrealistically pessimistic
measures, in others it fails to distinguish between algorithms that have vastly dif-
fering performance under any practical characterization. Most notably, for the
case of paging and on-line motion planning algorithms, competitive analysis does
not reflect observed practice, as first noted by Sleator and Tarjan in their seminal
paper [33]. Such anomalies have led to the introduction of many alternatives to the
competitive analysis of on-line algorithms [8,10,11,13,14,16,22,24,25,27,28,35].

In this paper we study the reasons behind this disconnect, using paging as
a case study. We show then that a newly introduced measure by Angelopou-
los, Dorrigiv and López-Ortiz [5] refines the model and resolves most of these
issues for paging. We then generalize the ideas to other settings which leads to
a general framework termed the adaptive/cooperative ratio for the analysis of
on-line algorithms. This model gives promising results when applied to three
well known on-line problems, paging, list update and motion planning. The idea
is to normalize the performance of an on-line algorithm by a measure other than
the performance of the off-line optimal algorithm OPT. We show that in many
instances the performance of OPT on a sequence is a coarse approximation of
the difficulty or complexity of this input. Using a finer, more natural measure
we can separate paging and list update algorithms which were otherwise indis-
tinguishable under the classical model. This creates a performance hierarchy of
algorithms which better reflects the intuitive relative strengths between them.
Surprisingly, certain randomized algorithms for paging and list update which are
superior to the deterministic optimum in the classical model are not so in the
cooperative model. This confirms that the ability of the on-line adaptive algo-
rithm to ignore pathological worst cases can lead to algorithms that are more
efficient in practice.

2 Definitions

Let σ = (σ1, σ2, . . .) be an input sequence. We denote by σ1:j = (σ1, σ2, . . . , σj)
the prefix subsequence of the first j requests in σ. An on-line algorithm A for
an optimization problem takes as input a sequence σ = (s1, s2, . . . , sn). The
algorithm A processes the request sequence in order, from σ1 onwards and pro-
duces a partial solution with cost A(σ1:j) after the arrival of the jth request (for
convenience of notation we will denote as A(σ) = costA(σ)).

In general it is assumed that the length of the sequence is unknown before-
hand and hence an on-line algorithm performs the same steps on the common
prefix of two otherwise distinct input sequences. More formally, if σ′ is a prefix of
σ then A(σ′) = A(σ1:|σ′|). In contrast, the off-line optimal algorithm, denoted as
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opt has access to the entire sequence at once and hence does not necessarily
meet the prefix condition.

Definition 1. An on-line algorithm A is said to have competitive ratio C(n) if,
for all input sequences σ we have: A(σ) ≤ C(|σ|) · OPT(σ).

Equivalently, using the more conventional ratio notation, we have that an algo-
rithm is C(n)–competitive iff

C(n) = max
|σ|=n,n≥No

{
A(σ)

OPT(σ)

}

.

3 Paging

Paging is a fundamental problem in the context of the analysis of on-line al-
gorithms. A paging algorithm mediates between a slower and a faster memory.
Assuming a cache of size k, it decides which k memory pages to keep in the
cache without the benefit of knowing in advance the sequence of upcoming page
requests. After receiving the ith page request if the page requested is in the cache
(known as a hit) it is served at no cost; else, in the case of a fault the page is
served from slow memory at a cost of one unit. In this event the request results
in a cache miss and the on-line algorithm must decide irrevocably which page
to evict without the benefit of knowing the sequence of upcoming page requests.
The goal of a paging algorithm is to minimize the number of faults over the
entire input sequence, that is, the cost of a particular solution.

Three well known paging algorithms are Least-Recently-Used (LRU), First-In-
First-Out (FIFO), and Flush-When-Full (FWF). On a fault, if the cache is full,
LRU evicts the page that is least recently requested, FIFO evicts the page that
is first brought to the cache, and FWF empties the entire cache. All these paging
algorithms have competitive ratio k, which is the best among all deterministic
on-line paging algorithms [9].

3.1 Theory Versus Practice

As was mentioned earlier, the standard model for paging does not lead to sat-
isfactory conclusions which are replicated in practice. With the goal of closing
the gap between theory and practice, we examine the difference in assumptions
between the theoretical competitive ratio model and the practical systems re-
search approach to paging. We now discuss in detail the differences which also
appear summarized in Table 1.

1. The theoretical model for the study of paging algorithms is the competitive
ratio framework, in contrast, the vast majority of systems research on paging
uses the fault rate measure, which simply determines the percentage of page
requests leading to a page fault. Consider for example a request sequence of
1M pages, such that an on-line algorithm A has 200 page faults while the
off-line optimum has twenty faults. This means that A has a competitive
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ratio of 10 which is high, while in terms of the fault rate model A has a page
fault rate of 0.002% which is very good.

2. In the worst case one can devise highly contrived request sequences with a
very high competitive ratio for any paging algorithm. Since these sequences
do not occur naturally, measuring the performance of an online algorithm
using them does not shed light on the actual relative performance of vari-
ous algorithms. Practical studies in contrast use an extensive set of real-life
request sequences (traces) gathered from diverse set of applications, over
which the performance of any online strategy can be measured.

3. Under the competitive ratio all marking algorithms have the same compet-
itive ratio. In other words LRU and FWF are equal under this measure. In
contrast, experimental analysis has consistently shown that LRU and/or mi-
nor variants thereof are typically the best choices in practice, while FWF is
much worse than LRU. The competitive ratio then fails to separate between
these algorithms with very different performance in practice.

4. In terms of practice the theoretical model suggests that LRU might be prefer-
able for “practical” heuristic reasons. In actuality, since paging algorithms
are executed concurrently with every page access this limits the complexity
of any solution, and hence practical heuristic solutions are simplifications
and approximations of LRU.

5. Competitive analysis uses an optimal off-line algorithm as a baseline to com-
pare on-line algorithms. While this may be convenient, it is rather indirect:
one could argue that in comparing A to B all we need to study is the rela-
tive cost of the algorithms on the request sequences. The approach we follow
stems from this basic observation. The indirect comparison to an off-line op-
timal can introduce spurious artifacts due to the comparison of two objects
of different types, namely an online and an off-line algorithm. As well the off-
line optimum benefits from aspects other than the difficulty of the instances,
namely it can take advantage of knowledge of the future, so regardless of the
difficulty of servicing a request it might do better as a consequence of this2.
In contrast the fault rate measure uses a direct comparison of the number of
faults per access of paging algorithms to determine which one is preferable.

6. Interestingly, even if algorithms are measured using the competitive ratio, in
practice the worst case request sequence encountered using LRU has compet-
itive ratio 4, and most sequences measure are well below that with competi-
tive ratio between two and four. Contrast this with the predicted competitive
ratio of k under the theoretical model.

7. The off-line optimum model implicitly creates an adversarial model in which
the paging algorithm must be able to handle all request sequences, including
those maliciously designed to foil the paging algorithm. In contrast, in real
life, programmers and compilers purposely avoid bad request sequences and

2 For example consider the decision whether to purchase car insurance or not [8]. If
one purchases insurance then the adversary selects the input in which no claim is
filed, if alternatively no insurance is bought then the adversary selects the input in
which an accident takes place. In real life, however, it is easy to see that the best
on-line strategy is to buy insurance so long as it is priced below the expected loss.
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try to arrange the data in a way so as to maximize locality of reference in
the request sequence (e.g. the I/O model [1], or the cache oblivious model
[30]). In game theoretical terms, the theoretical competitive model is a zero
sum game in which the adversary benefits from a badly performing paging
algorithm, while in practice paging is a positive sum game in which both
the user and the paging algorithm can maximize their respective perfor-
mances by cooperating and coordinating their strategies. Indeed it has been
observed that paging algorithms optimize for locality of reference because
this was first observed in real life traces, and now compilers optimize code to
increase locality of reference because those paging algorithms excel on those
sequences.

8. Lastly, we observe that finite lookahead does not help in the theoretical
model, as this is a worst case measure (simply repeat each request for as
long as the lookahead is) yet in practice instruction schedulers in many cases
know the future request sequence for a small finite lookahead and can use
this information to improve the fault rate of paging strategies.

Table 1. Contrast of theory versus practice for paging

Theoretical Model Systems Framework

Competitive ratio framework Fault rate measure
Worst case analysis Typical case analysis

Marking algorithms optimal LRU and variants thereof are best
In practice LRU is best LRU is impractical
LFD is off-line optimal No analogous concept
Competitive ratio is k Comp. ratio over observed sequences is at most 4

User is a malicious adversary User (compiler/programmer) seeks
locality of reference

No benefit from lookahead Lookahead helps

3.2 Related Work

In this section we overview some alternatives to the competitive ratio. We refer
the reader to the survey of Dorrigiv and López-Ortiz [18] for a more comprehen-
sive and detailed exposition.

Loose competitiveness, which was first proposed by Young in [35] and later
refined in [38], considers an off-line adversary that is oblivious to the parameter
k (the cache size). The adversary must produce a sequence that is bad for most
values of k rather than for just a specific value. It also ignores the sequences
on which the on-line algorithm incurs a cost less than a certain threshold. This
results in a weaker adversary and hence in paging algorithms with constant per-
formance ratios. The diffuse adversary model by Koutsoupias and Papadimitriou
[28] as well as Young [36,37] refines the competitive ratio by restricting the set
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of legal request sequences to those derived from a class (family) of probability
distributions. This restriction follows from the observation that although a good
performance measure could in fact use the actual distribution over the request
sequences, determining the exact distribution of real-life phenomena is a difficult
task.

The Max/Max ratio, introduced by Borodin and Ben-David [8] compares on-
line algorithms based on their amortized worst-case behaviour (here the amorti-
zation arises by dividing the cost of the algorithm over the length of the request
sequence). The relative worst order ratio [11,12,15] combines some of the desir-
able properties of the Max/Max ratio and the random order ratio (introduced
in [27] in the context of the on-line bin packing problem). As with the Max/Max
ratio, it allows for direct comparison of two on-line algorithms. Informally, for
a given request sequence the measure considers the worst-case ordering (per-
mutation) of the sequence, for each of the two algorithms, and compares their
behaviour on these orderings. It then finds among all possible sequences the one
that maximizes this worst-case performance. Recently, Panagiotou and Souza
proposed a model that explains the good performance of LRU in practice [29].
They classify input sequences according to some parameters and prove an upper
bound on the competitive ratio of LRU as a function of these parameters. Then
they argue that sequences in practice have parameters that lead a to constant
competitive ratio for LRU.

There are several models for paging which assume locality of reference
Borodin, Raghavan, Irani, and Schieber [10] proposed the access graph model
in which the universe of possible request sequences is reduced to reflect that the
actual sequences that can arise depend heavily on the structure of the program
being executed. The space of request sequences can then be modeled by a graph
in which paths between vertices correspond to actual sequences. In a general-
ization of the access graph model, Karlin, Phillips, and Raghavan [26] proposed
a model in which the request sequences are distributed according to a Markov
chain process. Becchetti [7] refined the diffuse adversary model of Koutsoupias
and Papadimitriou by considering only probabilistic distributions in which tem-
poral locality of reference is present. Torng [34] considered the decomposition of
input sequences to phases in the same manner as marking algorithms. He then
modeled locality of reference by restricting the input to sequences with long
average phase length. Using the full access cost model, he computed the perfor-
mance of several paging algorithms on sequences with high locality of reference.
Most notably, Albers, Favrholdt, and Giel [2] introduced a model in which in-
put sequences are classified according to a measure of locality of reference. The
measure is based on Denning’s working set concept [17] which is supported by
extensive experimental results. The technique used, which we term concave anal-
ysis, reflects the fact that efficient algorithms must perform competitively in each
class of inputs of similar locality of reference, as opposed to the worst case alone.
It should be noted that [2] focuses on the fault rate as the measure of the cost
of an algorithm, as opposed to the traditional definition of cost as the number
of cache misses.
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4 Bijective Analysis and Average Analysis

Bijective Analysis and Average Analysis are two models recently proposed by
Angelopoulos, Dorrigiv and López-Ortiz [5] for comparing on-line algorithms.
In this section, we first provide the formal definitions of Bijective Analysis and
Average Analysis and then apply them to the paging algorithms. These models
have certain desired characteristics for comparing online algorithms: they allow
for direct comparison of two on-line algorithms without appealing to the con-
cept of the off-line “optimal” cost (see [5] for a more detailed discussion). In
addition, these measures do not evaluate the performance of the algorithm on a
single “worst-case” request, but instead use the cost that the algorithm incurs
on each and all request sequences. Informally, Bijective Analysis aims to pair
input sequences for two algorithms A and B using a bijection in such a way
that the cost of A on input σ is no more than the cost of B on the image of
σ, for all request sequences σ of the same length. In this case, intuitively, A is
no worse than B. On the other hand, Average Analysis compares the average
cost of the two algorithms over all request sequences of the same length. For an
on-line algorithm A and an input sequence σ, let A(σ) be the cost incurred by
A on σ. Denote by In the set of all input sequences of length n.

Definition 2. [5] We say that an on-line algorithm A is no worse than an
on-line algorithm B according to Bijective Analysis if there exists an integer
n0 ≥ 1 so that for each n ≥ n0, there is a bijection b : In ↔ In satisfying
A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B. Otherwise we
denote the situation by A ��b B. Similarly, we say that A and B are the same
according to Bijective Analysis if A �b B and B �b A. This is denoted by
A ≡b B. Lastly we say A is better than B according to Bijective Analysis if
A �b B and B ��b A. We denote this by A ≺b B.

Definition 3. [5] We say that an on-line algorithm A is no worse than an on-
line algorithm B according to Average Analysis if there exists an integer n0 ≥ 1
so that for each n ≥ n0,

∑
I∈In

A(I) ≤
∑

I∈In
B(I). We denote this by A �a B.

Otherwise we denote the situation by A ��a B. A ≡a B, and A ≺a B are defined
as for Bijective Analysis.

In [5] it is shown that LRU is strictly better than FWF under Bijective Analysis.
Additionally, lookahead is beneficial in Bijective Analysis model: more specifi-
cally, LRU with lookahead as small as one (namely the sequence is revealed
to the algorithm as consecutive pairs of requests) is strictly better than LRU
without any lookahead. Both of these results describe natural, “to-be-expected”
properties of the corresponding paging strategies which competitive analysis
nevertheless fails to yield.

Also it turns out that a very large class of natural paging strategies known as
lazy algorithms (including LRU and FIFO, but not FWF) are in fact strongly
equivalent under this rather strict bijective measure. The strong equivalence of
lazy algorithms is evidence of an inherent difficulty to separate these algorithms
in any general unrestricted setting. In fact, it implies that to obtain theoretical
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separation between algorithms we must either induce a partition of the request
sequence space (e.g. as in Albers et al. [2]) or assume a distribution (or a set
of distributions) on the sequence space (e.g. as in Koutsoupias and Papadim-
itriou [28], Young [36] and Becchetti [7]). The latter group of approaches use
probabilistic assumptions on the sequence space. However, we are interested in
measures that separate algorithms under a deterministic model.

Next we briefly describe concave analysis. In this model a request sequence
has high locality of reference if the number of distinct pages in a window of
size n is small. Consider a function that represents the maximum number of
distinct pages in a window of size n within a given request sequence. Extensive
experiments with real data show that this function can be bounded by a concave
function for most practical request sequences [2]. Let f be an increasing concave
function. We say that a request sequence is consistent with f if the number of
distinct pages in any window of size n is at most f(n), for any n ∈ N . Now we can
model locality by considering only those request sequences that are consistent
with f .

Using a combination of Average Analysis and concave analysis, Angelopoulos
et al. [5] show that LRU is never outperformed in any possible subpartition on the
request sequence space induced by concave analysis, while it always outperforms
any other paging algorithm in at least one subpartition of the sequence space.
This result proves separation between LRU and all other algorithms and provides
theoretical backing to the observation that LRU is preferable in practice.

To be more precise we restrict the input sequences to those consistent with a
given concave function f . Let If denote the set of such sequences. We can easily
modify the definitions of Bijective Analysis and Average Analysis (Definition 2
and Definition 3) by considering If instead of I. We denote the corresponding
relations by A �f

b B, A �f
a B, etc. Note that we can make any sequence consis-

tent with f by repeating every request a sufficient number of times. Therefore
even if we restrict the input to sequences with high locality of reference, there
is a worst case sequence for LRU that is consistent with f and therefore the
competitive ratio of LRU is the same as in the standard model. Observe that
the performance of a paging algorithm is now evaluated within the subset of
request sequences of a given length whose locality of reference is consistent with
f , i.e. If

n .

Theorem 1 (Unique optimality of LRU). [5] For any concave function
f and any paging algorithm A, LRU �f

a A. Furthermore, let A be a paging
algorithm other than LRU. Then there is a concave function f so that A ��f

a LRU

which implies A ��f
b LRU.

5 List Update and Cooperative Analysis

List update is a fundamental problem in the context of on-line computation.
Consider an unsorted list of l items. The input to the algorithm is a sequence
of n requests that should be served in an on-line manner. Let A be an arbitrary
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on-line list update algorithm. To serve a request to an item x, A should linearly
search the list until it finds x. If x is the ith item in the list, A incurs cost i
to access x. Immediately after accessing x, A can move x to any position closer
to the front of the list at no extra cost. This is called a free exchange. Also A
can exchange any two consecutive items at a cost of 1. These are called paid
exchanges. An efficient algorithm should use free and paid exchanges so as to
minimize the overall cost of serving a sequence. This is called the standard cost
model [3]. Three well-known deterministic on-line algorithms are Move-To-Front
(MTF), Transpose, and Frequency-Count (FC). MTF moves the requested item
to the front of the list whereas Transpose exchanges the requested item with
the item that immediately precedes it. FC maintains a frequency count for each
item, updates this count after each access, and makes necessary moves so that
the list always contains items in non-increasing order of frequency count. Sleator
and Tarjan showed that MTF is 2-competitive, while Transpose and FC do not
have constant competitive ratios [33].

The competitive analysis of list update algorithms does not have as many
drawbacks as paging and at first it gives promising results: list update algorithms
with better competitive ratio tend to have better performance in practice. How-
ever, in terms of separation list update algorithms have similar drawbacks to
paging: while algorithms can generally be more easily distinguished than in the
paging case, the experimental study of list update algorithms by Bachrach and
El-Yaniv suggests that the relative performance hierarchy as computed by the
competitive ratio does not correspond to the observed relative performance of
the algorithms in practice [6].

Like paging, “real-life” input sequences for list update problem usually exhibit
locality of reference. As stated before, for the paging problem, several models for
capturing locality of reference have been proposed [2,7,34]. Likewise, many re-
searchers have pointed out that input sequences of list update algorithms in
practice show locality of reference [9,23,32] and actually on-line list update al-
gorithms try to take advantage of this property [23,31]. Hester and Hirschberg
[23] posed the question of providing a good definition of locality of accesses for
the list update problem as an open problem. In addition, it has been commonly
assumed, based on intuition and experimental evidence, that MTF is the best al-
gorithm on sequences with high locality of reference, e.g., Hester and Hirschberg
[23] claim: “move-to-front performs best when the list has a high degree of local-
ity”. However, to the best of our knowledge, locality of reference for list update
algorithms had not been formally studied, until recently [4,19].

In [4], Angelopoulos, Dorrigiv and López-Ortiz extended the concave anal-
ysis model [2] to the list update problem. The validity of the extended model
was supported by experimental results obtained on the Calgary Corpus, which
is frequently used as a standard benchmark for evaluating the performance
of compression algorithms (and by extension list update algorithms, e.g. [6]).
They combined Average Analysis with concave analysis and proved that under
this model MTF is never outperformed, while it always outperforms any other
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on-line list update algorithm. Thus, [4] resolved the open problem posed by Hes-
ter and Hirschberg [23].

Based on adaptive analysis ideas, Dorrigiv and López-Ortiz [19] proposed co-
operative analysis for analyzing on-line algorithms. The idea behind cooperative
analysis is to give more weight to “well-behaved” input sequences. Informally,
an on-line algorithm has good cooperative ratio if it performs well on good se-
quences and not too poorly on bad sequences. For example, as stated before,
input sequences for paging and list update have locality of reference in practice,
therefore one possibility is to relate goodness of sequences to their amount of
locality. In [19], we showed that cooperative analysis of paging and list update
algorithms gives promising results. Here we just briefly describe the results for
list update. We use a measure of badness that is related to locality of reference
as follows. For a sequence σ of length n, define dσ[i] for 1 ≤ i ≤ n as either 0 if
this is the first request to item σ[i], or otherwise, the number of distinct items
that are requested since the last request to σ[i] (including σ[i]). Define �(σ), the
non-locality of a sequences σ, as �(σ) =

∑
1≤i≤n dσ[i].

Definition 4. [19] We say that an on-line list update algorithm A has locality-
cooperative ratio α if there is a constant β so that for every sequence σ, A(σ) ≤
α× �(σ)+β. We define locality-cooperative ratio of A, LCR(A), as the smallest
number α so that A has locality-cooperative ratio α.

The following theorem summarizes the results proved for locality-cooperative
ratio of list update algorithms.

Theorem 2. [19] For any on-line list update algorithm A, 1 ≤ LCR(A) ≤ l;
furthermore:
1. LCR(MTF ) = 1.
2. LCR(Transpose) ≥ l/2.
3. LCR(FC) ≥ l+1

2 ≈ l/2.
4. LCR(TS) ≥ 2l

l+1 ≈ 2.
5. LCR(Bit) ≥ 3l+1

2l+2 ≈ 3/2.

6 Conclusions

In this paper, we highlighted the gap between theoretical and experimental re-
sults for some on-line problems and possible ways to close this gap. We observed
that standard measure for analysis of on-line algorithms, i.e., competitive anal-
ysis, leads to results that are not consistent with practice for paging and list
update. Then we described reasons for the shortcomings of competitive anal-
ysis and described several new models for analysis of on-line algorithms that
do not have these drawbacks. Bijective Analysis and Average Analysis directly
compare two on-line algorithms on all sequences of the same length and lead to
satisfactory results when applied to paging and list update. The new concept of
cooperative ratio applies adaptive analysis ideas to the analysis of on-line algo-
rithms and divides the cost of the algorithm on a sequence to some property of
that sequence.
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Abstract. A graph G � (V� E) is said to be an intersection graph if and only if
there is a set of objects such that each vertex v in V corresponds to an object Ov

and �u� v� � E if and only if Ov and Ou have a nonempty intersection. Interval
graphs are typical intersection graph class, and widely investigated since they
have simple structures and many hard problems become easy on the graphs. In
this paper, we survey known results and investigate (unit) grid intersection graphs,
which is one of natural generalized interval graphs. We show that the graph class
has so rich structure that some typical problems are still hard on the graph class.

Keywords: graph isomorphism, grid intersection graphs, Hamiltonian path prob-
lem, interval graphs.

1 Introduction

A graph G � (V� E) is said to be an intersection graph if and only if there is a set of
objects such that each vertex v in V corresponds to an object Ov and �u� v� � E if and
only if Ov and Ou have a nonempty intersection. Interval graphs are typical intersec-
tion graph class, and widely investigated. One reason is that interval graphs have wide
applications including scheduling and bioinformatics [6]. Another reason is that an in-
terval graph has a simple structure, and hence we can solve many problems eÆciently,
whereas the problems are hard in general [6,16].

Some natural generalizations of interval graphs have been investigated (see, e.g.,
[4,11,16]). Among them, we focus on grid intersection graphs. Grid intersection graphs
are natural bipartite analogy and 2D generalization of interval graphs; a bipartite graph
G � (X� Y� E) is a grid intersection graph if and only if G is an intersection graph of X
and Y, where X corresponds to a set of horizontal line segments, and Y corresponds to a
set of vertical line segments. Recently, Otachi, Okamoto, and Yamazaki investigate rela-
tionships between the class of grid intersection graphs and other bipartite graph classes
[13]. In this paper, we show that grid intersection graphs have a rich structure. More
precisely, we show two hardness results. First, the Hamiltonian cycle problem is still
��-complete even if graphs are restricted to unit length grid intersection graphs. The
Hamiltonian cycle problem is one of the classic and basic��-complete problems. Sec-
ond, the graph isomorphism problem is still GI-complete even if graphs are restricted
to grid intersection graphs. (We say the graph isomorphism problem is GI-complete if
the problem is as hard as to solve the problem on general graphs.) The results imply
that (unit length) grid intersection graphs have so rich structure that many other hard
problems may still hard even on (unit length) grid intersection graphs.

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 25–33, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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On an interval graph, those problems are easy to solve; in fact, the Hamiltonian cy-
cle and path problems, and the graph isomorphism problem are solvable in linear time
[9,10]. Comparing to the results, we can observe that the generalized interval graphs
have so rich structure that some problems become hard on the graphs in general. How-
ever, the author hopes that the paper involves in investigating eÆcient algorithms on
the graph classes; showing hardness and investigating eÆcient algorithms lead us to
capture the essence of the diÆculty of the graph classes and the problems.

2 Preliminaries

The neighborhood of a vertex v in a graph G � (V� E) is the set NG(v) � �u � V �

�u� v� � E�, and the degree of a vertex v is �NG(v)� denoted by dG(v). If no confusion can
arise we will omit the index G. For a subset U of V , the subgraph of G induced by U is
denoted by G[U]. Given a graph G � (V� E), its complement Ḡ � (V� Ē) is defined by
Ē � ��u� v� � �u� v� � E�. A vertex set I is an independent set if and only if G[I] contains
no edges, and then the graph Ḡ[I] is said to be a clique.

For a graph G � (V� E), a sequence of distinct vertices v0� v1� � � � � vl is a path, denoted
by (v0� v1� � � � � vl), if �v j� v j�1� � E for each 0 � j � l. The length of a path is the number
of edges on the path. For two vertices u and v, the distance of the vertices, denoted by
dist(u� v), is the minimum length of the paths joining u and v. A cycle consists of a path
(v0� v1� � � � � vl) of length at least 2 with an edge �v0� vl�, and denoted by (v0� v1� � � � � vl� v0).
The length of a cycle is the number of edges on the cycle (equal to the number of
vertices). A path P in G is said to be Hamiltonian if P visits every vertex in G exactly
once. The Hamiltonian path problem is to determine if a given graph has a Hamiltonian
path. The Hamiltonian cycle problem is defined similarly for a cycle. The problems are
well known ��-complete problem (see, e.g., [5]).

An edge that joins two vertices of a cycle but is not itself an edge of the cycle is a
chord of that cycle. A graph is chordal if every cycle of length at least 4 has a chord. A
graph G � (V� E) is bipartite if and only if V can be partitioned into two sets X and Y
such that every edge joins a vertex in X and the other vertex in Y. A bipartite graph is
chordal bipartite if every cycle of length at least 6 has a chord.

In this paper, we will discuss about intersection graphs of geometrical objects. In-
terval graphs are characterized by intersection graphs of intervals, and it is well known
that chordal graphs are intersection graphs of subtrees of a tree (see, e.g., [16]).

A natural bipartite analogy of interval graphs are called interval bigraphs which
are intersection graphs of two-colored intervals so that we do not join two vertices if
they have the same color. Based on the definition, Müller showed that the recogni-
tion problem for interval bigraphs can be solved in polynomial time [12]. Later, Hell
and Huang show an interesting characterization of interval bigraphs, which is based
on the idea to characterize the complements of the graphs [7]. Based on their char-
acterization, we can construct an O(n2) time simple recognition algorithm for interval
bigraphs.

A bipartite graph G � (X� Y� E) is a grid intersection graph if every vertex x � X and
y � Y can be assigned line segments Ix and Jy in the plane, parallel to the horizontal
and vertical axis so that for all x � X and y � Y, �x� y� � E if and only if Ix and Jy
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cross each other. We call (��	) a grid representation of G, where � � �Ix � x � X� and
	 � �Jy � y � Y�. A grid representation is unit if all line segments in the representation
have the same (unit) length. A bipartite graph is a unit grid intersection graph if it has
a unit grid representation.

Recently, Otachi, Okamoto, and Yamazaki show some relationship between (unit)
grid intersection graphs and other graph classes [13]; for example, interval bigraph is
included in the intersection of unit grid intersection graphs and chordal bipartite graphs.
It is worth mentioning that it is open whether chordal bipartite graphs are included in
grid intersection graphs or not.

Two graphs G � (V� E) and G�
� (V �� E�) are isomorphic if and only if there is a

one-to-one mapping � : V 
 V � such that �u� v� � E if and only if ��(u)� �(v)� � E� for
every pair of vertices u� v � V . We denote by G � G� if G and G� are isomorphic. The
graph isomorphism (GI) problem is to determine if G � G� for given graphs G and G�.
A graph class � is said to be GI-complete if there is a polynomial time reduction from
the graph isomorphism problem for general graphs to the graph isomorphism problem
for �. Intuitively, the graph isomorphism problem for the class � is as hard as the
problem for general graphs if � is GI-complete. The graph isomorphism problem is GI-
complete for several graph classes; for example, chordal bipartite graphs, and strongly
chordal graphs [19]. On the other hand, the graph isomorphism problem can be solved
eÆciently for many graph classes; for example, interval graphs [10], probe interval
graphs [17], permutation graphs [2], directed path graphs [1], and distance hereditary
graphs [8].

3 Hard Problems

We give two hardness results for grid intersection graphs in this section.

Theorem 1. The Hamiltonian cycle problem is ��-complete for unit grid intersection
graphs.

Proof. It is clear that the problem is in ��. Hence we show ��-hardness. We show
a similar reduction in [18]. We start from the Hamiltonian cycle problem in planar
directed graph with degree bound two, which is still ��-hard [14]. Let G0 � (V0� A) be
a planar directed graph with degree bound two. (We deal with directed graphs only in
this proof; we will use (u� v) as a directed edge, called arc, which is distinguished from
�u� v�.) As shown in [14,18], we can assume that G0 consists of two types of vertices:
(type 
) with two indegrees and one outdegree, and (type �) with one indegree and two
outdegrees. Hence, the set V0 of vertices can be partitioned into two sets V� and V� that
consist of the vertices in type 
 and �, respectively.

Moreover, we have two more claims; (1) the unique arc from a type 
 vertex has to
be the unique arc to a type � vertex, and (2) each of two arcs from a type � vertex has to
be one of two arcs to a type � vertex. If the unique arc from a type 
 vertex v is into one
of a type 
 vertex u, The vertex u has to be visited from v to make a Hamiltonian cy-
cle. Hence the vertex u can be replaced by an arc from v to the vertex w which is pointed
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from u. On the other hand, if one of two arcs from a type � vertex v is reach another
type � vertex u, the vertex u should be visited from v. Hence the other arc a from v can
be removed from G0. Then the vertex w incident to a has degree 2. Hence we have two
cases; w can be replaced by an arc, or we can conclude G0 does not have a Hamiltonian
cycle. Repeating these processes, we have the claims (1) and (2), which imply that we
have �V�� � �V��, the underlying graph of G0 is bipartite (with two sets V� and V�), and
any cycle contains two types of vertices alternately.

By the claims, we can partitioned into arcs into two groups; (1) arcs from a type 

vertex to a type � vertex called thick arcs, and (2) arcs from a type � vertex to a type

 vertex called thin arcs. By above discussion, we can observe that any Hamiltonian
cycle has to contain all thick arcs1.

a ab

c d

b

dc

Fig. 1. Reduction of thick arcs

ed

a

b c

ed

a

b c

Fig. 2. Reduction of thin arcs

a

b

c

d

e

f

a

b

c

d

e

f

G0

G1

Fig. 3. Reduction of a graph G0

1 Moreover, contracting thick arcs, we can show ��-completeness of the Hamiltonian cycle
problem even if we restrict ourselves to the directed planar graphs that only consist of vertices
of two outdegrees and two indegrees.
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ed
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b c

u

v

w

u

v

w

Fig. 4. How to sweep thin arcs Fig. 5. Hamiltonian path problem

Now, we construct a unit grid intersection graph G1 � (V1� E1) from G0 � (V0� A)
which satisfies the above conditions. One type � vertex is represented by five vertical
lines and two horizontal lines, and one type 
 vertex is represented by three vertical
lines and one horizontal line in Fig. 1 (each corresponding line segments are in gray
area). Each thick arc is represented by alternations of one parallel vertical line and one
parallel horizontal line in Fig. 1, and each thin arc is represented by alternations of two
parallel vertical lines and two parallel horizontal lines in Fig. 2. The vertices are joined
by the arcs in a natural way. An example is illustrated in Fig. 3.

For the resultant graph G1, it is obvious that the reduction can be done in a polyno-
mial time, and G1 is a unit grid intersection graph. Hence we show G0 has a Hamiltonian
cycle if and only if G1 has a Hamiltonian cycle. First, we assume that G0 has a Hamilto-
nian cycle C0, and show that G1 also has a Hamiltonian cycle C1. C1 visits the vertices
(or line segments) in G1 along C0 as follows. For each thick arc in G0, the correspond-
ing segments in G1 are visited straightforwardly. We show how to visit the segments
corresponding to thin arcs (Fig. 4). For each thin arc not on C0, they are visited by C1

as shown in the left side of Fig. 4 (between u and v); a pair of parallel lines are used to
sweep the arc twice, and the endpoints are joined by one line segment in the gadget of
a type 
 vertex (v). On the other hand, for each thin arc on C0, they are visited by C1

as shown in the right side of Fig. 4 (between w and v); a pair of parallel lines are used
to sweep the arc once, and the path goes from e to a. Hence from a given Hamiltonian
cycle C0 on G0, we can construct a Hamiltonian cycle C1 on G1.

Now we assume that G1 has a Hamiltonian cycle C1, and show that G0 also has a
Hamiltonian cycle C0. By observing that there are no ways for C1 to visit lines corre-
sponding to thick arcs described above, and the unique center horizontal line of a type

 vertex can be used exactly once, we can see that C1 forms a Hamiltonian cycle of G1

as in the same manner represented above. Hence C0 can be constructed from C1 in the
same way. ��

Corollary 1. The Hamiltonian path problem is ��-complete for unit grid intersection
graphs.

Proof. We reduce the graph G1 in the proof of Theorem 1 to G�

1 as follows; pick up
any line segment in a thick arc, and add one more line segment as in Fig. 5. Then, it is
easy to see that G1 has a Hamiltonian cycle if and only if G�

1 has a Hamiltonian path
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Fig. 6. Reduction for GI-completeness

(with an endpoint corresponding to the additional line segment). Hence we have the
corollary. ��

Theorem 2. The graph isomorphism problem is GI-complete for grid intersection
graphs.

Proof. We show a similar reduction in [1,19]. We first start the graph isomorphism
problem for general graph G0 � (V0� E0) with �V0� � n and �E0� � m. (we will refer
the graph in Fig. 6(1) as an example). Without loss of generality, we assume that G0 is
connected. From G0, we define a bipartite graph G1 � (V0� E0� E1) with two vertex sets
V0 and E0 by E1 :� ��v� e� � v is one endpoint of e�. (Intuitively, each edge is divided
into two edges joined by a new vertex; see Fig. 6(2)). Then, e � E0 have degree 2 by its
two endpoints in V0. It is easy to see that G0 � G�

0 if and only if G1 � G�

1 for any graphs
G0 and G�

0 with resultant graphs G1 and G�

1.
Now, we construct a grid intersection graph G2 � (V2� E2) from the bipartite graph

G1 � (V0� E0� E1) such that G1 � G�

1 if and only if G2 � G�

2 in the same manner. The
vertex set V2 consists of the following sets (see Fig. 6(3)):

V0, E0; we let V0 � �v1� v2� � � � � vn�, E0 � �e1� e2� � � � � em�, where ei � �vi� v j� for some
1 � i� j � n.

Pv� Qe; each vertex in Pv � Qe is called pendant and Pv :� �p1� p2� � � � � pn�, Qe :�
�q1� q2� � � � � qm� q�1� q�2� � � � � q�m�. That is, we have �Pv� � n and �Qe� � 2m.

Ca�Cb�Cc�Cd; each vertex in Ca � Cb � Cc � Cd is called connector, and Ca :�
�a1� a2� � � � � am�, Cb :� �b1� b2� � � � � bm�, Cc :� �c1� c2� � � � � cm�, and Cd :�
�d1� d2� � � � � dm�.

The edge set E2 contains the following edges (Fig. 6(3)):

1. For each i with 1 � i � n, each pendant pi is joined to vi. That is, �pi� vi� � E2 for
each i with 1 � i � n.

2. For each j with 1 � j � m, two pendants q j and q�j are joined to e j. That is,
�q j� e j�� �q�j� e j� � E2 for each j with 1 � j � m.

3. For each e j with 1 � j � m, we have two vertices vi and vi� with �vi� e j�� �vi� � e j� �

E1. For the three vertices e j, vi, vi� , we add �e j� a j�, �vi� b j�, �a j� b j�, �e j� c j�, �vi� � d j�,
�c j� d j� into E2. Intuitively, each edge in G1 is replaced by a path of length 3 that
consists of one vertex in Ca � Cc and the other one in Cb � Cd.
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The edge set E2 also contains the edges �vi� e j� for each i� j with 1 � i � n and 1 � j �
m. In other words, every vertex in V0 is connected to all vertices in E0 (the edges are
omitted in Fig. 6(3) to simplify).

Let G0 and G�

0 be any two graphs. Then, it is easy to see that G0 � G�

0 implies
G2 � G�

2. Hence, we have to show that G2 is a grid intersection graph, and G0 can be
reconstructed from G2 uniquely up to isomorphism.

1

2

3

4

5

6

a b c d e f g
Pendants

Connectors

Fig. 7. Grid representation of G2

We can represent the vertices in V0 � Qe � Ca � Cc (white vertices in Fig. 6(3)) as
horizontal segments and the vertices in E0�Pv�Cb�Cd (black vertices in Fig. 6(3)) as
vertical segments as follows (Fig. 7): First, all vertices in V0 correspond to unit length
horizontal segments, and placed in parallel. All vertices in E0 correspond to unit length
vertical segments and placed in parallel, and the segments corresponding to vertices
in V0 and E0 make a mesh structure (as in Fig. 7). Each pendant vertex in Pv and
Qe corresponds to small segment, and attached to its neighbor in an arbitrary way,
for example, as in Fig. 7. Each pair of connectors in Ca and Cb (or Cc and Cd) joins
corresponding vertices in V0 and E0 as in Fig. 7. Then it is easy to see that the resultant
grid representation gives G2.

Next, we show that G0 can be reconstructed from G2 uniquely up to isomorphism.
First, any vertex of degree 1 is a pendant in G2. Hence we can distinguish Pv �Qe from
the other vertices. Then, for each vertex v � V2 � (Pv � Qe), �N(v) � (Pv � Qe)� � 1 if
and only if v � V0, and �N(v) � (Pv � Qe)� � 2 if and only if v � E0. Hence two sets V0

and E0 are distinguished, and then Pv � Qe can be divided into Pv and Qe. Moreover,
we have Ca �Cb �Cc �Cd � V2 � (Pv � Qe � V0 � E0). Thus, tracing the paths induced
by Ca � Cb � Cc � Cd, we can reconstruct each edge e j � (vi� vi�) with e j � E0 and
vi� vi� � V0. Therefore, we can reconstruct G0 from G2 uniquely up to isomorphism.

Hence the graph isomorphism problem for grid intersection graphs is as hard as the
graph isomorphism problem for general graphs. Thus the graph isomorphism problem
is GI-complete for grid intersection graphs. ��
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4 Concluding Remarks

In this paper, we focus on hardness of two problems on geometrical intersection graphs.
From the viewpoint of the parameterized complexity (see Downey and Fellow [3]), it
is interesting to investigate eÆcient algorithms for these graph classes with some con-
straints. What if the number of vertical lines (or the possible positions on the coordinate
of vertical lines) is bounded by a constant? In this case, we can use the dynamic pro-
gramming technique for the graphs. Do the restrictions make some problems solvable
in polynomial time?

From the graph theoretical point of view, there are two open problems. The first one
is a geometric model for chordal bipartite graphs. It is pointed by Spinrad in [15], but it
is not solved yet. The other one is whether chordal bipartite graphs are included in grid
intersection graphs or not. This problem is pointed by Otachi, Okamoto, and Yamazaki
in [13], and it seems to be true, but it is not solved.

It is also interesting the graph isomorphism problem for unit grid intersection graphs.
By Theorem 2, the graph isomorphism problem is GI-complete for grid intersection
graphs. We cannot make all line segments unit length in the reduction in the proof of
Theorem 2. It is worth mentioning again that the graph isomorphism can be solved
eÆciently for interval bigraphs, which is another bipartite generalization of interval
graphs.
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Abstract. A central problem in comparative genomics consists in com-
puting a (dis-)similarity measure between two genomes, e.g. in order to
construct a phylogenetic tree. A large number of such measures has been
proposed in the recent past: number of reversals, number of breakpoints,
number of common or conserved intervals, SAD etc. In their initial defi-
nitions, all these measures suppose that genomes contain no duplicates.
However, we now know that genes can be duplicated within the same
genome. One possible approach to overcome this difficulty is to estab-
lish a one-to-one correspondence (i.e. a matching) between genes of both
genomes, where the correspondence is chosen in order to optimize the
studied measure. Then, after a gene relabeling according to this match-
ing and a deletion of the unmatched signed genes, two genomes without
duplicates are obtained and the measure can be computed.

In this paper, we are interested in three measures (number of break-
points, number of common intervals and number of conserved intervals)
and three models of matching (exemplar model, maximum matching
model and non maximum matching model). We prove that, for each
model and each measure, computing a matching between two genomes
that optimizes the measure is APX-Hard. We show that this result re-
mains true even for two genomes G1 and G2 such that G1 contains no
duplicates and no gene of G2 appears more than twice. Therefore, our
results extend those of [5,6,8]. Finally, we propose a 4-approximation
algorithm for a measure closely related to the number of breakpoints, the
number of adjacencies, under the maximum matching model, in the case
where genomes contain the same number of duplications of each gene.

Keywords: genome rearrangement, APX-Hardness, duplicates, break-
points, adjacencies, common intervals, conserved intervals.

1 Introduction and Preliminaries

In comparative genomics, computing a measure of (dis-)similarity between two
genomes is a central problem; such a measure can be used for instance to con-
struct phylogenetic trees. The measures defined so far fall into two categories:
the first one contains distances, for which we count the number of operations
needed to transform a genome into another (see for instance edit distance [13] or
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c© Springer-Verlag Berlin Heidelberg 2008



On the Approximability of Comparing Genomes with Duplicates 35

number of reversals [3]). The second one contains (dis-)similarity measures based
on the genome structure, such as number of breakpoints [5], conserved intervals
distance [4], number of common intervals [6], SAD and MAD [16] etc.

When genomes contain no duplicates, most measures can be computed in
polynomial time. However, assuming that genomes contain no duplicates is too
limited, as it has been shown that a great number of duplicates exists in some
genomes. For example, in [12], authors estimate that fifteen percent of genes are
duplicated in the human genome. A possible approach to overcome this difficulty
is to specify a one-to-one correspondence (i.e. a matching) between genes of both
genomes and to remove the remaining genes, thus obtaining two genomes with
identical gene composition and no duplicates. This matching is chosen in order
to optimize the studied measure. Three models achieving this correspondence
have been proposed : exemplar model [15], maximum matching model [17] and
non maximum matching model [2].

Let F be a set of genes, where each gene is represented by an integer. A
genome G is a sequence of signed elements (signed genes) from F . Let occ(g, G)
be the number of occurrences of a gene g in a genome G and let occ(G) =
max{occ(g, G)|g is present in G}. Two genomes G1 and G2 are called balanced
iff, for each gene g, we have occ(g, G1) = occ(g, G2). Denote ηG the size of genome
G. Let G[p], 1 � p � ηG, be the signed gene that occurs at position p on genome
G. For any signed gene g, let g be the signed gene having the opposite sign.
Given a genome G without duplicates and two signed genes a, b such that a is
located before b, let G[a, b] be the set of genes located between genes a and b in
G. We also note [a, b]G1 the substring (i.e. the sequence of consecutive elements)
of G1 starting by a and finishing by b.

Breakpoints, adjacencies, common and conserved intervals. Let us now define the
four measures we will study in this paper. Let G1, G2 be two genomes without
duplicates and with the same gene composition.

Breakpoint and Adjacency. Let (a, b) be a pair of consecutive signed genes in
G1. We say that the pair (a, b) induces a breakpoint of (G1, G2) if neither (a, b)
nor (b, a) is a pair of consecutive signed genes in G2. Otherwise, we say that (a, b)
induces an adjacency of (G1, G2). For example, when G1 = +1 + 2 + 3 + 4 + 5
and G2 = +5 − 4 − 3 + 2 + 1, the pair (2, 3) in G1 induces a breakpoint of
(G1, G2) while (3, 4) in G1 induces an adjacency of (G1, G2). We note B(G1, G2)
the number of breakpoints that exist between G1 and G2.

Common interval. A common interval of (G1, G2) is a substring of G1 such
that G2 contains a permutation of this substring (not taking signs into account).
For example, consider G1 = +1 + 2 + 3 + 4 + 5 and G2 = +2 − 4 + 3 + 5 + 1.
The substring [+3, +5]G1 is a common interval of (G1, G2). We notice that the
notion of common interval does not consider the sign of genes.

Conserved interval. Consider two signed genes a and b of G1 such that a
precedes b, where the precedence relation is large in the sense that, possibly,
a = b. The substring [a, b]G1 is called a conserved interval of (G1, G2) if it
satisfies the two following properties: first, either a precedes b or b precedes a
in G2; second, the set of genes located between genes a and b in G2 is equal to



36 S. Angibaud, G. Fertin, and I. Rusu

G1[a, b]. For example, if G1 = +1 + 2 + 3 + 4 + 5 and G2 = −5 − 4 + 3 − 2 + 1,
the substring [+2, +5]G1 is a conserved interval of (G1, G2).
Note that a conserved interval is actually a common interval, but with additional
restrictions on its extremities. An interval of a genome G which is either of length
one (i.e. a singleton) or the whole genome G is called a trivial interval.

Dealing with duplicates in genomes. When genomes contain duplicates, we can-
not directly compute the measures defined previously. A solution consists in
finding a one-to-one correspondence (i.e. a matching) between duplicated genes
of G1 and G2, and use this correspondence to rename genes of G1 and G2 and to
delete the unmatched signed genes in order to obtain two genomes G′1 and G′2
such that G′2 is a permutation of G′1; thus, the measure computation becomes
possible. In this paper, we will focus on three models of matching : the exemplar,
maximum matching and non maximum matching models.

– The exemplar model [15]: for each gene g, we keep in the matching only one
occurrence of g in G1 and in G2, and we remove all the other occurrences.
Hence, we obtain two genomes GE

1 and GE
2 without duplicates. The pair

(GE
1 , GE

2 ) is called an exemplarization of (G1, G2).
– The maximum matching model [17]: in this case, we keep in the matching

the maximum number of genes in both genomes. More precisely, we look for
a one-to-one correspondence between genes of G1 and G2 that, for each gene
g, matches exactly min(occ(g, G1), occ(g, G2)) occurrences. After this oper-
ation, we delete each unmatched signed genes. The pair (GE

1 , GE
2 ) obtained

by this operation is called a maximum matching of (G1, G2).
– The non maximum matching model [2]: this model is an intermediate be-

tween the exemplar and the maximum matching models. In this new model,
for each gene family g, we keep an arbitrary number kg, such that 1 �
kg � min(occ(g, G1), occ(g, G2)), of genes in GE

1 and in GE
2 . We call the pair

(GE
1 , GE

2 ) a non maximum matching of (G1, G2).

Problems studied in this paper. Let G1 and G2 be two genomes with duplicates.
Let EBD (resp. MBD, NMBD) be the problem which consists in finding an

exemplarization (GE
1 , GE

2 ) of (G1, G2) (resp. maximum matching, non maximum
matching) that minimizes the number of breakpoints between GE

1 and GE
2 . EBD

is proved to be NP-Complete even if occ(G1) = 1 and occ(G2) = 2 [5]. Some
inapproximability results are given: it has been proved in [8] that, in the general
case, EBD cannot be approximated within a factor c log n, where c > 0 is
a constant, and cannot be approximated within a factor 1.36 when occ(G1) =
occ(G2) = 2. Likewise, the problem consisting in deciding if there exists an
exemplarization (GE

1 , GE
2 ) of (G1, G2) such that there is no breakpoint between

GE
1 and GE

2 is NP-Complete even when occ(G1) = occ(G2) = 3. Moreover,
for two balanced genomes G1 and G2 such that k = occ(G1) = occ(G2), several
approximation algorithms for MBD are given. Those approximation algorithms
admit respectively a ratio of 1.1037 when k = 2 [10], 4 when k = 3 [10] and 4k
in the general case [11].
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Let EComI (resp. MComI, NMComI) be the problem which consists in
finding an exemplarization (GE

1 , GE
2 ) of (G1, G2) (resp. maximum matching, non

maximum matching) such that the number of common intervals of (GE
1 , GE

2 )
is maximized. EComI and MComI are proved to be NP-Complete even if
occ(G1) = 1 and occ(G2) = 2 in [6].

Let EConsI (resp. MConsI, NMConsI) be the problem which consists in
finding an exemplarization (GE

1 , GE
2 ) of (G1, G2) (resp. maximum matching, non

maximum matching) such that the number of conserved intervals of (GE
1 , GE

2 )
is maximized. In [4], Blin and Rizzi have studied the problem of computing a
distance built on the number of conserved intervals. This distance differs from
the number of conserved intervals we study in this paper, mainly in the sense
that (i) it can be applied to two sets of genomes (as opposed to two genomes
in our case), and (ii) the distance between two identical genomes of length n is
equal to 0 (as opposed to n(n+1)

2 in our case). Blin and Rizzi [4] proved that
finding the minimum distance is NP-Complete, under both the exemplar and
maximum matching models. A closer analysis of their proof shows that it can be
easily adapted to prove that EConsI and MConsI are NP-complete, even in the
case occ(G1) = 1.

We can conclude from these results that the MBD, NMBD, NMComI and
NMConsI problems are also NP-Complete, since when one genome contains
no duplicates, exemplar, maximum matching and non maximum matching mod-
els are equivalent.

In this paper, we study the approximation complexity of three measure com-
putations: number of breakpoints, number of conserved intervals and number
of common intervals. In Sections 2 and 3, we prove the APX-Hardness of
EComI, EConsI and EBD even when applied on genomes G1 and G2 such
that occ(G1) = 1 and occ(G2) = 2 , which induce the APX-Hardness under
the other models. These results extend those of papers [5,6,8]. In Section 4,
we consider the maximum matching model and a fourth measure, the number
of adjacencies for which we give a 4-approximation algorithm when genomes
are balanced. Hence, we are able to provide an approximation algorithm with
constant ratio, even when the number of occurrences of genes is unbounded.

2 EComI and EConsI Are APX-Hard

Theorem 1. The EComI and EConsI problems are APX-Hard even when
applied to genomes G1, G2 such that occ(G1) = 1 and occ(G2) = 2.

In this section, we prove Theorem 1 by using an L-reduction [14] from the
Minimum V ertex Cover problem on cubic graphs, denoted by V C3 and proved
APX-Complete in [1]. Let G = (V, E) be a cubic graph, i.e. for all v ∈
V, degree(v) = 3. A set of vertices V ′ ⊆ V is called a vertex cover of G if
for each edge e ∈ E, there exists a vertex v ∈ V ′ such that e is incident to v.
The problem V C3 is defined as follows:
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Problem: V C3
Input: A cubic graph G = (V, E), an integer k.
Question: Does there exist a vertex cover V ′ of G such that |V ′| � k ?

Reduction. Let (G, k) be an instance of V C3, where G = (V, E) is a cubic graph
with V = {v1 . . . vn} and E = {e1 . . . em}. Consider the transformation R which
associates to the graph G two genomes G1 and G2 in the following way, where
each gene has a positive sign.

G1 = b1, b2 . . . bm, x, a1, C1, f1, a2, C2, f2 . . . an, Cn, fn, y, bm+n, bm+n−1 . . . bm+1

G2 = y, a1, D1, f1, bm+1, a2, D2, f2, bm+2 . . . bm+n−1, an, Dn, fn, bm+n, x

with :

– for each i, 1 � i � n, ai = 6i − 5, fi = 6i and Ci = (ai + 1), (ai + 2), (ai +
3), (ai + 4)

– for each i, 1 � i � n + m, bi = 6n + i
– x = 7n + m + 1 and y = 7n + m + 2
– for each i, 1 � i � n, Di = ai + 3, bji , ai + 1, bki, ai + 4, bli , ai + 2 where eji ,

eki and eli are the edges which are incident to vi in G, with ji < ki < li.

In the following, genes bi, 1 � i � m, are called markers. There is no duplicated
gene in G1 and the markers are the only duplicated genes in G2; these genes
occur twice in G2. Hence, we have occ(G1) = 1 and occ(G2) = 2.

Preliminary results. In order to prove Theorem 1, we first give four intermedi-
ate lemmas. In the following, a common interval for the EComI problem or a
conserved interval for EConsI is called a robust interval.

Lemma 1. For any exemplarization (G1, G
E
2 ) of (G1, G2), the non trivial robust

intervals of (G1, G
E
2 ) are necessarily contained in some sequence aiCifi of G1

(1 � i � n).

Lemma 2. Let (G1, G
E
2 ) be an exemplarization of (G1, G2) and i ∈ [1 . . . n].

Let Δi be a substring of [ai + 3, ai + 2]GE
2

that does not contain any marker. If
|Δi| ∈ {2, 3}, then there is no robust interval I of (G1, G

E
2 ) such that Δi is a

permutation of I.

For more clarity, let us now introduce some notations. Given a graph G = (V, E),
let V C = {vi1 , vi2 . . . vik

} be a vertex cover of G. Let R(G) = (G1, G2) be the
pair of genomes defined by the construction described in (1) and (2). Now, let F
be the function which associates to V C, G1 and G2 an exemplarization F (V C)
of (G1, G2) as follows. In G2, all the markers are removed from the sequences Di

for all i �= i1, i2 . . . ik. Next, for each marker which is still present twice, one of
its occurrences is arbitrarily removed. Since in G2 only markers are duplicated,
we conclude that F (V C) is an exemplarization of (G1, G2).
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Given a cubic graph G and genomes G1 and G2 obtained by the trans-
formation R(G), let us define the function S which associates to an exem-
plarization (G1, G

E
2 ) of (G1, G2) the vertex cover V C of G defined as follows:

V C = {vi|1 � i � n ∧ ∃j ∈ {1 . . .m}, bj ∈ GE
2 [ai, fi]}. In other words, we keep

in V C the vertices vi of G for which there exists some gene bj such that bj is in
GE

2 [ai, fi]. We now prove that V C is a vertex cover. Consider an edge ep of G.
By construction of G1 and G2, there exists some i, 1 � i � n, such that gene bp

is located between ai and fi in GE
2 . The presence of gene bp between ai and fi

implies that vertex vi belongs to V C. We conclude that each edge is incident to
at least one vertex of V C.

Let W be the function defined on {EConsI, EComI} by W (pb) = 1 if pb =
EConsI and W (pb) = 4 if pb = EComI. Let OPTP (A) be the optimum result
of an instance A for an optimization problem P , P ∈ {EcomI, EConsI, V C3}.

We define the function T which associates to a problem pb ∈ {EConsI,
EComI} and a cubic graph G, the number of robust trivial intervals of an
exemplarization of both genomes G1 and G2 obtained by R(G) for the problem
pb. Let n and m be respectively the number of vertices and the number of edges
of G. We have T (EConsI, G) = 7n + m + 2 and T (EComI, G) = 7n + m + 3.
Indeed, for EComI, there are 7n+m+2 singletons and we also need to consider
the whole genome.

Lemma 3. Let pb ∈ {EcomI, EConsI}. Let G be a cubic graph and R(G) =
(G1, G2). Let (G1, G

E
2 ) be an exemplarization of (G1, G2) and let i, 1 � i � n.

Then only two cases can occur:

1. Either in GE
2 , all the markers from Di were removed, and in this case, there

are exactly W (pb) non trivial robust intervals involving Di.
2. Or in GE

2 , at least one marker was kept in Di, and in this case, there is no
non trivial robust interval involving Di.

Lemma 4. Let pb ∈ {EcomI, EConsI}. Let G = (V, E) be a cubic graph with
V = {v1 . . . vn} and E = {e1 . . . em} and let G1, G2 be the two genomes obtained
by R(G).

1. Let V C be a vertex cover of G and denote k = |V C|. Then the exemplariza-
tion F (V C) of (G1, G2) has at least N = W (pb) · n + T (pb, G) − W (pb) · k
robust intervals.

2. Let (G1, G
E
2 ) be an exemplarization of (G1, G2) and let V C′ be the vertex

cover of G obtained by S(G1, G
E
2 ). Then |V C′| = W (pb)·n+T (pb,G)−N

W (pb) , where
N is the number of robust intervals of (G1, G

E
2 ).

Main result. Let us first define the notion of L-reduction [14]: let A and B be
two optimization problems and cA, cB be respectively their cost functions. An
L-reduction from problem A to problem B is a pair of polynomial functions R
and S with the following properties:
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(a) If x is an instance of A, then R(x) is an instance of B ;
(b) If x is an instance of A and y is a solution of R(x), then S(y) is a solution

of x;
(c) If x is an instance of A whose optimum is OPT (x), then R(x) is an instance

of B such that OPT (R(x)) � α.OPT (x), where α is a positive constant ;
(d) If s is a solution of R(x), then:

|OPT (x)−cA(S(s))| � β|OPT (R(x))−cB(s)| where β is a positive constant.

We prove Theorem 1 by showing that the pair (R, S) defined previously is
an L-reduction from V C3 to EConsI and from V C3 to EComI. First note that
properties (a) and (b) are obviously satisfied by R and S.

Consider pb ∈ {EcomI, EConsI}. Let G = (V, E) be a cubic graph with n
vertices and m edges. We now prove properties (c) and (d). Consider the genomes
G1 and G2 obtained by R(G). First, we need to prove that there exists α � 0
such that OPTpb(G1, G2) � α.OPTV C3(G).

Since G is a cubic graph, we have the three following properties: n � 4 (I1),
m = 1

2

∑n
i=1 degree(vi) = 3n

2 (I2) and OPTV C3(G) � m
3 = n

2 (I3).
To explain property (I3), remark that, in a cubic graph G with n vertices and

m edges, each vertex covers three edges. Thus, a set of k vertices covers at most
3k edges. Hence, any vertex cover of G must contain at least m

3 vertices.
By Lemma 3, we know that sequences of the form aiCifi, 1 � i � n contain
either zero or W (pb) non trivial robust intervals. By Lemma 1, there are no other
non trivial robust intervals. So, we have the following inequality:
OPTpb(G1, G2) � T (pb, G)

︸ ︷︷ ︸
trivial robust intervals

+W (pb) · n.

If pb = EComI, we have OPTEComI(G1, G2) � 7n + m + 3 + 4n and by (I1)
and (I2), we obtain OPTEComI(G1, G2) � 27n

2 (I4). If pb = EConsI, we
have OPTEConsI(G1, G2) � 7n + m + 2 + n and by (I1) and (I2), we ob-
tain OPTEConsI(G1, G2) � 21n

2 (I5). Altogether, by (I3), (I4) and (I5), we
prove property (c) with α = 27.

Now, let us prove property (d). Let V C = {vi1 , vi2 . . . viP } be a minimum
vertex cover of G. Denote P = OPTV C3(G) = |V C| and let G1 and G2 be
the genomes obtained by R(G). Let (G1, G

E
2 ) be an exemplarization of (G1, G2)

and let k′ be the number of robust intervals of (G1, G
E
2 ). Finally, let V C′ be

the vertex cover of G such that V C′ = S(G1, G
E
2 ). We need to find a positive

constant β such that |P − |V C′|| � β|OPTpb(G1, G2) − k′|.
For pb ∈ {EcomI, EConsI}, let Npb be the number of robust intervals between

the two genomes obtained by F (V C). By the first property of Lemma 4, we have
OPTpb(G1, G2) � Npb � W (pb) · n + T (pb, G) − W (pb) · P
By the second property of Lemma 4, we have |V C′| = W (pb)·n+T (pb,G)−k′

W (pb) .
Recall that OPTpb(G1, G2) � W (pb) ·n+T (pb, G)−W (pb) ·P . So, it is sufficient
to prove ∃β � 0, |P − |V C′|| � β|W (pb) · n + T (pb, G) − W (pb) · P − k′|. Since
P � |V C′|, we have |P − |V C′|| = |V C′|−P = W (pb)·n+T (pb,G)−k′

W (pb) −P and then

|P − |V C′|| =
1

W (pb)
(W (pb) · n + T (pb, G) − W (pb) · P − k′)
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So β = 1 is sufficient in both cases, since W (EComI) = 4 and W (EConsI) = 1,
which implies 1

W (pb) � 1. Altogether, we then have:

|OPTV C3(G) − |V C′|| � 1 · |OPTpb(G1, G2) − k′|

We proved that the reduction (R, S) is an L-reduction. This implies that for
two genomes G1 and G2, both problems EConsI and EComI are APX-Hard
even if occ(G1) = 1 and occ(G2) = 2. Theorem 1 is proved. �

We extend in Corollary 1 our results for the maximum matching and non max-
imum matching models.

