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In Memory of Timo Raita (1950-2002)

While preparing these proceedings, we received news of Timo Raita’s tragic
death, after a severe illness. He came to the Department of Computer Science,
University of Turku, in 1980, received his PhD in 1988, and acted first as a
lecturer, then as a professor of computer science. Timo was a member of the
organizing committee of this workshop, which remained one of his last official
duties.

Timo’s research interests were particularly in data compression, string al-
gorithms, and information retrieval. He published several papers, for example,
on source encoding, text compression, index compression, and string matching.
Timo was a driving force in algorithmic research at the University of Turku and
highly appreciated by his colleagues and students. We shall all miss him.



Preface

The papers in this volume were presented at SWAT 2002, the Eighth Scandina-
vian Workshop on Algorithm Theory. The workshop, which is really a conference,
has been held biennially since 1988, rotating between the five Nordic countries
(Denmark, Finland, Iceland, Norway, and Sweden). It also has a loose associa-
tion with the WADS (Workshop on Algorithms and Data Structures) conference
that is held in odd numbered years. SWAT is intended as a forum for resear-
chers in the area of design and analysis of algorithms. The SWAT conferences
are coordinated by the SWAT steering committee, which consists of B. Aspvall
(Bergen), S. Carlsson (Lule̊a), H. Hafsteinsson (Iceland), R. Karlsson (Lund),
A. Lingas (Lund), E. M. Schmidt (Århus), and E. Ukkonen (Helsinki).

The call for papers sought contributions in all areas of algorithms and data
structures, including computational geometry, parallel and distributed compu-
ting, graph theory, computational biology, and combinatorics. A total of 103
papers were submitted, out of which the program committee selected 43 for
presentation. In addition, invited lectures were presented by Torben Hagerup
(Frankfurt) and Heikki Mannila (Helsinki).

SWAT 2002 was held in Turku, July 3-5, 2002, and was locally organized by a
committee consisting of T. Järvi (chair), L. Bergroth, T. Kaukoranta, T. Raita,
J. Smed, and J. Teuhola (secr.), all from the Department of Computer Science,
University of Turku.

We wish to thank all the referees who aided in evaluating the papers. We also
thank the Academy of Finland, Turku Centre for Computer Science (TUCS),
and Turku University Foundation for financial support.

July 2002 Martti Penttonen
Erik Meineche Schmidt
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Christian Icking
Tibor Jordan
David Grove Jørgensen
Jarkko Kari
Michael Kaufmann
Timo Knuutila
Petter Kristiansen
Elmar Langetepe

Christos Levcopoulos
Moshe Lewenstein
Andrzej Lingas
Eva-Marta Lundell
Bengt Nilsson
Jyrki Nummenmaa
Jeppe Nejsum Madsen
Fredrik Manne
Ulrich Meyer
Peter Bro Miltersen
Michael Minock
Pat Morin
Erkki Mäkinen
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An Efficient Quasidictionary

Torben Hagerup1 and Rajeev Raman2�

1 Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt,
D–60054 Frankfurt am Main. hagerup@ka.informatik.uni-frankfurt.de

2 Department of Maths and Computer Science, University of Leicester,
Leicester LE1 7RH, UK. r.raman@mcs.le.ac.uk

Abstract. We define a quasidictionary to be a data structure that
supports the following operations: check-in(v) inserts a data item v
and returns a positive integer tag to be used in future references to v;
check-out(x) deletes the data item with tag x; access(x) inspects and/or
modifies the data item with tag x. A quasidictionary is similar to a
dictionary, the difference being that the names identifying data items
are chosen by the data structure rather than by its user. We describe a
deterministic quasidictionary that executes the operations check-in and
access in constant time and check-out in constant amortized time, works
in linear space, and uses only tags bounded by the maximum number of
data items stored simultaneously in the quasidictionary since it was last
empty.

1 Introduction

Many data structures for storing collections of elements and executing certain
operations on them have been developed. For example, the red-black tree [14]
supports the operations insert, delete, and access, among others, and the Fi-
bonacci heap [10] supports such operations as insert, decrease, and extractmin.
An element is typically composed of a number of fields, each of which holds a
value. Many common operations on collections of elements logically pertain to a
specific element among those currently stored. E.g., the task of a delete operation
is to remove an element from the collection, and that of a decrease operation is
to lower the value of a field of a certain element. Therefore the question arises
of how a user of a data structure can refer to a specific element among those
present in the data structure.

The elements stored in a red-black tree all contain a distinguished key drawn
from some totally ordered set, and the tree is ordered with respect to the keys.
In some cases, it suffices to specify an element to be deleted, say, through its
key. If several elements may have the same key, however, this approach is not
usable, as it may not be immaterial which of the elements with a common key
gets deleted. Even when keys are unique, specifying an element to be deleted
from a Fibonacci heap through its key is not a good idea, as Fibonacci heaps
� Supported in part by EPSRC grant GR L/92150.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 1–18, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 T. Hagerup and R. Raman

do not support (efficient) searching: Locating the relevant key may involve the
inspection of essentially all of the elements stored, an unacceptable overhead. In
still other cases, such as with finger trees [5,17], even though reasonably efficient
search is available, it may be possible to execute certain operations such as
deletions faster if one already knows “where to start”.

For these reasons, careful specifications of data-structure operations such as
delete state that one of their arguments, rather than being the element to be
operated on, is a pointer to that element. Several interpretations of the exact
meaning of this are possible. In their influential textbook, Cormen et al. use the
convention that elements are actually stored “outside of” the data structures,
the latter storing only pointers to the elements [6, Part III, Introduction]. Thus
insert and delete operations alike take a pointer to an element as their argument.
In contrast, the convention employed by the LEDA library is that (copies of)
elements are stored “inside” the data structures, and that an insertion of an
element returns a pointer (a “dependent item”, in LEDA parlance) to be used
in future references to the element [19, Section 2.2].

The method employed by Cormen et al. can have its pitfalls. Consider, e.g.,
the code proposed for the procedure Binomial-Heap-Decrease-Key in [6,
Section 20.2] and note that the “bubbling up” step repeatedly exchanges the
key fields and all satellite fields of two nodes y and z, in effect causing y and z
to refer to different elements afterwards. Because of this, repeated calls such as
Binomial-Heap-Decrease-Key(H,x, k1); Binomial-Heap-Decrease-Key
(H,x, k2), despite their appearance, may not access the same logical element.
Indeed, as binomial heaps do not support efficient searching, it will not be easy
for a user to get hold of valid arguments x to use in calls of the form Binomial-
Heap-Decrease-Key(H,x, k). One might think that this problem could be
solved by preserving the key and satellite fields of the nodes y and z and instead
exchanging their positions within the relevant binomial tree. Because of the
high degrees of some nodes in binomial trees, however, this would ruin the time
bounds established for the Binomial-Heap-Decrease-Key operation.

Presumably in recognition of this problem, in the second edition of their
book, Cormen et al. include a discussion of so-called handles [7, Section 6.5].
One kind of handle, which we might call an inward handle, is a pointer from an
element of an application program to its representation in a data structure in
which, conceptually, it is stored. The inward handle has a corresponding outward
handle that points in the opposite direction. Whenever the representation of an
element is moved within a data structure, its outward handle is used to locate
and update the corresponding inward handle. While this solution is correct, it
is not modular, in that the data structure must incorporate knowledge of the
application program that uses it. It can be argued that this goes against current
trends in software design.

A solution that does not suffer from this drawback can be obtained by em-
ploying the LEDA convention described above and introducing one more level
of indirection: The pointer supplied by the user of a binomial heap would then
point not into the heap itself, but to an auxiliary location that contains the
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actual pointer into the heap and is updated appropriately whenever the element
designated moves within the heap.

In the following, we adopt the LEDA convention and assume that every
insertion of an element into a data structure returns a pointer to be used in
future references to the element. The pointer can be interpreted as a positive
integer, which we will call the tag of the element. At every insertion of an element,
the data structure must therefore “invent” a suitable tag and hand it to the user,
who may subsequently access the element an arbitrary number of times through
its tag. Eventually the user may delete the element under consideration, thus in
effect returning its tag to the data structure for possible reuse. During the time
interval in which a user is allowed to access some element through a tag, we say
that the tag is in use. When the tag is not in use, it is free. Fig. 1 contrasts the
solution using handles with the one based on tags.

Data structureApplication Data structureApplication

handles

tags

(a) (b)

Fig. 1. The interplay between an application and a data structure based on (a) handles
and (b) tags.

It might seem that the only constraint that a data structure must observe
when “inventing” a tag is that the tag should not already be in use. This con-
straint can easily be satisfied by maintaining the set of free tags in a linked list:
When a new tag is needed, the first tag on the free list is deleted from the list
and put into use, and a returned tag is inserted at the front of the list. In gen-
eral, however, a data structure has close to no control over which tags are in use.
In particular, it may happen that at some point, it contains only few elements,
but that these have very large tags. Recall that the purpose of a tag is to allow
efficient access to an element stored in the data structure. The straightforward
way to realize this is to store pointers to elements inside the data structure in
a tag array indexed by tag values. Now, if some tags are very large (compared
to the current number of elements), the tag array may have to be much bigger
than the remaining parts of the data structure, putting any bounds established
for its space consumption in jeopardy.

In his discussion of adding the delete operation to priority queues that lack
it, Thorup [23, Section 2.3] proposes the use of tags (called “identifiers”) and a
tag array (called “D”). He recognizes the problem that identifiers may become
too big for the current number of elements. The solution that he puts forward to
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solve this problem places the burden on the user of a data structure: Whenever
the number of elements stored has halved, the user is required to extract all
elements from the data structure and subsequently reinsert them, which gives
the data structure an opportunity to issue smaller tags. Our goal in this paper
is to provide an algorithmic solution to the problem.

Even when no tag arrays are needed, small tags may be advantageous, sim-
ply because they can be represented in fewer bits and therefore stored more
compactly. This is particularly crucial in the case of packed data structures,
which represent several elements in a single computer word and operate on all of
them at unit cost. In such a setting, tags must be stored with the elements that
they designate and follow them as they move around within a data structure.
Therefore it is essential that tags can be packed as tightly as the corresponding
elements, which means that they should consist of essentially no more bits. The
investigation reported here was motivated by an application to a linear-space
packed priority queue.

We formalize the problem of maintaining the tags of a data structure by
defining a quasidictionary to be a data structure that stores an initially empty
set S of elements and supports the following operations:

check-in(v), where v is an element (an arbitrary constant-size collection of
fields), inserts v in S and returns a positive integer called the tag of v and distinct
from the tag of every other element of S.

check-out(x), where x is the tag of an element in S, removes that element
from S.

access(x), where x is the tag of an element in S, inspects and/or modifies
that element (but not its tag); the exact details are of no importance here.

The term “quasidictionary” is motivated by the similarity between the data
structure defined above and the standard dictionary data structure. The latter
supports the operations insert(x, v), delete(x), and access(x). The access opera-
tions of the two data structures are identical, and delete(x) has the same effect
as check-out(x). The difference between insert(x, v) and check-in(v) is that in
the case of insert(x, v), the tag x that gives access to v in later operations is
supplied by the user, whereas in the case of check-in(v), it is chosen by the data
structure. In many situations, the tags employed are meaningful to the user, and
a dictionary is what is called for. In other cases, however, the elements to be
stored have no natural a priori names, and a quasidictionary can be used and
may be more convenient.

Quasidictionaries have potential applications to storage management. A stor-
age allocator must process online a sequence of requests for contiguous blocks of
memory of specified sizes, interspersed with calls to free blocks allocated earlier.
It is known [21,22] that if N denotes the maximum total size of the blocks in
use simultaneously, the storage allocator needs Ω(N logN) words of memory to
serve the requests in the worst case. As proved in [18], randomization does not
help very much. A decision version of the corresponding offline problem, in which
all requests are known initially, is NP-complete, even when all block sizes are 1
or 2 [12, Section A4.1], and the best polynomial-time approximation algorithm
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known has an approximation ratio of 3 [13]. Thus the storage-allocation problem
is difficult in theory. As argued in detail in [24], despite the use of a number of
heuristics, it also continues to constitute a challenge in practice.

Conventional storage allocators are not allowed to make room for a new
block by relocating other blocks while they are still in use. This is because of
the difficulty or impossibility of finding and updating all pointers that might
point into such blocks. Relocating storage allocators, however, can achieve a
superior memory utilization in many situations. This is where quasidictionaries
come into the picture: Equipped with a “front-end” quasidictionary, a relocating
storage allocator can present the interface of a nonrelocating one. An application
requesting a block of memory then receives a tag that identifies the block rather
than a pointer to the start of the block, and subsequent accesses to the block
are made by passing the tag of the block and an offset within the block to a
privileged operation that accesses the quasidictionary. This has a number of
disadvantages. First, the tag cannot be used as a “raw” pointer into memory,
and address arithmetic involving the tag is excluded. This may not be a serious
disadvantage. Indeed, the use of pointers and pointer arithmetic is a major source
of difficult-to-find software errors and “security holes”. Second, memory accesses
are slowed down due to the extra level of indirection. However, in the interest
of security and programmer productivity, considerable run-time checks (e.g., of
array indices against array bounds) were already made an integral part of modern
programming languages such as Java.

Our model of computation is the unit-cost word RAM, a natural and realistic
model of computation described and discussed more fully in [15]. Just as a usual
RAM, a word RAM has an infinite memory consisting of cells with addresses
0, 1, 2, . . . , not assumed to be initialized in any particular way. For a positive
integer parameter w, called the word length, every memory cell stores an integer
in the range {0, . . . , 2w−1}, known as a word. We assume that the instructions in
the so-called multiplication instruction set can be executed in constant time on
w-bit operands. These include addition, subtraction, bitwise Boolean operations,
left and right bit shifts by an arbitrary number of positions, and multiplication.
The word length w is always assumed to be sufficiently large to allow the memory
needed by the algorithms under consideration to be addressed; in the context of
the present paper, this will mean that if a quasidictionary at some point must
store n elements, then w ≥ log2n+ c for a suitable constant c > 0; in particular,
we will have n < 2w. An algorithm for the word RAM is called weakly nonuniform
if it needs access to a constant number of precomputed constants that depend
on w. If it needs only the single constant 1, it is called uniform. When nothing
else is stated, uniformity is to be understood.

Since the space requirements of data structures are of central interest to the
present paper, we provide a careful definition, which is somewhat more involved
than the corresponding definition for language-recognition problems. Informally,
the only noteworthy points are that the space consumption is related not to an
input size, but to the number of elements currently stored, and that space is
counted in units of w-bit words.
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First, a legal input to a data structure D is a sequence of operations that D
is required to execute correctly, starting from its initial state. We will say that D
uses space s during the execution of a legal input σ1 to D if, even if the contents
of all memory cells with addresses ≥ s are altered arbitrarily at arbitrary times
during the execution of σ1, subsequently every operation sequence σ2 such that
σ1σ2 is a legal input to D is executed correctly, and if s is the smallest non-
negative integer with this property. Assume now that D stores sets of elements
and let IN = {1, 2, . . . } and IN0 = IN ∪ {0}. The space consumption of D is the
pointwise smallest function g : IN0 → IN0 such that for all legal inputs σ to D, if
D contains n elements after the execution of σ, then the space used by D during
the execution of σ is bounded by g(n). If the space consumption of D is O(n),
we say that D works in linear space.

Our main result is the following:

Theorem 1. There is a uniform deterministic quasidictionary that can be ini-
tialized in constant time, executes the operations check-in and access in constant
time and check-out in constant amortized time, works in linear space, and uses
only tags bounded by the maximum number of tags in use simultaneously since
the quasidictionary was last empty.

A result corresponding to Theorem 1 is not known for the more powerful
dictionary data structure. Constant execution times in conjunction with a linear
space consumption can be achieved, but only at the expense of introducing ran-
domization [9]. A deterministic solution based on balanced binary trees executes
every operation in O(log n) time, where n is the number of elements currently
stored, whereas a data structure of Beame and Fich [4], as deamortized by An-
dersson and Thorup [3], yields execution times of O(

√
log n/log log n). If we

insist on constant-time access, the best known result performs insertions and
deletions in O(nε) time, for arbitrary fixed ε > 0 [16]. We are not aware of any
previous work specifically on quasidictionaries.

2 Four Building Blocks

We will compose the quasidictionary postulated in Theorem 1 from four sim-
pler data structures. One of these is a quasidictionary, except that it supports
an additional operation scan that lists all tags currently in use, and that it is
initialized with a set of pairs of (distinct) tags already in use and their corre-
sponding elements, rather than starting out empty; we call such a data structure
an initialized quasidictionary. The three other data structures are static dictio-
naries, which are also initialized with a set of (tag , element) pairs, and which
subsequently support only the operation access. The four building blocks are
characterized in the following four lemmas.

Lemma 1. There is an initialized quasidictionary that, provided that every tag
initially in use is bounded by N and that the number of tags simultaneously
in use is guaranteed never to exceed N , can be initialized in O(N) time and
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space, uses O(N) space, and executes check-in, check-out and access in constant
time and scan in O(N) time. Moreover, every tag used is bounded by a tag
initially present or by the maximum number of tags in use simultaneously since
the quasidictionary was initialized.

Proof. Use a tag array storing for each of the integers 1, . . . , N whether it is
currently in use as a tag and, if so, its associated element. Moreover, maintain
the set of free tags in {1, . . . , N} in a linked list as described in the introduction.
By assumption, no tag will be requested when the list is empty, and it is easy
to carry out the operations within the stated time bounds. Provided that the
initial free list is sorted in ascending order, no check-in operation will issue a tag
that is too large.

We will refer to the integer N that appears in the statement of the previous
lemma as the capacity of the data structure. A data structure similar to that of
the lemma, but without the need for an initial specification of a capacity, was
implemented previously by Demaine [8] for use in a simulated multiprocessor
environment.

Lemma 2. There is a static dictionary that, when initialized with n ≥ 4 tags in
{1, . . . , N} and their associated elements, can be initialized in O(n + N/logN)
time and space, uses O(n+N/logN) space, and supports constant-time accesses.

Proof. Assume without loss of generality that the tag N is in use. The data
structure begins by computing a quantity b as a power of two with 2 ≤ b ≤ logN ,
but b = Ω(logN), as well as log b, with the help of which divisions by b can be
carried out in constant time. Similarly, it computes l as a power of two with
log b ≤ l ≤ b, but l = O(log b), as well as log l.

Let S be the set of tags to be stored. For j = 0, . . . , r = �N/b	, let Uj = {x |
1 ≤ x ≤ N and �x/b	 = j} and take Sj = S ∩Uj . For j = 0, . . . , r, the elements
with tags in Sj are stored in a separate static dictionary Dj , the starting address
of which is stored in position j of an array of size r + 1. For j = 0, . . . , r, Dj

consists of an array Bj of size |Sj | that contains the elements with tags in Sj
and a table Lj that maps every tag in Sj to the position in Bj of its associated
element. Lj is organized in one of two ways.

If |Sj | ≥ l, Lj is an array indexed by the elements of Uj . Since |Sj | ≤ b ≤ 2l,
every entry in Lj fits in a field of l bits. Moreover, by assumption, the word
length w is at least logN ≥ b. We therefore store Lj in l ≤ |Sj | words, each of
which contains b/l fields of l bits each. It is easy to see that accesses to Lj can
be executed in constant time.

If |Sj | < l, Lj is a list of |Sj | pairs, each of which consists of the remainder
modulo b of a tag x ∈ Sj (a tag remainder) and the corresponding position in
Bj . Each pair can be represented in 2l bits, so the entire list Lj fits in 2l2 =
O((log logN)2) bits. We precompute a table, shared between all of D0, . . . , Dr,
that maps a list Lj with |Sj | < l and a tag remainder to the corresponding
position in Bj . The table occupies o(r) words and is easily computed in o(r)
time. Again, accesses to Lj can be executed in constant time.
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It is simple to verify that the overall dictionary uses O(r+
∑r
j=0(1+ |Sj |)) =

O(n+N/logN) space, can be constructed in O(n+N/logN) time, and supports
accesses in constant time.

Lemma 3. There is a static dictionary that, when initialized with n ≥ 2 tags in
{1, . . . , N} and their associated elements, can be initialized in O(n log n) time
and O(n) space, uses O(n) space, and supports accesses in O(1 + logN/log n)
time.

Proof. We give only the proof for N = nO(1), which is all that is needed in the
following. The proof of the general case proceeds along the same lines and is
hardly any more difficult.

The data structure begins by sorting the tags in use. Viewing each tag as a
k-digit integer to base n, where k = O(1 + logN/log n) = O(1), and processing
the tags one by one in sorted order, it is then easy, in O(n) time, to construct a
trie or digital search tree T for the set of tags. T is a rooted tree with exactly
n leaves, all at depth exactly k, each edge of T is labeled with a digit, and each
leaf u of T corresponds to a unique tag x in the sense that the labels on the path
in T from the root to u are exactly the digits of x in the order from most to least
significant. If the element associated with each tag is stored at the corresponding
leaf of T , it is easy to execute access operations in constant time by searching in
T , provided that the correct edge to follow out of each node in T can be found
in constant time.

T contains fewer than n branching nodes, nodes with two or more children,
and these can be numbered consecutively starting at 0. Since the total number
of children of the branching nodes is bounded by 2n, it can be seen that the
problem of supporting searches in T in constant time per node traversed reduces
to that of providing a static dictionary for at most 2n keys, each of which is a
pair consisting of the number of a branching node and a digit to base n, i.e., is
drawn from a universe of size bounded by n2. We construct such a dictionary
using the O(n log n)-time procedure described in [16, Section 4].

Remark. The main result of [16] is a static dictionary for n arbitrary keys that
can be constructed in O(n log n) time and supports constant-time accesses. The
complete construction of that dictionary is weakly nonuniform, however, which
is why we use only a uniform part of it.

Lemma 4. There is a constant ν ∈ IN and functions f1, . . . , fν : IN0 → IN0,
evaluable in linear time, such that given a set S of n ≥ 2 tags bounded by
N with associated elements as well as f1(b), . . . , fν(b) for some integer b with
logN ≤ b ≤ w, a static dictionary for S that uses O(n) space and supports
accesses in constant time can be constructed in O(n5) time using O(n) space.

Proof. For logN ≤ n3, we use a construction of Raman [20, Section 4], which
works in O(n2 logN) = O(n5) time.

For logN > n3, the result can be proved using the fusion trees of Fredman
and Willard [11] (see [15, Corollary 8]). Reusing some of the ideas behind the
fusion trees, we give a simpler construction.
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Number the bit positions of a w-bit word from the right, starting at 0. Our
proof takes the following route: First we show how to compute a set A of fewer
than n bit positions such that two arbitrary distinct tags in S differ in at least
one bit position in A. Subsequently we describe a constant-time transformation
that, given an arbitrary word x, clears the bit positions of x outside of A and
compacts the positions in A to the first n3 bit positions. Noting that this maps S
injectively to a universe of size 2n

3
, we can appeal to the first part of the proof.

Write S = {x1, . . . , xn} with x1 < · · · < xn. We take

A = {MSB(xi ⊕ xi+1) | 1 ≤ i < n},

where ⊕ denotes bitwise exclusive-or and MSB(x) = �log2x	 is the most sig-
nificant bit of x, i.e., the position of the leftmost bit of x with a value of 1. In
other words, A is the set of most significant bit positions in which consecutive
elements of S differ. To see that elements xi and xj of S with xi < xj differ
in at least one bit position in A even if j �= i + 1, consider the digital search
tree T for S described in the previous proof, but for base 2, and observe that
MSB(xi ⊕ xj) = MSB(xr ⊕ xr+1), where xr is the largest key in S whose cor-
responding leaf in T is in the left subtree of the lowest common ancestor of the
leaves corresponding to xi and xj .

By assumption, ⊕ is a unit-time operation, and Fredman and Willard have
shown how to compute MSB(x) from x in constant time [11, Section 5]. Their
procedure is weakly nonuniform in our sense. Recall that this means that it
needs to access a fixed number of constants that depend on the word length w.
It is easy to verify from their description that the constants can be computed
in O(w) time (in fact, in O(logw) time). We define ν and f1, . . . , fν so that
the required constants are precisely f1(b), . . . , fν(b). For this we must pretend
that the word length w is equal to b, which simply amounts to clearing the bit
positions b, b + 1, . . . after each arithmetic operation. It follows that A can be
computed in O(n log n) time.

Take k = |A| and write A = {a1, . . . , ak}. Multiplication with an integer
µ =

∑k
i=1 2mi can be viewed as copying each bit position a to positions a +

m1, . . . , a + mk. Following Fredman and Willard, we plan to choose µ so that
no two copies of elements of A collide, while at least one special copy of each
element of A is placed in one of the bit positions b, . . . , b+ k3− 1. The numbers
m1, . . . ,mk can be chosen greedily. For i = 1, . . . , k, none of the k copies of ai
may be placed in one of the at most (k − 1)k positions already occupied, which
leaves at least one position in the range b, . . . , b+k3−1 available for the special
copy of ai. Thus a suitable multiplier µ can be found in O(k4) = O(n4) time.

An operation access(x) is processed as follows: First the bits of x outside of
positions in A are cleared. Then the product µx is formed. It may not fit in one
word. Since b+k3 ≤ w+n3 ≤ w+ logN ≤ 2w, however, it fits in two words and
can be computed in constant time using simulated double-precision arithmetic.
Shifting µx right by b bits and clearing positions n3, n3 + 1, . . . completes the
transformation of x, and the transformed tag is accessed in a data structure
constructed using Raman’s method.
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The static dictionaries of Lemmas 2, 3 and 4 can easily be extended to support
deletions in constant time and scans in O(n) time. For deletion, it suffices to mark
each tag with an additional bit that indicates whether the tag is still in use. For
scan, step through the list from which the data structure was initialized (which
must be kept around for this purpose) and output precisely the tags not marked
as deleted.

3 The Quasidictionary

In this section we describe a quasidictionary with the properties claimed in The-
orem 1, except that check-in operations take constant time only in an amortized
sense. After analyzing the data structure in the next section, we describe the mi-
nor changes needed to turn the amortized bound for check-in into a worst-case
bound. Since we can assume that the data structure is re-initialized whenever it
becomes empty, in the following we will simplify the language by assuming that
the data structure was never empty in the past after the execution of the first
(check-in) operation.

Observe first that for any constant c ∈ IN, the single semi-infinite memory at
our disposal can emulate c separate semi-infinite memories with only a constant-
factor increase in execution times and space consumption: For i ∈ IN0, the real
memory cell with address i is simply interpreted as the cell with address �i/c	 in
the ((i mod c)+1)st emulated memory. Then a space bound of O(n) established
for each emulated memory translates into an overall O(n) space bound. In the
light of this, we shall feel free to store each of the main components of the
quasidictionary in its own semi-infinite array.

We divide the set of potential tags into layers: For j ∈ IN, the jth layer Uj
consists of those natural numbers whose binary representations contain exactly
j bits; i.e., U1 = {1}, U2 = {2, 3}, U3 = {4, . . . , 7} and so on. In general, for
j ∈ IN, Uj = {2j−1, . . . , 2j−1} and |Uj | = 2j−1. Let S be the current set of tags
in use and for j ∈ IN, take Sj = S ∩Uj . For j ∈ IN, we call |Sj |+ |Sj−1| the pair
size of j (take S0 = Ø), and we say that Sj is full if Sj = Uj .

Let J = {j ∈ IN | Sj �= Ø}. For all j ∈ J and all tags x ∈ Sj , the element
with (external) tag x is stored with an (internal) tag of x − (2j−1 − 1) in a
separate data structure Dj called a data stripe and constructed according to one
of Lemmas 1–4. The offset oj = 2j−1 − 1 applied to tags in Dj is called for by
our convention of letting all tag ranges start at 1. For j ∈ J and i = 1, . . . , 4,
if Dj is constructed as described in Lemma i, we will say that Dj is (stored) in
Representation i. All data stripes are stored in an initial block of a semi-infinite
array D. The first cell of D following this block is pointed to by a variable top.
When stating that a data stripe Dj is moved to D, what we mean is that it is
stored in D, starting at the address top, after which top is incremented by the
size of Dj . Converting a data stripe Dj to Representation i means extracting
all (tag , element) pairs stored in Dj by means of its scan operation, abandoning
the old Dj (which may still continue to occupy a segment of D), initializing a
new Dj in Representation i with the pairs extracted, and moving (the new) Dj
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to D. Every data stripe is marked or unmarked, the significance of which will be
explained shortly.

Another main component of the quasidictionary is a dictionary H that maps
each j ∈ J to the starting address in D of (the current) Dj . All changes to D
are reflected in H through appropriate calls of its operations; this will not be
mentioned explicitly on every occasion. Following the first check-in operation,
we also keep track of b = �log2N	+ 1, where N is the maximum number of tags
simultaneously in use since the initialization. By assumption, we always have
b ≤ w, and b never decreases. The main components of the quasidictionary are
illustrated in Fig. 2.

D2

(D3)

D4

�
D1

D3
�

D5

1
2
3
4
5

H D

top

Fig. 2. The array D that holds the data stripes and a symbolic representation of the
dictionary H that stores their starting addresses. A star denotes a marked data stripe,
and an abandoned data stripe is shown with parentheses.

3.1 access

To execute access(x), we first determine the value of j such that x ∈ Uj , which is
the same as computing MSB(x)+1. Then the starting address of Dj is obtained
from H, and the operation access(x− oj) is executed on Dj .

As explained in the proof of Lemma 4, MSB(x) can be computed from x
in constant time, provided that certain quantities f1(b), . . . , fν(b) depending
on b are available. We assume that f1(b), . . . , fν(b) are stored as part of the
quasidictionary and recomputed at every change to b.

3.2 check-in

To execute check-in(v), we first compute the smallest positive integer j such that
Sj is nonfull. For this purpose we maintain a bit vector q whose bit in position
b − i is 1 if and only if Si is nonfull, for i = 1, . . . , b, so that j = b −MSB(q).
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Note that, by assumption, |S| remains bounded by 2b − 1, which implies that q
is always nonzero just prior to the execution of a check-in operation.

If j �∈ J , we create a new, empty, and unmarked data stripe Dj with capacity
2j−1 in Representation 1, move it to D (recall that this means placing it at the
end of the used block of D, recording its starting address in H, and updating
top), execute the operation check-in(v) on Dj , and return the tag obtained from
Dj plus oj to the caller.

If j ∈ J , we locate Dj as in the case of access. If Dj is not stored in Rep-
resentation 1, we convert it to that representation with capacity 2j−1, execute
the operation check-in(v) on (the new) Dj , and return the tag obtained from Dj

plus oj to the caller.

3.3 check-out

To execute check-out(x), we first determine the value of j such that x ∈ Uj as in
the case of access(x). Operating on Dj , we then execute check-out(x− oj) if Dj

is in Representation 1 and delete(x− oj) otherwise. For i ∈ {j, j + 1} ∩ J , if the
pair size of i has dropped below 1/4 of its value when Di was (re)constructed, we
mark Di. Finally we execute a global cleanup (see below) if the number of check-
out operations executed since the last global cleanup (or, if no global cleanup
has taken place, since the initialization) exceeds the number of tags currently in
use.

3.4 Global Cleanup

A global cleanup clears D after copying it to temporary storage, sets top = 0,
and then processes the data stripes one by one. If a data stripe Dj is empty
(i.e., Sj = Ø), it is discarded. Otherwise, if Dj is not marked, it is simply moved
back to D. If Dj is marked, it is unmarked and moved to D after conversion to
Representation i, where

i =




2, if 2j/j ≤ |Sj |,
3, if 2j/5 ≤ |Sj | < 2j/j,
4, if |Sj | < 2j/5.

3.5 The Dictionary H

The dictionary H that maps each j ∈ J to the starting address hj of Dj in D
is implemented as follows: The addresses hj , for j ∈ J , are stored in arbitrary
order in the first |J | locations of a semi-infinite array H. When a new element
j enters J , hj is stored in the first free location of H, and when an element j
leaves J , hj is swapped with the address stored in the last used location of H,
which is subsequently declared free. This standard device ensures that the space
used in H remains bounded by |S|.

What remains is to implement a dictionary H ′ that maps each j ∈ J to the
position dj of hj in H, a nonnegative integer bounded by b− 1. We do this in a
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way reminiscent of Representation 2. Let l be a power of two with log b < l ≤ b,
but l = O(log b). We assume that l and its logarithm are recomputed at every
change to b.

When |J | grows beyond 2l, H ′ is converted to a representation as an array,
indexed by 1, . . . , b and stored in at most 2l ≤ |J | words, each of which contains
�b/l	 fields of l bits each.

When |J | decreases below l, H ′ is converted to a representation in which the
elements of J are stored in the rightmost |J | fields of l + 1 bits each in a single
word X (or a constant number of words), and the corresponding positions in H
are stored in the same order in the rightmost |J | fields of l + 1 bits in another
word Y . Given j ∈ J , the corresponding position dj can be computed in constant
time using low-level subroutines that exploit the instruction set of the word RAM
and are discussed more fully in [1]. First, multiplying j by the word 1l+1 with a
1 in every field yields a word with j stored in every field. Incrementing this word
by 1l+1, shifted left by l bits, changes to 1 the leftmost bit, called the test bit, of
every field. Subtracting X from the word just computed leaves in the position
of every test bit a 1 if and only if the value i of the corresponding field in X
satisfies i ≤ j. A similar computation carries out the test i ≥ j, after which a
bitwise and singles out the unique field of X containing the value j. Subtracting
from the word just created, which has exactly one 1, a copy of itself, but shifted
right by l positions, we obtain a mask that can be used to isolate the field of Y
containing dj . This field still has to be brought to the right word boundary. This
can be achieved through multiplication by 1l+1, which copies dj to the leftmost
field, right shift to bring that field to the right word boundary, and removal of
any spurious bits to the left of dj . It can be seen that H ′ uses O(|S|) space and
can execute access, insert, and delete in constant time.

The description so far implicitly assumed b to be a constant. Whenever b
increases, the representation of H and the auxiliary quantity 1l+1 are recomputed
from scratch.

4 Analysis

The data structure described in the previous section can clearly be initialized
in constant time. We will show that it works in linear space, that it executes
access in constant time and check-in and check-out in constant amortized time,
and that every tag is bounded by the maximum number of tags in use since the
initialization.

4.1 Space Requirements

In this subsection we show the space taken up by every component of the qua-
sidictionary to be linear in the number of tags currently in use. As concerns the
dictionary H, this was already observed in the discussion of its implementation,
so we can restrict attention to D. The size of the used part of D is given by the
value of top, so our goal is to show that top = O(|S|) holds at all times.
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Define an epoch to be the part of the execution from the initialization or
from just after a global cleanup to just after the next global cleanup or, if there
are no more global cleanups, to the end of the execution. Let n = |S| and, for
all j ∈ IN, denote |Sj | by nj and the pair size |Sj |+ |Sj−1| of j by pj .

Let j ≥ 2 and i ∈ {1, . . . , 4} and consider a (re)construction of Dj in Repre-
sentation i at the time at which it happens. If i = 1, the size of Dj is O(2j) and
pj ≥ 2j−2. If i = 2, the size of Dj is O(nj+2j−1/(j − 1)), which is O(nj) = O(pj)
because Representation 2 is chosen only if nj ≥ 2j/j. If i ∈ {3, 4}, the size of Dj

is O(nj) = O(pj). Thus, in all cases, when Dj is (re)constructed, its size is O(pj).
Moreover, since Dj is marked as soon as pj drops below 1/4 of its value at the
time of the (re)construction of Dj , the assertion that the size of Dj is O(pj) re-
mains true as long as Dj is unmarked. This shows that at the beginning of every
epoch, where every data stripe is unmarked, we have top = O(

∑∞
j=1 pj) = O(n).

Consider a fixed epoch, let σ be the sequence of operations executed in the
epoch, and let σ′ be the sequence obtained from σ by removing all check-out
operations. We will analyze the execution of σ′ starting from the same situation
as σ at the beginning of the epoch and use primes (′) to denote quantities that
pertain to the execution of σ′. Note that n′ and p′

1, p
′
2, . . . never decrease.

During the execution of σ′, the used part of D grows only by data stripes
Dj in Representation 1, and there is at most one such data stripe for each value
of j. Consider a particular point in time t during the execution of σ′. For each
j ≥ 2 for which a data stripe Dj was moved to D before time t in the epoch
under consideration, the size of this newly added Dj is within a constant factor
of the value of p′

j at the time of its creation and also, since p′
j is nondecreasing,

at time t. At time t, therefore, the total size of all data stripes added to D
during the execution of σ′ is O(

∑∞
j=1 p

′
j) = O(n′). By the analysis above, the

same is true of the data stripes present in D at the beginning of the epoch, so
top′ = O(n′) holds throughout.

Consider now a parallel execution of σ and σ′, synchronized at the execution
of every operation in σ′. It is easy to see that check-out operations never cause
more space on D to be used, i.e., top ≤ top′ holds at all times during the epoch.
We may have n < n′. Since the epoch ends as soon as n′ − n > n, however, we
always have n′ ≤ 2n + 2. At all times, therefore, top ≤ top′ = O(n′) = O(n).

4.2 Execution Times

access operations clearly work in constant time and leave the data structure
unchanged (except for changes to elements outside of their tags), so they will
be ignored in the following. We will show that check-in and check-out opera-
tions take constant amortized time by attributing the cost of maintaining the
quasidictionary to check-in and check-out operations in such a way that every
operation is charged for only a constant amount of computation.

Whenever b increases, various quantities depending on b as well as the repre-
sentation of H are recomputed. This incurs a cost of O(b) that can be charged
to Ω(b) check-in operations since the last increase of b or since the initialization.
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When |J | rises above 2l or falls below l, H is converted from one representa-
tion to another. The resulting cost of O(l) can be charged to the Ω(l) check-in
or check-out operations since the last conversion of H or since the initialization.

For j ∈ IN, define a j-phase as the part of the execution from just be-
fore a (re)construction of Dj in Representation 1 to just before the next such
(re)construction or, if there is none, to the end of the execution. Consider a
particular j-phase for some j ≥ 2. The cost of the (re)construction of Dj in
Representation 1 at the beginning of the phase is O(2j). Since the pair size of j
at that point is bounded by 2j and Dj is not reconstructed until the pair size of
j has dropped below 1/4 of its initial value, Lemma 2 shows the total cost of all
reconstructions of Dj in Representation 2 in the j-phase under consideration to
be

O
(∑

i

(
4−i · 2j + 2j−1/(j − 1)

))
,

where the sum extends over all i ≥ 1 with 4−i · 2j ≥ 2j/j. The number of such
i being O(log j), the sum evaluates to O(2j). Likewise, by Lemmas 3 and 4, the
total cost of all reconstructions of Dj in Representations 3 and 4 are

O
( ∞∑
i=0

(
4−i · (2j/j) · log(2j/j)

))
= O(2j) and

O
( ∞∑
i=0

(
4−i · 2j/5)5

)
= O(2j),

respectively. Thus the total cost of all (re)constructions of Dj in a j-phase is
O(2j). For the first j-phase, we can charge this cost to 2j−2 check-in operations
that filled Sj−1. For every subsequent j-phase, the pair size of j dropped below
1/4 of its initial value during the previous phase, hence to at most (1/4)(2j−1 +
2j−2) = (3/4) · 2j−2. Since Sj−1 was full again at the beginning of the phase
under consideration, we can charge the cost of O(2j) to the intervening at least
(1/4) ·2j−2 check-in operations that refilled Sj−1. The arguments above excluded
the case j = 1, but the cost incurred in (re)constructing D1 once is O(1) and
can be charged to whatever operation is under execution.

At this point, the only execution cost not accounted for is that of copying
unmarked data stripes back to D during a global cleanup. By the analysis of the
previous subsection, this cost is O(|S|), and it can be charged to the at least |S|
check-out operations executed since the last global cleanup.

4.3 Tag Sizes

Consider the point in time just after the quasidictionary issues a tag x and
suppose that no tag of x or larger was issued earlier and that x ∈ Uj . Then Dj is
in Representation 1 and just issued the tag x− oj , and neither Dj nor an earlier
data stripe with index j (an “earlier incarnation” of Dj) ever before issued a
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tag of x− oj or larger. The last sentence of Lemma 1 can be seen to imply that
Dj has x − oj tags in use. Moreover, by the implementation of check-in, all of
S1, . . . , Sj−1 are full, so that they contribute an additional 1+2+ · · ·+2j−2 = oj
tags in use. Thus the overall quasidictionary has x tags in use after issuing x.
It is now easy to see that the quasidictionary never uses a tag larger than the
maximum number of tags in use since its initialization.

As an aside, we note that the binary representation of every tag issued by
the quasidictionary consists of exactly as many bits as that of the smallest free
tag.

5 Deamortization

In this section we show how the constant amortized time bound for check-in op-
erations can be turned into a constant worst-case time bound. Since the deamor-
tization techniques used are standard, we refrain from giving all details.

In addition to computation that is covered by a constant time bound, a check-
in operation, in our formulation to this point, may carry out one or more of the
following:

– After an increase in b, an O(b)-time computation of various quantities de-
pending on b;

– After an increase in |J | beyond 2l, an O(l)-time conversion of the dictio-
nary H to its array representation;

– A (re)construction of a data stripe in Representation 1.

The computation triggered by an increase in b is easy to deamortize. For
concreteness, consider the calculation of f1(b), . . . , fν(b). Following an increase
in b, rather than calculating f1(b), . . . , fν(b), we anticipate the next increase in b
and start calculating f1(b+ 1), . . . , fν(b+ 1). The calculation is interleaved with
the other computation and carried out piecemeal, O(1) time being devoted to it
by each subsequent check-in operation. Since the entire calculation needs O(b)
time, while at least 2b check-in operations are executed before the next increase
in b, it is easy to ensure that f1(b + 1), . . . , fν(b + 1) are ready when they are
first needed.

The conversion of H to its array representation is changed to begin as soon
as |J | exceeds l. While the conversion is underway, queries to H are answered
using its current representation, but updates are executed both in the current
representation and in the incomplete array representation, so that an interleaved
computation that spends constant time per check-in operation on the conversion
can deliver an up-to-date copy of H in the array representation when |J | first
exceeds 2l—because of the simplicity of the array representation, this is easily
seen to be possible. Provided that any incomplete array representation of H is
abandoned if and when |J | decreases below l, a linear space bound continues to
hold.

For j ≥ 2, the analysis in Section 4 already charged the cost of (re)construct-
ing a data stripe Dj in Representation 1 to at least 1

4 · 2j−2 check-in operations
that (re)filled Sj−1. We now let an interleaved construction actually take place as
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part of the execution of these check-in operations. In other words, every check-in
operation that issues a tag from a data stripe Dj−1 that is at least 3/4 full also
spends constant time on the (re)construction of Dj in Representation 1, in such
a way as to let the new Dj be ready before Sj−1 is full. As above, updates to Dj

that occur after the (re)construction has begun (these can only be deletions) are
additionally executed on the incomplete new Dj . Provided that global cleanups
remove every partially constructed data stripe Dj for which |Sj−1| < 3

4 · 2j−2, it
is easy to see that a linear space bound and a constant amortized time bound
for check-out operations continue to hold.

6 Conclusions

We have described a deterministic quasidictionary that works in linear space
and executes every operation in constant amortized time. However, our result
still leaves something to be desired.

First, we would like to deamortize the data structure, turning the amortized
time bound for deletion into a worst-case bound. Barring significant advances in
the construction of static dictionaries, it appears that techniques quite different
from ours would be needed to attain this goal. To see this, consider an operation
sequence consisting of a large number of calls of check-in followed by as many
calls of check-out. During the execution of the check-out operations, the need to
respect a linear space bound presumably requires the repeated construction of
a static dictionary for the remaining keys. The construction cannot be started
much ahead of time because the set of keys to be accommodated is unknown at
that point. Therefore, if it needs superlinear time, as do the best constructions
currently known, some calls of check-out will take more than constant time.

Second, one might want to eliminate the use of multiplication from the op-
erations. However, by a known lower bound for the depth of unbounded-fanin
circuits realizing static dictionaries [2, Theorem C], this cannot be done with-
out weakening our time or space bounds or introducing additional unit-time
instructions.

Finally, our construction is not as practical as one might wish, mainly due to
the fairly time-consuming (though constant-time) access algorithm. Here there
is much room for improvement.
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Abstract. Data mining has in recent years emerged as an interesting
area in the boundary between algorithms, probabilistic modeling, statis-
tics, and databases. Data mining research has come from two different
traditions. The global approach aims at modeling the joint distribution
of the data, while the local approach aims at efficient discovery of fre-
quent patterns from the data. Among the global modeling techniques,
mixture models have emerged as a strong unifying theme, and methods
exist for fitting such models on large data sets. For pattern discovery, the
methods for finding frequently occurring positive conjunctions have been
applied in various domains. An interesting open issue is how to combine
the two approaches, e.g., by inferring joint distributions from pattern
frequencies. Some promising results have been achieved using maximum
entropy approaches. In the talk we describe some basic techniques in
global and local approaches to data mining, and present a selection of
open problems.
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Abstract. The dispatching problem for object oriented languages is
the problem of determining the most specialized method to invoke for
calls at run-time. This can be a critical component of execution per-
formance. A number of recent results, including [Muthukrishnan and
Müller SODA’96, Ferragina and Muthukrishnan ESA’96, Alstrup et al.
FOCS’98], have studied this problem and in particular provided various
efficient data structures for the mono-method dispatching problem. A
recent paper of Ferragina, Muthukrishnan and de Berg [STOC’99] ad-
dresses the multi-method dispatching problem.
Our main result is a linear space data structure for binary dispatching
that supports dispatching in logarithmic time. Using the same query
time as Ferragina et al., this result improves the space bound with a
logarithmic factor.

1 Introduction

The dispatching problem for object oriented languages is the problem of deter-
mining the most specialized method to invoke for a method call. This specializa-
tion depends on the actual arguments of the method call at run-time and can be a
critical component of execution performance in object oriented languages. Most
of the commercial object oriented languages rely on dispatching of methods with
only one argument, the so-called mono-method or unary dispatching problem. A
number of papers, see e.g.,[10,15] (for an extensive list see [11]), have studied
the unary dispatching problem, and Ferragina and Muthukrishnan [10] provide
a linear space data structure that supports unary dispatching in log-logarithmic
time. However, the techniques in these papers do not apply to the more general
multi-method dispatching problem in which more than one method argument
are used for the dispatching. Multi-method dispatching has been identified as
a powerful feature in object oriented languages supporting multi-methods such
� Supported by the Carlsberg Foundation (contract number ANS-0257/20). Partially
supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).
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as Cecil [3], CLOS [2], and Dylan [4]. Several recent results have attempted to
deal with d-ary dispatching in practice (see [11] for an extensive list). Ferragina
et al. [11] provided the first non-trivial data structures, and, quoting this paper,
several experimental object oriented languages’ “ultimately success and impact
in practice depends, among other things, on whether multi-method dispatching
can be supported efficiently”.

Our result is a linear space data structure for the binary dispatching problem,
i.e., multi-method dispatching for methods with at most two arguments. Our
data structure uses linear space and supports dispatching in logarithmic time.
Using the same query time as Ferragina et al. [11], this result improves the space
bound with a logarithmic factor. Before we provide a precise formulation of our
result, we will formalize the general d-ary dispatching problem.

Let T be a rooted tree with N nodes. The tree represents a class hierarchy
with nodes representing the classes. T defines a partial order ≺ on the set of
classes: A ≺ B ⇔ A is a descendant of B (not necessarily a proper descendant).
LetM be the set of methods and let m denote the number of methods and M
the number of distinct method names in M. Each method takes a number of
classes as arguments. A method invocation is a query of the form s(A1, . . . , Ad)
where s is the name of a method in M and A1, . . . , Ad are class instances. A
method s(B1, . . . , Bd) is applicable for s(A1, . . . , Ad) if and only if Ai ≺ Bi for
all i. The most specialized method is the method s(B1, . . . , Bd) such that for
every other applicative method s(C1, . . . , Cd) we have Bi ≺ Ci for all i. This
might be ambiguous, i.e., we might have two applicative methods s(B1, . . . , Bd)
and s(C1, . . . , Cd) where Bi �= Ci, Bj �= Cj , Bi ≺ Ci, and Cj ≺ Bj for some
indices 1 ≤ i, j ≤ d. That is, neither method is more specific than the other.
Multi-method dispatching is to find the most specialized applicable method in
M if it exists. If it does not exist or in case of ambiguity, “no applicable method”
resp. “ambiguity” is reported instead.

The d-ary dispatching problem is to construct a data structure that supports
multi-method dispatching with methods having up to d arguments, where M
is static but queries are online. The cases d = 1 and d = 2 are the unary and
binary dispatching problems respectively. In this paper we focus on the binary
dispatching problem which is of “particular interest” quoting Ferragina et al. [11].

The input is the tree T and the set of methods. We assume that the size of T
is O(m), where m is the number of methods. This is not a necessary restriction
but due to lack of space we will not show how to remove it here.

Results. Our main result is a data structure for the binary dispatching problem
using O(m) space and query time O(log m) on a unit-cost RAM with word size
logarithmic in N with O(N +m (loglogm)2) time for preprocessing. By the use
of a reduction to a geometric problem, Ferragina et al. [11], obtain similar time
bounds within space O(m logm). Furthermore they show how the case d = 2
can be generalized for d > 2 at the cost of factor logd−2m in the time and space
bounds.
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Our result is obtained by a very different approach in which we employ a
dynamic to static transformation technique. To solve the binary dispatching
problem we turn it into a unary dispatching problem — a variant of the marked
ancestor problem as defined in [1], in which we maintain a dynamic set of meth-
ods. The unary problem is then solved persistently. We solve the persistent unary
problem combining the technique by Dietz [5] to make a data structure fully per-
sistent and the technique from [1] to solve the marked ancestor problem. The
technique of using a persistent dynamic one-dimensional data structure to solve
a static two-dimensional problem is a standard technique [17]. What is new in
our technique is that we use the class hierarchy tree to denote the time (give
the order on the versions) to get a fully persistent data structure. This gives
a “branching” notion for time, which is the same as what one has in a fully
persistent data structure where it is called the version tree. This technique is
different from the plane sweep technique where a plane-sweep is used to give a
partially persistent data structure. A top-down tour of the tree corresponds to
a plane-sweep in the partially persistent data structures.

Related and Previous Work. For the unary dispatching problem the best
known bound is O(N +m) space and O(loglogN) query time [15,10]. For the d-
ary dispatching, d ≥ 2, the result of Ferragina et al. [11] is a data structure using
space O(m (t log m/ log t)d−1) and query time O((log m/ log t)d−1loglog N),
where t is a parameter 2 ≤ t ≤ m. For the case t = 2 they are able to improve
the query time to O(logd−1m) using fractional cascading. They obtain their re-
sults by reducing the dispatching problem to a point-enclosure problem in d
dimensions: Given a point q, check whether there is a smallest rectangle con-
taining q. In the context of the geometric problem, Ferragina et al. also present
applications to approximate dictionary matching.

In [9] Eppstein and Muthukrishnan look at a similar problem which they call
packet classification. Here there is a database ofm filters available for preprocess-
ing. Each query is a packet P , and the goal is to classify it, that is, to determine
the filter of highest priority that applies to P . This is essentially the same as
the multiple dispatching problem. For d = 2 they give an algorithm using space
O(m1+o(1)) and query time O(loglogm), or O(m1+ε) and query time O(1). They
reduce the problem to a geometric problem, very similar to the one in [11]. To
solve the problem they use a standard plane-sweep approach to turn the static
two-dimensional rectangle query problem into a dynamic one-dimensional prob-
lem,which is solved persistently such that previous versions can be queried after
the plane sweep has occurred.

2 Preliminaries

In this section we give some basic concepts which are used throughout the paper.

Definition 1 (Trees). Let T be a rooted tree. The set of all nodes in T is
denoted V (T ). The nodes on the unique path from a node v to the root are denoted
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π(v), which includes v and the root. The nodes π(v) are called the ancestors of
v. The descendants of a node v are all the nodes u for which v ∈ π(u). If v �= u
we say that u is a proper descendant of v. The distance dist(v,w) between two
nodes in T is the number of edges on the unique path between v and w. In the
rest of the paper all trees are rooted trees.

Let C be a set of colors. A labeling l(v) of a node v ∈ V (T ) is a subset of C,
i.e., l(v) ⊆ C. A labeling l : V (T ) → 2C of a tree T is a set of labelings for the
nodes in T .

Definition 2 (Persistent data structures). The concept of persistent data
structures was introduced by Driscoll et al. in [8]. A data structure is partially
persistent if all previous versions remain available for queries but only the newest
version can be modified. A data structure is fully persistent if it allows both
queries and updates of previous versions. An update may operate only on a single
version at a time, that is, combining two or more versions of the data structure
to form a new one is not allowed. The versions of a fully persistent data structure
form a tree called the version tree. Each node in the version tree represents the
result of one update operation on a version of the data structure. A persistent
update or query take as an extra argument the version of the data structure to
which the query or update refers.

Known results. Dietz [5] showed how to make any data structure fully persis-
tent on a unit-cost RAM. A data structure with worst case query time O(Q(n))
and update time O(F (n)) making worst case O(U(n)) memory modifications can
be made fully persistent using O(Q(n) loglog n) worst case time per query and
O(F (n) loglog n) expected amortized time per update using O(U(n) loglog n)
space.

Definition 3 (Tree color problem).
Let T be a rooted tree with n nodes, where we associate a set of colors with

each node of T . The tree color problem is to maintain a data structure with the
following operations:

color(v,c): add c to v’s set of colors, i.e., l(v)← l(v) ∪ {c},
uncolor(v,c): remove c from v’s set of colors, i.e., l(v)← l(v) \ {c},
findfirstcolor(v,c): find the first ancestor of v with color c (this may be v
itself).

The incremental version of this problem does not support uncolor, the decremen-
tal problem does not support color, and the fully dynamic problem supports both
update operations.

Known results. In [1] it is showed how to solve the tree color problem on
a RAM with logarithmic word size in expected update time O(loglog n) for
both color and uncolor, query time O(log n/loglog n), using linear space and
preprocessing time. The expected update time is due to hashing. Thus the ex-
pectation can be removed at the cost of using more space. We need worst case
time when we make the data structure persistent because data structures with
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Fig. 1. The solid lines are tree edges and the dashed and dotted lines are bridges of
color c and c′, respectively. firstcolorbridge(c,v1,v2) returns b3. firstcolorbridge(c′,v3,v4)
returns ambiguity since neither b1 or b2 is closer than the other.

amortized/expected time may perform poorly when made fully persistent, since
expensive operations might be performed many times.

Dietz [5] showed how to solve the incremental tree color problem in
O(loglog n) amortized time per operation using linear space, when the nodes
are colored top-down and each node has at most one color.

The unary dispatching problem is the same as the tree color problem if we
let each color represent a method name.

Definition 4. We need a data structure to support insert and predecessor
queries on a set of integers from {1, . . . , n}. This can be solved in worst case
O(loglog n) time per operation on a RAM using the data structure of van Emde
Boas [18] (VEB). We show how to do modify this data structure such that it
only uses O(1) memory modifications per update.

3 The Bridge Color Problem

The binary dispatching problem (d = 2) can be formulated as the following tree
problem, which we call the bridge color problem.

Definition 5 (Bridge Color Problem). Let T1 and T2 be two rooted trees.
Between T1 and T2 there are a number of bridges of different colors. Let C be the
set of colors. A bridge is a triple (c, v1, v2) ∈ C × V (T1)× V (T2) and is denoted
by c(v1, v2). If v1 ∈ π(u1) and v2 ∈ π(u2) we say that c(v1, v2) is a bridge over
(u1, u2). The bridge color problem is to construct a data structure which sup-
ports the query firstcolorbridge(c,v1,v2). Formally, let B be the subset of bridges
c(w1, w2) of color c where w1 is an ancestor of v1, and w2 an ancestor of v2. If
B = ∅ then firstcolorbridge(c,v1,v2) = NIL. Otherwise, let b1 = c(w1, w

′
1) ∈ B,

such that dist(v1,w1) is minimal and b2 = c(w′
2, w2) ∈ B, such that dist(v2, w2)

is minimal. If b1 = b2 then firstcolorbridge(c,v1,v2)= b1 and we say that b1 is
the first bridge over (v1, v2), otherwise firstcolorbridge(c,v1,v2) = “ambiguity”.
See Fig. 1.

The binary dispatching problem can be reduced to the bridge color problem
the following way. Let T1 and T2 be copies of the tree T in the binary dispatching
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problem. For every method s(v1, v2) ∈ M make a bridge of color s between
v1 ∈ V (T1) and v2 ∈ V (T2).

The problem is now to construct a data structure that supports firstcolor-
bridge. The object of the remaining of this paper is show the following theorem:
Theorem 1. Using expected O(m (loglogm)2) time for preprocessing and O(m)
space, firstcolorbridge can be supported in worst case time O(log m) per opera-
tion, where m is the number of bridges.

4 A Data Structure for the Bridge Color Problem

Let B be a set of bridges (| B |= m) for which we want to construct a data
structure for the bridge color problem. As mentioned in the introduction we
can assume that the number of nodes in the trees involved in the bridge color
problem is O(m), i.e., |V (T1) | + |V (T2) |= O(m). In this section we present a
data structure that supports firstcolorbridge in O(log m) time per query using
O(m) space for the bridge color problem.

For each node v ∈ V (T1) we define the labeling lv of T2 as follows. The
labeling of a node w ∈ V (T2) contains color c if w is the endpoint of a bridge
of color c with the other endpoint among ancestors of v. Formally, c ∈ lv(w)
if and only if there exists a node u ∈ π(v) such that c(u,w) ∈ B. Similar
define the symmetric labelings for T1. In addition to each labeling lv, we need
to keep the following extra information stored in a sparse array H(v): For each
pair (w, c) ∈ V (T2) × C, where lv(w) contains color c, we keep the node v′ of
maximal depth in π(v) from which there is a bridge c(v′, w) in B. Note that this
set is sparse, i.e., we can use a sparse array to store it.

For each labeling lv of T2, where v ∈ V (T1), we will construct a data structure
for the static tree color problem. That is, a data structure that supports the query
findfirstcolor(u,c) which returns the first ancestor of u with color c. Using this
data structure we can find the first bridge over (u,w) ∈ V (T1)× V (T2) of color
c by the following queries.

In the data structure for the labeling lu of the tree T2 we perform the query
findfirstcolor(w,c). If this query reports NIL there is no bridge to report, and
we can simply return NIL. Otherwise let w′ be the reported node. We make
a lookup in H(u) to determine the bridge b such that b = c(u′, w′) ∈ B. By
definition b is the bridge over (u,w′) with minimal distance between w and w′.
But it is possible that there is a bridge (u′′, w′′) over (u,w) where dist(u,u′′) <
dist(u,u′). By a symmetric computation with the data structure for the labeling
l(w) of T1 we can detect this in which case we return “ambiguity”. Otherwise
we simply return the unique first bridge b.

Explicit representation of the tree color data structures for each of the label-
ings lv for nodes v in T1 and T2 would take up space O(m2). Fortunately, the
data structures overlap a lot: Let v, w ∈ V (T1), u ∈ V (T2), and let v ∈ π(w).
Then lv(u) ∈ lw(u). We take advantage of this in a simple way. We make a fully
persistent version of the dynamic tree color data structure using the technique of
Dietz [5]. The idea is that the above set of O(m) tree color data structures cor-
responds to a persistent, survived version, each created by one of O(m) updates
in total.
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Formally, suppose we have generated the data structure for the labeling lv,
for v in T1. Let w be the child of node v in T1. We can then construct the
data structure for the labeling lw by simply updating the persistent structure
for lv by inserting the color marks corresponding to all bridges with endpoint
w (including updating H(v)). Since the data structure is fully persistent, we
can repeat this for each child of v, and hence obtain data structures for all the
labelings for children of v. In other words, we can form all the data structures
for the labeling lv for nodes v ∈ V (T1), by updates in the persistent structures
according to a top-down traversal of T1. Another way to see this, is that T1 is
denoting the time (give the order of the versions). That is, the version tree has
the same structure as T1.

Similar we can construct the labelings for T1 by a similar traversal of T2. We
conclude this discussion by the following lemma.

Lemma 1. A static data structure for the bridge color problem can be con-
structed by O(m) updates to a fully persistent version of the dynamic tree color
problem.

4.1 Reducing the Memory Modifications in the Tree Color Problem

The paper [1] gives the following upper bounds for the tree color problem for a
tree of size m. Update time expected O(loglog m) for both color and uncolor,
and query time O(log m/loglogm), with linear space and preprocessing time.

For our purposes we need a slightly stronger result, i.e., updates that only
make worst case O(1) memory modifications. By inspection of the dynamic tree
color algorithm, the bottle-neck in order to achieve this, is the use of the van
Emde Boas predecessor data structure [18] (VEB). Using a standard technique
by Dietz and Raman [6] to implement a fast predecessor structure we get the
following result.

Theorem 2. Insert and predecessor queries on a set of integers from {1, . . . , n}
can be performed in O(loglog n) worst case time per operation using worst case
O(1) memory modifications per update.

To prove the theorem we first show an amortized result1. The elements in
our predecessor data structure is grouped into buckets S1, . . . , Sk, where we
maintain the following invariants:

(1) max Si < min Si+1 for i = 1, . . . k − 1, and
(2) 1/2 log n < |Si | ≤ 2 log n for all i.

We have k ∈ O(n/ log n). Each Si is represented by a balanced search tree
with O(1) worst case update time once the position of the inserted or deleted
element is known and query time O(log m), where m is the number of nodes in
the tree [12,13]. This gives us update time O(loglogn) in a bucket, but only O(1)
memory modifications per update. The minimum element si of each bucket Si
is stored in a VEB.
1 The amortized result (Lemma 2) was already shown in [14], bur in order to make
the deamortization we give another implementation here.
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When a new element x is inserted it is placed in the bucket Si such that
si < x < si+1, or in S1 if no such bucket exists. Finding the correct bucket is
done by a predecessor query in the VEB. This takes O(loglog n) time. Inserting
the element in the bucket also takes O(loglog n) time, but only O(1) memory
modifications. When a bucket Si becomes to large it is split into two buckets of
half size. This causes a new element to be inserted into the VEB and the binary
trees for the two new buckets have to be build. An insertion into the VEB
takes O(loglog n) time and uses the same number of memory modifications.
Building the binary search trees uses O(log n) time and the same number of
memory modifications. When a bucket is split there must have been at least
log n insertions into this bucket since it last was involved in a split. That is,
splitting and inserting uses O(1) amortized memory modifications per insertion.

Lemma 2. Insert and predecessor queries on a set of integers from {1, . . . , n}
can be performed in O(loglog n) worst case time for predecessor and O(loglog n)
amortized time for insert using O(1) amortized number of memory modifications
per update.

We can remove this amortization at the cost of making the bucket sizes
Θ(log2n) by the following technique by Raman [16] called thinning.

Let α > 0 be a sufficiently small constant. Define the criticality of a bucket
to be: ρ(b) = 1

α log nmax{0, size(b)− 1.8 log2 n}. A bucket b is called critical if
ρ(b) > 0. We want to ensure that size(b) ≤ 2 log2 n. To maintain the size of
the buckets every α log n updates take the most critical bucket (if there is any)
and move log n elements to a newly created empty adjacent bucket. A bucket
rebalancing uses O(log n) memory modifications and we can thus perform it
with O(1) memory modifications per update spread over no more than α log n
updates.

We now show that the buckets never get too big. The criticality of all buckets
can only increase by 1 between bucket rebalancings. We see that the criticality of
the bucket being rebalanced is decreased, and no other bucket has its criticality
increased by the rebalancing operations. We make use of the following lemma
due to Raman:
Lemma 3 (Raman). Let x1, . . . , xn be real-valued variables, all initially zero.
Repeatedly do the following:

(1) Choose n non-negative real numbers a1, . . . , an such that
∑n
i=1 ai = 1, and

set xi ← xi + ai for 1 ≤ i ≤ n.
(2) Choose an xi such that xi = maxj{xj}, and set xi ← max{xi − c, 0} for

some constant c ≥ 1.

Then each xi will always be less than ln n+ 1, even when c = 1.
Apply the lemma as follows: Let the variables of Lemma 3 be the criticalities

of the buckets. The reals ai are the increases in the criticalities between rebal-
ancings and c = 1/α. We see that if α ≤ 1 the criticality of a bucket will never
exceed ln + 1 = O(log n). Thus for sufficiently small α the size of the buckets
will never exceed 2 log2 n. This completes the proof of Theorem 2.

We need worst case update time for color in the tree color problem in order to
make it persistent. The expected update time is due to hashing. The expectation
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can be removed at the cost of using more space. We now use Theorem 2 to get
the following lemma.
Lemma 4. Using linear time for preprocessing, we can maintain a tree with
complexity O(loglog n) for color and complexity O(log n/loglog n) for findfirst-
color, using O(1) memory modifications per update, where n is the number of
nodes in the tree.

4.2 Reducing the Space

Using Dietz’ method [5] to make a data structure fully persistent on the data
structure from Lemma 4, we can construct a fully persistent version of the tree
color data structure with complexity O((loglogm)2) for color and uncolor, and
complexity O((log m/loglog m) · loglog m) = O(log m) for findfirstcolor, using
O(m) memory modifications, where m is the number of nodes in the tree.

According to Lemma 1 a data structure for the first bridge problem can
be constructed by O(m) updates to a fully persistent version of the dynamic
tree color problem. We can thus construct a data structure for the bridge color
problem in time O(m (loglogm)2), which has query time O(log m), where m is
the number of bridges.

This data structure might use O(c·m) space, where c is the number of method
names. We can reduce this space usage using the following lemma.
Lemma 5. If there exists an algorithm A constructing a static data structure
D using expected t(n) time for preprocessing and expected m(n) memory mod-
ifications and has query time q(n), then there exists an algorithm constructing
a data structure D′ with query time O(q(n)), using expected O(t(n)) time for
preprocessing and space O(m(n)).
Proof. The data structure D′ can be constructed the same way as D using
dynamic perfect hashing [7] to reduce the space. ��

Since we only use O(m) memory modifications to construct the data structure
for the bridge color problem, we can construct a data structure with the same
query time using only O(m) space. This completes the proof of Theorem 1.

If we use O(N) time to reduce the class hierarchy tree to size O(m) as
mentioned in the introduction, we get the following corollary to Theorem 1.
Corollary 1. Using O(N + m (loglog m)2) time for preprocessing and O(m)
space, the multiple dispatching problem can be solved in worst case time
O(log m) per query. Here N is the number of classes and m is the number
of methods.
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Abstract. We consider makespan minimization for vehicle scheduling
problems on trees with release and handling times. 2-approximation al-
gorithms were known for several variants of the single vehicle problem
on a path [16]. A 3/2-approximation algorithm was known for the single
vehicle problem on a path where there is a fixed starting point and the
vehicle must return to the starting point upon completion [13]. Karuno,
Nagamochi and Ibaraki give a 2-approximation algorithm for the single
vehicle problem on trees. We develop a linear time PTAS for the sin-
gle vehicle scheduling problem on trees which have a constant number
of leaves. This PTAS can be easily adapted to accommodate various
starting/ending constraints. We then extended this to a PTAS for the
multiple vehicle problem where vehicles operate in disjoint subtrees. For
this problem, the only previous result is a 2-approximation algorithm for
paths [10]. Finally, we present competitive online algorithms for some
single vehicle scheduling problems.

1 Introduction

In this paper we study the multiple vehicle scheduling problem (MVSP), which
involves scheduling a set of vehicles to handle jobs at different sites. There are
a large number of applications for such problems, for instance, scheduling auto-
mated guided vehicles [10], scheduling delivery ships on a shoreline [16], schedul-
ing flexible manufacturing systems [10], etc.... MVSP is also equivalent to certain
machine scheduling problems where there are costs for reconfiguring machines
to perform different operations [2], and to power consumption minimization in
CPU instruction scheduling [3].

Problem Description: MVSP is a variation of the well-known traveling
salesman problem. In the most general formulation, the problem consists of a
metric space M along with n jobs. Each job j becomes available for processing
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at a time rj ≥ 0 known as its release time. Job j requires a specific amount
of time hj ≥ 0 for its completion known as its handling time. Job handling is
non-preemptive in nature meaning that if the vehicle starts processing a job, it
is required to complete the processing. Finally, each job has a position pj inM.
We are given a set of k vehicles that can traverse M and handle or serve these
jobs. Our goal is to minimize the maximum completion time over all jobs, called
the makespan, using the given set of vehicles.

Note that without loss of generality M is finite. M can be represented by a
weighted graph, where the points are vertices, and the distance from p ∈ M to
q ∈ M is the length of the shortest path from p to q in the graph. In an abuse
of notation, we also use M to denote this graph. We are interested in the case
where M is a tree; unless stated otherwise, all the discussion to follow pertains
to this case. We use m and t to denote the number of vertices and leaves in M,
respectively. Note that a particularly interesting special case is t = 2, where M
is a path.

Several different variants of this problem are possible:

– The single vehicle scheduling problem (SVSP) is just the special case k = 1.
– In the zone multiple vehicle scheduling problem (ZMVSP), the vehicles all

operate in disjoint subtrees of G called zones. Part of the problem is to
specify the zones.

– There are a large number of possibilities for vehicle starting/ending con-
straints. It is possible that the starting positions of the vehicles are given as
part of the problem, or that they can be chosen by the algorithm. We call
a problem specified starting point for a vehicle the origin of that vehicle.
There are analogous possible constraints on vehicle ending positions. The
most common variant when an ending position is specified is that the origin
and the ending position are the same. We denote this variant as RTO (return
to origin). When no ending position is specified, the most common variant
is that each vehicle has a fixed origin. We denote this variant as FO (fixed
origin).

– In the online variants of these problems, jobs are unknown before their release
times, and even the number of jobs is a priori unspecified.

Since even SVSP on a path is NP-hard [7,17], we shift our focus from finding
an optimal solution to finding an approximate solution with cost that is guaran-
teed to be within a certain bound relative to the optimal cost. Suppose we have
an algorithm A for problem P. We define costA(σ) to be the cost of the solution
produced by A on instance σ of P. Let cost(σ) be minimum possible cost for
σ. A polynomial time ρ-approximation algorithm A guarantees that for every
instance σ of P, costA(σ) ≤ ρ cost(σ) and that A runs in polynomial time in |σ|.
A polynomial time approximation scheme (PTAS) for problem P is a family of
approximation algorithms {Aε}ε≥0 such that each is a polynomial time (1 + ε)-
approximation algorithm for P. A fully polynomial time approximation scheme
(PTAS) is a PTAS whose running time is polynomial in both |σ| and 1/ε. The
reader is referred to [8] for a more comprehensive treatment of approximation
algorithms.
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Previous Results: The traveling salesman problem, which is a precursor
and special case of SVSP, is known to be NP-complete [9]. Further, it has been
shown that a polynomial time ρ-approximation algorithm is only possible for
ρ ≥ 203/202, unless P=NP [6]. Because of these negative results, many people
have attempted to solve special cases of this problem. Researchers have often
exploited the different network topologies on which the TSP or more generally
MVSP are formulated. Papadimitriou [15] shows that the TSP is NP-complete
even in the Euclidean plane. For the general TSP, a 3/2-approximation is known,
due to Christofides [4]. Approximation algorithms are known for several special
cases [8].

Psaraftis et al. [16] consider SVSP on a path when all handling times are
zero. They show that the RTO version can be solved exactly in O(n) time, while
the FO version can be solved exactly in O(n2) time. Psaraftis et al. further
give 2-approximation algorithms for both these versions of SVSP with positive
handling times. Tsitsiklis [17] shows that the FO and RTO versions of SVSP on
paths with release and handling times are NP-complete. MVSP is NP-complete
for all k ≥ 2 even if all release times are zero and there is only a single point
in M, since this is exactly the multiprocessor scheduling problem [7]. If k is
part of the input, then MVSP is strongly NP-complete. For paths, Karuno et al.
develop a 3/2-approximation algorithm for the RTO version of SVSP [13] and a
2-approximation for the version of MVSP where the origins and ending points are
not pre-specified [10]. For SVSP on trees, Karuno, Nagamochi and Ibaraki [12]
develop a 2-approximation algorithm. For SVSP on trees with zero handling
times, Nagamochi, Mochizuki and Ibaraki [14] give an exact algorithm that runs
in time O(nt) and show strong NP-hardness. For SVSP on general metrics, they
give an exact algorithm which runs in time O(n22n), and a 5/2-approximation
algorithm.

There has also been interest in the online version of SVSP. Ausiello et al. [1]
investigate the online RTO and FO versions of the problem, where all han-
dling times are zero. For a general class of metrics spaces, they show 2.5 and
2-competitive algorithms for the FO and RTO variants, respectively. For the FO
version, they give a 7/3-competitive online algorithm, and a lower bound of 2 on
the competitive ratio of any online algorithm. For the RTO variant, their upper
and lower bounds are 7/4 and (9 +

√
17)/8 > 1.64038, respectively.

There is a large body of work on vehicle scheduling problems with different
job requirements, metric spaces and objective functions. For instance, Tsitsik-
lis [17] considers job deadlines, while Charikar et al. [3] consider precedence
constraints. We do not give a comprehensive treatment of all variations here,
but refer the reader to the survey of Desrosiers et al. [5].

Our Results: In this paper, we develop a PTAS that can be applied to many
of the variants of SVSP. We begin in Section 2 by giving an exact algorithm for
solving the FO variant of SVSP on a tree when the number of distinct release
times is at mostR. This algorithm runs in timeO(R(m+1)(R−1)(t+1)+1n). In Sec-
tion 3, we use this result to provide an O(f(1/ε, t)n) time (1 + ε)-approximation
algorithm for the FO variant of SVSP, where f(1/ε, t) is a function exponential
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in both t and 1/ε. This is accomplished by running the algorithm of Section 2
on a modified problem on a modified metric space. In this modified problem, R
and m are constants depending only on ε. Our PTAS is easily adapted to all
the other starting/finishing constraints previously mentioned, as well as others.
In Section 4, we extend our algorithm to include ZMVSP using a dynamic pro-
gramming approach. Essentially, this multiplies the running time by a factor of
O(nt). In Section 5, we show that an extension of SVSP to include deadlines is
NP-hard, even when all release times are zero. Finally, in Section 5, we show how
to adapt the algorithms of Ausiello et al. [1] to get competitive online algorithms
for some SVSP variants.

Note: Recently and independently, Karuno and Nagamochi [11] have also
developed PTAS’s for the vehicle scheduling problems described here. Their
approach is different than ours. They develop an exact pseudopolynomial time
algorithm for MVSP. The running time of this algorithm is exponential in k and
polynomial in

∑
j hj . We get a linear time PTAS for SVSP where they do not.

Our PTAS for ZMSVP runs in time polynomial in k, whereas all their algorithms
have running times exponential in k.

2 A Special Case

In this section, we consider the single vehicle scheduling problem on trees when
there are a constant number R of distinct release times. We show that this
problem can be solved exactly in time O(R(m + 1)(R−1)(t+1)+1n). We assume
the FO variant, but the algorithm given here can easily be adapted to handle
all of the different starting and ending conditions described in the introduction.

We denote the origin by p0. We assume that in the input,M is in adjacency
list form. We use d(x, y) to mean the distance from point x to point y in M.
We use x ❀ y to denote the set of vertices on the shortest path from x to y,
including x and y. It is easy to see that vertices of degrees one and two containing
no request can be eliminated from M. Therefore we have m ≤ n+ t− 2.

A schedule for the single vehicle problem is just a permutation π on
{1, . . . , n}. In an abuse of notation, we define π(0) = 0. The arrival time aσπ(i)
and completion time cσπ(i) of the vehicle at the ith request in π are defined

aσπ(i) = cσπ(i− 1) + d(pπ(i−1), pπ(i)),
cσπ(0) = 0,
cσπ(i) = max{rπ(i), aσπ(i)}+ hπ(i).

If the problem instance is clear from the context, we drop the σ superscript. The
cost of π is cσπ(n).

We say that schedule π eagerly serves request � if for all i such that p
 ∈
pπ(i−1) ❀ pπ(i) either π(�) ≤ i or r
 > cπ(i − 1) + d(pπ(i−1), p
). If π eagerly
serves all requests, we say that π is eager. Intuitively, an eager schedule never
passes through the location of an available request without serving the request.
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Lemma 1. For any finite metricM, if there is a schedule π for a single vehicle
scheduling problem σ with cost x then there is also an eager schedule � for σ
with cost at most x.

Proof. Consider some schedule π. Define

e(i, �) = cπ(i− 1) + d(pπ(i−1), p
),
f
 = min{i | r
 ≤ e(i, �), p
 ∈ pπ(i−1) ❀ pπ(i)}.

Intuitively, e(i, �) is the earliest point in time that position p
 can be reached after
servicing requests π(1), . . . , π(i − 1). The vehicle crosses request � for the first
time after it becomes available when traveling from request π(f
− 1) to request
π(f
). f
 is well defined since p
 ∈ pπ(i−1) ❀ pπ(i) and r
 ≤ e(i, �) for i = π−1(�).
If f
 = π−1(�) for all �, then π is eager. Otherwise, there is some request � with
f
 < π−1(�). Among these requests, let L be the one which minimizes e(f
, �). L
is the first request crossed by π which is not eagerly served. Define q = π−1(L).
Basically, we modify π to get π′ by removing L from its current position in
the order defined by π and inserting it between requests π(fL − 1) and π(fL).
This causes the service of requests π(fL), . . . , π(q− 1) to be delayed by at most
hL. However, in the modified schedule, we go directly from request π(q − 1) to
π(q + 1), and so we arrive at π(q + 1) at least as early as before. Thus we see
that aπ′(q+1) ≤ aπ(q+1) (we show this formally in the full version). Using this
fact, it is easy to show by induction that cπ′(i) ≤ cπ(i) for q < i ≤ n. Therefore,
the cost of π′ is at most the cost of π. We have increased the number of eagerly
served requests by one. By iterating this process, we eventually reach an eager
schedule �. �

We use 0 ≤ u1 < · · · < uR to denote the possible release times. Define u0 = 0
and uR+1 =∞. Define phase i to be the time interval [ui, ui+1) for 0 ≤ i ≤ R.

We show that it is possible to construct the optimal schedule in polynomial
time. Let π be an optimal schedule. Without loss of generality, π is eager. For
the remainder of the paragraph, let i be in {1, . . . , R}. Let Xi be the set of
requests whose service is initiated during phase i. If Xi is non-empty, define Ti
to be the minimal subtree ofM which contains all the requests in Xi. Define Li
to be the set of leaves of Ti. Note that |Li| ≤ t since Ti is subtree ofM, andM
has at most t leaves. Let X0

i be the position of the first request served during
phase i in schedule π. For 1 ≤ j ≤ |Li|, let Xj

i be the jth leaf visited by the
vehicle during phase i in schedule π. For |Li| < j ≤ t, define Xj

i = X
|Li|
i . If Xi

is empty then we define Xj
i = −1 for 0 ≤ j ≤ t. Define Xt

0 = p0.
We claim that the structure of π is completely defined by Xj

i for 1 ≤ j ≤ t,
0 ≤ i ≤ R. This follows from the fact that since π is eager, and all requests
released during phase i are released at the beginning of the phase. Xi consists
of exactly those requests which lie in Ti and which are released at or before time
ui. Define a sweep to be a time period during which the vehicle travels along
some path, possibly stopping to serve requests, but without changing direction.
Essentially, t+ 1 sweeps per phase are sufficient. If we sweep from Xt

i−1 to X0
i ,
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then sweep from X0
i to X1

i , sweep from X1
i to X2

i etc..., we pass through all
requests in Xi. We take this route and service all the requests in Xi when they
are first encountered. Clearly, this is the optimal route that serves all request in
Xi visiting X0

i , . . . , X
|Li|
i in order.

If we fix Xj
i for 1 ≤ j ≤ t, 0 ≤ i ≤ R − 1 then note that this determines

XR and TR, since all requests not served in phases 0 . . . R − 1 must be served
during phase R. The number of choices for X0

R is m + 1. Once X0
R is fixed, it

is easy to determine the remaining schedule in O(n) time, since this is just the
Hamiltonian path problem on a tree. For 1 ≤ i < R there are mt+1 + 1 possible
choices for X0

i , , . . . , X
t
i . Therefore, the total number of possible schedules is at

most (m+1)(mt+1+1)R−1 ≤ (m+1)(t+1)(R−1)+1, which is constant with respect
to n.

From these observations, we conclude that there is a polynomial time algo-
rithm for finding the optimal schedule: We enumerate the possible schedules, of
which there are at most (m+ 1)(t+1)(R−1)+1, calculating the cost for each, and
return the minimum cost schedule.

The calculation of the cost of a schedule, given Xj
i for 1 ≤ j ≤ t, 0 ≤

i ≤ R, can be accomplished in time O(Rn): We first determine π. This can be
accomplished by using depth first search on each sweep to determine the requests
served. This takes time O(Rn). From π we can calculate the cost in time O(n).

Therefore, the total running time of the algorithm is O(R(m +
1)(t+1)(R−1)+1n), which is linear in n, since t and R are constants and m ≤
n+ t− 2.

3 The Offline Single Vehicle Problem

In this section, we present a (1 + ε)-approximation algorithm for SVSP, for all
ε > 0. Denote the input problem instance as σ.

Define rmax = max1≤i≤n ri. Let a = 2�1/ε� and δ = rmax/a. Since cost(σ) ≥
rmax, we have δ ≤ ε cost(σ)/2.

Let P be the sum of all edge weights in M. Define b = 2(t + 1)a2 and ∆ =
P/b. Since every edge must be traversed to serve all requests, cost(σ) ≥ P and
therefore ∆ ≤ ε cost(σ)/(4(t+ 1)m). We define a new metric N with a constant
number of points, which we use to approximate M. A junction of M is defined
to be a vertex of degree three or more. Define a essential path of M to be path
whose endpoints are either leaves or junctions. M has a unique decomposition
into a set E of at most 2t − 2 essential paths. We find this decomposition and
perform the following operation on each essential path p ∈ E: We embed p
in the real line, with an arbitrary endpoint at position 0. The other endpoint
lies at position |p|. This assigns each vertex v in p a non-negative coordinate
value x(v). We get a new path p′ by rounding the coordinates to get x′(v) =
min{|p|, ∆�x(v)/∆+1/2�}. p′ consists y = �|p|/∆� vertices, y−1 edges of length
∆, and one edge of length |p| − ∆(y − 1). There is an obvious mapping from
vertices in p to those in p′. From this, we get a mapping φ from points in M to
points in N . Note that the number of points in N is at most
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∑
p∈E
�|p|/∆� ≤

∑
p∈E
|p|/∆+ 1

≤ P/∆+ 2t− 2 = b+ 2t− 2.

Using N , we define two new problem instances σ↑ and σ↓. Problem σ↓ is
defined in terms of σ by r↓

i = δ�ri/δ�, p↓
i = φ(pi), h

↓
i = hi, for 1 ≤ i ≤ n. For

purposes that shall become clear, we add a request at the origin to σ↓, the 0th
request, with p↓

0 = p0, r↓
0 = 0 and h↓

0 = 0. Clearly, this additional request does
not affect the solution of σ↓ in any way, since the vehicle is already at p0 at time
0, and the request has zero handling time. Note that in σ↓ there are at most
a + 1 distinct release times and b + 2t − 2 distinct job positions (not including
p0). Problem σ↑ is defined by r↑

i = r↓
i + δ, p↑

i = p↓
i and h↑

i = hi for 1 ≤ i ≤ n.
As with σ↓, in σ↑ there is an additional request at the origin, the 0th request,
with p↑

0 = p0, r↑
0 = 0 and h↑

0 = δ. Using the algorithm described in the preceding
section, we can solve σ↓ exactly in time O(n (a + 1)(b + 2t − 1)(t+1)a+1) =
O(n (8(t + 1)�1/ε�2 + 2t − 1)2(t+1)�1/ε�+1/ε), which is linear in n for constant t
and ε.

We now observe that an optimal schedule π for σ↓ is also an optimal schedule
for σ↑. Intuitively, problem σ↑ is the same as problem σ↓ but with all requests
except 0 shifted back δ time units. Applied to σ↑ schedule π stays at p0 until
time δ, since π(0) = 0 and h↑

0 = δ, and then travels the same route as for σ↓,
except that each point is reached δ time units later. The cost incurred by π on
σ↑ is therefore cost(σ↓) + δ. Note that when π is used for σ↑ every request is
served after its release time in σ. With a bit of care, we can also use π as a
schedule for σ. To ensure that the vehicle reaches all jobs, we have to increase
the length of each sweep, but by at most ∆ each. Therefore π is also a schedule
for σ with cost at most cost(σ↓) + δ + (t+ 1)m∆.

We now relate cost(σ↓) to cost(σ). To accomplish this, we consider a third
modified instance, which we denote σ∗. This instance is defined in terms of
the original metric M by r∗

i = r↓
i , p∗

i = pi, h∗
i = hi, for 1 ≤ i ≤ n. We

first observe that clearly, cost(σ) ≥ cost(σ∗). The optimal schedule π∗ for σ∗

has the structure that we have explained in the preceding section; i.e. at most
t+ 1 sweeps per phase are sufficient. Note that if we apply π∗ to σ↓, we have a
feasible schedule for σ↓. Each sweep still covers the same jobs, since the rounding
scheme used to obtain N does not change the order of points along any essential
path. Further, we increase the length of each sweep by at most ∆. Therefore,
cost(σ∗) + (t+ 1)m∆ ≥ cost(σ↓).

We conclude that the cost incurred by the algorithm is at most

cost(σ↓) + δ + (t+ 1)m∆ ≤ cost(σ∗) + δ + 2(t+ 1)m∆
≤ cost(σ) + δ + 2(t+ 1)m∆ ≤ (1 + ε) cost(σ).
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4 The Offline Zone Multiple Vehicle Problem

In this section, we show that if we have a ρ-approximation algorithm A for SVSP
which runs in time O(g(n)), then we also have a ρ-approximation algorithm B
for ZMVSP which runs in time O(tknt +ntg(n)). The basic idea is to generalize
the dynamic programming algorithm given by Karuno and Nagamochi [10] for
computing the optimal one way zone schedule for the multiple vehicle scheduling
problem. The general case is quite complicated, so we begin by looking at the
special case of t = 2, where M is a path. We assume in this section that the
starting and finishing positions of each vehicle can be selected by the algorithm.

Since the requests are all on a single path, we assume that they are given
in order along this path, i.e. request 1 is at one end of the path, request 2 is
adjacent to request 1, etc.... Define C∗(i, j) for 1 ≤ i ≤ j ≤ n to be the optimal
cost for serving requests i, . . . , j using a single vehicle. Further define x∗(i, �) for
1 ≤ i ≤ n and 1 ≤ � ≤ k to be the cost of the optimal zone schedule for serving
requests 1, . . . , i with � vehicles. Then the cost of the optimal zone schedule
for the entire problem is given by x∗(n, k). We calculate x∗ using the following
recurrence x∗(i, 1) = C∗(1, i) giving

x∗(i, �) = min
1≤j<i

max {x∗(j, �− 1), C∗(j + 1, i)} . (1)

Of course, we do not know how to calculate C∗(i, j) in polynomial time. We
are therefore led to consider the following modified recurrence. Define C(i, j) for
1 ≤ i ≤ j ≤ n to be the cost incurred by A for serving requests i, . . . , j with a
single vehicle. Define x(i, �) for 1 ≤ i ≤ n and 1 ≤ � ≤ k to be minimum cost
of a zone schedule for serving requests 1, . . . , i with � vehicles using A to serve
requests in each zone. Similar to the situation with x∗, we calculate x(n, k) using
x(i, 1) = C(1, i) giving

x(i, �) = min
1≤j<i

max {x(j, �− 1), C(j + 1, i)} . (2)

Using induction, one can show that x(i, �) ≤ ρ x∗(i, �) for 1 ≤ i ≤ n and 1 ≤
� ≤ k. In particular, this means that x(n, k) ≤ ρ x∗(n, k), which leads us to a
ρ-approximation algorithm B:

1. Calculate the values C(i, j) for 1 ≤ i ≤ j ≤ n, storing them in an array.
2. Calculate x(n, k) using dynamic programming (i.e. store x in an array).
3. From x find the zone partition and use the schedule of A within each zone.

Step 1 takes O(n2g(n)) time. Step 2 takes O(kn2) time. Step 3 can be accom-
plished in O(k) time if we record the values of j minimizing (2) in Step 2.

We now sketch the general solution. To begin, we calculate the cost C(T )
for serving the requests in each subtree T of M with a single vehicle. The total
number of subtrees is at most nt, so the time to do this is O(ntg(n)). We pick
an arbitrary leaf r and designate it to be the root. The partial solutions we
build are subtrees of M containing r. To find the minimum cost x(T, �) of an
� vehicle solution for a rooted tree T , we use depth first search starting from each
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leaf of T , excluding the root. At each point in the depth first search, we have
a decomposition of T into two disjoint subtrees: the portion of T visited in the
depth first search, which we call U , and the remainder, which we call V = T −U .
V contains the root. The minimum of max{x(V, �−1), C(U)} over all possible U
and V gives us the minimum cost for T . The time required to calculate x(T, �)
in O(tn), since T has at most t leaves. The number of rooted trees T is at most
O(nt−1). The total time used is therefore O(ntg(n) + tknt), as claimed.

We now make a number of remarks on the relationship between the cost of the
optimal zone schedule, and the optimal non-zone schedule. If we allow multiple
requests to appear at a single location, then clearly the cost of the optimal zone
schedule can be k times the cost of the optimal non-zone schedule: Consider an
input where n = k, rj = 0, hj = 1 and pj = p1 for 1 ≤ j ≤ k. Then in a zone
schedule, a single vehicle must serve all requests, whereas in a non-zone schedule
we can devote a vehicle per request. If requests must occur at distinct locations,
then we get a weaker bound stated in the following lemma. The proof will be
given in the full version.

Lemma 2. For all k ≥ 2 and t ≥ 2, there exists an MVSP problem instance
σ where the cost of the optimal zone schedule is 2 − 1/t times the cost of the
optimal non-zone schedule.

5 Other Results

Tsitsiklis [17] shows that SVSP with deadlines on paths is strongly NP-hard,
but leaves open the complexity of SVSP with general deadlines and zero release
times. In the full version, we show that this problem is NP-hard on paths and
strongly NP-hard on trees.

The problem of scheduling a single vehicle online when all handling times
are zero is investigated by Ausiello et al. [1]. The FO and RTO variants of this
problem are of interest. For both FO and RTO, they obtain results for general
metrics, and stronger results for paths.

We show that if one has a c-competitive online algorithm for zero handling
times, then it is possible to get a (c + 1)-competitive online algorithm for non-
negative handling times. The proof will be given in the full version.

6 Conclusions

We have presented the first approximation schemes for single and multiple vehicle
scheduling problems on trees. Such problems are well motivated, having a large
number of applications [10]. We believe that this paper is just an initial step in
the exploration of such problems and so we state several open problems. Can
the 2-approximation given in [10] for the non-zone multiple vehicle problem on
a path be extended to trees? Is an FPTAS possible for SVSP on paths or trees
with a constant number of leaves? For what other metrics is a PTAS possible?
In [1], lower bounds are given for online vehicle scheduling problems with zero
handling costs. Can these lower bounds be increased using handling costs?
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Abstract. We study the problem of minimizing makespan for the Lazy
Bureaucrat Scheduling Problem. We give a pseudopolynomial time al-
gorithm for a preemptive scheduling problem, resolving an open prob-
lem by Arkin et al. We also extend the definition of Lazy Bureaucrat
scheduling to the multiple-bureaucrat (parallel) setting, and provide
pseudopolynomial-time algorithms for problems in that model.

1 Introduction

The Lazy Bureaucrat Scheduling Problem is a modification of traditional
scheduling models in which the goal is to minimize, rather than maximize, the
amount of work done. The bureaucrat is given a list of jobs that have deadlines.
His goal is to do as little work as possible (as defined by a given objective), under
the greedy constraint that he must work on a job if one is available (otherwise,
the obvious choice would be to do no work at all). Jobs whose deadlines pass
before they are completed expire and can no longer be scheduled; this is desir-
able, since unscheduled jobs reduce the amount of work the bureaucrat needs to
do. The Lazy Bureaucrat Scheduling Problem was introduced by Arkin et al. [1],
who considered several different objectives and variants of the greedy constraint.

Arkin et al. motivate the study of this problem with two examples. One
supposes an office worker who wants to do as little work as possible while main-
taining a busy appearance. For example, suppose he is allowed to go home at
5:00 p.m. At 3:00 p.m., he has two jobs available, which will take 15 minutes
and one hour, respectively, to complete. He may work on either, but he must
work on one. At 3:15 p.m. he has a personnel meeting which he can skip if he
is otherwise busy. He could do the 15-minute job, go to the meeting, then finish
the hour-long job by 5:00. However, he can do less work by doing the hour-long
job first, which will excuse him from the meeting, followed by the 15-minute
job which he completes at 4:15 p.m. The other is the real-life example shown in
the movie Schindler’s List [3], in which the factory workers needed to stay busy
without making any real contribution to the German war effort.
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Another example might be a professor scheduling students during his office
hour. Being a dedicated teacher, Professor Green does not want to leave before
each student present has a chance to ask his question. However, he is leaving
for a conference after his office hour, and he would like to finish up as soon
as possible so that he has time to pack. Luckily, he knows that some students
will leave before seeing him if they get tired of waiting or if they figure out the
answer themselves. Therefore, Professor Green may want to see students in an
order that will get through all the students as soon as possible, whether or not
he actually talks to them.

In this paper, we will study preemptive variants of the Lazy Bureaucrat prob-
lem. We further motivate our examination of the preemptive Lazy Bureaucrat
problem with the following observation. In the usual deterministic single-machine
scheduling models, the use of preemption can “correct” scheduling decisions
made prior to the arrival of a new job. When all jobs have the same release
date, preemption does not help because the scheduler can already choose from
every unscheduled job at every point in time. In the Lazy Bureaucrat Schedul-
ing Problem, preemption can be beneficial even when all release dates are equal,
since a job can be left partially completed if it is preempted and never resumed.
Partially processing a job allows the scheduler to stay busy just long enough for
the deadline of a more costly job to pass. We shall use this unique feature of the
Lazy Bureaucrat Scheduling Problem to show that preemption can be used to
reduce the makespan of a schedule even if the all the release dates are equal.

We also extend the Lazy Bureaucrat Scheduling Problem by allowing multi-
ple bureaucrats. We restrict ourselves to a model where each bureaucrat works
independently so that one bureaucrat cannot prevent another from working.
When preemption is allowed, we also make the restriction that a job can only
be run by the bureaucrat that started the job, i.e., migration is not allowed.

Arkin et al. define many different Lazy Bureaucrat scheduling problems in [1]
and they present NP-hardness results for most problems. They give polynomial-
time algorithms for some special cases, and they give pseudopolynomial-time
algorithms for some weakly NP-complete problems. Of particular interest to us
is a pseudopolynomial-time algorithm for minimizing the makespan of a schedule
for a set of jobs which share a common release date.

In this paper, we give pseudopolynomial-time algorithms for the problem of
minimizing makespan when preemption is allowed, assuming a job may only be
scheduled if it is possible to finish it by its deadline, in both the single- and
multiple-machine settings. We first prove structural results that show any pre-
emptive schedule can be converted to a schedule with at most one preemption.
Our algorithm converts an instance I of a preemptive problem into a pseu-
dopolynomial number of nonpreemptive instances. One of these new instances
has the optimal preemptive schedule of I as its optimal nonpreemptive sched-
ule. The nonpreemptive version has a pseudopolynomial-time algorithm, so the
optimal preemptive schedule can be found in pseudopolynomial time as well.
In the multiple-bureaucrat setting, we introduce pseudopolynomial-time algo-
rithms for minimizing the makespan of both nonpreemptive and preemptive
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schedules with equal release dates by modifying the algorithms for the corre-
sponding single-bureaucrat problems. We show that for a fixed number of bu-
reaucrats, we can assign jobs to bureaucrats with dynamic programming to find
the optimal nonpreemptive schedule. When preemption is allowed, we can again
convert a problem instance to a set of nonpreemptive problem instances and take
the best optimal nonpreemptive schedule as the optimal preemptive schedule.

2 Preliminaries

Definitions and Notation. A bureaucrat is an entity capable of doing work, sim-
ilar to a machine in a traditional scheduling problem. A bureaucrat, however,
must obey a greedy principle, which states that if at time t there is an unsched-
uled job that can be run, the bureaucrat must run a job.

An instance of a Lazy Bureaucrat problem is a set J of n jobs, a number m
of bureaucrats and a specification of the notion of availability. Each job j has
a processing time pj and a deadline dj . We define pmax = maxj pj to be the
maximum processing time and dmax = maxj dj to be the maximum deadline.
The critical point of a job, c′jt(σ), is the latest point in time, as of time t, that
job j can be scheduled in schedule σ and still complete by its deadline. If yjt(σ)
is the amount of processing remaining for job j at time t in schedule σ, then
c′jt(σ) = dj − yjt(σ). When the schedule σ and the point in time t are clear from
context, we abbreviate the critical point and the remaining processing time as
c′j and yj , respectively. The starting time of a job j is referred to as Sj , and the
completion time Cj is the time at which the job has run for pj units of time.
Each job also has a release date rj before which it may not be processed. For
the rest of this paper, we assume that all release dates are equal. This means
that by the greedy principle, the schedule may never be idle.

In the preemptive setting, the notion of availability must be defined precisely.
For example, if a job cannot be completed before its deadline, should the bu-
reaucrat be allowed to work on it anyway? Three definitions of availability for
incomplete jobs are given in [1], which we will denote as pmtnI , pmtnII , and
pmtnIII ; see that paper for details. Under pmtnI , a job may be processed at
any time before its deadline passes. A job is only available under pmtnII if it
can be completed by its deadline; this means a job cannot be scheduled after its
critical point. The final constraint, pmtnIII requires a job to be completed if it
is started. We consider preemptive problems only of type pmtnII in this paper.

To more easily refer to Lazy Bureaucrat problems, we introduce the follow-
ing extensions to the three-field classification scheme due to Graham et al. [2]
as follows. Since bureaucrats are identified with machines, they continue to be
represented by the usually symbols (1, P, R, etc.). The tag lazy in the constraints
field indicates that the problem is a Lazy Bureaucrat problem. The three objec-
tives studied in [1], makespan, total time spent working, and weighted sum of
completed jobs, are specified by Cmax,

∑
ij tij , and

∑
j wj(1−Uj), respectively,

where tij is a binary variable that indicates if job j executes at time i, and Uj is
a binary variable that indicates if job j does not finish (compare with the slightly
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different normal meaning of Uj , which is 1 if a j finishes after its deadline). For
example, the problem of minimizing the makespan of a nonpreemptive schedule
would be 1 | lazy |Cmax. If preemption is allowed and only completable jobs are
available, the problem would be 1 | lazy , pmtnII |Cmax.

Previous Results. Many results for Lazy Bureaucrat problems were given in [1].
A brief summary of results relevant to this paper is given here. In the general
nonpreemptive case the Lazy Bureaucrat Scheduling Problem is strongly NP-
complete for all three objective functions Cmax,

∑
ij tij , and

∑
j wj(1 − Uj).

They are also hard to approximate to within any constant factor. When all re-
lease dates are equal, there is a pseudopolynomial-time algorithm. Several special
cases have polynomial-time algorithms. When preemption is allowed, hardness
results depend on the type of preemption allowed. For all three objective func-
tions, the Lazy Bureaucrat Scheduling Problem is polynomially solvable under
pmtnI , weakly NP-complete under pmtnII , and strongly NP-complete under
pmtnIII . Open problems include finding algorithms for 1 | lazy , pmtnII |Cmax,
1 | lazy , pmtnII |∑ij tij , and 1 | lazy , pmtnII |∑j wj(1− Uj) that run in pseu-
dopolynomial time, with or without release dates.

3 New Results for the Single Bureaucrat

In this section, we present an algorithm for 1 | lazy , pmtnII |Cmax which runs in
pseudopolynomial time. We first discuss why it is interesting to study a preemp-
tive scheduling problem when the release dates are equal. We next study the
structure of an optimal preemptive schedule for 1 | lazy , pmtnII |Cmax. Finally,
we give a dynamic programming algorithm that runs in O(n2 dmax pmax) time.
As pointed out in [1], when all release dates are equal the makespan objective
is equivalent to total time spent working and, if all scheduled jobs are com-
pleted, weighted sum of completed jobs. Therefore, we focus on the problem of
minimizing makespan; our results hold for the other two problems as well.

3.1 Preemption and Makespan with Equal Release Dates

Under normal single-machine scheduling models, preemption does not give a
better schedule when all the release dates are equal. Because every job must be
completed, one always has the option of running job i before j for any pair of jobs
i and j. In other words, any time a job i is preempted by a job j, it is also feasible
for job j to run prior to job i in the first place. However, in the Lazy Bureaucrat
Scheduling Problem, there are times when it is beneficial to preempt a job and
not resume it later, running just enough of the preempted job to prevent other
jobs from being scheduled. Consider a three-job instance with p1 = 7, d1 = 8;
p2 = 7, d2 = 15; and p3 = 20, d3 = 30. The optimal nonpreemptive schedule
runs jobs 1 and 2 for a makespan of 14. If preemption is allowed, we can run
the same jobs, but we can preempt job 1 at time 4 for a final makespan of 11.
The preempted job is not finished, but it runs long enough to prevent job 3 from
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starting. Job 1 itself cannot be resumed after job 2 completes, since its deadline
has passed. This shows that preemption can be used to improve the makespan
of the schedule by delaying other jobs.

As pointed out in [1], there may not be an optimal solution at all when we
allow preemption. Consider our example once more. For any positive value of
ε < 1, we can preempt job 1 at time 3 + ε instead of time 4. This is still long
enough to prevent job 3 from starting, and the preemptive schedule remains
valid, but the makespan can be made arbitrarily close to 10 for sufficiently small
values of ε. Because of this feature of the Lazy Bureaucrat Scheduling Problem,
it seems like the preemptive version is much harder than the nonpreemptive
version. The dynamic programming algorithm from [1] does not seem to be
applicable here, since there are an infinite number of possible preemption points.

To allow the problem to be algorithmically solvable, we will define a schedule
with integral makespan which can be returned by our algorithm. We refer to
schedule φ as a representative preemptive schedule for a family Φ of preemptive
schedules if the makespan of φ is T + 1, the makespan of each schedule in Φ
falls in the interval (T, T + 1], and φ can be transformed into any member of Φ
by decreasing the processing time of exactly one job. Thus, if in the limit the
optimal makespan of a preemptive schedule is T + ε for any ε > 0, we need only
return a representative schedule of makespan T + 1.

3.2 Properties of an Optimal Preemptive Solution

The following lemmas provide us with information about the structure of an
optimal preemptive schedule that will allow us to build on the nonpreemptive
algorithm for makespan minimization given in [1]. The lemmas build on each
other; each proof assumes the previous lemmas have been applied.

First we prove that we only need to consider O(n) possible preemptions.

Lemma 1. Any preemptive schedule for an instance I of 1 | lazy , pmtnII |Cmax
can be converted to a preemptive schedule of equal makespan in which no job is
resumed once it has been preempted.

Proof Sketch. We rearrange the scheduled pieces so that each job runs during
one continuous interval. Let k be the index of the preempted job that occurs last
in the schedule, and let t be time at which the last piece of jk finishes. We reorder
the job pieces within the interval [Sk, t] in a way that introduces no idle time
or extra processing, so the makespan does not increase. All pieces of jk move to
the end of the interval; the other job pieces run earlier in the interval to make
room. We repeat this process until no job is preempted more than once. ��

Figure 1 shows a schedule before and after Lemma 1 is applied to job jk.
Next, we prove that we only need to preempt one job in the schedule and

that every other job we start is allowed to finish.

Lemma 2. Any preemptive schedule for an instance I of 1 | lazy , pmtnII |Cmax
can be converted to a preemptive schedule of equal makespan in which at most
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Fig. 1. Application of Lemma 1

one job remains unfinished. Furthermore, if a job is preempted, it is the first job
in the schedule.

Proof. We prove this lemma by repeatedly applying a procedure that either
reduces the number of unfinished jobs or pushes the last unfinished job earlier in
the schedule. Assume φ is a preemptive schedule that obeys Lemma 1. Without
loss of generality, let the jobs scheduled in φ be renumbered in increasing order
of their starting times, and let T be the makespan of φ.

We start by letting k be the index of the last unfinished job in φ and k−1 the
index of the job that immediately precedes job jk. If there are no unfinished jobs
or k = 1, the lemma holds. Otherwise, we either swap jk and jk−1, or we reassign
some or all of the time spent on jk−1 to jk. Let∆ = min{pk−1, ykT (φ)} ≥ 0 be the
amount of time we want to take from jk−1 to complete jk. If T + yk−1,T +∆ ≤
dk−1, we know that jk−1 completes by time T , so we can swap the two jobs.
Otherwise, we can reassign the interval [Sk −∆,Sk] to jk. In this case we either
complete jk or we remove jk−1 from the schedule entirely. This either reduces
the number of unfinished jobs in the schedule, or moves the last unfinished job
earlier in the schedule. By repeating this argument, we prove the lemma. ��

Figure 2 illustrates Lemma 2 being applied to a schedule.

Fig. 2. Application of Lemma 2
Figure 2 shows the first three jobs of a schedule with makespan T during the application
of Lemma 2. Job a has pa = 5, da = T +3. Job b has pb = 3, db = 15. Job c has pc = 8,
dc = 20. The top line is before Lemma 2 is applied; jobs a and b complete, job c is
preempted at time 14. The second line shows job c completing with time taken from
job b, since db is too early for job b to resume. The third line shows jobs a and b being
swapped; if job b takes time from job a, job a remains available at time T
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The next lemma further reduces the number of possible preemptive schedules
by proving that the completed jobs in a schedule can appear in earliest due date
(EDD) order (after the unfinished job, if any). The proof is by a standard pair-
wise interchange argument and is omitted.

Lemma 3. For a given job instance I, a preemptive schedule with at most one
unfinished job can be converted to a preemptive schedule in which the completed
jobs are scheduled in order of nondecreasing deadlines (EDD).

In the previous section, we claimed we could find a representative preemptive
schedule whose makespan could be reduced to the optimal value in the limit.

Lemma 4. For a given instance I, a preemptive schedule with one preempted
one job can be converted to a schedule that runs its unfinished job for an integral
amount of time; this change increases the makespan by at most one unit of time.

Proof. Suppose the unfinished job completes at time t + ε for some t ∈ ZZ and
ε > 0. Round the time allotted to the unfinished job up to the nearest integer.
Since all deadlines and processing times are integral, the set of available jobs
does not change between integral times. Therefore, no job is pushed past its
deadline by the rounding, and the schedule remains feasible. ��

3.3 The Pseudopolynomial Algorithm for 1 | lazy , pmtnII |Cmax

To find an optimal preemptive schedule in pseudopolynomial time, we reduce
an instance of 1 | lazy , pmtnII |Cmax to a pseudopolynomial number of instances
of 1 | lazy |Cmax. The preemptive algorithm solves each of the nonpreemptive
instances; we will show that the best schedule found is the best preemptive
schedule. First, we discuss how to solve the nonpreemptive scheduling problem.

Arkin et al. [1] observe that 1 | lazy |Cmax has a pseudopolynomial-time al-
gorithm based on a dynamic program [4] for minimizing the weighted sum of
tardy jobs. We give this algorithm explicitly, as we will refer to the details for
our algorithms in the remainder of this paper.

Let the jobs in J be numbered so that so that d1 ≤ d2 ≤ . . . ≤ dn, with ties
broken arbitrarily. Define f(j, t) to be the minimum penalty of the schedule that
completes a subset of jobs 1 through j by time t. The penalty of a schedule is
the inverse of the sum of the processing times of the jobs that are not scheduled.
The value of f(j, t) is defined recursively as:

f(j, t) = 0 j = 0, t = 0 (1)

f(j, t) = +∞ j = 0, t �= 0 (2)

f(j, t) = +∞ j = 1, . . . , n; t < 0 (3)

f(j, t) = min { f(j−1, t−pj), f(j−1, t)− pj } j = 1, . . . , n; t ≥ 0 (4)

If an entry f(j, t) is non-positive, it represents a subset of jobs which begins at
time zero and ends at exactly time t. Positive entries represent subsets of jobs
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that don’t exactly fill the interval [0, t]. Since the maximum makespan of any
feasible schedule is T = max{dmax,

∑
j pj} = O(dmax), we only need to consider

values of t up to T . Once the table is filled, each entry f(j, t) for j = n that has
non-positive penalty represents a (possibly) feasible schedule whose makespan is
t. To ensure that a schedule is feasible, one must check that the unscheduled jobs
all have critical times earlier than time t, and that the scheduled jobs complete
by their deadlines. If we record the critical point of an unscheduled job and
verify that a scheduled job completes on time when the decision is made, we
can amortize the time needed for these checks over the time it takes to fill the
table. The optimal schedule is the one associated with the table entry with the
smallest t index. The running time of the algorithm is O(ndmax).

Theorem 1. There is an O(n2 pmax dmax) algorithm for 1 | lazy , pmtnII |Cmax.

Proof. Let J be the set of jobs to be scheduled. By Lemmas 1–4, we have es-
tablished that there is a representative preemptive schedule φ for J that runs
each scheduled job in one interval of integer length and leaves at most one job
unfinished. If all jobs in φ complete, it is a nonpreemptive schedule, and the
nonpreemptive algorithm can find it. If φ contains an unfinished job, we know
that it is the first job and it runs for at most pmax units of time. Therefore, a
nondeterministic algorithm could guess which job j is the unfinished job and
trim its processing time so that φ completes it instead of preempting it. In re-
ality, we don’t know j or its length, so we enumerate over all the possibilities.
We generate O(n pmax) instances Jjk for all j ∈ J and k = 1, . . . , pmax, where
Jjk = J − {j} ∪ {j′} and p′

j = k. One of these instances is identical to the in-
stance the nondeterministic algorithm creates, and the optimal nonpreemptive
schedule of that instance is φ. To find an optimal preemptive schedule, we create
the O(n pmax) new instances and solve each instance with a version of the non-
preemptive algorithm, with equations (1) and (2) replaced with f(j′, p′

j) = 0 and
f(j′, t) = +∞ for t �= p′

j , respectively. Since each instance Jjk can be scheduled
in O(ndmax) time, the lemma is proved. ��

It remains open if 1 | lazy , pmtnII , rj |Cmax is strongly NP-complete.

4 Multiple Bureaucrats

In this section, we discuss extending the Lazy Bureaucrat Scheduling Problem to
multiple bureaucrats. In this model, there are m bureaucrats, each of which can
process any available job. The greedy requirement still holds, so each bureaucrat
must work on a job if one is available. We also require that the bureaucrats
obey the non-interaction principle, which merely states that the work of one bu-
reaucrat does not affect the work of other bureaucrats. This means that multiple
bureaucrats cannot simultaneously work on the same job, nor can one bureaucrat
undo the work of another bureaucrat.

The factory example of [1] is a natural example of multiple bureaucrats.
While the factory can be viewed as a single bureaucrat that works on jobs one



48 C. Hepner and C. Stein

at a time, it is more realistic to assume that the factory is collection of individual
workers and/or groups of workers that can work on multiple jobs simultaneously.

Many of the problems formulated in [1] are NP-complete and hard to approx-
imate, thus they remain so when extended to the multiple-bureaucrat setting.
As in the previous section, we will concentrate on minimizing the makespan.
We will give pseudopolynomial-time algorithms for both Pm | lazy |Cmax and
Pm | lazy , pmtnII |Cmax. We also show that when moving into the multiple-
bureaucrat setting, equivalences among the objective functions that held with a
single bureaucrat may no longer hold.

Minimizing Makespan. Because P | lazy |Cmax is a generalization of the one ma-
chine problem, it is both strongly NP-complete and inapproximable to within
any constant factor. Therefore, we focus on problems involving a fixed number of
bureaucrats. We represent time with an m-dimensional vector t = (t1, . . . , tm)
which stores the time for each of the m bureaucrats separately. When we ask
what jobs are scheduled at time t = (3, 5, 9, 2), we are really asking what job
the first bureaucrat is running at time 3, the second at time 5, and so on. The
makespan of a multiple-bureaucrat schedule is the largest completion time by
any bureaucrat. A schedule ending at time (15, 18, 10, 23) has a makespan of 23.

To simplify the use of a time vector, we define the following operator. Let
i be a subtraction operator that subtracts a value x from only the ith element
of a vector. For example, (10, 12, 8, 11) 2 3 = (10, 9, 8, 11). Formally, t i x ≡
(t1, . . . , ti−x, . . . , tm). The m-dimensional zero vector is 0.

Theorem 2. Pm | lazy |Cmax is NP-complete and solvable in O(ndmmax) time.

Proof. The single-bureaucrat version of this problem is weakly NP-complete;
therefore it remains so with multiple bureaucrats. The pseudopolynomial-time
algorithm in Section 3.3 can be modified to solve this problem as well by rep-
resenting time as an m-dimensional vector instead of an integer. This increases
the size of the dynamic program’s table and therefore the running time.

The dynamic program decides which jobs are scheduled and on which bu-
reaucrats. We define f(j, t) to be the minimum penalty of a schedule of a subset
of jobs 1 through j in which bureaucrat i finishes by time ti. The penalty of
a schedule is the same as in the single-bureaucrat algorithm. The function f is
defined recursively by the following equations:

f(j, t) = 0 (j = 0, t = 0), (5)

f(j, t) = +∞ (j = 0, t �= 0), (6)

f(j, t) = +∞ (j = 0, 1, . . . , n; ∃i : ti < 0), (7)

f(j, t) = min

{
min

i
{f(j−1, t�i pj)},

f(j−1, t)− pj

}

(j = 1, 2, . . . , n; t ∈ INm). (8)

Whenever we consider adding job j to the schedule now, we consider which
is smaller: the penalty of the schedule if j does not run, or the smallest penalty
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found by assigning job j to bureaucrat i for each i = 1, . . . ,m. As before, each
f(n, t) entry represents the schedule in which each bureaucrat completes at time
ti. If every bureaucrat does not complete exactly ti units of processing, f(n, t)
will have positive infinite value. The optimal schedule is the feasible schedule of
f(n, t) for which the maximal element of t is minimized. Since there are O(dmmax)
schedules to check, the running time for the entire algorithm is O(ndmmax). ��

If a job is required to be processed only by the bureaucrat that begins it,
we can use this algorithm to solve Pm | lazy , pmtnII |Cmax in the same way the
single-bureaucrat problem is solved. Treating each bureaucrat separately, Lem-
mas 1–4 are still applicable to each bureaucrat’s jobs. To simplify the analysis,
assume that there are m additional jobs with zero processing time to sched-
ule. Since at most m jobs can be preempted (one per bureaucrat), we create
O(nmpmmax) nonpreemptive instances by enumerating over the

(
n+m
m

)
= O(nm)

sets of jobs we could choose as the preempted jobs. If we modify the above algo-
rithm in the same manner as for the single-bureaucrat preemptive problem, to
allow the chosen preempted jobs to run at time 0 on each bureaucrat, we prove
the following theorem.

Theorem 3. There exists an algorithm which runs in O(nm+1pmmax d
m
max) time

for the problem Pm | lazy , pmtnII |Cmax.

Difference between Makespan and Total Time Spent Working. We note that with
multiple bureaucrats, the makespan and total time spent working objectives are
not equivalent when release dates are equal. Suppose two bureaucrats are given
three jobs with p1 = 5, d1 = 10; p2 = 10, d2 = 10; and p3 = 20, d3 = 30. There
are two schedules which minimize makespan, but only one of those minimizes
the total time spent working.

5 Conclusion

We have given a pseudopolynomial-time algorithm for a preemptive Lazy Bu-
reaucrat Scheduling Problem, resolving an open question from [1]. This algorithm
uses the the notion of a representative schedule for a set of jobs to represent a
family of schedules whose minimal makespan achieves, in the limit, the smallest
makespan for that set of jobs. The algorithm also uses the technique of convert-
ing a preemptive scheduling problem into a set of nonpreemptive problems; to
the best of the authors’ knowledge, this technique is new. We also extend the
notion of Lazy Bureaucrat Scheduling to the multiple-bureaucrat model, and
give two weakly NP-complete multiple-bureaucrat problems, each of which can
be solved in pseudopolynomial time with a simple modification to an algorithm
for its corresponding single-bureaucrat problem. Open problems include finding
hardness results for multiple-bureaucrat problems whose single-bureaucrat ver-
sions are polynomially or pseudopolynomially solvable. Other future work may
revolve around relaxing the non-interaction constraint on multiple bureaucrats
and further exploring other multiple-bureaucrat models.
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A PTAS for the Single Machine Scheduling
Problem with Controllable Processing Times

Monaldo Mastrolilli�

IDSIA, Galleria 2, 6928 Manno, Switzerland, monaldo@idsia.ch

Abstract. In a scheduling problem with controllable processing times
the job processing time can be compressed through incurring an addi-
tional cost. We consider the problem of scheduling n jobs on a single
machine with controllable processing times. Each job has a release date,
when it becomes available for processing, and, after completing its pro-
cessing, requires an additional delivery time. Feasible schedules are fur-
ther restricted by job precedence constraints. We develop a polynomial
time approximation scheme whose running time depends only linearly
on the input size. This improves and generalize the previous (3/2 + ε)-
approximation algorithm by Zdrzalka.

1 Introduction

In this paper we consider the following single machine scheduling problem. A
set, J = {J1, ..., Jn}, of n jobs is to be processed without interruption on a single
machine. For each job Jj there is an interval [�j , uj ], 0 ≤ �j ≤ uj , specifying its
possible processing times. The cost for processing job Jj in time �j is c�j ≥ 0
and for processing it in time uj the cost is cuj ≥ 0. For any value δj ∈ [0, 1]
the cost for processing job Jj in time pj(δj) = δj�j + (1 − δj)uj is cj(δj) =
δjc

�
j + (1− δj)cuj , where δj is the compression parameter. Additionally, each job

Jj has a release date rj ≥ 0 when it first becomes available for processing and,
after completing its processing on the machine, requires an additional delivery
time qj ≥ 0; if sj (≥ rj) denotes the time Jj starts processing, then it has
been delivered at time sj + pj(δj) + qj , for compression parameter δj . Delivery
is a non-bottleneck activity, in that all jobs may be simultaneously delivered.
Feasible schedules are further restricted by job precedence constraints given by
the partial order ≺, where Jj ≺ Jk means that job Jk must be processed after
job Jj . Let η be a permutation of the set J that is consistent with the precedence
constraints; η denotes a processing order of jobs. Denote by Q(δ, η) the (earliest)
maximum delivery time of all the jobs for compression parameters δ = (δ1, ..., δn)
and processing order η. The total cost of compression parameters δ is equal to∑
j∈J cj(δj), and the total scheduling cost for compression parameters δ and

processing order η is defined as
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K(δ, η) = Q(δ, η) +
∑
j∈J

cj(δj).

The problem is to find δ∗ and η∗ minimizing K(δ, η).
When all processing times are fixed (�j = uj), the problem is equivalent to

the well-known sequencing problem denoted as 1|rj , prec|Lmax in Graham et al.
[1]. Since the special case with fixed processing times and without precedence
constraints (noted 1|rj |Lmax in [1]) is strongly NP-hard [7], the stated problem
is also strongly NP-hard.

Hall and Shmoys [2,4] propose two polynomial time approximation schemes
for problem 1|rj |Lmax, the running time of which are O((nε )

O(1/ε)) and
O(n log n+n(1/εO(1/ε

2))). For the corresponding problem with controllable pro-
cessing times, Zdrzalka [9] gives a polynomial time approximation algorithm with
a worst-case ratio of 3/2 + ε, where ε > 0 can be made arbitrarily small. When
the precedence constraints are imposed and the job processing times are fixed
(1|rj , prec|Lmax), Hall and Shmoys [3] give a PTAS. This consists of executing,
for log2 ∆ times, an extended version of their previous PTAS for 1|rj , |Lmax,
where ∆ denotes an upper bound on the optimal value of any given instance
whose data are assumed to be integral. Recently, the author has presented [8] a
new PTAS for 1|rj , prec|Lmax that runs in O(n + � + 1/εO(1/ε)) time, where �
denotes the number of precedences.

In this paper we provide the first known PTAS for problem 1|rj , prec|Lmax

with controllable processing times that runs in linear time. This improves and
generalizes all the previous results [2,3,4,8,9].

Our algorithm is as follows. We start partitioning jobs into a constant number
of subsets (Section 2.1). We show that the precedence graph can be simplified
into a more primitive graph (Section 2.2). This simplification depends on the de-
sired precision ε of approximation; the closer ε is to zero, the closer the modified
graph will resemble the original one. Then, jobs belonging to the same subset are
grouped together into a single compact job to obtain a smaller instance of con-
stant size. The processing times and cost of these compact jobs are constrained
to belong to a constant sized set of values; this set is computed by solving a
constant number of linear programs (Section 2.3). After this, a non-feasible so-
lution is constructed by allowing preemption. A feasible solution is obtained by
processing preempted jobs without interruptions (Section 3).

2 Simplifying the Input

We start by transforming any given instance into a standard form. Let dj =
min{�j + c�j , uj + cuj }, D =

∑n
j=1 dj , rmax = maxj rj and qmax = maxj qj .

Moreover, let OPT denote the optimal solution value of the given instance.
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Lemma 1. Without loss of generality, we can assume that the following holds:

– 1 ≤ OPT ≤ 3;
– max {D, rmax, qmax} ≤ 1;
– 0 ≤ �j ≤ uj ≤ 3 and 0 ≤ cuj ≤ c�j ≤ 3.

Proof. We begin by bounding the largest number occurring in any given instance.
Let LB = max{D, rmax, qmax}, we claim that LB ≤ OPT ≤ 3LB. Indeed, since
D, rmax and qmax are lower bounds for OPT , LB is also a lower bound for OPT .
We show that 3LB is an upper bound for OPT by exhibiting a schedule with
value at most 3LB. Starting from time rmax all jobs have been released and
they can be scheduled one after the other in any fixed ordering of the jobs that
is consistent with the precedence relation; this can be obtained by topologically
sorting the precedence graph. Then every job can be completed by time rmax+D
and the total scheduling cost is bounded by rmax+D+qmax ≤ 3LB. By dividing
every �j , uj , c

�
j , c

u
j , rj and qj by LB, we may (and will) assume, without loss of

generality, that rmax, qmax ≤ 1, LB = 1 and 1 ≤ OPT ≤ 3.
Furthermore, we can assume, without loss of generality, that 0 ≤ �j ≤ uj ≤ 3

and 0 ≤ cuj ≤ c�j ≤ 3, for all jobs Jj : if c�j < cuj , then there exists an optimal
solution with δj = 1 (i.e., the processing time of job Jj is equal to �j). Then,
we can reset cuj := c�j without affecting the value of the objective function of
any feasible schedule. Moreover, in any optimal solution the processing time of
any job cannot be larger than 3; therefore, if uj > 3 we can reduce, without
loss of generality, the interval of possible processing times and get an equivalent
instance by setting cuj := uj−3

uj−�j (c
�
j−cuj )+cuj and uj = 3. Similar arguments hold

if c�j > 3. ✷

Following Lageweg, Lenstra and Rinnoy Kan [5], if Jj ≺ Jk and rj > rk, then
we can reset rk := rj and each feasible schedule will remain feasible. Similarly,
if qj < qk then we can reset qj := qk without changing the objective function
value of any feasible schedule. Thus, by repeatedly applying these updates we
can always obtain an equivalent instance that satisfies

Jj ≺ Jk =⇒ (rj ≤ rk and qj ≥ qk) (1)

Such a resetting requires O(�) time, where � denotes the number of precedence
constraints. Thus in the following we assume that (1) holds.

A technique used by Hall and Shmoys [2] allows us to deal with only a
constant number of release dates and delivery times. The idea is to round each
release and delivery time down to the nearest multiple of iε, for i ∈ N. Since
rmax ≤ 1, the number of different release dates and delivery times is now bounded
by 1/ε + 1. Clearly, the optimal value of this transformed instance cannot be
greater than OPT . Every feasible solution for the modified instance can be
transformed into a feasible solution for the original instance just by adding ε to
each job’s starting time, and reintroducing the original delivery times. It is easy
to see that the solution value may increase by at most 2ε.
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Therefore, we will assume henceforth that the input instance has a constant
number of release dates and delivery times, and that condition (1) holds. We
shall refer to this instance as I. By the previous arguments, OPT ≥ OPT (I),
where OPT (I) denotes the optimal value for instance I.

2.1 Partitioning the Set of Jobs

Partition the set of jobs in two subsets:

L =
{
Jj : dj > ε2

}
,

S =
{
Jj : dj ≤ ε2

}
.

Let us say that L is the set of large jobs, while S the set of small jobs. Observe
that the number of large jobs is bounded by 1/ε2 by Lemma 1. We further
partition the set S of small jobs as follows. For each small job Jj ∈ S consider
the following three subsets of L:

Pre(j) = {Ji ∈ L : Ji ≺ Jj} ,
Suc(j) = {Ji ∈ L : Jj ≺ Ji} ,

F ree(j) = L− (Pre(j) ∪ Suc(j)).

Let us say that T (j) = {Pre(j), Suc(j), F ree(j)} represents a 3-partition of
set L with respect to job Jj . The number τ of distinct 3-partitions of L is
clearly bounded by the number of small jobs and by 3|L| ≤ 31/ε

2
, therefore

τ ≤ min
{
n, 31/ε

2
}
. Let {T1, ..., Tτ} denote the set of all distinct 3-partitions.

Now, we define the execution profile of a small job Jj to be a 3-tuple < i1, i2, i3 >
such that rj = ε · i1, qj = ε · i2 and T (j) = Ti3 , where i1, i2 = 0, 1, ..., 1/ε and
i3 = 1, ..., τ . For any given instance, the number of distinct execution profiles is
clearly bounded by the number of jobs and, by the previous arguments, cannot
be larger than (1 + 1/ε)2τ .

