KNAPSACK PROBLEMS

Algorithms and Computer
Implementations

Silvano Martello

and

Paolo Toth

DEIS, University of Bologna

JOHN WILEY & SONS

Chichester - New York - Brisbane - Toronto - Singapore



Copyright (<) 1990 by John Wiley & Sons Ltd.
Baffins Lane, Chichester
West Sussex PO19 1UD, England

All rights reserved.

No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language
without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane,
Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario M9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04,
Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data:
Martello, Silvano. .
Knapsack problems : algorithms and computer implementations
Silvano Martello, Paolo Toth.
p. cm. — (Wiley-Interscience series in discrete mathematics
and optimization)
Includes bibliographical references.
ISBN 0 471 92420 2
1. Computational complexity. 2. Mathematical optimization.

3. Algorithms. 4. Linear programming. 5. Integer programming.

1. Toth, Paolo. II. Title. III. Series.
QA 267.7.M37 1990

511’.8—dc20 90-12279

British Library Cataloguing in Publication Data:
Martello, Silvano
Knapsack problems : algorithms and computer
implementations.
1. Linear programming. Computation
I. Title II. Toth, Paolo
519.72

ISBN 0 471 92420 2

Printed in Great Britain by Biddles Ltd, Guildford



Contents

Preface

1 Introduction

1.1
1.2
1.3
14

What are knapsack problems?
Terminology

Computational complexity
Lower and upper bounds

2 0-1 Knapsack problem

2.1
2.2

2.3

24
2.5

2.6

2.7
2.8

29

2.10

2.11
2.12

Introduction
Relaxations and upper bounds

2.2.1 Linear programming relaxation and Dantzig’s bound

2.2.2 Finding the critical item in O(n) time
2.2.3 Lagrangian relaxation

Improved bounds

2.3.1 Bounds from additional constraints
2.3.2 Bounds from Lagrangian relaxations
2.3.3 Bounds from partial enumeration

The greedy algorithm
Branch-and-bound algorithms

2.5.1 The Horowitz—Sahni algorithm

2.5.2 The Martello-Toth algorithm
Dynamic programming algorithms

2.6.1 Elimination of dominated states

2.6.2 The Horowitz—Sahni algorithm

2.6.3 The Toth algorithm

Reduction algorithms

Approximate algorithms

2.8.1 Polynomial-time approximation schemes
2.8.2 Fully polynomial-time approximation schemes
2.8.3 Probabilistic analysis

Exact algorithms for large-size problems
2.9.1 The Balas—Zemel algorithm

2.9.2 The Fayard-Plateau algorithm

2.9.3 The Martello-Toth algorithm
Computational experiments

2.10.1 Exact algorithms

2.10.2 Approximate algorithms

Facets of the knapsack polytope

The multiple-choice knapsack problem

vii

xi

Nolie W SR

13
13
16
16
17
19
20
20
23
24
27
29
30
32
36
39
43

45
50
50
53
56
57
58

61
67
68
71

74
77



viii

3 Bounded knapsack problem

3.1
3.2
3.3

3.4

3.5
3.6

Introduction

Transformation into a 0-1 knapsack problem
Upper bounds and approximate algorithms
3.3.1 Upper bounds

3.3.2 Approximate algorithms

Exact algorithms

3.4.1 Dynamic programming

3.4.2 Branch-and-bound

Computational experiments

A special case: the unbounded knapsack problem
3.6.1 Upper bounds and approximate algorithms
3.6.2 Exact algorithms

3.6.3 An exact algorithm for large-size problems
3.6.4 Computational experiments

4 Subset-sum problem

4.1
4.2

4.3

4.4

Introduction

Exact algorithms

4.2.1 Dynamic programming

4.2.2 A hybrid algorithm

4.2.3 An algorithm for large-size problems
Approximate algorithms

4.3.1 Greedy algorithms

4.3.2 Polynomial-time approximation schemes
4.3.3 Fully polynomial-time approximation schemes
4.3.4 Probabilistic analysis

Computational experiments

4.4.1 Exact algorithms

4.42 Approximate algorithms

5 Change-making problem

5.1
5.2
53
5.4
55

5.6
5.7
5.8

Introduction
Lower bounds
Greedy algorithms

When the greedy algorithm solves classes of knapsack problems

Exact algorithms

5.5.1 Dynamic programming

5.5.2 Branch-and-bound

An exact algorithm for large-size problems
Computational experiments

The bounded change-making problem

6 0-1 Multiple knapsack problem

6.1
6.2

6.3
6.4

Introduction

Relaxations and upper bounds

6.2.1 Surrogate relaxation

6.2.2 Lagrangian relaxation

6.2.3 Worst-case performance of the upper bounds
Greedy algorithms

Exact algorithms

6.4.1 Branch-and-bound algorithms

6.4.2 The “bound-and-bound” method

Contents

81
81
82
84
84
86
87
88
88
89
91
92
95
98
102

105
105
106
106
109
116
117
117
120
125
126
128
129
130

137
137
138
140
142
145
145
146
149
151
153

157
157
158
158
162
165
166
167
168
170



Contents

6.5
6.6

6.7

6.4.3 A bound-and-bound algorithm

Reduction algorithms

Approximate algorithms

6.6.1 On the existence of approximation schemes
6.6.2 Polynomial-time approximation algorithms
Computational experiments

7 Generalized assignment problem

7.1
7.2

7.3
7.4
1.5
7.6

Introduction

Relaxations and upper bounds

7.2.1 Relaxation of the capacity constraints

7.2.2 Relaxation of the semi-assignment constraints
7.2.3 The multiplier adjustment method

7.2.4 The variable splitting method

Exact algorithms

Approximate algorithms

Reduction algorithms

Computational experiments

8 Bin-packing problem

8.1
8.2
8.3

8.4
8.5
8.6

Introduction

A brief outline of approximate algorithms
Lower bounds

8.3.1 Relaxations based lower bounds

8.3.2 A stronger lower bound

Reduction algorithms

Exact algorithms

Computational experiments

Appendix: Computer codes
A.1 Introduction
A.2 0-1 Knapsack problem

A.2.1 Code MTI
A.2.2 Code MTIR
A.2.3 Code MT2

A.3 Bounded and unbounded knapsack problem

A.3.1 Code MTB2
A.3.2 Code MTU2

A.4 Subset-sum problem

A.5 Bounded and unbounded change-making problem

A4.1 Code MTSL

A.5.1 Code MTC2
A.5.2 Code MTCB

A.6 0-1 Multiple knapsack problem

A.6.1 Code MTM
A.6.2 Code MTHM

A.7 Generalized assignment problem

A.7.1 Code MTG
A.7.2 Code MTHG

A.8 Bin-packing problem

A8.1 Code MTP

ix

172
176
177
177
179
182

189
189
192
192
195
197
201
204
206
209
213

221
221
222
224
224
228
233
237
240

247
247
248
248
249
251
252
252
254
256
256
258
258
259
261
261
263
265
265
268
270
270



X Contents

Glossary 273
Bibliography 275
Author index 283

Subject index 287



Preface

The development of computational complexity theory has led, in the last fifteen
years, to a fascinating insight into the inherent difficulty of combinatorial
optimization problems, but has also produced an undesirable side effect which
can be summarized by the “equation”

NP -hardness = intractability,

thereby diminishing attention to the study of exact algorithms for NP-hard
problems. However, recent results on the solution of very large instances of
integer linear programming problems with special structure on the one hand, and
forty years of successful use of the simplex algorithm on the other, indicate the
concrete possibility of solving problems exactly through worst-case exponential-
time algorithms.

This book presents a state-of-art on exact and approximate algorithms for a
number of important NP-hard problems in the field of integer linear programming,
which we group under the term knapsack. The choice of the problems reflects our
personal involvement in the field, through a series of investigations over the past
ten years. Hence the reader will find not only the “classical” knapsack problems
(binary, bounded, unbounded, binary multiple), but also less familiar problems
(subset-sum, change-making) or well-known problems which are not usually
classified in the knapsack area (generalized assignment, bin-packing). He will find
no mention, instead, of other knapsack problems (fractional, multidimensional,
non-linear), and only a limited treatment of the case of generalized upper bound
constraints.

The goal of the book is to fully develop an algorithmic approach without
losing mathematical rigour. For each problem, we start by giving a mathematical
model, discussing its relaxations and deriving procedures for the computation
of bounds. We then develop approximate algorithms, approximation schemes,
dynamic programming techniques and branch-and-bound algorithms. We analyse
the computational complexity and the worst-case performance of bounds and
approximate methods. The average performance of the computer implementations
of exact and approximate algorithms is finally examined through extensive
computational experiments. The Fortran codes implementing the most effective
methods are provided in the included diskette. The codes are portable on virtually
any computer, extensively commented and—hopefully—easy to use.

For these reasons, the book should be appreciated both by academic researchers

xi



xii Preface

and industrial practitioners. It should also be suitable for use as a supplementary
text in courses emphasizing the theory and practice of algorithms, at the graduate
or advanced undergraduate level. The exposition is in fact self-contained and is
designed to introduce the reader to a methodology for developing the link between
mathematical formulation and effective solution of a combinatorial optimization
problem. The simpler algorithms introduced in the first chapters are in general
extensively described, with numerous details on the techniques and data structures
used, while the more complex algorithms of the following chapters are presented
at a higher level, emphasizing the general philosophy of the different approaches.
Many numerical examples are used to clarify the methodologies introduced. For
the sake of clarity, all the algorithms are presented in the form of pseudo-Pascal
procedures. We adopted a structured exposition for the polynomial and pseudo-
polynomial procedures, but allowed a limited use of “go to” statements for the
branch-and-bound algorithms. (Although this could, of course, have been avoided,
the resulting exposition would, in our opinion, have been much less readable.)