Corollary 1. MComI, NMComI, MConsI and NMConsI are APX-Hard
even when applied to genomes G1, G2 such that occ(G1) = 1 and occ(G2) = 2.

3 EBD is APX-Hard

In this section, we prove the following theorem:

Theorem 2. EBD is APX-Hard even when applied to genomes G1, G2 such
that occ(G1) = 1 and occ(G2) = 2.

To prove Theorem 2, we use an L-Reduction from the V C3 problem to the
EBD problem. Let G = (V, E) be a cubic graph with V = {v1 . . . vn} and
E = {e1 . . . em}. For each i, 1 � i � n, let efi , egi and ehi be the three edges
which are incident to vi in G with fi < gi < hi. Let R′ be the polynomial
transformation which associates to G the following genomes G1 and G2, where
each gene has a positive sign:
G1 = a0 a1 b1 a2 b2 . . . an bn c1 d1 c2 d2 . . . cm dm cm+1
G2 = a0 an dfn dgn dhn bn . . . a2 df2 dg2 dh2 b2 a1 df1 dg1 dh1 b1 c1 c2 . . . cm cm+1
with :

– a0 = 0, and for each i, 0 � i � n, ai = i and bi = n + i
– cm+1 = 2n+m, and for each i, 1 � i � m+1, ci = 2n+i and di = 2n+m+1+i

We remark that there is no duplication in G1, so occ(G1) = 1. In G2, only
the genes di, 1 � i � m, are duplicated and occur twice. Thus occ(G2) = 2.

Let G be a cubic graph and V C be a vertex cover of G. Let G1 and G2 be the
genomes obtained by R′(G). We define F ′ to be the polynomial transformation
which associates to V C, G1 and G2 the exemplarization (G1, G

E
2 ) of (G1, G2) as

follows. For each i such that vi /∈ V C, we remove from G2 the genes dfi , dgi and
dhi . Then, for each 1 � j � m such that dj still has two occurrences in G2, we
arbitrarily remove one of these occurrences in order to obtain the genome GE

2 .
Hence, (G1, G

E
2 ) is an exemplarization of (G1, G2).

Given a cubic graph G, we construct G1 and G2 by the transformation
R′(G). Given an exemplarization (G1, G

E
2 ) of (G1, G2), let S′ be the polyno-

mial transformation which associates to (G1, G
E
2 ) the set V C = {vi|1 � i � n,
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ai and bi are not consecutive in GE
2 }. We claim that V C is a vertex cover of G.

Indeed, let ep, 1 � p � m, be an edge of G. Genome GE
2 contains one occurrence

of gene dp since GE
2 is an exemplarization of G2. By construction, there exists

i, 1 � i � n, such that dp is in GE
2 [ai, bi] and such that ep is incident to vi.

The presence of dp in GE
2 [ai, bi] implies that vertex vi belongs to V C. We can

conclude that each edge of G is incident to at least one vertex of V C.
Lemmas 5 and 6 below are used to prove that (R′, S′) is an L-Reduction from

the V C3 problem to the EBD problem. Let G = (V, E) be a cubic graph with
V = {v1, v2 . . . vn} and E = {e1, e2 . . . em} and let us construct (G1, G2) by the
transformation R′(G).

Lemma 5. Let V C be a vertex cover of G and (G1, G
E
2 ) the exemplarization

given by F ′(V C). Then |V C| = k ⇒ B(G1, G
E
2 ) � n + 2m + k + 1, where

B(G1, G
E
2 ) is the number of breakpoints between G1 and GE

2 .

Lemma 6. Let (G1, G
E
2 ) be an exemplarization of (G1, G2) and V C′ be the

vertex cover of G obtained by S′(G1, G
E
2 ). We have B(G1, G

E
2 ) = k′ ⇒ |V C′| =

k′ − n − 2m − 1.

Lemma 7. The inequality OPTEBD(G1, G2) � 12 · OPTV C3(G) holds.

Lemma 8. Let (G1, G
E
2 ) be an exemplarization of (G1, G2) and let V C′ be the

vertex cover of G obtained by S′(G1, G
E
2 ). Then, we have |OPTV C3(G)−|V C′|| �

|OPTEBD(G1, G2) − B(G1, G
E
2 )|.

Lemmas 7 and 8 prove that the pair (R′, S′) is an L-reduction from V C3 to
EBD. Hence, EBD is APX-Hard even if occ(G1) = 1 and occ(G2) = 2, and
Theorem 2 is proved. We extend in Corollary 2 our results for the maximum
matching and non maximum matching models.

Corollary 2. The MEBD and NMEBD problems are APX-Hard even when
applied to genomes G1, G2 such that occ(G1) = 1 and occ(G2) = 2.

4 Approximating the Number of Adjacencies

For two balanced genomes G1 and G2, several approximation algorithms for
computing the number of breakpoints between G1 and G2 are given for the
maximum matching model [10,11]. We propose in this section a 4-approximation
algorithm to compute a maximum matching of two balanced genomes that max-
imizes a new measure of similarity: the number of adjacencies (as opposed to
minimizing the number of breakpoints). Remark that, as opposed to the results
in [10,11], our approximation ratio is independent of the maximum number of
duplicates. Note also that in [7], some recent results have been proposed for this
measure of similarity. We first define the problem AdjD we are interested in as
follows:
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Problem: AdjD
Input: Two balanced genomes G1 and G2.
Question: Find a maximum matching (G′1, G

′
2) of (G1, G2) which max-

imizes the number of adjacencies between G′1 and G′2.

In [9], a 4-approximation algorithm for the weighted 2-interval Pattern prob-
lem (W2IP ) is given. In the following, we first define W2IP , and then we present
how we can relate any instance of AdjD to an instance of W2IP .

The weighted 2-interval Pattern problem. A 2-interval is the union of two disjoint
intervals defined over a single sequence. For a 2-interval D = (I, J), we suppose
that the interval I does not overlap J and that I precedes J . We will denote this
relation by I < J . We say that two 2-intervals D1 = (I1, J1) and D2 = (I2, J2)
are disjoint if D1 and D2 have no common point (i.e. (I1 ∪ J1) ∩ (I2 ∪ J2) = ∅).
Three possible relations exist between two disjoint 2-intervals: (1) D1 ≺ D2,
if I1 < J1 < I2 < J2; (2) D1 � D2, if I2 < I1 < J1 < J2; (3) D1 � D2, if
I1 < I2 < J1 < J2. We say that a pair of 2-intervals (D1, D2) is R-comparable for
some R ∈ {≺, �, �}, if either (D1, D2) ∈ R or (D2, D1) ∈ R. A set of 2-intervals
D is R-comparable for some R ⊆ {≺, �, �}, R �= ∅, if any pair of distinct
2-intervals in D is R-comparable for some R ∈ R. The non-empty set R is called
a R-model. We can define W2IP as follows:

Problem: Weighted 2-interval Pattern (W2IP )
Input: A set D of 2-intervals, a R-model R ⊆ {≺, �, �} with R �= ∅, a
weighted function w : D �→ R.
Question: Find a maximum weight R-comparable subset of D.

Transformation. We now describe how to transform any instance of AdjD into
an instance of W2IP . Let G1 and G2 be two balanced genomes. Two intervals
I1 of G1 and I2 of G2 are said to be identical if they correspond to the same
string (up to a complete reversal, where a reversal also changes all the signs).
We denote by Make2I the construction of the 2-intervals set obtained from the
concatenation of G1 and G2. Make2I is defined as follows: for any pair (I1, I2)
of identical intervals of G1, G2, we construct a 2-interval D = (I1, I2) of weight
|I1|−1. We note D = Make2I(G1, G2) the set of all 2-intervals obtained in this
way. We now define how to transform any solution of W2IP into a solution of
AdjD. Let G1 and G2 be two balanced genomes and let D = Make2I(G1, G2).
Let S be a solution of W2IP over the {≺, �, �}-model for D. We denote by
W2IP to AdjD the transformation of S into a maximum matching (G′1, G′2)
of G1, G2) defined as follows. First, for each 2-interval D = (I1, I2) of S, we
match the genes of I1 and I2 in the natural way; then, in order to achieve a
maximum matching (since each gene is not necessarily covered by a 2-interval of
S), we apply the following greedy algorithm: iteratively, we match arbitrarily two
unmatched genes present in both G1 and G2, until no such gene exist. After a
relabeling of signed genes, we obtain a maximum matching (G′1, G

′
2) of (G1, G2).
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Lemma 9. Let G1, G2 be two balanced genomes and let D = Make2I(G1, G2).
Let S be a solution of W2IP over the {≺, �, �}-model and let WS be the weight
of S. Then the maximum matching (G′1, G′2) of (G1, G2) obtained by the trans-
formation W2IP to AdjD(S) induces at least WS adjacencies.

Lemma 10. Let G1 and G2 be two balanced genomes and let (G′1, G
′
2) be a

maximum matching of (G1, G2). Let D = Make2I(G1, G2).
Let W be the number of adjacencies induced by (G′1, G

′
2) between G1 and G2.

Then there exists a solution S of W2IP over the {≺, �, �}-model for D with
weight equal to W .

We now describe the algorithm ApproxAdjD and then prove that it is a 4-
approximation of the problem AdjD by Theorem 3.

Algorithm 1. ApproxAdjD

Require: Two balanced genomes G1 and G2.
Ensure: A maximum matching (G′

1, G
′
2) of (G1, G2).

– Construct the set of weighted 2-intervals D = Make2I(G1, G2)
– Invoke the 4-approximation algorithm of Crochemore et al. [9] to obtain a solu-

tion S of W2IP over the {≺, �, �}-model for D
– Construct the maximal matching (G′

1, G
′
2) = W2IP to AdjD(S)

Theorem 3. Algorithm ApproxAdjD is a 4-approximation algorithm for AdjD.

Proof. Let G1 and G2 be two balanced genomes and let D = Make2I(G1, G2).
We first prove that the optimum of AdjD for (G1, G2) is equal to the optimum
of W2IP . Let OPTAdjD be the optimum of AdjD for (G1, G2). By Lemma 10,
we know that there exists a solution S for W2IP with weight WS = OPTAdjD.
Now, suppose that there exists a solution S′ for W2IP with weight WS′ > WS .
Then, by Lemma 9, there exists a solution for AdjD with weight W � WS′ .
However, WS′ > WS by hypothesis, a contradiction to the fact that WS =
OPTAdjD. Therefore, the two problems have the same optimum and, as a result,
any approximation ratio for W2IP implies the same approximation ratio for
AdjD. In [9], a 4-approximation algorithm is proposed for W2IP ; this directly
implies thatApproxAdjD is a 4-approximation algorithm for AdjD. �

5 Conclusions and Future Work

The problems studied in this paper are shown to be APX-Hard, but some
approximation algorithms exist when genomes are balanced [10,11]. However,
it remains open whether approximation algorithms exist when genomes are not
balanced. It has been shown in [8] that deciding if two genomes G1 and G2
have zero breakpoint under the exemplar model is NP-Complete even when
occ(G1) = occ(G2) = 3 (problem ZEBD). This result implies that the EBD
problem cannot be approximated in that case. Another open question is the
complexity of ZEBD when no gene appears more that twice in the genome.
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Abstract. This paper deals with the Circular Pattern Matching Prob-
lem (CPM). In CPM, we are interested in pattern matching between the
text T and the circular pattern C(P) of a given pattern P = P1 . . . Pm.
The circular pattern C(P) is formed by concatenating P1 to the right
of Pm. We can view C(P) as a set of m patterns starting at positions
j ∈ [1..m] and wrapping around the end and if any of these patterns
matches T , we find a match for C(P). In this paper, we present two
efficient data structures to index circular patterns. This problem has ap-
plications in pattern matching in geometric and astronomical data as
well as in computer graphics and bioinformatics.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P of length m in a text T of length n, both being sequences of characters
drawn from a finite character set Σ. This problem is interesting as a fundamental
computer science problem and is a basic need of many practical applications. In
this paper, we study the circular pattern matching (CPM) problem. The circular
pattern, denoted C(P), corresponding to a given pattern P = P1 . . .Pm, is the
string formed by concatenating P1 to the right of Pm. In CPM, we are interested
in pattern matching between the text T and the circular pattern C(P) of a
given pattern P . We can view C(P) as a set of m patterns starting at positions
j ∈ [1..m] and wrapping around the end. In other words, in CPM, we search for
all ‘conjugates’1 of a given pattern in a given text.

The study of the conjugates of words have received fair amount of attention
in the literature, although, mostly with different objectives than ours. Probably,
the first such study was due to Booth in [6], who devised a linear algorithm
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1 Two words x, y are conjugate if there exist words u, v such that x = uv and y = vu.
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to compute the ‘least’, i.e. lexicographically smallest conjugate of a word2. Sev-
eral refinements were proposed in [21,9,5]. There exists many other results on
related fields, but mostly from combinatorics point of view. Finally, a number
of solutions to Problem CPM have been reported in [17,7,10]. However, these
solutions doesn’t address the indexing version of the problem, which is the focus
of this paper. In this version of the problem, the goal is to construct an efficient
index data structure to facilitate subsequent batch of queries as efficiently as
possible. In this paper, we address the indexing version of Problem CPM and
present two efficient data structures, namely, CPI-I and CPI-II. Our first data
structure, CPI-I, can be constructed in O(n log1+ε n) time and space, for any
constant 0 < ε < 1, where n is the length of text. Using CPI-I, the subsequent
queries for a circular pattern C(P), corresponding to a given pattern P , can be
answered in (near optimal) O(|P| log log n+K) time, where K is the output size.
Our second data structure, CPI-II, exhibits better time and space complexity in
terms of construction (O(n) construction time requiring O(n log n) bits of space)
but suffers a little in the query time (O(|P| log n + K).

Apart from being interesting from the pure combinatorial point view, Problem
CPM has applications in pattern matching in geometric and astronomical data.
For example, in geometry, a polygon may be encoded spelling its co-ordinates.
Now, given the data stream of a number of polygons, we may need to find out
whether a desired polygon exists in the data stream. The difficulty in this situa-
tion lies in the fact that the same polygon may be encoded differently depending
on its “starting” coordinate and hence, there exists k possible encodings where k
is the number of vertices of the polygon. Therefore, instead of traditional pattern
matching, we need to resort to Problem CPM. This problem seems to be useful
in Computer Graphics as well and hence may be used as a built in function in
Graphics Cards handling polygon rendering. Another potential use of Problem
CPM can be found in Computational Biology as follows. The genome of the
harpes virus circularizes upon infection [23]. This makes Problem CPM better
suited for motif matching in this case. Furthermore, this problem seems to be
related to the much studied swap matching problem3 [4] and also to the very
recent studies of pattern matching with address error4 [3]. The goal of this paper
is to present efficient indexing schemes to solve the circular pattern matching
problem.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. A string X
of length n is denoted by X [1..n] = X1X2 . . . Xn, where Xi ∈ Σ for 1 ≤ i ≤ n.
The length of X is denoted by |X | = n. The string

←−
X denotes the reverse of

the string X , i.e.,
←−
X = XnXn−1 . . . X1. A string w is called a factor of X if

2 Also known as the ‘Lyndon’ word.
3 In CPM, the patterns can be thought of having a swap of two parts of it.
4 The circular pattern can be thought of as having a special type of address error.
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X = uwv for u, v ∈ Σ∗; in this case, the string w occurs at position |u| + 1 in
X . The factor w is denoted by X [|u| + 1..|u| + |w|]. A k-factor is a factor of
length k. A prefix (or suffix) of X is a factor X [x..y] such that x = 1 (y = n),
1 ≤ y ≤ n (1 ≤ x ≤ n). We define i-th prefix to be the prefix ending at position
i i.e. X [1..i], 1 ≤ i ≤ n. On the other hand, i-th suffix is the suffix starting at
position i i.e. X [i..n], 1 ≤ i ≤ n. A string ρ is called a period of X if X can be
written as X = ρkρ′ where k ≥ 1 and ρ′ is a prefix of ρ. The shortest period of
X is called the period of X . If X has a period ρ such that |ρ| ≤ n/2, then X
is said to be periodic. Further, if setting X = ρk implies k = 1, X is said to be
primitive; if k > 1, then X = ρk is called a repetition.

The circular string, denoted C(X), corresponding to a string X , is the string
formed by concatenating X1 to the right of Xn. For a circular string, the notion
of a factor is extended in the sense that, now, factors can wrap around the
end of the string. In particular, a k-factor of C(X), now, can start at position
j ∈ [k + 1..n] and can wrap around the end of X . To accommodate this notion,
we use the notation X [j..(j + k − 1) mod n] (instead of X [j..(j + k − 1)]) to
denote k-factor at position j. Now we are ready to formally define the Circular
Pattern Matching problem.

Problem “CPM” (Circular Pattern Matching). Given a text T of length
n and a pattern P of length m, find the positions i ∈ [1..n − m + 1] where C(P)
matches T . C(P) is said to match T at position i ∈ [1..n−m+1], if, and only if,
there exist some j ∈ [1..m], such that P [j..(j +m− 1) mod m] = T [i..i+m− 1].

We can view a circular pattern C(P) to be a set such that C(P) = {P [i..(i+m−
1) mod m | 1 ≤ i ≤ m}5. So, alternatively, we can say that, C(P) matches T at
position i ∈ [1..n − m + 1], if and only if, there is a Q ∈ C(P) that matches T at
position i. We define Qj = P [j..(j+m−1) mod m], 1 ≤ j ≤ m. It would be useful
to define Qj = Qf

j Q�
j, where Qf

j = P [j..m] and Q�
j = P [1..(j + m − 1) mod m]

for 1 < j ≤ m (See Fig. 1). Note that, the text T is not circular in our problem.

Example 1. Suppose we have a text T = dbcadacadab and a pattern P = abcad.
Then C(P) = {abcad, bcada, cadab, adabc, dabca}. It is easy to verify that, ac-
cording to our definition, C(P) matches T at positions 2 and 7. To elaborate, at
position 2, we have a match for Q2 = bcada and at position 7, the match is due
to Q3 = cadab.

To the best of our knowledge, the best solution in the literature for Problem CPM
requires O(n log |Σ|) time and O(m) space [17]. In traditional pattern matching
problem, indexing has always received particular attention. This is because in
many practical problems, we need to handle batch of queries and, hence, it is
computationally advantageous to preprocess the text in such a way that allows
efficient query processing afterwards. The indexing version of Problem CPM is
formally defined below.

5 Note that C(P) can be a multi-set, i.e., where more than one member can have same
value.



Indexing Circular Patterns 49

PkPk+1

P1
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Pk+2

Pm−1

Pk−1

P3

Qf
k = P [k..m]

Q�
k = P [1..k − 1]

Fig. 1. Qk(= Qf
kQl

k) ∈ C(P )

Problem “ICPM” (Indexing for Circular Pattern Matching). Given a
text T of length n, preprocess T to answer the following form of queries:
Query: Given a pattern P of length m, find the indices i ∈ [1..n − m + 1] at
which C(P) matches T .

This paper deals with Problem ICPM, i.e. the indexing version of Problem CPM.
In traditional indexing problem one of the basic data structures used is the suf-
fix tree. In our indexing problem we make use of this suffix tree data structure.
A complete description of a suffix tree is beyond the scope of this paper, and
can be found in [19,22] or in any textbook on stringology (e.g. [8,10]). However,
for the sake of completeness, we define the suffix tree data structure as follows.
Given a string T of length n over an alphabet Σ, the suffix tree STT of T is the
compacted trie of all suffixes of T $, where $ /∈ Σ. Each leaf in STT represents
a suffix T [i..n] of T and is labeled with the index i. We refer to the list (in
left-to-right order) of indices of the leaves of the subtree rooted at node v as
the leaf-list of v; it is denoted by LL(v). Each edge in STT is labeled with a
nonempty substring of T such that the path from the root to the leaf labeled
with index i spells the suffix T [i..n]. For any node v, we let �v denote the string
obtained by concatenating the substrings labeling the edges on the path from
the root to v in the order they appear. Several algorithms exist that can con-
struct the suffix tree STT in O(n log σ) time, where σ = min(n, |Σ|) [19,22].
Given the suffix tree STT of a text T we define the “locus” μP of a pattern
P as the node in STT such that �μP has the prefix P and |�μP | is the small-
est of all such nodes. Note that the locus of P does not exist if P is not a
substring of T . Therefore, given P , finding μP suffices to determine if P oc-
curs in T . Given a suffix tree of a text T , a pattern P , one can find its locus
and hence the fact whether T has an occurrence of P in optimal O(|P|) time.
In addition to that all such occurrences can be reported in constant time per
occurrence.
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3 CPI-I: An Index for Circular Pattern

In this section, we present a data structure to index the circular patterns. Using
the traditional indexing scheme, we can easily solve Problem ICPM as follows.
We use the suffix tree data structure as the index. Using the suffix tree, we search
each distinct Q ∈ C(P) in T . In total, the query processing then requires O(m2+
|Occ

C(P)
T |) time in the worst case where Occ

C(P)
T is the set of occurrences of C(P)

in T . The goal of this paper is to construct a data structure that would facilitate
a better query time in the worst case. In the rest of this section, we present the
construction of our new data structure CPI-I to index circular patterns.

Our basic idea is to build an index that would solve the problem in two
steps. At first, it will give us (implicitly) the occurrences of the two parts of
each Qi ∈ C(P), 1 < i ≤ m, i.e. Qf

i and Q�
i . Then, the index would give us the

intersection of those occurrences, so as to provide us with the desired result. In
order to do that, we maintain two suffix tree data structures STT and ST←−T .
We use STT to find the occurrences of Q�

i . We use the suffix tree of the reverse

string of T , i.e. ST←−T , to find the occurrences of
←−
Qf

i . By doing so, in effect, we
get the end positions of the occurrences of Qf

i in T . Now, we have to do a bit of
“shifting”, because, we want to find the intersection of the two set of occurrences.
This is handled as follows. According to the definition of suffix tree, each leaf
in STT is labeled by the starting location of its suffix. However, to achieve the
desired alignment, each leaf in ST←−T is labeled by (n + 1) − i + 1, where i is the
starting position of the leaf’s suffix in ST←−T . It is easy to see that, now, getting

the occurrences of
←−
Qf

i in ST←−T is equivalent to getting the occurrences of Qf
i in

STT according to our desired alignment. So it remains to show how we could
perform the intersection efficiently in the context of indexing. In order to do
that, we first do some preprocessing on STT and ST←−T as follows. For each of
the two suffix trees, we maintain a linked list of all leaves in a left-to-right order.
In other words, we realize the list LL(R) in the form of a linked list where R is
the root of the suffix tree. In addition to that, for each of the two suffix trees,
we set pointers v.left and v.right from each tree node v to its leftmost leaf v�

and rightmost leaf vr (considering the subtree rooted at v) in the linked list. It
is easy to realize that, with these set of pointers at our disposal, we can indicate
the set of occurrences of a pattern P by the two leaves μP� and μPr , because,
all the leaves between and including μP� and μPr in LL(R) correspond to the
occurrences of P in T .

In what follows, we define the term �T and rT such that LL(R)[�T ] = μ
Qf

i

�

and LL(R)[rT ] = μ
Qf

i
r , where R is the root of STT . Similarly we define �←−

T
and

r←−
T

such that LL(
←−R)[�←−

T
] = μ

Q�
i

� and LL(
←−R)[r←−

T
] = μ

Q�
i

r , where
←−R is the root

of ST←−T . Now, we have two lists LL(R) and LL(
←−R) and two intervals [�T ..rT ]

and [�←−
T

..r←−
T

] respectively. Now, our problem is to find the intersection of the
indices within these two intervals. We call this problem Range Set Intersection
Problem. We first define the problem formally below.
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Problem “RSI” (Range Set Intersection Problem). Let V [1..n] and
W [1..n] be two permutations of [1..n]. Preprocess V and W to answer the fol-
lowing form of queries:
Find the intersection of the elements of V [i..j] and W [k..�], 1 ≤ i ≤ j ≤ n, 1 ≤
k ≤ � ≤ n.

In order to solve the above problem, we reduce it to the well-studied Range
Search Problem on a Grid.

Problem “RSG” (Range Search Problem on Grid). Let A[1..n] be a set
of n points on the grid [0..U ]× [0..U ]. Preprocess A to answer the following form
of queries:
Given a query rectangle q ≡ (a, b) × (c, d) find the set of points contained in q.

We can see that Problem RSI is just a different formulation of the Problem RSG
as follows. We set U = n. Since V and W in Problem RSI are permutations of
[1..n], every number in [1..n] appears precisely once in each of them. We define
the coordinates of every number i ∈ [1..n] to be (x, y), where V [x] = W [y] = i.
Thus we get the n points on the grid [0..n] × [0..n], i.e. the array A of Problem
RSG. The query rectangle q is deduced from the two intervals [i..j] and [k..�] as
follows: q ≡ (i, k) × (j, �). It is easy to verify that the above reduction is correct
and hence we can solve Problem RSI using the solution of Problem RSG. There
has been significant research work on Problem RSG. We are going to use the
data structure of Alstrup et al. [2]. We can use this data structure to answer the
query of Problem RSG in O(log log n + k) time where k is the number of points
contained in the query rectangle q. The data structure requires O(n log1+ε n)
time and space, for any constant 0 < ε < 1. Algorithm 1, formally states the
steps to build our data structure, CPI-I, to index the circular patterns.

Let us now analyze the the running time of Algorithm 1. The algorithm can
be divided into 3 main parts. Part 1 deals with the suffix tree of the text T and
comprises of Steps 1 to 6. Part 2 consists of Steps 7 to 12 and deals with the suffix
tree of the reverse text

←−T . Part 3 deals with the reduction to Problem RSG from
Problem RSI and the subsequent preprocessing step. The computational effort
spent for Parts 1 and 2 are O(n log σ) as follows. Step 1 (resp. Step 7) builds the
traditional suffix tree and hence can be done in O(n log σ) time. Step 2 (resp.
Step 8) can be done easily while building the suffix tree. Step 3 and Step 4 (resp.
Step 9 and Step 10) can be done together in O(n) by traversing STT (resp. ST←−T )
using a breadth first or in order traversal. So, in total, Part 1 and Part 2, i.e.
Step 1 to 12 requires O(n log σ) time.

In Part 3, we first construct the set A of points in the grid [0..n] × [0..n],
on which we will apply the range search. This step can also be done in O(n)
as follows. Assume that, L (resp.

←−L ) is the linked list realizing LL(R) (resp.
LL(

←−R)). Each element in L (resp.
←−L ) is the label of the corresponding leaf in

LL(R) (resp. LL(
←−R)). We construct L−1 such that L−1[L[i]] = i. Similarly,

we construct
←−L−1. It is easy to see that, with L−1 and

←−L−1 in our hand, we
can easily construct A in O(n). A detail is that, in our case, there may exist
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Algorithm 1. Algorithm to build the index, CPI-I, for the circular patterns
1: Build a suffix tree STT of T . Let the root of STT is R.
2: Label each leaf of STT by the starting location of its suffix.
3: Construct a linked list L realizing LL(R). Each element in L is the label of the

corresponding leaf in LL(R).
4: for each node v in STT do
5: Store v.left = i and v.right = j such that L[i] and L[j] corresponds to, respec-

tively, (leftmost leaf) vl and (rightmost leaf) vr of v.
6: end for
7: Build a suffix tree ST←−T of

←−T . Let the root of ST←−T is
←−R.

8: Label each leaf of ST←−T by (n + 1) − i + 1 where i is the starting location of its
suffix.

9: Construct a linked list
←−L realizing LL(

←−R). Each element in
←−L is the label of the

corresponding leaf in LL(
←−R).

10: for each node v in ST←−T do

11: Store v.left = k and v.right = � such that
←−L [k] and

←−L [�] corresponds to,
respectively, (leftmost leaf) vl and (rightmost leaf) vr of v.

12: end for
13: for i = 1 to n do
14: Set A[i] = ε
15: end for
16: for i = 1 to n do
17: if there exists (x, y) such that L[x] =

←−L [y] = i then
18: A[i] = (x, y)
19: end if
20: end for
21: Preprocess A for Range Search on a Grid [0..n] × [0..n].

i, 1 ≤ i ≤ n such that
←−L [j] �= i for all 1 ≤ j ≤ n. This is because

←−L is a
permutation of [2..n + 1] instead of [1..n]. So, we need to assume U = n + 1.
After A is constructed, we perform Step 21, which requires O(n log1+ε n) time
and space, for any constant 0 < ε < 1. Therefore, the data structure CPI-I is
built in O(n log1+ε n) time and space.

Now, we discuss the query processing. Suppose we are given the CPI-I of a
text T and a query for a circular pattern C(P) corresponding to the pattern P .
In what follows, we consider only a particular Qi ∈ C(P), 1 < i ≤ m6. We first
find the locus μQ�

i in STT . Let i = μQ�
i .left and j = μQ�

i .right. Now we find the

locus μ
←−
Qf

i in ST←−T . Let k = μ
←−
Qf

i .left and � = μ
←−
Qf

i .right. Then, we find all the
points in A that are inside the rectangle q ≡ (i, k) × (j, �). Let B is the set of
those points. Then, it is easy to verify that OccQi

T = {(L[x]−|Qf
i |) | (x, y) ∈ B}.

So, in this way we find the occurrences of Qi for 1 < i ≤ m, which, along with
OccPT , gives us the desired set of occurrences i.e. Occ

C(P)
T . The steps are formally

presented in the form of Algorithm 3.

6 The occurrences of Q1 = P can be easily found using traditional techniques.
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Algorithm 2. Query Processing for CPI-I

1: Set Occ
C(P)
T = OccT

P .{We find out the occurrences of Q1 = P and initialize the
Occ

C(P)
T with that}

2: for d = 1 to m − 1 do
3: Find μP[1..d] in STT .
4: Set i[d] = μQ�

d+1 .left, j[d] = μQ�
d+1 .right.

5: Find μ
←−P [1..d] in ST←−T .

6: Set k[d] = μ
←−
Q

f
d .left and �[d] = μ

←−
Q

f
d .right.

7: end for
8: for d1 = 1 to m − 1, d2 = m − 1 downto 1 do
9: Set B = {(x, y) | (x, y) ∈ A and (x, y) is contained in q ≡ (i[d1], k[d2]) ×

(j[d1], �[d2])}.
10: Set Occ

C(P)
T = Occ

C(P)
T

⋃
{(L[x] − |Qf

d1
|) | (x, y) ∈ B}.

11: end for
12: return Occ

C(P)
T .

The running time of the query processing (Algorithm 3) is deduced as follows.
Apart from Step 17, which takes O(m), Algorithm 3 is divided into two main
parts. The first part comprises of the for loop of Step 2 and the second part
consists of the loop of Step 8. In Step 2, we find and store, for each prefix of
P (resp.

←−P ), the leftmost and rightmost entry in L (resp.
←−L ), so that, we can

use them in Step 8 with appropriate combination. This can be done in O(m)
as follows. We first traverse STT matching P . Suppose at an (explicit) node u,
of STT , we are at Pi and when we reach the next (explicit) node v, we are at
Pj . It is easy to realize that, for all k such that i < k ≤ j, the leftmost and
rightmost entry for P [1..k] in L are, respectively, v.left and v.right. So, we can
find (and store) them in O(m) time as we traverse STT matching P . The same
technique is used for

←−P with ST←−T . The goal of Step 8 is to get the intersection of
the ranges of the appropriate prefix-suffix combinations of P derived in Step 2.
The construction of the set B in Step 9 is done by performing the range query
and hence requires O(log log n + |B|) time. Note that |B| = |OccTQi

| and hence,
in total, the time required by Step 8, per Qi, is O(log log n + |OccTQi

|). So, in
total, Step 8 requires, O(m log log n+

∑
1<i≤m |OccTQi

|). So, the total worst case
running time of Algorithm 3 is:

O(m + |OccTP | + m log log n +
∑

1<i≤m

|OccTQi
|) = O(m log log n +

∑

1≤i≤m

|OccTQi
|).

One subtle but important point is that, if there exists Qi = Qj such that
Qi, Qj ∈ C(P), i �= j, then we will have:

∑

1≤i≤m

|OccTQi
| > |Occ

C(P)
T |.

7 This step can be easily incorporated in the two main loops of Algorithm 3; this,
however, is kept for ease of exposition.
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Hence, in such a case, our algorithm would require more than constant time per
occurrence to report them, which is not desirable. However, we note that, this
can only happen when P is a repetition. We handle this issue as follows. We
need to realize that, if ρ is the period of P , then there exists only |ρ| distinct
members in C(P). So, to solve the issue, the query processing (Algorithm 3) is
preceded by a further pre-processing to find out ρ. This can be done easily in
O(m) by using, for example, the preprocessing of KMP algorithm [15]. Then,
the two loops in Algorithm 3 (Step 2 and Step 8) are executed |ρ| times instead
of m − 1, which solves the problem.

4 CPI-II: Another Index for Circular Pattern

In Section 3, we have presented the data structure CPI-I requiring O(n log1+ε n)
space. Since we need to use two suffix trees, along with the range search data
structure, from practical point of view, the space usage of CPI-I is quite high.
Note that, we can use the space efficient alternative suffix arrays, instead of
suffix trees, to build CPI-I with some standard modifications in Algorithm 1;
but, still, we can’t get rid of the range search data structure. In this section,
however, we use the suffix array to build another index for circular pattern,
employing different techniques. The resulting data structure, CPI-II, will have
better time and space complexity. The query time, however, will suffer by a
log n/ log log n factor.

We start with a very concise definition of suffix array. The suffix array SA[1..n]
of a text T is an array of integers j ∈ [1..n] such that SA[i] = j if, and only if,
T [j..n] is the i-th suffix of T in (ascending) lexicographic order. Suffix arrays were
first introduced in [18], where an O(n log n) construction algorithm and O(m +
log n + |OccTP |) query time were presented. Recently, linear time construction
algorithms for space efficient suffix arrays have been presented [16,14,13]. The
query time is also improved to optimal O(m+ |OccTP |) in [1]. We recall that, the
result of a query for a pattern P on a suffix array SA of T , is given in the form
of an interval [s..e] such that OccTP = {SA[s], SA[s+1], . . . , SA[e]}. In this case,
the interval [s..e] is denoted by IntTP .

Now, the data structure CPI-II consists of the suffix array SA and the inverse
suffix array SA−1 of T . The inverse suffix array of T is denoted by SA−1[1..n],
where SA−1[i] equals the number of suffixes that are lexicographically smaller
than T [i..n]. Both SA and SA−1 require O(n log n) bits of space and can be
constructed in linear time [16,14,13]. We next discuss how we perform the query
on CPI-II and analyze the running time. We use the following well-known results
from [10] and [12].

Lemma 1. ([10]) Given a text T and the suffix array of T , assume [s..e] = IntTP
is already computed. Then for any character c, the interval [s′..e′] = IntTPc can
be computed in O(log n) time.
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Lemma 2. [12] Given a text T along with the suffix array and inverse suffix
array of T , assume that, the interval [s′..e′] = IntTP′ and the interval [s′′..e′′] =
IntTP′′ are already computed. Then, the interval [s..e] = IntTP′P′′ can be computed
in O(log n) time.

Lemma 3. [12] Given a text T and the suffix array and inverse suffix array of
T , assume [s..e] = IntTP is already computed. Also, assume that an array C is
given such that C[c] stores the total number of occurrences of all c′ ≤ c8. Then
for any character c, the interval [s′..e′] = IntTcP can be computed in O(log n)
time.

Algorithm 3. Query Processing for CPI-II
1: Compute the interval [s..e] for P1 in T
2: Pref [1].start = s, Pref [1].end = e
3: for i = 2 to m do
4: Using Pref [i − 1], compute the interval [s..e] of P [1..i] in T
5: Pref [i].start = s, Pref [i].end = e
6: end for
7: Compute the interval [s..e] for Pm in T
8: Suf [m].start = s, Suf [m].end = e
9: for i = m − 1 downto 1 do

10: Using Suf [i + 1], compute the interval [s..e] of P [i..m] in T
11: Suf [i].start = s, Suf [i].end = e
12: end for
13: I = ε
14: for j = 2 to m do
15: Using Suf [j] and Pref [j + m − 1 mod m], compute the interval [sj ..ej ] for

Qj = Qf
j Q�

j

16: I = I
⋃

[sj ..ej ]
17: end for
18: I = I

⋃
Pref [m]{Include the interval of P}

19: Sort I according to sj , 1 ≤ j ≤ m.
20: for j = 2 to m do
21: if sj < ej−1 then
22: sj = min{sj , sj−1}
23: ej = max{sj , sj−1}
24: I = I − [sj−1..ej−1]
25: end if
26: end for
27: Occ

C(P)
T = ε

28: for [s..e] ∈ I do
29: Occ

C(P)
T = Occ

C(P)
T

⋃
{SA[s]..SA[e]}

30: end for
31: return Occ

C(P)
T

8 Here ‘≤’ implies a lexicographical relation.
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Now the query is done as follows. We first compute the intervals for all the
prefixes and suffixes of P and store them in the arrays Pref [1..m] and Suf [1..m]
respectively. To compute the intervals of prefixes, we can use Lemma 1 as follows.
We first compute the interval for the character P1 and store the interval in
Pref [1]. This can be done in O(log n). Next, we compute the interval for P [1..2]
using Pref [1] in O(log n) time (Lemma 1). Then, we compute the interval for
P [1..3] using Pref [2] and so on. So, in this way, we can compute the array
Pref [1..m] in O(m log n) time. Similarly, we compute the interval of suffixes in
Suf [1..m]. Courtesy to Lemma 3, we can do this in O(m log n) time as well.
With Pref and Suf at our disposal, we can find the intervals for the circular
pattern C(P) as follows. We use the result of Lemma 2. Note that, for Qj ∈
C(P), 1 < j ≤ n, we have the interval of Qf

j in Suf [j] and the interval for
Q�

j in Pref [j + m − 1 mod m]. Now according to Lemma 2, using Suf [j] and
Pref [j + m − 1 mod m], we can find the interval for Qj in log n time. Finally,
interval for P(= Q1) can also be found in Pref [m] or Suf [1]. Therefore, we
can find intervals for all the Qj, 1 ≤ j ≤ n in O(m log n) time. Now we simply
report all the occurrences in this set of intervals. To avoid reporting a particular
occurrence more than once, we sort the m intervals according to the start of the
interval requiring a further O(m log m) time. And then do a linear traversal on
the two end of the sorted intervals to get a equivalent set of ‘disjoint’ intervals.
Then, we do the reporting. Therefore, in total, the query processing requires
O(m log n + |Occ

C(P)
T |) time per query.

To reduce the space usage further, we can implement the above algorithm
using the compressed suffix array (CSA) [11], which requires O(n) bits of space
and can be constructed in O(n) time. Also, using a supporting data structure,
requiring O(n) bits of space, we can evaluate SA[i] and SA−1[i] from CSA in
O(log n) time [20]. Therefore, the time complexity for query processing becomes
O(m log2 n + |Occ

C(P)
T |) per query.

5 Conclusion

In this paper, we have studied the Circular Pattern Matching (CPM) Prob-
lem and have presented two efficient data structures to index circular patterns.
This problem seems to be interesting and is motivated by practical applications.
Given a text T of length n, our first data structure, CPI-I, can be constructed
in O(n log1+ε n) time and space, for any constant 0 < ε < 1 and the subse-
quent queries for a circular pattern C(P), corresponding to a given pattern P ,
can be answered in (near optimal) O(m log log n + |Occ

C(P)
T |) time. Our sec-

ond data structure, CPI-II, exhibits better time and space complexity in terms
of construction but suffers a little in query time. In particular, CPI-II can be
constructed in O(n) time requiring O(n log n) bits of space. The query time of
CPI-II is O(m log n + |Occ

C(P)
T |). Finally, using the compressed suffix array, we

can reduce the space usage of CPI-II to linear at the cost of a log n factor rise
in the query time.
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13. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Simple linear work suffix array con-
struction. J. ACM 53(6), 918–936 (2006)

14. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in linear time.
J. Discrete Algorithms 3(2-4), 126–142 (2005)

15. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

16. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Discrete
Algorithms 3(2-4), 143–156 (2005)

17. Lothaire, M. (ed.): Applied Combinatorics on Words. In: Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, Cambridge (2005)

18. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

19. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

20. Sadakane, K., Shibuya, T.: Indexing huge genome sequences for solving various
problems. Genome Informatics 12, 175–183 (2001)

21. Shiloach, Y.: Fast canonization of circular strings. J. Algorithms 2(2), 107–121
(1981)

22. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

23. Wagner, E.K., Hewlett, M.J.: Basic Virology, 2nd edn. Blackwell Publishing,
Malden (2003)



A Fast Algorithm to Calculate Powers of a
Boolean Matrix for Diameter Computation of

Random Graphs

Md. Abdur Razzaque, Choong Seon Hong, M. Abdullah-Al-Wadud,
and Oksam Chae

Department of Computer Engineering, Kyung Hee University
1 Seocheon-ri, Kiheung-eup, Yongin-si, Gyonggi-do, South Korea, 449-701

m a razzaque@yahoo.com, cshong@khu.ac.kr,
awsujon@yahoo.com, oschae@khu.ac.kr

Abstract. In this paper, a fast algorithm is proposed to calculate kth

power of an n × n Boolean matrix that requires O(kn3p) addition oper-
ations, where p is the probability that an entry of the matrix is 1. The
algorithm generates a single set of inference rules at the beginning. It
then selects entries (specified by the same inference rule) from any ma-
trix Ak−1 and adds them up for calculating corresponding entries of Ak.
No multiplication operation is required. A modification of the proposed
algorithm1 can compute the diameter of any graph and for a massive
random graph, it requires only O(n2(1-p)E [q ]) operations, where q is
the number of attempts required to find the first occurrence of 1 in a
column in a linear search. The performance comparisons say that the
proposed algorithms outperform the existing ones.

Keywords: Boolean Matrix, Random Graphs, Adjacency Matrix,
Graph Diameter, Computational Complexity.

1 Introduction

Boolean matrix and its powers play a major role in mathematical research, elec-
trical engineering, computer programming, networking, biometrics, economics,
marketing and communications - the list can go on and on [1, 2, 3]. In these
applications, Boolean matrices interpret the relationship among the nodes of a
network, genes of different organisms, points of a circuit etc. For drawing and
comparison of RNA secondary structure, [1] builds a path matrix by calculating
higher powers of the input distance matrix. [2] presents an algorithm to calculate
the network capacity in terms of the maximum number of k-hop paths based on
the k-hop adjacency matrix of the network. [3] produces an adjacency matrix
from a large database containing compiled gene ontology information for the
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S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 58–69, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

m_a_razzaque@yahoo.com,
cshong@khu.ac.kr,
awsujon@yahoo.com,
oschae@khu.ac.kr


A Fast Algorithm to Calculate Powers of a Boolean Matrix 59

genes of several model organisms. Higher powers of this matrix are then calcu-
lated to determine how closely the genes are related on biological processes and
molecular functions.

Adjacency matrix is a Boolean matrix that represents the dependency among
vertices of a graph. If A is the adjacency matrix of a random graph G(n,p), the
entries in its kth power gives the number of walks of length k between each pair
of vertices [4]. To find out Ak from A, ∀k ≥ 2, is one of the most fundamental
problems in graph theory. Strassen [5] made the astounding discovery that one
can multiply two n × n matrices recursively in only O(n2.81) multiplication op-
erations, compared with O(n3) for the standard algorithm. The constant factor
implied in the big O notation of this algorithm is about 4.695. A sequence of
improvements have been done to Strassen’s original algorithm [6]. The best one
is achieved by Coppersmith and Winograd [7], which requires at most O(n2.376)
multiplication and addition operations [8]. It also improves on the constant factor
in Strassen’s algorithm, reducing it to 4.537. These approaches require increas-
ingly sophisticated mathematics and are intimidating reading. Yet, viewed at a
high level, the methods all rely on the same framework: for some k, they provide
a way to multiply k × k matrices using m ≪ k3 multiplications, and apply the
technique recursively to show that the exponent, ω < logk m. The main chal-
lenge in devising these methods is in the design of the recursion for very large
values of k. Moreover, the accuracy of these recursive algorithms are often worse
than those of the standard algorithm [9].

Usually, to find out Ak from A, k -1 number of matrix multiplications is
required, but the use of doubling trick reduces the number approximately to
�log2k�. For instance, using doubling trick, A16 can be computed by 4 matrix
multiplications only, A → A2 → A4 → A8 → A16 and A40 can be computed
by 6 matrix multiplications only, A → A2 → A4 → A8 → A16 → A32 →
A40(A32 × A8). Hence, Coppersmith and Winograd’s algorithm along with dou-
bling trick necessitates almost O(�log2 k�n2.376) multiplications.

In this paper, we propose a fast algorithm for finding out the higher powers,
k, of a Boolean matrix A that runs in O(kn3p) addition operations, faster than
that of [7] even with doubling trick. We observe that 0 entries in the matrix have
no contribution in this computation and therefore we exclude this overhead and
develop inference rules using 1 entries. The proposed algorithm selects entries
(specified by the inference rule) from the matrix Ak−1 and adds them up only for
updating corresponding entries of Ak. Consequently, our algorithm completely
avoids multiplication operations and executes faster. Our second contribution
is graph diameter computation algorithm. Let us consider, G(n, p) is a random
graph of n vertices in which a pair of vertices appears as an edge with proba-
bility p. Diameter of G(n, p) is the longest of the shortest walks in between any
two vertices of the graph [10]. In other words, the graph diameter is the maxi-
mum number of nodes traversed along an optimal path connecting two arbitrary
nodes. Floyd-Warshall’s shortest path algorithm [11, 12] gives the shortest paths
in between each pair of vertices both for directed and undirected graphs. By find-
ing out the longest one of them, we can solve diameter computation problem.
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The time complexity of this algorithm is O(n3). To the best of our knowledge,
there has been no further improvement in computation time required for comput-
ing exact diameter of a graph, even though there is rich literature for estimating
diameter of random graphs [10, 13, 14, 15, 16]. The proposed graph diameter
computation algorithm is much faster, for a massive random graph [14] hav-
ing diameter d, our algorithm requires O(n2(1-p)E [q]) operations, where q is
the number of attempts required for finding out the first occurrence of 1 in a
column.

The rest of the paper is organized as follows. Section 2 introduces the algo-
rithm for computing higher powers of a Boolean matrix and section 3 describes
the diameter computation algorithm. Correctness proof and complexity analysis
of the algorithms are presented in section 4 and 5 respectively. Section 6 carries
out the performance comparisons and the paper is concluded in section 7.

2 Higher Powers of Boolean Matrix

In this section, we describe an algorithm that takes a Boolean matrix A as input
and produces the powers of it. The proposed algorithm works as follows. At
first, it produces rules (we call it inference rule) for all rows of A. We define an
n×n integer array Irule, which stores the column indices having 1 entries in the
respective rows of A. The inference rule generated for a particular row is used to
update all entries of that row to calculate any matrix Ak from Ak−1. Therefore,
the procedure GenerateIrule() in Algorithm 1 is called only once for a matrix.

———————————————————————————————–
Algorithm 1. Inference rule generation
———————————————————————————————–
Procedure GenerateIrule(A, n, Irule)
/* rm is the number of 1’s in rth row */
1. for r := 0 to n − 1 do /* for each row, r */
2. rm := 0;
3. for c := 0 to n − 1 do /* for each column, c */
4. if A(r, c) = 1 then
5. Irule(r, rm) = c;
6. rm = rm + 1;
7. endif
8. end for
9. end for
———————————————————————————————–

Once the inference rules for a matrix A is generated, Irule contains the column
indices having 1 entries in each row. Now, we calculate each entry of higher power
matrix A2(r,c) from A following (1).

A2(r, c) =
rm−1∑

i=0

A(Irule(r, i), c) (1)
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The interesting fact is that the inference rules, we have already developed, to
get A2 from A, can also be applied to get A3 from A2, A4 from A3 and so on.
Hence, each entry of Ak is updated as follows

Ak(r, c) =
rm−1∑

i=0

Ak−1(Irule(r, i), c), ∀k ≥ 2 (2)

The procedure BoolMatMul() presented in Algorithm 2 calculates Ak from
Ak−1.

—————————————————————————————————–
Algorithm 2. Boolean matrix multiplication using addition operations only
—————————————————————————————————–
Procedure BoolMatMul(A, n, Irule, k)
/* rm is the number of 1’s in rth row */
1. for r := 0 to n − 1 do /* for each row, r */
2. for c := 0 to n − 1 do /* for each column, c */
3. for m := 0 to rm − 1 do
4. x := Irule(r, m);
5. Ak(r, c) = Ak(r, c) + Ak−1(x, c);
6. end for
7. end for
8. end for
—————————————————————————————————–

At every step, we need to store only the immediate lower powered matrix in
memory. The procedure HigherPower() in Algorithm 3 shows how it iterates
the above steps for each power k of the matrix A to compute AP , where P is
any integer greater than or equal to 2.

—————————————————————————————————–
Algorithm 3. Calculating P th power of Boolean matrix A
—————————————————————————————————–
Procedure HigherPower(A, n, P)
Irule: n × n integer array, initialized to 0
1. GenerateIrule(A, n, Irule);
2. for k := 2 to P do /* Calculates AP */
3. BoolMatMul(A, n, Irule, k);
4. end for
—————————————————————————————————–

The mathematical reasoning behind the proposed algorithm is not so difficult
to understand. Its correctness proof is given in section 4.
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3 Diameter Computation Algorithm

The adjacency matrix A of G(n,p) is a Boolean matrix with n rows and n
columns labeled by graph vertices having entries as follows

A(i, j) =
{

1, if there is an edge from vi to vj

0, otherwise (3)

For a simple graph, the adjacency matrix must have 0’s on the diagonal. In this
section, we propose an algorithm that takes such an adjacency matrix A of a
random graph and computes its diameter. For simplicity we consider connected
graph here.

The entries of the matrix Ak contain the number of walks of length k between
corresponding vertices. For pair of vertices having walk length other than k, or
having no path connecting them, entries in Ak become zero. Therefore, if cycles
are avoided in computing the walk lengths, only shortest paths are calculated
here. Eventually, all entries of Ad+1, where k ≥ 1, become zero if diameter of the
graph is d. For solving diameter computation problem, we are concerned only
with the shortest paths between pair of vertices. Therefore, we define a matrix
Ad whose entries are determined using (4).

Ad(i, j) =
{

1, if dist(i,j)=d
0, otherwise (4)

where dist(i,j) denotes the minimum path length between vertices vi and vj . We
take an auxiliary Boolean matrix PathFoundd of size n × n, which keeps track
of the paths that are already found. PathFound1 is initialized to the matrix A
and diagonal entries are set to 1. Accordingly, we modify the procedure Bool-
MatMul(k) and rename as FindNewPaths(d) in Algorithm 4. At each step,
it finds a path of length d for each pair of vertices vi and vj , unless it is already
computed or i=j (diagonal entries). Therefore, the entries of PathFoundd are
observed as follows

PathFoundd(i, j) =
{

1, if dist(i,j)≤ d
0, otherwise (5)

—————————————————————————————————–
Algorithm 4. Searching for existence of paths of length d
—————————————————————————————————–
Function FindNewPaths(d)
Input: PathFoundd−1(r, c), Ad−1
Return type: Boolean
1. flag = False;
2. for r := 0 to n − 1 do /* for each row, r */
3. Found = False;
4. for c := 0 to n − 1 do /* for each column, c */
5. if r = c OR PathFoundd−1(r, c) = 1 then
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6. Skip operations below and continue with next value of c;
7. end if
8. for m := 0 to rm − 1 do /* each x in inference rule of r */
9. x := Irule(r, m);
10. if Ad−1(x, c) = 1 then
11. Ad(r, c) := 1;
12. PathFoundd(r, c) := 1;
13. flag := True;
14. Found := True;
15. Break loop for m;
16. end if
17. end for
18. if Found = True then
19. Break loop for c;
20. end if
21. end for
22. end for
23. return flag;
—————————————————————————————————–

Eventually, for a connected graph, all entries of matrix PathFoundd will become
1 for a certain value of d and FindNewPaths(d+1) returns false. For a dis-
connected graph G(n,p), we have used the convention that the diameter of G is
the maximum diameter of its connected components. In that case, some 0 entries
will still be remaining when FindNewPaths(d+1) returns false. The function
ComputeDiameter() in Algorithm 5 repeatedly calls FindNewPaths(k) un-
til it returns false, which means the diameter is k -1.

—————————————————————————————————–
Algorithm 5. Computation of diameter of a graph, G
—————————————————————————————————–
Function ComputeDiameter()
Input: Adjacency matrix A of G
Return value: Diameter of G as integer
1. GenerateIrule(A, n, Irule);
2. k := 1;
3. repeat
4. k := k + 1;
5. untill FindNewPaths(k) = false;
6. return k − 1;
—————————————————————————————————–

4 Proof of Correctness

Theorem 1. For an n × n Boolean matrix, A, inference rules correctly pick up
necessary and sufficient entries to calculate Ak from Ak−1, ∀k ≥ 2.
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Proof: Traditional multiplication algorithm uses (6) to calculate Ak

Ak(r, c) =
x=n−1∑

x=0

A(r, x) × Ak−1(x, c) (6)

Here for the entries A(r,c)=0, the multiplication as well as the addition oper-
ations cannot contribute anything to the sum. Hence our inference rules take
only 1 entries of the respective rows. Again since A(r, x) = 1, ∀x ∈ Irule(r),
each multiplication simply yields Ak−1(x,c). Therefore, avoiding multiplication
operations, the (6) correctly reduces to

Ak(r, c) =
∑

∀x∈Irule(r)

Ak−1(x, c) (7)

Lemma 1. Generating a single set of inference rules is sufficient for calculating
any Ak, where k ≥ 2.

Proof: Theorem 1 follows that inference rules produced from A picks up the
entries from the other matrix, with which A is being multiplied. Any Ak can be
generated by adding entries of Ak−1. Hence, the set of inference rules created
from A can serve all necessary multiplications.

Theorem 2. FindNewPaths(d) updates the entries so that Ad(i,j)=1 denotes
that the length of the shortest path in between vertices vi and vj is d.

Proof: We prove it by induction. A(i,j )=1 certainly denotes that the shortest
path length between i and j is 1. Now, let us suppose that Ad−1(i,j ) denotes that
the shortest path length between i and j is d -1. The inner loop of FindNew-
Paths(d), statement 9, looks for an x where Ad−1(x,c)=1. Irule(r) guarantees
that there is a path of length 1 from r to x. Hence, there exists a path of length
d from r to c via x. If there exists a path between i and j whose length is h,
where h < d, it would have been found earlier when FindNewPaths(h) was
called and the matrix PathFound would have kept track of it.

5 Complexity Analysis

Let n be the number of rows or columns of the matrix and p be the probability
that an arbitrary entry of the matrix is 1. Then the number of operations required
for finding out the inference rules for n rows of the matrix is n2. If X represents
the number of 1’s that occur in one row (or column), then X is said to be a
binomial random variable with parameters (n, p) [17]. Therefore, the expected
number of 1’s in a row of the matrix A is given by

m = E[X ] =
n∑

i=0

i

(
n
i

)

pi(1 − p)n−i = np (8)
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5.1 Complexity for Calculating Higher Powers of Boolean Matrix

The proposed algorithm requires m addition operations, given by (8), for calcu-
lating a single entry of the next higher-powered matrix A2. Consequently, the
complexity for computing all entries of A2 is given by O(n2 + n × n × m)=
O(n2(1+m)) = O(n2m) (constant part is omitted). By replacing m by np, we
get the complexity O(n3p) and hence for getting Ak from A requires O(kn3p)
addition operations. No multiplication is required here.

5.2 Complexity for Diameter Computation

In this case, we update only the 0 entries of the target matrix. For each of the
(n-m) 0 entries of a row, the function FindNewPaths(d) searches for the first
occurrence of 1 in m positions. The probabilistic distribution of getting first
success (occurrence of 1) in repeated finite number of trials (m) is truncated
geometric random [18]. Let q represent the number of attempts required for
getting the first 1 in a column. Using [18], we get the conditional probability
mass function (pmf) of q, with the condition that the procedure gets a 1, as

P (q) =
(1 − p)q−1p

1 − (1 − p)m
(9)

Replacing the value of m from (8) and using geometric series equations [19], we
find the expected number of attempts required, E [q], as in (10).

E[q] =
1 − (1 − p)np(1 + np2)

p(1 − (1 − p)np)
(10)

Consequently, the number of search operations required for updating a single
row is (n-m)E [q], which follows that getting A2 involves n(n-m)E [q] computa-
tions. The conditional probability that a single 0 entry of the matrix is updated
is given by [18] as follows

Cp =
m∑

k=1

P (q) =
1 − (1 − p)np−1

1 − (1 − p)np
(11)

As our diameter computation algorithm finds new paths only, after each step of
calculating Ad from Ad−1, the number of 0’s need to update will be reduced.
After the first step, i.e., when A2 is calculated from A, in each row (n-m)Cp

number of 0’s is updated and the estimated number of 0’s remaining is (n −
m) − (n − m)Cp = (n − m)(1 − Cp). Similarly, after the second step, i.e., A3
is calculated from A2, n − m)(1 − Cp)Cp number of 0’s of each row is updated
and the number of 0’s left is given by (n − m)(1 − Cp) − (n − m)(1 − Cp)Cp =
(n − m)(1 − Cp)2.

Therefore, for a graph with diameter d, the expected number of search oper-
ations required by our diameter computation algorithm is

n2 + n(n − m)E[q](1 + (1 − Cp) + (1 − Cp)2 + ... + (1 − Cp)d) (12)
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= n2 + n(n − m)E[q]
1 − (1 − Cp)d

1 − (1 − Cp)
, using[18] (13)

= n2(1 − p)E[q]Ćp, where, Ćp =
1 − (1 − Cp)d

Cp
(14)

(14) gives the complexity for diameter computation for any random graph. For
massive random graphs, we have seen that the value of Ćp is computed as even
less than

√
d, which is insignificant as compared to n2. Hence, we can write the

complexity of our graph diameter computation algorithm as O(n2(1 − p)E[q]).
This complexity is valid for any p < 1. For p = 1, we need to have a dif-

ferent look. In such a case the matrix will contain 1 entries only. Hence the
loop at step 8 of Algorithm 4 will always terminate at the very first iteration,
and FindNewPath(k) will be called only once and demonstrates a complexity
of O(n). Here, the overall complexity of the proposed diameter computation
algorithm will be O(n2).

The space/time trade-off of the algorithm is stated as follows. The proposed
algorithm needs an n × n array to store the inference rules. However, it may
be cut down by using n lists. Then it will need n2 values to be stored in the
worst case. However, this extreme case will occur when p = 1, which gives a time
complexity of only O(n2), i.e., a great reduction in computation time complexity
is gained with the compensation of space overhead.

6 Performance Comparisons

For performance comparison, we have carried out experiments on Boolean ma-
trices with various densities of 0’s and 1’s. The experiments are carried out in a
Pentium IV PC (2.8GHz, 1GB RAM). The values plotted in all the graphs are
mean of 5 individual experiments.

Fig. 1(a) shows the ratio of computation time required by Coppersmith and
Winograd’s algorithm [7] (Tc) to that of our proposed algorithm (Tp) for comput-
ing A2 from A. As the number of rows (or columns), n, of a matrix increases, the
value of Rt(= Tc

Tp
) slowly increases for all values of p. Rt decreases as p increases.

This is because, in our proposed algorithm, the number of addition operations
required for updating a single entry of a row is directly proportional to the num-
ber of 1’s in that row. However, Fig. 1(a) also depicts that even for matrices
with all 1 entries (p = 1.0), is greater than 1.2, which shows the superiority of
the proposed method.

In Fig. 1(b), the computation time ratio Rt is shown for calculating higher
powers of A. Rt decreases with higher values of k. This is because of using
doubling trick with [7], which reduces the computation time significantly for
large values of k. However, even for k=100, Rt is found to be at least 2. Both Fig.
1(b) and Fig. 1(c) show that Rt decreases as p increases, the cause is explained
above. Fig. 1(c) also points out that n has very less effect on Rt.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Ratio of computation time for calculating (a) A2 from A, (b) Ak from A, (c)
A30 from A, (d) diameter of directed random graphs (p varies), (e) diameter of directed
random graphs (d varies) and (f) diameter of undirected random graphs

The performance of the proposed algorithm may degrade in comparison to
[7] for further large values of p and k. However, in natural applications we may
seldom require to compute very high power of A. For example, let A represent
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a random graph on n vertices, where n=500 and p=0.5. The diameter of this
graph is approximately log (n)

log (np) [20], which yields only 2. Hence, finding A2 is
sufficient to find relationships in between any pair of vertices of that graph.
Again, if the diameter of a graph with 500 vertices is 100, then p should be
set to approximately 0.002. This causes each vertex to have degree 1, which is
not practical in most applications. Hence we may make comment that finding
very high power of matrices representing graphs is not necessary in most of the
cases. Therefore, we claim that our proposed method is more applicable to find
practically useful powers of matrices.

For practical implementation of our graph diameter computation algorithm
and its comparison with Floyd-Warshall’s shortest path algorithm [11] that can
compute the diameter of a graph exactly, we have randomly placed edges in
between vertices ensuring at least one edge to each vertex of the graph. We have
taken inputs such that there is no self loop in the graph i.e., the adjacency matrix
contains 0 entries in its main diagonal.