Corollary 1. The number π of distinct execution profiles is bounded by π ≤
min

{
n, 31/ε

2
(1 + 1/ε)2

}
.

Partition the set S of small jobs into π subsets, S1, S2, ..., Sπ, such that jobs
belonging to the same subset have the same execution profile. Clearly, S =
S1 ∪ S2, ... ∪ Sπ and Sh ∩ Si = ∅, for i �= h. We illustrate the above by the
following.

Example 1. Consider the precedence structure given by the graph in Figure 1.
Shaded nodes represent large jobs, while the others denote small jobs. Assume
that r3 = r4 = r9 and q3 = q4 = q9. Since Pre(3) = Pre(4) = Pre(9) = {J1, J2}
and Suc(3) = Suc(4) = Suc(9) = {J7}, jobs J3, J4 and J9 establish the same
3-partition of set L and therefore T (3) = T (4) = T (9). Moreover, jobs J3,
J4 and J9 have the same execution profile since they have equal release dates
and delivery times. Therefore, the set S = {J3, J4, J6, J8, J9} of small jobs is
partitioned into 3 subsets S1 = {J3, J4, J9}, S2 = {J6} and S3 = {J8}.
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2.2 Adding New Precedences

Let us say that job Jh is a neighbor of set Si (i = 1, ..., π) if:

– Jh is a small job;
– Jh /∈ Si;
– there exists a precedence relation between job Jh and some job in Si.

Moreover, we say that Jh is a front-neighbor (back-neighbor) of Si if Jh is a
neighbor of Si and there is a job Jj ∈ Si such that Jj ≺ Jh (Jh ≺ Jj).

Let ni = |Si| (i = 1, ..., π), and let (J1,i, ..., Jni,i) denote any fixed ordering of
the jobs from Si that is consistent with the precedence relation. In the rest of this
section we restrict the problem such that the jobs from Si are processed according
to this fixed ordering. Furthermore, every back-neighbor (front-neighbor) Jh of
Si (i = 1, ..., π) must be processed before (after) every job from Si. This can be
accomplished by adding a directed arc from Jj,i to Jj+1,i, for j = 1, ..., ni − 1,
and by adding a directed arc from Jh to J1,i, if Jh is a back-neighbor of Si, or
an arc from Jni,i to Jh, if Jh is a front-neighbor. Note that the number of added
arcs can be bounded by n + � (recall that � denotes the number of precedence
constraints of the input instance). The above is illustrated by the following.

Example 2. Consider Example 1. Observe that (J3, J4, J9) is an ordering of the
jobs from S1 that is consistent with the precedence relation. Job J8 is a back-
neighbor of S1, while job J6 is a front-neighbor of S1. The new precedence
structure is given by the graph in Figure 2, where the new added arcs are em-
phasized.

We observe that condition (1) is valid also after these changes. Indeed, if Jh
is a back-neighbor of Si then there is a job Jj ∈ Si such that Jh ≺ Jj , and
therefore by condition (1) we have rh ≤ rj and qh ≥ qj . But, the jobs from Si
have the same release dates and delivery times, therefore rh ≤ rj and qh ≥ qj for
each Jj ∈ Si. It follows that if we restrict Jh to be processed before the jobs from
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Si, condition (1) is still valid. Similar arguments hold if Jh is a front-neighbor.
Moreover, all the jobs from Si have the same release dates and delivery times,
therefore condition (1) is still satisfied, if we restrict these jobs to be processed
in any fixed ordering that is consistent with the precedence relation.

2.3 Compact Representation of Job Subsets

Consider set Si (i = 1, ..., π). Note that the number of jobs in Si may be Θ(n). We
replace the jobs from Si with one compact job J#

i . Job J#
i has the same release

r#i and delivery time q#i as the jobs from Si. Furthermore, if Jj ≺ Jk (Jk ≺ Jj),
Jj ∈ Si and Jk /∈ Si, then in the new modified instance we have J#

i ≺ Jk
(Jk ≺ J#

i ). Finally, the processing requirement of J#
i is specified by a finite set

of alternative pairs of processing times and costs determined as follows. Consider
the following set VS =

{
ε
π ,

ε
π (1 + ε), επ (1 + ε)2, ..., 3

}
. By simple algebra, we have

|VS | = O(1/ε3). Recall that π is the number of distinct execution profiles. Let
Ai (and Bi) be the value obtained by rounding

∑
j∈Si

�j (and
∑
j∈Si

uj) up to
the nearest value from set VS . The possible processing times for J#

i are specified
by set Pi of values from VS that fall in interval [Ai, Bi], i.e., Pi := VS ∩ [Ai, Bi].
For each value p ∈ Pi, we compute the corresponding cost value Ci(p) as follows.
Consider the problems (Si, p) of computing the minimum sum of costs for jobs
belonging to Si, when the total sum of processing times is at most p, for every
p ∈ Pi. We can formulate problem (Si, p) by using the following linear program
LP (Si, p):

min
∑
j∈Si

(δjc�j + (1− δj)cuj )
s.t.

∑
j∈Si

(δj�j + (1− δj)uj) ≤ p

0 ≤ δj ≤ 1 Jj ∈ Si

By setting δj = 1 − xj , it is easy to see that an optimal solution for LP (Si, p)
can be obtained by solving the following linear program:
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max
∑
j∈Si

(c�j − cuj )xj
s.t.

∑
j∈Si

(uj − �j)xj ≤ p−∑j∈Si
�j

0 ≤ xj ≤ 1 Jj ∈ Si

Note that p − ∑n
j=1 �j is non-negative, since p ∈ Pi and the smallest value

of Pi cannot be smaller than
∑n
j=1 �j . The previous linear program corre-

sponds to the classical knapsack problem with relaxed integrality constraints.
By partially sorting jobs in nonincreasing ratio (c�j − cuj )/(uj − �j) ratio or-
der, the set {LP (Si, p) : p ∈ Pi} of O(1/ε3) many problems can be solved in
O(|Si| log 1

ε +(1/ε3) log 1
ε ) time by employing a median-finding routine (we refer

to Lawler [6] for details). For each value p ∈ Pi, the corresponding cost value
Ci(p) is equal to the optimal solution value of LP (Si, p) rounded up to the
nearest value of set VS . It follows that the number of alternative pairs of pro-
cessing times and costs for each compact job J#

i is bounded by the cardinality
of set Pi. Furthermore, since

∑π
i=1 |Si| ≤ n, it is easy to check that the amor-

tized total time to compute the processing requirements of all compact jobs is
O(n(1/ε3) log 1

ε ). Therefore, every set Si is transformed into one compact job
J#
i with O(1/ε3) alternative pairs of costs and processing times. We use S# to

denote the set of compact jobs.

Example 3. Consider Example 2. We group jobs J3, J4 and J9 together and get
a new instance whose precedence structure is given by the graph in Figure 3.

Now, let us consider the modified instance as described so far and turn our
attention to the set L of large jobs. We map each large job Jj ∈ L to a new
job J#

j which has the same release date, delivery time and set of predecessors
and successors as job Jj , but a more restricted set of possible processing times
and costs. More precisely, let Aj (and Bj) be the value obtained by rounding �j
(and uj) up to the nearest value from set VL =

{
ε3, ε3(1 + ε), ε3(1 + ε)2, ..., 3

}
.

The possible processing times for J#
j are specified by set Pj := VL ∩ [�j , uj ]. For

each value p ∈ Pj , the corresponding cost value Cj(p) is obtained by rounding
up to the nearest value of set VL the cost of job Jj when its processing time is
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p. We use L# to denote the set of jobs obtained by transforming jobs from L as
described so far.

Let I# denote this modified instance. We observe that I# can be computed
in O(n(1/ε3) log 1

ε +2O(1/ε
2)) time: the time required to partition the set of jobs

into π subsets can be bounded by O(n + � + 2O(1/ε
2)); O(n + �) is the time to

add new precedences; O(n(1/ε3) log 1
ε ) is the time to compute the alternative

pairs of costs and processing times. Moreover, this new instance has at most
ν = 31/ε

2 · (1 + 1/ε)2 +1/ε2 jobs; each job has a constant number of alternative
pairs of costs and processing times. Now let us focus on I# and consider the
problem of finding the schedule for I# with the minimum scheduling cost such
that compact jobs can be preempted, while interruption is not allowed for jobs
from L#.

The following lemma shows that the optimal solution value of I# has value
close to OPT (I). Moreover, it gives a bound on the number of preempted jobs.
(A proof of the following lemma can be found in the long version of this paper
available at: http://www.idsia.ch/˜monaldo/research papers.html.)

Lemma 2. For any fixed ε > 0, it is possible to compute in constant time an
optimal solution for I# with at most 1/ε preempted compact jobs. Moreover,
OPT (I#) ≤ (1 + 4ε)OPT (I).

3 Generating a Feasible Solution

In this subsection we show how to transform the optimal solution SOL# for
instance I# into a (1 + O(ε))-approximate solution for instance I. This is ac-
complished as follows.

First, replace the jobs from L# with the corresponding large jobs. Let p#j and
c#j denote the processing time and cost, respectively, of job J#

j ∈ L# according
to solution SOL#, then it is easy to check that the corresponding job Jj ∈ L

can be processed in time and cost at most p#j and c#j , respectively.
Second, we replace each compact job J#

i with the corresponding small jobs
from set Si as follows. Remove job J#

i , this clearly creates gaps into the schedule.
Then, fill in the gaps by inserting the small jobs from set Si according to any
fixed ordering that is consistent with the precedence relation, and by allowing
preemption; the processing time and cost of these small jobs are chosen according
to the optimal solution of LP (Si, p

#
i ) (see Subsection 2.3), where p#i denotes the

processing time of job J#
i according to solution SOL#. (Recall that the optimal

solution of LP (Si, p
#
i ) chooses the processing requirements of jobs from Si

such that the sum of processing times is at most p#i and the sum of costs is
minimum.) However, these replacements do not yield a feasible solution for I,
since there may be a set M of preempted small jobs. By Lemma 2, we have that
the number of preempted small jobs is at most 1/ε. For each Jj ∈ M let sj be
the time at which job Jj starts in the preemptive schedule. Remove each Jj ∈M
and schedule Jj without interruption at time sj with processing time pj and cost
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cj , where pj + cj = dj . It is easy to see that the maximum delivery time may
increase by at most

∑
Jj∈M pj and the cost by at most

∑
Jj∈M cj . Therefore,

the solution value is increased by at most
∑
Jj∈M dj ≤ |M |ε2 ≤ ε ≤ ε ·OPT (I),

since |M | ≤ 1/ε, M ⊆ S and S =
{
Jj : dj ≤ ε2

}
.

Finally, we have already observed that every feasible solution for the modified
instance with only a constant number of release dates and delivery times can be
transformed into a feasible solution for the original instance by simply delaying
each job starting time by at most ε, and reintroducing the original delivery times.
This may increase the value of the solution by at most 2ε. Therefore, by Lemma
2, the value of the returned solution is at most (1 + 7ε) ·OPT (I), that confirms
that this construction does in fact yield an (1 + O(ε))-approximate solution of
I. To conclude, we have shown that problem 1|rj , prec|Lmax with controllable
processing times admits a PTAS.

Theorem 1. There exists a linear time approximation scheme for problem
1|rj , prec|Lmax with controllable processing times.
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Abstract. We study the problemMinimum Hidden Guard Set, which
consists of positioning a minimum number of guards in a given polygon or
terrain such that no two guards see each other and such that every point
in the polygon or on the terrain is visible from at least one guard. By
constructing a gap-preserving reduction from Maximum 5-Ocurrence-
3-Satisfiability, we show that this problem cannot be approximated
by a polynomial-time algorithm with an approximation ratio of n1−ε for
any ε > 0, unless NP = P , where n is the number of polygon or terrain
vertices. The result even holds for input polygons without holes. This
separates the problem from other visibility problems such as guarding
and hiding, where strong inapproximability results only hold for poly-
gons with holes. Furthermore, we show that an approximation algorithm
achieves a matching approximation ratio of n.

1 Introduction

In the field of visibility problems, guarding and hiding are among the most
prominent and most intensely studied problems. In guarding, we are given as
input a simple polygon with or without holes and we need to find a minimum
number of guard positions in the polygon such that every point in the interior
of the polygon is visible from at least one guard. Two points in the polygon are
visible from each other, if the straight line segment connecting the two points
does not intersect the exterior of the polygon. In hiding, we need to find a
maximum number of points in the given input polygon such that no two points
see each other.

The combination of these two classic problems has been studied in the liter-
ature as well [11]. The problem is called Minimum Hidden Guard Set and is
formally defined as follows:

Definition 1. The problem Minimum Hidden Guard Set consists of finding
a minimum set of guard positions in the interior of a given simple polygon such
that no two guards see each other and such that every point in the interior of
the polygon is visible from at least one guard.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 60–68, 2002.
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We can define variations of this problem by allowing input polygons to con-
tain holes or not or by letting the input be a 2.5 dimensional terrain. A 2.5
dimensional terrain is given as a triangulated set of vertices in the plane to-
gether with a height value for each vertex. The linear interpolation inbetween
the vertices defines a bivariate continuous function, thus the name 2.5 dimen-
sional terrain (see [10]). In other variations, the guards are restricted to sit on
vertices. Problems of this type arise in a variety of applications, most notably
in telecommunications, where guards correspond to antennas in a network with
a simple line-of-sight wave propagation model (see [4]).

While Minimum Hidden Guard Set is NP -hard for input polygons with or
without holes [11], no approximation algorithms or inapproximability results are
known. For other visibility problems, such as guarding and hiding, the situation is
different: Minimum Vertex/Point/Edge Guard are NP -hard [9] and cannot
be approximated with an approximation ratio that is better than logarithmic in
the number of polygon or terrain vertices for input polygons with holes or terrains
[4]; these problems are APX-hard1 for input polygons without holes [4]. The best
approximation algorithms for these guarding problems achieve a logarithmic
approximation ratio for Minimum Vertex/Edge Guard for polygons [8] and
terrains [6], which matches the logarithmic inapproximability result upto low-
order terms in the case of input polygons with holes and terrains; the best
approximation ratio for Minimum Point Guard is Θ(n), where n is the number
of polygon or terrain vertices. The problem Maximum Hidden Set cannot
be approximated with an approximation ratio of nε for some ε > 0 for input
polygons with holes and it is APX-hard for polygons without holes ([5] or [7]).
The best approximation algorithms achieve approximation ratios of Θ(n). Thus,
for both, hiding and guarding, the exact inapproximability threshold is still open
for input polygons without holes. To get an overview of the multitude of results
in visibility problems, consult [12] or [13].

In this paper, we present the first inapproximability result for Minimum
Hidden Guard Set: we show that no polynomial-time algorithm can guarantee
an approximation ratio of n1−ε for any ε > 0, unless NP = P , where n is the
number of vertices of the input structure. The result holds for terrains, polygons
with holes, and even polygons without holes as input structures. We obtain our
result by constructing a gap-preserving reduction (see [1] for an introduction to
this concept) from Maximum 5-Occurrence-3-Satisfiability, which is the
APX-hard satisfiability variation, where each clause consists of at most three
literals and each variable occurs at most five times as a literal [2]. We also analyze
an approximation algorithm for Minimum Hidden Guard Set proposed in [11]
and show that it achieves a matching approximation ratio of n.

1 A problem is in the class APX, if it can be approximated by a polynomial-time
algorithm with an approximation ratio of 1+ δ, for some constant δ ≥ 0. It is APX-
hard, if no polynomial-time algorithm can guarantee an approximation ratio of 1+ε,
for some constant ε > 0, unless P = NP . A problem is APX-complete, if it is in
APX and APX-hard. See [2] for more details.
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In Sect. 2 we present the construction of the reduction. We analyze the re-
duction and obtain our main result in Sect. 3. We analyze an approximation
algorithm in Sect. 4. Section 5 contains some extensions of our results and con-
cluding thoughts.

2 Construction of the Reduction

In this section, we show how to construct in polynomial time from a given
instance I of Maximum 5-Occurrence-3-Satisfiability with n variables
x1, . . . , xn and m clauses c1, . . . , cm an instance I ′ of Minimum Hidden Guard
Set, i.e., a simple polygon.

An overview of the construction is given in Fig. 1. The main body of the
constructed polygon is of rectangular shape. For each clause ci, a clause pattern
is constructed on the lower horizontal line of the rectangle, and for each variable
xi, we construct a variable pattern on the upper horizontal line as indicated in
Fig. 1.

The construction will be such that a variable assignment that satisfies all
clauses of I exists, if and only if the corresponding polygon I ′ has a hidden
guard set with O(n) guards; otherwise, I ′ has a hidden guard set of size O(t),
where t will be defined as part of the rake-gadget in the construction. The rake
gadget, shown in Fig. 2, enables us to force a guard to a specific point R in the
polygon. It consists of t dents, which are small trapezoidal elements that point
towards point R. Rakes have the following property:

Lemma 1. If the t dents of a rake are not covered by a single hidden guard at
point R, then t hidden guards (namely one guard for each dent) are necessary
to cover the dents.
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Proof. Clearly, any guard outside the triangle R, l, and r and outside the dents
does not see a single dent completely. A guard in this triangle (but not at R)
sees at most one dent completely, but only one such guards can exist as guards
must be hidden from each other. Therefore, at least t−1 guards must be hidden
in the dents. ��

In order to benefit from this property of a rake, we must place the rake in the
polygon in such a way that the view from point R to the rake dents is not blocked
by other polygon edges. As shown in Fig. 1, we place a rake at point R0 in the
lower left corner of the rectangle with the t dents at the top left corner.

A clause pattern, shown in Fig. 3, consists of t triangular-shaped spikes.
Clause patterns are placed on the lower horizontal line of the rectangle. They
are constructed in such a way that a guard on the upper horizontal line could see
all spikes of all clause patterns. (This, however, will never happen, as we have
already forced a guard to point R0 to cover its rake. This guard would see any
guard on the upper horizontal line.)

For each variable xi, we construct a variable pattern, that is placed on top of
the horizontal line of the rectangle. Each variable pattern opens the horizontal
line for a unit distance. Each variable pattern has constant distance from its
neighbors and the right-most variable pattern (for variable xn) is still to the left
of the left-most clause pattern (for clause c1), as indicated in Fig. 1. The variable
patterns will differ in height, with the left-most variable pattern (for x1) being
the smallest and the right-most (for xn) the tallest. Figure 4 shows the variable
pattern of variable xi.
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A variable pattern is roughly a rectangular structure with a point Fi on top
and a point Ti on the bottom. The construction is such that a guard sits at
Fi, if the variable is set to false, and at Ti otherwise. Literals are represented by
triangles with tips L1i , . . . , L

5
i for each of the five occurrences of the variable (some

may be missing, if a variable occurs less than five times as literal). These triangles
are constructed such that – for positive literals – they are completely visible from
Fi, but not from Ti, and – for negative literals – they are completely visible from
Ti, but not from Fi. A guard that sits at a point Lki , for any k = 1, . . . , 5, can
see through the exit of the variable pattern between points Eli and Eri . The
construction is such that such a guard sees all spikes of the corresponding clause
pattern (but no spikes of other clause patterns). This is shown schematically in
Fig. 1.

In order to force a guard to sit at either Fi or Ti, we construct a rake point
R1
i above L1i and a rake point R2

i below L5i with t dents, all of which are on the
right vertical line of the variable rectangle. Points R1

i and R2
i are at the tip of

small triangles that point towards points F ′
i and T ′

i , which lie a small distance
to the right of Fi and Ti, respectively. In addition, we construct two areas S1i
and S2i to the left of Ti and Fi, where we put t triangular spikes, each pointing
exactly towards Fi and Ti. For simplicity, we have only drawn three triangular
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spikes in Fig. 4 instead of t. Area S1i is the area of all these triangles at the top
of the variable rectangle, area S2i is the area of all these triangles at the bottom
of the variable rectangle.

This completes our description of the constructed polygon that is an instance
of Minimum Hidden Guard Set. The polygon consists of a number of vertices
that is polyonmial in the size |I| of the Max 5-Occurrence-3-Satisfiability
instance I and in t. The coordinates of each vertex can be computed in time
polynomial in |I| and t, and they can be expressed by a polynomial (in |I| and
t) number of bits. Thus, the reduction is polynomial, if t is polynomial in |I|.

3 Analysis of the Reduction

The following two lemmas describe the reduction as gap-preserving and will
allow us to prove our inapproximability result.

Lemma 2. If the Maximum 5-Occurrence-3-Satisfiability instance I
with n variables can be satisfied by a variable assignment, then the corresponding
Minimum Hidden Guard Set instance I ′ has a solution with at most 8n+ 1
guards.

Proof. In I ′, we set a guard at each rake point R0 and R1
i and R2

i , for i = 1, . . . , n,
which gives a total of 2n+1 hidden guards. For each variable xi, we then place a
guard at Fi or Ti depending on the truth value of the variable in a fixed satisfying
truth assignment; this yields additional n hidden guards. Finally, we place a
guard at each literal Lki , if and only if the corresponding literal is true. This
yields at most 5n hidden guards, as each variable occurs at most five times as a
literal. Since the thruth assignment satisfies all clauses, all clause patterns will be
covered by at least one guard. The variable patterns and the main body rectangle
are covered completely as well. Thus, the solution is feasible and consists of at
most 8n+ 1 guards. ��

Lemma 3. If the Maximum 5-Occurrence-3-Satisfiability instance I
with n variables cannot be satisfied by a variable assignment, then any solution
of the corresponding Minimum Hidden Guard Set instance I ′ has at least t
guards.

Proof. We prove the following equivalent formulation: If I ′ has a solution with
strictly less than t guards, then I is satisfiable.

Assume we have a solution for I ′ with less than t guards. Then, there must
be a guard at each rake point R0 and R1

i and R2
i for i = 1, . . . , n; this already

restricts the possible positions for all other guards quite drastically, since they
must be hidden from each other.

Observe in this solution, how the triangles of the areas S1i and S2i are covered.
Since we have guards at rake points R1

i and R2
i , the guards for S1i and S2i can

only lie in the 4-gons (S1i,l, S
1
i,r, Fi, F

′
i ) or (S2i,r, S

2
i,l, Ti, T

′
i ), but only a guard in

the smaller triangle of either (Fi, F ′
i , F

′′
i ) or (Ti, T ′

i , T
′′
i ) can see both areas S1i
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and S2i (see Fig. 4). If S1i or S2i is covered by a guard outside these triangles, then
the other area can only be covered with t guards inside the S1i or S2i triangles.
Therefore, there must be a guard in either one of the two triangles (Fi, F ′

i , F
′′
i )

or (Ti, T ′
i , T

′′
i ) in each variable pattern. (Point F ′′

i is the intersection point of the
line from R1

i to F ′
i and from S2i,r to Fi; Point T ′′

i is the intersection point of the
line from R2

i to T ′
i and from S1i,l to Ti). We can move this guard to point Fi or

Ti, respectively, without changing which literal triangles it sees.
Now, the only areas in the construction not yet covered are the literal trian-

gles of those literals that are true and the spikes of the clause patterns. Assume
for the sake of contradiction that one guard is hidden in a triangle of a clause
pattern ci. This guard sees the triangles of all literals that represent literals from
the clause. This, however, implies that the remaining t−1 triangles of the clause
pattern ci can only be covered by t− 1 additional guards in the clause pattern,
thus resulting in t guards total. Therefore, all remaining guards must sit in the
literal triangles in the variable patterns. W.l.o.g., we assume that there is a guard
at each literal point Lki that is not yet covered by a guard at points Fi or Ti.
If these guards collectively cover all clause patterns, we have a satisfying truth
assignment; if they do not, at least t guards are needed to cover the remaining
clause patterns. ��

Lemmas 2 and 3 immediately imply that we cannot approximate Minimum
Hidden Guard Set with an approximation ratio of t

8n+1 in polynomial time,
because such an algorithm could be used to decide Maximum 5-Occurrence-
3-Satisfiability. To get to an inapproximability result, we first observe that

|I ′| ≤ (8t+ 30)n+ 2tm+ 4t+ 100 ≤ 18tn+ 30n+ 4t+ 100

by generously counting the constructed polygon vertices and using m ≤ 5n. We
now set

t = nk

for an arbitrary but fixed k > 1. This implies |I ′| ≤ nk+2 and thus

n ≥ |I ′| 1
k+2

On the other hand, we cannot approximate Minimum Hidden Guard Set
with an approximation ratio of

t

8n+ 1
≥ nk

n2
= nk−2 ≥ |I ′| k−2

k+2 = |I ′|1− 4
k+2 .

Since k is an arbitrarily large constant, we have shown our main theorem:

Theorem 1. Minimum Hidden Guard Set on input polygons with or without
holes cannot be approximated by any polynomial time approximation algorithm
with an approximation ratio of |I|1−ε for any ε > 0, where |I| is the number of
polygon vertices, unless NP = P .
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4 An Approximation Algorithm

The following algorithm to find a feasible solution for Minimum Hidden Guard
Set was proposed in [11]: Iteratively add a guard to the solution by placing it
in an area of the input polygon (or terrain) that is not yet covered by any other
guard that is already in the solution. In terms of an approximation ratio for this
algorithm, we have the following

Theorem 2. Minimum Hidden Guard Set can be approximated in polyno-
mial time with an approximation ratio of |I|, where |I| is the number of polygon
vertices.

Proof. Any triangulation of the input polygon partitions the polygon into |I|−2
triangles. Now, fix any triangulation. Any guard that the approximation algo-
rithm places (as described above) lies in at least one of the triangles of the
triangulation and thus sees the corresponding triangle completely. Therefore,
the solution will contain at most |I| − 2 guards. Since any solution must consist
of at least one guard, the result follows. ��

5 Extensions and Conclusion

Theorem 1 extends straight-forward to terrains as input structures by using the
following transformation from a polygon to a terrain (see [4]): Given a simple
polygon, draw a bounding box around the polygon and then let all the area
in the exterior of the polygon have height h (for some h > 0) and the interior
height zero. This results in a terrain with vertical walls that we then triangulate.
Similarly, Theorem 2 extends to terrains as input structures immediately.

Another straight-forward extension of Theorem 1 leads to problem variations,
where the guards may only sit at vertices of the input structure. Since we have
always placed or moved guards to vertices throughout our construction, The-
orem 1 holds for Minimum Hidden Vertex Guard Set for input polygons
with or without holes and terrains. Unfortunately, the vertex-restricted prob-
lem variations cannot be approximated analogously to Theorem 2, as even the
problem of determining whether a feasible solution exists for these problems is
NP -hard [11].

If we restrict the problem even more, namely to a variation, where the guards
may only sit at vertices and they only need to cover the vertices rather than
the whole polygon interior, we arrive at the problem Minimum Independent
Dominating Set for visibility graphs. Also in this case, Theorem 1 holds, thus
adding the class of visibility graphs to the numerous graph classes for which
this problem cannot be approximated with a ratio of n1−ε. The approximation
algorithm from Sect. 3 can be applied for this variation and achieves a matching
ratio of n.

The complementary problem Maximum Hidden Guard Set, where we
need to find a maximum number of hidden guards that cover a given polygon,
is equivalent to Maximum Hidden Set. Therefore, it cannot be approximated
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with an approximation ratio of nε for some ε > 0 for input polygons with holes
and it is APX-hard for input polygons without holes [7]. The corresponding
vertex-restricted variation cannot be approximated, as it is – again – NP -hard
to even find a feasible solution.

We have presented a number of inapproximability and approximability re-
sults for Minimum Hidden Guard Set in several variations. Most results are
tight upto low-order terms. However, there still exists a large gap regarding
the inapproximability of the problem Maximum Hidden Guard Set on in-
put polygons without holes, where only APX-hardness is known and the best
approximation algorithms achieve approximation ratios of Θ(n).
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Abstract. We present an efficient algorithm for finding k nearest neigh-
bours of a query line segment among a set of points distributed arbitrarily
on a two dimensional plane. For solving the above, we improved simplex
range searching technique in 2D. Given a set of n points, we preprocess
them to create a data structure using O(n2) time and space, which re-
ports the number of points inside a query triangular region ∆ in O(logn)
time. The members of P inside ∆ can be reported in O(log2n + κ) time,
where κ is the size of the output. Finally, this technique is used to find k
nearest neighbors of a query straight line segment in O(log2n + k) time.

1 Introduction

Given a set P = {p1, p2, . . . , pn} of n points arbitrarily distributed on a plane,
we study the problem of finding k nearest neighbors of a query line segment σ.
On the way of studying this problem, we developed an improved algorithm for
the simplex range searching, where the objective is to report the subset of points
in P that lie inside a query triangle.

A simplex in Rd is a space bounded by d+ 1 hyperplanes. In the simplex range
query problem, a set of points P (in Rd) is given; the objective is to report
the number/subset of points which lie inside a simplex query region. We shall
refer these two problems as counting query problem and subset reporting problem
respectively. The simplex range search problem was studied extensively [2,6,11].
In R2, the best result is obtained by Matousek [11]; the preprocessing time and
space are O(n2logεn) and O(n2) respectively (ε is a fixed positive constant), and
the counting query takes O(log3n) time. In [6], a quasi-optimal upper bound
for the time complexity of simplex range searching problem is presented. The
algorithm in [6] can achive O(log n) time for the counting query at an expense
of O(n2+ε) storage and preprocessing time. For both of these algorithms, the
subset reporting problem needs an additional O(κ) time, where κ is the size of
the output. In [6], the authors agreed that the result in [11] is actually better
since the nε factor in the storage is replaced by a polylogarithmic factor in the
preprocessing and query time. We improve the counting query time to O(logn)
reducing the preprocessing time and space complexities to O(n2). The subset
reporting query requires (log2n+ κ) time.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 69–79, 2002.
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The problem of computing the nearest neighbor of a query line was initially
addressed in [7,10]. An algorithm of preprocessing time and space O(n2) was
proposed in that paper which can answer the query in O(logn) time. In [12], the
problem of finding the k nearest/farthest neighbors of a line is proposed along
with an algorithm. The preprocessing time and space complexities are both of
O(n2), and the query time complexity is O(k + logn). The proximity queries
regarding line segments are studied very little. The first work appeared in [3]
which addresses few restricted cases of the problem of locating the nearest point
of a query straight line segment among a set of n points on the plane.

We consider an unrestricted version of the nearest neighbor query problem. The
objective is to report the nearest neighbor of an arbitrary query line segment σ
among a set of points P . We show that the preprocessed data structure for the
simplex range searching problem can answer this query in O(log2n) time. We
also show that the following queries can also be answered using our method:

Segment dragging query: Report the first k points (of P ) hit by the query
line segment σ if σ is dragged in its perpendicular direction. This needs
O(k+log2n) time. The preprocessing time and space complexities are O(n2).

k-nearest neighbors query: This problem has two phases: (i) find k nearest
neighbors of the interior of σ, and (ii) find k neraest neighbors of each end
point of σ. The first phase can be solved using segment dragging query tech-
nique. The second phase needs to use order-k Voronoi diagram, provided k
is known prior to the preprocessing.

2 Preliminaries

We use geometric duality for solving the problems mentioned in this paper. Here
(i) a point q = (a, b) of the primal plane is mapped to the line q∗: y = ax− b in
the dual plane, and (ii) a non-vertical line �: y = cx − d of the primal plane is
mapped to the point �∗ = (c, d) in the dual plane. A point q is below (resp., on,
above) a line � in the primal plane if and only if the line q∗ is above (resp., on,
below) the point �∗ in the dual plane.

LetQ be a set ofm points distributed arbitrarily on a 2D plane, andQ∗ be the set
of dual lines corresponding to the points in Q. A(Q∗) denotes the arrangement
of the lines in Q∗. As a preprocessing of half-plane range query problem, we
construct a data structure for storing the levels of the arrangement A(Q∗) as
defined below. From now onwards, we refer this data structure as level-structure.

Definition 1. [8] A point q in the dual plane is at level θ (0 ≤ θ ≤ m) if there
are exactly θ lines in Q∗ that lie strictly below q. The θ-level of A(Q∗) is the
closure of a set of points on the lines of Q∗ whose levels are exactly θ in A(Q∗),
and is denoted as λθ.
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level-0(λ0)

level-1(λ1)

level-2(λ2) level-3(λ3)

Fig. 1. Demonstration of levels in an arrangement of lines

Clearly, the edges of λθ form a monotone polychain from x = −∞ to x = ∞.
Each vertex of the arrangement A(Q∗) appears in two consecutive levels, and
each edge of A(Q∗) appears in exactly one level (see Fig. 1).

Definition 2. The level-structure is an array A whose elements correspond to
the levels {θ | θ = 1, . . . ,m} of the arrangement A(Q∗). Each element represent-
ing a level θ, is attached with a linear array containing the vertices of λθ in a
left to right order.

In order to reduce the query time complexity, an augmentation procedure of
the level-structure is described in [12]. It creates few more vertices and edges by
projecting the existing vertices on some existing edges ofA(Q∗). Then it attaches
a pair of pointers with each edge. The following theorem abstracts the complexity
results of the half-plane range queries, using augmented level structure.

Theorem 1. Given a set of n points in the plane, it can be preprocessed in
O(n2) time and O(n2) space such that (i) the half-plane counting query can
be answered in O(logn) time, and (ii) the half-plane subset reporting can be
performed in O(κ+ logn) time, where κ is the size of the output.

3 Simplex Range Searching

A simplex in 2D is a triangular region obtained as the intersection of three
halfplanes, each of them is defined by a straight line. Given a triangular range
∆, our objective is to report the points of P that lie inside ∆. We shall consider
both counting query and subset reporting query for the triangular range searching
problem separately.

3.1 Preprocessing

Let P = {p1, p2, . . . , pn} be a set of n points arbitrarily distributed in 2D plane.
A line splitting the set P into two non-empty subsets is called a cut. A cut is
said to be balanced if it splits P into two subsets P1 and P2 such that the size of
these two subsets differ by at most one. For a given point set P , the balanced cut
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may not be unique. But we may choose any one of them. The point sets P1 and
P2 are further divided recursively using balanced cuts. This process continues
until all the partitions contain exactly one element.

As a preprocessing for the simplex range query, we create a data structure T (P ),
called partition tree, based on the hierarchical balanced bipartitioning of the
point set P . Its root node (at layer-0) corresponds to the set P . The cut I0
splits P into two subsets P1 and P2. Thus, the two successors of the root (at
layer-1) correspond to the point sets P1 and P2 respectively. P1 and P2 are
further partitioned using balanced cuts to create 4 nodes at layer-2. The splitting
continues and the nodes of the tree are defined recursively in this manner.

Each node v of T (P ) is attached with (i) the set of points Pv attached to node
v, (ii) an integer field χv indicating the size of Pv, and (iii) the balanced cut line
Iv bipartitioning the points Pv.

Given a set of points P , we uniquely define the partition tree T (P ) using ham-
sandwich cuts [9]. T (P ) can be constructed in O(nlogn) time and space.

At each non-leaf node of the partition tree T (P ), we attach two secondary struc-
tures, namely SS1 and SS2. SS1 is a level structure with the dual lines of the
points in Pv. It is useful for the simplex range counting query, but is not ef-
ficient for subset reporting. SS2 is created with the same point set Pv in the
primal plane, and is used for reporting the members inside the query triangle.
It’s performence with respect to the counting query is inferior to SS1.

Secondary structure - SS1

Consider the node v in T (P ). P ∗
v is the set of lines corresponding to the duals

of the points in Pv. We create the augmented level structure A(P ∗
v ) (as defined

in Section 2) , and attach it with node v. We refer this secondary structure as
SS1(v). We further augment the data structure using the following lemma. This
accelarates the simplex range counting query.

Lemma 1. Let v be a node in T (P ), and w be a successor of node v in T (P ).
A cell in A(P ∗

v ) is completely contained in exactly one cell of A(P ∗
w).

Proof: Let u be the other successor of node v. P ∗
u and P ∗

w are the duals of the
points attached to nodes u and w. Let C be a cell in A(P ∗

v ). It is bounded by
the lines of both P ∗

u and P ∗
w. If the lines of P

∗
u are removed, the cell C will be

contained in a cell of the arrangement A(P ∗
w). 	


With each cell C ∈ A(P ∗
v ), we attach two pointers, cell ptrL and cell ptrR. They

point to the cells CL ∈ A(P ∗
u ) and CR ∈ A(P ∗

w) respectively in which the cell C is
contained. Basically, this can be done by attaching the pointers with each edge
of e ∈ A(P ∗

v ). If the edge e is a part of an edge e
∗ ∈ CL, then its cell ptrL points

to e∗. We draw a vertical line at the left end point of e in downward direction.
Let it hits the edge e∗∗ ∈ CR. The cell ptrright points to e∗∗. If e is a part of an
edge in CR, the cell ptrR and cell ptrL are set in a similar manner.
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Lemma 2. The time and space required for creating and storing the preprocessed
data structure SS1 for all non-leaf nodes in T (P ) are both O(n2).

Proof: The initial partition tree can be constructed in O(nlogn) time and space.
The number of nodes at level i of T (P ) is 2i, and each of them contains n

2i points,
i = 0, 1, . . . , logn− 1. For each non-leaf node at level i, the size of SS1 structure
is O(( n2i )2), and it can be constructed from the point set assigned to that node
in O(( n2i )2) time. So, the total time and space required for constructing the SS1
data structure for all nodes in T (P ) is O(

∑logn−1
i=0 2i × ( n2i )2) = O(n2).

Finally, we use topological line sweep to set cell ptrL and cell ptrR attached to
each edge of A(P ∗

v ). This requires an additional O(n
2) amount of time. 	


Secondary structure - SS2

This is another secondary structure attached to each non-leaf node of T (P ). It
is created with the points attached to each node in the primal plane.

Consider a non-root node v at i-th layer of the tree T (P ). The region attached
to it is Rv, and the set of points attached to it is Pv. Note that, Rv is a convex
polygonal region whose boundaries are defined by the cut lines of its predecessors,
i.e., all the nodes on the path from the root of T (P ) upto the parent of the current
node. Thus, if v is at layer-i, the number of sides of the region Rv is at most i.
We store the boundary edges of Rv in an array. Each edge I is attached with
the following data structure.

Let π be a point on an edge I of the boundary of Rv. A half-line is rotated
around π inside the region Rv by an amount 180o, and a list Lπ is formed with
the points in Pv ordered with respect to their appearance during the rotation.
For each point of I we get such a list. Note that, we may get an interval on I
around the point π such that for all points inside this interval, the list remains
same. In order to get these intervals, we join each pair of points in Pv by a
straight line. These lines are extended in both sides up to the boundary of Rv.
This creates at most O(|Pv|2) intervals along the boundary of Rv. If we consider
any two consecutive intervals on an edge I of the boundary of Rv, the circular
order of points only differ by a swap of two members in their respective lists.
This indicates that O(|Pv|2) space is enough to store the circular order of the
points of Pv for all the intervals on I. Indeed, we can use the data structure
proposed in [5] for storing almost similar lists for this purpose. For the details
about this data structure, see [5,7].

Lemma 3. The time and space required for creating and storing the SS2 data
structure for all nodes in T (P ) is O(n2).

Proof: Each point appears in exactly one region in each layer of T (P ). But
a point p inside a region Rv (corresponding to a node v) appears in the data
structure attached to all the edges of Rv. For a node v at the i-th layer of
T (P ), its attached Rv is bounded by at most i cut-lines, and contains n

2i points.
Thus the total space required to store the data structure for each edge I on the



74 P.P. Goswami, S. Das, and S.C. Nandy

boundary of Rv is at most i× ( n2i )2. Again, the number of nodes in the i-th layer
is 2i. Thus, the time and space required for creating and storing the SS2 data
structure for all nodes in T (P ) in the worst case is
= 1.21.(n2 )

2 + 2.22.( n22 )2 + 3.23.( n23 )2 + . . .+ logn.2logn.( n
2logn )2

= 1
2 .n

2 + 2
22 .n

2 + 3
23 .n

2 + . . .+ logn
2logn .n

2 = O(n2). 	

In the next section, we discuss two types of queries, namely (i) counting query,
and (ii) subset reporting query separately for a triangular query region ∆.

3.2 Counting Query

Here the objective is to report the number of points of P that lie inside a trian-
gular region ∆. We traverse the preprocessed data structure T (P ) from its root
with the query region∆. A global COUNT field (initialized with 0) is maintained
during the traversal.

During the traversal, if a leaf node is reached with a query region ∆∗ (∈ ∆),
the COUNT is incremented by one if the point attached to that node lies inside
∆∗. While processing a non-leaf node v with a query region ∆∗, its attached
partition line Iv may or may not split ∆∗. In the former case, v is said to be a
split node, and in the latter case v is said to be a non-split node.

At a non-split node v, the traversal proceeds towards one child of v whose cor-
responding partition contains ∆∗. On the other hand, at a split node, ∆∗ splits
into two query regions; each of them is any one of the following types.

type-0 : A region having no corner of ∆,
type-1 : A region having one corner of ∆, and
type-2 : A region having two corners of ∆.

Lemma 4. All types of regions obtained by successive splitting of ∆, are convex.

When ∆ splits for the first time, it gives birth to one type-1 and one type-2
regions. In the successive splits,

a type-2 region may either split into (i) one type-0 region and one type-2 region,
or (ii) two type-1 regions. In case (i), the counting query inside the type-
0 region is performed among the points in the partition attached to one
successor of v, and the traversal proceeds towards the other successor of v
containing the type-2 region. In case (ii), traversal proceeds towards both the
successors of v with the corresponding type-1 region, in recursive manner.

A type-1 region splits into one type-0 and one type-1 region. The processing of
type-0 region is permormed at one successor of node v. The traversal proceeds
towards the other successor with the type-1 region.

The processing of a type-0 region at a node v is described below.
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Fig. 2. Different possibilities of type-0 region

Lemma 5. The number of type-0 regions generated during the entire traversal
with the region ∆ may be at most O(logn).

Counting Query Inside a Type-0 Region

Lemma 6. The number of edges of ∆ that appear on the boundary of a type-0
region may be at most three.

Let ∆∗ be a type-0 region, and the counting query with respect to ∆∗ need to be
processed at node v of T (P ). We now consider the following four cases depending
on the number of sides of ∆ that appear on the boundary of ∆∗.

Case 1: ∆∗ is not bounded by any edge of ∆ (see Fig. 2(a)). Here all the
χv(= |Pv|) points lie inside ∆∗.

Case 2: Exactly one edge e of ∆ appears on the boundary of ∆∗ (see Fig. 2(b)).
The edge e cuts the boundary of Rv in exactly two points, and it splits the point
set Pv into two disjoint subsets. One of these subsets lies completely outside ∆∗,
and the other one completely lies inside ∆∗. The number of points of Pv lying
inside ∆∗ can be obtained by performing half-plane range counting query among
the point set Pv with respect to the line containing e.

Case 3: Exactly two edges of ∆ appear on the boundary of ∆∗ (see Fig. 2(c)).
These two edges are mutually non-intersecting inside Rv, and each of them
intersects the boundary of Rv in exactly two points. Let these two edges be ei,
i = 1, 2. As stated earlier, each of these edges (ei) partitions the point set Pv
into two disjoint subsets, say Pv(ei) and Pv(ei). Pv(ei) lies completely outside
∆∗, but Pv(ei) may not completely lie inside ∆∗ due to the constraint imposed
by the other member ej , j �= i.

The number of points of Pv inside ∆∗ is equal to |Pv(e1) ∩ Pv(e2)| = (χv −
|Pv(e1)| − |Pv(e2)|), and it can be obtained by performing the half-plane range
counting query with the lines e1 and e2 separately.

Case 4: Exactly three edges of ∆ appear on the boundary of ∆∗ (see Fig. 2(d)).
As in Case 3, all these edges are mutually non-intersecting inside Rv, and each
of them intersects the boundary of Rv in exactly two points. The number of
points of Pv inside ∆∗ is equal to (χv−

∑3
i=1|Pv(ei)|), where Pv(ei) is defined as

in Case 3. Thus, to report the number of points inside ∆∗, we need to perform
half-plane range counting query among the points in Pv at most three times.
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Time Complexity of Counting Query

The simplex range counting query starts from the root of T (P ) and with COUNT
equal to zero. Let �∗

1, �
∗
2 and �∗

3 be the duals of the lines containing the three
edges e1, e2 and e3 of ∆. We find the cells containing �∗

1, �
∗
2 and �∗

3 in the SS1
data structure attached to the root node of T (P ). During traversal, when search
moves from a node v to its children, the cells corresponding to �∗

1, �
∗
2 and �∗

3
in the secondary structure of the children of v are reached using cell ptrL and
cell ptrR in O(1) time. At each node on the traversal path, if a type-0 region is
generated, the number of points inside that region is computed, and added with
COUNT. If a leaf node is reached, the point attached with it is tested to check
whether it lies inside ∆ in O(1) time. If so, COUNT field is incremented by 1.
At the end of traversal, COUNT field indicates the number of points inside ∆.

Theorem 2. Given a set of n points we can preprocess them in O(n2) time and
space such that the number of points inside a query triangle can be obtained in
O(logn) time.

Proof: The preprocessing time and space complexity results follow from Lemma
2. During query, O(logn) time is spent to locate the cells containing �∗

1, �
∗
2 and �∗

3
in the SS1 data structure attached to the root node. From the next layer of T (P )
onwards, the desired cells in the SS1 structure of each node on the traversal path
are reached in O(1) time as mentioned earlier. In each cell containing a type-0
region, the number of points outside the query region are obtained from the level
information attached to the edges of ∆ crossing that cell, which may be at most
3 (see Lemma 6). This takes O(1) time. The result follows from the fact that
O(logn) nodes need to be visited during the traversal (see Lemma 5). 	

The drawback of using SS1 secondary structure is that, it is not efficient in
reporting the set of points inside ∆. The worst case time complexity of subset
reporting query may be O(κlogn), where κ is the number of points inside ∆.

3.3 Subset Reporting Query

The subset reporting for a triangular query region ∆ is also done by traversing
T (P ). At each split node, if the query region is either type-1 or type-2, it splits in
a similar manner as described in the counting query. While processing a type-0
region at a particular node, either of the four cases, as mentioned earlier, may
appear. The processing of those cases is described below.

• In case 1, all the points in Pv are reported.
• In case 2, the subset of points in Pv lying in one side of the edge e (of ∆)
are reported. These can be easily obtained from SS1 data structure itself.
• In case 3, the query region at node v is bounded by two edges, say e1 and

e2, of ∆. We use the secondary structure SS2 for the reporting in this case.
In Fig. 3, edge e1 (resp. e2) intersects Rv at α1 and α2 (resp. β1 and β2).
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We split the query region by the diagonal α1β2 (indicated by dotted line).
Let the points α1 and β2 lie on the edges I and J of Rv respectively. We
use binary search with the point α1 (resp. β2) to locate its corresponding
interval on the edge I (resp. J). Next we use the data structure attached
to I (resp. J) to report the points inside the darkly (resp. lightly) shaded
angular region. The detailed method is described in [5]. The time complexity
of this reporting is (logn+ κ), where κ is the size of the output.

e2

e1α1

β1

α2

β2

I

J

Fig. 3. Reporting in case 3

σ

Pabove

Pbelow

R

σ

L1

L2

α

β

Fig. 4. Segment dragging query

• In case 4, the query region at node v is bounded by three edges e1, e2 and
e3 of ∆. Here we need to proceed the traversal to the successor(s) of v in
T (P ). If the query region splits at v, it may generate at most one query
region which is bounded by three edges of ∆. Traversal proceeds with this
part. The other part of the split is bounded by either one or two edges of ∆.
The points inside this part are reported as in Case 1 or Case 2 or Case 3.
This type of split takes place at most (logn) time. So the reporting time in
this case may be O(log2n+ κ).

Theorem 3. Given a set of n points we can preprocess them in O(n2) time and
space such that the subset of points inside a query triangle can be reported in
O(log2n+ k) time.

4 Segment Dragging Query

We shall use the preprocessed data structure discussed in the earlier section for
solving the segment dragging query with respect to a line segment σ = [α, β].

Let us consider a corridor Cσ defined by two parallel lines L1 and L2 drawn
through the points α and β respectively, and each of them is perpendicular to σ.
The set of points inside the corridor is split into two subsets Pabove and Pbelow
by the segment σ. In the segment dragging query, we need to report k nearest
points of σ among the members in Pabove (Pbelow). Here k may be specified at
the query time.

Consider the levels of arrangement A(P ∗). Let �σ denotes the line containing
the segment σ. Let �∗

σ (the dual of �σ) lies between levels λ and λ+1 in the dual
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plane. If λ < k, then σ hits no more than λ(< k) points if it is dragged above
up to infinity. So, all the points in Pabove need to be reported. If λ > k, we need
to find a line segment σ̂ parallel to σ and touching the two boundaries of the
corridor Cσ such that the number of points inside the region R defined by L1,
L2, σ and σ̂ (as shown in Fig. 4) is equal to k (excepting the degenerate cases).
Thus, here the segment dragging query consists of two phases: (i) compute σ̂
appropriately, and (ii) report the points inside R.

We solve the first part as follows: draw a vertical ray from the point �∗
σ down-

wards. Let e ∈ A(P ∗) be an edge at level θ (θ < λ− k) whom the ray hits. Let
p∗ (p ∈ P ) be the line containing the edge e. We draw a line parallel to σ at the
point p. This defines a rectangle Rθ bounded by two boundaries of Cσ, the given
query segment σ, and the portion of the line p∗ inside the corridor Cσ. Let κθ
denotes the number of points inside Rθ. We compute κθ by splitting Rθ into two
triangles, and then applying the triangular range counting method as described
in Section 3.

Lemma 7. Let ei and e2 be two edges at level i and j, i < j. Ri and Rj denote
two rectangles as defined above. If κi and κj denote the number of points inside
Ri and Rj respectively, then κi > κj.

Proof: Follows from the fact that the area of Ri is greater than that of Rj , but
the three sides of Ri are common with those of Rj . 	


Lemma 8. A rectangle R above the query line segment σ and containing exactly
k points can be obtained in O(log2n) time.

Proof: We consider the subset of edges of A(P ∗) that are hit by the vertically
upward ray shot from �∗

σ. These edges are at different levels of A(P ∗). By Lemma
7, the desired σ̂ can be selected using binary search among these edges. At each
step of the binary search, (i) we choose an edge from the above subset and
define the corresponding rectangle inside the corridor Cσ (in the primal plane),
and then (ii) we need to find the number of points inside that rectangle by
applying triangular range counting query. Hence the lemma follows. 	

Next, using subset reporting query algorithm, we report the points inside the
rectangle R. Thus, we have the main result of this work.

Theorem 4. Given a set of n points in 2D, it can be preprocessed in O(n2)
time and space such that for an arbitrary query segment, the dragging query can
be answered in O(k + log2n) time, where k is an input at the query time.

5 k Nearest Neighbors of σ

The problem of finding k nearest neighbors of σ = [α, β] (k is known apriori)
has two phases: (i) find k nearest neighbors of α and β using order-k Voronoi
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diagram, and (ii) solve segment dragging query with parameter k for both above
and below σ. Finally, a merge like pass is executed to report k nearest neighbors
of the line segment σ. Thus, the time complexity of creating an order-k Voronoi
diagram influences the preprocessing time complexity for finding k nearest neigh-
bors query of a line segment. The time complexity of the best known determin-
istic and randomized algorithms for creating an order-k Voronoi diagram are
O(nklog2k( lognlogk )

O(1)) [4] and O(nlog3n+ k(n− k)) [1] respectively. The storage
and query time complexities for the k nearest neighbors problem remain same
as that of the segment dragging query problem.

Final remark: In case of finding the nearest neighbor of a query line segment
σ (i.e., when k = 1), the preprocessing time and space complexities are both
O(n2), and query can be answered in O(log2n) time. This is a generalized and
improved result of the problem presented in [3]. Here SS1 data structure supports
the segment dragging query; so SS2 is not needed.
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Abstract. We study some fundamental computational geometry prob-
lems with the goal to exploit structure in input data that is given as a
sequence C = (p1, p2, . . . , pn) of points that are “almost sorted” in the
sense that the polygonal chain they define has a possibly small num-
ber, k, of self-intersections, or the chain can be partitioned into a small
number, χ, of simple subchains. We give results that show adaptive com-
plexity in terms of k or χ: when k or χ is small compared to n, we achieve
time bounds that approach the linear-time (O(n)) bounds known for the
corresponding problems on simple polygonal chains. In particular, we
show that the convex hull of C can be computed in O(n log(χ+2)) time,
and prove a matching lower bound of Ω(n log(χ + 2)) in the algebraic
decision tree model. We also prove a lower bound of Ω(n log(k/n)) for
k > n in the algebraic decision tree model; since χ ≤ k, the upper bound
of O(n log(k + 2)) follows.
We also show that a polygonal chain with k proper intersections can
be transformed into a polygonal chain without proper intersections by
adding at most 2k new vertices in time O(n ·min{√k, logn}+ k). This
yields O(n · min{√k, logn} + k)-time algorithms for triangulation, in
particular the constrained Delaunay triangulation of a polygonal chain
where the proper intersection points are also regarded as vertices.

1 Introduction

A polygonal chain in the Euclidean plane is specified by a finite sequence C =
(p1, p2, . . . , pn) of points (vertices), which define the chain’s edges, p1p2, p2p3, . . .,
pn−1pn, and possibly pnp1 (if the chain is closed). The chain is strongly simple
if any two edges, pipi+1 and pjpj+1, of C that are not adjacent (i �= j) are
disjoint and any two adjacent edges share only their one common vertex. We
say that C is simple if it is not self-crossing but it is possibly self-touching, with
a vertex falling on a non-incident edge or on another vertex; i.e., it is simple
if it is strongly simple or it has an infinitesimal perturbation that is strongly
simple. If the chain is not strongly simple, but it is simple, we say that it is
� Partially supported by HRL Labs (DARPA subcontract), NASA Ames Research,
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weakly simple. A crossing witness for a polygonal chain is a pair of its edges that
intersect properly at a witness point.

In this paper we consider the problem of efficiently constructing the convex
hull of the vertices of a polygonal chain. If the input polygonal chain is simple,
in particular only weakly simple, these basic geometric structures, and many
others, can be computed in linear time [4,6,7]. If the input chain is arbitrary
(with no special structure), then computing the convex hull of C is known to
have an Ω(n log n) lower bound.

A natural approach to these problems is to compute all k self-crossings of
the chain C, cut the chain into subchains at the crossing points, apply known
methods (e.g., to compute convex hulls) to each of the resulting subchains, and
merge the results. The problem with this approach is that computing all k of
the intersections seems too costly. The best known method for reporting segment
intersections among an unordered set of n line segments takes time O(n log n+k)
and space O(n) [3], and this is optimal, in general. Since our goal is to replace
O(n log n) solutions for convex hulls and triangulations with O(n) solutions in
the case of small k, the O(n log n) overhead for computing the intersections is
already too much for us to spend. There is speculation that if the n segments are
given in order as the edges along a chain, as in our problem, then the intersection
points can be computed in time O(n+ k); this, however, remains a challenging
open problem. Also, even if this problem is solved in time O(n+k), the running
time is potentially too high when k is super-linear in n.

Thus, the fundamental question we address here is: Can we exploit the fact
that the n points or segments are given in an order along a chain, to avoid the
O(n log n) sorting overhead, even when the chain is not simple?

We measure the degree of non-simplicity in terms of two parameters: (1) the
number, k, of self-intersections, and (2) the simple partition number, χ, defined
to be the minimum number of partitioning points at which we need to cut the
(open) chain C in order to partition C into simple subchains. If C is simple, then
k = χ = 0. Note that χ ≤ k, since one can partition C into simple subchains by
cutting it at the points of self-intersection.

Our goal is to have a time complexity that matches the simple chain case
when k or χ is equal to zero (or a constant), and never goes above the time
complexity for the unordered case, in which C is given in arbitrary order, even
when k or χ are large (e.g., when k is close to its maximum possible value of
(n− 2)(n− 3)/2, or when χ is close to its maximum, �(n− 1)/2�).

Questions of the sort “Does simplicity help?” are prominent in computational
geometry. Usually the answer is “Yes” – e.g., the convex hull or a triangulation
of a simple polygon is found in O(n) time, while, in general, both computations
require time Ω(n log n) for an unordered set of points. The question we study
here is whether we can exploit “approximate simplicity” in designing algorithms
whose time complexity is adaptive in the parameter k or χ.

A polygonal chain with a moderate number of self-intersections or a small
simple partition number is the geometric analogue to a partially sorted file in the
area of sorting algorithms. There exists a vast literature on adaptive algorithms
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for sorting partially sorted files and measures of presortedness (e.g., see [10]).
There is also work of Aurenhammer [1,2] that studies the problem of computing
the convex hull, in linear time, of a special class of self-intersecting polygonal
chains that arises in the context of Jordan sorting [8] and on-line sorting of
“twisted sequences”.

Chazelle [4] shows that his linear-time polygon triangulation algorithm can be
used for simplicity testing (determining if k = χ = 0) in linear time; essentially,
he says that the triangulation algorithm “fails” in a controlled way on a non-
simple input. Chazelle has also observed [5] that, with some additional work, his
algorithm can be made to report a crossing witness if the chain is non-simple.

Our first result (Section 2) in this paper is a linear-time method to compute a
crossing witness (if one exists), relying solely on a “black box” verifier for polyg-
onal chain weak simplicity. By combining this method of crossing detection with
the optimal method for segment intersection [3], we show how a polygonal chain
with k proper intersections can be transformed into a weakly simple polygonal
chain by adding 2k vertices in time O(n ·min{√k, log n} + k). Since the afore-
mentioned linear-time methods work even for weakly simple chains [4,6,7], we
obtain O(n ·min{√k, log n} + k)-time algorithms for the convex hull of C and
for triangulation of C, in particular for the constrained Delaunay triangulation,
where the proper intersection points are also regarded as vertices.

Then, in Section 3 we present a more efficient approach to computing the
convex hull of a polygonal chain, relying solely on a linear-time weak simplic-
ity test for a polygonal chain, without the crossing witness requirement. This
approach enables us to show that the convex hull of a polygonal chain with
simple partition number χ can be computed in time O(n log(χ+ 2)). The same
approach is applied to sorting the intersection points  ∩ C along a given line
 in time O(n log(χ + 2)); this generalizes the Jordan sorting result [8] to self-
intersecting chains. While our convex hull result relies on the use of the com-
plicated linear-time algorithm of Chazelle [4], we also show that a very simple
algorithm solves the convex hull problem in O(n) time for chains having at most
one self-intersection (k ≤ 1).

We complement our algorithms with a proof of lower bounds in the algebraic
decision tree model. In particular, we prove a bound of Ω(n log(χ+2)), showing
that our upper bound of O(n log(χ+ 2)) is asymptotically tight. We also prove
that Ω(n log k/n) is a lower bound on computing the convex hull of a polygonal
chain with k > n proper intersections.

2 Crossing Witnesses, the Transformation, and Adaptive
Triangulation Algorithms

The following fact is shown in the last section of [4].

Fact 1. A polygonal chain can be tested for weak simplicity in linear time.

The auxiliary procedure below will be useful in determining a crossing witness
of a polygonal chain via Fact 1.
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Procedure FindInt(C ′, C ′′)

Input: two weakly simple polygonal chains C ′, C ′′ which properly intersect each
other.
Output: an edge e′ of C ′ and an edge e′′ of C ′′ where e′ intersects e′′ at a proper
intersection point of C ′ and C ′′.

1. If |C ′| ≤ 1 or |C ′′| ≤ 1 then check the single edge of one of the chains for
intersection with all the edges of the other chain, report the pair defining
the proper intersection point and stop;

2. C ′
1 ← the prefix of C ′ of length �|C ′|/2�; C ′

2 ← the remaining suffix of C ′;
3. C ′′

1 ← the prefix of C ′′ of length �|C ′′|/2�; C ′′
2 ← the remaining suffix of C ′′;

4. for i = 1, 2 do
for j = 1, 2 do
By adding at most |C ′

i| + |C ′
j | new vertices connect C ′

i with C ′
j into a

polygonal chain Ci,j without introducing new proper intersections;
If Ci,j is not weakly simple then FindInt(C ′

i, C
′′
j ) and stop.

Lemma 1. FindInt(C1, C2) can be implemented in time O(|C1|+ |C2|).
Proof. To form the chain Ci,j , we simply double the chains C ′

i and C ′′
j so they

become cyclic, and draw a minimal subsegment of the straight-line segment
connecting, say the leftmost vertex of C ′

i with the leftmost one of C ′′
j , so the

two cycles become connected and no new proper intersections are introduced.
By testing the segment for intersection with each edge in both chains, this can
be done in time O(|C ′|+ |C ′′|). Next, we split the two cycles at the endpoints of
the subsegment introducing a double vertex at each of them. Now, it is sufficient
to make an Euler tour of the resulting figure, possibly deleting the last edge,
in order to obtain the polygonal chain Ci,j . It follows via Fact 1 that the body
of the procedure takes time O(|C ′|+ |C ′′|). Hence, the recursive calls take time
O(
∑
i(|C ′|+ |C ′′|)/2i), i.e., O(|C ′|+ |C ′′|). �

The main recursive procedure for reporting a crossing witness, using FindInt
as a subroutine, is as follows.

Procedure Witness(C)

Input: a self-intersecting polygonal chain C.
Output: two edges e′, e′′ of C where e′ intersects e′′ at the proper self-intersection
point of C.

1. C1 ← the prefix of C of length �|C|/2�; C2 ← the remaining suffix of C;
2. If C1 and C2 are weakly simple then FindInt(C1, C2) and stop;
3. If C1 is weakly simple then Witness(C2) else Witness(C1)

Lemma 2. Witness(C) runs in time O(|C|).
Proof. The body of the procedure takes time O(|C|) by Fact 1 and Lemma 1.
Hence, the recursive calls take time O(

∑
i |C|/2i), i.e., O(|C|). �
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Since the correctness of the procedure Witness is obvious, we obtain the
following result by Lemma 2.

Theorem 1. A crossing witness for a polygonal chain which is not weakly simple
can be found in linear time.

By iterating the method of Theorem 1 and combining it with the optimal
method for segment intersection [3], we obtain the following theorem.

Theorem 2. A polygonal chain properly intersecting itself k times can be trans-
formed into a weakly simple polygonal chain by adding at most 2k new vertices
in time O(n ·min{√k, log n}+ k).

Proof. Let C be a polygonal chain properly intersecting itself at most k times.
Assume first that k is known.
Case: k < log2 n. We show in this case how to detect all proper intersections

of C and transform C into a weakly simple chain by adding at most 2k new
vertices, in total time O(n

√
k)) . We start by partitioning C into �√k� subchains

C1, C2, ..., C�√
k� of about equal length, plus/minus 1. Next, each Ci is tested in

isolation to find all of its (internal) proper intersections, and we add vertices
to transform it into a weakly simple chain. This is done by repeatedly applying
the procedure Witness(Ci) and introducing, after each application, two new
vertices at the detected proper intersection point, while reordering the edges of
the resulting chain so this proper intersection is eliminated and no new proper
intersections are created. Note that the introduction of these two new vertices
and the reordering involve deleting and creating O(1) links and thus take O(1)
time.

Since k < log2 n, the size of each subchain remains O(n/
√
k), even with the

introduction of the new vertices. By Lemma 2, each intersection is detected and
transformed in time O(|Ci|) = O(n/

√
k), so that the total time for transforming

all subchains Ci into weakly simple chains is O(kn/
√
k)) = O(n

√
k)).

Next, for each pair of subchains Ci and Cj , with 1 ≤ i < j ≤ �√k�, we
repeatedly call the procedure FindInt(Ci, Cj) to detect all proper intersections
between the subchains and eliminate them by creating two new vertices for
each such intersection and rearranging the edge ordering accordingly. Since we
may assume without loss of generality that k < log2 n, the size of both sub-
chains remains O(n/

√
k) throughout the entire algorithm. Thus, the detection

of each consecutive proper intersection by FindInt(Ci, Cj) takes time O(n/
√
k),

by Lemma 2. Hence, the total time for finding and transforming all intersections
in C is O(n

√
k)).

Case: k ≥ log2 n. In this case, the optimal algorithm for reporting segment
intersection, running in time O(n log n + k)-time [3], is more efficient than the
partitioning method of the previous case. We simply run this algorithm, and,
whenever an intersection is reported, we eliminate it again by creating two new
vertices and rearranging the edge ordering in the current chain accordingly.

Finally, if k is unknown we use the standard trick of “doubling”: we run our
method for values of k = 1, 2, 4, ... until all intersections are detected. Clearly,
this does not change the asymptotic upper bound on the running time. �
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Since the aforementioned linear-time algorithms ([4,6]) for triangulation, in
particular the constrained Delaunay triangulation, of a simple polygonal chain
work also for weakly simple polygonal chains, we obtain the following corollary
of Theorem 2.

Corollary 1. A triangulation, in particular the constrained Delaunay triangu-
lation, of a polygonal chain with k proper self-intersections can be constructed
in time O(n ·min{√k, log n} + k). Here, the proper self-intersection points are
regarded as vertices that must appear in the triangulation.

The method from the proof of Theorem 2 can also be used to decide if
the number k of self-intersections of a polygonal chain is at most K, for some
specified K. Simply, we run the method for k = K and whenever it detects the
K +1st crossing, we stop it. In effect, we obtain an O(n ·min{√K, log n}+K)-
time algorithm for the decision problem.

3 Adaptive Convex Hull Algorithms

We now present an improved adaptive algorithm for computing the convex hull
of the vertices of a polygonal chain. The algorithm uses divide-and-conquer and
applies in a more general setting to any construction problem P associated with
a polygonal chain that has the following two properties: (1) P can be solved
in linear time for chains that are (weakly) simple; and, (2) the solutions to P
applied to two distinct chains can be merged in time linear in the sizes of the
chains. The algorithm is specified by the following simple recursive procedure
Construct.

Procedure Construct(chain,A)

Input: a polygonal chain C and a subroutine A for the construction problem P
on weakly simple polygonal chains.
Output: a solution to the construction problem P for C.

1. If C is weakly simple then return A(C) and stop;
2. C1 ← the prefix of C of length �|C|/2�; C2 ← the remaining suffix;
3. Q1 ← Construct(C1,A); Q2 ← Construct(C2,A);
4. merge Q1 with Q2 and return the result

We analyze the running time in terms of what we call the simple partition
number, χ, of a chain. More precisely, let χ denote the minimum number of
partitioning points at which we need to cut the (open) chain C in order to
partition C into simple subchains. If C is simple, then χ = 0. While it is always
the case that χ ≤ k, since we can cut at the k self-crossings, note that C may
have k = Ω(n2) self-intersections, while χ = 1. Thus, χ can be a substantially
smaller measure of nonsimplicity than is k. (Note that if C is a closed chain, we
can artificially open it by replicating one vertex to serve as the start/end of the
new open chain.)
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Lemma 3. Assuming there is a linear-time algorithm A and a linear-time merge
algorithm, Construct runs in time O(n log(χ+ 2)).

Proof. Let t(n, χ) be the worst-case time taken by the procedure Construct for
an input chain of n vertices that has simple partition number χ. Then, t(n, χ)
satisfies the following recursion relation:

t(n, χ) ≤
{
t(�n/2�, χ1) + t(�n/2�, χ2) +O(n) if χ ≥ 1
O(n) if χ = 0 ,

where χ1+χ2 ≤ χ. The solution to this recursion gives t(n, χ) = O(n log(χ+2)).
�

We can apply Lemma 3 to the problem of computing the convex hull of a
polygonal chain, since the convex hull of a weakly simple polygonal chain can
be computed in linear time using any of several known convex hull algorithms
(e.g., see Melkman [11] and a survey in [7]), and the merge step (computing the
convex hull of two convex polygons) is also readily done in linear time.

Theorem 3. Let C be a polygonal chain of n vertices that can be partitioned
into χ simple subchains. Then the convex hull of C can be computed in time
O(n log(χ+ 2)).

Another application of Lemma 3 yields a similar result about sorting inter-
section points:

Theorem 4. Given a line  and a polygonal chain C of n vertices that can be
partitioned into χ simple subchains, one can compute the sorted order along  of
the intersection points  ∩ C in time O(n log(χ+ 2)).

Proof. It is known that if C is simple, the points of intersection  ∩ C can be
found in sorted order along  in linear (O(n)) time, via “Jordan sorting” [8].
This provides the algorithm A. Merging of two sorted lists is easily done in
linear time. �

3.1 Avoiding the Need for Chazelle’s Linear-Time Algorithm

One drawback of the above method is that it relies on the highly complex linear-
time algorithm of Chazelle [4]. It would be nice, in general, to give a simple
and implementable algorithm for the convex hull that is linear-time for small
values of k. While we do not know of such a method in general, we can give the
following simple linear-time algorithm for the case of k ≤ 1: Apply Melkman’s
online convex hull algorithm to the chain C twice – once going forwards along
the chain, once going backwards. If the chain is simple (k = 0), the algorithm
is guaranteed to compute correctly the convex hull (whether we go forwards or
backwards). If k = 1, then potentially the algorithm fails to compute the convex
hull correctly, as Figure 1 (a) shows, if the chain is traversed either forward or
backwards. But, the following theorem shows that the convex hull of the chain
C is the convex hull of the results of running the algorithm both forwards and
backwards along the chain.
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Fig. 1. (a). An example having k = 1 of a 4-vertex chain for which Melkman’s on-
line convex hull computation fails both for a forwards traversal (which yields triangle
v0v1v2) and for a backwards traversal (which yields triangle v3v2v1); however, the con-
vex hull of the union of the two triangles is the desired output. (b). An example (having
k = 4) in which Melkman’s algorithm applied forwards (resp., backwards) gives trian-
gle v0v1v2 (resp., v6v5v4), and the convex hull of the union (which is triangle v0v1v2)
is also not the convex hull of the input chain.

Theorem 5. The convex hull of a polygonal chain C properly intersecting itself
k ≤ 1 times is given by the convex hull of the union, PF ∪ PB, where PF (resp.,
PB) is the convex polygon produced as the output of Melkman’s algorithm while
traversing the chain C forwards (resp., backwards).

Proof. The proof of correctness of Melkman’s algorithm establishes that it main-
tains the convex hull of the sequence of points that have been considered so far:
p1, p2, . . . , pi. Suppose that there is exactly one proper self-intersection of the
chain C, with edge pipi+1 crossing pjpj+1, for 1 ≤ i < j ≤ n− 1. Then, the sub-
chain CF = (p1, p2, . . . , pj) is simple, so the output of Melkman’s algorithm, PF ,
applied in a forward pass of C is a superset of the convex hull of CF . Similarly,
the backwards subchain CB = (pn, pn−1, . . . , pi+1) is simple and the output of
Melkman’s algorithm, PB , applied in a backwards pass of C is a superset of the
convex hull of CB . Thus, the convex hull of PF ∪ PB contains all vertices of C,
so, since its vertices are vertices of C, it equals the convex hull of C. �
Corollary 2. Using two passes of Melkman’s online convex hull algorithm, the
convex hull of a polygonal chain having at most one self-intersection can be found
in O(n) time.

Remark. If k > 1, the two-pass method can fail, as in Figure 1 (b).

3.2 Lower Bounds

We turn now to proving a lower bound on the time required to compute the
convex hull of a self-intersecting polygonal chain. (Here, by computing the convex
hull, we mean that the output is required to be the vertices of the hull, given in
order around the boundary of the hull.)

Theorem 6. Computing the convex hull of a polygonal chain having simple par-
tition number χ requires Ω(n log(χ+2)) time in the algebraic decision tree model
of computation.
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Proof. We assume without loss of generality that n is an integral multiple of
χ and that χ ≥ 2, so that logχ ≥ 1. We use a technique similar to that used
in the proof of the Ω(n log n) bound for computing the convex hull of a set of
n points. The idea is to reduce (in linear time) the problem of sorting n real
numbers to the problem of computing the convex hull of a set of points. This
is done by producing, for each real number r, a point with (x, y)-coordinates
(r, r2). The resulting set of points is given as input to the convex-hull algorithm
(e.g., see [12]).

Let us consider the related problem of sorting χ real numbers that lie within
an interval between two consecutive positive integers. In fact, we consider the
problem whose instance is an ordered sequence of n/χ copies of this sorting
problem, each consisting of an (unordered) subsequence of χ real numbers, in
the intervals (1,2), (3, 4), (5, 6), . . . , (2n/χ − 1, 2n/χ). The ith instance of the
sorting problem consists of an (unordered) set Si = {xi,1, xi,2, . . . , xi,χ} of real
numbers in the interval (2i− 1, 2i). We know from lower bounds on sorting that
it takes (n/χ) × Ω(χ logχ) time, i.e., Ω(n logχ) time, in the worst case to sort
the set of n numbers in this instance of the sorting problem.

We reduce this sorting problem in linear time to computing the convex hull
of a polygonal chain with n vertices that can be partitioned into χ simple sub-
chains: We map each input real number r to the point (r, r2) ∈ �2 on the
parabola y = x2. We let pi,j = (xi,j , x2i,j) be the lifted image of xi,j ∈ Si
on the parabola. We then map, in time O(n), the input instances S1, . . . , Sn/χ
to the chain (p1,1, p2,1, . . . , pn/χ,1, p1,2, p2,2, . . . , pn/χ,2, . . ., p1,χ, p2,χ, . . . , pn/χ,χ).
We note that each of the χ subchains (p1,j , p2,j , . . . , pn/χ,j) is simple. Thus, the
simple partition number of C is at most χ− 1. The proof is concluded by noting
that, since the points on the parabola are in convex position, an algorithm that
computes the convex hull of C must output the points pi,j in a cyclic order that
exactly gives the x-order of the n input real numbers. �

We similarly obtain a lower bound as a function of n and k; for the proof,
see the full version of the paper on the authors’ web sites.
Theorem 7. Computing the convex hull of a polygonal chain that properly in-
tersects itself k times requires Ω(n log(k/n)) time in the algebraic decision tree
model of computation.
Remark. Even if the convex hull algorithm is only required to report which
points are vertices of the convex hull, we can obtain the same asymptotic lower
bound, using a reduction from other standard problems on sets of real numbers
(e.g., the min-gap problem or the element uniqueness problem [12]).

4 Conclusion

We conclude with several interesting open questions:

(1) Can one close the gap between our upper and lower bounds, in terms of
n and k, for the adaptive convex hull construction? While our bounds are
tight as functions of n and χ, there is a gap when the bounds are written as
functions of n and k: Ω(n log(k/n)) versus O(n log(k + 2)).
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(2) Can good adaptive bounds for convex hulls be obtained for large values of
χ or k without resorting to the use of Chazelle’s complicated linear-time
triangulation algorithm?

(3) Can one compute a triangulation of the vertices of a chain C (ignoring the
edges of the chain) in time O(n log(χ+ 2)) or time O(n log(k + 2))?

(4) Can one compute the convex hull of a chain C in time O(n + k)? (This
is interesting in the case that k is super-linear, but o(n log n).) Can one
compute all k self-intersection points of a chain C in time O(n+ k)?

(5) Can one avoid the use of the complicated algorithm of Chazelle [4] to com-
pute the convex hull of a chain with χ ≤ 1 in linear time?

(6) How efficiently can one compute the simple partition number, χ, of a given
chain of n vertices? We note that a greedy algorithm that iteratively re-
moves from one end of the chain a maximal length simple subchain can be
implemented to run in time O(n log n). Thus, our goal is to obtain a bound
of o(n log n), at least in the case of small χ.

(7) What bounds can one obtain for the worst-case complexity of computing
the convex hull in terms of the input size (n), the degree of non-simplicity
(χ and/or k), and the output size, h?
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Abstract. This paper concerns geometric disk problems motivated by
base station placement problems arising in wireless network design. We
first study problems that involve maximizing the coverage under vari-
ous interference-avoidance constraints. A representative problem for this
type is the maximum weight independent set problem on unit disk graphs,
for which we present an exact solution whose complexity is exponential
but with a sublinear exponent. Specifically, our algorithm has time com-
plexity 2O(

√
m log m), where m is the number of disks. We then study the

problem of covering all the clients by a collection of disks of variable radii
while minimizing the sum of radii, and present a PTAS for this problem.

1 Introduction

1.1 Background

This paper deals with efficient algorithmic solutions for base station place-
ment problems and related problems arising in wireless network design. The
input for these problems consists of two sets of points in the Euclidean plane,
X = {x1, x2, . . . , xm} representing potential locations for placing base stations,
and Y = {y1, y2, . . . , yn} representing the clients. A base station located at xi
has a certain transmission range Ri, which could be either fixed or variable. A
client node yj is covered by a base station placed at xi if it is within its trans-
mission range, namely, if yj falls within the disk of radius Ri centered at xi.
However, coverage may not be enough; in certain models it is also necessary to
avoid interferences between neighboring base stations whose transmission disks
partially overlap. Hence our problems concern selecting a placement for the base
stations (henceforth referred to in short as servers) that will guarantee adequate
(interference-free) coverage for the clients while attempting to optimize certain
cost functions.
Two design issues affect the nature of the optimization problem at hand. The

first concerns the question whether interference avoidance must be enforced. In
particular, when interferences are ignored, the problem to be solved is typically
a disk-covering problem, namely, finding a minimum cost collection of servers
covering all clients. In contrast, when interferences must be avoided, it might be
� Supported in part by a grant from the Israel Ministry of Industry and Commerce.
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impossible to satisfy all the clients simultaneously, hence it is of interest to study
also variants of the problem aimed at maximizing the number of clients which
are covered by exactly one server (henceforth referred to as supplied clients).
A combined approach which is examined as well is to simultaneously take into
account the number of supplied clients and the cost of the servers, by attempting
to optimize total profit, defined as the gain from supplied clients minus the cost
of the servers.
The second design issue is whether transmission radii are fixed or variable.

When the radii are variable, we must decide on the transmission range of each
server to be built, in addition to choosing its locations. The typical goal is to
choose for each server xi a transmission radius Ri such that all the clients are
covered and the sum of radii is minimized. This target arises from the assumption
that the cost of choosing a certain radius depends linearly on that radius. Such
assumption is often made in various clustering and covering problems [1].

1.2 The Problems

This paper considers problems of two main types. The first involves maximization
problems on disks of fixed radius. Given the locations of the clients and servers
and a fixed transmission range R, it is required to choose an active set of servers
in an optimal way. Several optimization targets can be considered, all taking
into account interferences between active servers.
We start with the problem of maximizing the number of supplied clients un-

der the condition that the R-disks around the servers are disjoint. This require-
ment is perhaps not the most natural in the context of base station placement,
as overlaps over client-free regions should cause no problems. On the other hand,
this problem can be handled as a special case of the maximum weight indepen-
dent set (MWIS) problem on unit disk graphs, which is of independent interest.
In the MWIS problem there are weights associated with the points in X, and
it is required to choose a maximum weight subset of X such that the R-disks
around them are all disjoint. To get our problem as a special case of the MWIS
problem, the weight of each vertex xi ∈ X is set to the number of clients covered
in the R-disk around xi.
We also consider a number of related problems, which capture the restrictions

of the model more adequately. The first problem requires us to maximize the
number of supplied clients under the constraint that no client is in the transmis-
sion range of more than one chosen server. Again, this problem can be generalized
into the maximum weight collision-free set (MWCS) problem, which is to find a
maximum weight subset of servers such that the R-disks around the servers do
not contain common clients. Another variant of this problem, named maximum
supplied clients (MSC), which may be even more useful from practical point of
view, is defined as follows. For any subset X̃ of X, let Supp(X̃) denote the set of
clients supplied by X̃. The problem is to choose a subset of servers X̃ maximiz-
ing the number of supplied clients, |Supp(X̃)|. We also consider a variant of the
problem named maximum profit (MP), in which costs and benefits are treated
in a combined manner. The goal is to choose a subset of servers maximizing the
profit P (X̃) = c1|Supp(X̃)| − c2|X̃|, where c1, c2 > 0 are given constants.
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The MWCS, MSC and MP problems turn out to be hard to manage for
arbitrary inputs, and we consider them in a restricted setting referred to as
the grid-based setting. In this setting, the set X of possible server locations is
restricted to grid points of a given spacing, fixed for concreteness to be 1, and
moreover, the transmission range R is assumed to be bounded by a constant.
Without loss of generality we assume that the underlying unit grid G1 is aligned
so that (0, 0) occurs as a grid point. Throughout, the grid-based version of a
problem PROB is denoted PROBg.
The second type of problems considered in this paper is disk-covering prob-

lems, where the goal is to achieve minimum sum of radii. Given a set of clients
Y and a set of servers X in the plane, we aim to choose the transmission range
Ri of each server xi such that all the clients are covered and the sum of the
transmission ranges chosen, ϕ =

∑
iRi, is minimized. Although any radius Ri

can be chosen for a given server, every solution is dominated by a solution in
which for each chosen radius Ri �= 0 the corresponding Ri-disk has a client on
its border. So the problem is equivalent to choosing from all n ·m disks centered
at a server and with a client on their border. This problem is referred to as
minimum sum of radii cover (MSRC).
We also study the variant of this problem where interferences are involved,

meaning that the transmission ranges must be chosen such that no two disks
intersect on a client. We call this problem minimum sum of radii cover with
interferences (MSRCI). Its representation is more general as we are given a set
of disks of various radii and we have to choose a subset of the given set of disks
such that the chosen disks are all disjoint and minimum sum of radii is achieved.

1.3 Previous Work

The disk-covering problem on fixed radius disks is studied in [5], in a model
where the server locations are not restricted to a given set of possible locations
but rather may be chosen at any point on the plane. A PTAS is given for this
problem using a grid-shifting strategy.
Fixed radius covering problems where only potential server locations are

considered, with or without interferences, are studied in [4]. They consider op-
timization problems for cellular telephone networks that arise in a traffic load
model which also addresses the positioning of servers on given possible locations
with the aim of maximizing the number of supplied clients and minimizing the
number of servers to be built.
A technique called slab dividing is proposed in [7]. It is used there to give a

sub-exponential exact solution of time complexity O(nO(
√
P )) for the Euclidean

P -center problem. This approach is essentially based on a version of the
√

n-
planar separator theorem of [8], suitably adapted to the Euclidean case.
The MWIS problem on unit-disk graphs is shown to be NP-hard in [2], and

is given a PTAS in [6]. The MWIS problem on general (arbitrary radii) disk
graphs is considerably harder, and was only recently shown to have a PTAS
using a sophisticated hierarchical grid-shifting technique [3].
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1.4 Our Results

The paper presents exact and approximate solutions for the above problems.
We begin in Section 2 by developing a variant of the slab technique of [7] which
is suitable for handling maximum independent set and maximum covering set
problems. We then apply our method for deriving an 2O(

√
m logm) time exact

solution for the MWIS problem.
Using variations of our method it is possible to obtain similar results for a

number of grid-based problems. In particular, the grid-based MWISg problem
can be given a slightly better 2O(

√
m) time solution, and a similar solution exists

for the grid-based MWCSg problem. The grid-based problems MSCg and MPg
enjoy 2O(

√
m+logn) time exact solutions. The details of these results are also

deferred to the full paper. In the full paper we also provide a PTAS for the
grid-based MPg problem, using a grid-shifting strategy similar to that of [5].
We then turn to the variable radii model. In section 3 we present a PTAS

for the MSRC problem (with no interference constraints), based on a modified
variant of the hierarchical grid-shifting technique of [3].
Note that all our results can be extended for the case where each client has

a certain weight (say, representing the fee paid by this client or the significance
of providing it with service), and the optimization targets refer to the sum of
weights of the supplied clients instead of merely their number.
While our focus is on the natural 2-dimensional variants of the above prob-

lems, we also studied their 1-dimensional variants. Our polynomial time solutions
for the 1-dimensionalMWIS,MWCS,MSC andMP problems and theMSRC
problems with and without interference constraints are deferred to the full paper.

2 Maximization Problems on Fixed Radius Disks

In this section we develop a variant of the slab method of [7] suitable for han-
dling maximum independent set and maximum covering set problems, and then
apply this method for giving a 2Õ(

√
m) exact solution for a number of problems,

including MWIS, MWCSg, MSCg and MPg.
Let us first describe our variant of the slab method. Subdivide the plane by

introducing a grid Gδ of lines at distance δ = 2R of each other, aligned so that
the point (0, 0) is a grid point. The vth vertical line, −∞ < v <∞, is at x = v ·δ;
the index v will be used to identify the line. The same goes for horizontal line h.
Each vertical line v defines a vertical slab denoted Slab(v), which is the strip

v ·δ ≤ x < (v+1)·δ. Similarly, Slab(h) is the horizontal strip h·δ ≤ y < (h+1)·δ.
These vertical and horizontal slabs induce δ× δ squares which are open on their
right and upper sides and will be referred to as grid-squares. A grid-square is
called occupied if it contains a server, otherwise it is called empty. We use these
definitions for vertical and horizontal slabs as well.
Without loss of generality, all the points of the problem instance are contained

in a rectangle with boundaries v1, v2, h1, h2 whose sides are each no larger than
m ·δ (otherwise there must be an empty slab which divides the problem instance
into two independent problems each contained in a smaller rectangle, and in this
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case each of the rectangles could be dealt with separately). Let M denote the
number of occupied squares contained in this rectangle.
For a vertical slab Slab(v), v1 ≤ v < v2, denote by In(v) the set of occupied

grid-squares contained in Slab(v), by Left(v) the set of occupied grid-squares to
the left of Slab(v) and by Right(v) the set of occupied grid-squares to the right
of Slab(v). For a horizontal slab Slab(h) define In(h), Above(h) and Below(h)
in a similar way. By the above definitions, for every v and h,

|Left(v)|+|In(v)|+|Right(v)| =M and |Below(h)|+|In(h)|+|Above(h)| =M.

Definition: For any input instance X,Y , a dividing slab is either a vertical
slab Slab(v), v1 ≤ v < v2 such that (1) |In(v)| ≤ 5

√
M , (2) |Left(v)| ≤ 4

5 ·M ,
and (3) |Right(v)| ≤ 4

5 ·M , or a horizontal slab Slab(h), h1 ≤ h < h2 such that
(1) |In(h)| ≤ 5√M , (2) |Above(h)| ≤ 4

5 ·M , and (3) |Below(h)| ≤ 4
5 ·M .

Lemma 1. For any input instance X,Y , there exists a dividing slab.

Proof. Let v′
1 be the smallest vertical line index such that |Left(v′

1)| > M/5 and
let v′

2 be the largest vertical line index such that |Right(v′
2−1)| > M/5. Similarly,

let h′
1 be the smallest horizontal line index such that |Below(h′

1)| > M/5 and let
h′
2 be the largest horizontal line index such that |Above(h′

2 − 1)| > M/5. Note
that |Left(v′

1 − 1)| ≤M/5 by choice of v′
1, hence |Right(v′

1 − 2)| > 4M/5. This
implies that v′

1− 1 ≤ v′
2, since otherwise v′

1− 1 should have been chosen instead
of v′

2. Moreover, each of the vertical slabs in LV = {Slab(v) | v′
1 − 1 ≤ v ≤ v′

2}
satisfies |Left(v)| ≤ 4M/5 and |Right(v)| ≤ 4M/5. Analogous statements apply
for horizontal slabs in LH = {Slab(h) | h′

1−1 ≤ h ≤ h′
2} with Above and Below.

We now show that at least one of the slabs in LV ∪LH also satisfies the first
condition of a dividing slab. LetR be the rectangle bounded by v′

1−1, v′
2+1, h

′
1−

1, h′
2 +1, and let M ′ be the number of occupied grid-squares in R. Note that R

contains all the occupied rectangles save those in Left(v′
1 − 1), Right(v′

2 + 1),
Below(h′

1 − 1) and Above(h′
2 + 1), whose total number is at most 4M/5, and

therefore M ′ ≥M/5.
There are lv = |LV | = v′

2 − v′
1 + 2 vertical slabs and lh = |LH | = h′

2 − h′
1 + 2

horizontal slabs in the rectangle R. We now observe that lv · lh < M ′ by the
definition of M ′, and therefore either lv ≥

√
M ′ or lh ≥

√
M ′. Without loss of

generality suppose lv ≥
√

M ′. As M ′ ≥M/5, we conclude that lv ≥
√

M/5.
If |In(v)| > 5 · √M for each vertical slabs Slab(v) ∈ LV , then we get

more than M occupied grid-squares altogether. Therefore there must be a slab
Slab(v) ∈ LV for which |In(v)| ≤ 5 ·

√
M .

The above lemma suggests a generic recursive procedure which is at the heart
of a number of algorithms for solving some geometric optimization problems. We
next discuss the resulting algorithm for theMWIS problem and state the results
for the grid-based version of the other problems.
Let X(v1,v2,h1,h2) and Y(v′

1,v
′
2,h

′
1,h

′
2) denote the sets of servers and clients re-

stricted to the area bounded by the lines v1, v2, h1, h2 and v′
1, v

′
2, h

′
1, h

′
2, respec-

tively. Let MWIS[X(v1,v2,h1,h2), Y(v1,v2,h1,h2)] denote the problem restricted to
those servers and clients.
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The procedure Optimize(X,Y ) recursively finds an optimal set of servers.
The bottom level of the recursion is when X is contained in a single disk square,
In this case the procedure computes an optimal solution by an exhaustive search,
going through all possible choices of three servers in the square.(Note that choos-
ing four servers inside a single δ×δ grid-square will necessarily cause theirR-disks
to intersect, even if they are symmetrically located on the four corners.) Each
step starts with the procedure identifying a dividing slab Slab(v) or Slab(h).
This is done by exhaustively examining each slab. The procedure then cycles
over all local (not necessarily optimal) partial solutions Xt of the local prob-
lem where the servers are contained in squares of In(v) or In(h), respectively.
Each such partial solution Xt is composed of all possible choices of up to three
servers inside each grid-square of In(v) or In(h). For each such partial solution
Xt, the procedure then creates the left and right (resp., above and below) sub-
problems, in which the servers are restricted to squares of Left(v) and Right(v)
(resp., Below(h) and Above(h)), while deleting from these subproblems the set of
servers Neighbors(Xt) whose disks intersect disks of Xt. We now solve the left
and right (resp., below and above) subproblems recursively. The procedure stops
when remaining with a single square, in which case it finds a local solution by
exhaustively searching all O(m3) possibilities of choosing a disjoint set of disks
with servers inside the grid-square.

Procedure Optimize(X, Y )

If X is contained in a single grid-square
then exhaustively compute and return an optimal solution.

Find either a vertical dividing slab Slab(v) or a horizontal dividing slab Slab(h).
If a vertical dividing slab Slab(v) is found then do:

For each local solution Xt of MWIS[X(v,v+1,h1,h2), Y ] do:
Xl ← Optimize(X(v1,v,h1,h2) − Neighbors(Xt), Y(v1,v+1,h1,h2))
Xr ← Optimize(X(v+1,v2,h1,h2) − Neighbors(Xt), Y(v,v2,h1,h2))
XP ← Xt ∪Xl ∪Xr

Else do:
For each local solution Xt of MWIS[X(v1,v2,h,h+1), Y ] do:

Xl ← Optimize(X(v1,v2,h1,h) − Neighbors(Xt), Y(v1,v2,h1,h+1))
Xr ← Optimize(X(v1,v2,h+1,h2) − Neighbors(Xt), Y(v1,v2,h,h2))
XP ← Xt ∪Xl ∪Xr

Return XP of maximum weight among all the Xts.

To analyze the algorithm, first note that after deleting the neighbors of Xt

we are left with two independent subproblems to be solved recursively. This is
because the dividing slab is wide enough so that the servers in the two subprob-
lems never cover the same clients. By using an efficient data structure we can
find a dividing slab in O(m logm) time.
By Lemma 1 and the fact that no more than three servers can be chosen inside

each grid-square, there are no more than
(∑3

i=1

(
m
i

))5√
M

≤ m15
√
m/2 possible

solutions Xt with servers inside the squares of the slab. For each Xt, the process
of deleting its neighbors takes at most O(m) time. Thus for M ≥ 2 we have the
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recurrence T (M) ≤ m logm+(2T (4M/5)+m) ·m15
√
M/2, so after the kth iter-

ation T (M) < m15
√
M
∑k−1

i=0

√
4/5

i

· T
(( 4

5

)k ·M
)
+
∑k−1
i=0 m

15
√
M ·
∑i

j=0

√
4/5

j
+2.

The problem on a single grid-square requires choosing at most three servers so
T (1) = O(m3), and as

∑∞
i=0

√
4/5

i
= 1

1−
√

4/5
< 10 we have that k = log5/4 M .

So as M ≤ m, we have T (M) = 2O(
√
m logm).

Theorem 1. The MWIS problem has an 2O(
√
m logm) time exact algorithm.

In the full paper we show the following.

Theorem 2.

1. The MWISg and MWCSg problems have an 2O(
√
m) time exact algorithm.

2. The MSCg and MPg problems have an 2O(
√
m+log n) time exact algorithm.

3. The MPg problem admits a PTAS which for every k ≥ 3 guarantees an
approximation ratio of 1 − 2/k with time complexity O(k2 ·m · 2((k−1)δ)2).
Similar claims hold also for the MWISg, MWCSg and MSC problems.

3 Minimum Sum of Radii Problems

In this section we turn to the variable radii model, and consider the MSRC
problem. Let D be the set of n · m disks determined by the sets X and Y as
follows. For each 1 ≤ p ≤ m and 1 ≤ q ≤ n, the client yq ∈ Y and the server
xp ∈ X determine a disk Dq

p ∈ D of radius Rq
p = dist(xp, yq) centered at xp. A

weight ωqp = Rq
p is associated with each disk Dq

p, and ω(D′) =
∑
Dq

p∈D′ ωqp is the
total weight for a set of disks D′ ⊆ D. Let δqp = 2R

q
p be the diameter of disk Dq

p

and let δmax and δmin, respectively, be the maximal and minimal values of δqp
for all possible p and q.
A set of disks D′ ⊆ D is called a cover for a set of clients Y ′ ⊆ Y if each

client yp ∈ Y ′ is contained in some disk of D′. The problem is to find a cover
D′ ⊆ D for Y of minimum total weight ω(D′). We now present a polynomial
time algorithm that approximates the problem with ratio 1 + 6

k for every given
integer k > 1.
First, the disks in D are scaled such that δmax = 1. Given k > 1, Let

" = �lgk+1(
1

δmin
)�. The set D is partitioned into " + 1 levels s.t. for 0 ≤ j ≤ "

the disk Dq
p is on level j if and only if its diameter δqp satisfies (k + 1)

−(j+1) <

δqp ≤ (k + 1)−j . Disks of level j are called j-disks.
Analogously, we subdivide the plane by introducing a hierarchy of increas-

ingly finer grids, s.t. each level 0 ≤ j ≤ " imposes a grid Gj of lines at distance
(k + 1)−j of each other, aligned so there is a grid point at (0, 0). We refer to
lines of the level j grid Gj as j-lines. A vertical j-line is of index v, for integer
−∞ < v <∞, if its x coordinate is x = v(k + 1)−j ; a similar definition applies
to horizontal j-lines.
On top of each grid Gj of this hierarchy, we now construct a coarser super-

grid SGj(v, h) for every 0 ≤ v, h < k as follows. For every 0 ≤ v < k, let VLj(v)
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denote the collection of vertical j-lines of Gj whose index modulo k equals v.
Similarly, for every 0 ≤ h < k, let HLj(h) denote the collection of horizontal
j-lines of Gj whose index modulo k equals h. Now the super-grid SGj(v, h), for
0 ≤ v, h < k, consists of the line collection VLj(v) ∪ HLj(h).
For fixed (v, h) and a certain level 0 ≤ j ≤ ", the lines of SGj(v, h) subdivide

the plane into disjoint squares of side k · (k+1)−j , called j-squares. A j-square J
is called relevant if D contains a j-disk that covers a client in J . For a relevant
j-square J and a relevant j′-square J ′ where j′ > j, J ′ is called a child of J
(denoted J ′ ≺ J) if it is contained in J and there is no “intermediate” relevant
j′′-square s.t. j < j′′ < j′ and J ′ ⊂ J ′′ ⊂ J .
For a fixed choice of v, h and level j, for each j-disk Dq

p ∈ D and relevant
j-square J imposed by v and h, we define the disk-sector Sqp(J) induced by Dq

p

and J as their intersection. The disk sector Sqp(J) is then called relevant if it
contains a client of J . Note that each disk can induce up to four relevant disk
sectors.
Also, for each choice of v, h and level j, let Dj(v, h) be the set of relevant

disk-sectors which are induced by j − disks and j − squares of SGj(v, h). For
given v, h, let D(v, h) = ⋃0≤j≤�Dj(v, h). This set is made of disk-sectors that
are each completely contained in a relevant square on their level. Note that a
disk-sector can be a full disk if the whole disk is contained in a square of the same
level. The weight of each disk-sector is defined to be the radius of the original
disk and the level and center of the disk-sector remain the same as well.
Two disks Dq1

p1 and Dq2
p2 are said to be semi-disjoint if Dq1

p1 does not con-
tain xp2 and Dq2

p2 does not contain xp1 . A subset of disk-sectors S ∈ D(v, h)
is then said to be semi-disjoint if Dq1

p1 and Dq2
p2 are semi-disjoint for every

Sq1p1(J1), S
q2
p2(J2) ∈ S.

Let OPT (D(v, h)) be the optimal value of a cover for Y that can be obtained
when restricted to the elements of D(v, h). We then have the following lemma.

Lemma 2. At least one pair (v, h), for some 0 ≤ v, h < k, satisfies
OPT (D(v, h)) ≤ (1 + 6/k) ·OPT (D).
Proof. Let C denote the optimal cover by the original disks, i.e., such that
OPT (D) = ω(C). For each choice of v and h, let C(v, h) be the set of rele-
vant disk sectors of C as mentioned above. Because the spacing between j-lines
is no smaller than the diameter of a j-disk, it follows that if a j-disk of C was
cut by a vertical j-line in SGj(v, h) then for all other choices of v′ �= v this disk
will not be cut by any vertical j-line of VLj(v′). Also, if a j-disk of C was cut by
a horizontal j-line in SGj(v, h) then for all other choices of h′ �= h this disk will
not be cut by any horizontal j-line of HLj(h′).
For 0 ≤ v < k and a level j, let Cvj be the set of all j-disks in C that intersect

a line of VLj(v), and let Cv =
⋃
j Cvj . Note that C =

⋃
v Cv and by the above

argument the sets Cv for 0 ≤ v < k are disjoint, so ω(C) =∑v ω(Cv). Therefore
the weight of at least one of these sets must be at most a 1

k -fraction of the weight
of C, i.e., ω(Cv) ≤ ω(C)/k for some 0 ≤ v ≤ k. Similarly, letting Chj be the set
of all j-disks in C that intersect a line of HLj(h) and letting Ch =

⋃
j Chj , we get

that ω(Ch) ≤ ω(C)/k for some 0 ≤ h < k. Hence for these v and h, ω(Cv ∪Ch) ≤
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2
kω(C). Each disk Dq

p of Cv ∪ Ch induces up to four disk-sectors in C(v, h) with
weight ω(Dq

p). Thus when calculating ω(C(v, h)), we count the weight of each
disk of C while possibly adding the weight of the disks which belong to Cv ∪ Ch
at most three times more. We therefore have ω(C(v, h)) ≤ (1 + 6

k ) · ω(C).
For fixed v, h and j-square J we use the following terminology. For any subset

S ⊆ D(v, h) and integers 0 ≤ a ≤ b ≤ k, SJ[a,b] is the set of all sectors in S of
levels in the range [a, b] that contain a client of J . If a = b we write simply SJa .
A full partial cover of J is a collection F of semi-disjoint disk-sectors of levels in
the range [0, j] that contain a client of J such that F is a cover for the clients of
J that cannot be covered by any of the disk-sectors of levels in [j+1, l]. A partial
cover P of J is a set of disk-sectors FJ[0,j−1] for some full-partial cover F of J .
For a partial-cover P of J , a (J,P)-completion is a collection C of disk-sectors of
levels in the range [j, l] that contain a client of J such that C ∪ P is a cover for
the clients of J and P ∪ CJj is a full partial cover for the clients of J .

Lemma 3. For a j-square J there exists a constant γ (depending only on k),
such that for every full-partial cover F of J , |F| ≤ γ.

Proof. The disk sectors of F are induced by J or by a square containing J , so
no two sectors are induced by the same disk. Therefore, letting Q′ be the set of
(semi-disjoint) disks inducing the sectors of F we have |F| ≤ |Q′|. Consequently,
it suffices to show that there exists a constant γ such that for a set Q of semi-
disjoint disks of levels in the range [0, j] that intersect J , |Q| ≤ γ.
LetQ be such a set of disks and let ψ = (k+1)−j and d = ψ

2·(k+1) . Let dmin(Q)
denote the minimal distance between the centers of Q. The semi-disjointness
property of Q implies that dmin(Q) ≥ d. Let J ′ be a square consisting of J and
a strip of width ψ surrounding J . Let QJ′

be the set of disks in Q whose centers
are contained in J ′ and let QJ′ = Q−QJ′

.
To bound |QJ′ |, subdivide J ′ into a grid GH composed of lines at distance

d/
√
2 of each other (the last strip will be narrower, as the side length of J ′ is

not an integral multiple of d/
√
2). As dmin(Q) ≥ d, each square of the grid GH

contains at most one center of a disk of QJ′
, hence the size of QJ′

is bounded
by the number of grid squares, i.e., |QJ′ | ≤ (k+2)ψ2

d2/2 = O(k4).

It remains to bound the size of QJ′ . Observe that this set consists of disks of
levels smaller than j, because the centers of all disks of level j must fall inside
J ′. Consider the grid Gj and ignore all the j-lines that do not touch the square
J . To this grid add two lines which determine the diagonals of J . These lines
impose a subdivision of IR2 − J ′ into 4(k + 2) regions. The proof is completed
upon verifying that each part of the subdivision can contain at most one center
of the disks of QJ′ , and hence |QJ′ | ≤ 4(k + 2).
The algorithm for computing the table T uses the procedure Proc(J,F)

for each j-square J and full partial cover F . This procedure looks up the table
entries T (J ′,FJ′

[0,j]) of all children J ′ of J (which were already computed) and
outputs their union U .
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Procedure Proc is used within the procedure Cons(T ) for constructing the
table T . Procedure Cons operates on the levels j from l to 0. For each j, the
procedure looks at each relevant j-square J and each full partial cover F of
J , computes P = FJ[0,j−1] and then uses Procedure Proc to compute C =
Proc(J,F) ∪ FJj . Finally, it updates T (J,P) to C provided this entry was still
undefined or its previous weight was higher than ω(C).
The main algorithm operates as follows. For each choice of v, h, Let R be the

set of relevant squares and R0 the set of relevant squares without a parent. Then
the algorithm outputs the minimum of ω(

⋃
J∈R0

T (J, ∅)) over all pairs v, h.
In the analysis, deferred to the full paper, we prove that for each relevant

j-square J and partial cover P, the table entry T (J,P) is a minimum weight
(J,P)-completion, and that for a minimum-weight cover M ⊆ D(v, h) for Y
and a relevant j-square J , MJ

[0,j] is semi-disjoint. Verifying that the algorithm
is polynomial in the input size, we have the following result.

Theorem 3. The MSRC problem admits a PTAS.
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A Factor-2 Approximation for Labeling Points
with Maximum Sliding Labels�
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Abstract. In this paper we present a simple approximation algorithm
for the following NP-hard map labeling problem: Given a set S of n
distinct sites in the plane, one needs to place at each site an axis-parallel
sliding square of maximum possible size (i.e., a site can be anywhere on
the boundary of its labeling square) such that no two squares overlap and
all the squares have the same size. By exploiting the geometric properties
of the problem, we reduce a potential 4SAT problem to a 2SAT problem.
We obtain a factor-2 approximation which runs in O(n2 log n) time using
discrete labels. This greatly improves the previous factor of 4.

1 Introduction

Map labeling is an old art in cartography and finds new applications in recent
years in GIS, graphics and graph drawing [1,4,5,12,14,15,19,17,18,21,25,26,27].
About a decade ago, an interesting relation between 2SAT and map labeling
was found by Formann and Wagner [12]. This finding leads to a series of exact
and approximate solutions for different map labeling problems; among them, the
first factor-2 approximation for labeling points with maximum discrete squares
[12], the first polynomial time solution for labeling a set of disjoint rectilinear
line segments [21], a factor-3.6 approximation for labeling points with maximum
circles [7], and a factor-2 approximation for labeling points with maximum square
pairs [22]. (Recently, we obtain a very simple factor-3 approximation for labeling
points with maximum circles [23].)

The idea of using 2SAT in map labeling is very simple. Suppose that we have
two points p, q and somehow we want to label p, q using two candidate labels
each, one upper and one lower (Figure 1), we need to pick one label for each
point. Assume that we use a binary variable X (Y ) to encode the labeling of p
(q) in Figure 1, i.e., if we pick the upper label for p (q) then X = 1 (Y = 1) else
X = 0 (Y = 0), then in the example of Figure 1 we need to satisfy the following
formula ¬(X ∧ Y ) ∧ ¬(¬X ∧ Y ) ∧ ¬(¬X ∧ ¬Y ), where ¬(u ∧ v) means ‘we do
not want u, v to be true at the same time’. Simplifying the above formula, we
� This research is partially supported by Hong Kong RGC CERG grant Ci-

tyU1103/99E, NSF CARGO grant DMS-0138065 and a MONTS grant.
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have (¬X ∨ ¬Y ) ∧ (X ∨ ¬Y ) ∧ (X ∨ Y ). It is easy to find a truth assignment
X = 1, Y = 0 for this 2SAT formula, which implies that we should choose the
upper label for p and lower label for q.

Yp q

X

Fig. 1. An example of using 2SAT in map labeling.

At this point let us say a few words about the discrete/sliding models used
in map labeling. In [12], for each site one has 4 candidate labels (axis-parallel
squares each of which has a vertex anchored at the site) and the problem is to
select one out of the 4 candidates for each site so as to maximize the labels’ size
yet make sure that no two labels intersect. (We simply call each of the 4 candidate
labels a discrete label.) In the past several years more generalized models have
been proposed. The basic idea is to allow each site to have an infinite number of
possible candidate labels (see [8,13,16,24,26]). This model is more natural than
the previous discrete model (like the one in [12]) and has been coined as the
sliding model in [16]. Certainly, designing efficient algorithms for map labeling
under the sliding model becomes a new challenge.

In this paper, we investigate the following map labeling problem under the
sliding model. Given a set S of n sites in the plane, label sites in S with maximum
uniform axis-parallel squares, namely how to place n axis-parallel squares of the
same size such that no two squares intersect except at their boundary; each square
is associated with a point pi in S such that pi lies on the boundary of that square;
and the size of these uniform squares is maximum.

In [16] van Kreveld et al. proved the NP-hardness of this problem, i.e., it is
NP-hard to decide whether a set of points can all be labeled with axis-parallel
unit squares under the sliding model. A careful look at their proof results in a
better hardness-result, i.e., it is NP-hard to decide whether a set of points can all
be labeled with axis-parallel squares of size greater than 0.75. (Notice that van
Kreveld et al. tried to maximize the number of sites labeled instead of the size of
the labels in [16].) Clearly, it is meaningful to study approximation algorithms
for this problem. In [27], two approximation algorithms, with factor-5

√
2 and

factor-4 respectively, were proposed.
Our idea is as follows. We first compute the minimum diameter D5,∞(S), un-

der the L∞ metric, of a 5-subset of S and use it to bound the optimal solution l∗.
We then design a decision procedure, which, for L ≤ D5,∞(S), decides whether
a labeling of S using discrete labels of size L/2 exists or not and if L ≤ l∗ then
the answer is always yes. This can be done as follows. We identify all the feasible
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regions (to be defined formally) to place a label of size L for pi. (There are at
most 4 such feasible regions for pi.) We prove that if we shrink all of the optimal
sliding labels by a half then we can label points in S with discrete labels at least
half of the optimal size at 2 stages: some of them can be labeled at a unique
discrete position and will not interact with other labels, others can be labeled
at one of the 2 discrete positions such that either one of the candidates of such
a point pi is in the optimal label for pi or one of the candidates of pi intersects
at most one candidate of another point pj .

Our detailed algorithm again uses 2SAT. For each point pi, let Ci(L) be the
square that has pi as its center and is of edge length L ≤ D5,∞(S). We thus
have an O(n)-size intersection graph G(L) for all Ci(L), 1 ≤ i ≤ n. (G(L) can be
constructed in O(n log n) time.) Consequently, for fixed L whether we can label
S using sliding labels of size at least L/2 can be determined in O(n) time and
moreover; if L ≤ l∗ then the answer is always positive and the corresponding
approximate labeling can be determined also in O(n) time. With this decision
procedure, we can either have an O(n2 log n) time approximation.

2 Preliminaries

In this section we make some necessary definitions related to our algorithm.
The decision version of the MLUS-AP problem is defined as follows:

Instance: Given a set S of points (sites) p1, p2, ..., pn in the plane, a real
number l > 0.
Problem: Does there exist a set of n uniform axis-parallel squares of edge
length l, each of which is placed at each input site pi ∈ S such that no two
squares intersect, a site can be anywhere on the boundary of its labeling square
and no site is contained in any square.

This problem is NP-hard [16]. From now on we will focus on the maximiza-
tion version of this problem (i.e., to compute/approximate the optimal solution
with size l∗). We say that an approximation algorithm for a (maximization) op-
timization problem Π provides a performance guarantee of ρ if for every instance
I of Π, the solution value returned by the approximation algorithm is at least
1/ρ of the optimal value for I. (For the simplicity of description, we simply say
that this is a factor-ρ approximation algorithm for Π.)

If we allow a small number of sites to be unlabeled then it is possible to
obtain a bicriteria polynomial time approximation scheme (PTAS) for this
problem [8]. The best known approximation factor is 4 and the running time
of the corresponding algorithm is O(n log n) [27]. In this paper we present an
O(n2 log n) time, factor-2 approximation algorithm for this problem.

Let k ≥ 2 be an integer. Given a set S of k points (sites) in the plane, the
k-diameter of S under the L∞-metric is defined as the maximum L∞-distance
between any two points in S. Given a set S of at least k sites in the plane, the
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min-k-diameter of S under the L∞ metric, denoted as Dk,∞(S), is the minimum
k-diameter over all possible subsets of S of size k.

In the following section we present an approximation solution for MLUS-
AP. We use D5,∞(S), the min-5-diameter of the set S under L∞, to bound
the optimal solution l∗. Given a set of n sites S, D5,∞(S) can be computed in
O(n log n) time [6,10].

3 Algorithm

In this section we present the details of an approximation algorithm for the
MLUS-AP problem. Let l∗ denote the size of each square in the optimal solution
of the problem MLUS-AP. For any two points pi, pj ∈ S, let d∞(pi, pj) denote
the L∞-distance between them. We first refer the following fundamental lemma
in [27].

L

pi pk

2
pl

pm

pj L/2

L/2

s (i)s (i)

s (i) s (i)

2

3

p i

C  (L)i

4

1

v1

v

Fig. 2. Maximal feasible regions for pi.

Lemma 1. If |S| ≤ 4, then l∗ is unbounded and if |S| ≥ 5, then l∗ ≤ D5,∞(S).

From now on we assume that |S| ≥ 5. Let L ≤ D5,∞(S) and let Ci(L) denote
the open L∞-circle centered at point pi ∈ S with radius L/2. Clearly, the circle
Ci(L) contains at most four points from the input set S, including its center.
(Otherwise, the five points inside Ci(L) would have a diameter smaller than
L ≤ D5,∞(S).) We partition each circle Ci(L) into 4 L∞-circles with radius
L/4, which are geometrically squares (see Figure 2). We loosely call them sub-
squares s1(i), s2(i), s3(i), s4(i) of Ci(L) which are corresponding to the quadrants
originated at pi in which they lie in. When labeling S with labels of size L/2, if
a sub-square of Ci(L) has no intersection with any other label then we call such
a sub-square free. Clearly, a free sub-square of Ci(L) can be a discrete label for
pi.
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We define the maximal feasible region for labeling pi ∈ S using a sliding label
of size L as follows. (If L ≤ l∗ this definition is always valid.) A maximal feasible
region for a site pi ∈ S whose corresponding L∞-circle Ci(L) contains at most
one other point pj in S is the set of all vectors originated at pi which pass through
the center of a sliding label of size L for pi. Each such vector corresponds to a
maximal feasible box with length and height at least L, e.g., in Figure 2 v1 is
corresponding to the box through pi and pk. Clearly a maximal feasible region
for pi is determined by two points in S, e.g., pj and pk in Figure 2. We call pj , pk
the anchor points of this region. (Note that there are degenerate cases, e.g., in
Figure 2 the feasible region for pi anchored by pl, pm contains only one vector
v2.)

In [7] it is shown that in the case of labeling points with uniform approximate
circles, every point has at most two maximal feasible regions. This makes it pos-
sible to apply 2SAT directly to obtain a factor-3.6 approximation [7]. However,
in our case a point pi ∈ S can have four maximal feasible regions; therefore, a
different method has to be used.

Given L ≤ D5,∞(S) we compute the number of free sub-squares in Ci(L)
and the maximal feasible regions for every point pi ∈ S. (This can be done by
computing the points which are within D5,∞(S) distance to pi. By the property
of D5,∞(S), for each pi we have at most 24 such points and they can be computed
in O(n log n) time using the algorithms in [10,6]. If some point pi has no maximal
feasible region then L > l∗ and we have to search for a smaller L.) If a point pi
has at most two maximal regions or if Ci(L) has at most two non-empty sub-
squares then we can always choose at most two discrete candidates of size L/2
for pi such that at least one of the candidate is contained in an optimal label for
pi with fixed size L.

In a solution which we can label all input sites with labels of size L ≤ l∗,
we call the corresponding label for pi the optimal label for pi (with size L). The
nontrivial part of our algorithm, which is different from [7], is as follows. If pi
has more than two maximal feasible regions, then we can still pick up a pair
of discrete labels with size L/2 for pi such that either one of them appears in
the optimal label for pi with size L, or any one of them intersects at most one
candidate of another point pj . This reduces a potential 4SAT problem to a 2SAT
problem; in other words, if we simply list all four discrete labels of size L/2 for
pi then we would have four candidates for each pi [27]. The following lemma
shows the correctness of the above method.

Lemma 2. Let pi have more than two maximal feasible regions and let L ≤ l∗.
We can compute two discrete candidate labels with size L/2, c1(pi) and c2(pi),
for pi such that either one of c1(pi) and c2(pi) is contained in the optimal label
for pi with size L or c1(pi) (c2(pi)) intersects at most one candidate of another
point pj.

Proof: We refer to Figure 3, in which pi has three maximal feasible regions
and Figure 3 (a) shows the points around pi. By the definition of a maximal
feasible region, we can have at most four of them and each region can contribute
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Fig. 3. Illustration for the proof of Lemma 2.

a square of size L. This implies that we must have two maximal feasible boxes
B1, B2 which do not intersect (Figure 3 (b)). Although we do not know what
direction the optimal label for pi actually goes — this is determined by the whole
set of points, not just those local points of pi, we claim that either one of the
two diagonal sub-squares of Ci(L) which are completely contained in B1 ∪B2 is
contained in the optimal label of pi with size L or one of the candidates of pi
intersects at most one candidate of another point which shares the same maximal
feasible box with pi (e.g., a candidate of pl in Figure 3). If neither of these two
conditions is true then either we cannot label pi with a label of size L or some
point is contained in a maximal feasible box of pi, both leads to a contradiction.

�

In the above lemma, note that once having all of the maximal feasible boxes
(regions) of pi we can easily construct two such labels with size L/2, c1(pi) and
c2(pi) (which can be encoded with a binary variable), in constant time. The
above lemma, though simple, has a strong implication. We label a point pi with
one of its selected candidates, which might force one of its neighboring points to
be labeled using a unique candidate. If a candidate of pi is inside the optimal
label of pi (with twice of the size) then certainly this candidate can intersect at
most one candidate of any other point pj . Otherwise, i.e., when pi has 4 maximal
feasible regions and we make a wrong decision in choosing pi’s candidates, we
still have this property. Of course, we might still have a problem: When pi
has 4 maximal feasible regions and we fail to choose the right candidates for
pi, there might be two cycles through pi’ candidates in the intersection graph
G′(L) of all candidates of input sites. (The vertices in G′(L) are candidates of
input sites, there is an edge between cy(pi) and cz(pj) if cy(pi) intersects cz(pj),
y, z ∈ {1, 2}.) This can be handled with the following lemma.

Lemma 3. Let pi have four maximal feasible regions and let L ≤ l∗. Let the two
discrete candidate labels for pi with size L/2 be s1(i) and s3(i) (s2(i) and s4(i)).
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In G′(L), if we have two cycles associated with the candidates of pi, then we can
update the candidates of pi as s2(i) and s4(i) (s1(i) and s3(i)) to eliminate both
of the cycles.

Therefore, for the 2SAT formula we eventually construct, if L ≤ l∗, every
literal X can only intersect one of Y and ¬Y ; moreover, there is at most one cycle
associated with X and ¬X. Clearly, such a 2SAT formula is always satisfiable.
The following lemma contains other details we have not described so far and is
the basis for our approximation algorithm. For each input site we only need to
consider at most two discrete labels as its labeling candidates! This naturally
connects this problem, for one more time, to 2SAT.

Lemma 4. For any L ≤ l∗, we can label S using discrete labels of size at least
L/2; moreover, for each site pi ∈ S we only need to consider at most two candi-
dates.
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Fig. 4. Illustration for the proof of Lemma 3.

Proof: It is easy to see that given a labeling of S with sliding labels of size
L, we can always label S using discrete labels of size L/2 for every pi ∈ S (i.e.,
shrinking all sliding labels by a half to a discrete label with size L/2). In the
following, we exploit the geometric properties of the problem to show that to
actually label pi using a label of size L/2 we only need to consider at most two
discrete candidates for every pi.

First of all, remember that Ci(L) contains at most four sites in S including
its center pi. If all four sites are within the L∞-circle Ci(L/2) then we can label
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the 4 sites in a unique way using discrete labels of size L/2 without any conflict
with other labels (Figure 4 (a)).

Now assume that the above situations have been handled. Because Ci(L)
has 4 sub-squares and it contains only 3 other sites different from pi; by the
Pigeonhole Principle, one of the sub-squares of Ci(L) must be empty of other
sites in S. If exactly one of the sub-squares of Ci(L) is empty (e.g., the upper-left
sub-square s2(i) in Figure 4 (b)), then it must be free as any label with size L
for pi must contain this sub-square. In this case, we can simply label pi with
s2(i) as the discrete label.

If exactly two of the sub-squares of Ci(L) are empty (e.g., the upper-left and
bottom-right sub-squares s2(i), s4(i) in Figure 4 (c)), then one of them must
be free. We therefore use two literals Xi(L) and ¬Xi(L) to encode these two
sub-squares. (If two adjacent sub-squares are empty, we can handle the situation
similarly.)

If either three or four of the sub-squares of Ci(L) are empty (e.g., the case
in Figure 4 (d)), then we identify the maximal feasible regions around pi and by
definition if L ≤ l∗ then such a region must exist.

If pi has three maximal feasible regions, then we can handle this case using
Lemma 2 (Figure 4 (d)). If all four sub-squares of Ci(L) are empty and if pi
has four maximal regions, then we can handle this case using the algorithm
summarized in Lemma 2 and Lemma 3. 
�

We now present our decision procedure which tests whether a labeling of S
using squares of size L/2, L ≤ D5,∞, under the discrete model exists or not. First
we consider the intersection graph G(L) of all Ci(L)’s (i.e., Ci(L), 1 ≤ i ≤ n,
are the vertices for G(L) and there is an edge between Ci(L), Cj(L) if they
intersect.) This graph G(L) has two properties: (1) G(L) is planar; and (2)
G(L) has maximum vertex degree 7.

We can construct the graph G(L) in O(n log n) time using standard algo-
rithm, like plane sweep [20]. (G′(L) can be computed from G(L) in O(n) time.)
If the sub-square corresponding to the literal Xi(L) intersects another sub-square
corresponding to the literal Xj(L), then we will build a 2SAT clause

¬(Xi(L) ∧Xj(L)) = (¬Xi(L) ∨ ¬Xj(L)).

As G(L) is of linear size the eventual 2SAT formula contains at most O(n)
such clauses. Following Lemma 4, if L ≤ l∗ then this 2SAT formula is always
satisfiable and finding a truth assignment can be done in O(n) time [11]. We
thus have the following lemma.

Lemma 5. Deciding whether a labeling of S using discrete labels of size L/2
exists, L ≤ D5,∞(S), can be done in O(n) time.

By runing a binary search on L ∈ (0, D5,∞(S)] and stop when the eventual
search interval is small enough, say δ, we can compute a labeling of S using
discrete labels of size at least l∗/(2 + δ) in O(n log n + n log D5,∞(S)

δ ) time. We
thus have the following theorem.
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Theorem 1. There is an O(n log n+n log D5,∞(S)
δ ) time, factor-(2+ δ) approx-

imation for MLUS-AP.

Notice that the running time of this algorithm is not fully polynomial. Nev-
ertheless, it is conceptually simple. In practice, we could make the algorithm
completely practical by using a heuristic algorithm to approximate D5,∞(S). If
we want to have a fully polynomial time approximation algorithm, we need to
identify the possible candidates for l∗ which is proved in the following lemma.

Lemma 6. The candidates for l∗ include d∞(pi, pj)/K, 1 ≤ K ≤ n−1, provided
that they are bounded above by D5,∞(S).

Lemma 6 implies that the number of candidates for l∗ is O(n3). If we compute
them out explicitly, sort them and run a binary search of this list (using the
decision procedure summarized in Lemma 5), then we would have an O(n3 log n+
n log n) = O(n3 log n) time approximation. Using a technique reminiscent of
Blum et al. [2] on finding a median in linear time and a technique on computing
weighted median (page 193 of [3]), we do not have to try all the combinations of
i, j,K and we obtain an O(n2 log n) time approximation algorithm for MLUS-
AP. (An identical technique is used in [9].) Therefore, we have the main theorem
of this paper.

Theorem 2. For any given set S of n sites in the plane, there is an O(n2 log n)
time, factor-2 approximation for the MLUS-AP problem.

Notice that in the NP-completeness proof of [12] the optimal solutions of
using sliding labels and discrete labels to label the constructed input points are
the same. Therefore, if we use discrete labels to approximate MLUS-AP then we
cannot obtain a factor better than 2.

Corollary 1. It is NP-hard to obtain an approximation solution with a factor
better than 2 using discrete labels for the MLUS-AP problem.

Notice that how to reduce the gap between 1.33− ε and 2 for approximating
MLUS-AP remains an open problem. From Corollary 1, apparently we have to
use sliding labels to improve the factor-2 approximation.
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Abstract. We investigate a special class of map labeling problem. Let
P = {p1, p2, . . . , pn} be a set of point sites distributed on a 2D map. A
label associated with each point is a axis-parallel rectangle of a constant
height but of variable width. Here height of a label indicates the font size
and width indicates the number of characters in that label. For a point
pi, its label contains the point pi at its top-left or bottom-left corner,
and it does not obscure any other point in P . Width of the label for each
point in P is known in advance. The objective is to label the maximum
number of points on the map so that the placed labels are mutually non-
overlapping. We first consider a simple model for this problem. Here, for
each point pi, the corner specification (i.e., whether the point pi would
appear at the top-left or bottom-left corner of the label) is known. We
formulate this problem as finding the maximum independent set of a
chordal graph, and propose an O(nlogn) time algorithm for producing
the optimal solution. If the corner specification of the points in P is not
known, our algorithm is a 2-approximation algorithm. Next, we develop
a good heuristic algorithm that is observed to produce optimal solutions
for most of the randomly generated instances and for all the standard
benchmarks available in [13].

1 Introduction

Labeling a point set is a classical problem in the geographic information systems,
where the points represent cities on a map which need to be labeled with city
names. The point set labeling problem finds many important statistical applica-
tions, e.g., scatter plot of principal component analysis [6], in spatial statistics
where the aim is to post the field measures against the points, etc. The ACM
Computational Geometry Impact Task Force report [2] lists label placement as
an important research area.

In general, the label placement problem includes positioning labels for area, line
and point features on a 2D map. A good labeling algorithm has two basic require-
ments: the label of a site should touch the site at its boundary, and the labels
of two sites must not overlap. Another important requirement is that the label
of one site should not obscure the other sites on the map. Many other aesthetic
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requirements for map labeling are listed in [7]. Given the basic requirements, two
major types of problems are considered: (1) label as many sites as possible, and
(2) find the largest possible size of the label such that all the sites can be labeled
in a non-overlapping manner. In general, both of these problems are NP-hard
[4]. In this paper, we shall consider a special case of the first variation of the
point-site labeling problem.

Let P = {p1, p2, . . . , pn} be a set of n points in the plane. For each point pi ∈ P ,
we have a rectangular label ri of specified size, and a set πi of marked posi-
tions on the boundary of ri. The label of a point pi must be placed parallel
to the coordinate axes, and must contain pi on one of the marked positions
on πi. A feasible configuration is a family of axis-parallel rectangles (labels)
R = {r1′ , r2′ , . . . , rk′}, where all the i′ ∈ {1′, 2′, . . . , k′} are different and ri′ is
represented by a tuple {(pi′ , xi′) | pi′ ∈ P, xi′ ∈ πi′ and ri′ is placed with pi′
at the position xi′ on its boundary}, such that the members in R are mutually
non-overlapping. The label placement problem is to find the largest feasible con-
figuration [1]. Typical choices of πi include (i) the end points of the left edge
of ri, (ii) the four corners of ri, or (iii) the four corners and the center points
of four edges of ri, etc. In [1], an O(logn)-approximation algorithm is proposed
for this problem which runs in O(nlogn) time. An α-approximation algorithm
produces a solution of size at least ∆

α , where ∆ is the size of the optimal solu-
tion. In particular, if the labels are of the same height, a dynamic programming
approach is adopted to get a (1 + 1

k )-approximation algorithm which runs in
O(nlogn+ n2k−1) time [1]. This case is of particular importance since it models
the label placement problem when all labels have the same font size. In [15], a
simple heuristic algorithm for the point labeling problem is proposed which is
easy to implement and produces near-optimal solution, but the running time is
O(nlogn+ k), where k may be O(n2) in the worst case. The point labeling with
sliding labels is introduced in [8], where the point pi can assume any position
on the boundary of ri. The problem has shown to be NP-hard, and using plane
sweep paradigm, a 2-approximation algorithm has been presented whose time
complexity is O(nlogn). The label placement problem in the slider model has
been extended for the map containing several polygonal obstacles, and the ob-
jective is to label a set of n point sites avoiding those obstacles [10]. The time
complexity of this algorithm is O((n +m)log(n +m)), where m and n are re-
spectively the total number of vertices of all the polygons, and the number of
point sites to be labeled. In [11], a decision theoretic version of the map labeling
problem is introduced where the sites are horizontal and vertical line segments.
Each label has unit height and is as long as the segment it labels. The problem
is to decide whether it is possible to label all the sites. The problem is trans-
formed to the well known 2-SATISFIABILITY problem, and an algorithm for
this decision problem is proposed which runs in O(n2) time. Later, in [9], the
time complexity was improved to O(nlogn). Good heuristics are proposed for
labeling arbitrary line segments and polygonal areas [3].