We are indebted to many people who have helped us in preparing this book. Jan
Karel Lenstra suggested the subject, and provided guidance and encouragement
during the two years of preparation. Mauro Dell’Amico, Laureano Escudero
and Matteo Fischetti read earlier versions of the manuscript, providing valuable
suggestions and pointing out several errors. (We obviously retain the sole
responsibility for the surviving errors.) Constructive comments were also made by
Egon Balas, Martin Dyer, Ronald Graham, Peter Hammer, Ben Lageweg, Gilbert
Laporte, Manfred Padberg, David Shmoys, Carlo Vercellis and Laurence Wolsey.
The computational experiments and computer typesetting with the TgX system were
carried out by our students Andrea Bianchini, Giovanna Favero, Marco Girardini,
Stefano Gotra, Nicola Moretti, Paolo Pinetti and Mario Zacchei.

We acknowledge the financial support of the Ministero della Pubblica Istru-
zione and the Consiglio Nazionale delle Ricerche. Special thanks are due to the
Computing Centre of the Faculty of Engineering of the University of Bologna
and its Director, Roberto Guidorzi, for the facilities provided in the computational
testing of the codes.

Bologna, Italy SILVANO MARTELLO
July 1989 PAOLO TOTH



1

Introduction

1.1 WHAT ARE KNAPSACK PROBLEMS?

Suppose a hitch-hiker has to fill up his knapsack by selecting from among various
possible objects those which will give him maximum comfort. This knapsack
problem can be mathematically formulated by numbering the objects from 1 to n
and introducing a vector of binary variables x; (j =1, ... ,n) having the following
meaning:

;=

{ 1 if object j is selected;
Y =
0 otherwise.

Then, if p; is a measure of the comfort given by object j, w; its size and c the
size of the knapsack, our problem will be to select, from among all binary vectors

x satisfying the constraint
n
ijxj <c,
J=1

the one which maximizes the objective function
n
ijxj-
j=1

If the reader of this book does not, or no longer practises hitch-hiking, he might
be more interested in the following problem. Suppose you want to invest—all or
in part—a capital of ¢ dollars and you are considering n possible investments. Let
p; be the profit you expect from investment j, and w; the amount of dollars it
requires. It is self-evident that the optimal solution of the knapsack problem above
will indicate the best possible choice of investments.

At this point you may be stimulated to solve the problem. A naive approach
would be to program a computer to examine all possible binary vectors x, selecting
the best of those which satisfy the constraint. Unfortunately, the number of such
vectors is 2", so even a hypothetical computer, capable of examining one billion
vectors per second, would require more than 30 years for n = 60, more than
60 years for n = 61, ten centuries for n = 65, and so on. However, specialized
algorithms can, in most cases, solve a problem with n = 100000 in a few seconds
on a mini-computer.



2 1 Introduction

The problem considered so far is representative of a variety of knapsack-type
problems in which a set of entities are given, each having an associated value and
size, and it is desired to select one or more disjoint subsets so that the sum of the
sizes in each subset does not exceed (or equals) a given bound and the sum of the
selected values 1s maximized.

Knapsack problems have been intensively studied, especially in the last decade,
attracting both theorists and practicians. The theoretical interest arises mainly
from their simple structure which, on the one hand allows exploitation of a
number of combinatorial properties and, on the other, more complex optimization
problems to be solved through a series of knapsack-type subproblems. From the
practical point of view, these problems can model many industrial situations:
capital budgeting, cargo loading, cutting stock, to mention the most classical
applications. In the following chapters we shall examine the most important
knapsack problems, analysing relaxations and upper bounds, describing exact
and approximate algorithms and evaluating their efficiency both theoretically and
through computational experiments. The Fortran codes of the principal algorithms
are provided in the floppy disk accompanying the book.

1.2 TERMINOLOGY

The objects considered in the previous section will generally be called items and
their number be indicated by n. The value and size associated with the jth item will
be called profit and weight, respectively, and denoted by p; and w; (j =1, ... ,n).

The problems considered in Chapters 2 to 5 are single knapsack problems, where
one container (or knapsack) must be filled with an optimal subset of items. The
capacity of such a container will be denoted by c¢. Chapters 6 to 8 deal with
multiple knapsack problems, in which more than one container is available.

It is always assumed, as is usual in the literature, that profits, weights and
capacities are positive integers. The results obtained, however, can easily be
extended to the case of real values and, in the majority of cases, to that of
nonpositive values.

The prototype problem of the previous section,

n
maximize E PjXj
Jj=1

n
subject to ijxj <ec,
j=1

x;j =0 or 1, j=1,...,n,

is known as the 0-1 Knapsack Problem and will be analysed in Chapter 2. In Section
2.12 we consider the generalization arising when the item set is partitioned into



1.2 Terminology 3

subsets and the additional constraint is imposed that at most one item per subset is
selected (Multiple-Choice Knapsack Problem).

The problem can be generalized by assuming that for each j (j = 1, ... ,n),
b; items of profit p; and weight w; are available (b; < ¢/w;): thus we obtain the
Bounded Knapsack Problem, defined by

n
maximize E PjX;
Jj=1

n
subject to ijxj <c,
j=1
OSXijj, j‘—'l,...,fl,
X integer, j=1,...,n.
The problem is considered in Chapter 3. The special case in which b; = +oc for
all j (Unbounded Knapsack Problem) is treated in Section 3.6.
In Chapter 4 we examine the particular case of the 0-1 knapsack problem arising
when p; = w; (j = 1,...,n), as frequently occurs in practical applications. The

problem is to find a subset of weights whose sum is closest to, without exceeding,
the capacity, i.e.

n
maximize E W X;
J=1

n
subject to ijxj <ec,
j=1
x; =0 or 1, j=1...,n,

generally referred to as the Subset-Sum Problem.

In Chapter 5 a very particular bounded knapsack problem is considered, arising
when p; =1 (j =1, ...,n) and, in the capacity constraint, we impose equality
instead of inequality. This gives

n
maximize E X
j=1

n
subject to ijxj =c,
Jj=1

0__<_Xj__<_bj j=1,...,l’l,

X; integer j=1,...,n,



4 1 Introduction

usually called the Change-Making Problem, since it recalls the situation of a cashier
having to assemble a given change ¢ using the maximum (or minimum) number of
coins. The same chapter deeply analyses the Unbounded Change-Making Problem,
in which b; = +oc for all ;.

An important generalization of the 0-1 knapsack problem, discussed in Chapter
6, is the 0-1 Multiple Knapsack Problem, arising when m containers, of given
capacities ¢; (i = 1,...,m) are available. By introducing binary variables x;;,
taking value 1 if item j is selected for container i, O otherwise, we obtain the
formulation

m n
maximize E E PjXij

i=1 j=I

n
subject to E wix; < ¢, i=1,... m,
Jj=1

m
Zx,-jg 1, j=1,...,n,
i=1

xij =0 or 1, i=1,....mj=1,...,n.

Now consider a 0-1 multiple knapsack problem in which the profit and weight of
each item vary according to the container for which they are selected. By defining
pij (resp. wy;) as the profit (resp. the weight) of item ; if inserted in container i,
we get

m n
maximize E E Dij Xij

i=1 j=I

n
subject to 5 wiiXij < ¢, i=1,... ,m,
J=1

m
Zx,-jgl, j=1,...,n,
i=1

Xij=0 or 1, i=1""9m’j=1""’n’

known as the Generalized Assignment Problem, which is dealt with in Chapter 7.
This is not, strictly speaking, a knapsack problem, but is included in this review
because knapsack subproblems play a central role in the algorithms for solving it.



1.2 Terminology 5

The problem is generally viewed as that of optimally assigning, all or in part, n
jobs to m machines (n tasks to m agents, and so on), given the profit, p;;, obtainable
if machine i is assigned job j, the corresponding resource, w;;, required, and the
amount, ¢;, of resource available to machine i.

In Chapter 8 we consider the well-known Bin-Packing Problem, which is not
usually included in the knapsack area, but can be interpreted as a multiple subset-
sum problem where all containers have the same capacity ¢, all items must be
selected and it is desired to minimize the number of containers used. Given any
upper bound m on the number of containers, and introducing m binary variables y;,
taking value O if container i is used, value 1 otherwise, we can state the problem
as:

m
maximize E Vi
i=1

n
subject to ijxij < c(l —y), i=1,...,m,
j=1

m

d x=1, j=1,...,n,

i=1
yi =0 or 1, i=1,...,m,

x; =0 or 1, i=1,....mj=1...,n

In the last decades, an impressive amount of research on knapsack problems
has been published in the literature. Reviews have been presented in the following
surveys:

Salkin and De Kluyver (1975) present a number of industrial applications and
results in transforming integer linear programs to knapsack problems (an approach
which appeared very promising at that time);

Martello and Toth (1979) consider exact algorithms for the zero-one knapsack
problem and their average computational performance; the study is extended to
the other linear knapsack problems and to approximate algorithms in Martello and
Toth (1987);

Dudzinski and Walukiewicz (1987) analyse dual methods for solving Lagrangian
and linear programming relaxations.

In addition, almost all books on integer programming contain a section on
knapsack problems. Mention is made of those by Hu (1969), Garfinkel and
Nemhauser (1972), Salkin (1975), Taha (1975), Papadimitriou and Steiglitz (1982),
Syslo, Deo and Kowalik (1983), Schrijver (1986), Nemhauser and Wolsey (1988).



6 1 Introduction
1.3 COMPUTATIONAL COMPLEXITY
We have so far introduced the following problems:

0-1 KNAPSACK;

BOUNDED KNAPSACK;
SUBSET-SUM;
CHANGE-MAKING;

0-1 MULTIPLE KNAPSACK;
GENERALIZED ASSIGNMENT;
BIN-PACKING.