Fig. 1(d) and Fig. 1(e) show the ratio of computation time required by Floyd-
Warshall’s algorithm (Tw) to that of our proposed algorithm (Tp) for computing
diameter of directed random graphs. Fig. 4 depicts that the proposed algorithm
provides better performance than Floyd-Warshal’s algorithm for higher values
of p. This is because our algorithm updates 0 entries only and as p increases, the
number of 0 entries in the adjacency matrix decreases. Fig. 1(e) shows that Dt

drops as d increases. However, it shows that for practical values of diameters the
proposed method is still better. It is also observed that the ratio of computation
time, Dt = Tw/Tp , is higher for larger values of n.

Fig. 1(f) shows that our algorithm provides much better performance for
undirected graphs. For all the graphs, the computation time ratio, Dt, is almost
double of that for directed graphs as shown in Fig. 1(e). This is because, in case
of undirected graphs, we need to deal with only either half part of the main
diagonal of the matrix.

7 Conclusions

To the best of the author’s knowledge, this is the ever first algorithm for comput-
ing higher powers of a matrix that does not require any multiplication operation
at all. Our proposed graph diameter computation algorithm neither uses BFS
nor dominating sets, needs it only to search the existence of new paths. Our
algorithms are easy to implement and have the desired property of being combi-
natorial in nature and the hidden constants in the running time bound are fairly
small.

The applicability of our algorithm, or similar approach, to the problem of di-
ameter computation of weighted graphs, transitive closure and all-pair of shortest
paths needs further investigation and analysis. We conjecture that our approach,
or simple modification of it, can help solve these problems within O(n2(1-p)E [q])
operations. We leave this as our future work.
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Abstract. Voronoi diagrams for a fix set of generators are considered
with varying Lp norm. For a generator q in the set, the absolute neighbor
of q is defined to be the intersection of all Voronoi regions of q by Lp

norm(p = 1, 2, . . . , ∞). Since the shape of Voronoi region is dependent
on the norm used, the collection of absolute neighbors for the set does
not always cover the whole space.

In this paper, we construct absolute neighbors and computed the ra-
tio, called cover ratio, of the volume covered by all absolute neighbors
to that of the whole space for some sets of generators by computational
experiments. Computational experiments show that the cover ratio is
higher when a configuration of grid points is used as a set of generators
than when a set of random generators is used. Moreover, we theoreti-
cally show that the absolute neighbors for square configuration and for
face-centered configuration cover the whole space. We also discuss an
application of absolute neighbors to constructing an index structure of
the whole space for efficient retrieval.

1 Introduction

Voronoi diagrams have been used in many fields, for example, biology, physics,
vision, archaeology and so on. Theoretical aspects of Voronoi diagrams have
been studied in computational geometry from construction to properties. Many
results for Voronoi diagram are found in [6].

An application of Voronoi diagrams is the construction of an index structure
for databases, when data space is a vector (or at least metric) space([1,3]). In the
application, we select a set Q of generators from the vector space, and compute
the Voronoi diagram for Q with respect to a norm. The Voronoi diagram is
regarded as a partition of the index structure. It is ensured that all points in a
Voronoi region are near to the generator of the region by the norm.

Ordinary index structures support retrieval using a single norm. For efficient
ε-similarity search, the partition of the space is constructed through the Voronoi
diagram by the norm used. Recently, new index structures which support re-
trieval using various norms were proposed (Yi et al.[9], QIC-m-tree[4], Kimura

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 70–80, 2008.
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et al.[5] and mm-GNAT[8]). A retrieval using various norms is realized by a scal-
ing of ε in [9,4,5]. On the other hand, we realized such a retrieval by an extension
of the existence range of GNAT([2]), called mm-range, in [8]. The mm-range is
an interval whose lower and upper bounds are distances between a generator
and the points in a region measured by L∞ norm and by L1 norm, respectively.
The smaller the mm-range is, the more efficient the retrieval is. The mm-range
depends on the partition by a Voronoi diagram, i.e., on the set of generators and
the norm used.

In [8], we experimented three types of partition on mm-GNAT : L1 norm
based, L2 norm (Euclid distance) based and L∞ norm based. The results showed
that L2 norm based partition is most efficient among these partitions. The ef-
ficiency (the number of distance calculations to get all correct answers) on the
mm-GNAT was about 4.0 times as good as on the ordinary index structure
(GNAT, [2]) for 4 dimensional artificial data and about 21.0 times for 20 di-
mensional music data. We investigate efficient partition (Voronoi diagram) such
that

– most points in a region are distributed around the generator of the region,
and

– distances between a point in a region and the generator of the region change
little by various norms.

For constructing such a partition we focus attention on absolute neighbor
[7]. The absolute neighbor of a generator q is defined by the intersection of
Vorp(q; Q)’s (p = 1, 2, . . . ), where Vorp(q; Q) is Voronoi region of a generator q
for Q by Lp norm. The absolute neighbor satisfies the first condition of partition,
however there is a problem that absolute neighbors do not necessarily cover the
whole space. Since the absolute neighbor of q is the intersection, the absolute
neighbor is an intersection of each Vorp(q; Q). The Voronoi diagrams are differ-
ent, depending on the Lp norm used. Thus absolute neighbors for all generators
of the set Q do not always cover the whole space.

We consider the cover ratio of the volume covered by all absolute neighbors to
the volume of the whole space. We calculated the cover ratios for sets of random
generators and for configurations of grid points: triangle configuration, square
configuration, face-centered configuration. Computational experiments show that
the cover ratios for these configurations are higher than that for a set of ran-
dom generators. For square configuration and face-centered configuration, the
ratios were almost 1.0. We theoretically show that the collections of the absolute
neighbors for square configuration and for face-centered configuration cover the
whole space.

The content of this paper is as follows. In Section 2, we define the absolute
neighbor and explain one of its properties. In Section 3, we describe experimental
results of the cover ratio when random points are used as generators. In Section 4,
we consider the absolute neighbors for the three grid configurations above. In
Section 5, we explain an application of the absolute neighbor as an index struc-
ture for databases.
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Fig. 1. Absolute neighbors for 10 generators �

2 Absolute Neighbor

Definition 1 (Absolute Neighbor, [7]). Let Q = {q1, q2, . . . , qn} be a set
of n points, called set of generators, and each qi is called generator. Absolute
neighbor AN(qi; Q) of qi for Q is defined as follows:

AN(qi; Q) :=
∞⋂

p=1

Vorp(qi; Q),

where Vorp(qi; Q) is the Voronoi region of qi for Q by Lp norm.

Figure 1 shows absolute neighbors for 10 generators in 2 dimensional space. Each
of the white regions is the absolute neighbor of a generator (�) in the region. For
any Lp norm, every point in an absolute neighbor is nearer to the generator in
the absolute neighbor than to all other generators. Colored regions are the sets
of points for which the nearest generators are different by Lp norm used.

To construct absolute neighbor from the definition, we need to compute the
intersection of infinite sets. This computation is impossible by computer.

Onishi [7] showed the following theorem, which allows us to construct absolute
neighbor.

Theorem 1. Let Q = {q1, q2, . . . , qn} be a set of n generators. Absolute neigh-
bor AN(qi; Q) is given by

AN(qi; Q) = Vor1(qi; Q) ∩ Vor∞(qi; Q).
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Table 1. Cover ratio (average)

spn : the number of generatorsdim max
10 50 100 500 1000 5000

2 102 0.8109 0.7923 0.7883 0.7721 0.7558 0.7355
103 0.7999 0.7807 0.7956 0.7889 0.7863 0.7839
104 0.8230 0.7938 0.7990 0.7860 0.7862

4 102 0.6465 0.6063 0.6025 0.5824 0.5791
8 101 0.4401 0.3778 0.3604 0.3164 0.2962

3 Computational Experiments

In this section, we describe computational experiments and the results. For mea-
suring the cover ratio, we compute the volume of absolute neighbors and that
of the whole space. In general, it is difficult to compute exactly the volume of a
region, we approximate the volume by discretization.

Fix the dimension dim , the number of generators spn and the upper bound
max (> 1) of each coordinate of points (i.e., each coordinate of point is included
in [1,max ]). We select spn generators from hypercube [1,max ]dim , which is re-
garded as a set Q of generators. Suppose a point x in the hypercube. Compute
the generators nearest to x by L1 norm and by L∞ norm. If these nearest gener-
ators are the same, then x is included in the absolute neighbor of the generator.
By applying this procedure to all grid points in the hypercube, we decide whether
each point is contained in absolute neighbor or not.

For quantitative measurement, we define the cover ratio as
∑

i(# points in AN(qi; Q))
# grid points in the hypercube

.

In the experiments, we selected 10 generator sets and computed the cover
ratio for each set, then calculated the average of the cover ratios. The results are
shown in Table 1 and in Figure 2 as semi-logarithmic graph whose vertical axis
is the cover ratio and horizontal axis is the ratio of the number of generators to
the number of all grid points in the hypercube.

For dim = 2, the cover ratios were about 0.8. And, ratios change little by spn
and max . For dim = 4 and dim = 8, the cover ratios were about 0.6 and 0.4,
respectively. As the dimension becomes higher, the cover ratio decreases rapidly.
This is a kind of curse of dimension[1,3].

4 Configuration of Points

In this section, we consider generator sets for which cover ratios are high.
We consider absolute neighbors for the following three types of grid configu-

rations of points:
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Fig. 2. Cover ratio vs ratio of the number of generators to the number of grid points
in the hypercube

– triangle configuration;
– square configuration;
– face-centered configuration.

Triangle Configuration

In a triangle configuration, its grid points form regular triangles. Figure 3 is an
example of absolute neighbors for a triangle configuration (spn = 22, max = 100)
in 2 dimensional space. The cover ratio for this case was 0.8852.

Square Configuration

Square configuration is a configuration of grid points whose points form squares
and is mathematically defined as follows:

{(

d
︷ ︸︸ ︷
2Za, 2Za, . . . , 2Za) | a > 0, Z is the set of all integers}

in d dimensional space. Figure 4 is an example of absolute neighbors for a square
configuration with spn = 16 in 2 dimensional space. In our computational ex-
periment, the cover ratio for spn = 16, max = 100 was 0.9994. There is a case
such that its cover ratio was 1.0000 for spn = 16, max = 100 in 4 dimensional
space. Since the average of the cover ratio was 0.9996 among our computational
experiments, the absolute neighbors mostly covered the whole space.

Thereafter, we theoretically show that the whole space is covered by absolute
neighbors for square configuration.
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Fig. 3. Absolute neighbors for a triangle configuration (spn = 22, max = 100, dim =
2), cover ratio was 0.8852

Lemma 1. For a square configuration the Voronoi region of a generator by L1
norm is the same as that by L∞ norm.

Proof. It is sufficient to show that the perpendicular bisector between generators
in square configuration by L1 norm is the same as that by L∞ norm.

Consider a square configuration in d dimensional space. Without loss of gen-
erality, we only show that the perpendicular bisector between two neighbor grid
points for L1 norm are the same as that for L∞ norm.
[Case 1: L1 norm] Suppose 2 points

o = (0, 0, . . . , 0), q = (0, . . . , 0,
j

2a, 0, . . . , 0).

The perpendicular bisector is expressed by

|xi − 0| = |xi − 2a|.

This equation means

xi = a (0 < xi < 2a).

[Case 2: L∞ norm] We show that a point x = (x1, x2, . . . , xd) (∀i, 0 < xi < a)
is nearer to o than q by L∞ norm.
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2a

2a

Fig. 4. Absolute neighbors for a square configuration (spn = 16, dim = 2)

Compute L∞ norm dist∞ for these points:

dist∞(o, x) = max
i=1,...,d

{|xi|} < a,

dist∞(q, x) = max
i( �=j)

{|xi|, |2a − xj |}

= |2a − xj | > a,

where j is the index whose coordinate value is 2a in q. Since 0 < xi < a,
the first equation and |2a − xj | > a are shown. Moreover, dist∞(o, x)(< a) is
smaller than dist∞(q, x)(> a). Therefore x is nearer to o than q. So, a region
{x | 0 < xi < a, i = 1, . . . , d} is a part of the Voronoi region of o.

If xj = a, then
dist∞(o, x) = dist∞(q, x) = a

and x is on the boundary of the Voronoi regions.
From symmetry, if there exists coordinate such that −a < xi < 0, we can

similarly show that
{x | |xi| < a, i = 1, . . . , d}

is included in the Voronoi region of o and its boundary is expressed as |xi| = a.
��

The following theorem is shown from Theorem 1 and Lemma 1.
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2a

2a

Fig. 5. Absolute neighbors for a face-centered configuration(spn = 18, dim = 2)

Theorem 2. Consider absolute neighbors for a square configuration. The col-
lection of all absolute neighbors covers the whole space and becomes a partition
of the space.

Proof. From Lemma 1, Voronoi regions by L1 norm and by L∞ norm for square
configuration are the same. From Theorem 1, absolute neighbor is the intersec-
tion of these two Voronoi regions. Thus, the absolute neighbor of a generator
is the same to the Voronoi region of the generator by L1 norm and L∞ norm.
Since the collection of all absolute neighbors becomes Voronoi diagram by L1
norm and L∞ norm, the collection of absolute neighbors covers the space. ��

Face-Centered Configuration

Face-centered configuration is defined as follows:
{

(n1, n2, . . . , nd)

∣
∣
∣
∣
∣

∑

i

ni = (2Z + 1)a, ni = Za

}

.

Figure 5 is an example of absolute neighbors for face-centered configuration
with spn = 18 in 2 dimensional space. In our experiment, the cover ratio for
spn = 18, max = 100 was 1.0000. The cover ratios for a face-centered configura-
tions in 2 dimensional space were almost 1.0. The cover ratios were 0.9991 and
0.9981 for face-centered configuration (spn = 32, max = 100) in 3 dimensional
space and for that (spn = 40, max = 100) in 4 dimensional space, respectively.
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We show that the collection of all absolute neighbors for face-centered con-
figuration also covers the whole space. It should be noted that face-centered
configuration cannot be transformed from square configuration by rotation in
the 3 or higher dimensional space.

Theorem 3. The collection of all absolute neighbors for face-centered configu-
ration covers the whole space and becomes a partition of the space.

Proof. It is sufficient that perpendicular bisectors by L1 norm for face-centered
configuration are the same as that by L∞ norm. If the bisectors are the same in
the region

{

(x1, x2, . . . , xd)

∣
∣
∣
∣
∣

∑

i

xi < a, 0 < xi < a

}

, (1)

the bisectors are also the same in the region
{

(x1, x2, . . . , xd)

∣
∣
∣
∣
∣

∑

i

|xi| < a, 0 < |xi| < a

}

(2)

from symmetry. Since copies of the region (2) are a tiling of the whole space, the
perpendicular bisectors are the same in the whole space.

Hereafter, we show that perpendicular bisectors by L1 norm for face-centered
configuration are the same as that by L∞ norm in the region (1). It is sufficient
to show that perpendicular bisectors between two points

q1 = (a, 0, . . . , 0), qj = (0, . . . , 0,
j
a, 0, . . . , 0)

by L1 norm is the same as that by L∞ norm. Let j be the index whose coordinate
value is a in the point qj . We compute the perpendicular bisectors in each norm.
[Case 1: L1 norm]

|a − x1| + |x2| + · · · + |xd| = |x1| + · · · + |a − xj | + · · · + |xd|
(a − x1) + xj = x1 + (a − xj)

x1 = xj .

We have the second equation from the first one by the constraint 0 < xi < a.
[Case 2: L∞ norm]

max{|a − x1|, |x2|, . . . , |xd|} = max{|x1|, . . . , |a − xj |, . . . , |xd|}
(a − x1) = (a − xj)

x1 = xj .

We have the second equation from the first one by the constraint
∑

i xi < a.
Thus, the perpendicular bisectors are the same. ��
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2a

a by L∞ norm

da by L1 norm

square configuration
2a

a by L∞ norm and by L1 norm

face-centerd configuration

added generators
for recursion

Fig. 6. distances between a generator qi and a furthest point in AN(qi; Q)

5 Application

In this section we explain an application of absolute neighbors.
There is an important query to database called ε-similarity search: given a

query point, report all data point in ε-ball whose center is the query point.
Consider the ε-similarity search. Since all data point in the ε-ball should be
reported in the search, it is better that the collection of the regions covers the
whole space. Since the cover ratios for square configuration and for face-centered
configuration are 1, we can use these configurations as a set of generators for
building an index structure for ε-similarity search.

There are some differences among these configurations. In square configu-
ration, the distance between a generator and a furthest point in the absolute
neighbor of the generator is da for L1 norm and a for L∞ norm, respectively,
where d is the dimension of the space. On the other hand, in face-centered con-
figuration, the distance between a generator and a furthest point in the absolute
neighbor is a for both L1 norm and L∞ norm (see Figure 6).

We proposed mm-GNAT [8] which is an index structure for fast ε-similarity
search by arbitrary Lp norm. mm-GNAT realizes the ε-similarity search by arbi-
trary Lp norm at the cost of regions to be searched being expanded. For reducing
the size of the expansion, it is important that distances between two points do
not largely change by Lp norm used (second condition of partition, Section 1).
Thus, the collection of all absolute neighbors of face-centered configuration is
efficient for mm-GNAT.

Here, we consider how to adjust the square or face-centered configurations
to underlying data. Compute absolute neighbors for these configurations. If an
absolute neighbor contains data points more than a threshold, we recursively
consider the square or face-centered configurations in the absolute neighbor. For
example, add generators at center of all facet and all vertex of the absolute
neighbor in face-centered configuration, then the set of the added generators



80 K. Onishi and M. Hoshi

and the generator of the absolute neighbor become face-centered configuration
in the absolute region (see Figure 6).

6 Conclusion

In this paper, we investigated the cover ratios of absolute neighbors for sets of
random points and for configurations of grid points as a set of generators. When
a set of random points is used as a set of generators, the cover ratios were about
0.8 and 0.6 in 2 dimensional space and in 4 dimensional space, respectively.
These cover ratios change little with respect to the number of generators spn
and the upper bound of coordinate value of points max . The ratio decreases
rapidly when the dimension becomes higher.

We also investigated configurations of grid points. For square configuration
and face-centered configuration the cover ratios are 1, therefore these configura-
tions are best from the viewpoint of cover ratio. We shown that the collection of
all absolute neighbors of these configurations is a partition of the space of any
dimension. Therefore, the collection of all absolute neighbors based on these
configurations can be used effectively as a partition (index structure) of high
dimensional space.
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1. Böhm, C., Berchtold, S., Keim, A.D.: Searching in High-Dimensional Spaces: Index
Structures for Improving the Performance of Multimedia Databases. ACM Comput-
ing Surveys 33(3), 322–373 (2001)

2. Brin, S.: Near Neighbor Search in Large Metric Spaces. In: Proc. of the 21st Inter-
national Conference on VLDB, pp. 574–584 (1995)

3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in Metric
Spaces. ACM Computing Surveys 33(3), 273–321 (2001)

4. Ciaccia, P., Patella, P.: Searching in Metric Spaces with User-Defined and Approx-
imate Distances. ACM Transactions on Database Systems 27(4), 398–437 (2002)

5. Kimura, A., Onishi, K., Kobayakawa, M., Hoshi, M., Ohmori, T.: Distance Con-
version Rule for Arbitrary Lp distance. IPSJ Transactions on Databases 46, 93–105
(2005)

6. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons Ltd, Chichester
(2000)

7. Onishi, K.: Intersection of Voronoi Regions by Lp distance. In: Proc. of Japan Con-
ference on Discrete and Computational Geometry 1999, pp. 26–28 (1999)

8. Onishi, K., Kobayakawa, M., Hoshi, M.: mm-GNAT: index structure for arbitrary
Lp norm. In: MDDM 2007. Proc. of The Second IEEE International Workshop on
Multimedia Databases and Data Management, pp. 117–126 (2007)

9. Yi, B.-K., Faloutsos, C.: Fast Time Sequence Indexing for Arbitrary Lp Norms. In:
Proc. of the 26th International Conference on VLDB, pp. 385–394 (2000)



Computing β-Drawings of
2-Outerplane Graphs in Linear Time

(Extended Abstract)

Md. Abul Hassan Samee, Mohammad Tanvir Irfan, and Md. Saidur Rahman

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka - 1000, Bangladesh
{samee,mtirfan,saidurrahman}@cse.buet.ac.bd

Abstract. A straight-line drawing of a plane graph G is a drawing of G where
each vertex is drawn as a point and each edge is drawn as a straight-line segment
without edge crossings. A proximity drawing Γ of a plane graph G is a straight-
line drawing of G with the additional geometric constraint that two vertices of G
are adjacent if and only if no other vertex of G is drawn in Γ within a “proximity
region” of these two vertices in Γ . Depending upon how the proximity region
is defined, a given plane graph G may or may not admit a proximity drawing.
In one class of proximity drawings, known as β-drawings, the proximity region
is defined in terms of a parameter β, where β ∈ [0, ∞). A plane graph G is
β-drawable if G admits a β-drawing. A sufficient condition for a biconnected
2-outerplane graph G to have a β-drawing is known. However, the known algo-
rithm for testing the sufficient condition takes time O(n2). In this paper, we give
a linear-time algorithm to test whether a biconnected 2-outerplane graph G sat-
isfies the known sufficient condition or not. This consequently leads to a linear
algorithm for β-drawing of a wide subclass of biconnected 2-outerplane graphs.

Keywords: Graph Drawing, Proximity Drawing, β-Drawing, Proximity Graph,
2-Outerplane graph, Slicing Path, Good Slicing Path.

1 Introduction

Let Γ be a straight-line drawing of a plane graph G. Let Γ (u) be the point on the plane
to which the vertex u of G is mapped in Γ . Then Γ is a proximity drawing of the plane
graph G if Γ satisfies the following proximity constraint: two vertices u and v of G are
adjacent if and only if a well-defined “proximity region” corresponding to the points
Γ (u) and Γ (v) is empty, i.e. the region does not contain Γ (w) for any other vertex
w of G. The exact definition of proximity region is problem-specific. As a matter of
fact, there is an infinite number of different types of proximity regions. For example,
an infinite family of parameterized proximity regions has been introduced in [5]. This
family of parameterized proximity regions gives rise to an important class of proximity
drawings, known as β-drawings, where β stands for a parameter that can take any real
number value in [0, ∞).

A plane graph G is β-drawable if G admits a β-drawing. Not all graphs are β-
drawable for all values of β. For example, the graph G1 illustrated in Fig. 1(a) is not
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G1 G2
(a) (b)

Fig. 1. (a) A graph G1 which is not β-drawable for β ∈ (1, 2), and (b) a graph G2 which is
β-drawable under the same constraints

β-drawable for β = 1. This fact can be explained as follows. Suppose we want to
achieve a β-drawing of G1 with β = 1. The β-region of two vertices u and v for β = 1
is a circle with Γ (u) and Γ (v) as its two antipodal points. For the graph G1, wherever
we place the four external vertices, the internal vertex will be inside the β-region of at
least one of the four pairs of neighboring external vertices (as shown with the dotted
circle in Fig. 1(a)). Therefore the graph G1 is not β-drawable for β = 1. Following this
same line of reasoning, one can easily work out that the graph G2 shown in Fig. 1(b) is
β-drawable for β = 1.

The proximity drawability problem, i.e. the problem whether a given graph admits
a particular proximity drawing or not, has originated from the well-known “proximity
graphs.” Proximity graphs have wide applications in computer graphics, computational
geometry, pattern recognition, computational morphology, numerical analysis, compu-
tational biology, GIS, instance-based learning and data-mining [3].

Several research outcomes regarding the proximity drawability of trees and outer-
planar graphs are known [1, 2, 6]. One of the problems left open in [6] is to extend the
problem of β-drawability of graphs to other nontrivial classes of graphs apart from trees
and outerplanar graphs. In [4], the authors gave a sufficient condition for β-drawability
of biconnected 2-outerplane graphs, where β ∈ (1, 2). Although their sufficient con-
dition induces a large and non-trivial class of biconnected 2-outerplane graphs, their
algorithm for testing whether a given biconnected 2-outerplane graph satisfies those
conditions or not, takes time O(n2).

In this paper, we give a linear-time algorithm for testing whether a biconnected 2-
outerplane graph G satisfies the sufficient condition presented in [4]. Our algorithm
essentially relies on the sufficient condition presented in [4], but works on a new set of
conditions devised by us on “slicing paths” of G.

The rest of this paper is organized as follows. In Section 2, we present some def-
initions and preliminary results. In Section 3, we give a linear-time algorithm to test
whether G satisfies the sufficient condition presented in [4] or not, and in the positive
case, to compute a β-drawing of G. Finally, Section 4 is a conclusion.

2 Preliminaries

In this section we give some definitions and present our preliminary results.
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A graph G is connected if there is a path between every pair of vertices of G, other-
wise G is disconnected. A connected graph G is biconnected if at least two vertices of
G are required to be removed to make the resulting graph disconnected. A component of
G is a maximal connected subgraph of G. A graph G is planar if G has an embedding in
the plane where no two edges cross each other, except at vertices on which two or more
edges are incident. A plane graph is a planar graph with a fixed planar embedding. A
plane graph partitions the plane into topologically connected regions called faces. The
unbounded face is called the external face, while the remaining faces are called internal
faces.

An outerplanar graph is a graph that has a planar embedding in which all the vertices
lie on the external face. An outerplanar graph is also known as a 1-outerplanar graph.
If all the vertices of a 1-outerplanar graph G appear on the external face of a given
embedding of G, then we say that the embedded graph is a 1-outerplane graph, oth-
erwise the embedded graph is not 1-outerplane, even though G is 1-outerplanar. These
definitions can be generalized as follows. For an integer k > 1, an embedded graph is
k-outerplane if the embedded graph obtained by removing all the vertices of the exter-
nal face is a (k−1)-outerplane graph. On the other hand, we call a graph k-outerplanar
if it has an embedding that is k-outerplane.

Let G be a biconnected 2-outerplane graph. The vertices on the external face of
G are called the external vertices of G. The remaining vertices of G are called the
internal vertices of G. For any external vertex u of G, the fan of u, denoted by Fu, is
the subgraph of G induced by the vertices of G that share an internal face with u. The
vertex u is called the apex of Fu.

For any two distinct points in the plane there is an associated region parameterized
by β, where β ∈ [0, ∞), which is called the β-region of the two points. There exist two
variants of β-regions, namely lune-based and circle-based β-regions [5]. These regions
can be further subdivided into two types: open β-regions and closed β-regions. In an
open β-region, the boundary of the region is excluded from the region. However, in a
closed β-region, the boundary of the region is included in the region. In [4], the authors
studied the lune-based closed β-regions and gave the following sufficient condition for
a biconnected 2-outerplane graph G to admit a β-drawing where β ∈ (1, 2).

Theorem 1. A biconnected 2-outerplane graph G is β-drawable for β ∈ (1, 2) if G
satisfies the following conditions 1 and 2.

1. There are at least five external vertices; and
2. There is an external vertex u such that the fan Fu has all of the following properties:

(a) Fu is biconnected 1-outerplane; (b) Fu contains all the internal vertices of G
and the internal vertices of G induces a single connected component of G; and
(c) every vertex in Fu has at most one neighbor outside Fu and every vertex outside
Fu has at most one neighbor in Fu.

��

However, the sufficient conditions mentioned in Theorem 1 apply for lune-based open
β-regions as well [4].

A constructive proof of Theorem 1 has been provided in [4]. In that proof, the authors
have first tested whether a biconnected 2-outerplane graph G satisfies the conditions
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stated in Theorem 1 or not and in the positive case, they have computed a set of external
vertices of G such that for each vertex u in that set, the corresponding fan Fu satisfies
Conditions 2(a)–2(c) of Theorem 1. Such a set of external vertices is called the set of
candidate apices. For the purpose of computing this set, the authors in [4] have adopted
the following approach. For each external vertex u of G they have tested whether the
fan Fu of u satisfies the Conditions 2(a)–2(c) of Theorem 1. For a specific fan Fu, this
checking will take O(n) time. Since there are O(n) number of external vertices of G,
this would require O(n2) time to compute the set of candidate apices. After computing
the set of candidate apices, the authors in [4] have computed a β-drawing of G in time
O(n) as follows. They have first drawn the fan Fu of vertex u where u is a candidate
apex. They have next drawn the remaining graph G − (V (Fu)) and have added edges
between the vertices of Fu and the vertices of G−(V (Fu)). Thus the constructive proof
of Theorem 1 presented in [4] yields an O(n2) time algorithm which finds candidate
apices in O(n2) time and computes a β-drawing in O(n) time.

In the remainder of this section, we present some fundamental observations which
we use to compute the set of candidate apices in linear-time. We first have the following
lemma whose proof is omitted in this extended abstract.

Lemma 1. Let G be a biconnected 2-outerplane graph. Let u be an external vertex of
G and Fu be the fan of vertex u. If Fu is 1-outerplane and Fu contains all the internal
vertices of G then Fu is biconnected. ��
It is important here for us to mention the significance of Lemma 1 in our work. Through-
out the remainder of this paper, given a biconnected 2-outerplane graph G, we will con-
centrate on an external vertex u of G and its fan Fu such that: (a) the condition given in
Condition 2(a) of Theorem 1 stating that Fu should be 1-outerplane holds; and (b) Con-
ditions 2(b) and 2(c) of Theorem 1 hold. Lemma 1 ensures that Fu will be biconnected
in every such scenario, and hence, all the three conditions 2(a)–2(c) hold.

Let G be a biconnected 2-outerplane graph which satisfies the sufficient condition
given in Theorem 1. We now have the following lemma regarding the subgraph Gin of
G induced by the internal vertices of G. We have omitted the proof of Lemma 2 in this
extended abstract.

Lemma 2. Let G = (V, E) be a biconnected 2-outerplane graph which satisfies the
sufficient condition of Theorem 1. Let Gin be the subgraph of G induced by the internal
vertices of G. Then Gin is a simple path. ��

3 Linear-Time Algorithm for β-Drawings of G

In this section, we first introduce the concept of a “slicing path” and a “good slic-
ing path” of G. We next use the notion of good slicing paths of G to devise a linear-
algorithm to test whether G satisfies the sufficient condition of Theorem 1 or not, and
in the positive case, to compute a set of candidate apices of G. By using the linear-time
algorithm presented in [4] for computing a β-drawing of such a graph G, we thus give
a linear-time algorithm for computing a β-drawing of G.

Let Gin be the subgraph of G induced by the internal vertices of G. If G satisfies The-
orem 1, then Lemma 2 implies that Gin is a simple path. Let Pst = us, us+1, . . . , ut,
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denote the path induced by the internal vertices of G. Clearly, every neighbor of us in
G other than us+1 is an external vertex of G. Similarly, every neighbor of ut in G other
than ut−1 is an external vertex of G. For an internal vertex v of G, let Nouter(v) denote
the number of those neighbors of v which are external vertices of G. We now have the
following lemma.

Lemma 3. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst = us, us+1, . . . , ut, be the path induced by the internal
vertices of G. Let w ∈ {us, ut}. Then Nouter(w) ≤ 3. ��

x1

x2

x3 y1

y2

y3

us us+1 ut

u

Fig. 2. Illustration of Lemma 3. The shaded region corresponds to the fan of vertex u

Proof. Let us assume that u is a candidate apex of G as illustrated in Fig. 2. Then Fu,
the fan of u, will contain exactly one edge connecting us with an external vertex x of G
where x �= u. Similarly, Fu will contain exactly one edge connecting ut with an external
vertex y of G where y �= u. Clearly, if Nouter(w) > 3 for either w = us or w = ut as
illustrated in Fig. 2, then w will have more than one neighbor outside Fu which violates
Condition 2(c) of Theorem 1. Hence, Nouter(w) ≤ 3, for each w ∈ {us, ut}. ��
Let G be a biconnected 2-outerplane graph which satisfies the sufficient condition of
Theorem 1. Let the path Pst = us, us+1, . . . , ut, be the subgraph of G induced by
the internal vertices of G. Then Lemma 3 holds for the end-vertices us and ut of Pst.
Let x and y be two of those external vertices of G which are neighbors of us and ut

respectively. We say that the path P ∗st = x, us, us+1, . . . , ut, y, is a slicing path of G
obtained from Pst. Given a slicing path P ∗st = x, us, us+1, . . . , ut, y, if we traverse P ∗st

from x to y, then some of the vertices of G will lie on our left hand side, and some will
lie on our right hand side. Let GL

st denote the subgraph of G induced by those vertices
of G which lie on our left hand side while traversing P ∗st from x to y. Similarly, let GR

st

denote the subgraph of G induced by those vertices of G which lie on our right hand side
while traversing P ∗st from x to y. We say that a slicing path P ∗st = x, us, us+1, . . . , ut, y,
is a good slicing path of G if the following Conditions (gs1) and (gs2) hold.

(gs1) There is no vertex v of P ∗st such that v has more than one neighbor in GL
st and

more than one neighbor in GR
st; and

(gs2) there are no two vertices u and v of P ∗st such that u and v have a common
neighbor in GL

st and a common neighbor in GR
st.

The following lemma is immediate from the above definition of a good slicing path
of G.

Lemma 4. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst be the path induced by the internal vertices of G. Then
a good slicing path of G can be obtained from the path Pst. ��



86 Md. A.H. Samee, M.T. Irfan, and Md. S. Rahman

We now have the following lemma.

Lemma 5. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst = us, us+1, . . . , ut, be the path induced by the internal
vertices of G. In order to obtain a good slicing path of G from Pst, we need to check at
most four slicing paths of G obtained from Pst. ��

Before presenting the proof of Lemma 5, we first give the following lemma whose proof
is omitted in this extended abstract.

Lemma 6. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst = us, us+1, . . . , ut, be the path induced by the internal
vertices of G. Let Nouter(w) = 3, for each w ∈ {us, ut}. Let x1, x2, x3 be the three
neighbors of w which are external vertices of G appearing in counter-clockwise order
on the external face of G. Then x2 cannot be a candidate apex of G, but x1 or x3 can
be a candidate apex of G. ��

Proof of Lemma 5. Let w ∈ {us, ut}. We can obtain slicing paths P ∗st from Pst as
follows. (1) If Nouter(w) = 1, then let x denote the neighbor of w which is an external
vertex of G. In this case, we include x in P ∗st. (2) If Nouter(w) = 3, then let x1, x2, x3
be the three neighbors of w appearing counter-clockwise on the external face of G. As
we have shown in Lemma 6, x2 cannot be a candidate apex of G, but x1 or x3 can be a
candidate apex of G. In this case, we include x2 in P ∗st. (3) If Nouter(w) = 2, then let
x1 and x2 be the two neighbors of w on the external face of G. In this case, we construct
two slicing paths from Pst, by including x1 in one and including x2 in another.

Hence, our claim holds from Lemma 6 and the above mentioned method to construct
slicing paths P ∗st from Pst. ��

We finally have the following lemma.

Lemma 7. Let G be a biconnected 2-outerplane graph. Then one can check in linear
time whether G satisfies the sufficient condition of Theorem 1 or not, and can compute
the set of candidate apices of G in linear time if G satisfies the condition.

Proof. Our proof is constructive. We first check whether G has at least five external
vertices or not. We next check whether Gin is a simple path or not. If Gin is not a
simple path, then Lemma 2 implies that G does not satisfy the sufficient condition of
Theorem 1. In the positive case, let Pst denote the path induced by the internal vertices
of G. Then we check whether Lemma 3 holds for Pst or not. If Lemma 3 does not
hold for Pst, then Lemma 3 implies that G does not satisfy the sufficient condition of
Theorem 1. Clearly, the operations in this first step can be performed in linear-time.

In our next step, we construct slicing paths P ∗st of G from Pst according to the
method outlined in the proof of Lemma 5. It is also implied by Lemma 5 that we will
have to construct at most four such slicing paths P ∗st. For each P ∗st, we check whether it
is a good slicing path of G or not. If no good slicing path of G can be obtained from Pst,
then we get from Lemma 4 that G does not satisfy the sufficient condition of Theorem 1.
The checking of this step is independent of the previous step, and can be performed in
linear-time. In this phase, we also remember which of the two subgraphs GL

st and GR
st

can contain a candidate apex.
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In our last step, for each good slicing path P ∗st, we traverse all the internal faces
of GL

st and GR
st that can contain a candidate apex. Let u be an external vertex of G

which appears on each of these faces. All such vertices u will constitute the set of
candidate apices. This step can also be implemented in linear time, since we can gather
the whole information by traversing each such internal face at most once. Hence the
total algorithm has linear time complexity. ��

We finally present the main result of this paper in the following theorem.

Theorem 2. Let G be a biconnected 2-outerplane graph. Then one can check in linear
time whether G satisfies the sufficient condition of Theorem 1 or not, and can find a
β-drawing of G, where β ∈ (1, 2), in linear time if G satisfies the condition.

Proof. The claim holds directly from Lemma 7 and the linear-time drawing algorithm
presented in [4]. ��

4 Conclusion

In this paper, we have given a linear-time algorithm to test whether a biconnected 2-
outerplane graph G satisfies the sufficient condition presented in [4], and thus, we
have achieved a linear algorithm for computing β-drawings of biconnected 2-outerplane
graphs where β ∈ (1, 2). It remains as our future work to obtain efficient algorithms for
computing β-drawings of larger classes of graphs.
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Abstract. In a planar straight-line drawing of a tree T on k layers, each vertex
is placed on one of k horizontal lines called layers and each edge is drawn as a
straight-line segment. A planar straight-line drawing of a rooted tree T on k layers
is called an upward drawing of T on k layers if, for each vertex u of T , no child
of u is placed on a layer vertically above the layer on which u has been placed.
For a tree T having pathwidth h, a linear-time algorithm is known that produces a
planar straight-line drawing of T on �3h/2� layers. A necessary condition char-
acterizing trees that admit planar straight-line drawings on k layers for a given
value of k is also known. However, none of the known algorithms focuses on
drawing a tree on the minimum number of layers. Moreover, although an upward
drawing is the most useful visualization of a rooted tree, the known algorithms
for drawing trees on k layers do not focus on upward drawings. In this paper, we
give a linear-time algorithm to compute the minimum number of layers required
for an upward drawing of a given rooted tree T . If T is not a rooted tree, then we
can select a vertex u of T in linear time such that an upward drawing of T rooted
at u would require the minimum number of layers among all other upward draw-
ings of T rooted at the vertices other than u. We also give a linear-time algorithm
to obtain an upward drawing of a rooted tree T on the minimum number of layers.

Keywords: Planar Drawing, Straight-line Drawing, k-layer Planar Drawing, Up-
ward Drawing, Minimum Layer Upward Drawing, Trees, Algorithm, Line-
labeling.

1 Introduction

A k-layer planar drawing of a tree T is a planar drawing of T where each vertex of T is
drawn as a point on one of k horizontal lines called layers and each edge of T is drawn
as a straight-line segment. Such a drawing of a tree T is also called a planar straight-line
drawing of T on k layers. A tree T is k-layer planar if T admits a planar straight-line
drawing on k layers. For example, the tree T1 in Fig. 1(a) is 1-layer planar since it admits
a planar straight-line drawing Γ1 on a single layer as illustrated in Fig. 1(b). However,
an arbitrary tree T may not always admit a k-layer planar drawing for a desired value
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Fig. 1. (a) The tree T1, (b) a drawing Γ1 of T1 on one layer, (c) the tree T2, (d) a drawing Γ2 of
T2 on two layers, and (e) another drawing Γ ′

2 of T2 on two layers

of k. For example, the tree T2 in Fig. 1(c) does not admit a k-layer planar drawing for
k = 1. The reason is as follows. Let l denote the layer in the drawing on which the
vertex a of T2 will be placed. If we want to obtain a planar drawing of T2, then we can
place at most two neighbors of a in T2 on the layer l. Placing all the three neighbors of
a in T2 on the layer l will violate planarity of the drawing and thus, at least two layers
are necessary for a planar straight-line drawing of T2. Two drawings Γ2 and Γ ′2 of T2
on two layers are shown in Fig. 1(d) and (e) respectively. Thus, although the tree T2
admits a k-layer planar drawing for k = 2, it does not admit a k-layer planar drawing
for k = 1. One can easily infer from this simple example that, such problems as to
determine whether a given tree T admits a k-layer planar drawing for a given value of
k, or to compute the minimum number of layers required for a k-layer planar drawing
of T are quite challenging.

Let T be a rooted tree. An upward drawing of T on k layers is a k-layer planar
drawing of T such that, for each vertex u of T , no child of u is placed on a layer
vertically above the layer on which u has been placed [6,7]. A minimum layer upward
drawing of the rooted tree T is an upward drawing of T on the minimum number of
layers. For example, if the vertex a is taken as the root of the tree T2 in Fig. 1(c), then
the drawing Γ2 of T2 in Fig. 1(d) is a minimum layer upward drawing of T2. If a tree
T is not a rooted tree, then let Tu be the tree obtained from T by considering a vertex
u of T as the root of T . Let v be a vertex of T . Let lv be the number of layers required
for a minimum layer upward drawing of Tv. If for any other vertex w of T , an upward
drawing of Tw requires at least lv layers, then a minimum layer upward drawing of the
tree T is an upward drawing of T on lv layers.

A k-layer planar drawing of a tree is a common variant of the well-known “layered
drawings” of trees [15,14]. In a layered drawing of a tree T , the vertices are drawn
on a set of horizontal lines called layers, and the edges are drawn as straight-line seg-
ments [14]. Layered drawings have important applications in several areas like VLSI
layouts [10], DNA-mapping [16] and information visualization [1]. Layered drawings
of trees are usually required to satisfy some constraints arising from the application at
hand. One such constraint is to impose bounds on the number of layers [14] and in this
regard, it is often sought to know whether a given tree T admits a k-layer planar draw-
ing for a given value of k [14]. However, the solutions for this problem known to date
work only for some small values of k [4,2,5]. For example, linear time algorithms have
been given in [2,5] for recognizing and drawing trees that are k-layer planar for k = 2.
For k > 2, Felsner et al [5] have given necessary conditions for a tree T to be k-layer
planar, but these conditions are not sufficient. For a tree T with pathwidth h, a linear-
time algorithm has been given in [13] to draw T on �3h/2� layers and it has been shown
that T cannot be drawn on less than h layers [13]. However, the algorithm presented
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in [13] cannot ensure that the minimum number of layers have been used in the drawing,
neither can it determine whether a given tree T admits a k-layer planar drawing for a
desired value of k. Moreover, no algorithm for k-layer planar drawings of trees focuses
on producing upward drawings. On the other hand, trees are most often used to model
hierarchical data and an upward drawing of a rooted tree is the best means to visualize
it. For example, trees representing organization charts, software class hierarchies, phy-
logenetic evolutions and programming language parsing are always rooted trees and are
best visualized through upward drawings. Thus, there is a large gap between the known
results for k-layer planar drawings of trees and the practical visualization requirements
imposed by trees. In this paper, we give a linear-time algorithm for computing the num-
ber of layers required for a minimum layer upward drawing of a rooted tree T . In case
T is a tree with no root specified, our algorithm can determine a vertex r of T so that
an upward drawing of T rooted at r results in a minimum layers upward drawing of T .
Consequently, we can also determine whether a tree T admits an upward drawing on
k layers for a desired value of k. We also give a linear-time algorithm that produces a
minimum layer upward drawing of T .

Our results presented in this paper are also significant regarding the area bounds for
such drawings of rooted trees that are planar, straight-line and also upward. In the re-
mainder of this paper we simply use term “upward drawing of a rooted tree” to denote
such a drawing of a rooted tree that is planar, straight-line and also upward. We have
shown that our drawing algorithm produces an upward drawing of a rooted tree with
an area bound of O(n log n). This bound matches with the one presented in [3,11].
However, an O(n log n) area bound is not the best among the known results for upward
drawings of rooted trees. Nevertheless, it is notable that, although there are known algo-
rithms for drawing binary trees in O(n log log n) area and for drawing general trees in
O(n) area [6,7], those algorithms produce polyline drawings and are not aesthetically
as appealing as a straight-line drawing. Another algorithm for drawing trees in O(n)
area [9,8] fails to produce an upward drawing. Finally, although the algorithm in [12]
gives an O(n log log n) area upward drawings of trees, the algorithm works only on
trees with bounded degrees. Thus, when there is no restriction on vertex-degrees, our
algorithm gives the best possible area bound known so far for producing upward draw-
ings of rooted trees.

The rest of this paper is organized as follows. In Section 2, we give some preliminary
definitions and present a brief outline of our algorithm. In Section 3, we detail our
central concept used in this paper called the “line-labeling” of a tree. Section 4 is the
description of our drawing algorithm. Finally, Section 5 is a conclusion.

2 Preliminaries

In this section, we give some definitions and present an outline of our algorithm.
Let G = (V, E) be a simple graph with vertex set V and edge set E. Let (u, v)

be an edge of G joining two vertices u and v of G. A vertex u of G is a neighbor
of another vertex v of G (and vice versa) if and only if G has an edge (u, v). The
degree of a vertex v in G is the number of neighbors of v in G. A path P in G is a
sequence v0, e1, v1, . . . , en, vn of vertices and edges of G such that G contains an edge
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Fig. 2. (a) A tree T , (b) computation of the line-labeling of a vertex u of T , (c) line-labelings of
all the vertices of T , and (d) an upward drawing of T on the minimum number of layers

ei = (vi−1, vi) for each i, (1 ≤ i ≤ n) and all the vertices vi, (0 ≤ i ≤ n) are distinct.
Such a path P is also called a v0, vn-path of G. The vertices v0 and vn of the path P
are called the end-vertices of P .

A graph G is connected if there exists a u, v-path in G for every pair of vertices
u, v ∈ V . A cycle in a graph G is a path in G whose end-vertices are the same. A tree
T is a connected graph which contains no cycle. A vertex u of T having degree one in
T is called a leaf of T . A vertex u of T having degree greater than one in T is called
an internal vertex of T . A tree T is called a rooted tree if one of the vertices r of T
is considered as the root of T . In this paper, we use the notation Tr to denote such a
rooted tree obtained from T by considering a vertex r of T as the root of T . The parent
of a vertex v in Tr is the vertex that precedes v in the r, v-path in Tr. All the neighbors
of v in Tr other than its parent are called the children of v in Tr. The ancestors of a
vertex v in Tr is the set of all such vertices u of Tr that u is on the r, v-path in Tr. The
descendants of v in Tr is the set of all such vertices u of Tr that the r, u-path in Tr

contains v. A subtree of Tr rooted at a vertex v of Tr is the subgraph of Tr induced by
the descendants of v in Tr. In this paper, we use the notation Tr(v) to denote the subtree
of Tr rooted at a vertex v of T .

A k-layer planar drawing of a tree T is a planar drawing where each vertex is placed
on one of k horizontal lines called layers and each edge is drawn as a straight-line
segment. An upward drawing of a rooted tree T on k layers is a k-layer planar drawing
of T such that, for each vertex u of T , no child of u is placed on a layer vertically above
the layer on which u has been placed. A minimum layer upward drawing of T is an
upward drawing of T on the minimum number of layers. If T is not a rooted tree, then
for a vertex v of T , let lv be the number of layers required for a minimum layer upward
drawing of Tv. If for any other vertex w of T , an upward drawing of Tw requires at least
lv layers, then a minimum layer upward drawing of the tree T is an upward drawing of
T on lv layers.

Having been introduced to the necessary graph-theoretic definitions, we now give an
outline of our algorithm for producing a minimum layer upward drawing of a tree T . We
first outline our approach for the scenario where T is not a rooted tree as illustrated in
Fig. 2(a). In this case, we first determine a vertex r of T such that an upward drawing of
T rooted at r would require the minimum number of layers among all possible upward
drawings of T . Let u be a vertex of T . Let Tu denote the rooted tree obtained from T
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by considering u as the root of T . In order to compute the minimum number of layers
required for an upward drawing of Tu, we perform a bottom-up traversal of Tu during
which we equip every vertex v of Tu with an integer value that represents the minimum
number of layers required for any upward drawing of the subtree of Tu rooted at v (See
Fig. 2(b)). The integer value assigned to the vertex u is “the line-labeling of u in T ” and
this represents the minimum number of layers required for any upward drawing of Tu.
If we compute the line-labelings of all the vertices of T as illustrated in Fig. 2(c), then
the minimum of these line-labelings represents the minimum number of layers required
for any upward drawing of T rooted at any vertex of T . Also, the vertex r, which has
the minimum line-labeling among all the vertices, represents the root of such a drawing.
In the later sections, we have shown that the whole task of computing the line-labelings
of all the vertices of T and finding the minimum of these values can be done in linear
time. Finally, we obtain an upward drawing of T rooted at r on the minimum number
of layers in linear time (See Fig. 2(d)). In case T is a rooted tree with a vertex r as the
root, we simply compute the line-labeling of r in T and use our drawing algorithm to
obtain an upward drawing of T rooted at r on the minimum number of layers.

In the next section, we formally define the concept of line-labeling of the vertices of
a tree T and the concept of line-labeling of a tree T . We also provide in the next section
the necessary proofs of correctness regarding our claims on line-labeling.

3 Line-Labeling of a Tree

In this section, we detail the concept of the “line-labeling of the vertices” of a tree T
and the concept of “line-labeling” of the tree T . We also prove that if the “line-labeling”
of a tree T is equal to k, then any upward drawing of T requires at least k layers.

Let T be a tree. Let u be a vertex of T . Prior to defining the line-labeling of the vertex
u in T , we first define the line-labeling of u in T with respect to some other vertex r of
T . Let Tr be the rooted tree obtained from T by considering the vertex r as the root of
T . Then the line-labeling of a vertex u with respect to the vertex r in T , which we have
denoted by Lr(u) in the remainder of this paper, is defined as follows.

(a) If u is a leaf of Tr, then Lr(u) = 1. This scenario is illustrated in Fig. 3(a).
(b) If u is an internal vertex of Tr, then let u1, u2, . . . , up be the children of u in Tr.

Let k be the maximum among the values Lr(u1), Lr(u2), . . . , Lr(up). Then Lr(u)
is defined according to any of the three following cases.

Lr(u) = 1
Lr(u) = k

Lr(u) = k

Lr(x) = Lr(y) = Lr(ui) = k Lr(uk) = Lr(uj) = kLr(uj) = Lr(uk) = Lr(ul) = k Lr(uj) = k

Lr(u) = k + 1
Lr(u) = k + 1

Lr(um) < kLr(um) < kLr(um) < k Lr(um) < k
Lr(z′) < k

Tu(x) Tu(y)
Tu(z′)

Tu(uj) Tu(uj) Tu(uk)Tu(uk) Tu(ul)Tu(ul) Tu(um)Tu(um)Tu(um) Tu(um)

1 ≤ i, j, k, l, m, n ≤ p

ukuk ul
ul

um
umum um

ui

uj uj

x
y

z′

uu
u

u
u

(a) (b) (c) (d) (e)

Fig. 3. Definition of the line-labeling Lr(u)
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(i) If u has at least one child ui in Tr such that Lr(ui) = k and if ui has two
children x and y in Tr such that Lr(x) = k and Lr(y) = k, then Lr(u) =
k + 1. This scenario is illustrated in Fig. 3(b)

(ii) If u has no child like ui in Case (i) above but has three or more children in Tr

with line-labeling k with respect to r, then Lr(u) = k + 1. This scenario is
illustrated in Fig. 3(c).

(iii) Otherwise, u has at most two children in Tr with line-labeling k with respect
to r and none of them is like the child ui of u in Case (i) above. In this case,
Lr(u) = k. This scenario is illustrated in Fig. 3(d) and (e).

We now define the line-labeling of a vertex u of the tree T . The line-labeling of a vertex
u of the tree T , which we have denoted by L(u) in the remainder of this paper, is the
line-labeling of u with respect to u itself. Thus, according to the notations introduced
so far, L(u) = Lu(u).

We now have the following lemma.

Lemma 1. Let T be a tree. Let u be a vertex of T . Let L(u) be the line-labeling of u.
Then any upward drawing of T rooted at u requires at least L(u) number of layers.

Proof. We can prove this lemma by induction on the number of vertices n of T . Since
u is a vertex of T , n ≥ 1. Hence, as the basis of induction, we take n = 1. According
to our definition, in this case, L(u) = 1. Clearly, any drawing of a single-vertex tree
requires at least one layer and thus the claim holds for the basis case.

We now prove the claim for a tree T with the number of vertices n > 1. We first
assume that for any tree T ′ with the number of vertices n′ < n, any upward drawing of
T ′ rooted at a vertex u of T ′ requires at least L(u) number of layers, where L(u) is the
line-labeling of u in T ′.

Let u be a vertex of T . Let k be the maximum value of the line-labelings of all the
children of u in T . Let Tu be the rooted tree obtained from T by making u the root of T .
First, we assume that u has a child v in Tu such that Lu(v) = k and v has two children
x and y in Tu such that Lu(x) = Lu(y) = k. In this case, L(u) = k + 1. The fact
that any upward drawing of T rooted at u requires at least k + 1 layers can be realized
by the following arguments. Let Tu(x) and Tu(y) denote the subtrees of Tu rooted at
x and y respectively. From the induction hypothesis, at least k layers are required for
any upward drawing of Tu(x) and Tu(y). The drawing of these two subtrees restricts
the placement of the vertex v on the topmost of these k layers between x and y. Then u
cannot be placed on any of these k layers while retaining both planarity and upwardness
of the drawing. Hence, at least k + 1 layers are needed for any upward drawing of T
rooted at u and the claim holds in this case.

Next, we assume that u has no such child v as mentioned above. Then if u has three
(or more) children in Tu with line-labeling k with respect to u, then L(u) = k + 1. The
fact that any upward drawing of T rooted at the vertex u requires at least k + 1 layers
can be understood from the following reasonings. Let w, x and y be the three children
of u in Tu such that Lu(w) = Lu(x) = Lu(y) = k. Let Tu(w), Tu(x) and Tu(y)
the subtrees of Tu rooted at w, x and y respectively. From the induction hypothesis,
any upward drawing of any of these subtrees requires at least k layers. We note that
we cannot place all these three subtrees on the same k layers and then place u on any
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Fig. 4. Drawing of Tu on L(u) number of layers

of these k layers keeping planarity. Therefore, we need a new layer on top of these k
layers for placing the vertex u. Hence, at least k+1 layers are necessary for any upward
drawing of T rooted at u and the claim holds in this case also.

Finally, we assume that u has at most two children in Tu with line-labeling k with
respect to u and none of these children of u has two children in Tu with line-labeling
k. Then according to our definition, L(u) = k. Any upward drawing of T rooted at u
requires at least k layers since the upward drawings of some subtrees of Tu require at
least k layers. Therefore, the claim holds in this case as well.

This completes the induction step and hence completes the proof. ��

We now define the concept of “line-labeling” of a tree T . The line-labeling of a tree T ,
which we have denoted by LT in the remainder of this paper, is defined as follows:

(a) If T contains no vertex, then LT = 0.
(b) Otherwise, the line labeling of T is the minimum value of the line-labelings of all

the vertices of T . That is, LT = minu∈V L(u), where V is the vertex set of T .

We now have the following theorem.

Theorem 1. If the line-labeling of a tree T is k, then any upward drawing of T rooted
at any vertex of T requires at least k layers and the value of k can be computed in linear
time.

Proof. Let LT denote the line-labeling of the tree T . Let LT = k. Then it follows from
the definition of the line-labeling of a tree and Lemma 1 that any upward drawing of T
rooted at any vertex of T requires at least k layers.

We now prove that we can compute the line-labeling of T in linear time. Our ap-
proach is to compute the line-labelings of all the vertices of T by two linear-time traver-
sals of T and then to compute the minimum of these values.

We first take any vertex r of T and traverse the rooted tree Tr in a bottom-up fashion.
During this traversal, we compute the line-labeling Lr(u) of every vertex u of T with
respect to r. Let v be a child of u in Tr. The value of Lr(v), computed in this first
traversal of Tr would be the same as the value of Lu(v). However, the computation of
L(u) depends not only on the value of Lu(v) for each child v of u in Tr, but also on the
value of Lu(w), where w is the parent of u in Tr. In order to compute Lu(w) for each
vertex u of T , we traverse Tr for a second time, in a top-down fashion.

In the top-down traversal of Tr, for each vertex w, for each of the children u of w
in Tr, we compute the value of Lu(w) and use this value to compute L(u). At first, we
consider the case when the root r of Tr is traversed. Let u1, u2, . . . , up be the p neighbors
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(p > 1) of r in T . Let k be the maximum among the values Lr(u1), Lr(u2), . . . , Lr(up).
If r has at least four neighbors ui, uj , uk and ul in T such that Lr(ui) = Lr(uj) =
Lr(uk) = Lr(ul) = k, then for any of the neighbors um of r in T , r has at least
three children in Tum with line-labeling k with respect to um. Hence, Lum(r) = k + 1
according to condition (b)(i) of the definition of the line-labeling of a vertex. Again,
if r has two neighbors ui and uj in T such that Lr(ui) = Lr(uj) = k and ui has
two children x and y in Tr and uj has two children w and z in Tr such that Lr(x) =
Lr(y) = Lr(w) = Lr(z) = k, then for each neighbor um of r in T , Lum(r) = k + 1
according to condition (b)(ii) of the definition of the line-labeling of a vertex. Hence,
we suppose that r has at most three neighbors in T with line-labeling k with respect
to r and of them, at most one has two children in Tr with line-labeling k with respect
to r.

If none of the neighbors of r with line-labeling k with respect to r has two children
in Tr each with line-labeling k with respect to r, then the computation is accomplished
in the following manner. If r has three neighbors ui, uj and uk such that Lr(ui) =
Lr(uj) = Lr(uk) = k, then for each of the neighbors um with Lr(um) < k, r has
three children with line-labeling k with respect to v and as such, Lum(r) = k + 1.
For each of the neighbors ui, uj and uk, r has two children having line-labeling k
with respect to itself. Hence, Lui(r) = Luj (r) = Luk

(r) = k. Again, if r has two
neighbors ui and uj such that Lr(ui) = Lr(uj) = k, from the same line of reasoning,
Lum(r) = k for each neighbor um of r in T . However, for Lr(um) < k, that is, for um,
which is neither ui nor uj , r has two children with line-labeling k with respect to um.
In the case where r has only a single neighbor ui with Lr(ui) = k, for each neighbor
um of r other than ui, Lum(r) = k. For ui, the value of Lui(r) must be computed from
the values of Lr(um) for all such neighbors um of r that are not the same as ui.

Finally, we consider the case when exactly one of the neighbors ui of r in T with
Lr(ui) = k has two children x and y in Tr such that Lr(x) = Lr(y) = k. In this case,
for every neighbor um of r in T other than ui, Lum(r) = k + 1. For ui, the value of
Lui(r) must be computed from the values of Lr(um) for all such neighbors um of r
that are not the same as ui.

At this stage, for each of the neighbors v of r, the line-labelings of each of the
neighbors of v in T with respect to v is known. Similarly, when any vertex u of T
is traversed, for each neighbor v of u in T , Lu(v) is known. Therefore, L(u) can be
computed by the definition. Again, the value of Lv(u) for each of the neighbors v of u
in T can be computed in the same way as in the case when the root r is traversed.

We can note that for each vertex u of T , there is at most one neighbor v of u for
which the line-labelings of all the neighbors of u is needed for the computation of
Lv(u). Therefore, the complexity of this top-down traversal is

∑
u∈V deg(u) = O(n).

Hence, we can compute the line-labeling of a tree in linear time. ��

In the next section, we give our drawing algorithm for obtaining an upward drawing
of T on exactly k layers where k is the line-labeling of T and thus prove that the
line-labeling of a tree denotes the minimum number of layers required for any upward
drawing of the tree.
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4 Upward Drawings on the Minimum Number of Layers

In this section, we give a linear-time algorithm to draw a tree T rooted at a vertex r of
T with line-labeling L(r) = k on exactly k layers. We also show that such a drawing
of T occupies O(n log n) area. At the end, we have outlined a linear-time algorithm
to obtain an order-preserving and upward drawing of a rooted tree T on the minimum
number of layers.

Let T be a tree. Let r be a vertex of T with line-labeling L(r) = k. We have proved
in the previous section that any upward drawing of Tr requires at least k layers. We now
have the following lemma.

Lemma 2. Let T be a tree. Let r be a vertex of T with line-labeling L(r) = k. Then
there is an upward drawing of T rooted at r on k layers.

Prior to giving the proof of Lemma 2, we present the following lemma. We omit the
proof of this lemma in this extended abstract.

Lemma 3. Let T be a tree rooted at a vertex r of T . Let r′ be a vertex of T and u be
any descendant of the vertex r′ in T . Then Lr(r′) ≥ Lr(u).

The skeleton subgraph of the tree T with respect to the vertex r is the subgraph induced
by each vertex u of T such that the line-labeling of u with respect to r in T is equal to
the line-labeling of r in T . That is, the skeleton subgraph of the tree T with respect to the
vertex r is the subgraph induced by all such vertices u of T such that Lr(u) = L(r). In
the remainder of this paper, we use the notation skel(r) to denote the skeleton subgraph
of a tree T with respect to a vertex r of T . We now have the following lemma whose
proof is omitted in this extended abstract.