In our model, the labels of the points on the map are axis-parallel rectangles
of a constant height (h) but of variable width. The width (wi) of the label of
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a point pi is pre-specified. The point pi appears either on the top-left or the
bottom-left corner of its label. A label said to be valid if it does not contain
any other point(s) of P . Thus, for each point, it may not have any valid label,
or it can have one valid label or it can have two valid labels. We consider the
following two variations of the problem:

P1: For each point pi ∈ P , the corner specification (i.e., whether pi would appear
at the top-left or bottom-left corner of the label) is known.

P2: The corner specifications of the points in P are not known.

Problem P1 is modeled using maximum independent set of a chordal graph,
and an O(nlogn) time algorithm is proposed which produces optimum solution.
A minor modification of this algorithm is proved to be a 2-approximation al-
gorithm for problem P2. Finally, we propose an efficient heuristic algorithm for
the problem P2. This heuristic is tested on several randomly generated examples
and the standard benchmarks [13]. In most of the randomly generated examples,
and for all the benchmarks it produces optimum solution. Surely, we have en-
countered few random instances where it fails to produce optimum solution.
However, for all instances, we have tried, our algorithm outputs better result
than the algorithm presented in [1].

2 Problem P1

Let P = {p1, p2, . . . , pn} be a set of points in the plane. Each point pi is as-
sociated with a label ri which is a closed region bounded by an axis-parallel
rectangle. We assume that the heights of all ri are same, but their width may
vary. The placement of label ri must coincide with the point pi at either of
its top-left and bottom-left corners which is specified. A label ri is said to be
valid if it does not contain any point pj ∈ P (j �= i) in its interior. In Fig. 1,
we demonstrate the valid and invalid labels (using solid and dashed rectangles,
respectively). We construct a graph, called label graph LG = (V,E), whose set
of vertices (V ) correspond to the valid labels of the points in P . An edge e ∈ E
connects a pair of nodes vi, vj if their corresponding labels have a non-empty
intersection. In the worst case, |V | = n and |E| = O(n2). Our problem is to find
the largest subset P ′ ∈ P such that valid labels corresponding to the members
of P ′ are mutually non-overlapping. We show that the above problem reduces to
finding the maximum independent set of the label graph LG. In the next section,
we mention some important characterization of the label graph.

2.1 Some Useful Results

Definition 1. [5] An undirected graph is a chordal graph if and only if every
cycle of length greater than or equal to 4 possesses a chord.
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Fig. 1. Examples of valid and invalid labels

Definition 2. [5] A graph G = (V,E) is said to have a transitive orientation
property if each edge e ∈ E can be assigned a one-way direction in such a way
that the resulting oriented graph G′ = (V, F ) satisfies the following condition:
ab ∈ F and bc ∈ F imply ac ∈ F for all a, b, c ∈ V . Here F denotes the set of
oriented edges obtained from the set of edges E of the graph G.

Definition 3. [5] The intersection graph of a family of intervals on a real line
is called an interval graph.

Fact 1 [5] A chordal graph is an interval graph if and only if the complement
of the graph has a transitive orientation. ��

Fact 2 [5] Every chordal graph is a perfect graph. ��

From now onwards, we use IG, LG and CG to denote the classes of interval
graphs, label graphs and chordal graphs, respectively.

Lemma 1. The intersection graph of a set of valid labels is a chordal graph, but
the converse may not always be true.

Proof: Let LG be a label graph which contains a chordless cycle C of length
greater than or equal to 4 (see Fig. 2(a)). Since the left edge of r is rightmost,
either s or t must contain the point that r labels (since labels are of same
height). This contradicts the validity of r. For the second part, consider the
chordal graph in Fig. 2(b). It can be easily shown that it is impossible to place
points corresponding to all the vertices of that graph such that the labels (with
any arbitrary size and the corner specification) of all the points are valid. ��
It can be easily shown that any interval graph is a label graph, but the converse
is not true. This leads to the following theorem.

Theorem 1. IG ⊂ LG ⊂ CG. ��
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Fig. 2. Proof of Lemma 1

2.2 Algorithm

We propose an efficient algorithm for finding the placement of maximum number
of labels for the points in P . For each point pi ∈ P , the size of its label ri, and
the corner specification (top-left/bottom-left) of point pi on ri is already known.
For each label, we check its validity (whether it obscures any other points or
not) by searching a 2-d tree [12] with the set of points in P . This step requires
O(nlogn) time in total for all the labels.

Let R = {r1, r2, . . . , rN} (N ≤ n) be a set of valid labels placed on the plane.
The traditional line sweep technique may be used to construct the label graph
LG in O(nlogn+ |E|) time. Our objective is to find the maximum independent
set of LG, denoted by MIS(LG). As LG is a perfect graph (see Lemma 1 and
Fact 2), we define the perfect elimination order (PEO) among the vertices of
the graph as follows:

Definition 4. [5] A vertex v of a graph LG is a simplicial vertex if its adjacency
set Adj(v) induces a complete subgraph of LG.

Definition 5. [5] Let σ = {v1, v2, . . . vn} be an ordering of vertices of LG. We
say that σ is a perfect elimination order (PEO) if each vi is a simplicial vertex
of the induced subgraph with the set of vertices {vi, . . . , vn}. In other words, each
set Xi = {vj ∈ Adj(vi)|j > i} is a complete graph.

Lemma 2. If vi (corresponding to point pi) is a simplicial vertex in LG, then
there exists an optimal solution of the problem P1 containing the label ri.

Proof: [By contradiction] Let vi be a simplicial vertex, and it does not appear in
the optimum solution. Let Vi = {vi1, vi2, . . . , vik} be the set of vertices adjacent
to vi. Now we need to consider two cases: (i) none of the vertices in Vi appears
in MIS(LG), and (ii) one member, say vij of Vi appears in MIS(LG). Case (i) is
impossible since we can include vi in MIS(LG) as it does not intersect with any
one of the existing members ofMIS(LG). In case (ii), no member of Vi except vij
is present in MIS(LG). Thus, we can replace vij by vi in MIS(LG); the updated
set (MIS(LG)) will remain maximum independent set of LG. ��



Optimal Algorithm for a Special Point-Labeling Problem 115

r1

rj

ri

rk
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Lemma 3. Let R be a set of valid labels. The sorted order of the left boundaries
of R from the right to the left, gives a PEO of the graph LG.

Proof. Let L = {λ1, λ2, . . . , λN} be the left boundaries of the labels in R, and
let L∗ denote the sorted sequence of the members in L in a right-to-left order.
Consider the left boundary λi of a label ri. Let R′ be a subset of R such that the
left boundaries of all the members in R′ appear after λi in L∗, and all of them
intersect ri. We need to prove that R′ ∪ {ri} forms a clique. As the placement
of ri is valid, either all the members of R′ contain the top-left corner of ri or all
of them enclose the bottom-left corner of ri (in Fig. 3, rj and rk encloses the
top-left corner of ri). In other words, the corresponding point pi ∈ P is present
either at the bottom-left corner of ri or at the top-left corner of ri. Hence all the
members in R′ ∪ {ri} have a common region of intersection. ��

Theorem 2. The PEO of a label graph with n vertices can be obtained in
O(nlogn) time.

Proof. Follows from Lemma 3. ��
Let σ be a PEO for the graph LG = (V,E). We define inductively a sequence
of vertices y1, . . . , yt in the following manner: y1 = σ(1); yi is the first vertex
in σ which follows yi−1, and which is not in {Xy1 ∪ Xy2 ∪ . . . ∪ Xyi−1}, where
Xv = {x ∈ Adj(v) | σ−1(v) < σ−1(x)}. Hence, all the vertices following yt are
in Xy1 ∪Xy2 ∪ . . . ∪Xyt

, and V = {y1, . . . , yt} ∪Xy1 ∪Xy2 ∪ . . . ∪Xyt
.

Theorem 3. The vertices {y1, .., yt} forms a maximum independent set in LG.

Proof. Follows from Theorem 1 and Theorem 4.18 of [5]. ��
The maximum independent set of LG can be obtained in O(|V |+ |E|) time [5].
We now show that if the placement of the labels corresponding to the vertices
of LG is available in the plane, then a maximum independent set of LG can
be determined in a faster way by simply sweeping the plane with a vertical line
from right to left.
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Algorithm MIS (* for finding the maximum independent set of LG *)

Input: An array L containing the line segments corresponding to the left and
the right boundaries of all the valid labels ri ∈ R. An element representing
a right boundary of a label has a pointer to its left boundary. With each
element of L, a flag is stored and is initialized to 0. During execution, the
flag of an element is set to 1 if it is selected as a member of MIS(LG) or if
its corresponding label overlaps on a label of MIS(LG) under construction.

Output: A maximum independent set (MIS) of the intersection graph of R.
Preprocessing: We initialize an interval tree T [12] with the y-coordinates of

the top and bottom boundaries of the labels in R. T is used for storing the
vertical intervals of those labels that the sweep-line currently intersects, and
does not overlap with any of the existing members in MIS.

Step 1: Sort the array L with respect to the x-coordinates of its elements in
decreasing order.

Step 2: Process the elements of the array L in order.
Let I ∈ L be the current element.
If flag of I is 1, then ignore I; otherwise perform the following steps.
2.1: If I corresponds to the right boundary of a label, then insert I in T .
2.2: Otherwise (* if it corresponds to the left boundary of a label *)

2.2.1: Insert the label r (corresponding to I) in MIS.
2.2.2: (* Note that I is currently in T *)

Search T to find the set Xr = {J | J ∈ T and J overlaps with I}.
2.2.3: (* Note that I∪Xr form a clique. In other words, the set of labels

corresponding to I ∪Xr are mutually overlapping *)
For each member in Xr (* representing the right boundary of a label
*) the flag bit of its corresponding left boundary element is set to 1.

2.2.4: Finally, remove all the intervals in I ∪Xr from T .
Step 3: Report the elements of the array MIS.

Theorem 4. Algorithm MIS computes the maximum independent set of the
label graph LG in O(nlogn) time.

Proof. The PEO of the graph LG is obtained from the right to left sweep on
the plane (see Theorem 2). When a label is selected as a member in the MIS, its
adjacent labels are discarded by setting 1 in their flag bit. Now by Theorem 3,
the correctness of the algorithm follows. Next, we discuss the time complexity
of the algorithm.

The initial sorting requires O(nlogn) time. A vertical interval corresponding to
each label is inserted once in T . After placing a label, say ri, in the MIS array, it
is deleted from T . The set of labels Xri , whose corresponding vertical intervals
are in T and which overlap on ri, are recognized in O(ki + logn) time. These
intervals are deleted from T , so that none of them will be recognized further.
So, for every pair of elements ri, rj ∈ MIS, Xri

⋂
Xrj = φ, and if MIS contains t

elements then
∑t
i=1ki < n. Each insertion/deletion in T requires O(logn) time.

Thus the proof of the result. ��



Optimal Algorithm for a Special Point-Labeling Problem 117

3 Problem P2

As in the problem P1, here also the point pi may appear either of the top-left
and bottom-right corners of ri, and for each point pi ∈ P , the size of its label
ri is given, but unlike problem P1, the corner specification of the label ri is not
known in advance. Thus, a point pi may not have any valid label, or it may have
one or two valid labels. If a point pi has two valid labels, say ri and r′i, they
have an edge in the label graph LG. Fig. 4 shows that, in this case, the label
graph may contain cycle(s) of length ≥ 5; so it may not always be a perfect
graph. Thus, the earlier algorithm may not produce optimum result. We first
prove that a minor modification of our algorithm MIS produces a 2-approximate
solution of problem P2. Next, we present an efficient heuristic algorithm for the
problem P2.
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Fig. 4. The label graph corresponding to problem P2 is not perfect

3.1 2-Approximation Result

Let R be the set of all valid labels. During the right to left scan, let ri and r′i be a
pair of valid labels (corresponding to point pi) which are currently encountered
by the sweep line. Prior to this instant of time some labels are already selected for
solution, and for these selections, some labels are removed from the set of valid
labels by setting their flag bit to 1. Let R∗ denote the set of valid labels whose flag
bit contain 0 at the current instant of time, and LG∗ denotes the corresponding
label graph, and OPT (R∗) is the set of valid labels corresponding to MIS(LG∗).
It is easy to show that there must exist an optimal solution containing either of ri
and r′i. We select any one (say ri) of them arbitrarily in our modified algorithm.
Let Ri and R′

i denote the set of labels adjacent to ri and r
′
i respectively.

Lemma 4. 1 + #(OPT (R∗ \ Ri)) ≤ #(OPT (R∗)) ≤ 2 + #(OPT (R∗ \ Ri)),
where #(A) indicates the size of set A.
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Proof: The first part of the lemma is trivial. For the second part, consider the
following argument.

If ri ∈ OPT (R∗), then OPT (R∗) = {ri}
⋃
OPT (R∗ \Ri). So the lemma follows

in this case.

If r′i ∈ OPT (R∗) then OPT (R∗) = {r′i}
⋃
OPT (R∗ \R′

i).
Again, (R∗ \R′

i) = (R
∗ \ {Ri

⋃
R′
i})
⋃
(Ri \ {ri, r′i}).

Thus, #(OPT ((R∗ \ {Ri
⋃
R′
i})
⋃
(Ri \ {ri, r′i}))) ≤ #(OPT (R∗ \ {Ri

⋃
R′
i}))+

#(OPT (Ri \ {ri, r′i})).
Again, #(OPT (Ri \ {ri, r′i})) = 1 since Ri \ {ri, r′i} forms a clique. Hence the
lemma follows. ��
If ri ∈ OPT (R), and we choose r′i we lead to a non-optimal solution. But Lemma
4 says that the maximum penalty for doing a wrong choice is at most one. If
k choices are made during the entire execution of MIS, and all the choices are
wrong, the size of OPT (R) is at most 2k. Thus we have the following theorem:

Theorem 5. If the ties are resolved arbitrarily, then the size of the solution
obtained by the algorithm MIS is no worse than 1

2 ×OPT (R).

3.2 Heuristic Algorithm

The key idea of our heuristic is as follows:

1. At each step, locate a simplicial vertex of the label graph.
2. If such a vertex found then

Select it as a member of the maximum independent set.
3. else (* the rightmost point pi has a pair of valid labels, say ri and r′i *)

Select the vertex corresponding to any one label (say ri) of pi arbitrarily.
4. Remove the selected vertex and all its adjacent vertices from the graph

by setting their flag bit.
5. Repeat steps 1 to 4 until the flag bit of all the vertices are set to 1.

The algorithm is implemented by sweeping two horizontal lines I1 and I2 and
two vertical lines J1 and J2 simultaneously. I1 (resp. I2) is swept from the top
(resp. bottom) boundary to the bottom (resp. top) boundary, and J1 (resp. J2)
is swept from the left (resp. right) boundary to the right (resp. left) boundary.
We explain the sweeping of the vertical line J2. The sweeping of the other lines
are done in a similar manner.

We maintain an interval tree T with the y-coordinates of the end points of the
vertical boundaries of n valid rectangles. The secondary structure, attached with
each node of the interval tree, is a pair of height balanced trees, say AV Lt and
AV Lb. They store the set of intervals, which are attached to this node during the
sweep. To insert an interval / in the interval tree, we start traversing from the
root with the interval /. As soon as we reach a node whose discriminant value
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lies inside /, we attch / with that node. In other words, its top (resp. bottom)
end point is inserted in AV Lt (resp. AV Lb).

During the sweep, when J2 encounters a right boundary of a valid label, the
corresponding interval is stored in the appropriate node of the interval tree T
and sweep continues. When a left boundary is faced by J2, the sweep halts for
searching with the corresponding interval, say /, in the interval tree to find the
set of other intervals (present in the interval tree) which overlap on /. If all these
intervals are mutually overlapping, then the vertex of LG corresponding to the
label having the above left boundary, is simplicial.

At each step I1 (resp. I2) proceeds until a bottom (resp. top) boundary of a valid
rectangle is faced, and J1 (resp. J2) proceeds until a left (resp. right) boundary is
faced. If any of this scan returns a simplicial vertex vi, the corresponding label ri
is inserted in MIS. Otherwise, the label which is obtained by J2 (in right to left
scan) is selected for insertion in MIS. The vertex vi, and all the vertices whose
labels overlap on ri are marked by setting their flag bit to 1. The corresponding
intervals are removed from all the four interval trees if they are present there.
The process is repeated until the flag bit of all the vertices are set to 1.

The insertion and deletion of an interval in the interval tree takes O(logn) time.
Consider the processing of a left boundary /. Let Π, the path from root to the
node π whose discriminant is contained in /, and Π1 (resp. Π2) be the path
from π to the leaf node containing the left (resp. right) end point of /. We spend
O(logn) time for finding the paths Π, Π1 and Π2. All the intervals stored with
the node π overlap on /. We first find the common intersection region among the
intervals stored with π. Next, we inspect the secondary structure of each node on
Π, Π1 and Π2, to find the intervals which are attached to that node and which
overlap on /. If all these intervals have a common intersection region, then /
contributes a simplicial vertex. Thus, the overall time complexity is O(nlogn).
Surely, the space complexity is O(n).

3.3 Experimental Results

We executed this algorithm on many randomly generated examples and on all
the benchmark examples available in [13]. In most of the examples, at each
step we could locate a simplicial vertex, which leads to an optimum solution.
It needs to mention that we have also encountered few random instances where
our algorithm could not produce optimum solution. For example, in Fig. 4, the
optimum solution is {1, 3, 4′, 6, 7, 9, 10′, 11, 12, 13}, whereas our algorithm returns
{1, 3, 4′, 6′, 8, 9′, 10, 12, 13}. We have also compared our result with the labeling
algorithm suggested in [1] (see Table 1). The algorithm of [1] assumes that the
label of a point pi may contain pi at one of its four corner. Thus, each point may
have at most four valid labels. In spite of this flexibility, it is observed that our
proposed algorithm can label more points than the algorithm proposed in [1].
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Table 1. Experimental results on the benchmarks cited in [13]

Examples No. of height Optimum Our algorithm Algorithm [1]
sites (pixels) solution No. of No. of No. of No. of

valid labels points labeled valid labels points labeled
Tourist shops in Berlin 357 4 216 401 216 799 165

5 206 389 206 769 166
German railway stations 366 4 304 569 304 1133 258

5 274 513 274 1030 243
American cities 1041 4 1036 2048 1036 4095 859

5 1031 2027 1031 4053 878
Drill holes in Munich 19461 1000 *** 27156 13895 54325 13730

5000 *** 10107 4737 20197 4678

Acknowledgment. We are thankful to Dr. Alexander Wolff for providing us
the benchmark examples.
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Abstract. The paper considers a generalization of the well known ran-
dom placement of balls into bins. Given n circular arcs of lengths α1,
. . . ,αn we study the maximum number of overlapping arcs on a circle
if the starting points of the arcs are chosen randomly. We give almost
exact tail bounds on the maximum overlap of the arcs. These tail bounds
yield a characterization of the expected maximum overlap that is tight
up to constant factors in the lower order terms. We illustrate the strength
of our results by presenting new performance guarantees for several ap-
plication: Minimizing rotational delays of disks, scheduling accesses to
parallel disks and allocating memory to limit cache interference misses.

1 Introduction

Randomly assigning tasks or data to computational resources has proved an
important load balancing technique for many algorithmic problems. The model
we study here was motivated by three different applications one of the authors
became involved with where the lack of an accurate analysis of such a simple
system became an obstacle. Section 3 gives more details on these applications:
minimizing rotational delays in disk scheduling, scheduling parallel disks, and
memory allocation to limit cache conflicts. The common theme there is that
jobs (disk blocks, strings of disk blocks, memory segments) have to be allocated
to a contiguous resource that wraps around (disk tracks, striped disks, memory
locations mod cache size). In all three applications randomization is used to
make worst case situations unlikely.

The following model describes all three applications. It is so simple that we
expect further applications. An arc allocation describes the arrangement of n
circular arcs that are pieces of a unit circle, i.e., a circle with circumference 1.
We represent points on this circle by numbers from the half open interval [0, 1).
Let 0 ≤ ai < 1 denote the starting point of left endpoint of arc i and αi the
arc length of arc i. Arc i spans the half open interval [ai, ai + αi mod 1) where
x mod 1 denotes the fractional part of x and where [a, b) for a > b denotes
the set [a, 1] ∪ [0, b) in this paper. Let α =

∑
i αi/n denote the average arc

length. If all arc length are identical, αi = α for all 0 ≤ i < n, we have a
uniform arc allocation. In a random arc allocation, the starting points are chosen
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independently and uniformly at random. Let L(x) denote the number of arcs
containing x. Let L = supx∈[0,1] L(x) denote the maximum overlap of an arc
allocation. In this paper, we estimate the expectation E[L] of the maximum
overlap and derive tail bounds for L.

Let us go back to the interpretation of arcs as jobs to be executed/allocated.
The maximum overlap L is important because all jobs can be executed using
between L and L+1 trips around the circle if all jobs are known in advance (see
Section 3.1). Furthermore, there is a natural online allocation algorithm that
needs at most 2L trips around the circle (see Section 3.3).

1.1 New Results for Random Arc Allocation

In this paper we present almost exact tail bounds on the maximum overlap for
random arc allocation. These tail bounds yield a complete characterization of
the expected maximum overlap. Let ∆ = L− αn denote the difference between
maximum and average load. We are able to describe E[∆] almost exactly in
terms of Lambert’s W function [5]. This function is discussed in more detail
below. The tail bounds imply the following estimates for E[∆].

A) If α ≤ lnn
n then E[∆] = O

(
αn exp

(
W
(
ln(1/α)
αn

)))
.

B) For α ∈ [ lnnn , 12 ], E[∆] = O
(√

αn ln
(
1
α

))
.

C) For α ∈ [ 12 , 1− lnn
n ], E[∆] = O

(√
(1− α)n ln

(
1

1− α
))

.

D) If α ≥ 1− lnn
n then E[∆] = O

(
(1− α)n exp

(
W
(
ln(1/(1− α))
(1− α)n

)))
.

Our estimates on E[∆] in all four cases are essentially tight in the sense
that they describe the case of uniform arc length exactly up to constant factors.
Observe that the cases D) and C) are symmetric to the cases A) and B) in α and
1−α, resp. In fact, these bounds are derive using a simple symmetry arguments
treating holes (i.e., the uncovered pieces of the circle) like arcs. In case A) it
holds E[L] = E[∆]. Exact estimates for this case can be derived relatively easily
using Chernoff bounds. More interesting is case D. To obtain tight estimates in
this case, we need to combine Chernoff bounds with a random walk analysis.

Now let us come to a discussion of Lambert’s W function. This function is
defined to be the unique positive solution to the equation W(x) · exp(W(x)) = x
for x > 0. Of particular interest for us is the function exp(W(x)). Asymp-
totically, this function can be estimated by limx→∞ exp(W(x)) = x/ ln(x).
For example, consider the estimate of E[∆] for the subcase that arcs are
very short, say α = O(1/n). In this case, the characterization above gives
E[L] = E[∆] = O((lnn)/ ln lnn). Furthermore, if α = Θ( log nn ) then we obtain
E[L] = E[∆] = O((lnn)/ ln lnn).

Finally, in some applications there might be arcs wrapping around the circle
several times, i.e., αi > 1. Clearly, in this case our bounds for E[∆] transfer
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immediately when using α′ = 1
n

∑
i αi mod 1 instead of α. In Section 2 we prove

these bounds for the uniform case. The generalization to variable arc lengths is
deferred to the full paper.

1.2 Results for Chains-into-Bins

Many applications in computer science also require a discrete variant of arc
allocation where the circle is subdivided into M equal bins and where arc end
points are multiples of a bin size. We note that our proof techniques and hence
our upper bounds directly transfer to this discrete model. Observe that discrete
arc allocation is equivalent to the following chains-into-bins problem: N =

∑
i αi

balls connected into n chains are allocated toM bins that are arranged in a circle.
A chain is allocated by throwing its first ball into a bin chosen independently,
uniformly at random and by putting its remaining balls into adjacent bins in a
round robin fashion. In this notation, the bounds in A) and B) become

E[L(cb)] = Θ

(
N

M
W ∗
(
ln
(
M n

N

)
N/M

))
if N ≥M , (1)

E[∆(cb)] = Θ

(√
N

M
ln
(
M
n

N

))
if N = Ω(M ln(Mn/N)) and α ≤M/2 .(2)

where L(cb) is the number of balls in the fullest bin and ∆(cb) = L(cb) −N/M .
In the way one can translate the results in the cases C) and D).

Let us compare our results for chains-into-bins to the well known results
for balls-into-bins processes. These processes are among of the most intensively
studied stochastic processes in the context of algorithm analysis (e.g., [10,17,12]).
The simplest balls-into-bins process assumes that N balls are placed at random
intoM bins [10,17]. Balls-into-bins are the special case of chains-into-bins where
all chains consist of a single ball, i.e., n = N . We get

E[L(bb)] = Θ
(
N

M
W ∗
(
lnM
N/M

))
if N ≥M , (3)

E[∆(bb)] = Θ

(√
N

M
lnM

)
if N = Ω(M lnM) . (4)

The Bounds (3) and (4) are well known although other papers [10,17,13] use a
different, slightly more complicated notation that yields more information about
constant factors.

Another instructive perspective is that arc allocations are related to balls-
into-bins systems with 1/α bins. Our analyses for L and ∆ will give further
insights into the relationship between the two different random processes.

1.3 Previous Results

Barve et al. [2] introduce the chains-into-bins problem and show why several tail
bounds for the case N = n also apply to the general case. Apparently, E[L(cb)]
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can only grow if chains are atomized into individual balls (although this is not
proven yet). Our bounds improve these results by showing that ∆(cb) can be
much smaller if n� N , i.e., if chains are long.

Chains-into-bins have been analyzed asking what is the expected number
of bins with at least a balls [11]. This measure was needed to estimate the
number of cache misses in executing a class of cache-efficient algorithms. Refer
to Section 3.3 for more details.

Arc allocations have been studied in mathematics under the aspect of when
the arcs cover the circle (e.g., [15]). This is related to the minimum overlap which
seems to be more important for most computer science applications. We have
adopted the convention from these papers to measure arc lengths between 0 and
1 rather than 0 and 2π in order to avoid notational overhead.

An arc allocation defines a circular arc graph [9,8] with n nodes where there
is an edge between nodes i and j if the corresponding arcs overlap. A set of
overlapping arcs defines a clique of the circular arc graph. In this terminology,
we are studying the size of the maximum overlap clique of a random circular arc
graph. But note that the maximum overlap clique is not necessarily maximum
clique of a circular arc graph [3].

2 Uniform Arcs

In this section we assume that all arcs have the same length. The following tail
bound imply the expectation Bounds A) and B) respectively.

Theorem 1. Suppose n arcs of length α ≤ 1
2 are placed at random onto the

unit circle. Let µ ≥ αn denote an upper bound on the average overlap. Then, for
every ε > 0,

Pr[∆ ≥ εµ+ 1] ≤ n
(

eε

(1 + ε)1+ε

)µ
(5)

Pr[∆ ≥ 5εµ] ≤ 6
α

(
eε

(1 + ε)1+ε

)µ
. (6)

Bound (5) that is best suited for short arcs is derived by bounding the max-
imum overlap by the overlap at the discrete set of starting positions of arcs. We
defer the analysis to the full paper since simple Chernoff bound arguments are
sufficient in this case.

Perhaps the most interesting case are rather long arcs with α < 1/2. Sec-
tion 2.1 derives Bound (6) that is a up to a factor Θ(n) more tight in this case.
The proof combines Chernoff bound arguments with random walk arguments
that may be interesting for other applications too. Bounds C) and D) for even
longer arcs can be proven using an almost symmetric argument on the minimum
overlap of non-arcs or holes. The proof is deferred to the full paper. In the full
paper we furthermore argue that our results are essentially tight by giving lower
bounds in terms of a balls-into-bins process considering 1/α equally spaced po-
sitions on the circle. Section 2.2 reports simulation results that even give some
hints as to what the constant factors in Bounds B) and C) might be.
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2.1 Proof of Bound (5)

Proof. Define κ = 	1/α
 ≥ 2. Let x0, . . . , xκ−1 denote κ points on the circle
that decompose the circle into κ intervals Xi = [xi, xi+1) of identical length
	 1κ
 ≈ α. (Here and in the following i + 1 abbreviates (i + 1) mod κ.) Observe
that every arc has at most one endpoint in each interval. Define ∆i = L(xi)−αn
and ∆′

i = supx∈Xi
(L(x)− L(xi)). In this way, the maximum overlap in interval

Xi is exactly αn+∆i+∆′
i. Our argument is based on the following two claims:

∀ε > 0 : Pr[∆i ≥ εµ] ≤
(

eε

(1 + ε)1+ε

)µ
(7)

∀ε > 0 : Pr[∆′
i ≥ ε(2 + 2ε)µ | ∆i +∆i+1 ≤ 2εµ] ≤ 2

(
eε

(1 + ε)1+ε

)(1+ε)µ
(8)

Let us show that, in fact, these claims imply the theorem. First suppose ε ≥ 1.
The maximum overlap in interval Xi is bounded above by L(xi) + L(xi+1) =
2αn + ∆i + ∆i+1 because every arc overlapping with interval Xi covers xi or
xi+1. This implies the inequality a1: ∆ ≤ maxi{αn + ∆i + ∆i+1} so that we
obtain

Pr[∆ ≥ 3εµ]
(a1)
≤ Pr[∃κ−1

i=0 : αn+∆i +∆i+1 ≥ 3εµ]
(a2)
≤ Pr

[∃κ−1
i=0 : ∆i ≥ εµ

]
(a3)
≤ 1
κ

(
eε

(1 + ε)1+ε

)µ (a4)
≤ 2
α

(
eε

(1 + ε)1+ε

)µ
,

where inequality (a2) follows from αn ≤ εµ, (a3) follows from Claim (7), and
(a4) follows from κ = 	 1α
.

Now assume ε < 1. Observe that this implies b1: ε ≥ ε(3+2ε)/5. Furthermore,
we apply b2: ∆ = maxi{∆i +∆′

i} and obtain

Pr[∆ ≥ 5εµ]
(b1)
≤ Pr[∆ ≥ ε(3 + 2ε)µ]
(b2)
≤ Pr[∃κ−1

i=0 : ∆i ≥ εµ ∨∆′
i ≥ ε(2 + 2ε)µ]

(b3)
≤

κ−1∑
i=0

Pr[∆i ≥ εµ] +Pr[∆′
i ≥ ε(2 + 2ε)µ |∆i +∆i+1 ≤ 2εµ]

(b4)
≤ κ

(
eε

(1 + ε)1+ε

)µ
+ 2κ

(
eε

(1 + ε)1+ε

)(1+ε)µ
≤ 6
α

(
eε

(1 + ε)1+ε

)µ
.

The following basic fact from probability theory implies inequality (b3). For
events X, X ′, and Y with X ′ ⊆ X it holds Pr[X ∨ Y ] ≤ Pr[X] +Pr[Y \X ′] ≤
Pr[X] +Pr[Y |X ′]. Furthermore, inequality (b4) follows from the Claims (7,8).

It remains to prove the two claims. Observe that E[L(xi)] ≤ µ so that the
bound in Claim (7) follows directly from a Chernoff bound. Hence it only remains
to show the Claim (8). We will estimate∆′

i by investigating the following random
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walk. Recall that each arc has at most one endpoint in interval Xi. Let m denote
the number of those arcs that have an endpoint in Xi. As we condition on
∆i +∆i+1 ≤ 2εµ, we can assume

m ≤ L(xi) + L(xi+1) = 2µ+∆i +∆i+1 ≤ (2 + 2ε)µ .

For the time being, assume that m is fixed. Let y1, . . . , ym denote the endpoints
in Xi, sorted from left to right. If we are given these endpoints without further
information then the orientation of the corresponding arcs (i.e., whether yj is
a left or right endpoint) defines a random experiment that can be described
in terms of binary random variables as follows. Let s1, . . . , sm denote random
variables with

sj =
{
+1 if yj is a left endpoint, and
−1 if yj is a right endpoint.

The only assumption that we made about the allocation of the arcs is∆i+∆i+1 ≤
2εµ. As this assumption does not affect the arc’s orientation, the variables
s1, . . . , sm are independent and Pr[sj = 1] = Pr[sj = −1] = 1

2 , for 1 ≤ j ≤ m.
Now let us define Sj =

∑j
k=1 sj , for 0 ≤ j ≤ m. Notice that the sequence

S0, S1, . . . , Sm corresponds to a random walk in which a particle starts at po-
sition 0 and goes up or down by one position in each step with probability 1

2
each, that is, ∆′

i = max0≤i≤m(Si). Hence, we can estimate ∆′
i by analyzing this

random walk. Applying Theorem III.7.1 from [6] we can derive the following
probability bound. For every r ≥ 0,

Pr[∃j{1, . . . , m} : Sj ≥ r] =
∞∑

k=r+1

Pr[Sm = k] + Pr[Sm = k + 1] ≤ 2Pr[Sm > r].

Next we observe that the random variable Xm = Sm/2 +m/2 follows the bino-
mial distribution and, hence, can be estimated using a Chernoff bound. In this
way, we obtain

Pr[Sm > εm] = Pr[Xm > (1 + ε)m/2] ≤
(

eε

(1 + ε)1+ε

)m/2
,

for every ε > 0. As a consequence,

Pr[∆′
i > εm] ≤ 2Pr[Sm > εm] ≤ 2

(
eε

(1 + ε)1+ε

)m/2
.

Clearly, ∆′
i is monotonically increasing in m. Therefore, the worst-case choice

for m is m = (2 + 2ε)µ, and we obtain,

Pr[∆′
i > ε(2 + 2ε)µ] ≤ 2

(
eε

(1 + ε)1+ε

)(1+ε)µ
,

which proves Claim (8). Thus Theorem 6 is shown.
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2.2 Simulations

Fig. 1 shows simulations for three different values of n and compares them
with our analytic bound from the case B) and C) of our characterization for
E[∆]. Merging the bounds in these two cases we obtain the elegant estimate

E[∆] ≈
√
α(1− α)n ln

(
1

α(1−α)
)
.

Fig. 1. Comparison of the
theoretical prediction ∆ =√

en · α(1− α) ln 1
α(1−α)

with simulations for differ-
ent n. The measurements
are averages of 10000 repe-
titions for n ≤ 128 and 1000
repetitions for n = 1024.
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In fact, the measured and predicted curves are quite close together when we
choose an appropriate constant factor (namely

√
e) in front of this estimate. Even

for n = 16, where a significant influence of lower order terms can be expected,
∆ is fairly well approximated. An interesting phenomenon is that the measured
graphs for ∆(α) are not completely symmetric around α = 1/2. This asymmetry
is not reflected by our theoretical analysis since we use the same Chernoff bounds
to estimate the overlap of arcs in case of α ≤ 1

2 and the overlap of holes in case of
α > 1

2 . In fact, however, the deviation of holes below the mean can be expected
to be slightly less than the deviation of arcs above the mean, which explains the
asymmetry that can be observed in the experiments.

3 Applications

We now present three examples, where our bounds on arc allocation yield perfor-
mance guarantees. In Section 3.1, Bound (2) guarantees that rotational delays in
accessing a single disks eventually become small compared to data access times.
Section 3.2 gives a different disk scheduling application where load balancing
data accesses over several disks is the objective. Whereas the first two exam-
ple concern execution time, the last example in Section 3.3 bounds the memory
consumption of a technique for reducing cache interference misses.

In all three applications very bad worst case behavior is avoided using ran-
domization. The price paid is that the best case behavior gets worse. Since best
case behavior may sometimes not be far from real inputs, it is crucial for our



128 P. Sanders and B. Vöcking

performance bounds to demonstrate that this possible penalty is very small. This
is a quite strong incentive to study lower order terms in the performance bounds
rather than bounds that leave the constant factors open.

3.1 Disks and Drums

One of our main motivations for studying arc allocations was the desire to find
disk scheduling algorithms that take rotational delays into account. For example,
consider a data base query selecting the set S = {x ∈ r : x.a = y} from a relation
r. Assume we have an index of r with respect to attribute a that tells us a set
of small disk blocks where we can find S. In this situation, the access time
for retrieving S is dominated by rotational delays and seek times rather than
the access or transmission time of the data [14]. Unfortunately, simultaneously
minimizing seek times and rotational delays is NP-hard [1]. On the other hand,
the explosive growth of disk storage densities in the last years suggests to consider
the case where the accessed file fits into a narrow zone on the disk. In this case,
seek times can be bounded by a constant that is only slightly larger than the
overhead for request initiation, data transmission, and settling the head into
a stable state. Such constant overheads can be absorbed into the size of the
blocks and we end up with a problem where only block lengths and rotational
delays matter. Interestingly, this reasoning leads to a model logically identical
to drums — rotating storage devices from the 50s [4] that are technologically
outdated since the 70s. Drums have a separate read/write head for every data
track and hence suffer no seek delays.

To read a block on a drum one just has to wait until its start rotates to the
position of the read head and then read until the end of the block. Suppose we
want to read a batch of n blocks efficiently. Each block can be modeled as an arc
in an arc allocation problem in the obvious way. Obviously, L is a lower bound
for the number of drum rotations needed to retrieve all n blocks. Fuller [7,16]
found optimal and near optimal drum scheduling algorithms that can retrieve
the blocks in at most L+1 drum rotations. One such algorithm, Shortest Latency
Time First (SLTF), is very simple: When the drum is at point x, pick the unread
block i whose starting point ai is closest, read it, set x = ai+αi mod 1 and iterate
until all blocks are read.

The question arises, how good is an optimal schedule. In the worst case,
n rotations may be needed. For example, if all blocks have the same starting
point. In this case, even a good scheduling algorithm is of little help. Our results
provide us with very attractive performance guarantees if the starting points are
randomized. We need time nα+O(

√
n) rotations and hence for large n, almost

all of the schedule time is spent productively reading data.
Performance guarantees for random starting points need not merely be pre-

dictions for the average case if we randomize the mapping of logical blocks to
physical positions. Here is one scheme with particular practical appeal: Start
with a straightforward non-randomized mapping of logical blocks to physical
positions by filling one track after the other. Now rotate the mapping on each
track by a random amount. This way, accesses to consecutive blocks mapped to
the same track remain consecutive. A technical problem is that starting points
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are not completely independent so that our analysis does not strictly apply.
However, starting points of two blocks in a batch of blocks to be read are either
independent or the two blocks do not overlap (we merge consecutive blocks on
the same track). Therefore it seems likely that our upper bounds still apply.

3.2 Parallel Disk Striping

Assume a file is to be allocated toM parallel disks numbered 0 throughM−1 so
that accesses to any consecutive range of data in the file can be done efficiently. A
common allocation approach is striping — block i of the data stream is allocated
to disk i modM . The situation gets more complicated if n files are accessed
concurrently. Barve et al. [2] propose simple randomized striping (SR) where
block i of a file f is mapped to disk rf + i modM where rf is a random offset
between 0 and M − 1. The number of I/O steps needed to access N blocks
from the n data streams and M disks is the variable L(cb) in the corresponding
chains-into-bins problem. Our results improve the performance bounds shown in
[2] for the case that n� N .

3.3 Cache Efficient Allocation of DRAM Memory

Many algorithms that are efficient on memory hierarchies are based on accessing
n arrays in such a way that accesses in each array are sequential but where
it is unpredictable how accesses to different arrays are interleaved. In [11] it is
shown that these algorithms even work well on hardware caches where we have
no direct control over the cache content provided that the starting points of the
arrays modulo the cache size M are chosen at random. (Essentially the SR disk
striping from [2] is applied to words in the cache.) Now the question arises how
to allocate the arrays. Assume we have a large contiguous amount of memory
available starting at address x modM . A naive approach allocates one array
after the other in arbitrary order by picking a random location y modM and
allocating the array so that it starts at point x+(y−x modM). On the average
this strategy wastes nM/2 of storage. A better way is by applying the simple
SLTF algorithm we have seen for drum scheduling. This way we need space ML
on the average wasting only M∆ of memory.

This bound for the offline algorithm also translates into a performance guar-
antee for an online allocation algorithm where requests for memory segments
arrive one at a time. The following greedy algorithm can be easily proven to be
2-competitive: Keep a list of free memory intervals sorted by starting address.
Allocate a new segment in the first free interval that has room at the right ad-
dress offsets. Hence, space 2M(L+∆) memory suffices to fulfill all requests. In
the final version of [11] citing our result replaces a lengthy derivation that shows
a bound of 4eML for the online algorithm. No result on the offline case was
available there.

Acknowledgements. We would like to thank Ashish Gupta and Ashish Rastogi
for fruitful cooperation on disk scheduling algorithms.
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Abstract. We introduce a new notion of ‘neighbors’ in geometric per-
mutations. We conjecture that the maximum number of neighbors in a
set S of n pairwise disjoint convex bodies in R

d is O(n), and we prove
this conjecture for d = 2. We show that if the set of pairs of neighbors in
a set S is of size N , then S admits at most O(Nd−1) geometric permu-
tations. Hence we obtain an alternative proof of a linear upper bound on
the number of geometric permutations for any finite family of pairwise
disjoint convex bodies in the plane.

1 Background and Motivation

Let S be a finite family of convex bodies in R
d. A line � that intersects every

member of S is called a line transversal of S.
If the bodies in S are pairwise disjoint, then a line transversal � of S induces

a pair of linear orderings on S (one order being the reverse of the other order),
which are the orders in which the members of S are met by �, corresponding to
the two orientations of �. Katchalski et al. [6] were the first to study such pairs
of orderings and called them geometric permutations. We refer to [3,4,5,6,7,8] for
the recent study of this concept, its applications and its generalizations.

Line transversals have practical applications in computing visibility infor-
mation for efficient rendering of scenes, e.g., in 3-dimensional computer games
and in architectural walkthroughs. See [2,12] for the algorithmic aspects of line
transversals.

Let gd(n) denote the maximum number of geometric permutations in R
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problem in transversal theory is to give sharp asymptotic bounds on gd(n). Edels-
brunner and Sharir [3] have shown that g2(n) = 2n − 2 (for n > 3). Katchalski
et al. [7] showed that gd(n) = Ω(nd−1). The only known general upper bound on
gd(n) is O(n2d−2) and is due to Wenger [13]. Hence, for d ≥ 3 there still exists
a wide gap between the known upper and lower bounds. Recently, Smorodinsky
et al. [10,11], obtained a tight bound of Θ(nd−1) on the maximum number of
geometric permutations, in the special case where S consists of pairwise disjoint
balls in R

d. (For the case of congruent or nearly congruent balls, the number of
geometric permutations is only O(1), as shown recently by Zhou and Suri [14].)
This result was followed by an extension of the same bound to the case of “fat”
convex bodies, by Katz and Varadarajan [8]. A very recent result by Koltun and
Sharir [9] implies that the number of geometric permutations of a set S of n
pairwise disjoint convex semialgebraic sets of constant description complexity in
R
3 is O(n3+ε), for any ε > 0; this is an intermediate bound between the upper

bound O(n4) of [13] and the lower bound Ω(n2) of [7]. It has been conjectured
that gd(n) = O(nd−1).

1.1 Separation Sets and Neighbors

Wenger [13] introduced the notion of separation set, which was later generalized
in [11]:

Definition 1. Let S be a family of pairwise disjoint convex sets in R
d, and let

P be a set of hyperplanes in R
d passing through the origin. We say that P is

a separation set for S if for each pair si, sj ∈ S there exists a hyperplane h,
parallel to a hyperplane in P , such that si and sj are contained in different open
half-spaces bounded by h.

For a family S of pairwise disjoint convex sets, let GP (S) denote the number
of geometric permutations of S.

Lemma 2. (see [10,13]). Let S be a collection of pairwise disjoint convex sets
in R

d and let P be a separation set for S. Then GP (S) = O(|P |d−1).

Proof (sketch): Consider the cross section A∗(P ) of the arrangement A(P )
within the unit sphere S

d−1; it is an arrangement of |P | great spheres, each
consisting of all orientations parallel to some hyperplane in P . It is easy to
show that, for each cell C of A∗(P ), there is at most one possible geometric
permutation that is induced by lines with orientation in C, and this implies the
asserted bound. ✷

Since any set of n pairwise disjoint convex bodies admits a separation set of
size

(
n
2

)
, one obtains an upper bound of O(n2d−2) on the number of geometric

permutations in d-space. (This is Wenger’s proof.)
It was shown in [11] that, if S is a collection of pairwise disjoint balls in

R
d, then there exists a separation set for S of size O(n), where the constant

of proportionality depends on the dimension d. Hence, combined with Lemma
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2, one immediately gets an O(nd−1) upper bound on the number of geometric
permutations for S. The fact that, in any dimension, balls can be separated with
only O(n) hyperplane directions seems to depend on their fatness. Indeed, Katz
and Varadarajan [8] showed later that any set of pairwise disjoint α-fat convex
bodies in R

d (i.e., the ratio between the circumradius and inradius of any input
body is at most α, where α is a constant), admits a separation set of size O(n),
where the constant of proportionality depends on α and on the dimension d.

The problem with the notion of separation set is that, already in three dimen-
sions, one cannot hope to get a separation set of linear size for general convex
bodies. In fact, there exist collections S of n pairwise disjoint convex bodies in
R
3, for arbitrarily large n, such that any separation set for S is of size Ω(n2).

For example, one can take S to be the collection of Voronoi cells of the Voronoi
diagram of a set consisting of n/2 points on the line l1 : x = 0; z = 1 and of n/2
points on the line l2 : y = 0; z = 0. It is easily seen that every pair of points (p, q),
such that p ∈ l1 and q ∈ l2, have touching Voronoi cells, and that the separating
facets of these pairs of cells have different orientations. Shrink the bodies in S by
a small amount, to make them pairwise disjoint. Hence any separation set for S
must contain a distinct plane for each of these pairs of formerly touching cells,
so its size must be Θ(n2). Therefore, Lemma 2 is useless in the general case.

In this paper, we introduce a weaker notion of separation, and show that it
can be used, in a manner similar to that in Lemma 2, to derive bounds on the
number of geometric permutations.

Definition 3. Let S be a family of n pairwise disjoint convex sets in R
d. Two

objects a, b ∈ S are called neighbors if there exists a line tranversal l of S such
that a and b are consecutive elements of the geometric permutation induced by l.

Denote by N(S) the set of all neighbors in S. Note that if GP (S) = 0 then
N(S) = ∅ and if GP (S) ≥ 1 then |N(S)| ≥ n− 1.

Conjecture 4. If S is a family of pairwise disjoint convex bodies in R
d then

|N(S)| = O(n).

In Section 2 we establish the conjecture for the planar case.
It can be shown that, in the above example involving Voronoi cells, we have

GP (S) ≥ 1, and there are indeed only O(n) neighbors. The following lemma
shows that, if the conjecture is true, it leads to sharp bounds on the number of
geometric permutations in the general case.

Lemma 5. Let S be a family of n pairwise disjoint convex bodies in R
d. Then

GP (S) = O(|N(S)|d−1).

Proof: For each pair of bodies a, b ∈ N(S), let ha,b be any hyperplane separating
a and b, and let P be the set of these |N(S)| hyperplanes. We proceed as in the
proof of Lemma 2, by considering the arrangement A∗(P ) of the great spheres
in S

d−1 associated with the hyperplanes in P . Fix a (full-dimensional) cell C
of A∗(P ) and let � be an oriented line transversal to S with orientation in C.
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� induces a geometric permutation π = (π1, π2, . . . , πn) on S. For each i =
1, . . . , n− 1, the elements πi, πi+1 are neighbors (by definition), so there exists
a hyperplane hi ∈ P that separates them. hi corresponds to one of the great
spheres in the arrangement A∗(P ), with C lying in one of the two corresponding
hemispheres. This means that every oriented line that intersects both πi and
πi+1 and has orientation in C, must intersect these two sets in a fixed order.
This implies that in any geometric permutation induced by a line transversal
with orientation in C, πi must precede πi+1, for each i = 1, . . . , n − 1. Clearly,
exactly one geometric permutation (namely, π) has this property. We conclude
that there is at most one geometric permutation that can be induced by lines
with orientation in C. Hence the number of geometric permutations is at most
the number of cells in A∗(P ), which is O(|N(S)|d−1). ✷

2 Linear Bound on the Number of Neighbors in the
Plane

In this section we prove our main result, showing that our conjecture is true in
the plane.

Theorem 6. Let S be a set of n pairwise disjoint convex bodies in the plane.
Then the number of neighbor pairs in S is O(n).

Proof: We define a graph G on S, whose edges connect each of the neighbor
pairs. We will show that G is a quasi-planar graph, i.e., G can be drawn in
the plane so that no three edges with distinct endpoints are pairwise crossing.
The theorem then follows from the result of Agarwal et al. [1], that quasi-planar
graphs have linear size.

We draw G as follows. For each object a ∈ S we fix a point va inside a; these
are the vertices of (the drawing of) G. If (a, b) are neighbors, we choose one
transversal line � of S along which � ∩ a and � ∩ b appear consecutively. Let qa
and qb be the two nearest endpoints of these two respective intervals. Then we
draw the edge ab of G as the polygonal arc vaqaqbvb. See Figure 1.

To prove that G is quasi-planar, assume to the contrary that there exist six
distinct objects a, b, c, d, e, f in S, such that the edges (a, b), (c, d), (e, f) are
pairwise crossing. Any of these edges, say, (a, b), is drawn as a polygonal arc,
whose portion outside a∪ b is a straight segment sab, connecting a point qa ∈ ∂a
to a point qb ∈ ∂b, such that sab is contained in a line transversal �ab of S, along
which a and b are neighbors, and so that the relative interior of sab is disjoint
from a and b (and from all other objects in S as well). Similar constructions
hold for the edges (c, d) and (e, f). Note that the crossing between, say (a, b)
and (c, d) must be at an interior point of sab and of scd, and similarly for the
two other crossings.

The removal of sab from �ab partitions this line into two rays, one of which
meets a and is denoted as ρa, and the other meets b, and is denoted as ρb. A
similar notation holds for the two other lines.
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va

vb

qa

qb

Fig. 1. Drawing an edge of G.

Note that the lines �ab, �cd, �ef must be distinct transversals of S. Let ∆
be the triangle whose vertices are the crossing points of the segments sab, scd,
sef . Order the six objects a, b, c, d, e, f according to the counterclockwise angular
order of the endpoints qa, qb, qc, qd, qe, qf about (any point of) ∆. Without loss of
generality, assume that this circular order is (a, c, e, b, d, f); note that the three
pairs a and b, c and d, and e and f must be ‘antipodal’ elements of this order.
See Figure 2.

ρbρa
∆

qc

qdqf

qe

qa qb

a b

Fig. 2. The structure of a triple edge-crossing in G.

Since each of the lines �ab, �cd, �ef is transversal to S, it meets each of the
six sets a, b, c, d, e, f . Consider, say, the line �ab. Since the relative interior of the
contained segment sab is disjoint from all sets in S, each of the four other objects
c, d, e, f meets �ab at one (and only one) of the two complementary rays ρa, ρb.

We make the following simplification of the configuration, by replacing each
of these six objects by a straight segment. Consider one of the objects, say a.
Pick a point q′

a ∈ a ∩ �cd, and a point q′′
a ∈ a ∩ �ef . Then q′

a ∈ ρc ∪ ρd and
q′′
a ∈ ρe ∪ ρf . It is impossible that q′

a ∈ ρd and q′′
a ∈ ρe, for then the segment sab
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would not be disjoint from a, as is easily seen (see Figure 2). Hence there are
three possible cases (the mnemonics refer to the positioning of qa in the triple
{qa, q′

a, q
′′
a}):

(i) q′
a ∈ ρc and q′′

a ∈ ρf . In this case we refer to a as a middle object, and
replace it by the straight segment q′

aq
′′
a ; see Figure 3(a).

(ii) q′
a ∈ ρc and q′′

a ∈ ρe. In this case we refer to a as a clockwise object, and
replace it by the straight segment qaq

′′
a ; see Figure 3(b).

(iii) q′
a ∈ ρd and q′′

a ∈ ρf . In this case we refer to a as a counterclockwise object,
and replace it by the straight segment qaq

′
a; see Figure 3(c).

Similar ‘straightenings’ are applied to the five other objects. Each straight-
ened object is contained in the corresponding original object, and thus the re-
sulting six segments are pairwise disjoint. Note that the straightened a need not
contain the point qa (in case (i)). In this case we replace qa by the intersection of
the straightened a with �ab. This step, applied to each of the objects if needed,
may cause some of the segments sab, scd, sef to expand, but it is easily checked
that the relative interiors of the new segments are still all disjoint from all the
new six objects; see Figure 3(a).

Lemma 7. If one of the six objects is middle or clockwise (resp., middle or
counterclockwise) then the object immediately succeeding (resp., preceding) it in
the counterclockwise circular order about ∆ must be clockwise (resp., counter-
clockwise).

Proof: Without loss of generality, assume that the first object is a and that it is
middle or clockwise. The succeeding object, c, must meet �ab within ρb, or else
a and c would have to intersect (because any segment connecting qc to a point
on ρa has to cross qaq

′
a ⊆ a). Then c must be clockwise. ✷

Corollary 8. Either all six objects are clockwise or all are counterclockwise.

Without loss of generality, we may assume that all objects are clockwise.
Start at the a-endpoint v1 = qa of sab, and draw through it a line that is parallel
to �ef and intersects �cd at a point v2, which lies counterclockwise from v1 with
respect to ∆. Then draw from v2 a line parallel to �ab which intersects �ef at a
point v3, again, lying counterclockwise from v2. Keep ‘turning’ like this to trace
a closed hexagon H. (It is not hard to show that this process does indeed always
produce a closed hexagon.) See Figure 4.

We claim that the vertices of H satisfy

v1 = qa, v2 ∈ ρc, v3 ∈ ρe, v4 ∈ ρb, v5 ∈ ρd, v6 ∈ ρf .

Indeed, since the segment a is clockwise, it meets ρe, and thus must lie
counterclockwise to the ray qav2. Since a ∩ �cd ∈ ρc, we have v2 ∈ ρc as well. A
similar argument, proceeding inductively counterclockwise around H, holds for
all other vertices.
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(a)

ρf

ρc

q′
a

q′′
a

qa

ρc

(b)

ρe

qa

q′′
aq′

a

(c)

ρf

qa

q′
a

q′′
a

ρd

Fig. 3. The three types of objects and their straightening.

Note that the segment f , being clockwise, meets ρa and ρc. Hence its orienta-
tion is on one hand counterclockwise to that of v6qa = v6v1 (or else it would not
have met ρc), and is on the other hand clockwise to that of v6v1 (since v6 ∈ ρf
and f meets ρa). This contradiction implies that the graph G cannot have three
pairwise crossing edges, and thus G is quasi-planar and has linear size. This
completes the proof of Theorem 6 ✷
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v5

	ef

	cd

	ab

c

v3

v4

a

e

b

f

v2

v6

d

f qa = v1

Fig. 4. The hexagon H and the final contradiction.

3 Conclusion

Theorem 6, combined with Lemma 5, yields an alternative proof that g2(n) =
O(n) (albeit with a weaker bound than the tight 2n− 2 bound in [3]). The main
open problem is to establish the conjecture in higher dimensions, in particular
for d = 3.

Interesting by itself is the use of the linear bound on the size of quasi-planar
graphs in the proof of Theorem 6. This application is among the very few known
applications of quasi-planarity. It is conceivable, though, that the neighbor graph
G is in fact planar. However, our specific (and quite natural) way of drawing G
can have crossing edges, as can be easily shown.
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ptr@cs.chalmers.se

3 Department of Computer Science, University of Iceland, IS-107 Reykjav́ık, Iceland,
and Iceland Genomics Corp. (UVS), Snorrabraut 60, IS-105 Reykjavik. mmh@hi.is

Abstract. We study powers of certain geometric intersection graphs:
interval graphs, m-trapezoid graphs and circular-arc graphs. We define
the pseudo product, (G, G′) → G ∗ G′, of two graphs G and G′ on the
same set of vertices, and show that G∗G′ is contained in one of the three
classes of graphs mentioned here above, if both G and G′ are also in that
class and fulfill certain conditions. This gives a new proof of the fact that
these classes are closed under taking power; more importantly, we get
efficient methods for computing the representation for Gk if k ≥ 1 is an
integer and G belongs to one of these classes, with a given representation
sorted by endpoints. We then use these results to give efficient algorithms
for the k-independent set, dispersion and weighted dispersion problem on
these classes of graphs, provided that their geometric representations are
given.

1 Introduction

The dispersion problem is to select a given number of vertices in a graph so as
to maximize the minimum distance between them. The problem is dual to the
Maximum k-Independent Set problem (k-IS), which is that of finding a maximum
collection of vertices whose inter-vertex distance is greater than a given bound
k. That problem in turn is equivalent to the Maximum Independent Set problem
(MIS) on the power graphGk of the original graph. Thus, in order to give efficient
dispersion algorithms, we are led to study efficient methods for constructing k-
independent sets and power graphs, as well as to study structural properties of
these powers.

In this article we do this for some classes of geometric intersection graphs
listed below. The containment of graph classes under study is as follows: m-
trapezoid graphs are interval graphs when m = 0, trapezoid graphs when m ≤ 1,
and cocomparability graphs for any m. Similarly, circular-arc graphs form a
proper subclass of circular m-trapezoid graphs, and they also properly contain
the respective non-circular class.
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These and various other classes of graphs have been shown to be closed un-
der taking power [5,6,9,10,16,17]. Generally, these proofs of containment do not
immediately yield efficient algorithms. This led us to derive an efficient method
for computing the power graph Gk of an interval graph G in time O(n log k) [2].
We both improve and generalize this result in the present paper.

To this end we define the pseudo product (G,G′) → G ∗ G′ for two general
graphs on the same set of vertices. This composition turns out to be commu-
tative, but not associative in general. However, when we restrict to the class of
various powers of a fixed graph, then the pseudo product is also associative, in
fact if s and t are positive integers then Gs ∗Gt = Gs+t.

Our fast power computations finally lead to efficient algorithms for the dis-
persion problem in the mentioned classes. The problem is defined as follows:

(Weighted) Dispersion
Given: Graph G (with vertex weights w : V (G)→ R), and a number q.
Find: A set of vertices with cardinality (total weight) at least q, with the
minimum distance between the chosen vertices at maximum.

Dispersion is NP-hard for general graphs, since MIS is reducible to it, while it
can be approximated in polynomial time within factor 2, see e.g. [18]. In fact, it
is also hard to approximate within any factor less than 2, unless P = NP [11].

There is an obvious relationship between Dispersion and k-independent sets
in graph classes being closed under taking power. However the straightforward
use of it yields Ω(n2) time dispersion algorithms in such classes. For faster al-
gorithms we have to avoid explicit insertion of edges when considering the k-th
powers of G, such that fast power computations is exactly what we need here.

We want to make very clear that we always assume that our graphs are given
by their geometric representations, rather than by their edge lists. Thus they are
described in O(n) space, by the extreme points of geometric sets representing
the vertices. Without such a representation, it is impossible to achieve equally
fast algorithms for the problems we study. (For m-trapezoid graphs, already the
recognition problem is NP-hard [9].) We further assume everywhere in this paper
that the endpoints of the intervals/arcs/trapezoids are given in a sorted list. This
quite natural assumption which is common in the literature on algorithms in
these classes allows us to derive o(n log n) algorithms for many of these problems.

Only a few subquadratic dispersion algorithms have been provided before:
Dispersion is solvable in O(n) time for trees [3], while weighted dispersion in
O(n log n) time for paths [18], and in O(n log4 n) time for trees [4]. The current
paper extends a recent paper of Damaschke [7], who gave O(n log n/q2) time
algorithm for unweighted dispersion of circular-arc graphs, O(n log log n) time
for interval graphs, and O(n log2 n) time for weighted dispersion on trapezoid
graphs.

1.1 Outline of Results

The following table summarizes the asymptotic complexity of the problems that
we consider, provided that a representation as stated above is given. In the table,
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n denotes the number of vertices in G, and lg refers to the usual base-2 logarithm,
an m is any constant.

Class Power k-IS Dispersion W -Dispersion
Interval n n n n lg k
Circular-arc n n n
m-Trapezoid n lg k n(lg k + (lg lg n)m) n(lg k + (lg lg n)m) n lg k(lg lg n)m

1.2 Notation

We will denote the positive integers {1, 2, 3, . . .} by N, the nonnegative integers
{0, 1, 2, . . .} by N0, the set of real numbers by R, the Cartesian product R×R
by R2, and the set of the closed interval {x : a ≤ x ≤ b} by [a; b]. All graphs
we consider are simple unless otherwise stated. For a graph G the set of its
vertices will be denoted by V (G), and the set of its edges by E(G). The open
neighborhood of a vertex v in G, that is, the set of neighbors of v not including
v, will be denoted by NG(v). The closed neighborhood of a vertex v in G, that
is, the set of neighbors of v, including v itself, will be denoted by NG[v]. For two
vertices u and v in G, the distance between them will be denoted by dG(u, v) or
simply by d(u, v) when unambiguous. We use notation compatible with [19].

Recall for a graph G and an integer k, the k-th power of G is the graph Gk on
the same set of vertices as G, and where every pair of vertices of distance k or less
in G are connected by an edge. Also, a graph G is called the intersection graph of
a collection of sets {S1, . . . , Sn} if V (G) = {v1, . . . , vn} and {vi, vj} ∈ E(G) ⇔
Si ∩Sj 
= ∅, for all distinct i, j ∈ {1, . . . , n}. Note that when G is represented by
{S1, . . . , Sn}, then d(Si, Sj) is just the distance dG(vi, vj) between vi and vj in
the intersection graph G.

2 Powers of m-Trapezoid Graphs

In this section we discuss a way to calculate the k-th power of an m-trapezoid
graphs efficiently, and, as a special case, an interval or a circular-arc graph by
means of the pseudo product which we define here below.
Definition 1. Let G and G′ be simple graphs on the same set of vertices V (G) =
V (G′) = V , where |V | = n ≥ 1. Define the pseudo product of G and G′ to be
the simple graph G ∗ G′ on the set vertex set V with the edge set E(G ∗ G′) =
E(G) ∪ E(G′) ∪ E∗ where

E∗ = {{u, v} : ∃w ∈ V : {u,w} ∈ E(G), {w, v} ∈ E(G′),
and ∃w′ ∈ V : {u,w′} ∈ E(G′), {w′, v} ∈ E(G)}.

If we view ∗ as an operation among all the simple graphs on V , then it is not an
associative operation, in other words, the formula (G∗G′)∗G′′ = G∗(G′∗G′′) does
not hold in general. We have however the following, which is a direct consequence
of Definition 1.
Proposition 1. For a simple graph G and nonnegative integers s and t, we have
Gs ∗Gt = Gs+t. In particular, the pseudo product is an associative operation on
the set {Gk : k ∈ {0, 1, 2, . . .}} for any fixed simple graph G.
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Assume that for each l ∈ {0, 1, . . . ,m} we have two real numbers, al and bl
where al < bl. As defined in [9], an m-trapezoid T is simply the closed interior of
the polygon formed by the points S = {(al, l), (bl, l) : l ∈ {0, 1, . . . ,m}} ⊆ R2.
That means, the left side of the polygon is the chain of straight-line segments
connecting (al, l) and (al+1, l + 1) (l ∈ {0, 1, . . . ,m − 1}), and similarly for the
right side and numbers bl. The lower and upper boundary of T is the horizontal
line with ordinate 0 and l, respectively. We denote that by T = inter(S). The
horizontal lines with ordinates l ∈ {0, 1, . . . ,m} will be called lanes.

An m-trapezoid graph is a graph G on n vertices {v1, . . . , vn} which is an in-
tersection graph of a set {T1, . . . , Tn} of m-trapezoids, that is, {vi, vj} ∈ E(G)⇔
Ti ∩ Tj 
= ∅. Let G be an m-trapezoid graph represented by {T1, . . . , Tn} where
each

Ti = inter({(ali, l), (bli, l) : l ∈ {0, 1, . . . ,m}}). (1)

We will write ãli (resp. b̃li) for the point (ali, l) (resp. (bli, l)) in R2. We say
that the left sides of Ti and Tj cross (or synonymously, intersect) if there are
distinct indices p, q ∈ {0, 1, . . . ,m} such that api < apj and aqi > aqj .

If G and G′ are two m-trapezoid graphs, both on n vertices, represented by
sets of m-trapezoids T = {T1, . . . , Tn} and T ′ = {T ′

1, . . . , T
′
n} respectively, where

the left side of Ti and the left side of T ′
i coincide, that is Ti = inter({ãli, b̃li : l ∈

{0, 1, . . . ,m}}) and T ′
i = inter({ãli, b̃′

li : l ∈ {0, 1, . . . ,m}}), for all i ∈ {1, . . . , n},
then we will say that T and T ′ are left-coincidal.

Recall that d(Ti, Tβ) and d(T ′
i , T

′
α) denote the distances between correspond-

ing vertices in G and G′ respectively. We now put b∗
li = maxd(T ′

i ,T
′
α)≤1{blα} and

b∗
li

′ = maxd(Ti,Tβ)≤1{b′
lβ} for each i ∈ {1, . . . , n} and l ∈ {0, 1, . . . ,m}.

Theorem 1. For an integer m ≥ 0 let G and G′ be two m-trapezoid graphs
on the same number of vertices, with left-coincidal representations {T1, . . . , Tn}
and {T ′

1, . . . , T
′
n} respectively. Assume further that for each i we have either

b∗
li ≤ b∗

li
′ for all l ∈ {0, 1, . . . ,m}, or b∗

li ≥ b∗
li

′ for all l ∈ {0, 1, . . . ,m}. In
this case, the pseudo product G ∗ G′ is also an m-trapezoid graph with an m-
trapezoid representation T ∗ = {T ∗

1 , . . . , T
∗
n}, which is left-coincidal with both

T and T ′, and where the right sides of each T ∗
i are determined by b∗∗

li where
b∗∗
li = max{bli, b′

li,min{b∗
li, b

∗
li

′}}, for all i ∈ {1, . . . , n} and l ∈ {0, 1, . . . ,m}.
Proof. To prove Theorem 1 we need to show

{vi, vj} ∈ E(G ∗G′)⇔ T ∗
i ∩ T ∗

j 
= ∅. (2)

We can assume that the left sides of Ti and Tj do not cross, say ali < alj for all
l ∈ {0, 1, . . . ,m}, otherwise there is nothing to prove. Furthermore, if {vi, vj} is
either in E(G) or in E(G′) then T ∗

i ∩T ∗
j 
= ∅ by definition. Hence, we can further

assume

ali < bli < alj and ali < b′
li < alj (3)

to hold for all l ∈ {0, 1, . . . ,m} throughout the proof.
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“⇒” in (2): By definition of E(G ∗ G′), there are vα and vβ such that
{vα, vj}, {vi, vβ} ∈ E(G) and {vi, vα}, {vβ , vj} ∈ E(G′). This, together with (3),
means that there are indices p, q ∈ {0, 1, . . . ,m} such that T ′

i∩T ′
α 
= ∅, apj < bpα,

Ti ∩ Tβ 
= ∅ and aqj < b′
qβ . If b

∗
pi ≤ b∗

pi
′ then we have b∗∗

pi = b∗
pi ≥ bpα > apj , and

hence T ∗
i ∩ T ∗

j 
= ∅. If however b∗
pi ≥ b∗

pi
′ then by assumption in the theorem we

have that b∗
qi ≥ b∗

qi
′ also holds and hence we have b∗∗

qi = b∗
qi

′ ≥ b′
qβ > aqj , which

implies that T ∗
i ∩ T ∗

j 
= ∅.
“⇐” in (2): By (3) there is an l ∈ {0, 1, . . . ,m} such that b∗∗

li > alj . By
definition of b∗

li and b∗
li

′ we can find α and β such that T ′
i ∩ T ′

α 
= ∅, blα = b∗
li,

Ti ∩Tβ 
= ∅ and b′
lβ = b∗

li
′. Since now both blα and blβ are greater or equal to b∗∗

li

we have T ′
i ∩ T ′

α 
= ∅, blα > alj , Ti ∩ Tβ 
= ∅ and b′
lβ > alj . By our assumption

in (3) we have T ′
i ∩ T ′

α 
= ∅, Tα ∩ Tj 
= ∅, Ti ∩ Tβ 
= ∅ and T ′
β ∩ T ′

j 
= ∅, which
implies that {vi, vj} ∈ E(G ∗G′). ��
Let us now consider the more special cases of a pseudo product of two powers of
a fixed m-trapezoid graph G. By Proposition 1 we have that Gs∗Gt = Gs+t, and
hence Theorem 1 gives us a way to obtain the representation of Gs+t directly
from the representations of Gs and Gt. In [1] it is shown that if G is an m-
trapezoid graph represented by a set {T1, . . . , Tn} of m-trapezoids (as in (1) and
k ≥ 1 is an integer, then Gk is represented by m-trapezoids {T1(k), . . . , Tn(k)}
which are given by

Ti(k) = inter({ãli, b̃li(k) : l ∈ {0, . . . ,m}}), (4)

where b̃li(k) = maxd(Tα,Ti)≤k−1{blα}. Although (4) provides a formula for the
representation of Gk from the representation of G, this is not computationally
feasible, since the definition of b̃li(k) is complex from a computational point of
view. We are, however, able to compute precisely this representation much more
efficiently, by applying the pseudo product.

Let s, t ≥ 1 be integers, and G a fixed m-trapezoid graph. If Gs and Gt have
{T1(s), . . . , Tn(s)} and {T1(t), . . . , Tn(t)}, respectively, as their representations,
then we can get the representation of the pseudo product Gs+t = Gs ∗Gt, given
in Theorem 1, by calculating b∗

li explicitly and get

b∗
li = max

d(Ti(t),Tα(t))≤1
{blα(s)} = max

d(Ti,Tα)≤t

{
max

d(Tα,Tβ)≤s−1
{blβ}

}

= max
d(Ti,Tβ)≤s+t−1

{blβ} = bli(s+ t).

In the same way we get that b∗
li

′ = bli(s+ t), and hence we have in the case for
pseudo product of Gs and Gt that
b∗∗
li = max{bli, b′

li,min{b∗
li, b

∗
li

′}} = max{bli(s), bli(t), bli(s + t)} = bli(s + t).
Hence, the representation of Gs+t is {T1(s+ t), . . . , Tn(s+ t)}, as given in (4).

We see from the above that Theorem 1 applies when considering various
powers of a fixed graph G, as the following observation shows.
Proposition 2. If both G and G′ are powers of the same m-trapezoid graph on
n vertices, then b∗

li = b∗
li

′ holds for all l ∈ {0, 1, . . . ,m} and i ∈ {1, . . . , n}.
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Recall that the pseudo product is associative on the set of powers of a fixed
graph G, and therefore the notion Gr1 ∗ · · · ∗Grk (k times) is perfectly sensible.

Corollary 1. Let k =
∑s
i=1 2

ti be the binary representation of k. For an m-
trapezoid graph G represented by {T1, . . . , Tn}, the representation for Gk = G2t1 ∗
· · ·∗G2ts from Theorem 1 is {T1(k), . . . , Tn(k)}, the representation of Gk in (4).

3 Computing Powers of m-Trapezoid Graphs

In this section we implement the theory of Section 2, to obtain a fast method
of computing the representation of Gk, where k ∈ N and G is an m-trapezoid
graph with a given representation. Let T = {T1, . . . , Tn} and T ′ = {T ′

1, . . . , T
′
n}

be two such left-coincidal representations for G and G′ respectively, as given by
(1). Here we shall assume that for each lane l ∈ {0, 1, . . . ,m} the endpoints, ali
and bli, where i ∈ {1, . . . , n}, have been translated to the set {1, 2, . . . , 2n}.

We want to compute the pseudo product G ∗ G′, whose right endpoints are
denoted by b∗∗

li as in Theorem 1. We shall compute a series of m+1 by 2nmatrices
Ap, where for p, l = 0, 1, . . . ,m and q = 1, . . . , 2n, the entry Ap[l, q] equals the
rightmost coordinate along lane p among trapezoids T ′

α in G′ with alα ≤ q. Each
trapezoid Tα that intersects Ti must satisfy alα < bli, for some l. Thus, given the
values of Ap, we compute b∗∗

pi from Theorem 1 by setting b∗∗
pi = max{b∗

pi
′, bpi}

where b∗
pi

′ ← maxl∈{0,...,m} Ap[l, bli], which takes m+ 1 operations. To compute
Ap, we first initialize with zero and insert values for each trapezoid: For each
α ∈ {1, . . . , n} and l ∈ {0, . . . ,m} let be Ap[l, alα] = b′

lα. This, together with the
zero initialization, uses a total of 2(m + 1)n operations. We can then complete
it in one pass from left to right, using the trivial observations that coordinates
to the left of q − 1 are also to the left of q. That is, we form a prefix maxima of
Ap by Ap[l, q]← max(Ap[l, q], Ap[l, q− 1]). This second loop also uses 2(m+1)n
operations as l goes through {0, . . . ,m} and q through {1, . . . , 2n}, so we perform
4(m + 1)n operations to compute each matrix Ap. Therefore the computation
of Ap where p ∈ {0, . . .m} takes a total of 4(m + 1)2n operations. Hence, by
Proposition 1 and Theorem 1 we have the following.

Theorem 2. Given powers Gs and Gt of an m-trapezoid graph G, the power
graph Gs+t can be computed in O(m2n) time.

This generalizes the algorithm given in [2] for interval graphs. The same
construction holds also for circular-arc and circular-trapezoid graphs, where the
max operator is viewed in modular arithmetic.

If k ∈ N and k =
∑s
i=1 2

ti is its binary representation, then Gk = G2t1 ∗
G2t2 ∗ · · · ∗ G2ts . Using fast multiplication Gk can be computed in at most
ts+ s−1 ≤ 2 log k−1 pseudo products. By Theorem 2 and Corollary 1 we have:

Corollary 2. The representation of Gk where G is an m-trapezoid graph, can
be computed in O(m2n log k) time.
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4 Computing Powers of Interval Graphs and Circular-Arc
Graphs

Let G be an interval graph on n vertices, represented by a set IG of n intervals.
We may assume that all the intervals have their 2n endpoints distinct among
the numbers {1, 2, . . . , 2n}. For each interval I ∈ IG there is a unique interval
I ′ ∈ IG with the rightmost endpoint of any interval which intersects I. This
yields a mapping f : IG → IG, defined by f(I) = I ′. This mapping is acyclic
and thus induces a directed forest FG on IG (which is a directed tree if G is
connected), with an arc from each I ∈ IG to f(I). Note that the root of any tree
of FG will point to itself.

The representation of Gk can now be obtained quickly: For each interval
I = [aI ; bI ] ∈ IG we obtain an interval I(k) = [aI(k); bI(k)] where aI(k) = aI and
bI(k) = bIk

, where Ik is the k-th ancestor of I in the tree of the above forest FG

(where the parent of the root is the root itself).
This is computed in a single traversal of the tree. As we traverse the tree, we

keep the nodes on the path from the root to the current node on an indexable
stack. This is a data structure supporting all the stack operation, as well as
constant-time indexing of elements in the stack. Namely, we use an array X,
and as we traverse a node I at depth dI , we store it in X[d]. Then, the root
is stored in X[0], and the k-th ancestor of v is stored at X[dI − k], for k ≤ d.
We obtain Ik simply as X(max{dI − k, 0}), and for each node I, we output new
interval I(k) obtained by I(k) = [aI ; bX(max{dI−k,0})].

When G is a circular-arc graph, mapping f is a pseudo forest (or a pseudo tree
if G is connected), i.e. each component contains exactly one cycle, as the number
of edges equals the number of vertices. We must now treat nodes at depth less
than k differently. Select any node R on the sole cycle to be a “root”, and set its
depth to be 0. Extend the array X to negative indices, and let X[−1] = f(R)
and generally X[−i] = f (i)(R). We now traverse the tree rooted at R, as before,
and set Ik to be X[dI − k] for each node I of depth dI from R. Otherwise, the
process is identical. We have therefore the following.
Theorem 3. Let G be a circular-arc graph with a given representation. For any
k, we can compute the representation of the power graph Gk in O(n) time.

5 k-Independent Set and Dispersion Algorithms

By computing the k-th power of a graph, we reduce the problems k-IS and k-WIS
to MIS and MWIS, respectively, on the corresponding class of graphs, within an
additive factor of O(n log k). The following is known about those problems.
Proposition 3. MWIS can be computed in O(n) time for interval graphs, and
in O(n log log n) time for trapezoid graphs. MIS can be computed in O(n) time
for circular-arc graphs.
For the MWIS result on interval graphs see [13]. The MIS result on circular-
arc graphs has been rediscovered several times [12,14,15,21]. Felsner et al. [8]



Powers of Geometric Intersection Graphs and Dispersion Algorithms 147

showed that weighted IS of trapezoid graphs can be computed in O(n log n)
time, when the representation is given. Their algorithm uses a data structure
supporting Insert, Delete, Predecessor, and Successor operations of endpoints,
and the complexity is equal to the complexity of n of each of these operations.
With O(n log n) preprocessing, we may assume that all endpoints are integers
from 1 to 2n. Then, the data structure of van Emde Boas supports these op-
erations in log log n steps. Hence, we can compute the weighted IS of trapezoid
graphs in O(n log log n) time. Thus we obtain:
Theorem 4. k-WIS can be found in O(n) time for interval graphs, and in
O(n(log log n + log k)) time for trapezoid graphs. k-IS can be found in O(n)
time for circular-arc graphs.

Proof. By Theorem 3 and Corollary 2 we can compute the k-th power of an
interval graph and of a trapezoid graph in O(n) time and O(n log k) time, re-
spectively, and MWIS on the k-th power is equivalent to k-MWIS. This and
Proposition 3 gives the results for these classes. The bound on k-IS for circular-
arc graphs follows similarly. ��

5.1 Dispersion via Binary Search for k

A simple algorithm looks for the largest power Gk of G that still admits an
independent set of weight at least q. This is achieved by repeated doubling
followed by binary search; the details are straightforward. This k is, of course,
the solution to the dispersion problem. The time complexity is dominated by
the number of computations of maximum (weighted) independent sets. Here, it
is at most 2 log k. Hence:
Theorem 5. For Weighted Dispersion we have the following time bounds:
O(n log k) on interval graphs and O(n log k log log n) on trapezoid graphs.

5.2 Unweighted Dispersion of Geometric Graphs

For convenience let k-IS(G) denote the size of a minimum k-independent set in
graph G. Recall the notion of a lane from Section 2.

Lemma 1. Let G be an m-trapezoid graph, and d be the distance between trape-
zoids that are furthest in each direction along some lane. Then �d/(k+1)�+1 ≤
k-IS(G) ≤ �d/(k − 1)�+ 1.

Proof. Let u (resp. u′) be the trapezoid furthest to the left (resp. right) along a
given lane, and let P = 〈u = u0, u1, u2, . . . , ud = u′〉 be a shortest path between
u and u′. The set {ui(k+1)|i = 0, 1, 2, . . . , �d/(k + 1)�} then forms a k-IS, thus
showing the first part of the claim.

On the other hand, suppose {v1, v2, . . . , vt} is a k-IS. For each vi, the trape-
zoid representing vi intersects some trapezoid representing a node uxi in the
abovementioned path P . Since vi and vi+1 are of distance at least k+1, we have
that xi+1 ≥ xi+k−1. It follows by induction that d ≥ xt ≥ x1+(t−1)(k−1) ≥
(t−1)(k−1). Thus, t ≤ �d/(k−1)�+1, yielding the second part of the claim. ��
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Theorem 6. Let G be an m-trapezoid graph, d be the distance between vertices
respectively with the leftmost and rightmost endpoint along some lane, and K
be �d/(q − 1)�. Then, the optimum dispersion of G is one of the three values
{K − 1,K,K + 1}.
Proof. Let OPT be the optimum dispersion of G, i.e. the largest value t such
that t-IS(G) ≥ q. By the definition of K, K(q − 1) ≤ d, and thus by Lemma 1,
q ≤ �d/K�+1 ≤ (K − 1)-IS(G). That is, OPT ≥ K − 1. By the definition of K,
d/(K +1) < q, so K is the largest number such that � dK � ≥ q− 1. By Lemma 1,
q ≤ OPT -IS(G) ≤ �d/(OPT − 1)�+ 1. Thus, OPT ≤ K + 1. ��
This can be extended to circular-arc graphs. A greedy covering of the circle is
defined as follows: Start with an arbitrary arc I, add f(I) and let I := f(I),
until the whole circle is covered. (Do not put the initial I in the set.) Such a
covering exists unless the graph is actually an interval graph. Note that a greedy
covering is a chordless cycle in the graph and can be computed in O(n) time.
The following result holds by an argument similar to Lemma 1.
Lemma 2. Let c be the size of a greedy covering of a circular-arc graph G. Then
�c/(k + 1)� ≤ k-IS(G) ≤ �c/(k − 1)�.
This can be further extended to circular m-trapezoid graphs. Due to lack of
space, we only state the result:
Theorem 7. Let G be a circular m-trapezoid graph, and let K be �c/q�. Then,
the optimum dispersion of G is one of the three values {K − 1,K,K + 1}.
The proof follows the lines of Theorem 6. On circular-arc graphs, we can compute
each k-IS in linear time, as mentioned earlier. Thus we finally get the following
Corollary 3. Dispersion has equivalent complexity as k-IS on interval, circular-
arc, m-trapezoid, and circular m-trapezoid graphs. In particular, it can be com-
puted in O(n(log k+(log log n)m)) time on m-trapezoid graphs, and in O(n) time
on interval and circular-arc graphs.
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Abstract. Dealing with the NP-complete Dominating Set problem on
undirected graphs, we demonstrate the power of data reduction by pre-
processing from a theoretical as well as a practical side. In particular, we
prove that Dominating Set on planar graphs has a so-called problem
kernel of linear size, achieved by two simple and easy to implement re-
duction rules. This answers an open question from previous work on the
parameterized complexity of Dominating Set on planar graphs.

1 Introduction

In this work, two lines of research meet. On the one hand, there is Dominating
Set, one of the NP-complete core problems of combinatorial optimization and
graph theory. According to a 1998 survey [12, Chapter 12], more than 200 re-
search papers and more than 30 PhD theses investigate the algorithmic com-
plexity of domination and related problems [15]. Moreover, domination prob-
lems occur in numerous practical settings, ranging from strategic decisions such
as locating radar stations or emergency services through computational biology
to voting systems (see [14] for a survey). On the other hand, the second line of
research is that of algorithm engineering and, in particular, the power of data
reduction by efficient preprocessing. Weihe [16,17] gave a striking example when
dealing with the closely related NP-complete Hitting Set problem in context of
the European railroad network. In a preprocessing phase, he applied two simple
data reduction rules again and again until no further application was possible.
The impressive result of his empirical study was that each of his real-world in-
stances was broken into very small pieces such that for each of these a simple
brute-force approach was sufficient to solve the hard problems efficiently and
optimally. Here, we present two easy to implement reduction rules for Domi-
nating Set and analytically (not only empirically) substantiate their strength
in the case of planar graphs. More precisely, we can prove a linear size problem
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kernel for Dominating Set on planar graphs. This parallels results on a linear
problem kernel for the Vertex Cover problem observed by Chen et al. [8]
based on a well-known theorem of Nemhauser and Trotter [13,7].
A k-dominating set D of an undirected graph G is a set of k vertices of G
such that each of the rest of the vertices has at least one neighbor in D. The
minimum k such that G has a k-dominating set is called the domination number
of G, denoted by γ(G). The Dominating Set problem is to decide, given a
graph G = (V,E) and a positive integer k, whether γ(G) ≤ k. Dominating Set
belongs to the best-studied problems in parameterized complexity theory [5,10,
11]. Here, the fundamental question is whether a given parameterized problem
is fixed-parameter tractable, i.e., whether it can be solved in time f(k) · nO(1),
that is, time polynomial with respect to the input except for the parameter k
where exponential behavior is allowed. It is well-known that Dominating Set
is probably not fixed-parameter tractable on general graphs, more precisely,
Dominating Set is W[2]-complete [9,10]. By way of contrast, restricting it to
planar graphs (i.e., those graphs that can be drawn in the plane without edge
crossing), where it still remains NP-complete, Dominating Set becomes fixed-
parameter tractable. Currently, the two best known results in this respect are a
time O(c

√
k · n) (with c = 46

√
34) algorithm based on tree decompositions [1]1

and a time O(8k · n) search tree algorithm [2]. In both these works, it remained
an open question to show whether Dominating Set on planar graphs possesses
a linear problem kernel. More precisely, the question was whether, given a planar
graph G and a parameter k as input, can we—in a polynomial time preprocessing
phase—construct a planar graph G′ and a parameter k′ ≤ k such that

1. G′ consists of only c · k vertices for some constant c, and
2. G has a dominating set of size k iff G′ has a dominating set of size k′.2

We answer this question affirmatively, in this way also providing both easy and
strong data reduction rules in the sense of Weihe [16,17].
Our main result is that Dominating Set on planar graphs has a problem kernel
of size 335k. Note, however, that our main concern in analyzing the multiplica-
tive constant 335 was conceptual simplicity, for which we deliberately sacrificed
the aim to further lower it by way of refined analysis (without changing the
reduction rules). Our problem kernel can be constructed by applying two simple
data reduction rules again and again until no further application is possible. In
the worst case, for a planar input graph of n vertices this data reduction needs
time O(n2). Besides answering an open question from previous work, the linear
problem kernel also leads to further improvements of known results. First, on the
structural side, combining our linear problem kernel with the graph separator

1 In [1], an exponential base c = 36
√

34 is stated, involving a tiny flaw in the analysis.
The correct worst case upper bound should read c = 46

√
34 (see also [6]).

2 Usually, one also wants to efficiently get the dominating set for G once having the
dominating set for G′. This is easily achieved in our and basically all known reduc-
tions to problem kernel.
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Fig. 1. The left-hand side shows the partitioning of the neighborhood of a single
vertex v. The right-hand side shows the partitioning of a neighborhood N(v, w) of two
vertices v and w. Since, in the left-hand figure, N3(v) �= ∅, reduction Rule 1 applies.
In the right-hand figure, since N3(v, w) cannot be dominated by a single vertex at all,
Case 2 of Rule 2 applies

approach presented in [4] immediately results in an O(c
√
k · k + nO(1)) Domi-

nating Set algorithm on planar graphs (for some constant c). Also, the linear
problem kernel directly proves the so-called “Layerwise Separation Property” [3]
for Dominating Set on planar graphs, again implying an O(c

√
k · k + nO(1))

algorithm. Second, the linear problem kernel improves the time O(8k · n) search
tree algorithm from [2] to an O(8kk + n3) algorithm. Apart from these theoret-
ical results, we also underpin the practical importance of our approach through
(ongoing) experimental studies. These indicate that the two proposed reduction
rules can be implemented efficiently and lead to massive reductions on given in-
put data. Notably, our data reductions also significantly accelerate implemented
tree decomposition based algorithms for Dominating Set on planar graphs [6]
due to an empirically observed reduction of the treewidth of the tested graphs.
Due to the lack of space, many details had to be omitted and will appear in the
full version of the paper.

2 The Reduction Rules

We present two reduction rules for Dominating Set. Both reduction rules are
based on the same principle: We explore the local structure of the graph and try
to replace it by a simpler structure.

2.1 The Neighborhood of a Single Vertex

Consider a vertex v ∈ V of the given graph G = (V,E). We partition the vertices
of the neighborhood N(v) of v into three different sets N1(v), N2(v), and N3(v)
depending on what neighborhood structure these vertices have. More precisely,
setting N [v] := N(v) ∪ {v}, we define

N1(v) := {u ∈ N(v) : N(u) \N [v] �= ∅},
N2(v) := {u ∈ N(v) \N1(v) : N(u) ∩N1(v) �= ∅},
N3(v) := N(v) \ (N1(v) ∪N2(v)).
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An example which illustrates the partitioning of N(v) into the subsets N1(v),
N2(v), and N3(v) can be seen in the left-hand diagram of Fig. 1. Based on the
above definitions we give our first reduction rule.

Rule 1 If N3(v) �= ∅ for some vertex v, then
• remove N2(v) and N3(v) from G and
• add a new vertex v′ with the edge {v, v′}.

Lemma 1. Let G = (V,E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule 1 to G. Then γ(G) = γ(G′).

Proof. Consider a vertex v ∈ V such that N3(v) �= ∅. The vertices in N3(v)
can only be dominated by either v or by vertices in N2(v)∪N3(v). But, clearly,
N(w) ⊆ N(v) for every w ∈ N2(v) ∪N3(v). This shows that an optimal way to
dominate N3(v) is given by taking v into the dominating set. This is simulated by
the “gadget” {v, v′} in G′. It is safe to remove N2(v)∪N3(v), since these vertices
need not to be used in an optimal dominating set. Hence, γ(G′) = γ(G). �
Lemma 2. Rule 1 can be carried out in time O(n) for planar graphs and in
time O(n3) for general graphs. ✷

2.2 The Neighborhood of a Pair of Vertices

Similar to Rule 1, we explore the set N(v, w) := N(v) ∪ N(w) of two vertices
v, w ∈ V . Analogously, we now partition N(v, w) into three disjoint subsets
N1(v, w), N2(v, w), and N3(v, w). Setting N [v, w] := N [v] ∪N [w], we define

N1(v, w) := {u ∈ N(v, w) | N(u) \N [v, w] �= ∅},
N2(v, w) := {u ∈ N(v, w) \N1(v, w) | N(u) ∩N1(v, w) �= ∅},
N3(v, w) := N(v, w) \ (N1(v, w) ∪N2(v, w)).

The right-hand diagram of Fig. 1 shows an example which illustrates the parti-
tioning of N(v, w) into the subsets N1(v, w), N2(v, w), and N3(v, w).
Our second reduction rule—compared to Rule 1—is slightly more complicated.

Rule 2 Consider v, w ∈ V (v �= w) and suppose that N3(v, w) �= ∅. Suppose
that N3(v, w) cannot be dominated by a single vertex from N2(v, w) ∪N3(v, w).

Case 1 If N3(v, w) can be dominated by a single vertex from {v, w}:
(1.1) If N3(v, w) ⊆ N(v) as well as N3(v, w) ⊆ N(w):

• remove N3(v, w) and N2(v, w) ∩N(v) ∩N(w) from G and
• add two new vertices z, z′ and edges {v, z}, {w, z}, {v, z′}, {w, z′}.

(1.2) If N3(v, w) ⊆ N(v), but not N3(v, w) ⊆ N(w):
• remove N3(v, w) and N2(v, w) ∩N(v) from G and
• add a new vertex v′ and the edge {v, v′} to G.

(1.3) If N3(v, w) ⊆ N(w), but not N3(v, w) ⊆ N(v):
• remove N3(v, w) and N2(v, w) ∩N(w) from G and
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• add a new vertex w′ and the edge {w,w′} to G.
Case 2 If N3(v, w) cannot be dominated by a single vertex from {v, w}:

• remove N3(v, w) and N2(v, w) from G and
• add two new vertices v′, w′ and edges {v, v′}, {w,w′}.

Lemma 3. Let G = (V,E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule 2 to G. Then γ(G) = γ(G′).

Proof. Similar to the proof of Lemma 1, we observe that vertices from N3(v, w)
can only be dominated by vertices from M := {v, w} ∪ N2(v, w) ∪ N3(v, w).
All cases in Rule 2 are based on the fact that N3(v, w) needs to be dominated.
All rules only apply if there is not a single vertex in N2(v, w) ∪N3(v, w) which
dominates N3(v, w).
We first of all discuss the correctness of Case (1.2) (and similarly the symmetric
Case (1.3)): If v dominates N3(v, w) (and w does not), then it is better to
take v into the dominating set—and at the same time still leave the option of
taking vertex w—than to take any combination of two vertices {x, y} from the
set M \ {v}. It may be that we still have to take w to a minimum dominating
set, but in any case {v, w} dominates at least as many vertices as {x, y}. The
“gadget” {v, v′} simulates the effect of taking v. It is safe to remove N :=
(N2(v, w) ∩ N(v)) ∪ N3(v, w) since, by taking v into the dominating set, all
vertices in N are already dominated and since, as discussed above, it is always
better to take {v, w} into a minimum dominating set than to take v and any
other of the vertices from N .
In the situation of Case (1.1), we can dominate N3(v, w) by both v or w. Since
we cannot decide at this point which of these vertices should be chosen to be in
the dominating set, we use the “gadget” with vertices v′ and w′ which simulates
a choice between v or w, as can be seen easily. In any case, however, it is better to
take one of the vertices v and w (maybe both) than taking any two of the vertices
from M \ {v, w}. The argument for this is similar to the one for Case (1.2). The
removal of N3(v, w) ∪ (N2(v, w) ∩ N(v) ∩ N(w)) is safe by a similar argument
than the one that justified the removal of N in Case (1.2).
In Case 2, we need at least two vertices to dominate N3(v, w). Since N(v, w) ⊇
N(x, y) for all pairs x, y ∈M it is best to take v and w into the dominating set,
simulated by the gadgets {v, v′} and {w,w′}. As in the previous cases remov-
ing N3(v, w) ∪ N2(v, w) is safe since these vertices are already dominated and
since these vertices need not be used for an optimal dominating set. ✷

Lemma 4. Rule 2 can be carried out in time O(n2) for planar graphs and in
time O(n4) for general graphs. ✷

2.3 Reduced Graphs

Definition 1. Let G = (V,E) be a graph such that both the application of Rule 1
and the application of Rule 2 leave the graph unchanged. Then we say that G is
reduced with respect to these rules.
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Observing that the (successful) application of any reduction rule always
“shrinks” the given graph implies that there can only be O(n) successful ap-
plications of reduction rules. This leads to the following.3

Lemma 5. A graph G can be transformed into a reduced graph G′ with γ(G) =
γ(G′) in time O(n3) in the planar case and in time O(n5) in the general case. ✷

3 A Linear Problem Kernel for Planar Graphs

Here, we show that the reduction rules given in Section 2.1 yield a linear size
problem kernel for dominating set on planar graphs.
Theorem 1. For a planar graph G = (V,E) which is reduced with respect to
Rules 1 and 2, we get |V | ≤ 335 γ(G), i.e., the dominating set problem on
planar graphs admits a linear problem kernel.
The rest of this section is devoted to sketch a proof of Theorem 1. The proof can
be split into two parts. In a first step, we try to find a so-called “maximal region
decomposition” of the vertices V of G. In a second step, we show, on the one
hand, that such a maximal region decomposition must contain all but O(γ(G))
many vertices from V . On the other hand, we prove that such a region decompo-
sition uses at most O(γ(G)) regions, each of which having size O(1). Combining
the results then yields |V | = O(γ(G)).

3.1 Finding a Maximal Region Decomposition

Suppose that we have a reduced planar graph G with a minimum dominating
set D. We know that, in particular, neither Rule 1 applies to a vertex v ∈ D,
nor Rule 2 applies to a pair of vertices v, w ∈ D. We want to get our hands
on the number of vertices that lie in neighborhoods N(v) for v ∈ D, or neigh-
borhoods N(v, w) for v, w ∈ D. A first idea to prove that |V | = O(|D|) would
be to find (at most O(|D|) many) neighborhoods N(v1, w1), . . . , N(v�, w�) with
vi, wi ∈ D, such that all vertices in V lie in at least one such neighborhood;
and then use the fact that G is reduced in order to prove that each N(vi, wi)
has size at most O(1). However, even if the graph G is reduced, the neighbor-
hoods N(v, w) of two vertices v, w ∈ D may contain many vertices: the size
of N(v, w) in a reduced graph basically depends on how big N1(v, w) is.
In order to circumvent these difficulties, we define the concept of a region R(v, w)
for which we can guarantee that in a reduced graph it consists of only a constant
number of vertices.
Definition 2. Let G = (V,E) be a plane4 graph. A region R(v, w) between two
vertices v, w is a closed subset of the plane with the following properties:

1. the boundary of R(v, w) is formed by two paths P1 and P2 in V which connect
v and w, and the length of each path is at most three5, and

3 It must be emphasized here that our polynomial time bounds for the reduction rules
give real worst-case bounds (which may not even be tight) and, in practice, the
algorithms implementing these rules appear to be much faster.

4 A plane graph is a particular planar embedding of a planar graph.
5 The length of a path is the number of edges on it.
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Fig. 2. The left-hand side diagram shows an example of a possible D-region decom-
position R of some graph G, where D is the subset of vertices in G that are drawn
in black. The various regions are highlightened by different patterns. The remaining
white areas are not considered as regions. Note that the given D-region decomposition
is maximal. The right-hand side shows the induced graph GR (Definition 4)

2. all vertices which are strictly inside6 the region R(v, w) are from N(v, w).

For a region R, let V (R) denote the vertices belonging to R, i.e.,

V (R) := {u ∈ V | u sits inside or on the boundary of R}.

Definition 3. Let G = (V,E) be a plane graph and D ⊆ V . A D-region decom-
position of G is a set R of regions between pairs of vertices in D, such that

1. for R(v, w) ∈ R no vertex from D (except for v, w) lies in V (R(v, w)), and
2. no two regions R1, R2 ∈ R do intersect (however, they may touch each other
by having common boundaries).

For a D-region decomposition R, we define V (R) :=
⋃
R∈R V (R). A D-region

decomposition R is called maximal if there is no region R /∈ R such that R′ :=
R∪ {R} is a D-region decomposition with V (R) � V (R′).

For an example of a (maximal) D-region decomposition we refer to the left-hand
side diagram of Fig. 2. It is not directly clear, whether, for a given graph G with
dominating set D, a maximal D-region decomposition of G exists. We will see
that this indeed is the case. Moreover, we will show that we can even find a
special maximal D-region decomposition. For that purpose, we observe that a
D-region decomposition induces a graph in a very natural way.

Definition 4. The induced graph GR = (VR, ER) of a D-region decomposi-
tion R of G is the graph with possible multiple edges which is defined as follows:
VR := D, and ER := {{v, w} |
there is a region R(v, w) ∈ R between v, w ∈ D}.
Note that, by Definition 3, the induced graph GR of a D-region decomposition
is planar. For an example of an induced graph GR see Fig. 2.
6 i.e., not sitting on the boundary of R(v, w)
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Type 1:

Type 2:

Worst-case scenario for a region R(v, w): Simple regions S(x, y):

y

wd

u3 u4

u2

v

u1

xy

x

Fig. 3. The left-hand diagram shows a worst-case scenario for a region R(v, w) between
two vertices v and w in a reduced planar graph (cf. the proof of Proposition 3). Such
a region may contain up to four vertices from N1(v, w), namely u1, u2, u3, and u4. The
vertices from R(v, w) which belong to the sets N2(v, w) and N3(v, w) can be grouped
into so-called simple regions of Type 1 (marked with a line-pattern) or of Type 2
(marked with a crossing-pattern); the structure of such simple regions S(x, y) is given in
the right-hand part of the diagram. In R(v, w) there might be two simple regions S(d, v)
and S(d, w) (of Type 2), containing vertices from N3(v, w). And, we can have up to six
simple regions of vertices from N2(v, w): S(u1, v), S(v, u3), S(u4, w), S(w, u2), S(u2, v),
and S(u4, v) (among these, the latter two can be of Type 2 and the others are of
Type 1)

Definition 5. We say that a planar graph G = (V,E) with multiple edges is
thin, if there exists a planar embedding such that the following property holds:
If there are two edges e1, e2 between a pair of distinct vertices v, w ∈ V , then
there must be two further vertices u1, u2 ∈ V which sit inside the two disjoint
regions of the plane that are enclosed by e1, e2.

Lemma 6. For a thin planar graph G = (V,E) we have |E| ≤ 3|V | − 6.

Proof. The claim is true for planar graphs without multiple edges. An easy
induction on the number of multiple edges in G proves the claim. �
Using the notion of thin graphs, we can formulate the main result of this section.

Proposition 1. For a reduced plane graph G with dominating set D, there exists
a maximal D-region decomposition R such that GR is thin. ✷

3.2 Region Decompositions and the Size of Reduced Planar Graphs

Suppose that we are given a reduced planar graph G = (V,E) with a minimum
dominating set D. Then, by Proposition 1 and Lemma 6, we can find a maximal
D-region decomposition R of G with at most O(γ(G)) regions. In order to see
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that |V | = O(γ(G)), it remains to show that (1) there are at most O(γ(G))
vertices which do not belong to any of the regions in R, and that (2) every
region of R contains at most O(1) vertices. These issues are treated by the
following two propositions, the extensive proofs of which are omitted.

Proposition 2. Let G = (V,E) be a plane reduced graph and let D be a domi-
nating set of G. If R is a maximal D-region decomposition, then R contains all
but O(|D|+ |R|) vertices of G. More precisely, |V \ V (R)| ≤ 2|D|+ 56|R|. ✷

We now investigate the maximal size of a region in a reduced graph. The worst-
case scenario for a region in a reduced graph is depicted in Fig. 3.
Proposition 3. A region R of a plane reduced graph contains at most 55 ver-
tices, i.e., |V (R)| ≤ 55. ✷

To prove Theorem 1 we first of all observe that, for a graph G with minimum
dominating set D, by Proposition 1 and Lemma 6, we can find a D-region de-
composition R of G with at most 3γ(G) regions, i.e., |R| ≤ 3γ(G). By Propo-
sition 3, we know that |V (R)| ≤ ∑R∈R |V (R)| ≤ 55|R|. By Proposition 2, we
have |V \ V (R)| ≤ 2|D|+56|R|. Hence, we get |V | ≤ 2|D|+111|R| ≤ 335 γ(G).

4 Conclusion

Presenting two simple and easy to implement reduction rules for Dominating
Set, we proved that for planar graphs a linear size problem kernel can be ef-
ficiently constructed. Our result complements and partially improves previous
results [1,2,3,4] on the parameterized complexity of Dominating Set on planar
graphs. We emphasize that the proven bound on the problem kernel size is a
pure worst-case upper bound. In first experimental studies to be reported else-
where, we obtained much smaller problem kernels. An immediate open question
is whether or not we can improve the constant factor to values around 10. This
would bring the problem kernel for Dominating Set on planar graphs into “di-
mensions” as known for Vertex Cover, where it is of size 2k [8]. This could be
done by either improving the analysis given or (more importantly) further im-
proving the given reduction rules or both. Improving the rules should be doable
by further extending the concept of neighborhood to more than two vertices.
From a practical point of view, however, one also has to take into account to
keep the reduction rules as simple as possible in order to avoid inefficiency due
to increased overhead. It might well be the case that additional, more compli-
cated reduction rules only improve the worst case bounds, but are of little or no
practical use due to their computational overhead.
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of numerous people, all of whom we owe sincere thanks for their insightful and
inspiring remarks and ideas. Among these people we particularly would like to
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Planar Graph Coloring with Forbidden
Subgraphs: Why Trees and Paths Are

Dangerous�
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Abstract. We consider the problem of coloring a planar graph with
the minimum number of colors such that each color class avoids one or
more forbidden graphs as subgraphs. We perform a detailed study of the
computational complexity of this problem.
We present a complete picture for the case with a single forbidden con-
nected (induced or non-induced) subgraph. The 2-coloring problem is
NP-hard if the forbidden subgraph is a tree with at least two edges, and
it is polynomially solvable in all other cases. The 3-coloring problem is
NP-hard if the forbidden subgraph is a path, and it is polynomially solv-
able in all other cases. We also derive results for several forbidden sets
of cycles.

Keywords: graph coloring; graph partitioning; forbidden subgraph; pla-
nar graph; computational complexity.

1 Introduction

We denote by G = (V,E) a finite undirected and simple graph with |V | = n
vertices and |E| = m edges. For any non-empty subset W ⊆ V , the subgraph of
G induced byW is denoted by G[W ]. A clique of G is a non-empty subset C ⊆ V
such that all the vertices of C are mutually adjacent. A non-empty subset I ⊆ V
is independent if no two of its elements are adjacent. An r-coloring of the vertices
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of G is a partition V1, V2, . . . , Vr of V ; the r sets Vj are called the color classes
of the r-coloring. An r-coloring is proper if every color class is an independent
set. The chromatic number χ(G) is the minimum integer r for which a proper
r-coloring exists.

Evidently, an r-coloring is proper if and only if for every color class Vj ,
the induced subgraph G[Vj ] does not contain a subgraph isomorphic to P2. This
observation leads to a number of interesting generalizations of the classical graph
coloring concept. One such generalization was suggested by Harary [15]: Given
a graph property π, a positive integer r, and a graph G, a π r-coloring of G
is a (not necessarily proper) r-coloring in which every color class has property
π. This generalization has been studied for the cases where the graph property
π is being acyclic, or planar, or perfect, or a path of length at most k, or a
clique of size at most k. We refer the reader to the work of Brown & Corneil [5],
Chartrand et al [7,8], and Sachs [20] for more information on these variants.

In this paper, we will investigate graph colorings where the property π can
be defined via some (maybe infinite) list of forbidden induced subgraphs. This
naturally leads to the notion of F-free colorings. Let F = {F1, F2, . . . } be the
set of so-called forbidden graphs. Throughout the paper we will assume that
the set F is non-empty, and that all graphs in F are connected and contain at
least one edge. For a graph G, a (not necessarily proper) r-coloring with color
classes V1, V2, . . . , Vr is called weakly F–free, if for all 1 ≤ j ≤ r, the graph G[Vj ]
does not contain any graph from F as an induced subgraph. Similarly, we say
that an r-coloring is strongly F–free if G[Vj ] does not contain any graph from
F as an (induced or non-induced) subgraph. The smallest possible number of
colors in a weakly (respectively, strongly) F-free coloring of a graph G is called
the weakly (respectively, strongly) F-free chromatic number ; it is denoted by
χW (F , G) (respectively, by χS(F , G)).

In the cases where F = {F} consists of a single graph F , we will sometimes
simplify the notation and not write the curly brackets: We will write F -free short
for {F}-free, χW (F,G) short for χW ({F}, G), and χS(F,G) short for χS({F}, G).
With this notation χ(G) = χS(P2, G) = χW (P2, G) holds for every graph G. Note
that

χW (F , G) ≤ χS(F , G) ≤ χ(G).

It is easy to construct examples where both inequalities are strict. For instance,
for F = {P3} (the path on three vertices) and G = C3 (the cycle on three
vertices) we have χ(G) = 3, χS(P3, G) = 2, and χW (P3, G) = 1.

1.1 Previous Results

The literature contains quite a number of papers on weakly and strongly F-free
colorings of graphs. The most general result is due to Achlioptas [1]: For any
graph F with at least three vertices and for any r ≥ 2, the problem of deciding
whether a given input graph has a weakly F -free r-coloring is NP-hard.
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The special case of weakly P3-free colorings is known as the subcoloring prob-
lem in the literature. It has been studied by Broere & Mynhardt [4], by Albert-
son, Jamison, Hedetniemi & Locke [2], and by Fiala, Jansen, Le & Seidel [11].

Proposition 1. [Fiala, Jansen, Le & Seidel [11]]
Weakly P3-free 2-coloring is NP-hard for triangle-free planar graphs.

A (1, 2)-subcoloring of G is a partition of VG into two sets S1 and S2 such
that S1 induces an independent set and S2 induces a subgraph consisting of a
matching and some (possibly no) isolated vertices. Le and Le [17] proved that
recognizing (1, 2)-subcolorable cubic graphs is NP-hard, even on triangle-free
planar graphs.

The case of weakly P4-free colorings has been investigated by Gimbel &
Nešetřil [13] who study the problem of partitioning the vertex set of a graph into
induced cographs. Since cographs are exactly the graphs without an induced P4,
the graph parameter studied in [13] equals the weakly P4-free chromatic number
of a graph. In [13] it is proved that the problems of deciding χW (P4, G) ≤ 2,
χW (P4, G) = 3, χW (P4, G) ≤ 3 and χW (P4, G) = 4 all are NP-hard and/or
coNP-hard for planar graphs. The work of Hoàng & Le [16] on weakly P4-free 2-
colorings was motivated by the Strong Perfect Graph Conjecture. Among other
results, they show that weakly P4-free 2-coloring is NP-hard for comparability
graphs.

A notion that is closely related to strongly F -free r-coloring is the so-called
defective graph coloring. A defective (k, d)-coloring of a graph is a k-coloring
in which each color class induces a subgraph of maximum degree at most d.
Defective colorings have been studied for instance by Archdeacon [3], by Cowen,
Cowen & Woodall [10], and by Frick & Henning [12]. Cowen, Goddard & Jesurum
[9] have shown that the defective (3, 1)-coloring problem and the defective (2, d)-
coloring problem for any d ≥ 1 are NP-hard even for planar graphs. We observe
that defective (2, 1)-coloring is equivalent to strongly P3-free 2-coloring, and that
defective (3, 1)-coloring is equivalent to strongly P3-free 3-coloring.

Proposition 2. [Cowen, Goddard & Jesurum [9]]
(i) Strongly P3-free 2-coloring is NP-hard for planar graphs.
(ii) Strongly P3-free 3-coloring is NP-hard for planar graphs.

1.2 Our Results

We perform a complexity study of weakly and strongly F-free coloring problems
for planar graphs. By the Four Color Theorem (4CT), every planar graph G
satisfies χ(G) ≤ 4. Consequently, every planar graph also satisfies χW (F , G) ≤ 4
and χS(F , G) ≤ 4, and we may concentrate on 2-colorings and on 3-colorings.
For the case of a single forbidden subgraph, we obtain the following results for
2-colorings:

– If the forbidden (connected) subgraph F is not a tree, then every planar
graph is strongly and hence also weakly F -free 2-colorable. Hence, the cor-
responding decision problems are trivially solvable.
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– If the forbidden subgraph F = P2, then F -free 2-coloring is equivalent to
proper 2-coloring. It is well-known that this problem is polynomially solvable.

– If the forbidden subgraph is a tree T with at least two edges, then both
weakly and strongly T -free 2-coloring are NP-hard for planar input graphs.
Hence, these problems are intractable.

For 3-colorings with a single forbidden subgraph, we obtain the following results:

– If the forbidden (connected) subgraph F is not a path, then every planar
graph is strongly and hence also weakly F -free 3-colorable. Hence, the cor-
responding decision problems are trivially solvable.

– For every path P with at least one edge, both weakly and strongly P -free
3-coloring are NP-hard for planar input graphs. Hence, these problems are
intractable.

Moreover, we derive several results for 2-colorings with certain forbidden sets of
cycles.

– For the forbidden set F345 = {C3, C4, C5}, weakly and strongly F345-free 2-
coloring both are NP-hard for planar input graphs. Also for the forbidden
set Fcycle of all cycles, weakly and strongly Fcycle-free 2-coloring both are
NP-hard for planar input graphs.

– For the forbidden set Fodd of all cycles of odd lengths, every planar graph is
strongly and hence also weakly Fodd-free 2-colorable.

2 The Machinery for Establishing NP-Hardness

Throughout this section, let F denote some fixed set of forbidden planar sub-
graphs. We assume that all graphs in F are connected and contain at least two
edges. We will develop a generic NP-hardness proof for certain types of weakly
and strongly F-free 2-coloring problems. The crucial concept is the so-called
equalizer gadget.

Definition 1. (Equalizer)
An (a, b)-equalizer for F is a planar graph E with two special vertices a and b
that are called the contact points of the equalizer. The contact points are non-
adjacent, and they both lie on the outer face in some fixed planar embedding of
E. Moreover, the graph E has the following properties:

(i) In every weakly F-free 2-coloring of E, the contact points a and b receive
the same color.

(ii) There exists a strongly F-free 2-coloring of E such that a and b receive the
same color, whereas all of their neighbors receive the opposite color. Such a
coloring is called a good 2-coloring of E.

The following result is our (technical) main theorem. This theorem is going
to generate a number of NP-hardness statements in the subsequent sections of
the paper. We omit the proof of this theorem in this extended abstract.
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Theorem 1. (Technical main result of the paper)
Let F be a set of planar graphs that all are connected and that all contain at
least two edges. Assume that

– F contains a graph on at least four vertices with a cut vertex, or a 2-
connected graph with a planar embedding with at least five vertices on the
outer face;

– there exists an (a, b)-equalizer for F .
Then deciding weakly F-free 2-colorability and deciding strongly F-free 2-
colorability are NP-hard problems for planar input graphs.

3 Tree-Free 2-Colorings of Planar Graphs

The main result of this section will be an NP-hardness result for weakly and
strongly T -free 2-coloring of planar graphs for the case where T is a tree with at
least two edges (see Theorem 2). The proof of this result is based on an inductive
argument over the number of edges in T . The following two auxiliary Lemmas 1
and 2 will be used to start the induction.

Lemma 1. Let K1,k be the star with k ≥ 2 leaves. Then it is NP-hard to decide
whether a planar graph has a weakly (strongly) K1,k-free 2-coloring.

Proof. For k = 2, the statement for weakly K1,k-free 2-colorings follows from
Proposition 1, and the statement for strongly K1,k-free 2-colorings follows from
Proposition 2.(i). For k ≥ 3, we apply Theorem 1. The first condition in this
theorem is fulfilled, since for k ≥ 3 the star K1,k is a graph on at least four
vertices with a cut vertex. For the second condition, we construct an (a, b)-
equalizer.

The equalizer is the complete bipartite graph K2,2k−1 with bipartitions I,
|I| = 2k − 1, and {a, b}. This graph satisfies Definition 1.(i): In any 2-coloring,
at least k of the vertices in I receive the same color, say color 0. If a and b
are colored differently, then one of them is colored 0. This yields an induced
monochromatic K1,k. A good coloring as required in Definition 1.(ii) results
from coloring a and b by the same color, and all vertices in I by the opposite
color.

For 1 ≤ k ≤ m, a double-star Xk,m is the tree of the following form: Xk,m
has k+m+2 vertices. There are two adjacent central vertices y1 and y2. Vertex
y1 is adjacent to k leaves, and y2 is adjacent to m leaves. In other words, the
double-star Xk,m results from adding an edge between the two central vertices
of the stars K1,k and K1,m. Note that X1,1 is isomorphic to the path P4.

Lemma 2. Let Xk,m be a double star with 1 ≤ k ≤ m. Then it is NP-hard to
decide whether a planar graph has a weakly (strongly) Xk,m-free 2-coloring.
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Proof. We apply Theorem 1. The first condition in this theorem is fulfilled,
since Xk,m is a graph on at least four vertices with a cut vertex. For the second
condition, we will construct an (a, b)-equalizer.

The (a, b)-equalizer E = (V ′, E′) consists of 2m + k − 1 independent copies
(V i, Ei) of the double star Xk,m where 1 ≤ i ≤ 2m+ k− 1. Moreover, there are
five special vertices a, b, v1, v2, and v3. We define

V ′ = {v1, v2, v3, a, b} ∪
⋃

1≤i≤2m+k−1

V i and

E′ = {vivj : 1 ≤ i, j ≤ 3} ∪ av3 ∪ bv3 ∪⋃
1≤i≤2m+k−1

Ei ∪
⋃

1≤i≤m
{v1v : v ∈ V i} ∪

⋃
m+1≤i≤2m

{v2v : v ∈ V i} ∪
⋃

2m+1≤i≤2m+k−1

{v3v : v ∈ V i} .

We claim that every 2-coloring of E with a and b colored in different colors
contains a monochromatic induced copy of Xk,m: Consider some weakly Xk,m-
free coloring of E . Then each copy (V i, Ei) of Xk,m must have at least one
vertex that is colored 0 and at least one vertex that is colored 1. If v1 and v2 had
the same color, then together with appropriate vertices in V i, 1 ≤ i ≤ 2m, they
would form a monochromatic copy of Xk,m. Hence, we may assume by symmetry
that v1 is colored 1, that v2 is colored 0, and that v3 is colored 0. Suppose for
the sake of contradiction that a and b are colored differently. Then one of them
would be colored 0, and there would be a monochromatic copy of Xk,m with
center vertices v3 and v2. Thus E satisfies property (i) in Definition 1.

To show that also property (ii) in Definition 1 is satisfied, we construct a
good 2-coloring: The vertices a, b, v1 are colored 0, and v2 and v3 are colored 1.
In every set V i with 1 ≤ i ≤ m, one vertex is colored 0 and all other vertices are
colored 1. In every set V i with m+ 1 ≤ i ≤ 2m+ k − 1, one vertex is colored 1
and all other vertices are colored 0.

Now we are ready to prove the main result of this section.

Theorem 2. Let T be a tree with at least two edges. Then it is NP-hard to
decide whether a planar input graph G has a weakly (strongly) T -free 2-coloring.

Proof. By induction on the number � of edges in T . If T has � = 2 edges, then
T = K1,2, and NP-hardness follows by Lemma 1. If T has � ≥ 3 edges, then
we consider the so-called shaved tree T ∗ of T that results from T by removing
all the leaves. If the shaved tree T ∗ is a single vertex, then T is a star, and
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NP-hardness follows by Lemma 1. If the shaved tree T ∗ is a single edge, then T
is a double star, and NP-hardness follows by Lemma 2.

Hence, it remains to settle the case where the shaved tree T ∗ contains at
least two edges. In this case we know from the induction hypothesis that weakly
(strongly) T ∗-free 2-coloring is NP-hard. Consider an arbitrary planar input
graph G∗ for weakly (strongly) T ∗-free 2-coloring. To complete the NP-hardness
proof, we will construct in polynomial time a planar graph G that has a weakly
(strongly) T -free 2-coloring if and only if G∗ has a weakly (strongly) T ∗-free
2-coloring: Let ∆ be the maximum vertex degree of T . For every vertex v in G∗,
we create ∆ independent copies T1(v), . . . , T∆(v) of T , and we connect v to all
vertices of all these copies.

Assume first that G∗ is weakly (strongly) T ∗-free 2-colorable. We extend this
coloring to a weakly (strongly) T -free coloring of G by taking a proper 2-coloring
of every subgraph Ti(v) in G. It can be verified that this extended coloring for
G does not contain any monochromatic copy of T .

Now assume that G is weakly (strongly) T -free 2-colorable, and let c be such
a 2-coloring. Every subgraph Ti(v) in G must meet both colors. This implies
that every vertex v in the subgraph G∗ of G has at least ∆ neighbors of color 0
and at least ∆ neighbors of color 1 in the subgraphs Ti(v). This implies that the
restriction of the coloring c to the subgraph G∗ is a weakly (strongly) T ∗-free
2-coloring. This concludes the proof of the theorem.

4 Cycle-Free 2-Colorings of Planar Graphs

In the previous sections we have shown that for every tree F with |E(F )| ≥ 2,
the problem of deciding whether a given planar graph has a weakly (strongly)
F -free 2-coloring is NP-hard. If the forbidden tree F is a P2, then F -free 2-
coloring is equivalent to proper 2-coloring, and hence the corresponding problem
is polynomially solvable.

We now turn to the case in which F is not a tree and hence contains a cycle
(we assume F is connected).

If F contains an odd cycle, then the Four Color Theorem (4CT) shows that
any planar graph G has a weakly (strongly) F -free 2-coloring: a proper 4-coloring
of G partitions VG into two sets S1 and S2 each inducing a bipartite graph.
Coloring all the vertices of Si by color i yields a weakly (strongly) F -free 2-
coloring of G. If we extend the set of forbidden cycles to all cycles of odd length,
denoted by Fodd, then the converse is also true: In any Fodd-free 2-coloring of G
both monochromatic subgraphs of G are bipartite, yielding a 4-coloring of G.
To summarize we obtain the following.

Lemma 3. The statement “χS(Fodd, G) ≤ 2 for every planar graph G” is equiv-
alent to the 4CT.

In case F is just the triangle C3, one can avoid using the heavy 4CT machin-
ery to prove that for every planar graph G χS(C3, G) ≤ 2 by applying a result
due to Burstein [6]. We omit the details.
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If F contains no triangles, a result of Thomassen [21] can be applied. He
proved that the vertex set of any planar graph can be partitioned into two sets
each of which induces a subgraph with no cycles of length exceeding 3. Hence
every planar graph is weakly (strongly) F≥4-free 2-colorable, where F≥4 denotes
the set of all cycles of length exceeding 3. The following theorem summarizes
the above observations.

Theorem 3. If the forbidden connected subgraph F is not a tree, then every
planar graph G is strongly and hence also weakly F -free 2-colorable.

The picture changes if one forbids several cycles.

Theorem 4. Let F345 = {C3, C4, C5} be the set of cycles of lengths three, four,
and five. Then the problem of deciding whether a given planar graph has a weakly
(strongly) F345-free 2-coloring is NP-hard.

We omit the proof of the theorem in the extended abstract.
Recently Kaiser & Škrekovski announce the proof of χW (F , G) ≤ 2 for F =

{C3, C4} and every planar graph G.

5 3-Colorings of Planar Graphs

A linear forest is a disjoint union of paths and isolated vertices. The following
result was proved independently in [14] and [19]:

Proposition 3. [Goddard [14] and Poh [19]]
Every planar graph G has a partition of its vertex set into three subsets such that
every subset induces a linear forest.

This result immediately implies that if a connected graph F is not a path, then
χW (F,G) ≤ 3 and χS(F,G) ≤ 3 hold for all planar graphs G. Hence, these
coloring problems are trivially solvable in polynomial time.

We now turn to the remaining cases of F -free 3-coloring for planar graphs
where the forbidden graph F is a path. We start with a technical lemma that
will yield a gadget for the NP-hardness argument.

Lemma 4. For every k ≥ 2, there exists an outer-planar graph Yk that satisfies
the following properties.

(i) Yk is not weakly Pk-free 2-colorable.
(ii) There exists a strongly Pk-free 3-coloring of Yk, in which one of the colors

is only used on an independent set of vertices.

We omit the proof of the lemma here.

Theorem 5. For any path Pk with k ≥ 2, it is NP-hard to decide whether a
planar input graph G has a weakly (strongly) Pk-free 3-coloring.
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Proof. We will use induction on k. The basic cases are k = 2 and k = 3. For
k = 2, weakly and strongly P2-free 3-coloring is equivalent to proper 3-coloring
which is well-known to be NP-hard for planar graphs.

Next, consider the case k = 3. Proposition 2.(ii) yields NP-hardness of
strongly P3-free 3-coloring for planar graphs. For weakly P3-free 3-coloring, we
sketch a reduction from proper 3-coloring of planar graphs. As a gadget, we use
the outer-planar graph Z depicted in Figure 1. The crucial property of Z is that
it does not allow a weakly P3-free 2-coloring, as is easily checked. Now consider
an arbitrary planar graph G. From G we construct the planar graph G′: For
every vertex v in G, create a copy Z(v) of Z, and add all possible edges between
v and Z(v). It can be verified that χ(G) ≤ 3 if and only if χW (P3, G′) ≤ 3.

Fig. 1. The graph Z in the proof of Theorem 5.

For k ≥ 4, we will give a reduction from weakly (strongly) Pk−2-free 3-
coloring to weakly (strongly) Pk-free 3-coloring. Consider an arbitrary planar
graph G, and construct the following planar graph G′: For every vertex v in G,
create a copy Yk(v) of the graph Yk from Lemma 4, and add all possible edges
between v and Yk(v). Since Yk is outer-planar, the new graph G′ is planar. If
G has a weakly (strongly) Pk−2-free 3-coloring, then this can be extended to
a weakly (strongly) Pk-free 3-coloring of G′ by coloring the subgraphs Yk(v)
according to Lemma 4.(ii). And if G′ has a weakly (strongly) Pk-free 3-coloring,
then by Lemma 4.(i) this induces a weakly (strongly) Pk−2-free 3-coloring for G.

Acknowledgments. We are grateful to Oleg Borodin, Alesha Glebov, Sasha
Kostochka, and Carsten Thomassen for fruitful discussions on the topic of this
paper.
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Abstract. Steiner tree problem in weighted graphs seeks a minimum
weight subtree containing a given subset of the vertices (terminals). We
show that it is NP-hard to approximate the Steiner tree problem within
96/95. Our inapproximability results are stated in parametric way and
can be further improved just providing gadgets and/or expanders with
better parameters. The reduction is from H̊astad’s inapproximability re-
sult for maximum satisfiability of linear equations modulo 2 with three
unknowns per equation. This was first used for the Steiner tree problem
by Thimm whose approach was the main starting point for our results.

1 Introduction

Given a graph G = (V,E), a weight function w : E → R
+ on the edges, and a

set of required vertices T ⊆ V , the terminals. A Steiner tree is a subtree of G
that spans all vertices in T . (It might use vertices in V \ T as well.)

The Steiner Tree Problem (STP) is to find a Steiner tree of minimum
weight. Denote OPT the optimal value of the Steiner tree OPT := min{w(T ) :
T is a Steiner tree}.

An instance of the Steiner tree problem is called quasi-bipartite if there is no
edge in the set V \ T , and uniformly quasi-bipartite if it is quasi-bipartite and
edges incident to the same non-terminal vertex have the same weight.

Steiner trees are important in various applications, for example VLSI routing,
wirelength estimation and network routing.

The Steiner Tree Problem is among the 21 basic problems for which
Karp has shown NP-hardness in his paper [6].