We will now show that all these problems are NP-hard (we refer the reader
to Garey and Johnson (1979) for a thorough discussion on this concept). For each
problem P, we either prove that its recognition version R(P) is NP-complete or that
it is a generalization of a problem already proved to be NP-hard.

The following recognition problem:

PARTITION: given n positive integers wi,...,w,, is there a subset
§ €N ={l,....n}suchthat ;. cwj =57y s w?

is a basic NP-complete problem, originally treated in Karp (1972).

(a) SUBSET-SUM is NP-hard.

Proof. Consider R(SSUBSET-SUM), i.e.: given n+2 positive integers wy, ... ,w,, ¢
and a, is there a subset S C N = {l1..... n} such that 3~ cw; < ¢ and
ZjES Wj 2 a?

Any instance I of PARTITION can be polynomially transformed into an
equivalent instance /' of R(SUBSET-SUM) by setting ¢ = a = > jen Wj/2 (the
answer for [ is “yes” if and only if the answer for I’ is “yes”). []

(b) 0-1 KNAPSACK is NP-hard.
Proof. SUBSET-SUM is the particular case of 0-1 KNAPSACK when p; = w; for
allj eN.[]

(¢c) BOUNDED KNAPSACK is NP-hard.

Proof. 0-1 KNAPSACK is the particular case of BOUNDED KNAPSACK when
bj=1forallj € N.[]



1.3 Computational complexity 7
(d) CHANGE-MAKING is NP-hard.

Proof. We prove NP-hardness of the special case in which b; = 1 for all j. Consider
R(CHANGE-MAKING), i.e.: given n + 2 positive integers wy, ... ,w,, ¢ and a,
is there a subset S C N = {l1,...,n} such that D jesw =c and |S| > a?
Any instance / of PARTITION can be polynomially transformed into an equivalent
instance /” of RCCHANGE-MAKING) by setting ¢ = 3", .y w;/2 and a = 1. []

Consequently, these single knapsack problems cannot be solved in a time
bounded by a polynomial in n, unless P = AP. All of them, however, admit a
pseudo-polynomial algorithm, i.e. an algorithm whose time (and space) complexity
is bounded by a polynomial in n and c. In fact, it can easily be verified that
the following dynamic programming recursions solve the corresponding problems.
(More detailed descriptions can be found in the specific chapters.) Given any
instance of a single knapsack problem, consider the sub-instance defined by items
1,...,j and capacity u (j < n, u < c). Let f;(u) be the corresponding optimal
solution value (fj(u) = —oc if no feasible solution exists) and S;(u) the optimal
subset of items. The optimal solution value of the problem, f,(c), can then be
obtained by iteratively applying the following recursive formulae:

0-1 KNAPSACK:

0 foru=0,...,w —1;
Si(u) =

pr foru=wy,...,c;

Jiu) = max(fi_1(u), fi—1(u —w;)+p;)forj=2,...,n

andu =0, ...,c;
time complexity O (nc).
BOUNDED KNAPSACK:
F {lpl for{=0,...,by—landu =, ..., + 1w —1;
1(u)=
bipy foru=bwy,...,c;

fiw)y=max{ fi_j(u —wj)+Ip; : 0< I <p;}forj=2,...,n
andu=0,...,c;

time complexity O(c Z}Ll b;), that is, in the worst case, O (nc?).
SUBSET-SUM:

Same as 0-1 KNAPSACK, but with p; replaced by w;.



8 1 Introduction

CHANGE-MAKING:

/ for u =lwy, with [ =0, ... ,by;
Si(u) =

—oc  for all positive u < ¢ such that u(mod w;)#0 ;

fiwy=max{ fi_1(u—Iwj)+1: 0<I<bj}forj=2,...,n

and u =0, ...,c;

time complexity O(c Zj'?:l b;), that is, in the worst case, O (nc?).

For all the algorithms the computation of S;(u) is straightforward. Since, for
each j, we only need to store S;_(u) and S;(u) for all u, the space complexity is
always O (nc).

For the multiple problems (0-1 MULTIPLE KNAPSACK, GENERALIZED
ASSIGNMENT, BIN-PACKING) no pseudo-polynomial algorithm can exist,
unless P = AP, since the problems can be proved to be NP-hard in the strong
sense. Consider in fact the following recognition problem:

3-PARTITION: given n = 3m positive integers wi..... wy satisfying 37, w; /m =
B integer and B /4 < w; < B/2 forj = 1,...,n, is there a partition of N =
{1, ... ,n} into m subsets Si, ...,S,, such that ZjES, wi=Bfori=1,...,m?
(Notice that each S; must contain exactly three elements from N.)

This is the first problem discovered to be NP-complete in the strong sense (Garey
and Johnson, 1975).

(e) 0-1 MULTIPLE KNAPSACK is NP-hard in the strong sense.

Proof. Consider R(0-1 MULTIPLE KNAPSACK), i.e.: given 2n + m + 1 positive
integers: py, ... ,pPns Wi, ... ,Wy; C1, ... ,Cn, and a, are there m disjoint subsets
Si,....8» of N = {l,...,n} such that Zjes, wj < ¢ fori =1,...,m and
S jes, Pj 2 a? Any instance I of 3-PARTITION can be pseudo-polynomially
transformed into an equivalent instance /' of R(0-1 MULTIPLE KNAPSACK) by
setting ¢; =B fori=1,... ,m,pj=1forj =1,... n and a = n (which implies
that | J_, S; =N in any “yes” instance). []

(f) GENERALIZED ASSIGNMENT is NP-hard in the strong sense.

Proof. Immediate, since 0-1 MULTIPLE KNAPSACK is the particular case of
GENERALIZED ASSIGNMENT when p;; = pjand w; =w; fori =1, ... ,m and

j=1,...,n.[]



1.4 Lower and upper bounds 9

(g) BIN-PACKING is NP-hard in the strong sense.

Proof. Consider R(BIN-PACKING), i.e.: given n+2 positive integers wy,...,Wy, €
and a, is there a partition of N = {1,...,n} into a subsets Sj,...,S, such that
ZjES, w; < cfori=1,...,a? Any instance / of 3-PARTITION can be pseudo-
polynomially transformed into an equivalent instance /' of R(BIN-PACKING) by
setting ¢ = B and a = m. []

1.4 LOWER AND UPPER BOUNDS

In the previous section we have proved that none of our problems can be solved
in polynomial time, unless P = A/P. Hence in the following chapters we analyse:

(a) enumerative algorithms (having, in the worst case, running times which grow
exponentially with the input size) to determine optimal solutions;

(b) approximate algorithms (with running times bounded by a polynomial in the
input size) to determine feasible solutions whose value is a lower bound on the
optimal solution value.

The average running times of such algorithms are experimentally evaluated
through execution of the corresponding computer codes on different classes of
randomly-generated test problems. It will be seen that the average behaviour of the
enumerative algorithms is in many cases much better than the worst-case bound,
allowing optimal solution of large-size problems with acceptable running times.

The performance of an approximate algorithm for a specific instance is measured
through the ratio between the solution value found by the algorithm and the optimal
solution value (notice that, for a maximization problem, this ratio is no greater than
one). Besides the experimental evaluation, it is useful to provide, when possible, a
theoretical measure of performance through worst-case analysis (see Fisher (1980)
for a general introduction to this concept).

Let A be an approximate algorithm for a given maximization problem (all our
considerations extend easily to the minimization case). For any instance I of the
problem, let OPT (1) be the optimal solution value and A(/) the value found by A.
Then, the worst-case performance ratio of A is defined as the largest real number
r(A) such that

A
OPT (1) —

r(A) for all instances /;

the closer r(A) is to one, the better the worst-case behaviour of A. The proof that
a given value r is the worst-case performance ratio of an algorithm A consists, in
general, of two phases:

(i) it is first proved that, for any instance / of the problem, inequality
A(I)/OPT (1) > r holds;



10 1 Introduction

(ii) in order to ensure that r is the largest value satisfying the inequality, i.e. that r
is right, a specific instance I’ is produced for which A(/")/OPT(I') = r holds
(or a series of instances for which the above ratio tends to be arbitrarily close
to r).

The performance of A can be equivalently expressed in terms of worst-case
relative error, i.e. the smallest real number £(A) such that

— A
OPTO(;;(I) 0 < €(A) for all instances /.

(i.e. r(A) =1 — ¢(A)).

An approximation scheme for a maximization problem is an algorithm A which,
given an instance / and an error bound ¢ > 0, returns a solution of value A(/)
such that (OPT (1) — A(1))/OPT(I) < e. Let length (I) denote the input size,
i.e. the number of symbols required for coding /. If, for any fixed ¢, the running
time of A is bounded by a polynomial in length (I), then A is a polynomial-
time approximation scheme: any relative error can be obtained in a time which
is polynomial in length (I) (but can be exponential in 1/¢). If the running time
of A is polynomial both in length (I) and 1/¢, then A is a fully polynomial-time
approximation scheme.

In subsequent chapters we describe the most interesting polynomial-time and
fully polynomial-time approximation schemes for single knapsack problems. For
the remaining (multiple) problems, no fully polynomial-time approximation scheme
can exist, unless P = AP, since (see Garey and Johnson (1975)) this would
imply the existence of a pseudo-polynomial algorithm for their optimal solution
(which is impossible, these being NP-hard problems in the strong sense). For BIN-
PACKING, also the existence of a polynomial-time approximation scheme can
be ruled out, unless P = NP (Johnson, Demers, Ullman, Garey and Graham,
1974). The same holds for GENERALIZED ASSIGNMENT and 0-1 MULTIPLE
KNAPSACK in the minimization version (Sahni and Gonzalez, 1976). For the
maximization version of these two problems no polynomial-time approximation
scheme is known, although there is no proof that it cannot exist (the proof in Sahni
and Gonzalez (1976) does not extend to the maximization case).