Lemma 4. Let T be a tree. Let r be a vertex of T . Then the skeleton subgraph skel(r)
of T with respect to r is a path or a single vertex.

We are now ready to present our proof of Lemma 2.

Proof of Lemma 2. We prove the claim by taking induction on k, i.e., the line-labeling
of the vertex r in T .

For the basis case we take k = 1, that is L(r) = 1. Then, according to Lemma 3,
L(r) = 1 is the maximum among the line-labelings Lr(u) of all the vertices u of T .
Since the line-labeling of a vertex is always positive, for every vertex u of T , Lr(u) = 1.
Therefore, the skeleton subgraph of T with respect to r is the tree T itself and we get
from Lemma 4 that T is a path or a single vertex. Therefore, T can be drawn on one
layer. Thus, our claim holds for the basis case.

We now prove the claim for a vertex r of T with line-labeling L(r) = k > 1 as the
one shown in Fig. 5(a). We assume that the claim holds for any vertex r′ in a tree T ′

with line-labeling L(r′) = k′ < k. That is, a tree T ′ has an upward drawing rooted at a
vertex r′ of T ′ on k′ layers, where the line-labeling of r′ is L(r′) = k′ < k.

Suppose the line-labeling of the vertex r in the tree T in Fig. 5(a) is L(r) = k.
In order to obtain an upward drawing of T rooted at r on k layers, we first find the
skeleton subgraph skel(r) as illustrated in Fig. 5(b). The skeleton subgraph skel(r) is
a path or single vertex according to Lemma 4. We draw skel(r) on the topmost layer as
in Fig. 5(c).
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Fig. 5. (a) Line-labelings of all the vertices of T with respect to r, (b) the skeleton subgraph
skel(r) of T with respect to r, and (c)–(e) drawing T on L(r) number of layers

If we delete the skeleton subgraph, it leaves the tree with several components, each
of which is a tree with the root having line-labeling less than k. From the induction
hypothesis, these trees have upward drawings on at most k − 1 layers. We place the
drawings of these trees on the bottommost k − 1 layers in such a way that for any two
of these trees T1 and T2 and any pair of vertices u and v in skel(r), if u is placed to the
left of v in the drawing of the skeleton subgraph skel(r) and T1 and T2 are connected
to u and v respectively, then the drawing of T1 is placed to the left of the drawing of
T2 as illustrated in Fig. 5(d). Then, it is possible to join the edges from the vertices of
skel(r) to these trees without violating planarity as illustrated in Fig. 5(e).

Thus, we can obtain an upward drawing of T on k layers where T is rooted at a
vertex r with line-labeling L(r) = k. ��

The constructive proof of the above lemma gives an algorithm for a k-layer upward
drawing of a tree T rooted at a vertex r with line-labeling L(r) = k. According to
Lemma 1, k represents the minimum number of layers required for any upward draw-
ing of T rooted at r. For the remainder of this paper, we call this algorithm Draw-
min-Layer. Clearly, the algorithm Draw-min-Layer runs in linear time. Also, in the
remainder of this paper, we refer to the algorithm outlined in the proof of Theorem 1
for computing the number of layers required for a minimum layer upward drawing of a
rooted tree T as the algorithm Compute-min-Layer. Note that, if T is not a rooted tree,
then the algorithm Compute-min-Layer can select a vertex r of T such that a minimum
layer upward drawing of Tr results in a minimum layer upward drawing of T .

Now we analyze the area requirement of a drawing of a tree T obtained from the
algorithm Draw-min-Layer. For this, we establish a relationship between the line-
labeling of the vertex r and the number of vertices of T in the following lemma. We
omit the proof of this lemma in this extended abstract.

Lemma 5. Let T be a tree and r be a vertex of T . If L(r) = k ≥ 2, then T has at least
2k vertices.

An immediate consequence of the above lemma is that for any vertex r of an n-vertex
tree T , L(r) = O(log n). We now have the following theorem.
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Theorem 2. Let T be a tree rooted at a vertex r of T . Let n be the number of vertices
of T . Then the algorithm Draw-min-Layer provides a minimum layer upward drawing
of T in O(n log n) area.

Proof. Let r be the root of the tree T . We find the skeleton subgraph skel(r) of T with
respect to r and draw T using the algorithm Draw-min-Layer. We can note that the
drawing produced by this algorithm maintains the upward drawing convention, that is,
no vertex is placed below any of its children in T .

Now, the algorithm draws T in k layers, where k is the line-labeling of r in T . As
we have proved in Theorem 1 and Lemma 2, this is the minimum number of layers
required for any upward drawing of T . Also, according to Lemma 5, k = O(log n).
Therefore, the height of the drawing is O(log n). Again, in the drawing, the edges are
drawn only between vertices on the same layer or adjacent layers. Then the vertices on
a layer can be placed on consecutive x-coordinates keeping planarity. Since the number
of vertices on a layer does not exceed n, the width of the drawing is O(n). Hence the
area requirement for the upward drawing of T produced by the algorithm is O(n log n).

��

Again for any tree T , the algorithm Compute-min-Layer can select a suitable vertex
r such that a minimum layer upward drawing of Tr gives a minimum layer upward
drawing of T . Therefore, we also have the following theorem.

Theorem 3. Let T be a tree with n vertices. Then the algorithms Compute-min-layer
and Draw-min-Layer provides a minimum layer upward drawing of T in O(n log n)
area.

The drawing we have proposed in this paper for a tree is not order-preserving. The
clockwise ordering of the neighbors of a vertex may be shuffled in the drawing. Inter-
estingly, our approach can also be used to obtain a minimum layer drawing of a rooted
tree when it is constrained to be order-preserving and upward. Thus we have the fol-
lowing lemma whose proof is omitted in this extended abstract.

Lemma 6. Let T be a rooted tree. Then a minimum layer upward drawing of T can be
computed in linear time where the drawing is constrained to be order-preserving.

5 Conclusion

In this paper, we have given a linear algorithm to obtain a minimum layer upward
drawing of a rooted tree T . If T is not a rooted tree, we have also given a linear algorithm
to select a vertex r of T such that a minimum layer upward drawing of Tr results in a
minimum layer upward drawing of T . We have shown that our algorithm achieves the
best area-bound known so far for upward drawings of arbitrary trees. Almost all the
known results on layered drawings of trees are based on the “pathwidth” of trees. We
studied layered drawings of trees through a new parameter called the line-labeling of
a tree. It remains as our future work to find a relationship between the pathwidth and
the line-labeling of a tree. However, we can show that a tree with pathwidth k has line-
labeling at least k, which specifies a lower limit of the line-labeling of a tree and thus, a
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lower limit of the number of layers required for any upward drawing of the tree. It also
remains as our future work to obtain planar straight-line drawings of trees that are not
necessarily upward but nevertheless requires the minimum number of layers.
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Abstract. In this paper, our objective is to locate a position of a guard on
the convex hull of a simple polygon P , such that, the farthest point on the
boundary of the polygon from the location of the guard, avoiding the in-
terior region of the polygon P , is minimum among all possible locations of
the guard on the convex hull. In other words, we try to identify the possible
position of guard on the boundary of convex hull such that the maximum
distance required to reach a trouble point on the boundary of polygon P
avoiding the interior region of P is minimized. The time complexity of our
algorithm is O(n) where n is the number of vertices of P .

1 Introduction

Two points a and b are said to be visible if the line segment joining them is
not obstructed by any other objects. A point p on a given polygon guards the
polygon P if every point u of P is visible from point p. Sometimes a single guard
may not be able to see the entire polygon. Chvatal [3] established in Art Gallery
theorem that �n

3 � guards are always sufficient and occasionally necessary to cover
the interior of a simple polygon with n vertices. Since then a tremendous amount
of research on Art Gallery problem has been carried out [7,9,11]. The Fortress
Problem, a variant of Art Gallery problem, considers the minimum number of
guards required to cover the exterior of an n-vertex polygon. O’Rourke and
Wood [7] proved that �n

2 � vertex guards are always sufficient for guarding the
exterior of a polygon. Yiu and Choi [4] considered a variation of the problem by
allowing each guard to patrol an edge (called an edgeguard) of the polygon. Yiu
[13] showed that � n

k+1� k-consecutive vertex guards are sometimes necessary and
always sufficient to cover the exterior of any n-vertex simple polygons for any
fixed k < n. Recently, Zylinski [14] used the notion of cooperative guards in the
Fortress Problem.

Guard placement problems have also been pursued on different interesting
variations of the standard notion of visibility [9]. A guard can be considered as a
robot that can sense any movement or sound in the boundary of the polygon and
quickly reaches the source of problem along the shortest path through the exte-
rior side of the polygon P . Samuel and Toussaint [10] considered the problem of
finding two vertices of a simple polygon which maximizes the external shortest
path between them in O(n2) time complexity. This shortest path is denoted as
the external geodesic diameter of a simple polygon. Suri [12], proposed an al-
gorithm that computes the farthest neighbors of all the vertices inside a simple
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polygon. Agarwal et. al [1] considered the problem of computing the external
farthest neighbors of all the vertices of a simple polygon. Peshkin and Sanderson
[8] proposed a linear time algorithm that efficiently finds the externally visible
vertices of a simple polygon and the range of the angles from which each is vis-
ible. The computation of farthest-site geodesic Voronoi diagram inside a simple
polygon was described by Aronov et. al [2].

In this paper, we try to locate a position on the convex hull of a polygon P ,
such that, the distance of the farthest point(in either direction) on the boundary
of the polygon avoiding the interior region of the polygon P from the location
of the guard is minimum among all possible location of guard on convex hull.
This also gives the size of minimum length rope whose one end is anchored at
the optimum location of guard say anchor such that other end can touch every
point q on the boundary of the polygon where the rope does not pass through
the interior of P .

Here we consider P as a simple polygon whose vertices v0, v1, . . . , vn−1 are in
clockwise order and the edge (vi, vi+1) is denoted by ei with length li. The sets E
and V represent the sets of edges and vertices of the polygon P respectively. The
convex hull CH(P ) of polygon P is the smallest convex set that includes the set
of vertices of polygon P . Note that, all the vertices of P may not be the vertices
of convex hull CH(P ). The vertices of P , which are not vertices of CH(P )
are termed as notches. Bridges are convex hull edges that connect two non-
adjacent vertices of V . Pockets are maximal chains of non convex hull edges of
P . Therefore each bridge associate with a pocket and the vertices corresponding
to a bridge are called the entry points of that pocket (see Figure 1).

2 Maximum Distance from Given Source Point

Here, we try to compute the farthest point on the boundary of P from a given
point, say p, on CH(P ). For a point v on a pocket of P where p is on the bridge



102 A. Karmakar, S. Roy, and S. Das

of that pocket, the shortest path among these two points avoiding the polygonal
region P must be confined in the same pocket. Otherwise the guard located at
p must traverse along the convex hull of P either in clockwise direction or in
counterclockwise direction. The path of the guard in clockwise direction is termed
as clockwise path. Similarly, we define the anti-clockwise path. Let πc(v, p) and
πa(v, p) be respectively the clockwise and anticlockwise shortest paths from p to
a point v on boundary of P avoiding interior region of polygon P . δc(v, p) and
δa(v, p) denote the lengths of πc(v, p) and πa(v, p) respectively. The minimum
among δc(v, p) and δa(v, p) is denoted by δ(v, p) and the corresponding path is
denoted by π(v, p). Let πopt(p) represents a path which is farthest among all
shortest path from p to any point on the boundary of P . The length of the path
πopt(p) is denoted by δ(p). Note that, ψ

2 ≤ δ(p) ≤ φ
2 where φ and ψ denote the

perimeter of the polygon P and the perimeter of CH(P ) respectively. Let the
shortest path from p to a point q among all paths in clockwise and anti-clockwise
directions be Π = (p, ρ1, ρ2, . . . , ρk, q) where ρ1, ρ2, . . . , ρk are the vertices of P .
Then ρk is said to be a clip vertex for point q on polygon P . Observe that, any
point q on P is visible from its clip vertex ρk.

Let e be an edge on a pocket ℘ of polygon P and (a, b) be the bridge corre-
sponding to that pocket. Consider p as a point on CH(P ) which is not on the
bridge (a, b) and q be a point on the edge e. Observe that, the shortest path
from p to point q must pass through one of the entry points a or b of pocket ℘.

Without loss of generality, we may assume that, the clockwise shortest path
from p to b is passing through the vertex a and in that case, shortest path from
p to point q on e in pocket ℘ in clockwise direction must pass through a and
shortest path from p to q in counterclockwise direction must pass through b. The
following observation prune our search process.

Observation 1. For some point q ∈ e, if δc(q, p) is maximum among all points
on e then q must be an end point of edge e of polygon P . Similar result holds for
δa(q, p) also.

Lemma 1. From a point p on convex hull of P , all the distances δ(v, p), v ∈ V ,
can be computed in O(n) time.

Proof: Convex hull vertices of P can be determined in O(n) time using the
techniques proposed by McCallum and Avis [6]. For all v ∈ CH(P ), δc(v, p) and
δa(v, p) can be computed in O(n) time. Consider a point v on the boundary of
P inside a pocket ℘i. If p is not on the bridge of ℘i, the shortest path π(v, p)
must pass through one of the entry points ai, bi of pocket ℘i.

Guibas et al. [5] presented a linear time algorithm for computing the Euclidean
shortest paths from a given point to all the vertices inside a simple polygon of
n vertices . Considering ℘i along with it’s bridge as a simple polygon, similar
technique can be used for locating the shortest paths from the entry points of ℘i

to all the vertices inside it. Note that the union of shortest paths from a entry
point say a to all vertices inside ℘i form a tree, termed as shortest path tree
rooted at the entry point a. All these distances can be computed in O(ni) time
where ni is the number of vertices in ℘i. As ai and bi are in CH(P ), δ(ai, p)
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and δ(bi, p) are already computed. Therefore in O(ni) time, we can compute
δ(v, p) for all vertex v in ℘i. As the total number of vertices in P is n, shortest
path trees for all the pockets rooted at their corresponding entry points can be
computed in O(n) time. Hence, the lemma follows. ��
Note that, the farthest point from the guard located at p on the boundary of
the polygon P may not be a vertex of P . In such case, it must be on an edge of
polygon P . Suppose the farthest point γ is on an edge e = (vi, vi+1) of polygon
P and therefore δ(γ, p) ≥ δ(v, p) where v is the vertex farthest from p among
the vertex set V . Assume p is not on the bridge whose corresponding pocket
contains edge e. In that case, both clockwise and counter clockwise paths from
p to γ are different. But note that the lengths of the paths πc(γ, p) and πa(γ, p)
are equal. Without loss of generality, assume that δ(vi, p) = δc(vi, p) and in that
case, δ(vi+1, p) = δa(vi+1, p) and both δa(vi, p) and δc(vi+1, p) are greater than
δ(γ, p).

Consider the point p∗ which is on CH(P ) and δa(p∗, p) and δc(p∗, p) are both
equal to half the perimeter of CH(P ). We define p∗ as theimage of point p. Note
that the image relation is symmetric. Similarly the image of edge e = (vi, vi+1)
is the portion of the boundary of CH(P ), say e∗, such that each point on e have
an image on e∗ and each point on e∗ have image on edge e. Note that the chain
e∗ is bounded by points v∗i and v∗i+1.

Lemma 2. If p∗ is on edge e of the polygon P , then p∗ is the only point on P
whose δc(p∗, p) and δa(p∗, p) are same. If p∗ is on bridge of a pocket ℘ then all the
points on edges of the polygon P , whose clockwise and anti-clockwise distances
are same, must be inside the pocket ℘.

Proof: For a guard p, δc(p∗, p) is equal to δa(p∗, p) and no other point on the
convex hull CH(P ) exists whose clockwise and anti-clockwise path from p are
of equal length.

The rest part of lemma is proved by contradiction. Assume that p′ is a point
on some edge say e of pocket ℘′ with δc(p′, p) = δa(p′, p) and the bridge (a, b)
of the pocket ℘′ is different than the hull edge that contains p∗. Therefore, both
the distances from p to a and p to b are less than half of the perimeter of the
convex hull CH(P ). The shortest distances of a and b from p must be in same
direction. Without loss of generality, we can assume that the distances of a and
b from p are in clockwise direction. In that case all the points on the boundary
of the polygon inside the pocket ℘′ have a shorter length from p in clockwise
direction. That contradicts our assumption. ��

Lemma 3. At most one point on edges of polygon P have distinct clockwise and
anticlockwise path from guard p with same path length.

Proof: From lemma 2, we can conclude that the points on edge of the polygon
P , having distinct shortest clockwise and anti-clockwise path from p with equal
length must be inside the same pocket. Let q and q′ are two such points in
different edges of that pocket. Note that, if clockwise path from p to q does not
intersect with anticlockwise path from p to q′, then anti-clockwise path from p
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to q must intersects with clockwise path from p to q′ (see Figure 2. Let those
two paths intersect at point α. δc(α, p) and δa(α, p) must be same. Again, as,
clockwise and anticlockwise path from p to q′ are disjoint, the anticlockwise
path from p to q′ is not passing through α. Consider the path from p to α
in anticlockwise direction followed by α to q′. This path length is same as the
clockwise path from p to q′ and hence is equal to shortest anticlockwise path from
p to q′. That indicates two different shortest paths from p to q′ in anticlockwise
direction. That is only possible when α is at q′, which implies q and q′ are the
same points. ��

Theorem 1. The farthest point on a simple polygon avoiding its internal region
from any given location of the convex hull of that polygon can be computed in
O(n) time, where n is the number of vertices of the polygon.

Proof: The farthest point from guard located at p on the boundary of the
polygon P may be on an edge of P . In case, the farthest point on the boundary
of P from p avoiding its internal region is a vertex, then from Lemma 1, we can
recognize it in O(n) time.

Locate the image p∗ of point p. If p∗ is on some bridge of pocket, say ℘i , then
from Lemma 2, farthest point from p is either on some edge or vertex inside ℘i,
or on the pocket that contains the point p.

Guibas et al. [5] have shown the algorithm for computing shortest path tree
in P considering p as root in time O(n) by using sophisticated data structures
for representing, searching and splitting funnels efficiently (Figure 3. For an
edge e′ = (u, w) of P , let r be the least common ancestor of u and w in the
shortest path tree. Let, r1 and r2 be the split nodes in path Π(r, u) and Π(r, w)
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respectively. Then tangent on nodes along the path from r1 to r2 through r
on the edge e′ defines the split nodes on different segments partitioned by the
tangents on e′. As the number of nodes in shortest path tree is linear, the total
segments formed by the tangents of those nodes on edges of polygon P is of
O(n). Suppose a and b are the split nodes for a segment s in clockwise and
counter clockwise paths from p respectively, then we can determine the farthest
point from p on s in constant time. Hence the lemma follows. ��

3 Locate Guard to Minimize Distance from Its Farthest
Point

We characterize below some properties of the optimum guard position for iden-
tifying the location of guard on convex hull of the polygon so as to minimize the
distance of the farthest point from guard avoiding internal region of the polygon.

Observation 2. If polygon is convex, then each point on the boundary is the
optimal location of guard with distance of its farthest point on polygon boundary
avoiding internal region of the polygon is equal to half of perimeter of the polygon.

From now onwards, we will consider P as a non convex simple polygon. Note
that, the number of points that are farthest from location of guard avoiding
internal region of polygon may be more than one. Those points may be located
on the vertices or edges of the polygon. From lemma 3, we can conclude that,
whenever the farthest point f is on an edge of the polygon, then δc(f, p) and
δa(f, p) are equal. Let F denotes the set of points on boundary of P which are
farthest from optimal location of guard and distance from guard to all points of
F are same.
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Observation 3. When the size of set F is one, the guard is either on a bridge
of a pocket that contains the farthest point, or the clockwise and anticlockwise
paths from guard to f ∈ F are distinct and δc(f, p) = δa(f, p).

Again from Lemma 3, we can conclude the following observation.

Observation 4. If the farthest points from optimal location of guard on CH(P )
are not any vertex of the polygon, then the farthest point must be unique.

Hence we can conclude that, if the cardinality of the set F = {f1, f2, f3, . . . fk}
is greater than one, then there must exist at least one vertex of P in that set.
We partition the set F into FC and FA depending upon the direction of shortest
path from p to fi ∈ F in clockwise and anticlockwise directions respectively.
If the clockwise and anticlockwise distances of a farthest point are same, place
that in both the sets. Depending upon the organization of the sets FC and FA

we classify them into following categories (Figure 4):

Type 1: cardinality of set F is one.
Type 2: a vertex of P is common in both the sets FC and FA.
Type 3: each set contains at least one vertex of P , but no common vertex in

those sets.
Type 4: one set does not contain any vertex of P , but the other one have some

vertices of P .

Note that, if the cardinality of the set F is greater than one, then there must
exist at least one vertex of P in that set. Surely, we can conclude that partitions
FA and FB must follow one of the above four types.

Lemma 4. At most one pocket contains elements from both FC and FA. More-
over, if ℘ is such a pocket with bridge (a, b), then the location of guard must be
in the portion of CH(P ) bounded by a∗ and b∗, where δc(a, a∗) = δc(b, b∗) = ψ

2 .

Observe that, whenever the subsets FC and FA follow either of Type 1 or Type
2, then obviously there exist a pocket containing elements from both FC and FA

and then from Lemma 4, we can estimate the possible location of the guard. In
next subsection, we describe an algorithm for locating the optimum position of
the guard for the cases Type 1 and Type 2.

3.1 When the Subsets FC and FA Are of Type 1 or Type 2

Let the points from both FC and FA lie in some pocket ℘ with bridge (a, b),
where a is on anticlockwise direction of b. Let vj(= a), vj+1, . . . , vk−1, vk(= b)
are the points inside the pocket ℘ in clockwise order. The optimum location
of the guard must be on the image of (a, b) with respect to the convex hull of
P . Suppose a point α inside ℘ is in both the set FC and FA and that may be
a vertex or a point on an edge of ℘. Let d be the distance of α from p. All
the points on the boundary of ℘ in clockwise direction of α is reachable from
the guard located at p within a distance less than d in anticlockwise direction.



Guarding Exterior Region of a Simple Polygon 107

f1

p
p

f2

f1

p

f1

f2

Type 1 Type 3

Type 4

Fig. 4. Farthest point categories

Similarly if the guard moves along clockwise direction, it can reach all the points
of ℘ in anticlockwise direction of α within a distance less than d. Observe that,
d = ψ−δ(a,b)

2 + δ(a,α)+δ(b,α)
2 where ψ represents the length of the perimeter of

CH(P ). Again, note that both δc(a∗, α) and δa(b∗, α) are greater than equal to
d. In order to locate α inside ℘, we follow the following steps.

Step 1: Compute the shortest path tree T℘,a, T℘,b rooted at a and b respectively
for all the vertices inside the pocket ℘.

Step 2: For each vertex v in ℘, compute av and bv, where av is the minimum
distance required for reaching all the vertices starting from a to v in clockwise
direction and bv is the minimum distance required for reaching all the vertices
starting from b to v in anticlockwise direction.

Step 3: Report the vertex that have minimum av + bv value.
Step 4: Locate the edge (vi, vi+1) such that avi < bvi , avi+1 > bvi+1 , avi < avi+1 ,

and bvi > bvi+1 ; identify the point q on that edge such that aq +bq is minimum
among all points on that edge. Note that the time complexity for locating the
point q on (vi, vi+1) is linear in order of the number of vertices in pocket ℘.

Step 5: The point α should be either v or q depending upon the lesser values
of av + bv and aq + bq.
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Suppose the number of pockets in P is r and consider those r pockets {℘1, ℘2, . . . ,
℘r} in clockwise order and ai and bi denote the entry points for pocket ℘i with
bi in clockwise direction of ai. Images of bridges for all pockets are distinct.
Therefore, in order to locate the possible optimal location of guard where subsets
FC and FA follow either Type 1 or Type 2, we locate points α1, α2, α3, . . . , αr

inside ℘1, ℘2, . . . , ℘r respectively such that αi is in both the set FC and FA

whenever members from both FC and FA lie inside pocket ℘i. All the points
α1, α2, α3, . . . , αr can be located in O(n) time using the method described above.

Note that, if αi is in FA and FC , guard is located at pi in CH(P ) having
distance di = δ(ai,αi)+δ(bi,αi)

2 + ψ−δ(ai,bi)
2 from αi. Although distance di is suf-

ficient to reach every point inside the pocket ℘i from the guard, but that may
not be sufficient to reach other boundary points of polygon P and in that case,
farthest point from guard must not be inside that pocket. For eliminating those
points from the list of possible locations of guard, we need to solve the query
of the following type. For a given point on CH(P ) and a given constant �, how
many vertices are reachable in clockwise direction (or in anticlockwise direction)
from that given point within the path length �. Another query of similar type
is to report the minimum distance required from some point for visiting all the
vertices in clockwise (anticlockwise) direction up to some given vertex. In order
to solve those queries efficiently, we describe below some characterization and
preprocessing steps along with some data structures.

Let si (s′i) represents the maximum among the distances from ai (bi) to all
the vertices inside pocket ℘i. A pocket ℘i covers up to pocket ℘j in clockwise
direction implies all the vertices of P from ai to bj in clockwise direction are
reachable within distance si but not able to reach bj+1 within that distance, that
is from ai, we are able to reach any point inside pockets ℘i, ℘i+1, . . . , ℘j within
distance si.

Observation 5. If ℘i covers up to pocket ℘j in clockwise direction and si−1 ≥
δc(ai−1, ai) + si, then ℘i−1 also covers up to pocket ℘j in clockwise direction. If
si−1 < δc(ai−1, ai)+si then ℘i−1 does not cover pocket ℘i in clockwise direction.

From the above observation and using a stack we can compute the amount of
cover for pocket ℘i for all i = 1, 2, . . . , r and therefore we can conclude the
following lemma.

Lemma 5. Total time required for determining the amount of cover for all the
pockets ℘i for i = 1, 2, . . . , r of P in both clockwise and anticlockwise directions
is O(n).

Suppose x is the distance required to visit all the vertices from a1 to a2,a3,. . .
etc. in clockwise direction with respect to the image of a1 i.e, a∗1. Let the pockets
appear along the path ℘1, ℘2, . . . , ℘m and assume that j is the least index such
that ℘j covers ℘m. Hence, x is the maximum value of δc(ai, aj)+sj and δc(a1, a

∗
1).

Suppose the pockets which appear along the path from a2 to a2∗ in clockwise di-
rection are ℘2, ℘3, . . . , ℘m′ . Obviously m′ ≥ m. Again, note that either ℘j covers
℘m′ or the least index covering ℘m′ must be greater m and less than equal to m′.
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In case, ℘j does not cover ℘m′ , we need to scan ℘m+1, ℘m+2, . . . , ℘m′ in order to
locate the least index that covers rm′ . When j = 1, we scan ℘2, ℘3, . . . , ℘m′ for
locating least index that covers ℘m′ and we can compute the minimum distance
required to visit all the vertices from a2 to a3, a4, . . . etc. up to a∗2 in clockwise
direction. Iteratively we can compute the minimum distance required from ai to
visit all the vertices a∗i in clockwise direction for all i = 1, 2, . . . , r and similarly
in anticlockwise direction. Hence we can conclude the following lemma.

Lemma 6. Let R be the subset of {p1, p2, . . . , pr} such that pi ∈ R implies
all the points on the boundary of P is reachable from pi within the distance
di = δ(pi, αi). The set R can be recognized in O(n) time.

From the above discussions an lemmata we are in position to conclude the fol-
lowing theorem.

Theorem 2. If the farthest point from the optimum location of guard follows
Type 1 or Type 2, the location of guard can be determined in O(n) time.

3.2 When the Subsets FC and FA Are of Type 3 or Type 4

Here in this case when points from both FC and FA lies in same pocket, say
℘, with entry points a and b where a is in the anticlockwise direction of b, we
locate the edge (vi, vi+1) in pocket ℘ (if it exists) such that δ(a, vi) < δ(b, vi),
δ(a, vi+1) > δ(b, vi+1), δ(a, vi) < δ(a, vi+1) and δ(b, vi) > δ(b, vi+1). For the case
of Type 3, such edge may not exists and even if it exists, we will not get any point
q on edge (vi, vi+1) such that δ(a, q) > δ(a, vi) and δ(b, q) > δ(b, vi+1). When
FC and FA follows Type 4 we will get a point q on edge (vi, vi+1) such that
δ(a, q) + δ(b, q) is minimum among all points on that edge and either δ(a, q) =
δ(a, vi) and δ(b, q) > δ(b, vi+1) or δ(a, q) > δ(a, vi) and δ(b, q) = δ(b, vi+1). The
point q can be recognized for each pocket of P and the corresponding location of
guard in O(n) time using the same technique described in the previous section.

Consider the case where both FC and FA does not contain vertices of P in
the same pocket.

Without loss of generality a vertex v1 in ℘1 is in FA and assume that the
distance of v1 from entry point a1 is s1. Then we have to identify the sequence
of vertices in the clockwise direction which are reachable from a1. Let the last
vertex be w. Next we try to compute the minimum distance required to reach all
the vertices in anticlockwise direction up to vertex w from a1. Let the farthest
vertex among this set is v′1 and the distance of v′1 be h. Note that h must be
less than ψ − δ(a1, b1)+ δ(b1, v1). This can be computed in O(n) time. Therefore
we can locate the guard whose clockwise farthest point is v′1 and anticlockwise
farthest point is v1. Iteratively we proceed by considering vertex v2 is in FA and
locate v′2 in similar fashion. Observe that v′2 is either the same vertex v′1 or a
vertex in clockwise direction of v′1 and in the anticlockwise direction of v′2. Hence
we can conclude the following theorem.

Theorem 3. If the farthest point from the optimum location of guard follows
Type 3 or Type 4, the location of guard can be determined in O(n) time.
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Here in this version we are omitting the proof.
From the theorems 2 and 3 we can conclude the main result.

Theorem 4. For a simple polygon P , a guard can be placed on the convex hull
of P in O(n) time such that the distance from the guard to its farthest point on
the boundary avoiding the interior region of P is minimized.
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Abstract. In an orthogonal projection of a convex polyhedron P the
visibility ratio of a face f (similarly of an edge e) is the ratio of orthog-
onally projected area of f (length of e) and its actual area (length). In
this paper we give algorithms for nice projections of P such that the
minimum visibility ratio over all visible faces (over all visible edges) is
maximized.

Keywords: Convex polyhedra, nice orthogonal projections, Voronoi di-
agram, views.

1 Introduction

Polyhedra are 3D solid objects. When we view a polyhedron from a view point,
our eyes or camera computes its 2D projection, which can be either orthogonal
or perspective based on whether the view point is at infinity or not respectively.
Projections are important properties of polyhedra and other 3D objects due to its
potential application in the field of computer graphics [10], object reconstruction
[4,5], machine vision [1], computational geometry [9,8], and three dimensional
graph drawing [7].

Given a polyhedron or other 3D objects such as a set of line segments, it
is a well studied problem to compute its “nice” projections based on different
criteria for “niceness”. McKenna and Seidl [11] studied this problem for con-
vex polyhedra. They presented O(n2)-time algorithms for computing orthogonal
projections of a convex polyhedron where the projected area is maximum and
minimum. In a similar problem, when a convex polyhedron is orthogonally pro-
jected in an arbitrary lower dimension Burger and Gritzmann [6] proved that
finding the minimum and maximum volume of the polyhedron is NP-hard, and
they gave several approximations algorithms.

Bose et al. [3] studied this problem for line segments in 3D. In their algorithms
the criteria for niceness includes minimum crossings among line segments, mini-
mum overlapping among line segments and vertices, and monotonicity of polyg-
onal chains. Eades et al. [7] also studied this problem with similar criteria from
the view point of three dimensional graph drawing.

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 111–119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



112 Md. A. Alam and M. Hasan

(a) (b) (c)

ff

Fig. 1. (a) A maximum area projection, (b) but our algorithm would generate a pro-
jection like this. (c) Minimizing the maximum visibility ratio may incur a degenerate
projection.

Recently Biedl et al. [2] have studied the problem of computing projections of
convex polyhedra such that the silhouette (i.e., the projection boundary) meets
certain criteria. They have given several algorithms where a given set of vertices,
edges and/or faces appear on the silhouette.

While finding the projections of a polyhedron, it is usually assumed that the
degenerate projections are avoided, where a degenerate projection means the
view point is coplanar with one or more faces. In the above-mentioned algorithms
for computing nice projections of convex polyhedra the degenerate projections
are avoided. But in those algorithms it may be possible that the resulting nice
projection is almost degenerate. For example, consider the maximum area pro-
jection of a convex polyhedron of Figure 1(a). In this projection the big face is
visible almost to its full area but the adjacent tiny faces are almost lost. In other
words, for some visible faces the visibility ratio, which is the ratio of projected
area and actual area, is very small. Similar situation may happen for some edges
too. But in some applications such as visual inspection for quality control of
manufacturing 3D objects (like toys), a natural expectation is to find a projec-
tion where each visible face or edge is viewed in reasonable “amount” so that
they can be inspected comfortably for any anomaly (like air pockets).

1.1 The Problem

In this paper, we give algorithms for finding nice orthogonal projections of a
convex polyhedron such that in a particular “view” each of the visible faces
and edges is viewed as much as possible. More formally, we give algorithms
to find orthogonal projections such that within a particular view the minimum
visibility ratio over all visible faces (similarly over all visible edges) is maximized.
For example, for the polyhedron of Figure 1(a), our algorithm would prefer a
projection like that in Figure 1(b) as a nice projection of faces.

We give separate algorithms for faces and edges. Moreover, for edges we con-
sider line segments in 3D and edges of a polyhedron. We consider convex polyhe-
dra and orthogonal projections only. (So from now on by a polyhedron we mean
it to be convex and by a projection we mean it to be an orthogonal projection.)
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For nice projections of faces and edges in a view V of P we give O(|V| log |V|+
|C|)-time algorithms, where |V| is the number of faces visible in V and |C| is
the size of the “view cone” of V and can be as small as or less than |V|. Over
all possible views of P , our algorithms take a total of O(n2 log n) time, where n
is the number of vertices of P . For a set of line segments E in 3D, we give an
O(|E| log |E|)-time algorithm.

While delving the case of maximizing the minimum visibility ratio, it is nat-
ural to ask “Is it possible to minimize the maximum visibility ratio?” Yes, it is
possible, and more interestingly, it is possible by using the same technique that
we will use for maximizing the minimum ratio. (By the end of this paper it will
be clear to the reader.) However, such a nice projection may incur a degenerate
projection, which is against the motivation in this paper, and that’s why in this
paper we do not explore that criteria. For example, in Figure 1(c) the top face f
is almost at right angles with the side faces and for that the maximum visibility
ratio is due to f . To minimize this ratio we can rotate f as long as an adjacent
face does not degenerate. Similar may be the case with lines.

1.2 Outline of the Paper

Rest of the paper is organized as follows. In Section 2 we define the visibility
ratio and give other preliminaries. Then Sections 3 and 4 give algorithms for
nice projections of faces and edges respectively. Finally, Section 5 concludes the
paper with some future work.

2 Preliminaries

A convex polyhedron P is the bounded intersection of a finite number of half-
spaces. A face/edge/vertex of P is the maximal connected set of points which
belong to exactly one/exactly two/at least three planes that support these half
spaces. By Euler’s theorem [14] every convex polyhedron with n vertices has
Θ(n) edges and Θ(n) faces.

We represent an (orthogonal) view direction d as a unit vector pointing from
the origin to the view point (at infinity).

The visibility ratio rf of a visible face f of P with respect to d is the ratio
of the projected area of f from d and its actual area. More formally, if θ is the
angle between d and the outward normal of f and if θf = 90◦ − θ, then

rf =
|f | cos θ

|f | = sin θf ,

where |f | means the area of face f .
Let s be a unit sphere centered at the origin. Each point of s uniquely repre-

sents a view direction and let p be the point on s for d. The translated plane of f
is the plane that is parallel to f and passes through the origin, and the intersec-
tion of this plane with s gives a great circle and let it be g. Since θf ≤ 90◦ (and
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sin θf ∝ θf for 90◦ ≤ θf ≤ 0◦), the ratio rf with respect to d can alternatively
be defined as the geodesic distance of p from g on s.

Similarly, the visibility ratio re of an edge e in 3D with respect to d is the
ratio of the projected length of e from d and its actual length. If the acute angle
between d and e (assuming e is translated to the origin) is θe, then re is:

re =
|e| sin θe

|e| = sin θe,

where |e| means the length of line e.
The translated line of an edge e is the line that is parallel to e and passes

through the origin, and the intersection of this line with s gives two antipodal
points. The ratio re with respect to d can alternatively be defined as the minimum
geodesic distance of p on s from these two antipodal points.

Among the two half spaces of the translated plane of f one that contains all
view directions from which f is visible is called the positive half space of f , and
the other one is called the negative half space of f .

Consider the set of translated planes for all faces (visible or invisible) of P .
Arrangement of these planes divides the 3D space into cones called the view
cones. Within a particular view cone, all view directions have a unique combina-
torial projection of P called a view of P . It is known that a convex polyhedron
with n vertices has Θ(n2) different views [13].

Consider a view V of P . The intersection of the view cone of V with s gives
a spherical convex polygon called the view polygon of V . Let this view polygon
be C. Each point within C now represents a view direction for V .

3 Nice Projection of Faces

Let the set of faces visible in V be F . Consider the positive half spaces for all
faces in F . Intersection of these half spaces gives a cone called the face cone of
V . Intersection of this face cone with s gives another spherical polygon called
the face polygon of V . Let this face polygon be D.

Lemma 1. C ⊆ D.

Proof. Both C and D are connected set. A view direction outside D does not
see at least one face of F . A view direction within D sees all faces of F , but it
may also see one or more faces that are not in F . Let f ′ be such a face. Let h
be the negative half space of f ′. Then C ⊆ D ∩h. Note that if f ′ does not exist,
then C = D. ��

Let GF be the set of great circles of s that are due to the translated planes of the
faces of F . Among GF let GD be the set of those who contribute an edge in the
boundary of D. Then GD ⊆ GF . Of course, all faces in F may not contribute
to the face cone of V . For example, in Figure 2 five faces are visible but the
corresponding face polygon does not contain any piece of the great circle that is
due to the shaded top face. We now have the following obvious lemma.
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D

s

Fig. 2. The great circle corresponding to the top face of the polyhedron does not
contribute to the boundary of the corresponding face polygon D

Lemma 2. From any point within D the closest among all great circles in GF

must be one in GD.

After the above two lemmas, our problem of finding an optimum projection for V
now reduces to the problem of finding a point p inside C such that the minimum
distance of p from the great circles in GD is maximized. In what follows in this
section we describe how to do that.

3.1 The Optimum Projection

We first consider a special case where F has only one face f . Let y be the point
on s that represents the outward normal of f . y is called the normal point of f .
Then optimum p is y, if y is within C. Otherwise optimum p is a point on C
that is closest to y, which can be found trivially in O(|C|) time (by considering
only the corner points of C or by considering for each edge x of C a point z such
that the segment yz is perpendicular to x.)

Now we come to the general case. Medial axis of a polygon Q is the generalized
voronoi diagram of Q where the voronoi sites are the vertices and edges of Q.
There exists several O(n log n)-time algorithms for computing medial axis on a
sphere where the sites are points and segments of great circles [12].

We take the medial axis of D on s and let it be M . Since D is convex and
its edges are segments of great circles the edges of M are also segments of great
circles. We take the intersection of M and C. This intersection will partition C
into small pieces called the voronoi pieces. See Figure 3(a).

Consider a particular voronoi piece v. Let the voronoi site of v, which is an
edge of D, be a segment of the great circle g. For any point p in v, g is the
closest among all great circles in GD. The optimum value of p within v is the
point of v that is furthest from g. We call this point the candidate point of v
and its geodesic distance from g as its value. Finding a candidate point is not
obvious and needs some exploration.

Let ev be a boundary edge of v. We will find the point of ev that is furthest
from g, we again call this point the candidate point of ev. Then the candidate
point of v is the maximum among them for all boundary edges of v. Remember
that ev is also a segment of a great circle. Let y be the middle point of the half
circle that contains ev and is bounded by g. If y is in ev, then the candidate
point of ev is y. Otherwise it is a corner point of ev. See Figure 3(b).
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Fig. 3. (a) Intersection of C and M inside D. (b) Finding the candidate point (the
filled circle) of ev from g.

Finally, the resulting p is the maximum among all candidate points.
We now see the time complexity of our algorithm. Each edge of M intersects C

into at most two points. So the total number of intersection points of M and C is
O(|M |+ |C|). Thus the intersection of M and C has a total size of O(|M |+ |C|).
Moreover, this intersection can be found in O(|M |+ |C|) time by first finding one
intersection point and then always moving to the other adjacent voronoi region
of the currently intersected voronoi edge of M . Since the voronoi pieces are the
connected regions of C due to this intersection,

∑
|v| = O(|M | + |C|).

The candidate point of ev can be found in constant time. Thus the candidate
point of v can be found in O(|v|) time. So over all v finding optimum p takes
O(|M | + |C|) time. Computing M can be done in O(|D| log |D|) time [12]. Thus
the total time taken by the algorithm is O(|D| log |D| + |M | + |C|). Since |M | is
O(|D|) and O(|D|) is O(|V|), where O(|V|) is the number of faces visible in V ,
this time complexity becomes O(|V| log |V| + |C|).

The following theorem summarizes the above result.

Theorem 1. For a view V ofP the projection in which theminimumvisibility ratio
of the visible faces is maximized can be found in O(|V| log |V|+ |C|) time, where |V|
is the number of faces visible in V and |C| is the size of the view cone of V.

Corollary 1. Optimum projections for all views of P can be found in O(n2 log n)
time.

Proof. Remember that all of O(n2) views of P are the result of the arrangement
of O(n) planes parallel to O(n) faces of P . So the complexity of the arrangement
is also O(n2). Between any two adjacent view cones the only difference is the
common face of the cones. So over all views

∑
V O(|V|) and

∑
V O(|C|) is O(n2)

and thus the total time is
∑
V O(|V| log |V|) = O(n2 log n). ��

4 Nice Projection of Line Segments

Let E be the set of line segments. We take the corresponding translated lines for
E and then take their intersections with s. Thus we get |E| pairs of antipodal
points, whose set we denote by S.



Computing Nice Projections of Convex Polyhedra 117

4.1 Line Segments in 3D

Here we do not have any constraint of views and the problem of finding an
optimum projection reduces to finding a point p on s such that the minimum
distance of p on s from the points of S is maximized.

To do that we take the voronoi diagram V of S on s. If E contains only one
edge, then V is simply a great circle and p is any point of V . For E containing
more than one edge, V contains at least two voronoi vertices and in that case p
is clearly one of those voronoi vertices. By the algorithm of [12] we can find V in
O(|E| log |E|) time. Since the size of V is O(|E|), total time required for finding
an optimum p is O(|E| log |E|).

Theorem 2. Given a set of line segments E, a projection in which the minimum
visibility ratio over all segments is maximized can be found in O(|E| log |E|) time.

4.2 Line Segments of a Polyhedron

Let V be a particular view of P with visible edge set E, view polygon C, and
the corresponding set of antipodal points S. Then the problem of finding an
optimum projection reduces to the the problem of finding a point p within C
such that the minimum distance from p on s to the points of S is maximized.

Since in a view of a polyhedron it is not possible to see only one edge, V is
not simply a great circle and has voronoi vertices. We take the intersection of
V and C. As before, for each voronoi piece v (created by the intersection) we
find the candidate point of v. Since the voronoi edges of V are segments of great
circles this point is a corner point of v. Resulting p is the maximum among all
candidate points in C.

As before, time complexity of the above algorithm is O(|V| log |V| + |C|).

Theorem 3. For a view V of P the projection in which the minimum visibility
ratio of a line is maximized can be found in O(|V| log |V| + |C|) time, where |V|
is the number of faces visible in V and |C| is the size of the view cone of V.
Moreover, for all views of P these projections can be found in O(n2 log n) time.

5 Conclusion

In this paper, we studied several nice projections of convex polyhedra. We have
shown how to find an orthogonal projection for a particular view such that the
minimum visibility ratio over the visible faces is maximized. For lines in 3D we
have shown a similar result.

An alternative approach of computing nice projection of faces would be as
follows. Remember that rf for a face f increases if the angle θ between the
view direction and the normal of f decreases. So finding nice projections of
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faces is equivalent to finding p on s such that its maximum geodesic distance
from the normal points is as small as possible. This can be done by considering
the furthest site voronoi diagram M ′ of the normal points, taking the intersec-
tion of C and M ′, then computing the candidate point for each voronoi piece
as the point whose distance is the minimum from the corresponding normal
point, and finally finding an optimum p as the minimum among all candidate
points. However, we found this approach less convenient and avoided for clarity’s
shake.

As indicated at the begining of the paper, now it should be clear that our
algorithm can be easily modified, in conjunction with the above idea of using
furthest site voronoi diagram, to find nice projections where the maximum visi-
bility ratio of the faces or edges is minimized. The time complexity should also
remain the same.

Finally, we find the following open problem interesting for future work: Is
there any way to find a projection such that sum of the projected length of the
visible edges is maximum or minimum?
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Abstract. In this paper we give a coding scheme for plane triangula-
tions. The coding scheme is very simple, and needs only 6n bits for each
plane triangulation with n vertices. Also with additional o(n) bits it
supports adjacency, degree and clockwise neighbour queries in constant
time. Our scheme is based on a realizer of a plane triangulation.

The best known algorithm needs only 4.35n+ o(n) bits for each plane
triangulation, however, within o(n) bits it needs to store a complete list
of all possible triangulations having at most (log n)/4 nodes, while our
algorithm is simple and does not need such a list. The second best known
algorithm needs 2m+(5+1/k)n+ o(m+n) bits for each (general) plane
graph with m edges and 7n+o(n) bits for each plane triangulation, while
our algorithm needs only 6n + o(n) bits for each plane triangulation.

1 Introduction

Given a class C of graphs how many bits are needed to encode a graph G ∈ C
into a binary string SG so that SG can be decoded to reconstruct G? If C contains
nC graphs, then for any coding scheme the average length of SG is at least log nC

bits, which is called the information-theoretically optimal bound.
By using any generating algorithm, we can encode the k-th generated graph

into the binary representation of k, and attain the optimal bound. However such
method may need exponential time for encoding and decoding.

On the other hand, for many applications, efficient running time for encod-
ing and decoding is required. Thus for various classes of graphs many coding
schemes with efficient running time have been proposed. Moreover, some of
those coding schemes support several graph operations in constant time. See
[4,5,6,7,8,9,10,11,13,14,19].

In this paper we consider the problem for plane triangulations. We wish to de-
sign a simple scheme to encode a given plane triangulation G into a binary string
SG so that (1) SG can be efficiently decoded to reconstruct G, (2) the length of
SG is short, and (3) SG supports several graph operations in constant time.

The following results are known for the problem. Let m be the number of
edges in a graph, and n the number of vertices. Note that for planar triangulation
m = 3n − 6 holds.

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 120–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. An example of a realizer

[20] shows that the information-theoretically optimal bound is 1.08m bits for
plane triangulations. However this coding scheme needs exponential time for
encoding.

For schemes without any query support the following results are known. [19]
gives a scheme to encode a general planar graph into asymptotically 4m bits.
[11] gives schemes to encode a general planar graph into m log 12 = 3.58m bits,
a triconnected planar graph into 3m bits, and a plane triangulation into (3 +
log 3)m/3 = 1.53m bits. [8] gives a scheme based on “the canonical ordering” to
encode a plane triangulation into 4m/3 − 1 bits. [15] gives a scheme based on
a bijection with a class of trees to encode a plane triangulation into 4m/3 bits.
[3] gives a scheme to encode into 3.37m/3 bits. [9] gives a scheme to encode a
triconnected planar graph and plane triangulation with information-theoretically
optimal bounds, respectively.

For schemes with query support the following results are known. [10] gives a
scheme to encode trees achieving the information-theoretically optimal bound
to within a lower order term, and still supporting some natural query operations
quickly. [13,14] gives a scheme to encode a planar graph into 2m + 8n + o(n)
bits with supporting adjacency and degree query in constant time. [4] gives a
scheme to encode a planar graph into 2m+(5+1/k)n+o(n) bits, where k is any
constant, and a plane triangulation into 7n + o(n) bits. [5,6] gives a scheme to
encode a planar graph into 2m+2n+ o(n) bits. [1] gives the best known scheme
which needs only 4.35n + o(n) bits for each plane triangulation. However, since
within o(n) bits it need to store a complete list of all possible triangulations
having at most (log n)/4 vertices, it is theoretically nice but an implementation
is not easy. [2] gives a scheme to encode a plane triangulation on the topological
sphere into 3.24n + o(n) bits.

In this paper we design a coding scheme for plane triangulations. Our scheme
is very simple and easy to implement.
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The class of plane triangulations is an important class of graphs, since the
standard representation for fine 3D models, called triangle meshes, consists of a
huge amount of vertex coordinate data and a huge size of connectivity data[17].
If the triangle mesh is homeomorphic to a sphere then the connectivity data is
a plane triangulation.

We give a simple coding scheme for plane triangulations. The coding scheme
needs only 6n bits for each plane triangulation, and with additional o(n) bits it
supports adjacency and degree queries in O(1) time. Given a vertex u and its
neighbour v, many plane graph algorithms need to find the “next” neighbour of
u succeeding v in clockwise order, because with this query one can trace a face,
and it is one of basic operation for plane graph algorithms. Our coding scheme
also finds such a neighbour in O(1) time. Our algorithm is based on a realizer[18]
(See an example in Fig. 1.) of a plane triangulation.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 introduces a realizer of a plane triangulation. Section 4 presents our
coding scheme. In Section 5 we explain query support. Finally Section 6 is a
conclusion.

2 Preliminaries

In this section we give some definitions.
Let G = (V, E) be a connected graph with vertex set V and edge set E. We

denote n = |V | and m = |E|. An edge connecting vertices x and y is denoted by
(x, y). The degree of a vertex v, denoted by d(v), is the number of neighbours of
v in G.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed planar embedding. A plane graph
divides the plane into connected regions called faces. The unbounded face is
called the outer face, and other faces are called inner faces. We regard the contour
of a face as the clockwise cycle formed by the vertices and edges on the boundary
of the face. We denote the contour of the outer face of plane graph G by Co(G).
A vertex is an outer vertex if it is on Co(G), and an inner vertex otherwise. An
edge is an outer edge if it is on Co(G), and an inner edge otherwise. A plane
graph is called a plane triangulation if each face has exactly three edges on its
contour. By Euler’s Formula: n − m + f = 2, where f is the number of faces,
one can show m = 3n − 6 for any plane triangulation.

3 Realizer

In this section we briefly introduce a realizer[18] of a plane triangulation.
Let G be a plane triangulation with three outer vertices rr, rb, ry. We can

assume that rr, rb, ry appear on Co(G) in clockwise order. Those vertices are
called red root, blue root and yellow root, respectively. We denote by VI the set
of inner vertices of G.
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Fig. 2. Edges around an inner vertex v

A realizer R of G is a partition of the inner edges of G into three edge-distinct
trees Tr, Tb, Ty satisfying the following conditions (c1) and (c2). See an example
in Fig. 1.

(c1) For each i ∈ {r, b, y}, Ti is a tree with vertex set VI ∪ {ri}.
(c2) For each i ∈ {r, b, y}, we regard ri as the root of Ti, and orient each edge

in Ti from a child to its parent. Then at each v ∈ VI the edges incident to v
appear in clockwise order as follows. See Fig. 2.

(1) exactly one edge in Tr leaving from v.
(2) (zero or more) edges in Ty entering into v.
(3) exactly one edge in Tb leaving from v.
(4) (zero or more) edges in Tr entering into v.
(5) exactly one edge in Ty leaving from v.
(6) (zero or more) edges in Tb entering into v.

Let G be a plane triangulation, and R = {Tr, Tb, Ty} be a realizer of G. Again
for each i ∈ {r, b, y} we regard ri as the root of Ti, and orient each edge in Ti

from a child to its parent.
Then T = Ty ∪ {(ry, rb), (ry, rr)} is a spanning tree of G with root ry. By

preorder traversal of T we assign an integer i(v) for each vertex v. See an example
in Fig. 3. Note that i(ry) = 1, i(rb) = 2, i(rr) = n always holds.

We have the following lemma.

Lemma 1. (a) If e = (u, v) is an edge in Tr and orient from u to v, then
i(u) < i(v).

(b) If e = (u, v) is an edge in Tb and orient from u to v, then i(u) > i(v).

Proof. (a) Assume otherwise for the contradiction. Now there is an edge e =
(u, v) in Tr and orient from u to v, but i(u) > i(v).

For each i ∈ {r, b, y} let Pi be the path in Ti starting at v and ending at
the root ri. Then by those three paths we partite the plane graph into three
regions as follows. Region Rr: The region inside of Py ∪ Pb ∪ {(rb, ry)}. Region
Rb: The region inside of Pr ∪ Py ∪ {(ry, rr)}. Region Ry: The region inside of
Pb ∪ Pr ∪ {(rr, rb)}.
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Fig. 4. Illustration for Lemma 1

By the condition (c2) of the realizer, vertex u is in Rr.
By assumption i(u) > i(v) above, the path P in Ty starting at u and ending

at the root ry must contain at least one vertex in Ry ∪ Rb. See Fig. 4. Thus P
must cross Pb from Rr to Ry. However, at the crossing point, say vertex y, the
condition (c2) of the realizer does not hold. A contradiction.

(b) Similar to (a). Omitted. ��

Let GT be the graph derived from G by deleting all edges in the spanning tree
T . If GT has an edge (u, v) with i(u) > i(v) then we say v is a smaller neighbour
of u and u is a larger neighbour of v.
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We have the following lemma. See Fig. 3.

Lemma 2. (a) Each inner vertex v has at least one smaller neighbour and at
least one larger neighbour.
(b) rr has at least one smaller neighbour and no larger neighbour.
(c) rb has no smaller neighbour and at least one larger neighbour.
(b) ry has neither smaller nor larger neighbour.

Proof. (a)Immediate from Lemma 1 and the condition (c2) of the realizer.
Intuitively each inner vertex has one outgoing edge in Tb connecting to one

smaller neighbour, and one outgoing edge in Tr connecting to one larger neigh-
bour. See Fig. 3.
(b)(c)(d) Omitted. ��

4 Coding

In this section we give our coding scheme for plane triangulations.
Let G be a plane triangulation with a realizer R = {Tr, Tb, Ty}. Let T =

Ty ∪ {(ry, rb), (ry , rr)} be a spanning tree of G with root ry . Assume that by
preorder traversal of T each vertex v has an integer label i, as explained in the
previous section. Again GT be the graph derived from G by deleting all edges
in T . See Fig. 3.

We first encode T into string S1, then the rest of the graph GT into string
S2. See an example in Fig. 5(a) and (c).

In S1 each vertex except the root corresponds to a pair of matching paren-
theses, and if vertex p is the parent of vertex c then the matching parentheses
corresponding to p immediately enclose the matching parentheses corresponding
to c. See Fig. 5(a).

S2 consists of |S1| − 2 blocks. See Fig. 5(b). Blocks are hatched alternately to
show their boundary. Each block consists of one or more (square) brackets. Each
matching brackets corresponds to an edge in GT . See Fig. 5(c). Each parenthesis
(except for the first and the last one) in S1 has a corresponding block in S2. Each
open parenthesis “(” in S1 (except for the first one) has a corresponding block,
denoted by s(v), consisting of some “]” ’s, and each close parenthesis “)” in S1
(except for the last one) has a corresponding block, denoted by l(v), consisting
of some “[” ’s. The length of s(v) is the number of smaller neighbours of v. Thus
s(v) consists of |s(v)| of consecutive “]” ’s. Similarly, the length of l(v) is the
number of larger neighbours of v, and l(v) consists of |l(v)| of consecutive “[” ’s.

Since |s(v)| ≥ 1 always holds, we can encode the block s(v) as |s(v)| − 1
consecutive 0’s followed by one 1. See Fig. 5(d). Similarly we encode the block
l(v) as |l(v)|−1 consecutive 0’s followed by one 1. By the encoding above we can
easily recognize the boundary of each block. Note that each block always ends
with 1, and 1 is always the end of some block.

Now we explain how to encode given G into S1 and S2.
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First we encode T as follows. Given a (ordered) trees T we traverse T starting
at the root with depth first manner. If we go down an edge then we code it with 0,
and if we go up an edge then we code it with 1. Let S1 be the resulting bit string.
The length of S1 is 2(n − 1) bits. By regarding the 0 as the open parenthesis
“(” and the 1 as the close parenthesis “)”, we can regard S1 as a sequence of
balanced parentheses. In S1 each vertex v except the root ry correspond to a
pair of matching parentheses. Moreover if i(v) = k, then v corresponds to the
(k − 1)-th “(” and its matching “)”. Note that the root ry has no corresponding
“(” and “)”.

Next we encode GT as follows. We first copy S1 above into S2, and then
replace each “(” and “)” by some “]” ’s, and “[” ’s as follows.

Let i(v) = k and |s(v)| be the number of smaller neighbours of v. If k �= 1, 2
then we replace the (k−1)-th “(” by consecutive |s(v)|−1 zeros followed by one
“1”. Similarly, let |l(v)| be the number of larger neighbours of v. If k �= 1, n then
we replace the “)” which matches the (k − 1)-th “(” by consecutive |l(v)| − 1
zeros followed by one “1”. Note that |s(v)| ≥ 1 and |l(v)| ≥ 1 always hold for
inner vertex v by Lemma 2.

The idea above is similar to [5], however by utilizing the claim of Lemma 2
we can save two bits for S2 at each inner vertex.

Now estimate the length of S1 + S2. We have |S1| = 2(n − 1) and |S2| =
2(3n−6−(n−1)) = 4n−10. Thus |S1+S2| = 2(n−1)+4n−10 = 6n−12(= 2m).

For example the code in Fig. 5 has length |S1| + |S2| = 24 + 42 = 66 bits.
We have the following lemma.

Lemma 3. Given a triangulation G we can encode G into S1+S2 in O(n) time,
where |S1 + S2| = 6n − 12.

5 Query

In this section we give an efficient algorithm to answer an adjacency and degree
queries with a help of an additional string SA of o(n) bits. We can construct SA

in O(n) time. We also give an algorithm to answer “the clockwise neighbour”
query.

We first define several basic operations. Using those basic operations, we can
solve each adjacency, degree and clockwise neighbour queries in constant time.

Given a bitstring, rank(p), the rank of the bit at position p is the number of
1’s up to and including the position p, and select(i) is the position of the i-th 1
in the bitstring.

Given a sequence of balanced parentheses, the following operations are de-
fined. Operation findclose(p) computes the position of the close parenthesis that
matches the open parenthesis at position p. Operation findopen(p) computes the
position of the open parenthesis that matches the close parenthesis at position p.
Given an open parenthesis at position p, assume q is the position of p’s matching
close parenthesis, then enclose(p) is the position of the open parenthesis which
immediately encloses the pair, p and q, of the matching parentheses. Operation
wrapped(p) computes the number of the positions ci of open parentheses such
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Fig. 5. The code

that enclose(ci)=p. Intuitively wrapped(p) is the number of matching parenthesis
pairs which are immediately enclosed by the given matching parenthesis pair.
The following lemmas are known.

Lemma 4. [13,14] Given a bitstring of length 2n, using o(n) auxiliary bits, we
can perform the operations rank(p), select(i), in constant time. One can con-
struct the o(n) auxiliary bits in O(n) time.
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Fig. 6. Illustration for the adjacency query

Lemma 5. [13,14] Given a sequence of balanced parentheses of length 2n, us-
ing o(n) auxiliary bits, we can perform the operations findclose(p), findopen(p),
enclose(p) in constant time. One can construct the o(n) auxiliary bits in O(n)
time.

Lemma 6. [5] Given a sequence of balanced parentheses of length 2n, using o(n)
auxiliary bits, we can perform wrapped(p) in constant time. One can construct
the o(n) auxiliary bits in O(n) time.

Then using the basic operations above we can solve an adjacency query in con-
stant time as follows.

Given two integers a and b we are going to decide whether G has edge (u, v)
such that i(u) = a and i(v) = b. We consider the following two cases.

Case 1: (u, v) ∈ T .
For convenience we regard that S1 is enclosed by a pair of parentheses corre-

sponding to ry for operation enclose().
Assume that a < b. (The other case is similar.) Then (u, v) ∈ T iff select(a −

1) = enclose(select(b − 1)) in S1 and we can check this in constant time. Note
that since the root ry has no corresponding “(” thus we need “-1” above. Also
note that for operation select() we regard S1 as a bitstring, and for operation
enclose() we regard S1 as a sequence of balanced parentheses.

Case 2: (u, v) ∈ GT .
Assume that a < b. (The other case is similar.) Then (u, v) ∈ GT iff some “[”

in l(u) matches some “]” in s(v). We can check this as follows.
We can recognize the block l(u) in S2 as follows. First q = findclose(select(a−

1)) is the position of “)” corresponding to u in S1. The block corresponding to
l(u) starts at position su = select(q − 2) + 1 and ends at eu = select(q − 1) in
S2. Note that S2 has no block corresponding to s(2), thus we need “-1” above.
Similarly we can recognize the block s(v), and assume that the block starts at
position sv and ends at ev.