As we cannot expect to find polynomial time algorithms for solving it exactly
(unless P = NP), the search is for effective approximation algorithms. During
the last years many approximation algorithms for the Steiner Tree Problem
were designed, see [5] for survey. The currently best approximation algorithm
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of Robins and Zelikovsky ([8]) has a performation ratio of 1.550, and 1.279 for
quasi-bipartite instances. In the case of uniformly quasi-bipartite instances, the
best known algorithm has a performation ratio 1.217 [5].

It is a natural question how small the performation ratio of a polynomial
time algorithm can get. Unless P = NP, it cannot get arbitrarily close to 1.
This follows from PCP-Theorem [1] and from the fact that the problem is APX-
complete [2].

Until now, the best known lower bound is inapproximability within 1.00617,
due to Thimm ([9]). (In fact, Thimm’s paper claims the lower bound of 1.0074,
but there is a small error in the paper and only a slightly worse lower bound can
be shown along the lines of the proof. Moreover, Thimm’s paper uses the more
restrictive assumption co-RP �= NP.)

Main Result

The main result of this article improves the lower bounds on approximability of
the STP and reduces the gap between known approximability and inapproxima-
bility results.

Main Theorem. It is NP-hard to approximate the Steiner Tree Problem
within ratio 1.01063 (> 96

95 ). For the special case of (uniformly) quasi-bipartite
instances approximation within ratio 1.00791 (> 128

127 ) is NP-hard.

Our reduction is from H̊astad’s hard-gap result for maximum satisfiability of
linear equations modulo 2 with three unknowns per equation, Max-E3-Lin-2.

Definition 1. Max-E3-Lin-2 is the following optimization problem: Given a
system of linear equations over Z2, with exactly 3 variables in each equation. The
goal is to find an assignment to the variables that satisfies as many equations as
possible.

To suit our purposes we state H̊astad’s important result in the following way
(see also [7] for application of that result in a similar context).

Theorem 1. ([4]) For every ε ∈ (0, 14
)

and every fixed sufficiently large inte-
ger k ≥ k(ε), the following partial decision subproblem of Max-E3-Lin-2 is
NP-hard:




Given an instance Max-E3-Lin-2 consisting of n equations and
with exactly 2k occurrences of each variable, to decide if at least
(1− ε)n or at most

( 1
2 + ε

)
n equations are satisfied by the optimal

assignment.

P (ε, k)

The same NP-hardness result holds on instances where all equations are of
the form x+ y+ z = 0 (respectively, all equations are of the form x+ y+ z = 1),
where literals x, y, z are variables or their negations, and each variable appears
exactly k times negated and k times unnegated. This subproblem of the problem
P (ε, k) will be referred to as P0(ε, k) (respectively P1(ε, k)) in what follows.
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2 NP-Hard-Gap Preserving Reduction

We start with a set L of n linear equations over Z2, all of the form x+ y+ z = 0
(respectively, all of the form x + y + z = 1), where literals x, y, z are variables
from the set V or their negations, and each variable v ∈ V appears in L exactly
k times negated as v and k times unnegated.

For an assignment ψ ∈ {0, 1}V to variables let S(ψ) be the number of equa-
tions of L satisfied by ψ. We will reduce the problem of maximizing S(ψ) over
all assignments to the instance of the Steiner Tree Problem. To get an ap-
proximation preserving reduction we will use equation gadgets and couple them
properly using a graph with good vertex-expansion property.

The Equation Gadget

Now we introduce the notion of (α, β, γ)-gadget for the reduction from the equa-
tion system of the form x+ y+ z = 0 (respectively, from the system of the form
x+ y + z = 1). This will be an instance G = (V,E), w : E → R

+, T ⊆ V of the
Steiner Tree Problem with the following properties:

1. One of (possibly more) terminal vertices is distinguished and denoted by O.
2. Three of (possibly more) non-terminal vertices are distinguished and denoted

by x, y and z.
3. For any u ∈ {x, y, z} there is a path from u to O of weight at most 1.
4. For any subset R of {x, y, z} consider the instance of the STP with altered

terminal set TR := T ∪R. The weight of the corresponding minimum Steiner
tree is denoted by sR and is required to depend on the cardinality of the set
R only in the following way,

sR = α+ |R|β + (|R| mod 2)γ.

(Respectively, if our system L is of the form x + y + z = 1, we require
sR = α+ |R|β + (1− |R| mod 2)γ.)

An (α, β, γ)-gadget with no edges between non-terminal vertices is called
quasi-bipartite (α, β, γ)-gadget. A quasi-bipartite (α, β, γ)-gadget such that
edges incident to the same non-terminal have the same weight and for vertices
x, y, z the incident edges have the weight 1 is called uniformly quasi-bipartite
(α, β, γ)-gadget.

In our reduction we will use one copy of a fixed (α, β, γ)-gadget per each
equation of L. For each variable v, k negated and k unnegated occurrences of v
will be further coupled using a particular k by k regular bipartite multigraph,
which is a good expander.

The condition 3 above is just a proper normalization.
The condition 4 on sk := sR, k = |R| ∈ {0, 1, 2, 3}, has the following interpre-

tation in our construction: α is a basic cost per equation, β is an extra payment
for connecting some of {x, y, z} to the Steiner tree, and γ is a penalty for the
failure in the parity check of the number of vertices of {x, y, z} adjacent to the
Steiner tree.
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Example 1. For any γ ∈ (0, 14
〉
there is a (0, 1 − γ, γ)-gadget (for the system L

of the form x+y+z = 0), depicted on Fig. 1. The vertex O is the only terminal.
Clearly s0 = 0, s1 = 1, s2 = 2− 2γ, and s3 = 3− 2γ.

y

x

1−2γ

z
2γ

2γ2γ

1−2γ

1−2γ

1−2γ

1−2γ

1−2γ

O
yx z

1
1 1

1 1 1

1+2γ

(2+2γ)/3(2+2γ)/3
(2+2γ)/3

O

Fig. 1. Fig. 2.

Example 2. For any γ ∈ 〈0, 12
〉
there is a uniform quasi-bipartite (3+3γ, 1−γ, γ)-

gadget (for the system L of the form x+ y + z = 1), depicted on Fig. 2.
There are 4 terminals in this gadget, all drawn as boxes. One can easily check

that s0 = 3 + 4γ, s1 = 4 + 2γ, s2 = 5 + 2γ, and s3 = 6. This is essentially the
gadget used by Thimm ([9]) in his reduction translated to our language.

Expanders

An expander with parameters (c, τ, d) (shortly, (c, τ, d)-expander) is a
d-regular bipartite multigraph with balanced k by k bipartition (V1, V2), such
that

if U ⊆ V1 or U ⊆ V2, and |U | ≤ τk, then |Γ (U)| ≥ c|U |.
Here Γ (U) stands for the set of neighbors of U , Γ (U) := {y : y is a vertex
adjacent to some x ∈ U}.

It is known that for any sufficiently large k, (c, τ, d)-expander with k by k
bipartition exists, provided that 0 < τ < 1

c < 1 and Hd(c, τ) > 0, where

Hd(c, τ) := (d− 1)F (τ)− dcτF
(1
c

)
− F (cτ),

with F (x) = −x log x − (1 − x) log(1 − x) being the entropy function. In fact,
under the above condition, almost every random d-regular balanced bipartite
multigraph is (c, τ, d)-expander, see Theorem 6.6 in [3].
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Definition 2. We say that d-regular bipartite graph with k by k bipartition
(V1, V2) is a c-good expander provided the following implication holds:

if U ⊆ V1 or U ⊆ V2, then |Γ (U)| ≥ min {c|U |, k + 1− |U |}.

The condition of being c-good expander for a balanced d-regular bipartite
graph is just a bit stronger than the one of being

(
c, 1
c+1 , d

)
-expander. In par-

ticular, it can be easily seen that (c, τ, d)-expander with k by k bipartition is
c-good, provided that τ > 1

c+1 and k ≥ c
(c+1)τ−1 .

Consequently, for any sufficiently large k, a d-regular c-good expander with
k by k bipartition exists, provided that c > 1 satisfies

Hd

(
c,

1
c+ 1

)
> 0.(1)

In fact, by continuity it follows that Hd(c, τ) > 0 also for some τ ∈ ( 1
c+1 ,

1
c

)
,

and we can use the existence result for (c, τ, d)-expanders cited above.
For any integer d ≥ 3 we introduce the constant c(d) defined in the following

way:

c(d) = sup{c : there are infinitely many d-regular c-good expanders}.(2)

Denote by x(d) the unique x ∈ (1,∞) for which Hd
(
x, 1

x+1

)
= 0. It can be

easily numerically approximated, as (x+ 1)Hd
(
x, 1

x+1

)
can be simplified to

(d− 2)(x+ 1) log(x+ 1)− (2d− 2)x log x+ d(x− 1) log(x− 1).

Hence (1) holds for any c in (1, x(d)) and, consequently, c(d) ≥ x(d) for any
integer d ≥ 3. In particular, c(6) > 1.76222 and c(7) > 1.94606.

Now we are ready to describe our reduction of instances like L to the instances
of the Steiner Tree Problem. For this purpose we will use one fixed (α, β, γ)-
gadget, and one fixed k by k bipartite d-regular multigraph H which is supposed
to be β+γ

β−γ -good.

Construction

Take n pairwise disjoint copies of that (α, β, γ)-gadget, one for each equation
of the system L, and identify their vertices labeled by O. The x, y, z vertices
in each equation gadget correspond to occurrences of literals in that equation
and we re-label them by those literals. By assumption, each variable from V
appears exactly k times negated and k times unnegated as a label. We couple
negated and unnegated occurrences of each variable using our fixed bipartite
d-regular multigraph H with bipartition (V1, V2), V1 = {a1, a2, . . . , ak}, V2 =
{b1, b2, . . . , bk} in the following way:
Assume that equations (and their equation gadgets) are numbered by 1, 2, . . . ,
n. Given literal x, i.e. x = v or x = v for some v ∈ V, let m1(x) < m2(x) <
· · · < mk(x) be the numbers of equations in which that literal occurs.
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Consider one variable of V, say v. For each aibj edge e of H (1 ≤ i, j ≤ k)
we add a new coupling terminal vertex t(v, e). Now connect it with the v-vertex
in the mi(v)-th equation gadget and with the v-vertex in the mj(v)-th equation
gadget, by edges of weight 1.

Making the above coupling for all variables from V one after another, we
get an instance of the Steiner tree problem, that corresponds to the system L.
Consider any Steiner tree T for this instance, i.e. a tree spanning all terminals.

In the following claim we prove that in the Steiner trees with the optimal
value OPT each coupling terminal vertex t(v, e) is a leaf of T . We call simple
a Steiner tree T with mentioned property that each coupling terminal vertex
t(v, e) is a leaf of T .
Claim. OPT = min{w(T ) : T is a simple Steiner tree}.
Proof. To show that, one can transform any given Steiner tree T with nonempty
‘bad’ set BAD(T ) := {coupling terminals that are not leaves of T } to another
Steiner tree T ′ with |BAD(T ′)| < |BAD(T )| and w(T ′) ≤ w(T ). Fix T with
nonempty bad set and choose t = t(v, e) ∈ BAD(T ). Deleting one of edges
incident to t decreases both |BAD(T )| and w(T ) by 1. But we have two compo-
nents now, with one of vertices labeled by v or v in the distinct component than
the vertex O belongs. Connect this vertex with O in its equation gadget in the
cheapest possible way, to obtain the Steiner tree T ′.

By property 3 of (α, β, γ)-gadget it increases the weight by at most 1, hence
w(T ′) ≤ w(T ). ��

Definition 3. We say that a simple Steiner tree T is well-behaved if it is locally
minimal in the following sense:
Consider any equation of L, say i-th, i ∈ {1, 2, . . . , n}. Let x, y, z be its literals,
T := T i be the set of terminal vertices of its equation gadget, and R := Ri be
the set of vertices of this gadget labeled by x, y, or z, that belong to T . The
subgraph T i of T induced by this equation gadget is supposed to be the local
minimal Steiner tree (in this gadget) for the altered terminal set TR := T ∪R.

Claim. OPT = min{w(T ) : T is a well-behaved Steiner tree}.
Proof. Clearly, any simple Steiner tree T with w(T ) = OPT has to be well-
behaved, because otherwise one could create, by local change in some of its
gadget, a Steiner tree with less weight. In particular, OPT = min{w(T ) : T is a
well-behaved Steiner tree}. ��

By property 4 of (α, β, γ)-gadget, the weight of subtree T i is α + |R|β +
(|R| mod 2)γ (respectively, α + |R|β + (1− |R| mod 2)γ). Hence, the weight of
any well-behaved Steiner tree T can be expressed in the following way: denote
by N the number of vertices corresponding to literals that belong to T , and by
M the number of equations for which R := Ri above fails the parity check, i.e.
|Ri| is odd (respectively, |Ri| is even). Then

w(T ) = αn+ 3
2
nd+Nβ +Mγ.(3)
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Here 3
2nd edges of weight 1 connect all 3

2nd coupling terminals as leaves of
the tree T . Clearly, N ≥ 3

2n, as at least one from each coupled pair of vertices
correspond to variables has to belong to T , to connect the corresponding coupling
terminal to the tree T .

Suppose we are given an assignment ψ ∈ {0, 1}V to variables and let S(ψ) be
the number of equations satisfied by ψ. For i-th equation of L (i = 1, 2, . . . , n)
let R := Riψ denote the set of vertices in its equation gadget labeled by literals
with value 1 by the assignment ψ, and let T := T i denote the terminals of this
equation gadget. Take one (of possibly more) local minimum Steiner tree in this
gadget with altered terminal set TR := T ∪ R and connect each vertex of R to
all d coupling terminals adjacent to it. Such kind of well-behaved Steiner tree
(denoted by Tψ), which follows from some assignment ψ will be called standard
Steiner tree.

The weight of standard Steiner tree Tψ can be expressed using (3), where we
have now N = 3

2n (exactly half of vertices for variables correspond to literals
assigned 1), and M = n− S(ψ). Hence

w(Tψ) = αn+ 3
2
nd+

3
2
nβ + (n− S(ψ))γ.(4)

The challenge is to prove Lemma 1 below that OPT is achieved on a stan-
dard Steiner tree for some assignment ψ. If this is the case, from (4) it can be
easily seen that hard-gap result of H̊astad for the problem maxS(ψ) implies the
corresponding hard-gap and inapproximability results for the Steiner Tree
Problem.

Lemma 1. If (α, β, γ)-gadget has parameters β > γ ≥ 0, and an expander graph
used for the coupling is β+γ

β−γ -good, then

OPT = min{w(T ) : T is a standard Steiner tree}.

Proof. We already know that there exists a well-behaved Steiner tree T such
that w(T ) = OPT. Thus it is sufficient to show that T can be transformed into
a standard Steiner tree T ∗ without increasing the weight. In the following we
describe such construction of T ∗ from T in |V| steps. Consider one variable,
v ∈ V. Let A1 be the set of vertices labeled by v, and A2 be the set of vertices
labeled by v. Clearly |A1| = |A2| = k. Denote by Ci (i = 1, 2) the set of vertices
in Ai that are vertices of the tree T , and put Ui = Ai \Ci. We will assume that
|U1| ≤ |U2|, otherwise we change the role of A1 and A2 in what follows.

Let Γ (U), for a set U ⊆ A1, be the set of vertices in A2 which are coupled
with a vertex in U . Clearly U2 ∩ Γ (U1) = ∅, because otherwise some coupling
terminal is not connected to T . Hence Γ (U1) ⊆ C2.

As our expander is β+γ
β−γ -good, it implies that either |Γ (U1)| ≥ k + 1 − |U1|,

or |Γ (U1)| ≥ β+γ
β−γ |U1|.

We see that the first condition is not satisfied, as

k − |U1| ≥ k − |U2| = |C2| ≥ |Γ (U1)|.
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Thus we can apply the second one to get

|C2| ≥ |Γ (U1)| ≥ β + γ
β − γ |U1|.(5)

Now we modify T to the new well-behaved ST Tnew as follows: all vertices
in A1 and none in A2 are in Tnew, and for any distinguished vertex u which is
labeled by literal distinct from v and v,

u ∈ Tnew ⇔ u ∈ T .
We also connect the coupling terminals accordingly.

Applying formula (3) for well-behaved Steiner trees we obtain

w(T )− w(Tnew) = (N −Nnew)β + (M −Mnew)γ.

Clearly, N −Nnew = |C2| − |U1| and Mnew ≤M + |C2|+ |U1|, hence
w(T )− w(Tnew) ≥ (|C2| − |U1|)β − (|C2|+ |U1|)γ = |C2|(β − γ)− |U1|(β + γ),
which is nonnegative, by (5). Thus w(Tnew) ≤ w(T ).

Now we apply the similar modification to Tnew with another variable. It is
easy to see that if we have done this for all variables, one after another, the result
T ∗ is a standard tree for some assignment, with w(T ∗) ≤ w(T ). Consequently,
w(T ∗) = OPT. ��

Theorem 2. Given an integer d ≥ 3 and let c(d) be a constant defined in (2).
Let further an (α, β, γ)-gadget with β > γ > 0 and β+γ

β−γ < c(d) be given. Then
for any constant r, 1 < r < 1 + γ

3d+2α+3β , it is NP-hard to approximate the
Steiner Tree Problem within ratio r.

Moreover, if the gadget above is (uniformly) quasi-bipartite, the same in-
approximability results apply to the (uniformly) quasi-bipartite instances of the
STP as well.

Proof. Let an integer d ≥ 3, an (α, β, γ)-gadget and a number r with the above
properties be fixed.

We can choose and keep fixed from now on an ε ∈ (0, 14
)
such that

r < 1 +
(1− 4ε)γ

3d+ 2α+ 3β + 2εγ
.

Let k(ε) be an integer such that for any integer k ≥ k(ε) the conclusion of
Theorem 1 holds. Since β+γ

β−γ < c(d), we can consider and keep fixed from now
on one β+γ

β−γ -good d-regular expander graph H with k by k bipartition such that
k ≥ k(ε). It will play a role of a constant in our (polynomial time preserving)
reduction from NP-hard problem P0(ε, k) (respectively, P1(ε, k)) to the problem
of approximation STP within r. (Strictly speaking, we do not construct this
reduction; we only show that there exists one. But this clearly suffices for proving
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NP-hardness.) Hence (with everything above fixed, including k and H) we are
ready to describe the reduction. Given an instance L of the problem P0(ε, k)
(respectively, P1(ε, k)) with n equations, whose optimum MAX of the maximal
number of satisfiable equations is promised to be either at most n( 12 + ε) or
at least n(1 − ε), the reduction described above produces the corresponding
instance of the STP problem. Since the assumptions of Lemma 1 are satisfied,
the optimum OPT is achieved on a standard Steiner tree. Hence, using (3), the
optimum OPT of the corresponding instance of the Steiner tree problem is

OPT = nα+
3
2
nd+

3
2
nβ + (n−MAX)γ,

which has to be now either at least nα + 3
2nd +

3
2nβ + n

( 1
2 − ε

)
γ, or at most

nα+ 3
2nd+

3
2nβ + nεγ.

Hence even the partial decision subproblem of the STP, namely the problem
to distinguish between these two cases, is NP-hard. Consequently, since

nα+ 3
2nd+

3
2nβ + n

( 1
2 − ε

)
γ

nα+ 3
2nd+

3
2nβ + nεγ

= 1 +
(1− 4ε)γ

2α+ 3d+ 3β + 2εγ
> r,

it is NP-hard to approximate the STP within r.
Moreover, it can be easily seen that if the gadget above is (uniformly) quasi-

bipartite, our reduction produces (uniformly) quasi-bipartite instances of the
STP, and the inapproximability results apply to those instances as well. ��

Theorem 3. Given an integer d ≥ 3, denote q(d) = min
{ c(d)−1

2c(d) ,
1
4

}
, r(d) =

1 + q(d)
3(d+1−q(d)) , where c(d) be a constant defined in (2). Then for any constant

r, 1 < r < r(d), it is NP-hard to approximate the Steiner Tree Problem
within ratio r.

In particular, since c(6) > 1.76222 implies r(6) > 1.01063, inapproximability
within 1.01063 (> 96

65 ) follows for the STP.

Proof. Let an integer d ≥ 3 and a number r, 1 < r < r(d), be fixed. We can find
γ ≤ 1

4 with γ < c(d)−1
2c(d) (i.e. 1

1−2γ < c(d)) and such that r < 1 + γ
3(d+1−γ) , and

apply the Theorem 2 with (0, 1− γ, γ)-gadget from Example 1 (with γ as above
and α = 0 and β = 1− γ). ��

Theorem 4. Given an integer d ≥ 3 and denote by r(d) = 1 + c(d)−1
6d·c(d)+7c(d)−1 ,

where c(d) be a constant defined in (2). Then it is NP-hard to approximate
solution of (uniformly) quasi-bipartite Steiner Tree Problem within ratio r,
for any r, 1 < r < r(d).

In particular, since c(7) > 1.94606 implies r(7) > 1.00791, inapproximability
within 1.00791 (> 128

127 ) follows for (uniformly) quasi-bipartite STP.
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Proof. Let an integer d ≥ 3 and a number r, 1 < r < r(d), be fixed. We can
find γ < c(d)−1

2c(d) such that r < 1 + γ
3(d+3+γ) , and apply the Theorem 2 with the

uniformly quasi-bipartite (3 + 3γ, 1 − γ, γ)-gadget from Example 2 (with γ as
above and hence α = 3 + 3γ and β = 1− γ). ��
Remark. The methods of this paper provide a new motivation for the study of
bounds for the parameters of expanders that provably exist. For our purposes
we need not restrict ourselves to expanders that can be effectively constructed;
the existence is enough. There is a substantial gap between the known upper
and lower bounds for parameters of the best possible expanders. We believe that
lower bounds on our expander constants c(d) can be improved significantly. This
would improve our inapproximability results. Another way to improve the results
would be to provide the gadgets with better parameters.
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the Steiner tree problem in graphs. In Steiner Trees in Industry, (X. Cheng and
D.-Z. Du, eds.), Kluwer Academic Publishers, 2001, 235–279.

6. Karp, R. M.: Reducibility among combinatorial problems, In Complexity of Com-
puter Computations, (Proc. Sympos. IBM Thomas J. Watson Res. Center, York-
town Heights, N.Y., 1972), New York: Plenum 1972, 85–103.

7. Papadimitriou, C. H., Vempala, S.: On the Approximability of the Traveling Sales-
man Problem. Proceedings of the 32nd ACM Symposium on the theory of com-
puting, Portland, 2000.

8. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms
2000, 770–779.

9. Thimm, M.: On the Approximability of the Steiner Tree Problem. Proceedings of
the 26th International Symposium, MFCS 2001 Mariánske Lázne, Czech Republic,
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Abstract. We describe an algorithm for the dominating set problem
with time complexity O((24g2 + 24g + 1)kn2) for graphs of bounded
genus g, where k is the size of the set. It has previously been shown
that this problem is fixed parameter tractable for planar graphs. Our
method is a refinement of the earlier techniques.

Keywords: graph, genus, dominating set, fixed parameter algorithm.

1 Introduction

The dominating set problem is defined as follows.

Input: A graph G = (V,E) and an integer parameter k
Question: Does there exist a set of nodes V ′ ⊆ V such that |V ′| ≤ k and such

that for all nodes v ∈ V either v ∈ V ′ or there is an edge uv ∈ E and u ∈ V ′.

This is a classic NP-complete problem which is also apparently not fixed pa-
rameter tractable because it is known to be W [2]-complete in the W -hierarchy
of fixed parameter complexity theory [DF99]. In this theory, any problem for
which there is an algorithm with time complexity O(f(k)nα), for some problem
parameter k, where n is the number of nodes in the graph and where α is a
constant independent of k and n, is said to be fixed parameter tractable.

The dominating set problem remains NP-complete when restricted to planar
graphs. However, Fellows and Downey [DF95,DF99] gave a “search tree” algo-
rithm for this problem which has time complexity O(11kn), when the input is
restricted to planar graphs. The best search tree algorithm so far, which uses
kernelization, is described in [AFF+01] and has a time complexity of O(8kn).
A tree decomposition based algorithm with time complexity O(c

√
kn), where

c = 46
√
34, is given in [ABFN00]. Related work includes [AFN01a,AFN01b]. Re-

cently, in [AFN02], it has been shown that the problem can be reduced to a
kernel of size 214k.

In this paper, using the search tree approach, we show that the dominating
set problem is fixed parameter tractable for graphs of bounded genus. For graphs
of genus g we prove a time complexity of O((24g2 + 72g + 1)kn2).

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 180–189, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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2 The Algorithms

2.1 The Basic Algorithm

The result in [AFF+01] is based on the following simple algorithm, Figure 1.
The node set B is a subset of the nodes incident with the edges in the edge set
E and exists is a global Boolean variable. N(v) denotes the neighbors of v (not
including v itself) with respect to the edge set E and I(v) denotes the set of
edges incident with v. The claim that the global variable exists is set to true iff

procedure dominating set (B : node set, E : edge set, k : integer);

{B is a subset of the nodes incident with edges in E.
The global variable exists is set to true iff there exists a dominating
set for the nodes in B (with respect to the edges in E) of cardinality not
greater than k}

if |B| ≤ k then exists ← true
else if k > 0

then Choose some u ∈ B;
for all v ∈ (N(u)

⋃{u}) do
dominating set (B − (N(v)

⋃{v}), E − I(v), k − 1);

Fig. 1. The Basic Algorithm

there exists a dominating set for the nodes in B of cardinality not greater than
k follows from the observation that for every node u in B either u or one of
its neighbors is in the dominating set. Hence we can decide the dominating set
question for any graph G = (V,E) and integer k by setting exists to false and
invoking dominating set(V,E, k).

Suppose the maximum degree of any node in B is d and let t(n) denote
the time complexity of the procedure, excluding the recursive invocation, where
n = |E|. Then the time complexity T (n) of the procedure is described by the
recurrence relation: T (n, k) ≤ t(n) + (d + 1)T (n − 1, k − 1). The solution to
this recurrence is T (n, k) = O((d + 1)kt(n)), as can be seen by substituting
T (n, k) ≤ (c(d+ 1)k − b)t(n), for some constants c and b, in the recurrence and
assuming that d ≥ 2 as we will see is the case.

It is straightforward to adjust node and edge sets and even to copy entire
data structures for the recursive call, all in time linear in the number of edges.
Noting that for graphs of bounded genus the number of edges is O(n), we see
that this simple algorithm has time complexity O((d+1)kn) and the dominating
set problem for any family of graphs with bounded degree is fixed parameter
tractable.
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2.2 The Reduction Procedure

To make use of this algorithm for graphs of bounded genus, but not of bounded
degree, a reduction procedure is applied to the graph at each level of recursion.
This procedure does not change the minimum size of a dominating set but guar-
antees that there is at least one node in B of bounded degree. Figure 2 defines
the reduction procedure. Rules R1 through R6 are among the reduction rules
used in [AFF+01]. R7 is a new rule which generalizes one of the old rules. Given
this procedure, we replace the statement “Choose some u ∈ B” in the basic
algorithm by two statements: “Invoke Reduce; Choose some u ∈ B of minimum
degree”.

procedure Reduce;
{We assume the node sets B and E as in Figure 1.
For convenience, we refer to the nodes in B as the “black” nodes and those
nodes incident with some edge in E, but not in B, as the “white” nodes.}

repeat

R1: Remove all edges between white nodes from E;

R2: Remove all edges incident with degree 1 white nodes from E;

R3: If there is a black node w of degree 1, incident with a node u,
then remove all neighbors of u from B; add u to B;

remove all edges incident with u from E;

R4: If there is a white node u of degree 2, with black neighbors u1 and u2,
and an edge u1u2 ∈ E, then remove the edges uu1 and uu2 from E;

R5: If there is a white node u of degree 2, with black neighbors u1, u3,
and there is a black node u2 and edges u1u2 and u2u3 ∈ E,
then remove the edges uu1 and uu3 from E;

R6: If there is a white node u of degree 3, with black
neighbors u1, u2, u3 and there are edges u1u2 and u2u3 ∈ E
then remove the edges uu1, uu2 and uu3 from E;

R7: If there are white nodes u1 and u2 such that d(u1) ≤ 7 and N(u1) ⊆ N(u2),
then remove all the edges ∈ E incident with u1 from E;

until no change in E;

Fig. 2. The Reduction Procedure

Let B′ and E′ be the node and edge sets resulting from the application of
any one of the rules in the reduction procedure to the sets B and E. One can
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examine each of the rules to see that there exists a dominating set for the nodes
in B with respect to the edges in E of cardinality k iff there exists a dominating
set for the nodes in B′ with respect to the edges in E′ of cardinality k.

A graph whose node set is partitioned into black and white nodes will be
referred to as a black and white graph. The black nodes are those yet to be dom-
inated. The white nodes are those already dominated. A graph that is derived
by applying the reduction procedure to a black and white graph will be referred
to as a reduced black and white graph.

2.3 Time Complexity of the Reduction Process

We justify an upper bound of O(n2) on the the time complexity, t(n), of the
reduction procedure. We assume the use of two data structures representing the
graph and associated information:

– An elaborated adjacency list in which each list is a two way linked list, and
for all edges {u, v} the entry for u in the list for v is linked directly to the
entry for v in the list for u, and vice versa. With these extra links, an edge,
once identified can be removed in constant time. A black/white indicator
and a degree count are associated with each node.

– A standard adjacency matrix permits the existence of an edge to be tested
in constant time, and likewise the removal of an edge.

With these data structures in mind, consider the work done in executing an
entire sequence of k invocations of the dominating set procedure. It can be seen
that for all rules except R7, O(n) is an upper bound on the work involved in each
rule. For rule R7, it seems that, although no work is required unless the degree
of a white node is reduced to seven or less, any such node must be compared to
all other white nodes. Thus we see no better bound than O(n2).

3 The Bounded Genus Case

Let Sg be the orientable compact surface of genus g. An embedding of a graph
G in Sg is a drawing in Sg such that each node corresponds to a point and
each edge to a line, i.e., a simple curve with two ends, and such that two lines
corresponding to a pair of edges are internally disjoint, i.e., do not intersect or
intersect only at their ends. The genus of G, written γ(G), is the minimum g
such that G can be embedded in Sg. By an embedded graph we mean a graph
together with its embedding in a surface, which allows us to talk about both
combinatorial and geometrical properties. For instance, an edge of an embedded
graph can also be seen as a line connecting two end points.

Let G be an embedded graph. A face, F , of G is a connected component of
Sg−G. The boundary-graph of F , written b(F ), is the subgraph of G induced by
those nodes ofG incident with F . A face is said to be a 2-cell if it is homeomorphic
to an open disk. G is a 2-cell embedding if every face is a 2-cell. The boundary-
graph of F could contain a cut edge, i.e., an edge whose removal disconnects
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the graph. A cut edge can appear twice in a boundary. The degree of a face F ,
written dG(F ) or d(F ), is the number of edges appearing in the boundary, edges
appearing twice being counted twice. A face of degree d is called a d-face. If b(F )
is a cycle in G, then F is called a proper face. We say that a closed line in Sg is
contractible if it is the boundary of an open disk. Two lines joining two different
points are said to be transformable if they form a contractible closed line. It can
be seen that, in a 2-cell embedded graph, the loop edge forming the boundary of
a 1-face is contractible, and two multiple edges forming the boundary of a 2-face
are transformable.

Lemma 3.1. [Tho95, Chapter 5, Theorem 3.8] Every embedding of G in Sγ(G)
is a 2-cell embedding.

Lemma 3.2. [Tho95, Chapter 5, Theorem 3.3] Let G = (V,E) be a connected
simple graph with |V | ≥ 4, then

|E| ≤ 6(γ(G)− 1) + 3|V | (1)

Lemma 3.3. For any two distinct points in Sg (g ≥ 1), there are at most 6g
internally disjoint and mutually non-transformable lines joining them.

Proof. Suppose, on the contrary, that there are s > 6g internally disjoint and
mutually non-transformable lines joining two points u, v in Sg. If we view u
and v as nodes and the lines joining them as edges, together they constitute an
embedded graph G with two nodes and s > 6 edges. G has s multiple edges,
no 1-face, no 2-face and no cut edge. The following relation, for the embedding
of any graph in Sg, is proved in [Tho92]: n − e + f ≥ 2 − 2g, where n is the
number of nodes, e is the number of edges and f is the number of faces in the
embedding. Here n = 2 and 3f ≤ 2s, because there are no 1-faces or 2-faces.
Hence s ≤ 6g, which would contradict the assumption with which we began the
proof. 
�

Let G = (V,E) be graph and x, y be nodes of G, we denote by G + xy the
simple graph (V,E ∪ {xy}). We denote by δ(G) the minimum degree of G.

Lemma 3.4. Let G = (V,E) be a connected graph for which δ(G) ≥ 3. If G is
not 3-connected then G has a 2-node cut {x, y} such that there is a component
C of G− {x, y} such that G[V (C) ∪ {x, y}] + xy is 3-connected.
Proof. Because δ(G) ≥ 3, |V (G)| = 4 implies that G is isomorphic to K4, which
is 3-connected. No smaller graph is 3-connected.

Suppose |V (G)| > 4 and G is not 3-connected. Then either there exists a cut
node {x} which is in a pendant block or, if not, there exists a 2-cut {x, y}.
There Is No Cut Node

Then there exists a 2-cut {x, y}. Let C be a component of G − {x, y} and let
G′ = G[V (C)∪{x, y}]+xy. G′ is 2-connected. Any such C has at least 2 nodes,
else there is a node in G of degree 2. Hence all such G′ contain at least 4 nodes.
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If |V ′| = 4 then dG′(x) = dG′(y) = 3, else there is a node in G of degree 2.
Hence G′ is isomorphic to K4.

If |V ′| > 4, consider the following procedure.

while G′ is not 3-connected do
Let {a, b} be a 2-cut in G′;
Let C be a component in G′ − {a, b} not containing both x and y;
x← a; y ← b;
G′ ← G[V (C) ∪ {x, y}] + xy

endwhile

G′ does not contain a cut node, hence, if it is not 3-connected there is a 2-cut
{a, b} in G′ such that {a, b} �= {x, y}. We note that {a, b} is also a cut in G.
The procedure must terminate, with G′ being 3-connected, because the number
of nodes in G decreases at each iteration. If not before, it must terminate when
|V ′| = 4 because then G′ = K4, else one of the remaining two nodes had degree
less than three in G.

There Exists a Cut Node

There must exist a cut node x which is in some pendant block (a maximal 2-
connected component of G) say B. Note that since δ(G) ≥ 3, B must contain at
least 4 nodes.

If B is 3-connected, then {x, a}, where a is a neighbour of x in B, is a 2-cut
in G satisfying the lemma.

If B is not 3-connected, then |V (B)| > 4 and there exists a 2-cut, say {u, v},
in B, since there are no cut nodes. One of the components, say C, in B−{u, v}
does not contain x. If B[C

⋃{u, v}] + xy is not three connected then, by the
argument used in the 2-connected case, there exists another 2-cut in C with the
desired properties.


�

Lemma 3.5. If G = (B
⋃
W,E) is reduced, then the white nodes constitute an

independent set.

Proof. This follows from rule R1 of the reduction procedure, which is inside the
loop. Hence, although rule R3 can add white nodes and hence maybe edges be-
tween white nodes, rule R1 will be again enacted and remove any edges between
white nodes. 
�

Lemma 3.6. For all d, if there exists a reduced black and white graph G in which
the minimum degree of any black node is d then there there exists a reduced graph
G′ in which the minimum degree of any black node is also d and no white node
has degree less than 3.

Proof. By rule R2 of the reduction procedure, G has no white nodes of degree 1.
Let u be a white node of degree 2 with neighbours x and y, which are necessarily
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black, by rule R1. By rule R4, there is no edge xy. Let G′ be obtained from G
by replacing all white nodes of degree 2 by an edge between their neighbours.
Note that this operation does not change the the minimum degree of any black
node. Suppose G′ is not reduced. Then the only rule that could possibly apply
is R6, i.e., there is some white node u of degree 3 in G′ with black neighbours
and edges between two pairs of these neighbours. Because G is reduced, rule R6
did not apply to u in G. Hence one of the edges between the neighbours of u
must have been created in the derivation of G′ from G, i.e., one of these edges
replaced a white node u′ of degree 2. But this implies that R7 would apply in G
to u and u′, contradicting the assumption that G is reduced. 
�

We are now ready to present the main result of this paper.

Theorem 3.7. If G = (B
⋃
W,E) is a reduced black and white graph of genus

at most g, then there exists a node b ∈ B such that dG(b) ≤ 24g(g + 3).

Proof. A better bound for planar graphs, where g = 0, has already been proved
in [AFF+01]. So let us assume that g ≥ 1. In contradiction to the lemma,
suppose that G = (B

⋃
W,E) is a reduced black and white graph with genus

γ(G) ≤ g and that every node u ∈ B is such that dG(u) ≥ 24g(g + 3) + 1.
We may assume that G is a connected simple graph and that, by Lemma 3.6,
for any u ∈ W , dG(u) ≥ 3. Consider G to be embedded in Sγ(G). Then the
embedding is a 2-cell embedding by Lemma 3.1. W �= ∅ because otherwise |E| >
(24g(g + 3) + 1)|V |/2 > 6(g − 1) + 3|V | ≥ 6(γ(G) − 1) + 3|V |, contradicting
Equation (1). By Lemmas 3.5 and 3.6, we have that |B| ≥ 3. We consider two
cases: either G is 3-connected or it is not.

G Is 3-Connected

First we show that |B| ≥ 6. Suppose 3 ≤ |B| ≤ 5. The maximum number of

mutually non-inclusive subsets of five elements is
(

5⌈ 5
2

⌉
)
= 10, [Bol86, Chapter

3, Theorem 1]. But |W | ≥ 24g(g + 3) − 4 ≥ 92 and so there must exist two
white nodes such that the neighbours of one of them constitute a subset of the
neighbours the other. But that contradicts R7 of the reduction procedure.

Let u be a white node of G, and let v0, v1, . . . , vt−1 be the sequence of nodes
adjacent to u in clockwise order where t = dG(u). For i from 0 to t − 1, let Fi
be the face containing boundary edges ei = uvi and uvi+1modt in the current
graph. If Fi is not a proper 3-face, then add an edge e′i = vivi+1modt so that
ei, ei+1, e

′
i form a proper 3-face.

Let us repeat this operation on all white nodes and denote the resulting em-
bedded graph by G1. Note that G1 may contain multiple edges, but that no
two multiple edges form the boundary of a 2-cell because G is a connected sim-
ple graph and the operation does not create a 2-face. Moreover, no two multiple
edges are transformable in Sγ(G) since otherwise the two end nodes of two trans-
formable edges would form a 2-node cut of G which contradicts our assumption
that G is 3-connected. G1 is uniquely determined, up to isomorphism, by the
embedding of G.



The Dominating Set Problem 187

(b) G1

(c)  G2
(d)  G3

u

v

v

 i

i+1

Fi

3−face

proper face

A handle location

3−face

3−face

3−face 3−face

3−face

3−face

(a)   G

proper face

multiple edges
Non transformable

Fig. 3. Embedding Operations

Now let G2 be the embedded graph obtained from G1 by removing all white
nodes and their incident edges. Then G2 is a 2-connected 2-cell embedded graph
in which no two multiple edges are transformable.

By construction, a white node of G1 must be located in what becomes a
proper face of G2, and a proper face of G2 contains at most one such white node
in G1. Since there are at most dG2(x) faces incident with any node x in G2, there
are at most dG2(x) white nodes adjacent to x in G1 and hence

dG1(x) ≤ 2dG2(x) (2)

Let G3 be the graph obtained from G2 by reducing instances of multiple
edges to one edge. See Figure 3 for the construction of G1 through G3. Then
γ(G3) ≤ γ(G) ≤ g and, by Lemma 3.2, we have

|E(G3)| ≤ 6(γ(G3)− 1) + 3|B| ≤ 6(γ(G)− 1) + 3|B| ≤ 6(g − 1) + 3|B|.
Since δ(G3)|B| ≤

∑
u∈V (G3) dG3(u) = 2|E(G3)|, δ(G3)|B| ≤ 12(g − 1) + 6|B|

and hence δ(G3) ≤ 12(g − 1)/|B| + 6 ≤ 12(g − 1)/6 + 6 = 2(g + 2) and there
exists y ∈ B such that

dG3(y) ≤ 2(g + 2). (3)
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Since the G2 is an embedded graph in a surface of genus γ(G) and no two
multiple edges are transformable, by Lemma 3.3 there are at most 6g multiple
edges joining a pair of nodes in G2. Then by inequality (3) we have

dG2(y) ≤ 6g × dG3(y) ≤ 12g(g + 2)

By inequality (2) we obtain

dG(y) ≤ dG1(y) ≤ 2dG2(y) ≤ 24g(g + 2) < 24g(g + 3) + 1.

But this contradicts the assumption we used to begin the proof.

G Is Not 3-Connected

By Lemma 3.4, G has a 2-node cut {x, y} such that G−{x, y} has a component
C such that G0 = (V (C)

⋃{x, y}, E(G[V (C)⋃{x, y}]) ∪ {xy}) is 3-connected.
Since G contains a path connecting x and y which is internally disjoint with
V (C), the embedding of G induces an embedding of G0 in Sγ(G) whether or not
xy is an edge of G. Therefore γ(G0) ≤ γ(G) ≤ g.

Let B′ = B ∩ (V (C)⋃{x, y}) and W ′ =W ∩ (V (C)⋃{x, y}). We show that
|B′| ≥ 8. Since W is an independent set and dG(v) ≥ 3, v ∈ W , we must have
B′ \ {x, y} �= ∅. Let u ∈ B′ \ {x, y}, then dG0(u) = dG(u) ≥ 24g(g+3)+ 1 ≥ 97.
Then we have |B′|+|W ′| ≥ 98. If |B′| ≤ 7, then |W ′| ≥ 91 and |W ′\{x, y}| ≥ 89.
The neighbours of nodes in W ′ \ {x, y} are in B′, and so there must exist two
white nodes such that the neighbours of one of them constitute a subset of the
neighbours the other. This is because the maximum number of mutually non-

inclusive subsets of seven elements is
(

7⌈ 7
2

⌉
)

= 35 < 89, [Bol86, Chapter 3,

Theorem 1]. But this would contradict R7 of the reduction procedure.
Now let B0 = B ∪ {x, y} be the black node set for G0 and consider G0 to

be embedded in Sγ(G0). Let G1, G2 and G3 be derived from G0 by exactly the
same process as described in the previous case. The inequality (2) still holds.

By Lemma 3.2, we have

|E(G3)| ≤ 6(γ(G3)− 1) + 3|B0| ≤ 6(g − 1) + 3|B0|

Since 2|E(G3)| =
∑
u∈V (G3) dG3(u) ≥ δ(G3)|B0| and |B0| ≥ |B′| ≥ 8, there is at

least one black node z ∈ B0 \ {x, y} such that

dG3(z) ≤
12(g − 1) + 6|B0|

|B0| − 2
=

12g
|B0| − 2

+ 6 ≤ 12g
6

+ 6 ≤ 2(g + 3) (4)

Since G2 is an embedded graph in Sγ(G0) and γ(G0) ≤ g and no two multiple
edges are transformable, there are at most 6g internally disjoint edges joining a
pair of points, by Lemma 3.3.

Then, by inequalities (4) and (2), we have

dG2(z) ≤ 6g × dG3(z) ≤ 12g(g + 3)
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Therefore

dG(z) = dG0(z) ≤ dG1(z) ≤ 2dG2(z) ≤ 24g(g + 3) < 24g(g + 3) + 1.

But this contradicts the assumption we used to begin the proof. 
�

4 Conclusions

In Section 2 we showed a time complexity of O(n2) for the reduction procedure.
In Section 3 we showed that in any reduced black and white graphs of bounded
genus g there exists at least one node of degree at most 24g(g + 3). Combining
these results yields a time complexity of O((24g2 + 72g + 1)kn2) for the basic
algorithm, after the reduction procedure has been incorporated.

It would be interesting to know if the other results known for planar graphs,
for example, the existence of a linear kernel and the O(2O(

√
k)nc) algorithm via

tree decomposition, can be extended to graphs of bounded genus.
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Abstract. The dynamic vertex minimum problem (DVMP) is to main-
tain the minimum cost edge in a graph that is subject to vertex additions
and deletions. DVMP abstracts the clustering operation that is used
in the primal-dual approximation scheme of Goemans and Williamson
(GW). We present an algorithm for DVMP that immediately leads to
the best-known time bounds for the GW approximation algorithm for
problems that require a metric space. These bounds include time O(n2)
for the prize-collecting TSP and other direct applications of the GW al-
gorithm (for n the number of vertices) as well as the best-known time
bounds for approximating the k-MST and minimum latency problems,
where the GW algorithm is used repeatedly as a subroutine. Although
the improvement over previous time bounds is by only a sublogarithmic
factor, our bound is asymptotically optimal in the dense case, and the
data structures used are relatively simple.

1 Introduction

Many approximation algorithms are applications of the primal-dual algorithm of
Goemans and Williamson (GW) [12]. (This algorithm is rooted in the approach
proposed by Agrawal, Klein and Ravi [2].) This paper determines the asymptotic
time complexity of the GW clustering operation on metric spaces. Although our
improvement is a sublogarithmic factor, the issue is important from a theoretic
viewpoint. Also our algorithm uses simple data structures that will not incur
much overhead in a real implementation.

Aside from operations involving a problem-specific oracle, the only difficulty
in implementing the GW algorithm is the clustering operation which determines
the next components to merge. Goemans and Williamson’s original implemen-
tation [12] uses time O(n2 log n). This was improved to O(n(n+

√
m log log n))

[9] and O(n
√
m log n) [15]. Here and throughout this paper n and m denote the

number of vertices and edges in the given graph, respectively. Regarding time
� This work was supported in part by Texas Advanced Research Program Grant
003658-0029-1999, NSF Grant CCR-9988160 and an MCD Graduate Fellowship.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 190–199, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



The Dynamic Vertex Minimum Problem 191

bounds one should bear in mind that many applications of the GW algorithm
are for the dense case m = Θ(n2) (see below). We improve the above bounds to
O(n
√
m). Cole et. al.[5] present a modified version of the GW clustering algo-

rithm that runs in time O(km log 2n). Here k is an arbitrary constant, and the
approximation factor of the modified algorithm increases (i.e., worsens) by the
small additive term O(1/nk). This time bound is a substantial improvement for
sparse graphs. Still in the dense case this algorithm is slower than the original
GW implementation (and slightly less accurate).

One reason that dense graphs arise is assumption of the triangle inequality.
Because of this our algorithm gives the best known time bound O(n2) for these
applications of the GW algorithm [12]: 4-approximation algorithm for the exact
tree, exact path and exact cycle partitioning problems; 2-approximation algo-
rithm for the prize-collecting TSP (see [14] for the TSP time bound); and finally
the 2-approximation for minimum cost perfect matching (whose primary moti-
vation is speed). The GW approximation algorithms for prize-collecting Steiner
tree and TSP, on metric spaces, are used as subroutines in several constant fac-
tor approximation algorithms for the minimum latency problem and the k-MST
problem. For minimum latency these include [3,10] and the best-known 10.77-
approximation algorithm of [7]. For k-MST they include [4], and the best-known
3-approximation of [7] for the rooted case and 2.5-approximation of [1] for the
unrooted case. In all of these algorithms multiple executions of the GW algo-
rithm dominate the running time, so our implementation improves these time
bounds too (although the precise time bounds are higher).

For the approximation algorithm for survivable network design [9], [18], [8]
the given graph can be sparse but there are additional quadratic computations.
Our algorithm achieves timeO((γn)2) when the maximum desired connectivity is
γ. (The bound of [9] isO((γn)2+γn

√
m log log n). For γ = 2 Cole et. al. avoid the

quadratic computations and achieve time bound O(km log 2n) for k as above.)
For other applications of the GW algorithm where the time is dominated by clus-
tering (generalized Steiner tree problem, prize-collecting Steiner tree problem,
nonfixed point-to-point connection, and T -joins [12]) our bound is O(n

√
m),

which improves the previous strict implementations of GW and improves the
algorithm of Cole et. al. [5] in very dense graphs (but of course not in sparse
graphs).

We obtain our results by solving the “dynamic vertex minimum problem”
(DVMP). This problem is to keep track of the minimum cost edge in a graph
where vertices can be inserted and deleted. Ignoring the graph structure it is
obvious that O(m log n) is the best time bound possible, for m the total number
of edges. Taking advantage of the graph structure we achieve time O(n2), for n
the total number of vertices. This result immediately implies a time bound of
O(n2) for GW clustering. It gives all the dense graph time bounds listed above.
Our solution to DVMP is based on an amortized analysis of a system of binomial
queues.

We apply the DVMP algorithm to implement the GW clustering algorithm
on sparse graphs in time O(n

√
m). We actually solve the more general “merging
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minimum problem” (MMP). This problem is to keep track of the minimum cost
edge in a graph whose vertices can be contracted. The costs of edges affected
by the contraction are allowed to change, subject to a “monotonicity property.”
We solve the MMP using our DVMP algorithm and a grouping technique.

Section 2 gives our solution to the DVMP. This immediately implements
GW clustering for dense graphs. Section 3 of the complete paper [11] solves the
MMP; this section is omitted here because of space limitations.

2 Dynamic Vertex Minimum Problem

The dynamic vertex minimum problem (DVMP) concerns an undirected graph
G where each edge e has a real-valued cost c[e]. The graph is initially empty.
We wish to process (on-line) a sequence of operations of the following types:

Add vertex(v) : add v as a new vertex with no edges.
Add edge(e) : add edge e with cost c[e].
Delete vertex(v) : delete vertex v and all edges incident to v.
Find min : return the edge currently in G that has smallest cost.

This section shows how to support Add vertex, Add edge and Delete vertex
operations in O(1) amortized time, and Find min in worst-case time linear in
the number of vertices currently in G. For convenience we assume the edge costs
are totally-ordered. If two edges actually have the same cost we can break the
tie using lexicographic order of the vertex indices.

Our high-level approach is to store the edges incident on each vertex in a
heap. Since the DVMP only involves the edge of globally minimum cost, these
heaps ignore important information: An edge that is not the smallest in one of its
heaps is not a candidate for the global minimum, even if it is the smallest in its
other heap. We capture this principle using a notion of “active” and “inactive”
edges (defined precisely below). This allows us to economize on the number of
heap operations.

2.1 The Algorithm

This section presents the data structure and algorithm, and proves correctness
of the implementation.

Our data structure is a collection of heaps. Our heaps are a variant of the
standard binomial queue data structure [16]. As usual, each heap is a collection
of heap-ordered binomial trees. However our structure differs from the standard
definition in two ways. First and most importantly, one heap is allowed to contain
an arbitrary number of binomial trees of a given rank. Second, a lazy strategy
is used for deletion: Heap elements are marked when they get deleted (elements
are initially unmarked). The root of a heap is never marked.

The data structure consists of |V (G)| heaps, one for each vertex. We denote
by H(u) the heap associated with u ∈ V (G). Elements of H(u) correspond
to edges incident on u. An edge {u, v} appears in both H(u) and H(v); we
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differentiate these two elements with the notation (u, v) and (v, u), respectively.
Let twin(u, v) be synonymous with (v, u). H(u) may contain marked elements
(u, x) (for edges previously incident to u that have been deleted). But as already
mentioned, such marked elements are never tree roots.

Each heap H(u) is a collection of binomial trees divided into two groups: the
active trees and the inactive trees. We sometimes refer to a whole tree by its
root. Hence an active root is the root of an active tree. As usual the rank of an
element e, denoted rank(e), is the number of children it has, which is also the
logarithm (base 2) of the size of the subtree rooted at e. The following invariant
characterizes the active and inactive trees.

DVMP Invariant

(i) For all elements e, rank(e) ≤ rank(twin(e)) + 1.
(ii) Consider a tree root f . If rank(f) > rank(twin(f)) then f is inactive. If

rank(f) ≤ rank(twin(f)) and f is inactive then twin(f) is either active or
a nonroot.

(iii) Consider a vertex u. H(u) contains at most one active root per rank k,
denoted ru(k) if it exists. At all times su(k) points to the element with
minimum cost among {ru(k), ru(k + 1), . . .}.

To better understand (ii) consider elements f and twin(f) that are both
roots. If the twin roots have equal rank then at least one of them is active. If
the twins have unequal rank then the smaller rank element is active while the
larger one is not.

Here is some motivation for the DVMP Invariant. The purpose of (i) is that
the ranks of an item and its twin should not differ too much. To maintain the
first part of (iii) we will sometimes merge two active trees of the same rank.
This increments the rank of the resulting tree’s root by one. If this happened
too often the ranks of an item and its twin could differ by an arbitrary amount,
violating (i). To avoid this when a root’s rank is one more than that of its twin
(ii) makes the root inactive. We never merge inactive trees. Hence we do not
violate (i).

One consequence of the DVMP Invariant is that the minimum cost edge is
easy to find:

Lemma 1. If {u, v} is the edge with minimum cost in G then either su(0) or
sv(0) points to it.

Proof. Because {u, v} is of minimum cost, (u, v) and (v, u) must be roots in
H(u) and H(v), respectively. DVMP Invariant (ii) implies that either (u, v) or
(v, u) is active. DVMP Invariant (iii) implies that in general, su(0) points to
the minimum element in an active tree of vertex u. Hence either su(0) or sv(0)
points to {u, v}. (The fact that nonroot elements can be marked, i.e., deleted,
has no affect on this argument.)
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The procedure for Find min follows directly from Lemma 1. We simply take
the minimum cost element pointed to by su(0), over all u ∈ V (G).

The Add vertex, Add edge and Delete vertex operations are implemented
in a lazy fashion: They perform the least amount of work necessary to restore the
DVMP Invariant. Each of these operations makes use of the routines Activate(e)
and Deactivate(e). The purpose of these routines is to change a tree root e =
(u, v) from the inactive to the active state, or the reverse. Both these changes
of state may violate DVMP Invariant (iii): Making a root e active may create
two active roots of rank rank(e). Making root e active or inactive may make
ru(rank(e)) or su(0), . . . , su(rank(e)) out-of-date. The routines Activate(e) and
Deactivate(e) repair these violations, as follows.

Deactivate(e = (u, v))
It is assumed that e is an active root. Furthermore deactivating e
will not violate DVMP Invariant (ii).

1. Move the tree rooted at e to the set of inactive trees in H(u).
2. If ru(rank(e)) = e, set ru(rank(e)) = nil.
3. Update su(0), . . . , su(rank(e)).

Activate(e = (u, v))
It is assumed that e is an inactive tree root and rank(e) ≤ rank(twin(e)).

1. Remove the tree rooted at e from the set of inactive trees in H(u).
2. Let cur := e.

The following loop sets ru(rank(cur)) = cur unless ru(rank(cur)) �= nil,
in which case merging is necessary.

3. LOOP {
4. Let k := rank(cur).
5. If ru(k) = nil
6. Let ru(k) := cur.
7. Update su(0), . . . , su(k).
8. EXIT THE LOOP.
9. Otherwise, merge the trees rooted at cur and ru(k),

and let cur be the resulting root.
10. Set ru(k) := nil.
11. If rank(cur) > rank(twin(cur))
12. Deactivate(cur).
13. Activate(twin(cur)) if twin(cur) is an inactive root.
14. EXIT THE LOOP.
15. }

It is clear that Deactivate works correctly. Activate is more complicated
because of the tail recursion in Step 13. Its correctness amounts to the following
fact.

Lemma 2. Activate eventually returns with the DVMP Invariant intact.
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Proof. We will prove by induction that each time Step 5 of Activate is reached,

(i) rank(twin(cur)) ≥ k = rank(cur);
(ii) the only possible violation of the DVMP Invariant is part (iii), specifically,

H(u) can contain two active nodes of rank k, cur and ru(k), and the values
su(0), . . . , su(k) can be incorrect.

In the inductive argument we will also note that the lemma holds whenever
Activate returns.

For the base case of the induction note that activating e (in Step 1) cannot
introduce a violation of DVMP Invariant (i)–(ii). Hence the first time Step 5
is reached, only DVMP Invariant (iii) for u can fail and inductive assertion (ii)
holds. Assertion (i) follows from the corresponding inequality on ranks in the
entry condition of Activate.

Now consider Step 5. If ru(k) = nil, Steps 6–7 restore DVMP Invariant
(iii). Then Activate returns with the DVMP Invariant holding, as desired. So
suppose ru(k) �= nil, i.e., there is a previously existing active tree of rank k.

The inequality rank(f) ≤ rank(twin(f)) holds for both f = cur (by induc-
tive assumption) and f = ru(k) (by DVMP Invariant (ii)–(iii)). Step 9 merges
trees cur and ru(k) and makes cur point to the new tree root, which has rank
k+1. The previous inequality (along with DVMP Invariant (i)) shows that now
rank(cur) is equal to either rank(twin(cur)) or rank(twin(cur)) + 1. In the
first case, since cur is active DVMP Invariant (ii) permits twin(cur) to be active
or inactive. Hence the algorithm proceeds to the next execution of Step 5 with
inductive assertions (i)–(ii) intact. So the first case is correct.

In the second case DVMP Invariant (ii) requires that cur be inactive and
twin(cur) be active if it is a root. Step 12 makes cur inactive and Deactivate
restores DVMP Invariant (iii). (Note the entry condition to Deactivate is sat-
isfied.) The recursive call of Step 13 fixes up DVMP Invariant (ii) in its Step 1.
(Again note the entry condition to Activate is satisfied.) Then Step 5 is reached
with inductive assertions (i)–(ii) intact. This completes the induction.

It remains to show that Activate eventually returns. This is clear, since every
time it reaches Step 5 the number of trees in the data structure has decreased
(in the merge of Step 9).

Now consider the remaining operations Add vertex, Add edge and Delete -
vertex. Add vertex is trivial. The routines for Add edge and Delete vertex are
given below. Delete vertex works in a lazy fashion: We mark heap elements
when they get deleted. We keep a marked element in the heap as long as possible,
i.e., until all its ancestors become marked.

Add edge({u, v})
1. Create rank 0 nodes (u, v) and (v, u).
2. Put (u, v) and (v, u) in the inactive sets of H(u) and H(v), respectively.
3. Activate(u, v).
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Delete vertex(u)
1. For each element e ∈ H(u), mark twin(e) as deleted.
2. For each tree root f = twin(e) marked in Step 1,
3. Deactivate(f) if it is active.
4. For each unmarked element g that is in the tree of f

and has all its ancestors marked,
5. Designate g an inactive tree root (remove all its marked ancestors).
6. If twin(g) is an inactive root,
7. If rank(g) ≤ rank(twin(g)), Activate(g)
8. Else Activate(twin(g)).

It is obvious that Add edge is correct, so we turn to Delete vertex. Step 1
can discard all the nodes of H(u) since they are no longer needed. Step 4 finds
the nodes g by a top-down exploration of the tree rooted at f . Step 2 ensures that
every new tree root is found. Step 5 causes DVMP Invariant (ii) to fail if twin(g)
is an inactive root. In that case if g and twin(g) have equal ranks one of them
should be active; if they have unequal ranks the smaller rank element should be
active. However all the rest of the DVMP Invariant is preserved in Step 5. Thus
Steps 6–8 restore DVMP Invariant (ii). (Note the entry conditions to Activate
and Deactivate are always satisfied.) We conclude that Delete vertex works
correctly.

We close this section with the final details of the data structure. Each value
twin(e) is represented by a pointer, so nodes (u, v) and (v, u) point to each other.
The set of inactive trees in each heap H(u) is represented as a doubly-linked list.
Now almost every step of the four routines takes constant time. The exceptions
are first, the updates of su: Step 3 of Deactivate takes O(rank(e)+1) time and
Step 7 of Activate takes O(k + 1) time. (We compute su(i) in O(1) time using
the value of su(i+1)). Second, the top-down search in Step 4 of Delete vertex
amounts to O(1) time for the root f plus O(1) time for each binomial tree edge
that is explored (and removed).

2.2 Timing Analysis

This section proves the claimed time bounds. It is immediate that the worst-
case bounds for Find min and Add vertex are O(n) and O(1) respectively,
where n is the current number of vertices. We show below that Add edge and
Delete vertex use O(1) amortized time.

To start off we charge each edge of G O(1) time to account for work in its
creation and destruction, specifically Steps 1–2 of Add edge plus the possible
time for marking the edge in Steps 1–2 of Delete vertex. It is easy to see
that the remaining work performed by our algorithm is linear in the number
of comparisons between edge costs. (Specifically, the time for Deactivate is
dominated by the comparisons to update su in Step 3; Activate is dominated by
the comparison to merge binomial trees (Step 9) and the comparisons to update
su (Step 7); in Delete vertex each remaining unit of work corresponds to the
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destruction of a binomial tree edge, i.e., a previous comparison.) It therefore
suffices to bound the number of comparisons.

We do this using the accounting method of amortized analysis [6,17]. Define
1 credit to be the work required for 1 comparison. We will maintain the following
invariant after each operation:

Credit Invariant

(i) Every heap element has C = O(1) credits.
(ii) Every root of rank k has an additional k + 4 credits.
(iii) Every nonroot of rank k with a marked parent has an additional 2k + 5

credits.

The precise value of the constant C will be determined below.
Note that each call Deactivate(e) uses rank(e) + 1 credits. We will require

that each call Activate(e) is given rank(e)+1 credits. Using this credit system
the amortized cost of Add edge is 2(C + 4) + 1: C + 4 credits per rank 0 ele-
ment created plus 1 credit for the call to Activate. Thus Add edge takes O(1)
amortized time as desired.

Amortized Cost of Activate When Activate(e) is called rank(e)+1 credits
are available to be spent. We maintain that at each iteration of the loop (Step
3) at least k+ 1 credits are available, for k = rank(cur). This is clearly true for
the first iteration.

Suppose in Step 5, ru(k) = nil. The only remaining comparisons in this call
to Activate are for updating su(0), . . . , su(k). We pay for these with the k + 1
available credits.

Suppose now ru(k) �= nil. Step 9 merges cur and ru(k), two rank k trees,
producing a rank k+1 tree, also denoted cur. The merge changes one root into
a nonroot, releasing k+4 credits. We use one credit to pay for the comparison of
the merge; additionally the new rank k + 1 root requires one more credit. This
leaves a total of (k + 1) + (k + 2) = 2k + 3 credits available.

Suppose Steps 12–14 are executed. We pay for Deactivate(cur) in Step 12
with k + 2 credits. (Actually we could save a comparison in Deactivate, since
it need not update su(rank(e)).) Since rank(twin(cur)) = k, we can pay for the
call to Activate(twin(cur)) in Step 13 (if necessary) with the remaining k + 1
credits.

Finally suppose the ‘If’ statement in Step 11 fails. The loop returns to Step
3 with 2k + 3 ≥ k + 2 available credits, as called for.

Amortized Cost of Delete vertex Consider an operation Delete vertex(u)
and an element (u, v) ∈ H(u) with rank k. DVMP Invariant (i) ensures that
rank(v, u) ≤ k + 1. When Step 1 marks (v, u) Credit Invariant (iii) requires
credits to be placed on the children of (v, u). Let us temporarily assume this has
been done and discuss the rest of Delete vertex before returning to this issue.
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In Step 3 a possible operation Deactivate(v, u) requires at most k + 2 credits,
paid for by the k + 4 credits on (v, u).

Now consider an unmarked element g as in Step 4. The cost of discovering
g and processing it in Steps 4–6 has already been associated with merge com-
parisons. In addition if rank(g) = j we need 2j +5 credits: Credit Invariant (ii)
requires j + 4 credits when g becomes a root (Step 5), plus we need at most
j+1 credits to pay for the call to Activate for g or its twin (Steps 7–8). Credit
Invariant (iii) for g gives the 2j + 5 needed credits.

It remains only to explain how Credit Invariant (iii) is maintained when (v, u)
is marked in Step 1. (v, u) has at most k + 1 children, one child of each rank
i = 0, . . . , k. So Credit Invariant (iii) requires a total of at most

∑k
i=0(2i+ 5) =

(k+1)(k+5) credits. We consider two cases, depending on whether or not (u, v)
is a root of H(u).

H(u) contains at most |H(u)|/2k+1 rank k nonroot elements (u, v), since the
parent of such a nonroot has 2k+1 descendants. So the total cost associated with
deleting all nonroots (u, v) of all ranks k is bounded by

∞∑
k=0

|H(u)| · (k + 1)(k + 5)
2k+1 .

Recall that
∑∞
k=0

1
2k =

∑∞
k=0

k
2k = 2 and

∑∞
k=0

k2

2k = 6. Hence the above sum is
at most |H(u)|(6 + 12 + 10)/2 = 14|H(u)|. We pay for this by taking 14 credits
from each element of H(u), assuming C ≥ 14 in Credit Invariant (i).

Next consider a rank k root (u, v). The elements in the binomial tree of (u, v)
now have a total of k+4+(C−14)2k credits by Credit Invariant (i)–(ii). Choosing
C = 18 makes this quantity at least (k + 1)(k + 5), because k2 + 5k + 1 ≤ 2k+2

for every k ≥ 0. (This inequality follows by induction using base case k ≤ 1. For
the inductive step we use the identity 2k+ 6 ≤ 2k+2 for every k ≥ 1.) Hence we
can pay the cost associated with (u, v).

Theorem 1. The dynamic vertex minimum problem can be solved in amortized
time O(1) for each Add vertex, Add edge and Delete vertex operation and
worst-case time O(n) for each Find min when the graph contains exactly n ver-
tices.

We close with three remarks. First, the constant C in the analysis can be
lowered because the algorithm performs unnecessary comparisons. For instance
in Delete vertex(u), various executions of Activate may update sv(·) values
for the same vertex v. But only one update is sufficient.

Second, an actual implementation of this data structure will probably be
more efficient if we modify the DVMP Invariants slightly. Invariant (i) can be
changed to rank(e) ≤ c1 · rank(twin(e)) + c2, for constants c1, c2. This allows
DVMP Invariant (ii) to be relaxed so there are fewer activates and deactivates.
This speeds up the algorithm in practice. Theorem 1 remains valid.

Finally, if necessary we can ensure that the space is always O(m), for m the
current number of edges. The idea is to reconstruct the data structure whenever
there are too many marked elements.
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Abstract. An algorithm is given to solve the minimum cycle basis prob-
lem for regular matroids. The result is based upon Seymour’s decom-
position theorem for regular matroids; the Gomory-Hu tree, which is
essentially the solution for cographic matroids; and the corresponding
result for graphs. The complexity of the algorithm is O((n + m)4), pro-
vided that a regular matroid is represented as a binary n×m matrix. The
complexity decreases to O((n+m)3.376) using fast matrix multiplication.

1 Introduction

Coleman and Pothen study the sparse null space basis problem [CP86]. Given
an n×m matrix A, find a matrix N with fewest non-zero entries, whose columns
span the null space of A. Their purpose is to develop a practical algorithm for
the linear equality problem, which is a fundamental concern in numerical opti-
mization. Minimize a nonlinear objective function f subject to linear constraints
Ax = b, assuming that f : �n → � is a twice continuously differentiable function.

When A is a totally unimodular matrix, the sparsest null basis problem
reduces to finding the minimum cycle basis of the regular matroid represented by
A. A cycle of the matroid corresponds to the support of a solution to the system
Ax = b. A totally unimodular matrix is one in which every square submatrix has
determinant 0 or ±1. Such matrices are exactly those which represent regular
matroids [Tut65]. The minimum cycle basis problem (MCB) is: given a binary
matroid M with nonnegative weights assigned to its elements, what is the set
of circuits with the smallest total weight which generate all of the cycles of the
matroid? The null space problem is the unweighted special case of the MCB
problem. However the MCB problem applies to binary matroids only.

In this paper we solve the MCB problem for regular matroids in polynomial
time. The method involves several results from the literature. Seymour [Sey80]
proves that any regular matroid can be decomposed in polynomial time into 1-
sums, 2-sums, and 3-sums of graphic matroids, cographic matroids and copies of
the special ten element matroid R10. Truemper [Tru90] gives a cubic algorithm
to find such a decomposition. The MCB problem for graphs is solved in [Hor87].
The Gomory-Hu tree [GH61] algorithm solves the MCB problem for cographic
matroids. We show how the minimum cycle bases of the parts of a decomposition
can be glued together to form a minimum cycle basis of a k-sum.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 200–209, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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The problem of extracting the minimum base of a matroid represented by
a binary matrix arises in the algorithm in [Hor87] and in the gluing algorithm
here. This minimum base (MB) problem can be solved faster than straightfor-
ward Gaussian elimination by using divide and conquer, and fast matrix multi-
plication. Moreover, it is proved in [Gol02] that the matrix multiplication and
minimum base problems have almost the same asymptotic complexity. The com-
plexity of the MCB algorithm for graphs is reduced to O(nm2.376) from O(nm3),
where n is the number of vertices in the graph and m is the number of edges.

2 Background

Let M be a binary matroid, S be its ground set and C be its cycle space. The
elements of M are weighted by a nonnegative function defined on its ground set
S, that is w : S → �+ ∪ {0}. The weighting is linearly propagated to subsets of
S and to families of subsets of S. A minimum cycle basis is a basis of the cycle
space that has the minimum weight among all the bases. The following lemma
characterizes minimum cycle bases.

Lemma 1. Suppose that B is a cycle basis of a binary matroid M . Then B is a
minimum cycle basis if and only if every cycle C ∈ C(M) has the representation

C = C1 + C2 + . . .+ Ck (1)

such that for every i, w(Ci) ≤ w(C) and Ci ∈ B
A simple consequence is that a cycle is not in the minimum cycle basis if it can
be written as the sum of smaller cycles.

2.1 Graphic and Cographic Matroids

For a graphic matroid M , let G(M) denote a graph representing M . For a
cographic matroid M , the space of cuts of G(M∗) and the cycle space of M
coincide.

The algorithm to find the minimum cycle basis for a weighted graph in
[Hor87] is based on the following:

Lemma 2. Let C be a circuit in a minimum cycle basis of a graph G, and let
x be a vertex of C. Then there is an edge e = {u, v} ∈ C such that C consists of
a shortest path from u to x, a shortest path from v to x and the edge e.

The following algorithm finds the minimum cycle basis:

1. Find the shortest path Pxy in G between each pair of vertices x and y.
2. List all the candidate circuits of the form

Bt = {Puw + Pvw + {u, v}|{u, v} ∈ E,w ∈ V, Puw ∩ Pvw = {w}}

3. Use a greedy algorithm to extract a minimum cycle basis from Bt.
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The last step in [Hor87] is based upon Gaussian elimination, and is improved in
Section 4.1.

To find the minimum cycle basis of a cographic matroid, one can construct
the Gomory-Hu tree [GH61], for which the best algorithm we know is in [GR98].
Given a weighted graph, the Gomory-Hu tree is a weighted tree on the same
set of vertices for which the weights of the minimum cuts between any pair of
nodes are the same in both the tree and the graph. Particularly, each edge of
this Gomory-Hu tree corresponds to the minimum cut in the graph separating
its two endpoints. That this solves the minimal cocycle space basis problem is
easy to prove and has been known to the second author for many years, but we
do not know any reference in the literature to this fact.

Let G = (V,E,w) be a weighted graph and T = (V,ET , wT ) be a weighted
tree. We use the notation CG(A, V � A) for the cut separating the vertex sets
A and V � A in a graph G. Every edge e = {s, t} of T forms a cut in T , say
CT (Ae, V � Ae) for some set A ⊂ V . Consider the corresponding cut Ce =
CG(Ae, V � Ae) in G. Then T is a Gomory-Hu tree for G if Ce is a minimum
s− t cut in G for every e ∈ ET .

The family of cuts B = {Ce : e ∈ ET } forms a basis in the cut space of G.
There are n− 1 cuts corresponding to the edges of the Gomory-Hu tree, which
is exactly the number of dimensions of the cut space. If for some e = {s, t}, Ce
is written as the sum of other cuts in the family, the sum must contain a cut
which separates s and t. Since no other cut in B separates s and t, except for
Ce, we conclude that B is an independent family of cuts. Therefore it forms a
cut basis. This gives a method to find the representation of any cut C over B,
namely Ce (e = {s, t}) is in the representation if and only if C separates s and
t. On other hand, note that C can not be lighter than any such Ce, since both
C and Ce separate s and t, but Ce is a minimum cut. By Lemma 2, B forms a
minimum cycle basis for the cographic matroid of G.

2.2 Separations and Sums

A partition (X,Y ) of the ground set S of a matroid M is called a k-separation
if r(X) + r(Y ) = r(S) − k + 1. If the condition that |X|, |Y | ≥ 2k−1 is added
for binary matroids, then we can express M as the k-sum of some extensions of
M \X and M \ Y (the symbol M \X represents the deletion of the elements of
Y from the matroid M), such that both of the extensions are smaller than M .
In [Tru90] such a separation is called a (k|2k−1)-separation.

The sum of two binary matroids M1 ⊕ M2 is defined to be a matroid M
on the ground set S = S1 + S2, where + stands for the symmetric difference
operation. S1 and S2 are the ground sets of M1 and M2 respectively. The sum
is given by its cycle space

C(M) = {C1 + C2 : C1 ∈ C(M1), C2 ∈ C(M2), C1 + C2 ⊆ S} (2)

The members of Z = S1 ∩ S2 are called the connecting elements. We require:
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1. Z contains no cocircuit of either M1 or M2;
2. Z contains no parallel elements; and
3. |S1| < |S|, |S2| < |S|.

We are concerned about three special cases of this operation, namely:

1-sum (or direct sum) when Z = ∅;
2-sum when Z = {z};
3-sum when |Z| = 3, Z is a triangle (circuit of three elements) of both M1 and

M2.

There is a natural way to construct a sum, if a k-separation S = X ∪ Y
of a matroid M is given. Consider the subspaces of the cycle space C of M ,
VX = {C ∈ C|C ⊂ X} and VY = {C ∈ C|C ⊂ X}, and consider the factor space

U = C/(VX ⊕ VY ) (3)

The symbol ⊕ denotes direct sum of linear spaces. Let ∼ denote the correspond-
ing equivalence relation on C. One can think of the connecting elements in a
matroid sum as the non-zero elements of this factor space. Let Z = U � {0}.
The dimension of U is

dim(U) = dim(C)− dim(VX)− dim(VY )
= |S| − r(S)− |X|+ r(X)− |Y |+ r(Y ) = k − 1

Let E denote an extended matrix representation of M , the columns of which
are labeled with the elements of S. Let vx denote the column of E labeled with
x. For each z ∈ Z, define

vz :=
∑

x∈Cz∩X
vx (4)

where Cz is a representative of the equivalence class z in C. The vector vz is well
defined, since for any other representative C ′

z the cycle Cz + C ′
z intersects X in

another cycle C ′′. Thus
∑

x∈Cz∩X
vx +

∑
x∈C′

z∩X
vx =

∑
x∈C′′

vz = 0 (5)

Let M1 be a matroid on the ground set X ∪ Z. Construct the extended matrix
representation of M1 by taking the old vectors [vx|x ∈ X] and adjoining the
newly constructed vectors [vz|z ∈ Z]. Similarly construct the matroid M2.

To prove that M =M1 ⊕M2, take any cycle C ∈ C. Let z be its equivalence
class in (3). If z = 0, then C is decomposable into two cycles, one in VX and
one in VY . These cycles have to be in C(M1) and C(M2) respectively, and hence
they are in the sum M1 ⊕M2 as well. If z �= 0, then CX = (C ∩X) ∪ {z} is a
cycle of M1 and CY = (C ∩ Y ) ∪ {z} is a cycle of M2. Thus C = CX + CY is a
cycle of the sum M1 ⊕M2.
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Note that none of the connecting elements can be parallel to each other,
since all of the vz are distinct. The set of connecting elements cannot contain a
cocircuit, since the deletion of all the connecting elements does not change the
rank. We call the resulting matroid sum M =M1 ⊕M2 a k-delta sum.

A set A of M1 or M2 is called good with respect to the decomposition M =
M1 ⊕M2 if |A ∩ Z| ≤ 1, otherwise A is called bad. Note that in the 1-sum and
2-sum cases, all sets are good. In the k-delta sum case every cycle C ∈ C(M)
is the sum of two good cycles. Recall that if C ∼ 0, then CX = C ∩ X and
CY = C ∩ Y . If C ∼ z �= 0, then CX = (C ∩X) ∪ {z} and CY = (C ∩ Y ) ∪ {z}.

2.3 The Weighted Case

We now show how to use the previous construction with weighted matroids.
Let M be a weighted binary matroid, S = X ∪ Y be a k-separation of M ,
M = M1 ⊕ M2 be the corresponding k-delta sum. Define w1(x) = w(x), if
x ∈ S1 � S2 and w2(x) = w(x), if x ∈ S2 � S1. For each z ∈ Z, call a lightest
cycle equivalent to z a z-round (there are could be many z-rounds), and denote
one of them by Cz. The set C ∩X is called a z-way in M1 (denoted by Pz) if C
is a z-round, and the set C ∩ Y is called a z-way in M2 (denoted by Qz). Define
w1(z) = w(Qz) and w2(z) = w(Pz).

Let C be any cycle of C. If C ∼ 0, then w(C) = w1(C ∩X) + w2(C ∩ Y ). If
not, then let C ∼ z �= 0, the set C ∩X (M1-part of C) cannot be lighter than
Pz, since the cycle (C ∩ X) ∪ Qz ∼ z cannot be lighter than Cz = Pz ∪ Qz.
Similarly, w(C ∩ Y ) ≥ w(Qz) = w1(z) (Qz is a shortest cycle through z minus
z). Thus if C is represented by the sum of two good cycles C1 and C2, then
w1(C1) = w1(C∩X)+w1(z) ≤ w(C) and similarly for w2(C2). Thus every cycle
C ∈ C is the unique sum of two good cycles C1 and C2, which are not heavier
than C.
Lemma 3. The triangle inequality holds for every circuit of three connecting
elements T = {z1, z2, z3} ⊆ Z, i.e. wi(z1) ≤ wi(z2) + wi(z3) for i ∈ {1, 2}.
Proof. Let Q1, Q2, Q3 be the corresponding z-ways. Since z1 + Q2 + Q3 is a
cycle through z1, then w(Q2) + w(Q3) ≥ w(Q1), i.e. w1(z1) ≤ w1(z2) + w1(z3).

Once all the z-rounds of the sumM1⊕M2 are fixed, define the correspondent
of a set A of M1 to be

c1(A) = A+
∑

z∈A∩Z
(z +Qz) (6)

Similarly define the correspondent function c2 on subsets ofM2. The connecting
elements of a set are replaced in the correspondent by the corresponding z-ways
of the other side of the separation. The inequality w(c1(A)) ≤ w1(A) holds, since
w1(z) = w(Qz), and w(A + B) ≤ w(A) + w(B) for every A and B. Note that
w(c1(A)) = w1(A), if A is good.

The following theorem is used to find the minimum cycle basis of a sum. It
is assumed that minimum cycle bases of parts of the sum and the corresponding
z-rounds are known.
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Theorem 1. Let M = M1 ⊕M2 be the sum of binary weighted matroids. Let
B1 and B2 be minimum cycle bases of M1 and M2 respectively. Let Cz be a fixed
set of z-rounds. Then the following set contains a minimum cycle basis of M .

Bt = c1(B1) ∪ c2(B2) ∪ (∪zCz) (7)

Proof. Proof omitted.

The cardinality of Bt can be bounded.

|Bt| ≤ |B1|+ |B2|+ |Z| = |S1| − r1(S1) + |S2| − r2(S2) + |Z|
= |X|+ |Z| − r(X) + |Y |+ |Z| − r(Y ) + |Z| (8)
= |S| − r(S) + 3|Z| − k + 1 ≤ |S| − r(S) + 3 · 2k−1 − k − 2

Therefore there are at most 3 · 2k−1 − k − 2 redundant cycles in Bt.
The third term ∪zCz in equation (7) can be omitted. In the case of 1-sums

and 2-sums there are no redundant cycles, while in the case of a 3-sum there is
at most one redundant cycle [Gol02].

3 The Algorithm

The first phase of the algorithm is based on the decomposition theorem [Sey80]
for regular matroids. A regular matroid M can be decomposed into 1-sums, 2-
sums, and 3-sums of graphic matroids, cographic matroids and isomorphic copies
of the special ten element matroid R10. Call them atom matroids. The algorithm
of [Tru90] finds such a decomposition in time cubic in the number of elements.
Actually, Truemper finds a decomposition using a slightly different type of 3-
sums, but these sums can be converted into 3-delta sums (or delta sums in the
terminology of [Tru92]) in time that is linear in the rank of the matroid M1.

Using results from the Section 2.3, proceed as follows:

1. Invoke Truemper’s decomposition algorithm. Modify the corresponding de-
compositions, so that they became delta sum decompositions.

2. For each atom M that is not isomorphic to R10, obtain the corresponding
graphs G(M) and cographs G(M∗). These graphs are side results of Truem-
per’s algorithm.

3. Find a minimum cycle basis for each G(M) and G(M∗) obtained in the
previous step.

4. For each decomposition encountered in the first step (in bottom up order),
a) find the corresponding z-ways,
b) use a greedy algorithm to extract a minimum cycle basis from the set Bt

in (7).

It remains to describe how to perform Steps 4a and 4b. Step 4b can be imple-
mented using Gaussian elimination, but it can be improved asymptotically using
fast matrix multiplication, see Section 4.1.
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3.1 z-Ways

Finding the z-rounds of a decomposition can be reduced to the following more
general shrinking problem. Given a weighted matroid M defined on a ground set
S with a weight function w and a subset T of S, for each t in T , find a shortest
circuit Ct in C(M) that intersects T only in t.

Let M = M1 ⊕ M2 be a decomposition, and Cz, Dz be solutions of the
shrinking problem for each z ∈ Z in M1 and M2 respectively (T = Z). Then
Cz + Dz is a z-round for M1 ⊕M2. For our purposes it suffices to restrict M
to being a regular matroid and the set T to being a single edge or a triangle
(for 2-sums and 3-sums respectively). We use the modified decomposition found
in the Step 1 for solving the shrinking problem. Note that the output of the
shrinking problem does not depend on the weights of the elements of T , so it is
enough for w to be defined on S � T only.

The shrinking problem can be solved in an atom matroid. For the graphic
case, delete the elements of T from the graph and solve the shortest path problem
between the endpoints of the edge t. The path together with the edge of T is
the answer. For the cographic case, the edges of T must be a simple cut in the
graph and cannot contain a (graphic) circuit. Contract the edges of T (except
for t) and solve the min-cut problem between the endpoints of t. All possible
circuits can be considered for R10.

Otherwise there is a decompositionM =M1⊕M2 and we can apply recursion.
Let Z be the set of connecting elements. Weight the elements in M1 and M2,
other than the elements of T and Z, the same as in M . If the sum is a 1-sum
(Z = ∅), then each circuit of M is either a circuit of M1 or a circuit of M2. The
problem can be solved in either M1 or M2, depending upon which submatroid
the elements of T are in. In this case, if |T | = 3, it can not be partly in both M1
and M2, since T is a circuit.

The cases of a 2-sum or a 3-sum are considered together. Suppose that T is
contained in one of the S1 or S2, say in S1. Then all the elements e of M2 have
defined weights w2(e) = w(e) other than those in Z. Solve the shrinking problem
forM2 and Z, for each z in Z finding a z-way Qz inM2. For each connecting z in
Z, assign weights w1(z) := w2(Qz). Next invoke the algorithm for the shrinking
problem for M1 and T to find a t-way Pt for each t in T .

Each way Pt contains at most one element from Z. If Pt contains two elements
from Z, say z1 and z2, then there is a third element z3, such that Z = {z1, z2, z3}.
Due to Lemma 3, w1(z3) ≤ w1(z1)+w1(z2). Thus z3 can replace {z1, z2} in Pt (in
fact, the case where w1(z3) < w1(z1)+w1(z2) is impossible, since Pt+{z1, z2, z3}
can not be lighter than Pt). Thus the correspondent of Ct = Pt ∪ {t} (replacing
z by Qz), c1(Ct) is the solution to the shrinking problem in the case when T is
only on one side of the decomposition.

Now suppose that T intersects both ground sets. Without loss of generality,
let T ∩ S1 = {r, s} and T ∩ S2 = {t}. Let z denote the connecting element that
is equivalent to T in (3). This z is parallel to t in M2. Modify the decomposition
M =M1⊕M2 by deleting element t from M2 and extending M1 by t, such that
t is parallel to z in M1. Denote the modified matroids by M ′

1 and M ′
2. It can



A Polynomial Time Algorithm 207

be checked that M = M ′
1 ⊕M ′

2. Instead of deleting t from M2, a sufficiently
big weight can be assigned to t. To avoid the undesirable extension of M1, we
can decompose M ′

1 further using the 2-separation (S1 � {z}) ∪ ({z, t}). Then
M ′

1 =M ′′
1 ⊕2 R, where the matroid M ′′

1 is isomorphic to M1 and the matroid R
consists of three parallel elements. The same method as in the case T ⊂ S1 can
be applied to solve the shrinking problem for the decomposition M =M ′

1⊕M ′
2.

Let S1 � {z} ∪ {z′} be the ground set of M ′′
1 and {t, z, z′} be the ground set

of R. Let P̄z′ , P̄r and P̄s be a solution of the shrinking problem for {z′, r, s} in
M ′′

1 . The t-way Pt is either contained within R and then it is Qt = {z} or it
hits both R and M ′′

1 and then it is the sum of {t, z′} and P̄z′ . If the r-way Pr
lies within M ′′

1 , then it coincides with P̄r. Otherwise it hits both R and M ′′
1 ,

and then it is {z, z′} plus P̄s ({z′, r, s} form a triangle in M ′′
1 ). The s-way can

be found similarly. At last, note that the shrinking problem for {z′, r, s} in M ′′
1

is the same as the shrinking problem for {z, r, s} in M1, since M ′′
1 and M1 are

isomorphic. Thus we do not need to do any special preprocessing in this case.

4 Complexity and Improvements

4.1 Minimum Base Problem

We use the following result from [Gol02] to improve the asymptotic complexities
of Step 3 in the algorithm for the MCB problem in the graphic case (Section 2.1)
and Step 4b in the minimum cycle basis algorithm.

Theorem 2. Let M be a weighted linear matroid given by an n ×m standard
or extended matrix representation. A minimum basis of M can be found in
O(nm min{n,m}ω−2) time, where ω is the best exponent for matrix multipli-
cation.

It is presently known [CW87] that ω is less than 2.376. Suppose that a standard
matrix representation A for a matroidM is given. Let X be the set of row labels
(current base) and Y is the set of column labels (current cobase). Our goal is to
find a minimum base B and the standard matrix representing M with respect
to this base. Assume that |X| < |Y |. Split Y into even parts Y1 and Y2. The
algorithm uses recursion on the first part Y1 to obtain a minimum base B1 of
M \Y2. Let X1 be the set of elements which left the base X during the recursion,
i.e. X1 = X�B1, and let Y11 be the set of their replacements Y11 = Y ∩B1. Also
define X2 = X �X1 and Y12 = Y1 � Y11. The sets (X1, X2) and (Y11, Y12 ∪ Y2)
give a partition of the original matrix A into four submatrices.

A =

Y11 Y12 ∪ Y2

X1 F G

X2 H J

(9)
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After exchanging Y11 and X1 in the current base the matrix A transforms to

Ā =

X1 Y12 ∪ Y2

Y11 F̄ Ḡ

X2 H̄ J̄

=

X1 Y12 ∪ Y2

Y11 F−1 F−1G

X2 HF−1 J −HF−1G

(10)

This operation is called a group pivot with respect to the pair (X1, Y11). Fast
matrix multiplication can be used to speed up the group pivot. Then the algo-
rithm is applied recursively on the right side (columns labeled with Y2) of the
matrix Ā to solve the original problem.

We can solve the minimum base problem for a matroid represented by an
extended matrix representation introducing a fake basis consisting of heavy ele-
ments. The analysis of the algorithm [Gol02] shows that if square matrix multi-
plication can be done in O(nω) time, then the MB algorithm has the complexity
O(nm min{n,m}ω−2). Conversely, it can be shown that the MB problem can-
not be solved faster than matrix multiplication by considering the simple linear
matroid

Y1 X2

X1 I A

Y2 B 0

→

X1 X2

Y1 I A

Y2 B −AB

with the weight 0 assigned to the elements Y = Y1∪Y2 and the weight 1 assigned
to the elements X = X1 ∪ X2. Note that the transformed matrix contains the
product AB. Thus matrix multiplication can be simulated by the MB algorithm.

4.2 Analysis of the Minimum Cycle Basis Algorithm

This result improves the time complexity of the MCB algorithm for graphs
(Section 2.1) to O(nmω), where n is the number of nodes and m is the number
of edges in the input graph. Step 4b in the MCB algorithm works in O(|Bt|mω−1)
time using this result. Since Bt contains at most a constant number of redundant
cycles in (8), it follows that |Bt| = O(m). Thus Step 4b runs in O(mω) time.

Let m be the number of elements in a regular matroid M . Truemper finds
[Tru90] a complete decomposition in down to only atom matroids (graphic, co-
graphic and R10) in O(m3) time. Imagine a decomposition tree, the root of which
is the original matroid; the descendants of a node are the matroids the node is
decomposed into by Truemper’s algorithm; and the leaves are atom matroids.
There are at most O(m) nodes in the tree as the children of a node always have
fewer elements, and at most six more elements in total. Modifying the decompo-
sition (from Truemper’s 3-sum to our delta sum) requires at most O(r) time for
a matroid of the rank r. The modification process takes at most O(mr) time.
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Solving one shrinking problem at a given node M amounts to O(1) work
at each internal node below M in the decomposition tree. The graphic and
cographic cases require solving O(1) shortest path or network flow problems
respectively. For the graphic case, we can use Dijkstra’s algorithm, which has
O(m log(m)) complexity; for the cographic case, we use the algorithm in [GR98],
the time bound for which is O(m3/2). We need to solve at most O(m) shrinking
problems. Thus the total time for shrinking is O(m5/2).

The Gomory-Hu tree for a graph can be constructed by solving n−1 network
flow problems, where n = O(m) is the number of vertices in the graph. The time
complexity is O(m5/2). The MCB algorithm for graphs, after the improvement
of its last step runs in O(nmω). Thus we need to spend O(mω+1) time solving
minimum cycle bases problems of the leaves (O(m) elements total).

The time needed to glue the solutions at the leaf M of the cardinality m
is O(mω). We perform the gluing step at most O(m) times. Thus gluing takes
O(mω+1). The overall complexity of the algorithm is O(mω+1).

The more general MCB problem for binary matroids is known to be NP -
hard. Indeed just the problem of finding a shortest circuit in a binary matroid
is NP -hard, and a shortest circuit must be in any minimum cycle basis.
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Abstract. In an ideal point-to-point network, any node would sim-
ply choose a path of minimum latency to send packets to any other
node; however, the distributed nature and the increasing size of mod-
ern communication networks may render such a solution infeasible, as it
requires each node to store global information concerning the network.
Thus it may be desirable to endow only a small subset of the nodes
with global routing capabilites, which gives rise to the following graph-
theoretic problem.
Given an undirected graph G = (V, E), a metric l on the edges, and an
integer k, a k-center is a set Π ⊆ V of size k and an assignment πv that
maps each node to a unique element in Π. We let dπ(u, v) denote the
length of the shortest path from u to v passing through πu and πv and
let dl(u, v) be the length of the shortest u, v-path in G. We then refer
to dπ(u, v)/dl(u, v) as the stretch of the pair (u, v). We let the stretch
of a k-center solution Π be the maximum stretch of any pair of nodes
u, v ∈ V . The minimum edge-dilation k-center problem is that of finding
a k-center of minimum stretch.
We obtain combinatorial approximation algorithms with constant factor
performance guarantees for this problem and variants in which the cen-
ters are capacitated or nodes may be assigned to more than one center.
We also show that there can be no 5/4− ε approximation for any ε > 0
unless P = NP.

1 Introduction

In this paper we consider the following graph-theoretic problem: we are given
an undirected edge-weighted graph G = (V,E, l), (l is the (metric) edge-weight
function), and a parameter k > 0. We want to find a set Π ⊆ V of k center
nodes and assign each node v ∈ V to a unique center πv ∈ Π.

Let the center distance between nodes u, v ∈ V be defined as

dπ(u, v) = dl(u, πu) + dl(πu, πv) + dl(πv, v)

where dl(u, v) denotes the shortest path distance between nodes u and v. The
stretch for a pair of nodes u, v ∈ V is then defined as the ratio dπ(u, v)/dl(u, v)
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of center distance and shortest path distance. We let the stretch of a solution
(Π, {πv}v∈V ) be the maximum stretch of any pair of nodes u, v ∈ V . The goal in
the minimum edge-dilation k-center problem (MEDKC) is to find a set Π ⊆ V of
cardinality at most k and an assignment {πv}v∈V of nodes to centers of minimum
stretch.

A closely related problem is that of finding a k-center in a given graph G =
(V,E). Here, we want to find a set of nodes C ⊆ V of cardinality at most k such
that the maximum distance from any node to its closest center is as small as
possible. This problem admits a 2-approximation in the undirected setting [2,5,
12] and it is well-known that there cannot exist a 2 − ε approximation for any
ε > 0 unless P=NP [6,11]. We adapt techniques used for the k-center problem
to minimize the bottleneck stretch of any pair of nodes u, v ∈ V . Our main result
is the following:

Theorem 1. There is a polynomial-time algorithm that computes a feasible so-
lution Π ⊆ V to the MEDKC problem such that for every two vertices u, v ∈ V we
have dπ(u, v)/dl(u, v) ≤ 4 · opt + 3, where opt is the optimal stretch. On the
negative side, no 5/4− ε approximation can exist for any ε > 0 unless P=NP.

The multi-MEDKC problem is a natural extension of the MEDKC problem. Here,
each vertex is allowed to keep a set of centers πv ⊆ Π. We redefine the center
distance between nodes u and v as

dmπ (u, v) = min
π1∈πu,π2∈πv

dl(u, π1) + dl(π1, π2) + dl(π2, v).

Again, the task is to find a set of center nodes Π ⊆ V of cardinality at most k
that minimizes the maximum stretch, now defined as dmπ (u, v)/dl(u, v).

Theorem 2. Given an undirected graph G = (V,E) and a non-negative length
function l on E, there is a polynomial-time algorithm that computes a solution
Π to the multi-MEDKC problem such that for every two vertices u, v ∈ V we have
dmπ (u, v)/dl(u, v) ≤ 2 · opt + 1.

Subsequently, we extend the result in Theorem 1 to a natural capacitated ver-
sion of the MEDKC problem (denoted by C-MEDKC): each potential center location
v ∈ V has an associated capacity Uv. We now want to find a minimum-stretch
center set Π ⊆ V of size at most k and an assignment {πv}v∈V of nodes to
centers such that the set π−1

i = {v ∈ V : πv = i} has size at most Ui for all
i ∈ Π. We adapt facility location techniques from [13] in order to obtain the
following bicriteria result:

Theorem 3. Given an instance of the C-MEDKC problem, there is a polynomial-
time algorithm that computes a center set Π = {π1, . . . , π2k} and an assignment
of nodes to centers such that |π−1

i | ≤ 2Ui for all 1 ≤ i ≤ 2k. The stretch of the
solution is at most 12 · opt +1 where opt is the stretch of an optimum solution
which places no more than k centers and obeys all capacity constraints.
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The problem motivation comes from (distributed) routing in computer net-
works. Here, a host v keeps information about routing paths to each other host
u locally in its routing table. The entry for node v in u’s routing table consists
of the next node on the routing path from node u to node v. Clearly, we can
ensure shortest-path routing if we allow each node to store O(n) entries in its
routing table.

Considering the size of modern computer networks that often connect millions
of nodes, we can hardly ask each node to store information for every other host
in the network. For this reason, modern routing protocols like OSPF[9] allow a
subdivision of a network into areas. Now, each node keeps an entry for every
other node in the same area. Routing between nodes in different areas is done
via a backbone network of area border routers that interconnects the areas.

We can formalize the above problem as follows: We allow each node to store
up to O(B) entries in its routing table, where B is a constant representing the
memory available at each node. These are the nodes with which it can directly
communicate. In addition, we install a supporting backbone network of k center
nodes. Each node is allowed to keep an additional entry in its routing table for
the center node πv that it is assigned to. Whenever node v needs to compute a
route to node u that is not in its routing table, it has to route via its center πv.
As before, we assume that routing among center nodes is along shortest paths.

The problem now is to place k center nodes and configure the routing tables
of each of the nodes in V such that the maximum stretch of any path is minimum.
We refer to this problem as MEDKC with bounded routing table space (B-MEDKC).
We obtain the following theorem whose proof we defer to the full version of this
paper [8] due to space limitations.

Theorem 4. Given an instance of the B-MEDKC problem, we can find in poly-
nomial time a center set Π and an assignment {πv}v∈V of nodes to centers
that achieves stretch O(ρ · opt ) where opt denotes the optimum stretch of any
B-MEDKC solution and ρ is the performance guarantee of any algorithm for the
MEDKC problem.

We note that the last result is closely related to work on compact routing
schemes (see [1] and the references therein). Cowen [1] shows that if we allow
O(n2/3 log4/3 n) table space at each node, we can achieve a solution where the
routing path between any pair of nodes u, v ∈ V is at most three times as long
as the shortest u, v-path in G. Notice that this contrasts our results since we are
comparing the stretch that we achieve with the minimum possible stretch.

Finally, our problem is related to that of designing graph spanners. In the
unweighted version, first considered in [10], we are given an undirected edge-
weighted graph G = (V,E). A subgraph H = (V,EH) of G is called an α-
spanner if we have dH(u, v) ≤ α dG(u, v) for every pair of nodes u, v ∈ V .
The literature on spanners is vast and includes variants such as degree-bounded
spanners, sparse spanners, additive graph spanners as well as hardness results
(see [3] and the references therein).
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2 Hardness

We first show that the basic MEDKC problem is NP-hard. Hardness of the exten-
sions follow because each of the extensions is a strict generalization of the basic
problem.

Theorem 5. The minimum edge-dilation k-center problem is NP-hard. Fur-
thermore, unless NP = P, there can be no 5/4− ε approximation for any ε > 0.

Proof. The proof is by reduction from minimum vertex-dominating set (MVDS).
In MVDS we are given an undirected graph G = (V,E) and we want to find a set
S ⊆ V of minimum cardinality such that for all v ∈ V , either v ∈ S or there is
a u ∈ S such that vu ∈ E. This problem is known to be NP-hard [4].

Suppose we are given an instance of the MVDS problem: G1 = (V1, E1). We
construct an edge-weighted auxiliary graph G = (V,E, l) from G1. For each node
v ∈ V1, let V contain two copies v1 and v2, along with an edge v1v2 of length 1.
For each edge uv ∈ E1, we let u1v1 of length 1 be in E. Finally, we include edge
u1v1 of length 2 in E if the shortest path between u and v in G1 has at least 3
edges.

It is not difficult to see that if there exists a vertex dominating set in G1 of
cardinality at most k then the optimum stretch of the MEDKC instance given by G
is at most 4 (locate the centers exactly at the positions of the vertex dominating
set). Also, if there exists no vertex dominating set in G1 with size less than or
equal to k, then for any center set Π ⊆ V of cardinality k we can always find a
vertex v∗ ∈ V1 such that its copies v∗

1 and v∗
2 satisfy dπ(v∗

1 , v
∗
2)/dl(v

∗
1 , v

∗
2) ≥ 5.

�

3 The Basic MEDKC Problem

In this section, we prove Theorem 1. We first develop a combinatorial lower-
bound and use it to compute an approximate solution to the MEDKC problem. We
then give an algorithm that computes an approximate solution to the proposed
lower bound.

3.1 A Lower-Bound: Covering Edges with Vertices

For each pair u, v ∈ V , consider the set

Sαuv = {w ∈ V : dl(u,w) + dl(v, w) ≤ α · dl(u, v)}. (1)

It is clear that any optimum solution Π to MEDKC needs to have at least one
node from S

opt
uv for all pairs u, v ∈ V .

The minimum-stretch vertex cover problem (MSVC-α) for a given graph G =
(V,E, l) and a parameter α > 0 is to find a set C ⊆ V of minimum cardinality
such that Sαuv ∩C �= ∅ for all pairs u, v ∈ V . Let kα denote the cardinality of an
optimal solution to MSVC-α. The following lemma is immediate.

Lemma 1. Suppose there is a solution with stretch α for a given instance of the
MEDKC problem. Then kα ≤ k.
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3.2 Computing an Approximate MEDKC Solution

Given an instance of MEDKC, we first compute the smallest α such that the asso-
ciated MSVC-α instance has a solution of cardinality at most k.

Lemma 2. Given an instance of MEDKC, let opt be the minimum possible stretch
of any solution. We can then efficiently compute α ≤ 2 opt +1 such that kα ≤ k.

Our algorithm to locate a set of center nodes Π ⊆ V is now straightforward:
Let α be as in Lemma 2 and let Π be a solution to the respective instance
of MSVC-α. For each vertex v ∈ V , we assign v to the closest center in Π, i.e.
πv = argminu∈Π dl(v, u).
Proof of Theorem 1. Let u and v be an arbitrary pair of vertices in V . We want
to bound dπ(u, v). Let cuv be the node that covers the pair u, v in the MSVC-α
solution.

It follows from our choice of πv and πu that dl(u, πu) ≤ dl(u, cuv) and
dl(v, πv) ≤ dl(v, cuv). Hence,

dπ(u, v) ≤ 2(dl(u, πu) + dl(v, πv)) + dl(u, v) ≤ (2α+ 1)dl(u, v)

Using Lemma 2 we can bound (2α+ 1)dl(u, v) by 4 opt + 3. �

3.3 Solving MSVC-α

We now proceed by giving a proof of Lemma 2. We first show how to compute
a solution APX to MSVC-(2α+ 1) of cardinality at most kα.

For a vertex v and a subset of the edges E ⊆ E define lv(E) = mine∈E le
to be the minimum length of any edge e ∈ E that is incident to v. Also, let
S−1
α (E, v) = {e ∈ E : v ∈ Sαe } be the subset of edges in E that are covered by

vertex v ∈ V .
In the following we let α′ = 2α+ 1 and we say that a set C ⊆ V covers edge

e ∈ E if Sα
′

e ∩ C �= ∅. Our algorithm starts with C = ∅ and repeatedly adds
vertices to C until all edges in the graph are covered. More formally, in iteration
i, let the remaining uncovered set of edges be E and let V ⊆ V be the set of
vertices that have positive degree in E. Let ei ∈ E be the shortest edge in E. We
then choose vi as one of the endpoints of ei. Subsequently we remove S−1

α′ (E, vi)
from E and continue.

Lemma 3. If the above algorithm terminates with a feasible solution C ⊆ V for
a given instance of MSVC-(2α+ 1) then we must have kα ≥ |C|.
Proof. Assume for the sake of contradiction that there exists a set C∗ ⊆ V such
that |C∗| < |C| and for all e ∈ E, there exists ve ∈ Sαe ∩ C∗.

Recall the definition of vi and ei. There must exist 1 ≤ i < j ≤ |C| and a
node v ∈ C∗ such that v ∈ Sαei

∩ Sαej
. In the following, refer to Figure 1. By

definition, we must have a+ b ≤ α · lei and e+ f ≤ α · lej
. Using this along with

triangle inequality yields c+ d ≤ α · lei + α · lej + lei .
The right hand side of the last inequality is bounded by (2α + 1)lej by our

choice of vi. This contradicts the fact that ej remains uncovered in iteration
i. �
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vi

ei vj

c

b

a
e

f

d

v

ej

Fig. 1. Center v ∈ C∗ covers both ei and ej .

Proof of Lemma 2. The optimum stretch α∗ of any instance has to be in the
interval [1, diam(G)]. We can use binary search to find the largest α in this
interval such that the above algorithm returns a solution of cardinality at most
k. Our algorithm produces a solution with stretch 2α + 1 and it follows from
Lemma 3 that α∗ ≤ α. �

4 Choosing among Many Centers – Multi-MEDKC

In the multi-MEDKC setting, we allow each node v to keep a set of center nodes
πv ⊆ Π. For each pair of nodes u, v ∈ V , we allow u and v to use the center
nodes πvu ∈ πu and πuv ∈ πv that minimize

dl(u, πvu) + dl(πvu, π
u
v ) + d(πuv , v).

Notice that in an optimum solution, triangle inequality will always enforce πvu =
πuv . Hence this problem has a solution with stretch α iff MSVC-α has a solution of
cardinality at most k. This, together with Lemma 2, immediately yields Theorem
2.

A more interesting version of multi-MEDKC occurs when we restrict πv for
each node v ∈ V . For example, we might require that there is a global constant
ρ such that every client node can only communicate with centers within distance
ρ. We call this the ρ-restricted multi-MEDKC problem. We assume we are always
given a “large enough” ρ, otherwise the problem is not meaningful.

We omit the proof of the following lemma since it is similar to that of Lemma
2.

Lemma 4. Given an instance of ρ-restricted multi-MEDKC, let opt be its opti-
mal stretch. We can then efficiently compute α ≤ 2 opt + 1 such that kα ≤ k.

This shows that we can still use MSVC-α as a basis to construct a low-stretch
center set. The following is again an immediate corollary of Theorem 1.

Corollary 1. There is a polynomial time algorithm to solve the ρ-restricted
multi-MEDKC problem that achieves a stretch of at most 4 · opt + 3.
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5 Capacitated Center Location

We now come to the capacitated version of the basic MEDKC problem. Here, we
want to find a minimum-stretch center set (and assignment of nodes to centers)
of cardinality at most k such that the number of nodes that are assigned to
center i is no more than Ui, specified in the input.

5.1 A Modified Lower Bound

For each node v, we define lv = minuv∈E luv. For a given stretch α ≥ 1 let Sαv
be the set of nodes whose distance from v is at most α · lv, i.e. Sαv = {u ∈ V :
dl(v, u) ≤ α · lv}. The optimum solution must have a center node in Sαv in order
to cover the shortest edge incident to v.

We now need to find a set of vertices C ⊆ V of minimum cardinality such that
C ∩ Sαv �= ∅ for all v ∈ V . Additionally, we require that each node v is assigned
to exactly one center node πv and that the sets π−1

i = {u ∈ V : πu = i} have
size at most Ui for all i ∈ V . Let this problem be denoted by MSVC2− α.

Lemma 5. Suppose there is a solution with stretch α for a given instance of the
C-MEDKC problem. Then there must be a solution C to the associated MSVC2− α
instance with |C| ≤ k.

We model the lower-bound by using an integer programming formulation.
We then solve the LP relaxation of the model and round it to an integer solution
using ideas from [13]. Finally, we prove that this solution yields a solution for
the original instance of C-MEDKC with low stretch.

5.2 A Facility Location Type LP

In the IP, we have a binary indicator variable yi for each i ∈ V that has value
1 iff we place a center node at i. Additionally, we have variables xiv that have
value 1 iff πv = i. The following IP formulation models MSVC2− α.

min
∑
i∈V

yi (IP)

s.t
∑
i∈Sα

v

xiv ≥ 1 ∀v ∈ V (2)

∑
v

xiv ≤ Ui yi ∀i ∈ V (3)

xiv ≤ yi ∀i, v ∈ V (4)
xiv, yi ∈ {0, 1} ∀i, v ∈ V (5)

We refer to the LP relaxation of the above IP as (LP).
It follows from Lemma 5 that if there is a feasible solution for C-MEDKC with

stretch opt , then (LP) with α = opt has a solution with value at most k.
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We next show how to round a solution (x0, y0) of (LP) to a solution (x, y) of
cost at most twice the cost of the original solution and such that y is binary. All
capacity constraints are violated by at most a factor of two. Moreover, if node
v is assigned to facility i, i.e. xiv > 0, then the distance between i and v is not
too large, i.e. i ∈ S3αv . Finally, we show how to assign each node v to a unique
center πv, and prove that this solution to C-MEDKC has low stretch.

5.3 Algorithm Details

Starting with a fractional solution (x0, y0) of (LP), we iteratively modify it in
order to finish with (x, y) which satisfies the conditions above. We refer to the
solution at the beginning of iteration j as (xj , yj).

We call a center i fractionally opened if y0i > 0. In the course of the algorithm
we open a subset of the set of fractionally opened centers. The indicator variables
for open center nodes are rounded to one. We let Oj be the set of open centers
at the beginning of iteration j. Initially, let O0 be the empty set.

The procedure maintains the following invariants for all iterations 1 ≤ j ≤ t:

(I1)
∑
i y
j
i ≤ 2

∑
i y

0
i

(I2)
∑
i x

j
iv ≥ 1/2 for all nodes v ∈ V

(I3)
∑
v x

j
iv ≤ Uiy

j
i for all i ∈ V

We say that a node is satisfied if in iteration j we have
∑
i∈Oj x

j
iv ≥ 1/2.

Let Sj denote the set of satisfied nodes in iteration j. Our algorithm stops in
iteration t when no unsatisfied nodes remain. We then increase the assignment of
nodes j to open centers i ∈ Ot such that the final solution satisfies the demand
constraints (2).

A detailed description of an iteration follows. An iteration j starts by selecting
an unsatisfied node vj of minimum lv value. We let I(vj) be the set of centers
that fractionally serve vj and have not yet been opened, i.e.

I(vj) = {i ∈ V \Oj : xjivj
> 0} = {i1, . . . , ip}.

W.l.o.g., assume that Ui1 ≥ Ui2 ≥ · · · ≥ Uip . We now open the first γ =⌈∑
i∈I(vj) yi

⌉
centers from I(vj) and close all fractional centers in {iγ+1, . . . , ip},

i.e. Oj+1 = Oj∪{i1, . . . , iγ}. Hence yj+1i = 1 for all i ∈ {i1, . . . , iγ} and yj+1i = 0
otherwise. We let yj+1i = yji for all i �∈ I(vj).

Notice that a variable y0i for a fractionally opened center node i is modi-
fied exactly once by the procedure outlined above. This modification happens
whenever i is either opened or closed. It follows from this observation that

∑
i∈I(vj)

y0i =
∑

i∈I(vj)

yji ≥ 1/2

where the last inequality is a consequence of the fact that vj is unsatisfied with
respect to yj . Therefore,
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Lemma 6. Let vj be the unsatisfied node chosen in iteration j of our algorithm
and let y0 and yj+1 be defined as before. We then must have

∑
i∈I(vj) y

j+1
i ≤

2
∑
i∈I(vj) y

0
i .

This shows that invariant (I1) is preserved throughout the algorithm.
It remains to modify xj and obtain xj+1 so that invariants (I2) and (I3) are

maintained. Specifically, we have to modify xj such that no node is assigned to
closed centers and all capacity constraints are satisfied with respect to yj+1.

For an arbitrary node v, let ωv =
∑
i∈I(vj) x

j
iv be the assignment of v to

centers from I(vj). Let Ωj be the set of unsatisfied nodes that are attached to
I(vj), i.e.

Ωj = {v ∈ V \ Sj : ωv > 0}.
We now (fractionally) assign the nodes from Ωj to centers i1, . . . , iγ such that
for all 1 ≤ l ≤ γ at most Uil nodes are assigned to yil and no node is assigned
to any node in {iγ+1, . . . , ip}. The existence of such an assignment (and hence
the validity of (I3)) follows from the following lemma (implicit in [13]):

Lemma 7. Let vj, γ and I(vj) be defined as above. Then,
∑
i∈I(vj) Uiy

j
i ≤∑γ

l=1 Uil .

We do not reassign nodes v that were satisfied with respect to (xj , yj). Hence,
a satisfied node v might lose at most 1/2 of its demand that was assigned to
now closed centers. This entails invariant (I2).

At termination time t, all nodes are satisfied. We now obtain a solution x
that satisfies the demand constraints (2) of (LP) by scaling xt appropriately. For
all i ∈ Ot, v ∈ V , let xiv = xtiv/

∑
i∈Ot xtiv. Invariant (I2) implies the following

lemma.

Lemma 8. Let i be a center opened by the above algorithm. Then,
∑
v xiv ≤ 2Ui.

It remains to show that whenever we have xiv > 0 it must be that v ∈ S3αv .
The proof of this lemma is similar to that of Lemma 3. It crucially uses the
ordering in which the algorithm considers vertices and triangle inequality. We
omit the details from this extended abstract.

Lemma 9. Let x, y be the solution computed by the preceding algorithm. We
must have i ∈ S3αv whenever xiv > 0.

An observation from [14] enables us to assign each node v to a unique center πv
without increasing the violation of any of the capacity constraints.

Lemma 10. Let (x, y) be feasible for (2), (4) and (5) such that for all i ∈ V we
have

∑
v∈V xiv ≤ 2Uiyi and y is binary. Then, there exists an integral feasible

solution (x, y) such that
∑
v∈V xiv ≤ 2Uiyi for all i ∈ V and

∑
i yi ≤

∑
i yi.

We let πv = i iff xiv = 1 and prove Theorem 3.
Proof of Theorem 3. We only need to show that for any u, v ∈ V , we have
dπ(u, v) ≤ (12α + 1) · dl(u, v). Theorem 3 then follows from Lemma 5 and the
fact that we can perform a binary search to find the right estimate for α.
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Let us estimate dπ(u, v): From triangle inequality, we obtain that

dπ(u, v) ≤ 2(dl(u, πu) + dl(v, πv)) + dl(u, v). (6)

It follows from Lemma 9 that we must have dl(u, πu) ≤ 3α · lu ≤ 3α · d(u, v)
and dl(v, πv) ≤ 3α · lv ≤ 3α · d(u, v). Hence we obtain together with (6) that
dl(u, v) ≤ (12α+ 1)dl(u, v). �

6 Open Problems

An apparent open question is to develop a unicriteria approximation algorithm
for the capacitated case (maybe based on the ideas in [7]). Furthermore, an
interesting remaining problem is to extend Theorem 4 to the case where we do
not have a backbone network. In other words, how close to the best possible
stretch can we get given limited routing table space B? A possible direction
would be to explore stronger combinatorial lower-bounds and explore the merit
of LP techniques.
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Abstract. Dynamic data structures are presented for directed graphs
that maintain (a) Transitive Closure and (b) Decomposition into
Strongly Connected Components in a “semi-online” situation which im-
prove the static algorithms for minimum sum-of-diameters clustering are
improved by a O(logn) factor.

1 Introduction

A basic problem of cluster analysis is to partition a given set of entities into
homogeneous and/or well-separated classes, called clusters. Separation is com-
monly characterized by the dissimilarity between objects, which can be expressed
as the distance between objects. A measure often used in characterizing the
homogeneity of a set is the diameter, which is defined as the largest distance
between any pair of items in the set. [5]

The minimum sum of diameters clustering problem is described as follows:
Input: A set of n items, a1, a2, ...an and an integer k; associated with each

pair (ai, aj) is a length lij, which represents the distance between ai and aj.
Output: A partitioning of the set into k subsets, such that the sum of the

diameters of the subsets is minimized.
The input can be represented by a weighted graph, which we shall call the

Cluster Graph, as follows: represent each item ai by a vertex numbered i; add
an edge eij between vertex i and vertex j with length lij . The output is a
partitioning of the vertex set into two clusters C0 and C1, with diameters D0
and D1 respectively.

The problem is known to be NP-hard for k ≥ 3, and the first approximation
algorithms for general k were recently given by Doddi et al. [3]. For the case k =
2, Hansen and Jaumard gave an O(n3 log n) algorithm [5] which was improved
to O(mn log n) by Monma and Suri [10]. We shall assume that k = 2 for the rest
of this paper.

The algorithm used in [5] to find the best partitioning, solves O(n log n) 2-
SAT instances, each of which could take O(m) time in the worst case. Here we
present algorithms that dynamically solve O(m) 2-SAT instances, performing
an average of O(n3/m) and O(n) operations, respectively, for each instance. As

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 220–229, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Forewarned Is Fore-Armed: Dynamic Digraph Connectivity 221

a result of these, we obtain algorithms for minimum sum-of-diameters cluster-
ing that run in O(n3) and O(mn) respectively. The first algorithm dynamically
maintains the transitive closure, and the second one dynamically maintains the
partitioning of a graph into Strongly Connected Components (SCCs). Both these
approaches use the notion of perfect deletion lookahead: at any instant we know
all the deletable edges in the graph, and the order in which these edges are to
be deleted. The update times obtained for digraph connectivity by the earlier
researchers [8,4,7,2,9] do not help reduce the complexity of the clustering prob-
lem. In particular, the dynamic approach to the clustering operation requires
in the worst case, a sequence of O(m + n) updates (inserts and deletes, inter-
leaved), and O(n) queries after each update. To improve the algorithm in [5]
would therefore mean an amortized/average update time of O(n). In this paper
we use the perfect lookahead available to us to speed up the update operations.
Khanna, Motwani and Wilson [7] used partial lookahead to maintain the tran-
sitive closure, but the resulting update times (O(n2.18) with n0.18 lookahead)
are not good enough to improve the upper-bounds for clustering in [5,10]. The
scheme used in this paper to maintain transitive closure performs insertions in
O(n2) time and deletions in O(1) time; the scheme to maintain a decomposition
into SCCs has an amortized cost of O(m+n) for each deletable edge, and a cost
of O(n) for each non-deletable edge.

The next section presents an overview of the approach in [5] and some back-
ground on the relationship between 2-SAT and directed graphs. The two follow-
ing sections present the O(n3) and O(mn) algorithms; the last section concludes
the paper. To reduce the length of the manuscript, some of the proofs have been
moved to the appendix.

2 Preliminaries

We assume without loss of generality that D0 ≥ D1. We say that an edge belongs
to a cluster if both end vertices of the edge belong to the cluster. Since the
diameter of a cluster is the length of the longest edge in the cluster, the only
candidates for D0 and D1 that we need to consider are the are the edge lengths.
Let Sl denote the set of edge lengths.

The algorithm in [5] works as follows:
Algorithm Cluster
Step 1: Identify all edge lengths, d0, in Sl that are possible candidates for

D0.
Step 2: For each candidate edge d0, found in Step 1, identify the smallest

value d1 in Sl, such that there exists a partitioning of the cluster graph into two
sets with diameters not exceeding d0 and d1 respectively.

Step 3: Choose D0 and D1 to be the pair (d0, d1) such that the sum of d0
and d1 is minimized.

end Cluster
The following three results are from [5].
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Lemma 1: Consider a Maximum Spanning Tree (MST) for the cluster graph,
constructed using Kruskal’s algorithm. The only edges whose lengths are candi-
dates for D0 are the edge that completed the first odd cycle and the edges included
in the spanning forest before the first odd cycle was encountered. It follows that
there are at most n candidates for D0, and that all these candidates can be found
in time O(m+ n log n).

The above lemma tells us how to compute step 1 of Cluster in O(m+n log n)
time. Since there are at most n candidates for D0, step 3 is trivially done in
O(n) time. Step 2 is the most expensive part of the computation, for which we
describe improved algorithms in the following sections.

Lemma 2: Let Dmin denote the length of the edge that completed the first
odd cycle. All candidates for D1 are lesser than or equal to Dmin.

Lemma 3: Consider the assertion: “There is a partitioning of the vertices
into 2 clusters with diameters not exceeding d0 and d1”. This assertion can be
represented as a 2CNF expression with n variables and p+ q conjuncts, where p
is the number of edges with length greater than d0 and q is the number of edges
with length greater than d1.

The construction of the 2CNF expression uses two kinds of constraints. If
for some edge eij , lij > d1, then we need to add a condition that vertex i and
vertex j cannot both be in C1; if xi is a boolean variable set to 0 if vertex i
falls in C0 (set to 1 if vertex i falls in C1), then this condition is expressed by
the conjunct (not(xi) OR not(xj)). Likewise, if lij > d0, we add the conjunct
(xi OR xj). We shall refer to the constraint (xi OR xj) as the Type0 constraint
and the constraint (not(xi) OR not(xj)) as the Type1 constraint of the edge
eij . It has been shown in [1] that any 2CNF expression with n variables and
m conjuncts can be represented as a digraph with 2n vertices and 2m directed
arcs, as follows: For each variable xi, 1 ≤ i ≤ n, add 2 vertices - ui, labelled xi
and vi, labelled not(xi). For each constraint a OR b, where a and b are literals,
add two directed edges - one from the vertex labelled by the simplest expression
equivalent to not(a) (since a could itself be negated, we may have to remove the
double negation to obtain the vertex label) to the vertex labelled b and another
directed edge from the vertex labelled by the simplest expression equivalent to
not(b) to the vertex labelled a. The 2CNF expression is unsatisfiable if and only
if there is a directed cycle containing both ui and vi, for some i, 1 ≤ i ≤ n. It
was shown in [1] that the satisfiability of a 2CNF expression can be decided by
looking for such directed cycles in O(m+ n) time.

To decide a 2-SAT instance, we construct a directed graph. In this digraph
we have to look at O(n) pairs of vertices to check if any of these pairs falls in the
same Strongly Connected Component(SCC). If we have the transitive closure or
the decomposition into SCCs, this check can be performed with O(n) queries,
each requiring O(1) time.

Let l1, l2, ....lq be the list of edge lengths in the Cluster graph, sorted in
descending order, such that lp = Dmin, 1 ≤ p ≤ q. There are at most p instances
of d0, viz., l1, l2, ..., lp. In the process of finding d1 for each d0, we can either start
with d0 = l1 and then decrease d0 all the way down to lp, or we can start with
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d0 = lp and increase to l1. If we choose the former, we perform O(n) inserts and
O(m) deletes; this is the approach we use in section 3, where we dynamically
maintain the transitive closure for a digraph, with each insertion taking O(n2)
time and each deletion taking O(1) time, giving us a cost that is O(n3). If we
choose the latter, we have O(n) deletes and O(m) inserts, i.e., the graph has O(n)
deletable edges. The scheme presented in section 4 maintains the decomposition
into SCCs in such a way that each deletable edge requires O(m) operations
and each non-deletable edge requires O(n) operations. Both these approaches
must decide O(m) 2-SAT instances, which would require O(mn) steps. Thus we
have an O(n3) algorithm if we maintain the transitive closure, and an O(mn)
algorithm if we maintain the decomposition into SCCs.

We designate the directed graph used to represent a 2CNF expression as the
Constraint Graph. Looking at the types of constraints imposed by the clustering
problem, it is obvious that no two negated literals are connected by a directed arc,
and likewise, no two non-negated literals are connected by a directed arc. Each
Type0 constraint induces two edges that are directed from negated literals to non-
negated ones, and each Type1 constraint induces two edges that are directed from
non-negated literals to negated ones. We designate these edges Type0 and Type1
edges respectively. In the following sections, we shall dynamically insert these
edges into the constraint graph to obtain faster algorithms. Whenever we insert
a constraint, it means that both the induced edges are added to the constraint
graph. The following lemma tells us something about the edges in the cluster
graph that complete even cycles in Kruskal’s algorithm.

Lemma 4: Let e1, e2, ...em be a valid order in which Kruskal’s algorithm con-
siders the edges of the cluster graph, in order to construct the MST; let Ti denote
the subset of edges from e1, e2, ...ei that are included in the MST by Kruskal’s
algorithm, and let ei, 1 ≤ i ≤ m, be an edge connecting vertices is and it, that
completes an even cycle. Then, in the constraint graph induced by the Type0
and Type1 constraints of the edges in Ti−1, (i) uis and vit belong to the same
strongly connected component; (ii) uit and vis belong to the same strongly con-
nected component.

3 An O(n3) Algorithm

This section first describes a fully dynamic graph connectivity algorithm with the
following characteristics: (i) needs complete lookahead on deletions, (ii) O(n2)
time for each insertion, (iii) O(1) time for each deletion, (iv) O(1) query time
and (v) O(n3) pre-computation time.

We define the following concepts:
Deletion Time Stamp (DTS): Associated with each edge is a DTS that gives

the order in which the edge will be deleted, the edge with largest DTS being
the next edge to be deleted. For deletable edges, this is a unique integer in the
range [1..n2]. Edges that will never be deleted have a DTS = 0. If an edge does
not belong to the graph, it has a DTS of ∞.

Current Time Stamp (CTS): An integer between 0 and n2. When we delete
an edge, the CTS is decremented. A CTS of i indicates that the graph has i
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deletable edges. When we add a deletable edge, CTS is incremented. At any
point, CTS is equal to the largest DTS for all the edges in the graph.

Persistence Number (PN): Associated with each directed path in the graph
is a PN that is computed as the maximum of all the DTS values of the edges
on that path. Intuitively, the PN of a path is a measure of how many deletes
it will take to disconnect the path . For a path with a PN of p, this measure is
computed as CTS - p + 1. Therefore, given 2 paths, the one with a lower PN is
more persistent.

Connectivity Number (CN): For each pair of vertices (u, v) we have a CN
that is computed as the minimum of the PNs over all paths that connect from u
to v. Intuitively, the CN gives us a measure of the number of deletes needed to
eliminate all paths from u to v. If CN(u, v) = c, then this measure is computed
as CTS - c + 1. Thus, if CN(u, v) ≤ 0, there is no directed path from u to v.

Our data structure, for a graph with n vertices is an n×n matrix, which con-
tains, for each pair of vertices (u, v), the DTS of the edge (u, v) and CN(u, v). Let
D(k)(i, j) denote the PN for the most persistent path from i to j, such that none
of the intermediate vertices has an index greater than k. We have the follow-
ing dynamic programming recurrence: D(0)(i, j) = DTS(i, j) and D(k+1)(i, j) =
min[D(k)(i, j),max(D(k)(i, k + 1), D(k)(k + 1, j))] Since CN(i, j) = D(n)(i, j),
our data structure can be pre-computed in O(n3) time.

The only work done to update the data structure is at the time of insertion,
when the CN values are updated in accordance with the above recurrence. If
(u, v) is the new edge to be inserted with DTS t, then, for each pair (x, y) we
have a new potential path from x to y, viz., x to u to v to y, and the PN of this
path must be taken into account to determine CN(x, y). There are two other
issues we must deal with: (1) Some deletes may have been performed since the
last insert and (2) if t > 0, there maybe an existing edge in the graph with
DTS = t, i.e., the new edge is inserted somewhere in the middle of the deletion
sequence. These cases are taken care of in Insert(u, v, t).