Besides experimental and worst-case analysis, an approximate algorithm can
allow probabilistic analysis. Speaking informally this consists of specifying an
average problem instance in terms of a probability distribution over the class of
all instances and evaluating running time and solution value as random variables.
Examples of this approach which, however, is generally possible only for very
simple algorithms, are given in Sections 2.8.3 and 4.3.4 (see Karp, Lenstra,
McDiarmid and Rinnooy Kan (1985) and Rinnooy Kan (1987) for a general
introduction to probabilistic analysis).

For a maximization problem, the solution value determined by an approximate
algorithm limits the optimal solution value from below. It is always convenient to



1.4 Lower and upper bounds 11

have methods for limiting this value from above, too. Upper bounds are extremely
useful

(a) in enumerative algorithms, to exclude computations which cannot lead to the
optimal solution;

(b) in approximate algorithms, to “a-posteriori” evaluate the performance obtained.
Suppose algorithm A is applied to instance /, and let U (I') be any upper bound
on OPT(I): it is then clear that the relative error of the approximate solution
is no greater than (U (I) — A(1))/U (I).

The worst-case performance ratio of an upper bounding procedure U can be
defined similarly to that of an approximate algorithm, i.e. as the smallest real
number p(U) such that

v
opT(I) = "*

) for all instances /.

The closer p(U) is to one, the better the worst-case behaviour of U.

Upper bounds are usually computed by solving relaxations of the given prob-
lems. Continuous, Lagrangian and surrogate relaxations are the most frequently
used. For a given problem P, the corresponding relaxed problem will be denoted
with C (P), L(P,m) and S (P .m), m being an appropriate vector of multipliers. The
optimal solution value of problem P will be denoted with z(P).






2
0-1 Knapsack problem

2.1 INTRODUCTION

The 0-1, or Binary, Knapsack Problem (KP) is: given a set of n items and a
knapsack, with

p;j = profit of item j,
w; = weight of item j,
¢ = capacity of the knapsack,

select a subset of the items so as to

n

maximize z =ijxj 2.1
j=1
n

subject to ijxj <c, (2.2)
j=1

x;=0 or 1, jeEN={1,...,n}, (2.3)

where . ,
{ 1 if item j is selected;
X =

0 otherwise.

KP is the most important knapsack problem and one of the most intensively
studied discrete programming problems. The reason for such interest basically
derives from three facts: (a) it can be viewed as the simplest Integer Linear
Programming problem; (b) it appears as a subproblem in many more complex
problems; (c) it may represent a great many practical situations. Recently, it has
been used for generating minimal cover induced constraints (see, e.g., Crowder,
Johnson and Padberg, (1983)) and in several coefficient reduction procedures
for strengthening LP bounds in general integer programming (see, e.g., Dietrich
and Escudero, (1989a, 1989b)). During the last few decades, KP has been
studied through different approaches, according to the theoretical development of
Combinatorial Optimization.

13



14 2 0-1 Knapsack problem

In the fifties, Bellman’s dynamic programming theory produced the first
algorithms to exactly solve the 0-1 knapsack problem. In 1957 Dantzig gave an
elegant and efficient method to determine the solution to the continuous relaxation
of the problem, and hence an upper bound on z which was used in the following
twenty years in almost all studies on KP.

In the sixties, the dynamic programming approach to the KP and other knapsack-
type problems was deeply investigated by Gilmore and Gomory. In 1967 Kolesar
experimented with the first branch-and-bound algorithm for the problem.

In the seventies, the branch-and-bound approach was further developed, proving
to be the only method capable of solving problems with a high number of variables.
The most well-known algorithm of this period is due to Horowitz and Sahni. In
1973 Ingargiola and Korsh presented the first reduction procedure, a preprocessing
algorithm which significantly reduces the number of variables. In 1974 Johnson
gave the first polynomial-time approximation scheme for the subset-sum problem;
the result was extended by Sahni to the 0-1 knapsack problem. The first fully
polynomial-time approximation scheme was obtained by Ibarra and Kim in 1975.
In 1977 Martello and Toth proposed the first upper bound dominating the value of
the continuous relaxation.

The main results of the eighties concern the solution of large-size problems, for
which sorting of the variables (required by all the most effective algorithms) takes
a very high percentage of the running time. In 1980 Balas and Zemel presented a
new approach to solve the problem by sorting, in many cases, only a small subset
of the variables (the core problem).

In this chapter we describe the main results outlined above in logical (not
necessarily chronological) sequence. Upper bounds are described in Sections 2.2
and 2.3, approximate algorithms in Sections 2.4 and 2.8, exact algorithms in
Sections 2.5, 2.6 and 2.9, reduction procedures in Section 2.7. Computational
experiments are reported in Section 2.10, while Section 2.11 contains an
introduction to the facetial analysis of the problem. Section 2.12 deals with a
generalization of KP (the multiple-choice knapsack problem).

We will assume, without any loss of generality, that

pj, w; and c are positive integers, (2.4)
n

Y wi>ec, (2.5)
j=1

w; < c forj €N. (2.6)

If assumption (2.4) is violated, fractions can be handled by multiplying through
by a proper factor, while nonpositive values can be handled as follows (Glover,
1965):

1. foreachj e N°={j € N : p; <0, w; >0} do x; :=0;
2. foreachj e N'={j €N :p; >0,w; <0} dox =1,



2.1 Introduction 15
3.IetN-={j €N :p; <0,w; <0}, N*=N\(WOUN'UN™), and

{yjzl_xj,ﬁjz—pj’wjz—wj fijEN-,

Yj =Xj» Dj =Pj, Wj = W, forj € N™;
4. solve the residual problem

maximize z = Z Py + Z pj

JEN~—UN* JEN'UN -
subject to E wiy; <c— E Wi,
JEN—UN+ JEN'UN~

yy=0orl, JjENT UN"

If the input data violate assumption (2.5) then, trivially, x; = 1 for all j € N; if
they violate assumption (2.6), then x; = 0 for each j such that w; > c.

Unless otherwise specified, we will always suppose that the items are ordered
according to decreasing values of the profit per unit weight, i.e. so that

P P2 o Pn . (27)

If this is not the case, profits and weights can be re-indexed in O(nlogn) time
through any efficient sorting procedure (see, for instance, Aho, Hopcroft and
Ullman, (1983)).

Given any problem instance /, we denote the value of any optimal solution with
z(I), or, when no confusion arises, with z.

KP is always considered here in maximization form. The minimization version
of the problem,

n
minimize E Pjyj
Jj=1

n
subject to ijyj >q,
j=1

y; =0 or 1, jJEN

can easily be transformed into an equivalent maximization form by setting y; =
1 — x; and solving (2.1), (2.2), (2.3) with ¢ = Zj'.’zle — g. Let zmax be the
solution value of such a problem: the minimization problem then has solution
value zmin = Zj'.':l p; — zmax. (Intuitively, we maximize the total profit of the
items not inserted in the knapsack.)



16 2 0-1 Knapsack problem
2.2 RELAXATIONS AND UPPER BOUNDS

2.2.1 Linear programming relaxation and Dantzig’s bound

The most natural, and historically the first, relaxation of KP is the linear

programming relaxation, i.e. the continuous knapsack problem C(KP) obtained
from (2.1), (2.2), (2.3) by removing the integrality constraint on x;:

n
maximize E PjX
J=1

n
subject to ijxj <c,
j=1

0<x <1, j=1,...,n.
Suppose that the items, ordered according to (2.7), are consecutively inserted into

the knapsack until the first item, s, is found which does not fit. We call it the
critical item, i.e.

J
s =min {j:Zw,->c}, (2.8)
i=1 '

and note that, because of assumptions (2.4)—(2.6), we have 1 < s < n. Then
C (KP) can be solved through a property established by Dantzig (1957), which can
be formally stated as follows.

Theorem 2.1 The optimal solution X of C (KP) is

xj=1 forj=1,...,s — 1,

x;=0 forj=s+1,...,n,
_ c
xS )
W.S
where
s—1
C=c¢— w;. (2.9)

1]
s

J

Proof. A graphical proof can be found in Dantzig (1957). More formally, observe
that any optimal solution x of C(KP) must be maximal, in the sense that
Z;’zl w;x; = c. Assume, without loss of generality, that p; /w; > p;s1/wjy for
all j, and let x* be the optimal solution of C(KP). Suppose, by absurdity, that
x; < 1 for some k < s, then we must have x; > X, for at least one item g > s.



2.2 Relaxations and upper bounds 17

Given a sufficiently small ¢ > 0, we could increase the value of x; by ¢ and
decrease that of x7 by ewy /wg, thus augmenting the value of the objective function
of e(pr — pgwi /wq) (> 0, since px /wy > p, /w,), which is a contradiction. In the
same way we can prove that x; > 0 for k£ > s is impossible. Hence x; = ¢ /w;
from maximality. []

The optimal solution value of C(KP) follows:

s—1
2(C(KP) =Y p, +EZ—S.

J=1 g

Because of the integrality of p; and x;, a valid upper bound on z(KP) is thus

s—1
Uy =|z(C(KP))| = ij + {EZ—SJ , (2.10)

j=1

where |a| denotes the largest integer not greater than a.

The worst-case performance ratio of U, is p(U;) = 2. This can easily be proved
by observing that, from (2.10), U, < Zj.;l pj+ps. Both Zj.;l p, and p; are feasible
solution values for KP, hence no greater than the optimal solution value z, thus, for
any instance, U, /z < 2. To see that p(U) is tight, consider the series of problems
withn =2, py=wy=p;=wy; =k and ¢ = 2k — 1, for which U; = 2k — 1 and
z =k, so U, /z can be arbitrarily close to 2 for k sufficiently large.