If findclose(su) is located among the block s(v), as shown in Fig. 6(a), then
(u, v) ∈ GT . Otherwise, if findclose(su) < sv, then (u, v) �∈ GT . See Fig. 6(b).
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Otherwise, findclose(su) > ev always holds. If findopen(ev) is located among
the block l(u), then (u, v) ∈ GT . See Fig. 6(c). Otherwise findopen(ev) > eu

always holds, and (u, v) �∈ GT . See Fig. 6(d). Thus we can decide whether (u, v) ∈
GT in constant time.

Also we can solve a degree query in constant time as follows. Given a vertex
v we first count the neighbours in T , then the neighbours in GT . The sum of
them is the degree.

First we count the neighbours in T as follows.
If i(v) = 1, then the number nT of neighbours in T is the number of match-

ing parenthesis pairs which are not enclosed by any matching parenthesis pairs
in S1. For convenience we regard that S1 is enclosed by a pair of parentheses
corresponding to ry , and compute nT by so-called “wrapped(select(0))”. Note
that if i(v) = 1 then v is the root and has no parent in T .

Otherwise, the number is 1 + wrapped(select(i(v))).
Then we count the neighbours in GT as follows. If we can recognize the blocks

s(v) and l(v) then the number is |s(v)| + |l(v)|.
If i(v) = 1 then |s(v)| + |l(v)| = 0. If i(v) = 2 then |s(v)| = 0. If i(v) = n then

|l(v)| = 0. Otherwise, we can recognize s(v) and l(v) as above, and compute the
number in constant time.

Thus we can compute the degree of a given vertex in constant time.
Given two vertices u and its neighbour v with i(u) = a and i(v) = b, many

plane graph algorithm need to find the neighbour of u succeeding v in clockwise
(or counterclockwise) order, since with this query we can (1) trace the boundary
of a face, (2) list up the edges around a vertex in clockwise order, and (3)
reconstruct G. The neighbour is called the clockwise neighbour of u with respect
to v, and denoted by cn(u, v). We can compute cn(u, v) in constant time, as
follows.

Assume that a > b. (The other case is similar.) Let e = (u, cn(u, v)) be the
edge between u and cn(u, v). We have two cases.

Case 1: (u, v) ∈ T .
Then v is the parent of u in T . If i(u) = n, then u = rr, v = ry and

cn(u, v) = rb. Otherwise e corresponds to the first “[ ” in l(u) and its matching
“]”. With a similar method for adjacency query above we can find the block l(u)
and then cn(u, v) in constant time.

Case 2: (u, v) ∈ GT .
In this case e corresponds to some “[” in l(v) and some “]” in s(u).
Assume that e corresponds to the x-th “[” in block l(v) and y-th “]” in s(u).

Now we have the following lemma.

Lemma 7. Either x = 1 or y = |s(u)| holds.

Proof. Otherwise, l(v) and s(u) has one more matching parenthesis pair “[” and
“]”, which immediately encloses the matching parenthesis pair corresponding to
e. This means G has one more edge between u and v. This contradicts the fact
that G has no multi-edge. ��
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We have the following theorem.

Theorem 1. Given S1 + S2, one can construct an additional string SA of o(n)
bits in O(n) time. Then one can compute adjacency, degree, and clockwise neigh-
bour queries in O(1) time, and decode G in O(n) time.

6 Conclusion

In this paper we designed a coding scheme for plane triangulations. The cod-
ing scheme is simple and needs only 6n bits for each plane triangulation. Also
with additional o(n) bits it supports adjacency, degree, and clockwise neighbour
queries in constant time for each. With a help of recent paper [12], we can also
support “a generalized clockwise neighbour query,” which finds the clockwise
k-th neighbour of u with respect to v in constant time, using o(n) auxiliary bits.
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Abstract. The class doughnut graphs is a subclass of 5-connected pla-
nar graphs. In a planar embedding of a doughnut graph of n vertices
there are two vertex-disjoint faces each having exactly n/4 vertices and
each of all the other faces has exactly three vertices. Recently the class
of doughnut graphs is introduced to show that a graph in this class ad-
mits a straight-line grid drawing with linear area and hence any spanning
subgraph of a doughnut graph also admits a straight-line grid drawing
with linear area. But recognition of a spanning subgraph of a doughnut
graph is a non-trivial problem, since recognition of a spanning subgraph
of a given graph is an NP-complete problem in general. In this paper, we
establish a necessary and sufficient condition for a 4-connected planar
graph G to be a spanning subgraph of a doughnut graph. We also give
a linear-time algorithm to augment a 4-connected planar graph G to a
doughnut graph if G satisfies the necessary and sufficient condition.

Keywords: Planar Graph, Doughnut Graph, Straight-Line Drawing,
Grid Drawing, Linear Area Drawing.

1 Introduction

Recently automatic aesthetic drawings of graphs have created intense interest
due to their broad applications in computer networks, VLSI layout, informa-
tion visualization etc., and as a consequence a number of drawing styles have
come out [NR04]. The most typical and widely studied drawing style is the
“straight-line drawing” of a planar graph. A straight-line drawing of a planar
graph G is a drawing of G such that each vertex is drawn as a point and each
edge is drawn as a straight-line segment without edge crossings. A straight-
line grid drawing of a planar graph G is a straight-line drawing of G on an
integer grid such that each vertex is drawn as a grid point as illustrated in
Fig. 1(c). Wagner [Wag36], Fary [Far48] and Stein [Ste51] independently proved
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Fig. 1. (a) A doughnut graph G, (b) a doughnut embedding of G, (c) a straight-line
grid drawing of G with linear area, (d) a spanning subgraph G′ of G, (e) an embedding
of G′ where face F1 is embedded as the outerface, and (f) a straight-line grid drawing
of G′ with area O(n)

that every planar graph G has a straight-line drawing. In 1990, de Fraysseix et
al. [FPP90] proved that both the upper bound and the lower bound of area
requirement for a straight-line grid drawing of any planar graph of n ≥ 3
vertices is O(n2).

For some restricted classes of graphs, more compact straight-line grid draw-
ings are known. Garg and Rusu showed that a binary tree of n vertices has a
planar straight-line grid drawing with area O(n) [GR03b]. Although trees admit
straight-line grid drawings with linear area, it is generally thought that trian-
gulations may require a grid of quadratic size. Hence finding nontrivial classes
of planar graphs of n vertices richer than trees that admit straight-line grid
drawings with area o(n2) is posted as an open problem in [BEGKLM03]. Garg
and Rusu showed that an outerplanar graph with n vertices and the maximum
degree d has a planar straight-line drawing with area O(dn1.48) [GR03a]. Di
Battista and Frati showed that a “balanced” outerplanar graph of n vertices has
a straight-line grid drawing with area O(n) and a general outerplanar graph of
n vertices has a straight-line grid drawing with area O(n1.48) [DF05]. Recently
Karim and Rahman introduced a class of graphs, called doughnut graphs, which
admits a straight-line grid drawing with linear area [KR07]. They also provide
a linear-time algorithm to find such a drawing.

Let G = (V, E) be a planar graph. A subgraph G′ is a spanning subgraph
of G if V (G′) = V (G) and E(G′) ⊆ E(G). Since a doughnut graph admits
a straight-line grid drawing with linear area, one can easily observe that any
spanning subgraph of a doughnut graph also admits a straight-line grid drawing
with linear area. Fig. 1(f) illustrates a straight-line grid drawing of a graph G′ in
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Fig. 1(d) where G′ is a spanning subgraph of a doughnut graph G in Fig. 1(a).
Recognition of a spanning subgraph of a given graph is an NP-complete problem.

In this paper, we narrow down the scope to a subclass of 4-connected planar
graphs and establish a necessary and sufficient condition to be a spanning sub-
graph of a doughnut graph. We also provide a linear-time algorithm to augment a
4-connected graph G to a doughnut graph if G satisfies the necessary and sufficient
condition. This gives us a new class of graphs which is a subclass of 4-connected
planar graphs that admits straight-line grid drawings with linear area.

The remainder of the paper is organized as follows. In Section 2, we give
some definitions. Section 3 provides a necessary and sufficient condition for a 4-
connected planar graph to be a spanning subgraph of a doughnut graph. Finally
Section 4 concludes the paper.

2 Preliminaries

In this section we give some definitions.
Let G = (V, E) be a connected simple graph with vertex set V and edge set

E. Throughout the paper, we denote by n the number of vertices in G, that is,
n = |V |, and denote by m the number of edges in G, that is, m=|E|. An edge
joining vertices u and v is denoted by (u, v). The degree of a vertex v, denoted
by d(v), is the number of edges incident to v in G. We denote by Δ(G) the
maximum of the degrees of all vertices in G. G is called r-regular if every vertex
of G has degree r. We call a vertex v a neighbor of a vertex u in G if G has
an edge (u, v). The connectivity κ(G) of a graph G is the minimum number of
vertices whose removal results in a disconnected graph or a single-vertex graph
K1. G is called k-connected if κ(G) ≥ k. We call a vertex of G a cut-vertex of G
if its removal results in a disconnected or single-vertex graph. For W ⊆ V , we
denote by G − W the graph obtained from G by deleting all vertices in W and
all edges incident to them. A cut-set of G is a set S ⊆ V (G) such that G − S
has more than one component or G − S is a single vertex graph. A path in G is
an ordered list of distinct vertices v1, v2, ..., vq ∈ V such that (vi−1, vi) ∈ E for
all 2 ≤ i ≤ q. The length of a path is the number of edges on the path. We call
a path P is even if the number of edges on P is even. We call a path P is odd if
the number of edges on P is odd.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph G divides
the plane into connected regions called faces. The unbounded region is called
the outer face. Let v1, v2, ..., vl be all the vertices in a clockwise order on the
contour of a face f in G. We often denote f by f(v1, v2, ..., vl). For a face f in G
we denote by V (f) the set of vertices of G on the boundary of face f . We call
two faces F1 and F2 are vertex-disjoint if V (F1)

⋂
V (F2) = ∅. Let f be a face in a

plane graph G with n ≥ 3. If the boundary of f has exactly three edges then we
call f a triangle face or a triangulated face. One can divide a face f of p (p > 3)
vertices into p − 2 triangulated faces by adding p − 3 extra edges. The operation
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above is called triangulating a face. If every face of a graph is triangulated, then
the graph is called a triangulated plane graph.

A maximal planar graph is one to which no edge can be added without losing
planarity. Thus in any embedding of a maximal planar graph G with n ≥ 3, the
boundary of every face of G is a triangle, and hence an embedding of a maximal
planar graph is often called a triangulated plane graph. It can be derived from
the Euler’s formula for planar graphs that if G is a maximal planar graph with
n vertices and m edges then m = 3n - 6, for more details see [NR04]. We call a
face a quadrangle face if the face has exactly four vertices.

An isomorphism from a simple graph G to a simple graph H is a bijection
f : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H). Let
G1 and G2 are two graphs. The subgraph isomorphism problem asks to determine
whether G2 contains a subgraph isomorphic to G1. Subgraph isomorphism is
known to be an NP-complete problem [GJ79]. It is not difficult to prove that
recognition of a spanning subgraph of a graph is an NP-complete problem using
a transformation from subgraph isomorphism problem.

Let G be a 5-connected planar graph, let Γ be any planar embedding of G and
let p be an integer such that p ≥ 3. We call G a p-doughnut graph if the following
Conditions (d1) and (d2) hold: (d1) Γ has two vertex-disjoint faces each of which
has exactly p vertices, and all the other faces of Γ has exactly three vertices; and
(d2) G has the minimum number of vertices satisfying Condition (d1).

In general, we call a p-doughnut graph for p ≥ 3 a doughnut graph. The
following result is known for doughnut graphs [KR07].

Lemma 1. Let G be a p-doughnut graph. Then G is 5-regular and has exactly
4p vertices.

For a cycle C in a plane graph G, we denote by G(C) the plane subgraph of
G inside C excluding C. Let C1, C2 and C3 be three vertex-disjoint cycles in
G such that V (C1) ∪ V (C2) ∪ V (C3)=V (G). Then we call an embedding Γ of
G a doughnut embedding of G if C1 is the outer face and C3 is an inner face of
Γ , G(C1) contains C2 and G(C2) contains C3. We call C1 the outer cycle, C2
the middle cycle and C3 the inner cycle of Γ . Fig. 1(b) illustrates the doughnut
embedding of the doughnut graph in Fig. 1(a). The following result regarding
doughnut embedding is known for doughnut graphs [KR07].

Lemma 2. A p-doughnut graph always has a doughnut embedding.

The algorithm in [KR07] for finding a straight-line grid drawing of a doughnut
graph first finds the doughnut embedding of a doughnut graph. Then the three
vertex-disjoint cycles are drawn on three nested rectangles in such a way that
each edge can be drawn as a straight-line segment without any edge crossings.
Fig. 1(c) illustrates a straight-line grid drawing of a doughnut embedding of a
doughnut graph in Fig. 1(b). The algorithm takes linear time as stated in the
following lemma [KR07].

Lemma 3. A doughnut graph G of n vertices has a straight-line grid drawing
on a grid of area O(n). Furthermore, the drawing of G can be found in linear
time.
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3 Characterization

In this section, we give a necessary and sufficient condition for a 4-connected
planar graph to be a spanning subgraph of a doughnut graph. The following
theorem is the main result of our paper.

Theorem 1. Let G be a 4-connected planar graph with 4p vertices where p > 4
and let Δ(G) ≤ 5. Let Γ be a planar embedding of G. Assume that Γ has exactly
two vertex disjoint faces F1 and F2 each of which has exactly p vertices. Then G
is a spanning subgraph of a p-doughnut graph if and only if Γ holds the following
conditions.

(a) G has no edge (x, y) such that x ∈ V (F1) and y ∈ V (F2).
(b) Every face f of Γ has at least one vertex v ∈ {V (F1) ∪ V (F2)}.
(c) For any vertex x /∈ {V (F1)∪V (F2)}, total number of neighbors of x on faces

F1 and F2 are at most three.
(d) Every face f of Γ except the faces F1 and F2 has either three or four vertices.
(e) For any x-y path P such that V (P ) ∩ {V (F1) ∪ V (F2)} = ∅ the following

conditions hold.
(i) If the vertex x has exactly two neighbors on face F1(F2) and P is even,
then the vertex y has at most two neighbors on face F1(F2) and at most one
neighbor on face F2(F1).
(ii) If the vertex x has exactly two neighbors on face F1(F2) and P is odd,
then the vertex y has at most one neighbor on face F1(F2) and at most two
neighbors on face F2(F1).

Since G is a 4-connected planar graph, the following fact holds.

Fact 4. Let G be a 4-connected planar graph with 4p vertices. Let Γ and Γ ′ be any
two planar embeddings of G. Then any facial cycle of Γ is a facial cycle of Γ ′.

Fact 4 implies that decomposition of a 4-connected graph G into its facial cycles
is unique. (Generally speaking, Fact 4 holds for any 3-connected planar graph.)
Throughout the paper we often mention faces of G without mentioning its planar
embedding where description of the faces are valid for any planar embedding of
G, since κ(G) ≥ 4 for every graph G considered in this paper.

Before proving the necessity of Theorem 1, we have the following fact.

Fact 5. Let G be a 4-connected planar graph with 4p vertices where p > 4 and
let Δ(G) ≤ 5. Assume that G has exactly two vertex disjoint faces F1 and F2
each of which has exactly p vertices. If G is a spanning subgraph of a doughnut
graph then G can be augmented to a 5-connected 5-regular graph G′ through
triangulation of all the non-triangulated faces of G except the faces F1 and F2.

We now prove the necessity of Theorem 1.

Proof for Necessity of Theorem 1
Assume that G is a spanning subgraph of a p-doughnut graph. Then by Lemma 1
G has 4p vertices. Clearly Δ(G) ≤ 5 and G satisfies the conditions (a), (b) and
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Fig. 2. (a) G has an even x-y path P such that x has exactly two neighbors on face F1

and y has exactly two neighbors on face F2 and V (P ) ∩ {V (F1) ∪ V (F2)} = ∅; and (b)
G′ is the resulting graph after triangulations of all non-triangulated faces of G except
F1 and F2 where vertex y has degree exactly six

(c), otherwise G would not be a spanning subgraph of a doughnut graph. Hence
it is sufficient to prove the necessity of Conditions (d) and (e).

(d) Since the graph G is simple and four connected, G does not have any face
of two or less vertices. Then every face of G has three or more vertices. We now
show that G has no face of more than four vertices. Assume for a contradiction
that G has a face f of more than four vertices. Any polygon of q vertices can be
triangulated by adding q − 3 extra edges. These extra edges increase the degrees
of q − 2 vertices and the sum of the degrees will be increased by 2(q − 3). Using
pigeon hole principle one can easily observe that there is a vertex among the
q(> 4) vertices whose degree will be raised by at least 2 after triangulation of
the polygon. Then G′ would have a vertex of degree six or more where G′ is
a graph obtained after triangulation of f . Hence we cannot augment G to a 5-
regular graph through triangulation of all the non-triangulated faces of G other
than the faces F1 and F2. Therefore G can not be a spanning subgraph of a
doughnut graph by Fact 5, a contradiction. Hence each face f of G except F1
and F2 has either three or four vertices.

(e) Assume that G is a spanning subgraph of a doughnut graph. Assume for
a contradiction that graph G has an even x-y path P such that V (P )∩{V (F1)∪
V (F2)} = ∅, vertex x has exactly two neighbors on face F1 and vertex y has more
than one neighbor on face F2, as illustrated in Fig. 2(a). Then one can’t augment
G to a 5-regular graph by triangulating the non-triangulated faces except F1 and
F2 since a vertex of degree more than five will appear in such a triangulation
as illustrated in Fig. 2(b), where a vertex y of degree exactly six appears in the
triangulation. Hence G can not be a spanning subgraph of a doughnut graph
by Fact 5, a contradiction. Similarly we can prove that the graph G does not
have an odd x-y path P such that vertex x has exactly two neighbors on F1 and
vertex y has more than one neighbor on F1 and V (P ) ∩ {V (F1) ∪ V (F2)} = ∅.

Q.E .D.

In the remaining of this section we give a constructive proof for the sufficiency
of Theorem 1. Assume that G satisfies the conditions of Theorem 1. We now
have the following lemma.
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Lemma 6. Let G be a 4-connected planar graph satisfying the conditions in
Theorem 1. Assume that all the faces of G except F1 and F2 are triangulated.
Then G is a doughnut graph.

Proof. To prove the claim, we have to prove that (i) G is a 5-connected graph,
(ii) G has two vertex disjoint faces each of which has exactly p, p > 4 vertices,
and all the other faces of G has exactly three vertices, and (iii) G has the
minimum number of vertices satisfying properties (i) and (ii).

(i) We first prove that G is a 5-regular graph. Every face of G is a triangle
except F1 and F2. Furthermore each of F1 and F2 has exactly p, p > 4 vertices.
Then G has 3(4p) − 6 − 2(p − 3) = 10p edges. Since none of the vertices of G
has degree more than five and G has exactly 10p edges, each vertex of G has
degree exactly five. We now prove that vertices of G lie on three vertex-disjoint
cycles C1, C2 and C3 such that cycles C1, C2, C3 contain exactly p, 2p and p
vertices, respectively. We take an embedding Γ of G such that F1 is embedded
as the outer face and F2 is embedded as an inner face. We take the contour of
face F1 as cycle C1 and contour of face F2 as cycle C3. Then each of C1 and C2
contain exactly p, p > 4 vertices. Since G satisfies Conditions (a), (b) and (c)
of Theorem 1 and all the faces of G except F1 and F2 are triangulated, the rest
2p vertices of G form a cycle in Γ . We take this cycle as C2. G(C2) contains C3
since G satisfies Condition (b) in Theorem 1. Clearly C1, C2 and C3 are vertex-
disjoint and cycles C1, C2, C3 contain exactly p, 2p and p vertices, respectively.
We now prove that G is 5-connected. Assume for a contradiction that G has a
cut-set of less than five vertices. In such a case, G would have a vertex of degree
less than five or G would have a face of four or more vertices except F1 and F2,
a contradiction. Hence G is 5-connected.

(ii) The proof of this part is obvious since G has two vertex disjoint faces each
of which has exactly p vertices and all the other faces of G has exactly three
vertices.

(iii) The number of vertices of G is 4p. It is the minimum number of vertices
required to construct a graph that satisfies the properties (i) and (ii) [KR07] .

Therefore G is a doughnut graph. Q.E .D.

We thus assume that G has a non-triangulated face f except faces F1 and F2. By
Condition (d) of Theorem 1, f has exactly four vertices. We call a quadrangle
face f of G an α-face if f contains at least one vertex from each of the faces
F1 and F2 as illustrated in Fig. 3, where f1(a, b, c, d) is an α-face. We call a
quadrangle face f of G a β-face if f contains at least one vertex either from F1
or from F2 but not from both the faces as illustrated in Fig. 3, where f2(p, q, r, s)
is a β-face. We call a triangulation of an α-face f of G a valid triangulation of f
if no edge is added between any two vertices x, y ∈ V (f) such that x ∈ V (F1)
and y ∈ V (F2). Faces f1(a, b, c, d) and f2(p, q, r, s) in Fig. 4(a) are two α-faces
and Fig. 4(b) illustrates the valid triangulations of f1 and f2.

We now have the following fact for an α-face f .

Fact 7. Let G be a 4-connected planar graph satisfying the conditions in Theo-
rem 1. Let f be an α-face in G. Then f admits unique valid triangulation and
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Fig. 3. f1(a, b, c, d) is an α-face and f2(p, q, r, s) is a β-face
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Fig. 4. (a) f1(a, b, c, d) and f2(p, q, r, s) are two α-faces, and (b) valid triangulations of
f1 and f2
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Fig. 5. (a)f1(a, b, c, d) and f2(p, q, r, s) are two β1-faces, and (b) valid triangulations of
f1 and f2

the triangulation is obtained by adding an edge between two vertices those are
not on F1 and F2.

We call a β-face a β1-face if the face contains exactly one vertex either from F1
or from F2 as illustrated in Fig. 5(a), where f1(a, b, c, d) and f2(p, q, r, s) are two
β1-faces. Otherwise we call a β-face a β2-face as illustrated in Fig. 6(a), where
face f1(a, b, c, d) is a β2-face. Since G is 4-connected, a β2-face f of G has exactly
two vertices either from F1 or from F2. We call a vertex of a β1-face f a middle
vertex of f if the vertex is in the middle position among the three consecutive
vertices other than the vertex on F1 or F2. In Fig. 5(a) vertex c of face f1 and
vertex r of face f2 are the middle vertices. We call a triangulation of a β1-face
f of G a valid triangulation of f if no edge is added between any two vertices
x, y ∈ V (f) such that x, y /∈ V (F1) ∪ V (F2) as illustrated in Fig. 5(b), where
valid triangulations of faces f1 and f2 in Fig. 5(a) are illustrated.

We now have the following fact for a β1-face f .

Fact 8. Let G be a 4-connected planar graph satisfying the conditions in The-
orem 1. Let f be a β1-face of G. Then f admits unique valid triangulation and
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the triangulation is obtained by adding an edge between the vertex on F1 or F2
and the middle vertex.

We call a triangulation of a β2-face f of G a valid triangulation of f if the
triangulation is obtained by adding an edge (a, c) where a ∈ V (F1)(V (F2)),
c /∈ {V (F1) ∪ V (F1)} and one of the following conditions holds.

(i) G has an even x-c path P such that x has exactly two neighbors on F1(F2)
and V (P ) ∩ {V (F1) ∪ V (F2)} = ∅.

(ii) G has an odd x-c path P such that x has exactly two neighbors on F2(F1)
and V (P ) ∩ {V (F1) ∪ V (F2)} = ∅.

(iii) G satisfies none of the Conditions (i) and (ii).

The graph G in Fig. 6(a) satisfies Condition (i) and the face f1(a, b, c, d) in G
is a β2-face, and Fig. 6(d) illustrates the valid triangulation of f1. The graph G
in Fig. 6(b) satisfies Condition (ii) and the face f2(p, q, r, s) in G is a β2-face,
and Fig. 6(e) illustrates the valid triangulation of f2. The graph G in Fig. 6(c)
satisfies Condition (iii) and the face f3(w, x, y, z) in G is a β2-face, and Fig 6(f)
illustrates the valid triangulation of f3.

We now have the following fact for a β2-face f .

Fact 9. Let G be a 4-connected planar graph satisfying the conditions in The-
orem 1. Let f be a β2-face of G. Then f admits unique valid triangulation and
the triangulation is obtained by adding an edge between a vertex on face F1 or
F2 and a vertex x /∈ V (F1) ∪ V (F2).

We now need a definition. Let v1, v2, v3, v4 are four vertices in a clockwise order
on the contour of a quadrangle face f . We call a vertex vi on the contour of
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Fig. 6. Illustration for valid triangulation of β2-face; (a) f1(a, b, c, d) is a β2-face and
G satisfies condition (i), (b) f2(p, q, r, s) is a β2-face and G satisfies condition(ii), (c)
f3(w, x, y, z) is a β2-face and G satisfies condition (iii), and (d), (e), (f) illustrates the
valid triangulations of f1, f2 and f3, respectively
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Fig. 7. (a) G has an α-face f1(a, b, c, d), a β1-face f2(p, q, r, s) and a β2-face
f3(w, x, y, z), and (b) valid triangulation of faces f1, f2 and f3

f a good vertex if vi is one of the end vertex of an edge which is added for a
valid triangulation of f as mentioned in Facts 7, 8 and 9. Fig. 7(a) illustrates an
example where f1(a, b, c, d) is an α-face, f2(p, q, r, s) is a β1-face and f3(w, x, y, z)
is a β2 face and Fig. 7(b) illustrates the valid triangulations of faces f1, f2 and
f3 where b and d are good vertices of f1, p and r are good vertices of f2, and x
and z are good vertices of f3. We now have the following facts regarding good
vertices on α- and β1-faces.

Fact 10. For any α-face f of G, a good vertex of f is contained in none of F1
and F2 and has neighbors on both F1 and F2.

Fact 11. For any β1-face f of G, one of the good vertices is on F1(F2) and the
other good vertex is the middle vertex of f having neighbors only on F2(F1).

We now have the following Lemmas 12 and 13 whose proofs are omitted in this
extended abstract. Condition (e) of Theorem 1 is effectively used in the proof of
Lemmas 12 and 13.

Lemma 12. Let G be a 4-connected planar graph satisfying the conditions in
Theorem 1. Then any quadrangle face f of G admits unique valid triangulation
such that after triangulation d(v) ≤ 5 holds for any vertex v in the resulting
graph.

Lemma 13. Let G be a 4-connected planar graph satisfying the conditions in
Theorem 1. Also assume that G has quadrangle faces. Then no two quadrangle
faces f1 and f2 have a common vertex which is a good vertex for both the faces
f1 and f2.

We are now ready to give a proof for the sufficiency of the Theorem 1.

Proof for Sufficiency of Theorem 1

Assume that the graph G satisfies all the conditions of Theorem 1. If all the faces
of G except F1 and F2 are triangulated, then by Lemma 6 G is a doughnut graph.
Otherwise, we triangulate each quadrangle face of G, using its valid triangulation.
Let G′ be the resulting graph. For each vertex v in G′ d(v) ≤ 5, since according
to Lemma 12 degree of each vertex of the graph remains five or less after valid
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triangulation of each quadrangle face and by Lemma 13 no two quadrangle
faces of G have a common vertex which is a good vertex for both the faces.
Since G satisfies the conditions in Theorem 1, G′ is obtained from G using
valid triangulations of quadrangle faces and d(v) ≤ 5 for each vertex v in G′, G′

satisfies the conditions in Theorem 1. Hence G′ is a doughnut graph by Lemma 6.
Therefore G is a spanning subgraph of a doughnut graph. Q.E .D.

We now have the following lemma.

Lemma 14. Let G be a 4-connected planar graph satisfying the conditions in
Theorem 1. Then G can be augmented to a doughnut graph in linear time.

Proof. We first embed G such that F1 is embedded as the outer face and F2 is
embedded as an inner face. We then triangulate each of the quadrangle faces of
G using its valid triangulation if G has quadrangle faces. Let G′ be the resulting
graph. As shown in the sufficiency proof of Theorem 1, G′ is a doughnut graph.
One can easily find all quadrangle faces of G and perform their valid triangula-
tions in linear time, hence G′ can be obtained in linear time. Q.E .D.

In Theorem 1 we have given a necessary and sufficient condition for a 4-connected
planar graph to be a spanning subgraph of a doughnut graph. As described in
the proof of Lemma 14 we have provided a linear-time algorithm to augment a
4-connected planar graph G to a doughnut graph if G satisfies the conditions
in Theorem 1. We have thus identified a subclass of 4-connected planar graphs
that admits straight-line grid drawings with linear area as stated in the following
theorem.

Theorem 2. Let G be a 4-connected planar graph satisfying the conditions in
Theorem 1. Then G admits a straight-line grid drawing on a grid of area O(n).
Furthermore, the drawing of G can be found in linear time.

Proof. Using the method described in the proof of Lemma 14, we augment G
to a doughnut graph G′ by adding dummy edges (if required) in linear time.
By Lemma 3, G′ admits a straight-line grid drawing on a grid of area O(n). We
finally obtain a drawing of G from the drawing of G′ by deleting the dummy
edges (if any) from the drawing of G′. By Lemma 14, G can be augmented to
a doughnut graph in linear time and by Lemma 3, straight-line grid drawing of
a doughnut graph can be found in linear time. Moreover, the dummy edges can
also be deleted from the drawing of a doughnut graph in linear time. Hence the
drawing of G can be found in linear time. Q.E .D.

4 Conclusion

In this paper, we established a necessary and sufficient condition for a 4-connected
planar graph G to be a spanning subgraph of a doughnut graph. We also gave a
linear-time algorithm to augment a 4-connected planar graph G to a doughnut
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graph if G satisfies the necessary and sufficient condition. By introducing the nec-
essary and sufficient condition, in fact, we have identified a subclass of 4-connected
planar graphs that admits straight-line grid drawings with linear area. Recogni-
tion of a three-connected spanning subgraph of a doughnut graph and it’s aug-
mentation to a doughnut graph looks a non-trivial problem and it is left as an
open problem.
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Abstract. Finding a maximum acyclic subgraph is on the list of prob-
lems that seem to be hard to tackle from a parameterized perspective.
We develop two quite efficient algorithms (one is exact, the other param-
eterized) for (1, n)-graphs, a class containing cubic graphs. The running
times are O∗(1.1871m) and O∗(1.212k), respectively, determined by an
amortized analysis via a non-standard measure.

1 Introduction and Definitions

Our Problem. The Feedback Arcset Problem FAS, is on the list of 21
problems that was presented by R.M. Karp [10] in 1972 exhibiting the first
NP-complete problems. It has numerous applications [7], ranging from program
verification, VLSI and other network applications to graph drawing, where in
particular the re-orientation of arcs in the first phase of the Sugiyama approach
to hierarchical layered graph drawing is equivalent to FAS, see [2,17]. More
formally, we consider the dual of FAS, namely the following problem:

Maximum Acyclic Subgraph MAS

Given a directed graph G(V, A), and the parameter k.
We ask: Is there a subset A′ ⊆ A, with |A′| ≥ k, which is acyclic?

In this paper, we deal with finding exact and parameterized algorithms for MAS.
Mostly, we focus on a class of graphs that, to our knowledge, has not been pre-
viously described in the literature. Let us call a directed graph G = (V, E)
(1, n)-graph if, for each vertex v ∈ V , its indegree d+(v) obeys d+(v) ≤ 1 or
its outdegree d−(v) satisfies d−(v) ≤ 1 (i.e, ∀v ∈ V : min{d+(v), d−(v)} ≤ 1.).
In particular, graphs of maximum degree three are (1, n)-graphs. Notice that
MAS, restricted to cubic graphs, is still NP-complete. For some applications
from graph drawing (e.g., laying out “binary decision diagrams” where vertices
correspond to yes/no decisions) even the latter restriction is not so severe at all.
Having a closer look at the famous paper of I. Nassi and B. Shneiderman [13]
where they introduce structograms to aid structured programming (and restrict-
ing the use of GOTOs), it can be seen that the resulting class of flowchart graphs
is that of (1, n)-graphs.

Cubic graphs also have been discussed in relation to approximation algo-
rithms: A. Newman [14] showed a factor 12

11 -approximation. Having a closer look
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at her algorithm reveals that it also works for (1, n)-graphs with the same ap-
proximation factor. This largely improves on the general situation, where only a
factor of 2 is known [2]. We point out that finding a minimum feedback arc set
(in general graphs) is known to possess a factor log n log log n-approximation,
see [7], and hence shows an approximability behavior much worse than MAS.

Our Framework: Parameterized Complexity. A parameterized problem P
is a subset of Σ∗ × N, where Σ is a fixed alphabet and N is the set of all non-
negative integers. Therefore, each instance of the parameterized problem P is a
pair (I, k), where the second component k is called the parameter. The language
L(P ) is the set of all YES-instances of P . We say that the parameterized problem
P is fixed-parameter tractable [5] if there is an algorithm that decides whether
an input (I, k) is a member of L(P ) in time f(k)|I|c, where c is a fixed constant
and f(k) is a function independent of the overall input length |I|. We will also
write O∗(f(k)) for this run-time bound. Equivalently, one can define the class of
fixed-parameter tractable problems as follows: strive to find a polynomial-time
transformation that, given an instance (I, k), produces another instance (I ′, k′)
of the same problem, where |I ′| and k′ are bounded by some function g(k); in
this case, (I ′, k′) is also called a (problem) kernel.

Discussion of Related Results. MAS on general directed graphs can be
solved in time O∗(2k) and O∗(2n), shown by V. Raman and S. Saurabh in [15],
with n the number of vertices. Most recently, parallel to our work, I. Razgon, J.
Chen et al. showed during a workshop [12] that FAS ∈ FPT , relying on results
from J. Chen et al [4]. In contrast to MAS, it still admits a fairly vast run time
of O∗(8kk!). Likewise, I. Razgon [16] provided an exact (non-parameterized)
O∗(1.9977n)-algorithm for Feedback Vertex Set (FVS), which translates to
a FAS-algorithm with the same base, but measured in m.

The complexity picture changes when one considers undirected graphs. The
task of removing a minimum number of edges to obtain an acyclic graph can
be accomplished in polynomial time, basically by finding a spanning forest. The
task of removing a minimum number of vertices to obtain an acyclic graph is
(again) NP-complete, but can be approximated to a factor of two, see V. Bafna
et al. [1], and is known to be solvable in O∗(5k) with J. Chen et al. [3] being
the currently leading party in a run time race. Also, exact algorithms have been
derived for this problem by F. V. Fomin et al. [8].

Our Contributions. Our main technical contribution is to derive a parame-
terized O∗(1.212k)-algorithm for MAS on (1, n)-graphs. On cubic graphs the
run time reduces to O∗(1.1960k) via a novel combinatorial observation. We also
derive an exact algorithm for MAS on (1, n)-graphs and as a by-products two
other for Directed Feedback Vertex Set on cubic and planar graphs with
running times O∗(1.1871m), O∗(1.282n) and O∗(1.986n), respectively. Besides
being a nice combinatorial problem on its own right, we think that our contri-
bution is also interesting from the more general perspective of a development
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of tools for constructing efficient parameterized algorithms. Namely, the algo-
rithm we present is of a quite simple overall structure, similar in simplicity as,
e.g., the recently presented algorithms for Hitting Set [6]. But the analysis is
quite intricate and seems to offer a novel way of amortized search tree analysis
that might be applicable in other situations in parameterized algorithmics, as
well. It is also one of the fairly rare applications of the “measure & conquer”
paradigm [9] in parameterized algorithmics. Due to lack of space, some proofs
had to be omitted.

Fixing Terminology. We consider directed multigraphs G(V, A) in the course
of our algorithm, where V is the vertex set and A the arc set. From A to V
we have two kinds of mappings: For a ∈ A, init(a) denotes the vertex at the
tip of the arc a and ter(a) the end. We distinguish between two kinds of arc-
neighborhoods of a vertex v which are E+(v) := {a ∈ A | ter(a) = v} and
E−(v) := {a ∈ A | init(a) = v}. We have an in- and outdegree of a vertex, that
is d+(v) := |E+(v)| and d−(v) := |E−(v)|. We set E(v) := E+(v) ∪ E−(v) and
d(v) := |E(v)| called the degree of v. We also define a neighborhood for arcs a
NA(a) := {a1, a2 ∈ A | ter(a1) = init(a), ter(a) = init(a2)} and for A′ ⊆ A we
set NA(A′) :=

⋃
a′∈A′ NA(a′). For V ′ ⊆ V we set A(V ′) := {a ∈ A | ∃u, v ∈

V ′, init(a) = u, ter(a) = v}. We call an arc (u, v) a fork if d−(v) ≥ 2 (but
d+(v) = 1) and a join if d+(u) ≥ 2 (but d−(u) = 1). With MAS , we refer to a
set of arcs, which is acyclic and is a partial solution. An undirected cycle is an
acyclic arc set, which is a cycle in the underlying undirected graph.

Kernels Via Approximation. We first link approximability and parameter-
ized algorithmics by a simple but interesting observation. We call a maximization
problem P a set maximization problem if its task, given instance I, is to identify
a subset S (satisfying additional requirements) of a ground set M of maximum
cardinality. The natural parameterized problem related to P (denoted by Ppar)
is to find, given (I, k) such a subset S of cardinality at least k.

Proposition 1. If a set maximization problem P has a c-approximation, where
the ratio is measured with respect to the whole ground set M that is part of the
input I whose size is measured in terms of the cardinality |M | of M , then Ppar,
parameterized by k, has a kernel of size upper-bounded by ck.

Both above mentioned approximations exhibit the required properties of Propo-
sition 1. This entails a 2k-kernel for the general case of MAS, as well as a
12
11k-kernel when restricted to (1, n)-graphs, based on A. Newman’s result [14].

2 Preprocessing and Reduction Rules

Firstly, we can assume that our instance G(V, A) forms a strongly connected
component. Every arc not in such a component can be taken into a solution,
and two solutions of two such components can be simply joined.
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Preprocessing. In [7,14] a set of preprocessing rules is already mentioned:

Pre-1: For every v ∈ V with d+(v) = 0 or d−(v) = 0, delete v and E(v), take
E(v) into MAS and decrement k by |E(v)|.

Pre-2: For every v ∈ V with E(v) = {(i, v), (v, o)}, v 	= i and v 	= o, delete v
and E(v) and introduce a new arc (i, o). Decrease k by one.

Pre-3: Remove any loop.

Any preprocessing rule, which applies, will be carried out exhaustively. After-
wards the resulting graph has no vertices of degree less than three.

Definition 1. An arc g is an α-arc if it is a fork and a join.

We need the next lemma, which is a sharpened version of [14, Lemma 2.1] and
follows the same lines of reasoning.

Lemma 1. Any two non-arc-disjoint cycles in a (1, n)-graph with minimum de-
gree at least 3 share an α-arc.

We partition A in Aα containing all α-arcs and Aᾱ := A \Aα. By Lemma 1, the
cycles in G[Aᾱ] must be arc-disjoint. This justifies the next preprocessing rule.

Pre-4: In G delete the arc set of every cycle C contained in G[Aᾱ]. For an
arbitrary a ∈ C adjoin C \ {a} to MAS and decrease k by |C| − 1.

After exhaustively applying Preprocess() (shown in Figure 1), every cycle has
an α-arc. For v ∈ V with E+(v) = {a1, . . . , as} (E+(v) = {c}, resp.) and
E−(v) = {c} (E−(v) = {a1, . . . , as}), it is always better to delete c than one
of a1, . . . , as. Therefore, we adjoin a1, . . . , as to MAS, adjusting k accordingly.
Having applied this rule on every vertex, we adjoined Aᾱ to MAS, and the
remaining arcs are exactly Aα.

So, the next task is to find S ⊆ Aα with |MAS ∪S| ≥ k so that G[MAS ∪S]
is acyclic. We have to branch on the α-arcs, deciding whether we take them
into MAS or if we delete them. α-arcs which we take into MAS will be called
red. For the purpose of measuring the complexity of the algorithm, we will deal
with two parameters k and k′, where k measures the size of the partial solution
and k′ will be used for purposes of run-time estimation: We do not account
the arcs in Aᾱ immediately into k′. For every branching on an α-arc, we count
only a portion of them into k′. More precisely, upon first seeing an arc b ∈ Aᾱ

within the neighborhood NA(g) of an α-arc g we branch on, we will count b only
by an amount of ω, where 0 < ω < 0.5 will be determined later. So, we will
have two weighting functions wk and wk′ for k and k′ with wk(a) ∈ {0, 1} and
wk′ (a) ∈ {0, (1 − ω), 1} for a ∈ A, indicating each how much of the arc has not
been counted into k, or k′ respectively, yet. In the course of the algorithm, we
always have wk(a) ≤ wk′(a). In the very beginning, we have wk(a) = wk′ (a) = 1
for all a ∈ A. For a set A′ ⊆ A, we define wk′ (A′) :=

∑
a′∈A′ wk′ (a′) and wk(A′)

accordingly. Observe that for a ∈ A we have a ∈ MAS iff wk(a) = 0.
The preprocessing rules, together with the mentioned kernel of 12

11k arcs, gives
us another simple brute-force algorithm for MAS: Within the kernel with m arcs,
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Procedure:
Preprocess(MAS ,G(V, A),k):
1: repeat
2: cont ← false
3: apply Pre-1 - Pre-3 exhaus-

tively.
4: if Pre-4 applies then
5: cont ← true
6: until cont=false
7: return (MAS,G(V, A),k,1)

Procedure:
Reduce(MAS,G(V, A)),k,k′,wk,wk′):
1: repeat
2: cont ← false
3: for i=1 to 6 do
4: apply RR-i exhaustively.
5: if RR-i applied then
6: cont ← true
7: until cont=false
8: return (MAS,G(V, A),k,k′,wk,wk′)

Fig. 1. The procedures Preprocess() and Reduce()

there could be at most m/3 arcs that are α-arcs. It is obviously sufficient to test
all possible 2m/3 ≤ 2(4/11)k ≈ 1.288k many possibilities of choosing α-arcs into
the (potential) feedback arc set.

Reduction Rules. There is a set of reduction rules from [14], which we adapted
and modified to deal with weighted arcs. Also, we define a (linear time checkable)
predicate contractible for all a ∈ A.

contractible(a) =
{

0 : wk(a) = 1, ∃ cycle C with a ∈ C and wk(C \ {a}) = 0
1 : else

The meaning of this predicate is the following: if contractible(a) = 0, then a
is the only remaining arc of some cycle, which is not already determined to be
put into MAS. Thus, a has to be deleted. In the following, RR-(i-1) is always
carried out exhaustively before RR-i.

RR-1: For v ∈ V with d+(v) = 0 or d−(v) = 0, take E(v) into MAS, delete v
and E(v) and decrease k by wk(E(v)) and k′ by wk′ (E(v)).

RR-2: For v ∈ V with E(v) = {a, b} let z = arg max{wk′(a), wk′ (b)} and
y ∈ E(v) \ {z}. If contractible(y) = 1, then contract y, decrement k by
wk(y), k′ by wk′ (y). If y was red, then z becomes red.

RR-3: If for g ∈ A, we have contractible(g) = 0, then delete g.

We point out that due to RR-2 also non-α-arcs can become red. But it is still
true for a α-arc a that a ∈ MAS iff a is red. Let AU

α := {a ∈ Aα | a is non-red}.
We classify the arcs of AU

α in thin α-arcs, which are contained in exactly one
cycle, and thick α-arcs, which are contained in at least two cycles. Because G
is strongly connected, there are no other α-arcs. We can distinguish them as
follows: For every α-arc g, find the smallest cycle Cg which contains g via BFS.
If g is contained in a second cycle C′g, then there is an arc a ∈ Cg with a 	∈ C′g.
So for all a ∈ Cg, remove a and restart BFS, possibly finding a second cycle.

RR-4: If g ∈ AU
α is thin and contractible(g) = 1, then take g into MAS and

decrease k by wk(g), k′ by wk′ (g) and set wk(g) ← 0, wk′(g) ← 0.
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Algorithm 1. A parameterized algorithm for Maximum Acyclic Subgraph

on (1, n)-graphs
1: (MAS ,G(V, A),k,wk)← Preprocess(∅,G(V, A),k).
2: MAS← Aᾱ∪MAS,k′ ← k, k ← k − wk(Aᾱ), wk(Aᾱ) ← 0
3: Sol3MAS(MAS ,G(V, A),k,k′,wk′ ,wk)

Procedure: Sol3MAS(MAS,G(V, A),k,k′,wk,wk′):
1: (MAS ,G(V, A),k,k′,wk,wk′)← Reduce(MAS,G(V, A),k,k′,wk,wk′)
2: if k ≤ 0 then
3: return YES
4: else if there is a component C with at most 9 arcs then
5: Test all possible solutions for C.
6: else if there is a α-arc g ∈ AU

α then
7: if not Sol3MAS(MAS ,G[A \ {g}],k,k′,wk,wk′) then
8: k ← k−1, k′ ← k′−wk′(g), wk(g) ← wk′(g) ← 0, MAS← MAS ∪NA(g)∪{g}.
9: for all a ∈ NA(g) do

10: Adjust wk′ , see Figure 2.
11: return Sol3MAS(MAS,G(V, A),k,k′,wk,wk′)
12: else
13: return YES
14: else
15: return NO

RR-5: If a, b ∈ A form an undirected 2-cycle then let z = arg min{wk′(a),
wk′ (b)}, decrease k by wk(z), k′ by wk′ (z), take z into MAS and delete z.

RR-6: Having (u, v), (v, w), (u, w) ∈ A (an undirected 3-cycle), decrease k by
wk((u, w)), k′ by wk′ ((u, w)), take (u, w) into MAS and delete (u, w).

Lemma 2. a)The reduction rules are sound. b)After the application of Re-
duce(), see Figure 1, we are left with a (1, n)-graph with only thick α-arcs and
no directed or undirected 2- or 3-cycle.

3 The Algorithm and Its Analysis

3.1 The Algorithm

We are ready now to state our main Algorithm 1; observe that the handling of
the second parameter k′ is only needed for the run-time analysis and could be
avoided when implementing the algorithm. Therefore, the branching structure
of the algorithm is quite simple, as expressed in the following:

Lemma 3. Branching in Alg. 1 either puts a selected α-arc g into MAS, or
it deletes g. Only if arcs are deleted, reduction rules will be triggered in the
subsequent recursive call. This can can be also due to triggering RR-3 after
putting g into MAS.
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Adjust wk′ :
1: if wk′(a) = 1 then
2: if ∃b ∈ (NA(a) \ (NA(g) ∪ {g})) with

wk′(b) = 0 then
3: k′ ← k′ − 1, wk′(a) ← 0,

k ← k − wk(a), wk(a) ← 0 (case a.)
4: else
5: k′ ← k′ − ω, wk′(a) ← (1 − ω),

k ← k − wk(a), wk(a) ← 0 (case b.)
6: else
7: k′ ← k′ − (1 − ω), wk′(a) ← 0. (case c.)

Fig. 2. In case a. we set wk′(a) = 0, because there will not be any other neighboring
non-red α-arc of a. In case b., this might not be the case, so we count only a portion
of ω. In case c., we will prove that wk′(a) = (1 − ω) and that there will be no other
non-red neighboring α-arc of a, see Theorem 1.5.

3.2 Analysis

Basic Combinatorial Observations. While running the algorithm, k ≤ k′.
Now, substitute in line 2 of Sol3MAS of Algorithm 1 k by k′. If we run the
algorithm, it will create a search tree Tk′ . The search tree Tk of the original
algorithm must be contained in Tk′ , because k ≤ k′. If |Tk′ | ≤ ck′

, then it follows
that also |Tk| ≤ ck′

= ck, because in the very beginning, k = k′. So in the
following, we will state the different recurrences derived from Algorithm 1 in
terms of k′. For a good estimate, we have to calculate an optimal value for ω.

Theorem 1. In every node of the search tree, after applying Reduce(), we have

1. For all a = (u, v) ∈ Aᾱ with wk′(a) = (1 − ω), there exists a red fork (u′, u)
or a red join (v, v′).

2. For all non-red a = (u, v) ∈ Aᾱ with wk′ (a) = 0, we find a red fork (u′, u)
and a red join (v, v′). We will also say that a is protected (by the red arcs).

3. For all red arcs d = (u, v) with wk′ (d) = 0, if we have only non-red arcs in
E(u) \ {d} (E(v) \ {d}, resp.), then d is a join (d is a fork, resp.).

4. For each red arc d = (u, v) with wk′(d) = 0 that is not a join (fork, resp.), if
there is at least one red arc in E(u) \ {d} (in E(v) \ {d}, resp.), then there
is a red fork (red join, resp.) in G[E(u)] (G[E(v)], resp.).

5. For all g ∈ AU
α and for all a ∈ NA(g), we have: wk′ (a) > 0.

Proof. We use induction on the depth of the search tree. Clearly, all claims are
trivially true for the original graph instance, i.e., the root node. Notice that
each claim has the form ∀a ∈ A : X(a) =⇒ Y (a). Here, X and Y express local
situations affecting a. Therefore, we have to analyze how X(a) could have been
created by branching. According to Lemma 3, we have to discuss what happens
(1) if a certain α-arc had been put into MAS and (2) if reduction rules were
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Fig. 3. Dotted lines indicate red arcs

triggered. As a third point, we must consider the possibility that X(a) is true
both in the currently observed search tree node s and in its predecessor, but
that Y (a) was possibly affected upon entering s.

1. (sketch) Such an arc (u, v) can be created in two ways: (1) By taking a
neighboring α-arc g into MAS. Then g is a join and a fork. (2) By applying
RR-2 on arcs (u, z), (z, v). W.l.o.g. wk′ ((u, z)) = (1−ω). Then by induction
there is a fork (u′, u). How can this situation be affected by the reduction
rules? Any RR-2-application leaves it unchanged as red arcs are ’dominant’.
If w.l.o.g. (u′, u) is a red fork then this situation may be changed by dele-
tions in the case where d(u) becomes two. However, (u, v) disappears by a
subsequent RR-2-application.

2. We will actually prove points 2. through 4. by a parallel induction. To im-
prove readability of our main argument, we refrain from giving all possible
details how the employment of RR-2 may affect (but not drastically change)
the situation in particular. How can a = (u, v) ∈ Aᾱ with wk′ (a) = 0 have
been created ? Firstly, it could be due to a RR2-contraction with a non-red
arc t with wk′ (t) = 0. But then a was not protected, which is a contradiction
to the induction hypothesis. Secondly, it could be due to branching on a
neighboring α-arc b, say b = (v, w) with b a join, in two different ways:
(1) either we branched at b at a point of time when wk′ (a) = (1−ω) (case c.
of Procedure “Adjust”), or (2) we branched at b when wk′ (a) = 1 (case a.)

In case (1), there must have been another red arc e incident to a by item 1
of our property list, see Figure 3(a). e is not incident to v, since it is a fork.
Hence, e = (y, u). This displays the two required red arcs (namely b and e)
in this case. In case (2), a was created by case a. of Procedure “Adjust.”
Obviously, b is red after branching. Since we have branched according to
case a., there is another arc h incident with a (but not with b) such that
wk′ (h) = 0. There are four subcases to be considered:
(a) h = (u, u′) is not red, see Figure 3(b). By induction (item 2.), there must
be a red fork arc (u′′, u). Hence, a is protected.
(b) h = (u, u′) is red, see Figure 3(c). Consider all other arcs incident to u.
Since we are dealing with reduced instances and by the (1, n)-property, there
must be exactly one of the form c = (u′′, u), since otherwise u would be a
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sink. Suppose h is the only red arc in E(u). Then this contradicts item 3.
Now, suppose c is not red. Then there is a red arc (u, ū). By item 4. c must
be also red, a contradiction, Therefore, c is the red fork, which protects a.
(c) h = (u′, u) is not red. All other arcs incident to u could be of the form
(u′′, u), see Figure 3(d). Since h must be protected, by induction, a should
be red, contradicting our assumption on a. Thus, all these arcs are of the
form (u, u′′), see Figure 3(e). This contradicts item 2., since there is no red
join protecting h.
(d) h = (u′, u) is red, see Figure 3(f). Suppose h is not a fork. Then all other
arcs beside a and h are of the form (ũ, u). If none of them is red we have a
contradiction concerning item 3. If one of them is red then by item 4. a is
red, which contradicts our assumptions. Hence, a will be protected.

3. How could d have been created ? If it had been created by branching, then
there are two cases: (1) d was put into MAS; (2) d was neighbor of an arc
b which we put into MAS.

In case (1), the claim is obviously true. In case (2), let, w.l.o.g., u be the
common neighbor of b and d. After putting b into MAS, there will be a
red arc (namely b), incident to u, so that there could be only non-red arcs
incident with v that have the claimed property by induction. If d has been
created by reduction rules, it must have been through RR-2. So, there have
been (w.l.o.g.) two arcs (u, w) and (w, v) with wk′ -weights zero. One of them
must be red. W.l.o.g., assume that (u, w) is red. If (w, v) is red, see Figure
3(g), then the claim holds by induction. If (w, v) is not red, see Figure 3(h),
then (w, v) must be protected due to item 2. Hence, the premise is falsified
for vertex v.

4. We again discuss the possibilities that may create a red d with wk′ (d) = 0.
If d was created by taking it into MAS during branching, then d would be
both fork and join in contrast to our assumptions.

If we branch in the neighborhood of d, then the claim could be easily
verified directly. Finally, d could be obtained from merging two arcs e =
(u, w), f = (w, v) with wk′ (e) = wk′(f) = 0. If both e and f are red, the
claim follows by induction. If only f is red and e is non-red, then there is a
red fork, which protects e by item 2. Again, by induction the claim follows.
The case where only e is red is symmetric.

5. Assume the contrary. Discuss a neighbor arc a of g with wk′(a) = 0.
If a is not red, then g must be red due to item 2., contradicting g ∈ AU

α . If a
is red, then discuss another arc b that is incident to the common endpoint of
a and g. If there is no red b, then the situation contradicts item 3. So, there
is a red b. This picture contradicts item 4. 
�

Estimating the Running Time for Maximum Degree 3 Graphs. In Al-
gorithm 1, depending in which case of Figure 2 we end up, we decrement k′ by
a different amount for each arc a ∈ NA(g) in the case that we put g into MAS.
We can be sure that we may decrement k′ by at least (1 − ω) for each neighbor
a ∈ NA(g) due to the last property of the Theorem 1. If we do not put g into
MAS, we delete g and NA(g) immediately afterwards by RR-1, decrementing
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Table 1. Summarizes by which amount k′ can be decreased for a ∈ NA(g), subject to
if we take g into MAS or delete g and to the case applying to a

α-arc g a. b. c. b′.

MAS 1 ω (1 − ω) ω

Deletion 1 (2 − ω) (1 − ω) 1

k′ accordingly (by wk′(NA(g))). Moreover, if case b. applies to a ∈ NA(g), we
know that the two arcs d, e ∈ (NA(a) \ (NA(g) ∪ g})) obey wk′ (d)wk′ (e) > 0
(observe that we do not have triangles). By deleting a, no matter whether
RR-1 or RR-2 applies to d and e (this depends on the direction of the arcs)
we can decrement k′ by an extra amount of at least (1 − ω), cf. the handling of
k′ by these reduction rules. This is true even if V (d), V (e) ⊂ V (NA(g)). Note
that if V (NA(NA(g))) ⊆ V (NA(g)), then A(V (NA(g))) is a component of 9 arcs
(which are handled separately). Let i denote the number of arcs a ∈ NA(g) for
which case a. applies. In the analogous sense j stands for the case b. and q for
c. For every positive integer solution of i + j + q = 4, we can state a total of
15 recursions T1, . . . , T15 according to Table 1 depending on ω (ignoring the last
column for the moment). For every Ti and for a fixed ω, we can calculate a
constant ci(ω) such that Ti[k] ∈ O∗(ci(ω)k). We want to find a ω with subject
to minimize max{c1(ω), . . . , c15(ω)}. We numerically obtained ω = 0.1687 so
that max{c1(ω), . . . , c15(ω)} evaluates to 1.201. The dominating cases are when
i = 0, j = 0, q = 4 (T5) and i = 0, j = 4, q = 0 (T15). We conclude that MAS on
graphs G with Δ(G) ≤ 3 can be solved in O∗(1.201k). Measuring the run time in
terms of m := |A| the same way is also possible. Observe that if we delete an α-
arc, we can decrement m by one more. By adjusting T1, . . . , T15 according to this
and by choosing ω = 0.2016, we derive an upper bound of O∗(1.1798m). Note
that if we run this exact algorithm on the 12

11k-kernel, we finish in O∗(1.1977k),
being slightly better than the pure parameterized algorithm.

We will obtain a better bound for the search tree by a precedence rule, aiming to
improve recurrence T5. If we branch on an α-arc g according to this recurrence,
for all a ∈ NA(g) we have wk′ (a) ≥ (1 − ω). Such α-arcs will be called α5-arcs.
We add the following rule: branch on α5-arcs with least priority. Let l := |AU

α |.

Lemma 4. Branching on an α5-arc, we can assume:
⌊

1
5−4ω k′

⌋
≤ l <

⌈
1

4−4ω k′
⌉

.

Employing this lemma, we can find a good combinatorial estimate for a brute-
force search at the end of the algorithm. This allows us to conclude:

Theorem 2. MAS is solvable in time O∗(1.1798m) and O∗(1.1960k) on maxi-
mum-degree-3-graphs .

Corollary 1. Feedback Vertex Set on cubic graphs is solvable in O∗(1.282n).

Proof. We argue that MAS and FAS are equivalent for graphs of degree at most
three as follows. Namely, if A is a feedback arc set, then we can remove instead
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the set S of vertices the arcs in A are pointing to in order to obtain a directed
feedback vertex set with |S| ≤ |A|. Conversely, if S is a directed feedback vertex
set, then we can assume that each vertex v ∈ S has one ingoing and two outgoing
arcs or two ingoing and one outgoing arc; in the first case, let av be the ingoing
arc, and in the second case, let av be the outgoing arc. Then, A = {av | v ∈ S}
is a feedback arc set with |A| ≤ |S|. With m ≤ 3

2n the claim follows. 
�

Estimating the Running Time for (1, n)-Graphs. There is a difference to
maximum degree 3 graphs, namely the entry for case b. in case of deletion in
Table 1. For a ∈ NA(g) it might be the case that |NA(a) \ (NA(g) ∪ {g})| ≥
3, so that when we delete g and afterwards a by RR-1 that whether RR-1
nor RR-2 applies (due to the lack of sources, sinks or degree two vertices).
We call this case b′. Remember, case b. refers to the same setting but with
|NA(a) \ (NA(g) ∪ {g})| = 2. Thus the mentioned entry should be 1 for b′.
As long as |NA(g)| ≥ 6 the reduction in k′ is great enough for the modified
table, but for the other cases we must argue more detailed. We introduce two
more reduction rules, the first already mentioned in [14], and add items a)-c) to
Algorithm 1.

RR-7 Contract and adjoin to MAS any (u, v) ∈ A with d+(u) = d+(v) = 1
(d−(u) = d−(v) = 1, resp.). If (u, v) was red the unique arc a := (x, u)
((v, y), resp.) will be red. Decrease k′ by min{wk′((u, v)), wk′ (a)} and set
wk′ (a) ← max{wk′((u, v)), wk′ (a)}. Proceed similarly with (v, y).

RR-8 For a red g′ ∈ Aα with wk′ (g′) > 0, set k′ ← k′−wk′(g′) and wk′ (g′) ← 0.

a) After Reduce(), first apply RR-7 and then RR-8 exhaustively.
b) Prefer α-arcs g such that |NA(g)| is maximal for branching.
c) Forced to branch on g ∈ AU

α with |NA(g)| = 5, choose an α-arc with the least
occurrences of case b′.

Lemma 5. RR-7 and RR-8 are sound and do not violate Theorem 1.

Lemma 6. We can omit branching on arcs g ∈ AU
α with a) |NA(g)| = 5 and 5

occurrences of case b′ or b) |NA(g)| = 4 with an occurrence of case b′.

Let x, y, z denote the occurrences of cases a., b′ and c. To upperbound the branch-
ings according to α-arcs g with |NA(g)| ≥ 6, we put up all recurrences resulting
from integer solutions of x+y+z = 6. Note that we also use the right column of
Table 1. To upperbound branchings with |NA(g)| = 5 we put up all recurrences
obtained from integer solutions of x + y + z = 5, except when x = z = 0 and
y = 5 due to Lemma 6.a). Additionally we have to cover the case where we
have 4 occurrences of case b′ and one of case b. (T [k] ≤ T [k − 5ω] + T [k − (6 −
ω)]). To upperbound the case where |NA(g)| = 4 the recurrences derived from
Table 1 for the integer solutions of x + y + z = 4 suffice due to Lemma 6.b).

Theorem 3. On (1, n)-graphs with m arcs, MAS is solvable in time
O∗(1.1871m) (ω = 0.2392) and O∗(1.212k) (ω = 0.21689), respectively.