The data structure supports the following operations:

– Insert(u, v, 0): (Insert a non-deletable edge from u to v) For all pairs of
vertices (p, q) such that CTS < CN(p, q) < ∞, set CN(p, q) = ∞. For each
pair of vertices (x, y), CN(x, y) = min(CN(x, y), max (CN(x, u), CN(v, y))).

– Insert(u, v, t): (Insert an edge with DTS t, from u to v) For all pairs of
vertices (p, q) such that CTS < CN(p, q) < ∞, set CN(p, q) = ∞. If CTS
≥ t, increment the DTS for each edge that has a current DTS value ≥ t.
Increment CTS. For each pair of vertices (p, q) with CN ≥ t, increment
CN(p, q). For each pair of vertices (x, y), CN(x, y) = min(CN(x, y), max
(CN(x, u), CN(v, y), t)).

– Delete(u,v): (Deletes the next edge in sequence). Decrement CTS; DTS(u, v)
= ∞.

– Path(u, v): (Returns True if there is a path connecting from u to v; False
otherwise). If CTS < CN(u, v), return False; else return True.

Therorem 5: The data structure described above maintains the transitive
closure of a digraph, satisfying the following conditions: (i) O(n2) time for each
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insertion; (ii)O(1) time for each deletion; (iii) O(1) query time; (iv) given an
input graph, the required data structures can be pre-computed in O(n3) time.

We use the above data structure to compute step 2 of Cluster as follows: Add
all the Type1 constraints to the constraint graph. Next, add the Type0 constraints
for the edges with length greater than Dmin, starting with the longest edge. As
soon as we get a cycle, containing a variable and its negation, we remove Type1
constraints in decreasing order of lengths, until the cycle is removed. By keeping
track of the length of the edges whose constraints created the cycle and the length
of the edges whose constraints were removed to eliminate the cycle, we can obtain
all the (d0, d1) pairs needed in Step 2 of Cluster. This idea is elaborated below.

Let l1, l2, ..., lq be the q distinct edge lengths in the cluster graph, and let
Si denote the set of all edges of length li in the cluster graph. To simplify the
presentation, we define l0 = ∞, lq+1 = 0 and S0 and Sq+1 as the associated
(empty) sets. Let Dmin = lp, 1 ≤ p ≤ q.

Algorithm Cluster1

1. Insert all the Type1 constraints for edges with length greater than Dmin,,
into the constraint graph as undeletable edges.

2. Insert all the Type1 constraints for edges with length less than or equal to
Dmin, into the constraint graph as follows:
DTS = 1;
For i = p to q

For each edge ejk in Si,
Insert(uj , vk, DTS ++); Insert(uk, vj , DTS ++)

end for;
end for;

3. j = q + 1;
For i = 0 to p-1

For each edge elk in Si that does not complete an even cycle
Insert(vl, uk, 0); Insert(vk, ul, 0);

end for;
While (constraint graph is unsatisfiable)

j= j-1; Delete all Type1 constraints for edges in Sj ;
end while;
Record (li+1, lj) as a (d0, d1) pair.

end for;

Theorem 6: Algorithm Cluster1 correctly computes Step 2 of the algorithm
Cluster in O(n3) time.

4 A O(mn) Algorithm

Definition (Strongly Connected Subgraph): A Strongly Connected Sub-
graph (SCS) of a digraph G(V,E) is a set of vertices C ⊆ V such that for every
pair of vertices (u, v), u, v ∈ C, there exist directed paths pf from u to v and pb
from v to u in G, such that neither pf nor pb contains an intermediate vertex
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that does not belong to C. A Strongly Connected Component (SCC) is a maximal
SCS.

Cicerone et al [2] use the following technique for maintaining the transitive
closure under insertions: Maintain n incomplete BFS traversals, one starting at
each vertex. Whenever an edge (u, v) is added, consider all vertices x, whose
BFS has reached u, and restart these traversals, by adding v to the queue of each
such x. Since there are n BFS traversals and each edge that is inserted can be
traversed by a traversal at most once, the amortized cost of insertion is O(n).
To adapt this technique for our situation (i.e., maintain the decomposition into
SCCs), we make the following observations:

– Let it be that each of the vertices in the graph is arbitrarily assigned a unique
integer value, called the priority of the vertex. (The priority of vertex x is
denoted pr(x).) We can then associate an integer with each SCS, which is
the highest priority of all the vertices in the SCS. We also associate a SCS
with each vertex x, denoted xSCS , consisting of all vertices y such that the
digraph contains a directed path from x to y and a directed path from y to
x, neither of which pass through a vertex with priority greater than pr(x).

– If there are no deletions, it is easy to maintain the decomposition into SCCs
using the technique in [2]. For each vertex v, we maintain the largest integer
vmax such that there is a directed path from v to the vertex with priority
vmax and vice-versa. v is then designated as belonging to the SCC vmax.

– To deal with deletable edges, we introduce the concept of enodes (or “edge-
nodes”). Associated with a deletable edge directed from node u to node v
is an enode (β, say). Instead of adding an edge from node u to node v, we
add two directed edges: one from u to β, and the other from β to v. Each
deletable edge has an associated Deletion Time Stamp (DTS); the enode β
is assigned a priority of (n + DTS of the edge from u to v), where n is the
number of nodes in the original graph.

– When an edge is deleted, we need to ensure that the connectivity provided
by the deleted edge is not being used anymore. To ensure this, the following
constraint is imposed on the BFS traversals from each vertex: Consider a
BFS traversal rooted at v; a vertex u is visited by this traversal only if pr(v) >
pr(u). Since an edge with a higher DTS corresponds to an enode with a
higher priority, any path from a vertex v to a vertex u, discovered by a BFS
rooted at v, cannot pass through any enode β such that pr(β) > pr(v).
Consequently, this path cannot be disconnected due to the deletion of the
edge associated with any enode β that has a priority greater than pr(v).
This constraint does create a new problem: given vertices u, v and w with
pr(u) > pr(v) > pr(w) such that v lies on every path from w to u, the
BFS traversal from w will not find a path to u. Nonetheless, u and w must
be recognized as belonging to the same SCC. To overcome this problem, we
carry out two BFS traversals from each vertex - one following the forward
arcs, and one following the backward arcs. Thus with each vertex x (a vertex
could be a node or an enode) we have an associated SCS consisting of all
vertices y such that there is a path pf from x to y following the directed arcs
in the forward direction, and a path pb from x to y following the directed arcs
in the reverse direction, such that neither path has a a vertex with priority
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greater than pr(x). Such an arrangement correctly finds all the SCCs, since
the node x which has the highest priority of all nodes in the SCC, will reach
all nodes in the SCC both forwards and backwards, without passing through
any node with priority greater than pr(x). This arrangement also yields the
SCS, xSCS , for each vertex x; xSCS contains all vertices y which can be
reached from x both forwards and backwards without passing through any
vertex with priority greater than pr(x).

Our data structure keeps track of the following information with each vertex
x:

1. two boolean arrays: Fx, that stores all the nodes visited by the forward BFS
from x, and Bx, that stores all the nodes visited by the backward BFS from
x. If x is an enode, these arrays are of size n2; if x is a node, these are of
size n.

2. the parent of xSCS , if any, in FSCS .
3. two lists: a list of nodes in the corresponding SCS xSCS , and the list of

children of xSCS in FSCS .
4. if x is a node, then we keep two lists - Lfx that stores all vertices whose

forward BFS has visited x and Lbx that stores all vertices whose backward
BFS has visited x.

5. two BFS queues: Qf
x and Qb

x

6. an integer xmax, which is the highest priority of all vertices y such that both
forward and backward traversals from y have visited x.

The data structure supports the following operations:

– Insert(u, v, t): Insert a deletable edge from node u to node v, with DTS t.

1. Create an enode β, and add directed edges from u to β and β to v.
2. For each enode α such that pr(α) ≥ n + t, increment the priority of α;

for each vertex x such that xmax ≥ n+ t, increment xmax.
3. For each enode α in Lfu, such that pr(α) > n + t, insert β in Qf

α and
re-start that traversal.

4. For each enode α in Lbv, such that pr(α) > n + t, insert β in Qb
α and

re-start that traversal.
5. Do a forward BFS and a backward BFS from β , and enumerate the

items in βSCS by taking the intersection of the sets of nodes visited by
the two traversals.

6. Find the enode α with the smallest priority such that β ∈ αSCS , and
make βSCS the child of αSCS in FSCS .

– Insert(u, v, 0): Insert a non-deletable edge from node u to node v

1. For each vertex x in Lfu such that pr(x) > pr(v), insert v into Qf
x.

2. For each vertex x in Lbv such that pr(x) > pr(u), insert u into Qb
x.

– SCC (u, v): Check if node u and node v belong to the same strongly connected
component.
Return umax = vmax.
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– delete(): Delete the edge with the highest DTS
Let w be the enode with the highest priority
For each child vSCS of wSCS

For each vertex x in vSCS
xmax = pr(v)

Theorem 7: The data structure described above has the following character-
istics:(i) Incurs an expense of O(m� + n) for each deletable edge, where m� is
the maximum number of edges present in the graph at any time in the lifespan of
the deletable edge; (ii) Inserts non-deletable edges in O(n) amortized time; (iii)
Correctly answers SCC queries in O(1) time

Using the above data structure, we can obtain an O(mn) algorithm to com-
pute Step 2 of Cluster. The approach here is to first add to the constraint graph
all the Type0 and Type1 constraints for edges with length greater than Dmin.
We then add Type1 constraints for edges of length less than Dmin, in decreasing
order of edge lengths. Whenever we reach an unsatisfiable 2-SAT instance, Type0
constraints are deleted in increasing order of edge lengths until satisfiability is
restored. By keeping track of the length of the edges whose constraints created
unsatisfiability and the length of the edges whose constraints were removed to
restore satisfiability, we can obtain all the (d0, d1) pairs needed in Step 2 of
Cluster.

Once again, let l1, l2, ..., lq be the q distinct edge lengths in the cluster graph,
and let Si denote the set of all edges of length li in the cluster graph. To simplify
the presentation, we define l0 =∞, lq+1 = 0 and S0 and Sq+1 as the associated
(empty) sets. Let Dmin = lp, 1 ≤ p ≤ q.

Algorithm Cluster2

1. Insert all the Type1 constraints for edges with length greater than Dmin,,
into the constraint graph as undeletable edges.

2. Insert all the Type0 constraints for edges with length greater than Dmin,, as
follows:
DTS = 1;
For i = 1 to p-1

For each edge ejk in Si that does not complete an even cycle
Insert(vj , uk, DTS ++); Insert(vk, uj , DTS ++)

end for;
end for;

3. j = p-1;
For i = p-1 down to 1

While (constraint graph is satisfiable)
j = j + 1; Insert Type1 constraints for edges in Sj ;

end while;
Record (li+1, lj) as a (d0, d1) pair.
Remove Type0 constraints for all edges in Si.

end for;

Theorem 8: Algorithm Cluster2 correctly computes Step 2 of Cluster in
O(mn) time.
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5 Conclusion

We have discussed algorithms that solve the minimum sum-of-diameters clus-
tering problem in O(n3) and O(mn) time respectively. In practice, the O(n3)
algorithm may be better due to the fact that the only data structure used is an
array. It would be interesting to determine experimentally at what value ofm the
second algorithm becomes more efficient. It is possible to use the ideas described
in this paper to obtain an O(qm) algorithm for minimum sum of diameters clus-
tering, where q is the number of distinct edge lengths. This would actually give
us better performance if q is o(n). Whether there is a o(mn) algorithm for the
general case remains an open question. Another interesting question would be
to determine the relative complexities of maintaining the transitive closure vs.
maintaining the decomposition into SCCs for general digraphs, in the absence
of lookahead.
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Abstract. The following probabilistic process models the generation of
noisy clustering data: Clusters correspond to disjoint sets of vertices in
a graph. Each two vertices from the same set are connected by an edge
with probability p, and each two vertices from different sets are connected
by an edge with probability r < p. The goal of the clustering problem
is to reconstruct the clusters from the graph. We give algorithms that
solve this problem with high probability. Compared to previous studies,
our algorithms have lower time complexity and wider parameter range
of applicability. In particular, our algorithms can handle O(

√
n/ logn)

clusters in an n-vertex graph, while all previous algorithms require that
the number of clusters is constant.

1 Introduction

Clustering is a fundamental problem that has applications in many areas. We
study the clustering problem using a random graph model: A cluster graph is a
random graph G = (V,E) which is built by the following process: The vertex set
V is a union of disjoint sets V1, . . . , Vm called clusters. Each two vertices from
the same set are connected by an edge with probability p, and each two vertices
from different sets are connected by an edge with probability r < p. The random
choices are all independent. The clustering problem is, given a cluster graph G,
to find the clusters V1, . . . , Vm.

The random cluster graph models a common situation in experimental data,
where noise obscures the true clusters: The probability 1−p is the false negative
probability, i.e., the chance of incorrectly having no edge between two vertices
of a cluster. Similarly, r is the false positive probability. If errors of each type
are independent and identically distributed, one gets the above model.

In this paper we give several algorithms that solve the clustering problem
with high probability. When addressing the clustering problem under the ran-
dom graph model, several parameters are interrelated: Obviously, the smaller
the gap ∆ = p− r, the harder the problem. Also, the size of the smallest cluster
k = mini |Vi| is limiting the performance, as very small clusters may be unde-
tectable due to noise. The value k also bounds the number of clusters m. The
challenge is to obtain provably good performance for a wide range of values for
each parameter. All previous studies addressed the problem when the number
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of clusters is constant and most studied the case of two equal sized clusters. Our
algorithms relax both of these assumptions simultaneously and at the same time
achieve better running time.

Let us be more precise. Denote the total number of vertices in the graph by
n. We give an O(mn2/ log n) algorithm that solves the clustering problem with
high probability, assuming that k = Ω(∆−1−ε√n log n) for some constant ε > 0.
The running time improves if k is asymptotically larger than its lower bound.
Furthermore, if the sizes of the clusters are equal (or almost equal), we give an
O((m/ log n+1)n2) algorithm that requires only k = Ω(∆−1√n log n) (here too,
the running time improves if k is asymptotically large).

The random graph model was studied by several authors [1,6,2,8,9,5,3,7]. In
these papers, the input is a cluster graph, and the goal is to find a vertex parti-
tion which minimizes some function, e.g., the number of edges between different
sets. It is not hard to show that w.h.p., the partition V1, . . . , Vm is optimal, and
therefore these problems are asymptotically equivalent to the clustering problem.
A comparison between the results of these papers and our results is given in Ta-
ble 1. The algorithms presented here have a wider range of provable performance
than each of the previous algorithms, and are also faster when restricted to the
same parameter range. For example, for unequal sized clusters, the algorithm of
Ben-Dor et al. [1] requires k = Ω(n) and ∆ = Ω(1), while our algorithm can
handle instances with k = Θ(

√
n log n), and instances with ∆ = Θ(n−1/2+ε).

Furthermore, under the requirements of Ben-Dor et al., the running time of
our algorithm is O(n log n). For the case of two equal sized clusters, our algo-
rithm handles almost the same range of ∆ as the algorithm of Boppana [2], but
our algorithm is faster, and is also more general since it handles as many as
m = Θ(

√
n/ log n) clusters.

We note that Table 1 cites results as given in the papers, even though in
several cases better results can be obtained by improving the analysis or by
making small modifications to the algorithms. For example, the algorithm of
Condon and Karp can be extended to the case when the number of clusters is
non-constant. Also, the running time of the algorithm of Ben-Dor et al. can be
improved to O(n log n) [11].

Due to lack of space, most proofs are omitted or sketched only. Furthermore,
we only describe the algorithm for the almost equal sized cluster case.

2 Preliminaries

For a graph G = (V,E), and a vertex v ∈ V , we denote by N(v) the set of
neighbors of v. We use d(v) to denote the degree of a vertex v, namely d(v) =
|N(v)|. For a vertex v, and a set S of vertices, denote dS(v) = |N(v) ∩ S|. In
particular, for u �= v, d{u}(v) is equal to 1 if (u, v) ∈ E and 0 otherwise. For a
set of vertices S, denote by GS the subgraph of G induced by S.

We use the O-notations O,Ω and o with their usual meaning. However, we
write f ≤ O(g) instead of the more common f = O(g) to emphasize that an
upper bound on f is given. We also use f ≤ ô(g) to denote that f(n) ≤ c · g(n)
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Table 1. Results on the clustering problem (sorted in chronological order). For the
comparison, the lower bound k = Ω(∆−1√n logn) of our algorithm for equal sized
clusters was translated to a lower bound on ∆ using the fact that k ≤ n/m. Note
that all previous papers assume m = 2 or m = O(1) (the requirement k = Ω(n) in [1]
implies that m = O(1)), and all except [1] assume equal sized clusters. For the * values,
no implicit requirement is made, though some requirement is implied by the bound on
the other parameter.

Paper Requirements Complexity
k ∆

Ben-Dor et al. [1] Ω(n) Ω(1) O(n2 logO(1) n)
This paper Ω(∆−1−ε√n logn) Ω(n−1/2+ε)∗ O(mn2/ logn)

(a) General case.

Paper Requirements Complexity
m ∆

Dyer & Frieze [6] 2 Ω(n−1/4 log1/4 n) O(n2)
Boppana [2] 2 Ω(

√
pn−1/2√logn) nO(1)

Jerrum & Sorkin [8] 2 Ω(n−1/6+ε) O(n3)
Jules [9] 2 Ω(1) O(n3)
Condon & Karp [5] O(1) Ω(n−1/2+ε) O(n2)
Carson & Impagliazzo [3] 2 ω(

√
pn−1/2 logn) O(n2)

Feige & Kilian [7] 2 Ω(
√

pn−1/2√logn) nO(1)

This paper O(
√

n/ logn)∗ Ω(mn−1/2 logn) O((m/ logn+ 1)n2)

(b) Equal sized clusters.

for some constant c that can be made arbitrarily small, depending on other
constants (This imply in particular that f ≤ O(g)). For example, if we have
the requirement k ≥ Ω(

√
n), then we can write that m ≤ n/k ≤ ô(√n) since

the hidden constant in the latter inequality can be made arbitrarily small by
increasing the hidden constant in the former inequality.

For proving the correctness of our algorithms we use the following theorems
which give estimates on the sum of independent random variables. The following
theorem is derived from Chernoff [4].

Theorem 1. Let X1, . . . , Xn be independent Bernoulli random variables, and
let X =

∑n
i=1Xi. Then, P

[
|X − E[X]| ≥ a√3E[X]

]
≤ 2e−a

2
for any a ≥ 0.

Theorem 2 (Esseen’s Inequality). Let X1, . . . , Xn be independent random
variables such that E[Xi] = 0 and E[|Xi|3] < ∞, for i = 1, . . . , n. Let Bn =∑n
i=1 E[X2

i ] and Ln = B
−3/2
n

∑n
i=1 E[|Xi|3]. Then |P

[
B

−1/2
n

∑n
i=1Xi < x

]
−
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Φ(x)| ≤ ALn where A is an absolute constant and Φ(x) denotes the normal
(0, 1) cumulative distribution function.

For a proof of Esseen’s inequality see [10, p. 111]. We also use the following
lemma.

Lemma 1. Let A be a set with n elements, and B be a subset of A with k
elements. Let S′ be a random subset of A, and let S be a random subset of A−S′

of size s. Then P
[
||B ∩ S| − k

ns| ≥ a
√

3(k/n)s
]
≤ 6
√
ke−a

2
for any a ≥ 0.

In the following, we say that an event happens with high probability (w.h.p.) if
its probability is 1− n−Ω(1).

3 The Basic Algorithm

In this section we give a top-level description of our algorithms.
Let G = (V,E) be a cluster graph. Denote Ai = |Vi|, ai = |Vi|/n and

Γ = maxi | |Vi|
n − 1

m |. A set S ⊆ V is called a subcluster if S ⊆ Vi for some
cluster Vi. An induced subgraph GS is called a cluster collection if for all i,
either Vi ⊆ S or Vi ⊆ V − S. Suppose we have a procedure Find(G,V ′) that
receives a cluster graph G = (V,E) and a set V ′ ⊆ V , and returns a subcluster
of size Ω(log n/∆2), by only considering vertices and edges in GV ′ . Then, we
use the following algorithm for solving the clustering problem: Repeatedly, find
a subcluster S in the graph, find the cluster that contains S, and remove the
cluster from the graph. Formally, the algorithm, Solve(G), is as follows:

1. Randomly select a set W of n/2 vertices.
2. S0 ← Find(G,W ).
3. Let S be a random subset of S0 of size s = Θ(log n/∆2). Let v1, . . . , vn/2

be an ordering of V −W such that dS(v1) ≥ dS(v2) ≥ · · · ≥ dS(vn/2). Let
D = Θ(

√
s log n). If maxj{dS(vj)− dS(vj+1)} < D, output V and stop.

4. Let j be an index such that dS(vj) − dS(vj+1) is maximum, and let S1 =
{v1, . . . , vj}.

5. Let S′ be a random subset of S1 of size s. Let w1, . . . , wn/2 be an ordering
of W such that dS′(w1) ≥ · · · ≥ dS′(wn/2). Let j′ be an index such that
dS′(wj′)− dS′(wj′+1) is maximum, and let S2 = {w1, . . . , wj′}.

6. Output S1 ∪ S2 and delete the vertices in S1 ∪ S2 from G.
7. If G is not empty, goto 1.

Here and in the following, n is the number of vertices in the current (sub)graph
G. Note that to avoid dependencies, we can not build the set S2 by looking at
edges whose endpoints are in W . Thus, we use a slightly different procedures to
build S1 and S2.

Denote by T (G) the running time of procedure Find on an input graph G. We
assume that T satisfies

∑l
i=1 T (Gi) ≤ T (G) for any partition of G into vertex

disjoint cluster collections G1, . . . , Gl.
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Lemma 2. If procedure Find returns w.h.p. a subcluster of size Ω(log n/∆2),
then w.h.p., algorithm Solve solves the clustering problem. The running time of
algorithm Solve is O(mT (G) +mn log n/∆2).

Proof. We shall prove that the failure rate in one iterations is n−c for some
constant c. The probability of failure of the algorithm is at most m times the
probability of failure in one iteration, and since m ≤ n and c can be chosen
sufficiently large, we obtain that the overall failure probability is n−Ω(1). We
shall show that if G consists of one cluster, then w.h.p. the algorithm stops at
Step 3, and otherwise, if S0 ⊆ Vi then w.h.p., S1 ∪ S2 = Vi.

W.l.o.g. we assume that S0 ⊆ V1. Since the building process of S was in-
dependent of the edges between V − W and S, by Theorem 1 we have that
w.h.p., |dS(v) − E[dS(v)]| < 1

2D for all v ∈ V −W . For v ∈ V1 we have that
E[dS(v)] = sp, and for v /∈ V1 we have E[dS(v)] = sr. Hence, if G consists of one
cluster, then w.h.p. |dS(v) − dS(v′)| < D for all v, v′ ∈ V −W , and therefore,
algorithm Solve stops at Step 3. Otherwise, for two vertices v, v′ ∈ V −W , if
either v, v′ ∈ V1 or v, v′ /∈ V1 then w.h.p. |dS(v)−dS(v′)| < D, and if v ∈ V1 and
v′ /∈ V1 then w.h.p. dS(v) − dS(v′) > s∆ −D ≥ D where the last inequality is
achieved by choosing appropriate constants for s,D so s∆ ≥ 2D. It follows that
algorithm Solve does not stop at Step 3, and furthermore, S1 = V1 −W . Using
similar arguments we show that S2 = V1 ∩W . ��
Note that algorithm Solve requires the knowledge of ∆. However, if instead of ∆
we use some known lower bound ∆′ on ∆, then the algorithm remains correct,
and the running time becomes O(mT (G) +mn log n/∆′2).

Unfortunately, in order to build the procedure Find, we will need the fol-
lowing additional requirements on the input graph: (R1) k ≥ Ω(

√
n logα n/∆β)

for some α, β > 0 and (R2) p, r ∈ [ 14 ,
3
4 ]. While requirement of the type (R1) is

understandable, we would like to get rid of (R2). To eliminate (R2), we trans-
form the input graph to a graph that always satisfies the requirement using the
following algorithm Solve2(G):

1. Build a graph G′ on the vertex set of G in the following way: For every pair
of vertices u, v, add the edge (u, v) to G′ with probability 3

4 if (u, v) is an
edge in G, and with probability 1

4 otherwise.
2. Run Solve(G′).

Lemma 3. If procedure Find returns w.h.p. a subcluster of size Ω(log n/∆2)
on graphs that satisfy (R1) and (R2), then w.h.p., algorithm Solve2 solves the
clustering problem on graphs that satisfy (R1). The running time of algorithm
Solve2 is O(mT (G) +mn log n/∆2).

Proof. Clearly, G′ is a cluster graphs on the clusters V1, . . . , Vm with edge prob-
abilities p′ = 3

4p + 1
4 (1 − p) = 1

2p + 1
4 and r′ = 1

2r + 1
4 . G

′ satisfies (R1) and
furthermore, every cluster collection G′′ of G′ satisfies (R1) as the size of the
smallest cluster in G′′ is greater or equal to the size of the smallest cluster in G.
As p′, r′ ∈ [ 14 ,

3
4 ] and p′ − r′ = Θ(∆), by Lemma 2 Solve(G′) returns w.h.p. the

correct partition. ��
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4 The Partition Procedure

In the previous section, we presented the basic structure of our algorithms. How-
ever, we still need to show how to build procedure Find, namely, how to find a
subcluster of size Ω(log n/∆2). In this section we give the main ideas, and we
will use these ideas in Section 5 to explicitly build procedure Find.

One of the key elements we use is the notion of imbalance which was also
used in [8] and [5]. We use here a slightly different definition for imbalance than
the one used in these papers: For two disjoint sets L,R of vertices of equal size,
we define the L,R-imbalance of Vi, denoted I(Vi, L,R), by

I(Vi, L,R) =
|Vi ∩ L| − |Vi ∩R|

|L| .

The imbalance of L,R is the maximum value amongst I(V1, L,R), . . . ,
I(Vm, L,R), and the secondary imbalance of L,R is the second largest value (the
secondary imbalance is equal to the imbalance if the maximum value appears
more than once). We will show that given two sets L,R with “large” imbalance,
and “small” secondary imbalance, it is possible to generate a large subcluster.
Therefore, our goal is to generate the sets L,R with such properties.

Let f : V → Z+ be some function that depends on the edges of G. Since G
is a random graph, we have that each f(v) is a random variable. The function
f is called a cluster function if {f(v)|v ∈ V } are independent random variables,
and for any u, v ∈ T that belong to the same cluster, f(u), f(v) have the same
distribution. For example, f(v) = d(v) is a cluster function.

If the values of f for vertices of one cluster are always greater than the values
of f for the vertices of the other clusters, then we can easily generate a subcluster
by picking Θ(log n/∆2) vertices with largest f -value. However, we are able to
give such a cluster function f only when ∆ is large. For smaller value of ∆, we
are able to give a cluster function f with the following property: The expectation
of f(v) for vertices of one cluster, say V1, is larger than the expectation of f(v)
for vertices in the other clusters, and the variance of f(v) is “small” for all v.
We will use this property of f in the following procedure Partition(G,T, f):

1. Begin with two empty sets L,R. Partition the vertices of T into pairs. For
each pair v, w, place the vertex with larger f -value into L and the other into
R, breaking ties randomly.

2. Return L,R.

We note that procedure Partition is very similar to the algorithm of Condon and
Karp [5], and the cluster function of Lemma 5 is also used in [5].

Let p>ij(f) = P [f(v) > f(w)|v ∈ Vi, w ∈ Vj ] (we will write p>ij if f is clear
from the context), and let p=ij(f) and p<ij(f) be the conditional probabilities that
f(v) = f(w) and f(v) < f(w), respectively. Let ci(f) = 2ai

∑
j �=i aj(p

>
ij(f) −

p<ij(f)). Suppose that L,R are the output of Partition(G,T, f) and denote bi =
I(Vi, L,R).
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Theorem 3. If T is a random set of size 2l and k ≥ Ω(log n), then w.h.p.
|bi − ci(f)| ≤ O(

√
ail−1 log n(1 +

√
aim)) for all i.

Proof. Since T is a random set, the process of choosing T and then partitioning
T into pairs, is equivalent to the process of selecting vertices u1, . . . , u2l from V
(one after another) and pairing u2t−1 and u2t for each t. Denote arj = P [ur ∈ Vj ].

Denote by I1i (resp., I2i ) the number of indices t for which u2t−1 ∈ Vi, u2t /∈ Vi,
and u2t−1 (resp., u2t) is inserted into L. Similarly, denote by I3i (I4i ) the number
of indices t for which u2t−1 /∈ Vi, u2t ∈ Vi, and u2t (u2t−1) is inserted into L.
Clearly, bi = (I1i + I3i − I2i − I4i )/l. We will now give an estimate on I1i for
some fixed i. Denote by Xt the indicator variable to the event that u2t−1 ∈ Vi,
u2t /∈ Vi, and u2t is inserted into L. Let pj = p>ij(f) + 1

2p
=
ij(f). By Lemma 1,

we have w.h.p. that |aj − arj | ≤ O(
√
ajn−1 log n) for all j and r. Therefore,

P [Xt = 1] = a2t−1
i

∑
j �=i a

2t
j pj ≤ ai

∑
j �=i ajpj + O(

√
ain−1 log n(1 +

√
aim)) .=

L. Hence, we have that the random variable I1i =
∑l
t=1Xt is dominated by

a random variable Y , where Y has binomial distribution with l experiments
and success probability min(1, L). Thus, by Theorem 1, we have w.h.p. that
Y ≤ E[Y ] + O(

√
E[Y ] logn) ≤ lai

∑
j �=i ajpj + O(

√
ail log n(1 +

√
aim)). It

follows that w.h.p. I1i ≤ lai
∑
j �=i ajpj +O(

√
ail log n(1 +

√
aim)).

Similar arguments gives a lower bound on I1i , and lower and upper bounds
on I2i ,I

3
i , and I4i Combining these bounds gives the desired bound on bi. ��

In the next sections, we use procedure Partition in a slightly different scenario
than in Theorem 3: We have a random set S of vertices, and then the set T is
randomly chosen from V −S. It is easy to verify that the result of Theorem 3 is
also valid here.

We now give two cluster functions, which will be used later in our algorithms.
The first function, given in Lemma 4, will be used for building initial sets L0, R0
with large imbalance, and the second function, in Lemma 5, will be used to
iteratively build a series of sets Li, Ri with increasing imbalance.

Lemma 4. Let u be some vertex from V1−T , and define f(v) = d{u}(v) for all
v ∈ T . Then c1(f) = 2a1(1− a1)∆ and ci(f) = −2a1ai∆ for all i > 1.

Proof. Clearly, p>1j = p(1 − r) and p<1j = (1 − p)r, so c1 = 2a1
∑
j �=i aj(p(1 −

r)− (1− p)r) = 2a1(1− a1)∆. For i, j > 1, p>ij = p<ij = r(1− r) and p>i1 − p<i1 =
−(p>1i − p<1i) = −∆, and therefore, ci = −2a1ai∆. ��

Lemma 5. Let L′, R′ be two disjoint subsets of V −T of size l′ each, and define
f(v) = dL′(v) − dR′(v) for all v ∈ T . Let b′i = I(Vi, L′, R′). Suppose that b′1 ≥
b′2 ≥ · · · ≥ b′m, p, r ∈ [ 14 ,

3
4 ], k ≥ Ω(

√
n log n), and |b′i − b′j | ≤ α/∆

√
l′ for all

i, j where α ≤ 1. Furthermore, suppose that the building process of L′, R′ is

independent of the edges between L′ ∪R′ and T . Let β = Γ +
√

1/m+Γ
l′ log n and

γ =
√

2
π/(

1
2mp(1− p) + (1− 1

2m )r(1− r)). Then, w.h.p.,
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1. c1(f) ≥ γ∆
√
l′a1(1−O(β∆)− 2

9α
2)(b′1 −

∑m
j=1 ajb

′
j)− 3 a1√

l′
.

2. ci(f) ≤ γ∆
√
l′ai

(
b′i −

∑m
j=1 ajb

′
j + (O(β∆) + 2

9α
2)(b′1 − b′m)

)
+ 3 ai√

l′
and

ci(f) ≥ γ∆
√
l′ai

(
b′i −

∑m
j=1 ajb

′
j − (O(β∆) + 2

9α
2)(b′1 − b′m)

)
− 3 ai√

l′
for all

i > 1.

Proof. To bound c1, we need to estimate p>1j − p<1j for some fixed j. We fix some
v ∈ V1∩T and w ∈ Vj∩T . Then we write f(v)−f(w) as a sum of 4l′ independent
random variables, where each variable depends on one edge in the graph. The
expectation of f(v)− f(w) is ∆l′(b′1 − b′j), and using Theorem 2 we obtain that
p>1j − p<1j ≥ 2Φ

(
∆l′(b′1 − b′j)/

√
B1j
) − 1 − 3

2
√
l′

for B1j whose value is close to

B = 2 l
′
mp(1−p)+(4l′−2 l

′
m )r(1−r). The lower bound on c1 follows. The bounds

on ci are proved similarly. ��

5 Finding a Subcluster

In this section we present an algorithm for finding a subcluster in the case of
almost equal sized clusters: The algorithm requires that Γ ≤ O(1/m log n). The
procedure Find(G,V ′) is as follows:

1. Let l̂ = Θ(m2∆−2 log2 n+∆2m−1 log5 n), l = Θ(l̂/ log n), l′ = Θ(l̂/ log2 n),

s = Θ(m∆−2 log n), and D = Θ(
√
l̂ log n). Let lt = l for 0 ≤ t ≤ 2 and

lt = l′ for t ≥ 3.
2. Randomly select disjoint sets of vertices S, Ŵ ,W0 from V ′ of sizes s, 2l̂, 2l0,

respectively.
3. Randomly select some unchosen vertex u from V ′.
4. L̂0, R̂0 ← Partition(G, Ŵ , d{u}) and L0, R0 ← Partition(G,W0, d{u}).
5. For t = 0, 1, . . . , log n do:

a) Let v1, . . . , vs be an ordering of S such that f(v1) ≥ f(v2) ≥ · · · ≥ f(vs),
where f(v) = dL̂t

(v) − dR̂t
(v). If maxj{f(vj) − f(vj+1)} ≥ D, then

let j be the first index for which f(vj) − f(vj+1) ≥ 1
3D, and return

{v1, . . . , vj}. Otherwise, continue.
b) Randomly select a set Wt+1 from V ′ of 2lt+1 unchosen vertices.
c) L̂t+1, R̂t+1 ← Partition(G, Ŵ , dLt − dRt).
d) Lt+1, Rt+1 ← Partition(G,Wt+1, dLt − dRt).

6. Output ‘Failure’.

Note that in the first three iterations of Step 5, the sets Lt, Rt are bigger than
in the rest of the steps. The reason is that in this steps, the imbalance is small,
so in order to get a small relative difference between the imbalances and the
expected imbalances, we need to use bigger sets (see Theorem 3). We also note
that the Ω(log n) size difference between L̂t, R̂t and Lt, Rt has an important
role: It allows us to ensure that the requirement |b′i − b′j | ≤ α/∆

√
l′ of Lemma 5

is satisfied for a small α.



238 R. Shamir and D. Tsur

Denote bti = I(Vi, Lt, Rt), b̂ti = I(Vi, L̂t, R̂t), rti = bti/b
t
1, and r̂

t
i = b̂ti/b̂

t
1. In the

following, we assume w.l.o.g. that the vertex u chosen in Step 3 is from V1. Let
T be the value of t when the procedure Find stops. For simplicity, we assume
that T ≥ 3.

Lemma 6. Suppose that Γ ≤ O(1/m log n), k ≥ Ω(∆−1√n log n), and p, r ∈
[ 14 ,

3
4 ]. Then, w.h.p.,

1. For all i, |bt1 − b̂t1| ≤ ô(∆m ) for 0 ≤ t ≤ 2, and |bt1 − b̂t1| ≤ ô(∆m
√

log n) for
3 ≤ t ≤ T .

2. b01, b̂
0
1 ≥ (1− ô(1))∆m .

3. If m ≥ 3, then for all i > 1,− 1
2 − ô(1) ≤ r0i , r̂0i ≤ ô(1).

4. For 1 ≤ t ≤ 3, bt1, b̂
t
1 ≥ logt/2 n · ∆m .

5. For 4 ≤ t ≤ T , bt1, b̂t1 ≥ 2t−3 log3/2 n · ∆m .
6. If m ≥ 3, then for all 1 ≤ t ≤ 3 and all i > 1, (1 + δ)t(min(0, r0i ) − δt) ≤
rti ≤ (1 + δ)t(max(0, r0i ) + δt) and (1 + δ)t(min(0, r̂0i ) − δt) ≤ r̂ti ≤ (1 +
δ)t(max(0, r̂0i ) + δt) where δ ≤ ô(1).

7. If m ≥ 3, then for all 4 ≤ t ≤ T and all i > 1, (1+ δ′)t−3(min(0, r3i )− δ′(t−
3)) ≤ rti ≤ (1 + δ′)t−3(max(0, r3i ) + δ′(t − 3)) and (1 + δ′)t−3(min(0, r̂3i ) −
δ′(t− 3)) ≤ r̂ti ≤ (1 + δ′)t−3(max(0, r̂3i ) + δ′(t− 3)) where δ′ ≤ ô(1/ log n).

Note that the bound k ≥ Ω(∆−1√n log n) implies that the total number of
vertices selected by Find is at most n/2. Also, as T ≤ log n, we have from (6)
and (7) that − 1

2 − ô(1) ≤ rti ≤ ô(1) for all t when m ≥ 3.

Proof. Item 1 follows from Theorem 3. Items 2 and 3 follows from Lemma 4.
To prove item 4, we shall prove that bt+1

1 ≥ 2
√

log n · bt1 for some fixed
0 ≤ t ≤ 2. Assume w.l.o.g. that bt1 ≥ bt2 ≥ · · · ≥ btm. By Theorem 1, w.h.p.,
|f(v) − E[f(v)]| < 1

2D for all v ∈ S, where E[f(v)] = ∆l̂b̂ti. Since the algorithm
didn’t stop at iteration t, we have that ∆l̂(b̂t1− b̂t2) ≤ 2D, because otherwise, the
difference between the minimum value of f(v) for v ∈ V1 ∩ S and the maximum
value of f(v′) for v′ ∈ S − V1 would be at least D. Thus, for all i, j, |bti − btj | ≤
(2 + ô(1))(b̂t1 − b̂t2) ≤ α/∆

√
l where α ≤ ô(1). It follows (using Lemma 5) that

bt+1
1 ≥ (1− ô(1))Fbt1 where F = γ∆

√
l/m (γ is defined in Lemma 5). This proves

item 4. The proof of item 5 is similar.
Using Lemma 5, we show that (min(0, rti)− ô(1))Fbt1 ≤ bt+1

i ≤ (max(0, rti)+
ô(1))Fbt1. Thus, (min(0, rti)−δ)/(1−δ) ≤ rt+1

i ≤ (max(0, rti)+δ)/(1−δ) for some
δ ≤ ô(1), and item 6 follows by induction. The proof of item 7 is similar. ��

Lemma 7. Suppose that Γ ≤ O(1/m log n), k ≥ Ω(∆−1√n log n), and p, r ∈
[ 14 ,

3
4 ]. Then, w.h.p., procedure Find returns a subcluster of size Ω(m log n/∆2).

The running time of procedure Find is O(m3∆−4 log3 n · (m+ log n) + log9 n).

Proof. By Lemma 6, for all t ≤ T , bt1 > 2t/n. Since bt1 ≤ 1 by definition, we
conclude that T < log n, namely procedure Find stops at Step 5a. We now look
at the values of f at the last iteration. W.l.o.g. assume that b̂T1 ≥ b̂T2 ≥ · · · ≥ b̂Tm.
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By Theorem 1, w.h.p., |f(v)−E[f(v)]| < 1
6D for all v ∈ S, where E[f(v)] = ∆l̂b̂Ti

for v ∈ Vi. As maxj{f(vj)−f(vj+1)} ≥ D, we have that there is an index i such
that ∆l̂b̂Ti − ∆l̂b̂Ti+1 ≥ 2

3D. By Lemma 6, ∆l̂(b̂T1 − b̂T2 ) ≥ ∆l̂(b̂Ti − b̂Ti+1) ≥ 2
3D.

Therefore, minv∈V1∩S f(v) − maxv∈S−V1 f(v) >
1
3D. Furthermore, for v, v′ ∈

V1∩S, |f(v)−f(v′)| < 1
3D. It follows that {v1, . . . , vj} = V1∩S, and in particular,

{v1, . . . , vj} is a subcluster. Finally, by Lemma 1, |V1 ∩ S| = Ω(log n/∆2). ��
Note that procedure Find requires the knowledge of m and ∆. However, if we
use take l̂ = Θ(M2 log2 n+ log5 n) and s = Θ(M2 log n) where M ≥ m/∆, then
procedure Find remains correct, and its time complexity becomes O(M4 log4 n+
log10 n). Since the bound k ≥ Ω(∆−1√n log n) impliesm/∆ ≤ O(

√
n/ log n), one

can use M = Θ(
√
n/ log n), and the time complexity will be O(n2).

Combining Lemma 7 and Lemma 3 gives the following theorem:

Theorem 4. The above algorithm solves w.h.p. the clustering problem when
Γ ≤ O(1/m log n) and k ≥ Ω(∆−1√n log n). The running time of the algorithm
is O(m4∆−4 log3 n · (m+ log n) +m∆−2n log n).

To handle the case where cluster sizes are not almost equal, we have to consider
the case of very large clusters, and the vertex u in Step 3 of procedure Find
must be chosen from a large cluster. Moreover, the analysis of the analogue
of Lemma 6 is less tight, which allows only a constant number of iterations of
procedure Find.
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Abstract. We present a new proof of a theorem of Erdős, Rubin, and
Taylor, which states that the list chromatic number (or choice number)
of a connected, simple graph that is neither complete nor an odd cycle
does not exceed its maximum degree ∆. Our proof yields the first-known
linear-time algorithm to ∆-list-color graphs satisfying the hypothesis of
the theorem. Without change, our algorithm can also be used to ∆-
color such graphs. It has the same running time as, but seems to be
much simpler than, the current known algorithm, due to Lovász, for ∆-
coloring such graphs. We also give a specialized version of our algorithm
that works on subcubic graphs (ones with maximum degree three) by
exploiting a simple decomposition principle for them.

1 Introduction

This paper presents efficient algorithms for a list vertex coloring problem. Our
main contribution is a new proof of a theorem of Erdős, Rubin, and Taylor [1].
Our proof yields the first-known linear-time algorithm to∆-list-color graphs that
do not contain a complete graph or an odd cycle as a connected component.
Without change, our algorithm can also be used to ∆-color such graphs. It
has the same running time as, but seems to be much simpler than, the current
known algorithm for∆-coloring such graphs. We also give a specialized version of
our algorithm that works on subcubic graphs. (A subcubic graph has maximum
degree 3.) The notations and the definitions of the graph terms we use are given
in Sect. 1.1. We now discuss the problem we solve in detail.

In the list vertex coloring problem [2], we are given a graph every vertex of
which has been assigned its own list of colors as part of the input. Our task
is to assign to every vertex a color chosen from its color list so that adjacent
vertices receive distinct colors. A graph is list-colorable if the task is possible.
The list vertex coloring problem is a generalization of the usual vertex coloring
problem [2]. In the usual problem, we are given a graph and a constant number k
of colors. Our task is to assign to every vertex a color chosen from the given
k colors so that adjacent vertices receive distinct colors. A graph is k-colorable
if the task is possible. To k-color the graph is to find such a color assignment.
The chromatic number of a graph is the least k for which it is k-colorable. A
graph is k-list-colorable if it is list-colorable given any list assignment as long as
the size of each list is at least k. To find such a color assignment is to k-list-color
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the graph. The list chromatic number (or choice number) of a graph is the least
k for which it is k-list-colorable. More generally, for any list size assignment
f : V → IN, we say that a graph is f-choosable if it is list-colorable given any list
assignment as long as the list size of any vertex v is at least f(v). For example, a
d-choosable graph is one that is list-colorable whenever every vertex’s color list
contains at least as many colors as its degree.

Observe that a k-list-colorable graph is always k-colorable since any algo-
rithm for k-list-coloring can be used for k-coloring: simply assign the same list
of k colors to every vertex of the input graph, and run the k-list-coloring al-
gorithm on it. Note also that a graph is list-colorable if and only if each of its
connected components is. Therefore, one needs only consider list-colorability of
connected graphs.

A Brooks graph is a connected graph that is neither complete nor an odd
cycle. In [1] Erdős et al. prove that a connected graph is d-choosable if and only if
at least one of its biconnected components is a Brooks graph. Consequently, they
obtain the list version of Brooks’ Theorem: the list chromatic number (or choice
number) of a Brooks graph does not exceed its maximum degree. In other words,
a Brooks graph is ∆-list-colorable. In their proof they check biconnectivity of the
graph at every inductive step following a sequence of vertex and edge deletions.
This is an expensive operation: no algorithm is known that can dynamically
compute graph biconnectivity under vertex and edge deletions in O(m+n) time.
We give a new proof of their theorem and also derive the first O(m + n)-time
∆-list-coloring algorithm. Both their and our proofs rely on existence of some
special types of induced subgraphs in a biconnected Brooks graph. They identify
two types of special subgraphs. By adding another type to their list we are able
to obtain a more efficient algorithm. Our success rests on the simple fact that it
is easier to find objects of one’s desire when there are more of them around.

Our algorithm naturally specializes to the problem of finding a coloring in
the original Brooks’ Theorem [3]: the chromatic number of a Brooks graph does
not exceed its maximum degree. In other words, a Brooks graph is ∆-colorable.
The current known efficient algorithm for ∆-coloring Brooks graphs is due to
Lovász [4]. (See also Problem 9.13, pp. 67 in [5].) By using the ideas given in
Sect. 2.2, it is possible to implement his algorithm to make it run in O(m+ n)
time. Lovász’s algorithm computes a separating pair of vertices [6]. In contrast,
our algorithm explores the graph in search of an occurrence of any one of a few
simple unavoidable patterns, whose existence gives a straightforward coloring
algorithm for the whole graph. Both Lovász’s and our algorithms call upon a
subroutine to compute biconnected components. This is fine since there exist
many simple biconnected components algorithms in the literature. (See [7,8], for
example.) Again, our algorithm is simpler than Lovász’s in this respect. All it
needs from the biconnectivity computation is one biconnected component. In
contrast, Lovász’s algorithm has to construct the so-called block-cutpoint tree
from all the biconnected components. Another difference between the two algo-
rithms concerns recoloring. Lovász’s algorithm colors each biconnected compo-
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nent separately, then put these colorings together by appropriately “permuting
colors” in each component. Our algorithm never recolors.

A class of graphs that has proven itself to be of special interest is the class
of subcubic graphs [9]. References [10,11] show that a simple decomposition
principle for subcubic graphs give efficient algorithms for solving various coloring
problems on them. We will exploit this principle to obtain a version of our
algorithm that is specialized to subcubic Brooks graphs and that is simpler
than the general version. It even does away with the biconnectivity computation
altogether.

In the rest of this section we discuss terminology. In Sect. 2 we develop our
proof and algorithm for the theorem of Erdős et al. on general graphs. In Sect. 3
we develop an algorithm for the case of subcubic graphs.

1.1 Terminology

For any positive integer n, the set of all positive integers not greater than n is
denoted [n].

We follow the terminology of [12] and consider only undirected graphs with-
out parallel edges. By default, G = (V,E) denotes the graph under consideration
with |V | = n and |E| = m. The degree of a vertex v is usually denoted d(v), and
also as dG(v) whenever G needs to be distinguished from some other graph also
under consideration. The minimum (maximum) degree of the graph is denoted
δ (∆). By a path we mean one with no repeated vertices. A cycle or path is
even (odd) if it has an even (odd) number of edges. A wheel Wk consists of a
cycle Ck, and a hub vertex w that is not on the cycle but is adjacent to every
vertex on the cycle. The cycle vertices are the rim; the k edges joining the hub w
to the rim are called spokes. A whel is a wheel Wk with � spokes missing, where
1 ≤ � < k− 1. In other words, a whel can be obtained from a wheel by removing
at least one spoke while keeping at least two spokes. A theta graph θ(a, b, c)
consists of 3 internally disjoint paths Pa+1, Pb+1, and Pc+1 connecting 2 end
vertices, where the path lengths a, b, and c satisfy 0 < a ≤ b ≤ c. A diamond is
the complete graph K4 with one edge missing. It is at the same time the smallest
whel and the theta graph θ(1, 2, 2). Let H be a subgraph of G. A path avoids H
if it uses no edge of H. A vertex w is called a neighbor of H if w is adjacent
in G to some vertex of H but is itself not a vertex of H. We always use the term
“induced” to mean “induced by its vertex set.” For example, C is an induced
cycle if C is a subgraph of G isomorphic to a cycle and C is induced by its own
vertex set.

We use the term available color at various places in the description of our
algorithm. During the execution of the algorithm, a color c is available for a
vertex v if it is in the color list of v and no vertex adjacent to v is already
colored c.

In this paper, the term linear means O(m + n), i.e., linear in the size and
order of the input graph.
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2 General Graphs

2.1 Lemmas and Theorem

Lemma 1 (Cycle List Coloring Lemma). If every vertex of a cycle C has a
list of at least 2 colors, then C is list-colorable unless C is odd and every vertex
has the same list of 2 colors.

Proof. Let C have k vertices. First suppose some vertex has more than 2 colors
in its list. Label it v1 and label the other vertices v2, . . . , vk according as they
appear on the tour of C starting from v1. Choose a color c in the list of v1 so
that vk has at least 2 available colors if v1 is colored c. Assign color c to v1. Now
color v2, . . . , vk in that order, choosing any color available for each.

Next suppose every vertex has exactly 2 colors in its list but some lists are
different. Choose two consecutive vertices with distinct lists and label them v1
and vk. Label the other vertices v2, . . . , vk−1 according as they appear on the
tour of C starting from v1 and ending at vk. Now assign colors the same way as
previous case.

Last suppose C is even and all lists are the same list of 2 colors. Starting
from any vertex, tour the cycle and color each vertex in the order visited by the
tour using any color available for each.

It is easy to check that in all three cases every vertex has some available color
at the time when the algorithm is about to color it. ��

Lemma 2 (Theta Graph List Coloring Lemma). Any theta graph θ(a, b, c)
is list-colorable if each of its two end vertices has a list of at least 3 colors, and
each of the rest of its vertices has a list of at least 2 colors.

Proof. We may assume that all inequalities on the sizes of the lists hold with
equality. Let s, t be the end vertices connected by the three paths Pa+1, Pb+1
and Pc+1. Let Pa+1 = (s, u1, . . . , ua−1, t), Pb+1 = (s, v1, . . . , vb−1, t), and Pc+1 =
(s, w1, . . . , wc−1, t). First color s by a color from its list that is different from any
color in the list of v1. This is always possible since s has 3 colors in its list while
v1 has only 2. Then color w1, w2 . . . , wc−1, u1, u2, . . . , ua−1, t, vb−1, vb−2, . . . , v1
in that order, using any color available for each. ��

Lemma 3. A graph that is connected but not regular is ∆-list-colorable.

Proof. Let v1 be a vertex whose degree is less than ∆. For j ← 2 to n set vj
to be any vertex in V \ {v1, . . . , vj−1} adjacent to some vertex in {v1, . . . , vj−1}.
Color vn, . . . , v1 in that order, using any color available for each. This procedure
never fails since for j = n, . . . , 2 vertex vj is adjacent to some uncolored vi, where
i < j, and d(vj) ≤ ∆ and vj has ≥ ∆ colors in its list. Moreover, v1 is colorable
because d(v1) < ∆ and v1 has ≥ ∆ colors in its list. ��
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Lemma 4. A connected graph G is ∆-list-colorable if it contains any of (i) an
even cycle, (ii) a whel, or (iii) a theta graph, as an induced subgraph.

Proof. First suppose that G contains an induced even cycle C = 〈v1, . . . , v2k〉.
For j ← 2k + 1 to n set vj to be any vertex in V \ {v1, . . . , vj−1} adjacent to
some vertex in {v1, . . . , vj−1}. Color vn, . . . , v2k+1 in that order, using any color
available for each; then color C using its vertices’ lists of available colors by
invoking the Cycle List Coloring Lemma. This procedure never fails since for
j = n, . . . , 2k + 1 vertex vj is adjacent to some uncolored vi, where i < j, and
d(vj) = ∆ and vj has ≥ ∆ colors in its list. Moreover, C is colorable because
right after v2k+1 is colored, each vertex on the even cycle C has a list of at least
2 available colors.

Next suppose that G contains an induced whel consisting of w as the hub
vertex and cycle C = 〈v1, . . . , vk〉 as the rim. Set vk+1 ← w. For i ← k + 2
to n set vi to be some vertex in V \ {v1, . . . , vi−1} adjacent to some vertex in
{v1, . . . , vi−1}. Color vn, . . . , vk+2 in that order, using any color available for
each. Choose a color for vk+1 so that the vertices in the resulting uncolored
cycle C do not have the same list of 2 available colors. This can always be done
since vk+1 is adjacent to more than one but not all vertices of C and vk+1 has
at least 2 available colors. Now cycle C is colorable using its vertices’ lists of
available colors by the Cycle List Coloring Lemma.

Now suppose that G contains an induced theta subgraph θ(a, b, c). There are
k = a + b + c − 1 vertices in the θ graph. Label them v1, . . . , vk. For i ← k + 1
to n set vi to be some vertex in V \ {v1, . . . , vi−1} adjacent to some vertex in
{v1, . . . , vi−1}. Color vn, . . . , vk+1 in that order, using any color available for
each. The uncolored vertices of the theta graph have lists of available colors
satisfying the hypotheses of the Theta Graph List Coloring Lemma, so they are
colorable using colors from these lists. ��

Lemma 5. Let G be a biconnected Brooks graph. Then G contains one of (i) an
even cycle, (ii) a whel, or (iii) a theta graph, as an induced subgraph.

Proof. Since G is biconnected we see that ∆ ≥ δ ≥ 2 and G contains some cycle,
and thus contains some induced cycle. We are done if any of its induced cycles
is even. So assume that every induced cycle is odd.

First suppose that G contains a triangle. Let K be a maximal clique con-
taining this triangle. Then K is necessarily a proper subgraph of G since G is
not complete. Thus K has some neighbor. Say that v1, . . . , vk are the vertices
of K. No neighbor w of K can be adjacent to all the vi’s since otherwise w and
all the vi’s would form a clique containing K, contradicting maximality of K.
Now if any neighbor w is adjacent to vi, vj but not to v	, where i, j, � are all
distinct, then we get an induced diamond on the vertices w, vi, vj , v	, and we
are done. So assume that every neighbor is adjacent to exactly one vertex in K.
Pick a vertex vi adjacent to some neighbor of K. Since G is biconnected, there
is a shortest path P avoiding K and connecting vi to some other vertex vj . Let
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� be such that 1 ≤ � ≤ k and � �= i, j. Vertex v	 together with the vertices on P
then induce a whel with v	 as its hub.

Next suppose that G contains an induced odd cycle C = 〈v1, . . . , vk〉 that is
not a triangle. Cycle C cannot be the whole of G since G is not an odd cycle.
So C has some neighbor. If some neighbor w of C is adjacent to every vi, then
{w, v1, v2, v3} induces a diamond, and we are done. If some neighbor w of C is
adjacent to more than one but not all vertices of C, then w and the vertices of C
induce a whel, and we are done. So assume that every neighbor of C is adjacent
to exactly one vertex of C. Pick a vertex vi adjacent to some neighbor of C.
Since G is biconnected, there is a shortest path P avoiding C and connecting vi
to some other vertex vj . The vertices of C ∪ P then induce a theta graph. ��

Theorem 1. A Brooks graph is ∆-list-colorable.

Proof. Let G be a Brooks graph. If G is not regular, then it is ∆-list-colorable
by Lemma 3. Suppose G is regular and consider its the block-cutpoint tree T .
Let H be a biconnected component in G corresponding to a leaf in T . If H = G
then H is a Brooks graph by assumption. If H �= G, let v be the only vertex in
H that is also a cutpoint in G. Since H corresponds to a leaf in T and v is a
cutpoint in the regular graph G, it follows that dH(v) < dH(w) for any vertex w
in H distinct from v. So H is not regular; and hence cannot be either a complete
subgraph or an odd cycle. Therefore, H is a Brooks graph. By Lemma 5, the
subgraph H contains either an induced even cycle, or an induced whel, or an
induced theta graph; and so does G since it is a supergraph of H. So G is ∆-
list-colorable by Lemma 4 since it is also connected. ��

2.2 Algorithm

We assume the following of our input. The input Brooks graph G = (V,E) is
represented as adjacency lists (see [13]). Each vertex has exactly ∆ colors in its
color list. (If not, we can throw away all colors in excess of∆ without affecting∆-
list-colorability of G.) Vertices, edges, and colors are numbered using consecutive
integers starting from 1. So V = [n], E = [m], and the highest possible color is
n∆. Each color list Ci (i ∈ [n]) is represented as a linked list.

The proof of Theorem 1 suggests the following high-level algorithm for ∆-
list-coloring G. If G is not regular, apply the algorithm in the proof of Lemma 3
and we are done. If G is regular, do the following. Execute some biconnected
components algorithm [7,8] on G but stop the algorithm as soon as a biconnected
component corresponding to a leaf in the block-cutpoint tree of G is identified. So
we can stop the algorithm of [7] or [8] as soon as it discovers the first biconnected
component. Call this componentH. Apply the algorithm in the proof of Lemma 5
on component H to extract an induced even cycle, or an induced whel, or an
induced theta graph. Now apply the algorithm from the appropriate part of the
proof of Lemma 4.

The biconnected components algorithms [7,8] are known to take O(m + n)
time. We will describe how to accomplish these two tasks.
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Task A. To implement the algorithm in the proof of Lemma 5 so that it takes
O(m+ n) time.

Task B. To implement the algorithms in the proof of Lemmas 3 & 4 so that
they take O(m+ n) time.

Task A. To find an induced cycle, use a modified depth-first search (DFS) to
explore the graph. Put in the language of the tree-based view of DFS [13], we
make sure any back edge is explored before any tree edge. This can be done by
going through the adjacency list of the currently active vertex v once. If back
edges are found and w is the vertex on the recursion stack closest and adjacent
to v via a back edge, then all the vertices on the tree path from w to v induce
a cycle. If no back edges are found, then continue exploring the graph in the
depth-first manner.

Here is how to find a maximal clique containing a triangle. Use a boolean
array to keep track of the vertices belonging to the current clique. Also, keep a
count of the number of vertices in the current clique. Use another boolean array
to keep track of processed vertices. Put all neighbors of the current clique in the
queue. Repeat the following until the queue is empty. Delete a vertex v from the
queue. If v has already been processed, continue checking the queue. Otherwise,
process v as follows. If v is adjacent to all vertices in the current clique, add v
to the current clique, and add all neighbors of v not belonging to the current
clique to the queue, and mark v processed.

To find a shortest path avoiding H (which is either a maximal clique or an
induced non-triangle odd cycle, every neighbor of which is adjacent to exactly one
vertex of it) and connecting two vertices of H, use breadth-first search (BFS).
(See [13]).

This implementation clearly takes O(m+ n) time.
Task B. We will describe an implementation of the algorithm in Lemma 3 only
since the one in Lemma 4 is similar. Ordering the vertices as v1, . . . , vn can be
done by either DFS or BFS. Preprocess the color lists as follows.

chop Cv1 so that it has exactly d(v1) + 1 colors
for i← 2 to n do chop Cvi so that it has exactly d(vi) colors

After the preprocessing, we have
∑n
i=1 |Ci| = 2m+1 and |⋃ni=1 Ci| ≤ 2m+1. Let

k be the highest color to ever appear in any chopped color list. We may assume⋃n
i=1 Ci = [k]. For if not, we can renumber the colors by putting all the colors

in all the Ci’s in a list M , do a radix sort on M , throwing away all duplicate
colors, and then get a new number for each color according to its position in the
sorted list M . All this work takes O(m+n) time since the highest possible color
is n∆, which is O(n2). For each vertex i, we will use a list Ui to keep colors made
unavailable for i owing to their having been assigned to some of i’s neighbors.
We will use a boolean array A[1..k] together with list Ui to determine a color
available for each vertex i. The coloring pseudocode is as follows.

for i← 1 to n do empty list Ui;
for i← n downto 1 do {
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for each color c in Cvi do A[c]← true;
for each color c in Uvi

do A[c]← false;
c← first color in Cvi ; while A[c] = false do c← next color in Cvi ;
assign color c to vi;
for each vertex j on the adjacency list of vi do append color c to Uj }

It is not hard to see that this implementation is correct and takes O(m + n)
time.

The foregoing discussion gives our main theorem.

Theorem 2. There exists an O(m + n)-time algorithm to ∆-list-color Brooks
graphs.

3 Subcubic Graphs

Let G be a subcubic graph. Consider a maximal collection C of edge-disjoint
cycles in G. Cycles in C must be vertex-disjoint since G is subcubic. The graph
T = G − C is a collection of trees since C is maximal. This simple fact is the
decomposition principle [11] for subcubic graphs: A subcubic graph G can be
decomposed in linear time into edge-disjoint subgraphs C and T , where C is
a collection of vertex-disjoint cycles, and T is a forest of maximum degree at
most 3. Furthermore, we can choose to decompose G so that all cycles in C are
induced cycles.

We now describe a particularly simple algorithm to 3-list-color any subcubic,
Brooks graph G. First check whether G is cubic or not. If not, then apply the
algorithm in the proof of Lemma 3. So assume that G is cubic. Decompose G
into trees T and induced cycles C. If C contains an even cycle, then apply the
algorithm in the first part of the proof of Lemma 4. So assume that every cycle
in C is odd. Suppose there is a cycle C ∈ C with a neighbor w that is adjacent
to either 2 or 3 vertices of C. Such a neighbor w must be a tree vertex since G
is cubic. We claim that w together with the vertices of C induce a whel, so that
we can apply the algorithm in the second part of the proof of Lemma 4. This
is clear if w is adjacent to 2 vertices of C since C is odd. If w is adjacent to 3
vertices of C, then C cannot be a triangle. For otherwise w together with the
vertices of C would induce a K4 which would necessarily equal G, contradicting
G being a Brooks graph. So assume that every neighbor of any cycle C ∈ C is
adjacent to exactly one vertex of C. Suppose there exist cycles C1, C2 ∈ C joined
by at least 2 edges. Let C1 = 〈v1, . . . , vp〉 and C2 = 〈w1, . . . , wq〉 and viwk and
vjw	 be two edges joining them. We may assume that i < j and no edge joins
any of vi+1, . . . , vj−1 to any vertex of C2. The cycle C2 consists of two paths
joining wk to w	. Necessarily one of these paths is even and the other is odd
since C2 is odd. (The odd path may have length 1.) The vertices on one of these
paths together with vertices vi, vi+1, . . . , vj−1, vj induce either an even cycle or
a theta graph θ(1, b, c); and we can apply the algorithm in either the first or
the third part of the proof of Lemma 4, respectively. So assume that any two
cycles in C are joined by at most 1 edge. Let H be the graph that results from
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contracting all cycles in C. Then δ(H) ≥ 3 and thus H contains some cycle. Let
D be an induced cycle in H. Cycle D necessarily contains some vertex [X] that
exists as the result of the contraction of some cycle X. Consider such a vertex.
In D, there are two edges e1, e2 incident with [X]. In G, edge e1 (e2) is incident
with a vertex x1 (x2) on the cycle X. In G, cycle X consists of one odd path
and one even path connecting x1 to x2. (The odd path may have length 1.) By
replacing every vertex of D that was derived from cycle contraction with one of
these two paths we can turn the cycle D in H into a cycle C in G. We execute
the following replacement procedure. If vertex [X] is not the last one yet to be
replaced, then replace [X] by the shorter of the two cycle paths in X connecting
x1 to x2. Otherwise, replace [X] by choosing from one of the two cycle paths in X
the one that will make the resulting cycle C even. The vertices of C then induce
either an even cycle or a theta graph θ(1, b, c), and we can apply the algorithm
in either the first or the third part of the proof of Lemma 4, respectively.
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Erik D. Demaine1, Alejandro López-Ortiz2, and J. Ian Munro2

1 MIT Laboratory for Computer Science, 200 Technology Square,
Cambridge, MA 02139, USA, edemaine@mit.edu

2 Department of Computer Science, University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada, {alopez-o,imunro}@uwaterloo.ca

Abstract. Consider the problem of placing reflectors in a 2-D environ-
ment in such a way that a robot equipped with a basic laser can always
determine its current location. The robot is allowed to swivel at its cur-
rent location, using the laser to detect at what angles some reflectors
are visible, but no distance information is obtained. A polygonal map of
the environment and reflectors is available to the robot. We show that
there is always a placement of reflectors that allows the robot to localize
itself from any point in the environment, and that such a reflector place-
ment can be computed in polynomial time on a real RAM. This result
improves over previous techniques which have up to a quadratic number
of ambiguous points at which the robot cannot determine its location [1,
9]. Further, we show that the problem of optimal reflector placement is
equivalent to an art-gallery problem within a constant factor.

1 Introduction

Problem: Robot localization. For a mobile robot to plan its motion, it re-
quires both knowledge of its surrounding environment and accurate information
of its current location in this environment. However, the robot’s motion is im-
precise from such effects as friction, unevenness of the terrain, and inertia, so the
robot’s location becomes uncertain. Consequently, robots often perform correc-
tive measurements that allow them to rehome their current position (e.g. [5,3,8,
4]). Thus the problem of robot localization arises: determine the current location
of the robot in its surrounding environment. The basic approach to localization
is for the robot to sense its immediate surroundings, and then match this local
image against an internal model or map of the entire environment. Common
sensing devices include vision, radar, sonar, and ladar (laser radar).

Highly detailed information about the environment can be obtained only at
the expense of a complex vision system, as well as collection and processing time
for the data gathered. An efficient low-cost method of localization would thus
allow more accurate motion control for the robot. This paper investigates robot
localization with particularly cheap and limited vision systems.
Model: Reflecting Landmarks. Typically robots use landmarks to identify
their position [8,3]. These landmarks can either be naturally present (such as a
wall or door) or be artificially introduced (magnetic markers, reflectors, beacons).
In this paper we follow the model of Sugihara [9], using mutually indistinguish-
able reflective markers (reflectors) that provide angular measurements. This
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85.6° 56.06°

28.13°

146.62°

43.59°R

Fig. 1. The robot R knows only the cyclic
sequence of angles between visible reflectors
(drawn as circles), here placed along the
boundary of the polygon. The visibility re-
gion is shaded.

can be realized in a simple and in-
expensive form by placing reflective
strips or mirrored cylinders in se-
lected positions in the environment.
The robot shines a laser in a 360-
degree scan and records the angu-
lar magnitude of those directions
at which a reflection was detected.
The result is a star of rays that
the robot must match against its
given data. What makes this prob-
lem difficult is that the robot does
not know the distance at which the
reflection occurred, nor which reflec-
tor caused the reflection, and nor
does the robot know of a preferred
direction or “true north.”

Connection to Art Galleries.
Sugihara [9] observed that the
reflector-placement problem is a
generalization of an art-gallery problem. In the classic art-gallery problem, the
goal is to choose fixed locations for guards (points) such that every point in the
environment is visible from at least one guard; equivalently, at least one guard
is visible from every point. If we think of reflective strips as guards, certainly
the robot needs to see at least one reflective strip at all times. Thus any solution
to the reflector-placement problem is also a solution to the art-gallery problem.
We establish a connection in the reverse direction.

Previous Work: Ambiguities. Sugihara [9] showed that it is possible to mark
the environment in such a way that the robot can localize itself from all but
a finite number of ambiguous points [9]. Pairs of ambiguous points have the
property that the angle readings are the same from either point in the pair,
and hence if the robot is placed at either point, it cannot determine at which of
the two points it is located. Avis and Imai [1] proved that the total number of
degenerate positions for n reflectors, k of which are visible from the robot, is in
the worst case Θ(n2/k) [1]. Hence, by placing k = O(n2) reflectors the number
of ambiguous points can be reduced to at most a constant number.

More recently, González-Banos and Latombe [5] considered the related prob-
lem of finding a minimum set of identifiably distinct reflectors in a given polygon
subject to incidence and range constraints. They propose a randomized algo-
rithm which returns, with high probability, a set of guards which is a small
non-constant factor away from the minimum number of guards required. The
incidence and range constraints model real-life limitations of reflector resolution
and sensing devices. However, in either application, ambiguities are never fully
resolved, so the robot cannot be guaranteed to be able to localize itself.
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Our Results. In this paper, we show that any polygon can be unambiguously
marked using at most ten reflective strips per guard using a particular instance of
the well-studied family of art-gallery problems. Next, we show that at least four
reflectors per guard are needed in the worst case. Lastly, we study changes in the
complexity of the localization task when we consider more powerful localization
primitives, such as a compass (true north) or a 3-D environment with or without
a preferred “up” position.

2 Marking a Single Wall

R

B

A

Fig. 2. Two reflec-
tors A, B on a line,
and the crescent of
points R with fixed an-
gle ∠ARB.

A simple but important subproblem is when there are
no obstacles, and the robot R can be placed anywhere
in the plane except on top of one of the reflectors. In
this context, we show that two reflectors limit the robot’s
position to a one-dimensional curve, and three reflectors
limit the robot’s position to a finite number of points.
For two reflectors A, B, the robot’s laser scan measures
two angles, ∠ARB and 2π − ∠ARB. From elementary
geometry it follows that the locus of points forming a
fixed angle with two points is an arc of a circle passing
through those points together with the reflection of that
arc through the line joining the two points. See Figure 2.

Lemma 1. [6] Given two distinct points A and B on a circle, the interior angle
∠ARB is the same for all R on either of the open arcs connecting A and B
[Euclid’s Proposition III.21]. Furthermore, if C is the center of the circle, then
∠ARB = 1

2∠ACB for R on the longer arc and ∠ARB = π− 1
2∠ACB for R on

the shorter arc [Euclid’s Proposition III.33].

There are two circles with center C and C ′ such that ∠AC ′B = ∠ACB = θ
for any 0 < θ ≤ π, and these circles are reflections of each other through AB.
Thus, the longer arcs of these circles correspond to angles θ satisfying 0 < θ ≤
π/2, and the shorter arcs correspond to angles θ satisfying π/2 ≤ θ < π. Hence,
there are precisely two arcs corresponding to each angle θ. Together these arcs
are called the θ-crescent of A and B.

Lemma 2. Given an angle 0 < θ < π, the θ-crescent of points A and B is
precisely the locus of points R satisfying ∠ARB = θ.

For this lemma to hold for θ = 0 and π as well, there are two additional
special cases, corresponding to the points along the line AB which we have so
far ignored. The points R strictly between A and B satisfy ∠ARB = π, and
the other points R (except A and B) satisfy ∠ARB = 0. Thus, we define the
π-crescent of A and B to be the open line segment between A and B, and the
0-crescent to be the line AB minus the closed line segment between A and B.

In particular, two reflectors certainly do not suffice to uniquely determine
the position of the robot: they leave every point in the plane ambiguous by an
uncountably infinite amount.
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We now turn to the case of three reflectors A, B, C in an arbitrary position in
the plane. At first it might seem that three angles suffice to uniquely determine
a position. Indeed, this would be the case if the robot knew the correspondence
between reflectors and reflection angles. Because this information is not known,
however, we can cyclicly shift this correspondence, compute the corresponding
crescents, and take their intersection, as shown in Figure 3.

115.7˚

93.45˚
150.85˚

150.85˚

93.45˚ 115.7˚

R

R’

C

B

A

Fig. 3. Positions R and R′ cannot be dis-
tinguished because the labels of A, B, C are
unknown and hence can be shifted. Thin
lines show the half-crescents, medium lines
show the lines of sight, and thick lines show
the triangle.

More precisely, in this figure, we
proceed as follows from the triangle
ABC and the point R chosen arbi-
trarily. We draw the circular arc with
aperture ∠ARB subtending AC. We
repeat this procedure with ∠BRC
subtending AB. These two circular
arcs intersect at R′. It follows then by
construction that ∠ARC = ∠BR′C,
∠ARB = ∠AR′C, and ∠BRC =
∠AR′B, and hence R and R′ cannot
be distinguished. Therefore, three
reflectors in general position do not
uniquely determine the position of the
robot. However, three reflectors do re-
strict the position to one of a finite
number of locations, at most for each
cyclic shift of the angles. The diffi-
culty is to make this number of possible positions equal to exactly one.

3 Localization in Polygons

We now focus on the case in which robot motion is limited to a polygon, possibly
with polygonal holes. Reflectors are placed on the walls, this means that the
robot cannot collide with the reflector and that it must be on the same side of
the wall as the reflector. Three reflectors along a common wall will always be
seen in the same order so the results of the previous section apply and three
reflectors suffice for a convex polygon.

For nonconvex polygons, we convert a particular type of art-gallery guard
placement into a collection of reflectors by expanding each guard into a tight
cluster of reflectors. For this to work, we consider a slight variation on the art-
gallery problem. A wall guard is a positive-length (short) interval along an edge
of the polygon. A wall-guard placement must satisfy that every point in the
polygon can see an entire wall guard (strong visibility), and the goal of the
art-gallery problem is to minimize the number of wall guards. It is easy to show
that the worst-case bounds for wall guards are similar to standard vertex guards:
Θ(n) guards suffice and are sometimes necessary to guard an n-vertex polygon.
The main difficulty with obstacles is that (most likely) not all of the reflectors are
visible from a given point. Thus a major challenge is to identify which reflectors
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are those seen. Such an encoding scheme will be the focus of this section. Once
we have such a scheme, and we can identify three visible reflectors on a common
wall, then we can appeal to the previous section to determine the robot’s position
relative to the reflectors. As a result, the entire reflector-placement problem will
reduce to the art-gallery problem outlined above.

So we turn to the problem of encoding information in the reflectors so that
the robot can tell which reflectors it can see. We make use of the cross ratio
as suggested by Sugihara [9]. This fundamental concept in projective geometry
allows us to store a number—represented by four collinear points (reflectors)—
that is readable from any point not collinear with the four points.

3.1 The Cross Ratio of a Pencil

Let A, B, C, and D be four collinear points; a, b, c and d denote four concurrent
lines and let O be the point of concurrency. We denote by ac the angle between
lines a and c.

Definition 1. The cross ratio {ABCD} of four collinear points A, B, C, D is
defined as the quotient AC

CB

/
AD
DB where the magnitude of a segment is directed,

i.e. AC = −CA. The cross ratio of a pencil of lines is defined as sin ac
sin cb

/ sin ad
sin db .

The cross ratio of four lines is denoted by {abcd}. Given four points A, B, C,
D and a point O, we denote by O{ABCD} the cross ratio of the pencil defined
by the lines OA, OB, OC and OD.

Theorem 1 ([7]). Let abcd be a pencil of lines passing through vertex O, and
let L be a line transversal of the pencil not passing through O. Let A be the point
of intersection of L and a, and analogously define points B, C, and D. Then
{abcd} = {ABCD}. Conversely, let A, B, C, and D be four collinear points,
and O be a point off the line ABCD. Then {ABCD} = O{ABCD}.

In other words, the cross ratio of four collinear points is the same when
viewed from any vantage point off the line.

We can use this principle to label walls in such a way that the label can be
read from any robot position O. More precisely, let G1, . . . , Gk denote the set of
wall guards. Then we place four (collinear) reflectors along wall guard Gi so that
those four points have integral cross ratio i. Thus, from any robot position O,
the wall guarding guarantees that we see at least one integral cross ratio, and
this cross ratio identifies the wall, in principle permitting localization.

Unfortunately, this approach does not suffice, because we do not know
which of the visible reflectors form collinear quadruples from a common wall
guard. For example, consider a situation in which the robot sees five reflectors,
A, B, C, D, X; the first four reflectors A, B, C, D correspond to a single wall
guard; and the last reflector X corresponds to another guard whose quadruple
of reflectors is partially occluded. Moreover, the robot happens to be positioned
in such a way that both O{ABCD} and O{BCDX} are integers in {1, . . . , k}.
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In this case, the robot cannot in general distinguish which of the two sequences
corresponds to a guard and which is spurious.

Indeed, this scenario is but one of several possible ambiguous configurations.
To solve these problems, we use additional reflectors and more careful placements
of guard reflectors to ensure that these ambiguities are fully resolved.

3.2 The Cross Ratio of Noncollinear Points

The following theorems from projective geometry [10] will help in the task of
disambiguating a given set of angular measurements. First we need to charac-
terize those points from which a given noncollinear quadruple forms an integer
cross ratio in {1, . . . , k}:
Theorem 2 (Steiner’s Theorem [2,10]). Given four points A, B, C, D, not
all collinear, and given a cross ratio r, the locus Cr of points O such that the cross
ratio O{ABCD} equals r—Cr(ABCD) = {O | O{ABCD} = r}—is a conic
curve. Conversely five points in the plane, not necessarily in general position,
define a unique conic passing through them.

The conic may be an ellipse, circle, parabola, hyperbola, or the degenerate cases
of a point, a line, or two lines. Consider now four reflectors, three of which are
collinear. The following two lemmas describe the robot locations O from which
the four reflectors would appear to belong to a common wall guard.

Lemma 3. Given three collinear points and cross ratio r, there is a fourth point
on the line (including the projective point at infinity) realizing cross ratio r.

Proof. We consider the four points to lie along the (projective) real line with C at
the origin. Without loss of generality, let dist(AC) = 1. Define b = dist(BC) and
similarly d = dist(BD) which implies dist(AD) = 1 + b + d. Hence AC

CB

/
AD
DB =

1
−b
/

1+b+d
−d = d

b (1+b+d) = c. Solving for d we have d = b c (1 + b)/(1− b c). ✷

Given an edge e of the polygon and three points X, Y, Z ∈ e, let
IXY Z be the set of points on e realizing an integer ratio, i.e. IXY Z =
{W ∈ e | {XYZW} ∈ Z} . If, from a point Q, four reflectors not all collinear
form a pencil with an integer cross ratio, then this quadruple is called a spurious
quadruple from Q. If the location of Q is clear from the context, then we sim-
ply refer to the quadruple as spurious. In general, given four points A, B, C, D,
not all collinear, we denote by CZ(ABCD) the locus of points that make the
quadruple A, B, C, D spurious. More formally, CZ(ABCD) =

⋃
k∈Z

Ck(ABCD).

Lemma 4. Given three collinear points A, B, C, a point E not on the line, and
a cross ratio r, the locus of points O such that O{ABCE} = r is a line.

Proof. Given the three collinear points A, B, C, let D be the point along that
line such that {ABCD} = r as per Lemma 3. Then given a point O along the
line DE we have that O{ABCE} = O{ABCD} = r. ✷
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Fig. 4. Point D′ such that
Q{ABCD′} = k.

B D

X

Y

A X’C
Y’
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i i i i

Fig. 5. The view from point Q is ambigu-
ous.

From Steiner’s Theorem it follows that CZ(ABCD) is composed of conics
through the points A, B, C, D.

Claim 1. Given an integer k, a point Q, and three reflectors, the set of fourth
reflector points that forms a spurious quadruple from Q with cross ratio k is
precisely a line.

Proof. Using Figure 4 as reference, we are given three reflectors A, B, C and a
point Q. First construct the lines QA, QB, and QC. Then use an auxiliary line l
not passing through Q which creates the sequence A′B′C ′ on l. There is a unique
point D′ on l creating a sequence of cross ratio k as per Lemma 3. Precisely the
reflectors D on QD′ form spurious quadruples with Q{ABCD} = k. ✷

Definition 2. Given a reflector X, we denote by CZ(X) the union of all conics
CZ(XY WZ) over all reflectors Y, W, Z forming a spurious quadruple. These
conics are called conics of ambiguity.

Definition 3. A point Q is ambiguous of degree k if it belongs to the intersection
of k conics of ambiguity for some reflectors X1, . . . , Xk, i.e. Q ∈ ⋂kj=1 CZ(Xj).

3.3 A Reflector Placement Algorithm

Because four points alone do not in general uniquely determine the position of
the robot, we need to increase the number of reflectors per guard. As we have
shown, the existence of ambiguous points of degree 1 is unavoidable because there
is a set of conics from which a quadruple becomes spurious. This fact extends to
points of degree 2, as in general two conics of ambiguity corresponding to two
different quadruples might intersect.
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To distinguish from these ambiguous points, we place three quadruples along
each guard Gi, realizing the cross ratios 3i, 3i + 1 and 3i + 2, respectively.
Denote by qj = {Aj , Bj , Cj , Dj} the quadruple of reflectors realizing cross ratio
j. From any point in the region guarded by Gi, the robot can always see the three
quadruples q3i, q3i+1, q3i+2 with consecutive integer cross ratios. We arrange so
that the points of ambiguity have degree at most 2. Thus, from any point in
the polygon, the robot sees at most two spurious quadruples, and at least one
consecutive sequence of three quadruples with cross ratios 3i, 3i + 1 and 3i + 2
which is the actual set corresponding to guard Gi. The robot can localize itself
by searching for a consecutive sequence of three quadruples that conclude a
common location for the robot, which must then be the correct location because
at least one of those three quadruples must not be spurious.

We provide an incremental construction, inserting the quadruples for each
guard Gi for i from 0 to n. Denote by gi the set of reflectors corresponding to
guard Gi, i.e. gi = q3i ∪ q3i+1 ∪ q3i+2. At iteration i of the algorithm, the robot
can localize itself without ambiguity in any region guarded by a guard Gj for
j < i. Moreover, as we introduce the reflectors of the set gi, we ensure that no
new ambiguities are introduced in previously guarded regions.

The algorithm maintains sets of relevant geometric objects:

1. A setM of the reflectors placed thus far.
2. A set D of all points of degree 2, i.e. D =

⋂
X∈M CZ(X).

3. As we insert Ai+1, Bi+1, Ci+1, and Di+1, the sets of points IBiCiDi ,
ICiDiAi+1 , ICiDiAi+1 , andIDiAi+1Bi+1 along edge e�i/3� respectively.

4. Given a point Q ∈ D, an integer k, and any three reflectors, as per Claim 1,
there is a line along which placement of a reflector would increase the degree
of Q. Let H denote the set of these lines, over all Q ∈ D, k ∈ Z, and triples
inM. The algorithm avoids ambiguities by keeping track of the intersections
of the lines with the boundary of the polygon ∂P .

5. After inserting the first two reflectors Ai, Bi of a quadruple qi on edge e�i/3�,
it computes the set of points I =

⋃
W,Y ∈M; X∈ H∩e�i/3�

IWYX . This corre-
sponds to undesirable potential locations for reflector Ci that would force
Di to coincide with a point X ∈ H ∩ e�i/3�, hence increasing the degree of
some Q ∈ D.

The following theorem gives an upper bound on the size of these sets.

Theorem 3 (Bezout’s Theorem for Conics [2]). Any two distinct conics
intersect in at most four points.

It follows then that there is only a countable set of points of degree 2. In fact,
if we restrict ourselves to conics of cross ratio at most 3n then there are O(n4)
points in H. With these sets in hand we can now describe the algorithm:

For each i = 1, . . . , 3n, insert one-by-one the reflectors Ai, Bi, and Ci of each
quadruple while avoiding the sets IXY Z in (3) above and the sets H ∩ ∂P and
I. This can always be done as these sets are discrete and the positions of Ai, Bi

and Ci are continuously varying. After this process, the location of Di is fixed.
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Because of step (5) above, we know that for any triple XY Z not containing Ci,
the conics of ambiguity through XY ZDi do not increase the degree of points in
D. Nevertheless, it is indeed possible for a quadruple of the form CiDiXY , with
X, Y ∈M, to increase the degree of a point in D.

Let Q be the point in D whose degree is three after inserting Di (refer to
Figure 5). Using the notation of this figure, we see that Q lies in the intersection
of two conics (ellipses), and hence is of degree two. To remove this ambiguity, we
must move Ci and Di in such a way that the cross ratio {AiBiCiDi} = i remains
constant yet the cross ratio Q{CiDiXY } is no longer an integer. First note that
Q{CiDiXY } = {CiDiX

′Y ′}. Without loss of generality, we introduce a real axis
coordinate system on edge e�i/3� such that Ai is the origin and BiAi = 1. Let
c, d, x, y denote the position on the real axis of Ci, Di, X

′, Y ′ respectively. Hence
1
c−1

/
d

d−c−1 = 3 =⇒ d = c+1
1−3c+3 . Similarly d−c

x

/
d−c+x+y

y = k x =⇒
d = yc−kxc+kx2+kxy

y−kx . Equating the two expressions for d, we obtain a quadratic
expression on c with at most two solutions for each integer k. That is, the set of
positions Ci that force a Di to make Q ambiguous is a discrete set and hence it
can be avoided by perturbing Ci by an ε amount.

Theorem 4. If g is the number of wall guards required to guard a polygon P ,
then a robot can localize itself using at most 10g reflectors.

Proof. In the previous algorithm, for a guard gj we can identify D3j = A3j+1
and D3j+1 = A3j+2, thus reducing reflectors per guard from 12 to 10. ✷

4 Lower Bound

In this section we prove that, in the worst case, at least 4g − 2 reflectors are
required for unambiguous robot localization for a polygon guardable by g (wall)
guards. This lower bound holds even if the reflectors are not on the walls of the
polygon. The example is the standard comb polygon shown in Figure 6.
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Fig. 6. Two types of ambiguous positions.

Theorem 5. If g is the number of wall guards required to guard a polygon P ,
then we need at least 4g− 2 reflectors to uniquely localize the position of a robot
in P .

Proof. It follows from the discussion in Section 2 that we need at least three
reflectors per tine. Suppose that three or more tines had just three reflectors.
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Then either two of these tines have the three reflectors collinear, or two of the
tines have the three reflectors noncollinear. If the three reflectors are collinear in
at least two tines, then for a position arbitrarily close to the midpoint between
two reflectors in such a tine, the angles observed are an almost-180◦ angle and
an almost-zero angle. This angular configuration can be realized in both of the
tines with three collinear reflectors, and therefore it is ambiguous.

Alternatively, if at least two of the three-reflector sets are not collinear, then
drop a perpendicular from the vertex opposite the longest edge of the triangle
formed by three reflectors, and obtain a point for the robot that reads angles 90◦,
90◦, and 180◦. This applies to both tines and therefore the position is ambiguous.

✷

5 Other Localization Primitives

The localization problems may become a simpler task if the robot can benefit
from alternative, independent orientation mechanisms. In real life, the robot
moves on the floor, which is a 2-D surface embedded in a 3-D space. We can
take advantage of this fact by using the third dimension to place reflectors. In
this model, the robot can perform 360-degree scans along any given chosen plane
through its current position. The robot might also perform a 2-D-like scan by
performing a laser sweep along the horizontal plane of height zero. The robot is
equipped with a device that indicates the “up” direction (defining the orientation
of the floor plane) at all times. We omit proofs in this abstract.

Theorem 6. If n is the number of vertices in a polygon P , then a robot aided
by a compass indicating a North position at a point at infinity requires at least
n/4− 8 reflectors in the worst case to uniquely indentify its position in P .

Theorem 7. Consider a robot on a plane in a 3-D environment with walls,
given an “up” direction and a map of the environment. Let g be the number of
guards required to guard such environment. Then at least 4g reflectors and at
most 6g reflectors are needed for the robot to localize itself in the environment.

6 Conclusions

We have developed a method to remove ambiguities from Sugihara’s reflector
model for robot localization. This model can be implemented economically both
in terms of hardware (laser, reflectors) as well as computational requirements. We
have given nearly matching upper and lower bounds on the number of reflectors
needed per guard. We also considered alternative scenarios for localization with
more general primitives and showed upper and lower bounds in these contexts.

Acknowledgments. We thank Martin Demaine for many helpful discussions.
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Abstract. In this paper we investigate parallel searches on m concur-
rent rays for a point target t located at some unknown distance along one
of the rays. A group of p agents or robots moving at unit speed searches
for t. The search succeeds when an agent reaches the point t. Given a
strategy S the competitive ratio is the ratio of the time needed by the
agents to find t using S and the time needed if the location of t had
been known in advance. We provide a strategy with competitive ratio
of 1 + 2(m/p − 1)(m/(m − p))m/p and prove that this is optimal. This
problem has applications in multiple heuristic searches in AI as well as
robot motion planning. The case p = 1 is known in the literature as the
cow path problem.

1 Introduction

Searching for a target is an important and well studied problem in robotics. In
many realistic situations such as navigation in an unknown terrain or a search
and rescue operation the robot does not possess complete knowledge about its
environment. In the earlier case the robot may not have a map of its surroundings
and in the latter the location of the target may be unknown [3,11,12,17,18].

The competitive ratio [20,11] of a strategy S is defined as the maximum of
the ratio of the search cost using S and the optimal distance from the starting
point to the target, over all possible positions of the target.

Consider an exhaustive search on m concurrent rays. Here, a point robot
or—as in our case—a group of point robots is assumed to stand at the origin
of m concurrent rays. One of the rays contains the target t whose distance to
the origin is unknown. The robot can only detect t if it stands on top of it. It
can be shown that an optimal strategy for one robot is to visit the rays in cyclic
order, increasing the step length each time by a factor of m/(m− 1) if it starts
with a step length of 1. The competitive ratio Cm achieved by this strategy is
given by Cm = 1 + 2mm/(m − 1)m−1 which can be shown to be optimal [1,6,
10,15]. The lower bound in this case has proven to be a useful tool for proving
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lower bounds for searching in a number of classes of simple polygons, such as
star-shaped polygons [13], G-streets [5,14], HV-streets [4], and θ-streets [4,8].

Parallel searching on m concurrent rays has been addressed before in two
contexts. In the first context a group of p point robots searches for the target.
Neither the ray containing the target nor the distance to the target are known.
The robots can communicate only when they meet. The search concludes when
the target is found and all robots are notified thus. Baeza-Yates and Schott
investigated searching on the real line [2] and Hammar, Nilsson and Schuierer
considered the same case for m concurrent rays [7].

The second context is the on-line construction of hybrid algorithms. In this
setting we are given a problem Q and m heuristics or approaches to solving it.
The implementation of each approach is called a basic algorithm. We are given
a computer with k < m disjoint memory areas which can be used to run one
basic algorithm and to store the results of its computation. Only a single basic
algorithm can be run on the computer at a given time. It is not known in advance
which of the algorithms solves the problem Q—although we assume that there
is at least one—or how much time it takes to compute a solution. In the worst
case only one algorithm solves Q whereas the others do not even halt on Q. One
way to solve Q is to construct a hybrid algorithm in the following way. A basic
algorithm is run for some time, and then a computer switches to another basic
algorithm for some time and so on until Q is solved. If k < m, then there is
not enough memory to save all of the intermediate results. Hence, the current
intermediate results have to be discarded and later recomputed from scratch. An
alternative way to look at this problem is to assume that we are given k robots
searching on m rays for a target. Each ray corresponds to a basic algorithm
and a robot corresponds to a memory area, with only one robot moving at any
given time. Discarding intermediate results for an algorithm A is equivalent to
moving the robot on the ray corresponding to A back to the origin. Kao et
al. [9,21] gave a hybrid algorithm that achieves an optimal competitive ratio of
k + 2(m− k + 1)m−k+1/(m− k)m−k.

A generalization of this context is to consider a distributed setting in which
more than one computer or robot perform a simultaneous search. In this case
at least one of the robots must reach the target, at which time the search is
considered complete. The robots move at unit speed and the competitive ratio
is defined as the ratio between the search time and the shortest distance to
the target. Under this framework López-Ortiz and Sweet show that the integer
lattice on the plane can be searched efficiently in parallel [16].

In this paper we study searches inm concurrent rays which also correspond to
anm heuristic problem with k = pmemory states and p processors or computers.
The “terminate-on-success” framework models search and rescue operations as
well as the multiple heuristic searches. We provide an optimal strategy with
competitive ratio of 1 + 2(m/p − 1)(m/(m − p))m/p for searching m rays with
p < m robots in parallel. The case p = 1 is sometimes referred in the literature
as the cow path problem [10]. A variation of the newly proposed strategy can
be applied to other graphs such as trees, resulting in an iterative deepening
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scheme which is optimal to within a constant factor. This shows that neither
BFS nor DFS are optimal —absent any other information. This has relevance in
distributed computing searches in game spaces and automated theorem proving.

The paper is organized as follows. In the next section we present some def-
initions and preliminary results. In Section 3 we present a lower bound for the
problem of searching on m rays with p robots. In Section 4 we then present an
algorithm that achieves this bound.

2 Preliminaries

In the following we consider the problem of a group of p robots searching for a
target of unknown location onm rays in parallel. The competitive ratio is defined
as the quotient of the search time over the shortest distance to the target. In this
case we consider robots that have the same maximal speed, which is assumed to
be, without loss of generality, one unit of distance per unit of time.

Given a strategy S, at a time T the snapshot of S is given by m+ 2p values
(s1, . . . , sm, d1, I1, d2, I2, . . . , dp, Ip) where si is the distance up to which ray i is
explored, di is the distance of robot i to the origin, and Ii is the index of the ray
that robot i is located on. Consider now a strategy X to search on m rays with
p robots, in which the robots repeatedly travel one ray for a certain distance
and then return to the origin to choose another ray. Let XS = (x0, x1, . . .) be
the collection of distances at which the robots change direction to return to the
origin, ordered by the time at which the robots turn around.

Let ri be the ray on which the robot that turns at xi is located and Ti be the
first time that a robot passes xi on ray ri again. Assume that this robot turns
around again after having traveled a distance of xk, where k > i. If the target is
placed on ri between xi and xk, say at distance d after xi, then the competitive
ratio of the strategy for this placement is

Ti + d

xi + d
.

Since the competitive ratio is a worst case measure, we see that the competitive
ratio CS of S is at least

CS ≥ sup
d>0

{
Ti + d

xi + d

}
=

Ti
xi
. (1)

As the target is necessarily found at some point along a step, we obtain

CS = sup
i≥0

{
Ti
xi

}
.

We say a ray r is occupied at time T if there is a robot on r at this time.
We say a ray r is busy at time T if there is a robot on r that is moving away
from the origin at this time. Let the schedule of robot R be the sequence of
rays in the order in which they are explored by R together with the distance
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to which they are explored, i.e. SchR = (d1, I1, d2, I2, . . .). Given two strategies
we say that S1 is contained in S2 up to time T , denoted S1 ⊆T S2, if the
snapshots of both strategies coincide for all t ≤ T . Given a sequence of strategies
V = (S1, S2, . . .), we say that the sequence V converges to a limit strategy S if
there is a strictly increasing function T (n) with limn→∞ T (n) = ∞ such that
for each n, Sm ⊆T (n) Sm+1 for all m ≥ n. The limit strategy S is defined in the
obvious way.

3 A Lower Bound

We are interested in proving a lower bound on CS for any strategy S.

Lemma 1. Let S be a strategy to search on m rays with p robots. Then there
exist a strategy S′ with the same competitive ratio or better such that

1. At any time t, there is at most one robot on a given ray.
2. If a robot moves towards the origin on some ray, then it continues until it
has reached the origin.

3. All robots are moving at all times.

Proof. Assume that there are at least two robots on a given ray. Either the paths
of these two robots cross in opposing directions along the ray or not. In the latter
case, this means that one robot trails the other along that ray and, hence, has no
net effect in the exploration. Clearly a modified strategy S′ in which the trailing
robot stays put in the origin has the same competitive ratio as S. Alternatively,
if the robot paths cross in opposing directions consider a strategy S′′ which
replaces the cross-paths with a “bounce”, in which both robots change direction
at the point of intersection of their paths. The robots also exchange schedules
from that point onwards. S′′ is now a strategy in which the robots never properly
cross in opposing directions, and hence itself can be replaced with a strategy S′

in which one of the robots stays in the origin. S′ is a strategy with the same
competitive ratio as S in which robots do not change direction away from the
origin.

Similarly, if the robot is moving towards the origin and then changes direc-
tion, we can create a strategy S′ in which the robot stays put rather than moving
toward the origin and then backtracking its steps. The strategy S′ has the same
competitive ratio as S, but no changes in direction away from the origin along
a ray.

Lastly if we consider a robot whose sequence of moves includes a stand-still
period, clearly removing those idle periods can only decrease the competitive
ratio. Let R be a robot that is idle at step i. Then R moves ahead to explore
ray Ii in its schedule SchR. However this ray might presently be occupied in
which case R exchanges schedule with the robot R′ occupying the ray and moves
ahead to the next ray in SchR′ . In turn, this ray might also be occupied, and
the robot exchanges schedules yet again, and so on. Note that a swap on a
given ray monotonically increases the distance to be traversed on that ray by
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it’s occupant. Hence this defines a sequence of strategies whose limit strategy S′

is well defined. Moreover, S′ satisfies all three properties required in the lemma
and has competitive ratio no larger than the original strategy S. �	

Lemma 2. There is an optimal strategy to search on m rays with p robots that
satisfies Lemma 1 such that if a robot is located at the origin at time T , then it
chooses to explore the ray that has been explored the least among all non-busy
rays.

Proof. Let S be an optimal strategy to search on m rays with p robots that
satisfies Lemma 1. Assume that robot R is located at the origin at time T and
chooses to explore ray r which is explored up to distance dr. Assume that there
is a non-busy ray r′ that is explored up to distance dr′ < dr. Now consider the
strategy S′ where the robot chooses to explore the ray r′ and the robot that
explores ray r′ after T in S explores ray r in S′. Each of these rays is explored in
S′ to its originally scheduled distance in S, only the order changes. Everything
else remains the same.

The only difference in competitive ratio between the strategies S and S′ is
the time when the point located at a distance dr on ray r is passed the first time
by a robot and the time when dr′ is passed the first time by a robot on ray r′.

Assume that in Strategy S a robot passes dr′ on ray r′ at time T ′+dr′ . Since
r is explored before ray r′, we have T ′ > T . Hence, the competitive ratio of S
for those two steps is

max
{
T + dr
dr

,
T ′ + dr′

dr′

}
= 1 +max

{
T

dr
,
T ′

dr′

}

whereas the competitive ratio of S′ for those two steps is

max
{
T + dr′

dr′
,
T ′ + dr
dr

}
= 1 +max

{
T

dr′
,
T ′

dr

}
.

Since T ′ > T and dr > dr′ , T ′/dr′ > max {T/dr′ , T ′/dr} and the competitive
ratio of S′ is no greater than the competitive ratio of S.

This shows that switching the searching order to favour the least explored ray
has no negative effect on the competitive ratio. However if the non-busy ray r′

was occupied, then S′ violates condition (1) of Lemma 1. In this case, rather than
R exploring the occupied ray r′ it exchanges schedule from that point onwards
with the occupant of r′ as in the proof of Lemma 1. First we observe that after
the exchange of schedules, r′ is no longer the least explored non-busy ray as it
either has been explored to a distance d > dr > d′

r which is further than ray
r or it is in the process of being explored to that distance and hence is busy.
In this case, we have a new strategy S′ in which robot R is about to explore
a ray r′ which might or might not be non-busy and occupied. We apply the
same procedure to what would be the least explored ray r′′ in the new strategy
S′ and we obtain a new strategy S′′ in which ray r′′ is about to be explored.
Note that the distance to which r′ is explored increased. Hence this creates a
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sequence of strategies (S, S′, S′′, . . .) whose limit strategy has competitive ratio
no larger than S. Moreover this new strategy satisfies the properties of Lemma 1
and robots explore the least explored non-busy ray in sequence. �	

Corollary 1. There is an optimal strategy to search on m rays with p robots
such that at any time the explored distances of all occupied, but not busy rays
are larger than the minimum of the explored distances of all unoccupied rays.

Proof. By Lemma 2 there is an optimal strategy such that a robot at the origin
always chooses to explore the non-busy ray that is explored the least. If this ray
is occupied, then there is a time at which two robots are on the same ray—a
contradiction to Lemma 1. �	

A strategy satisfying Lemmas 1 and 2 is termed a normalized strategy. The
next lemma provides a lower bound for normalized optimal strategies.

Lemma 3. The competitive ratio CS of an optimal normalized strategy S with
turn point sequence X = (x0, x1, . . .) is at least

CS ≥ sup
k≥0


1 + 2

k+m−p∑
i=0

xsi

/ k∑
i=k−p+1

xsi


 (2)

where Xs = (xs0, x
s
1, . . .) is the sequence of the sorted values of X.

Proof. Let S be an optimal normalized strategy. Consider a time T such that
robot R0 is located at the origin. By Lemma 2 we can assume that it chooses
to explore the ray that has been explored the least among all unoccupied rays,
say this is ray r0. In general, let rj be the current ray of robot Rj at time T , for
0 ≤ j ≤ p− 1.

Now consider the sequence of turn points taken by a robot Rj up to—but
not including—time T . These turn points are elements in the sequence Xs; let
Ij be the set of indices in Xs of these turn points of robot Rj .

Let the distance up to which ray r0 is explored at time T be d0. Note that
d0 = xsk0 , for some k0 ≥ 0. Furthermore, let dj be the distance up to which ray
rj was explored before the robot Rj entered ray rj . Note that dj = xskj

, for some
0 ≤ kj where kj < k0 by Lemma 2. Hence dj ≤ d0. When the robot Rj passes
dj at time Tj ≤ T + dj ≤ T + d0 and the target is placed right after dj on ray
rj , then the competitive ratio for this placement of the target is given by

2
∑
i∈Ij

xsi + xskj

xskj

= 1 + 2

∑
i∈Ij

xsi

xskj

,

according to Equation 1, for 0 ≤ j ≤ p − 1. The factor 2 comes from the fact
that the robot has traveled to and fro from the origin to each turn point. Hence,
the competitive ratio at time T + d0 is at least

CS ≥ max
0≤j≤p−1

{
1 + 2

∑
i∈Ij

xsi

xskj

}
≥ 1 + 2

∑p−1
j=0

∑
i∈Ij

xsi∑p−1
j=0 x

s
kj

.
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Here, we make use of the fact that max {a/c, b/d} ≥ (a + b)/(c + d), for all
a, b, c, d > 0. Note that the sum A =

∑p−1
j=0

∑
i∈Ij

xsi contains as summands all
xsi that have been explored up to time T . In particular, A includes all xsi that are
smaller than xsk0 , as otherwise the robot R0 would have explored a ray different
from r0 by Lemma 2. Similarly, there are at least m − p + 1 unoccupied rays
at time T , one of which is r0. These rays have each been explored to a distance
xli ≥ xk0 , for 1 ≤ i ≤ m − p since otherwise robot R0 would have chosen one
of these for exploration at time T . The smallest choice for these m− p values is
xsk0+1, . . . , x

s
k0+m−p. Hence,

p−1∑
j=0

∑
i∈Ij

xsi ≥
k0+m−p∑
i=0

xsi .

Now consider the values dj , for 1 ≤ j ≤ p−1. The value dj is the distance up
to which ray rj was explored before robot Rj entered it. Since robot Rj chose
ray rj and not ray r0, Lemma 2 implies that dj ≤ d0 = xsk0 . The p − 1 largest
such values are xsk−p+1, . . . x

s
k−1 and

p−1∑
j=1

dj ≤
k0∑

i=k0−p+1

xsi .

Hence,

CS ≥ 1 + 2

∑p−1
j=0

∑
i∈Ij

xsi∑p−1
j=0 x

s
kj

≥ 1 + 2

k0+m−p∑
i=0

xsi

k0∑
i=k0−p+1

xsi

,

for all k ≥ p. �	
In order to prove a lower bound on Expression 2 we make use of the results by

Gal [6] and Schuierer [19] which we state here without proof and in a simplified
form for completeness. Let Ga = (1, a, a2, . . .) be the geometric sequence in a
and X+i = (xi, xi+1, . . .) the suffix of sequence X starting at xi.

Theorem 1 ([19]). Let X = (x0, x1, . . .) be a sequence of positive numbers, r
an integer, and a = limn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0, is a
sequence of functionals which satisfy

1. Fk(X) only depends on x0, x1, . . . , xk+r,
2. Fk(X) is continuous, for all xi > 0, with 0 ≤ i ≤ k + r,
3. Fk(αX) = Fk(X), for all α > 0,
4. Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), and
5. Fk+i(X) ≥ Fk(X+i), for all i ≥ 1,

then
sup

0≤k<∞
Fk(X) ≥ sup

0≤k<∞
Fk(Ga).
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In particular, in our case it is easy to see that, if we set

Fk(Xs) = 1 + 2
k+m−p∑
i=0

xsi

/ k∑
i=k−p+1

xsi ,

then Fk satisfies all conditions of Theorem 1. Hence,

CS ≥ sup
0≤k<∞

Fk(Xs) ≥ sup
0≤k<∞

Fk(Ga) = sup
0≤k<∞

1 + 2

k+m−p∑
i=0

ai

k∑
i=k−p+1

ai
.

Note that if a ≤ 1, then the above ratio tends to infinity as k → ∞. Hence, we
can assume that a > 1 and obtain

CS ≥ sup
0≤k<∞

1 + 2
(ak+m−p+1 − 1)/(a− 1)
(ak+1 − ak−p+1)/(a− 1)

= sup
0≤k<∞

1 + 2
ak+m−p+1 − 1
ak+1 − ak−p+1

(a>1)
= 1 + 2

am−p

1− a−p = 1 + 2
am

ap − 1
.

The above expression is minimized for a = (m/(m− p))1/p and the competitive
ratio is bounded from below by

CS ≥ 1 + 2

(
m
m−p

)m/p
m
m−p − 1

= 1 + 2
(
m

p
− 1
)(

m

m− p
)m/p

.

Theorem 2. There is no search strategy for a target on m rays using p robots
with a competitive ratio of less than

1 + 2
(
m

p
− 1
)(

m

m− p
)m/p

.

Note that the above expression interpolates nicely between the various special
cases that may occur. For instance, if p = 1, then we obtain 1+2mm/(m−1)m−1

as previously shown [1,6]. If there is an integer number of rays per robot, say
m = kp for some integer constant k, then we obtain

1 + 2
(
kp

p
− 1
)(

kp

kp− p
)kp/p

= 1 + 2(k − 1)
kk

(k − 1)k
= 1 + 2

kk

(k − 1)k−1 ,

that is, the same competitive ratio as if each of the robots searches on a separate
subset of k rays.
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4 An Optimal Strategy

We now present a strategy that achieves a competitive ratio matching the lower
bound we have shown above. The strategy works as follows. The robots explore
the rays in a fixed cyclic order. Let a = (m/(m− p))1/p. The sequence of return
distances of the robots is given by xi = ai. The kth time that robot R returns
to the origin it chooses to explore ray (kp + R) mod m up to distance xkp+R.
Obviously, the ith time ray r is explored, the robot explores it up to distance
xim+r.

So let r be a ray that is explored by robot R after it has returned the kth
time to the origin. Hence, kp+R = r mod m, or equivalently kp+R = im+ r.
The total distance traveled thus far by robot R is 2

∑k−1
j=0 xjp+R. Clearly, the

robot that explored ray r up to distance x(i−1)m+r reached the origin before
robot R. Hence, r has been explored up to distance x(i−1)m+r when robot R
travels on it and the competitive ratio in this step is given by

1 + 2

∑k−1
j=0 xjp+R

xkp+R−m
= 1 + 2

aR
∑k−1
j=0 (a

p)j

aRakp−m
= 1 + 2

akp − 1
(ap − 1)akp−m

≤ 1 + 2
am

ap − 1
= 1 + 2

(
m

p
− 1
)(

m

m− p
)m/p

.

Since the bound is independent of the robot R, the ray r and the number of
times the ray was visited, we obtain the following theorem.

Theorem 3. There exists a strategy for searching for a target on m rays using
p robots with a competitive ratio of

1 + 2
(
m

p
− 1
)(

m

m− p
)m/p

which is optimal.

5 Conclusions

We present an optimal strategy for searching for a target on m concurrent rays
in parallel using p robots. This strategy has a competitive ratio of

1 + 2
(
m

p
− 1
)(

m

m− p
)m/p

.

This is a generalization of the on-line construction of on-line heuristics to a dis-
tributed model. It also extends the cow path problem to multiple searchers on
m concurrent rays, which has proven to be a basic primitive in the exploration
of certain classes of polygons. Furthermore, it expands the field of target search-
ing to multiple robots; a setting that more closely reflects real-world scenarios.
An open problem is to generalize this algorithm to randomized or average case
strategies. In similar settings, a trade-off theorem between average and worst
case performance of search strategies is known. It is natural to expect that a
similar result might hold for parallel searches.
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Abstract. In the Freeze Tag Problem (FTP) we are given a swarm of n
asleep (frozen or inactive) robots and a single awake (active) robot, and
we want to awaken all robots in the shortest possible time. A robot is
awakened when an active robot “touches” it. The goal is to compute an
optimal awakening schedule such that all robots are awake by time t∗, for
the smallest possible value of t∗. We devise and test heuristic strategies
on geometric and network datasets. Our experiments show that all of
the strategies perform well, with the simple greedy strategy performing
particularly well. A theoretical analysis of the greedy strategy gives a
tight approximation bound of Θ(

√
logn) for points in the plane. We show

more generally that the (tight) performance bound is Θ((logn)1−1/d) in
d dimensions. This is in contrast to general metric spaces, where greedy
is known to have a Θ(logn) approximation factor, and no method is
known to achieve an approximation bound of o(logn).

1 Introduction

We consider a natural problem that arises in the study of swarm robotics. Con-
sider a set of n robots, modeled as points in some metric space. There is one
“awake” source robot; all other robots are asleep (inactive). In order to awaken
a sleeping robot, an active robot travels to it and touches it; then, that robot
can assist the set of active robots in awakening other asleep robots. Our goal is
to activate (wake up) all of the robots as quickly as possible; i.e., we want to
minimize the makespan, which is the time when the last robot is awakened.

This problem has been coined the freeze-tag problem (FTP) [1] because of its
similarity with the children’s game of “freeze-tag.” In the game, the person who
is “it” tags a player, who becomes “frozen” until another player (who is not “it”
and not “frozen”) tags him to unfreeze him. The FTP arises when there are a
large number of players that are frozen, and one (not “it”) unfrozen player, whose
goal it is to unfreeze the rest of the players as quickly as possible. Once a player
gets unfrozen, s/he is available to assist in unfreezing other frozen players, who
can then assist, etc. Other applications of the FTP arise in the context of dis-
tributing data (or some other commodity), where physical proximity is required

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 270–279, 2002.
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for distribution. This proximity may be necessary because wireless communica-
tion has too high a bandwidth cost or security risk. How does one propagate the
data to the entire set of participants in the most efficient manner? Prior work
on the dissemination of data in a graph includes the minimum broadcast time
problem, the multicast problem, and the related minimum gossip time problem;
see [4] for a survey and [2,6] for recent approximation results.

The FTP is expressed as a combinatorial optimization problem as follows:
Given a set of points in a metric space, find an arboresence (awakening tree) of
minimum height where every node has out-degree at most two.

What makes the freeze-tag problem particularly intriguing is that any rea-
sonable (“nonlazy”) strategy yields an O(log n)-approximation (Proposition 1.1
of [1]), whereas no strategy is known for general metric spaces that yields a
o(log n)-approximation. Arkin et al. [1] show that even very simple versions
of the problem (e.g., on star metrics) are NP-complete. They give an efficient
polynomial-time approximation scheme (PTAS) for geometric instances on a set
of points in any constant dimension d. They also give results on star metrics,
where O(1)-approximation is possible, and an o(log n)-approximation for the
special case of ultrametrics.

In this paper, our main results include the following:

(1) A proof that the natural greedy heuristic applied to geometric instances
gives an O((log n)1−1/d)-approximation in d dimensions. Thus, in one di-
mension, the greedy heuristic yields an O(1)-approximation, and in the plane
the greedy heuristic yields an O(

√
log n)-approximation. We prove that this

analysis is tight by supplying matching lower bounds.
(2) We perform an experimental investigation of heuristic strategies for the FTP,

comparing the different choices of greedy strategies and comparing these
greedy strategies with other heuristics.

Notation.We let S denote the swarm, the set of n points in a metric space (often
Euclidean d-space, denoted �d) where the initially asleep robots are located. We
let s denote the source point where an initially active source robot is placed. We
assume that any active robot in motion travels with unit speed. We let R denote
the radius of the swarm S with respect to s; i.e., R = maxp∈S dist(s, p). We let
D = maxp,q∈S∪{s} dist(p, q) denote the diameter of the set of robots. We let t∗

denote the minimum makespan. Note that, trivially, t∗ ≥ R (since robots move
with unit speed).

2 Wakeup Strategies for the FTP

2.1 Greedy Strategies

A natural strategy for the FTP is the greedy strategy, where an awake robot
chooses the nearest asleep robot to awaken. The motivation for awakening nearby
robots first is that parallelism is generated early on: the first robot awakens
its closest neighbors, these newly awakened robots awaken their closest sleeping
neighbors; thus there is rapid exponential growth in the number of awake robots.
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In fact the greedy strategy is not a fully defined heuristic. What remains to
be specified is how conflicts among robots are resolved, since two robots may
have the same closest neighbor. We now describe three methods for resolving
these conflicts: claims, refresh, and delayed target choice.
Claims. In order to guarantee that work is not duplicated, an awake robot

claims the sleeping robot that it intends to awaken. Once a sleeping robot is
claimed, no other robot is allowed to claim or awaken it.
Refresh. It may be beneficial for newly awakened robots to “renegotiate”

the claims, since the set of awake robots changes. We refer to the ability to
reassign active robots to asleep robots as the option to refresh claims.

We first consider the case in which claims are not adjusted. Thus, once an
awake robot A claims an asleep robot B, A awakens B before making any other
algorithmic decisions. The algorithm is now well defined because, without loss
of generality, at most one robot is awakened at a time, and each time a robot is
awakened it claims the nearest asleep robot.

Consider now the case in which claims are renegotiated, or refreshed, each
time a new robot awakens. For motivation, consider the following scenario. An
awake robot A is heading toward a sleeping robot B, which A has claimed.
Before A reaches B, another robot C awakens. Now, both A and C would like
to claim B, but since B is closer to C than to A, C takes over the responsibility
of awakening B.

In our experiments, we assign claims by finding a matching between the
awake robots and the asleep robots. We use a (potentially suboptimal) greedy
strategy to compute a matching, rather than applying a more complex opti-
mization algorithm. We order, by length, the potential matching edges between
the set of currently awake and currently sleeping robots. We iteratively add the
shortest edge e to the matching, and remove from consideration those edges that
are incident to either of e’s endpoints. The resulting matching has the property
of giving priority to the short matching edges, which is faithful to the greedy
heuristic.
Delayed Target Choice. Refresh introduces several anomalies. In partic-

ular, an (awake) robot may repeatedly change directions and oscillate without
awakening any robots. This happens when an (awake) robot chooses an asleep
target, but before the robot reaches its target, another robot claims the target.
With the delayed target choice option we avoid these oscillations by making the
solution “more off-line”. Specifically, we avoid committing to the direction a
robot is heading until that robot has traveled far enough to awaken its target,
at which point the target (and its position) is fully determined.

Lower Bounds on the Performance of the Greedy Heuristic. Our lower
bounds hold for all variations of the greedy heuristic described above, since, in
our lower bound examples, all awake robots will travel together in a “pack”.

Theorem 1. For any ε > 0, there exists an instance of the FTP for points
S ⊂ �1 on a line (d = 1) for which the greedy heuristic results in a makespan
that is at least 4− ε times optimal.
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Theorem 2. The greedy heuristic is an Ω(
√
log n)-approximation to the FTP

in the plane.

log n

log n

s

n/2

Fig. 1. The lower bound construc-
tion in �2.

Proof: We arrange logn disks, each of ra-
dius 1, along a “zig-zag” path having

√
log n

rows each having
√
log n disks, with disks

touching but not overlapping along the path.
Refer to Figure 1. The source robot is at the
center, s, of the first disk. There is one asleep
robot at the center of the second disk, then
two at the center of the next, then four, etc,
with the number of asleep robots at the cen-
ter of each disk doubling as we advance along
the path of touching disks. The last disk has
(about) n

2 robots. When the greedy strat-
egy is applied to this example, the awakening
happens in sequence along the zig-zag path,
with all of the newly awakened robots at the
center of one disk targeting the robots at the center of the next disk. An opti-
mal strategy, however, sends the source robot vertically upwards, awakening one
cluster of robots at the center of each disk it passes along the way. These robots
are then available to travel horizontally, awakening the robots along each row.
This strategy yields makespan t∗ = O(

√
log n). Hence, greedy is an Ω(

√
log n)-

approximation. ✷

Theorem 3. The greedy strategy is an Ω((log n)1−1/d)-approximation to the
FTP in �d.

Upper Bounds for the Greedy Heuristic. We first show that the lower
bound of Theorem 1 is essentially tight for the one-dimensional case.

Theorem 4. The greedy heuristic for a swarm S ⊂ � of points on a line (d = 1)
is a 4-approximation.

The following theorems show that, in contrast with arbitrary metric
spaces (where greedy gives an O(log n)-approximation for the FTP), greedy is
an o(log n)-approximation for geometric instances. Combined with our lower
bounds, we get a tight analysis of the approximation factor for greedy in all
dimensions d ≥ 1.
Theorem 5. The greedy strategy is an O(

√
log n)-approximation to the FTP in

the plane. One can compute the greedy awakening tree in time O(n logO(1) n).

Theorem 6. The Greedy strategy is an O((log n)1−1/d) approximation to the
FTP in d dimensions. One can compute the greedy awakening tree in time
O(n logO(1) n).
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In both theorems, the algorithmic complexity follows from applying dynamic
methods for nearest neighbor search (or approximate nearest neighbor search [3,
5]) in order to identify which asleep robot is closest to a newly awakened robot.
The nearest neighbor search requires deletions, since robots get deleted from the
set of candidate targets when they awaken.

We concentrate on proving the approximation bound for the 2-dimensional
case (Theorem 5); the d-dimensional case is a fairly direct generalization.

Suppose that we are given a greedy awakening tree for a swarm of size |S| = n.
We can convert this tree into an awakening tree (at no increase in makespan)
having the following property: on any root-to-leaf path there is at most one non-
leaf node having out-degree 1 (rather than 2). Based on this property, and a
simple counting argument, there exists a root-to-leaf path, P = (p0, p1, . . . , pK),
having K ≤ log n edges of lengths ri = dist(pi, pi+1). At the time t when the last
node pK is reached, all of the remaining asleep robots are robots that will be
awakened by other branches of the awakening tree (by definition of the awakening
tree). The makespan, therefore, must be at most t+D ≤ t+ 2R. We will show
that t = O(

√
log n · t∗), implying that the makespan is O(√log n · t∗)

Fixing attention now on one root-to-leaf path, P , in the awakening tree,
we define the outer circle Ci to be the circle centered at pi with radius ri =
dist(pi, pi+1); the inner circle ci is the circle centered at pi with radius 1

3ri. The
properties of the greedy heuristic ensure the following claim:

Claim 1 None of the points pi+1, . . . , pK lie inside circle Ci.

The proof of Theorem 5 is based on an area-covering argument. Specifically,
we provide a bound on the area covered by the circles C0, C1, . . . CK−1, showing
that

∑K−1
i=0 r2i = O(R2), where R is the radius of the swarm. The subtlety of the

proof is that neither the outer circles C0, . . . , CK−1 nor even the inner circles
c0, . . . , cK−1 are disjoint. The proof is based on the following lemma:

Lemma 1. The combined area covered by the (inner or outer) circles is O(R2);

K−1∑
i=0

area(Ci) = O

(
K−1∑
i=0

area(ci)

)
= O

(
K−1∑
i=0

r2i

)
= O(R2).

Proof of Theorem 5: The length, L, of the root-to-leaf path P is simply
L =

∑K−1
i=0 ri. By the Cauchy-Schwartz inequality, the fact that K ≤ log n, and

Lemma 1 we get

L =
K−1∑
i=0

ri ≤
√
K

√√√√K−1∑
i=0

r2i = O(R
√
log n).

Since this result holds for any root-to-leaf path in the awakening tree, the ap-
proximation bound follows. ✷

Proof of Lemma 1: Each (outer,inner) circle pair, (Ci, ci), is assigned to a
circle class according to its radius. Without loss of generality, let the smallest
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outer circle have radius 1. Define class i to be the set of (outer,inner) circle pairs
such that the radius of the outer circle has radius r, with 2i−1 ≤ r < 2i .

While pairs of outer circles (and pairs of inner circles) may overlap, using the
property of circle classes, we show the following claim:

Claim 2 Any pair of inner circles belonging to the same class are disjoint.

Let area Ai be the area covered by inner circles of class i. We claim that

Claim 3 In order for the inner circles of class i associated with path P to cover
area Ai, the corresponding edges of P (associated with circle pairs of class i)
must have total length �i satisfying 9Ai

2i+1π ≤ �i ≤ 9Ai

2i−2π .

Since along path P of the awakening tree we have circles of different classes
appearing, not necessarily in order of size, we may have inner circles overlapping,
thus not covering “new” area. We need the following claim:

Claim 4 The length of P that does not correspond to edges whose inner circles
cover new area is at most a constant fraction of the length that corresponds to
edges whose inner circles do cover new area.

Thus, by Claim 4, the distance traveled along P in which no new area is
covered is of the order of the distance traveled in which new area is covered.
Since the total area covered is O(R2), the claim of Lemma 1 follows. ✷

2.2 Other Heuristic Wakeup Strategies

The greedy strategy has the following weakness: it may be preferable for a robot
to travel a longer distance to obtain a better payoff. In this section we examine
alternative strategies in an attempt to overcome this weakness.

We design our alternative strategies while keeping in mind the actual appli-
cation that motivated our study: the need to activate a swarm of small exper-
imental robots, each equipped with certain sensors. The sensors on the actual
robots in our project (joint with HRL Labs) have the feature that they sense
other robots (or obstacles) in each of k sectors, evenly distributed around the
(circular) robot. (Our robots have k = 8, implying 45-degree sectors.) Within
each of its sectors, a robot can detect only the closest other robot. Thus, there
are at most k options facing a robot once it is activated: Which sector should
be selected? Once the sector is selected, the robot heads for the closest asleep
robot it has sensed in that sector. A greedy strategy that uses sensor sectors will
select the sector whose closest robot is closest.
Bang-for-the-Buck. A natural strategy, which we call “bang-for-the-buck”, is
to choose the next target to awaken based on maximizing the ratio of “value”
(“bang”) to “cost” (“buck”). There are a variety of heuristic measures of poten-
tial value; a particularly simple one is to consider the value of a sector to be the
number of currently asleep robots in the sector. The cost of a sector is chosen to
be the distance to the nearest asleep robot in the sector.
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Random Sector Selection. The goal of this strategy is to “mix up” at ran-
dom the directions in which robots head to awaken other robots. When a robot
awakens, it selects, at random, a sector and chooses its next target to be the
closest asleep robot in that sector.
Opposite Cone. In this strategy the goal is to enforce a certain amount of
“mixing up” of directions that robots head, by sending a newly awakened robot in
a nearly opposite direction from that of the robot that awakened it. In particular,
suppose robot A heads due east to awaken robot B at point p; then, the next
target that robot A selects will be chosen to be the closest asleep robot in a cone
centered on a vector to the west, while the target for robot B to awaken next
will be selected from a cone centered on a vector to the east.

3 Experiments

3.1 Experimental Setup

Our experiments are based on a Java simulation of our various strategies. All
tests were performed on a PC running Linux OS. The graphical user interface
permits the user to select the choice of strategy, the parameters, and the input
dataset, and it optionally shows a graphical animation of the simulation.
Datasets. We tested our strategies on both geometric and non-geometric
datasets. We investigated four classes of geometric datasets: (1) uniform over
a large square (600-by-600); (2) cluster (

√
n clusters, each of a random size,

generated uniformly over a square of side length c = 2
√
n, whose upper left cor-

ner is uniformly distributed over the square); (3) square grid; and (4) a regular
hexagonal grid. Since our non-greedy strategies are specified geometrically, they
were applied only to the geometric data.

The greedy strategies were applied to non-geometric datasets, including: (1)
Star metrics: the n − 1 asleep robots are at the leaves of a star (spoke lengths
are chosen uniformly between 1 and n), the source robot is at the root. There
is either one asleep robot per leaf (case “1-1”) or many asleep robots per leaf
(case “1-m”: we generate O(

√
n) spokes and randomly assign m robots to each

spoke, with m chosen uniformly between 1 and O(
√
n)). (2) TSPLIB: symmetric

traveling salesman files, with data of type MATRIX (14 instances).
Performance Measures. We maintain performance statistics, including: (1)
total time of the simulation; (2) total distance traveled by all robots; and (3)
average distance traveled by robots that do any traveling. We found that total
distance and average distance were tightly correlated with the total time of the
simulation; thus, here we report results only on the total time.
Parameter Choices. For each of the strategies, we considered each possible set-
ting of the set of parameter choices (Claims, Refresh, or Delayed Target Choice)
discussed in Section 2.1.
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3.2 Experimental Results

The experiments on synthetically generated datasets were conducted as follows.
For each choice of wakeup strategy, parameters, and dataset, a set of 100 runs
was performed, with 10 runs for each value of n ∈ {100, 200, 300, . . . , 1000}.

The experiments on datasets from the TSPLIB (EUC 2D or MATRIX) were
done once per dataset, with one robot per point.

We performed runs for the following combinations of strategies and datasets:
Greedy was run on all datasets (Uniform, Cluster, Grid, Hexagonal Grid, Stars
1-1, Stars 1-m, TSPLIB (EUC 2D and MATRIX)), while Bang-for-the-Buck,
Random Sector Selection, and Opposite Cone were run on only the geometric
instances (Uniform, Cluster, Grid, Hexagonal Grid, TSPLIB (EUC 2D)).