The computation of z(C(KP)), hence that of the Dantzig bound U,, clearly
requires O(n) time if the items are already sorted as assumed. If this is not the
case, the computation can still be performed in O(n) time by using the following
procedure to determine the critical item.

2.2.2 Finding the critical item in O(n) time

For each j € N, define r; = p; /w;. The critical ratio r; can then be identified by
determining a partition of N into J 1 UJC UJ O such that

rp > rs forj €J1,
rp= rg forj € JC,

rp < rg for j € JO,
and

JjeJ1 JEJ1IUJC

The procedure, proposed by Balas and Zemel (1980), progressively determines J 1



18 2 0-1 Knapsack problem

and J 0 using, at each iteration, a tentative value ) to partition the set of currently
“free” items N \(J/ 1 UJ0). Once the final partition is known, the critical item s is
identified by filling the residual capacity ¢ — Zj cs1 W with items in JC, in any
order.

procedure CRITICAL_ ITEM:
input: 1.c, (p;), (W));

output: s;
begin
J1:=0;
JO :=@;
JC :={l...., n};
¢ .=c;

partition := “no”;
while partition = “no” do
begin
determine the median A of the values in R = {p; /w; : j € JC};
G:={j €JC :pj/wj > A}

L:={j €JC :pj/w; < A};
E :={j€JC :pj/w;=2A};
= ZjeG wijs
¢’ =c+

q\

jEE w]’

if ¢/ < T < ¢” then partition := “yes”
else if ¢’ > ¢ then (comment: ) is too small)

begin
JO:=JOULUE;
JC =G
end
else (comment: ) is too large)
begin
J1:=J1UG UE;
JC =L
c:=c—c"
end
end;
J1:=J1UG;
JO:=JOUL,
JC =E (— {er.ez.....e0});
c "C—C
o:=min {j: YL w, >}
s i=e,

end.

Finding the median of m elements requires O (m) time (see Aho, Hopcroft and
Ullman, (1983)), so each iteration of the “while” loop requires O(|JC |) time. Since
at least half the elements of JC are eliminated at each iteration, the overall time
complexity of the procedure is O(n).



2.2 Relaxations and upper bounds 19
The solution of C (KP) can then be determined as
Xj=1 forjeJ1U{e e, ...,e,-1};
x; =0 forj € JOU {es41, ..., €, };

Xs=|c— E wix; | [ws.

JEN\{s}

2.2.3 Lagrangian relaxation

An alternative way to relax KP is through the Lagrangian approach. Given a non-
negative multiplier A, the Lagrangian relaxation of KP (L(KP. })) is

n n
maximize ijxj +A|c— ijxj

j=1 Jj=1
subject to  x; =0 or 1. j=1,...,n.

The objective function can be restated as

n
2(LKP . X)) =Y pixj + Ac, 2.11)
j=1
where p; = p; — Aw; forj =1, ..., n, and the optimal solution of L(KP, }) is easily
determined, in O(n) time, as
1 if ﬁj > 0,
X = _ (2.12)
0 if p~j < 0.

(When p; = 0, the value of %, is immaterial.) Hence, by defining J(X) =
{j :pj/w; > A}. the solution value of L(KP, }) is

Z(KP. )= Y pj+Ac.
JEJ(N)

For any A > 0, this is an upper bound on z(KP) which, however, can never
be better than the Dantzig bound U,. In fact (2.12) also gives the solution of the
continuous relaxation of L(KP , }), so

Z(L(KP. X)) = z(C(L(KP . X)) > z(C (KP)).



20 2 0-1 Knapsack problem

The value of A producing the minimum value of z(L(KP . X)) is A* = p;/w,. With
this value, in fact, we have p; > Oforj =1,... ,s —landp; < Oforj =s,...,n,
soJ(A\*) C{l,...,s —1}. Hence X; =X; for j € N\{s} (where (x;) is defined by
Theorem 2.1) and, from (2.11)~(2.12), z(L(KP. X)) = 5°:2'(p; — \*wj) + A"c =
z(C(KP)). Also notice that, for A = X\*. p;, becomes

* Ps
p; =pj _ij_s

; (2.13)
| p; | is the decrease which we obtain in z(L(KP.)*)) by setting ; = 1 — %,
and hence a lower bound on the corresponding decrease in the continuous solution
value (since the optimal A generally changes by imposing the above conditions).
The value of | p7 | will be very useful in the next sections.

Other properties of the Lagrangian relaxation for KP have been investigated
by Maculan (1983). See also Fisher (1981) for a general survey on Lagrangian
relaxations.

2.3 IMPROVED BOUNDS

In the present section we consider upper bounds dominating the Dantzig one,
useful to improve on the average efficiency of algorithms for KP. Because of this
dominance property, the worst-case performance ratio of these bounds is at most 2.
Indeed, it is exactly 2, as can easily be verified through series of examples similar
to that introduced for Uy, i.e. having p; = w; for all j (so that the bounds take the
trivial value c).

2.3.1 Bounds from additional constraints

Martello and Toth obtained the first upper bound dominating the Dantzig one, by
imposing the integrality of the critical variable x;.

Theorem 2.2 (Martello and Toth, 1977a) Let

s—1
—Ps+1
Ul = + {c J (2.14)
;pj Wei1
s—1 p
U1=ij+lps—(ws—5)ws_lJ, (2.15)
j=1 s—1

where s and T are the values defined by (2.8) and (2.9). Then



2.3 Improved bounds 21
(i) an upper bound on z(KP) is
U, =max (U°. UY; (2.16)

(ii) for any instance of KP, we have U, < Uj.

Proof. (i) Since x; cannot take a fractional value, the optimal solution of KP can
be obtained from the continuous solution X of C (KP) either without inserting item
s (i.e. by imposing x; = 0), or by inserting it (i.e. by imposing X; = 1) and hence
removing at least one of the first s — 1 items. In the former case, the solution value
cannot exceed U°, which corresponds to the case of filling the residual capacity ©
with items having the best possible value of p; /w; (i.e. ps1/wgs1). In the latter it
cannot exceed U, where it is supposed that the item to be removed has exactly
the minimum necessary value of w; (i.e. wy — ) and the worst possible value of
pj/wj (le ps—l/ws—l)-

(i) U < U, directly follows from (2.10), (2.14) and (2.7). To prove that
U'! < U, also holds, notice that p;/ws < ps_1/ws_1 (from (2.7)), and € < w;
(from (2.8), (2.9)). Hence

(T — wy) (p_s — ps_l) > 0.

W Ws_1

and, by algebraic manipulation,

el > b~ wy - o) Bt
Wy Ws—1

from which one has the thesis. [ ]

The time complexity for the computation of U, is trivially O (n), once the critical
item is known.

Example 2.1
Consider the instance of KP defined by

n =38,
(pj) = (15, 100, 90, 60, 40, 15, 10, 1),
w;) =(2, 20,20, 30, 40, 30, 60, 10),
¢ =102.

The optimal solution is x = (1, 1, 1, 1, 0, 1, 0, 0), of value z = 280. From (2.8)
we have s = 5. Hence



22 2 0-1 Knapsack problem

40
=265 0 —| =295.
Uy=2 +_3 20|
15
0
=265+ |30 — | = 280;
U +_ 30

60
U'=265+ 40— 10 §6J = 285;

U, =285. ]

The consideration on which the Martello and Toth bound is based can be
further exploited to compute more restrictive upper bounds than U,. This can
be achieved by replacing the values U® and U' with tighter values, say U ° and
U !, which take the exclusion and inclusion of item s more carefully into account.
Hudson (1977) has proposed computing U ! as the solution value of the continuous
relaxation of KP with the additional constraint x; = 1. Fayard and Plateau (1982)
and, independently, Villela and Bornstein (1983), proposed computing U © as the
solution value of C (KP) with the additional constraint x; = 0.

By defining ¢!(j) and ¢°(j) as the critical item when we impose, respectively,
xpi=1( >s)and x; =0 (j <), that is

k
¢'(j) = min {k:Zwi>c—wj}. (2.17)
i=1

k
o®(y=min Ck:> wi>cp. (2.18)
i=1
i#
we obtain
o%s)—1 o%s)-1 0
5 SRS | P o 2| e
j=1 J=1 Wols)
j#S j#s
o' (s)-1 o'(s)-1
_ i
T'=pi+ S pt|[c—w= 3 w|l2w| (2.20)
= i Wol(s)



2.3 Improved bounds 23

It is self-evident that:

@TO<U%andT' <U',s0 Us < Uy;
(b) the time complexity for the computation of Uj is the same as for U, and U,,
ie. O(n).

Example 2.1 (continued)
From (2.17)—(2.20) we have
10

0 770
55 =7. U"=280+ |0 —| =280;
) +log)

_ 60
c'(3)y=4. U'=40+205+ [20 %J = 285;

Us; =285.]

2.3.2 Bounds from Lagrangian relaxations

Other bounds computable in O(n) time can be described through the terminology
introduced in Section 2.2 for the Lagrangian relaxation of the problem. Remember
that z(C (KP)) = z(L(KP , A*)) and | p; | (see 2.13) is a lower bound on the decrease
of z(C(KP)) corresponding to the change of the jth variable from %; to 1 — X;.
Miiller-Merbach (1978) noted that, in order to obtain an integer solution from the
continuous one, either (a) the fractional variable x; alone has to be reduced to
0 (without any changes of the other variables), or (b) at least one of the other
variables, say X, has to change its value (from 1 to O or from O to 1). In case (a)
the value of z(C (KP)) decreases by Tp,/w;, in case (b) by at least | p; . Hence
the Miiller-Merbach bound

s—1

Us = max ij.max {[z(C&KP)—|p] || :J €N\{s}} | (2.21)

j=1

It is immediately evident that U, < U,. No dominance exists, instead, between Uy
and the other bounds. For the instance of example 2.1 we have U; = U, < Uy
(see below), but it is not difficult to find examples (see Miiller-Merbach (1978))
for which Uy < Uj; < U,.