Corollary 2. We solve Feedback Vertex Set on planar graphs in O∗(1.986n).
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Proof. Reduce [7] FVS to FAS. The resulting graph G′ has no more than 4n
arcs. Then run Algorithm 1 on G′. 
�

4 Reparameterization

M. Mahajan, V. Raman and S. Sidkar [11] have discussed a rather general setup
for re-parameterization of problems according to a “guaranteed value.” In order
to use their framework, we only need to exhibit a family of example graphs where
Newman’s approximation bound for MAS is sharp. Consider Gr(Vr , Ar), r ≥ 2,
with Vr = {(i, j) | 0 ≤ i < r, 0 ≤ j ≤ 7}, and Ar contains two types of arcs:
1. ((i, j), (i, (j + 1) mod 8) for 0 ≤ i ≤ r and 0 ≤ j ≤ 7.
2a. ((i, j), ((i+1) mod r, (1− j) mod 8)
for 0 ≤ i < r and j = 1, 2.
2b. (((i+1) mod r, (1− j) mod 8, (i, j))
for 0 ≤ i < r and j = 3, 4.
For r = 2 we find an example to the
right. Gr is cubic with |Vr| = 8r and
|Ar| = 12r. Its α-arcs are ((i, 0), (i, 1))
and ((i, 4), (i, 5)) for 0 ≤ i < r.

(1,0)
(1,1)

(1,2)

(1,3)

(1,4)
(1,5)

(1,7)

(1,6)

(0,0)
(0,1)

(0,2)

(0,3)

(0,4)
(0,5)

(0,7)

(0,6)

Since we have to destroy all ‘rings’ as described by the arcs from 1., any feasible
solution to these instances require r arcs to go into the feedback arc set. Also
r arcs suffice, namely ((0, 4), (0, 5)) and ((i, 0), (i, 1)) for 0 < i < r, giving the
‘tight example’ as required in [11] to conclude:

Corollary 3. For any ε > 0, the following question is not fixed-parameter
tractable unless P = NP: Given a cubic directed graph G(V, E) and a parameter
k, does G possess an acyclic subgraph with at least

( 11
12 + ε

)
|E| + k many arcs ?
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Abstract. The problem of finding the minimum r-star cover of orthogo-
nal polygons had been open for many years, until 2004 when Ch. Worman
and J. M. Keil proved it to be polynomial tractable (Polygon decom-
position and the orthogonal art gallery problem, IJCGA 17(2) (2007),
105-138). However, their algorithm is not practical as it has Õ(n17) time
complexity, where Õ() hides a polylogarithmic factor. Herein, we present
a linear-time 3-approximation algorithm based upon the novel partition
of a polygon into so-called [w]-star-shaped orthogonal polygons.

1 Introduction

One of the main topics of computational geometry is efficient decomposition
of polygonal objects into simpler polygons, such as triangles, rectangles, con-
vex polygons, star-shaped polygons, etc. In general, we distinguish between two
main types of decompositions: partitions and covers. A decomposition is called
a partition if the object is decomposed into non-overlapping pieces. Otherwise,
if the pieces are allowed to overlap, then we call the decomposition a cover, and
a collection of polygons S = {P1, P2, . . . , Pk} is said to cover a polygon P if the
union of all polygons in S is P .

The problems of covering polygons with simpler components have received
considerable attention in the literature [3,12,13,24]. Most of these problems are
NP-hard, even if the polygon to be covered has no holes [1,5,23]. Because of the
difficulty of the general problems, one has focussed on orthogonalized versions
of the above problems, and several algorithmic results concerning coverings with
the minimum number of rectangles or the minimum number of orthogonally
convex polygons have been obtained [4,7,18,19,22]. Let us recall that an orthog-
onal polygon is convex if its intersection with every horizontal and vertical line
segment is either empty or a single line segment.

Two types of visibility related to covering with the so-called star-shaped or-
thogonal polygons have been studied in the literature [4]. Namely, two points
� Supported by The Visby Programme Scholarship 01224/2007.
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Table 1. The r-star cover problem in orthogonal polygons

Class Complexity

0 O(1)

1 O(n) [8,16]

2
2a O(n) [8,16]

2b 2-approximation, O(n) [This paper]

3 2-approximation, O(n) [This paper] Õ(n17) [25,26]

4 3-approximation, O(n) [This paper]

of an orthogonal polygon P are s-visible if there exists an orthogonally convex
polygon in P that contains these two points. Similarly, we say that two points
are r-visible if there exists a rectangle that contains these two points. An s-
star-shaped orthogonal polygon contains a point p such that for every point q
in the polygon, there is an orthogonally convex polygon containing p and q; an
r-star-shaped orthogonal polygon is defined analogously. Thus, an s-star cover
is a cover with s-star-shaped polygons, and an r-star cover is a cover with r-
star-shaped polygons.

For covering with r-stars, Keil [11] has provided O(n2) algorithm for opti-
mally covering horizontally convex orthogonal polygons. This quadratic time
bound was later improved to O(n) in [8], which has been recently simplified by
the authors [16]. For the general so-called class 2, class 3, and general simple
orthogonal polygons (see Preliminaries for the definition), the problem of cover-
ing with the minimum r-star orthogonal polygons had remained open for many
years. And just in 2004, Worman and Keil [25,26] proved that the minimum r-
star cover problem in simple orthogonal polygons can be solved in Õ(n17)-time
complexity, where Õ() hides a polylogarithmic factor. Similarly as other algo-
rithms for convex or star covering problems, the result in [25,26] uses a graph
theory approach based upon properties of region visibility graphs [4,20,21]. Since
the time complexity of the aforementioned algorithm is far from practical, there
is need to design faster exact or approximation algorithms with constant perfor-
mance ratio for this problem (if possible).

Our Contributions. We present a linear-time 3-approximation algorithm for
the minimum r-star cover problem for simple orthogonal polygons (Section 5).
Our algorithm starts from the partition of a polygon into histograms introduced
by Levcopoulos in [15]. Then, it groups the histograms into components called
[w]-star-shaped polygons such that in any minimum r-star cover of the original
polygon, an element of the coverage can overlap with at most three of the com-
ponents. This yields the approximation factor 3. And, for the class of orthogonal
polygons the components constitute, we derive an optimal linear-time algorithm
for finding the minimum number of r-star-shaped orthogonal polygons covering
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the polygon (Section 4). Finally, we show that our approach yields a linear-time
2-approximation algorithm for the classes 2 and 3 of orthogonal polygons (see
Preliminaries for the definition). Table 1 summarizes our results in the context
of the known ones.

Additionally (Section 3), to familiarize the reader with the problem and to
provide some intuition, we present a simpler 5-approximation algorithm first.

2 Preliminaries

In this section we introduce several classes of polygons which are considered
through the paper.

Histograms. A histogram H is an orthogonal polygon having a distinguished
edge, called its base, such that the length of the base of H is equal to the total
length of all other edges of H which are parallel to the base (Edelsbrunner et
al. [6]); see Fig. 1 for an example.

An orthogonal polygon can be partitioned into histograms in linear time, as
was shown by Levcopoulos [15]. Let P be a simple orthogonal polygon, and
let e be an edge of P . HIST (P, e) is the set of segments, partitioning P into
histograms, which is recursively defined as follows. Let H be the maximal his-
togram lying within P with the base e. If H = P , then HIST (P, e) is the empty
set. Otherwise, let P1, P2, . . . , Pk be the set of subpolygons of P into which P is
partitioned by H , with P1 = H . Let si, 2 ≤ i ≤ k, be the line segment where Pi

touches P1. The set HIST (P, e) is defined to be the union
⋃

2≤i≤k

({si} ∪ HIST (Pi, si)).

Theorem 1. [15] HIST (P, e) can be computed in linear time.

Class k Polygons. For a compass direction D ∈ {N, E, S, W}, an edge of a
polygon P which lies on the D side of P and has both endpoints reflex is said to
be a dent-D. Analogously, an edge of P which lies on the D side of P and has both
endpoints concave is called an antident-D. The class k of orthogonal polygons,

Fig. 1. A histogram
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N

W

E

Fig. 2. A polygon with 3 dent orientations

k = 0, 1, 2, 3, 4, has dents of k different orientations {N,W,S,E}; this classification
of orthogonal polygons is due to Culberson and Reckhow [4]. Thus for example,
the class 0 of orthogonal polygons does not have dents, and histograms are in
the class 1. The class 2 of orthogonal polygons is subdivided into the class 2a,
where the two dent orientations are opposite, and the class 2b, where the two
dent orientations are orthogonal to one another; thus the class 2a is the class of
orthogonal monotone polygons. We also recognize the class 3 (Fig. 2) and the
class 4 polygons which are all orthogonal polygons.

[w]-Star-Shaped Polygons. A polygonal chain is called orthogonal if each of
its segments is parallel to one of the coordinate axes. An orthogonal chain is
called a staircase if, while traversing from one end of the chain to the other,
one moves in at most two of the four compass directions: N, E, S, and W. Thus
there are four types of staircases: those oriented NW or SE, and those oriented
NE or SW. Following these definitions, we introduce the class of [w]-star-shaped
orthogonal polygons.

Definition 1. Let w ∈ {NE, SW, NW, SE}. An orthogonal polygon P is said to
be [w]-star-shaped if there is a vertex v in P such that for every point q in P
there is a staircase from v to q that contains no points outside of P and has the
orientation w.

An example of [NW]-star-shaped orthogonal polygon is shown in Fig. 3. Note
that any [w]-star-shaped orthogonal polygon is s-star-shaped as well.

3 A 5-Approximation Algorithm for Orthogonal Polygons

In this section we present a simple 5-approximation algorithm for covering of a
polygon with the minimum number of r-star-shaped polygons. Our algorithm
combines the linear-time method of partitioning an orthogonal polygon into his-
tograms, due to Levcopoulos [15], with a simple linear-time algorithm for cover-
ing of a histogram with the minimum number of r-star-shaped polygons [8,16].
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Fig. 3. An [NW]-star-shaped polygon

Algorithm 1
Input. An orthogonal polygon P with n vertices.
Output. A covering of P with r-star-shaped orthogonal polygons.

1. Partition P into orthogonal histograms using the method of Levcopoulos [15].
2. Cover each of the resulting histograms with the minimum number of r-star-

shaped orthogonal polygons by running the algorithm of Gewali et al. [8] (or
that of Lingas et al. [16] which is its improved variant).

Theorem 2. Algorithm 1 runs in linear time and yields a 5-approximation for
the problem of covering a simple orthogonal polygon with the minimum number
of r-star-shaped orthogonal polygons.

Proof. The linear-time complexity of Algorithm 1 immediately follows from the
linear-time complexity of Levcopoulos’ method and the linear-time complexity
of Gewali et al.’s algorithm [8] (or Lingas et al.’s algorithm as well [16]).

To prove the approximation factor 5, consider a minimum cover OPT of P
with r-star orthogonal polygons. Let H be any histogram in the partition of
P into histograms. Note that the cardinality of a minimum covering of H r-
star orthogonal polygons is not greater than the number of r-star orthogonal
polygons in OPT that have a non-empty intersection with H . On the other
hand, the partition into histograms has a rooted tree structure with alternating
levels of histograms with horizontal and vertical bases [15]. It follows that any
r-star orthogonal polygon in OPT can have a non-empty intersection with at
most five histograms in the partition — see Fig. 4. Consequently, we conclude
that Algorithm 1 produces a covering of cardinality at most five time larger than
that of OPT . ��

In Section 5, we extend the above approach to obtain a 3-approximation al-
gorithm. The idea is to group the histograms into [w]-star-shaped orthogonal
polygons such that in any minimum r-star cover of the original polygon, an ele-
ment of the r-star coverage can overlap with at most three of the components.
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A B C

D

E

Fig. 4. The possible histogram configuration

In order to proceed with the complete description of the 3-approximation algo-
rithm, we need to derive a linear-time algorithm for the r-star cover problem in
the class of [w]-star-shaped orthogonal polygons, which we shall discuss in the
next section.

4 Optimal Algorithm for [w]-Star-Shaped Polygons

Recall that the problem of finding the minimum number of r-star-shaped orthog-
onal polygons covering an orthogonal polygon P can be defined as the problem
of finding the minimum set S of points such that each point of P is r-visible to
an element of S. From now on, we shall use the latter convention, and we will
say that the set S covers the polygon. Of course, by using such a convention, we
then show how to translate the resulting set of covering points into the appro-
priate r-star partition (i.e., the complete description of covering polygons); due
to space limits, details are omitted.

Let P be a [w]-star-shaped orthogonal polygon, we may assume w.l.o.g w =
NW. The idea of our algorithm for the minimum r-star cover of polygon P
relies on the following observation (we omit the proof as for the purpose of the
correctness proof of the algorithm, a more general proposition is derived).

Lemma 1. Let an antident-W eW be connected by an NW-staircase, whose seg-
ments are edges of P , with an antident-N eN in P . There exists a minimum
r-star cover of P which includes the point p whose X coordinate is equal to that
of the right-hand endpoint of eN and whose Y coordinate is equal to that of the
lowest endpoint of eW .

Consequently, we can determine a minimum r-star cover of P by finding an
antident pair (eW , eN), then computing the point p, cutting off the region of P
which is (r-star) covered by p, and augmenting point p with the union of the
recursive solutions for the remaining parts of P .

Theorem 3. The minimum r-star cover problem for an n-vertex [w]-star-shaped
orthogonal polygon can be computed in O(n) time and O(n) storage.

Due to space limits, we omit the complete formal description of the algorithm and
we only provide some intuition and an example illustrating our method. Consider
the [NW]-star-shaped orthogonal polygon P that is shown in Fig. 5(a). Starting



Linear-Time 3-Approximation Algorithm for the r-Star Covering Problem 163

(a) (b) eN

eW

eV
eH

p1

(c) eN

eW

eV

eH

p2 p1

(d)

eN

eW

eV
eH

p3

p2 p1

(e)

eN

eW

p3

p2 p1

(f)

eN

eW

p3

p2 p1

(g)

eN

eV

eW

eH

p4

p3

p2 p1

(h)

eW

eN

p4

p3

p2 p1

Fig. 5. (a) An [NW]-star-shaped orthogonal polygon P . (b) The covering point p1

whose X coordinate is equal to that of the right-hand endpoint of eN and whose Y
coordinate is equal to that of the lowest endpoint of eW . The gray region is cut off.
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from the lowest and the rightmost vertex, we traverse, in the counterclockwise
manner, the boundary of P until we find the first antident-W eW . Next, for eW

we determine its closest, in the clockwise manner, antident-N eN . By Lemma 1,
we add point p1 to the initial empty set S of covering points, and cut off a
region of P which is visible to p1: starting from eW , we find the first, in the
counterclockwise manner, vertical edge eV not covered by p1. Next, starting from
eN , we find the first, in the clockwise manner, horizontal edge eH not covered
by p1, and the endpoints of eV and eH determinate our cut (see Fig. 5(b)). Note
that in order to avoid the remaining polygon being disconnected, we do not cut
off the whole region covered by p1 — this region we will be handled later.

Next, starting from eH , we repeat the same procedure for the new polygon P .
We again traverse, in the counterclockwise manner, the boundary of P until we
find the first pair antidents eW and eN . Thus, in a sequence, we add two covering
points p2 and p3 (see Fig. 5(c-d)). But, when the point p3 is added and the cut is
generated, we obtain two new antidents of type N and W, respectively, that are not
present in the original polygon P (see Fig. 5(e)). Moreover, both these antidents
are covered by our temporary set S, i.e., the point p2. Therefore, before applying
Lemma 1, we have to make additional cut in order to find (new) uncovered anti-
dents — the new cut is presented in Fig. 5(f). Consequently, we obtain the tem-
porary covering set S = {p1, p2, p3, p4} (see Fig. 5(g)). However, once again this
is the case when in the resulting polygon P , the first antident-W eW is covered —
now by point p1 — thus we have to modify cut (see Fig. 5(h)-6(a)). Consequently,
we obtain the uncovered pair of antidents, the next point p5 is determined, and
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the appropriate part of polygon is cut off (see Fig. 6(b)). Finally, the last point
p6 covering the new antidents eW and eN is added, resulting in the output set
S = {p1, p2, p3, p4, p5, p6} (see Fig. 6(c-d)).

5 A 3-Approximation Algorithm for Orthogonal Polygons

In this section, using the result of Theorem 3, we provide a linear-time 3-
approximation algorithm for the minimum r-star cover problem in general or-
thogonal polygons. Similarly as the 5-approximation algorithm discussed in Sec-
tion 3, our 3-approximation algorithm starts from the partition of a polygon into
histograms. Then, it groups the histograms into [w]-star-shaped polygons, and
independently computes the minimum r-star cover for each of [w]-star-shaped
components.

5.1 [w]-Star-Shaped Partition

Let P be a simple orthogonal polygon, let e be an antident of P , and assume that
the interior of P is above e. Consider now the rooted histogram tree (T, v) of
the histogram partition HIST (P, e) — discussed in Section 2 — whose vertices
corresponds to histograms and two vertices are adjacent if their corresponding
histograms touch each other; root v corresponds to the histogram with the base
e. Clearly, (T, v) can be computed while determining HIST (P, e), and thus it
can be computed in linear time as well by Theorem 1.

The [w]-star partition of (T, v) is recursively defined as follows. Let H be the
histogram corresponding to root v of tree (T, v). If T is a single vertex, then
ST AR(T, v) is {{v}}. Otherwise, let (T ′, v) be the maximal rooted subtree of
T such that for any two histograms H1 and H2 corresponding to the adjacent
vertices v1 and v2 in tree T ′, where v2 is a children of v1, the interior of H2 is
either above H1 or on the left to H1. Then, the [w]-star partition ST AR(T, v)
is defined as

{V (T ′)} ∪
⋃

x∈N(V (T ′))\V (T ′)

ST AR(Tx, x),

where V (T ′) is the vertex set of subtree T ′, Tx is a subtree of T rooted at x, and
N(V (T ′)) is the set of neighbors of vertices in V (T ′). Note that to determine
ST AR(Tx, x), we assume that the base ex of the histogram Hx corresponding to
x is horizontal, and the interior of Hx is above ex, that is, we rotate the relevant
subpolygon if needed. Clearly, ST AR(T, v) is uniquely defined, and it can be
found in linear time just by performing the breadth-first search algorithm on
(T, v).

5.2 The 3-Approximation Algorithm

Our approximation algorithm for covering an orthogonal polygon with a mini-
mum number of r-star orthogonal polygons relies on the subroutine for finding
a minimum r-star cover of a given [w]-star-shaped polygon (Theorem 3).
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Algorithm 2
Input. An an orthogonal polygon P with n vertices.
Output. A covering of P with r-star orthogonal polygons.

1. Partition P into orthogonal histograms using the method of Levcopoulos;
let (T, v) be the resulting rooted histogram tree.

2. By performing the BFS algorithm on (T, v), find the [w]-star partition
ST AR of T .

3. For each tree T ′ in ST AR, cover its corresponding [w]-star-shaped polygon
PT ′ with the minimum number of r-star orthogonal polygons (Theorem 3).

Theorem 4. Algorithm 2 runs in O(n) time and yields a 3-approximation for
the problem of covering a simple orthogonal polygon with the minimum number
of r-star orthogonal polygons.

Proof. Bearing in mind the result of Theorem 3 and [15], we only have to dis-
cuss the 3-approximation ratio (compare with the proof of Theorem 2). Consider
a minimum cover OPT of P with r-star orthogonal polygons. Let PT ′ be the
[w]-star-shaped polygon corresponding to the union of all histograms of an ele-
ment (tree) of ST AR (Step 2). On the one hand, the cardinality of a minimum
cover of PT ′ by r-star orthogonal polygons is not greater than the number of
r-star orthogonal polygons in OPT that have a non-empty intersection with
PT ′ . On the other hand, by the definition of r-star visibility and the histogram
decomposition, it follows that any r-star orthogonal polygon in OPT can have a
non-empty intersection with at most five histograms in the histogram partition
(again see Fig. 4), say with a histogram H in the rooted histogram tree (T, v),
at most two children of H on the opposite sides of H , the parent of H , and at
most one sibling of H on the opposite side of the parent of H . But then, by
the definition of [w]-star partition of tree T , exactly three of these histograms
are always in one of our [w]-star-shaped polygons, thus any r-star orthogonal
polygon in OPT can have a non-empty intersection with at most three different
[w]-star-shaped polygons. We conclude that Algorithm 2 produces a covering of
cardinality at most three times larger than that of OPT . ��

6 Extensions

Recall that the class k of orthogonal polygons, k = 0, 1, 2, 3, 4, has dents of k-
different orientations {N,W,S,E}. Following this definition, in this paper we have
presented our linear-time 3-approximation algorithm for the problem of covering
the class 4 of orthogonal polygons with the minimum number of r-stars. However,
its worth pointing out that for the class 3 of orthogonal polygons our approach
leads to the linear-time 2-approximation algorithm.

Theorem 5. Algorithm 2 yields a linear-time 2-approximation for the problem
of covering the class 3 orthogonal polygon with the minimum number of r-star
orthogonal polygons.
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It would be interesting to undertake modifying the above antidents pair ap-
proach for the whole class 2b of orthogonal polygons in order to provide an
optimal linear-time algorithm (the class of [w]-star-shaped polygons is the sub-
class of Class 2b) — as far as we know, there are no such algorithms (again see
Table 1). It is worth pointing out that our approach can be adapted to mono-
tone polygons (class 2a), thus getting a simple linear-time algorithm for covering
a monotone orthogonal polygon [16] (the first one was proposed by Gewali et
al. [8]). Finally, we hope that our antidents pair approach will provide some in-
tuition and structural properties that might lead to improved exact algorithms
for the general orthogonal polygons. This is a future work.
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Abstract. Given a graph G = (V, E), we say that a vertex subset S ⊆ V
covers a vertex v ∈ V if the edge-connectivity between S and v is at least
a given integer k, and also say that S covers an edge vw ∈ E if v and w
are covered. We propose the multi-commodity source location problem,
which is such that given a vertex- and edge-weighted graph G, r players
each select p vertices, and obtain a profit that is the total weight of cov-
ered vertices and edges. However, vertices selected by one player cannot
be selected by the other players. The goal is to maximize the total prof-
its of all players. We show that the price of greed, which indicates the
ratio of the total profit of cooperating players to that of selfish players, is
tightly bounded by min{r, p}. Also when k = 2, we obtain tight bounds
for vertex-unweighted trees.

Keywords: Source location problem, price of greed.

1 Introduction

Given an undirected graph G = (V, E) with vertex set V , edge set E and an
edge capacity function, the edge-connectivity between S ⊆ V and v ∈ V is the
minimum total capacity of a set of edges such that v is disconnected from S
by removal of these edges. We say that a set S ⊆ V of vertices (called sources)
covers v ∈ V if the edge-connectivity between S and v is at least k, where k ≥ 1
is a given integer. The source location problem is to find a minimum-size source
set S ⊆ V covering all vertices in V . This problem has been studied widely
[2,3,6,7,8,10,12,15], and such problems are important in the design of networks
resistant to the failure of edges.

In real networks, there are multiple service providers, and they locate servers
in networks in order to supply services. Thus we propose the multi-commodity
source location problem. In this problem, a network N = (G = (V, E), w, c), and
positive integers k, r and p are given, where G is an undirected and connected
graph, c : E → Z+ is an edge capacity function, w : V ∪ E → R+ is a vertex-
and edge-weight function, and r is the number of players, where Z+ (resp., R+)

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 169–179, 2008.
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denotes the set of non-negative integers (resp., real numbers). Players 1, 2, . . . , r
each locate p sources on vertices of G. However, if a player locates a source on
a vertex, then it is unavailable for the other players to locate a source on. Let
player i’s profit be the total weight of vertices and edges covered by the sources
located by the player i, where a source set S covers an edge e = vw if both v
and w are covered by S. The goal of this problem is to maximize the sum of the
profits of all players. When r = 1, the problem is the same as the maximum-
cover source-location problem [12]. This problem is NP-hard [14], but it can be
solved in polynomial time when k ≤ 3 [12,13,14].

In recent years, game theory has attracted attention in certain fields of com-
puter science. In various real problems, e.g., routing, network design and schedul-
ing, the selfish actions of agents are obstacles to optimization for social welfare.
Such phenomena are modeled as games, and the influence of selfish actions of
players have been extensively analysed [1,5,11]. In this paper, we consider the in-
fluence of selfish actions of providers on network reliability. Generally the quality
of services of newcomers are influenced by the services of preceding providers.
For example, the location of servers becomes restricted and consequently their
profits may be smaller. We analyze the phenomenon by means of a selfish model
in the multi-commodity source location problem.

The selfish model is such that players 1, 2, . . . , r locate p sources in this order
on vertices of G so as to maximize their own profits. Note that as described
previously, player i cannot locate sources on the vertices on which one of players
1, . . . , i − 1 has already located sources. We compare the social welfare of this
model to that of the case where all players cooperate, that is, optimal solutions of
the problem. Figure 1 shows an example when k = 2, r = 3 and p = 3. The num-
bers beside vertices and edges denote their weights, and the edge capacities are
uniformly one. The selfish player 1 locates sources to maximize his/her profit (see
Fig. 1(a)). The source set {a, i, j} of the player 1 covers vertices a, b, c, d, h, i, j
and he/she gets profit 29. The selfish player 2 then locates sources on vertices not
already occupied such that his/her own profit is maximum in this situation. The
source set {c, g, h} of the player 2 covers vertices a, b, c, d, g, h and his/her profit
is 25. Then selfish player 3 does similarly and gets profit 6 since his/her source
set {b, e, f} covers vertices a, b, c, d, e, f . The total profit is 29 + 25 + 6 = 60.
In contrast, the optimal players 1, 2 and 3 locate their sources as in Fig. 1(b),
so that the players share as many covered vertices and edges as possible. The
optimal players 1, 2 and 3 obtain profits 28, 27 and 25, respectively, and the
total is 80.

As a measure of the influence of the selfish behaviours based on the ordering of
players, we propose the price of greed, which represents the ratio of the maximum
total profit of the cooperating players to the worst, i.e., minimum, total profit
of the selfish players. Formally, let the price of greed for the multi-commodity
source location problem be

POGk(N, r, p) =
the optimal total profit

the worst selfish total profit
.
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Fig. 1. An example of behaviours of selfish and optimal players when k = 2, r = 3 and
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Fig. 2. An instance of POGk(N, r, p) = min{r, p}

The price of greed of the example in Fig. 1 is POG2(N, 3, 3) = (28 + 27 +
25)/(29 + 25 + 6) = 4/3.

A well-known similar measure, the price of anarchy is the ratio of the worst
cost of Nash equilibria of selfish players to the optimal cost [11]. The locations of
sources derived by our selfish model are Nash equilibria, since no player can gain
profit by changing their locations. However, the locations are only a component
of all Nash equilibria, and we analyze influence of the greedy behaviour based
on the ordered strategy in our model. Thus we use the different name.

Our Results. Our goal is to analyze the maximum value of the price of greed
POGk(r, p) = maxN POGk(N, r, p). When k = 1, it is clear that POG1(r, p) = 1
for any r, p ≥ 1, since all vertices and edges are covered, wherever the sources
are located. Hence we assume k ≥ 2.

First, we show the following tight bounds for the general case.

Theorem 1. POGk(r, p) = min{r, p} for any k ≥ 2, r ≥ 1 and p ≥ 1.

The upper bound, POGk(r, p) ≤ min{r, p}, is shown in Sect. 2 as Lemma 2.
The lower bound is easily proved by showing an instance with POGk(N, r, p) =
min{r, p} in Fig. 2 where r ≥ 2 and p ≥ 2. Let |X | = min{r, p} − 1 and |Y | =
rp−min{r, p}−1. The weight of u is 1, the other vertices and edges have weight
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0, and the capacities of all edges are �k/2	. In this case, a vertex is covered when
it is on a path between sources. If the selfish player 1 obtains profit 1 by locating
min{r, p} sources on X and u, then the other selfish players obtain no profits.
Hence the worst total selfish profit is 1. On the other hand, each of optimal
players 1, . . . , min{r, p} obtains profit 1 by locating one source on X ∪ {u} and
p − 1 sources on Y ∪ {v}. Then the other optimal players cannot obtain any
profit. Hence the optimal total profit is min{r, p}. Therefore, this instance has
POGk(N, r, p) = min{r, p}.

Furthermore, when k = 2, we consider the case where the input graph G is re-
stricted to a vertex-unweighted tree with every edge of capacity 1 and weight at
least 0, and where sources are located only on the leaves. This vertex-unweighted
tree case is equivalent to the problem that r players find the r subtrees induced
by p leaves of the input tree such that the total edge-weight of these r subtrees
is a maximum. Maximum edge-weight trees have many applications, e.g., com-
munication networks [4,9]. This is a quite special case of the original problem.
However, POG2(r, p) is at most only one less than that for the vertex- and edge-
weighted case, as we show in the following theorem. Note that if p = 1, then any
optimal and selfish player obtains no profit and hence we assume p ≥ 2.

Theorem 2. For vertex-unweighted trees and any r ≥ 1, POG2(r, 2) = min{r, 2}
and POG2(r, p) = min{r, p − 1} for p ≥ 3.

At first, we tried to construct an instance having POG2(N, r, p) = p for r ≥ p ≥ 3
in a similar way to the vertex-weighted case. However, in Fig. 2, if we let the
weight of the edge uv be 1 instead of the vertex-weight of u, and let that of
the other edges be 0, then X must satisfy |X | ≤ p − 1 so that selfish player
1’s sources can occupy X . In this case, the total profit of optimal players is at
most p − 1. Hence even if |X | = p − 1, POG2(N, r, p) = p − 1 for this instance.
In fact, it can be shown that this instance has the worst price of greed, since
POG2(r, p) ≤ min{r, p − 1} for p ≥ 3 (Lemma 5).

2 Analysis of POGk(r, p) for the General Case

Given a network N , let Wi (1 ≤ i ≤ r) be the profit of an optimal player i. We
assume W1 ≥ W2 ≥ · · · ≥ Wr without loss of generality. Let W ′

i (1 ≤ i ≤ r)
be the profit of a selfish player i for the worst case, i.e., where the total profit
is least. From the definition, W ′

1 ≥ W ′
2 ≥ · · · ≥ W ′

r holds, and POGk(N, r, p) =
(
∑r

i=1 Wi)/(
∑r

i=1 W ′
i ). Let Si (1 ≤ i ≤ r) be the set of sources located by the

optimal player i and S′i (1 ≤ i ≤ r) be the set of sources located by the selfish
player i. For a source set S ⊆ V , let wk(S) denote the total weight of vertices and
edges covered by S. Note that wk(Si) = Wi and wk(S′i) = W ′

i for i = 1, . . . , r.
For a vertex set {v1, . . . , vq}, we may write wk({v1, . . . , vq}) as wk(v1, . . . , vq) for
notational simplicity.

We show the upper bounds for POGk(r, p) in Lemma 2, and show that the
bounds are tight in Lemma 3. Lemma 2 depends on the following lemma.

Lemma 1. For any i (1 ≤ i ≤ 
 r−1
p � + 1), we have W ′

i ≥ W(i−1)p+1.
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Proof. When i = 1, the inequality W ′
1 ≥ W1 evidently holds. Then we consider

i ≥ 2. Since |
⋃i−1

j=1 S′j | = (i−1)p, at least one, Sq say, of S1, . . . , S(i−1)p+1 has no
common source with any of S′1, . . . , S

′
i−1. The profit W ′

i of the selfish player i is
the largest profit when he/she locates sources on vertices in V \

⋃i−1
j=1 S′j . From

the above discussion, we obtain W ′
i ≥ Wq ≥ W(i−1)p+1. �


Lemma 2. For any k ≥ 2, r ≥ 1 and p ≥ 1, we have POGk(r, p) ≤ min{r, p}.

Proof. From W ′
1 ≥ Wi for any i, it is clear that POGk(N, r, p) ≤ (

∑r
i=1 Wi)/W ′

1
≤ r for any N , r and p. Then we show POGk(r, p) ≤ p for p < r as follows. From
Lemma 1, for 1 ≤ i ≤ 
 r−1

p � + 1, we have pW ′
i ≥ W(i−1)p+1 + · · · + Wip (where

we take Wv = 0 when v > r), and hence p
∑r

i=1 W ′
i ≥

∑r
i=1 Wi. Therefore we

have POGk(r, p) ≤ p for p < r. �


The next lemma shows that the upper bound is tight.

Lemma 3. POGk(r, p) ≥ min{r, p} for any k ≥ 2, r ≥ 1 and p ≥ 1.

Proof. This is proved by showing an instance (N, k, r, p) that has POGk(N, r, p)
= min{r, p}. Clearly, when r = 1 or p = 1, POGk(N, r, p) = 1 for any network
N . For r ≥ 2 and p ≥ 2, we have already shown such an instance in Sect. 1
(Fig. 2). �


Proof (of Theorem 1). This follows immediately from Lemmas 2 and 3. �


3 Analyses of POG2(r, p) for Vertex-Unweighted Trees

In this section, we deal with the case of k = 2, vertex-unweighted trees with every
edge of capacity 1 and weight at least 0, and where the players locate sources
only on the leaves of the tree. Locating sources on leaves does not make the
problem weak, since the case where sources can be located on any vertices can
be reduced to this case by adding a leaf to every non-leaf vertex. This problem is
equivalent to the problem for finding r subtrees induced by p leaves of the input
tree such that the r subtrees have maximum total edge-weight, and it is a basic
and important problem in network optimization problems [12]. Note that the
upper bound in Lemma 5 is available for the case where sources can be located
on any vertices from the above reduction involving adding leaves.

First, we show the following lemma, which is important for showing the upper
bound (Lemma 5). Recall that in this case w2(s, v) is the total weight of edges
in the path from s to v.

Lemma 4. Assume that r ≥ 2 and p ≥ 3. Let i be an integer with 1 ≤ i ≤ r−1.
Let S′i = {s′1, . . . , s′p}, and v0 �∈ S′1 ∪· · ·∪S′i be a vertex. Then

∑p
j=1 w2(s′j , v0) ≤

(p − 1)W ′
i .

Proof. Let Pj be the set of edges on the path between s′j and v0. Let X =
⋂p

j=1 Pj

be the set of edges contained in all of P1, . . . , Pp, and let Y =
⋃

1≤j<�≤p(Pj∩P�)\X
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Fig. 3. The edges on the dotted line are in X and those on the bold lines are in Y

be the set of edges contained in at least two of P1, . . . , Pp and not contained in
X (see Fig. 3). Let x (resp., y) be the total weight of the edges in X (resp., Y ).
Moreover, let aj be the total weight of the edges in Pj \ (X ∪ Y ) (See Fig. 3).

From the definition, the following inequality holds.
∑

1≤j≤p

w2(s′j , v0) ≤ px + (p − 1)y +
∑

1≤j≤p

aj .

Clearly, W ′
i = y +

∑p
j=1 aj . Here we can observe that x ≤ minj{aj}, since S′i

has the largest profit obtained by p sources not contained in any of S′1, . . . , S
′
i−1,

and hence aj − x = W ′
i − w2(S′i ∪ {v0} \ {s′j}) ≥ 0. Thus for p ≥ 3,

∑

1≤j≤p

w2(s′j , v0) ≤ px + (p − 1)y +
∑

1≤j≤p

aj

≤ (p − 1)y + 2
∑

1≤j≤p

aj

≤ (p − 1)W ′
i . �


Lemma 5. For vertex-unweighted trees and any r ≥ 1, POG2(r, 2) ≤ min{r, 2}
and POG2(r, p) ≤ min{r, p − 1} for p ≥ 3.

Proof. From Lemma 2, POG2(r, p) ≤ min{r, p} for any r ≥ 1 and p ≥ 2. We
show POG2(r, p) ≤ p − 1 for r ≥ p ≥ 3 in the following part.

Let Si = {si
1, . . . , s

i
p} for 1 ≤ i ≤ r. We consider a source v0 = st

1 ∈ St of
an optimal player t (1 ≤ t ≤ r). For any pair of vertices u, s ∈ V and a vertex
subset X ⊆ V , w2(X ∪ {u, s}) ≤ w2(X ∪ {u}) + w2(u, s). Hence

Wt = w2(v0, s
t
2, . . . , s

t
p) ≤

∑

2≤j≤p

w2(st
j , v0) ,

and Wi = w2(si
1, . . . , s

i
p)

≤ w2(si
1, . . . , s

i
p, v0)

≤
∑

1≤j≤p

w2(si
j , v0) for i �= t and 1 ≤ i ≤ r .

If we sum each side of the inequalities, then for any v0 ∈
⋃r

i=1 Si,
∑

1≤i≤r

Wi ≤
∑

s∈(⋃
r
i=1 Si)\{v0}

w2(s, v0) . (1)
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In the rest of the proof, we consider two cases (i)
⋃r

i=1 S′i =
⋃r

i=1 Si and (ii)⋃r
i=1 S′i �=

⋃r
i=1 Si.

Case (i). (
⋃r

i=1 S′i =
⋃r

i=1 Si) . Let v0 ∈ S′r. Note that v0 is also contained in⋃r
i=1 Si. Since v0 �∈ S′1 ∪ · · · ∪ S′i for 1 ≤ i ≤ r − 1, from Lemma 4,

∑

s′∈S′
i

w2(s′, v0) ≤ (p − 1)W ′
i (2)

for each i with 1 ≤ i ≤ r−1. On the other hand, for any s′ ∈ S′r, w2(s′, v0) ≤ W ′
r,

since v0 ∈ S′r. Hence
∑

s′∈S′
r\{v0}

w2(s′, v0) ≤ (p − 1)W ′
r . (3)

Consequently, if we sum up (2) for 1 ≤ i ≤ r − 1 and (3), we get
∑

s′∈(⋃r
i=1 S′

i)\{v0}
w2(s′, v0) ≤ (p − 1)

∑

1≤i≤r

W ′
i . (4)

Since
⋃r

i=1 S′i =
⋃r

i=1 Si, the left side of (4) is equal to the right side of (1), so
∑

1≤i≤r

Wi ≤
∑

s∈(⋃
r
i=1 Si)\{v0}

w2(s, v0)

=
∑

s′∈(⋃
r
i=1 S′

i)\{v0}
w2(s′, v0)

≤ (p − 1)
∑

1≤i≤r

W ′
i .

Therefore, POG2(r, p) ≤ p − 1, for any r, p with r ≥ p ≥ 3.

Case (ii). (
⋃r

i=1 S′i �=
⋃r

i=1 Si). In this case, there exist selfish source sets S′i
with S′i �⊆

⋃r
j=1 Sj . Let S′�(1), S

′
�(2), . . . , S

′
�(h) with �(1) ≤ �(2) ≤ · · · ≤ �(h) be

such source sets.
For each S′�(i), we make a new source set S′′�(i) ⊆

⋃r
j=1 Sj with |S′′�(i)| = p in

the following way. Let T�(i) = S′�(i) ∩
⋃r

j=1 Sj be a source set that consists of the
sources contained in not only S′�(i) but also contained in some of the optimal
sources S1, . . . , Sr. For T�(1), we select q (= p− |T�(1)|) sources s1, . . . , sq and let
S′′�(1) = T�(1) ∪ {s1, . . . , sq}. The selection of s1, . . . , sq is such that s1, . . . , sq are
selected from the vertices contained in the optimal source sets S1, . . . , Sr but
not contained in any of the selfish source sets S′1, . . . , S

′
r, i.e.,

⋃r
i=1 Si \

⋃r
i=1 S′i,

and maximize the total weight W ′′
�(1) := w2(S′′�(1)) of edges covered by S′′�(1).

Similarly, for T�(2), we select p − |T�(2)| sources from not yet selected vertices
in

⋃r
i=1 Si \

⋃r
i=1 S′i so as to maximize the total weight W ′′

�(2) := w2(S′′�(2)),
where S′′�(2) is a set of the selected sources and the sources in T�(2). By repeating
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the above operations, S′′�(1), . . . , S
′′
�(h) are obtained. Note that W ′′

�(i) ≤ W ′
�(i) for

1 ≤ i ≤ h, from the behaviour of selfish players.
Now, let v0 ∈ S′′�(h)\T�(h) be a source of the selfish player �(h) which is selected

in the above operation. Note that v0 ∈
⋃r

i=1 Si. Let S′′�(i) = {s′′�(i),1, . . . , s
′′
�(i),p}

for 1 ≤ i ≤ h. We show the following inequality similar to that of Lemma 4. For
1 ≤ i ≤ h − 1,

∑

1≤j≤p

w2(s′′�(i),j , v0) ≤ (p − 1)W ′
�(i) . (5)

Similarly to the notation of the proof of Lemma 4 (Fig. 3), let Pj with 1 ≤ j ≤ p
be the set of edges on the path between v0 and s′′�(i),j ∈ S′′�(i). Let X =

⋂p
j=1 Pj ,

and let Y =
⋃

1≤j<�≤p(Pj ∩P�) \ X be the set of edges contained in at least two
of P1, . . . , Pp and not contained in X . Let x (resp., y) be the total weight of the
edges in X (resp., Y ). Moreover, let aj with 1 ≤ j ≤ p be the total weight of the
edges in Pj \ (X ∪ Y ), and we abbreviate

∑
1≤j≤p aj by A. Clearly,

∑

1≤j≤p

w2(s′′�(i),j , v0) ≤ px + (p − 1)y +
∑

1≤j≤p

aj = px + (p − 1)y + A . (6)

From the definition of S′′�(i), there exists aq such that x ≤ aq, (because if such aq

did not exist, then by selecting v0 instead of a source s′′�(i),t ∈ S′′�(i) in the above
operation, the total weight of edges covered by S′′�(i) ∪ {v0} \ {s′′�(i),t} would be
larger than W ′′

�(i).) Moreover, from the behaviour of the selfish player i, for an
arbitrary t with 1 ≤ t ≤ p,

x + y +
∑

1≤j≤p:j �=t

aj = x + y + A − at ≤ W ′
�(i) . (7)

Summing (7) for all t �= q, 1 ≤ t ≤ p, yields

(p − 1)(x + y + A) − (A − aq) ≤ (p − 1)W ′
�(i) ,

and hence

px + (p − 1)y + (p − 2)A ≤ (p − 1)W ′
�(i) , (8)

since x ≤ aq. From the above discussion, (5) can be shown as follows.
∑

1≤j≤p

w2(s′′�(i),j , v0) ≤ px + (p − 1)y + A (from (6))

≤ (p − 1)W ′
�(i) − (p − 3)A (from (8))

≤ (p − 1)W ′
�(i) . (since p ≥ 3)

On the other hand, for any s′′ ∈ S′′�(h), w2(s′′, v0) ≤ W ′′
�(h) since v0 ∈ S′′�(h). Hence

∑

s′′∈S′′
�(h)\{v0}

w2(s′′, v0) ≤ (p − 1)W ′′
�(h) ≤ (p − 1)W ′

�(h) . (9)
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In addition, we consider the selfish source sets S′i other than S′�(1), S
′
�(2), . . . , S

′
�(h).

For such S′i,
∑

s′∈S′
i

w2(s′, v0) ≤ (p − 1)W ′
i (10)

from Lemma 4, since no S′i contains v0.
Let S′ be the union of every S′i except S′�(t) for all 1 ≤ t ≤ h, and S′′ =

⋃
1≤i≤h S′′�(i). Now S′ ∪ S′′ is equal to the union

⋃r
i=1 Si of the optimal source

sets. Thus, the summation of the left side of inequalities (5), (9) and (10) is
equal to the right side of (1), i.e.,

∑

1≤i≤r

Wi ≤
∑

s∈(⋃r
i=1 Si)\{v0}

w2(s, v0)

=
∑

s′′∈S′′\{v0}
w2(s′′, v0) +

∑

s′∈S′

w2(s′, v0)

=
h−1∑

i=1

p∑

j=1

w2(s′′�(i),j , v0) +
∑

s′′∈S′′
�(h)\{v0}

w2(s′′, v0) +
∑

s′∈S′

w2(s′, v0)

≤ (p − 1)
∑

1≤i≤r

W ′
i .

Therefore, POG2(r, p) ≤ p − 1, for any r, p with r ≥ p ≥ 3. �


The following lemma shows that the upper bounds are tight.

Lemma 6. For vertex-unweighted trees and any r ≥ 1, POG2(r, 2) ≥ min{r, 2}
and POG2(r, p) ≥ min{r, p − 1} for any p ≥ 3.

Proof. This is proved by showing an instance (N, k, r, p) that has POG2(N, r, 2) =
min{r, 2} and POG2(N, r, p) = min{r, p − 1} for p ≥ 3.

When r = 1, clearly POG2(N, 1, p) = 1 for any network N and p.
For p = 2, POG2(N, r, 2) = min{r, 2} for the network N in Fig. 4. The numbers

beside edges denote their weights, and |Y | = 2r−2. The selfish player 1 may locate
two sources on X and obtains profit 1. The other selfish players cannot obtain any
profits. On the other hand, the optimal players 1 and 2 each obtain profit 1, by
locating one source on X and the other one on Y . The other optimal players do
not obtain profits. Hence the least selfish total profit and the optimal one are 2
and 4, respectively. Hence POG2(N, r, 2) = 2 for this network N .

For r ≥ p ≥ 3, in Fig. 2, let the weight of the edge uv be 1 and that of the
other edges be 0. Let |X | = p − 1 and |Y | = rp − p + 1. The selfish player 1
may locate p − 1 sources on X and one source on Y , and obtains profit 1.
Then the other selfish players cannot obtain profits. Each of the optimal players
1, 2, . . . , p−1 (≤ r) obtains profit 1 by locating one source on X and p−1 sources
on Y . Since the other optimal players obtain no profit, the total optimal profit
is p − 1. Hence this network N has POG2(N, r, p) = p − 1 for r ≥ p ≥ 3.
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...
X Y

1

1

1

0

0

0

Fig. 4. An instance of POG2(N, r, 2) = min{r, 2}

In the case of p > r (≥ 2), let |X | = r, |Y | = rp−r, and the weight of the edge
uv be 1 in Fig. 2. The rest is similar. This network N has POG2(N, r, p) = r for
p > r. �


Note that even if we do not assume that sources are located only on the leaves,
there exist instances equivalent to those for r ≥ p ≥ 3 and for p > r ≥ 2 in the
proof of Lemma 6 by removing an arbitrary leaf from X and also one from Y .

Proof (of Theorem 2). This follows immediately from Lemmas 5 and 6. �


4 Conclusion and Future Work

In this paper we presented a new problem, the multi-commodity source location
problem and analyzed the value of the price of greed. We showed the tight bound
POGk(r, p) = min{r, p} in the general case for any k ≥ 2, r ≥ 1 and p ≥ 1.
In addition, for a vertex-unweighted tree and k = 2, we showed POG2(r, p) =
min{r, p − 1} for p ≥ 3 and POG2(r, 2) = min{r, 2} for any r ≥ 1 if the players
locate sources only on the leaves.

Further work is to analyze the value of the price of greed and the behaviours
of selfish players when each player in turn locates sources one at a time. It would
also be interesting to consider the problem when all players simultaneously locate
sources, with possibly several players choosing the same vertices. The profit of
vertices and edges covered by several players’ sources would be divided among
those players in some appropriate way.

Acknowledgements

We are grateful to Professor Kazuo Iwama for his very helpful discussions of the
problem.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden,
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Abstract. We consider inverse chromatic number problems in interval
graphs having the following form: we are given an integer K and an in-
terval graph G = (V, E), associated with n = |V | intervals Ii =]ai, bi[
(1 ≤ i ≤ n), each having a specified length s(Ii) = bi − ai, a (preferred)
starting time ai and a completion time bi. The intervals are to be newly
positioned with the least possible discrepancies from the original posi-
tions in such a way that the related interval graph can be colorable with
at most K colors. We propose a model involving this problem called in-
verse booking problem.We show that inverse booking problems are hard
to approximate within O(n1−ε), ε > 0 in the general case with no con-
straints on lengths of intervals, even though a ratio of n can be achieved
by using a result of [13]. This result answers a question recently formu-
lated in [12] about the approximation behavior of the unweighted case of
single machine just-in-time scheduling problem with earliness and tardi-
ness costs. Moreover, this result holds for some restrictive cases.

Keywords: Inverse combinatorial optimization, Inverse chromatic num-
ber problem, Interval graphs, Machine(s)-scheduling with earliness and/
or tardiness costs, NP-hardness, Approximation.

1 Introduction

Inverse combinatorial optimization problems have been extensively studied for
several weighted problems during the last two decades [1,8,16]. Given an instance
of a weighted combinatorial optimization problem Π and its feasible solution,
the corresponding inverse problem, denoted by IΠ , consists in modifying as
little as possible (with respect to a fixed norm) the weight system in such a way
that the given solution becomes an optimal solution of Π in the new instance,
defined by the new weight system. Here, we consider the L1 norm. In [4,5], we
studied several variants of such problems: the case where the original problem
is non-weighted for which we are supposed to modify the structure of the given
instance rather than the weight system, the case where the fixed solution is
supposed to be selected not by any optimal algorithm but by a fixed (optimal or
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approximated) algorithm and also the case where we are given a target solution
value K instead of a feasible solution. In this last case, if Π is a minimization
problem, we wish to find a minimal modification of the given instance so that
the optimal solution value of the new instance does not exceed K. For instance,
the inverse chromatic number problem consists, given any graph G = (V, E) and
an integer K, in modifying as little as possible the given instance in such a way
that the chromatic number of the new instance is not greater than K.

In this paper, we address the inverse booking problem, denoted by IBPK .
Although we describe it in the case of a hotel booking system, it may arise in
the framework of any booking system. We are given an integer K and n = |V |
intervals Ii =]ai, bi[, (1 ≤ i ≤ n) with integral endpoints ai, bi ∈ N, each
corresponding to a room reservation in a hotel for s(Ii) = bi − ai days without
interruption (no change of room during the stay). We will refer to ai as the
preferred starting time of interval Ii. We assume that the hotel has only K
identical rooms for which the reservations are interchangeable and that there are
at the beginning more than K reservations overlapping in their staying periods,
implying that there is no legal assignment to K rooms. With the goal of satisfying
all demands, the hotel manager proposes the clients to change their holiday plans:
to come stay in the hotel a little bit earlier or later than their preferred starting
dates (movement of holiday period) or to stay less than their preferred duration
(reduction of holiday duration), etc. In this paper, we only consider the first
type of modification. Of course, these negotiations incur some compensating
costs such as discount on price for which the clients are willing to accept the
proposition. So, the hotel manager has to schedule n reservations using K rooms
in such a way that the total changes are minimized. The objective function to
minimize is the total movements (total discrepancies) which are calculated by∑

i |b′i − bi| (or equivalently
∑

i |a′i − ai|) where bi and b′i (ai and a′i) denote
respectively the original and new right (left) endpoints of the interval Ii. If
(b′i − bi) > 0 ((b′i − bi) < 0), then it means that the interval Ii is shifted to the
right (left) side, respectively.

This problem is exactly a version of the inverse chromatic number problem
in interval graphs under L1-norm. Since interval graphs are perfect [7], it equiv-
alently consists in shifting some intervals so that the clique number of the cor-
responding interval graph does not exceed K. Consequently, it is closely related
to the inverse stability number problem, introduced in [4], in co-interval graphs.
Nevertheless, the main difference arises in the way of modifying an instance.
Instead of modifying the related graph (as studied in [4]), it is more relevant in
the inverse booking problem to modify the interval system.

For K = 1, the inverse booking problem can be seen as a particular case of the
so-called total discrepancy problem [13]. An interval Ii =]ai, bi[ corresponds to a
non-preemptive job Ji with a processing time p(Ji) = bi − ai = s(Ii), a due date
d(Ji) = bi and a completion time c(Ji) = b′i. Translation of an interval to the
right side corresponds to the tardiness Ti = max{0, b′i−bi} of the related job, and
translation movement to the left side means its earliness Ei = max{0, bi − b′i}.
Using the common scheduling notations, introduced by Graham et al. [14], we
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can also denote IBPK=1 by 1||
∑

i(Ei + Ti). Garey, Tarjan and Wilfong [13]
showed its hardness in the ordinary sense. We also consider a variant of IBPK=1
where the intervals can be shifted only to the right side; let us denote it by
IBPK=1,→. In this case, the inverse booking problem can be regarded as the
problem to minimize total tardiness on one machine with arbitrary release dates
and no preemption, which is known to be strongly NP-hard [9]. Indeed, the
left endpoint ai of an interval Ii can be seen as a release date ri of a job Ji:
translations are permitted only to the right side, meaning that a job cannot
start before its release date. We can denote this variant by 1|ri|

∑
i Ti. Obviously,

for any bounded integer K, IBPK and IBPK,→ respectively correspond to the
multiprocessor scheduling problems, K||

∑
i(Ei + Ti) and K|ri|

∑
i Ti.

Notice that IBPK=1 can be viewed as the unweighted version of the so-
called single machine just-in-time scheduling problem with earliness and tardi-
ness costs [12] for which it is shown that no polynomial approximation ratio can
be guaranteed in polynomial time (see [2] for basic definitions in approximation
theory). Since weights play a crucial role in the proof, the approximation be-
havior of the unweighted case is stated as an open question. On the other hand,
it is shown in [13] that minimizing the maximum discrepancy is polynomially
solvable, meaning that the version of IBPK=1 where the objective function is
defined with the L∞ norm is polynomially solvable; moreover, it is easy to see
that the same holds for IBPK=1,→. Since, for every vector v of dimension n, we
have |v|∞ ≤ |v|1 ≤ n|v|∞, the following holds:

Proposition 1. IBPK=1 and IBPK=1,→ are n-approximable.

We show that IBPK=1 and IBPK=1,→ cannot be approximated in polynomial
time within a ratio of O(n1−ε) for any ε > 0. This result also holds for the case
where the interval sizes are polynomially bounded, implying that both prob-
lems are NP-hard in the strong sense; to our knowledge, it was not known for
the former. From scheduling problems’ point of view, it is worth noting that
if processing times are polynomially bounded then Lawler’s algorithm [10] for
1||

∑
i Ti becomes polynomial. For this case, it points out a huge gap of com-

plexity between 1||
∑

i Ti and 1||
∑

i(Ei + Ti) or 1|ri|
∑

i Ti.

2 Hardness of Approximating IBPK=1 and IBPK=1,→

We show that IBPK=1 and IBPK=1,→ are both hard to approximate. This
result also holds if the original interval graph is supposed to be bipartite.

Theorem 1. If P �= NP, then there is no polynomial time approximation al-
gorithm for IBPK=1 or for IBPK=1,→ guaranteeing an approximation ratio
of O(n1−ε), ε > 0, even if all intervals have polynomially bounded lengths and
the related interval graph is bipartite.

Proof. We use a polynomial time reduction from 3-Partition, known to be
strongly NP-complete [6]. An instance of 3-Partition is given by a bound B ∈ N

+

and a finite set X = {x1, · · · , x3m} of 3m elements, each having size s(xi) =
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di ∈ N
+ for i ∈ {1, · · · , 3m} such that B/4 < di < B/2 and

∑3m
i=1 di = mB. It

is said to be positive if there is a partition of the di’s into m groups of three ele-
ments, each summing exactly to B. Since 3-Partition is strongly NP-complete,
we assume that the di’s (and consequently also B) are polynomially bounded.
The proof is done for IBPK=1, the case of IBPK=1,→ being very similar. Let us
suppose that a ratio ρ(n) ≤ cn1−ε, with a fixed ε > 0 and a constant c, can be
guaranteed for IBPK=1, where n is the number of intervals of the instance (the
order of the related interval graph).

1. For the conciseness of the proof, we first omit the constraint that the original
interval graph is bipartite, and we assume that some intervals have rational
lengths. Given an instance of 3-Partition with polynomially bounded di’s, we
construct an instance of IBPK=1 as follows (see figure 1):

• 3m intervals: Ii =]ai, bi[ (i ∈ {1, . . . , 3m}) of length s(Ii) = bi − ai = di.
• m + 1 interval blocks: Lj = ∪Tj

i=1L
j
i (j ∈ {0, . . . , m}) where Tj = 3Q(m)m2

B, j ∈ {0, · · · , m}, Q(m) being a fixed polynomial function (to be defined later),
and Lj

i =]lji , r
j
i [ is such that ∀i, rj

i = lji+1. For j ∈ {0, · · · , m}, blocks Lj are
composed of Tj contiguous intervals Lj

i (i ∈ {1, . . . , Tj}) of length s(Lj
i ) =

1/(3Q(m)m2) for j ∈ {1, . . . , m − 1} and of length 1 for j ∈ {0, m}. The blocks
Lj have size s(Lj) = B for j ∈ {1, . . . , m− 1} and s(L0) = s(Lm) = 3Q(m)m2B
for j ∈ {0, m}.
• Interval Ii (i ∈ {1, . . . , 3m}) has the same right endpoint as the interval L0

T0
;

we set explicitly r0
T0

= b1 = b2 = · · · = b3m = 0
• Blocks Lj (j ∈ {0, · · · , m}) are distributed on a line in order of increasing
indices and with a gap of length B between Lj−1 and Lj , j ∈ {1, · · · , m}.
Explicitly, we have:
for j = 0 and i ∈ {1, · · · , T0}, L0

i =] − 3Q(m)m2B + (i − 1), −3Q(m)m2B + i[,
for j ∈ {1, · · · , m − 1} and i ∈ {1, · · · , Tj}, Lj

i =](2j − 1)B + i−1
3Q(m)m2 , (2j −

1)B + i
3Q(m)m2 [,

for j = m and i ∈ {1, · · · , Tm}, Lm
i =](2m − 1)B + (i − 1), (2m − 1)B + i[.

• Since B is polynomially bounded, the total number N of intervals clearly
satisfies N ≤ P (m)Q(m) for a fixed polynomial function P . We then choose
Q > c1/εP (1−ε)/ε, implying cN1−ε < Q(m).

Lemma 1. Let us consider a block Lj, composed of BQ′ intervals each having
size 1

Q′ where Q′ = 3Q(m)m2 and B = s(Lj). It will cost at least dBQ′ to shift
Lj by distance d ∈ N (assume that d ≤ B) either to the right side or to the left
side.

Indeed, there are two ways of moving Lj : either by shifting every interval of Lj by
distance d to the right (or left) side or by shifting the dQ′ first (last) intervals of
Lj by distance B to the right (left) side. It is straightforward to verify that both
cases yield the same cost of dBQ′. �
We first show that, if the instance of 3-Partition is positive, then the optimal
value β of the instance of IBPK=1 satisfies β ≤ 3m2B, else β ≥ 3Q(m)m2B.
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Fig. 1. Construction of an instance of IBPK=1

We then conclude that no polynomial time algorithm guarantees the ratio ρ(n)
where n is the number of intervals.

Let us first consider the case where there exists a 3-partition for the original
instance: the set X can be partitioned into m disjoint sets X1, · · · , Xm such that
for 1 ≤ j ≤ m,

∑
x∈Xj

s(x) = B. By renumbering the intervals Ii’s (1 ≤ i ≤ 3m),
we may assume without loss of generality that for 1 ≤ j ≤ m, the three elements
of the j-th group Xj correspond to the size of intervals I3j−2, I3j−1 and I3j ,
respectively. Let us denote by Bj =]rj−1

Tj
, lj1[ the interval (blank) between Lj−1

and Lj , j ∈ {1, · · · , m}, then by filling up each Bj (of length B) with three
intervals I3j−2, I3j−1 and I3j , we can obtain a feasible solution of IBPK=1 with
value not greater than 3m2B. Indeed, we need to move I3j−2, I3j−1 and I3j to
the right side at most by (2j − 1)B. So, the total distance of these movements
is bounded by

∑m
j=1 3B(2j − 1) = 3B(

∑m
j=1 j +

∑m−1
j=1 j) = 3m2B. Hence,

we deduce: β ≤ 3m2B.
Suppose now that there is no 3-partition for the original instance. By con-

struction, to solve the instance of IBPK=1, one has to perform at least one of
the two following actions: (i) passing over L0 or Lm to shift an interval Ii either
to the left side of L0 or to the right side of Lm, (ii) enlarging sizes of some (at
least 1) intervals Bj ’s at least by 1 (since di ∈ N for i ∈ {1, · · · , 3m}) in such a
way that all intervals Ii’s can be positioned within Bj ’s without intersecting each
other. Since s(L0) = s(Lm) = 3Q(m)m2B, action (i) costs at least 3Q(m)m2B.
For action (ii), one needs either to shift a block Lj , j ∈ {0, . . . , m}, at least by
distance 1 (to the left or the right side) or to split up a bloc Lj , j ∈ {1, . . . , m−1},
into two blocks and to shift them - the first one to the left side and the second
one to the right side - to produce a blank of size at least B + 1 between. By
lemma 1, such an action induces a cost of at least 3Q(m)m2B. Hence, we have
β ≥ 3Q(m)m2B.