In our plots, the horizontal axis corresponds to the swarm size n, the vertical
axis to the ratio of the makespan to the lower bound on makespan (the radius,
R, except in some star-metric cases). Thus, the vertical axis shows an upper
bound on the approximation ratio.
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Fig. 2. Left: Greedy on uniform distributions: Choices of parameters for claims (c),
refresh (r), and delayed target choice (d). A “+” (“-”) indicates the parameter is set to
true (false). Right: Greedy (gdy), Bang-for-the-Buck (bfb), Random Sector Selection
(rss), and Opposite Cone (opc) tested on uniformly distributed swarms.

Parameter Choices. We experimented with various parameter choices over a
common dataset. The claims option is very significant; without it the robots
travel in groups rather than spreading out. There is a significant advantage
in using the refresh option. While less significant, the delayed target choice is
also advantageous. Figure 2 shows the result of running greedy on uniformly
distributed points; other datasets yield similar results, with the delayed target
choice showing a more pronounced advantage in the case of cluster datasets.
Wakeup Strategy Comparison. The main conclusion we draw from our ex-
periments is that the greedy strategy is a very good heuristic, most often out-
performing the other strategies in our comparisons. See Figure 3. As the size
(n) of the swarm increases, the approximation ratios tend to stay about the
same or decrease; we suspect this is because R becomes a better lower bound
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for larger swarms. The upper bounds (Time/R) on approximation factors in the
geometric instances are between 1.0 and 1.5. For star metrics, the ratio Time/R
is significantly higher (between 2 and 3), but this is due to the fact that R is a
poor lower bound in the case of stars. In order to verify this, we computed an
alternative lower bound specifically for star metrics having one robot per leaf.
(The lower bound is 2Lmin(�log(n+1) − 1) +Lmax, where Lmin (resp., Lmax)
is the length of the shortest (resp., longest) spoke of the star.) Figure 4(right)
shows the results of greedy on stars 1-1 datasets (of various spoke length distri-
butions) using this lower bound in computing the approximation ratio; we see
that there is a striking improvement over using the lower bound of R (which is
particularly poor for star metrics). We also give tables (Tables 1,2) showing the
percentage of wins for each strategy, and, finally, report in Table 3 the results
for greedy on the non-geometric TSPLIB instances.
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Fig. 3. Strategy comparison on cluster data (left) and TSPLIB EUC 2D data (right).
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Table 1. Left: Comparing strategies on the 68 TSPLIB (EUC 2D) datasets. Right:
Winning strategies for the TSPLIB (EUC 2D) datasets: For those runs in which a
strategy outperformed the others, we compute the maximum, minimum and average
approximation factor and percent by which it lead over the second-place strategy.

Algorithm Wins %
GDY 45 66.20
BFB 22 32.35
RSS 1 1.45
OPC 0 0.00

Algorithm Approx. Rate Winning %
Best Worst Avg Max Min Avg

GDY 1.00 1.29 1.06 41.13 0.01 6.20
BFB 1.00 1.36 1.07 18.71 2.24 3.97
RSS 1.04 1.04 1.04 2.24 2.24 2.24

Table 2. Comparing strategies on uniform datasets.

Algorithm Win %
GDY 62
BFB 37
RSS 0
OPC 1

Algorithm Approx. Rate Winning %
Best Worst Avg Max Min Avg

GDY 1.01 1.31 1.06 57.32 0.33 8.83
BFB 1.00 1.16 1.04 27.23 0.13 4.04
OPC 1.23 1.23 1.23 5.25 5.25 5.25

Table 3. Results of greedy strategy for TSPLIB MATRIX (non-geometric) instances.

# of Robots 17 21 24 26 42 42 48 48 58 120 175 535 561 1032
Approx. Rate 1.06 1.04 1.16 1.36 1.08 1.12 1.03 1.24 1.19 1.12 3.26 3.01 1.17 3.19
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1 Introduction

The input to the transportation problem consists of a complete weighted
bipartite graph G = (V1, V2, w), integer supplies ai ≥ 0, i ∈ V1, and integer
demands bj ≥ 0, j ∈ V2, where w.l.o.g.

∑
i∈V1

ai =
∑
j∈V2

bj . The problem is
to compute flows xij i ∈ V1, j ∈ V2 such that

∑
j xij = ai for every i ∈ V1,∑

i xij = bj for every j ∈ V2, and
∑
E wijxij is maximized (or minimized). The

transportation problem is polynomially solvable even when the flows are required
to be integers.
The maximum transportation problem with permutable supply

vector (MTPPSV) is a variation of the transportation problem, where sup-
plies are not attached to the vertices of V1, but rather to a set of facilities that
have to be located at the vertices of V1, one facility at each vertex. Thus, the
problem is both to decide on the location of the facilities associated with the
given set {ai} to V1 and on the flows between V1 and V2 so as to maximize the
total profit. The problem is NP-hard. See [6,7] for applications.
A closely related problem is maximum capacitated star packing. Its

input consists of a complete undirected graph G = (V,E) with a weight function
w : E → IR+ and a vector c = (c1, ..., cp) of integers. We use w(E′) to denote
the total weight of a subset E′ of edges. A star is a subset of edges with a
common vertex called the center of the star. The other vertices are leaves of the
star. The size, or capacity of a star is its number of edges. The weight of a star
is the total weight of its edges. The maximum capacitated star packing
problem requires to compute a set of vertex-disjoint stars in G of sizes c1, ..., cp,
so as to maximize their total weight, where

∑p
i=1 ci = |V | − p. The problem can

be thought of as a facility location problem. Facilities of given sizes ci are to be
† Partially supported by NSF (CCR0098172).
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located at vertices to serve customers, where the profit is given by the weight of
the edge.

Previous work. The complexity of minimum transportation problem with
permutable demand vector was studied by Meusel and Burkard [6] and Hu-
jter, Klinz and Woeginger [4]. Most of their results are valid for maximization
problem, too, e.g. the MTPPSV with ai ∈ {0, 1, 2} is polynomially solvable
by reduction to the maximum weight f -factor problem [4]. Wolsey [8] ana-
lyzed ‘greedy’ heuristics for several discrete facility location problems in which
monotone submodular functions are maximized. In particular his results imply
(1 − e−1)-approximation for the special case of MTPPSV with bj = 1, j ∈ V2
and ai ∈ {0, A}, i ∈ V1 for some positive integer A. Unfortunately his approach
cannot be generalized for the general MTPPSV since the objective function of
MTPPSV is not necessary submodular.
The maximum quadratic assignment problem is a generalization of

the maximum capacitated star packing problem as well as many other
problems. Three n × n nonnegative symmetric matrices A = (aij), B = (bij),
and C = (cij) are given and the objective is to compute a permutation π of
V = {1, . . . , n} so that ∑ i,j∈V

i�=j
aπ(i),π(j)bi,j +

∑
i∈V ci,π(i) is maximized. A

1
4 -

approximation algorithm for the maximum quadratic assignment problem
assuming the triangle inequality on matrix B was given in [3]. The problem is
also a special case of the maximum k-set packing problem where k is a max-
imum star size. The results of Arkin and Hassin [2] imply that a local search
algorithm is almost a 1

k−1 -approximation algorithm for this problem.
Our results. We prove that

– A greedy type algorithm is a 1
2 -approximation for MTPPSV.

– A local search algorithm can be made arbitrarily close to be a 1
2 -

approximation algorithm for the MTPPSV.
– A low-depth local search algorithm is a 13 -approximation algorithm for max-

imum capacitated star packing.
– A matching-based algorithm is a 1

2 -approximation algorithm for maximum
capacitated star packing if the edge weights satisfy the triangle inequal-
ity.

2 Star Packing in Bipartite Graphs

In this section we consider the maximum capacitated star packing prob-
lem in bipartite graphs. An instance of this problem consists of a weighted
bipartite graph G = (V1, V2, E, w). We must locate p centers of stars of cardinal-
ity c1 ≥ . . . ≥ cp at the vertices of V1 and assign vertices of V2, |V2| =

∑p
i=1 ci to

star centers satisfying the cardinality constraints on sizes of stars. This problem
can be represented as MTPPSV where V1 are supply vertices with supply vector
c1, . . . , cp, 0, . . . , 0 and demand vertices V2 with demand vector 1, . . . , 1.
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2.1 Greedy Algorithm

Algorithm GR in Figure 1 is a greedy algorithm that modifies the weights of
edges. It selects in each iteration a maximum weight star with respect to modified
weights which reflect a deletion of an edge from the partial solution, when a new
edge entering the same vertex is selected. GR outputs a partial solution, i.e. a
set of stars S1, . . . , Sp such that |Si| ≤ ci. This solution can be completed to
the feasible capacitated star packing without decreasing its value. The modified

GR
begin
Let w̄ be a weight function on edges such that w̄ = w.
for i = 1, ...p

Let Si = (vi, Xi) be a star of maximum weight with respect to w̄
such that vi ∈ V1, Xi ⊆ V2, |Xi| = ci.
Delete from S1, ..., Si−1 the edges which enter Xi, delete vi from V1.
for every x ∈ Xi and y ∈ V1

w̄yx := w̄yx − w̄vix.
return S1, ..., Sp.
end GR

Fig. 1. Algorithm GR

weight of the edge (y, x) in Step i is equal to its original weight minus the weight
of the edge from the current approximate solution touching it. Therefore, the
total increase in objective function in Step i is equal to the sum of original
weights of the star Si minus the sum of original weights of edges deleted on this
step.

Theorem 2.1. Let apx be the weight of an arbitrary completion of the partial
solution returned by GR. Then apx ≥ opt/2.
Proof: In Step i of GR we have stars S1, . . . , Si in our approximate solution
where |Sk| ≤ ck, k = 1, . . . , i. The size of Sk is exactly ck during the k-th step of
the algorithm but it can be decreased in future steps. On each step the set V1
and the weight function w̄ are modified, so at the end of Step i of the algorithm
we have an instance Ii of the problem on the bipartite graph (V1, V2, E) and
weight function w̄i. Let OPTi be an optimal solution of the star packing in
bipartite graphs with star sizes ci+1, . . . , cp on the graph (V1, V2, E, w̄i). We
will prove that for i = 1, . . . , p,

2w̄i−1(Si) ≥ w̄i−1(OPTi−1)− w̄i(OPTi). (1)

By convention we assume that w̄p(OPTp) = 0. By summing (1) over i = 1, ..., p
we get

2
p∑

i=1

w̄i−1(Si) ≥
p∑

i=1

[w̄i−1(OPTi−1)− w̄i(OPTi] = w̄0(OPT0)− w̄p(OPTp) = opt.
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Note that w̄i−1(Si) is the weight of star Si in Step i, we emphasize it since some
edges of Si could be removed in the future but their weight is compensated by
changing the weight function, i.e. sum of original edge weights of final stars is at
least

∑p
i=1 w̄i−1(Si) and therefore, apx ≥

∑p
i=1 w̄i−1(Si) ≥ opt/2. To prove (1)

we construct a solution SOLi to Ii such that

2w̄i−1(Si) ≥ w̄i−1(OPTi−1)− w̄i(SOLi). (2)

Assume that GR chooses the star Si with the center vi on the Step i. If
OPTi−1 has the star with same index (i.e. the star with cardinality ci) located
at vi then we define SOLi from OPTi−1 by deleting vertex vi from V1 and star
of cardinality ci located at this vertex from OPTi−1. In this case

w̄i−1(Si) ≥ w̄i−1(OPTi−1)− w̄i−1(SOLi),

and we get the inequality (2) by noticing that w̄i(SOLi) + w̄i−1(Si) ≥
w̄i−1(SOLi) since w̄i−1(Si) is the total change in weight in Step i.
In general OPTi−1 can have another star S located at vi. In this case OPTi−1

has the star of cardinality ci located at another vertex, say v, we will call this
star Si(v). Let S′ = S \ Si be the part of star S which was not used in the star
Si. Since c1 ≥ · · · ≥ cp, we know that |Si| ≥ |S| ≥ |S′|. We construct SOLi
from OPTi−1 as follows. First we delete stars Si(v) and S from OPTi−1. We
do that since we cannot have star with index i in SOLi and since vertex vi
is busy by Si. After that we are trying to recover the weight we lost when we
deleted S′ (generally speaking, we didn’t loose S \ S′ = S ∩ Si since these edges
are used in the greedy solution) by moving the center of S′ from vi to v and
using |S′| heaviest edges with respect to the weight function w̄i−1 from the |Si|
available edges at v. We call this new star S′(v). We define SOLi from OPTi−1
by removing vertex vi from OPTi−1 and by defining new star S′(v) at the vertex
v instead of Si(v).
Denote by av(C) the average weight, with respect to w̄i−1, of an edge in the

star C. By the greedy property, Si uses the heaviest edges touching vertex vi.
Also their total weight is at least the weight of Si(v). Therefore, av(Si) ≥ av(S′)
and also av(Si) ≥ av(Si(v)). Since S′(v) consists of the heaviest edges in Si(v),
it also follows that av(Si) ≥ av(Si(v)) ≥ av(Si(v) \ S′(v)). By construction,
|Si| = |S′|+ |Si(v) \ S′(v)|. Therefore,

w̄i−1(Si) = av(Si) |Si| ≥ av(S′) |S′| + av(Si(v) \ S′(v)) |Si(v) \ S′(v)| =
w̄i−1(S′) + w̄i−1(Si(v) \ S′(v)) = w̄i−1(S′) + w̄i−1(Si(v)) − w̄i−1(S′(v)),

where the last equality follows since S′(v) ⊆ Si(v). Then,

w̄i−1(SOLi) = wi−1(OPTi−1)− w̄i−1(S)− w̄i−1(Si(v)) + w̄i−1(S′(v)) =
w̄i−1(OPTi−1)− w̄i−1(S ∩ Si)− w̄i−1(S′)− w̄i−1(Si(v)) + w̄i−1(S′(v)) ≥

w̄i−1(OPTi−1)− w̄i−1(Si)− w̄i−1(S ∩ Si).
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Equation (2) follows now from the fact that w̄i(SOLi) ≥ w̄i−1(SOLi)−w̄i−1(Si\
S) since only those edge of SOLi decrease their weights which touch vertices from
Si \ S (edges of OPTi−1 do not touch edges from S)and their total decrease is
at most w̄i−1(Si \ S).

2.2 Local Search

We consider a natural local search algorithm. A t-move is defined as follows: Take
a center sai of an approximate solution, remove its star and place the center at
some vertex of V1, say v1. If v1 is a center of the approximate solution, remove
its star, and move the center that was placed at v1 to some other vertex, say
v2. Repeat this process up to t times, until a center that was placed at vt′ is
placed at a vertex, vt′+1 (t′ ≤ t), that either was not a center in the approximate
solution, or whose center we ignore without replacing it. Note that we can make
a circle, i.e. vertex vt′+1 can be the vertex we started with. Thus we obtain a
new set of centers, and their respective sizes of stars. To decide which leaves
belong to which center, we solve a (max) transportation problem with supplies
at the center vertices, each with supply equal to the number of leaves in its star,
and all non center vertices are demand vertices with unit demand. The weight
of the edge (vi, j) between a center vi and a leaf j, is modified to be the original
weight w(vi, j) minus the weight of the single edge of the current approximate
solution which touches vertex j.
A t-level local search algorithm called Algorithm t-search is defined as follows:

Start with some feasible solution, and check whether its weight can be increased
by a t-move. Repeat until no further improvements are possible. The proof of
the next theorem will be given in the full version of the paper:

Theorem 2.2. Algorithm t-search is a t/(1 + 2t)-approximation algorithm.

An approximation factor arbitrarily close to 1/2 can be achieved by increas-
ing t. The local search algorithm can be carried out in polynomial time while
maintaining the bound up to any desired level of proximity by scaling the weights
(see [2] for a detailed description).

3 MTPPSV

The problem can be reformulated as a maximum capacitated star packing
problem in bipartite graphs, by duplicating each vertex i ∈ V2 bi times, and
then applying the algorithms from the previous section. However, this approach
yields only a pseudo-polynomial time algorithms.
The local search algorithm can be modified to accommodate the demands of

vertices in V2, too. The step which needs to be modified is the one in which we
calculate a new assignment of leaf vertices to centers, which was done using a
transportation problem with modified weights. Here the weights must be mod-
ified in a more complex way. If we wish to “send” xij units from supply vertex
i ∈ V1 to demand vertex j ∈ V2 we calculate the weight as xij original weights



Approximations for Maximum Transportation Problem 285

w(i, j)xij minus the cheapest edges touching j whose total shipment is xij . (In
the earlier case, the xij = 1 so we subtracted only the cost of the cheapest edge
touching vertex j.) This yields a maximum transportation problem with piece-
wise linear concave costs. See the textbook [1] which describes a polynomial time
algorithm for equivalent the minimum cost piecewise convex problem.
The algorithm GR can be also implemented in polynomial time by the similar

observation. Instead of duplicating demand vertices, on each step the algorithm
directly finds the star of maximum weight. The star can have multiple edges
between vertices, we define the flow xij from vertex i to j to be equal to the
number of edges between vertices i and j. The profit from using xij edges is
defined in the same way, it is a wijxij minus a total cost of xij cheapest edges
touching demand vertex j. Note that originally we assume that there are bj edges
of zero profit touching j. Therefore, on each step we need to solve a maximum
transportation problem with piecewise linear concave costs and just one supply
vertex. Actually, in this case the algorithm can be implemented directly without
using [1].

4 Maximum Capacitated Star Packing

4.1 Local Search

Let Sai be the stars of an approximate solution, and S
o
i the stars of an optimal

solution, such that the size of Sai is equal to the size of S
o
i . Denote by s

a
i (s

o
i )

the center of star Sai (S
o
i ).

A move is defined as follows: Take a center sai of an approximate solution,
remove its star and place the center at some vertex of the graph (possibly the
same vertex), say v1. If v1 was a leaf of another star, we remove that edge. If
v1 is a center of the approximate solution, remove its star. Replace Sai by a star
centered at v1 of size ci. The edges of the new star are selected greedily, using
modified weights of edges (v1, vj) which are equal to the original weight minus
the weight of edges selected by other stars of the approximate solution that touch
vj . Stars that had leaves removed from them by this process get the appropriate
number of new leaves arbitrarily. An improving move is one in which the weight
of the approximate solution improves. The algorithm starts with an arbitrary
solution and performs improving moves as long as this is possible.

Theorem 4.1. Local-search returns a 1
3 -approximation.

Proof: Define touch(Soi ) to be the weight of all edges of an approximate solution
touching vertices of Soi . At the end of the algorithm, no move is an improving
move and thus moving the center of the approximate solution to its location in
the optimal solution is non improving. Hence,

w(Sai ) ≥ w(Soi )− touch(Soi ).
Let apx =

∑
i w(S

a
i ) be the value of the approximate solution while opt =∑

i w(S
o
i ) is the optimal value. We now sum the above inequality over all centers
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i = 1, ..., p.
∑
i touch(S

o
i ) ≤ 2apx, since each edge of the approximate solution

touches at most two stars of the optimal solutions, as the stars are vertex disjoint.
The summation therefore yields apx ≥ opt− 2apx, or apx ≥ 1/3opt.

4.2 Metric Case

We now assume that the weights we satisfy the triangle inequality. A greedy
maximum matching of sizem is obtained by scanning the edges in non-increasing
order of their weights and selecting edges as long as they are vertex-disjoint and
their number does not exceed m.

Lemma 4.2. Let M be a greedy maximum matching of size m. Let M ′ be an
arbitrary matching of the same size. The weight of the i-th largest edge in M is
greater than or equal to the weight of the 2i− 1 largest edge in M ′.

Assume that p is even. Our algorithm first computes a greedy maximum
matching of size p/2. The vertices incident to the matching will be the centers
of approximate star packing. The algorithm takes edges of the greedy matching
one by one by decreasing of their values and assigns two unassigned star centers
of stars of the biggest cardinality to the ends of the edge considered on that step.
There are two ways to do it, and the algorithm chooses each with probability
1/2. After that the algorithm arbitrarily assigns leaves to centers. The algorithm
for odd p works similarly. The algorithm can be derandomized by the standard
method of conditional probabilities.

Theorem 4.3. Algorithm Metric (Figure 2) is a 1
2 -approximation algorithm.

Proof: Let apx be the weight of the solution returned by Metric. Let gi be the
length of the i-th largest edge in the greedy matching M computed by Metric.
Let oi be the length of the largest edge in the i-th star in a given optimal solution
of total weight opt.
Suppose first that p is even. Then by the triangle inequality and the random-

ized way by which the ends of the greedy matching are assigned to centers of
stars, the expected weight of each edge selected to the stars S2i−1 and S2i is at
least gi/2. Therefore,

apx ≥ 1
2

p/2∑
i=1

(c2i−1 + c2i)gi.

On the other hand,

opt ≤
p/2∑
i=1

(c2i−1o2i−1 + c2io2i) ≤
p/2∑
i=1

(c2i−1 + c2i)gi,

where the second inequality follows from Lemma 4.2. The theorem follows from
the above two relations.
Suppose now that p is odd. We repeat the same proof but also use the fact

that (by the same lemma) w(em) ≥ op.
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Metric
begin
Greedily compute a matching M = (e1, ..., em) where ei has
ends ai and bi, and m = � p

2 	.
if p is even:

Arbitrarily choose from V \ {a1, ..., am, b1, ..., bm}
disjoint subsets V1, ..., Vp of sizes c1, ..., cp respectively.
for i = 1, ..., p

2
(r2i−1, r2i) := (ai, bi) or (r2i−1, r2i) := (bi, ai),

each with probability 0.5.
elseif p is odd:

Arbitrarily choose from V \ {a1, ..., am, b1, ..., bm}
subsets V1, ..., Vp of sizes c1, ..., cp−1, cp − 1.
for i = 1, ..., p−1

2
(r2i−1, r2i) := (ai, bi) or (r2i−1, r2i) := (bi, ai),
each with probability 0.5.
rp := am or rp := bm, each with probability 0.5.

Vp := Vp ∪ {am, bm} \ rp.
end if

Si := the star with center ri and leaves Vi.
return S1, ..., Sp.
end Metric

Fig. 2. Algorithm for the metric case
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Abstract. A major drawback in optimization problems and in partic-
ular in scheduling problems is that for every measure there may be a
different optimal solution. In many cases the various measures are dif-
ferent �p norms. We address this problem by introducing the concept
of an All-norm ρ-approximation algorithm, which supplies one solution
that guarantees ρ-approximation to all �p norms simultaneously. Specifi-
cally, we consider the problem of scheduling in the restricted assignment
model, where there are m machines and n jobs, each is associated with
a subset of the machines and should be assigned to one of them. Previ-
ous work considered approximation algorithms for each norm separately.
Lenstra et al. [12] showed a 2-approximation algorithm for the prob-
lem with respect to the �∞ norm. For any fixed �p norm the previously
known approximation algorithm has a performance of θ(p). We provide
an all-norm 2-approximation polynomial algorithm for the restricted as-
signment problem. On the other hand, we show that for any given �p

norm (p > 1) there is no PTAS unless P=NP by showing an APX-
hardness result. We also show for any given �p norm a FPTAS for any
fixed number of machines.

1 Introduction

1.1 Problem Definition

A major drawback in optimization problems and in particular in scheduling
problems is that for every measure there may be a different optimal solution.
Usually, different algorithms are used for diverse measures, each supplying its
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own solution. Therefore, one may ask what is the ”correct” solution for a given
scheduling problem. In many cases there is no right answer to this question. We
show that in some cases one can provide an appropriate answer, especially when
the measures are different �p norms. Specifically, we address the optimization
problem of scheduling in the restricted assignment model. We have m parallel
machines and n independent jobs, where job j is associated with a weight wj and
a subset M(j) ⊆ {1, . . . ,m} of the m parallel machines and should be assigned
to one of them. For a given assignment, the load li on a machine i is the sum
of weights of the jobs assigned to it. We denote by l = (l1, . . . , lm) the machines
load vector corresponding to an assignment, and further denote by h the vector
l sorted in non-increasing order. We may use the �p norm (p ≥ 1) to measure
the quality of an assignment, namely the cost of an assignment is the �p norm of
its corresponding load vector. The �p norm of a vector l, denoted ‖l‖p, is defined
by: ‖l‖p = (

∑m
i=1 l

p
i )

1/p.
Most research done so far in the various scheduling models considered the

makespan (�∞) measure. In some applications other norms may be suitable such
as the �2 norm. Consider for example a case where the weight of a job corresponds
to its machine disk access frequency. Then each job may see a delay that is
proportional to the load on the machine it is assigned to. Thus the average
delay is proportional to the sum of squares of the machines loads (namely the
�2 norm of the corresponding machine load vector) whereas the maximum delay
is proportional to the maximum load.

Simple examples illustrate that for the general restricted assignment problem,
an optimal solution for one norm is not necessarily optimal in another norm (and
in fact may be very far from being optimal). Given that, one may ask what is the
”correct” solution to a scheduling problem. When a solution optimal in all norms
exists we would naturally define it as the correct solution and try to obtain it.
For the special case of restricted assignment with unit jobs only, Alon et al. [1]
showed that a strongly-optimal assignment that is optimal in all norms exists,
and can be found in polynomial time. However, this is not the case in general.

1.2 Our Results

All-norm approximation: In light of the above discussion, we introduce the
concept of an All-norm ρ-approximation algorithm, which supplies one solution
guaranteeing simultaneously ρ-approximation with respect to the optimal solu-
tions for all norms. Note that an approximated solution with respect to one norm
may not guarantee any constant approximation ratio for any other norm. This
does not contradict the fact that there may be a different solution approximat-
ing the two norms simultaneously. Simple examples illustrate that we can not
hope for an all-norm (1 + ε)-approximation for arbitrary ε for this problem (the
example in [1] illustrates that ε must be larger than 0.003 even for two norms),
hence the best we can hope for (independent of the computational power) is
an all-norm ρ-approximation, when ρ is constant. Moreover, from the computa-
tional point of view, we can not expect to achieve an all-norm approximation
polynomial algorithm with ratio better than 3/2 since Lenstra et al. [12] proved
a 3/2 lower bound on the approximation ratio of any polynomial algorithm for



290 Y. Azar et al.

the makespan alone (assuming P �= NP ). Lenstra et al. [12] and Shmoys and
Tardos [16] presented a 2-approximation algorithm for the makespan, however
their algorithm does not guarantee any constant approximation ratio to optimal
solutions for any other norms (it is easy to come up with a concrete example
to support that). Our main result is an all-norm 2-approximation polynomial
algorithm for the restricted assignment model. Our algorithm returns a feasible
solution which is at most 2 times the optimal solution for all �p norms (p ≥ 1)
simultaneously. In contrast, note that for the related machines model and hence
for the more general model of unrelated machines, in general there is no assign-
ment obtaining constant approximation ratio for all norms simultaneously (this
can be shown by a simple example even when considering only the �1 and �∞
norms).

Kleinberg et al. [11] and Goel et al. [6] considered the problem of fairest
bandwidth allocation, where the goal is to maximize the bandwidth allocated
to users, in contrast to minimizing the machines loads. In [6] α-balanced assign-
ments are defined, which are similar to our concept of all-norm approximation.
However, the algorithm suggested there works only for unit jobs and is O(logm)-
competitive. In contrast, our algorithm works for arbitrary size jobs and guaran-
tees constant approximation. We note that the idea of approximating more than
one measure appears in [17,2] where bicriteria approximation for the makespan
and the average completion time is provided.
Approximation for any given norm: Recall that for the �∞ case Lenstra
et al. [12] presented a 2-approximation algorithm (presented for the more gen-
eral model of unrelated machines, where each job has an associated m-vector
specifying its weight on each machine). For any given �p norm the only previous
approximation algorithm for restricted assignment, presented by Awerbuch et
al. [3], has a performance of θ(p) (this algorithm was presented as an on-line
algorithm for the unrelated machines model). Note that not only our all-norm
2-approximation algorithm provides 2-approximation to all norms simultane-
ously, it also improves the previous best approximation algorithm for each fixed
�p norm separately.
Non-approximability for any given norm: Clearly, one may hope to get
for any given �p norm a better approximation ratio (smaller than 2), or even a
Polynomial Time Approximation Scheme (PTAS). However, we show that for
any given �p norm (p > 1) the problem of scheduling in the restricted assignment
model is APX-hard, thus there is no PTAS for the problem unless P = NP . Note
that for p = 1 any assignment is optimal.
Approximation scheme: For any given �p norm it is impossible to get a PTAS
for an arbitrary number of machines. Therefore, the only possible approximation
scheme for a given norm is for a fixed number of machines. We present for any
given norm a Fully Polynomial Time Approximation Scheme (FPTAS) for any
fixed number of machines. Note that for minimizing the makespan Horowitz
and Sahni [9] presented a FPTAS for any fixed number of machines. Lenstra et
al. [12] suggested a PTAS for the same problem (i.e. minimizing the makespan)
with better space complexity.
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1.3 Techniques and Related Results

Other related results: Other scheduling models have also been studied. For
the identical machines model, where each job has an associated weight and can
be assigned to any machine, Hochbaum and Shmoys [8] presented a PTAS for
the case of minimizing the makespan. Later, Alon et al. [1] showed a PTAS for
any �p norm in the identical machines model. For the related machines model,
in which each machine has a speed and the machine load equals the sum of jobs
weights assigned to it divided by its speed, Hochbaum and Shmoys [7] presented
a PTAS for the case of minimizing the makespan. Epstein and Sgall [5] showed
a PTAS for any �p norm in the same model.

Note that, previous work discussed above showed that PTAS can be achieved
for the identical and related machines models when considering the makespan
for cost. In contrast, only constant approximation is possible for the restricted
assignment and unrelated machines models (see [12]). Our work establishes the
same phenomenon for the �p norm, by proving that only constant approximation
can exist for restricted assignment.
Techniques: Our main result, the all-norm 2-approximation algorithm, consists
of two phases - finding a strongly-optimal fractional assignment and rounding
in to an integral assignment which guarantees 2-approximation to the optimal
assignments in all norm simultaneously. The first phase depends on construct-
ing linear programs with exponential number of constraints solved using the
ellipsoid algorithm with a supplied oracle. Our algorithm works for the more
general model of unrelated machines and finds the lexicographically best (small-
est) assignment. Hence, in this sense, it generalizes the algorithm suggested by
Megiddo [13,14], which can be used for the restricted assignment model only.
Although the second phase can employ the rounding scheme of [16], our round-
ing technique, based on eliminating cycles in a bipartite graph, is considerably
simpler and more suitable for our needs. Our hardness of approximation result
is reduced (by a L-Reduction) from a result by Petrank [15] concerning a variant
of 3-Dimensional matching.
Paper structure: In Section 2 we present our approximation algorithm. In
section 3 we prove the hardness of approximation result for the problem, and
in section 4 we show for any given �p norm a FPTAS for any fixed number of
machines. The last two sections are omitted due to lack of space, and can be
found in the full version (see [4]).

2 All-Norm Approximation Algorithm

We use the notion of a strongly-optimal assignment defined in [1] throughout
this paper. We repeat the definition in short :

Definition 1. Given an assignment H denote by Sk the total load on the k most
loaded machines. We say that an assignment is strongly-optimal if for any other
assignment H ′ and for all 1 ≤ k ≤ m we have Sk ≤ S′

k.

A strongly-optimal assignment is optimal in any norm. In the case of unit jobs
a strongly-optimal integral assignment exists (and can be found in polynomial
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time), however this is not the case in general (see [1]). It turns out there al-
ways exists a strongly-optimal fractional assignment in the general case. Our
algorithm works in two stages: in the first stage we find a strongly-optimal frac-
tional assignment and in the second stage we round this fractional assignment
to an integral assignment which guarantees 2-approximation with respect to the
optimal solutions for all �p norms.

2.1 Finding a Strongly-Optimal Fractional Assignment

Lemma 1. For every instance in the restricted assignment model there exists
a fractional assignment that is strongly-optimal. In particular, every fractional
assignment which induces the lexicographically smallest load vector is a strongly-
optimal fractional assignment.

Proof. We restrict ourselves only to rational weights. The lexicographically
smallest load vector induced by a fractional assignment (when considering the
machines load vector sorted in non-increasing order) is uniquely defined and
consists of rational weights (since it is a solution of a set of rational linear equa-
tions). Denote such an assignment by H. Assume by contradiction that H is not
strongly-optimal, thus there exist a fractional assignment H ′ and an integer k,
1 ≤ k ≤ m, such that Sk > S′

k (we may assume that H ′ also consists of rational
weights by means of limit). We may scale all the weights such that each assigned
fraction in H and H ′ is integral. We may then translate the scaled instance to
a new instance with unit jobs only, by viewing a job with associated weight wj
as wj unit jobs. Clearly, the lexicographically smallest assignment for the new
instance is the scaled H and it is also the strongly-optimal assignment (see [1]).
However, the scaled H ′ contradicts this fact.

Note that although [1] provides an algorithm to find the strongly-optimal
assignment in the unit jobs case which is polynomial in the number of jobs, we
can not use it since it is not clear how to choose the units appropriately. Even if
such units could be found, translating our original jobs to unit jobs would not
necessarily result in a polynomial number of jobs and therefore the algorithm
would not be polynomial.

The first stage of our algorithm consists of finding this strongly-optimal as-
signment. We present a more general algorithm. Our algorithm works for the
more general model of unrelated machines and finds the lexicographically small-
est fractional assignment (when considering the machines load vector h sorted
in non-increasing order). In particular, according to lemma 1, for the restricted
assignment model the lexicographically smallest fractional assignment is the
strongly-optimal fractional assignment. In this sense, our algorithm generalizes
the algorithm suggested by Megiddo [13,14], which can be used for the restricted
assignment model only.

Theorem 1. In the unrelated machines model, the lexicographically smallest
fractional assignment can be found in polynomial time.
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Proof. We define the following decision problem in the unrelated machines
model: given n jobs, where job j is associated with a weight vector wj , and k ≤ m
limits: S1 ≤ S2 ≤ . . . ≤ Sk is there an assignment H such that

∑r
i=1 li ≤ Sr

(r = 1, . . . , k) where l is the vector of machine loads introduced by H sorted in
non-increasing order. We note that the lexicographically smallest prefix vector
S = (S1, . . . , Sm) induces the lexicographically smallest assignment h by defin-
ing hi = Si − Si−1 (S0 = 0). Denote by M(j) (j = 1, . . . , n) the set of machines
to which job j can be assigned, i.e ∀i ∈M(j) wij <∞. For the case of k = 1 (i.e.
deciding the makespan) the decision problem can be translated to the following
linear program:

m∑
i=1

xij = 1 for j = 1, . . . , n

n∑
j=1

xijwij ≤ S1 for i = 1, . . . ,m

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . ,m
xij = 0 for j = 1, . . . , n , i �∈M(j) ,

where xij denotes the relative fraction of job j placed on machine i. Since we
can not identify the machines according to their loads order, the general case is
represented by a linear program with number of constraints exponential in m,
as follows:

m∑
i=1

xij = 1 for j = 1, . . . , n

n∑
j=1

xi1jwi1j + . . . +
n∑
j=1

xitjwitj ≤ St ∀1 ≤ t ≤ k ∀1 ≤ i1 < . . . < it ≤ m

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . ,m
xij = 0 for j = 1, . . . , n , i �∈M(j) .

We employ the ellipsoid algorithm to solve this linear program in polynomial
time (see [10] for details). In order to use the ellipsoid algorithm we should
supply a separation oracle running in polynomial time. We next describe the
algorithm we use as the oracle for the general linear program:

1. Given the assignment we construct the corresponding machines load vector.
2. We sort the load vector. Denote by h the sorted vector.
3. If there exists r, 1 ≤ r ≤ k such that

∑r
i=1 hi > Sr then the algorithm

returns ’not feasible’ together with the unsatisfied constraint - the one in-
volving the r most loaded machines (whose indices we have).

4. Otherwise the algorithm returns ’feasible’.

Since the sorting operation (step 2) dominates the time complexity of the
algorithm, its running time is clearly polynomial. We state the following claim
without proof.

Claim. The algorithm returns ’feasible’ ⇔ the given assignment is feasible.
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We use an incremental process to find the lexicographically smallest assign-
ment. Our algorithm has m steps where in step i we determine the total load on
the i most loaded machines in the assignment, given the total loads on the k most
loaded machines (k = 1, . . . , i− 1). Each step is done by performing a binary
search on the decision problems. Consider the first step for example: we want to
establish the load on the most loaded machine. Denote for job j (j = 1, . . . , n)
its smallest possible weight by wminj = mini wij . Let t =

∑n
j=1 w

min
j . Clearly

t is an upper bound on the load of the most loaded machine, and t/m a lower
bound. We can perform a binary search on the load of the most loaded ma-
chine while starting with u = t (initial upper bound) and l = t/m (initial lower
bound). Testing a bound S on the most loaded machine is done by considering
the decision problem with the n jobs and limit S1 = S. We can stop the binary
search when u− l < ε and set the load on the most loaded machine to the load
obtained from the feasible solution to the linear program. Later we show how to
choose ε such that the value produced by the feasible solution is the exact one
since there is at most one possible load value in the range [l, u]. Given this ε, the
number of iterations needed for the binary search to complete is O(log(t/ε)). In
the ith step (i = 1, . . . ,m) we perform the binary search on the total load of
the i most loaded machines given the total loads on the k most loaded machines
(k = 1, . . . , i−1). Denote by L1, . . . , Li−1 the prefix loads we found. We perform
the binary search on the total load of the i most loaded machines starting with
u = Li−1 + t, l = Li−1. Testing a bound S is done by considering the decision
problem with the n jobs and limits S1 = L1, . . . , Si−1 = Li−1, Si = S. Again we
stop the binary search when u− l < ε and set Li to the total load on the i most
loaded machines produced by the feasible assignment we found for the linear
program.

We now determine the value of ε. Each feasible solution to the linear problem
{xij} can be written as

{
dij

d

}
where d and {dij} are integers smaller than 2P (I)

for some polynomial P in the size of the input (see [10] for example). If we choose
ε = 2−2P (I) then we are guaranteed that there is only one possible load value
in the range [l, u] when u − l < ε (see [10]). Thus in each step i = 1, . . . ,m the
binary search involves O(P (I) + log

∑n
j=1 w

min
j ) iterations, polynomial in the

size of the input. Hence in polynomial time we find the desired lexicographically
smallest assignment.

2.2 Rounding the Strongly-Optimal Fractional Assignment

We now return to the restricted assignment model. As mentioned above, the al-
gorithm presented in theorem 1 finds the strongly-optimal fractional assignment
in polynomial time. The second stage of our algorithm consists of rounding the
fractional assignment {xij} to an integral assignment for the problem obtaining
2-approximation for every �p norm measure. We note that although the rounding
scheme presented in [16] can be used for this purpose, our rounding technique is
considerably simpler and more suitable for our needs.
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Theorem 2. A strongly-optimal fractional assignment can be rounded in poly-
nomial time to an integral assignment which is at most 2 times the optimal
solution for all �p norms at the same time.

Proof. Given the fractional assignment {xij} we will show how to construct
the desired integral assignment {x̂ij} in polynomial time. We construct the bi-
partite graph G = (U, V,E) having |U | = n vertices on one side (representing
the jobs) and |V | = m vertices on the other (representing the machines) while
E = {(i, j)|xij > 0}. At first we would like to eliminate all cycles in G while pre-
serving the same load on all machines. We eliminate the cycles in G in polynomial
time by performing the following steps:

1. We define a weight function W : E → R+ on the edges of G such that
W (i, j) = xijwj , i.e. the actual load of job j that is assigned to machine i.

2. As long as there are cycles in G, find a cycle, and determine the edge with
the smallest weight on the cycle (denote this edge by e and its weight by t).

3. Starting from e subtract t and add t from the weights on alternating edges
on the cycle, and remove from G the edges with weight 0.

It is clear that this method eliminates the cycles one by one (by discarding the
edge with the smallest weight on each cycle) while preserving the original load on
all machines. Denote by G the new graph obtained after eliminating the cycles
and by {xij} the new strongly-optimal fractional assignment represented by G
(which is a forest). In the first rounding phase consider each integral assignment
xij = 1, set x̂ij = 1 and discard the corresponding edge from the graph. Denote
again by G the resulting graph.

In the second rounding phase we assign all the remaining fractional jobs. For
this end we construct a matching in G that covers all job nodes by using the
same method presented in [12]. We consider each connected component in G,
which is a tree, and root that tree in one of the job nodes. Match each job node
with any one of its children. Since every node in the tree has at most one father
we get a matching and since each job node is not a leaf (each job node has a
degree at least 2) the resulting matching covers all job nodes. For each edge (i, j)
in the matching set x̂ij = 1.

We now prove that the schedule obtained from the assignment {x̂ij} guaran-
tees a 2-approximation to the optimal solutions for all �p norms (for p ≥ 1). Fix
p and denote by OPT the optimal solution for the problem using �p for cost.
Denote by Hopt the strongly-optimal fractional schedule obtained after eliminat-
ing the cycles and denote by H the schedule returned by the algorithm. Further
denote by H1 the schedule consisting of the jobs assigned in the first rounding
phase (right after eliminating the cycles) and by H2 the schedule consisting of
the jobs assigned in the second rounding phase (those assigned by the matching
process). We have :

‖H1‖p ≤ ‖Hopt‖p ≤ ‖OPT‖p ,

where the first inequality follows from the fact that H1 is a sub-schedule of Hopt

and the second inequality results from Hopt being a strongly-optimal fractional
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schedule thus optimal in any �p norm compared with any other fractional sched-
ule, and certainly optimal compared with OPT which is an integral schedule.
We also know that:

‖H2‖p ≤ ‖OPT‖p ,

where the inequality results from the fact that H2 schedules only one job per
machine thus optimal integral assignment in any �p norm for the subset of jobs
it assigns and certainly has cost smaller than any integral assignment for the
whole set of jobs. We can now show :

‖H‖p = ‖H1 + H2‖p ≤ ‖H1‖p + ‖H2‖p ≤ ‖OPT‖p + ‖OPT‖p = 2‖OPT‖p ,

which concludes the proof that the schedule H we constructed guarantees a
2-approximation to optimal solutions for all �p norms and can be found in poly-
nomial time.
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Abstract. We give a polynomial time approximation scheme (PTAS)
for dense instances of the Nearest Codeword problem.

1 Introduction

We follow [15] in defining the Nearest Codeword problem as the minimum
constraint satisfaction problem for linear equations mod 2 with exactly 3 vari-
ables per equation. It is shown in [15] that the restriction imposed on the number
of variables per equation (fixing it to be exactly 3) does not reduce approxima-
tion hardness of the problem. The problem is, for a given set of linear equations
mod 2 to construct an assignment which minimizes the number of unsatisfied
equations. We shall use in this paper clearly an equivalent formulation of the
problem of minimizing the number of satisfied equations. Adopting the notation
of [11] we denote it also as the Min-E3-Lin2 problem. Min-Ek-Lin2 will stand
for the k-ary version of the Nearest Codeword problem.

The Nearest Codeword problem arises in a number of coding theoretic,
and algorithmic contexts, see, e.g., [1], [15], [8], [7]. It is known to be exceed-
ingly hard to approximate; it is known to be NP-hard to approximate to within
a factor nΩ(1)/ log log n. Only recently the first sublinear approximation ratio al-
gorithm has beeing designed for that problem [5]. In this paper we prove that,
somewhat surprisingly, the Nearest Codeword problem on dense instances
does have a PTAS. We call an instance of Nearest Codeword problem (Min-
E2-Lin2) problem dense, if the number of occurrences of each variable in the
equations is Θ(n2) for n the number of variables. We call an instance of Near-
est Codeword (Min-E2-Lin2) dense in average if the number of equations
is Θ(n3). Analogously, we define density, and average density, for Min-Ek-Lin2
problems.

It is easy to be seen that the results of [2] and [9] on existence of PTASs
for average dense maximum constraint satisfaction problems cannot be applied
to their average dense minimum analogs (for a survey paper on approximabil-
ity of some other dense optimization problems see also [13]). This observation
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can be also strenghten for the dense instances of minimum constraint satisfac-
tion by noting that dense instances of Vertex Cover can be expressed as dense
instances of minimum constraint satisfaction problem for 2DNF clauses, i.e. con-
junctions of 2 literals, and then applying the result of [6], [14] to the effect that
there are no PTAS for the dense Vertex Cover. In [10] it was also proven that
the dense and average dense instances of Min Tsp(1,2) and Longest Path
problems do not have polynomial time approximation schemes.

In [2] there were however two dense minimization problems identified as
having PTASs, namely dense Bisection, and Min-k Cut. This has lead us
to investigate the approximation complexity of dense Nearest Codeword
problem. Also recently, PTASs have been designed for denseMin Equivalence
and dense Min-kSat problems (cf. [3], [4]). The main result of this paper is a
proof of an existence of a PTAS for the dense Nearest Codeword problem.

The approximation schemes developed in this paper for the dense Nearest
Codeword problem use some novel density sampler techniques for graphs, and
k-uniform hypergraphs, and extend available up to now approximation tech-
niques for attacking dense instances of minimum constraint satisfaction prob-
lems.

The Nearest Codeword problem in its bounded arity (=3) form was
proven to be approximation hard for its unbounded arity version in [15] (Lemma
37). This results in nΩ(1)/ log log n approximation lower bound for the Nearest
Codeword problem by [8], [7], where n is the number of variables. It is also
easy to show that Nearest Codeword is hard to approximate to within a
factor nΩ(1)/ log log n on average dense instances.

The paper is organized as follows. In Section 2 we give the necessary defi-
nitions and prove the NP-hardness of dense instances of Min-E3-Lin2 in exact
setting, and in Section 3 we give a polynomial time approximation scheme for
the dense instances of Min-E3-Lin2.

2 Preliminaries

We begin with basic definitions.

Approximability. A minimization problem has a polynomial time approxima-
tion scheme (a PTAS, in short) if there exists a polynomial time approximation
algorithm that gives for each instance x of the problem a solution y of value
m(x, y) such that m(x, y) ≤ (1 + ε)opt(x) for every constant ε > 0 where opt(x)
is the value of an optimum solution.

Nearest Codeword Problem (Min-E3-Lin2)

Input: A set of m equations in boolean variables x1, . . . , xn where each equation
has the form xi1 ⊕ xi2 ⊕ xi3 = 0 or xi1 ⊕ xi2 ⊕ xi3 = 1.
Output: An assignment to the variables that minimizes the number of equations
satisfied.
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Density. A set of instances of Min-E3-Lin2 is δ-dense if for each variable x,
the total number of occurrences of x is at least δn2 in each instance. A class of
instances of Min-E3-Lin2 is dense, if there is a constant δ such that the class
is δ-dense.

Let us show now that dense Min-E3-Lin2 is NP-hard in exact setting.
The reduction is from Min-E3-Lin2, which is approximation hard for a ra-
tio nΩ(1)/ log log n [8], [7], where n is the number of variables. Given an instance
I of Min-E3-Lin2 on a set of n variables X = {x1, . . . , xn} with m equations
xt1 ⊕ xt2 ⊕ xt3 = b, where b ∈ {0, 1}, we construct an instance I ′ of dense
Min-E3-Lin2 as follows: we extend the set of variables X by two disjoint sets
Y = {y1, . . . , yn} and Z = {z1, . . . , zn}. I ′ contains aside from the equations
of I, the equations of the form xi ⊕ yj ⊕ zh = 0 and xi ⊕ yj ⊕ zh = 1 for all
1 ≤ i, j, h ≤ n. Note that the system I ′ is dense. We note also that exactly n3

of the added equations are satisfied independently of the values of the variables
in X, Y and Z. Thus opt(I ′) = opt(I) + n3, proving the claimed reduction.

3 Dense Min-E3-Lin2 Has a PTAS

Let the system S = {E1, ..., Em} be a δ-dense instance of Min-E3-Lin2, on a
set X of n variables {x1, . . . , xn}.

We will run two distinct algorithms, algorithm A and algorithm B, and select
the solution with the minimum value. Algorithm A gives a good approximate
solution for the instances whose minimum value is at least αn3. Algorithm B
gives a good approximate solution for the instances whose minimum value is less
than αn3, where α is a constant depending both on δ and the required accuracy
ε.

3.1 Algorithm A

Algorithm A depends on formulating the problem as a Smooth Integer Program
[2] as follows.

A smooth degree-3 polynomial (with smoothness e) has the form
∑

aijhxixjxh +
∑

bijxixj +
∑

cixi + d

where each |aijh| ≤ e, |bij | ≤ en, |ci| ≤ en2, |d| ≤ en3 (cf. [2]).
For each equation xi⊕yi⊕ zi = bi in S, we construct the smooth polynomial

Pi ≡ (1− xi)(1− yi)(1− zi) + xiyi(1− zi) + yizi(1− xi) + zixi(1− yi)
if bi = 0, and

Pi ≡ xi(1− yi)(1− zi) + yi(1− xi)(1− zi) + zi(1− xi)(1− yi) + xiyizi
if bi = 1. We have then the Smooth Integer Program IP:

{
min

∑m
j=1 Pi

s. t. xi, yi, zi ∈ {0, 1} ∀i, 1 ≤ i ≤ n.
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A result of [2] can be used now to approximate in polynomial time the min-
imum value of IP with additive error εn3 for every ε > 0. This provides an
approximation ratio 1 + ε whenever the optimum value is Ω(n3).

3.2 Algorithm B

The algorithm B is guaranteed to give, as we will show, approximation ratio 1+ε
for each fixed ε, whenever the optimum is at most αn3 for a fixed α, depending
on ε and on the density.
Algorithm B

Input: A dense system S of linear equations in GF[2] over a set X of n
variables with exactly 3 variables per equation.

1. Pick two disjoint random samples S1, S2 ⊆ X of size m = Θ
(
log n
ε2

)
;

2. For each possible assignment a ∈ {0, 1}|S1∪S2| for the variables y in S1∪S2
(ya will stand for the boolean value of y for the assignement a) do the following:

2.1 For each variable x /∈ S1 ∪ S2 do the following:
LetHa

x,0 andH
a
x,1 be the bipartite graphs with common vertex set V (H

a
x,0) =

V (Ha
x,1) = S1 ∪ S2 and edge sets

E(Ha
x,0) = {{y, z} : χS1(y)⊕ χS1(z) = 1 ∧ x⊕ y ⊕ z = b ∈ S ∧ ya ⊕ za = b}

and

E(Ha
x,1) = {{y, z} : χS1(y)⊕ χS1(z) = 1 ∧ x⊕ y ⊕ z = b ∈ S ∧ 1⊕ ya ⊕ za = b}

Let ma
0 = |E(Ha

x,0)|, ma
1 = |E(Ha

x,1)|.
If ma

0 ≥ 2
3 (m

a
0 +m

a
1), then set x to 1.

If ma
1 ≥ 2

3 (m
a
0 +m

a
1), then set x to 0.

Otherwise, set x to be undefined.

2.2 In this stage, we assign values to the variables which are undefined after
the completion of stage 2.1. Let Da be the set of variables assigned in stage 2.1,
and let Ua = S1 ∪ S2 ∪Da. V a = X \Ua denotes the set of undefined variables.
For each undefined variable y, let Sy denote the set of equations which contain
y and two variables in Ua. Let ka0 (resp. ka1 ) denote the number of equations in
Sy satisfied by a and by setting y to 0 (resp. to 1).

If ka0 ≤ ka1 , then set y to 0. Else, set y to 1.

Let Xa denote the overall assignment produced by the end of this stage.

3. Among all the assignments Xa pick one which satisfies the minimum num-
ber of equations of S.
Output that assignment.
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4 Proof of the Correctness of Algorithm B When the
Value of the Instance Is “Small”

We will use the following graph density sampling lemma. Recall that the density
d of a graph G = (V,E) is defined by

d =
|E|(|V |
2

) .

Lemma 1. Let d and ε be fixed and let the graph G = (V,E) have |V | = n
vertices and density d. Let m = Θ(1/d ε−2 log n). Let X = {x1, ..., xm} and
Y = {y1, ..., ym} be two random disjoint subsets of V (G) with |X| = |Y | = m
and let e(X,Y ) be the number of edges of G between X to Y . Then, for each
sufficiently large n, we have

Pr[|e(X,Y )−m2d| ≤ εm2d] = 1− o(1/n).

Proof. We will use the following inequality due to Hoeffding [12]. Let X1, ..., Xm
be independent and identically distributed. Let µ = E(X1) and assume that X1
satisfies 0 ≤ X1 ≤ ∆. Let Sm =

∑m
i=1Xi. Then:

Pr(|Sm − µm| ≥ ε∆m) ≤ 2 exp(−2ε2m). (1)

Clearly
E(e(X,Y )) = m2d.

For each z ∈ V \X, write
Tz = |Γ (z) ∩X|.

Let T =
∑
z∈V \X Tz. Then, T = T ′ +∆ where ∆ ≤ m(m− 1)/2, and T ′ is the

sum of m randomly chosen valencies from the set of valencies of G. Thus using
(1),

Pr[|T ′ −mnd| ≤ εmn+m(m− 1)2/2] ≥ 1− 2 exp(−O(ε2m)).
Clearly,

e(X,Y ) =
∑
z∈Y

Tz

=
∑

1≤i≤m
δi

say. Assume now, with negligible error, that the vertices of Y are produced by
independent trials. Then, the δi are independent random variables with the same
distribution as δ1, defined by

Pr[δ1 = k] =
1

n−m |{z ∈ V (G)|Tz = k}|, 0 ≤ k ≤ m.
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Conditionally on θ where θ ∈ mnd(1± ε) and E(δ1) = θ, and using again (1),

Pr[|e(X,Y )− mθ
n
| ≤ εm2] ≥ 1− 2 exp(−2ε2m)

or

Pr[|e(X,Y )− mθ
n
| ≤ εm2d] ≥ 1− 2 exp(−2ε2d2m).

The conditioning event has probability at least 1 − 2 exp(−2ε2m2d). We have
thus, without any conditioning,

Pr[|e(X,Y )− mθ
n
| ≤ εm2d] ≥ 1− 2 exp(−2ε2d2m)− 2 exp(−2ε2m2d)

≥ 1− 3 exp(−2ε2d2m).

This completes the proof.

We now return to our proof of correctness. We assume, as we can, that a is
the restriction to S1 ∪ S2 of an optimal assignment a∗. For each y ∈ X, we let
ya

∗
denote the value of y in a∗. Let x ∈ X \ (S1 ∪ S2).
Let Gx,0 and Gx,1 be the graphs with common vertex set V (Gx,0) =

V (Gx,1) = X and edge sets

E(Gx,0) = {{y, z} : x⊕ y ⊕ z = b ∈ S ∧ ya∗ ⊕ za∗
= b}

and
E(Gx,1) = {{y, z} : x⊕ y ⊕ z = b ∈ S ∧ 1⊕ ya∗ ⊕ za∗

= b}
Let na

∗
0 = |E(Gx,0)|, na∗

1 = |E(Gx,1)|, na∗
= na

∗
0 + na

∗
1 . Also, let ma =

ma
0 +m

a
1 .

Lemma 2. (i) Assume that x is such that we have

na
∗
0 ≥

3(na
∗
0 + na

∗
1 )

4
.

Then, with probability 1 − o(1/n), x is assigned (correctly) to 1 in step 2.1 of
algorithm B.

(ii) Assume that x is such that we have

na
∗
1 ≥

3(na
∗
0 + na

∗
1 )

4
.

Then, with probability 1 − o(1/n), x is assigned (correctly) to 0 in step 2.1 of
algorithm B.

(iii) With probability 1− o(1), each variable y ∈ Da is assigned to its correct
value ya

∗
by the algorithm B.
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Proof. We first prove (iii). Suppose that y is assigned to 1 in stage 2.1. The
case where y is assigned to 0 is similar. We have to prove that na

∗
0 ≥ na

∗
1 with

probability 1 − o(1/n) since if in an optimum solution xi = 1 then na
∗
0 ≥ na

∗
1 .

Thus, Lemma 1 applied to the graph Gx,0 with d =
2na∗

0
n(n−1) and the samples S1

and S2 gives

Pr
(
ma
0 ≤

8 · 2na∗
0 m

2

7n(n− 1)

)
= 1− o(1/n),

and so,

Pr
(
na

∗
0 ≥

7ma
0n(n− 1)
2 · 8m2

)
= 1− o(1/n).

Also, Lemma 1 applied to the union of the graphs Gx,0 and Gx,1 with d = 2na∗

n(n−1)
and the samples S1 and S2 gives

Pr
(
ma ≥ 8 · 2na∗

m2

9n(n− 1)

)
= 1− o(1/n),

and so,

Pr
(
na

∗ ≤ 9man(n− 1)
2 · 8m2

)
= 1− o(1/n).

Since y takes value 1 in stage 2.1 and ma
0 ≥ 2/3ma,

Pr
(
na

∗
0

na∗ ≥
7 · 2
9 · 3

)
= 1− o(1/n),

and so ,

Pr
(
na

∗
0

na∗ ≥
1
2

)
= 1− o(1/n).

Assertion (iii) follows.

Now we prove (i). The proof of (ii) is completely similar to that of (i). Lemma

1 applied to the graph Gx,0 with d =
2na∗

0
n(n−1) and the samples S1 and S2 gives

Pr
(
ma
0 ≥ (1− ε) 2m2

n(n− 1)
na∗
0

)
= 1− o(1/n).

Let ma = ma
0 +m

a
1 . We apply now Lemma 1 to the union of the graphs Gx,0

and Gx,1. This gives

Pr
(
ma ≤ (1 + ε)

2m2

n(n− 1)
na

∗
)
= 1− o(1/n).

Substraction gives

Pr
(
ma
0 −

2ma

3
≥ 2m2

n(n− 1)

(
(1− ε)na∗

o − (1 + ε)
2(na

∗
0 + na

∗
1 )

3

))
= 1− o(1/n).
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Using the inequality na
∗
0 + na

∗
1 ≤ 4na∗

0
3 , we obtain

Pr
(
ma
0 −

2ma

3
≥ 2m2

n(n− 1)
1− 20ε

9
na

∗
o

)
= 1− o(1/n),

and fixing ε = 1/20,

Pr
(
ma
0 −

2ma

3
≥ 0
)
= 1− o(1/n),

concluding the proof.

Lemma 3. With probability 1 − o(1), the number of variables undefined after
the completion of stage 2.1 satisfies

|V a| ≤ 4 opt
δn2

.

Proof. Assume that x is undefined. We have thus simultaneously na
∗
0 < 3

4 (n
a∗
0 +

na
∗
1 ) and na

∗
1 < 3

4 (n
a∗
0 +na

∗
1 ) and so na

∗
1 > 1

4 (n
a∗
0 +na

∗
1 ) and na

∗
0 > 1

4 (n
a∗
0 +na

∗
1 ).

Since x appears in at least δn2 equations, na
∗
0 + na

∗
1 ≥ δn2. Thus,

opt ≥ min{na∗
0 , n

a∗
1 } · |V a| ≥

δn2

4
|V a|.

The assertion of the lemma follows.

We can now complete the correctness proof. Let val denote the value of the
solution given by our algorithm and let opt be the value of an optimum solution.

Theorem 1. Let ε be fixed. If opt ≤ αn3 where α is sufficiently small, then we
have that val ≤ (1 + ε)opt.

Proof. Let us write
val = val1 + val2 + val3 + val4

where:
- val1 is the number of satisfied equations with all variables in Ua

- val2 is the number of satisfied equations with all variables in V a

- val3 is the number of satisfied equations with two variables in Ua and one
in V a

- val4 is the number of satisfied equations with one variable in Ua and two
in V a.

With an obvious intended meaning, we write also

opt = opt1 + opt2 + opt3 + opt4
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We have clearly val1 = opt1 and val3 ≤ opt3. Thus,

val ≤ opt + val2 − opt2 + val4 − opt4
≤ opt + val2 + val4

≤ opt +
|V a|3
6

+ n
|V a|2
2
,

and, using Lemma 3,

val ≤ opt +
43opt3

6δ3n6
+ n

42opt2

2δ2n4

≤ opt
(
1 +

32opt2

3δ3n6
+

8opt
δ2n3

)
.

Since opt≤ αn3 then,

val ≤ opt
(
1 +

32α2

3δ3
+

8α
δ2

)

≤ opt(1 + ε)

for α ≤ δ2ε
9 and sufficiently small ε.

5 Extensions to Dense Min-Ek-Lin2

We are able to extend our result to arbitrary k-ary versions of the problem,
i.e. to dense Min-Ek-Lin2 for arbitrary k. This requires a bit more subtle con-
struction, and the design of a density sampler for (k − 1)-uniform hypergraphs.
This extension appear in the final version of the paper [4].

Acknowledgments. The authors thank Madhu Sudan and Luca Trevisan for
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Abstract. Given a set of connection requests (calls) in a communication network,
the call control problem is to accept a subset of the requests and route them along
paths in the network such that no edge capacity is violated, with the goal of reject-
ing as few requests as possible. We investigate the complexity of parameterized
versions of this problem, where the number of rejected requests is taken as the pa-
rameter. For the variant with pre-determined paths, the problem is fixed-parameter
tractable in arbitrary graphs if the link capacities are bounded by a constant, but
W[2]-hard if the link capacities are arbitrary. If the paths are not pre-determined,
no FPT algorithm can exist even in series-parallel graphs unless P = NP . Our
main results are new FPT algorithms for call control in tree networks with arbitrary
edge capacities and in trees of rings with unit edge capacities in the case that the
paths are not pre-determined.

1 Introduction

Given a set of connection requests in a communication network, call admission control
is the problem of determining which of the requests can be accepted without exceeding
the capacity of the network. The goal is to maximize the number of accepted requests or,
equivalently, to minimize the number of rejected requests. In [2], Blum et al. argue that,
when considering approximation algorithms, it is meaningful to consider the number of
rejected requests as optimization criterion, because the number of rejected requests is
expected to be small in practice due to overprovisioning of network resources.

In this paper, we consider call admission control from the viewpoint of parameter-
ized complexity [7]. Roughly speaking, the approach of parameterized complexity is to
capture a part of the input or output of an NP-hard problem by a parameter, usually
denoted by k. Then one tries to find a fixed-parameter tractable (FPT) algorithm for
the problem, i.e., an algorithm with running-time O(f(k) · poly(n)), where f(k) is an
arbitrary function of the parameter and poly(n) is a polynomial function of the input
size n. If such an algorithm exists, this means that there is a good hope of solving large
instances of the problem efficiently provided that the value of the parameter k is small.
Thus, the so-called combinatorial explosion that is typical for NP-hard problems can
be restricted to the parameter.
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Motivated by the arguments given above, we consider a parameterized version of the
call admission control problem and take the number of rejected requests as the parameter.
We investigate different variants of the problem with respect to the network topology,
the link capacities, and the existence of pre-determined routes for the requests.

Preliminaries. In the undirected version of the problem, the communication network
is modeled as an undirected graph G = (V,E) with edge capacities c : E → IN.
Connection requests are represented by pairs of nodes.Accepting a request (u, v) requires
reserving one unit of bandwidth on all edges along a path from u to v. A set of paths
is feasible if no edge e ∈ E is contained in more than c(e) paths. For a given set P of
paths in a graph with edge capacities, an edge e is called violated (by P ) if the number
of paths in P that contain e is greater than c(e). We say that a path p in P contains a
maximal set of violated edges if there is no other path q in P such that the set of violated
edges in p is a strict subset of the set of violated edges in q.

The basic call admission control problem can now be defined as follows.
CallControl: Given a set R of requests in an undirected graph G = (V,E) and

a capacity function c : E → IN, compute a subset A ⊆ R and assign a path to each
request in A such that the resulting set of paths is feasible. The goal is to minimize the
number |R \A| of rejected paths.

CallControl isNP-hard even in undirected trees with edge capacities 1 or 2 [10]
and in trees of rings with unit edge capacities [8]. Note that in the case of unit edge
capacities, all accepted requests must be routed along edge-disjoint paths.

We introduce the following parameterized version of the problem:
CallControl-k: Given a set R of requests in an undirected graph G = (V,E),

a capacity function c : E → IN, and an integer k ≥ 0, compute a subset A ⊆ R and
assign a path to each request in A such that the resulting set of paths is feasible and at
most k requests are rejected, or decide that no such subset exists.

There are several interesting variations of the call control problem. First, it is some-
times the case that the assignment of paths to requests cannot be determined by the
algorithm, but is pre-determined by other constraints (such as routing protocols). In
this case, an instance of the problem includes, for every request r = (u, v), an undi-
rected path pr from u to v. If r is accepted, it must be routed along pr. We denote
this variant of CallControl by CallControlPre and its parameterized version by
CallControlPre-k.

Sometimes it is meaningful to model the communication network as a directed graph
G = (V,E). In this case, we assume that a request (u, v) asks for a directed path from
u to v in G. A special case of directed graphs are the bidirected graphs, i.e., graphs that
can be obtained from an undirected graph by replacing each undirected edge with two
directed edges of opposite directions. Therefore, we use terms like “CallControl in
bidirected trees of rings” to specify a concrete variant of the problem.

We always use |I| to denote the size of a given instance of a call control problem. An
algorithm for a parameterized call control problem is an FPT algorithm if its running-
time is bounded by O(f(k) · poly(|I|)) for some function f .

Specific network topologies that we consider are chains (graphs consisting of a
single path), rings (graphs consisting of a single cycle with at least three nodes), trees
(connected, acyclic graphs) and trees of rings, as well as their bidirected versions. An
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undirected graph is a tree of rings if it can be obtained by starting with a ring and then,
repeatedly, adding a disjoint ring to the graph and then identifying one node of the new
ring with an arbitrary node of the existing graph.

A standard technique in the tool-box of parameterized complexity is the method of
bounded search trees [7]. This technique tackles a problem by searching for a solution
in a search tree whose size (number of nodes) is bounded by a function of the parameter
only, for example, 2k. If the work at each node of the search tree is polynomial in the
size of the instance, an FPT algorithm is obtained.

This technique lends itself nicely to the parameterized call control problem: If we try
to find a solution that rejects at most k requests, we identify a small setRrej of rejection
candidates. This set must have the property that, if a solution rejecting at most k requests
exists at all, then there exists a solution rejecting at most k requests that rejects at least
one request inRrej. Thus we can branch for each request r ∈ Rrej and check recursively
whether the setR\{r} admits a solution rejecting at most k−1 requests. If the resulting
search tree is explored up to depth k and no solution is found, we know that no solution
rejecting at most k requests can exist.

We will apply the technique of bounded search trees in order to obtain FPT algorithms
for parameterized call control problems. The interesting part of each FPT algorithm will
be how a setRrej of rejection candidates can be identified and how its size can be proved
to be bounded by a constant or by a function of k.

Our Results. In Sect. 2, we give FPT results and hardness results of parameterized call
control problems that follow easily from existing results: CallControlPre-k is FPT
in general graphs provided that the edge capacities are bounded by a constant. If the
edge capacities can be arbitrary, CallControlPre-k contains HittingSet as a special
case and is thus W[2]-hard. CallControl-k is NP-hard even for k = 0 and unit
edge capacities, implying that there cannot be an FPT algorithm unlessP = NP . These
results apply to undirected and bidirected graphs. Our main results are given in Sections 3
and 4. In Sect. 3, we devise an FPT algorithm for CallControl-k in trees with arbitrary
edge capacities. In Sect. 4, we present an FPT algorithm for CallControl-k in trees
of rings with unit edge capacities. Finally, we draw our conclusions in Sect. 5.

Previous Work on Call Control Algorithms. We are not aware of any previous work
on parameterized versions of call control problems. Previous work on call admission
control has focused on on-line algorithms (that receive the connection requests over
time and must accept or reject each request without knowledge about the future) and
approximation algorithms. In most of this work, the number of accepted requests has
been used as the objective function. A survey of known results on on-line call control
algorithms can be found in the book by Borodin and El-Yaniv [4, Chapter 13].

However, call control problems are not only interesting in the on-line scenario. A
number of researchers have studied off-line approximation algorithms for the maximum
edge-disjoint paths problem (MEDP), i.e., CallControl with unit edge capacities and
with the number of accepted requests as the objective function. The problem is polyno-
mial for chains, rings, and undirected trees. Constant-factor approximation algorithms
have been found for bidirected trees [9], trees of rings [8], and a class of graphs in-
cluding two-dimensional meshes [13]. For general directed graphs with m edges, it is
known that no approximation algorithm can achieve ratio O(m

1
2 −ε) for any ε > 0
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unless P = NP [11]. Approximation algorithms with ratio O(
√
m) have been found

for MEDP [12] and also for its generalization to arbitrary edge capacities, bandwidth
requirements and profit values associated with the requests, the unsplittable flow prob-
lem [1] (the ratio increases by a logarithmic factor if the largest bandwidth requirement
can exceed the smallest edge capacity). We point out that, unlike the unsplittable flow
problem, all requests have the same bandwidth requirement in our definition of the call
control problem.

On-line algorithms and approximation algorithms for CallControlPre with the
number of rejected requests as objective function were studied by Blum et al. [2]. They
observed that, in the case of unit edge capacities, this problem is a special case of Vertex-
Cover. Concerning on-line algorithms, they gave a 2-competitive algorithm for chains
with arbitrary capacities, a (c + 1)-competitive algorithm for arbitrary networks with
capacities bounded by c, and an O(

√
m)-competitive algorithm for arbitrary networks

with m edges and arbitrary edge capacities. Their algorithms are allowed to preempt
(reject) requests that have been accepted earlier. Furthermore, they presented an off-line
O(logm)-approximation algorithm for arbitrary graphs and arbitrary edge capacities.

2 General Networks

First, let us consider the problem CallControlPre-k for networks with unit edge
capacities, i.e., c(e) = 1 for all e ∈ E. A set of accepted paths is feasible if and only
if the paths are pairwise edge-disjoint. The conflict graph of a given set P of paths is
the graph H = (P,E′) with a vertex for each path in P and an edge between two
vertices if the corresponding paths share an edge. Then, any feasible subset A ⊆ P is
an independent set inH , and its complement P \A is a vertex cover inH , i.e., a subset
of the vertices such that each edge has at least one endpoint in the subset.

Therefore, checking whether there exists a feasible solution that rejects at most k
paths is equivalent to determining whether H contains a vertex cover of size at most
k. The vertex cover problem is well known to be FPT [7]; the best known algorithm
so far has running time O(kn + 1.271kk2) for deciding whether a graph on n nodes
has a vertex cover of size at most k [6]. Thus, CallControlPre-k is FPT for arbitrary
graphs with unit edge capacities.

Now assume that the edge capacities are bounded by a constant c. If a set of paths
violates some edge e, then we can obtain a set Prej of rejection candidates by taking
an arbitrary set of c(e) + 1 paths containing e. Thus we obtain a search tree of depth
k and branching degree at most c + 1. The size of this tree is O((c + 1)k). The task
to be carried out at each node of the search tree is determining whether there exists a
violated edge e and, if so, picking c(e) + 1 paths through e to obtain the set Prej. This
can easily be done in polynomial time. Hence, there is an algorithm with running-time
O((c + 1)k · poly(|I|)) for CallControlPre-k in arbitrary graphs provided that all
edge capacities are bounded by the constant c. This discussion leads to the following
proposition.

Proposition 1. CallControlPre-k is fixed-parameter tractable for arbitrary directed
or undirected graphs if the edge capacities are bounded by a constant.
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Proposition 1 leaves open the cases where the edge capacities can be arbitrarily large
and/or the paths are to be determined by the algorithm. We show that these cases are
unlikely to be FPT for arbitrary graphs. Our hardness results apply even to series-parallel
graphs, a very restricted subclass of planar graphs with treewidth at most two [3].

Proposition 2. If the edge capacities can be arbitrarily large, CallControlPre-k is
W [2]-hard even for series-parallel graphs.

Hardness forW [t] for some t ≥ 1 is considered strong evidence that a problem is not
FPT [7]. The proof of Proposition 2, which is omitted due to lack of space, shows that
HittingSet-k is a special case of CallControlPre-k. An instance of HittingSet-k
consists of a family S = {S1, . . . , Sm} of subsets of a ground setU = {1, 2, . . . , n} and
a parameter k. The problem is to determine whether there is a subset T ⊆ U , |T | ≤ k,
such that T “hits” all sets in S, i.e., T ∩ Si �= ∅ for all 1 ≤ i ≤ m. HittingSet-k is
W[2]-complete [7].

If a problem is FPT, this implies that the problem is polynomial for each fixed value
of the parameter k. Therefore, the following proposition shows that CallControl-k is
very unlikely to be FPT even for series-parallel graphs.

Proposition 3. CallControl-k is NP-hard for k = 0 in series-parallel graphs with
unit edge capacities.

Proof. For k = 0, the problem CallControl-k with unit edge capacities reduces to
checking whether all requests can be accepted and routed along edge-disjoint paths. This
edge-disjoint paths problem has been proved to be NP-hard for series-parallel graphs
by Nishizeki, Vygen and Zhou [15]. ��

In order to get FPT results not covered by Proposition 1, we must allow arbitrary
capacities or arbitrary (not pre-determined) paths. In view of Propositions 2 and 3,
however, we have to restrict the class of graphs that we allow as network topologies.
Therefore, we consider CallControl-k in tree networks with arbitrary edge capacities
and CallControl-k in trees of rings with unit edge capacities.

3 Trees with Arbitrary Capacities

In this section, we develop FPT algorithms for trees with arbitrary edge capacities. First,
we discuss the algorithm for undirected trees in detail. Then we explain how the result
can be adapted to bidirected trees. Note that CallControl and CallControlPre are
equivalent in trees, because paths are uniquely determined by their endpoints.

We remark that CallControl can be solved optimally in polynomial time for chain
networks (using techniques of [5]) and for undirected trees with unit edge capacities,
but is NP-hard for trees already if edge capacities in {1, 2} are allowed [10].

The Undirected Case. Let an instance of CallControl-k in trees be given by an
undirected tree T = (V,E) with edge capacities c : E → IN, a set P of paths in the tree,
and an integer parameter k ≥ 0. Consider the tree to be rooted at an arbitrary node. If
k = 0, the problem reduces to checking whether the set P is feasible, which can be done
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efficiently. So we assume from now on that k > 0. If there is no violated edge, answer
YES and output P as a solution. Otherwise, let e be a violated edge such that there is
no other violated edge in the subtree below e. In what follows, we refer to such an edge
as a bottom-most violated edge. The algorithm determines a set Pe of paths containing
edge e such that |Pe| is small enough (more precisely, |Pe| ≤ 2k) to be taken as the set
of rejection candidates for the bounded search tree technique. Then the algorithm can
branch for each p ∈ Pe and check recursively whether there exists a solution for P \{p}
that rejects at most k−1 paths. At depth k of the search tree, k paths have been rejected,
and we will have either found a feasible solution or no solution with k or less rejections
exists.

Now we show how the algorithm determines a set Pe of rejection candidates satisfy-
ing |Pe| ≤ 2k. Since e is a violated edge, at least one of the paths inP that contain emust
be rejected. Moreover, it is easy to see that there exists a feasible solution that rejects
a path through e which contains a maximal set of violated edges; given any feasible
solution, we can construct one of the same cardinality and with the desired property by
replacing a non-maximal path with a maximal one. Therefore, the algorithm needs to
consider only paths that contain a maximal set of violated edges as rejection candidates.

Since we consider only one rejection at a time, we can restrict the set of rejection
candidates even further by considering only one representative from each set of paths
that contain the same set of violated edges. So let Pe be a set of paths that contain
e satisfying the properties defined above (i.e., each path containing a maximal set of
violated edges, and no two paths containing the same set of violated edges).

For each path p ∈ Pe, let ep be the violated edge on p that is farthest from e, and let
Ee = {ep | p ∈ Pe} be the set of all such edges ep. (If e is the only violated edge on a
path p ∈ Pe, we let ep = e. This can happen only if |Pe| = 1.) Note that |Ee| = |Pe|.

Lemma 1. No path in P can contain three edges in Ee.

Proof. Assume to the contrary that there is a path f in P that contains three edges inEe,
say, ep, eq, and er. Without loss of generality, assume that eq is between ep and er on
f , as shown in Fig. 1. Note that f cannot contain e, because otherwise the path q would
not contain a maximal set of violated edges.

All three paths p, q, and r must meet f at the same node, for otherwise we would
have a cycle. Assume that they meet f at a node between ep and eq. Then eq is contained
in r. Since eq is the farthest violated edge in q and e is a bottom-most violated edge,
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path q does not contain a maximal set of violated edges, a contradiction to the choice
of Pe. The cases where the three paths p, q, and r meet f in a different node lead to a
contradiction as well. ��
Lemma 2. If there exists a solution to the given instance of CallControl-k that
rejects at most k paths, then there can be at most 2k paths in Pe.

Proof. For every edge inEe, any feasible solution must reject at least one path containing
that edge. Since each path in P can contain at most two edges in Ee by Lemma 1, a
feasible solution must reject at least |Ee|/2 = |Pe|/2 paths. Therefore, for a feasible
solution with at most k rejections to exist, there can be at most 2k paths in Pe. ��

The depth of the search tree is at most k. In a node of the search tree where i paths
are already rejected, the algorithm needs to consider at most 2(k − i) branches; by
Lemma 2, if |Pe| > 2(k − i), there cannot be a feasible solution in the subtree below
the current node. Thus the size of the search tree is bounded by O(2kk!). Finding a
bottom-most violated edge e and determining the set of paths Pe can obviously be done
in polynomial time. Thus, the algorithm solves the problem CallControl-k in time
O(2k · k! · poly(|I|)), and we obtain the following theorem.

Theorem 1. There is an FPT algorithm for CallControl-k in undirected tree net-
works with arbitrary edge capacities.

The Bidirected Case. The FPT algorithm for call control in undirected trees can easily be
adapted to bidirected trees, yielding even a better running-time. The algorithm proceeds
as in the undirected case by picking a bottom-most violated edge e (which is now a
directed edge) and determining a set Pe of rejection candidates that contain e and a
maximal set of violated edges. The setEe is defined as before. Since the paths and edges
are now directed, it is easy to see that no path in P can contain two edges in Ee (see
Fig. 2). Therefore, if after rejecting i paths, there are more than k − i paths in Pe, there
does not exist a feasible solution in the subtree of the current node of the search tree.
Thus the size of the search tree can now be bounded byO(k!) and the total running time
is O(k! · poly(|I|)).
Theorem 2. There is an FPT algorithm for CallControl-k in bidirected tree networks
with arbitrary edge capacities.

4 Trees of Rings with Unit Capacities

In this section, we present the first FPT results for an NP-hard call control problem
where the paths for the requests must be determined by the algorithm. We restrict the
network topology to be a tree of rings, and we require that all edges have capacity 1. We
obtain FPT algorithms for undirected trees of rings and bidirected trees of rings.

The Undirected Case. Let an instance of CallControl-k in trees of rings with unit
edge capacities be given by an undirected tree of rings T = (V,E), a set S of connection
requests, and an integer parameter k ≥ 0. The algorithm must determine if there exists
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Fig. 3. A tree of rings.
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Fig. 4. Chords that are parallel or not parallel.

a subset S′ ⊆ S such that |S \ S′| ≤ k and the requests in S′ can be routed along
edge-disjoint paths in T . Again, we employ the technique of bounded search trees.

First, let us mention some simple facts about paths in trees of rings (see Fig. 3 for
an example of a tree of rings). For any request (u, v), all undirected paths from u to v
contain edges of the same rings. For each ring that a path from u to v passes through
(i.e., contains an edge of that ring), the node at which the path enters the ring (or begins)
and the node at which the path leaves the ring (or terminates) is uniquely determined
by the endpoints of the path. Thus, a request (u, v) in a tree of rings can be viewed as
a combination of subrequests in all rings that a path from u to v passes through. So, a
set of requests can be routed along edge-disjoint paths if and only if all subrequests of
the requests can be routed along edge-disjoint paths in the individual rings of the tree
of rings. Hence, before we tackle the problem in trees of rings, we need to investigate
conditions for a set of requests in a ring being routable along edge-disjoint paths.

Let R be a ring. Imagine R drawn as a circle in the plane, with its nodes distributed
at equal distance along the circle. A (sub)request (u, v) between two nodes in R can
be represented as a straight line segment joining u and v. We call these line segments
chords and use the terms chord and request interchangeably if no confusion can arise.
Two chords are said to be parallel if (1) they do not intersect, or (2) they intersect at a
node in R, or (3) they are identical (see Fig. 4). If two chords are parallel then we can
assign edge-disjoint paths to the corresponding requests and these paths are uniquely
determined.

A cut in a ring R is a pair of edges in the ring. A request crosses a cut if each of the
two possible paths connecting the endpoints of the request contains exactly one of the
edges in the cut.

Lemma 3. Given a ringR and a set S of requests inR, the requests in S can be routed
along edge-disjoint paths if and only if (i) the chords of the requests in S are pairwise
parallel and (ii) no cut is crossed by three requests.

Proof (sketched). If |S| = 1, the lemma is trivially true. Assume |S| ≥ 2. The “only if”
part is obvious. To prove the “if” part, assume that S satisfies (i) and (ii). Consider any
two requests (u, v) and (w, x) in S. By (i), they are parallel and can thus be assigned
edge-disjoint paths p1 and p2 in a unique way. If there is a third request (y, z) in S, one
can show that y and z must lie in the same chain of R \ (p1 ∪ p2) and so there is a path
p3 from y to z that is disjoint from p1 and p2. This argument can be repeated for all
remaining requests, giving a construction of disjoint paths for all requests in S. ��
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With the result of Lemma 3 at our disposal, we are ready to obtain the FPT algorithm
for CallControl-k in trees of rings with unit edge capacities. If k = 0, the algorithm
checks if the conditions of Lemma 3 hold for each ring of the tree of rings. If this is
the case, an edge-disjoint routing can be computed efficiently (the proof of Lemma 3
is constructive) and the algorithm answers YES. Otherwise, there is no edge-disjoint
routing and the algorithm answers NO.

Now assume that k > 0. If the condition of Lemma 3 holds for the subrequests in
each ring of the tree of rings, the answer is YES and an edge-disjoint routing for all
requests is obtained. Otherwise, there are either two subrequests in a ring that are not
parallel, so that at least one of the two must be rejected, or there are three subrequests
crossing a cut in some ring, so that at least one of the three must be rejected. In the former
case, we get a set of two rejection candidates, in the latter case, we have three rejection
candidates. For each request r in the set of rejection candidates, we check recursively
whether there exists a solution rejecting at most k−1 requests from S \{r}. The degree
of any node in the search tree is at most 3. Since the depth of the search tree is bounded
by k, the size of the search tree isO(3k). As the conditions of Lemma 3 can be checked
easily in polynomial time at each node of the search tree, we obtain an FPT algorithm
with running-time O(3k · poly(|I|)).
Theorem 3. There is an FPT algorithm for CallControl-k in undirected trees of
rings with unit edge capacities.

The above discussion shows also that CallControl-k in undirected trees of rings
with unit edge capacities can be seen as an instance of the problem HittingSet-k in
which each set has cardinality at most 3, i.e., of the 3-HittingSet-k problem: the ground
set U consists of the requests S, and the family S of subsets of U consists of all sets of
two requests whose subrequests in some ring are not parallel and all sets of three requests
whose subrequests cross a cut in some ring. For 3-HittingSet-k, an FPT algorithm with
running-time O(2.311k + n), where n is the size of the input, is given in [14]. Thus, by
transforming a given instance of CallControl-k into an instance of 3-HittingSet-k,
we obtain an FPT algorithm for CallControl-k in undirected trees of rings with unit
edge capacities that runs in time O(2.311k + poly(|I|)).
The Bidirected Case. We turn to bidirected trees of rings. Each accepted request (u, v)
must now be assigned a directed path from u to v. As in the undirected case, a set of
requests is feasible if and only if all subrequests are feasible in the individual rings.
Consider a set S of (sub)requests in a ring. We proceed by doing a case analysis. In each
case, we either find that all requests can be routed along edge-disjoint paths, or we are
able to identify (in polynomial time) a set Srej of requests such that at least one request
in Srej must be rejected in any feasible solution. The cardinality of Srej is at most 5. The
details of the case analysis are omitted due to lack of space. We can perform this case
analysis for the subrequests of all requests in each individual ring of the tree of rings.
Thus, we can apply the bounded search tree technique and get an FPT algorithm for
CallControl-k in bidirected trees of rings with unit edge capacities. The size of the
search tree can be bounded by O(5k), so the running-time is O(5k · poly(|I|)).
Theorem 4. There is an FPT algorithm for CallControl-k in bidirected trees of rings
with unit edge capacities.
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5 Conclusion

We have considered parameterized versions of call admission control problems. Since
the number of rejected requests can often be expected to be small in practice, we have
taken this number as the parameter. For arbitrary networks, the problem was shown to
be fixed-parameter tractable if the paths are pre-determined and the edge capacities are
bounded by a constant. If either of these restrictions is removed, it was shown that even
for series-parallel graphs, the existence of FPT algorithms is unlikely. Hence, we studied
trees and trees of rings as network topologies. We gave FPT algorithms for trees with
arbitrary capacities and for trees of rings with unit edge capacities if the paths are not
pre-determined. Both algorithms can be adapted to the bidirected case.
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Abstract. Network design problems, such as generalizations of the
Steiner Tree Problem, can be cast as edge-cost-flow problems (a.k.a.
fixed-charge flows). We prove a hardness result for the Minimum Edge
Cost Flow Problem (MECF). Using the one-round two-prover sce-
nario, we prove that MECF in directed graphs does not admit a
2log1−ε n-ratio approximation, for every constant ε > 0, unless NP ⊆
DTIME(npolylogn) . A restricted version of MECF, called Infinite Ca-
pacity MECF (ICF), is defined as follows: (i) all edges have infinite capac-
ity, (ii) there are multiple sources and sinks, where flow can be delivered
from every source to every sink, (iii) each source and sink has a supply
amount and demand amount, respectively, and (iv) the required total
flow is given as part of the input. The goal is to find a minimum edge-
cost flow that meets the required total flow while obeying the demands
of the sinks and the supplies of the sources. We prove that directed ICF
generalizes the Covering Steiner Problem. We also show that the undi-
rected version of ICF generalizes several network design problems, such
as: Steiner Tree Problem, k-MST, Point-to-point Connection Problem,
and the generalized Steiner Tree Problem. An O(log x)-approximation
algorithm for undirected ICF is presented, where x denotes the required
total flow. We also present a bi-criteria approximation algorithm for di-
rected ICF. The algorithm for directed ICF finds a flow that delivers half
the required flow at a cost that is at most O(nε/ε5) times bigger than the
cost of an optimal flow. The running time of the algorithm for directed
ICF is O(x2/ε · n1+1/ε). Finally, randomized approximation algorithms
for the Covering Steiner Problem in directed and undirected graphs are
presented. The algorithms are based on a randomized reduction to a
problem called 1

2 -Group Steiner. This reduction can be derandomized to
yield a deterministic reduction. In directed graphs, the reduction leads
to a first non-trivial approximation algorithm for the Covering Steiner
Problem. In undirected graphs, the resulting ratio matches the best ratio
known [KRS01], via a much simpler algorithm.
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1 Results

We improve the hardness result of Krumke et al. [KNS+98] for approximating
the Minimum Edge Cost Flow Problem (MECF) (see [GJ79, ND32]) using a re-
duction from one-round two-prover protocols (see [AL96]). We show that MECF
with uniform edge-prices does not admit a 2log

1−ε n-ratio approximation for any
constant ε > 0 unless NP ⊆ DTIME(npolylogn) . This hardness holds even if
only two edge capacity values are allowed, namely, c(e) ∈ {1, poly(n)}, for every
e.

We present a bi-criteria approximation algorithm for directed ICF showing
that the results for the directed Steiner problem can be essentially generalized to
this much more general problem. First, we present an algorithm that finds a flow
with half the required total flow, the cost of which is O(nε/ε5) times the cost of
an optimal flow. The running time of the algorithm is O(x2/ε · n1+1/ε), where x
denotes the requires total flow. (Scaling is applied when the total flow x is non-
polynomial.) This algorithm is a greedy algorithm and it generalizes the ideas
in the algorithms of Charikar et al. [CCC+99] and Kortsarz & Peleg [KP99]. A
bi-criteria algorithm for directed ICF is presented that increases the flow amount
to (1− ε′) ·x with a multiplicative overhead both in the running time and in the
approximation ratio that is exponential in 1/ε′. For a constant ε′, this implies
more total flow with the same asymptotic running time and approximation ratio.

We present an O(log x)-approximation algorithm for undirected ICF, where
x is the required total flow. Our algorithm is based on a modification of the
approximation algorithm of Blum et al. [BRV99] for the node-weighted k-Steiner
Tree Problem. An interesting open question is whether undirected ICF admits
an O(1)-ratio approximation algorithm. Such an approximation algorithm would
give a uniform O(1)-approximation both for k-ST, and for the generalized Steiner
problem (just to give two examples).

We present the first non-trivial approximation algorithm for the Directed
Covering Steiner Problem. The randomized algorithm has an approximation
ratio of O(n

ε

ε2 · log n) and a running time Õ(n3/ε). Derandomization, using 2-
universal hash functions, is possible at a quadratic increase in the running time.
Our randomized algorithm is based on a randomized reduction to a problem
called 1

2 -Group Steiner. In the 1
2 -Group Steiner Problem the objective is to find

a min-cost subgraph that contains a vertex of gi for at least half the groups. We
solve the 1

2 -Group Steiner Problem in the directed case using a reduction to the
directed Steiner Tree Problem approximated by [CCC+99].

The reduction from the Covering Steiner Problem to the 1
2 -Group Steiner

Problem is used to obtain a simple algorithm for the Undirected Covering Steiner
Problem. Our approximation ratio is the same as [KRS01] but our algorithm is
much simpler.

2 Problem Definitions

A network is a 4-tuple N = (V,E, c, p) where (V,E) is a graph, c(e) are edge
capacities, and p(e) are edge prices. Given a source s and the sink t, an st-flow
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is a function defined over the edges that satisfies capacity constraints, for every
edge, and conservation constraints, for every vertex, except the source and the
sink. The net flow that enters the sink t is called the total flow, and is denoted
by |f |.

The support of a flow f is the set of edges that deliver positive flow, namely,
the set {e ∈ E : f(e) > 0}. We denote the support of f by χ(f). The price of
a subset of edges F ⊆ E is the sum of the prices of edges in F . We denote the
price of F by p(F ). The price of a flow f in the fixed cost model is p(χ(f)).

The following problem is NP-Complete [GJ79, ND32].

The Minimum Edge-Cost Flow Problem (MECF).

Instance:

– A network N = (V,E, c, p) consisting of a (directed or undirected) graph
(V,E), edge capacities c(e), and edge prices p(e).

– A budget P .

Question: Is there a maximum st-flow f in N such that p(χ(f)) ≤ P?
Instead of considering a single source and sink, one may consider a situation

where there is a set of sources S ⊆ V and a set of sinks T ⊆ V . The set of
candidate flow paths consists of the set of paths from a source s ∈ S to a sink
t ∈ T . This version is reducible to an st-flow problem.

A supply amount c(s) of a source s ∈ S is an upper bound on the net flow
deliverable by s. A demand amount c(t) of a sink t ∈ T is an upper bound on
the net flow absorbed by t.

The Infinite Capacities version of MECF is defined as follows.

The Infinite Capacities Minimum Edge-Cost Flow Problem (ICF).

Instance:

– A network N = (V,E, p) consisting of a (directed or undirected) graph
(V,E), and edge prices p(e). Every edge has an infinite capacity.

– A set of sources S ⊆ V and a set of sinks T ⊆ V . Each source s ∈ S has a
positive integral supply amount c(s). Each sink t ∈ T has a positive integral
demand amount c(t).

– A required integral total flow x and a budget P .

Question: Does there exist a flow f such that |f | ≥ x and p(χ(f)) ≤ P?
Observe that, by a simple reduction, the in-degree of sources and the out-

degree of sinks can be zeroed. This can be achieved by adding dummy nodes
that act as sources and sinks.

We refer to a flow f with total flow x as an x-flow. We denote by f∗(N,x)
an optimal x-flow for an ICF instance (N,x). Namely, f∗(N,x) is an x-flow
with minimum support cost among the set of x-flows in N . We denote the cost
of an optimal x-flow in N by p∗(N,x), namely, p∗(N,x) = p(χ(f∗(N,x))). We
reformulate ICF as a search problem of finding an optimal x-flow (hence an ICF
instance is a pair (N,x) and the budget P is not part of the input).
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The Unit ICF Problem (U-ICF). The unit demands and supplies version of ICF
(U-ICF) is defined for ICF instances in which c(s) = 1, for every source s ∈ S,
and c(t) = 1, for every sink t ∈ T .

3 Preliminaries

Reduced network Nf . Consider an ICF instance (N,x) and an integral flow f
in N . Suppose that |f | < x. Let Nf be the network obtained from N by the
following changes:

1. The supply of every source is decreased by the amount of flow it supplies in
f . Similarly, the demand of every sink is decreased by the amount of flow it
receives in f .

2. The price of every edge in χ(f) is set to zero.

Observe that the reduced network Nf does not have reverse edges as defined in
residual networks when computing a max-flow. Indeed, there the capacity of a
reverse edge is finite (since the capacity of a reverse edge equals the amount of
flow along the corresponding edge), but finite capacities are not allowed in ICF.

Bi-criteria approximation algorithm. An algorithm A is an (α, β) bi-criteria
approximation for ICF if, given (N,x), it computes a flow f that satisfies the
following two conditions:

|f | ≥ α · x
p(χ(f)) ≤ β · p∗(N,x).

Junction trees. A directed graph is an arborescence rooted at r if its under-
lying graph is a tree, the in-degree of the root r is zero, and there is a directed
path from the root r to all the other vertices. A reverse arborescence rooted at
r is a directed graph such that the directed graph obtained by reversing the
directions of all the arcs is an arborescence.

Consider a U-ICF instance (N,x) with a set of sources S and a set of sinks
T . A junction tree rooted at r is an edge induced subgraph JT of N such that:
(i) JT is the union of an arborescence G1 and a reverse arborescence G2 both
rooted at r. (ii) The leaves of G1 are sinks. (iii) The leaves of G2 are sources.
(iv) G1 and G2 have an equal number of leaves.

Observe that the total flow that can be shipped using the edges of a junction
tree JT equals the number of sources in JT .

The problem of finding a low cost junction tree is defined as follows:

The Minimum Cost Junction Tree Problem (Min-JT).

Instance:

– A network N = (V,E, p) consisting of a directed graph (V,E), and edge
prices p(e).

– A set S of sources and a set T of sinks.
– An integer x.

Goal: Find a min-cost junction tree JT with x sources (and sinks).
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We denote the cost of an optimal junction tree with x sources by JT ∗(N,x).
In [CCC+99] the k-Directed Steiner Problem (k-DS) is defined. In this prob-

lem the goal is to find a min-cost arborescence rooted at r that spans at least
k terminals from a given set of terminals. The best known approximation algo-
rithm for k-DS is given in [CCC+99] where the following theorem is proved (see
also [Z97] for earlier results).
Theorem 1. [CCC+99] 1 For any ε > 0 there exists a kε/ε3-ratio, O(k2/ε ·
n1/ε)-time approximation algorithm for k-DS.

Min-JT generalizes k-DS, and therefore, it is not easier to approximate than
Set-Cover. An approximation algorithm for Min-JT is obtained as follows. Guess
the root r of the junction tree. Apply a k-DS approximation algorithm on the
graph with sinks as terminals and a k-DS approximation algorithm on the re-
versed graph with sources as terminals. We summarize this approximation algo-
rithm in the following corollary.

Corollary 1. For any ε > 0 there exists an xε/ε3-ratio, O(x2/ε · n1+1/ε)-time
approximation algorithm for Min-JT.

The forest lemma. The following lemma shows that we may restrict flows
in ICF to forests.
Lemma 1. For every ICF instance (N,x), there exists an optimal x-flow f∗

such that the underlying graph of the graph induced by the edges of χ(f∗) is a
forest.
The following assumption is based on Lemma 1.

Assumption 2 The underlying graph of the support of an optimal x-flow is a
tree.

We may assume that the underlying graph is a tree rather than a forest by the
following modification. Add a new node v with zero in-degree and add zero cost
edges from v to all the other nodes. A subset of these edges can be used to glue
the forest into a tree without increasing the cost of the support. Although these
glue edges do not deliver flow, we may regard them as part of the support since
their cost is zero.

A decomposition lemma. Assumption 2 allows us to restrict the search to
trees. A subtree T ′ of a tree T is said to have an articulation vertex r, if every
path from a node in T ′ to a node in T − T ′ traverses the node r. The following
decomposition lemma is used for recursing when optimal x-flows avoid junction
trees.
Lemma 2. [BRV99,KP99] Let T be a tree with edge costs p(e). Let p(T ) denote
the sum of the edge costs of edges in T . Let S be a subset of vertices in T , and
k ≤ |S|. There exists a sub-tree T ′ ⊆ T that has an articulation vertex such that

|T ′ ∩ S| ∈ [k, 3k], and
p(T ′)
|S ∩ T ′| ≤

p(T )
|S| .

1 This ratio is larger by an 1/ε factor than the one claimed in [CCC+99]. The difference
is due to an error in [Z97]
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4 An Approximation Algorithm for U-ICF: Directed
Networks

In this section we present a bi-criteria approximation algorithm for U-ICF that
achieves an ( 12 , O

(
xε

ε5

)
)-approximation ratio. The algorithm only finds an x/2-

flow due to monotonicity (see full paper). The running time of the algorithm is
O
(
x2/ε · n1+1/ε

)
which n times the running time of the Charikar et al. [CCC+99]

algorithm. Our algorithm and its analysis are closely related and generalize the
ideas from the [KP99] and [CCC+99] algorithms. In the full paper we show how
to use this algorithm to approximate ICF with only a negligible loss in the ratio.

Notation. Fix 1/3 > ε > 0. We denote the approximation ratio for the Directed
k-Steiner Trees by τ(k), namely, τ(k) = kε/ε3. The density of a flow f is the
ratio p(χ(f))

|f | . We denote the density of a flow f by γ(f).
The algorithm. The approximation algorithm Find-Flow for U-ICF is listed

in Figure 1. Algorithm Find − Flow(N, d, t) finds a d-flow f in N . The al-
gorithm computes a flow by computing a sequence of augmenting flows. The
parameter t is a threshold parameter used for a stopping condition of the re-
cursion. Note that ε is a parameter that effects the approximation ratio and
the running time. Algorithm Find-Flow invokes two procedures. The first pro-
cedure is Min-W-Matching(N, d) that finds a d-flow that is d-approximate us-
ing a min-weight matching, as described in the full paper. The second pro-
cedure, Find-Aug-Flow(N ′, i), computes an augmenting flow ai in N ′ such
|ai| ∈ [ 1−ε

6 · i, 12 · i].
Approximation ratio. We prove the approximation ratio of Algorithm

Find − Flow by showing that the procedure Find-Aug-Flow(N ′, i) finds a flow
the density of which competes with the density of an optimal (i/ε)-flow in the
reduced network. Since the density is compared with an optimal flow in a re-
duced network, the analysis relies on monotonicity. In the full paper we prove
the following claim:

Claim. Let c = 3
ln 2 and ε < 1/3. Algorithm Find−Flow(N,x/2, τ(x)) finds an

x/2-flow f in N that satisfies

p(f)
p(f∗

x)
≤ τ(x) +

6
c · ε5 · x

c·ε = O

(
xc·ε

ε5

)
.

Time complexity. The following claim shows that the asymptotic running time
of Algorithm Find-Aug-Flow is n times bigger than that of the approximation
algorithm for the directed Steiner Problem.

Claim. The running time of algorithm Find-Aug-Flow(N, i) is O(i2/ε · n1+1/ε),
where n denotes the number of vertices in the network N .

The following claim summarizes the running time of Algorithm Find−Flow.

Claim. The running time of algorithm Find−Flow(N, d, τ(d)) isO(d2/ε·n1+1/ε),
where n denotes the number of vertices in the network N .
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Algorithm Find− Flow(N, d, t)

1. If d ≤ t then return (Min-W-Matching(N, d)).
2. else

a) a← Find-Aug-Flow(N, ε · d).
b) Return (a ∪ Find− Flow(Na, d− |a|, t)).

Algorithm Find-Aug-Flow(N ′, i)

1. Remark: τ(x) = xε/ε3.
2. If i ≤ τ(i/ε) then return (Min-W-Matching(N ′, i)).
3. else

a) For j = 0 to log1+ε
3

1−ε
do

i. i(j) = 1−ε
6 · (1 + ε)j · i.

ii. fj ← Find-Aug-Flow(N ′, i(j)).
b) fJT ← JT (N ′, i/6).
c) Let f be a flow with minimum density in {{fj}j , fJT }.
d) Return (f).

Fig. 1. Algorithm Find-Flow.

5 Improved Bi-criteria Approximation for U-ICF

In this section we present a bi-criteria algorithm for U-ICF that finds a (1 −
ε) · x-flow that is f(ε) · ρ-approximate given a (1/2, ρ)-bi-criteria approximation
algorithm for U-ICF. Note that although f(ε) is exponential in 1/ε, it is constant
if ε is. The running time required to increase the flow from an x/2-flow to an
(1 − ε) · x-flow is also exponential in 1/ε, which is again constant if ε is. The
improved algorithm will be discussed in the full paper.

6 An Approximation Algorithm for ICF: Undirected
Networks

In this section we present an O(log x)-approximation algorithm for ICF when
the network is undirected. We avoid the reduction to U-ICF to get a slightly
better approximation ratio. The algorithm and its analysis will be presented in
the full paper.

7 The Covering Steiner Problem

In this section we present a randomized approximation algorithm for the Cover-
ing Steiner Problem both in the undirected and the directed cases. The algorithm
is based on a randomized reduction of the Covering Steiner Problem to the 1

2 -
Group Steiner Problem.

The following theorem is proved in this section.



On Network Design Problems 325

Theorem 3. The undirected Covering Steiner Problem has an approximation
algorithm that finds an O(log n·log log n·log(maxi |gi|)·log(

∑
i di)) ratio solution.

The directed Covering Steiner Problem has a randomized approximation al-
gorithm that in time Õ(n3/ε) finds a cover that is O(log n · nε · 1

ε2 )-approximate
with high probability.

In the undirected case, this result matches the approximation-ratio of [KRS01]
and its main value is a significant simplification in comparison to [KRS01].

The 1
2 -Group Steiner Problem. In the 1

2 -Group Steiner Problem, the
input consists of a graph G = (V,E) with edge prices p(e) and q (disjoint)
subsets {gi}i of vertices. A tree T in G covers a set gi if T ∩ gi is not empty.
The goal in the 1

2 -Group Steiner Problem is to find a min-cost tree that covers
at least half the groups.

In the directed case, the 1
2 -Group Steiner Problem is reducible to the k-

Directed Steiner Problem. See the reduction of the Group Steiner Tree Problem
in [CCC+99]. This implies an approximation as in Theorem 1.

In the undirected case, the 1
2 -Group Steiner Problem can be approximated

modifying the approximation algorithm for the Group Steiner Problem of Garg et
al. [GKR98]. The modified algorithm has 3 stages:

First, a fractional relaxation is defined. The fractional relaxation is a min-cost
single-source multi-sink flow problem. We guess the root r of an optimal solution.
This root serves as the source. For every group gi, we define a commodity i and
a flow fi from r to gi (namely, the sinks are the nodes of gi). The total flow
|fi| is at most 1. The sum of total flows

∑
i |fi| is at least q/2. The max-flow

f(e) along an edge e equals maxi fi(e). The objective is to minimize the sum∑
e p(e) · f(e).
Second, following [GKR98], a rounding procedure for the above fractional

relaxation is applied when the graph is a tree. If the graph is a tree, then the
union of the supports

⋃
i χ(fi) induces a tree. Moreover, the directions of the

flows induce an arborescence. Let pre(e) denote the predecessor edge of the edge
e. The rounding first picks an edge e with probability f(e)/f(pre(e)), and then
keeps e provided that all the edges along the path from the root r to e are picked.

Observe that, for at least q/4 groups, |fi| ≥ 1/4. Otherwise the total flow is
less than q/2. In [GKR98], it is proved that if |fi| is constant, then the round-
ing procedure covers gi with probability Ω( 1

log |gi| ). Moreover, the expected cost
of the picked edges is the fractional optimum. It follows that O(log maxi |gi|)
iterations suffice to cover half the groups, and an O(log maxi |gi|) expected ap-
proximation ratio follows.

Finally, the graph is approximated by a tree using the tree-metric technique
of Bartal [B98]. The approximation by a tree increases the approximation ratio
by O(log n log log n). We point out that Charikar et al. [CCGGP-98] presented
a derandomization for an approximate tree metric and the above rounding tech-
nique.

It follows that in the undirected case the 1
2 -Group Steiner admits an O(log n ·

log log n ·maxi |gi|)-approximation. A randomized reduction. In this section
we present a randomized reduction of the Covering Steiner Problem to the 1

2 -
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Group Steiner Problem. This reduction essentially proves that for the group
Steiner and covering Steiner are equivalent with respect to approximation.

Given a Covering Steiner instance, consider an optimal tree T . For every
group gi, the tree T includes at least di vertices in gi. We randomly partition gi
into di bins. The jth bin in gi is denoted by gji . A bin gji is empty if T ∩ gji is
empty. The probability that a bin is empty is less than 1/e (as this corresponds
to throwing di balls to di bins). Thus, the expected number of empty bins is
less than

∑
i di/e. We consider this randomized reduction to be successful if

the number of empty bins is less than
∑
i di/2. The Markov Inequality implies

that the reduction is successful with a constant probability. We may decrease
the probability of a failure to a polynomial fraction by repeating the reduction
Θ(log n) times.

Observe that if the randomized reduction is successful, then the reduction
yields a 1

2 -Group Steiner instance with a solution, the cost of which is at most
the cost of T .

The 1
2 -Group Steiner approximation algorithm finds a tree that covers half

of the total demands. After O(log(
∑
i di)) = O(log n) iterations, all the groups

are covered. The claimed ratio follows.
Derandomization. The randomized reduction can be derandomized using

2-universal hash functions [MR95]. The derandomization incurs a quadratic in-
crease in the running time.

8 A Hardness Result for MECF

It is natural to ask if a strong lower bound on the approximability of ICF holds.
We leave this question open. However, we try to make a first step toward this
direction, by giving a strong lower bound for MECF. In addition, the study of
MECF is interesting by its own right, for the many important applications of
this problem.

Theorem 4. The Minimum Edge-Cost Flow Problem with uniform edge-prices
does not admit a 2log

1−ε n-ratio approximation for any constant ε > 0 unless
NP ⊆ DTIME(npolylogn) . This hardness holds even if only two edge capacity
values are allowed, namely, c(e) ∈ {1, poly(n)}, for every e.

Observe that: (i) Non-uniform polynomial edge prices are easily reducible to
uniform edge prices. The reduction simply replaces every edge (u, v) by a path
of length p(u, v). (ii) If edge capacities are uniform, then MECF becomes a min-
cost flow problem, and hence, polynomial. The proof of this theorem is given in
the full paper.
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Abstract. When messages, which are to be sent point-to-point in a net-
work, become available at irregular intervals, a decision must be made
each time a new message becomes available as to whether it should be
sent immediately or if it is better to wait for more messages and send
them all together. Because of physical properties of the networks, a cer-
tain minimum amount of time must elapse in between the transmission
of two packets. Thus, whereas waiting delays the transmission of the cur-
rent data, sending immediately may delay the transmission of the next
data to become available even more.
We consider deterministic and randomized algorithms for this on-line
problem, and characterize these by tight results under a new quality
measure. It is interesting to note that our results are quite different from
earlier work on the problem where the physical properties of the networks
were emphasized less.

1 Introduction

We consider point-to-point transmission of data in a network. Transmission of
data is in the form of packets, which contain some header information, such as
the identification of the receiver and sender, followed by the actual data. For
obvious reasons, data is also referred to as messages.

When data to be sent becomes available a little at a time at irregular intervals,
the question arises on the sending side whether to send a given piece of data
immediately or whether to wait for the next data to become available, such that
they can be sent together. Sending the data together is referred to as Packet
Bundling.

The reason why this is at all an issue is because of physical properties of the
networks which imply that after one packet has been sent, a certain minimum
amount of time must elapse before the next packet may be sent. Thus, whereas
waiting for more data will certainly delay the transmission of the current data,
sending immediately may delay the transmission of the next data to become
available even more. In addition to reducing the overall transmission delay when
bundling messages, we also reduce the bandwidth requirement of the sender,
� Supported in part by the Danish Natural Science Research Council (SNF) and in
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since overhead due to packet headers and network gap is reduced. The problem
of making these decisions is referred to as the Packet Bundling Problem.

A very similar problem, the Dynamic TCP Acknowledgment Problem, was
introduced in [4]. Since it usually does not make sense to delay the transmission
of large amounts of data, the focus for packet bundling is small messages, and
acknowledgments to the receipt of packets are examples of such. The problem
was studied as an on-line problem [2] with the cost function being the number
of packets sent plus the sum of the latencies for each message. The latency of
a message is the time from when the data is available until it is sent. This is
known as the flow-time cost measure. An exact characterization of the optimal
algorithms for the deterministic and randomized case can be found in [4] and [6],
respectively.

The problem we consider is different from the Dynamic TCP Acknowledg-
ment Problem in two ways: we build on top of an accepted model for distributed
computing and, related to this decision, we also choose a different cost function.

To our knowledge, the currently most widely accepted model of computation
for distributed computing is now the so-called LogP model [3], which is tractable
from a theoretical point of view, but also realistic enough that good theoretical
algorithms are likely to be good in practice as well; on many different platforms.
The ingredients in the model are the latency L, the processor overhead in sending
messages o, the gap imposed by the network between messages g, and the number
of processors P . We refer to the original paper for a complete treatment.

Comparing the theoretical work of [4,6] with the model assumptions of [3],
the most noticeable difference is the lack of the gap or overhead parameter
in [4,6]. In their work, they allow packets to be sent arbitrarily small distances
apart. This significantly influences the results. With decreasing intervals between
messages, the latency of each packet contributes to the cost function. Thus, a
good algorithm would send frequently; very likely faster than possible in a real
world scenario.

We base our theoretical work on the LogP model, which means we respect
the physical gap and overhead. At times when messages become available sep-
arated by very small time intervals, the cost function of [4,6] would impose an
unreasonable large penalty, if the decision is to delay transmission, which leads
us to consider another cost function: the sum of time intervals when at least
one unsent message is available. In our opinion, this measure is just as natural
and it has the significant advantage that good and bad algorithms can be distin-
guished. Using the flow-time cost function in the model where the physical gap
or overhead is respected does not lead to interesting results. In fact, it has been
shown [5] that any reasonable deterministic or uniform randomized algorithm
has a competitive ratio of exactly two, where an algorithm is called reasonable
if it does not postpone the transmission of a message by more than the sum of
the gap and overhead values.

We analyze natural families of deterministic and randomized algorithms for
the problem and find the best among these.
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2 Packet Bundling

Referring to the description of the LogP model from the introduction, since we
are considering the situation from the perspective of a single processor, there
is no reason to distinguish between gap and overhead, since the crucial value
is the maximum of the two. In the remainder of the paper, we normalize with
respect to this maximum, and assume that it is one (the important fact is that
it is different from zero).

Consider of the problem of a person A wishing to send small messages to
another person B. All messages have to be sent using the same, single messenger,
who uses one time unit for each delivery, i.e., when the messenger has left with
one or more messages (a packet), no messages can be sent for the next one time
unit.

When A decides to send a message, she can either send it immediately (as-
suming that the messenger is in), or wait some time (probably less than one) to
see whether other messages have to be sent, so that these messages can be sent
together.

The formal definition of the problem is as follows:

Definition 1. In the Packet Bundling Problem one is given a sequence σ =
a1, . . . , an of message arrival times and is asked to give a sequence of packet
times p1, . . . , pm at which packets of messages are sent. All messages are con-
sidered to be small, so that an unlimited number of messages can fit in a packet.
The set of messages sent in packet pi is denoted p̃i.

The packets should respect the following restrictions:

– All packet times should be at least one unit apart, i.e.,

∀i < m : pi+1 − pi ≥ 1.

– All messages should be sent no earlier than their arrival time, i.e.,

∀i ≤ n ∃j ≤ m : ai ∈ p̃j ∧ ai ≤ pj .

If a packet is sent at time pi, then the set of messages contained in the packet
are considered delivered at time pi + 1.

The cost function measures the total time elapsed while there are messages
which have arrived, but have not been delivered:

m∑
i=1

(
(pi + 1)−max{(pi−1 + 1), min

aj∈p̃i

aj}
)

where we define p0 = −∞. For convenience, we identify a message with its
arrival time, justifying the notation aj ∈ p̃i, assuming that these are distinct; if
not, p̃i can be thought of as a multiset.

We consider on-line algorithms. Thus, the algorithm is given the arrival times,
ai, one at a time, and has to decide the packet time at which the message
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is sent before the arrival time of the next message (if any) is revealed. If the
next message arrives before the previously chosen packet time, the algorithm is
allowed to reconsider its choice. For any algorithm, ALG, and input sequence,
σ, we let ALG(σ) denote the value of the cost function when ALG is run on σ.

The performance of deterministic algorithms is measured in comparison with
the optimal off-line algorithm, OPT , using the standard competitive ratio. OPT
knows the entire input sequence, when it decides when to send each packet, and
can hence achieve a lower cost.

An algorithm ALG is (strictly) c-competitive for a constant c, if for all input
sequences, σ, the following holds: ALG(σ) ≤ c · OPT (σ). The infimum of all
such values c is called the competitive ratio of ALG.

The performance of randomized algorithms is measured likewise, though us-
ing the expected competitive ratio, E[ALG(σ)], instead.

3 Deterministic Algorithms

In this section, we consider deterministic on-line algorithms for the problem.
Specifically, we consider the following family of algorithms:

Ak: When a message arrives, it is sent together with all mes-
sages (if any) arriving after this one at the earliest possible
time after k time units.

Without loss of generality, we assume that if Ak decides to let the messenger
leave at a certain point in time, and one or more messages arrive exactly when
he is about to leave, then he leaves without these new messages. If this is a
problem in a proof, then all messages arriving when the messenger leaves can be
considered to arrive ε ∈ o(1) time units later. Because of the infimum which is
taken in the definition of the competitive ratio, this will generally not alter the
result.

Theorem 1. The competitive ratio of Ak is:

R (Ak) =
{
1 + 1

1+k , if 0 ≤ k < ϕ̂

1 + k , if ϕ̂ ≤ k

where ϕ = 1+
√
5

2 ≈ 1.618 and ϕ̂ = ϕ− 1. The best ratio ϕ is achieved by Aϕ̂.

For a fixed algorithm, Ak, any input sequence for our problem can be divided
into phases as follows: Each phase starts with the arrival of the first message
after the previous phase has ended, and ends at the earliest possible time when
there are no messages to deliver and the messenger is in. In the special case
when the messenger returns at the exact same time a new message arrives (and
no other messages are due for delivery), the phase ends, and the new message
starts the next phase.

Lemma 1. For a worst-case sequence for Ak, we can assume that the messenger
carries only one message at a time.
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Proof. The short proof [5] is omitted here due to space restrictions. ��
Lemma 2. There exists a worst-case sequence for Ak where, if any messages
arrive when the messenger is out, they arrive exactly at the point in time where
the messenger leaves or returns.

Proof. We transform a worst-case sequence into a sequence with the desired
property which is still worst-case by repeatedly dealing with one message at a
time. The detailed proof [5] is omitted here due to space restrictions. ��
Proof (Proof of Theorem 1). Let us first consider the case when k ≤ 1:

By Lemmas 1 and 2, a worst-case sequence can be assumed to consist of
phases of the form σ1 = 0 or σn = 0, k, k + 1, k + 2, . . . , k + (n− 2), where n is
the number of messages. We separate each phase from the next by more than
two time units. By definition of Ak, this means that messages from different
phases cannot interfere, so relative costs can be calculated separately for each
phase.

Ak’s cost is Ak(σn) = k + n, whereas OPT ’s cost is

OPT (σn) =
{
k + n− 1 , if n > 1

1 , if n = 1

For n = 1, this gives a competitive ratio of Ak(σ1)
OPT (σ1)

= k + 1, and for n > 1, it

gives a competitive ratio of Ak(σn)
OPT (σn)

= k+n
k+n−1 , which is maximized for n = 2,

where Ak(σ2)
OPT (σ2)

= k+2
k+1 = 1 + 1

1+k .
Comparing the two cases, we find that σ2 is the worst possible for k ≤ ϕ̂,

whereas σ1 is worst for ϕ̂ ≤ k ≤ 1.
The case when 1 < k is similar [5], but omitted here due to space restrictions.

��
No deterministic algorithm has a competitive ratio better than Aϕ̂:

Theorem 2. Let ALG be any deterministic algorithm for the Packet Bundling
Problem. Then R (ALG) ≥ R (Aϕ̂) = ϕ.

Proof. We show how to construct an input sequence for ALG, where it has a
competitive ratio larger than or equal to ϕ.

The input will be given in a number of phases, each consisting of either one
or two messages. Between each phase there is a time interval large enough so
that neither ALG nor Aϕ̂ at the end of the interval has any messages to deliver,
nor are they at the moment delivering any messages.

Let us first consider phase σi, and let the first message in this phase arrive
at time ai1 . Let ki be the length of the time interval ALG waits before it sends
the message. Referring to Theorem 1, we know for Aki

whether a worst-case
phase for Aki has one or two messages. If it has two, another message is set to
arrive at time ai2 = ai1 + ki, if not, the phase ends.

Referring again to Theorem 1, the following holds for phase σi:

ALG (σi) ≥ Aki
(σi) ≥ Aϕ̂ (σi) ≥ ϕ OPT (σi)
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For ki ≤ ϕ̂, a phase consists of two messages. Whereas Aki sends the second
message immediately after having sent the first, we cannot be sure that ALG
does too. Thus, the costs of Aki and ALG are not necessarily the same (giving
inequality instead of equality between the first two terms).

Thus, for the entire input sequence, we have ALG (σ) ≥ ϕ OPT (σ). ��

4 Randomized Algorithms

We now consider a family of randomized algorithms solving the same problem.
Our deterministic algorithm family Ak chose a specific k and sent a message
at the earliest possible time after k time units. RAND∆ chooses the interval it
waits at random.

RAND∆: When a new message arrives and no other messages are
waiting, this message and later messages (if any) are sent
after a period of time chosen uniformly between 0 and ∆,
or at the first possible time hereafter.

We only consider algorithms with ∆ ≤ 1, since any algorithm, RAND∆, with
∆ > 1 easily can be seen to have a competitive ratio larger than RAND1.

One could also consider other families of randomized algorithms. Instead of
using a uniform distribution, we could have used an exponential distribution with
parameter ∆ varying from zero to infinity (as in [6]), or a cut-off exponential
distribution described by the density function: f(δ) = 1

∆e− δ
∆ /
(
1− e−1

)
for

δ ∈ [0, ∆], and zero otherwise. By careful examination both of these are for any
∆ easily shown to have a worse competitive ratio than the best member of the
RAND∆-family.

Without loss of generality, we will as with Ak assume that messages arriving
exactly at the randomly chosen time δ when the messenger leaves will not be
delivered immediately. For ∆ > 0, this does not make any difference to the
expected competitive ratio as δ is chosen uniformly at random in the range
[0, ∆]. For ∆ = 0, RAND0 and A0 are identical, and we can as for A0 consider
all messages arriving when the messenger leaves, as arriving o(1) time later
without any difference.

The competitive ratio for RAND∆ is given by the following theorem.

Theorem 3. The expected competitive ratio of RAND∆ is

R (RAND∆) =




1
2 +

3
2(∆+1) , if 0 ≤ ∆ ≤ 1

2
6∆2+4∆+1
4∆(1+∆) , if 1

2 ≤ ∆ ≤ 3

√
1
2

∆
2 + 1 , if 3

√
1
2 ≤ ∆ ≤ 1

The best ratio
3
√

1
2

2 + 1 ≈ 1.397 is achieved by RAND 3
√

1
2
.
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As for Ak, the theorem is shown by constructing a worst-case input sequence.
For a fixed RAND∆, any input sequence is divided into phases almost as previ-
ously: Each phase starts with the arrival of the first message after the previous
phase has ended, and ends exactly when, regardless of the random choices made,
there are definitely neither any messages waiting to be sent nor is the messenger
out. In the event that a new message arrives at the exact same time as the mes-
senger returns, and where no random choices would have made the messenger
arrive later, the phase ends, and the new message starts the next phase. Due to
linearity of expectation, it is enough to consider a worst case phase.
Lemma 3. Messages in a worst-case phase for RAND∆ are not further than
one apart, i.e., ∀i : ai+1 − ai ≤ 1.
Proof. Let ai be the first message such that ai+1 > ai+1. As all messages before
ai are at most one apart, OPT can send the messages a1, . . . , ai at time ai, so
that it does not incur any cost between time ai + 1 and ai+1. This means that
the arrival of message ai+1 (together with all other messages after message ai+1)
can be shifted to any later time without increasing the cost of OPT .

Since message ai leaves with the messenger at time ai + 1 at the latest,
message ai+1 arrives either when the messenger is out or when the messenger
has returned (and then no other messages will be waiting at that time). The cost
of RAND∆ is maximal if the randomly chosen waiting time after ai+1 is not
shared by time where the messenger is out, i.e., the cost is maximal if message
ai+1 arrives after the messenger returns, and thereby if the message is not in the
same phase, but in the next. ��
Lemma 4. For a worst case phase with messages σ = (a1 = 0), . . . , am, the
expected competitive ratio of RAND∆ is at most:

R(RAND∆) =
E[RAND∆(σ)]

OPT (σ)
≤ am + 2

am + 1
= 1 +

1
am + 1

Proof. Follows directly from Lemma 3. ��
The following lemma shows that a worst case phase with σ = (a1 =

0), . . . , am and am ≤ 1 can be assumed to contain at most two messages:
Lemma 5. For any phase with messages σ = (a1 = 0), . . . , am and am ≤ 1, the
phase obtained by looking only at the first and the last message of σ, σ′ = a1, am,
has an expected competitive ratio which is no better, i.e.,

E[RAND∆(σ)]
OPT (σ)

≤ E[RAND∆(σ′)]
OPT (σ′)

Proof. As am ≤ 1, we have OPT (σ) = OPT (σ′) = am + 1. For RAND∆, we
consider two cases. Assume that the messenger leaves with the first message (and
other messages if any) at time δ. If am < δ, then the cost of σ is the same as for
σ′. If δ ≤ am, then message am is not sent until the messenger leaves the next
time. This point of time is determined by δ, ∆, and the first message, ai, with
δ ≤ ai. If we leave out the messages before message am (but after message a1),
then on average the messenger does not leave earlier the second time. ��
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Furthermore, as the next lemma shows, if am ≤ 1, then in addition to assum-
ing that m ≤ 2, we can assume that am ∈ {0, ∆}. Note that for ∆ > 0, a2 = 0,
i.e., σ = 0, 0 has the same expected competitive ratio as σ = 0. For ∆ = 0, the
sequence σ = 0, 0 is the same as σ = 0, ∆.

Lemma 6. A worst case input sequence for RAND∆ with two messages, σ =
(a1 = 0), a2, where a2 ≤ 1, must have a2 ∈ {0, ∆}. This gives the following
lower bounds, of which at least one is an upper bound for all input sequences
σ = a1, . . . , am, where am − a1 ≤ 1:

σ = 0 has an expected competitive ratio of

1 +
∆

2
.

σ = 0, ∆ has an expected competitive ratio of c, where

c =

{
1
2 +

3
2(∆+1) , if ∆ ≤ 1

2
6∆2+4∆+1
4∆(∆+1) , if ∆ > 1

2

Proof. For σ = 0, the expected competitive ratio is E[RAND∆(σ)]
OPT (σ) = 1 + ∆

2 .
For σ = 0, a2, we prove the result by case analysis.
Let δ be the (now fixed) randomly chosen time at which RAND∆ sends the

first message (and the next, if a2 < δ). The expected cost of RAND∆ is:

k(a2, δ) = δ + 1 +




0 , if a2 ≤ δ
1 , if δ < a2 ≤ δ + 1−∆

1 + (a2+∆)−(δ+1)
2 , if δ + 1−∆ < a2 ≤ 1

This can be rephrased to a form which is more convenient in the proof:

k(a2, δ) = δ + 1 +



1 + (a2+∆)−(δ+1)

2 , if 0 ≤ δ < a2 +∆− 1
1 , if a2 +∆− 1 ≤ δ < a2
0 , if a2 ≤ δ ≤ ∆

(1)

The expected cost of RAND∆ is E[RAND∆ (σ)] = 1
∆

∫∆
0 k(a2, δ)dδ, whereas

OPT (σ) = a2+1, giving an expected competitive ratio of c (a2) =
∫∆
0

k(a2,δ)
∆(a2+1)

dδ.
Let us first consider the case when ∆ ≤ 1

2 . If 0 ≤ a2 ≤ ∆, then the first
case of k(a2, δ) in equation (1) becomes empty, since a2 +∆− 1 ≤ 0. Thus, the
expected competitive ratio is

c (a2) =

∫ a2

0 (δ + 2)dδ +
∫∆
a2
(δ + 1)dδ

∆(1 + a2)
=

∆2

2 +∆+ a2

∆(1 + a2)
=

1
∆

+
∆
2 + 1− 1

∆

1 + a2

Since ∆ ≤ 1
2 , this is easily seen to be maximal for a2 as small as possible, i.e.,

a2 = 0, and c(0) = ∆
2 + 1. Let us then consider the case when ∆ < a2 ≤ 1−∆:

c (a2) =

∫∆
0 (δ + 2)dδ
∆(1 + a2)

=
∆
2 + 2
1 + a2
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This is again maximal for a2 as small as possible, i.e., it is at most c (∆) =
1
2 +

3
2(1+∆) . The last case is when 1−∆ ≤ a2 ≤ 1:

c (a2) =

∫∆
0 (δ + 2)dδ +

∫ a2+∆−1
0

a2+∆−1−δ
2 dδ

∆(1 + a2)
=

∆
2 + 2 + (a2+∆−1)2

4∆

1 + a2

This is maximal for a2 as large as possible. We have c (1) = 3
8∆ + 1, which is,

however, smaller than the results found previously.
The case when ∆ > 1

2 is similar [5], but omitted due to space restrictions. ��
Lemma 7. Let σ = (a1 = 0), . . . , am be any worst-case phase for RAND∆ with
∆ > 1

2 and 1 < am ≤ 1 +∆, then

E[RAND∆(σ)]
OPT (σ)

≤ ∆2 + 2∆+ am − 1
∆(am + 1)

Proof. As before, let δ be the now fixed randomly chosen time at which RAND∆

sends message a1 (and all other messages arriving no later than time δ, if any).
The worst-case cost of RAND∆ can be described as follows:

w(δ) ≤
{

am + 2 , if δ + 1 < am
am +∆+ 1 , if am < δ + 1

This gives an expected worst-case cost for RAND∆ of at most 1
∆

∫∆
0 w(δ)dδ =

∆2+2∆+am−1
∆ , whereas OPT (σ) = am + 1, since σ is a worst-case phase. ��

Proof (Proof of Theorem 3). Lemma 6 states lower bounds for RAND∆ which
are the best possible for phases σ = (a1 = 0), . . . , am with am ≤ 1. By Lemma
4, if am > 1, a worst case input sequence has a competitive ratio less than 3

2 .
For∆ ≤ 1

2 , Lemma 6 is enough, since the input sequence 0, ∆ has an expected
competitive ratio of 1

2 +
3

2(∆+1) ≥ 3
2 .