The ideas behind bounds U;, U3 and U, have been further exploited by Dudzinski
and Walukiewicz (1984a), who have obtained an upper bound dominating all
the above. Consider any feasible solution ¥ to KP that we can obtain from the
continuous one as follows:

1. for each k € N\{s} do % :=xy;
2. X%, =0



24 2 0-1 Knapsack problem

3. for each k such that ¥,y =0 do
if wy <c— 30wk then % =1,

and define N = {j € N\{s} : & = 0} (% is closely related to the greedy solution,
discussed in Section 2.4). Noting that an optimal integer solution can be obtained
(a) by setting x; = 1 or (b) by setting x; = 0 and x; = 1 for at least one j € N, it
is immediate to obtain the Dudzinski and Walukiewicz (1984a) bound:

Us =max (min (U '.max {|z(C(KP)—p;]:j=1,...,5 — 1}),

min (U °, max {|z(C(KP))+p;]:j €N},
j=1

where U * and U ! are given by (2.19) and (2.20). The time complexity is O (n).

Example 2.1 (continued)
From (2.13), (p;*) = (13, 80, 70, 30, 0, —15, —50, —9). Hence:

Us =max (265, max {282, 215. 225. 265. 280. 245. 286}) = 286.
@&)=(, 1,1, 1.0, 1,0, 0);
Us =max (min (285, max {282. 215, 225. 265)}).

min (280, max {245. 286}). 280) = 282. [

2.3.3 Bounds from partial enumeration

Bound Uj of Section 2.3.1 can also be seen as the result of the application of the
Dantzig bound at the two terminal nodes of a decision tree having the root node
corresponding to KP and two descendent nodes, say NO and N1, corresponding
to the exclusion and inclusion of item s. Clearly, the maximum among the upper
bounds corresponding to all the terminal nodes of a decision tree represents a valid
upper bound for the original problem corresponding to the root node. So, if U °
and U ! are the Dantzig bounds corresponding respectively to nodes NO and N1,
U3 represents a valid upper bound for KP.

An improved bound, Us, can be obtained by considering decision trees having
more than two terminal nodes, as proposed by Martello and Toth (1988).

In order to introduce this bound, suppose s has been determined, and let r, ¢
be any two items such that 1 < r < s and s <t < n. We can obtain a feasible



2.3 Improved bounds 25

solution for KP by setting x; = 1 for j < r. x; = 0 for j > ¢ and finding
the optimal solution of subproblem KP(r.7) defined by items r.r +1..... t with
reduced capacity c(r) = ¢ — Zr.:ll w;. Suppose now that KP(r. ¢) is solved through

j
an elementary binary decision-tree which, for j =r.r+1..... t, generates pairs of

decision nodes by setting, respectively, x; = 1 and x; = 0; each node k (obtained,
say, by fixing x;) generates a pair of descendent nodes (by fixing x;,,) iff j < ¢ and
the solution corresponding to k is feasible. For each node k of the resulting tree,
let f (k) be the item from which £ has been generated (by setting xy4, = 1 or 0)
and denote with xj" (J =r,...,f(k)) the sequence of values assigned to variables
Xpoooo Xrky along the path in the tree from the root to k. The set of terminal nodes

(leaves) of the tree can then be partitioned into

Jf)

Ly=<1: ijle > c(r) (infeasible leaves)s®
j=r
Q)
Ly={1:f()=rtand Y wix/ <c(r) (feasible leaves).
j=r

For each I € L, U L,, let u; be any upper bound on the problem defined by (2.1),
(2.2) and

{x,- = x/ iftj e{r,....f(O}, 22

x;i=0o0r 1 ifjeN\{r,....f(D)}.

Since all the nonleaf nodes are completely explored by the tree, a valid upper
bound for KP is given by

Us=max {u : 1 € Ly ULy}. (2.24)
A fast way to compute u; is the following. Let p’ = Z;;llpj + ngr) pjx/. and
d' =|c(r) - ﬁlr) wjxj’ |; then
p! —dlMJ if 1€Ly;
i Wr—1
u = (225)
p’+dlp’”J if 1 €L,
i Wit

which is clearly an upper bound on the continuous solution value for problem (2.1),
(2.2), (2.23).

The computation of Ug requires O(n) time to determine the critical item and
define KP(r.t), plus O(2'~") time to explore the binary tree. If t+ — r is bounded
by a constant, the overall time complexity is thus O(n).



26 2 0-1 Knapsack problem

Example 2.1 (continued)

Assume r = 4 and t = 6. The reduced capacity is c(r) = 60. The binary tree is
given in Figure 2.1. The leaf sets are L, = {2.8}, L, = {4.5,9, 11, 12}. It follows
that Ug = 280, which is the optimal solution value. []

u4=280 u5=270 ug=215 u9=248 u11=225 u12=215

Figure 2.1 Binary tree for upper bound Uy of Example 2.1

The upper bounds at the leaves can also be evaluated, of course, using any of
the bounds previously described, instead of (2.25). If U; (k =1, ...,5) is used,
then clearly Ug < Uy; if (2.25) is used, then no dominance exists between Ug and
the Dudzinsky and Walukiewicz (1984a) bound, so the best upper bound for KP is

U = min (Us, Usg).
Ug can be strengthened, with very small extra computational effort, by evaluating

Wy =min {w; : j > r}. It is not difficult to see that, when ! € L, and d' < wy,, u
can be computed as

u; = max (p’, {p’ + Wny Prst (W — d’)pr—_lJ ) (2.26)

Wiyl Wy_1

Finally, we note that the computation of Ug can be considerably accelerated
by using an appropriate branch-and-bound algorithm to solve KP(r.7). At any
iteration of such algorithm, let Z(r.t) be the value of the best solution so far. For
any nonleaf node & of the decision-tree, let ; be an upper bound on the optimal
solution of the subproblem defined by items r,.... n with reduced capacity c(r),

i.e., the subproblem obtained by setting x; = 1 for j = 1,...,r — 1. u; can be
computed as an upper bound of the continuous solution value of the problem, i.e.



2.4 The greedy algorithm 27

f k) s(ky—1

uk—ijx + Z p;

J=fk)+1
fk) s(k)—1 p
+ c(r)— Zw,x + Z 25k , (2.27)

j=f)+1 Ws(k)

where s(k) = min (+ + 1, min {i : Zf(k)wjxj" + Zj' —fn Wi > e If we

have u; < z(r,t), the nodes descending from k£ need not be generated In fact,
for any leaf / descending from k, it would result that u; < 5’7 j=1 pj +u; <

S5 b +2KP(r,1) < Us.

Example 2.1 (continued)

Accelerating the computation through (2.27), we obtain the reduced branch-decision
tree of Figure 2.2. ]

us=50

Z(r )=75

Figure 2.2 Branch-and-bound tree for upper bound Us of Example 2.1

24 THE GREEDY ALGORITHM

The most immediate way to determine an approximate solution to KP exploits
the fact that solution X of the continuous relaxation of the problem has only one
fractional variable, X; (see Theorem 2.1). Setting this variable to O gives a feasible



28 2 0-1 Knapsack problem

solution to KP of value

We can expect that z’ is, on average, quite close to the optimal solution value z.
In fact z’ <z < Uy <z’ +py, i.e. the absolute error is bounded by p;. The worst-
case performance ratio, however, is arbitrarily bad. This is shown by the series of
problems with n =2. py =w; = 1. pp =w; =k and ¢ =k, for which z’ = 1 and
z =k, so the ratio z’/z is arbitrarily close to O for k sufficiently large.

Noting that the above pathology occurs when p; is relatively large, we can obtain
an improved heuristic by also considering the feasible solution given by the critical
item alone and taking the best of the two solution values, i.e.

z" = max (z/, py). (2.28)

The worst-case performance ratio of the new heuristic is % We have already noted,
in fact, that z < z’ + p;, so, from (2.28), z < 2z". To see that % is tight, consider
the series of problems withn =3. py =w,; =1. p, =w;, =p3 =ws3 =k and ¢ = 2k:
we have z" =k + 1 and z = 2k, so z"/z is arbitrarily close to % for k sufficiently
large.

The computation of z* requires O(n) time, once the critical item is known. If
the items are sorted as in (2.7), a more effective algorithm is to consider them
according to increasing indices and insert each new item into the knapsack if it
fits. (Notice that items 1,....s — 1 are always inserted, so the solution value is
at least z’.) This is the most popular heuristic approach to KP, usually called the
Greedy Algorithm. Again, the worst-case performance can be as bad as O (take for
example the series of problems introduced for z’), but can be improved to % if
we also consider the solution given by the item of maximum profit alone, as in
the following implementation. We assume that the items are ordered according to
(2.7).

procedure GREEDY:

input: n.c.(p;). (w));
output: z¢. (x;);

begin
¢ =c;
z8 =0
Jjri=1,;
forj :=1ton do
begin
if w; >cthenx; :=0
else

begin
Xj =1,



2.5 Branch-and-bound algorithms 29

C:=cC—Ww;
z8 :==z8 +p;
end;
if p > pj- then j* =
end;
if pj+ > z¢ then
begin
z8 1= pjs;
forj :=1ton dox; :=0;
X+ =1
end
end.

The worst-case performance ratio is 3 since: (a) pj« > ps, s0 z8 > z"; (b) the
series of problems introduced for z# proves the tightness. The time complexity is
O (n), plus O(nlogn) for the initial sorting.