To complete the proof of case 1, let us consider a polynomial time approxima-
tion algorithm for IBPK=1 guaranteeing the ratio ρ(n) ≤ cn1−ε. If there exists a
3-partition (β ≤ 3m2B), then it delivers a solution of value λ for the instance of
IBPK=1 having size N , such that λ ≤ 3m2Bρ(N) ≤ 3cN1−εm2B < 3Q(m)m2B
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(recall that cN1−ε < Q(m)). On the other hand, if there is no 3-partition, then
we have λ ≥ β ≥ 3Q(m)m2B. So, it would provide a polynomial time algo-
rithm solving 3-Partition with polynomially bounded di’s, which contradicts
the strong NP-hardness of 3-Partition unless P=NP.

2. Note that the above interval graph is initially (3m+1)-colorable (see figure 1).
To prove the same result with the constraint that the original graph is bipartite,
we reposition intervals Ii =]ai, bi[ (1 ≤ i ≤ 3m) in such a way that bi+1 = ai,
i ∈ {1, · · · , 3m − 1} and b1 = 0. We may assume without loss of generality
that d1 ≤ d2 ≤ · · · ≤ d3m where di = s(Ii) = bi − ai for i ∈ {1, · · · , 3m}. In
comparison with the IBPK=1 instance having no constraint on the chromatic
number, this instance needs, by construction, some additional movements in
order to be 1-colorable. The quantity, X = d1+(d1+d2)+· · ·+(d1+· · ·+d3m−1) =
(3m − 1)d1 + (3m − 2)d2 + · · · + 2d3m−2 + d3m−1 is exactly the supplementary
distance to move; to make bi = 0 for i ∈ {2, · · · , 3m}, we need to shift Ii to
the right side by distance d1 + d2 + · · · + di−1. Since d1 ≤ d2 ≤ · · · ≤ d3m,
X can be upper bounded by a constant X0 = 3

2m2B, which is obtained when
d1 = d2 = · · · = d3m = B/3. The same argument as in case 1 works if we
suppose that blocks Lj (1 ≤ j ≤ m − 1) and Lm are composed of 5Q(m)m2B
intervals of length 1/(5Q(m)m2) and of length 1, respectively. In addition, we
need to enlarge the size of L0 to 8Q(m)m2B in order to prevent Ii’s from going
before L0. As in case 1, the polynomial function Q can be chosen such that the
number N of intervals satisfies cN1−ε < Q(m). If there exists a polynomial time
O(n1−ε)-approximation algorithm for IBPK=1, then it will deliver a solution of
value λ < 5Q(m)m2B for the case where a 3-partition exists (β ≤ 3m2B +X0 ≤
5m2B), and a solution of value λ ≥ 5Q(m)m2B for the opposite case. Such an
algorithm would solve 3-Partition, which is impossible unless P=NP.

To conclude the proof, note that some interval lengths are defined as a rational
number. By multiplying all interval lengths by a same number (e.g. 3Q(m)m2

and 5Q(m)m2 for cases 1 and 2, respectively), we can easily obtain an instance
with integer data, which is equivalent to our initial instance. The value of each
solution will be also multiplied by this common value.

Finally, an instance of IBPK=1,→ can be constructed in a same way as above
but without the block L0. The same arguments hold in this case, which concludes
the proof of the theorem. �

Since all numbers involved in the above instances of IBPK=1 and IBPK=1,→
are polynomially bounded, we have:

Corollary 1. IBPK=1 and IBPK=1,→ are strongly NP-hard.

3 Discussion on Further Work

In this work, we introduced an inverse chromatic number problem in interval
graphs, motivated by a hotel booking problem. We considered two variants
whether intervals can be shifted to the left and the right side or only to the
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right side. We pointed out that these problems are closely related to schedul-
ing problems, namely K||

∑
i(Ei + Ti) and K|ri|

∑
i Ti, respectively. For K = 1,

these problems can also be seen as unweighted versions of a just-in-time schedul-
ing problem, shown to be hard to approximate within a polynomial ratio in [12].
We answered a question about the hardness of approximating the unweighted
case (see [12]). We showed that this case cannot be approximated within O(n1−ε)
although it is n-approximated. Moreover, this result holds even if the original in-
terval graph is bipartite - such a restriction is natural in our booking framework
- and if the interval lengths are polynomially bounded. Using scheduling nota-
tions, it shows that 1||

∑
i(Ei + Ti) and 1|ri|

∑
i Ti with polynomially bounded

processing times are hard to approximate while 1||
∑

i Ti is known to be poly-
nomially solvable for such processing times [10].

This pessimistic result motivates us to look for polynomial cases of the inverse
booking problem. If all intervals (jobs) have the same length, these problems
are known to be solvable in polynomial time [10,13] and even with rational
starting dates [15]. So, for this case, IBPK=1 and IBPK=1,→ can be solved
in polynomial time. In particular, if all interval lengths are equal to 1, then
IBPK=1,→ and IBPK=1 can be easily formulated as an assignment problem [10]
and as a minimum cost flow problem, respectively. In [11] Lawler devised a
pseudo-polynomial algorithm for sequencing jobs to minimize total weighted
tardiness 1||

∑
i wiTi where the weights have the so-called agreeable property,

including the unweighted case.
In [12] some approximation results are devised for the case where the ratio

between the maximum and minimum lengths is bounded by a constant. However,
to our knowledge, the complexity status of this case is not known. So, this
question and even the hardness of the cases where processing times are supposed
to belong to a finite set are both interesting. As a first attempt to handle it, we
consider in [3] the case where the interval lengths are either 1 or 2 and show that
it can be solved in linear time by a greedy algorithm if intervals can be shifted
only to the right side. Finally, it would be interesting to study inverse chromatic
number problems in other classes of graphs. In particular, in [3,5] we consider
it for permutation graphs and show that it is polynomially solved if the target
chromatic number is fixed to a constant.
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Abstract. A packet-switched network is universally stable if, for any
greedy protocol and any adversary of injection rate less than 1, the num-
ber of packets in the network remains bounded at all times. A natural
question that arises is whether there is a fast way to detect if a network
is universally stable based on the network’s structure. In this work, we
study this question in the context of Adversarial Queueing Theory which
assumes that an adversary controls the locations and rates of packet in-
jections and determines packet paths. Within this framework, we present
optimal algorithms for detecting the universal stability (packet paths do
not contain repeated edges but may contain repeated vertices) and the
simple-path universal stability (paths contain neither repeated vertices
nor repeated edges) of a network. Additionally, we describe an algorithm
which decides in constant time whether the addition of a link in a uni-
versally stable network leads it to instability; such an algorithm could
be useful in detecting intrusion attacks.

Keywords: Packet-switched communication networks, network stabil-
ity, linear algorithms, graph theory, intrusion detection, adversarial
queueing theory.

1 Introduction

In a packet-switched communication network, packets arrive dynamically at the
nodes with predetermined paths, and they are routed at discrete time steps
across the edges (links). In each node, there is a buffer (queue) associated with
each outgoing link. A packet is an atomic entity that resides at a buffer at the
end of any step. It must travel along a directed path in the network from its
source to its destination, both of which are network nodes. When a packet is
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injected, it is placed in the buffer of the first link on its route. At every time
step, at most one packet proceeds along each edge; if more than one packets are
waiting in the buffer of an edge e, a protocol is employed to resolve the conflict
and to determine the packet that is to be routed along e and the remaining ones
wait in the buffer of e. When a packet reaches its destination, it is absorbed.

In the field of packet-switched networks, a great deal of research has been
devoted to the specification of their behavior. A major issue that arises in such
a setting is that of stability: will the number of packets in the network remain
bounded at all times under any traffic pattern and any protocol? We focus on
a basic adversarial model for packet injection and path determination that has
been introduced in a pioneering work by Borodin et al. [5] under the name
Adversarial Queueing Theory. At each time step, an adversary may inject a
set of packets into some nodes; for each such packet, the adversary specifies
a path that the packet must traverse. A crucial parameter of the adversary is
its injection rate ρ, where 0 < ρ < 1. Among the packets that the adversary
injects in any time interval I, at most �ρ|I|� can have paths that contain any
particular edge. Within this framework, a protocol is stable [5] on a network G
against an adversary A of rate ρ if there is a constant B (which may depend
on G and A) such that the number of packets in the system is bounded at all
times by B. We also say that a network G is universally stable [5] if every greedy
protocol is stable against every adversary of rate less than 1 on G. In general,
the paths that the packets follow are not necessarily simple (i.e., they do not
contain repeated edges but they may contain repeated vertices) [2]. If the paths
are restricted to be simple (no repeated vertices or edges), then we deal with
simple-path universal stability.

The answer to the question of determining the universal stability of a network
is non-trivial. Since the property of universal stability is a predicate quantified
over all protocols and adversaries, it might seem that it is not a decidable prop-
erty. It turns out that this is not the case; Alvarez et al. in [2] showed that
determining the universal stability of a network can be done in polynomial time.
Yet, from a practical standpoint, it is very important to have algorithms for
determining network stability which are as efficient as possible. This stems from
the need in contemporary large-scale platforms for distributed communication
and computation (as is the Internet) to be able to quickly detect whether a struc-
tural change in a network (possibly performed by a malicious intruder) leads to
instability. The quick detection will guarrantee the survivability of the network
i.e., the ability of the network and the interconnected computers to be resilient
in the face of an attack [13]. Intrusion detection [8,9] has emerged as a key tech-
nique for network survivability. An algorithm that performs intrusion detection
should be fast enough in order to eliminate the damage a network can suffer by
an intruder.

Adversarial Queueing Theory has received a lot of attention in the study of
stability issues [3,2,7]. The issue of proposing a characterization for universally
stable networks was first addressed in [3] in which it was proved that there
exists a finite set A of basic undirected graphs such that a network is stable if
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and only if it does not contain any of the graphs in A as a minor. This result
was improved in [2]: a network in which packets may follow non-simple paths
is universally stable if and only if it does not contain as a subgraph any of the
extensions of the graphs U1 or U2 (see Figures 1, 2) [2, Lemma 7]. In [2], it was
also shown that a network in which packets follow simple paths is universally
stable if and only if it does not contain as a subgraph any of the extensions of
the graphs S1 or S2 or S3 or S4 (see Figures 3, 4) [2, Theorem 12]. Based on the
above, it was then shown that detecting universal stability of networks requires
polynomial time [2].

Our work focuses on the issue of detecting the universal stability of networks
within the Adversarial Queueing model. Based on the characterization in [2],
we present two algorithms: one for detecting whether a network is universally
stable (packets may follow non-simple paths) and another for detecting whether
a network is simple-path universally stable (packets follow simple paths). Both
algorithms run in optimal O(m + n) time where n is the number of network
vertices and m is the number of network edges. Additionally, we describe an
algorithm which decides in constant time whether the addition of a link in a
universally stable network leads it to instability.

2 Theoretical Framework

We use the same network model as the one in [5, Section 3]: we consider that
a routing network is modelled by a finite multi-digraph on n vertices and m
edges where a multi-digraph is a directed graph (or digraph, for short) in which
multiple edges may exist from a vertex to another vertex; each vertex x ∈ V (G)
represents a communication switch, and each edge e ∈ E(G) represents a link
between two switches.

We consider finite directed and undirected simple graphs and multi-digraphs
with no loops. A directed (undirected, resp.) edge is an ordered (unordered, resp.)
pair of distinct vertices x, y ∈ V (G), and is denoted by xy. The multiplicity of a
vertex-pair xy of a digraph G, denoted by λ(xy), is the number of edges joining
the vertex x to y in G. For a set C ⊆ V (G) of vertices of the graph G, the
subgraph of G induced by C is denoted G[C]; for a set S ⊆ E(G) of edges, the
subgraph of G spanned by S is denoted G〈S〉.

A path in G is a sequence of vertices (v0, v1, . . . , vk) such that vivi+1 ∈ E(G)
for i = 0, 1, . . . , k − 1; we say that this is a path from v0 to vk (a v0-vk path,
for short) of length k. A path is undirected or directed depending on whether G
is undirected or directed. It is called simple if none of its vertices occurs more
than once; it is called trivial if its length is equal to 0. A path is closed (resp.
open) if v0 = vk (resp. v0 �= vk). A closed path (v0, v1, . . . , vk−1, v0) is a cycle of
length k; the directed closed path (v0, v1, v0) is called 2-cycle.

A connected component (or component) of an undirected graph G is a maximal
set of vertices, say, C ⊆ V (G), such that for every pair of vertices x, y ∈ C, there
exists an x-y path in the subgraph G[C] of G induced by the vertices in C. A
component is called non-trivial if it contains two or more vertices; otherwise, it
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is called trivial. A biconnected component (or bi-component) of an undirected
graph G is a maximal set of edges such that any two edges in the set lie on a
simple cycle of G [6]; G is called biconnected if it is connected and contains only
one biconnected component.

A strongly connected component (or strong component) of a directed graph G
is a maximal set of vertices C ⊆ V (G) such that for every pair of vertices
x, y ∈ C, there exists both a (directed) x-y path and a (directed) y-x path in
the subgraph of G induced by the vertices in C; the graph G is called strongly
connected if it consists of only one strong component. The acyclic component
graph Gscc of a digraph G is an acyclic digraph obtained by contracting all
edges within each strongly connected component of G so that only a single
vertex remains in each component. The underlying graph Gu� of a digraph G is
an undirected graph which results after making all the edges of G undirected
and consolidating any duplicate edges.

In our work, we will need a combination of a strong component of a digraph
and the bi-components of its underlying graph. Therefore, we define a strongly bi-
connected component (a strong bi-component or a bi-scc for short) of a directed
graph G to be a maximal set of edges S ⊆ E(G) such that the graph G〈S〉
spanned by S is strongly connected and its underlying graph G〈S〉u� is bicon-
nected; the graph G is called strongly biconnected if it is strongly connected
and contains only one strong bi-component. The graph U1 of Fig. 1 is strongly
biconnected, whereas the graph U2 contains two strong bi-components.

The subdivision operation on an edge xy of a digraph G consists of the addition
of a new vertex w and the replacement of xy by the two edges xw and wy;
hereafter, we shall call it edge-subdivision operation.

Given a digraph G on n vertices and m edges, E(G) denotes the family of
digraphs which contains the digraph G and all the digraphs obtained from G by
successive edge-subdivisions.

It has been proved that the digraphs U1 and U2 of Fig. 1 are not univer-
sally stable; they are the minimum forbidden subgraphs characterizing universal
stability. Moreover, the family of digraphs obtained from U1 and U2 by suc-
cessive edge-subdivisions are also not universally stable, i.e., the digraphs in
E(U1) ∪ E(U2) [2] (see Fig. 2; a dashed edge with label i denotes a directed path
of length i). The following result holds:

Lemma 1. (Alvarez, Blesa, and Serna [2]): A digraph G is universally stable if
and only if G does not contain as a subgraph any of the digraphs in E(U1)∪E(U2).

Observation 1. Let G be a directed graph of the family E(U1) ∪ E(U2). Then,
the graph G has the following structure:

(a) it consists of a simple cycle C = (x0, x1, x2, . . . , x�, x0), � ≥ 1, and
(b) a path P = (xi, y1, y2, . . . , yk, xj) such that, y1, y2, . . . , yk /∈ C, xi, xj ∈ C

and k ≥ 0.

It is easy to see that, if P is an open path, i.e, xi �= xj , then G ∈ E(U1),
whereas if P is a closed path, i.e, xi = xj , then G ∈ E(U2).
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U1 U2

Fig. 1. Not universally stable digraphs

� k

a

b

d

(a) (b)

Fig. 2. The digraphs formed by extensions of U1 and U2: (a) the digraphs in E(U1),
a ≥ 1, b ≥ 1, and d ≥ 0; (b) the digraphs in E(U2), � ≥ 0 and k ≥ 0

Let G be a digraph on n vertices and m edges. We denote by G∗ the element
of E(G) which is obtained from G by applying an edge-subdivision operation on
each edge uv ∈ E(G). Obviously, G∗ has n+m vertices and 2m edges. Moreover,
G∗ does not contain 2-cycles; in particular, every cycle in G∗ has length greater
than or equal to 4. We call G∗ the one-subdivided graph of G.

Below we present some results on which our algorithms for detecting universal
stability and simple-path universal stability rely.

Lemma 2. Let G be a directed graph and let G∗ be its one-subdivided graph.
The graph G is not universally stable if and only if G∗ contains a subgraph
H ∈ E(U1) ∪ E(U2).

Lemma 3. Let G be a directed graph and let G∗ be its one-subdivided graph. Let
S1, S2, . . . , Sk be the strongly connected components of G∗ and let ni and mi be
the number of vertices and edges of the strong component Si, respectively. Then,
G is not universally stable if and only if G∗ has a strong component Si such that
mi > ni, 1 ≤ i ≤ k.

Regarding the simple-path universal stability, in which packets follow simple
paths (i.e, paths not containing repeated edges or vertices), it has been shown
that all the digraphs in E(S1) ∪ E(S2) ∪ E(S3) ∪ E(S4) (see Figures 3 and 4) are
not simple-path universally stable [2].

Lemma 4. (Alvarez, Blesa, and Serna [2]): A digraph G is simple-path univer-
sally stable if and only if G does not contain as a subgraph any of the digraphs
in E(S1) ∪ E(S2) ∪ E(S3) ∪ E(S4).
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S1 S2 S3 S4

Fig. 3. Digraphs which are not simple-path universally stable

…�� kk
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d
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Fig. 4. The digraphs formed by extensions of S1, S2, S3, and S4: (a) the digraphs in
E(S1), a ≥ 1, b ≥ 1, and d ≥ 0; (b) the digraphs in E(S2), s ≥ 0, d ≥ 0, and t ≥ 0; (c)
the digraphs in E(S3), � ≥ 1 and k ≥ 1; (d) the digraphs in E(S4), � ≥ 1 and k ≥ 1

For the detection of simple-path universal stability, we will need what we call
the reduced graph Ĝ of a digraph G: the reduced graph Ĝ is obtained from G by
setting the multiplicity of each edge of G to 1. Obviously, the reduced graph Ĝ
of a digraph G on n vertices and m edges is a simple digraph and has n vertices
and m′ ≤ m edges.

Lemma 5. Let G be a directed graph, Ĝ the reduced graph of G, and S1, S2,
. . . , Sk the strong components of Ĝ. Let Si1, Si2, . . . , Siki be the bi-scc of the
strong component Si and let nij and mij be the number of vertices and edges
of the bi-scc Sij , respectively. Then, G is not simple-path universally stable if
and only if Ĝ has a strong component Si which satisfies one of the following
conditions:

(i) Si contains a bi-scc Sij such that: nij ≥ 3, the underlying G〈Sij〉u� is a
cycle, and there exists an edge xy in G〈Sij〉 with multiplicity λ(xy) ≥ 2;

(ii) Si contains a bi-scc Sij such that: nij ≥ 3 and G〈Sij〉u� is not a cycle;
(iii) Si contains two bi-scc Sip and Siq such that: nip ≥ 3, niq ≥ 3, and both

graphs G〈Sip〉u� and G〈Siq〉u� are cycles;

where 1 ≤ i ≤ k and 1 ≤ j, p, q ≤ ki.

Sketch of Proof: The definition of the reduced graph Ĝ of G implies that a
bi-scc Sij of the strong component Si of Ĝ consists of either a cycle C =
(x0, x1, x2, . . . , xr, x0), r ≥ 2, or a cycle C = (x0, x1, x2, . . . , xr , x0), r ≥ 2,
and a path P = (xi, y1, y2, . . . , yr′, xj) such that y1, y2, . . . , yr′ /∈ C, xi �= xj and
r′ ≥ 1.
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(⇐=) It is easy to see that if condition (i) holds, then the graph G〈Sij〉 con-
tains a subgraph H ∈ E(S1). If condition (ii) holds, then the bi-scc Sij consists of
a cycle C = (x0, x1, x2, . . . , xr, x0), r ≥ 2, and a path P = (xi, y1, y2, . . . , yr′ , xj)
such that xi �= xj and r′ ≥ 1. Thus, the graph G〈Sij〉 contains a subgraph
H ∈ E(S2). If condition (iii) holds, then the graph G〈Sij〉 contains a subgraph
H ∈ E(S2) ∪ E(S4).

(=⇒) Suppose now that G is not simple-path universally stable. Then, G
contains a subgraph H ∈ E(S1) ∪ E(S2) ∪ E(S3) ∪ E(S4), and, thus, H contains
a cycle C = (x0, x1, x2, . . . , xr , x0), r ≥ 2. It follows that C belongs to a strong
component Si of the graph Ĝ, 1 ≤ i ≤ k. Let Sij be the bi-scc of Si which
contains the cycle C. Since r ≥ 2, the bi-scc Sij has at least three vertices, i.e.,
nij ≥ 3. We distinguish two cases:
Case (a): Sij contains the cycle C and a path P = (xi, y1, y2, . . . , yr′ , xj), r′ ≥ 1.
Then, H ∈ E(S2) and G〈Sij〉u� is not a cycle. Thus, the condition (ii) holds.
Case (b): Sij contains only the cycle C = (x0, x1, x2, . . . , xr, x0), r ≥ 2. If there
exists an edge xixi+1 mod r in C such that λ(xixi+1 mod r) ≥ 2 in G, then H ∈
E(S1) and, since G〈Sij〉u� is a cycle, the condition (i) holds. If there exists no
such edge in C, then H ∈ E(S3) ∪ E(S4). Thus, H contains another cycle C′ =
(x′0, x

′
1, x
′
2, . . . , x

′
r, x
′
0), r ≥ 2, which belongs to a bi-scc, say, Siq, of Si. If the

conditions (i) and (ii) do not hold for the bi-scc Siq, then the graph G〈Siq〉u� is
a cycle and niq ≥ 3. Thus, the condition (iii) holds. ��

3 Detecting Universal Stability

In this section we present optimal algorithms for detecting universal and simple-
path universal stability on a digraph G. Both algorithms take as input a di-
graph G on n vertices and m edges, and decide if G is universally stable or
simple-path universally stable, resp., in O(n + m) time using O(n + m) space.

3.1 Universal Stability

Our algorithm for detecting universal stability on a digraph G applies Lemma 3;
it works as follows:

Algorithm Univ Stability
Input: a digraph G on n vertices and m edges;
Output: yes, if G is universally stable; otherwise, no.

1. Construct the one-subdivided graph G∗ of the input digraph G;
2. Compute the strongly connected components S1, S2, . . . , Sk of the digraph

G∗, and the number of vertices ni and edges mi of each strong component
Si, 1 ≤ i ≤ k;

3. for i = 1 to k do
if mi > ni then return no; exit;

4. return yes;



Optimal Algorithms for Detecting Network Stability 195

The correctness of the algorithm Univ Stability follows from Lemma 3. We next
compute its time and space complexity. The one-subdivided graph G∗ of the
input graph G can be constructed in O(n + m) time, where n is the number of
vertices and m is the number of edges of the graph G. The graph G∗ has n + m
vertices and 2m edges, and, thus, the computation of the strong components of
G∗ can be done in O(n + m) time. Thus, the whole algorithm runs in O(n + m)
time; the space needed is O(n + m).

From the above description we conclude that the detection algorithm
Univ Stability runs in linear time and requires linear space. Hence, we have:

Theorem 1. Let G be a digraph on n vertices and m edges. The algorithm
Univ Stability decides whether G is universal stable in O(n+m) time and space.

Theorem 2. Let G be a digraph on n vertices and m edges. The universal sta-
bility of G can be decided in O(n + m) time and space.

3.2 Simple-Path Universal Stability

Our simple-path universal stability detection algorithm applies Lemma 5; it
works as follows:

Algorithm Simple-Path Univ Stability
Input: a digraph G on n vertices and m edges;
Output: yes, if G is simple-path universally stable; otherwise, no.

1. Construct the reduced graph Ĝ of the input digraph G;
2. Compute the strong components S1, S2, . . . , Sk of the graph Ĝ, 1 ≤ i ≤ k;
3. Compute the bi-scc Si1, Si2, . . . , Siki of each strong component Si, 1 ≤ i ≤ k,

and the number of vertices nij and edges mij of the bi-scc Sij , 1 ≤ j ≤ ki;
4. for i = 1 to k do

for j = 1 to ki do
if nij ≥ 3 and G〈Sij〉u� is not a cycle, then return no; exit;
if nij ≥ 3 and G〈Sij〉u� is a cycle, and

there exists an edge xy in G〈Sij〉 such that λ(xy) ≥ 2,
then return no; exit;
if nij ≥ 3 and G〈Sij〉u� is a cycle, then mark the bi-scc Sij ;

end-for
if Si contains at least two marked bi-scc then return no; exit;

5. return yes;

The correctness of the algorithm Simple-Path Univ Stability follows from
Lemma 5. The construction of the reduced graph Ĝ of the input graph G can be
done in O(n+m) time. The graph Ĝ has n vertices and m′ ≤ m edges, and, thus,
the computation of the strong components of Ĝ can be completed in O(n + m)
time. Then the bi-scc Si1, Si2, . . . , Siki of each strong component Si, 1 ≤ i ≤ k,
can be computed in O(n + m) time because

∑
j=1,k mij ≤ mi and nij ≤ mij
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since the bi-scc are biconnected and do not share edges. It is easy to see that all
the operation of step 4 are executed in linear time. Thus, the algorithm runs in
O(n + m) time; the space needed is O(n + m).

Thus, we can state the following results.

Theorem 3. Let G be a digraph on n vertices and m edges. The algorithm
Simple-Path Univ Stability decides whether G is simple-path universal stable in
O(n + m) time and space.

Theorem 4. Let G be a digraph on n vertices and m edges. The simple-path
universal stability of G can be decided in O(n + m) time and space.

4 Detecting Intrusion Attacks

In this section, we prove that the malicious intentions of an adversary/intruder to
lead a stable network in instability by adding links in specific network parts can
be detected in constant time after a preprocessing phase in which we compute
path information. In particular, given a universally stable digraph G and a pair
of distinct vertices x, y ∈ V (G), we want to decide whether the graph G + xy is
also universally stable, where xy is the directed edge from x to y.

Based on the results of Section 3, we can decide whether G + xy is univer-
sally stable in linear time without any preprocessing by executing algorithm
Univ Stability. However, we are interested in being able to answer queries of the
form “is the graph G + xy universally stable?” in O(1) time.

Let G be a universally stable digraph on n vertices and m edges, and let Ĝ
be the reduced graph of G; recall that Ĝ has n vertices and m′ ≤ m edges. As in
Lemma 3, each non-trivial strong component of Ĝ forms a cycle; a trivial strong
component consists of only one vertex. Thus, we have the following observation.

Observation 2. Let G be a universally stable digraph, Ĝ be its reduced graph,
and let S1, S2, . . . , Sk be the strong components of Ĝ, 1 ≤ i ≤ k. The acyclic
component graph Ĝscc of the digraph Ĝ has the following property: it consists of
k vertices v1, v2, . . . , vk (the vertex vi corresponds to the strong component Si of
Ĝ), and each strong component Si is either a cycle, i.e., mi = ni, or a trivial
component, i.e., ni = 1 and mi = 0.

Let G be a multi-digraph and let x, y ∈ V (G) be a pair of distinct vertices. We
say that the vertices x and y form an xy-pair if there exists a directed path from
x to y in G, and we say that they form an xy-multi-pair if there exist more than
one directed path from x to y in G, or a directed path (x = u0, u1, . . . , uk = y)
containing an edge uiui+1 with λ(uiui+1) > 1, k ≥ 1. Then, we can prove the
following lemma.

Lemma 6. Let G be a universally stable digraph and let x, y ∈ V (G) be a pair of
distinct vertices. Let Ĝ be the reduced graph of G, S1, S2, . . . , Sk be the strongly
connected components of Ĝ and let ni and mi be the number of vertices and edges
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of the strong component Si, respectively. The graph G + xy is not universally
stable if and only if one of the following conditions holds:

(i) x, y ∈ Si, 1 ≤ i ≤ k;
(ii) x ∈ Si and y ∈ Sj where i �= j and at least one of ni, nj is larger than 1,

and x, y form a yx-pair in G;
(iii) x ∈ Si and y ∈ Sj where i �= j and ni = nj = 1, and x, y form an

yx-multi-path in G.

Based on this lemma, we next present an algorithm for detecting whether a
graph G preserves its universal stability after the addition of a link xy into the
topology of G. Our algorithm works on the acyclic component graph Ĝscc of
the digraph Ĝ and uses path information of Ĝscc which we have computed in
a preprocessing stage. Let v1, v2, . . . , vk be the vertices of Ĝscc. We say that
an edge vivj in Ĝscc is thick if there exist more than one edge in G with their
start-points in Si and their end-points in Sj .

We can keep all the information regarding the types of directed paths con-
necting each vertex vi of Ĝscc to all the other vertices vj using a two-dimensional
array of O(n2) space; we call this information path-information. Our algorithm
takes as input the path-information of a universally stable digraph G on n ver-
tices and m edges and a pair of vertices x, y ∈ V (G), and detects in O(1) time
whether the graph G + xy is universally stable.

Algorithm Test Link
Input: the path-information of a universally stable digraph G on n vertices

and m edges and an (ordered) pair of vertices x, y ∈ V (G);
Output: yes, if G + xy is universally stable; otherwise, no.

1. if x, y belong to the same strong component of the digraph Ĝ, then return
no; exit;

2. {x, y belong to different strong components; let x ∈ Si and y ∈ Sj , i �= j}
if at least one of ni, nj is larger than 1 then

if there exists a vjvi-path in Ĝscc, then return no; exit;
else {ni = nj = 1}

if there exist more than one vjvi-path in Ĝscc, then return no; exit;
if there exists a vjvi-path in Ĝscc with a thick edge, then return no;

exit;
3. return yes;

The correctness of the algorithm follows from Lemma 6. Moreover, the time
taken by the algorithm to test the addition of a (directed) link xy takes O(1)
time thanks to the information on the strong components of Ĝ (their sizes and
the vertices participating in them) and the array storing the path-information.
Hence, we have the following theorem.

Theorem 5. Let G be a universally stable digraph on n vertices and m edges.
Given the path-information of the acyclic component graph Ĝscc of the digraph Ĝ,
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the preservation or not of universal stability of G after the addition of a link into
the topology of G can be decided in O(1) time.

Algorithm Test Link only tells us whether the addition of a link on the same
base network will preserve its universal stability; this has the advantage of guar-
anteeing constant time complexity but also the limitation that the much more
interesting approach of dynamically maintaining the network under the addition
of links that would not lead to instability is not supported (note that such a dy-
namic maintenance does not seem possible in constant time). We are currently
working on exploiting ideas and results for the poly-logarithmic dynamic main-
tenance of the biconnected components of an undirected graph [11] in order to
achieve dynamic maintenance of a universally stable network under the addition
of links in poly-logarithmic time.

5 Directions for Further Research

In this work, we propose optimal algorithms for detecting network universal
stability in the context of Adversarial Queueing Theory both when packets may
follow non-simple paths and when they follow simple paths. A lot of interesting
problems related to the stability of networks under a fixed protocol remain open.
Known results include the study of network stability under the FFS [1], the
NTG-LIS [2] and the FIFO [4] protocols, which has been shown to be decided
in polynomial time. Another interesting problem is whether there are upper
bounds on the injection rate that guarantee stability for the forbidden subgraphs
(networks) U1 and U2.
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Abstract. The competitive ratio is the most common metric in online
algorithm analysis. Unfortunately, it produces pessimistic measures and
often fails to distinguish between paging algorithms that have vastly
differing performance in practice. An apparent reason for this is that
the model does not take into account the locality of reference evidenced
by actual input sequences. Therefore many alternative measures have
been proposed to overcome the observed shortcomings of competitive
analysis in the context of paging algorithms. While a definitive answer
to all the concerns has yet to be found, clear progress has been made
in identifying specific flaws and possible fixes for them. In this paper
we consider two previously proposed models of locality of reference and
observe that even if we restrict the input to sequences with high locality
of reference in them the performance of every on-line algorithm in terms
of the competitive ratio does not improve. Then we prove that locality of
reference is useful under some other cost models, which suggests that a
new model combining aspects of both proposed models can be preferable.
We also propose a new model for locality of reference and prove that the
randomized marking algorithm has better fault rate on sequences with
high locality of reference. Finally we generalize the existing models to
several variants of the caching problem.

1 Introduction

The competitive ratio is the most common metric in on-line algorithm anal-
ysis. Formally introduced by Sleator and Tarjan, it has served as a practical
framework for the study of algorithms that must make irrevocable decisions in
the presence of only partial information [11]. On-line algorithms are more of-
ten than not amenable to analysis under this framework; that is, computing
the competitive ratio has proven to be effective—even in cases where the exact
shape of the optimal solution is unknown. On the other hand, there are known
applications in which the competitive ratio produces somewhat unsatisfactory
results. In some cases it results in unrealistically pessimistic measures; in others,
it fails to distinguish between algorithms that have vastly differing performance
under any practical characterization.
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Paging. The paging problem is an important on-line problem both in theory
and in practice. In this problem we have a small but fast memory (cache) of
size k and a larger slow memory. The input is a sequence of page requests. The
on-line paging algorithm should serve the requests one after another. For each
request, if the requested page is in the cache, a hit occurs and the algorithm can
serve the request without incurring any cost. Otherwise a fault occurs and the
algorithm should bring the requested page to the cache. If the cache is already
full, the algorithm should evict at least one page in order to make room for the
new page. The objective is to design efficient on-line algorithms in the sense
that on a given request sequence the total cost, namely the total number of
faults, is kept low. Three well known paging algorithms are Least-Recently-Used
(LRU), First-In-First-Out (FIFO), and Flush-When-Full (FWF). On a fault,
if the cache is full, LRU evicts the page that is least recently requested, FIFO
evicts the page that is first brought to the cache, and FWF empties the cache.

A paging algorithm is called conservative if it incurs at most k page faults
on any page sequence that contains at most k distinct pages. LRU and FIFO
are conservative while FWF is not [3]. Another important class of on-line paging
algorithms is marking algorithms. A marking algorithm A works in phases. Each
phase consists of the maximal sequence of requests that contain at most k distinct
pages. All the pages in the cache are unmarked at the beginning of each phase.
We mark any page just after the first request to it. When an eviction is necessary,
A should evict an unmarked page until none exists, which marks the end of the
phase. LRU and FWF are marking algorithms while FIFO is not [3]. We only
consider demand paging algorithms, i.e., algorithms that do not evict any pages
on a hit. Any paging algorithm can be modified into a demand paging algorithm
that has no more faults [3].

The cost of a paging algorithm A on an input sequence I is the number
of faults it incurs to serve I. In competitive analysis, we compare on-line al-
gorithms to the off-line optimal algorithm OPT which knows the entire se-
quence in advance. An on-line algorithm A is said to have competitive ratio
c if A(I) ≤ c × OPT (I) for all input sequences I.

Alternative Measures. It is known that the competitive ratio of any deter-
ministic on-line paging algorithm is at least k and the competitive ratio of any
conservative or marking paging algorithm is at most k (see e.g. [3]). This means
that all conservative and marking algorithms are optimal with respect to the
competitive ratio. Therefore competitive analysis cannot distinguish among the
algorithms LRU, FIFO, and FWF. However, LRU is preferable in practice and
furthermore its practical performance ratio is much better than its competitive
ratio. These drawbacks of the competitive ratio have led to several proposals
for better performance measures. For a survey on alternative measures see the
monograph by Dorrigiv and López-Ortiz [6].

One reason that LRU has good experimental behaviour is that in practice page
requests show locality of reference. This means that when a page is requested it
is more likely to be requested in the near future. Most measures for the analysis
of the paging algorithms try to use this fact by restricting their legal inputs to



202 R. Dorrigiv and A. López-Ortiz

those with high locality. Several models have been suggested for paging with
locality of reference (e.g. [1,2,4,9,10,12]).

In this paper we consider the models proposed by Torng [12] and Albers et
al. [1]. These models are based on the Denning’s working set model [5] and we
term them the k-phase model and the working set model, respectively. In the
k-phase model, we consider decompositions of input sequences to phases in the
same way as marking algorithms. For an input sequence I, let D(I, k) be the
decomposition of I into phases of a marking algorithm with cache of size k,
|D(I, k)| be the number of phases of D(I, k), and L(I, k) = |I|/|D(I, k)| be the
average length of phases. We call I a-local if L(I, k) ≥ a·k. Torng models locality
by restricting the input to a-local sequences for some constant a. In the working
set model, a request sequence has high locality of reference if the number of
distinct pages in a window of size n is small. For a concave function f , we say
that a request sequence is consistent with f if the number of distinct pages in any
window of size n is at most f(n), for any n ∈ N . In this way, Albers et al. model
locality by restricting the input to sequences that are consistent with a concave
function f .

Torng shows that marking algorithms perform better on sequences with high
locality under the full access cost model. In this model, the cost of a hit is one
and the cost of a fault is p+1, where p is a parameter of model that is called the
miss penalty. We denote the cost of an algorithm A on a sequence I in the full
access cost model by AFA(I). Albers et al. use the fault rate as their performance
measure. The fault rate of an algorithm A on an input sequence I, denoted by
FA(I), is defined as A(I)/|I|, where |I| is the length of I.

Our Results. First we formally show that under the standard cost model the
competitive ratio of every on-line paging algorithm remains the same under the
Albers et al. and the Torng locality of reference models. Hence, new results
about paging algorithms necessitate a change to the cost model. We apply the
fault rate cost model to the k-phase model and the full access cost model to
the working set model. These two had been previously studied under the alter-
nate combination. The full access cost model compares on-line algorithms to the
optimal off-line algorithm, while the fault rate cost model does not. Therefore
there is not a direct relationship between the two cost models and our results
cannot be directly concluded from the results of Torng [12] and Albers et al. [1].
Recently, Angelopoulos et al. [2] considered the standard cost model (number
of faults) together with a new comparison model, called bijective analysis, and
proved that LRU is the best on-line paging algorithm on sequences that show
locality of reference in the working set model. Furthermore, we propose a new
model for locality of reference and show that the randomized marking algorithm
of [7] benefits from the locality of reference assumption. Finally we apply the
locality of reference assumption to the caching problem, a generalization of the
paging problem in which pages have different sizes and retrieval costs. We ex-
tend the existing models of locality of reference and show that certain caching
algorithms perform better on sequences with good locality of reference under
this model.
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This paper is part of a systematic study of alternative models for paging. It
contrasts two previously proposed models under locality of reference assump-
tions. Then using lessons learned it introduces a new model and shows that this
new model is able to reflect locality of reference assumptions for the randomized
marking algorithm. While the ultimate model for paging analysis remains yet to
be discovered, the lessons learned (both positive and negative) from the results
in this paper are of value to the field, and to judge from the past, likely to be of
use in further future refinements in the quest for the ultimate model for paging
analysis.

2 Limitations of the Competitive Ratio Model

We prove that restricting input sequences to those with high locality of reference
is not reflected as an improvement on the competitive ratio.

Observation 1. If we restrict the input to sequences that are consistent with a
concave function f , the competitive ratio of deterministic on-line paging algo-
rithms does not improve.

Proof. The proof idea is the same as the one used to show that finite lookahead
does not improve competitive ratio of on-line paging algorithms [3]. Let A be a
deterministic paging algorithm, we can obtain a worst case sequence by request-
ing always a page which is not in the cache. To ensure that requesting such a
page is consistent with f , we repeat the last request of I a sufficient number of
times. Since we only consider demand paging algorithms, this has no effect on
the contents of the cache. ��

A similar result for the k-phase model can be proven, as we can make any
sequence a-local by repeating each request a times.

Observation 2. If we restrict the input to a-local sequences, the competitive
ratio of deterministic on-line paging algorithms does not change.

3 The Fault Rate of the k-phase Model

We obtain new results based on the k-phase model by considering the fault rate
as the cost model. The fault rate of an algorithm A on a-local sequences is
defined as FA(a) = inf{r | ∃ n ∈ N : ∀I, L(I, k) ≥ ak, |I| ≥ n : FA(I) ≤ r}. We
also denote by FA(I) the fault rate of A on an arbitrary sequence I. We obtain
the following bound for the fault rate of marking algorithms.

Theorem 1. Let A be an arbitrary marking algorithm and a > 0 be a constant.
Then FA(a) ≤ 1/a.

Proof. Consider an arbitrary a-local sequence I of size at least n. We show that
FA(I) ≤ 1/a. Consider the decomposition D(I, k) of I. A does not fault more
than once on a page P in a phase φ because after the first fault, it marks P
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and does not evict it in the reminder of φ. Since each phase contains at most k
distinct pages, A does not fault more than k times in a phase.

Thus A incurs at most k · |D(I, k)| faults on I and we have FA(I) ≤ k·|D(I,k)|
|I| .

Using L(I, k) = |I|/|D(I, k)|, we get FA(I) ≤ k
L(I,k) ≤ k

ak = 1/a. ��

This theorem shows that the fault rate of any marking algorithm decreases as
the locality of reference of the input increases. Note that this holds for every
algorithm A that incurs at most k faults in each phase. Since any phase contains
at most k distinct pages, we obtain the following result.

Corollary 1. Let A be an arbitrary conservative algorithm and a > 0 be a
constant. Then FA(a) ≤ 1/a.

4 The Working Set Model Under Full Access Cost Model

In this section we apply the full access cost model to the working set model.
Earlier we proved that the standard competitive ratio does not improve for
sequences with high locality of reference in this model. Now we show that the
competitive ratio of the classical algorithms in the full access cost model improves
for such sequences.

First we use some results of Albers et al. [1] about the fault rate of paging
algorithms. These results are expressed in term of f−1, the inverse function of
f , defined as

f−1(m) = min{n ∈ N | f(n) ≥ m}.

In other words, f−1(m) denotes the minimum size of a window that contains at
least m distinct pages.

Theorem 2. The competitive ratio of LRU with respect to a concave function
f in the full access cost model is at most p·k·(k−1)+k(f−1(k+1)−2)

p·(k−1)+k(f−1(k+1)−2) .

Proof. Albers et al. proved that the fault rate of LRU is at most k−1
f−1(k+1)−2 [1].

Consider an arbitrary sequence I that is consistent with f . Suppose that LRU
(OPT) incurs m (m′) faults on I. We have m

|I| ≤ k−1
f−1(k+1)−2 =⇒ |I| ≥

m·(f−1(k+1)−2)
k−1 . Since m′ ≥ m/k, we have OPTFA(I) = p · m′ + |I| ≥ p ·

m/k + |I|. We also have LRUFA(I) = p · m + |I|, and therefore LRUF A(I)
OPTF A(I) ≤

p·m+ m·(f−1(k+1)−2)
k−1

p·m/k+ m·(f−1(k+1)−2)
k−1

= p·k·(k−1)+k(f−1(k+1)−2)
p·(k−1)+k(f−1(k+1)−2) . Since I was an arbitrary seque-

nce, this proves the theorem. ��

As the cost of a fault p increases, the upper bound of Theorem 2 approaches k.
When p is not too large, the term (f−1(k+1)−2) becomes important. For a fixed
p, the larger the value of f−1(k+1), the better the upper bound of the theorem.
This supports our intuition that LRU has better performance on sequences with
more locality of reference.
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It is also known that FFIFO(f) ≤ k
f−1(k+1)−1 and FA(f) ≤ k

f−1(k+1)−1 for
any marking algorithm A [1]. We can use these results to prove the following
theorem in an analogous way to Theorem 2.

Theorem 3. Let A be a marking algorithm or FIFO. The competitive ratio of
A with respect to a concave function f in the full access cost model is at most
p·k+(f−1(k+1)−1)
p+(f−1(k+1)−1) .

Finally we prove a result for all marking and conservative algorithms.

Theorem 4. Let A be a marking or conservative algorithm. The competitive
ratio of A with respect to a concave function f in the full access cost model is at
most p·k+f−1(k)

p+f−1(k) .

Proof. Let I be a sequence consistent with f and consider the decomposition
D(I, k) of I. We know that A incurs at most k faults in each phase. Let m denote
the number of faults A incurs on I. We have m ≤ k · |D(I, k)| ⇒ |D(I, k)| ≥
m/k. Each phase has length at least f−1(k) because I is consistent with f .
Therefore |I| ≥ |D(I, k)| · f−1(k) ≥ m · f−1(k)/k, and AF A(I)

OPTF A(I) ≤ p·m+|I|
p·m/k+|I| ≤

p·m+m·f−1(k)/k
p·m/k+m·f−1(k)/k = p·k+f−1(k)

p+f−1(k) . ��

5 A New Model for Locality of Reference

In this section we introduce a new model for locality of reference that can be
used to show that the randomized marking algorithm [7] benefits from locality of
reference. We can generalize the definitions of the competitive ratio and the fault
rate to the randomized algorithms by considering the expected number of page
faults. Let Hk denote the kth harmonic number: Hk = 1 + 1/2 + . . . + 1/k. Fiat
et al. introduced the randomized marking algorithm, RM, and showed that it
is 2Hk-competitive [7]. The phases of RM are defined as deterministic marking
algorithms. On a fault, RM evicts a page chosen uniformly at random from
among the unmarked pages. A page is called clean if it was not requested in
the previous phase and stale otherwise. Intuitively, a sequence with locality of
reference does not have many clean pages in a phase. In order to formalize this
intuition we generalize the k-phase model as follows.

Definition 1. Let I be a sequence and consider its k-decomposition. For con-
stants a > 1 and b < 1, I is called (a, b)-local if L(I, k) ≥ ak and each phase of
D(I, k) has at most bk clean pages.

Now we can define the fault rate of an algorithm A on (a, b)-local sequences,
FA(a, b), by restricting the input sequences to (a, b)-local sequences.

The following theorem shows that RM works better on sequences that are
“more” local.
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Theorem 5. For any constants a > 1 and b < 1,

FRM(a, b) ≤ b · (Hk − Hbk + 1)
a

∼ b(1 − ln b)
a

.

Proof. Consider an arbitrary (a, b)-local sequence I such that |I| ≥ n. We should
show that FRM(I) ≤ b·(Hk−Hbk+1)

a . Consider the k-decomposition of I. Let li
denote the number of clean pages of phase i. Fiat et al. proved that the expected
number of faults of RM in phase i, fi, is at most Bi = li · (Hk − Hli + 1)
[7]. Note that 1 ≤ li ≤ bk; the first page of each phase is clean and I is an
(a, b)-local sequence. Since Bi is strictly increasing for li ≤ k, we get fi ≤
b · k · (Hk − Hbk + 1). Therefore the expected number of faults that RM incurs
on I is at most bk · (Hk − Hbk + 1) · |D(I, k)|. On the other hand we have
|I| ≥ ak · |D(I, k)|. Therefore

FRM(I) ≤ bk · (Hk − Hbk + 1) · |D(I, k)|
ak · |D(I, k)| =

b · (Hk − Hbk + 1)
a

. ��

Since Hn ≈ ln n, we can get an upper bound of b·(1−ln b)/a for FRM(a, b). Thus
the fault rate of RM decreases as a increases and b decreases. Note that several
other results can be obtained by imposing more restrictions on input sequences.
For example if I is an a-local sequence that contains only k + 1 distinct pages
we have li = 1 for each phase i and therefore

FRM(I) ≤ 1 · (Hk − H1 + 1)|D(I, k)|
ak|D(I, k)| =

Hk

ak
.

6 Caching with Locality of Reference

In the paging problem, all pages have the same size and the same retrieval cost
on a fault. However, in some applications such as caching files on the Web,
pages have different sizes and the cost of bringing a page to the cache varies for
different pages. We can generalize the paging problem in different ways. These
generalized variants of the problem are usually called caching problems. There
are various models for the caching problem [13,8]:

– General Model. In this model pages can have arbitrary sizes and arbitrary
retrieval costs.

– Weighted Caching. Pages have uniform sizes, but they can have arbitrary
retrieval costs (weights).

– Fault Model. Pages have arbitrary weights, however, they have uniform
retrieval costs.

– Bit Model. Pages have arbitrary sizes and the retrieval cost of a page is
proportional to its size.

Each of these models is appropriate for certain applications. Irani describes some
applications in Web caching that are best modeled using the Fault/Bit model
[8]. In this section we study the behaviour of marking caching algorithms on
sequences with high locality of reference.
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6.1 Weighted Caching

For weighted caching, we introduce some new notation. Consider an on-line
paging algorithm A. Each page π has a weight w(π). In the full access cost
model, the cost of a hit is 1 and the cost of a fault on a page π is p ·w(π)+1 for
some parameter p. Let WA(I) be the total weight of pages on which A incurs a
fault when it serves a sequence I and WOPT (I) be the same value for the optimal
off-line algorithm. Define the average weight of faults in a phase as AWA(I) =
WA(I)/|D(I, k)| and AWOPT (I) = WOPT (I)/|D(I, k)|. Note that the full access
cost of A and OPT on I is |I| + p · WA(I) and |I| + p · WOPT (I), respectively.
Let CFA(A, I) = |I|+p·WA(I)

|I|+p·WOP T (I) ; then we have CFA(A) = supI CFA(A, I).
Now assume that I is an a-local sequence, i.e. L(I, k) ≥ ak for some constant

a > 1. We have

CFA(A, I) =
L(I, k) + p · AWA(I)

L(I, k) + p · AWOPT (I)
≤ ak + p · AWA(I)

ak + p · AWOPT (I)
.

Note that the standard competitive ratio of A is

C(A) = sup
I

AWA(I)
AWOPT (I)

.

Therefore when p is large, CFA(A) approaches the standard competitive ratio.
For smaller values of p, CFA(A) improves as the locality of reference increases.

6.2 Bit Model

There is a close connection between the Bit model and the full access cost model.
Let s(π) denote the size of a page π and k be the size of cache. In the bit model,
the retrieval cost of π is r · s(π) for some fixed constant r. In the full access cost
model, the cost of a hit is 1 and the cost of a fault is p + 1 for some parameter
p. Therefore we can have a generalization of the full access cost model for the
Bit model as follows. The cost of a hit is 1 and the cost of a fault on a page π
is q · s(π) + 1 for some parameter q.

We obtain results in this model using the idea of k-decomposition. However
since pages can have arbitrary sizes, we modify the definition of the decompo-
sition. We upper bound the total size of distinct pages in a phase, rather than
the number of distinct pages. For an input sequence I and an integer m > 1, the
m-decomposition D(I, m) is defined as partitioning I into consecutive phases so
that each phase is a maximal subsequence that contains a set Π of distinct pages
such that the total of pages in Π adds up to at most m units of information.1

Note that each phase may contain a set of distinct pages whose total size is
strictly less than m. |D(I, m)| and L(I, m) are as before.

A marking algorithm in this model works in phases. At the beginning of each
phase all pages in the cache are unmarked. A page is marked when it is requested.
On a fault, the algorithm brings the requested page to the cache and evicts as
1 Depending on the application, the unit of information can be: bit, byte, word, etc.
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many (unmarked) pages as necessary from the cache to make room for this page.
If all pages in the cache are marked, the phase ends and all pages are unmarked.
As before, we call a sequence I a-local if L(I, k) ≥ ak for some constant a > 1.
Also assume that we have normalized the sizes of pages so that the smallest
pages have unit size.

Theorem 6. Let A be an arbitrary marking algorithm on an a-local input se-
quence. Then under the Bit model we have CFA(A) ≤ 1 + q/a.

Proof. Consider an arbitrary a-local sequence I. A incurs at most one fault on
any page π in any phase φ because π is marked after the first fault and will not
be evicted in the remaining steps of φ. Since the total size of distinct pages in a
phase is at most k, the full access cost of A on I is at most |I|+ |D(I, k)| · (q ·k).
On the other hand, according to the definition of the decomposition, the optimal
off-line algorithm should incur at lease one fault in each phase and therefore its
full access cost is at least |I| + |D(I, k)| · (q · 1). Therefore we get

CFA(A, I) ≤ |I| + |D(I, k)| · (q · k)
|I| + |D(I, k)| · (q · 1)

=
L(I, k) + q · k

L(I, k) + q · 1 .

Now since I is an alocal sequence, L(I, k) ≥ ak and

CFA(A, I) ≤ ak + q · k
ak + q · 1

= 1 +
(k − 1)

ak/q + 1
< 1 + q/a.

This completes the proof as I is an arbitrary a-local sequence. ��

7 Conclusions

In this paper we studied some models for paging with locality of reference. In
particular we proved that in general the competitive ratio does not improve on
input sequences with high locality of reference under the models of Torng [12]
and Albers et al. [1]. We also proposed a new model for locality of reference
and proved that the randomized marking algorithm has better fault rate on
sequences with high locality of reference. Finally we generalized the existing
models to several variants of the caching problem.

Acknowledgements. We thank Spyros Angelopoulos for useful discussions on this
subject.
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Abstract. In this paper we give a simple algorithm to generate all con-
nected rooted plane graphs with at most m edges. A “rooted” plane
graph is a plane graph with one designated (directed) edge on the outer
face. The algorithm uses O(m) space and generates such graphs in O(1)
time per graph on average without duplications. The algorithm does
not output the entire graph but the difference from the previous graph.
By modifying the algorithm we can generate all connected (non-rooted)
plane graphs with at most m edges in O(m3) time per graph.

1 Introduction

Generating all graphs with some property without duplications has many appli-
cations, including unbiased statistical analysis [9]. A lot of algorithms to solve
these problems are known [1,2,8,9,10,14, etc]. See textbooks [5,6,7,12,13].

In this paper we wish to generate all connected “rooted” plane graphs, which
will be defined precisely in Section 2, with at most m edges. Such graphs play an
important role in many algorithms, including graph drawing algorithms [3,4,11,
etc].

To solve these all-graph-generating problems some types of algorithms are
known.

Classical method algorithms [5, p57] first generate all the graphs with a given
property allowing duplications, but output only if the graph has not been output
yet. Thus this method requires quite a huge space to store a list of graphs that
have already been output. Furthermore, checking whether each graph has already
been output requires a lot of time.

Orderly method algorithms [5, p57] need not store the list, since they output
a graph only if it is a “canonical” representative of each isomorphism class.

Reverse search method algorithms [1] also need not store the list. The idea is
to implicitly define a connected graph H such that the vertices of H correspond
to the graphs with the given property, and the edges of H correspond to some
relation between the graphs. By traversing an implicitly defined spanning tree
of H , one can find all the vertices of H , which correspond to all the graphs with
the given property.

The main idea of our algorithms is that for some problems(biconnected tri-
angulations [8], and triconnected triangulations [10]) we can define a tree (not

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 210–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(a) (b)

Fig. 1. (a) Connected rooted plane graphs, and (b) Connected (non-rooted) plane
graphs

a general graph) as the graph H of the reverse search method. Thus our algo-
rithms do not need to find a spanning tree of H , since H itself is a tree. With
some other ideas we give the following two simple but efficient algorithms.

Our first algorithm generates all simple connected rooted plane graphs with at
most m(m > 0) edges. Simple means there is neither self loops nor multiple edges.
A rooted plane graph means a plane graph with one designated “root” edge on
the outer face. For instance there are nine simple connected rooted plane graphs
with at most three edges, as shown in Fig. 1(a). The root edges are depicted
by thick grey lines. However, there are only five simple connected (non-rooted)
plane graphs with at most three edges. See Fig. 1(b). The algorithm uses O(m)
space and runs in O(g(m)) time, where g(m) is the number of nonisomorphic
connected rooted plane graphs with at most m edges. The algorithm generates
each graph in O(1) time on average without duplications. The algorithm does
not output the entire graph but the difference from the previous graph.

By modifying the algorithm we can generate all connected (non-rooted) plane
graphs with at most m edges in O(m3) time per graph.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 shows a tree structure among connected rooted plane graphs. Section
4 presents our first algorithm to generate all connected rooted plane graphs.
Then, by modifying the algorithm we give an algorithm to generate all connected
(non-rooted) plane graphs. Section 5 analyzes the running time of our algorithm.
Finally Section 6 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph with m edges. In this paper all graphs are simple,

so there is neither self loops nor multiple edges. An edge connecting vertices u
and w is denoted by (u, w). The degree of a vertex v is the number of neighbors
of v in G.
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Fig. 2. A connected rooted plane graph

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed planar embedding. A plane graph
divides the plane into connected regions called faces. The unbounded face is
called the outer face, and other faces are called inner faces. We regard the contour
of a face as the clockwise cycle formed by the vertices on the boundary of the
face. We denote the contour of the outer face of plane graph G by Co(G). For
instance, in Fig. 2, Co(G) = v0, v1, v2, v3, v4, v5, v6, v7 = v5, v8, v9, v10 = v5, v11 =
v4, v12, v13 = v1, v14 = v0. Note that a vertex may appear several times on Co(G).
We say each vi on Co(G) is an appearance of a vertex. For instance v5, v7 and
v10 are the appearances of the same vertex v5 = v7 = v10. A rooted plane graph
is a plane graph with one designated edge er = (vr, vl) on Co(G). We assume vl

succeeds vr on Co(G). The designated edge is called the root edge, and vertex vl

is called the root vertex. Note that a rooted plane graph has one or more edges.
From now on we write r for the root vertex.

3 The Removing Sequence and the Family Tree

Let Sm be the set of all connected rooted plane graphs with at most m edges.
In this section we explain a tree structure relating the graphs in Sm.

Let G be a connected rooted plane graph with two or more edges. Let er =
(vk−1, v0) be the root edge of G and Co(G) = v0(= r), v1, v2, . . . , vk−1, v0(= r).
Note that v0 succeeds vk−1 on Co(G).

We classify the edges on Co(G) into three types as follows. If e on Co(G) is
included in a cycle of G then e is a cycle edge. Otherwise, if at least one vertex of
e has degree 1 then e is a pendant. Otherwise e is a bridge. We can observe if we
remove a bridge from G then the resulting graph is disconnected. For instance,
in Fig. 2, edge (v2, v3) is a cycle edge, edge (v5, v6) is a pendant, and edge (v4, v5)
is a bridge.

An edge e �= er on Co(G) is removable if after removing e from G the remaining
edges induce a connected graph. Thus each edge e �= er is removable if and only
if e is either a pendant or a cycle edge.

Since G is a rooted plane graph, the resulting graph after removing a remov-
able edge is also a rooted plane graph with the same root edge.
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We have the following lemma.

Lemma 1. Every connected rooted plane graph with two or more edges has at
least one removable edge.

Proof. Let G be a connected rooted plane graph with two or more edges, with
the root edge (vk−1, v0), and Co(G) = v0(= r), v1, v2, . . . , vk−1, v0. Let e1 =
(v0, v1) �= (vk−1, v0) = er be any edge on Co(G). Now e1 must be one of the
three types, that is, a bridge, a pendant or a cycle edge. If e1 is a pendant or
a cycle edge, it is removable, and we are done. Otherwise e1 is a bridge, then
on Co(G) the next edge of e1 is either a pendant, a bridge or a cycle edge. By
repeating this procedure we can find at least one pendant or cycle edge, which
is removable. ��

If ea = (va−1, va) is removable but none of (v0, v1), (v1, v2), . . . , (va−2, va−1) is
removable, then ea is called the first removable edge of G. We can observe that
if ea is the first removable edge then each of (v0, v1), (v1, v2), . . . , (va−2, va−1) is
a bridge or the root edge. (So they are not removable.)

For each graph G in Sm except K2, if we remove the first removable edge
then the resulting edge-induced graph, denoted by P (G), is also a graph in Sm

having one less edge. Thus we can define the unique graph P (G) in Sm for each
G in Sm except K2. We say G is a child graph of P (G).

Given a graph G in Sm, by repeatedly removing the first removable edge,
we can have the unique sequence G, P (G), P (P (G)), . . . of graphs in Sm which
eventually ends with K2. By merging those sequences we can have the family
tree Tm of Sm such that the vertices of Tm correspond to the graphs in Sm,
and each edge corresponds to each relation between some G and P (G). For
instance T4 is shown in Fig. 3, in which each first removable edge is depicted
by a thick black line. We call the vertex in Tm corresponding to K2 the root
of Tm.

4 Algorithms

Given Sm we can construct Tm by the definition, possibly with huge space and
much running time. However, how can we construct Tm efficiently only given an
integer m? Our idea [8,10] is by reversing the removing procedure as follows.

Given a connected rooted plane graph G in Sm with at most m − 1 edges,
we wish to find all child graphs of G. Let er be the root edge. Let Co(G) =
v0(= r), v1, . . . , vk−1, v0(= r), and (va−1, va) be the first removable edge of
G. Note that k is the number of appearances of the vertices on the contour
of the outer face. Since K2 has no removable edge, for convenience, we re-
gard e1 = (v0, v1) as the first removable edge for K2. We denote by G(i),
0 ≤ i < k, the rooted plane graph obtained from G by adding a new pen-
dant at vi, and by G(i, j), 0 ≤ i < j < k, the rooted plane graph obtained
from G by adding a new cycle edge connecting vi and vj on the outer face of
G, as shown in Fig. 4. We can observe that each child of G is either G(i) or
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Fig. 3. The family tree T4
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(a)  G(i)

vj

(b)  G(i,j)

Fig. 4. Illustration for (a) G(i) and (b) G(i, j)

G(i, j) for some i and j, and G(i) or G(i, j) is a child graph of G if and only
if the newly added edge of G(i) or G(i, j) is the first removable edge of G(i) or
G(i, j).

If (va−1, va) is the first removable edge of G, then edges (v0, v1), (v1, v2), . . . ,
(va−2, va−1) are bridges or the root edge, and vertices v0, v1, v2, . . . , va form a
path on Co(G). We call this path the critical path of G and denote it Pc(G). For
instance, in Fig. 2, Pc(G)=(v0, v1, v2).