For ∆ > 1
2 , by Lemma 4, any input sequence with am > 1 + ∆ has an

expected competitive ratio of at most (1+∆)+2
(1+∆)+1 . Lemma 7 gives a similar bound

on the expected competitive ratio for am ∈ (1, 1 +∆]. It is easily shown that

max
{
∆+ 3
∆+ 2

,
∆2 + 2∆+ am − 1

∆(am + 1)

}
≤ max

{
1 +

∆

2
,
6∆2 + 4∆+ 1
4∆(∆+ 1)

}
.

So, either 0 or 0, ∆ is a worst case sequence, and Lemma 6 gives the result. ��

5 Concluding Remarks

We have considered a new cost function instead of the cost function which is
almost a standard in theoretical analysis of this type of problems, namely flow-
time. With the new cost function, algorithms can be distinguished effectively,
whereas using flow-time, this is not possible while respecting the LogP model
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assumptions. The behavior of the optimal off-line algorithm can be a little pecu-
liar, however. If we consider sequences where n messages arrive less than one unit
apart, nothing in our cost function encourages the optimal off-line algorithm to
send any messages until the nth message has arrived.

While the behavior of an off-line optimal algorithm is secondary to the ability
of the total set-up to distinguish between good and bad on-line algorithms, our
results are robust enough that the behavior of OPT could be altered. Assume
that we change the cost function such that when a message has been waiting
for one time unit (or equivalently, has not been delivered two units after it
became available), a strictly higher penalty is imposed. This will encourage a
different behavior, where messages are sent earlier. However, OPT can still send
all messages with the same cost. It will send at time tn immediately after the
nth message has arrived (as before), but it could also send at all times in the set
{tn − i|i ∈ N, tn − i ≥ 0}.

The cost of all reasonable on-line algorithms as defined in the introduction,
including the cost of Ak for k ≤ 1 and RAND∆ for∆ ≤ 1, will also be unchanged
since none of them will wait more than one time unit before sending. Thus, our
results hold for this more general type of cost function.

Finally, our algorithms can in principle be built into any operating system,
though the ease with which this can be done depends on the exact design of the
operating system in question, in particular on the availability of an extra timer
to support interrupts from our algorithm. We have concrete plans to try out one
of our algorithms by building it into the new Occam Operating System [1].

Acknowledgments. We thank Brian Vinter for drawing our attention to the
Packet Bundling Problem and for initial discussions regarding the cost function.
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Abstract. We study the problem of routing under multiple constraints.
We consider a graph where each edge is labeled with a cost and a delay.
We then consider the problem of finding a path from a source vertex to a
destination vertex such that the sum of the costs on the path satisfy the
cost constraint and the sum of the delays satisfy the delay constraint.
We present three different algorithms for solving the problem. These al-
gorithms have varying levels of complexity and solve the problem with
varying degrees of accuracy. We present an implementation of these al-
gorithms and discuss their performance on different graphs.

1 Introduction

Finding paths in a graph with respect to multiple criteria is a fundamental
problem, with applications in many areas, such as telecommunications (finding
routes with respect to various quality-of-service criteria — delay, cost, packet
loss, etc), or mission planning (finding inexpensive routes in a terrain, while
avoiding unsafe regions).

In this paper, we reconsider the problem of finding paths in a multi-weight
graph, satisfying multiple constraints. We simplify our presentation by consider-
ing only two-weight graphs (we call the weights delay and cost), and we discuss
extensions to more than two weights in the conclusion. Our objective is to find
a path from a given source node to a given destination node, such that the sum
of all delays on the path is less than a given D, and the sum of all costs is less
than a given C. Solving this problem exactly is well known to be NP-Complete
[4,6,5,8]. An alternative version of the problem is to find a path minimizing the
delay, while keeping the cost bounded by C. The two versions are equivalent, in
the sense that an algorithm to solve one version can be used to solve the other
version, without significant increase in complexity.

We provide various algorithms for solving the problem. The first algorithm is
based on a Bellman-Ford type of iteration and comes in two versions: (1) exact,
with complexity O(|V ||E|min{C,D}), where V and E are the sets of vertices
and edges in the graph, and (2) approximative with bounded-error ε ∈ [0, 1]
(a user input) and complexity O(|V |2|E|(1 + 1

ε )). Error ε means that the path

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 338–347, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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found has cost at most C · (1 + ε) and delay at most D · (1 + ε). The second
algorithm is based on a Lagrange relaxation technique and solves iteratively a
series of standard shortest-path problems, until no improvement in the path can
be achieved. In this case, the error is at most 1 (we provide an example exhibiting
this behavior), in practice, however, we obtain paths very close to optimal ones.

Unfortunately, due to space limitations, we cannot discuss related work. Such
a discussion can be found in the full version of the paper, available from the home
pages of the authors.

2 Problem Formulation

We consider a directed two-weight graph G = (V,E), where V is the set of
vertices and E is the set of edges. An edge e ∈ E is e = (v, w, c, d) where the
edge goes from v to w, and has delay delay(e) = d and cost(e) = c. We write this

as v
(c,d)−→ w. When there is no confusion, we may also write the edge as (v, w)

and say the edge is labeled with (c, d).

A path is p = v1
(c1,d1)−→ v2

(c2,d2)−→ v3
(c3,d3)−→ · · · (cn,dn)−→ vn+1. The cost of a path

is cost(p) =
∑n
i=1 ci and its delay is delay(p) =

∑n
i=1 di.

Given a path p and cost constraint C ≥ 1 and delay constraint D ≥ 1,
we say p is feasible provided cost(p) ≤ C and delay(p) ≤ D. The problem of
routing under two constraints is, given G = (V,E), cost constraint C and delay
constraint D, a source node s ∈ V and a destination node t ∈ V , find a feasible
path p from s to t, or decide that no such path exists.

Example. Consider the two-weight graph of Figure 1. Each edge is labeled

Fig. 1. A Simple Network

with (c, d) where c is the cost of the edge
and d is the delay of the edge. For ex-
ample, the edge from vertex 1 to vertex
2 has cost 3 and delay 1. Suppose the
source vertex is 1, the destination vertex
is 4, the cost constraint is C = 5 and
the delay constraint is D = 2. Then, the

path 1
(3,1)−→ 2

(2,1)−→ 4 is feasible, whereas

1
(1,2)−→ 3

(1,2)−→ 4 is not (since it violates the
delay constraint). The reader can check
that if C = 4 and D = 3, then there is no
feasible path.

Rather than checking to see if a graph has a feasible path, it is sometimes
useful to try to minimize the following objective function

M(p) = max{max{cost(p), C}
C

,
max{delay(p), D}

D
}.

Observe that for any path p, M(p) ≥ 1 and M(p) = 1 iff p is feasible. But even
if a feasible path does not exist or is hard to find, by trying to minimizing M(p)
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we can get a path that comes “close” to satisfying the constraints. Formally, we
define the error of a path p as

error(p) =
M(p)−M(p∗)

M(p∗)

where p∗ is a path which minimizesM . Notice that error(p) ≥ 0 and error(p) = 0
iff p is feasible. Also note that if cost(p) ≤ C · (1 + ε) and delay(p) ≤ D · (1 + ε)
then error(p) ≤ ε. Indeed, the two above conditions imply that M(p) ≤ 1 + ε
and, since M(p∗) ≥ 1, we get error(p) ≤ ε.

3 Complexity

The multiple-constraint routing problem is known to be NP-complete. For com-
pleteness of the paper, we provide a proof here as well.

Theorem 1. The routing problem with two constraints is NP-Complete.

Proof. We will provide a reduction from the knapsack problem. Recall that in
the knapsack problem, we are given positive integers c1, c2, . . . , cn, and N , and
the objective is to find a subset S ⊆ {1, . . . , n} such that

∑
i∈S ci = N .

Fig. 2. Graph obtained for the knap-
sack problem

From the knapsack problem, we con-
struct a graph with vertices {1, . . . , n}.
There are two edges from vertex i to ver-
tex i + 1: edge (i, i + 1, ci, 0) and edge
(i, i+1, 0, ci). Figure 2 shows the scenario.
Our objective is to find a path from ver-
tex 1 to vertex n with cost constraint N
and delay constraint

∑n
i=1 ci − N . It is

easy to check that there is a path that
satisfies the constraints iff there is a so-
lution to the knapsack problem.

4 Two Pseudo-Polynomial Algorithms

In this section, we propose two algorithms for the problem of routing un-
der two constraints. Both algorithms are extensions of the standard Bellman-
Ford algorithm. The first algorithm is exact and has worst-case complexity
O(|V | · |E| ·min{C,D}). The second algorithm is approximative and has worst-
case complexity O(|V |2 · |E| · (1 + 1

ε )), where ε ∈ [0, 1] is a parameter set by
the user.1 The second algorithm is approximative in the sense that, it might not
yield a feasible path, even if such a path exists. However, the error in a path p re-
turned by the algorithm is bounded: error(p) ≤ ε. Notice that the approximative
1 In fact, the exact algorithm can be obtained simply by setting ε = 0 in the approxi-
mative algorithm.
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algorithm is worth using only when |V | is (much) smaller than ε
1+ε ·min{C,D}.

Otherwise, the exact algorithm, being less expensive, is preferable.
We begin by making a few assumptions, without loss of generality. Given a

two-weight graph G = (V,E), where |V | = n, let costmax = max{c | ( , , c, ) ∈
E} and delaymax = max{d | ( , , d, ) ∈ E}. Then, we can assume that n ·
costmax > C and n · delaymax > D. Otherwise, any (acyclic) path trivially
satisfies one of the constraints, and it remains to find a path satisfying the other
constrain too, which can be done using a standard shortest-path algorithm. We
will also assume that the greatest common divisor of {C, cost(e) | e ∈ E} is 1,
and similarly for the delays (otherwise we could just divide all costs/delays by
their greatest common divisor, without affecting the problem).

Our algorithm works as follows. For each vertex w, we compute a set of cost-
delay pairs Fw. Each (c, d) ∈ Fw represents a possible path p from w to the
destination vertex v, where cost(p) = c and delay(p) = d. To keep the size of
Fw manageable, we eliminate from Fw all elements corresponding to infeasible
paths (i.e., all (c, d) such that c > C or d > D). Moreover, we eliminate from Fw
all redundant elements, that is, all elements with both cost and delay greater
from some other element.

Cost-delay sets. A cost-delay set for a vertex w is a set Fw ⊆ N × N. An
element (c, d) of Fw is called infeasible if either c > C or d > D. An element
(c, d) of Fw is called redundant if there exists a different (c′, d′) ∈ Fw such that
c′ ≤ c and d′ ≤ d. A cost-delay set F is said to be minimal if it contains
no infeasible or redundant elements. It can be checked that if F is minimal,
then |F | ≤ min{C,D}. Also, to every cost-delay set F corresponds a unique
greatest minimal subset F ′ ⊆ F . We write minimal(F ) to denote the greatest
minimal subset of F . Figure 3 displays the typical structure of a cost-delay set
and its minimal. Black and grey bullets are infeasible and redundant elements,
respectively.

cost
(b)(a)

delay delay

cost

D

C C

D

Fig. 3. A cost-delay set (a) and its minimal (b)

Minimal cost-delay sets admit an efficient canonical representation as sorted
lists. Consider a minimal set F = {(c1, d1), (c2, d2), ..., (cn, dn)} and assume,
without loss of generality, that c1 ≤ c2 ≤ · · · ≤ cn. Then, d1 ≥ d2 ≥ · · · ≥
dn must hold, otherwise there would be at least one redundant element in F .
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Consequently, F can be represented as the list (c1, d1) (c2, d2) · · · (cn, dn),
sorted using cost as the “key”. This representation is canonical in the sense that
two minimal sets F1, F2 are equal iff their list representations are identical.

Given minimal (i.e., feasible and non-redundant) F1, F2, the union F1 ∪ F2
is always feasible, but not necessarily non-redundant. In order to compute F =
minimal(F1 ∪ F2) directly from the list representations L1, L2 of F1, F2, we can
use a simple modification of a usual merge-sort algorithm on lists. The latter
takes as input L1, L2 and produces L, the list representation of F . In order to
guarantee the absence of redundant points in L, it compares at each step the
heads (c1, d1) and (c2, d2) of (the remaining parts of) L1, L2. If c1 ≤ c2 and
d1 ≤ d2 then (c2, d2) is redundant and is skipped. If c2 ≤ c1 and d2 ≤ d1 then
(c1, d1) is skipped. Otherwise, the pair with the smallest ci is inserted in L and
the head pointer move one element ahead in the corresponding list Li. It is easy
to see that this algorithm is correct. The cost of the algorithm is n1+n2, where
ni is the length of Li. Therefore, the worst-case complexity of computing the
union of cost-delay sets is O(min{C,D}).

Translation is defined on a cost-delay set F and a pair (c, d) ∈ N2:

F + (c, d) def= {(c′ + c, d′ + d)|(c′, d′) ∈ F}

If F is minimal, then F +(c, d) is non-redundant, however, it may contain infea-
sible points. These can be easily eliminated, however, while building the list L′

for min(F+(c, d)): the list of F is traversed, adding (c, d) to each of its elements,
(ci, di); if ci + c ≤ D and di + d ≤ D then (ci + c, di + d) is inserted at the end
of L′, otherwise it is infeasible and it is skipped. At the end, L′ will be sorted
by cost. The complexity of translation is O(min{C,D}).

4.1 The Exact Algorithm

For the sake of clarity, we first present the exact algorithm (although it is a
special case of the approximative algorithm). The algorithm iteratively computes
the (minimal) cost-delay sets of all vertices in the graph. Let F jw denote the cost-
delay set for vertex w at iteration j. Initially, all vertices have empty cost-delay
sets, F 0

w = ∅, except v, for which F 0
v = {(0, 0)}. At each iteration, each vertex

updates its cost-delay set with respect to all its successor vertices. Computation
stops when no cost-delay set is updated any more.

Let w1, ..., wk be the successor vertices of w, that is, w
(ci,di)−→ wi, for i = 1, ..., k

(note that w1, ..., wk might not be distinct). Then, the cost-delay set of w at
iteration j + 1 will be:

F j+1
w = minimal

(
F jw ∪

k⋃
i=1

(
F jwi

+ (ci, di)
))

(1)
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Proposition 2. (Termination) The updating of the cost-delay sets will stabilize
after at most |V | iterations, that is, for any vertex w, F |V |+1

w = F |V |
w . (Correct-

ness) A feasible path from w to v exists iff F |V |
w �= ∅. For any (c, d) ∈ F |V |

w , there
exists a path p from w to v such that cost(p) = c and delay(p) = d.

Worst-case complexity. Proposition 2 implies that the algorithm stops after at
most |V | iterations. At each iteration, the cost-delay set of each vertex is updated
with respect to all its successor vertices. Thus, there are at most |E| updates at
each iteration. Each update involves a translation and a union, both of which
have complexity O(min{C,D}). Therefore, the overall worst-case complexity of
the algorithm is O(|V | · |E| ·min{C,D}).

4.2 The Bounded-Error Approximative Algorithm

The approximative algorithm is similar to the one of section 4, with the addi-
tional fact that it eliminates elements of cost-delay sets which are “too close” to
some other element. More formally, for (c1, d1), (c2, d2) ∈ N2, define:

||(c1, d1), (c2, d2)|| def= max{|c1 − c2|, |d1 − d2|}
Then, a cost-delay set F is said to have minimal distance δ iff for all distinct
(c1, d1), (c2, d2) ∈ F , ||(c1, d1), (c2, d2)|| ≥ δ.

Given a cost-delay set F and some δ, we want to find a subset F ′ ⊆ F , such
that: (1) F ′ has minimal distance δ, and (2) for all x ∈ F − F ′, there exists
y ∈ F ′ such that ||x, y|| < δ. In general, there may be more than one subsets
of F satisfying the above conditions. We want to find one of them. We use the
following procedure. Assume L = (x1, ..., xn) is the list representation of F .
The procedure produces L′, the list representation for F ′. Initially, L′ = (x1).
Let y denote the last element of L′, at each point during the execution of the
procedure. For each i ≥ 2, if ||xi, y|| ≥ δ then xi is appended at the end of L′

and y is updated to xi, otherwise, xi is skipped. It can be shown that the list
built that way represents a legal δ-distance subset of F . From now on, we denote
this set by min dist(δ, F ).

The approximative algorithm is defined by modifying Equation (1) as follows:

Bj+1
w = min dist

(
δε,minimal

(
Bjw ∪

n⋃
i=1

(
Bjwi

+ (ci, di)
)))

(2)

where δε =
min{C,D}·ε

|V | , and in the definition of minimal, the feasibility region is
extended by (ε ·C, ε ·D), that is, we require that for all (c, d) ∈ Bw, c ≤ (1+ε) ·C
and d ≤ (1 + ε) ·D.

Proposition 3. The approximative algorithm terminates after at most |V |
steps, that is, B|V |+1

w = B
|V |
w . If Bu = ∅ at the end of the approximative algo-

rithm, then no feasible path from u to v exists. Otherwise, for each (c, d) ∈ Bu,
there exists a path p from u to v such that cost(p) = c, delay(p) = d and
error(p) ≤ ε.
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Worst-case complexity. The only difference from the exact algorithm is in
the size of the cost-delay sets Bw. Since the latter have minimal distance δε
and are bounded by the feasibility region ((1 + ε) · C, (1 + ε) · D), we have
|Bw| ≤ (1+ε)·min{C,D}

δε
. By definition of δε, we get |Bw| ≤ (1+ε)

ε |V |. This yields
an overall worst-case complexity of O(|V |2 · |E| · (1 + 1

ε )).

5 An Iterative Shortest Path Algorithm

In this section, we present an algorithm which is based on a Lagrange-relaxation
and solves iteratively a sequence of standard shortest path problems. The objec-
tive is to find a path minimizing M(·).

For this section, we assume that we have normalized the costs and delays by
dividing the costs by C and the delays by D. A path is feasible in the new graph
if cost(p) ≤ 1 and delay(p) ≤ 1. Note that a path is feasible in the new graph iff
it was feasible in the original graph. For the new graph, C = D = 1, thus, M(p)
is not modified by the normalization.

To find a path satisfying two constraints by using the shortest path algorithm,
we choose an 0 ≤ α ≤ 1 and replace the cost c and the delay d associated with
an edge with the weight α · c+(1−α) · d. We then use a standard shortest path
algorithm, say, Dijkstra’s algorithm, to find a path with the smallest weight. We
refer to this path as SP (G,α). As the next lemma shows, p = SP (G,α) has an
error error(p) of at most 1 for α = 1

2 .

Lemma 4. For a graph G = (V,E), M(p∗) ≤ M(p) ≤ 2M(p∗), where p =
SP (G,α) and p∗ is a path minimizing M .

Proof. Recall that for all paths p′, M(p′) ≥ 1. If M(p) = 1, then clearly M(p) ≤
2M(p∗). So assume M(p) > 1. Then M(p) ≤ cost(p) + delay(p) ≤ cost(p∗) +
delay(p∗) ≤ 1 + 1 ≤M(p∗) +M(p∗) = 2M(p∗).

The previous lemma shows that by initializing α = 1
2 , we obtain a path p

with error(p) ≤ 1. By modifying α appropriately, the algorithm can reduce the
error. This is done using binary search: suppose we know that the optimal value
of α lies in the interval [l, u] (initially [0, 1]); we find p = SP (G,α) for α =
l+u
2 ; if cost(p) ≤ delay(p), we eliminate the interval ( l+u2 , u] from consideration,

otherwise, we eliminate [l, l+u2 ). The algorithm terminates when no new paths
are found (this will eventually happen, since the number of paths is finite). The
reason that half of the interval can be eliminated follows from the following
result.

Proposition 5. Let p = SP (G,α) and p′ = SP (G,α′). (1) If α < α′ then
cost(p′) ≤ cost(p) and delay(p′) ≥ delay(p). (2) If α > α′ then cost(p′) ≥ cost(p)
and delay(p′) ≤ delay(p).

Now, suppose the algorithm finds p = SP (G,α) with cost(p) > C. Then, by
increasing α, we get a new path with smaller cost. Similarly, if delay(p) > D,
we decrease α in order to decrease the delay. What if both cost(p) > C and
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delay(p) > D? Then we know that no feasible path exists. Indeed, if there was
a feasible path p∗, then cost(p∗) ≤ C < cost(p) and delay(p∗) ≤ D < delay(p),
thus, α · cost(p∗) + (1 − α) · delay(p∗) < α · cost(p) + (1 − α) · delay(p), which
contradicts the fact that p is optimal w.r.t. α.

Fig. 4. A graph where the error is 1−ε.

Example. Notice that there are examples
where the error can be arbitrarily close
to 1. For instance, consider the example
in Figure 4 where the cost constraint is
C = 1 and the delay constraint is D = 1.
It is easy to check that for any 0 ≤ α ≤ 1,
error(SP (G,α)) = 1− ε.

6 Experimental Results

We have implemented our algorithms in
a prototype tool written in C. The tool
takes as input a multi-weight graph, a source node, a destination node, a weight
to be minimized, and upper bounds on the rest of the weights. The tool is asked
to run either the bounded-error approximative algorithm (if so, a step-error must
be provided), BEA for short, or the iterative shortest-path algorithm, ISP for
short. We next report on experiments using the tool on graphs obtained by
translating elevation maps of physical landscapes into multi-weight graphs. 2

Tables 5 and 6 present the results. The notation is as follows: n is the number
of nodes, m is the number of edges, t is the CPU time in seconds, c is the “cost”
weight of a path found, d1, d2 are the two “delay” weights of a path, δε is the
step-error for BEA, “s/d” stands for “source/destination pair”. Three different
experiments are shown for BEA (varying δε) and two different experiments for
ISP (varying the source/destination pair). A example route is shown in Figure 7.

From Tables 5 and 6, the following observations can be made: (1) ISP is two
or more orders of magnitude faster than BEA, while at the same time producing
paths which are both feasible (w.r.t. d1) and as good as the paths produced by
BEA (w.r.t. c). (2) BEA is sensitive to the step-error parameter, δε. Reducing δε
by one or two orders of magnitude resulted in dramatic increases in CPU time.
(3) The algorithms are not very sensitive to changes in source/destination.

From Figure 6, we see that adding one more weight/constraint to the problem
dramatically increases the execution time of BEA. Whereas we have been able
to execute the algorithm in 2-weight graphs of size up to 225680 vertices, we
could only treat 3-weight graphs of relatively small sizes (up to 1700 vertices) in
reasonable time.
2 A map is a two-dimensional array, its i, j-th element giving the altitude of the point
with longitude i and latitude j. A landscape of dimension n1×n2 results in a graph
with n1 ·n2 vertices and approximately 4 ·n1 ·n2 edges (central vertices having four
successors, “north, south, east, west”). The cost c of an edge is taken to be the
difference in elevation between the destination and source vertices. The “delays” d1

and d2 (the second delay was used only in 3-weight graphs) are generated randomly
according to a Gaussian distribution.
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BEA ISP
δε = 10−4 δε = 10−5 δε = 10−6 1st s/d 2nd s/d

graph 1 t = 70 t = 413 t = 1274 t = 0.94 t = 0.48
n = 4641 c = 1532 c = 1564 c = 723
m ≈ 4 · n d1 = 2.15% d1 = 1.27% d1 = 0.14%
graph 2 t = 56 t = 1278 t = 16740 t = 7.16 t = 3.48
n = 36417 c = 4152 c = 4220 c = 1184
m ≈ 4 · n d1 = 0.2% d1 = 0.15% d1 = 0.04% d1 = 0%
graph 3 t = 725 t = 3503 t = 9971 t = 47.96 t = 31.56
n = 225680 c = 9409 c = 9411 c = 4487
m ≈ 4 · n d1 = 0.01% d1 = 0% d1 = 0% d1 = 0%

Fig. 5. Experimental results of the bounded-error approximative algorithm (BEA) and
the iterative shortest-path algorithm (ISP) on two-weight graphs.

δε = 10−4 δε = 10−5 δε = 10−6

graph 4 t = 1.49 t = 1.80 t = 1.85
n = 777 c = 720
m ≈ 4 · n d1 = 5.6% d2 = 6.43%
graph 5 t = 4.25 t = 153.97 t = 6095.42
n = 1178 c = 994
m ≈ 4 · n d1 = 1.79% d2 = 5.39%
graph 6 t = 1352.54 t = 17631.51 t = 29274.12
n = 1722 c = 1024
m ≈ 4 · n d1 = 3.68% d2 = 4.66%

Fig. 6. Experimental results of BEA on 3-weight graphs.

Fig. 7. An output of the bounded-error approximative algorithm on a map translated
into a 2-weight graph: the solid black line depicts the path produced by the algorithm;
(red) dots are “high-delay” zones; the grey scale background represents the elevation
variations of the landscape (white: high, black: low).
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7 Conclusion

We have presented three algorithms for solving the routing problem with multiple
constraints. These algorithms vary in their complexity and the accuracy of their
solutions. Our contributions mainly consist in improvements in the complexity
of previously existing algorithms. We have also implemented our algorithms and
examined their performance on different graphs of relatively large size.

In the general case of k-weight graphs, each edge is labeled with a k-tuple
(c1, c2, . . . , ck), and there is one upper bound Ci for each of the weights (or,
alternatively, one of the weights must be minimized while keeping the others
bounded). The Bellman-Ford-type algorithms of Section 4 can be extended in a
straight-forward way to the general case: the cost-delay sets now become gen-
eral Pareto sets of dimension k. The complexity of the exact algorithm becomes
O(|V ||E|∏k

i=1 Ci) and the complexity of the bounded-error approximative algo-
rithm becomes O(|V |k|E|(1+ 1

ε )
k). It is also possible to extend some parts of the

algorithm in Section 5. It is possible to obtain a path with error ε = k − 1 for a
problem with k constraints by solving the shortest path algorithm. But it is not
clear how to extend the algorithm which iterates over shortest path problems to
the case with more than two constraints.
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Abstract. A popular and much studied class of filters for approximate
string matching is based on finding common q-grams, substrings of length
q, between the pattern and the text. A variation of the basic idea uses
gapped q-grams and has been recently shown to provide significant im-
provements in practice. A major difficulty with gapped q-gram filters is
the computation of the so-called threshold which defines the filter cri-
terium. We describe the first general method for computing the thresh-
old for q-gram filters. The method is based on a carefully chosen precise
statement of the problem which is then transformed into a constrained
shortest path problem. In its generic form the method leaves certain
parts open but is applicable to a large variety of q-gram filters and may
be extensible even to other classes of filters. We also give a full algo-
rithm for a specific subclass. For this subclass, the algorithm has been
implemented and used succesfully in an experimental comparison.

1 Introduction

Given a pattern string P and a text string T , the approximate string matching
problem is to find all substrings of the text (matches) that are within a distance k
of the pattern P . The most commonly used distance measure is the Levenshtein
distance, the minimum number of single character insertions, deletions and re-
placements needed to change one string into the other. A simpler variant is the
Hamming distance, that does not allow insertions and deletions, i.e., it is the
number of nonmatching characters for strings of the same length. The indexed
version of the problem allows preprocessing the text to build an index while the
online version does not. Surveys are given in [15,16,18].

Filtering is a way to speed up approximate string matching, particularly
in the indexed case but also in the online case. A filter is an algorithm that
quickly discards large parts of the text based on some filter criterium, leaving
the remaining part to be checked with a proper (online) approximate string
matching algorithm. A filter is lossless if it never discards an actual occurrence;
we consider only lossless filters. The ability of a filter to reduce the text area is
called its (filtration) efficiency.
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Many filters are based on q-grams, substrings of length q. The q-gram sim-
ilarity (defined as a distance in [25]) of two strings is the number of q-grams
shared by the strings. The q-gram filter is based on the q-gram lemma:

Lemma 1 ([12]). Let P and S be strings with (Levenshtein or Hamming) dis-
tance k. Then the q-gram similarity of P and S is at least t = |P | − q + 1− kq.

The value t in the lemma is called the threshold and gives the minimum number
of q-grams that an approximate match must share with the pattern, which is
used as the filter criterium. The method is well-suited for indexed matching using
an index of text q-grams.

Above we did not define precisely how to count the number of shared q-
grams. There are, in fact, many alternatives giving different tradeoffs between
filtration efficiency, filter speed and index size. Here are some variations:

– If the same q-gram occurs rP times in P and rS times in S, it would be
correct to count it as min{rP , rS}, rP , rS , or rP rS shared q-grams.

– As noted in [11], a q-gram need to be counted only if it occurs at approxi-
mately the same position in P and S.

– Count the shared q-grams between the pattern and large text areas, buckets.
Buckets with less than t shared q-grams can be discarded as a whole [12,4].

For all these variations of counting, the threshold t defining the filter criterium is
the one given by Lemma 1; using a higher threshold would make the filter lossy,
using a lower threshold would reduce filtration efficiency. This is a reflection of
the fact that they are all upper bound approximations of the same core similarity
measure. We define this core similarity measure in Section 2.

There are many ways to generalize the basic method, including the following:

Gapped q-grams. The q-grams may contain gaps. For example, the gapped
3-grams of shape ##-# of the string acgtc are ac-t and cg-c. In [5,6], it
is shown that by using q-grams of a carefully chosen shape, the filtration
efficiency can be improved significantly. The added complexity makes online
filters slower, but on indexed filters the effect is negligible.

Sampling. A popular way to reduce time requirement and/or index size at the
cost of filtration efficiency is to consider only a sample, say every 5th, of the
q-grams of the text or the pattern [8,24,14,22,23,21,17,19].

Multiple shapes. As an opposite to sampling, the number of q-grams can be
increased by using gapped q-grams of several different shapes [7,20]. This
improves filtration efficiency but increases time and/or space requirements.

Approximate q-grams. Another way to improve filtration efficiency at the
cost of slower filtering is to allow errors in q-grams [14,8,22,19].

Of course, various combinations of these methods are possible. For exam-
ple, sampling and approximate q-grams have often been used together [14,8,22,
19]. Gapped q-grams, in particular, offer a lot of possibilities for combination
through the use of (possibly multiple) different shapes. The recent results in [5,
6] suggest that the possibilities of gapped q-grams are worth exploring. However,
the problem is the difficulty of determining the threshold.



350 J. Kärkkäinen

All the filtering methods mentioned above can be formulated using a similar-
ity measure based on counting shared q-grams. A text substring is checked only if
the similarity between the pattern and the substring is at least a given threshold.
Most of the methods mentioned above give a simple equation for the threshold.
However, when gapped q-grams are involved, things get more complicated. Even
for the simple filter in [5] (Hamming distance, single shape, no sampling or ap-
proximate q-grams) no simple equation can be given; the threshold was computed
separately for each shape with a dynamic programming algorithm. Pevzner and
Waterman [20], too, consider only the Hamming distance and give an equation
for a very limited class of regular shapes, and even that is not the optimal value
but a lower bound (which guarantees losslessness but at a reduced efficiency).
Califano and Rigoutsos [7] use a heuristically chosen threshold supported by
probabilistic calculations and experiments; their filter is lossy.

In this paper, we consider the problem of computing the threshold. We give
a formal definition of the value of the threshold that captures the essence of
the concept and describe an algorithm for computing it. The definition and the
algorithm are generic, leaving certain parts open, but being applicable to a large
variety of q-gram filters. Filling in the missing pieces for a given class of filters is
a non-trivial task, but it is simpler and much more precisely defined than trying
to define and compute the threshold from scratch. As a concrete example, we
also give the missing pieces for the class of filters considered in [6]. For these
filters, the algorithm has been implemented.

The outline of the method (and the paper) is as follows. In section 2, we
give a simple, precise statement of the threshold computation problem for core
similarity measures of a specific form. The threshold problem is then transformed
into a constraint shortest path problem (defined in Section 4) on a graph that
depends on the core similarity (as described in Section 3). When applying the
method to a specific filter, two things must be specified. First, a core similarity
measure of the specified form must be given (Section 2). The similarity measure
used by the filter should be an upper bound approximation of the core similarity.
Second, an algorithm for building the above mentioned graph for the chosen core
similarity must be given (Section 3). On the other hand, the constrained shortest
path algorithm (Section 4) can be used for any filter.

2 Threshold

As in the classic q-gram lemma, we define the threshold of a q-gram filter as
a function of the length m of the pattern and the distance limit k. That is,
the threshold t(m, k) is the smallest number of matching q-grams between a
pattern of length m and a substring of the text that is within distance k of the
pattern. The number of matching q-grams is a similarity function for strings.
Since we are looking for the minimum similarity, we can assume that there are
no “accidentally” matching q-grams, i.e., q-grams match only if they are not
affected (too much) by the edit operations. Therefore, the minimum is defined
by the worst possible arrangement of the edit operations.
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Following [10], we define an edit transcript as a string over the alphabet
M(atch), R(eplace), I(nsert) and D(elete), describing a sequential character-by-
character transformation of one string to another. For two strings P and S,
let T (P, S) denote the set of all transcripts transforming P to S. For exam-
ple, T (actg, acct) contains MMRR, MMIMD, MIMMD, IRMMD, IDIMDID, etc.. For a
transcript τ ∈ T (P, S), the source length slen(τ) of τ is the length of P , i.e.,
the number of non-insertions in τ . The Levenshtein cost cL(τ) is the number
of non-matches. The Hamming cost cH(τ) is infinite if τ contains insertions
or deletions and the same as Levenshtein cost otherwise. The Levenshtein dis-
tance and Hamming distance of P and S are dL(P, S) = minτ∈T (P,S) cL(τ) and
dH(P, S) = minτ∈T (P,S) cH(τ), respectively.

Here we defined distance measures for strings using cost functions for edit
transcripts. Similarly, we define the q-gram similarity measures for strings using
profit functions for edit transcripts. Then we can define the threshold as follows.

Definition 1. The threshold for a cost function c and a profit function p is

tcp(m, k) = min
τ
{p(τ) | slen(τ) = m, c(τ) ≤ k}.

The following lemma gives the filter criterium.

Lemma 2. Let c be a cost function and p a profit function for edit transcripts.
Define a distance d of two strings P and S as d(P, S) = minτ∈T (P,S) c(τ) and a
similarity s as s(P, S) = maxτ∈T (P,S) p(τ). Now, if d(P, S) ≤ k, then s(P, S) ≥
tcp(|P |, k).

The lemma holds for any choice of cost c and profit p. The cost functions
leading to the Hamming and Levenshtein distances were defined above. Below,
we give examples of profit functions that define q-gram similarity measures.

Let I be a set of integers. The span of I is span(I) = max I − min I + 1,
i.e., the size of the minimum contiguous interval containing I. The position of
I is min I, and the shape of I is the set {i − min I | i ∈ I}. An integer set
Q with position zero is called a shape. For any shape Q and integer i, let Qi
denote the set with shape Q and position i, i.e., Qi = {i + j | j ∈ Q}. Let
Qi = {i1, i2, . . . , iq}, where i = i1 < i2 < · · · < iq, and let S = s1s2 . . . sm
be a string. For 1 ≤ i ≤ m − span(Q) + 1, the Q-gram at position i in S,
denoted by S[Qi], is the string si1si2 . . . siq . For example, if S = acagagtct and
Q = {0, 2, 3, 6}, then S[Q1] = S[Q3] = aagt and S[Q2] = cgac.

A match alignment Mτ of a transcript τ is the set of pairs of positions that
are matched to each other. For example, MMIMRDMR = {(1, 1), (2, 3), (5, 5)}. For
a set I of integers, let Mτ (I) be the set to which Mτ maps I, i.e., Mτ (I) =
{j | i ∈ I and (i, j) ∈ Mτ}. A Q-hit in a transcript τ is a pair (i, j) such that
Mτ (Qi) = Qj . Note that a Q-hit (i, j) in τ ∈ T (P, S) implies P [Qi] = S[Qj ].

Now we are ready to define our first profit function. The Q-profit pQ(τ) of a
transcript τ is the number of its Q-hits, i.e., pQ(τ) = |{(i, j) | Mτ (Qi) = Qj}|.
Using pQ as the profit function defines the Q-similarity of two strings P and S
as sQ(P, S) = maxτ∈T (P,S) pQ(τ). If Q is the contiguous shape {0, 1, . . . , q− 1},
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sQ is the core similarity measure underlying the classic q-gram filter, and the
threshold of Definition 1 agrees with the one in Lemma 1 for both Hamming and
Levenshtein distance. For a gapped shape Q, sQ is the core similarity measure
for the Hamming distance filters described in [5].

As a more complicated example, let us define the profit functions for the
Levenshtein distance filters in [6]. The filters use a basic shape with only one gap
and two other shapes formed from the basic shape by increasing and decreasing
the length of the gap by one. For example, with the basic shape ##-# we would
also use the shapes ##--# and ###. The filter compares the q-grams of all three
shapes in the pattern to the q-grams of the basic shape in the text.

For any b1, g, b2 > 0, let (b1, g, b2) denote the one-gap shape {0, . . . , b1 −
1, b1 + g, . . . , b1 + g + b2 − 1}. For a one-gap shape Q = (b1, g, b2), let Q+1 =
(b1, g + 1, b2) and Q−1 = (b1, g − 1, b2) (or Q−1 = {0, . . . , b1 + b2 − 1} if g = 1).
Then, a Q ± 1-hit in a transcript τ is a pair (i, j) of integers such that Qj ∈
{Mτ (Q−1

i ),Mτ (Qi),Mτ (Q+1
i )}. If τ ∈ T (P, S), then a Q±1-hit (i, j) in τ implies

S[Qj ] ∈ {P [Q−1
i ], P [Qi], P [Q+1

i ]}, which is the criterion for a shared q-gram for
the filters in [6]. The Q±1-profit of τ , denoted by pQ±1(τ), is the number of Q±1-
hits in τ , i.e., pQ±1(τ) = |{(i, j) | Qj ∈ {Mτ (Q−1

i ),Mτ (Qi),Mτ (Q+1
i )}}|. The

Q± 1-similarity of two strings P and S is sQ±1(P, S) = maxτ∈T (P,S) pQ±1(τ).
The similarities sQ and sQ±1 are core similarity measures. Computing them

for given strings is not straightforward. Instead filters use simpler upper bound
approximations that may give a higher similarity value. Designing good upper
bound approximations is nontrivial and beyond the scope of this paper.

3 Profit Automata

In the remainder of the paper, we describe a general technique for computing
the threshold according to Definition 1. The technique is based on automata
for computing the values slen(τ), c(τ), and p(τ) for any transcript τ . These
automata have four transitions out of each state labeled with M, R, I and D.
Each transition has an output value, which is the change in the target value
caused by the transition. Thus, the target value is the sum of the output labels
on the transition path corresponding to τ . Such automata are more generally
known as weighted finite automata [3] or string-to-weight transducers [13]. Fig. 1
shows simple examples.

slen(τ)
M/1

R/1

I/0

D/1

cL(τ) M/0

R/1

I/1

D/1

pQ(τ)
{R,I,D}/0

M/0 M/0 M/0 M/0

M/1
{R,I,D}/0

Fig. 1. Automata for computing the source length slen(τ), Levenshtein cost cL(τ) and
Q-profit pQ(τ), where Q = {0, 1, 2, 3, 4}, for any transcript τ
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For more complicated forms of profits the automata are also more compli-
cated. We show how to build the automaton for the profit pQ±1 for any one-gap
shape Q = (b1, g, b2). Automata for other profits can be build using similar ideas.

We start by describing a dynamic programming algorithm for finding the
Q±1-hits for a given transcript τ = τ1 . . . τn. Table 1 defines the computation of
an entry P [i, j] in a table P [0..s, 0..n], where s = b1 + g+ b2 is the span of Q. A
column j in table P stores the state of the computation after reading the prefix
τ1 · · · τj of τ . Each entry represents a set of shape Q overlapping or touching the
cut point between τj and τj+1. The value infinite means that the set cannot be
a part of a Q± 1-hit. When the cut point is in the gap, a finite value represents
the change in the length of the gap (insertion–deletion difference). An example
is shown in Fig. 2. In the last row of the table P , each zero signifies a hit. Thus
the profit can be computed as pQ±1(τ) =

∣∣{j ∈ {1, . . . , n} | P [s, j] = 0}∣∣.

Table 1. Rules for computing the values in the dynamic programming table
P [0..s, 0..n]

j = 0 τj = M τj = R
i = 0 0

1 ≤ i ≤ b1
P [i− 1, j − 1]

∞
b1 ≤ i ≤ b1 + g P [i− 1, j − 1]

i = b1 + g + 1
∞ 0 if −1 ≤ P [i− 1, j − 1] ≤ 1

∞ otherwise ∞
b1 + g + 1 < i ≤ s P [i− 1, j − 1]

τj = I τj = D
i = 0 0

1 ≤ i < b1 ∞
i = b1 P [i, j − 1]− 1 if P [i, j − 1] + b1 + g − i ≥ 0

b1 < i ≤ b1 + g P [i− 1, j − 1] + 1 ∞ otherwise
b1 + g < i ≤ s ∞

A column j in table P depends only on the previous column j − 1 and the
symbol τj . Thus the computation can be done with an automaton, where each
state represents a distinct column. The first and last entry can be omitted from
the state description: the first because it is always 0, the last because it does
not affect the next column. Instead, the last entry determines the output value
of the transition: 1 when last entry is 0, 0 when the last entry is ∞. The result
is an automaton for computing the profit pQ±1(τ) similar to the automatons in
Fig. 1. An example is given in Fig. 3.

The size of the automaton is bounded in the following lemma. The proof is
omitted in this extended abstract.
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τj τj+1 M M R D M M I R M M MM D D I M M D D D M
## – # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## – # 1 ∞ 0 0 ∞∞ 0 0 ∞ ∞ 0 0 0 0 ∞∞∞ 0 0 ∞∞∞ 0
## – # 2 ∞∞ 0 ∞∞∞ 0 ∞ ∞∞ 0 0 0 –1 –2∞∞ 0 –1 –2∞∞

## – # 3 ∞∞∞ 0 –1∞∞+1∞∞∞ 0 0 –1∞ –1∞∞∞∞∞∞
## – # 4 ∞∞∞∞∞ 0 ∞ ∞ ∞∞∞∞ 0 ∞∞∞ 0 ∞∞∞∞∞

Fig. 2. The dynamic programming table P for Q = (2, 1, 1) = {0, 1, 3}

∞
∞
∞

0
∞
∞

0
0
∞

0
0
0

∞
–2
∞

∞
∞
–1

∞
∞
0

∞
∞
+1

∞
–1
∞

0
∞
–1

∞
–1
–1

M/0RID/0 M/0

RID/0

M/0

R/0

I/0

D/0

M/1

R/0

I/0

D/0

M/0
RD/0

I/0

M/1
RID/0 M/1

RI/0

D/0

M/1

RI/0

D/0

M/0

R/0

I/0

D/0

M/1

RID/0

M/1

R/0 I/0

D/0

Fig. 3. An automaton for computing the profit pQ±1(τ) for Q = (2, 1, 1) = {0, 1, 3}

Lemma 3. The number of states in the profit automaton for the profit pQ±1,
where Q = (b1, g, b2), is less than R = b1b

2
2(g + 2)3�g/b1	. The automaton can be

constructed in O(R(b1 + g + b2)) time and O(Rg/b1) space.

4 Constrained Shortest Path Problem

We are now ready to describe the threshold computation problem as a constraint
shortest path problem. The graph is formed by combining the three automata
for computing slen(τ), c(τ) and p(τ). In general, the state set of the combined
automaton is the Cartesian product of the state sets of the three automata, but
since the automata for source length and Leveshtein or Hamming cost have just
one state, the graph is essentially the profit automaton with additional labels.

Thus, we have a directed graph G = (V,E), where each edge e ∈ E is labeled
with three non-negative values: l(e), c(e) and p(e) corresponding to the (source)
length, cost, and profit, respectively. The values are additive along paths. One
node is designated as the source node s (the initial state). Each node has at
most four outward edges.

Now, the treshold computation problem can be stated as follows:
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Problem 1. Find the minimum profit p(π) of a path π in G starting from the
source node (and ending anywhere) that satisfies: (1) c(π) ≤ k and (2) l(π) = m.

The constraint (2) can be replaced with l(π) ≥ m without changing the solution.
This problem is very similar to the constrained shortest path (CSP) prob-

lem [26], differing in two ways from the standard form. First, no target node for
the path is specified. However, by creating an additional node t as the target and
adding an all-zero edge from every other node to t, the problem can be stated in
the more usual form. Second, in the standard form all constraints are of type (1),
i.e., limited from above. Limited-from-below constraints change the problem in
a nontrivial way, e.g., the shortest path may contain cycles. However, many of
the basic techniques used in CSP algorithms are still applicable.

The CSP problem is NP-hard, but there are pseudopolynomial algorithms,
i.e., algorithms that work in polynomial time when the edge labels are polyno-
mially bounded integers. We give a pseudopolynomial algorithm that belongs to
a well-known class of shortest path algorithms called label-setting algorithms,
which can be seen as generalizations of Dikstra’s algorithm [1, Chapter 4]. For the
CSP problem, label-setting algorithms have been given in [2,9]. Our algorithm
uses one nonstandard trick to deal with the limited-from-below constraint.

The basic idea of the algorithm is to maintain a collection of paths (initially
only the empty path) in a priority queue PQ. The paths are selected from PQ
in increasing order of their profit, extended along the four outward egdes, and
the extensions are added to the PQ. Paths with cost more than k are removed.
Since an extension cannot decrease the profit, the first path of required length
selected from PQ is an optimal path.

To prune the set of paths, we use the following concept of domination:

Definition 2. Let π1 and π2 be two paths from s to v. We say that π1 dominates
π2 if p(π1) ≤ p(π2), c(π1) ≤ c(π2) and l(π1) ≥ l(π2). If equality holds in each
case, the paths are called equivalent. Otherwise, the domination is strict.

Clearly, if π1 dominates π2, any extension of π1 dominates the corresponding
extension of π2. Thus, no extensions of π2 need to be considered. The algorithm
extends a path only if it is not dominated by an already processed path and is not
strictly dominated by any path to be processed later. To check for domination by
already processed paths, information about the dominant paths is maintained at
nodes. To avoid extending a path that is strictly dominated by a later path, the
priority queue order is refined. The profit remains the primary key but secondary
keys are used to break ties. The details are left to the full paper. The complexity
of the algorithm is given by the following theorem.

Theorem 1. Given the graph G = (V,E), the algorithm computes the threshold
t in O(k|V |min{m, t} + kdmaxt) time and O(k|V |pmax) space, where m and k
are the limits of length and cost, respectively, pmax is the largest profit value of
an edge, and dmax is the length of the longest zero-cost, zero-profit path in G.

By combining Theorem 1 with Lemma 3 we get the following result.
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Theorem 2. Given a one-gap shape Q = (b1, g, b2) and positive integers m and
k, the threshold tcL

pQ±1
(m, k) can be computed in O(kmb1b

2
2g

3�g/b1	) time and
O((k + g/b1)b1b22g

3�g/b1	) space.

5 Concluding Remarks

We have described a method for computing the threshold of a q-gram filter
that is applicable to a large variety of filters. The practicality of the method is
demonstrated by the implementation of the algorithm for the filters based on
the sQ±1 similarity. It has been used in an experimental comparison of q-gram
filters, the results of which are described in [6]. The shortest paths part of the
implementation can be reused for other classes of filters without modification.

The method is an important step towards designing good q-gram filters. First,
the threshold (or at least a good lower bound) is needed by any filter. A general
method gives us a large family of filters to choose from. Second, the value of the
threshold is an important criterium in comparing filters (particularly in choosing
the shapes of q-grams [5,6]). Third, the framework developed here may be helpful
in designing filters. In particular, the separation of core similarity measures and
their upper bound approximations seems a useful concept.

Acknowledgements. Discussions with Stefan Burkhardt, Mark Ziegelmann
and Kurt Melhorn have contributed to this paper. The implementation is partly
due to Stefan Burkhardt.
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Abstract. We study a problem that arises in computational biology,
when wishing to reconstruct the phylogeny of a set of species. In Incom-
plete Directed Perfect Phylogeny (IDP), the characters are binary and
directed (i.e., species can only gain characters), and the states of some
characters are unknown. The goal is to complete the missing states in a
way consistent with a perfect phylogenetic tree. This problem arises in
classical phylogenetic studies, when some states are missing or undeter-
mined, and in recent phylogenetic studies based on repeat elements in
DNA. The problem was recently shown to be polynomial. As different
completions induce different trees, it is desirable to find a general solu-
tion tree. Such a solution is consistent with the data, and every other
consistent solution can be obtained from it by node splitting. Unlike the
situation for complete datasets, a general solution may not exist for IDP
instances. We provide a polynomial algorithm to find a general solution
for an IDP instance, or determine that none exists.

1 Introduction

A phylogenetic tree describes the divergence patterns leading from a single ances-
tor species to its contemporary descendants. The task of phylogenetic reconstruc-
tion is to infer a phylogenetic tree from information regarding the contemporary
species (see, e.g., [2]).

The character-based approach to tree reconstruction describes contemporary
species by their attributes or characters. Each character takes on one of several
possible discrete states. The input is represented by a matrix A where aij is the
state of character j in species i, and the i-th row is the character vector of species
i. The output sought is a phylogenetic tree along with the suggested character
vectors of the internal nodes. This output must satisfy properties specified by
the problem variant.

In this paper, we discuss a phylogenetic reconstruction problem called Incom-
plete Directed Perfect Phylogeny (IDP) [6]. It is assumed that each character is
binary, where its absence or presence is denoted by 0 or 1, respectively. A char-
acter may be gained at most once (across the phylogenetic tree), but may never
be lost. The input is a matrix of character vectors, where some character states
are missing. The question is whether one can complete the missing states so that
the resulting matrix admits a tree satisfying the above assumptions.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 358–367, 2002.
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The problem of handling incomplete phylogenetic data arises whenever some
of the data is missing or ambiguous. Quite recently, a novel kind of genomic
data has given rise to the same problem: Nikaido et al. [5] use inserted repetitive
genomic elements, particularly SINEs (Short Interspersed Nuclear Elements),
as a source of evolutionary information. SINEs are short DNA sequences that
were copied and randomly reinserted into various genomic loci during evolution.
The distinct insertion loci are identifiable by the flanking sequences on both
sides of the insertion site. These insertions are assumed to be unique events in
evolution. Furthermore, a SINE insertion is assumed to be irreversible, i.e., once
a SINE sequence has been inserted somewhere along the genome, it is practically
impossible for the exact, complete SINE to leave that specific locus. However,
the inserted segment along with its flanking sequences may be lost when a large
genomic region, which includes them, is deleted. In that case we do not know
whether a SINE insertion had occurred in the missing site prior to its deletion.
One can model such data by assigning to each locus a character, whose state is
’1’ if the SINE occurred in that locus, ’0’ if the locus is present but does not
contain the SINE, and ’?’ if the locus is missing. The resulting reconstruction
problem is precisely Incomplete Directed Perfect phylogeny.

Previous studies of related problems implied Ω(n2m)-time algorithms for
IDP [1,3], where n and m denote the number of species and characters, respec-
tively. In a recent work [6] we provided near optimal O(nm·polylog(n+m))-time
algorithms for the problem.

In this paper we tackle a different aspect of IDP. Often there is more than
one tree that is consistent with the data. When the input matrix is complete,
there is always a tree T ∗ that is general, i.e., it is a solution, and every other tree
consistent with the data can be obtained from T ∗ by node splitting. In other
words, T ∗ describes all the definite information in the data, and ambiguities
(nodes with three or more children) can be resolved by additional information.
This is not always the case if the data matrix is incomplete: There may or may
not be a general solution tree. In the latter case, any particular solution tree
we choose may be ruled out by additional information, while this information is
still consistent with an alternative solution tree. It is thus desirable to decide if
a general solution exists and to generate such a solution if the answer is positive.

In this study we provide answers to both questions. We prove that an al-
gorithm from [6], which we call Solve IDP, provides the general solution of a
problem instance, if such exists. We also give an algorithm which determines if
the solution T produced by Solve IDP is indeed general. The complexity of the
latter algorithm is O(nm+ kd), where k is the number of 1-entries in the input
matrix, and d denotes the maximum degree of T .

The paper is organized as follows: In Section 2 we provide some preliminaries
and background on the IDP problem. In Section 3 we analyze the generality of
the solution produced by Solve IDP and the complexity of testing generality.
For lack of space some proofs are sketched or omitted.
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2 Preliminaries

We first specify some terminology and notation. Matrices are denoted by an
upper-case letter, while their elements are denoted by the corresponding lower-
case letter. Let G = (V,E) be an undirected graph. We denote its set of vertices
V also by V (G). A nonempty set W ⊆ V is connected in G, if there is a path in
G between every pair of vertices in W .

Let T be a rooted tree over a leaf set S. The out-degree of a node x in T
is its number of children, and is denoted by d(x). For a node x in T we denote
the leaf set of the subtree rooted at x by L(x). L(x) is called a clade of T . For
consistency, we consider ∅ to be a clade of T as well, and call it the empty clade.
S, ∅ and all singletons are called trivial clades.

Observation 1 (cf. [4]) A collection C of subsets of a set S is the set of clades
of some tree over S if and only if C contains the trivial clades and for every
intersecting pair of its subsets, one contains the other.

A tree T is uniquely characterized by its set of clades. The transformation
between a branch-node representation of a tree and a list of its clades is straight-
forward. Thus, we hereafter identify a tree with the set of its clades.

Throughout the paper we denote by S = {s1, . . . , sn} the set of all species
and by C = {c1, . . . , cm} the set of all (binary) characters. For a graph K, we
define S(K) ≡ S∩V (K). Let Bn×m be a binary matrix whose rows and columns
correspond to species and characters, respectively, and bij = 1 if and only if
the species si has the character cj . A phylogenetic tree for B is a rooted tree T
with n leaves corresponding to the n species of S, such that each character is
associated with a clade of T , and the following properties are satisfied:
(1) If cj is associated with a clade S′ then si ∈ S′ if and only if bij = 1.
(2) Every non-trivial clade of T is associated with at least one character.

A {0, 1, ?} matrix is called incomplete. For convenience, we also consider
binary matrices as incomplete. Let An×m be an incomplete matrix in which
aij = 1 if si has cj , aij = 0 if si lacks cj , and aij =? if it is not known whether si
has cj . For two subsets S′ ⊆ S and C ′ ⊆ C we denote by A|S′,C′ the submatrix
of A induced on S′ × C ′. For a character cj and a state x ∈ {0, 1, ?}, the x-set
of cj in A is the set of species {si ∈ S : aij = x}. cj is called a null character if
its 1-set is empty. We denote EA

x = {(si, cj) : aij = x}, for x = 0, 1, ?. (In the
sequel, we omit the superscript A when it is clear from the context.)

A binary matrix B is called a completion of A if EA
1 ⊆ EB

1 ⊆ EA
1 ∪EA

? . Thus,
a completion replaces all the ?-s in A by zeroes and ones. If B has a phylogenetic
tree T , we say that T is a phylogenetic tree for A as well. We also say that T
explains A via B. An example of these definitions is given in Figure 1.

The problem of Incomplete Directed Perfect Phylogeny is defined as follows:
Incomplete Directed Perfect Phylogeny (IDP):
Instance: An incomplete matrix A.
Goal: Find a phylogenetic tree for A, or determine that no such tree exists.

Let B be a species-characters binary matrix of order n ×m. Construct the
bipartite graph G(B) = (S,C,E) with E = {(si, cj) : bij = 1}. An induced path
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Fig. 1. Left to right: An incomplete matrix A, a completion B of A, and a phylogenetic
tree that explains A via B. Each character is written to the right of the root of its
associated clade. (Example taken from [6].)

of length four in G(B) is called a Σ subgraph if it starts (and therefore ends)
at a vertex corresponding to a species. A bipartite graph with no induced Σ
subgraph is said to be Σ-free.

We now recite several characterizations of IDP.

Theorem 2 ([6]). B has a phylogenetic tree if and only if G(B) is Σ-free.

In [6] we used Theorem 2 to reformulate IDP as a graph sandwich problem.
Finding a completion of an input matrix A was shown to be equivalent to finding
a Σ-free supergraph of G(A) whose set of edges does not intersect EA

0 .

Corollary 1. Let Ŝ ⊆ S and Ĉ ⊆ C be subsets of the species and characters,
respectively. If A has a phylogenetic tree, then so does A|Ŝ,Ĉ .

Corollary 2. Let A be a matrix explained by a tree T and let Ŝ = L(x) be a
clade in T . Then A|Ŝ×C is explained by the subtree of T rooted at x.

For a subset S′ ⊆ S of species, we say that a character c is S′-universal in
B, if its 1-set contains S′ (i.e., every species in S′ has that character).

Proposition 1 ([6]). If G(B) is connected and Σ-free, then there exists a char-
acter which is S-universal in B.

2.1 An Algorithm for IDP

In this section we briefly describe an algorithm for IDP, given in [6]. Let A be
the input matrix. We denote by B(A) the binary matrix of A’s dimension with
?-s replaced by zeros. Define G(A) ≡ G(B(A)) = (S,C,EA

1 ). For a nonempty
subset S′ ⊆ S, we say that a character is S′-semi-universal in A if its 0-set does
not intersect S′.

The algorithm for solving IDP is described in Figure 2. It outputs the
set of non-empty clades of a tree explaining A, or False if no such tree ex-
ists. The algorithm is recursive and is initially called with Solve IDP(A). It
was shown in [6] that Solve IDP has a deterministic implementation which
takes O(nm + |E1| log2 l) time, and a randomized implementation which takes
O(nm+ |E1| log(l2/|E1|) + l(log l)3 log log l) expected time, where l = n+m.
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Solve IDP(A):
1. If |S| > 1 then do:
a) Remove all S-semi-universal characters and all null characters from G(A).
b) If the resulting graph G′ is connected then output False and halt.
c) Otherwise, let K1, . . . , Kr be the connected components of G′, and let
A1, . . . ,Ar be the corresponding sub-matrices of A.

d) For i = 1, . . . , r do: Solve IDP(Ai).
2. Output S.

Fig. 2. An algorithm for solving IDP [6].

3 Determining the Generality of the Solution

A ’yes’ instance of IDP may have several distinct phylogenetic trees as solutions.
These trees may be related in the following way: We say that a tree T generalizes
a tree T ′, and write T ⊆ T ′, if every clade of T is a clade of T ′, i.e., the
evolutionary hypothesis expressed by T ′ includes all the details of the hypothesis
expressed by T , and possibly more. Therefore, T ′ represents a more specific
hypothesis, and T represents a more general one. We say that a tree T is the
general solution of an instance A, if T explains A, and generalizes every other
tree which explains A. Figure 3 demonstrates the definitions, and also gives an
example of an instance which has no general solution.

s1 s1 s2 s3s1 s2 s3s2 s3

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

c1

c2

s1
s2

s5

s3
s4

s1c1
s2
s3c2

Characters Species

c1 c2 c1 c2

c1

c2

T2

c2

c1

T1

c1 c2

T

Fig. 3. Top left: An IDP instance which has a general solution. Dashed lines denote
E?-edges, while solid lines denote E1-edges. Top-right: T , T1 and T2 are the possible
solutions. T generalizes T1 and T2 (which are obtained by splitting the root node of
T ), and is the general solution. Bottom left: An IDP instance which has no general
solution. Bottom middle and bottom right: Two possible solutions. The only tree which
generalizes both solutions is the tree comprised of the trivial clades only, but this tree
is not a solution.
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3.1 Finding a General Solution

We prove in this section that whenever a general solution exists, Solve IDP finds
it. We use the following notation: Let A be an incomplete matrix and let Ŝ ⊆ S.
We denote by WA(Ŝ) the set of Ŝ-semi-universal characters in A. Note that
if A is binary, then WA(Ŝ) is its set of Ŝ-universal characters. We define the
operator ˜ on incomplete matrices: We denote by Ã the submatrix A|S,C\WA(S)

of A. In particular, G(Ã) is the graph produced from G(A) by removing its set
of S-semi-universal vertices.

Lemma 1. Let T be the general solution for an instance A of IDP. Let S′ =
L(x) be a clade of T , corresponding to some node x. Let T ′ be the subtree of T
rooted at x, and let A′ be the instance induced on S′ ∪C. Then T ′ is the general
solution for A′.

Proof. By Corollary 2, T ′ explains A′. Suppose that T ′′ also explains A′ and
T ′ �⊆ T ′′. Then T̂ = (T \ T ′) ∪ T ′′ explains A, and T �⊆ T̂ , a contradiction. ��

A nonempty clade of a tree is called maximal if the only clade that properly
contains it is S.

Lemma 2. Let T be a phylogenetic tree for a binary matrix B. A non-empty
clade S′ of T is maximal if and only if S′ is the species set of some connected
component of G(B̃).

Proof. Suppose that S′ is a maximal clade of T . We claim that S′ is contained in
some connected component K of G(B̃). If |S′| = 1 this trivially holds. Otherwise,
the character c associated with S′ connects all its species, and c �∈ WB(S),
proving the claim. Proposition 1 implies that S is disconnected in G(B̃) and,
therefore, S′ ⊆ S(K) ⊂ S. Suppose to the contrary that S(K) properly contains
S′. In particular, |S(K)| > 1. By Proposition 1, there exists a character c′ in
G(B̃) whose 1-set is S(K). Hence, S(K) must be a clade of T which is associated
with c′, contradicting the maximality of S′.

To prove the converse, let S′ be the species set of some connected component
K of G(B̃). We first claim that S′ is a clade. If |S′| = 1, S′ is a trivial clade.
Otherwise, by Proposition 1, there exists an S′-universal character c′ in G(B̃).
Since K is a connected component, c′ has no neighbors in S \ S′. Hence, S′

must be a clade in T . Suppose to the contrary that S′ is not maximal, then it
is properly contained in a maximal clade S′′, which by the previous direction is
the species set of K, a contradiction. ��

Theorem 3. Solve IDP produces the general solution for every IDP instance
that has one.

Proof. Let A be an instance of IDP for which there exists a general solution T ∗.
Let Talg be the solution tree produced by Solve IDP. By definition T ∗ ⊆ Talg.
Suppose to the contrary that T ∗ �= Talg. Let S′ be the largest clade in Talg \ T ∗
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(S′ must be non-trivial), and let S′′ be the smallest clade in Talg which properly
contains it. Let A′ be the instance induced on S′′ ∪ C. By Corollary 2, A′ is
explained by the corresponding subtrees T ′

alg of Talg and T ′∗ of T ∗. By Lemma 1,
T ′∗ is the general solution of A′. Due to the recursive nature of Solve IDP, it
produces T ′

alg when invoked with input A′. Thus, w.l.o.g., one can assume that
S′′ = S and S′ is a maximal clade of Talg.

Suppose that T ∗ explains A via a completion B∗, and let G∗ = G(B∗). Since
S′ is a maximal clade, it is reported during a second level call of Solve IDP(·) (the
call at the first level reports the trivial clade S). Hence, it must be the species
set of some connected component K in G(Ã). Since every S-universal character
in G∗ is S-semi-universal in A, S′ is contained in some connected component K∗

of G(B̃∗). Denote S∗ ≡ S(K∗). By Lemma 2, S∗ is a maximal clade of T ∗. Since
S′ �∈ T ∗, we have S′ �= S∗, and therefore, S∗ ⊃ S′. But T ∗ ⊆ Talg, implying
that S∗ is also a non-trivial clade of Talg, in contradiction to the maximality of
S′. ��

3.2 Determining the Existence of a General Solution

We give in this section a characterization of IDP instances that admit a general
solution. We also provide an algorithm to determine whether the solution tree
T returned by Solve IDP is general. The complexity of the latter algorithm is
shown to be O(mn+ |E1|d), where d is the maximum out-degree of T .

Let A be a ’yes’ instance of IDP. Consider a recursive call Solve IDP(A′)
nested within Solve IDP(A), where A′ = A|C′,S′ . Let K1, . . . ,Kr be
the connected components of G(Ã′) computed in Step 1c. Observe that
S(K1), . . . , S(Kr) are clades to be reported by recursive calls launched dur-
ing Solve IDP(A′). A set U of characters is said to be (Ki,Kj)-critical if: (1)
Characters in U are both S(Ki)-semi-universal and S(Kj)-semi-universal in A′;
and (2) removing U from G(Ã′) disconnects S(Ki). Note that by definition of U ,
U ⊆ WA′(S(Ki)), and a′

sc =? for all c ∈ U, s ∈ S(Kj). A clade S(Ki) is called
optional with respect to A, if r ≥ 3 and there exists a (Ki,Kj)-critical set for
some index j �= i. Otherwise, we say that S(Ki) is supported. In the example
of Figure 3 (bottom), K1 = {s1, s2, c1},K2 = {s3},K3 = {s4, s5, c2}. The set
U = {c1} is (K1,K2)-critical, so S(K1) = {s1, s2} is optional.

Theorem 4. Let Talg be a tree produced by Solve IDP on instance A. Then Talg
is the general solution for A if and only if all its clades are supported.

Proof. ⇒ Suppose to the contrary that Talg contains an optional clade with
respect to A. W.l.o.g., assume it is maximal, i.e., during the recursive call
Solve IDP(A), G′ = G(Ã) has r ≥ 3 connected components, K1, . . . ,Kr, and
there exists a (Ki,Kj)-critical set U (for some 1 ≤ i �= j ≤ r). Let Ai,Aj
and Aij be the sub-instances induced on Ki,Kj and Ki ∪ Kj , respectively.
Consider the tree T ′ which is produced by a small modification to the ex-
ecution of Solve IDP(A): Instead of recursively invoking Solve IDP(Ai) and
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Solve IDP(Aj), call Solve IDP(Aij). Then T ′ is a phylogenetic tree which ex-
plains A, but T ′ includes the clade S(Ki ∪ Kj). Since r ≥ 3, S(Ki ∪ Kj) is
non-trivial and is not a clade of Talg, a contradiction.
⇐ Suppose that Talg is not the general solution for A, i.e., there exists a

solution T ∗ of A such that Talg �⊆ T ∗. We shall prove the existence of an optional
clade with respect to A. (The reader is referred to the example in Figure 4 for
notation and intuition. The example follows the steps of the proof, leading to
the identification of an optional clade.) Let B∗ be a completion of A which is
explained by T ∗, and denote G∗ = G(B∗). Let S′ ∈ Talg \ T ∗ be the largest
clade reported by Solve IDP which is not a clade of T ∗. W.l.o.g. (as argued in
the proof of Theorem 3), S′ is a maximal clade of Talg, and S′ = S(K1), where
K1, . . . ,Kr are the connected components of G(Ã).

Let {S∗
i }ti=1 be the nested set of clades in T ∗ that contain S′: S = S∗

1 ⊃
· · · ⊃ S∗

t ⊃ S′. For each i = 1, . . . , t, let C∗
i be the set of characters in B∗ whose

1-set is non-empty and is properly contained in S∗
i . Denote B∗

i = B∗|S∗
i
,C∗

i
and

let H∗
i = G(B∗

i ), i.e., H∗
i is the subgraph of G∗ induced on S∗

i ∪ C∗
i . Let Hi be

the subgraph of G(A) induced on the same vertex set. Since G∗ is a supergraph
of G(A), each H∗

i is a supergraph of Hi.

Claim. S′ is disconnected in H∗
t and, therefore, also in Ht.

Proof. Suppose to the contrary that S′ is contained in some connected compo-
nent K∗ of H∗

t . S(K∗) is thus a clade of the (unique) phylogenetic tree for B∗
t

and, therefore, also a clade of T ∗. It follows that S∗
t ⊃ S(K∗) ⊃ S′, where the

first containment follows from the fact that H∗
t is disconnected, and the second

from the assumption that S′ is not a clade of T ∗. This contradicts the minimal-
ity of S∗

t . ��
We now return to the proof of Theorem 4. Recall that S′ is connected in

H1 = G(Ã). Thus, the previous claim implies that t > 1. Let Kp be a connected
component of G(Ã) such that S(Kp) ⊆ S \ S∗

2 . Such a component exists since
G(Ã) is not connected and S∗

2 is the species set of one of its components. Let
l be the minimal index such that there exists some connected component Ki of
G(Ã) for which S(Ki) is disconnected in Hl. l is properly defined as S(K1) = S′

is disconnected in Ht. l > 1, since otherwise some Ki is disconnected in H1
and, therefore, also in its subgraph G(Ã), in contradiction to the definition of
K1, . . . ,Kr. By minimality of l, S∗

l ⊇ S(Ki). Also, S∗
l ⊇ S∗

t ⊃ S′ = S(K1), so
S∗
l �= S(Ki). We now claim that there exists some connected component Kj of
G(Ã), j �= i, such that S(Kj) ⊆ S∗

l . Indeed, if i �= 1 then j = 1. If i = 1 then
l = t (by an argument similar to that in the proof of Claim 3.2), and since S∗

l \S′

is non-empty, it intersects S(Kj) for some j �= i. By minimality of l, S(Kj) is
properly contained in S∗

l \ S′.
Define U ≡ WG∗(S∗

l ). By definition all characters in U are S∗
l -universal in

G∗, and are thus both Ki-semi-universal and Kj-semi-universal in A. S(Ki) is
disconnected in Hl = G(A|C∗

l
,S∗

l
). Since Ki is a connected component of G(Ã),

S(Ki) is disconnected in G(A|C∗
l
,S), implying that U is a (Ki,Kj)-critical set.
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Also, Ki,Kj and Kp are distinct, implying that r ≥ 3. Hence, U demonstrates
that S(Ki) is optional. ��

Characters Species

s5

s7

s3

s8

s6

s4c2
c3

Talg

c2 c3c1 c4

s1 s2 s3 s4 s5 s6 s7 s8

Kp Kj Ki

S ′

s1 s2 s3 s4 s5 s6 s7 s8

c1 c2 c3

c4

T ∗

S = S∗
1 S∗

2 S∗
3

s8

s6

s4

s2

s1

s5

s7

s3
c2
c3

c4

c1

U

SpeciesCharacters

Fig. 4. An example demonstrating the proof of the ’if’ part of Theorem 4, using the
same notation. Left: A graphical representation of an input instance A. Dashed lines
denote E?-edges, while solid lines denote E1-edges. Top right: The tree Talg produced
by Solve IDP. Bottom middle: A tree T ∗ corresponding to a completion B∗ that uses
all the edges in E?. Bottom right: The graphs H2 (solid edges) and H∗

2 (solid and
dashed edges). Talg �⊆ T ∗, and S′ = {s5, s6}. There are t = 3 clades of T ∗ which
contain S′: S∗

1 = {s1, . . . , s8}, S∗
2 = {s3, . . . , s8}, and S∗

3 = {s5, s6, s7}. The component
Kp = {c1, s1, s2} has its species in S \ S∗

2 . Since WA(S) = WB∗(S) = ∅, H1 = G(A).
Since WB∗(S∗

2 ) = {c4}, the species set of the connected component Ki = {s7, s8, c4}
is disconnected in H2, implying that l = 2. For a choice of Kj = {s3, s4, c2}, the set
U = {c4} is (Ki, Kj)-critical, demonstrating that S′ is optional.

The characterization of Theorem 4 leads to an efficient algorithm for deter-
mining whether a solution Talg produced by Solve IDP is general.

Theorem 5. There is an O(nm+ |E1|d)-time algorithm to determine if a given
solution Talg is general, where d is the maximum out-degree in Talg.
Proof. The algorithm simply traverses Talg bottom-up, searching for optional
clades. For each internal node x visited, whose children are y1, . . . , yd(x), the
algorithm checks whether any of the clades L(y1), . . . , L(yd(x)) is optional. If an
optional clade is found the algorithm outputs False. Correctness follows from
Theorem 4.

For analyzing the complexity, it suffices to show how to check whether a clade
L(yi) is optional. If d(x) = 2, or yi is a leaf, then certainly L(yi) is supported.
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Otherwise, let Ui be the set of characters whose associated clade (in Talg) is
L(yi). Let U ij denote the set of characters in Ui which are L(yj)-semi-universal,
for j �= i. The computation of U ij for all i and j takes in total O(nm) time, since
for each character c and species s we check at most once whether (s, c) ∈ EA

? ,
for an input instance A.

It remains to show how to efficiently check whether for some j, U ij discon-
nects L(yi) in the appropriate subgraph encountered during the execution of
Solve IDP. To this end, we define an auxiliary bipartite graph Hi whose set of
vertices isWi∪Ui, whereWi = {w1, . . . , wd(yi)} is the set of children of yi in Talg.
We include the edge (wr, cp) in Hi, for wr ∈Wi, cp ∈ Ui, if (cp, s) ∈ EA

1 for some
species s ∈ L(wr). We construct for each j �= i a subgraph Hi

j of Hi induced on
Wi∪(Ui \U ij). All we need to report is whether Hi

j is connected. It can be shown
that the overall complexity of the algorithm is O(mn+|EA

1 |·maxv∈Talg
d(v)). ��
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Sorting with a Forklift

M.H. Albert and M.D. Atkinson

Department of Computer Science, University of Otago

Abstract. A fork stack is a stack that allows pushes and pops of several
items at a time. An algorithm to determine which sequences of input
streams can be sorted by a fork stack is given. The minimal unsortable
sequences are found (there are a finite number only). The results are
extended to fork stacks where there are bounds on how many items can
be pushed and popped at one time. Some enumeration results for the
number of sortable sequences are given.

1 Introduction

A standard analogy for explaining the operation of a stack is to speak about
stacks of plates, allowing one plate to be added to, or removed from, the top of
the stack. At this point a disruptive member of the audience generally asks why
it is not possible to move more than one plate at a time from the top of a stack.
In this paper we address his concerns.

In particular we will consider the problem of a dishwasher and his helper.
The dishwasher receives dirty plates, washes them, and adds them one at a time
to a stack to be put away. The helper can remove plates from the stack, but
she can move more than one plate at a time. It so happens, that all the plates
are of slightly differing sizes, and her objective is to make sure that when they
are placed in the cupboard, they range in order from biggest at the bottom, to
smallest at the top. It is easy to see that if the dishwasher processes three dishes
in order: middle, smallest, largest then his helper can easily succeed in the model
given (simply waiting for the largest plate, and then moving the two smaller ones
on top as a pair). However, if she is replaced by a small child who can only move
a single plate at a time, then the desired order cannot be achieved.

The characterisation of those permutations that can be sorted using the stan-
dard single push and pop operations of a stack is a classical result found in [6].
Similar characterisations for sorting using other data structures are considered
in [2], [7], and [9] among others. In this paper we will consider the correspond-
ing problems when we allow multiple additions to, or removals from the stack
according to the analogy above.

An alternative, slightly more general, analogy provides the source of our title.
We begin with a stack of boxes, called the input, labelled 1 through n in some
order. We have at our disposal a powerful forklift which can remove any segment
of boxes from the top of the stack, and move it to the top of another stack, the
working stack. From there another forklift can move the boxes to a final, output,
stack. Physical limitations, or union rules, prevent boxes being moved from the

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 368–377, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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working stack to the input, or from the output to the working stack. The desired
outcome is that the output should be ordered with box number 1 on top, then
2, then 3, . . . , with box n at the bottom. An example of a sorting procedure in
progress is shown in Figure 1.

3

2

4

1

6

Input stack Output stackWorking stack

5

To complete the sort, move the pair 41 to the working stack, 
move 5 to the working stack and then to output, move 4 to 
output, and move the triple 123 to output.

Fig. 1. A snapshot of sorting

The problems we wish to consider in this context are:

– How should such permutations be sorted?
– Which permutations can be successfully sorted?
– How many such permutations are there?

We will also consider these questions in the restricted context where one or both
of the moves allowed are of limited power – for example, say, at most three boxes
at a time can be moved from the input stack to the working stack, and at most
six from the working stack to the output stack. The case where both moves are
restricted to a single box, is, or course, the problem discussed above of sorting
a permutation using a stack. We will omit most proofs entirely, or give a brief
discussion of them – they will appear in subsequent papers.

The process of sorting 236415 is documented below. Note that, at the stage
shown in Figure 1 it is essential that 41 be moved as a pair – moving either 4
alone, or the triple 415 would result (eventually) in 1 lying on top of 4 or 5 in
the working stack, and thereby prevent sorting.

Input Working Output
236415
6415 23
415 623
415 23 6 (See Figure 1)
5 4123 6

54123 6
4123 56
123 456

123456 Finished
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Some permutations, such as 35142 cannot be sorted. Here, we may move 3 to
the working stack, and then 5 to the output, but now whether we move 1 alone,
14, or 142, we wind up with 1 lying on top of 3 or 4 in the working stack, and
cannot complete the sorting procedure. We will see below that if we can avoid
creating this type of obstruction in the working stack, then sorting is possible.

2 Definitions and Formalities

In the subsequent sections we will tend to continue to use the terminology of
the introduction speaking of the input stack, forklifts, etc. However, it will be
convenient to introduce a certain amount of basic notation in order to facilitate
discussion. As we will always take the initial input to be a permutation of 1
through n for some n, the contents of each stack at any time can and will be
represented by sequences of natural numbers (not containing repetitions). Our
ultimate objective is always to reach a state where the contents of the output
stack are the permutation

1 2 · · · (n− 1)n

and we will refer to this outcome as success.
In the basic situation where both forklifts are of unlimited capacity, we use

F to denote the collection of all permutations for which success is possible. If
the input to working stack forklift is limited to moving j boxes in a single move,
and the working to output one to moving k, then we denote the corresponding
class F(j, k). Here j and k are either natural numbers, or∞. We do not concern
ourselves with the case where either of the forklifts is broken and incapable of
making any moves!

Given a permutation π as input, a sequence of operations is allowed, if it
does not result in an output state which provides clear evidence that sorting is
not being carried out. That is, a sequence of operations is allowed if at the end
of the sequence the output stack contains some tail of 12 · · ·n.

Finally, in discussing the algorithms for sorting it will be useful to pretend
that it is possible to move boxes directly from the input stack to the output
stack – and such an operation, as well as the more normal type of output is
called direct output. So a direct output move consists either of output from the
working stack, or moving a part of the input stack to the working stack (in a
single lift), and then moving exactly that set of boxes to the output stack, again
in a single lift.

Just as the case where two forklifts of unit capacity corresponds to sorting
with a stack, the general case we are considering corresponds to sorting with
a data structure which has a more powerful set of operations than a normal
stack. Namely, we are allowed to push a sequence of objects onto the top of the
structure, and likewise pop such a sequence. This structure will be called a fork
stack (and roughly it corresponds to the working stack in our analogy).
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3 The Sorting Algorithms

How should a fork stack actually carry out its task of sorting a permutation
when this is possible? It turns out that there is a straightforward algorithm to
accomplish this operation. Broadly speaking, we may use a simple modification
of a greedy algorithm:

– perform any output as soon as possible,
– otherwise move the maximum decreasing sequence from the head of the input
onto the working stack.

Before we justify this claim (and make some technical changes to the second
option) we need a slightly more abstract characterisation of unsortability.

Definition 1. For positive integers a and b, a << b means a < b − 1. In a
series of fork stack moves, we say that the dreaded 13 occurs if at some point
the working stack contains adjacent elements ab with a << b.

Proposition 2. A permutation π is unsortable if and only if every allowable
sequence of fork stack operations that empties the input produces, at some point,
the dreaded 13.

This is easily justified. If we cannot avoid producing a 13, then we cannot
sort π for there is no way to insert the missing elements into the gap between the
elements a << b witnessing the 13. On the other hand, if there is some allowable
sequence of operations that empties the input stack and avoids producing a 13,
then on completing them, the contents of the working stack will be a decreasing
sequence, except possibly for some blocks of consecutive increasing elements. Such
a stack is easily moved to the output in its sorted order.

We refer to a sequence of the type emphasised above, as a near-decreasing se-
quence. Suppose that no immediate output is possible and consider the maximal
near-decreasing sequence at the top of the input stack. If the symbols occurring
in this sequence do not form an interval, then it is easy to see that any move
other than taking the whole sequence and transferring it to the top of the work-
ing stack will eventually cause the dreaded 13. If the symbols occurring in the
sequence do form a consecutive interval, then we can arrange to place them on
the working stack in order, with largest deepest (to subsequently be moved as a
block to the output). This is preferable to any other arrangement on the working
stack, for it makes the top element of the working stack as small as possible,
minimising the possibility of later creating a dreaded 13.

Doing direct output as soon as it becomes available can never interfere with
sorting. For if we have a successful sequence of sorting moves which we modify
by doing some direct output earlier, we can simply continue to carry out the suc-
cessful sequence, ignoring any effect on symbols which have already been moved
to output – and we will still succeed. So we may assume that any sorting algo-
rithm does in fact perform direct output whenever it can. Then the observations
of the preceding paragraph imply that when direct output is not available, the
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maximal near-decreasing sequence at the top of the input stack must be moved.
If this sequence contains gaps, there is no choice in how to move it, and we have
argued that if it does not, then moving it so that it forms an increasing sequence
on the working stack is at least as effective as any other choice.

This establishes that Algorithm 1 will correctly sort any input stack, if it is
sortable at all:

Algorithm 1 Sorting with a powerful fork-lift
repeat

Perform as many direct output moves as possible.
Move the maximal near-decreasing sequence from the top of the input stack to
the working stack, as a block if it contains gaps, so that it becomes increasing if
it does not.

until input stack is empty
if working stack is empty then

Success!
else

Failure.
end if

How does Algorithm 1 need to be modified in the case where either or both
of the forklifts moving from input to working stack, or from working stack to
output, are of limited power? The first issue is how to modify Proposition 2. The
13 configuration is bad regardless of the power of our forklifts, but if our output
lift is limited to moving k boxes we must add the condition that the working
stack should not contain an increasing sequence of length longer than k. Now
modifying the algorithm is straightforward. In the case where the maximal near-
decreasing sequence contains gaps it must be moved as a block to avoid 13’s.
So, if this block is larger than the capacity of our working forklift, we fail. In
the non-gap case, we would normally attempt to make the sequence increasing.
Of course this would be foolish if it overwhelmed the capacity of our output lift
(and it could be impossible depending on the capacity of our input lift). The only
other choice that does not create a 13 is to make it decreasing, so this should be
attempted if the first choice is unavailable. Failure may later occur because we
create a block that is too long to move in the working stack, or a 13 there, but
if not, then the algorithm will succeed.

4 Finite Basis Results

We now begin our combinatorial investigation of the collections of permutations
sortable by various combinations of forklifts. The problem which we address in
this section is how to identify the sortable or unsortable permutations without
reference to Algorithm 1. In the following section we will consider the problem
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of enumerating these classes. For identification purposes we concentrate on pro-
ducing a list of minimal unsortable permutations. We must first prepare the way
with some definitions and notation:

Definition 3. Given permutations σ and π, we say that σ is involved in π,
and write σ � π if some subsequence of π, of the same length as σ, consists of
elements whose relative order agrees with those of the corresponding elements
of σ. A collection of permutations closed downwards under � is called a closed
class.

It is easy to see that each of the collections F(j, k) of sortable permutations
for a particular combination of forklifts is a closed class. This is because we may
sort any subsequence of a sortable sequence by simply ignoring any moves that
do not affect members of the subsequence. This policy cannot increase the load
on a forklift in any single move, so it still sorts the remaining elements. It follows,
that if we take U(j, k) to be the set of �-minimal unsortable permutations then:

π is (j, k)-unsortable ⇐⇒ σ � π for some σ ∈ U(j, k).

In particular, U(j, k) can be thought of as a description of F(j, k) (or rather
of its complement, but that amounts to the same thing!) This description gains
some power owing to the following result.

Proposition 4. For any 1 ≤ j, k ≤ ∞ the set U(j, k) is finite.

The detailed proof of this proposition is technical and dull. It is of course
enough to show that there is some finite set of permutations such that every
(j, k)-unsortable permutation involves one of them. The basic idea is to make
use of the characterisation of unsortability provided by the failure of Algorithm 1
(modified as necessary for the limited power case). One considers the state of the
working stack, and input, at the instant where the next move being attempted
either fails completely or creates a bad configuration on the working stack. The
first case corresponds to a near-decreasing part which is too long for the working
lift. Obviously there are a finite number of minimal examples of such, and any
occurrence of one of these prevents sorting. In the second case, the cause of the
resulting bad configuration can be localised to a bounded number of elements of
the original input. This gives a further finite set of obstructions, from which the
desired result follows.

The actual sets U(j, k) are not that difficult to compute. We may assume
that k ≥ j, since the class F(j, k) consists of the inverses of the elements of
F(k, j), and inversion preserves the relation �. For the case k > j, once we
know U(j,∞), we obtain U(j, k) simply by adding the single permutation:

(k + 1) k (k − 1) · · · 2 1 (k + 2),

and then deleting any elements of U(j,∞) in which it is involved. For j = k,
direct computation is required.
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The set U(∞,∞) consists of the permutation 35142, together with 45 per-
mutations of length six, and 6 of length seven. The sets U(1, k) are of particular
interest in connection with the next section and they are:

U(1,∞) = {2314, 3124, 3142}
U(1, k) = {2314, 3124, 3142, (k + 1) k (k − 1) · · · 2 1 (k + 2)} (k ≥ 2)
U(1, 1) = {213}.

5 Enumeration

Associated with any collection C of permutations is a generating function

fC =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·

where
cn = |{π ∈ C : π ∈ Sn}| .

Most often one sets c0 = 1, though algebraic convenience may occasionally dic-
tate c0 = 0. Recurrences which define the sequence cn often translate naturally
into algebraic or differential equations for the generating function, and indeed it
is frequently more illuminating to develop these equations directly rather than
via an initial recurrence (for many examples and an exposition of the theory
see [5] and [10]). Additionally, having an algebraic description of the generating
function, possibly only impicit, allows one to use methods based on complex
analysis to provide asymptotic expansions for the numbers cn as explained in [3]
and [4]. We will pursue this program for the classes F(1, k).

In particular, begin with the class F(1,∞). Note that the sorting algorithm is
completely determined – single elements are moved from input to working stack,
and output is performed whenever possible. Suppose that we have some sortable
permutation π. Choose t to be the maximum integer such that the elements 1
through t occur in π in decreasing order (thus, if 2 follows 1, t = 1). So the
original input was of the form:

π = σt t σt−1 (t− 1) · · ·σ2 2σ1 1σ0
for some sequences σ0 through σt, where t+ 1 does not occur in σt.

Consider the sorting procedure. The elements of σt are processed, and then
we come to t. Now by the choice of t, t + 1 has not yet been processed, so we
may not output t (except in the trivial case where all the σi are empty). So we
must move t to the working stack. However, if it is non-empty at this time, that
move would create a 13. So the working stack must be empty, and σt must have
been a sortable permutation of a final subinterval of the values occurring in π.
Now proceed to the stage where t− 1 is about to be moved. Again, either t+ 1
has turned up by now, and the working stack is empty, or it contains only the
value t. In either case σt−1 is a sortable permutation of a final subinterval of
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the remaining values. This argument persists inductively. So in the end we see
that t + 1 occurs in the first non-empty σj , and that the general structure of a
sortable permutation is:

(sortable) t (sortable) (t− 1) · · · (sortable) 1 (sortable)

where we are free to decide the sizes of the “sortable” parts, but having done
so, their elements are uniquely determined. We distinguish two cases according
to whether or not the final “sortable” part is empty. By standard arguments
this yields an identity satisfied by the generating function for this class which
we denote f∞:’

f∞ = 1 + xf∞ + (f − 1)
∞∑
t=1

xtf t∞

or, after summing the geometric series:

f∞ = 1 +
xf2∞ − x2f2∞
1− xf∞

.

We can then solve the resulting quadratic to get:

f∞ =
1 + x−√1− 6x+ 5x2

4x− 2x2
=

2
1 + x+

√
1− 6x+ 5x2

.

The sequence that this generating function defines:

1, 1 , 2, 6, 21, 79, 311, 1265, 5275 . . .

is number A033321 in [8], and the references provided for it there connect it with
other interesting enumeration problems.

The only change that needs to be made to find the generating function fk
for F(1, k) is to change the upper limit of summation in the relationship above
from ∞ to k, since the maximum increasing sequence that we can deal with on
the working stack is of length k. This allows efficient exact enumeration of these
classes using standard generating function techniques. It also allows asymptotic
expansions of the form:

cn =
r−n

n3/2

(∑
k=0

ek
nk

)

to be computed to any desired degree of accuracy using the methods developed
in [4].

The behaviour of the radius of convergence r (whose reciprocal gives the
exponential part of the growth rate for the coefficients cn), as k increases from 1
to∞ is particularly interesting. It begins at 1/4, since k = 1 gives us the Catalan
numbers and then decreases to 1/5 at k =∞. However, the rate of convergence
to 1/5 is very rapid indeed. The first six values are:

.2500, .2114, .2033, .2010, .2003, .2001
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These observations can be formalized and justified using the fact that the radius
of convergence in each case is the smallest positive root of the resultant of the
polynomial that fk satisfies (whose coefficients are linear functions of x). How-
ever, the intuitive content of the result is that once you have a forklift capable
of moving six boxes, you gain little in terms of which initial configurations are
sortable by the addition of more power!

6 Summary and Open Problems

We have defined a generalised form of stack depending on two parameters j, k.
It allows multiple pushes of up to j elements at a time, and multiple pops of up
to k elements. For each 1 ≤ j, k ≤ ∞ we have shown how to test in linear time
whether an input sequence is sortable, and we have determined the minimal set
of unsortable sequences.

If either j = 1 or k = 1 we have precise enumeration results for the number
of sortable permutations of every length.

The first open problem to attack is the enumeration question for j, k ≥ 2.
Based on counting valid sequences of fork lift operations we have some upper
bounds for these questions. Suppose that we begin with n items of input. A
valid sequence of forklift operations can be represented by a path (with marked
vertices) from (0, 0) to (2n, 0) in the plane, consisting of segments of the form
(s, s) or (p,−p) for positive integers s and p, representing pushing s elements
onto the working stack, or popping p elements from it respectively. The condition
for validity is that the path never pass below the x-axis. Figure 2 illustrates the
lattice path for sorting the sequence 236415.

Fig. 2. The lattice path for sorting 236415

In the context of traditional stack sorting (where s and p are only allowed to
equal 1) two different paths will produce two different permutations of the input.
This is one of the methods for arguing that the stack-sortable permutations are
enumerated by the Catalan numbers.
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This same sort of analysis in fact applies to the case where only the push
operation is restricted to be at most one element, and gives an alternative method
of proving the enumeration results of the preceding section. However, when both
s and p may take on multiple values, then it is no longer the case that two
different paths produce different permutations. The simplest instance is with
two input symbols 1 and 2 in that order. Then the paths:

(0, 0)→ (2, 2)→ (3, 1)→ (4, 0) and
(0, 0)→ (1, 1)→ (2, 2)→ (4, 0)

both reverse the input. It is possible to reduce paths to a standard equivalent
form, which reduces the problem to considering when two paths having the same
outline represent the same permutation, but ambiguity is still present. None the
less, by counting lattice paths we can certainly provide upper bounds for the
number of sortable permutations. In particular for j = k =∞, we get sequence
A059231 from [8], which establishes that the number of sortable permutations
of length n is O(9n).
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Abstract. The f -cost of a tree decomposition ({Xi | i ∈ I}, T = (I, F ))
for a function f : N → R+ is defined as

∑
i∈I f(|Xi|). This measure

associates with the running time or memory use of some algorithms that
use the tree decomposition. In this paper we investigate the problem to
find tree decompositions of minimum f -cost.
A function f : N→ R+ is fast, if for every i ∈ N: f(i+1) ≥ 2 · f(i). We
show that for fast functions f , every graph G has a tree decomposition of
minimum f -cost that corresponds to a minimal triangulation of G; if f is
not fast, this does not hold. We give polynomial time algorithms for the
problem, assuming f is a fast function, for graphs that has a polynomial
number of minimal separators, for graphs of treewidth at most two, and
for cographs, and show that the problem is NP-hard for bipartite graphs
and for cobipartite graphs.
We also discuss results for a weighted variant of the problem derived of
an application from probabilistic networks.

1 Introduction

It is well known that many problems that are intractable on general graphs
become linear or polynomial time solvable on graphs of bounded treewidth.
These algorithms often have the following form: first a tree decomposition of
small treewidth is made, and then a dynamic programming algorithm is used,
computing a table for each node of the tree. The time to process one node of the
tree is exponential in the size of the associated set of vertices of the graph; thus,
when the maximum size of such a set is bounded by a constant (i.e., the width
of the tree decomposition is bounded by a constant), then the algorithm runs in
linear time. However, two different tree decompositions of the same graph with
the same width may still give different running times, e.g., when one has many
large vertex sets associated to nodes, while the other has only few large vertex
sets associated to nodes.

In several applications, the same tree decomposition will be used for several
successive runs of an algorithm, e.g., with different data. An important example
of such an application is the probabilistic inference problem on probabilistic
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networks. (This application will be briefly discussed in Section 6.) Hence, in many
cases it makes sense to do more work on finding a good tree decomposition, and to
use a more refined measure on what is a ‘good’ tree decomposition. Suppose the
time to process a node of the tree decomposition whose associated set has size k is
f(k). Then, processing a tree decomposition of the form ({Xi | i ∈ I}, T = (I, F ))
costs

∑
i∈I f(|Xi|) time. (For precise definitions, see Section 2.) We call this

measure the f-cost of the tree decomposition; the treecost of a graph G with
respect to f is the minimum f -cost of a tree decomposition of G. In other cases,
the f -cost of the tree decomposition can represent the amount of space needed
for the algorithm, in particular, the total size of all tables a specific dynamic
programming algorithm uses with the tree decomposition. In this paper, we
investigate the problem of finding tree decompositions of minimum f -cost.

It appears that it is important whether the function f satisfies a certain
condition which we call fast: a function f : N → R+ is fast, if for every k,
f(k + 1) ≥ 2 · f(k). Most applications of treewidth in our framework will have
functions that are fast (in particular, many of the classical algorithms using
tree decompositions for well known graph problems have fast cost functions.)
To a tree decomposition we can associate a triangulation (chordal supergraph)
of input graph G in a natural way. Now, every graph has a tree decomposition
of minimum f -cost that can be associated with a minimal triangulation, if and
only if f is fast. This will be shown in Section 3. This result for our proofs that
that the problem of finding minimum f -cost tree decompositions can be solved
in polynomial time for graphs that have a polynomial number of separators, and
in linear time for graphs of treewidth at most two, assuming that f is fast and
polynomial time computable (Section 4). There is also a linear time algorithm
for the treecost of cographs, assuming that in linear time, one can compute
f(1), . . . , f(n) (Section 4). In Section 5, we discuss a conjecture on the relation
between triangulations of minimum f -cost and minimum treewidth, and show
that for a fixed k, one can find a triangulation of minimum f -cost among those of
treewidth at most k in polynomial time. A variant of the problems for weighted
graphs with an application to probabilistic networks is discussed in Section 6.
In Section 7, we show the unsurprising but unfortunate result that for each fast
f , the Treecostf problem is NP-hard for cobipartite graphs and for bipartite
graphs. Also, in these cases there is no constant factor approximation algorithm,
unless P = NP . Some final remarks are made in Section 8.

2 Preliminaries

We use the following notations: G = (V,E) is an undirected and finite graph
with vertex set V and the edge set E, assumed to be without self-loops or
parallel edges. Unless otherwise specified, n denotes the number of vertices and
m the number of edges of G. The (open) neighborhood of a vertex v in a graph
G is NG(v) = {u ∈ V : {u, v} ∈ E} and the closed neighborhood of v is
NG[v] = NG(v) ∪ {v}. For a vertex set S ⊆ V we denote NG[S] =

⋃
v∈S N [v]

and N(S) = N [S] \ S. If G is clear from the context, we write N(v), N [v],
etc. dG(v) := |NG(v)| is the degree of v in G. G − v is the graph, obtained by
removing v and its incident edges from G.
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For a set S ⊆ V of vertices of a graph G = (V,E) we denote by G[S]
the subgraph of G induced by S. A set W ⊆ V of vertices is a clique in graph
G = (V,E) if G[W ] is a complete graph, i.e. every pair of vertices fromW induces
an edge of G. A set W ⊆ V of vertices is a maximal clique in G = (V,E), if W
is a clique in G and W is not a proper subset of another clique in G.

A chord of a cycle C is an edge not in C that has both endpoints in C. A
chordless cycle in G is a cycle of length more than three that has no chord. A
graph G is chordal if it does not contain a chordless cycle.

A triangulation of a graph G is a graph H on the same vertex set as G
that contains all edges of G and is chordal. A minimal triangulation of G is a
triangulation H such that no proper subgraph of H is a triangulation of G.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )), with {Xi | i ∈ I} a family of subsets of V and T a tree, such
that

–
⋃
i∈I Xi = V .

– For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
– For all i0, i1, i2 ∈ I: if i1 is on the path from i0 to i2 in T , then Xi0 ∩Xi2 ⊆

Xi1 .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1.
The treewidth of a graph G is the minimum width of a tree decomposition of G.

The following well known result is due to Gavril [5].

Theorem 1 ([5]). Graph G is chordal if and only there is a clique tree of G,
i.e. tree decomposition ({Xi | i ∈ I}, T = (I, F )) of G such that for every node
i of T there is a maximal clique W of G such that Xi = W .

Definition 2. For a function f : N → R+, the f -cost of a tree decomposition
({Xi | i ∈ I}, T = (I, F )) is

∑
i∈I f(|Xi|). The treecost with respect to f of a

graph G is the minimum f-cost of a tree decomposition of G, and is denoted
tcf(G).

Definition 3. The f -cost of a chordal graph G is

costf(G) =
∑

W⊆V ;W is a maximal clique

f(|W |)

We identify the following computational problem. Given a function f : N→
R+, the Treecostf problem is the problem, that given a graph G = (V,E) and
an integer K, decides whether tcf(G) ≤ K. The proof of the following lemma is
omitted.

Lemma 1. The treecost of a graph G with respect to f equals the minimum
f-cost of a chordal graph H that contains G as a subgraph.

An interesting and important question is whether the treecost of a chordal
graph equals its f -cost. We will see in Section 3 that this depends on the function
f .
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Definition 4. A function f : N→ R+ is fast, if for all i ∈ N, f(i+1) ≥ 2·f(i).
An example of a fast function is the function f(i) = 2i.

Definition 5. A tree decomposition ({Xi | i ∈ I}, T = (I, F )) of a graph G =
(V,E) is minimal, if there is no {i, j} ∈ F with Xi ⊆ Xj.

It is well known that there is always a minimal tree decomposition of mini-
mum treewidth. Such a minimal tree decomposition can be obtained by taking
an arbitrary tree decomposition of minimum width, and while there is an edge
{i, j} ∈ F with Xi ⊆ Xj , contracting this edge, taking for the new node i′,
Xi′ = Xi ∪Xj = Xj . The same construction can also be obtained for obtaining
a minimal tree decomposition of minimum f -cost.

3 Minimal Triangulations and Treecost

In this section, we investigate for which chordal graphs and which functions f ,
the treecost equals the f -cost. Using the obtained results, we will see that for
every fast function f , there always exists a minimal triangulation with optimal
f -cost.

Lemma 2. Let f : N → R+ be a function that is not fast. Then there is a
chordal graph G, such that the f-cost of G is larger than the treecost of G with
respect to f .

Proof. Suppose f(i + 1) < 2 · f(i). Let G be the graph, obtained by taking a
clique with i+ 1 vertices and remove one edge e. Then G has f -cost 2f(i), but
the triangulation that is formed by adding the edge e has f -cost f(i+ 1). ��

The next two lemmas follow by observing which are the maximal cliques in
the graphs G and G− v.

Lemma 3. Let f : N→ R+ be a function, and G be a chordal graph. Suppose v
is a simplicial vertex in G, and suppose NG(v) is a maximal clique in the graph
G− v. Then costf(G) = costf(G− v) + f(dG(v) + 1)− f(dG(v)).

Lemma 4. Let f : N → R+ be a function, and G be a chordal graph. Suppose
v is a simplicial vertex in G, and suppose NG(v) is not a maximal clique in the
graph G− v. Then costf(G) = costf(G− v) + f(dG(v) + 1).

Lemma 5. Suppose G and H are chordal graphs and G is a subgraph of H. Let
v be a simplicial vertex in G. Let H ′ be the graph obtained from H by removing
all edges incident to v that do not belong to G, i.e., EH′ = EH − {{v, w} | w �∈
NG(v)}. Then H ′ is chordal.

Proof. Consider a cycle in H ′ of length at least four. If the cycle contains v, then
it has a chord between the vertices before and after v on the cycle, as these are
neighbors of v in H ′ hence in G, and adjacent as v is simplicial v in G. If the
cycle does not contain v, then it is a cycle in H and hence has a chord in H,
which also is a chord in H ′. ��
Lemma 6. Let G = (V,EG) and H = (V,EH) be chordal graphs, and f : N→
R+ be a fast function. Suppose G is a subgraph of H. Then costf(G) ≤ costf(H).
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Proof. We use induction to |V |. Clearly, if |V | = 1, then G = H and the result
holds.

Suppose the result holds for graphs with up to n− 1 vertices, and let G and
H be chordal graphs with n vertices, with the same vertex set and EG ⊆ EH .

Take a vertex v that is simplicial in G. Let H ′ be the graph obtained from
H by removing all edges, incident to v that do not belong to G, i.e., EH′ =
EH −{{v, w} | w �∈ NG(v)}. By Lemma 5 H ′ is chordal. Vertex v is a simplicial
vertex in H ′ and H ′ − v is chordal.

First, we show that costf(G) ≤ costf(H ′).
Claim. costf(G) ≤ costf(H ′).

Proof. v is also simplicial inH ′, andH ′−v is a chordal graph. Thus, by induction,
costf(G− v) ≤ costf(H ′ − v),

Write Z = NG(v) = NH′(v), and d = dG(v) = dH′(v).
Note that if Z is not a maximal clique in G− v, then Z is a subset of some

larger clique Z ′ in G− v. But, Z ′ also must be a clique in H ′ − v, and hence in
this case Z is not a maximal clique in H ′ − v. It follows that Z is a maximal
clique in G− v or Z is not a maximal clique in H ′ − v.

Using Lemmas 3 and 4, we can observe the following. If Z is a maximal
clique in G− v, then costf(G) = costf(G− v) + f(d+1)− f(d) and costf(H ′) ≥
costf(H ′−v)+f(d+1)−f(d), hence costf(G) ≤ costf(H ′). If Z is not a maximal
clique in H ′ − v, then costf(H ′) = costf(H ′ − v) + f(d + 1), and costf(G) ≤
costf(G− v) + f(d+ 1), so again costf(G) ≤ costf(H ′). ��
Claim. costf(H ′) ≤ costf(H).

Proof. When dH(v) = dH′(v) the result holds trivially. Suppose that dH(v) >
dH′(v). So H is obtained from H ′ by adding one or more edges to vertex v. There
is exactly one maximal clique in H ′ that contains v, namely W0 = NH′(v)∪{v}.
Suppose W0 ⊆W1, with W1 a maximal clique in H. We now have the following
cases for sets W that form a maximal clique in H ′. Each maximal clique in H ′

will be associated with a maximal clique in H.

– W = W0. Associate W0 with W1.
– v �∈ W , and W �⊆ W1. Then, W is a maximal clique in H, or W ∪ {v} is a
maximal clique in H, as H and H ′ differ only by some edges that have v as
endpoint. Associate W with this maximal clique (i.e., W or W ∪ {v}.)

– v �∈W and W ⊆W1. As W1 is a clique in H, the set W1−{v} forms a clique
in H and in H ′, so we must have W = W1 − {v}. Associate W with W1.

Every maximal clique W in H except for W1 has exactly one maximal clique in
H ′ associated with it, namely either W or W −{v}; we note that f(|W −{v}|) <
f(|W |). W1 can have two maximal cliques in H ′ associated with it, namely
W0 and W1 − {v}. There are two cases: if W0 = W1, then W1 − {v} is not
a maximal clique in H ′, and it follows that costf(H ′) ≤ costf(H); if W0 is
a proper subset of W1, then W1 has exactly two maximal cliques associated
with it, but both are of smaller size; we can use here that f is a fast function:
f(|W0|) + f(|W1 − {v}|) ≤ 2f(|W1| − 1) ≤ f(W1), and hence we have again
costf(H ′) ≤ costf(H). ��
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Combining these two claims, we have costf(G) ≤ costf(H), which finishes the
inductive proof of this lemma. ��

Theorem 2. Let f : N→ R+ be a fast function. Every graph G has a minimal
triangulation H, such that costf(H) = tcf(G).

Proof. Suppose H ′ is a triangulation of G with costf(H ′) = tcf(G). H ′ contains
a minimal triangulation H of G. Trivially, we have costf(H) ≥ tcf(G). By the
previous lemma, we have costf(H) ≤ costf(H ′). ��

Corollary 1. Let G be a chordal graph, and let f be a fast function. Then
costf(G) = tcf(G).

4 Treecost for Special Graph Classes

In this section, we discuss algorithms for computing the treecost for some special
classes of graphs.

An important algorithmic consequence of Theorem 2 is that for fast functions
the treecost of graphs with a polynomial number of minimal separators can be
computed efficiently. Our approach to this problem follows the ideas of Bouchitté
and Todinca [3]. (See also Parra and Scheffler [10].) This allows one to find the
treecost efficiently when the input is restricted to cocomparability graphs, d-
trapezoid graphs, permutation graphs, circle graphs, weakly triangulated graphs
and many others graph classes. See [4] for an encyclopedic survey on graph
classes.

A subset S of vertices of a connected graph G is called an a, b-separator for
non adjacent vertices a and b in V (G) \ S if a and b are in different connected
component of the subgraph of G induced by V (G) \S. If no proper subset of an
a, b-separator S separates a and b in this way, then S is called a minimal a, b-
separator. A subset S is referred to as a minimal separator, if there exist non
adjacent vertices a and b for which S is a minimal a, b-separator. Notice that a
minimal separator can be strictly contained in another minimal separator.

Let ∆G be the set of all minimal separators in G. The proof of the following
theorem is based on deep results and techniques of Bouchitté and Todinca [3].
We omit the proof of the theorem in this extended abstract.

Theorem 3. Let f be a fast function and let Tf (n) be the time needed to com-
pute f(1), . . . , f(n). Then for every graph G there exists an O(n2|∆G|3+Tf (n)+
n2m|∆G|2) time algorithm for computing the treecost of G.

From Theorem 2, it can be derived that graphs of treewidth at most two
always have a triangulation of minimum f -cost that also has minimum treewidth
(i.e., treewidth two), assuming that f is fast. Based upon this fact, one can obtain
the following theorem, whose proof is omitted in this extended abstract.

Theorem 4. Let f be a fast function, such that f(1), f(2), and f(3) are com-
putable. Then there is a linear time algorithm that computes the treecost with
respect to f of a graph of treewidth at most two.
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From Theorem 3, it follows that cographs have a polynomial time algorithm
for the treecost problem, assuming f(1), . . . , f(n) can be computed in polyno-
mial time. Using techniques for computing the treewidth of a cograph from [2],
one can obtain the following result. Note that f does not need to be fast.

Theorem 5. Let f : N → R+ be a function. Let Tf (n) be the time needed to
compute f(1), . . . , f(n). Then there is an algorithm that computes tcf(G) for a
given cograph with n vertices and m edges in O(n+m+ Tf (n)) time.

5 Treewidth versus Treecost

An interesting question is whether there is always a triangulation with both
optimal treecost and with optimal treewidth. Such a result would have had nice
practical algorithmic consequences (e.g., in the algorithm of Theorem 3, we can
ignore all separators larger than the treewidth plus one). Unfortunately, such
triangulations do not always exist. For example, let G be a cograph that is
formed as follows. G1 is the disjoint union of four triangles (copies of K3). G2
is the disjoint union of a clique with four vertices and eight isolated vertices.
G is the product of G1 and G2. Let f be the function f(n) = 2n. Now, a
triangulation of minimum treewidth is obtained by turning V2 into a clique: this
gives a maximum clique size of 15 (whereas when we turn V1 into a clique, we
have a triangulation with maximum clique size 16.) A triangulation of G1 ×G2
of minimum f -cost is obtained by turning V1 into a clique: this gives an f -cost
of 212 · (24 + 8); turning V2 into a clique gives an f -cost of 212 · (4 · 23).

More generally, let tcf,k(G) be the minimum f -cost of a tree decomposition
of G of width at most k. The cograph given above is an example of a graph
where tcf,k(G) �= tcf(G), k the treewidth of G.

We conjecture that the width of a tree decomposition of optimal f -cost can-
not be ‘much’ larger than the treewidth of a graph:

Conjecture 1. Let f be a fast function. There exists a function gf , such that for
all graphs G of treewidth at most k, tcf(G) = tcf,gf (k)(G).

Having such a function gf would help to speed up the algorithm of Theorem 3.
A proof of Conjecture 1 would imply that for every polynomial time computable
fast function, the the treecost of graphs of bounded treewidth is polynomial time
computable, because we have the following result.

Theorem 6. Let f : N → R+ be function, such that for each n, f(n) can be
computed. Let k ∈ R+. There exists an algorithm that computes for a given graph
G, tcf,k(G) in O(nk+2) time, plus the time needed to compute f(1), . . . , f(k+1).

We omit the proof in this extended abstract.
There is also a constructive variant of the algorithm (it outputs the desired

tree decomposition) that runs also in O(nk+2) time.
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6 Probabilistic Networks and Vertex Weights

Probabilistic networks are the underlying technology of several modern decision
support systems. See e.g., [6]. Such a probabilistic network models independen-
cies and dependencies between statistical variables with help of a directed acyclic
graph. A central problem is the Probabilistic Inference problem: one must
determine the probability distribution of a specific variable, possibly given the
values of some other variables. As this problem is #P -complete for general net-
works [11] but many networks used in practice appear to have small treewidth,
an algorithm of Lauritzen and Spiegelhalter [9] is often used that solves the prob-
lem on networks with small treewidth.1 As the same network is used for many
computations, it is very useful to spend much preprocessing time and obtain a
tree decomposition that allows fast computations. Thus, more important than
minimizing the width is to minimize the ‘cost’ of the tree decomposition. While
each vertex models a discrete statistical variable, variables may have a different
valence. Let w(v) ∈ N be the weight of v. w(v) models the number of values
v can take, which directly reflects on the resources (time and space) needed
for a computation. For instance, a binary variable corresponds to a vertex with
weight two. In a tree decomposition of G, the time to process a node is basically
the product of the weights of the vertices in the corresponding set Xi. In graph
terms, we can model the situation as follows, after [8,12,7].

Given are a graph G = (V,E), and a weight function w : V → N. The total
state space of a triangulation H of G is the sum over all maximal cliques W in
H of

∏
v∈W w(v).

Note that when all vertices have weight two (i.e., all variables are binary),
then the total state space is exactly the f -cost with for all i, f(i) = 2i.

Some of the proofs and results of previous sections can be modified to give
similar results for the problem to find a triangulation of minimum total state
space.

Theorem 7. (i) Let G be a graph, with vertices weighted with positive integers.
Then there is a minimal triangulation H with total state space equal to the min-
imum total state space of a triangulation of G.
(ii) There exists an algorithm to compute a triangulation with minimum total
state space whose running time is polynomial in the number of minimal separa-
tors of G.
(iii) Given a cograph G with vertices weighted with positive integers, a triangu-
lation of G with minimum total state space can be found in linear time.
(iv) For each k, there is an algorithm that runs in O(nk+2) time, and that given
a graph G with vertices weighted with positive integers, finds among the tree
decompositions of G of width at most k finds one of minimum state space.

The method to compute the treecost of a graph of treewidth two of Theorem 4
cannot be used for the minimum state space problem when vertices have different
weights.
1 To be precise, first the moralization of the network is made: for every vertex, the set
of its direct predecessors is turned into a clique, and then all directions of edges are
dropped.
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7 Hardness Results

Wen [12] showed that Treecostf is NP-hard when f is the function f(i) =
2i. To be precise, Wen showed that the problem of finding a triangulation of
minimum total state space is NP-hard when all variables are binary. In this
section, we show similar results for a larger class of functions f , using a different
reduction, and we show that the problems remain NP-hard for cobipartite and
for bipartite graphs.

We omit the proof of the following theorems in this extended abstract.
Theorem 8. Let f be a fast function. The Treecostf problem is NP-hard for
bipartite and cobipartite graphs.

Theorem 9. If P �= NP , then for every c ∈ N, there is no polynomial time al-
gorithm that approximates the treecost of a given graph G within a multiplicative
factor c.

8 Discussion

In this paper, we investigated a notion that gives a more refined view on what is
a ‘good’ tree decomposition of a graph. For several algorithms on tree decompo-
sitions, the function that maps a tree decomposition to the amount of time spent
by the algorithm when using that tree decomposition is actually somewhat more
complicated than the f -costs as used in this paper, but the f -cost functions come
close to these exact models. In addition, the f -cost often equals the total size of
all tables computed by the algorithm, which in some cases equals the amount of
space needed for the algorithm (discounting small additional overhead, like the
pointers between the different nodes of the tree decomposition). Aspvall et al. [1]
give techniques to reuse space; however, sometimes, we need to keep all tables
to construct solutions corresponding to the computed optimal value. It may be
worthwhile to study refined versions of treecost, as the time to process a node
often depends on the sizes of the differences of its set with those of adjacent
nodes in the tree, and/or its degree.

We have seen that in several interesting cases, tree decompositions with op-
timal f -cost can be computed in polynomial time, and we expect that in some
practical cases, where it makes sense to spend sufficiently many preprocessing
time on finding one good tree decomposition (in particular, in cases, where the
same tree decomposition is used several times with different data on the same
graph or network), some of our methods can be of practical use.

Acknowledgement. We thank Linda van der Gaag for discussions about prob-
abilistic networks and introducing the notion of total state space to us.
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Abstract. Using the notion of modular decomposition we extend
the class of graphs on which both the treewidth and the minimum
fill-in problems can be solved in polynomial time. We show that if C
is a class of graphs which is modularly decomposable into graphs that
have a polynomial number of minimal separators, or graphs formed
by adding a matching between two cliques, then both the treewidth
and the minimum fill-in problems on C can be solved in polynomial
time. For the graphs that are modular decomposable into cycles we give
algorithms, that use respectively O(n) and O(n3) time for treewidth
and minimum fill-in.
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treewidth, minimum fill-in, modular decomposition, minimal separators.

1 Introduction

A graph is chordal if it does not contain a chordless cycle of length at least
four as an induced subgraph. A triangulation of a graph is a chordal supergraph
with the same vertex set. The treewidth of a graph G, denoted as treewidth(G)
is the smallest clique number of all possible triangulations of G minus 1. The
minimum fill-in of a graph G, denoted as min-fill-in(G), is the minimum of
|E(H)− E(G)| taken over all triangulations H of G. The treewidth problem
is to find treewidth(G) for a given graph G. The minimum fill-in problem is
to find min-fill-in(G) for a given graph G. These problems have drawn much
attention due to applications in areas such as Gaussian elimination of matrix,
VLSI-layout, gate matrix layout and algorithmic graph theory (see e.g. [1,19]).
Both problems are NP-hard in general [2,22] but polynomial time algorithms
exist for many special graph classes such as: permutation graphs [4], circular arc
graphs [21], circle graphs [16], distance hereditary graphs [10], (q, q − 4)-graphs
[3] and HHD-free graphs [9]. Bouchitté and Todinca [7,8] have shown that the
treewidth and minimum fill-in of a graph can be computed in polynomial time if
the graph has a polynomial number of minimal separators. This result generalizes
several of the earlier results for special graph classes. In this paper we extend
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the class of graphs on which these two problems can be solved in polynomial
time using the notion of modular decomposition as described below.

Let V (G) = {v1, . . . , vr} and let H1, . . . , Hr be disjoint graphs. We denote
by G(H1, . . . , Hr) the graph G′ obtained from G by substituting the graph Hi

for the vertex vi, for 1 ≤ i ≤ r: V (G′) = V (H1) ∪ . . . V (Hr), E(G′) = E(H1) ∪
. . . E(Hr) ∪ {{u, v}|u ∈ V (Hi) and v ∈ V (Hj) and {vi, vj} ∈ E(G)}. This is
called the modular decomposition operation; the graph G is called the prime
graph, and H1, . . . Hr are the modules. (In addition, we assume G cannot obtained
by modular decomposition, except when using G itself as ‘prime’ graph.) A graph
G is said to be modular decomposable into a class of graphs D, if G consists of
a single vertex or G can be obtained by modular decomposition with a prime
graph in D, and all modules also modular decomposable into D. For more details
on the modular decomposition of graphs, see for example [11,12,14,18]. The set
of prime graphs that are used in the modular decomposition of G is denoted
by π(G). The modular decomposition of a graph is unique and can be found
in linear time [12,18]. We denote by n and m the number of vertices and edges
of a graph, respectively. We call a graph a clique-matching graph if it can be
obtained by taking two cliques with the same number r of vertices and then
adding a matching with r edges between the cliques.

Dahlhaus [13] has shown that the treewidth and the minimum fill-in
problems can be solved in polynomial time on the class of graphs which is
modularly decomposable into chordal graphs. A result of a similar type is that
treewidth can be solved in linear time on cographs, i.e., on graphs modular
decomposable into graphs with two vertices [5]. In this paper, we extend these
result to a much larger class of graphs. In particular, we show:

Theorem 1. Let C be a class of graphs for which there exists a constant c such
that for every graph G ∈ C all the graphs in π(G) have at most nc minimal sep-
arators or are a clique-matching graph. Then the treewidth and the minimum
fill-in problems on C can be solved in polynomial time.

We think the most interesting part of this theorem is where we deal with
graphs with a polynomial number of minimal separators; we added the result
on clique-matching graphs as these have exponentially many minimal separa-
tors to show that computing treewidth and minimum fill-in with help of
the modular decomposition is not restricted to graphs with polynomially many
separators. In fact, what we show is that we can compute in polynomial time
the treewidth (minimum fill-in) of a given graph G, whenever G is constructed
from a prime graph H, whose vertices correspond to modules in G, such that H
either has polynomially many minimal separators or is a clique-matching graph.
We expect that there are more types of graphs that have this property; if this
property is established for a set of graphs D, then Theorem 1 can be extended
in the sense that we allow the graphs in π(G) also belong to D. In addition, we
can allow a prime graph H in our modular decomposition with only singleton
vertices below it, such that we can compute the treewidth (minimum fill-in) of
H in any way (e.g., it is a regular grid, or it is a graph of treewidth bounded by
some constant).
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We only give two of the proofs in this extended abstract; namely for the case
of cycles for treewidth and of clique-matching graphs for minimum fill-in.
The other proofs can be found in the full version[6]. The proofs for the case of
prime graphs with polynomially many separators build upon results of Bouchitté
and Todinca [7,8], and some other results, e.g. [17].

We define two new problems called the wi-treewidth and the wi-fill-in
problems. We show (see Theorems 2 and 4) that an algorithm for solving the wi-
treewidth (resp. the wi-fill-in) problem on a class of graphs D can be used to
solve the treewidth (resp. the minimum fill-in) problem on a class of graphs
which is modularly decomposable into D with the same time complexity. We
obtained polynomial time algorithms for the wi-treewidth and the wi-fill-
in problems on the classes of graphs with polynomially many separators, cycles,
and clique-matching graphs. (Only two of these are shown in this abstract.)
Theorem 1 now follows by joining all these cases together. Cycles have O(n2)
minimal separators, but the algorithm given here is faster than that obtained by
applying the general result.

2 Definitions

The graphs we consider in this paper are undirected and loop-free. For a graph G
we denote by V (G) (resp. E(G)) the set of vertices (resp. edges) of G. For
X ⊆ V (G), we define by G[X] the subgraph of G induced by X. The subgraph
of G induced by V (G)−X is denoted by G−X. N(v) denotes the neighborhood
of v in G, i.e., the set of vertices in G adjacent to v. A vertex v is universal in
a graph G, if it is adjacent to all the vertices in the graph (except to itself),
i.e., N(v) = V (G)−{v}. Let S ⊂ V (G) and let C be a connected component of
G − S. We say that C is a full component of S in G, if every vertex of S has a
neighbor in C. We denote by indp(G) the set of all independent sets in G.

Definition 1. Let a and b be distinct nonadjacent vertices. A set S ⊂ V is a
minimal a, b-separator if a and b are in different connected components of G−S
and there is no subset of S with the same property. A minimal separator is a
set S of vertices for which there exists vertices a and b such that S is a minimal
a, b-separator.

The following is an equivalent definition of treewidth which was introduced
by Robertson and Seymour in their work on graph minors [20].
Definition 2. A tree decomposition of G = (V,E) is a pair ({Xi : i ∈ I}, T ),
where {Xi : i ∈ I} is a collection of subsets of V and T = (I, F ) is a tree such
that:

1.
⋃
i∈I Xi = V .

2. ∀{u,w} ∈ E,∃i ∈ I : u,w ∈ Xi.
3. ∀i, j, k ∈ I : if j is on a path in T from i to k then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition ({Xi : i ∈ I}, T ) is maxi∈I |Xi| − 1.
The treewidth of G (denoted as treewidth(G)) is the minimum width over all
tree decompositions of G.
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A tree decomposition ({Xi : i ∈ I}, T ) with T a path (i.e., every node in T
has degree at most two) is called a path decomposition. A path decomposition is
often denoted by listing the successive sets Xi: (X1, X2, . . . , Xr).

For disjoint graphs H and F we denote by H × F the graph G obtained by
taking the union of H and F and connecting all vertices of H to all vertices of
F .

For an independent set X ∈ indp(G), we define G : X to be the graph
obtained from G by making each pair of neighbors of a vertex in X adjacent,
and then removing all vertices in X. We assume that there are two weight
functions w and t associating positive integer weights w(v) and t(v) for every
vertex v of G. The motivation for these weights is that when G is considered as
a prime graph in a modular decomposition then each vertex v of G corresponds
to a module M(v) and w(v) and t(v) will be the size and the treewidth of the
module M(v), respectively. For a set of vertices S we define w(S) =

∑
v∈S w(v).

The weighted width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) of
G is (maxi∈I w(Xi)) − 1. The weighted treewidth wtw(G) of G is the minimum
weighted width over all possible tree decompositions of G. Notice that wtw(G)
depends just on w and not on t.

For a set X ∈ indp(G), the weighted treewidth of G with independent set X
denoted as wi(G,X) is defined by: wi(G,X) = max{wtw(G : X),maxv∈X{t(v)+
w(N(v))}}.

The weighted independent treewidth of G (shortly the wi-treewidth of G) de-
noted as wi(G) is defined by:

wi(G) = min
X∈indp(G)

wi(G,X)

For a set X ∈ indp(G) such that wi(G) = wi(G,X) we say that X establishes
the wi-treewidth of G. The wi-treewidth problem is to find wi(G) for a given
graph G with weight functions w and t.

3 Treewidth

In the following text whenever we refer to wtw(G) we assume that the weights
of the vertices of G are defined by a weight function w. Similarly whenever we
refer to wi(G) we assume that the w-weights and the t-weights of the vertices of
G are defined by weight functions w and t, respectively.

Lemma 1. Let G be a graph, where V (G) = {v1, . . . , vr}. Let H1, . . . , Hr be
disjoint cliques and let G′ = G(H1, . . . Hr). Let w be the weight function on the
vertices of G defined by: w(vi) = |V (Hi)|, for 1 ≤ i ≤ r. Then treewidth(G′) =
wtw(G).

Lemma 2. Let G be a graph, where V (G) = {v1, . . . , vr}. Let H1, . . . , Hr be
disjoint graphs and let G′ = G(H1, . . . Hr). Let w and t be the weight functions
on the vertices of G defined by: w(vi) = |V (Hi)| and t(vi) = treewidth(Hi), for
1 ≤ i ≤ r. Then treewidth(G′) = wi(G).
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Theorem 2. Let C and D be classes of graphs such that C is modularly de-
composable into D. Suppose that the wi-treewidth problem can be solved in
O(f(n,m)) time on D, where f is some polynomial function in n and m. Then
the treewidth problem can be solved in O(f(n,m) + n + m) time on C.

The idea is that we first build the ‘modular decomposition tree’, and then
for every internal node, compute the treewidth of the associated graph/module,
using lemma 2. For a node v in the prime graph, w(v) is the treewidth of the
corresponding module, and t(v) the number of vertices in the module.

In the full paper, we give polynomial time algorithms for the wi-treewidth
problems on weighted graphs with polynomially many minimal separators, and
on clique-matching graphs. These, together with Theorem 2 imply Theorem 1
with respect to treewidth.