For Example 2.1 we have z’ = z = 265 and z¢ = 280, which is the optimal
solution value since Ug = 280.

When a 0-1 knapsack problem in minimization form (see Section 2.1) is
heuristically solved by applying GREEDY to its equivalent maximization instance,
we of course obtain a feasible solution, but the worst-case performance is not
preserved. Consider, in fact, the series of minimization problems with n =3. p; =
wy=k. pp=wp =1 p3 =ws =k and g = 1, for which the optimal solution
value is 1. Applying GREEDY to the maximization version (with ¢ = 2k), we
get z8 = k + 1 and hence an arbitrarily bad heuristic solution of value £ for the
minimization problem.

Other approximate algorithms for KP are considered in Section 2.8.

2.5 BRANCH-AND-BOUND ALGORITHMS

The first branch-and-bound approach to the exact solution of KP was presented by
Kolesar (1967). His algorithm consists of a highest-first binary branching scheme
which: (a) at each node, selects the not-yet-fixed item j having the maximum profit
per unit weight, and generates two descendent nodes by fixing x;, respectively, to
1 and O; (b) continues the search from the feasible node for which the value of
upper bound U, is a maximum.

The large computer memory and time requirements of the Kolesar algorithm
were greatly reduced by the Greenberg and Hegerich (1970) approach, differing
in two main respects: (a) at each node, the continuous relaxation of the induced
subproblem is solved and the corresponding critical item § is selected to generate
the two descendent nodes (by imposing x; = 0 and x; = 1); (b) the search continues
from the node associated with the exclusion of item § (condition x; = 0). When
the continuous relaxation has an all-integer solution, the search is resumed from
the last node generated by imposing x; = 1, i.e. the algorithm is of depth-first type.

Horowitz and Sahni (1974) (and, independently, Ahrens and Finke (1975))



30 2 0-1 Knapsack problem

derived from the previous scheme a depth-first algorithm in which: (a) selection of
the branching variable x; is the same as in Kolesar; (b) the search continues from
the node associated with the insertion of item j (condition x; = 1), i.e. following a
greedy strategy.

Other algorithms have been derived from the Greenberg—Hegerich approach
(Barr and Ross (1975), Lauriere (1978)) and from different techniques (Lageweg
and Lenstra (1972), Guignard and Spielberg (1972), Fayard and Plateau (1975),
Veliev and Mamedov (1981)). The Horowitz—Sahni one is, however, the most
effective, structured and easy to implement, and has constituted the basis for several
improvements.

2.5.1 The Horowitz—Sahni algorithm

Assume that the items are sorted as in (2.7). A forward move consists of
inserting the largest possible set of new consecutive items into the current
solution. A backtracking move consists of removing the last inserted item from
the current solution. Whenever a forward move is exhausted, the upper bound
U, corresponding to the current solution is computed and compared with the best
solution so far, in order to check whether further forward moves could lead to
a better one: if so, a new forward move is performed, otherwise a backtracking
follows. When the last item has been considered, the current solution is complete
and possible updating of the best solution so far occurs. The algorithm stops when
no further backtracking can be performed.
In the following description of the algorithm we use the notations

(X;) = current solution;

n
Z = current solution value (: > pj)?j) ;
j=1

(9
1}

n
current residual capacity (: c— ij)?j);
Jj=1

(xj) = best solution so far;

n
z = value of the best solution so far <= pjxj) .
J=1

procedure HS:
input: n.c. (p;).(w));
output: z. (x;);

begin
1. [initialize]
z:=0;

Z:=0;



2.5 Branch-and-bound algorithms

¢ :=c;
Pn+1:=0;
Wpy1 = +0C;
j =1

2. [compute upper bound U]
find r =min {i : Z;::;’ wi > C};

u = ,';,-l pi + | (€ — 2_,-1 wipr [wr];

if z > Z + u then go to 5;
3. [perform a forward step]
while w; < ¢ do

begin
C:=C—wj;
Z:=7+pj;
fj = 1;
Jji=j+1

end;

if j < n then

begin
fj Z=0;
ji=j+1

end;

if j < n then go to 2;
if j = n then go to 3;
4. [update the best solution so far]
if Z > z then
begin
z =2,
fork :=1ton dox, =%
end;
j=n,
if X, =1 then

end;
5. [backtrack]
find i =max {k <j: &% =1};
if no such i then return ;

C:=C+w;
Z:=2—-pi;
X =0;
ji=i+1;
goto 2

end.

31



32

2 0-1 Knapsack problem

Example 2.2

Consider the instance of KP defined by

n =17,
(pj) =70, 20, 39, 37, 7, 5, 10);
(w;) =(31,10, 20, 19, 4, 3, 6);
¢ =50.

Figure 2.3 gives the decision-tree produced by procedure HS. []

Several effective algorithms have been obtained by improving the Horowitz—
Sahni strategy. Mention is made in particular of those of Nauss (1976) (with Fortran
code available), Martello and Toth (1977a) (with Fortran code in Martello and Toth
(1978) and Pascal code in Syslo, Deo and Kowalik (1983)), Suhl (1978), Zoltners
(1978).

We describe the Martello—Toth algorithm, which is generally considered highly
effective.

2.5.2 The Martello-Toth algorithm

The method differs from that of Horowitz and Sahni (1974) in the following main
respects (we use the notations introduced in the previous section).

(1)
(ii)

(iii)

Upper bound U, is used instead of Uj.

The forward move associated with the selection of the jth item is split into two
phases: building of a new current solution and saving of the current solution.
In the first phase the largest set N; of consecutive items which can be inserted
into the current solution starting from the jth, is defined, and the upper bound
corresponding to the insertion of the jth item is computed. If this bound is
less than or equal to the value of the best solution so far, a backtracking move
immediately follows. If it is greater, the second phase, that is, insertion of the
items of set N; into the current solution, is performed only if the value of
such a new solution does not represent the maximum which can be obtained
by inserting the jth item. Otherwise, the best solution so far is changed, but
the current solution is not updated, so useless backtrackings on the items in
N; are avoided.

A particular forward procedure, based on dominance criteria, is performed
whenever, before a backtracking move on the ith item, the residual capacity ¢
does not allow insertion into the current solution of any item following the /th.
The procedure is based on the following consideration: the current solution
could be improved only if the ith item is replaced by an item having greater
profit and a weight small enough to allow its insertion, or by at least two items
having global weight not greater than w; + ¢. By this approach it is generally
possible to eliminate most of the useless nodes generated at the lowest levels
of the decision-tree.



2.5 Branch-and-bound algorithms 33

z=102 z=105 z=107
x=(1.1,0.0.1.1.0) x=(1.1.0.0.0.1.1) x=(1,0,0.1.0.0,0)

Figure 2.3 Decision-tree of procedure HS for Example 2.2

(iv) The upper bounds associated with the nodes of the decision-tree are computed
through a parametric technique based on the storing of information related to
the current solution. Suppose, in fact, that the current solution has been built
by inserting all the items from the jth to the rth: then, when performing a
backtracking on one of these items (say the ith, j < { < r), if no insertion
occurred for the items preceding the jth, it is possible to insert at least items
i+1..... r into the new current solution. To this end, we store in 7;, p; and



34 2 0-1 Knapsack problem

w; the quantities r +1, %, _. px and Y, wy, respectively, for i = j, ... ,r,
and in 7 the value r — 1 (used for subsequent updatings).

Detailed description of the algorithm follows (it is assumed that the items are
sorted as in (2.7)).

procedure MT1:
input: n.c.(p;). (w));
output: z. (x;);
begin
1. [initialize]
z :=0;
z2:=0;
¢ =c;
Pn+1 = 0;
Wnatt := +0C;
fork :=11to ndo i, :=0;
compute the upper bound U = U, on the optimal solution value;

w; =0;

P, =0

T =1;

F=n;

for k :=nto1 step —1 do compute ny = min {w; : i > k};
j=1;

2. [build a new current solution]
while w; > ¢ do
ifz > 2+ |Cpj+1/wjs1] thengoto5 elsej =) +1;
find r=min {i :W; + 3, - w >¢};
/ — r—1
P =Pt 2 u=r, Pl
w' =W, + Z;;% Wi
if r < nthen u :=max (|(C — W)p,r+1/Wrs1],
IPr —(wr — (¢ — W’))Pr—l/Wr—l_J)
else u :=0;
ifz>2Z+p'+uthengoto5;
if u = 0 then go to 4;
3. [save the current solution]

¢=C¢—w;

Z:=2+p';

fork :=jtor —1do % :=1;

—W—j 2=W’;

pj =p’;

rj=r,

fork:=j+1tor —1do
begin

Wi = Wi — We_1;
Pk = Pr-1 — Pk-1,
Fk =r



2.5 Branch-and-bound algorithms

end;
for k :=r to 7 do
begin
wy = 0;
Py =0;
T =k
end;
Fi=r—1;
Jji=r+1;
if ¢ > m;_, then go to 2;
if z > Z then go to 5;
p' =0
4. [update the best solution so far]
z:=Z+p’;

fork :=1toj — 1 do x; := Xx;
fork:=jtor —1dox :=1;
fork :=rtondox :=0;
if z = U then return ;

5. [backtrack]
find i =max {k <j: % =1};
if no such ; then return,

¢ :=C+w;

Z2:=7—pi;

X =0

ji=i+1;

if C —w; > m; then go to 2;
J =1,

h =1,

6. [try to replace item i with item 4]
h:=h+1;
if z> 7%+ |Cpy/wn| then go to 5;
if w, =w; then go to 6;
if w, > w; then

begin
if w, >¢ or z > 7 +p, then go to 6;
z:=Z+pp;
fork :=1ton do x; := Xi;
xp =1
if z = U then return;
i:=h;
go to 6

end

else

begin
if ¢ — wy, < my then go to 6;
C:=0C— wy;
V4 2=f+ph;
xp = 1;

h+1;

~.