Now we are going to find all child graphs of G. We have the following two
cases to consider. Let b(i) be the largest integer satisfying vi = vb(i). Thus vb(i)
is the last appearance of vi on Co(G).

Case 1: The first removable edge (va−1, va) of G is a pendant. (including the
special case when G is K2)

Consider graphs G(i), 0 ≤ i ≤ k. For each i, 0 ≤ i ≤ a, the newly added
edge in G(i) is the first removable edge of G(i), thus P (G(i)) = G. For each i,
a < i < k, (va−1, va) is still the first removable edge of G(i), so P (G(i)) �= G.

Then consider graphs G(i, j), 0 ≤ i < j < k. For each i and j, (i < j) such
that (1) vi �= vj , (2) 0 ≤ i ≤ a − 1, (3) (vi, vj) is not an edge of G, and (4)
j < b(i), the newly added edge in G(i, j) is the first removable edge of G(i, j),
thus P (G(i, j)) = G. Note that if vi = vj edge (vi, vj) is a self loop, and so
G(i, j) is not simple. Also if G has edge (vi, vj) then G(i, j) has a multiple edge,
and so G(i, j) is not simple. If i ≥ a, then the newly added edge in G(i, j) is
not the first removable edge of G(i, j), since (va−1, va) is still removable, thus
P (G(i, j)) �= G. Otherwise, 0 ≤ i ≤ a − 1 and j > b(i) holds. Now edge (vi−1, vi)
becomes removable in G(i, j), so P (G(i, j)) �= G.

Case 2: The first removable edge (va−1, va) of G is a cycle edge.
Consider graphs G(i), 0 ≤ i < k. For each i, 0 ≤ i ≤ a − 1, the newly added

edge in G(i) is the first removable edge of G(i), so P (G(i)) = G. For each i,
a ≤ i < k, (va−1, va) is still the first removable edge of G(i), so P (G(i)) �= G.
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Then consider graphs G(i, j), 0 ≤ i < j < k. For each i and j, (i < j)
such that (1) vi �= vj , (2) 0 ≤ i ≤ a − 1, (3) (vi, vj) is not an edge of G,
and (4) j < b(i), the newly added edge in G(i, j) is the first removable edge
of G(i, j), thus P (G(i, j)) = G. If i ≥ a, then the newly added edge in G(i, j)
never becomes the first removable edge of G(i, j), so P (G(i, j)) �= G. Otherwise,
0 ≤ i ≤ a − 1 and j > b(i) holds. Now edge (vi−1, vi) becomes removable in
G(i, j), so P (G(i, j)) �= G.

Based on the case analysis above we can find all child graphs of any given
graph in Sm. If G has l child graphs, then we can find them in O(l) time with
a suitable data structure, which will be described in Section 5. This is an intu-
itive reason why our algorithm generates each graph in O(1) time per graph on
average.

And recursively repeating this process from the root of Tm corresponding
to K2 we can traverse Tm without constructing the whole part of Tm at once.
During the traversal of Tm, we assign a label (i) or (i, j) to each edge connecting
G and either G(i) or G(i, j) in Tm, as shown in Fig. 3. Each label denotes how
to add a new edge to G to generate a child graph G(i) or G(i, j), and each
sequence of labels on a path starting from the root specifies a graph in Sm.
For instance, the sequence (1)(0, 2)(0) specifies the right-bottom graph in Fig. 3.
During our algorithm we will maintain these labels only on the path from the root
to the “current” vertex of Tm, because those labels carry enough information to
generate the “current” graph. To generate the next graph, we need to maintain
more information only for the graphs on the “current” path, which has length
at most m, and each graph can be represented as a constant size of difference
from the preceding one. This is an intuitive reason why our algorithm uses only
O(m) space, while the number of graphs may not be bounded by a polynomial
in m.

Our algorithm is as follows.

Procedure find-all-child-graphs(G)
begin

01 Output G {Output the difference from the previous graph.}
02 Assume (va−1, va) is the first removable edge of G.
03 if G has exactly m edges then return
04 for i = 0 to a − 1 {Case 1 and 2}
05 find-all-child-graphs(G(i))
06 if (va−1, va) is a pendant then {Case 1}
07 find-all-child-graphs(G(a))
08 for i = 0 to a − 1 {Case 1 and 2}
09 for j = i + 2 to b(i) − 1
10 if vi �= vj and (vi, vj) is not an edge of G then
11 find-all-child-graphs(G(i, j))

end



Listing All Plane Graphs 217

Algorithm find-all-graphs(Tm)
begin

1 Output K2
2 G = K2
3 find-all-child-graphs(G(0))
4 find-all-child-graphs(G(1))

end

We have the following theorem. The proof is given in Section 5.

Theorem 1. The algorithm uses O(m) space and runs in O(g(m)) time, where
g(m) is the number of nonisomorphic connected rooted plane graphs with at most
m edges.

We can modify our algorithm so that it outputs all connected (non-rooted) plane
graphs with at most m edges, as follows. At each vertex v of the family tree Tm,
the graph G corresponding to v is checked whether the sequence of labels of G
(with the root edge) is the lexicographically first one among the k sequences of
labels of G for the k choices of the root edge on Co(G), and only if so G is output.
Thus we can output only the canonical representative of each isomorphism class.
A similar method is appeared in [8,10].

Lemma 2. The algorithm uses O(m) space and runs in O(m3 · h(m)) time,
where h(m) is the number of nonisomorphic connected (non-rooted) plane graphs
with at most m edges.

Proof. For each graph corresponding to a vertex of Tm we construct k ≤ m of
sequences of labels corresponding to the k choices for the root edge on Co(G) in
O(m) time for each sequence, and find the lexicographically first one in O(km)
time. And for each output graph, our tree may contain k of isomorphic ones
corresponding to the k choices for the root edge. Thus the algorithm runs in
O(k2m ·h(m)) = O(m3 ·h(m)) time. The algorithm clearly uses O(m) space. ��

5 Proof of Theorem 1

In this section we give a proof of Theorem 1, that is if G has l child graph how
we can find them in O(l) time.

Given a connected rooted plane graph G in Sm with at most m − 1 edges, we
are going to find all child graphs of G by algorithm find-all-child-graphs. Let
(vk−1, v0) be the root edge of G, Co(G) = v0(= r), v1, v2, . . . , vk−1, v0(= r), and
(va−1, va) be the first removable edge of G.

If G has l child graphs of type G(i), by only maintaining the critical path
v0, v1, . . . , va, we can find such child graphs in O(l) time. See lines 04–07 of
find-all-child-graphs.

On the other hand, if G has l
′
child graphs of type G(i, j), we need to maintain

a slightly complicated data structure to find all such child graphs in O(l
′
) time.
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Fig. 5. An illustration for the zombie list of v3

Note that if either (1) vi = vj , or (2) G has an edge (vi, vj), then G(i, j) is not
simple and G(i, j) is not a child graph of G, so we need to efficiently skip such
j’s at line 10. For each of the other j’s, we need to generate G(i, j), since those
are child graphs of G.

Our idea is as follows. Let vi be an appearance of a vertex on the critical path
of G. We say that an appearance vj on Co(G) is dead with respect to vi if either
(1) vi = vj , or (2) G has an edge (vi, vj). To skip dead appearances efficiently,
for each vertex vi on the critical path, we maintain a list of successive dead
appearances with respect to vi, which allow us to skip each run of successive dead
appearances in O(1) time. After each time skipping successive dead appearances
we can always generate a child graph of G corresponding to the next “non-dead”
appearance. Thus l

′
child graphs of type G(i, j) can be generated in O(l

′
) time.

The details are as follows.
Let va(i) and vb(i) be the first and last appearance of vi on Co(G). Let Pi be

the subpath from va(i) to vb(i) on Co(G). A maximal subpath P c
i of Pi is called

a dead path of vi if all appearances vc, vc+1, . . . on P c
i are dead with respect to

vi. For example, the graph in Fig. 5 has 6 dead paths of v3: P 3
3 = (v3, v4, v5, v6),

P 8
3 = (v8), P 10

3 = (v10), P 12
3 = (v12, v13, v14, v15, v16), P 18

3 = (v18, v19, v20, v21),
P 23

3 = (v23, v24). They appear on Co(G) in this order. For each vi(0 ≤ i ≤ a − 1),
we maintain all dead paths as a list, and we call the list the zombie list of vi. Using
the zombie list we can skip each run of successive dead appearances in O(1) time.
After each time we skip a dead path, we can always generate at least one child
graph. Thus, we can generate each child graph of type G(i, j) in O(1) time.

Now we show how to prepare those data structures for each child graph.
Given a connected rooted plane graph G and the zombie list of each vertex

on the critical path, we are going to generate all child graphs, and for each child
graph we prepare the zombie list of each vertex on the new critical path by
modifying the list for G.
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We have the following two cases.
Case 1: Child graphs of type G(i).

We have the following two cases.
Case 1(a): i = a.

The first removable edge of G is a pendant, since otherwise the first removable
edge of G is a cycle edge and G(i) is not a child graph of G. Appending the new
edge to the critical path of G generates the critical path of G(i). The zombie list
of each vl, 0 ≤ l ≤ a − 2, in G(i) is identical to the ones in G.

The zombie list of va−1 in G(i) is derived by dividing the first dead path P
of va−1 in G as follows. Let P = (va−1, va, v

′

1, v
′

2, . . .) then we divide P into two
dead paths P1 = (va−1, va) and P2 = (va, v

′

1, v
′

2, . . .). Note that adding the new
edge generates one more appearance of va. See an example in Fig. 6(a). The
dead path P 2

2 in Fig. 6(a) is divided into P 2
2 and P 3

2 . Other dead paths of va−1
in G(i) are identical to the ones in G.

The zombie list of va consists of one dead path P = (va, vx, va), where vx is
the other end vertex of the new edge.

Thus we can modify the zombie list of each vertex on the critical path in O(1)
time.

Case 1(b): Otherwise.
The critical path of G(i) is v0, v1, . . . , vi, vx, where vx is the other end vertex

of the new edge.
The zombie list of each vl, 0 ≤ l ≤ i − 1 in G(i) is identical to the zombie list

of G.
The zombie list of vi is derived by appending (vi, vx) as the prefix to the

first dead path of vi, where vx is the other end vertex of the new edge. See an
example in Fig. 6(b). By appending (v2, vx) in to the dead path P 2

2 of v2 in G,
the dead path P 2

2 of G(i) is derived. Note that the other dead path of vi in G(i)
is identical to the ones in G.

Thus we can modify the zombie list of each vertex on the critical path in O(1)
time.
Case 2: Child graphs of type G(i, j).

The critical path of G(i, j) is v0, v1, . . . , vi, vj .
Note that vi+1, vi+2, . . . , vj−1 are not on Co(G(i, j)). So we need not maintain

the zombie list of those. Also each vj+1, vj+2, . . . , va are not on the critical path
of G(i, j). So we need not maintain the zombie lists of those.

The zombie list of each vl, 0 ≤ l ≤ i−1, is identical to the zombie list of G(i).
The zombie list of vi is derived by removing dead paths of vi up to vj on

Co(G). If vj+1 is dead with respect to vi in G, then appending (vi, vj) into the
dead path P j+1

i = (vj+1, vj+2, . . .) generates the zombie list of vi in G(i, j). See
an example in Fig. 6(c). By appending (v2, v5) into the dead path P 6

2 of v2 in G,
the dead path P 2

2 of v2 in G(i, j) is derived. Otherwise if vj+1 is not dead then
we append a new dead path P i

i = (vi, vj) into the zombie list of vi. Other dead
paths remain as they are.
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Fig. 6. An update of a zombie list for (a), (b) G(i) and (c) G(i, j)

Thus we can modify the zombie list of each vertex on the critical path in O(1)
time.

By the above case analysis, we can prepare the zombie list of each child graph
of G in O(1) time.

Next we estimate the space for zombie lists.
Since the number of dead paths of vertex v is bounded by the degree of v, the

space to store the zombie lists of G is bounded by O(m) = O(n).
By maintaining the zombie lists, if G has l

′
child graphs of type G(i, j), we

can find all such child graphs in O(l
′
) time. Thus, the algorithm runs in O(g(m))

time, where g(m) is the number of nonisomorphic connected rooted plane graphs
with at most m edges.
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6 Conclusion

In this paper we have given a simple algorithm to generate all connected plane
graphs with at most m edges. Our algorithm first defines a family tree whose
vertices correspond to graphs, then outputs each graph without duplications by
traversing the tree.

By implementing the algorithm one can compute the catalog of plane graphs.
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Abstract. Given an edge weighted tree T and two non-negative real numbers
dmin and dmax, a pairwise compatibility graph (PCG) of T is a graph G =
(V, E), where each vertex u ∈ V corresponds to a leaf u of T and an edge
(u, v) ∈ E if and only if dmin ≤ distance(u, v) ≤ dmax in T . In this paper
we give some properties of these graphs. We establish a relationship between
pairwise compatibility graphs and chordal graphs. We show that all chordless
cycles and single chord cycles are pairwise compatibility graphs. We also provide
a linear-time algorithm for constructing trees that can generate graphs having
cycles as their maximal biconnected subgraphs as PCGs. The techniques that we
used to identify various types of pairwise compatibility graphs are quite generic
and may be useful to discover other properties of these graphs.

1 Introduction

Let T be an edge weighted tree and G = (V, E) be a graph such that each vertex of G
corresponds to a leaf of T and an edge (u, v) ∈ E if and only if the distance between
the two leaves of T corresponding to u and v is within a given range. We call G a
pairwise compatibility graph (PCG) of T . Fig. 1(a) depicts an edge-weighted tree T
and Fig. 1(b) depicts a pairwise compatibility graph G of T , where the given range of
distance between a pair of leaves in T is from four to seven. The graph G has the edge

e
a

d

b c

(b)

ae

1

2
1 1

3

1

b

3

2

(a)
cd

Fig. 1. (a) An edge weighted tree T and (b) a pairwise compatibility graph G of T

(a, b) since the distance between the leaves corresponding to a and b is six in T , but G
does not contain the edge (a, c) since the distance between the leaves corresponding to
a and c is larger than seven in T . All the remaining edges of G are drawn following the
same rule. Given a PCG, the pairwise compatibility tree construction problem asks to
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construct an edge weighted tree that can generate the PCG. Meanwhile, the pairwise
compatibility graph recognition problem asks to determine whether a given graph is a
pairwise compatibility graph or not.

Pairwise compatibility graphs have applications in reconstruction of evolutionary re-
lationships of a set of species from biological data (also called phylogeny) [JP04, L02].
Usually phylogenetic relationships are expressed as a tree, known as phylogenetic tree.
Dealing with a sampling problem in a phylogenetic tree Kearney et al. introduced the
concept of pairwise compatibility graphs [KMP03]. They showed that “the clique prob-
lem” is polynomially solvable for pairwise compatibility graphs if the pairwise compat-
ibility tree construction problem can be solved in polynomial time. The clique problem
asks to determine a maximum set of pairwise adjacent vertices in a graph [CLRS01]. It
is an well known NP-complete problem that arises from many areas [PX94, BBPP99].
Thus the pairwise compatibility graph recognition problem and the pairwise compati-
bility tree construction problem have great potential.

There are several known specific cases of pairwise compatibility graphs, e.g., tree
power graphs, phylogenetic k-root graphs [LJK00, KC98]. Some other graphs such as
Steiner k-root graphs are also close in nature to pairwise compatibility graphs [LJK00].
However, to the best of our knowledge, structures of pairwise compatibility graphs and
their relationships with other known graph classes have not been studied before, though
Phillips showed that every graph of five vertices or less is a pairwise compatibility graph
[P02].

In this paper, we determine a relationship between pairwise compatibility graphs and
chordal graphs. We prove that all chordless cycles and single chord cycles are pairwise
compatibility graphs. We also show that any graph having cycles as its maximal bicon-
nected subgraphs is a pairwise compatibility graph and present a linear-time algorithm
to solve the pairwise compatibility tree construction problem in such graphs. For all the
graph classes that we identify as PCGs, the pairwise compatibility tree construction
problem can be solved using some simple techniques.

The rest of the paper is organized as follows. Section 2 describes some of the defi-
nitions used in this paper. Section 3 presents some properties of pairwise compatibility
graphs. Section 4 shows that every chordless cycle and every single chord cycle is a
pairwise compatibility graph. Section 5 shows that any graph having cycles as its max-
imal biconnected subgraphs is a PCG. Finally, Section 6 concludes with discussion.

2 Preliminaries

In this section we define some terms used in this paper.
Let G = (V, E) be a simple graph with vertex set V and edge set E. An edge

between two vertices u and v is denoted by (u, v). A path Puv = w0, w1, · · · , wn is a
sequence of distinct vertices in V such that u = w0, v = wn and (wi−1, wi) ∈ E for
every 1 ≤ i ≤ n. A sub-path of Puv is a subsequence Pwjwk

= wj , wj+1, ..., wk for
some 0 ≤ j < k ≤ n. An internal vertex of Puv is any vertex other than u and v that is
in Puv . A subgraph of a graph G = (V, E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V
and E′ ⊆ E. If G′ contains all the edges of G that join vertices in V ′, then G′ is called
the subgraph induced by V ′. A graph G is connected if each pair of vertices belongs



224 M.N. Yanhaona, K.S.M.T. Hossain, and Md. S. Rahman

to a path otherwise it is disconnected. Components of G are its maximal connected
subgraphs. A component of G is a nontrivial component if it has two or more vertices.
A cut vertex of G is a vertex whose deletion increases the number of components. A
block of G is a maximal connected subgraph of G that has no cut vertex. If G itself is
connected and has no cut vertex then G is a block. An independent set of G is a set of
pairwise nonadjacent vertices. The block-cutpoint graph of G is a bipartite graph H in
which one partite set consists of the cut vertices of G, and the other has a vertex bi for
each block Bi of G. An edge (v, bi) is in H if and only if v ∈ Bi.

A cycle C = (w1, w2, · · · , wn = w1) in a graph G is a sequence of distinct vertices
starting and ending at the same vertex such that two vertices are adjacent if they appear
consecutively in the list. The length of a cycle C is the number of its vertices. A cycle
C is an odd cycle if the length of C is odd, otherwise C is an even cycle. A chord of
a cycle C is an edge not in C whose endpoints lie on C. A chordless cycle is a cycle
of length at least four in G that has no chord. A graph G is chordal if it is simple and
has no chordless cycle. A cut edge of a graph G is an edge that belongs to no cycle. A
block-cycle graph is a graph having cycles as its maximal biconnected subgraphs.

A tree T is a connected graph with no cycle. Vertices of degree one are called
leaves and others are called internal vertices. A tree T is weighted if each edge is
assigned a number as the weight of the edge. The weight of an edge (u, v) is denoted
by weight(u, v). A subtree induced by a set of leaves is entirely composed of those
paths of T that connect only the leaves of that set. The length of a path Puv in T , de-
noted by luv, is the sum of weights of edges of Puv . A caterpillar is a tree in which a
single path (the spine) is incident to or contains every edge. The parent of a leaf u de-
noted by parent(u) is the internal vertex immediately adjacent to that leaf in the tree.
In this paper every tree we consider is a weighted tree. We use the convention that if an
edge of a tree has no number assigned to it then its default weight is one.

If T is an edge weighted tree then a pairwise compatibility graph of T with dmin and
dmax is a graph G = (V, E), where each vertex v ∈ V corresponds to a leaf v of T ,
and there is an edge (u, v) ∈ E if and only if the distance between leaves u and v in T
satisfies the condition dmin ≤ distance(u, v) ≤ dmax. Here dmin and dmax are two
nonnegative real numbers. We represent a pairwise compatibility graph of T with dmin

and dmax by PCG(T, dmin, dmax).

3 Properties of Pairwise Compatibility Graphs

In this section we prove some properties of pairwise compatibility graphs.
Factors determining the structure of a PCG are the topology of the edge weighted tree

T and values of dmin and dmax. Here we establish relationships between the structure
of a PCG and the values of dmin and dmax that are used to construct it. Chordal
graphs are one of the few classes of graphs for which the clique problem is solvable
in polynomial time [W03]. Lin et al. proved that a class of graphs similar to PCG,
known as “phylogenetic k-root graphs” are chordal graphs [LJK00]. However, PCGs
are neither a subset of chordal graphs nor are they disjoint from that class [KMP03].
Here we show that a restricted set of PCGs that include phylogenetic k-root graphs are
chordal graphs, as in the following theorem.
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Theorem 1. Let G = (V, E) be a pairwise compatibility graph of a tree T with dmin

and dmax where distance(u, v) ≥ dmin in T for every pair of vertices u, v that are in
the same cycle of G. Then G is a chordal graph. �

To prove Theorem 1 it is sufficient to prove that no chordless cycle can exist in G.
Clearly the minimum length of a chordless cycle is four. In the following lemma we
prove that no chordless cycle of length four can exist in G.

Lemma 1. Let G = (V, E) be a pairwise compatibility graph of a tree T with dmin

and dmax where distance(u, v) ≥ dmin in T for every pair of vertices u, v that are in
the same cycle of G. Then G does not contain any chordless cycle of length four.

Proof. Assume for a contradiction that a chordless cycle C = (a, b, c, d) of length four
exists in G. Since a, b, c, d are leaves of T , unique paths Pab, Pac, Pbc and Pad exist in
T . Let p be the common internal vertex between Pac and Pab such that p is the furthest
vertex from a, as illustrated in Fig. 2. Similarly, let q be the common internal vertex
between Pac and Pad such that q is the furthest vertex from a. Since vertices a and c

a

d

p q
c

b

a

ab

b

c

c

d
d

p
q

p=q

(a) (b) (c)

Fig. 2. Possible subtrees induced by leaves a, b, c, d

are not adjacent in G, lac > dmax. However, lbc ≤ dmax since b and c are adjacent in
G. Therefore, lac > lbc. Since p is contained in Pac, path Pac can be decomposed into
Pap and Ppc such that Pac = Pap + Ppc. Similarly, Pbc = Pbp + Ppc. Since lac > lbc,
lap + lpc > lbp + lpc. This implies lap > lbp. Similarly, we can prove that lcp > lbp

since Pab contains p and a and b are adjacent in G. Vertex q is either included in Ppc or
it comes before p in the path from a to c. Without loss of generality, assume that q lies
in Ppc. Since a and d are adjacent in G, lad ≤ dmax in T . By decomposing Pad into
Pap, Ppq and Pqd we get lap + lpq + lqd ≤ dmax. As lap > lbp from the above, we have
lbp + lpq + lqd < dmax. This implies lbd < dmax. However, lbd ≥ dmin since b and d
are in a cycle. Therefore, b and d must be adjacent in G, a contradiction. ��

We now show that G does not have any chordless cycle of length greater than four using
following Lemmas 2, 3 and 4. Proofs of Lemmas 2 and 3 are omitted.

Lemma 2. Let G = (V, E) be a pairwise compatibility graph of a tree T with dmin

and dmax where distance(u, v) ≥ dmin in T for every pair of vertices u, v that are in
the same cycle of G. Let a, b, c be three consecutive vertices on a chordless cycle C of
G, and let o be the common internal vertex of Pac and Pab in T such that o is the furthest
vertex from a. Then lob ≤ dmax

2 and lao > lob. �



226 M.N. Yanhaona, K.S.M.T. Hossain, and Md. S. Rahman

Lemma 3. Let G = (V, E) be a pairwise compatibility graph of a tree T with dmin and
dmax where distance(u, v) ≥ dmin in T for every pair of vertices u, v that are in the
same cycle of G. Let a, b, c, d be four vertices of a cycle in G such that (a, d) ∈ E but
(b, d) �∈ E and let o be the common internal vertex of Pac and Pab in T that is the fur-
thest vertex from a. Then Pad does not contain o and ldo > lob if lob ≤ dmax

2 and lao >
lob. �

Lemma 4. Let G = (V, E) be a pairwise compatibility graph of a tree T with dmin

and dmax where distance(u, v) ≥ dmin in T for every pair of vertices u, v that are
in the same cycle of G. Then G does not contain any chordless cycle of length greater
than four.

Proof. Assume for a contradiction that C = (a1, a2, a3, a4, ..., an) is a chordless cycle
of length greater than four in G. Select any three consecutive vertices ai−1, ai and ai+1
of C. Let o be the common internal vertex of Pai−1ai and Pai−1ai+1 in T such that o

is the furthest vertex from ai−1. According to Lemma 2, loai ≤ dmax

2 and lai−1o >
loai . According to Lemma 3, Pai−1ai−2 does not contain o and lai−2o > loai since
(ai−2, ai−1) ∈ E and (ai−2, ai) �∈ E. Applying Lemma 3 repeatedly for the rest
of the vertices of C in the sequence ai+1, ai+2, · · · , ai−4, ai−3 we can conclude that
Pai−4ai−3 in T does not contain o and lai−3o > loai . However, Pai−2ai−3 in T contains
o, as illustrated in Fig. 3(c). Since ai−2 and ai are not adjacent in C, lai−2ai > dmax in
T . Furthermore, Pai−2ai in T contains o. Therefore, lai−2o + loai > dmax. This implies
lai−2o > dmax − loai . Since loai ≤ dmax

2 , lai−2o > dmax

2 . Similarly, we can prove that
lai−3o > dmax

2 . Since Pai−2ai−3 contains o, lai−2ai−3 = lai−2o + loai−3 . Furthermore,

a i−3

a i−1

ai−2
ai

a i+1

a i

i−1a

i−1a

a i−2

a i+2

a i+1

a i

a i−4

o

o

(a)

(b)

2 steps

n−5 steps

(c)

o

Fig. 3. (a) Subtree induced by ai−1, ai, ai+1, (b) subtree induced by ai−2, ai−1, ai, ai+1, ai+2,
and (c) subtree induced by ai−2, ai−1, ai, ai−3, ai−4
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both lai−2o and loai−3 are larger than dmax

2 . Therefore, lai−2ai−3 > dmax. Hence, ai−1
and ai−3 cannot be adjacent in G and C cannot exist. ��

Lemma 1 and Lemma 4 immediately prove Theorem 1. ��

Let G be a PCG of a tree T with dmin = x and dmax = y. Any other graph G′

that is also constructed from T using dmin ≤ x and dmax ≥ y has all the edges of
E and perhaps some additional edges. Since adding an edge in an existing graph never
increases the number of components, G has at least as many components as in G′.
However, the number of nontrivial components in G and G′ cannot be related in such
a straightforward manner. The following theorem states that the number of nontrivial
components is not affected when dmax is set to a certain large value and only dmin is
varied to construct different PCGs from a single tree (proof omitted).

Theorem 2. Let G = (V, E) be a pairwise compatibility graph of a tree T with dmin ≤
dmax where dmax ≥ distance(u, v) for every pair of leaves of T . Then G has at most
one nontrivial component. �

4 Chordless Cycles and Single Chord Cycles

This section shows that every graph that is a chordless or a single chord cycle is a PCG.
Kearney et al. posted an open problem - “Is any (or every) cycle of length greater than
five a pairwise compatibility graph?” [KMP03]. We give an affirmative answer to that
open problem as in the following theorem.

Theorem 3. Let dmin and dmax be any two positive real numbers such that dmin ≤
dmax and let G be a cycle. Then there is a tree T such that G = PCG(T, dmin, dmax).

Proof. We will show that we can construct a tree T and assign weights to the edges of
T such that G = PCG(T, dmin, dmax). We have to consider the following two cases
depending on whether G is an odd or even cycle.

Case 1: G is an odd cycle
To generate an arbitrary odd cycle G = (a1, a2, · · · , a2n, a2n+1) we can construct a
tree T , as illustrated in Fig. 4(a). In T the distance between any two successive odd
indexed leaves a2i−1 and a2i+1 is di + 2w. We denote by d1 and dn the beginning
and ending intervals respectively. We call di for 1 < i < n, an internal interval.
We call the path connecting a1 and a2n+1 the spine of T . Since a1 and a2n+1 are
adjacent in G, the length of the spine of T must be at least dmin. Since the length of the
spine of T is

∑n
i=1 di + 2w, we assign the value of di so that

∑n
i=1 di + 2w = dmin

holds. Therefore, for every pair of odd indexed leaves {ai, aj} other than a1 and a2n+1
in T , distance(ai, aj) < dmin. Every even indexed vertex a2i is adjacent only to
the odd indexed vertices a2i−1 and a2i+1 in G. In the tree T , distance(a2i, a2i−1) =
distance(a2i, a2i+1) = ki + di

2 +w. In order to satisfy the adjacency relationships that
are present in the cycle, we assign value of each ki in T in such a way that the relations
dmin ≤ ki+ di

2 +w ≤ dmax, ki+ di

2 +di+1+w > dmax and ki+ di

2 +di−1+w > dmax

hold in T . For example, we can assign di = dmin

n+1 , w = di

2 and ki = dmax − di for 1 ≤
i ≤ n to satisfy all the conditions mentioned above. Hence, G = PCG(T, dmin, dmax).
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Fig. 4. (a) Generic tree organization for odd cycles, (b) generic tree organization for even cycles

Case 2: G is an even cycle
To generate an arbitrary even cycle G = (a1, a2, · · · , a2n−1, a2n) we can construct
a tree T , as illustrated in Fig. 4(b). Similar to the case of odd cycles, we denote by
d1 and dn−1 the beginning and ending intervals respectively and call rest of the di

for 1 < i < n − 1 an internal interval. The only exception from Case 1 is the
placement of the leaf a2n. We call the path connecting a1 and a2n−1 the spine of T .
Since no two odd indexed vertices are adjacent to each other in G, the length of the
spine of T must be less than dmin. Therefore, we assign values of w and each di so
that the condition dmin >

∑n−1
i=1 di + 2w is satisfied. For each even indexed vertex

other than a2n, we assign the value of ki in T similarly to the case of odd cycles.
Since a2n is adjacent only to a1 and a2n−1 in G, we connect a2n through an edge
of weight kn to the midpoint of the spine of T and assign the value of kn so that
dmin ≤ distance(a1, a2n), distance(a2n−1, a2n) ≤ dmax in T . For example, we can
assign di = dmin

n+1 , w = di

2 , ki = dmax − di for 1 ≤ i ≤ n − 1 and kn = dmin − ndi

2
to satisfy all these conditions. Hence, G = PCG(T, dmin, dmax). ��

We next use the result of Theorem 3 to show that every graph that contains only a cycle
with a single chord in it is a PCG, as in the following theorem (proof omitted).

Theorem 4. Let G be a cycle with a single chord. Then G is a pairwise compatibility
graph. �

5 Block-Cycle Graphs Are Pairwise Compatibility Graphs

In this section we generalize the result of Section 4 for block-cycle graphs as in the
following theorem.

Theorem 5. Every block-cycle graph is a pairwise compatibility graph. �

In the rest of this section we give a constructive proof of Theorem 5. It is sufficient to
prove that for any given block-cycle graph G there is a tree T such that G is a PCG of
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Fig. 5. (a) A block-cycle graph G, (b) block-cutpoint graph G′ of G, and (c) incremental con-
struction of a tree T

T . We first assume that G is a connected block cycle graph and later we will consider
the case where G is disconnected. Let G′ be the block-cutpoint graph of G. Since G
is connected, G′ is a tree [W03]. Fig. 5(b) illustrates such a block-cutpoint graph G′

of a block-cycle graph G in Fig. 5(a). We incrementally construct a tree T that has G
as a PCG. Initially we have an empty tree T and begin a depth first search (DFS) in
G′. The first time we encounter a block in our depth first search, we create a tree for
that block and add that tree as a branch of T . Whenever we encounter a cut vertex we
do nothing. Fig. 5(c) illustrates the steps of constructing the tree T for the block-cycle
graph G of Fig. 5(a). We start the depth first search from B1 of G′ and construct a tree
T for the corresponding block. When we encounter B2 of G′ we add a new branch
in T for corresponding block of G. Similarly, we encounter vertices B3 and B4 in
sequence and add branches in T for the corresponding blocks respectively. Hence, after
every step the tree T have a connected induced subgraph of G as its PCG. When the
DFS is complete G becomes a PCG of T . For such a scheme to work correctly two
constraints must be satisfied. Firstly, every branch that is added in the tree must be able
to generate its corresponding block as a PCG for the globally chosen values of dmin

and dmax. Secondly, the distance between the leaves of any two branches must satisfy
the adjacency relationships between the corresponding vertices of the graph.

Before giving the detail of our proof we need some definitions. Let G be a block-
cycle graph. Then l is the smallest integer such that l is greater than or equal to half
the length of a maximal cycle in G. We assume that dmin ≥ 3 if G has no cycle and
always assign dmax the value dmin + 2. We also assume that each edge of every tree
has integer weight. If T1 and T2 are two trees and C1 and C2 are two cycles in G such
that C1 is a PCG is of T1 and C2 is a PCG of T2, we call T1 and T2 are connection
consistent when a tree T can be constructed by connecting T1 and T2 that can generate
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the subgraph C1
⋃

C2 as a PCG. Furthermore, we define the following categories of
trees for generating cycles.

We construct all trees that generate cycles as PCGs according to the procedure de-
scribed in the proof of Theorem 3. In those trees leaves are connected with their parents
by an edge of weight one and the length of each internal interval is four. Furthermore,
every leaf of the tree that corresponds to an even indexed vertex of the cycle is at a
distance dmax from the leaves that correspond to its adjacent odd indexed vertices. We
call a tree T an odd tree if T has a PCG which is an odd cycle. Similarly, we call a tree
T an even tree if T has a PCG which is an even cycle. We call an odd tree T whose
PCG is a cycle C = (a1, a2, a3, · · · , a2k, a2k+1) a balanced odd tree if its beginning
interval d1 = 16l and ending interval dk = dmax − d1 − 4(k − 2) − 2. We call the odd
tree T a head-long odd tree if dk = 4 and d1 = dmax − 4(k − 1) − 2, and call T a
tail-long odd tree if d1 = 4 and dk = dmax − 4(k − 1)− 2. Every odd tree that we will
use in the rest of this section falls in one of the above three categories. We call an even
tree T whose PCG is a cycle C = (a1, a2, a3, · · · , a2k−1, a2k) a balanced even tree if
its beginning interval d1 = 16l and ending interval dk−1 = 4. We call the even tree T
a head-long even tree if d1 = 20l and dk−1 = 4, and call T a tail-long even tree when
d1 = 4 and dk = 20l. Every even tree that we will use in the rest of this section falls in
one of the above three categories.

The following lemma shows how we construct connection consistent branches for
cycles that share a vertex with each other and determine an appropriate value for dmin.

Lemma 5. Let C1 = (a1, a2, · · · , ak) and C2 = (b1, b2, · · · , bl) be two cycles of a
connected block-cycle graph G such that b1 = ai for some 1 ≤ i ≤ k. Let T1 be a
tree such that C1 = PCG(T1, dmin, dmin + 2). Then there exists a tree T2 such that
C2 = PCG(T2, dmin, dmin + 2) and T1 and T2 are connection consistent if dmin =
32l − 6 where l is the smallest integer that is greater than or equal to half the length of
a maximal cycle in G.

Proof. Assume that there is a tree T2 that can generate C2 as a PCG. According to the
definitions we have given before, T1 and T2 both fall in one of our defined categories.
Since C1 is a PCG of T1 and C2 is a PCG of T2, there are leaves correspond to ai = b1
in both of the trees. Let w1 be the parent of ai in T1 and w2 be the parent of b1 in T2. We
connect T1 and T2 by merging the edge (w1, ai) of T1 and the edge (w2, b1) of T2. To
prove that T1 and T2 are connection consistent it is sufficient to prove that the distance
between any two leaves that are taken from T1 and T2 respectively, is either larger than
dmax or less than dmin. We now show how to construct the tree T2 so that the above
condition is satisfied. Meanwhile, we will determine the value of dmin that is consistent
with our assumption. If ai is not the first or last odd indexed leaf of T1 then we will not
construct T2 as a tail long tree. It is now trivial to prove that any even indexed leaf of
either of T1 and T2 is always at a distance larger than dmax from any leaf of the other one.
Therefore, from now on we will only consider odd indexed leaves. We have to consider
the following cases depending on the category in which T1 may belong.

Case 1: T1 is a head long even or odd tree.
If ai = a1 then we construct a head long even or odd tree T2 for C2 depending on
whether C2 is even or odd. Then we connect T1 and T2 to form a new tree T , as
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Fig. 6. (a) Adding a head long tree at the head of a head long tree, and (b) adding a tail long tree
at the tail of a head long tree

illustrated in Fig. 6(a). In a head long even tree the longest distance between a pair of
odd indexed leaves is 20l+4(l−2)+2. Since the vertices corresponding to odd indexed
leaves of a head long even tree are not adjacent in the cycle, we have to assign a value
to dmin such that dmin > 20l + 4(l − 2) + 2. The smallest distance of a leaf of T2
from a leaf of T1 is the distance between a3 and b3 where distance(a3, b3) ≥ 40l + 2.
Therefore, if we assign to dmin a value that is within the range form 20l + 4(l − 2) + 4
to 40l − 2 then T1 and T2 are connection consistent. If ai is the last odd indexed leaf of
T1 then we construct a tail long even or odd tree T2 for C2 depending on whether C2 is
even or odd. Then we connect T2 and T1 to form a new tree T , as illustrated in Fig. 6(b).
In T the distance between the last odd indexed leaf of T2 and a1 of T1 is larger than
40l + 2. Since we assign a value to dmin within the range form 20l + 4(l − 2) + 4 to
40l − 2 and dmax = dmin + 2, those two leaves are at a distance larger than dmax.
The maximum distance of a1 from any odd indexed leaf of T2 other than the last odd
indexed leaf is 20l + 8(l − 2) + 2. Hence, if we increase the lower limit of dmin from
20l + 4(l − 2) + 4 to 20l + 8(l − 2) + 4 and assign a value to dmin accordingly then
every other odd indexed leaf of T2 will be at a distance less than dmin from a1. Again,
T1 and T2 are connection consistent. If ai is any leaf of T1 other than the first and the
last odd indexed leaves then we create a tree T2 similarly. The proof of this sub case is
omitted in this extended abstract.
The proofs for the remaining cases are omitted in this extended abstract. ��

We now present the detail of our tree construction procedure. For any given connected
block-cycle graph we construct a tree block by block. We start from an empty tree T .
Whenever we encounters a new block we construct a tree for generating that block, then
this newly constructed tree is added in T as a branch. The correctness of our construc-
tion is based on the ability of constructing a branch at each step, for the corresponding
block, that can be added in T without violating any condition. In a block-cycle graph
every block is either a cut edge or a cycle. Furthermore, a cycle may or may not share
vertices with other cycles. Therefore, we have to consider three cases depending on the
type of a block. The following lemma states that we can construct a branch, that can
be connected with the rest of the tree consistently in the case where the corresponding
block is a cut edge (proof omitted).
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Lemma 6. Let H and H ′ be two connected induced subgraphs of a connected block-
cycle graph G such that H ′ is formed by adding a cut edge B with H and H =
PCG(T, dmin, dmin+2) for some tree T where dmin = 32l−6 and l is the smallest in-
teger that is greater than or equal to half the length of a maximal cycle in G. Then there
is a tree T ′ such that H ′ = PCG(T ′, dmin, dmin + 2). �
The following lemma states that we can construct a branch that can be connected with
the rest of the tree consistently in the case where the corresponding block is a cycle that
shares no vertex with other cycles (proof omitted).

Lemma 7. Let H and H ′ be two connected induced subgraphs of a connected block-
cycle graph G such that H ′ is formed by adding a new cycle C in H and u be the
cut vertex shared by H and C. Furthermore, assume that C shares no vertex with any
cycle that is present in H and H = PCG(T, dmin, dmin + 2) for some tree T where
dmin = 32l − 6 and l is the smallest integer that is greater than or equal to half the
length of a maximal cycle in G. Then H ′ = PCG(T ′, dmin, dmax) for some tree T ′. �
We now prove that we can generate a branch that can be connected with the rest of the
tree consistently in case of a cycle that shares vertices with other cycles. Whenever the
we encounter a new cycle that shares a vertex with another already visited cycle, we
construct a tree for the new one that is connection consistent with the older one. Let
two branches of the tree generating two different cycles as a PCG be isolated from
each other. Within the time of visiting those two cycles we must add branches for at
least one cut edge and one cycle that shares no vertex with other cycles in the tree using
Lemma 6 and Lemma 7, respectively. Hence, any path in the tree connecting two leaves
of these two different branches is larger than dmax. Therefore, to prove that a branch
that can be connected with the rest of the tree consistently in the case of a cycle that
shares vertices with other cycles, it is sufficient to prove the following lemma (proof
omitted).

Lemma 8. Let C0, C1, C2, · · · , Ck be a sequence of distinct cycles of a block-cycle
graph G such that Ci shares a vertex vi with Ci−1 for 1 ≤ i ≤ k and all of this vertices
are distinct. Let Ti for 0 ≤ i ≤ k, be a tree that generates Ci as a PCG taking vi as the
first odd indexed vertex where dmin = 32l−6 and l is the smallest integer that is greater
than or equal to half the length of a maximal cycle in G. Then there is a tree T that can
generate the subgraph induced by the vertices of these cycles as a PCG if Ti and Ti+1
are connection consistent for 0 ≤ i ≤ k. �
From Lemma 6, Lemma 7 and Lemma 8 it is evident that we can always construct a
tree that has a given connected block-cycle graph as a PCG. For disconnected block-
cycle graphs we can easily construct a tree by connecting those trees that generate the
components of the graphs as their PCGs. Hence we have proved Theorem 5.

One can easily implement the tree construction procedure in linear time and hence
the following theorem holds.

Theorem 6. Let G be a block-cycle graph of n vertices. Let l be the smallest integer
that is greater than or equal to half the length of a maximal cycle in G. Then one can
construct a tree T in linear time such that G = PCG(T, dmin, dmin+2) where dmin =
32l − 6. �
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6 Conclusion

In this paper we viewed the structure of PCGs in different ways to identify relation-
ships between them and some other known graph classes. We showed that some re-
stricted subset of PCGs are chordal graphs. We also constructively proved that all
chordless cycles as well as single chord cycle are PCGs. We also developed a proce-
dure for constructing trees that can generate graphs having cycles as their maximum
biconnected subgraphs. Most of our study resulted in finding new techniques for con-
structing trees that can generate specific classes of graphs. Those approaches that we
used to develop these techniques can be used to establish relationships between PCGs
and many other graph classes. We suggest interested researchers to investigate those
relationships.

References

[CLRS01] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2001)

[BBPP99] Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: Handbook of Combinato-
rial Optimization, vol. 4. Kluwer Academic Publishers, Boston, MA (1999)

[HMPV00] Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement,
with applications to transitive orientation, interval graph recognition, and consecu-
tive ones testing. Theoretical Computer Science 234, 59–84 (2000)

[JP04] Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms. The
MIT Press, Cambridge (2004)

[KMP03] Kearney, P., Munro, J.I., Phillips, D.: Efficient generation of uniform samples
from phylogenetic trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS
(LNBI), vol. 2812, pp. 177–189. Springer, Heidelberg (2003)

[KC98] Kearney, P., Corneil, D.G.: Tree powers. Journal of Algorithms, 111–131 (1998)
[L02] Lesk, A.M.: Introduction to Bioinformatics. Oxford University Press, Oxford

(2002)
[LJK00] Lin, G.H., Jiang, T., Kearney, P.E.: Phylogenetic k-root and steiner k-root. In: Lee,

D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer,
Heidelberg (2000)

[P02] Phillips, D.: Uniform sampling from phylogenetic trees, Master’s thesis, University
of Waterloo (August 2002)

[PX94] Pardalos, M., Xue, J.: The maximum clique problem. Journal of Global Optimiza-
tion, 301–328 (1994)

[W03] West, D.B.: Introduction to Graph Theory. Prentice Hall of India, New Delhi (2003)



Multilevel Bandwidth and Radio Labelings of
Graphs

Riadh Khennoufa and Olivier Togni

LE2I, UMR CNRS 5158
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Abstract. This paper introduces a generalization of the graph band-
width parameter: for a graph G and an integer k ≤ diam(G), the k-level
bandwidth Bk(G) of G is defined by

Bk(G) = minγ max{|γ(x)− γ(y)|− d(x, y)+1 : x, y ∈ V (G), d(x, y) ≤
k}, the minimum being taken among all proper numberings γ of the
vertices of G.

We present general bounds on Bk(G) along with more specific re-
sults for k = 2 and the exact value for k = diam(G). We also exhibit
relations between the k-level bandwidth and radio k-labelings of graphs
from which we derive a upper bound for the radio number of an arbitrary
graph.

Keywords: generalized graph bandwidth, radio labeling, frequency
assignment.

1 Introduction

Let G be a connected graph. The distance between two vertices u and v of G
is denoted by dG(u, v) or simply d(u, v) and the diameter of G is denoted by
diam(G).

The graph bandwidth problem is an old and well studied NP-complete prob-
lem (see e.g. [10,11,4,9,5]) that remains NP-complete for several simple graphs
like some special types of trees. This problem arises from sparse matrix compu-
tation, coding theory, and circuit layout of VLSI design. The bandwidth B(G)
of a graph G is the minimum of the quantity max{|γ(x) − γ(y)| : xy ∈ E(G)}
taken over all proper numberings γ of G.

In this paper, we introduce a generalisation of the bandwidth parameter called
k-level bandwidth which consists, for a proper numbering of the vertices, in taking
into acount not only the differences of the labels of adjacent vertices, but also
of vertices at distance i, 1 ≤ i ≤ k: for a graph G and an integer k ≤ diam(G),
the k-level bandwidth Bk(G, γ) of a proper numbering of the vertices of a graph
G is defined by

Bk(G, γ) = max{|γ(x) − γ(y)| − d(x, y) + 1 : x, y ∈ V (G), d(x, y) ≤ k}.

S.-i. Nakano and Md. S. Rahman (Eds.): WALCOM 2008, LNCS 4921, pp. 234–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The k-level bandwidth Bk(G) of G is

Bk(G) = min{Bk(G, γ) : γ is a proper numbering of V (G)}.

A numbering γ for which Bk(G, γ) = Bk(G) is said to be a k-level bandwidth
numbering.

We shall also use the notation B∗(G) = Bdiam(G)(G).
Thus, the 1-level bandwidth corresponds with the graph bandwidth: B1(G) =

B(G) while the 2-level bandwidth B2 generalises the bandwidth in an analogous
manner as the λ2,1 parameter for the chromatic number.

Figure 1 presents three numberings of a graph G: the left one γ1 is such that
B(G, γ1) = 4, B2(G, γ1) = 5, the one on the center γ2 is such that B(G, γ2) =
4, B2(G, γ2) = 6 and the right one γ3 is such that B(G, γ3) = 3, B2(G, γ3) = 5.

2

3

5 7

8

4

61

2

3

7

861

5

4

13 2

4 7

8

5

6

Fig. 1. Example of numberings of a graph with different bandwidths and 2-level band-
widths

Other labelings of interest since few years are radio labelings: for a graph G
and an integer k, a radio k-labeling f of G is an assignment of non negative
integers to the vertices of G such that

|f(u) − f(v)| ≥ k + 1 − d(u, v),

for every two distinct vertices u and v of G. The span of the function f denoted
by λk(f), is max{f(x) − f(y) : x, y ∈ V (G)}. The radio k-chromatic number
λk(G) of G is the minimum span of all radio k-labelings of G.

Radio k-labelings were introduced by Chartrand et al. [1], motivated by radio
channel assignment problems with interference constraints. Quite few results are
known concerning radio k-labelings. The radio k-chromatic number for paths was
studied in [1], where lower and upper bounds were given. These bounds have been
improved in [6].

Radio k-labelings generalize many other graph labelings. A radio 1-labeling
is a proper vertex-colouring and λ1(G) = χ(G) − 1. For k = 2, the radio 2-
labeling problem corresponds to the well studied L(2, 1)-labeling problem. For
k = diam(G) − 1, radio k-labelings were studied under the name of (radio)
antipodal labelings [1,3,7,8]. A radio k-labeling with k = diam(G) is known as a
radio labeling. Radio labelings of paths and of cycles have been studied in [2,12].

The aim of this paper is to introduce the k-level bandwidth parameter, to
raise links between it and the radio k-labeling problem and to present bounds
on the k-level bandwidth of some graphs.
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2 Multilevel Bandwidth

To begin, we claim that for paths, cycles and complete bipartite graphs, the
k-level bandwidth is easy to determine:

Claim 1. – For any k ≤ n − 1, Bk(Pn) = 1;
– for any k < n

2 , Bk(Cn) = k + 1 and Bp(C2p) = p;
– B2(Km,n) = m + n − 2.

If Gk stands for the kth power of G (i.e. the graph with the same vertex set as G
and with edges between vertices at distance at most k in G), then the following
relation is easily seen:

Proposition 1. For any graph G and any k ≤ diam(G),

B(G) ≤ Bk(G) ≤ B(Gk).

Proposition 2. For any graph G of order n and any k, 1 ≤ k ≤ diam(G),

Bk(G) ≥ k(n − 1)
diam(G)

− k + 1.

Proof. Let γ : V (G) −→ {1, . . . , n} be a k-level bandwidth numbering of G and
let u = γ−1(1) and v = γ−1(n).

If d(u, v) ≤ k, then we have Bk(G, γ) ≥ n − 1 − d(u, v) + 1 ≥ n − k ≥
k(n−1)
diam(G) − k + 1 since k ≤ diam(G).

If d(u, v) > k, then by the pigeonhole principle, there exist two vertices x
and y at mutual distance k along a shortest path between u and v such that
|γ(x) − γ(y)| ≥ k(n−1)

diam(G) − k + 1. ��

The Cartesian product G�H of graphs G and H is the graph with vertex set
V (G) × V (H) and edge set E(G�H) = {((a, x)(b, y)), ab ∈ E(G) and x =
y or xy ∈ E(H) and a = b}.

The following theorem generalize the known upper bound (see [5]) on the
bandwidth of the Cartesian product of two graphs:

Theorem 1. For any graphs G and H, and for any positive integer k ≥ 1,

Bk(G�H) ≤ |V (G)|Bk(H)+max{(|V (G)|−1)(k−1), Bk(G)+(|V (G)|−1)(k−2)−1}.

Proof. The numbering of G�H which gives this upper bound is γ(a, x) = γG(a)+
(γH(x)−1)|V (G)|, where γG and γH are k-level bandwidth numberings of G and
of H , respectively. Due to space constraints, the rest of the proof is left to the
reader.

Corollary 1. For any graph G of diameter at least 2,

B2(G�K2) ≤ 2B2(G) + 1.

.
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Theorem 2. For any graph G of order n and any k ≤ diam(G),

Bk(G) ≤ n − diam(G).

Proof. Let u and v be vertices of G such that d(u, v) = diam(G) and let u0 =
u, u1, u2, . . . , un−1 = v be a distance ordering of V (G) from u0, i.e. if i < j then
d(u0, ui) ≤ d(u0, uj). Let also Vi = {uj ∈ V (G), d(u0, uj) = i} and ni = |Vi|,
0 ≤ i ≤ diam(G).

Thus, the Vi partition V (G) into diam(G) + 1 levels, each level Vi represent
the set of vertices which are at distance i with the vertex u0.

Now, we show that the simple numbering γ of the vertices of G given by
γ(ui) = i + 1 attains the desired bandwidth, i.e. that the the condition |γ(y) −
γ(x)| − d(x, y) + 1 ≤ n − diam(G) is verified for any two vertices x and y, with
d(x, y) ≤ k.

Assume w.l.o.g. that x ∈ Vi(G) and y ∈ Vj(G) for some i and j, 0 ≤ i ≤ j ≤
diam(G) and j − i ≤ k. Then we have

γ(x) ≥ 1 +
∑i−1

�=0 n�, and
γ(y) ≤

∑j
�=0 n�.

Thus,

γ(y) − γ(x) − d(x, y) + 1 ≤ n − diam(G) ⇔
∑j

�=0 n� − 1 −
∑i−1

�=0 n� − d(x, y) + 1 ≤ n − diam(G) ⇔
∑j

�=i n� − d(x, y) ≤ n − diam(G).

As d(x, y) ≥ j−i, we have
∑j

�=i n�−d(x, y) ≤
∑j

�=i(n�−1)+1 ≤
∑diam(G)

�=0 (n�−
1) + 1 =

∑diam(G)
�=0 n� +

∑diam(G)
�=0 (1) − 1 = n − diam(G). Hence the above in-

equality is verified and we obtain Bk(G) ≤ n − diam(G). ��

Combining Theorem 2 and Proposition 2 with k = diam(G), we obtain the exact
value of B∗(G) i.e. of Bdiam(G)(G):

Corollary 2. For any graph G of order n,

B∗(G) = n − diam(G).

3 Relation Between the Radio k-Chromatic Number and
the k-Level Bandwidth

Theorem 3. For any graph G of order n and for any positive integer k ≥ 1,

λk(G) ≤ λk+Bk(G)−1(Pn).

Proof. Let γ be a k-level bandwidth numbering of G and let f : V (Pn) →
{0, . . . , λk′

(Pn) − 1} be a radio k′-labeling of Pn, with k′ = k + Bk(G) − 1.
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Consider the vertex ordering u1, u2, . . . , un of G induced by γ: ui = γ−1(i) and
label each vertex ui using f , as if u1, . . . , un was a path.

Then, we have for i > j,

|f(ui) − f(uj)| ≥ k′ + 1 − dPn(ui, uj) = k′ + 1 − (i − j) = k + Bk(G) − (i − j).

As Bk(G) ≥ |γ(ui)− γ(uj)|− dG(ui, uj)+1 = (i− j)− dG(ui, uj)+1, we obtain

|f(ui) − f(uj)| ≥ k + (i − j) − dG(ui, uj) + 1 − (i − j) = k + 1 − dG(ui, uj),

and thus f is a radio k-labeling of G. ��

This result, along with the upper bound of Chartrand et al. for the radio k-
chromatic number of the path [1] yield the following:

Corollary 3. For any graph G of order n and for any positive integer 1 ≤ k ≤
diam(G),

λk(G) ≤ 1
2
(Bk(G)(Bk(G) + 2k) + k2 − 1).

Corollary 4. For any graph G of order n and diameter D,

λD(G) ≤
{ 1

2 (n2 − 2n + 2) if n is even,
1
2 (n2 − 2n + 5) if n is odd.

Proof. By using the result given in Theorem 2 and applying it in Theorem 3
with k = diam(G) = D, we obtain λD(G) ≤ λD+B∗(G)−1(Pn) = λn−1(Pn). Liu

and Zhu [12], have shown that λn−1(Pn) =
{ 1

2 (n2 − 2n + 2) if n is even,
1
2 (n2 − 2n + 5) if n is odd. . ��

4 The 2-Level Bandwidth B2

For the 2-level bandwidth, one can derive a better lower bound than that of
Proposition 2 in some cases by refining the argument of the proof:

Proposition 3. For any graph G of diameter at least 2,

B2(G) ≥ 2
⌈

n − 1
diam(G)

− 1
2

⌉

− 1.

Since it is easily seen that B2(C4 = H2) = 2, Corollary 1 gives a upper bound
for the 2-level bandwidth of the hypercube:

Proposition 4. For the n-dimensional hypercube Hn, n ≥ 2,

B2(Hn) ≤ 2n−1 + n − 2.
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5 Concluding Remarks

We have introduced the k-level bandwidth of a graph and presented first results
about it. Nevertheless, many questions and problems remain open. Among all:

– We have shown that the k-level bandwidth is easy to determine when k =
diam(G) and it is known that computing the 1-level bandwidth is NP-
complete. An open problem is thus to determine the algorithmic complexity
of computing Bk(G) for 2 ≤ k ≤ diam(G) − 1.

– Another interesting question is: given a graph G, does there exist a num-
bering γ of V (G) which is optimal for the k-level bandwidth (i.e. such that
Bk(G, γ) = Bk(G)) for any k ?
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Żyliński, Pawe�l 157


	front-matter
	fulltext
	Vertex Domination in Dynamic Networks
	Introduction
	Convergence to a Given Configuration
	Mutual Transferability
	Algorithm

	Domatic Partition with Defections
	Basic Properties
	Regular Graphs

	Concluding Remarks


	fulltext2
	Closing the Gap Between Theory and Practice: New Measures for On-Line Algorithm Analysis
	Introduction
	Definitions
	Paging
	Theory Versus Practice
	Related Work

	Bijective Analysis and Average Analysis
	List Update and Cooperative Analysis
	Conclusions


	fulltext3
	Simple Geometrical Intersection Graphs
	Introduction
	Preliminaries
	Hard Problems
	Concluding Remarks


	fulltext4
	On the Approximability of Comparing Genomes with Duplicates
	Introduction and Preliminaries
	EComI and EConsI Are APX-Hard
	EBD is APX-Hard
	Approximating the Number of Adjacencies
	Conclusions and Future Work


	fulltext5
	Indexing Circular Patterns
	Introduction
	Preliminaries
	CPI-I: An Index for Circular Pattern
	CPI-II: Another Index for Circular Pattern
	Conclusion


	fulltext6
	A Fast Algorithm to Calculate Powers of a Boolean Matrix for Diameter Computation of Random Graphs
	Introduction
	Higher Powers of Boolean Matrix
	Diameter Computation Algorithm
	Proof of Correctness
	Complexity Analysis
	Complexity for Calculating Higher Powers of Boolean Matrix
	Complexity for Diameter Computation

	Performance Comparisons
	Conclusions


	fulltext7
	Cover Ratio of Absolute Neighbor
	Introduction
	Absolute Neighbor
	Computational Experiments
	Configuration of Points
	Application
	Conclusion


	fulltext8
	Computing β-Drawings of 2-Outerplane Graphs in Linear Time
	Introduction
	Preliminaries
	Linear-Time Algorithm for -Drawings of G
	Conclusion


	fulltext9
	Upward Drawings of Trees on the Minimum Number of Layers
	Introduction
	Preliminaries
	Line-Labeling of a Tree
	Upward Drawings on the Minimum Number of Layers
	Conclusion


	fulltext10
	Guarding Exterior Region of a Simple Polygon
	Introduction
	Maximum Distance from Given Source Point
	Locate Guard to Minimize Distance from Its Farthest Point
	When the Subsets FC and FA Are of Type 1 or Type 2
	When the Subsets FC and FA Are of Type 3 or Type 4



	fulltext11
	Computing Nice Projections of Convex Polyhedra
	Introduction
	The Problem
	Outline of the Paper

	Preliminaries
	Nice Projection of Faces
	The Optimum Projection

	Nice Projection of Line Segments
	Line Segments in 3D
	Line Segments of a Polyhedron

	Conclusion


	fulltext12
	A Compact Encoding of Plane Triangulations with Efficient Query Supports
	Introduction
	Preliminaries
	Realizer
	Coding
	Query
	Conclusion


	fulltext13
	Four-Connected Spanning Subgraphs of Doughnut Graphs
	Introduction
	Preliminaries
	Characterization
	Conclusion


	fulltext14
	Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs
	Introduction and Definitions
	Preprocessing and Reduction Rules
	The Algorithm and Its Analysis 
	The Algorithm
	Analysis

	Reparameterization


	fulltext15
	Linear-Time 3-Approximation Algorithm for the r-Star Covering Problem
	Introduction
	Preliminaries
	A 5-Approximation Algorithm for Orthogonal Polygons
	Optimal Algorithm for [w]-Star-Shaped Polygons
	A 3-Approximation Algorithm for Orthogonal Polygons
	[w]-Star-Shaped Partition
	The 3-Approximation Algorithm

	Extensions


	fulltext16
	Multi-commodity Source Location Problems and Price of Greed
	Introduction
	Analysis of POGk(r,p) for the General Case
	Analyses of POG2(r,p) for Vertex-Unweighted Trees
	Conclusion and Future Work


	fulltext17
	Inverse Booking Problem: Inverse ChromaticNumber Problem in Interval Graphs
	Introduction
	Hardness of Approximating IBPK=1 and IBPK=1,
	Discussion on Further Work


	fulltext18
	Optimal Algorithms for Detecting NetworkStability
	Introduction
	Theoretical Framework
	Detecting Universal Stability
	Universal Stability
	Simple-Path Universal Stability

	Detecting Intrusion Attacks
	Directions for Further Research


	fulltext19
	On Certain New Models for Paging with Locality of Reference
	Introduction
	Limitations of the Competitive Ratio Model
	The Fault Rate of the k-phase Model
	The Working Set Model Under Full Access Cost Model
	A New Model for Locality of Reference
	Caching with Locality of Reference
	Weighted Caching
	Bit Model

	Conclusions


	fulltext20
	Listing All Plane Graphs
	Introduction
	Preliminaries
	The Removing Sequence and the Family Tree
	Algorithms
	Proof of Theorem 1
	Conclusion


	fulltext21
	Pairwise Compatibility Graphs
	Introduction
	Preliminaries
	Properties of Pairwise Compatibility Graphs
	Chordless Cycles and Single Chord Cycles
	Block-Cycle Graphs Are Pairwise Compatibility Graphs
	Conclusion


	fulltext22
	Multilevel Bandwidth and Radio Labelings of Graphs
	Introduction 
	Multilevel Bandwidth
	Relation Between the Radio k-Chromatic Number and the k-Level Bandwidth
	The 2-Level Bandwidth B2
	Concluding Remarks


	back-matter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