3.1 Solving Treewidth with Prime Graphs That Are Cycles

In this section, we show that for the class of graphs C which is modularly de-
composable into the class of cycles, the treewidth problem on C can be solved
in linear time. Note that a polynomial (but not linear) time algorithm follows
from the result on graphs with polynomially many separators. Assume that G
is a cycle with vertices v0, v1, . . . , vn−1 and with edges {vi, vi+1}, 0 ≤ i ≤ n− 1,
where we identify vn with v0, and v−1 with vn−1. For shorter notation, we write
w(i) for the weight w(vi) of vi, and similar t(i) for t(vi). Suppose, without loss
of generality, that w(0) = min0≤i≤n−1 w(i).
Lemma 3. Let G be a weighted cycle with weight function w. Then

wtw(G) = min
v∈V (G)

{w(v)}+ max
{v,x}∈E(G)

{w(v) + w(x)} − 1.

Proof. (Sketch.) Take a tree, that is actually a path, with successive nodes
i1, i2, . . . , in−2, and take Xij = {vj , vj+1, v0}. This is a tree decomposition of G
with the desired treewidth. The proof that this is optimal is omitted. ��

We assume that n ≥ 5. (Hence for every independent set I ⊆ V (G), G : I is
again a cycle.) We now discuss how to compute wi(G).
Lemma 4. There is an independent set I ⊆ V (G) − {v0}, such that wi(G) =
wi(G, I).

Now, assume v0 �∈ I. We now can write wi(G, I) in more detail as:

wi(G, I) = max




w(0) + w(j − 1) + w(j + 1)− 1 | 1 ≤ j ≤ n− 1, vj ∈ I
w(0) + w(j) + w(j + 1)− 1 | 0 ≤ j ≤ n− 1, vj , vj+1 �∈ I
t(j) + w(j − 1) + w(j + 1) | 1 ≤ j ≤ n− 1, vj ∈ I

To find the independent set I ⊆ V (G)−{v0} for which this term is minimal, we
use dynamic programming. For i ≥ 1 and a set I ⊆ {v1, . . . , vi−1}, define

h(I, i) = max




w(0) + w(j − 1) + w(j + 1)− 1 | 1 ≤ j ≤ i− 1, vj ∈ I
w(0) + w(j) + w(j + 1)− 1 | 0 ≤ j ≤ i− 1, vj , vj+1 �∈ I
t(j) + w(j − 1) + w(j + 1) | 1 ≤ j ≤ i− 1, vj ∈ I

For i = 0, define h(∅, 0) = w(0)− 1.
Write h(i) = minI⊆{v1,... ,vi−1},I∈indp(G) h(I, i). Clearly, h(n) = wi(G).
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Lemma 5. (i) h(0) = w(0)− 1. h(1) = 2w(0) + w(1)− 1.
(ii) For 2 ≤ i ≤ n − 1, h(i) = min{max{h(i − 2), w(0) + w(i − 2) + w(i) − 1,

t(i− 1) + w(i− 2) + w(i), w(0) + w(i− 1) + w(i)− 1)}.
(iii) h(n) = min { max{h(n − 1), 2w(0) + w(n − 1)− 1}, {h(n − 2), 2w(0)+

w(n− 2)− 1, t(n− 1) + w(n− 2) + w(0)}.
The above lemma gives a dynamic programming algorithm to compute all

values h(i), and hence to compute the wi-treewidth of G (which equals h(n)) in
O(n) time. Hence by Theorem 2 we have:
Theorem 3. Let C be a class of graphs which is modularly decomposable into the
class of cycles. Then the wi-treewidth problem on C can be solved in O(n+m)
time.

4 Minimum Fill-in

With some modifications of the techniques, the same results that we derive in this
paper for treewidth can also be derived for the minimum fill-in problem. We
start by introducing more definitions and notations. Recall that the minimum
fill-in of a graph G, denoted by min-fill-in(G), is the minimum of |E(H)−E(G)|
taken over all triangulations H of G. For a triangulation H of G such that
|E(H) − E(G)| = min-fill-in(G) we say that H establishes the minimum fill-in
of G. The complete fill-in of G, denoted by complete-fill-in(G) is the number of
edges that must be added to turn G into a clique:

complete-fill-in(G) = |V (G)| · (|V (G)| − 1)/2− |E(G)|.
The minimum fill-in problem is to find min-fill-in(G) for a given graph G.

Let G be a graph with weight functions w, f and c. The weighted minimum
fill-in of G, denoted by wf(G) is defined as the minimum over all triangulations
H of G of

∑
{v,x}∈E(H)−E(G) w(v) · w(x). For a triangulation H of G such that

wf(G) =
∑

{v,x}∈E(H)−E(G) w(v) · w(x) we say that H establishes the weighted
fill-in of G. The weighted complete fill-in of G, denoted by wcf(G) is defined
by wcf(G) =

∑
{u,v}/∈E(G) w(u) ·w(v). Notice that wf(G) and wcf(G) depends

just on w and not on f and c.
Recall that for a set of vertices S we define f(S) =

∑
v∈S f(v) and c(S) =∑

v∈S c(v). For a set X ∈ indp(G), the weighted minimum fill-in of G with
independent set X denoted as wif(G,X) is defined as follows:

wif(G,X) = f(X)+ c(V (G)−X)+wf(G : X)+
∑

{u,v}∈E(G:X)−E(G)
w(u) ·w(v).

The weighted independent minimum fill-in of G (shortly the wi-fill-in of G) de-
noted as wif(G) is defined by:

wif(G) = min
X∈indp(G)

wif(G,X).

For a set X ∈ indp(G) such that wif(G) = wif(G,X) we say that X establishes
the wi-fill-in of G. The wi-fill-in problem is to find wif(G) for a given graph
G with weight functions w, f and c.
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Lemma 6. Let G be a graph, where V (G) = {v1, . . . , vr}. Let H1, . . . , Hr

be disjoint graphs and let G′ = G(H1, . . . , Hr). Let w and f and c be the
weight functions on the vertices of G defined by: w(vi) = |V (Hi)|, f(vi) =
min-fill-in(Hi) and c(vi) = complete-fill-in(Hi), for 1 ≤ i ≤ r. Then
min-fill-in(G′) = wif(G).

Theorem 4. Let C and D be classes of graphs such that C is modularly decom-
posable into D. Suppose that the wi-fill-in problem can be solved in O(f(n,m))
time on D, where f is some polynomial function in n and m. Then the minimum
fill-in problem on C can be solved in O(f(n,m) + n + m) time.

In this extended abstract, we will see how to handle clique-matching graphs.
The proofs for cycles and graphs with polynomially many separators can be
found in the full version.

4.1 Clique-Matching Graphs

In this section, we give a polynomial time algorithm for the wi-fill-in problem
for clique-matching graphs. Suppose that Cr = (V ∪W,Er) is a weighted clique-
matching graph with 2r vertices. We first give an algorithm to compute the
weighted fill-in of a clique-matching graph Cr.

We first show that for every minimal triangulation of Cr, there is an ordering
of the vertices of W such that the triangulation is formed by making every vertex
wj adjacent to all vertices vi with wi later than wj in the ordering.

Lemma 7. Let Q be a minimal triangulation of Cr. There is an ordering � of
the vertices of W such that E(Q) = Er ∪ {{wi, vj} | wi � wj , 1 ≤ i ≤ r, 1 ≤
j ≤ r, i �= j}.
Proof. Use induction to r. For r = 1 the lemma follows immediately since
E(Q) = E(Cr). Suppose the lemma holds for r − 1. Let Q be a minimal tri-
angulation of the graph Cr. First, note that W is a full component of V in Q.
Since Q is chordal and no maximal clique in a chordal graph has a full com-
ponent [8], there must be a vertex wi in W such that V ∪ {wi} forms a clique
in Q. If vi is adjacent in Q to any vertex wj , j �= i, then triangulation Q is
not minimal. Hence the graph Q′, obtained by removing vi and wi and their
adjacent edges from Q is a minimal triangulation of Cr−{vi, wi}. Let �′ be the
ordering on W − {wi} such that E(Q′) = E(Cr − {vi, wi}) ∪ {{wi′ , vj} | wi′ �′

wj , 1 ≤ i′ ≤ r, 1 ≤ j ≤ r, i′, j �= i}. Now, let � be the ordering on W such
that for all wj , wj′ ∈ W − {wi}, wj � wj′ if and only if wj �′ wj′ , and for all
wj ∈W , wi � wj , i.e., we take ordering �′ and add wi as smallest element. One
now easily sees that � fulfils the condition of the lemma. ��

We also have that given an ordering � of W , the edge set Er∪{{wi, vj} | wi �
wj , 1 ≤ i ≤ r, 1 ≤ j ≤ r, i �= j} gives a triangulation of Cr. For an ordering � of
W , let the fill-in of the ordering be FI(�) =

∑
wi	wj , 1≤i≤r, 1≤j≤r, i 
=j w(wi) ·

w(vj). FI(�) exactly denotes the total weight of all edges added in the trian-
gulation corresponding to ordering �, and thus the problem to compute the
weighted fill-in of Cr becomes the problem to find an ordering � of W with
minimum fill-in FI(�).
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Lemma 8. An ordering � has minimum fill-in among all orderings of W , if
and only if for all wi, wj ∈W : wi � wj ⇒ w(wi)/w(vi) ≤ w(wj)/w(vj).

Proof. Consider an ordering � of W . Suppose wi and wj are successive elements
in this ordering with wi � wj , i.e., there is no wi′ /∈ {wi, wj} with wi � wi′ � wj .
Let �′ be the ordering obtained from � by switching the order of wi and wj
(and keeping the relative order for all other pairs). Considering all the terms that
appear in FI(�) and FI(�′), we see that FI(�′) − FI(�) = w(wj) · w(vi) −
w(wi) · w(vj).

If w(wi)/w(vi) > w(wj)/w(vj) then w(wj) · w(vi) − w(wi) · w(vj) < 0,
hence FI(�′) < FI(�). Thus, if � has minimum fill-in among all orderings
of W , it must order the vertices of W with respect to non-decreasing values of
w(wi)/w(vi).

If w(wi)/w(vi) = w(wj)/w(vj), then w(wj) · w(vi) − w(wi) · w(vj) = 0, so
FI(�′) = FI(�). As all orderings of W that give the vertices in order of non-
decreasing values w(wi)/w(vi) can be obtained from each other by a number
of switches of successive elements of equal such values, we have that all such
orderings have the same fill-in, so all of these have minimum fill-in. ��

Lemma 8 directly gives an O(r2) algorithm to solve the weighted fill-in
problem on clique-matching graphs: sort the vertices in W with respect to the
values w(wi)/w(vi), and then build the corresponding triangulation as described
above. As the triangulated graph has Θ(r2) edges, this latter step dominates the
running time. Only computing the value of the weighted fill-in can be done a
little faster: one can compute in total linear time all terms

∑
wi	wj

w(vj) for all
wi ∈W , and then directly compute FI(�) =

∑
wi∈W w(wi) ·

∑
wi	wj

w(vj).

Lemma 9. The weighted fill-in problem on clique-matching graphs can be
solved in O(n log n) time. A triangulation of a clique-matching graph with min-
imum weighted fill-in can be found in O(n2) time.

Note that a clique-matching graph has independent sets of size at most two,
and that for every wi ∈ X, vi is universal in Cr : X, and for every vi ∈ X, wi is
universal in Cr : X. Moreover, we can use the following simple lemma.

Lemma 10. Let v be a universal vertex in G. Then the weighted fill-in of G
equals the weighted fill-in of G− v.

Thus, we can try all O(n2) independent sets X of G, and as the graphs
obtained after removing universal vertices from G : X are again clique-matching
graphs, use in each case the algorithm to compute the weighted fill-in of each of
these graphs. Note that we can reuse the orderings of the vertices; i.e., we need
to sort the vertices only once for their values w(wi)/w(vi). Thus, we have:

Lemma 11. The wi-fill-in problem can be solved in O(n3) time for clique-
matching graphs.

5 Conclusions

Consider the following operation, that given a graph G and for every vi ∈ V (G)
a graph Hvi , gives the graph G(Hv1 , . . . , Hvn). Theorems 2 and 4 show that
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the treewidth and minimum fill-in of the composed graph are a function of
the numbers of vertices and treewidths (respectively, minimum fill-ins) of the
graphs Hvi . These functions are expressed by respectively the wi-treewidth
and wi-fill-in problems. In this paper, we have shown for a number of classes of
graphs that for graphs in these classes these notions are computable, i.e., graphs
in these classes can play the role of the graph G in the substitution operation
when we want to compute the treewidth or minimum fill-in. In particular, we
looked at graphs with a polynomial number of separators (a fairly large class
of graphs, including several well known classes, like permutation graphs, weakly
chordal graphs, HHD-graphs, graphs with O(log n) vertices, etc.) and at clique-
matching graphs (a rather restricted class of graphs, introduced just to show
that there are also solvable cases with an exponential number of separators.)
A natural question is to solve the wi-treewidth and wi-fill-in problems on
other interesting classes of graphs in polynomial time, for instance the class of
graphs of treewidth at most some fixed number k. A related open problem, that
appears to be hard, is whether treewidth can be solved in polynomial time for
graphs with small cliquewidth. Espelage et al. [15] have shown that there exists
a linear time algorithm for deciding whether a graph of bounded treewidth has
cliquewidth k for fixed integers k.
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Abstract. We study the behaviour of an algorithm which compresses
relational tables by representing common subspaces as Cartesian prod-
ucts. The output produced allows space to be saved while preserving the
functionality of many relational operations such as select, project and
join. We describe an implementation of an existing algorithm, propose a
slight modification which with high probability produces the same out-
put, and present a performance study showing that for all test instances
used both adaptations are considerably faster than the current imple-
mentation in a commercial software product.

1 Introduction

Tables of relational data play an important role in many applications.

Definition 1 ([5]). A relation consists of a scheme and an instance:

1. A scheme is a finite set of attributes. Each attribute is associated with a set
of values, called its domain.

2. A tuple over a scheme is a mapping that associates with each attribute of
the scheme a value from the corresponding domain.

3. An instance over a scheme is a finite set of tuples over that scheme.

Here we study the use of relations in the context of constraint satisfaction prob-
lems (CSPs) [8], where relations are used to specify legal combinations of vari-
ables. The decision version of the Boolean CSP is NP-complete (see, e.g., [9]).
In many CSP algorithms, it is usually not feasible to use a direct representation
of relations due to the combinatorial explosion of the solution space (e.g., an
unconstrained Boolean CSP with m variables has 2m possible solutions).

In the case of finite-domain CSPs, the variable values can be encoded as
integers since the domain sizes are known in advance. Therefore, it is assumed
that attribute values fit in a machine word. The model of computation used is
the word RAM, a term used by Hagerup [6] among others.

Møller [11] described how relations could be represented by Cartesian prod-
ucts, which is illustrated in the following example.
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Example 1. Consider a relation with the following tuples:

{< 0, 0, 0 >,< 0, 0, 1 >,< 0, 1, 1 >,< 1, 0, 1 >,< 1, 1, 1 >}.
An alternative representation is to use, where feasible, a Cartesian product to
generate the set of tuples. Thus the same set can be represented as follows:

{< 0, 0, 0 >} ∪ ({0, 1} × {0, 1} × {1}).
The last representation is what we refer to as a compressed relation. When using
a tabular notation, we display the relations as shown below:

Original relation: A B C
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

Compressed relation: A B C
0 0 0
{0, 1} {0, 1} 1

In the tabular notation a Cartesian product is implied between sets on the same
row. In addition, the set delimiters {} are omitted when the set is a singleton. ��

As our starting point we use Møller’s algorithm for compressing relations. It
was originally implemented in APL and later in C++ in the commercial software
product Array DatabaseTM[2]. In this paper we analyse the complexity of the
algorithm (Sect. 3), propose a modification (Sect. 4), and present a new imple-
mentation (Sect. 5) which according to our experiments (Sect. 6) is significantly
faster than earlier implementations. It is planned that a future release of the
software will include the tuned implementation.

2 Preliminaries

We first need to define when two relation representations are equivalent.

Definition 2 (Equivalent relation representation). Two relation represen-
tations are said to be equivalent if the underlying relation instances are equal
after the evaluation of all Cartesian products.

We also need to establish a measure on the size of a representation. We ignore
any overhead needed to administrate the data structure, and therefore arrive at
the following definition, which is valid for both uncompressed and compressed
representations.

Definition 3. Let k denote the number of attributes, ni the number of scalar
values in the ith column and di the domain size of the ith attribute. The size of
a relation, measured in bits, is

∑k
i=1 ni	log2 di
.

Using this definition on the relations of Example 1, we see that the uncompressed
relation has size 15 while the compressed relation has size 8.

Ranking different compressed representations leads to a (not necessarily
unique) optimal representation defined as follows:
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Definition 4. A representation is said to be minimal if no equivalent represen-
tation exists which has a smaller size.

In general, the Cartesian arguments can be selected from subsets of the re-
lation scheme. We formalize this selection as follows:

Definition 5. A compression scheme for a relation with scheme S is a (possibly
empty) sequence of pairwise disjoint subsets of S. Each subset defines the scope of
a Cartesian argument. An optimal compression scheme is a compression scheme,
which yields a minimal representation of that relation.

Note that the subsets need not cover the whole relation scheme, i.e. attributes,
which are not members of the compression scheme, will not have their values
compressed. However, since we are interested in decreasing the size of a represen-
tation and compression never increases the size, we only consider compression
schemes which actually cover the whole relation scheme.

An exhaustive search for an optimal compression scheme is intractable for
all but the smallest relation schemes, as shown by the following proposition.

Proposition 1. The number of compression schemes that cover a k-ary relation
is Bk, where Bk is defined by the following recurrence relation:

B0 = B1 = 1, and Bk =
k∑
i=1

(
k

i

)
Bk−i for k > 1.

Proof. The cases for k = 0 and k = 1 are obvious. For k > 1, the size of the
first subset can be i, i ∈ {1, . . . , k}, and each such subset can be selected in (ki

)
ways. There are Bk−i ways to cover the remaining elements. From these facts
the recurrence follows. ��

3 Description and Analysis of Møller’s Heuristic

When using the information in a relation (i.e., when joining two relations), we
usually need the values columnwise. Therefore, we only consider the compression
schemes consisting of singletons spanning the relation scheme, i.e., the Cartesian
arguments span a single attribute.

Møller [11] introduced a heuristic for compressing relations where columns
are considered one at a time. To describe the heuristic we need the concept of
complement for a relation:

Definition 6. The complement of a (possibly compressed) relation R with re-
spect to attribute A is the tuples of R with the values corresponding to A removed.

The heuristic works in two phases:

Phase 1: The input relation is analysed to determine the order in which the
columns are to be considered. This is done by computing, for each attribute,
the number of unique tuples in the corresponding complement.
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Phase 2: To get the compressed relation the columns are considered in non-
decreasing order of the number of unique tuples in the uncompressed com-
plements. The column being considered is removed from the relation and
duplicates are eliminated from the complement. During duplicate elimina-
tion each unique tuple in the complement is associated with the different
values of the attribute considered. Using this information the compressed
relation is constructed.

Example 2. We now illustrate the heuristic by compressing the relation from
Example 1. First, we determine the number of unique tuples in each attribute’s
complement:

A B C
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

remove column A−−−−−−−−−−−→

B C
0 0
0 1
1 1
0 1
1 1

remove duplicates−−−−−−−−−−−→
B C
0 0
0 1
1 1

#tuples−−−−−→ 3

A B C
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

remove column B−−−−−−−−−−−→

A C
0 0
0 1
0 1
1 1
1 1

remove duplicates−−−−−−−−−−−→
A C
0 0
0 1
1 1

#tuples−−−−−→ 3

A B C
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

remove column C−−−−−−−−−−−→

A B
0 0
0 0
0 1
1 0
1 1

remove duplicates−−−−−−−−−−−→

A B
0 0
0 1
1 0
1 1

#tuples−−−−−→ 4

Hence, the compression schemes 〈{A}, {B}, {C}〉 and 〈{B}, {A}, {C}〉 are both
valid. If we choose compression scheme 〈{A}, {B}, {C}〉, the compression pro-
ceeds as follows.
A B C
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

handle
column A−−−−−−→

A B C
0 0 0
{0, 1} 0 1
{0, 1} 1 1

handle
column B−−−−−−→

A B C
0 0 0
{0, 1} {0, 1} 1

handle
column C

��
For the purpose of analysis, we assume that the input relation is uncom-

pressed and does not contain any identical tuples. Let k denote the number of
attributes and n the number of tuples in the relation.

The essential part of Phase 1 is duplicate elimination, which can be carried
out by sorting the tuples using any vector sorting algorithm (see, for instance,
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[3]), scanning the result, and counting the number of unique tuples. The running
time is dominated by the cost of sorting, which is O(kn + n log2 n). Since the
elimination must be performed k times, the running time of Phase 1 is O(k2n+
kn log2 n).

In our application we sometimes need to compress relations, which are already
partially compressed. It is not obvious how to modify vector sorting algorithms to
handle the situation where the elements are sets. Hence, in our implementation
we rely on hashing. We eliminate duplicates by maintaining a hash table of size
Θ(n). Each tuple in the complement is checked against the hash table and, if it is
not present, it is inserted into the table. At the end the number of elements stored
in the hash table is equal to the number of unique tuples in the complement. The
computation of a hash value takes O(k) time. A lookup and an insert both take
O(k) expected time. In total, the duplicate elimination requires O(kn) expected
time. Thus, the expected running time of Phase 1 is O(k2n). The worst-case
running time for Phase 1 becomes O(k2n log2 n) if we implement each entry in
the hash table as a balanced binary search tree.

Since, in general, complements contain compressed columns, we also rely on
hashing in Phase 2. The number of scalar values contained in a single complement
is never larger than kn. Hence, the calculation of the hash values for all tuples
in a complement takes O(kn) time. The running time of a lookup and an insert
depends on the size of the tuple. If there are other tuples with the same hash
value, we need to compare whether any of these are equal to the searched tuple.
If we keep the sets sorted, the cost of a comparison is linear in the size of the
searched tuple. Lookups and possible inserts for all tuples take O(kn) expected
time. The sorting cost is O(n log2min{dmax, n}), where dmax is the size of the
largest domain.

To summarize, the running time of Phase 2 is O(k2n+kn log2min{dmax, n})
in the average case. The running time of Phase 2 becomes O(k2n log2 n) in the
worst case if we implement each entry in the hash table as a balanced binary
search tree.

4 A Modification of Phase 1

Instead of calculating the number of unique tuples in the complement exactly,
we propose that only an approximation is computed. We use a hash function
to compute a signature for each tuple in the complement, and the number of
unique signatures is used as an approximation for the number of unique tuples.
This way we save the equality tests for colliding tuples in the hash table.

The computation of the approximation for one complement is carried out as
follows. First, the signatures are computed for each tuple. Second, the signatures
are sorted using radix sort [1, p. 77 ff.]. Third, in a final scanning the number of
distinct signatures is calculated.

To compute the signatures fast, we employ strongly universal hashing, defined
by Carter and Wegman [13]:
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Definition 7 ([4]). Let U and T be subsets of the natural numbers. A class H
of hash functions from U to T is said to be universal if, on any pair of distinct
elements from U , for a randomly chosen hash function h from H the probability of
a collision is O(1/|T |), i.e., for all x, y ∈ U , x �= y: Pr(h(x) = h(y)) = O(1/|T |).

Definition 8 ([13]). Let U and T be subsets of the natural numbers. A class
H of hash functions from U to T is said to be strongly universal if a randomly
chosen hash function h from H maps elements pairwise independently, i.e., for
all x, y ∈ U , x �= y, and for all α, β ∈ T : Pr(h(x) = α and h(y) = β) =
O(1/|T |2).

Strongly universal hash functions support the following type of vector hashing:

Proposition 2 ([4]). Let q be a positive integer, U and T subsets of the nat-
ural numbers, and H a strongly universal class of hash functions from U to T .
Furthermore, let Hq denote the class of hash functions from Uq to T such that
(h1, . . . , hq)(x1, . . . , xq) = h1(x1) ⊕ · · · ⊕ hq(xq) where ⊕ is the binary XOR
operation and hi ∈ H for all i ∈ {1, . . . , q}. Then Hq is strongly universal.

We can utilize vector hashing as follows. Let h∗(ri∗) denote the vector hash
value for the ith tuple, hj(rij) the hash value for the ith tuple and the jth
attribute using a strongly universal hash function hj . Then we have

h∗(ri∗) = h1(ri1)⊕ · · · ⊕ hk(rik).

We can compute the vector hash value h∗ for each tuple in the relation in time
O(kn) assuming that the computation of hj(rij) takes O(1) time. When we need
the hash value hj(ri∗) for the ith tuple in the complement with respect to the
jth attribute, we can calculate this as

hj(ri∗) = h1(ri1)⊕ · · · ⊕ hj−1(ri,j−1)⊕ hj+1(ri,j+1)⊕ · · · ⊕ hk(rik)
= h∗(ri∗)⊕ hj(rij).

This means that we can calculate the hash values for each tuple in the comple-
ment in O(n) time if we use O(kn) time to precompute the vector hash values.
Thus, the signatures for all k complements are computed in O(kn) time in the
worst case.

As the following proposition shows, the compression scheme obtained with
our modification is, with high probability, the same as that produced by Phase 1
of Møller’s heuristic.

Proposition 3. Assume that the input relation has k attributes and n tuples.
For a signature universe T , for which |T | = n2+ε for ε > 0, the probability
that the outcome of our modification is the same as that of Phase 1 of Møller’s
heuristic is at least 1 − 1/nε. The worst-case running time of our modification
is O((2 + ε)kn).
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Proof. For any universal hash function, the probability of a collision is O(1/|T |).
Assume that of the n tuples m are unique. Therefore, the probability that any
of the

(
m
2

)
pairs of unique tuples collides is bounded by

(
m
2

) · O(1/|T |). For
|T | = n2+ε the claimed bound follows since m ≤ n.

As discussed above the computation of the signatures for all k complements
takes O(kn) time. As shown in [1, p. 79], the sorting of n integers in the range
{0, . . . , nγ − 1} is done in O(γn) time using radix sort. The final scanning of
the signatures requires O(γn) time. For γ = 2 + ε, the total running time for
handling all k complements is O((2 + ε)kn). ��

5 Implementation Details

We need a strongly universal hash function that calculates a hash value for
arbitrary b-bit tuples. A standard trick is to tabulate hash functions for 8-bit
characters. A b-bit tuple is then viewed as a string of 	b/8
 characters, and the
hash value for the ith character is found by a table lookup in the ith table using
the 8-bit character as index. The hash value for the entire tuple can then be
calculated as described in Proposition 2. This hash function is very fast on the
platform considered, the Intel Pentium, since only table lookups and XOR are
involved. For a performance study of strongly universal hash functions, see [12].

The drawback of the chosen class of hash functions is that we need indepen-
dent tables for each character in the tuple being hashed, which makes the class
unsuitable for long tuples. As in [7], we are pragmatic and fix the number of
tables (to 8 in our case) and use the generated tables cyclically. Furthermore,
the signatures are full words and, when sorting the signatures, we use the routine
provided by the C++ standard library.

Uncompressed columns are stored as a sequence of integers. For the sake of
efficiency, we store the integers using 1, 2, or 4 bytes, 8 bits each. A compressed
column is stored as a sequence of either fixed-size bit vectors or sorted integer
sequences. The fixed-size bit vectors are 1, 2, or 4 bytes wide and used whenever
the domain has no more than 8, 16, and 32 values, respectively. When the domain
has more than 32 values, a sorted integer sequence is used, where the integers are
stored using 1, 2, or 4 bytes. It may be beneficial to encode even larger domains
as bit vectors, since we avoid memory allocation for set elements and we exhibit
better cache behaviour. The exact bound, when the encoding should switch to
using a sorted integer sequence, is to be determined experimentally.

The performance critical parts of the code are the inner loops in the functions
that implement the compress (and join) functionality. Since different C++ types
are used to represent the column data (3 types for the uncompressed columns
and 6 for the compressed columns), the compress function should potentially be
implemented in 9 different versions, one for each type of column.

By using the concept of traits classes, originally introduced by Meyers [10],
it is possible to combine speed of execution with ease of maintenance. Here we
use the term traits class to refer to a class that aggregates the basic operations
(copy, intersection, hash value etc.) on a single cell in a column. By supply-
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ing different traits classes to the same template function, this function can be
applied to different column types. The compiler will generate an appropriate im-
plementation of the function, specialized for the types passed. Since the compiler
knows the types at the time of compilation, full optimization and inlining can
be applied in the critical inner loops. Virtual functions are thus not invoked in
the performance critical parts of the code.

6 Performance Study

In this section we present the results of a performance study in which we com-
pared the performance of our C++ implementations of the algorithms described
in Sect. 3 and 4, respectively, to existing implementations written in APL and
C++. The following four implementations were considered:

APL: The original APL implementation described in [11].
Current: The C++ implementation used in the commercial software product

Array DatabaseTM version 5.5. This is a straightforward translation of the
APL code using optimizations, like hashing and reference data types, not
available in APL.

Tuned: A performance-tuned C++ implementation of Møller’s heuristic.
Approx: A C++ implementation of our approximation heuristic discussed in

Sect. 4.

All the experiments were performed on a Dell Inspiron 5000e with a 750
MHz Pentium III processor and 384 MByte memory. The operating system used
was Windows 2000, Service Pack 2. For the C++ tests, the compiler used was
Microsoft Visual C++ version 7. For the APL tests, the compiler was Dyadic APL
for Windows version 8.2 release 4. Each experiment was run multiple times, with
no significant variance observed in the execution times.

The relations used in the experiments were collected from real-life CSP in-
stances, which have been used in various projects. The characteristics of the
input data used for comparing the programs are shown in Table 1, where k de-
notes the number of attributes in the relation scheme, di the size of the domain
for the ith attribute, n the number of tuples, s the size of the relation as defined
in Definition 3, nc the number of tuples in the compressed relation, and sc the
size of the compressed relation. The two last columns show nc and sc as per-
centages of n and s, respectively. The compressed output was the same for all
methods in all runs.

The performance results are presented in Table 2. The speedup factor is
calculated using the existing C++ implementation as a base. As can be seen, the
new implementations are significantly faster than both existing implementations.
The difference seems to increase as the size of the relation increases. It is also
evident that the speedup is larger when the domains are small. This seems to
indicate that encoding the compressed columns as bit vectors is beneficial.
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Table 1. Characteristics of the input data used in our performance comparison.

Input k
∑k

i=1 di n s nc sc nc % sc %
heq 10 1643 151374 5903586 5020 1362258 3.3% 23.1%

plan31 14 28 8192 114688 14 274 0.2% 0.2%
q10a 8 80 149552 4785664 13144 661944 8.8% 13.8%
q10b 8 80 55658 1781056 6632 318672 11.9% 17.9%
ns11 11 65 333322 9666338 102 7304 0.03% 0.08%

Table 2. Execution times of compression programs. All times are measured in CPU-
seconds.

APL Current Tuned Approx
Input Time Speedup Time Speedup Time Speedup Time Speedup
heq 36.5 0.33 12.01 1 2.63 4.6 0.91 13.2

plan31 9.10 0.11 1.031 1 0.11 9.4 0,06 17.1
q10a 233 0.32 74.02 1 1.74 42.5 0.96 77.1
q10b 47.8 0.21 9.884 1 0.63 15.7 0.45 22.9
ns11 660 0.57 377.5 1 5.80 65.1 1.87 196

7 Conclusion

We provided a detailed description and complexity analysis of a heuristic to com-
press relational tables. This heuristic was previously only informally described,
with no complexity results. Furthermore, we provided an enhanced implemen-
tation of the heuristic and benchmarked it against existing implementations.
The results obtained show that our baseline implementation of the heuristic is
considerably faster than previous implementations for the data sets used. Also,
we proposed a modification to the heuristic, which further improves the running
time while producing the same compressed output with high probability.

In an extension of this paper, we have studied the performance of the join
operation on compressed relations. The results obtained show considerable im-
provements over existing implementations although not as dramatic as the re-
sults for the compress operation. For further details, see [9].
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Abstract. A variant of the classical selection problem, called the posi-
tioning problem, is considered. In this problem we are given a sequence
A[1:n] of size n, an integer k, 1 ≤ k ≤ n, and an ordering function
©< , and the task is to rearrange the elements of the sequence such that
A[k]©< A[j] is false for all j, 1 ≤ j < k, and A[�]©< A[k] is false for all �,
k < � ≤ n. We present a Las-Vegas algorithm which carries out this re-
arrangement efficiently using only a constant amount of additional space
even if the input contains equal elements and if only pairwise element
comparisons are permitted. To be more precise, the algorithm solves the
positioning problem in-place in linear time using at most n + k + o(n)
element comparisons, k + o(n) element exchanges, and the probability
for succeeding within stated time bounds is at least 1− e−nΩ(1)

.

1 Introduction

In the selection problem the task is to find, given a multiset and an integer k, the
kth smallest element of the multiset. We consider a variant of this problem —
and call it the positioning problem — examined by Hoare [7]: given a sequence
A[1:n] of n elements, an integer k, 1 ≤ k ≤ n, and an ordering function ©<
returning true or false, rearrange the sequence in such a way that A[k]©< A[j] is
false for all j, 1 ≤ j < k, and A[�]©< A[k] is false for all �, k < � ≤ n. We will
assume that k ≤ �n/2� since the case k > �n/2� can be solved symmetrically by
positioning the (n− k)th element in the reverse sequence.

If we had extra space available, the positioning problem for multisets could
be solved by tagging each element with its index, comparing the pairs lexico-
graphically, and applying any of the existing algorithms for the set of pairs.
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However, if the rearrangement of the elements is to be done in-place, i.e., using
only constant amount of extra space, the problem becomes nontrivial.

The efficiency of sorting algorithms is traditionally measured by calculating
the number of element comparisons performed. In particular, observe that we
allow only pairwise element comparisons. When the movement of elements is
done in a strictly in-place manner, i.e., by swapping the elements wordwise, the
number of element exchanges is another natural performance measure.

Of the classic selection algorithms [1,4,7,18] only the algorithm by Hoare [7]
operates in-place. If in his algorithm the partitioning is carried out using the
indices to make the elements distinct, and if the median of three random elements
is used as the partitioning element in each partitioning, the algorithm performs
at most 2.75n + o(n) element comparisons on an average when positioning the
�n/2�th element in a sequence of n elements; for the exact bounds for general
k, see [12]. It is well-known that for a permutation of n distinct elements the
average number of element exchanges performed during each partitioning is 1/6
times that of element comparisons (see, for example, [19, pp. 333–334]). That is,
when positioning the �n/2�th element the average number of element exchanges
performed is bounded by 0.46n+ o(n).

The algorithm of Floyd and Rivest [4] (see also [15, Section 3.3] and [17]),
on which our algorithm is based, selects the kth smallest of n elements using
at most n+ k + o(n) element comparisons. This algorithm can also be used for
positioning, not only for selection, but it was designed for sets. Furthermore, it is
of the Las Vegas type, i.e., it may fail to finish in time, but it will always produce
a correct result. From the lower bound of [3] and Yao’s minimax principle (see,
e.g., [15, Proposition 2.5]) it follows that n + k − O(1) is a lower bound on the
expected number of element comparisons performed by any Las-Vegas algorithm
for selecting the kth smallest of n elements.

In this paper we describe an in-place adaptation of the algorithm of Floyd and
Rivest [4] which can handle multiset data efficiently. It carries out the positioning
of the kth element in a multiset of size n in O(n) time using at most n + k +
o(n) pairwise element comparisons and at most k + o(n) element exchanges;
the probability that these resource bounds are exceeded is at most e−nΩ(1)

. To
achieve these bounds two ordering functions©< and©= must be provided. If only
©< is provided, the algorithm may require 2n+ o(n) element comparisons. Due
to the above-mentioned lower bound, if we ignore the lower order terms, the
number of element comparisons performed is best possible. Also, the number
of element exchanges performed is optimal if we do not make any assumptions
about the input.

For the selection problem several deterministic in-place algorithms have been
proposed [2,5,13], but none of these solve the positioning problem as such. First,
the algorithm of Lai and Wood [13] can be used for finding the kth smallest
element, but it will not carry out the partitioning required. Of course, a sim-
ple solution is to carry out a three-way partitioning after the selection, but this
may require 2n additional element comparisons and k additional element ex-
changes. Second, both the algorithms of Carlsson and Sundström [2], and Lai
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and Wood [13], as well as the algorithm of Geffert [5] which uses one of the
above-mentioned algorithms as a subroutine, rely on three-way element compar-
isons. A naive solution is to replace each three-way comparison with two binary
comparisons, but this will double the comparison count. In the full version of this
paper we describe a deterministic in-place positioning algorithm which requires
3.64n+ 0.72k + o(n) pairwise element comparisons — improving the earlier re-
sults — but this is still far away from the bound achieved by the randomized
method.

2 Bit Encoding

Our in-place positioning algorithm relies on the bit encoding technique intro-
duced by Munro [16]. This technique has turned out to be crucial in many other
in-place algorithms (see, for example, [8,9,11,13,14]). In this section we describe
how the technique is used in the present context.

Two distinct elements x and y, x©< y, can be used to represent a 0-bit by
storing them in two consecutive locations in order xy, and a 1-bit by storing them
in order yx. By using �log2(n+ 1)� such pairs an integer value up to n can be
represented. To read the value or to update the value of such an integer, O(log2 n)
element comparisons and O(log2 n) element exchanges might be necessary.

Assume that n is the input size of the positioning problem. For fixed integer
c ≥ 1 and real number 0 < β < 1, our algorithm will need cnβ integers whose
value is between 0 and n. In order to represent these integers using the bit encod-
ing technique we find cnβ2�log2(n+ 1)� distinct elements and transfer them into
the beginning of the input sequence. Next we describe how this preprocessing is
done.

For the sake of brevity, let b = cnβ2�log2(n+ 1)�. First, we sort the b first
elements of the input; let B be the resulting section. Here any in-place sorting
algorithm can be used, e.g., heapsort [20] or in-place mergesort [10]. This requires
O(b log2 b) time. If each element in B has less than b/2 duplicates — this check
requires O(b) time — the elements B[i] and B[b/2 + i] must be distinct for all
i = 1, 2, . . . , b/2, and each of these pairs can be used to represent a bit. The
interleaving of the first and the second half of B, i.e., moving the pairs B[i] and
B[b/2 + i] into consecutive locations for i = 1, 2, . . . , b/2, is easily carried out
in-place in O(b log2 b) time. At the same time the bits can be initialized to zero.
In this case the construction is complete.

Second, if some element, say z, appears in B at least b/2 times, we scan
the remaining sequence to find b/2 elements that are different from z. Before
starting the scan we move all elements of B different from z to the beginning of
B forming a section B1. This requires a single block interchange, i.e., O(b) time.
The remaining elements, elements equal to z, are divided to two consecutive
sections, B2 and B3, so that B3 includes b/2 elements and B2 what is left. The
section B2 between B1 and B3 is to be filled with elements different from z. After
B3 there is a section, call it E, that also contains elements equal to z. That is,
during the scan the input sequence has the form:
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B1 B2 B3 E ?
︸︷︷︸
�=z
︸ ︷︷ ︸

=z p

If the element pointed to by cursor p is equal to z, the cursor is incremented by
one, E is made one larger, and the element at the new cursor position is examined
next. Otherwise, the element pointed to is swapped with the first element of B2,
B1 becomes one larger, B2 one smaller, E one larger, the cursor is incremented
by one, and the new cursor position is considered next. The scan is stopped when
B2 gets full or when the end of the input sequence is reached.

If the end of the sequence is reached before B2 gets full, we know that most
of the elements are equal to z and the underlying positioning problem is easy to
solve. The elements in B1 are sorted; let B< denote the section of elements less
than z in the sorting result and B> the section of elements larger than z. Then
the contents of B> is swapped with a block of equal size at the end of B2∪B3∪E.
Since after this the whole sequence is in sorted order, the kth smallest element
is correctly positioned. The sorting of B1 requires at most O(b log2 b) time, and
the block swap involving B> at most O(b) time. During the scan one element
comparison is made for each element kept in E if the ordering function ©= is
provided. Since b log2 b = o(n), this special case is solved in O(n) time using
at most n + o(n) element comparisons and at most o(n) element exchanges. If
only the ordering function ©< is provided, two comparisons per element might
be necessary.

Let us hereafter assume that there are enough elements different from z.
Assume that the configuration after the scan is B1B3EU , where U denotes the
rest of the sequence not yet touched. As earlier, the interleaving of B1 and
B3 requires O(b log2 b) time. This completes the preprocessing and the final
configuration is BEU , B containing the consecutive pairs that can be used for
representing b/2 bits. To get to this configuration O(n) time has been used and
it is necessary to carry out one element comparison for each element in E (or
two if only the ordering function©< is provided). Potentially, E can be large, but
later on we can avoid the comparisons involving the elements in E since these
are known to be equal to z.

3 Randomized Positioning

As our starting point we use a nonrecursive variant of the selection algorithm of
Floyd and Rivest [4] described, for example, in [15, Section 3.3]. The basic idea
is to draw a small random sample from the input sequence with replacement,
choose two sample elements x and y, x©< y, and then partition the sequence into
three sections: the elements lexicographically less than x, the elements between
x and y, including themselves, and the elements lexicographically greater than
y. The crux is how to choose elements x and y such that the number of elements
between them is o(n/ log2 n), x is lexicographically less than the kth element,
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and y is lexicographically greater than the kth element. If these conditions are
satisfied, the kth element can be correctly positioned by sorting the middle
section after the partitioning, and this sorting takes only o(n) time.

Let us now turn our attention to the implementation details. Assume
that we have preprocessed the input sequence as described in Section 2 for
b = 4nβ�log2(n + 1)�, where the constant β, 0 < β < 1, will be determined
later, and that the sequence has the form BEU . Let T be a shorthand notation
for the union of sections E and U , and let m = |T | = n− b. The positioning of
the kth element is accomplished as follows.

Take a random sample. Let s = mβ . Draw s random integers, indepen-
dently and uniformly, from the range {1, 2, . . . ,m} and store these numbers in
B in encoded form. Clearly, this requires O(s log2 n) time.

Sort the s integers in B using any in-place sorting algorithm. Each time two
numbers are swapped their encodings in B are swapped as well. Therefore, this
sorting requires O(s log2 s log2 n) time.

Scan the sorted number sequence, starting from the back, determine the
multiplicity of each number, and save the original number together with its
multiplicity in encoded form in B. Because the B section is is so large, the
old sequence and the new sequence cannot overlap during this process. Due
to the manipulation of the encoded number representations the scan requires
O(s log2 n) time.

The integers in the number sequence indicate the indices of the elements to
be chosen to the random sample, and the multiplicities tell how many times each
element appears in the sample. That is, the sampling is done with replacement.
Now scan the number sequence and gather the elements chosen to the sample
together to the beginning of T , call the resulting section S. Again, since encoded
representations are manipulated, this scan requires O(s log2 n) time.

Choose elements x and y. Sort the elements in S using any in-place sorting
algorithm. When in this process two elements are swapped, also the encoded
indices and multiplicities in B are swapped. Thus, this requires O(s log2 s log2 n)
time.

Let α and γ be some fixed constants, 0 < α < β < γ < 1. If k < mγ ,
let λ = ν = 2mγs/m. On the other hand, if k ≥ mγ , let µ� = (k − b)s/m,
µr = (k + b)s/m, ∆� = mαµ

1/2
� , ∆r = mαµ

1/2
r , λ = max{1, �µ� − ∆��}, and

ν = min{�µr +∆r�, s}. Now scan the S section to find the λth element of the
sample, call it x, and the νth element, call it y. Since in this scan we have to
determinate the value of multiplicities one by one, it takes O(s log2 n) time. After
this the indices of x and y are saved.

Undo element moves in T . Once more sort the elements in S, but now
use their indices as keys. Again the encoded indices and multiplicities in B are
moved accordingly. After this, move the elements in S back to their original
positions. This is done backwards starting from the rear. In total, this requires
O(s log2 s log2 n) time.

Carry out two-way partitioning. If k < mγ , perform a two-way parti-
tioning of T using y as the partitioning element. Let M (R) denote the section
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of elements lexicographically smaller than or equal to (larger than) y. Initially,
both M and R are empty. We use a modification of the meeting cursors strat-
egy by Hoare [7]. Initially, the two cursors p and q are at their respective ends
of T , and they are gradually moved toward each other until they meet. The
partitioning should be done carefully so that each element of U is compared to
y exactly once, and that the comparison between the elements of E and y are
avoided as far as possible. To achieve this, the relationship between z and y is
determined before partitioning, and during the partitioning, when cursors p or
q are in the E section, the elements pointed to by them are not compared to y,
but the outcome of the initial comparison is recalled.

The partitioning procedure consists of three loops which all are similar in
structure. In the first loop the cursors p and q are moved toward the centre until
one of them meets the index of y. Depending on whether p or q meets the index
first, there are two other loops. In both of these the movement of the cursors is
continued until the cursors meet each other. Let us now consider the first loop in
detail; the other two loops are similar and hence their consideration is omitted.

We maintain the following invariant in the first loop:

B M ? y ? R
︸ ︷︷ ︸

E

︸ ︷︷ ︸
Up q

If the element pointed to by p is larger than y, the cursor is stopped; otherwise
M is made one larger and the cursor p is incremented by one. If the element
pointed to by q is smaller than y, also this cursor is stopped; otherwise R is
made one larger and the cursor q is decremented by one. After both cursors are
stopped, the elements pointed to by them are swapped. This makes both M and
R one larger. Cursor p is incremented by one and cursor q is decremented by
one, and the process is repeated until one of the cursors meets the index of y.

Clearly, this two-way partitioning is carried out in O(m) time and at most
|U | + O(1) element comparisons are performed. For each element moved to M
an element exchange might be necessary. With high probability the final size of
the M section will be o(m), so only o(m) element exchanges will be necessary
in this case.

Perform three-way partitioning. If mγ ≤ k ≤ �m/2�, perform three-
way partitioning using x and y as the partitioning elements and collect the
elements falling between them (including x and y) into M . Let L denote the
section containing elements lexicographically smaller than x and R the section
containing those larger than y. There are two symmetric cases depending on
whether the index of x is smaller than or larger than the index of y. We consider
only the first case here; the other case is similar.

Again the partitioning is based on the meeting cursors strategy. The par-
titioning routine consists of several symmetric loops depending on the relative
positions of the cursors p and q and the index of x and the index of y. We con-
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sider here only the first loop when the cursors have not yet met the index of x
or the index of y. During the process we maintain the following invariant:

B M L ? x y ? R M
︸ ︷︷ ︸

E

︸ ︷︷ ︸
Up q

We maintain an M section both in the beginning of the sequence and in the
end of the sequence, and then at the end swap the M sections into the middle.
The elements in the E section are handled as in two-way partitioning in order
to avoid unnecessary element comparisons.

Consider the invariant maintained in the first partitioning loop. Each element
under consideration is always compared first to y, and thereafter to x if necessary.
If the element pointed to by cursor p is larger than y, the cursor is stopped; if
not and if it is larger than x, it belongs to M and it is exchanged with the first
element of L, which makes the firstM section one larger, moves the L section one
position to the right, and thereafter cursor p is incremented by one. Otherwise,
the element under consideration belongs to L, and that section is made one
larger and cursor p is incremented by one. The movement of q backwards is
done equally carefully using the M section at the end. After both cursors are
stopped, the underlying elements are exchanged, and the process is repeated
until one of the cursors meets the index of x or the index of y.

From this implementation it is clearly seen that three-way partitioning runs in
O(m) time. Each element of U is compared to y and possibly to x. Hence, the to-
tal number of element comparisons is bounded by |U |+min{|U |, k+o(m)}+O(1).
With high probability the final size of the M section will be o(m). Therefore,
only the element exchanges involving an element of L are significant. With high
probability the L section will get at most k + o(m) elements, so the number of
element exchanges performed is bounded by k + o(m).

Reordering. Change the configuration of the sequence from BVXZ (where
L might be empty if k < mγ) to V BXZ by swapping the elements in B with
a block of the same size at the end of L; if |L| < |B|, simply interchange the
order of the blocks in these sections. Since B contains O(s log2 n) elements, this
interchange requires O(s log2 n) time.

Finishing up. If |L| ≥ k − b or |R| ≥ n − k − b, the correct positioning of
the kth element is guaranteed by sorting the whole sequence using any in-place
sorting algorithm. This takes O(n log2 n) time, but the sorting will be necessary
with negligible probability.

Otherwise, the correct positioning of the kth element is guaranteed by sorting
the section BX in-place. This is the normal mode. With high probability the
final size of theM section will be o(m/ log2 n), and since the size of the B section
is bounded by O(s log2 n), which is also o(m/ log2 n), this sorting requires o(m)
time.
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4 Analysis

Now we are ready to prove our main theorem.

Theorem 1. Our Las-Vegas algorithm carries out the positioning of the kth
element in a multiset of size n in-place in O(n) time using at most n+ k+ o(n)
pairwise element comparisons, and at most k + o(n) element exchanges; these
resource bounds are exceeded with probability at most e−nΩ(1)

.

Proof. The space bound is obvious since all computations are performed in-place.
The final sorting guarantees that the algorithm is of the Las-Vegas type. Since
s = mβ , 0 < β < 1, and m ≤ n, all the phases where we operate with the sample
take O(s(log2 n)2) = o(n) time. Hence, the computational costs are dominated
by the preprocessing phase, one of the partitioning phases, and the final sorting
phase. Consider first the normal mode, i.e., the case that the kth element falls
in M and |M | < nε for some ε, 0 < ε < 1. Clearly, in this case the running time
of the algorithm is O(n), the number of pairwise element comparisons sums to
n+ k + o(n), and that of element exchanges to k + o(n).

The algorithm may fail to meet these resource bounds in six ways:

1. If k < mγ and M gets too small, so that the kth element is not in the union
of B and M . We will be pessimistic and say that a failure occurs if y is
lexicographically larger than the mγth element of T .

2. If k < mγ and M gets too large, so that the sorting phase is too costly. Here
we say that a failure occurs if |M | > 4mγ .

3. If k ≥ mγ and L gets too large, so that L can contain the kth element. This
failure occurs if |L| ≥ k − b.

4. If k ≥ mγ and R gets too large, so R can contain the kth element. This
failure occurs if |R| ≥ n− k − b.

5. If k ≥ mγ and the left boundary of M gets too far away to the left, so
that the sorting phase becomes costly. We say that this failure occurs if x is
lexicographically smaller than the (k − b−∆�m/s)th element in T .

6. Finally, it is possible that k ≥ mγ and the right boundary of M gets too
far away to the right. We say that this failure occurs if y is lexicographically
larger than the (k + b+∆rm/s)th element in T .

The probabilities of these failures can be bounded above by using Chernoff
bounds (see [15, Theorem 4.2 and Theorem 4.3]). We consider here the failure
modes 2 and 3; the other four modes are handled in a similar way.

Failure mode 2. If this failure occurs, more than 4mγs/m of the sample
elements are lexicographically larger than the (2mγ)th element of T . Let Xi = 1,
if the ith sample element is smaller than or equal to the (2mγ)th element of T ,
andXi = 0 otherwise. Thus, Pr[Xi = 1] = 2mγ/m, and Pr[Xi = 0] = 1−2mγ/m.
For X =

∑s
i=1Xi, E[X] = 2mγs/m. Since X is binomially distributed and

X1, X2, . . . , Xs are all independent, we can use [15, Theorem 4.2] to bound its
upper tail probability:

Pr
[
X > 4mγs/m

]
= Pr

[
X > 2E[X]

]
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Theorem 4.2≤ e−mγ+β−1/2

β=2/3 and γ=5/6
= e−m1/2/2 .

Failure mode 3. Recall that µ� = (k − b)s/m and ∆� = mαµ
1/2
� . If this

failure occurs, less than (k− b)s/m−∆� of the sample elements are lexicograph-
ically smaller than the (k − b)th element of T . Define Xi = 1, if the ith sample
element is lexicographically smaller than the (k− b)th element of T , and Xi = 0
otherwise. For X =

∑s
i=1Xi, E[X] = µ� = (k − b)s/m. Now we can bound the

lower tail probability of X using [15, Theorem 4.3]:

Pr[X < µ� −∆�]
δ=∆�/µ�= Pr[X < (1− δ)µ�]

Theorem 4.3≤ e−µ�δ
2/2

= e−m2α/2 .

For parameters α = 1/6, β = 2/3, and γ = 5/6, we have that δ ≤ 2e− 1, so we
can use the simplified Chernoff bound [15, Theorem 4.3].

Summing up. Since the probability of the union of events is at most the
sum of their probabilities, the probability that some of the mentioned failures
occurs is still negligible. Up to now we have expressed the failure probabilities
as a function of m, but m = n− s ≥ n/2 when n is large enough, so the failure
probability is of the form e−nΩ(1)

. �

5 Concluding Remarks

Since the selection problem has been extensively studied in the literature, it was
a surprise for us when we observed that Hoare’s randomized algorithm was the
only one that solves the positioning problem, operates in-place, is able to handle
multiset data, and relies only on pairwise element comparisons. In this paper we
described a more efficient randomized algorithm for positioning having all these
desirable properties.

Assuming that assignments of the form x ← A[i] and A[i] ← A[j] are con-
sidered as element moves, an element exchange may require three moves. Using
the hole technique (see, e.g., [6]), it is possible to implement our randomized
positioning algorithm so that with high probability it will carry out at most
2k+ o(n) element moves. If we are only interested in selection, it would be easy
to modify the algorithm so that it will perform o(n) element moves with high
probability.

Due to the in-place requirement our algorithm is quite complicated but, if
o(n) extra space is available, the bit emulation can be avoided. Actually, in
the CPH STL the implementation of the nth element function — solving the
positioning problem — is based on the randomized algorithm using o(n) extra
space. The only difference is that instead of a sorting routine a deterministic
linear-time positioning routine is invoked, which guarantees O(n) worst-case
running time. For further details, see [21].
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Abstract. The paging problem is that of deciding which pages to keep in a cache of
k pages to minimize the number of page faults for a two-level memory system. We
consider efficient paging algorithms that require limited space and time on a unit-
cost RAM with word size w. We present an implementation of the randomized
marking algorithm of Fiat et al. that uses only k + o(k) bits of space while
supporting page requests in O(1) worst-case time. In addition, we present a novel
k-competitive deterministic algorithm called Surely Not Recently Used (SNRU)
that approximates the Least Recently Used (LRU) algorithm. For any constant
1/k ≤ ε < 1/2, SNRU(ε) ensures that the �(1/2− ε)k�most recently requested
pages are in the cache, while using only O(1/ε) worst-case time per request and
2k + o(k) bits of space.

1 Introduction

In the paging problem, we have a two-level memory system consisting of a fast memory
(known as the cache) that can hold k pages and a slow memory that can hold n pages,
wheren is typically much larger than k.A paging algorithm is presented with a sequence
of requests to memory pages. If a requested page is already in the cache, then the
algorithm incurs no cost; otherwise it incurs a page fault to evict a page in the cache and
replace it with the requested page. The goal of a paging algorithm is to minimize the
number of page faults by carefully deciding which pages to evict. The eviction decisions
must be made online, without knowing future requests.

In this paper, we consider paging algorithms that require limited time and limited
space. In particular, we seek algorithms that use minimal time per page access. Further-
more, we want algorithms that require only O(k) bits of state information; we note that
virtual memory systems typically use k or more bits to indicate whether pages are mod-
ified, are read-only, and so forth. For our model of computation, we assume a unit-cost
RAM with w-bit words using a restricted instruction set according to the terminology
of Andersson et al. [3]. That is, we allow comparison, addition, subtraction, bitwise and
and or, and unrestricted bit shifts, but not multiplication or division. For randomized
algorithms, we also allow an additional instruction random(x), which returns a random
integer uniformly distributed in {1, . . . , x}.

Paging has been extensively studied using competitive analysis. Roughly speaking,
an online algorithm A is said to be c-competitive if, for every request sequence, the
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cost of A is bounded (asymptotically) by c times the optimal cost for the sequence. The
competitive ratio of A is the smallest c for which A is c-competitive. One of the best
known algorithms is the Least Recently Used (LRU) strategy, which Sleator and Tarjan
[17] showed to be k-competitive; Sleator and Tarjan also showed k to be the best possible
competitive ratio for any deterministic algorithm. However, because LRU evicts the least
recently requested page in the cache, LRU requires �lg k!� = Θ(k log k) bits of state
information to store the order of page requests. Many newer competitive algorithms have
been devised [14,11,13,4,9,7,1]; however, their space requirements exceed that of LRU.

Sleator and Tarjan proved that another well-known deterministic paging strategy,
First-In First-Out (FIFO), is k-competitive. FIFO evicts the page that has been in the
cache longest and requires only �lg k� bits of space. Another common paging algorithm
is CLOCK, which conceptually maintains pages of the cache in a circular list. CLOCK
tries to keep the more recently requested pages in the cache by maintaining a use-bit for
each page and a global clock-hand pointer, for a total of k+�lg k� bits. Whenever a page
is accessed, its use-bit is set to 1. During a page fault, CLOCK selects the page to evict by
repeatedly advancing its clock hand and resetting use-bits to 0 until it finds a page whose
use-bit is unset; hence CLOCK requiresΘ(k) worst-case time. CLOCK is k-competitive
since it is conservative [18], i.e. it avoids evictions during requests for pages in the cache,
and it performs at mostk evictions during any consecutive subsequence of requests tok or
fewer distinct pages. Karlin et al. [10] proposed the Flush-When-Full (FWF) algorithm,
which evicts all pages in the cache when the cache is full and a requested page causes
a fault. FWF is k-competitive and requires only �lg k� bits. Although FIFO, CLOCK,
and FWF all have the same competitive ratio as LRU, in practice the performance of
CLOCK is comparable to that of LRU [5], but the performance of FIFO and FWF is
substantially worse than that of LRU [18].

Perhaps the simplest randomized algorithm is RAND, which evicts a random page
from the cache and hence requires no state information; Raghavan and Snir [15] showed
that RAND has competitive ratio k. Fiat et al. [6] proposed the Randomized Marking
Algorithm (RMA) and showed it to be 2Hk-competitive, where Hk =

∑k
i=1 1/i is the

kth harmonic number. Briefly, RMA divides the page request sequence into phases and
maintains the set of marked pages, or the set of pages requested in the current phase.
During a page fault, RMA evicts a random unmarked page. A simple implementation
of RMA uses O(1) worst-case time but Θ(k) words (or Θ(k log k) bits) of space. It is
straightforward to reduce the space bound to k + O(log k) bits: we maintain the set of
marked pages using a bit vector, and we select a page to evict by randomly choosing
pages in the cache until we find an unmarked page. Unfortunately, it can be shown that
this implementation requires Θ(log k) expected amortized time per page request.

We present new upper bounds on randomized and deterministic RAM paging algo-
rithms in this paper. We present a new implementation of RMA that uses only k + o(k)
bits of space while supporting page requests in O(1) worst-case time. Also, we present
a new k-competitive deterministic algorithm called Surely Not Recently Used (SNRU).
For any constant 1/k ≤ ε < 1/2, SNRU(ε) supports page requests in O(1/ε) worst-
case time while using only 2k + o(k) bits of space. Unlike the FIFO, CLOCK, and
FWF algorithms, which may evict the most recently requested pages, SNRU(ε) prov-
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ably approximates LRU by ensuring that the �(1/2− ε)k�most recently requested pages
remain in the cache.

The remainder of this paper is organized as follows. In Section 2, we first describe a
useful structure called a packed block summary. In Section 3, we describe and analyze
our new implementation of RMA. In Section 4, we present and analyze the SNRU
algorithm. We finally give some concluding remarks.

2 Packed Block Summaries

In our paging algorithms, multiple pages in the cache may be eligible for eviction, so
we first consider how to efficiently find a page in the set of eligible pages. Although
the exact method depends on the particular paging algorithm, we describe a useful
component called a packed block summary that supports operations in O(1) worst-case
time.

Without loss of generality, assume that the cache size k is fixed and that 4 ≤ k ≤ 2w.
For 1 ≤ i ≤ k, let Pi be the page in the ith location of the cache. We associate each Pi
with a b-bit number λi called a label, for some chosen constant b ≤ lg k/2, and we pack
λ1, . . . , λk together into �bk/w� words. We assume that the pages eligible for eviction
are all associated with some label c; hence, we want to efficiently find a page in the set
E = {Pi : λi = c}.

We divide the cache into subblocks of q = 2�lg lg k−lg b−1� pages, which are grouped

into blocks of r =
⌊

lg k
2�lg lg k�

⌋
subblocks; hence each block has Θ(log2 k/(b log log k))

pages. The packed block summary of a block B consists of r fields packed together,
one for each subblock in B; each field contains �lg(q + 1)� ≤ �lg lg k� bits to count
the number of subblock pages with label c. Thus, a packed block summary contains
at most lg k/2 bits, and the total space required for all packed block summaries is
O(k/(qr) · log k) = O(bk log log k/ log k) bits.

A key observation is that, for any block, we can determine the ith page with label c
in O(1) time, for any i. Let Bj be the set of pages of the jth block, and let Sjl be the set
of pages of the lth subblock of Bj ; that is, Sjl = {Pqr(j−1)+q(l−1)+1, . . . , Pqr(j−1)+ql}
and Bj =

⋃r
l=1 Sjl. We seek the ith page of the set Bj ∩ E. Observe that the packed

block summary for Bj gives ej1, . . . , ejr, where ejl = |Sjl ∩ E| for all l. We use a
precomputed lookup table that contains the smallest m such that

∑m
l=1 ejl ≥ i and the

sum t =
∑m−1
l=1 ejl for each possible value of i and ej1, . . . , ejr. Thus, with one table

lookup, we reduce the problem of finding the ith page with label c in block Bj to that of
finding the (i−t)-th page with label c in subblockSjm, or finding the (i−t)-th occurrence
of the value c in λqr(j−1)+q(m−1)+1, . . . , λqr(j−1)+qm. Note that we can extract this
subsequence of labels in O(1) time using shifts and bit operations. To obtain the offset
of the jth occurrence of c among some labels λa+1, . . . , λa+q, we simply look up a
second precomputed table with entries for each possible value of j and λa+1, . . . , λa+q.
The total space required by the two lookup tables is O((qr · 2lg k/2 + q · 2bq) log k) =
O(
√
k log3 k/(b log log k)) bits.

We can update the packed block summaries inO(1) time whenever we update a label.
If we change the value of page Pi’s label from λi = c to λ′

i �= c, then we decrement by 1
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the packed block summary field corresponding to the subblock containing Pi; if λi �= c
and λ′

i = c, then we increment this field by 1; otherwise we do nothing.
Note that the preceding implicitly assumes that we can multiply and divide by q

and r in O(1) time. Andersson [2] observed that, for a fixed integer divisor v, we can
compute u div v in O(1) time for any 0 ≤ u ≤ k if we can perform multiplication in
constant time and we precompute �2�lg k�/v�. Although our model of computation does
not support multiplication directly, by maintaining a precomputed lookup table of all
products of �lg k/3�-bit numbers, we can use standard multiple-precision techniques to
multiply any two �lg k�-bit numbers in constant time. The space required by the lookup
table is only O(k2/3 log k) bits.

3 A New Implementation of RMA

As its name suggests, the randomized marking algorithm (RMA) belongs to a family
of paging algorithms known as marking algorithms. A marking algorithm processes its
page request sequence in phases. Initially, all pages are unmarked. Whenever a page is
requested, it is marked. During a page fault, a marking algorithm can evict only unmarked
pages. A phase ends just before the (k + 1)-th distinct page is requested in the phase;
at this point all pages are unmarked and a new phase begins. Thus, the only difference
between marking algorithms is the method for choosing unmarked pages for eviction.
RMA in particular evicts a page chosen uniformly at random from the set of unmarked
pages.

Intuitively, in our implementation of RMA, we divide the cache into blocks of s =
Θ(log2 k/ log log k) pages, and we divide the set of blocks into s + 1 subsets such that
blocks within a subset have the same number of unmarked pages. To evict an unmarked
page randomly with uniform distribution, we use three steps, each of which can be
performed in O(1) worst-case time. First, we randomly select a subset from the s + 1
subsets of blocks using an appropriate distribution. Second, we select a block within the
chosen subset randomly with uniform distribution. Finally, we select an unmarked page
within the chosen block randomly with uniform distribution.

We proceed to describe our data structure for maintaining unmarked pages in detail.
We use a bit vector of k bits to indicate marked and unmarked pages. In different phases,
we alternate between using 1 and using 0 for marked pages. We divide the cache into

blocks of s =
⌊

lg k
2�lg lg k�

⌋
·2�lg lg k−1� pages. For convenience, assume k is a multiple of

s, so that the cache consists of blocks B1, . . . , Bk/s. We use two auxiliary structures, one
for finding pages labelled 0 and one for pages labelled 1. We describe only the former,
since the latter is analogous.

Our label-0 auxiliary structure has three parts corresponding to the three eviction
steps discussed above. Before describing the different parts of the structure, we consider
how to select a block subset in O(1) worst-case time. We define the rank R(B) of a
block B to be the number of pages labelled 0 in the block. For 0 ≤ i ≤ s, let Ri
be the subset of blocks with rank i, and let ri = |Ri|. Also, let ai = iri be the total
number of pages labelled 0 in Ri; we call ai the weight of Ri. To randomly select a
block subset with probability proportional to its weight, we generate a random integer
j in {1, . . . ,∑s

i=1 ai} uniformly and choose the block subset Rl where l satisfies the
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inequality
∑l−1
i=1 ai < j ≤∑l

i=1 ai. To compute l efficiently, we rely on a data structure
for maintaining partial sums devised by Raman et al. [16]. We state an (easily derived)
generalized version of their result.

Lemma 1. (Raman et al.) Suppose we have a RAM with word size w bits. For any
given N ≤ 2w and δmax = logO(1) N , there is a data structure that maintains a
sequence A1, . . . , Am of nonnegative integers, where

∑m
i=1 Ai < N , while supporting

the following operations in O(logm/ log logN) worst-case time.

– sum(i): Return
∑i
j=1 Ai.

– update(i, δ): Add δ to Ai, for some integer δ such that |δ| ≤ |δmax|.
– select(j): Return the smallest value of i such that sum(i) ≥ j.

Furthermore, this data structure uses O(m logN) bits of space, but requires a precom-
puted table of No(1) bits.

Therefore, the first part of our label-0 auxiliary structure consists of Raman et al.’s
partial sums structure for the sequence of weights a1, . . . , as. Since the number of
weights is s < lg2 k/ lg lg k, the sum of weights is bounded by

∑s
i=1 ai ≤ k, and

the absolute change in any weight after marking a page is bounded by s, we obtain
a worst-case time bound of O(1) for any operation, while using only ko(1) = o(k)
bits, including space for precomputed tables. We note that Raman et al.’s structure uses
Fredman and Willard’s q-heap structure [8], which requires multiplication. However,
because our numbers are all at most �lg k� bits, we can perform multiplications using a
precomputed table as described in Section 2.

The second part of the label-0 structure consists of an array of partial sums of
r0, . . . , rs and an array I containing a permutation of the k/s block indices such that
R(BI[1]) ≤ · · · ≤ R(BI[k/s]). Observe that, for any j, block BI[j] has rank i if∑i−1
l=0 rl < j ≤∑i

l=0 rl. Thus, to select a random block with rank i, we simply generate
a random integer j uniformly in {1, . . . , ri} and select the (I[

∑i−1
l=0 rl + j])-th block of

the cache, which requires O(1) worst-case time.
The third part of the label-0 structure consists of an array of packed block summaries

to keep track of pages labelled 0. To select a random page labelled 0 in a block B with
rank i, we generate a random integer j uniformly in {1, . . . , i} and determine the jth
page with label 0 in B using B’s packed block summary as described in Section 2.

We observe that we can update the label-0 structure inO(1) time whenever we relabel
a page. Suppose we change the label of some page P from 0 to 1, where P is in some
block B that has rank i. Since B’s rank decreases to i−1 afterward, B moves from block
subset Ri to subset Ri−1; since only two block subsets and thus only two weights ai and
ai−1 change, we update the partial sums of weights in O(1) time. Next, we observe that
only one of the partial sums of block subset sizes changes, namely

∑i−1
l=0 rl; furthermore,

we observe that exchanging two block indices in the array I is sufficient to ensure that I
is ordered by nondecreasing block rank. Hence, we update the array of partial sums of
block subset sizes and the array I of block indices in O(1) time. Finally, we update the
packed block summary of B in O(1) time, so the total worst-case time required is O(1).
Similarly, the worst-case time required to update the label-0 structure when relabelling
a page from 1 to 0 is only O(1).
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Theorem 1. The implementation of RMA described above requires O(1) worst-case
time per page request and k + o(k) bits of space, including the space for precomputed
tables.

Proof. We consider three possible types of page requests. After a request for a marked
page in the cache, we do nothing. After a request for an unmarked page in the cache, we
mark the page and update the label-0 and label-1 structures in O(1) time as described
above. After a request for a page not in the cache, we find an unmarked page to evict,
bring in the requested page, mark the page, and update the label-0 and label-1 structures
in O(1) time as described above. Therefore, the worst-case time required for any page
request is O(1).

The space used is k bits for the bit vector of page labels, O(log3 k/ log log k) bits
for the partial sums structure of weights, O(log3 k/ log log k) bits for the array of partial
sums of block subset sizes, O(k log log k/ log k) bits for the array of block indices,
and O(k log log k/ log k) bits for the packed block summaries. The space required for
precomputed tables is ko(1) +O(k2/3 log k) = o(k) bits. Therefore, the total space used
is k + o(k) bits. ��

4 The Surely Not Recently Used Algorithm

In this section, we describe the Surely Not Recently Used (SNRU) paging algorithm, a
deterministic marking algorithm that uses only 2k + o(k) bits of space and O(1) worst-
case time per page request while ensuring that the most recently requested pages remain
in the cache. Because of the space bound, we retain only very coarse information about
the history of page requests. When the number of unmarked pages is large compared to
the number of marked pages, we avoid evicting recently requested pages by keeping track
of the most recently requested unmarked pages, while retaining only a bare minimum
of information about marked pages. When the number of unmarked pages is small
compared to the number of marked pages, we “forget” the history of unmarked page
requests, since all recently requested pages are marked; instead, we keep track of the
most recently requested subset of marked pages in preparation for the start of the next
marking phase.

We divide the pages into three classes U , U ′, and U ′′ of unmarked pages and three
classes M , M∗, and M∗∗ of marked pages, for a total of six classes. Intuitively, U , U ′,
andU ′′ represent the least recently, semi-recently, and most recently requested unmarked
pages, respectively; and M∗∗, M∗, and M represent the least recently, semi-recently,
and most recently requested marked pages, respectively. We ensure that, at any time, at
most four classes are nonempty. In particular, we ensure either that U ′ and U ′′ are empty
or that M∗∗ and M∗ are empty. Hence, a 2-bit label is sufficient to indicate the class of
each page.

For any constant 1/k ≤ ε < 1/2, the SNRU(ε) algorithm works as follows. Let
t = �(1/2− ε)k�−1. We map each class to one of four possible label values or to a null
value. We also maintain the counts u, u′, u′′, m∗∗, m∗, and m of the pages in classes U ,
U ′, U ′′, M∗∗, M∗, and M , respectively. There are five cases for handling a request for
a page P .



424 T.W. Lai

Case 1a: u′′ + m < t ≤ u′ + u′′ + m, and M∗∗ and M∗ are mapped to nulls.
If P is not in the cache, evict an arbitrary page from U .

Case 1b: m < t ≤ u′′ + m, and M∗∗ and M∗ are mapped to nulls.
If P is not in the cache, evict an arbitrary page from U ∪ U ′.

Case 1c: m ≥ t, and M∗∗ and M∗ are mapped to nulls.
Let cI , cII , cIII , and cIV be the label values to whichU ,U ′,U ′′, andM are mapped,
respectively. Over �εk� page requests, move all pages in classes U ′ and U ′′ to class
U by relabelling pages. Afterward, U ′ and U ′′ are empty; remap classes U ′ and U ′′

to nulls and classes M∗∗, M∗, and M to labels cII , cIV , and cIII , respectively.
Meanwhile, if P is not in the cache, evict an arbitrary page from U ∪ U ′ ∪ U ′′.

Case 2a: m < t ≤ m∗ + m, and U ′ and U ′′ are mapped to nulls.
Let cI , cII , cIII , and cIV be the labels to which U , M∗∗, M∗, and M are mapped,
respectively. If P is not in the cache, there are two subcases. If U is not empty,
evict an arbitrary page from U . Otherwise, the current phase has ended; unmark
all pages by remapping classes U , U ′, U ′′, and M to labels cII , cIII , cIV , and cI ,
respectively, and remapping M∗∗ and M∗ to nulls; go to case 1a.

Case 2b: m ≥ t, and U ′ and U ′′ are mapped to nulls.
Let cI , cII , cIII , and cIV be the labels to which U , M∗∗, M∗, and M are mapped,
respectively. Over �εk� page requests, move all pages in class M∗ to class M∗∗ by
relabelling pages. Afterward, M∗ is empty; exchange the labels of M∗ and M , i.e.
remap classesM∗ andM to labels cIV and cIII , respectively. Meanwhile, ifP is not
in the cache, there are two subcases. If U is not empty, evict an arbitrary page from
U . Otherwise, the current phase has ended; unmark all pages by remapping classes
U , U ′, U ′′, and M to labels cII , cIII , cIV , and cI , respectively, and remapping M∗∗

and M∗ to nulls; go to case 1b.

Afterward, we add page P to class M by relabelling P , and we update the appropriate
class size counts.

To evict pages efficiently, we divide the cache into blocks of size s =
⌊

lg k
2�lg lg k�

⌋
·

2�lg lg k−2�. For each possible label value c, we maintain an array of packed block sum-
maries for c, along with two arrays of block indices for maintaining an unordered,
doubly-linked list of all blocks with nonzero summary entries or, equivalently, all blocks
containing pages labelled c. Observe that we can update these auxiliary arrays in O(1)
worst-case time whenever we relabel a page, since we can update the packed block
summaries and (if necessary) the doubly-linked lists in O(1) time. Furthermore, we can
locate a page in any given class in O(1) worst-case time as follows. We determine the
label c to which the class maps, find the block referenced by the head of the doubly-
linked list for c, and then use the block’s summary entry to locate the first page labelled
c in the block.

Before proving that SNRU ensures the most recently requested pages are in the
cache, we first state some useful properties of SNRU. Observe that SNRU is indeed a
marking algorithm since it marks each requested page, it evicts only unmarked pages,
and it unmarks all pages only if a page fault occurs when all pages are marked.

Lemma 2. SNRU is a marking algorithm.
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In the following, we say that a page request is of type-1a if the request is handled
entirely by case 1a of the SNRU algorithm. We define type-1b, type-1c, type-2a, and type-
2b requests similarly. We say that a page request is of type-2a/1a if the preconditions
of case 2a are initially satisfied but the page request causes the current phase to end,
resulting in a transition to case 1a. Similarly, we say that a request is of type-2b/1b if the
preconditions of case 2b are initially satisfied but the request causes the current phase
to end, resulting in a transition to case 1b.

Lemma 3. During any page request, the following statements are true.

1. The class M contains the |M | = m most recently requested pages.
2. During any type-2a request, or immediately before any type-2a/1a request, the set

M∗ ∪M contains the |M∗ ∪M | = m∗ + m most recently requested pages.
3. During any type-1a request, or after remapping classes in any type-2a/1a request,

the set U ′′ ∪M contains the |U ′′ ∪M | = u′′ + m most recently requested pages,
and the set U ′ ∪U ′′ ∪M contains the |U ′ ∪U ′′ ∪M | = u′ +u′′ +m most recently
requested pages.

4. During any type-1b request, or after remapping classes in any type-2b/1b request,
the set U ′′ ∪M contains the |U ′′ ∪M | = u′′ + m most recently requested pages.

Proof. For brevity, we merely sketch the proof; details are in [12]. Observe that, if we
maintain a set S initially containing the |S|most recently requested pages, such that we
always add the most recently requested page to S, and we never delete any pages from S
without deleting all pages in S, then S always contains the |S| most recently requested
pages. Clearly these conditions are true for M , so statement (1) follows immediately.

For a given type-2a or type-2a/1a request, the previous page request is either of type-
1c, type-2a, or type-2b; if the previous request is of type-1c or type-2b, then we must
have performed class remapping, and immediately after remapping classes we know
that M∗ ∪M contains the |M∗ ∪M |most recently requested pages. Therefore, we can
show statement (2) by induction, noting that our observation above for class M can be
applied to the set M∗ ∪M .

Similarly, it is straightforward to show statement (3) by induction. We note that a
type-1a request must be preceded by a type-1a or type-2a/1a request. Furthermore, for a
type-2a/1a request, initially we know that M contains the |M | most recently requested
pages and that M∗ ∪M contains the |M∗ ∪M | most recently requested pages; hence
immediately after class remapping, the set U ′′∪M contains the |U ′′∪M |most recently
requested pages, and U ′ ∪U ′′ ∪M contains the |U ′ ∪U ′′ ∪M |most recently requested
pages.

Lastly, it is straightforward to show statement (4) by induction. We note that a type-
1b request must be preceded by a type-1a, type-1b, or type-2b/1b request. Furthermore,
for a type-2b/1b request, initially M contains the |M | most recently requested pages;
hence immediately after class remapping, the set U ′′ ∪M contains the |U ′′ ∪M | most
recently requested pages. ��

Theorem 2. For any constant 1/k ≤ ε < 1/2, the �(1/2− ε)k�most recently requested
pages are in the cache after any page request using SNRU(ε).
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Proof. Assume that, immediately before the current page request, the �(1/2− ε)k�most
recently requested pages prior to the current request are in the cache. If the current request
is for a page in the cache, then SNRU(ε) does not evict any pages, so the �(1/2− ε)k�
most recently requested pages must be in the cache after the request.

Otherwise, if the current page request causes a page fault, it is sufficient to show
that the t = �(1/2− ε)k�− 1 most recently requested pages prior to the current request
are not eligible for eviction. If the current page request is of type-1a or type-2a/1a, then
from Lemma 3 and the construction of SNRU, we know that the u′ + u′′ + m ≥ t
most recently requested pages are not eligible for eviction. If the current request is of
type-1b or type 2b/1b, then again Lemma 3 and the construction of SNRU imply that
the u′′ +m ≥ t most recently requested pages are not eligible for eviction. For all other
types of requests, the number of marked pages is at least t, and we know that marked
pages are not eligible for eviction. The theorem follows. ��

We now analyze the performance of SNRU. Karlin et al. [10] proved that any marking
algorithm is k-competitive, which immediately implies the following.

Corollary 1. SNRU is k-competitive.

Finally, we analyze the time and space bounds for SNRU.

Theorem 3. For any constant 1/k ≤ ε < 1/2, SNRU(ε) requires O(1/ε) worst-case
time per page request and 2k + o(k) bits of space, including the space for precomputed
tables.

Proof. To handle a page request, we may relabel up to �k/�εk�� < 2/ε pages, remap
classes to different label values, locate a page to evict, relabel the requested page, and
update the counts of class sizes. The worst-case time to remap classes, locate a page to
evict, and update class size counts is O(1). The worst-case time to relabel a single page
is O(1), so the worst-case time for all page relabellings is O(1/ε). The claimed time
bound follows.

The space required is 2k bits for the page labels, O(1) bits for the mapping of classes
to label values, O(log k) bits for the counts of class sizes, O(k log log k/ log k) for the
packed block summaries, andO(k log log k/ log k) for the arrays of block indices used to
maintain doubly-linked lists. The space required for precomputed tables isO(k2/3 log k)
bits. Therefore, the total space used is 2k + o(k) bits. ��

5 Concluding Remarks

We have presented new upper bounds for deterministic and randomized paging algo-
rithms using the RAM model of computation by demonstrating a new implementation
of RMA and a new deterministic algorithm approximating LRU that require only O(1)
worst-case time per page request and O(k) bits of space. Many open questions remain
concerning upper and lower bounds on the competitive ratio of paging algorithms with
limited state information or limited time. For memoryless algorithms, Raghavan and
Snir [15] showed a matching upper and lower bound of k for the competitive ratio. For
randomized algorithms in general, McGeoch and Sleator [14] and Fiat et al. [6] obtained
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a matching upper and lower bound ofHk for the competitive ratio. For paging algorithms
with O(k) bits of space, one open question in particular is whether we can obtain a lower
bound on the competitive ratio greater than Hk or an upper bound less than 2Hk − 1,
which Achlioptas et al. [1] proved to be the competitive ratio of RMA.
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Abstract. We present a simple, arithmetic-free, efficient scheme to com-
press trees maintaining the nearest common ancestor (NCA) information.
We use this compression scheme to provide an O(n + q lg lgn) solution
for solving the NCA problem on Pure Pointer Machines (PPMs) (i.e.,
pointer machines with no arithmetic capabilities) in both the static and
dynamic case, where n is the number of add-leaf/delete operations and
q is the number of NCA queries. This solution is optimal.

1 Introduction

The Nearest Common Ancestor (NCA) Problem can be broadly defined as fol-
lows: Given a tree T and two nodes x, y ∈ T , find the nearest common ancestor
of x and y in T . In the static version of the problem, T is known in advance. In
the dynamic version T is modified via some pre-defined operations. The difficulty
of the problem depends on what kind of operations are allowed for tree modifica-
tion. Some typical operations considered in this context are add-leaf that allows
addition of leaves to the tree, delete which allows deletion of a node, link which
allows linking of a tree as a subtree of a node in another tree, etc. In the offline
version, both T and the NCA queries are known in advance.

NCA problem has been studied extensively. For the static case, the original
work by Harel and Tarjan [9] provides a constant-time algorithm for performing
the nca(x, y) operation after a linear-time preprocessing of the tree. This result
was later simplified and parallelized by Schieber and Vishkin [14,8]. Bender and
Farach-Colton [3] provided an effectively implementable algorithm which pro-
vides O(1) time execution of nca(x, y) operation with linear-time preprocessing
of the tree. In all these algorithms, complexity analysis is done assuming the
RAM model. For the dynamic case, Tsakalidis [16] provides algorithms with
O(lg h) worst-case time for the nca operation and almost amortized O(1) time
for add-leaf and delete in a dynamic tree, where h is the height of the tree. The
algorithm is developed for an Arithmetic Pointer Machine (APM) model under
the uniform cost measure assumption (constant time arithmetic for Θ(lg n)-size
integers). This result on APMs has been recently improved in [1], where it is
shown that the NCA problem can be solved in worst-case O(lg lg n) time per
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operation, and that it can be solved in O(n+q lg lg n) time on APMs, where n is
the number of link operations and q is the number of nca queries. The work by
Cole and Hariharan [5] provides the ability to insert (leaves and internal nodes)
and delete nodes (leaves and internal nodes with one child) in a tree, and execute
the nca(x, y) operation in worst-case constant time. Both methods make use of
arithmetic capabilities of the respective machine models. For the offline version,
a linear-time algorithm on APMs was given by Buchsbaum et al. [4].

In this work we focus on solving the problem on Pure Pointer Machines
(PPMs), i.e., pointer machines that do not allow constant-time arithmetic op-
erations (see [2] for details about this model). We present a simple, arithmetic-
free, efficient scheme to compress trees maintaining the nearest common ancestor
(NCA) information. This compression scheme is different from the ones previ-
ously used in literature [9,5]. In particular, it does not make any use of arithmetic
and it is very local in nature and hence seems eminently parallelizable. We use
this compression scheme to provide an O(n + q lg lg n) solution for solving the
NCA problem on PPMs in both the static and the dynamic case, where n is
the number of add-leaf/delete operations and q is the number of queries. This
solution is optimal because of a known matching lower bound [9]. Moreover, it
has the same complexity as that of an optimal solution on APMs. Hence, our
result shows that use of arithmetic is not essential for doing NCA calculations
optimally. This is intellectually satisfying because intuitively NCA is a structure
and not an arithmetic problem. We use this optimal solution to the NCA prob-
lem to improve the solutions for several other problems. Proofs and details of
the results presented are omitted due to lack of space and can be found in [6].

2 A Compression Scheme for Trees

The compression algorithm we propose starts from the initial tree T = T0 and
repeatedly performs two types of compressions, generating a sequence of trees:
T0, T1, T2, . . . until a tree Tk containing a single node is obtained. The trees in
this sequence are used to build a second tree structure (H-tree), that summarizes
the NCA information of T . The key property of the H-tree is that its depth is at
most logarithmic in the number of nodes T . This allows a fast NCA calculation.

Given Ti, TLi+1 the result of leaf-compression of Ti,is obtained by merging
each leaf of Ti with its parent. If a leaf � is merged with its parent parent(�),
then parent(�) is said to be the direct representative of �. A path-compression
of a tree TLi+1 returns a tree Ti+1, where each path containing only nodes with
a single child and ending in a leaf of TLi+1 is replaced by the head of such path.
If a path containing nodes v0, v1, . . . , vk is compressed to the node v0, then v0
is said to be the direct representative of v0, . . . , vk. A compression of a tree Ti is
the tree Ti+1, where Ti+1 is the path-compression of TLi+1, and TLi+1 is the result
of a leaf-compression on Ti. In this notation let T = T0.

Fig. 1 shows an example of repeated compression of T . Both leaf and path-
compressions start at the frontier of each tree. Each time a leaf-compression
is applied, all leaves are merged with their parents. For example, in Fig. 1 leaf-
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compression removes nodes 10−15 (Fig. 1.1) by merging them with their parents
(Fig. 1.2). A path-compression merges all paths ending in a leaf into their heads.
For example, in Fig. 1.3 the path composed by nodes 4, 6, 9 has been collapsed
to the single node 4 (node 4 is the direct representative of 4,6 and 9). The tree
is compressed starting from the leaves and moving towards the root. In Fig. 1
we have marked the representatives of each compression with darker nodes.
The H-Tree: In order to compute nca queries in optimal time, it is useful to
collect the information about representatives in a separate tree, called Horizontal
Tree (H-tree). The H-tree, H, can be constructed from the sequence of trees
obtained during the compression process (e.g., the trees shown in Fig. 1). If a
leaf-compression is applied to node v in tree Ti and � is the direct representative
of v in such compression, then node v is connected to the last occurrence of �
in a tree Tj (i < j), where � appears in Tj as a direct representative of a leaf-
compression. If all the children of a node a in Ti are leaf-compressed at the same
time, then the representative of such children is node a in TLi+1 (as for leaves
10, 11 in Fig. 1). If the children of a are leaf-compressed at different points in
time (e.g., the children of 1 in Fig. 1), then the representative of such leaf is
the last occurrence of its direct representative in a tree as representative in a
leaf-compression. If a path-compression is applied, then all nodes in the path are
connected to the head of the list in the next tree (see Fig. 1). Such node is the
representative of all nodes in the path. H is obtained using the single node in
the last compressed tree (e.g., the node in T2 in Fig. 1) as the root and using the
links between nodes and representatives as edges (e.g., the dark edges in Fig. 1).

1

2 3 4

5 6

7 8 9

10 11 12 13 14 15

10 11 12 13 14 15 3

7 8 9 46

47 8

5 2 1

1

Path-Compression

Leaf-Compression

Path-Compression

Leaf-Compression

1.Original Tree T0 2. After leaf-Compression TL1 3. After Path-Compression T1 4. After Leaf-Compression TL25.After Path-Compression T2

Fig. 1. Building the H-tree

Observe that the leaves of the original tree are leaves in H although H might
have additional leaves. Also, each internal node in T is present in H as each
internal node is either a representative in a leaf compression or is involved in
a path compression. More importantly, observe that H has at most 2n nodes,
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since each node can appear in H because of (possibly many) leaf-compressions
at most once and can be involved in a path-compression at most once. Moreover,
if a node v ∈ T appears twice in H, then it must be the case that one occurrence
of v in H is due to the fact that v was a head in a path compression and is
a direct representative in leaf compressions which precede the aforementioned
path compression. Note that one occurence of v in H must be a child of the other
occurrence of v in H. Next lemma provides a result critical to the efficiency of
the compression scheme. Let subtreeT (v) be the subtree of T rooted at node v.
Lemma 1. If a node v of T still exists in Tk then the subtreeT (v) has at least 2k

nodes. Furthermore, let n be the number of nodes in T and let k be the minimum integer
such that Tk has a single node. Then k ≤ lgn. In other words, T gets compressed to a
single node within lgn compressions.
Answering NCAs Using H-trees: Given the query nca(x, y), where x, y ∈ T ,
it is possible to answer the query using H. In particular, computation of the NCA
of two nodes in T can be computed by first computing an NCA of the “entry-
points” for x and y in H. The entry-point in H for x is simply the lower (or the
only) occurence of x in H. We provide an intuitive description of this method—
the algorithm called ncaH is presented in Section 3. We show now that the H-
tree preserves enough nca information from T . Let z be the ncaH(x, y). If z is a
representative of a leaf-compression, then z is also the nca of x, y ∈ T . Otherwise
let z0, z1, . . . , zk be the nodes belonging to the path that has been compressed to
z. There are two distinct nodes zi, zj in this path such that the subtree rooted
at zi (zj) contains x (y) Thus, the nca of x and y is the highest node between
zi and zj , and answering an NCA query in T boils down to computing an NCA
query in H. From Lemma 1, we can infer that the height of H is O(lg n). In [11]
it was shown that there is a (dynamic) PPM algorithm given a tree with height
h allows the computation of the NCA of any two nodes in the tree in worst case
time complexity O(lg h) per query. Using this result, we can compute the nca of
x, y in H in worst-case time O(lg lg n). This allows the computation of the NCA
in T with worst-case time complexity O(lg lg n).

3 An Algorithm for NCA Queries in the Static Case
In the next sections, as in [1], we use a more general definition of nca: nca(x, y) =
(z, zx, zy), where z is the nca of x and y, and if x = z (y = z) then zx = z (zy = z)
else zx (zy) is the ancestor of x (y) such that zx (zy) is a child of z.

In the static case T is pre-processed before any query is executed. Concep-
tually, the preprocessing creates 2k + 1 trees, named T0, T

L
1 , T1, T

L
2 , . . . , TLk , Tk.

The T0 tree is equal to T and each other tree is the result of the corresponding
compression. To improve the time and space required, Ti and TLi trees are not
explicitly created. Each time only the nodes being encountered for the first time
are created anew, except that during a path compression a new node is created
for the head of the path. H is composed of the union of all nodes created during
the various compression phases.
Data structures: For each w in T , let entry(w) be the entry point of w in
H. Note that each node in a tree Ti or TLi is a copy of a node existing in T ;
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if the node v ∈ H is a copy of node u ∈ T , then node(v) is a pointer to u.
Let children(v) be a pointer to a list of nodes containing the children of node
v in H, and let parent(v) denote the parent of node v in H. During the pre-
processing phase, we will also make use of two flags associated to each node of
H: (i) a flag leaf -compr(v) that indicates whether the node v is the result of
a leaf compression; and (ii) a flag is-leaf(v) that indicates if the representative
produced by a leaf compression is a leaf in the new tree.
Construction of the H-tree: To answer the NCA queries, we require the
ability to efficiently compare the depth of nodes that appear on the same branch.
This can be accomplished by making use of the data structures developed to
solve the Temporal Precedence (T P) problem [13,10]. Using the optimal scheme
from [10] we can build a data structure in O(n) time that allows us to compare
depths in O(lg lg n) time. The preprocessing algorithm used to construct H is
described in detail in [6]. With one visit of T , one can create the leaves of T0, by
simply copying each leaf v of T to a new node u and updating both entry(v) = u
and node(u) = v. After this, the process proceeds by repeatedly applying leaf-
compression and path-compression. The process stops as soon as we are left with
a tree containing a single node. The last Tk, k ≤ lg(n), has only one node.
Lemma 2. The time needed to construct H for an n-node tree T is O(n).
Leaf Compression: For each leaf v in Ti, a leaf-compression is applied. A new
representative w for the parent of v in T (entry(parent(v)) = w) is added to the
tree TLi+1, if this is the first time a node is compressed to w. After this check, the
node v is compressed to its parent w. Once all the leaves of Ti are processed, for
each node w in TLi+1 we set the flag is-leaf(w) = true if w is a leaf in TLi+1. The
is-leaf flag indicates the nodes where the next path-compression will start.
Path compression: Path-compression is initiated from each node v in TLi , such
that is-leaf(v) = true. Execution of path-compression starting from v leads to
the addition of a node w to Ti+1. w will be the representative of the compressed
path starting from v. When the path compression stops, the node w will be
assigned to the correct node in T—i.e., the representative of the path. The
following iteration assigns to each v in the current path the direct representative
w, and tries to extend the path leading to the root with parent(v), if parent(v)
is still part of the path. When the iteration stops, the current node v is the head
of the path, and its representative w in Ti+1 is a copy of the node v.The check
that verifies whether a node is part of a path can be implemented in constant
time without the use of arithmetic (as described before).
Final Preprocessing Step: Once H has been constructed, it is further pro-
cessed to to enrich it with the data structures required to support the compu-
tation of NCAs in O(lg h) time (h being the height of H). The details of this
data structure have been described in [11]. The process requires the creation of
the p-list data structure for each node in H. Since the height of H is at most
O(lg n), the p-list of each node v contains depth(v) elements, and each element
of a p-list can be built in O(1) time, the process of creating these additional data
structures requires O(n lg lgn) time. It is possible to improve this pre-processing
time, reducing it to O(n), through the use of the MicroMacroUniverse approach
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described in [1] and in Section 4: in this case H is partitioned in µTrees (Micro-
Trees) with depth at most lg lg n.
Answering NCA Queries: To compute the nca of x, y ∈ T , the algo-
rithm ncaH(x, y) works as follows: (1) Compute the nca(entry(x), entry(y)) =
(z, zx, zy), z ∈ H. The computation can be performed using the algorithm in
[11]. (2) If leaf -compr(z) = true then return (node(z),node(zx)node(zy)). (3)
Otherwise z is the result of a path compression. In this case if zx is higher than
zy in H, the nca is (node(zx), w1, w2), where w1 is the node corresponding to
the child of zx that is ancestor of entry(x) in H and w2 is the node in T cor-
responding to the left sibling of zx in H. w1 can be obtained by using p-lists
in time O(lg lg n) and w2 can be found in constant time. The case where zy is
higher than zx is symmetric. The test to check if zx is higher than zy can be
performed in time O(lg lg n) using the previously maintained depth information.

4 Dynamic NCA Algorithm
The algorithm follows an approach similar to the MicroMacroUniverse described
in [1,7] in conjunction with repeated use of the static algorithm described in
Section 3. Let n be the number of nodes in T . T is partitioned into a forest
S of disjoint subtrees, called µTrees (Micro-Trees). The roots of µTrees are
collected in another tree, called the MTree (Macro-Tree) (see Fig. 2). The MTree
essentially compresses the nodes of each µTree into its root node and preserves
the structure of T on these resulting root nodes. The height of each µTree is
restricted to be at most cT (n). When a node v is added to T , if the µTree
containing parent(v) has a depth greater than cT (n), then a new µTree rooted
in v is created. To obtain the optimal result, the MicroMacroUniverse approach
is applied again to the µTrees. For the MTree the scheme used is based again
on partitioning the tree into disjoint subtrees. However this partitioning is more
dynamic in nature, since the subtree to which a node belongs can change.
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Fig. 2. Tree Structures Involved In The Dynamic Algorithm

In order to answer an nca query, our algorithm first solves the problem in
the MTree and then refines the solution by working in the appropriate µTree.
We denote by ncaS the nca algorithm used for the µTrees in S and nca∗ the
NCA algorithm used for the MTree. Each time a node v is inserted in T , v is
also inserted in a data structure that collects the relative height information
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of the nodes, using a Temporal Precedence list. As described in Section 3, this
information will be required to perform an nca query using p-lists.
The nca∗ algorithm: We present an algorithm to compute the nca with a cost
of O(N +Q lg lgN), with N add-leaf/delete operations and Q nca queries in the
MTree. The problem is solved by using another MicroMacroUniverse approach
applied to the MTree. The intuitive idea is to dynamically maintain a set of trees
pre-processed with the static algorithm presented in Section 3. Let us call each
of these trees µMTree (Micro-Macro-Tree). The preprocess of a µMTree allows
us to efficiently solve each nca query on that tree, using the ncaH algorithm
presented earlier. Each root of a µMTree is represented by a node in another
tree, called MMTree (Macro-Macro-Tree). We will show that the MMTree has
a “small” depth—thus, simpler NCA algorithms (e.g., the one based on p-lists
[11]) can be used here to provide efficient NCA computations.

Let the preprocess of a µMTree Tm be the static preprocess described in
Section 3 applied to the tree subtreeMTree(root(Tm)). Thus, when Tm is pre-
processed, all other µµTrees hanging on Tm are merged in a single new µMTree.
The basic idea is to wait to re-preprocess a µMTree Tm until the number of
nodes in subtreeMTree(root(Tm)) has doubled since the last preprocess of Tm.
To answer an nca query we first solve the problem with the p-list nca algorithm
[11] on the MMTree and then we “refine” that solution using the ncaH on the
µMTree associated to the result obtained from the MMTree.
Dynamic insertions: Recall that the MTree is partitioned into a set of µMTrees.
Each µMTree is represented by its root in another tree, called MMTree. Let
Tm be a µMTree and vm the node representative of Tm in the MMTree. Let us
also define root(Tm) the root of Tm in MTree, micro(vm) a pointer to root(Tm),
macro(Tm) a pointer to vm. We also maintain the size of Tm by keeping a
pointer size(Tm) that points to a list that has length |Tm|. size(Tm) is cre-
ated and inserted with a number of nodes equal to the number of nodes in the
subtreeMTree(root(Tm)), when Tm is pre-processed. The size(Tm) list is used a
decrementing counter to decide when to do another preprocess.

Each time a node v is inserted in the MTree as child of w, a new µMTree Tm is
created and the representative of root(Tm) = v is added in the MMTree as child
of macro(Tw), where Tw is the µMTree containing w. For each µMTree T ′

m cor-
responding to a node on the path P from macro(Tm) to the root of the MMTree,
we update the number of new nodes added in the subtreeMTree(root(T ′

m)) by 1.
This can be done decrementing the “counter” size(T ′

m) by one, that is, shifting
the pointer size(T ′

m) to the next node in that list. If a µMTree Tm has con-
sumed all nodes in size(Tm), then Tm has to be pre-processed. Let us call vh the
highest node in the path P considered, such that micro(vh) has to be processed.
The preprocess is applied on subtreeMTree(vh), which become the new µMTree.
All nodes in subtreeMTree(vh) are deleted and replaced by the node vh. The
size(micro(vh)) list is initialized with the insertion of a number of nodes equal
to the number of nodes contained in subtreeMTree(vh).

As we will show in the next Lemma, the MMTree has depth less or equal to
O(lg h), where h is the depth of the MTree. Thus the update of counters may
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be performed O(lg h) times for each insertion of a node in the MTree. Since a
node is added in the MTree every cT (n) insertions in T and h = n/cT (n), if
cT (n) ≥ lg n, then the total time spent in updating the counters in all insertions
in T is O(n). Notice that each time a node v is involved in a preprocess resulting
in a tree T ′, the size of T ′ is at least twice the size of the tree T ′′ which contained
v before the preprocess. Then it follows:
Lemma 3. A node v in the MTree of size t is involved in at most lg t distinct pre-
processes. Immediately after a preprocess, if a path P starting from a node in MMTree
and ending on a leaf has k nodes, then the total number of nodes in µMTrees represented
by nodes in P is at least 2k−1.

It follows that the MMTree has depth at most lgN , where N is the number of
nodes of the MTree. The MTree has at most n/cT (n) nodes. Choosing cT (n) =
lg n lg lg n, the MTree has depth at most O(n/(lg n lg lg n)). Applying lemma
3 we conclude that the MMTree has depth at most lg n. Thus the nca in the
MMTree can be computed in time O(lg lg n) using p-lists.

We now show that n insertions in T will cost O(n) to maintain the MTree
structure. We showed that a preprocess of a tree with t nodes in the static case
costs O(t lg lg t))). Let N be the number of nodes in the MTree. From Lemma 3
we know that a node v in the MTree is involved in at most lgN preprocesses.
Each of them will cost l lg lg l, where l is the size of the tree preprocessed. Thus
for each v the amortized cost per process is lg lg l ≤ lg lgN and the cost per
node is lgN lg lgN . Recalling that N = n/cT (n) and cT (n) = lgn lg lgn, the
total amortized cost is O(1) per insertion in T .
nca queries: Let us show how to compute the nca∗(x, y) with x and y in MTree.
It is possible to find x′ and y′ µMTrees containing x and y respectively in con-
stant time—e.g. once a node is pre-processed, we can directly set in the node a
pointer to the corresponding µMTree. If x′ and y′ are in the same µMTree Tm
return ncaH(x, y) using the previously pre-processed H tree for Tm. Otherwise,
we can compute the nca(root(x′), root(y′)) = (z, zx, zy) on the MMTree, using
p-lists. If zx = z then the result is given by ncaH(x, parent(micro(zy))). Oth-
erwise, the result is ncaH(parent(micro(zx), parent(micro(zy)). The algorithm
ncaH requires O(lg lg n) time and the p-list algorithm used for the MMTree re-
quires O(lg t), where t ≤ lg(n/cT (n)) and cT (n) = lg n lg lg n. This allows us to
conclude that total time is O(lg lg n).
The ncaS algorithm: In this section we provide an algorithm with an amor-
tized time complexity of O(1) per insertion and worst-case complexity of
O(lg lg n) per query for the µTrees. The scheme uses the standard Micro-
MacroUniverse approach on the µTrees. The optimal solution is computed com-
bining an optimal solution on MµTree and an optimal solution on µµTree. Choos-
ing cS(n) = lg lg n and recalling that cT (n) = lg n lg lgn, all the µTrees can be
processed in O(n) time. To find the ncaS of two nodes x and y in a µTree,
we combine a p-list search on MµTree and a brute force search applied on the
resulting µµTree. Clearly this requires O(lg lgn) time.

Observe that the deletions are not performed explicitly, instead the deleted
nodes are just marked as such. The marked nodes are deleted at the time when



436 A. Dal Palú, E. Pontelli, and D. Ranjan

they are involved in the next preprocessing. We don’t update the counters when
nodes are deleted. This doesn’t affect our analysis, because the number of oper-
ations is greater than the number of nodes in T .

5 Applications of Optimal NCA Algorithm

The availability of an optimal solution to the NCA problem allows us to improve
the solution of other interesting problems on PPMs. In particular it allows us
to obtain an optimal solution to the generalized linked list problem [15]. This
problem is the maintenance of a linked list where new elements x can be in-
serted immediately after any existing element y. The two operations allowed
are: insert(x, y) and compare(x, y) which returns true iff x occurs before y in the
list. The following algorithm allows us to optimally solve this problem on PPMs.

To preserve the relationships between inserted nodes, we maintain a tree T ′

processed to answer nca queries and a data structure maintaining a TP order.
Every time an insert(x, y) is done, the node x is inserted as rightmost child of
y in T ′. Since the tree T ′ cannot support an ordering of children of a node, we
also insert the node y in the Temporal Precedence data structure. Note that
a leftmost depth first visit of T ′ reconstructs the list. Thus the nca of two
nodes either precedes both the nodes in the order or is equal to one of them. To
answer a query compare(x, y), we find the nca(x, y)=(z, zx, zy) in T . If z=zx then
return true, because x=z and x is an ancestor of y in T ′. If z=zy then return
false, because y is an ancestor of x and y cannot have been inserted before x.
Otherwise return precedes(zx, zy) in the TP order.

Another problem whose solution can be improved using this optimal NCA
solution is the OP problem described in [12]. The Θ(lg2 n) solution proposed in
[12] can be improved to a O(lg n lg lg n) solution by using the optimal generalized
linked list scheme proposed above. All the open problems described in [11] can
be solved optimally on PPM using the optimal NCA solution presented here.

6 APMs vs. PPMs

The commonly used APM model allows constant time arithmetic on Θ(lg n)
sized integers. The PPM does not allow such arithmetic, and one has to account
for simulating any arithmetic needed, when analyzing the running time. The
arithmetic can be simulated in PPMs by explicitly representing the integers via
Θ(lg n) sized lists. This entails that a generic translation (that just simulates
the arithmetic) of APM algorithms to PPMs will incur a polylog penalty. More
precisely an algorithm A that runs in time t(n) on an APM and uses any arith-
metic at all, will take time t(n) lgk n for some k > 0 on a PPM. We present
an interesting result about the NCA problem. We show that any optimal APM
algorithm for the NCA problem can be converted into a PPM algorithm without
incurring any penalty.
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Theorem 1. An APM algorithm A solving the NCA problem with amortized cost of
O(lgk n) per insertion and worst-case cost O(lg lgn) per query, can be translated into
a PPM algorithm with an amortized cost of O(1) per insertion and worst-case cost
O(lg lgn) per query.

7 Conclusions and Remarks
We have defined a novel compression scheme and used it for solving the NCA
problem optimally on PPMs both in the static and the dynamic case. The com-
pression scheme is interesting due to its simplicity, locality properties, efficiency
and arithmetic-free nature. However, it is not essential for obtaining the optimal
NCA algorithm for the PPMs due to the following remarkable theorem that is
proved in the appendix C making use of the MicroMacroUniverse scheme pre-
sented in Section 4. We have also shown that for the NCA problem, it is possible
to totally avoid the polylog penalty that one has to incur in a generic translation
of an algorithm designed for APMs to PPMs. This gives rise to the question:
Is there any natural problem for which the optimal solution on PPMs is prov-
ably logarithmically worse as compared to the optimal solution on APMs. As of
now, we believe that the worst such known penalty incurred is O(lg lg n) [13]. It
will be especially interesting if there is no problem at all where the logarithmic
penalty has to be incurred because that will show that the generic translation
is non-optimal.
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Abstract. A bulk insertion for a given set of keys inserts all keys in the
set into a leaf-oriented AVL-tree. Similarly, a bulk deletion deletes them
all. The bulk insertion is simple if all keys fall in the same leaf position
in the AVL-tree. We prove that simple bulk insertions and deletions of m
keys have amortized complexity O(logm) for the tree adjustment phase.
Our reasoning implies easy proofs for the amortized constant rebalanc-
ing cost of single insertions and deletions in AVL-trees. We prove that
in general, the bulk operation composed of several simple ones of sizes
m1, . . . , mk has amortized complexity O(Σk

i=1 logmi).

1 Introduction

A bulk (or batch or group) insertion is the operation of inserting a whole set of
keys at once, in a single transaction. Similarly, a bulk deletion deletes a whole
set. In the case of leaf-oriented search trees and keys with a linear order, this set
of keys, called the bulk (or batch or group), is sorted before the insertion starts,
for efficiency reasons. Sorting improves the performance considerably, because
then consecutive keys of the bulk go to locations that are close to each other. In
this way, for external memory structures, the number of required disk accesses
is small. Similarly, for main memory structures, the number of cache misses is
small. A simple bulk insertion inserts a set of keys whose search phase ends at
the same leaf, called the position leaf, and a simple bulk deletion removes all keys
in an interval.

Algorithms for bulk insertions and deletions into spatial indexes have been
presented e.g. in [2]. Bulk insertions for one-dimensional search structures have
been considered in [4,6,8,9,10,13,14]. These papers represent different application
areas: [13] applies bulk insertions to inverted indexing of document databases,
with special emphasis on concurrent searches. In [8] the method of [13] is adjusted
to the environment of real-time databases, and in [6] the buffer-tree idea of Lars
Arge [2] is used to speed up bulk B-tree insertions into large data warehouses. In
[3] a linear time bulk deletion algorithm for B-trees is presented. Bulk insertions
and deletions are also needed in differential indexing [14].
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Complexity of bulk insertions and deletions, without the corresponding
search phases, for different one-dimensional search trees is analyzed in [4,9,10].
In [4,10], the worst case complexities O(log n+ log2m) for simple bulk insertion
and O(log n+logm) for deletion, were proved for red-black and AVL-trees. Here
n is the size of the original tree and m the size of the bulk. In [9] the amor-
tized complexity O(logm) was proved for simple bulk insertion in the case of
(a, b)-trees [11].

In this paper we concentrate on the analysis of the bulk operations when
applied to AVL-trees. AVL-trees are interesting, because they are main-memory
search trees with small height and they provide simple rebalancing operations
by rotations that allow efficient concurrency control. Our new results state that
a simple bulk insertion and a simple bulk deletion both have amortized time
complexity O(logm), where m is the size of the bulk. If the bulk operation
contains k simple bulks, then the amortized complexity is O(Σk

i=1 logmi), where
mi is the size of the ith simple bulk. This analysis implies a new and simple way to
prove the constant amortized complexity for single insert and delete operations.

2 Amortized Complexity of Single Operations

In order to be able to prove the desired amortized complexity results we need
new proofs for the case of singleton operations. The results of this section have
been previously obtained by [12] (insertion) and [16] (deletion), but we needed
new proofs in order to generalize them to bulk operations.

AVL-trees were introduced in [1] in 1962. AVL-trees are binary trees in which
nodes either have two children or no children; the former nodes are called internal
nodes and the latter leaves. A binary search tree is AVL, if for each internal node
u with children v1 and v2,

|height(v1)− height(v2)| ≤ 1.

We say that internal node u is strictly balanced (resp. non-strictly balanced)
if height(v1) = height(v2) (resp. |height(v1)− height(v2)| = 1).

We consider leaf search trees, in which keys are stored in the leaves and
internal nodes contain router information. A single update operation contains
the search phase that determines the position leaf of the operation, the actual
operation, and finally the rebalancing of the tree. The actual insertion consists
of replacing the position leaf by a subtree with one internal node and two leaves,
and the actual deletion removes the position leaf and replaces its parent by
its sibling. Rebalancing includes not only rotations but resetting the balance
information stored in the nodes. In this paper, we assume that node heights are
stored as the balance information; thus, node heights need be reset.

In the worst case, a single insertion needs one rotation but O(log n) increases
in the node height, where n denotes the number of keys in the tree, and a single
deletion needs O(log n) rotations and O(log n) decreases in the node height (see
[7]).
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Let u0, u1, . . . , uk be a path from the root u0 to a leaf uk of an AVL-tree,
and assume that uk is the position leaf of a new insertion. Moreover, let i be
minimal such that all ui, . . . , uk are strictly balanced. Then, after the insertion
the heights of all nodes ui, . . . , uk must be increased. Finally, if ui is not the root
and the sibling of ui was lower than ui, one single or double rotation is done at
ui−1, after which the tree is again an AVL-tree (see [7]).

In order to show that insertion has amortized constant rebalancing complex-
ity it is enough to count the height increase operations because the other tasks
(the actual insertion and the possible final rotation) have constant worst case
complexity. We apply the potential function technique by Tarjan [15]. For each
internal node u the potential ΦI(u) is defined as follows:

ΦI(u) =



1, if u is strictly balanced and at least one child of u
is an internal node,

0, otherwise.

(We could have defined ΦI(u) = 1, if u is strictly balanced, and ΦI(u) = 0, oth-
erwise, but the above definition makes it simpler to prove the desired amortized
complexity result for bulk insertion.) The potential ΦI(T ) of a tree T is defined
as the sum of the potentials of its internal nodes. Here T is an AVL-tree or a
tree that is not yet AVL but is being processed into an AVL-tree by rebalancing
after an insertion into an AVL-tree.

What we have to show is that the number of node height increases is less
than or equal to cn, where c is a constant and n is the number of insertions
performed thus far:

Lemma 1. Assume that insertions are applied into an initially empty AVL-
tree. Each actual insertion will increase the potential of the tree by at most
1. Each rotation included in the rebalancing phase of an insertion will increase
the potential of the tree by at most two. Each height increase operation when
applied to a node u, such that at least one child of u is an internal node, will
decrease the potential of the tree by 1.

Proof. Performing the actual insertion, i.e., replacing the position leaf by a
subtree of three nodes, can increase the whole potential by at most 1. The root
of this subtree is strictly balanced, but by definition its root has potential 0.
Second, if the potential of an internal node u in the path from the root to the
position leaf is increased from 0 to 1, then this cannot have happened for any
node above u, because the height of u is not changed. Thus u must be the only
such node, and the potential is increased by at most one.

Clearly, a single or double rotation may increase the number of strictly bal-
anced nodes by at most 2. Thus any insertion, excluding the height increase
operations, increases the potential of the tree by at most 3.

If the height of a node is increased, this is because the node was strictly
balanced and the height of exactly one of its children has been increased. Thus
the height increase means that the node is no more strictly balanced, and the
potential of the node is decreased by one, except when both of its children were
leaves. ✷
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Lemma 1 implies that the total number of height increase operations is O(n),
where n is the number of insertions performed. Thus we have:

Theorem 1. Assume that insertions are performed into an initially empty
AVL-tree. The amortized rebalancing complexity of each insertion is constant.
✷

As noted by [12], mixed insertions and deletions do not have amortized con-
stant complexity. This is seen by considering an AVL-tree with all nodes strictly
balanced. Then inserting a new key will cause Ω(log n) height increases, and
deleting this new key or its sibling will cause Ω(log n) height decreases. By re-
peating alternating insertions and deletions we obtain a sequence of n insertions
and deletions that require Ω(n log n) balance changes.

However, for pure deletions the constant amortized complexity can be ob-
tained [16]. We now give a simple proof of this fact. For each internal node u
the potential ΦD(u) is defined as follows:

ΦD(u) =
{
1, if u is non-strictly balanced,
0, otherwise.

The potential ΦD(T ) of a tree T is defined as the sum of the potentials of its
internal nodes. Here T is an AVL-tree or a tree that is not yet AVL, but is being
processed into an AVL-tree by rebalancing after a deletion from an AVL-tree.

In the case of deletion we have to count the height decrease operations and
the rotations.

Lemma 2. Assume that deletions are applied into an AVL-tree with n leaves.
Each actual deletion will increase the potential of the tree by at most 1. Each
last rotation included in the rebalancing process will increase the potential by at
most 1. Each height decrease operation will decrease the potential of the tree by
at least 1, and each rotation before the last rotation in the rebalancing process
decreases the potential by at least 1.

Proof. Assume that the potential of an internal node u is increased by one
because of deletion. This means that the height of one of the children of u
is decreased by one and u has become non-strictly balanced. Then for no node
above u the potential can have increased because the height of u has not changed,
and thus u is the only such node.

It is straightforward to see that a rotation performed at a node v will increase
the potential by one, if the rotation yields a tree with the same height as v
had before the rotation, and that otherwise, i.e., when the rotation is height
decreasing, the potential will decrease by at least one. Thus the last rotation
can increase the potential of the tree by at most one.

Then consider a height decrease operation. The height of a node is decreased,
if the height of its higher child is decreased. Thus the node has become strictly
balanced, and the potential has decreased by one.

It is straightforward to see that a rotation performed at a node v is the last
rotation, if it is not height decreasing, i.e., the result of the rotation is as high
as v. Thus, all rotations before the last one are height decreasing, and each of
them decreases the potential of the tree by at least one. ✷
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Theorem 2. Assume that n deletions are applied into an AVL-tree with n
keys. Then altogether cn rebalancing operations, where c is a constant, will be
performed in conjunction with these deletions. In other words, the amortized
rebalancing complexity of each deletion is constant.

Proof. Initially the potential of the tree is less than n. The upper bound of
the number of last rotations is n, and the upper bound of the number of all other
rebalancing operations is the initial potential plus the total possible increase of
the potential, which is 2n by Lemma 2. Thus the total number of rebalancing
operations is bounded by a constant. ✷

3 Bulk Insertions into AVL-Trees

Let T ′ be an AVL-tree with n keys, and assume that m distinct sorted keys with
the same position leaf are inserted into T ′. Assume further that an AVL-tree S,
called an update tree, has been constructed from these keys together with the
key in the common position leaf. A simple bulk insertion contains the actual
bulk insertion, in which S is substituted for the position leaf, and rebalancing
the resulting tree, denoted T , i.e., transforming T into an AVL-tree.

The idea of bulk insertion is that changing the structure of S is avoided as
long as possible, such that S is gradually moved towards the root by applying
rotations. This means that no rotation is allowed in the parent p of the root of
S, as long as a rotation is possible above p.

In this way we can obtain a time bound O(logm) for merging S into T ,
i.e., for rebalancing T up to the point where there is no balance conflict in
the grandparent of the root of S. The merging consists of steps that perform
rotations. The first step has T0 = T as input and the input Ti of each following
step is the output of the previous step.

By the level of a subtree B we mean the level of the root of B plus the height
of B. Let u1, . . . , us be the path from the root of S to the root of Ti, and denote
by B1, . . . , Bs−1 the subtrees of Ti rooted at the siblings of u1, . . . , us−1. We will
show that at each intermediate stage of the merging process Ti is in balance
except at nodes u2, . . . , us, and, moreover, for the levels of Bi holds:

level(Bj)−max{level(Bk)|1 ≤ k < j} ≤ 1 (1)

for j = 3, . . . , s− 1, and

level(B1)− level(B2) ≤ 1, level(B2)− level(Bj) ≤ 2 (2)

for j = 3, . . . , s − 1. Initially, these conditions clearly hold because tree T ′ was
in balance.

Tree Ti+1 is constructed from Ti, i ≥ 0, as follows. First set the heights of the
parent p and the grandparent g of the root of S in Ti according to the heights of
their children. If there is no height difference of more than one between the child
nodes of g, or g is the root of Ti, then Ti+1 = Ti and the process terminates.
Otherwise perform a rotation at the parent node g′ of node g, such that the
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update tree S will be moved one step closer to the root. There are two cases to
consider depending on how the path u1, . . . , us starts.

Case 1. g is the left (right) child of g′, p is the left (right) child of g, and the
root of S is either the left or right child of p. In this case a single rotation to the
right (left) at g′ is performed. If before the rotation the level of B3 was one or
two larger than the level of B2, at most three additional rotations are necessary
at the root of the new subtree containing B2 and B3. It is straightforward to
check that the conditions (1) and (2) now hold for the resulting tree Ti+1.

Case 2. g is the left (right) child of g′, p is the right (left) child of g, and the
root of S is either the left or right child of p; see Figure 1. In this case a double

B
2

S

B

B

1

3
2B S

B

B3

1

p

g

g´ p

g g´

Fig. 1. Case 2: A double rotation.

rotation at g′ is performed. Notice here that the level of B3 can be O(k) larger
than the level of B1, where k denotes the number of steps after the previous
application of Case 2. Thus at most O(k) additional rotations can be needed to
achieve balance at the subtree containing B1 and B3. It is again straightforward
to verify that conditions (1) and (2) hold for the resulting tree Ti+1.

There is an i such that Ti+1 = Ti, because each step moves S towards the
root. Moreover, it is easy to see that the imbalance at the grandfather of the
root of S is at least one smaller in Ti+1 than in Ti. Thus the number of steps
needed is O(height(S)) = O(logm).

After completing the merging process, i.e., after having found that Ti+1 = Ti,
it is possible that the parent of the root of S is not in balance. This imbalance
can easily be resolved in time O(logm), see [10]. The resulting subtree S′ might
have become one lower, but the parent of the root of S′ remains in balance. By
condition (2) the level of Bj , 2 < j ≤ s− 1, can have been 2 less than the level
of B2. Thus one rotation is possibly needed in the path up to the root of Ti. In
addition to this, node heights may need be increased in the whole path up to
the root.

We have:
Theorem 3. Let T ′ be an AVL-tree, and let T be the tree obtained from

T ′ by replacing one of its leaves by an update tree S. The number of rotations
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needed to rebalance T is O(logm), where m is the size of S. The time needed
to rebalance T , excluding the height increase operations, is O(logm). The time
needed to perform the height increase operations is O(log n), where n is the size
of T ′. ✷

We are not only interested in the worst case complexity of simple bulk inser-
tions, but merely in their amortized complexity.

Using the potential function ΦI as defined for single insertions we show that
the amortized complexity of simple bulk insertions is O(logm), where m is the
size of the bulk. The potential ΦI is defined for all trees that may appear at any
intermediate stage of merging or of final rebalancing.

Lemma 3. Assume that single insertions and simple bulk insertions are ap-
plied to an initially empty AVL-tree. Each actual (single) insertion will increase
the potential of the tree by at most 1. Each rotation included in the rebalancing
phase of a single insertion will increase the potential of the tree by at most two.

Each actual bulk insertion, the merging process, and the remaining rotation
altogether will increase the potential by O(logm), where m is the size of the
bulk.

Each height increase operation applied to a node u, such that at least one
child of u is an internal node, will decrease the potential of the tree by 1.

Proof. For single insertions this is Lemma 1. For simple bulk insertions, first
notice that an update tree can be constructed such that no internal node except
those whose both children are leaves is strictly balanced. Thus, the update tree
of a simple bulk insertion can be assumed to contain zero potential. In the
same way as for a single insertion, hanging an update tree in place of a leaf will
increase the potential only by at most 1. By Theorem 3 the number of performed
rotations in a simple bulk insertion is O(logm), and thus the possible increase
in the potential is O(logm). The stated potential decrease is concluded as in the
proof of Lemma 1. ✷

Lemma 3 together with Theorem 3 implies:
Theorem 4. Assume that single insertions and simple bulk insertions are

performed into an initially empty AVL-tree. The amortized rebalancing com-
plexity of each single insertion is constant, and the amortized complexity of
each simple bulk insertion is O(logm), where m is the size of the bulk. The bulk
insertion composed of several simple ones of sizes m1, . . . ,mk has amortized
complexity O(Σk

i=1 logmi). ✷

4 Bulk Deletion

We assume that we are given an AVL-tree T , an interval [L,R] of keys that have
to be deleted from T , and at most two leaves lL and lR that contain the smallest
key ≥ L and the largest key ≤ R, respectively. We also assume that lL and lR
have been obtained by searching in T for L and R, respectively. Because of these
two searches we know the lowest common ancestor, denoted c, of L and R, and
also for L (resp. R) the node, denoted dL (resp. dR), which is the node with the
largest (resp. smallest) router value smaller (resp. larger) than the router of c
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in the path from c to lL (resp. lR). The nodes dL and dR are called the left and
right deletion roots, respectively.

The actual simple bulk deletion of the keys in [L,R] is performed by traversing
from lL to dL, and from lR to dR, cf. Figure 2. Let v1v2 . . . vk be the path from lL
to dL. (The path from lR to dR is handled correspondingly.) First delete v1 from
tree T . Assume then that the process has advanced up to node vi, 1 < i ≤ k. If
the leftmost child of vi has been deleted, then also delete vi. If only the rightmost
child of vi has been deleted, then replace vi by its undeleted child. Continue the
process with i = i+ 1 until i = k.

d
L

d
R

c

l L
lR

Fig. 2. Bulk deletion: the removed part lies inside the bold line.

After the actual deletion has been finished, rebalancing may be needed at dL
and dR to complete the process of simple bulk deletion. These rebalancing tasks
can be done in time O(logm), where m is the number of keys in the interval
[L,R]. This time bound comes from the observation that the height of dL (and
of dR) is bounded by O(logm), and thus the height difference of the children of
dL (and of dR) is O(logm). The rebalancing time is then implied by Lemma 2 in
[10]. After having put dL and dR in balance it is possible that the lowest common
ancestor requires rebalancing. Again, the height difference of the children of c is
O(logm) and thus rebalancing of c takes time O(logm).

All above rebalancing tasks can have made c lower, which in turn implies that
there can be a balance conflict at the parent of c. But rebalancing the parent of
c (in time O(logm)) can make it only as low as the sibling of c was before. Thus
we have now come to the point from which, possibly up to the root, the needed
rebalancing is the same as for a single deletion. That is, we may need O(log n)
height decrease operations and rotations on the way from the parent of c to the
root of the whole tree.

We have:
Theorem 5. Given an AVL-tree T with n leaves and an interval [L,R] con-

taining m keys, the algorithm for bulk deleting the keys in [L,R] as described
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above (simple bulk deletion) will produce a new AVL-tree T ′ such that T ′ con-
tains exactly those keys of T that are not in [L,R]. The algorithm has time
complexity O(logm+ log n). ✷

Using the potential function ΦD as defined for single deletions we show that
the amortized complexity of simple bulk deletion is O(logm), where m is the
size of the bulk. The potential ΦD is defined for all trees that may appear at any
intermediate stage of actual deletion or rebalancing thereafter.

Lemma 4. Assume that single deletions and simple bulk deletions are ap-
plied to an AVL-tree with n leaves. Each actual single deletion will increase the
potential of the tree by at most 1. Each actual simple bulk deletion and the
rebalancing up to the lowest common ancestor of the end points of the bulk will
increase the potential by O(logm), where m is the size of the bulk. Each last
rotation included in the rebalancing process of single deletion or simple bulk
deletion will increase the potential by at most 1.

Each height decrease operation will decrease the potential of the tree by at
least 1. Each rotation before the last rotation and, in the case of simple bulk
deletion, above the lowest common ancestor will decrease the potential by at
least 1.

Proof. For a bulk deletion, only O(logm) rotations are performed below or at
c. Thus, the potential increase can altogether be O(logm). In all other respects
the proof parallels the proof of Lemma 2. ✷

Theorem 6. Assume that k1 single deletions and k2 simple bulk deletions
with bulk sizes m1,m2, . . . ,mk2 , such that k1 + Σk2

i=1mi = n, are applied to an
AVL-tree with n keys. Then altogether c1k1 + c2Σ

k2
i=1 logmi rebalancing opera-

tions, where c1 and c2 are constants, will be performed in conjunction with these
deletions. In other words, the amortized complexity of single deletion is constant,
and the amortized complexity of simple bulk deletion is O(logm), where m is
the size of the bulk.

Proof. Initially the potential of the tree is ≤ n − 1. The upper bound of
the number of last rotations is k1 + k2, and the upper bound of the number of
all other rebalancing operations is the initial potential plus the total possible
increase of the potential, which is 2k1 + c2Σ

k2
i=1 logmi by Lemma 4. ✷

5 Conclusion

We have studied the problem of bulk insertions and deletions, i.e., inserting or
deleting a large number keys at the same time. In particular, we considered the
case when the underlying search structure is an AVL-tree. We studied the key
question of merging a simple bulk, i.e., a “small” tree, with a “large” tree, when
all keys of the bulk fall in the same leaf position in the large tree. We proved
the amortized complexity O(logm) of such a bulk insertion, where m is the size
of the bulk. Notice that such a result cannot be obtained by simple splitting the
large tree in the right place and joining these parts with the small tree, because
splitting requires time proportional to the height of the tree.
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