36 2 0-1 Knapsack problem

Wy .= Wy,
ﬁh ‘= DPh;
Fpi=h+1; ?
fork:=h+1toFdo
begin
wy = 0;
Py =0;
Fk =k
end;
F:=h,
go to 2

end
end.

The Fortran code corresponding to MT1 is included in the present volume. In
addition, a second code, MT1R, is included which accepts on input real values for
profits, weights and capacity.

Example 2.2 (continued)

Figure 2.4 gives the decision-tree produced by procedure MT1. []

Branch-and-bound algorithms are nowadays the most common way to effectively
find the optimal solution of knapsack problems. More recent techniques imbed
the branch-and-bound process into a particular algorithmic framework to solve,
with increased efficiency, large instances of the problem. We describe them in
Section 2.9.

The other fundamental approach to KP is dynamic programming. This has been
the first technique available for exactly solving the problem and, although its
importance has decreased in favour of branch-and-bound, it is still interesting
because (a) it usually beats the other methods when the instance is very hard
(see the computational results of Section 2.10.1), and (b) it can be successfully
used in combination with branch-and-bound to produce hybrid algorithms for KP
(Plateau and Elkihel, 1985) and for other knapsack-type problems (Martello and
Toth (1984a), Section 4.2.2).

2.6 DYNAMIC PROGRAMMING ALGORITHMS

Given a pair of integers m (1 < m < n) and ¢ (0 < ¢ < ¢), consider the sub-
instance of KP consisting of items 1,...,m and capacity ¢. Let f,,(¢) denote its
optimal solution value, i.e.

fu@=max ¢ pixi: Y wixy<eé x=0o0r1forj=1...mj. (229
j=1 j=1



2.6 Dynamic programming algorithms 37

z=105%
x={11.0,0,011)

z=102
x=01,100110)

Figure 2.4 Decision-tree of procedure MT1 for Example 2.2

We trivially have

s 0 foré¢=0,...,w—1;
f1@) =

p1 for¢=w;, ... .c.

Dynamic programming consists of considering n stages (for m increasing from
1 to n) and computing, at each stage m > 1, the values f,,(¢) (for ¢ increasing
from O to ¢) using the classical recursion (Bellman, 1954, 1957; Dantzig, 1957):



38 2 0-1 Knapsack problem

fn—1(8) forc=0,...,w, —1;
Jm(C) =

max (fru—1(&).frm—1(¢ — Wp) +pm) foré=w,, ..., c.

We call states the feasible solutions corresponding to the f,,(¢) values. The optimal
solution of the problem is the state corresponding to f;,(c).

Toth (1980) directly derived from the Bellman recursion an efficient procedure
for computing the states of a stage. The following values are assumed to be defined
before execution for stage m:

Vv = min mz_:le.c : (2.30)
j=1

p=2m"1 (2.31)

P; =f,_1(0). forc=0,...,v; (2.32)

Xe ={Xm_1.Xm—2..... X1}, foré¢ =0, ...,v. (2.33)

where x; defines the value of the jth variable in the partial optimal solution
corresponding to f,,_(¢), i.e.

m—1 m—1
¢ = ijxj and fm_1(6)= ijxj.
j=1 j=1

From a computational point of view, it is convenient to encode each set X» as a
bit string, so this notation will be used in the following. After execution, values
(2.30) to (2.33) are relative to stage m.

procedure REC1:
input: v.b.(P:). (Xe) Wi . P
output: v.b.(P:). (Xz);

begin
if v < c then
begin
u:=v;

vi:=min (v +w,.c);
for¢c .=u+1tovdo

begin
Py :=P,;
X@ = Xu
end

end;
for ¢ :=v to w,, step —1 do
if P < P;_y,, +pm then
begin



2.6 Dynamic programming algorithms 39

Pé‘—w,,, + Pm;
X@—w,,, +b

P@ =
X@ =
end;

An immediate dynamic programming algorithm for KP is thus the following.

procedure DP1:

input: n.c.(p;). (wj);
output: z. (x;);

begin
for¢c .=0tow; — 1do
begin
Pg- = 0;
X@ =0
end;
vV i=wp;
b :=2;
Pv =P _
X, =1;
m =2 to n do call REC1;

for

I
v

z =rg
determine (x;) by decoding X,
end.

Procedure RECI requires O(c) time, so the time complexity of DP1 is O (nc).
The space complexity is O(nc). By encoding X; as a bit string in computer words
of d bits, the actual storage requirement is (1 + [n/d|)c, where [a] is the smallest
integer not less than a.

2.6.1 Elimination of dominated states

The number of states considered at each stage can be considerably reduced by
eliminating dominated states, that is, those states (P;,X;) for which there exists a
state (P,.X,) with P, > P; and y < ¢. (Any solution obtainable from (P;. X;) can
be obtained from (P, X,).) This technique has been used by Horowitz and Sahni
(1974) and Ahrens and Finke (1975). The undominated states of the mth stage can
be computed through a procedure proposed by Toth (1980). The following values
are assumed to be defined before execution of the procedure for stage m:

s =number of states at stage (m — 1); (2.34)
b=2m"1 (2.35)

W 1, = total weight of the ith state (i =1, ... ,s); (2.36)



40 2 0-1 Knapsack problem

P1; = total profit of the ith state (i =1, ... ,s); (2.37)

Xli={xp_1.x%pn_2,....x1}. fori=1,...,s. (2.38)

where x; defines the value of the jth variable in the partial optimal solution of the
ith state, 1.e.

m—1 m—1
W1l=> wx, and Pli=)» pux.
j=1 j=1

Vector W1 (and, hence, P1) is assumed to be ordered according to strictly
increasing values.

The procedure uses index i to scan the states of the current stage and index k
to store the states of the new stage. Each current state can produce a new state of
total weight y = W1, +w,,, so the current states of total weight W1, < y, and then
the new state, are stored in the new stage, but only if they are not dominated by
a state already stored. After execution, values (2.34) and (2.35) are relative to the
new stage, while the new values of (2.36), (2.37) and (2.38) are given by (W 2;),
(P2;) and (X 2;), respectively. Sets X 1, and X 2, are encoded as bit strings. Vectors
(W2;) and (P2;) result ordered according to strictly increasing values. On input,
it is assumed that W1y =Ply=X15=0.

procedure REC2:

input: s.b. (W 1;).(P1;).(X1,). W. pm. C;
output: s. b, (W2,), (P2;). X2);

begin

X20 =0;
while min (y. W1,) <c do
if W1, <y then
begin
comment: define the next state (p, x);
p =Plp;
x:=X1;;
if W1, =y then
begin
if P1, + p,, > p then
begin
p :=P1i +Pm;



2.6 Dynamic programming algorithms 41

X 2=X1,'+b
end;
I :=i+1;
y=WI+w,

end;

comment: store the next state, if not dominated;
ifp > P2, then

begin
k=k+1;
W2k =W lh;
P2, :=p;
sz =X
end;
h=h+1
end
else
begin

comment: store the new state, if not dominated;
it P1;, +p,, > P2, then

begin
k=k+1;
W2, =y;
P2, =Pl; +pn;
X2k :=X1i+b
end;
=1+ 1;
y =W1l, +wy,
end;
s :=k;
b:=2b

A dynamic programming algorithm using REC2 to solve KP is the following.

procedure DP2:

input: n.c.(p;). w;);
output: z. (x;);

begin

Wiy :=0;
Ply:=0;
Xl() I=O;
s:=1;

b =2;
W1 :=wy;
P1;:=py;
X1, :=1;

form :=2ton do
begin



Py

42 2 0-1 Knapsack problem

call REC2;
rename W2.P2 and X2 as W1,P1 and X 1, respectively
end;
z:=Plyg;
determine (x;) by decoding X 1

end.

The time complexity of REC2 is O (s). Since s is bounded by min (2" — 1, ¢), the
time complexity of DP2 is O (min (2"*', nc)).

Procedure DP2 requires no specific ordering of the items. Its efficiency, however,
improves considerably if they are sorted according to decreasing p; /w; ratios since,
in this case, the number of undominated states is reduced. Hence, this ordering is
assumed in the following.

Example 2.3
Consider the instance of KP defined by

n =6;
(pj) = (50, 50, 64, 46, 50, 5);
(wj) = (56, 59, 80, 64, 75, 17);

¢ = 190.

Figure 2.5 gives, for each stage m and for each undominated state i, the values
W;.P;, corresponding, in DP2, alternatively to W 1;, P1; and W 2;, P2;. The optimal

solution, of value 150, is (x;) = (1.1.0,0, f 0). For the same example, procedure
DP1 generates 866 states. [ ]

m =1 m=2 m =3 m=4 m=>5
Wi Pi Wl Pl Wi Pl Wi Pl Wi Pl Wl P:

-~

0 0 0 0 0 0 0 0 0 0 0 0 0
1 56 50 56 50 56 50 56 50 56 50 17 5
2 115 80 64 80 64 80 64 56 50
3 115 100 115 100 115 100 73 55
4 136 114 136 114 136 114 80 64
5 179 146 179 146 97 69
6 190 150 115 100
7 132 105
8 136 114
9 153 119
10 179 146
11 190 150

Figure 2.5 States of procedure DP2 for Example 2.3



2.6 Dynamic programming algorithms 43
2.6.2 The Horowitz—Sahni algorithm

Horowitz and Sahni (1974) presented an algorithm based on the subdivision of the
original problem of n variables into two subproblems, respectively of g = [n/2]
and r = n — g variables. For each subproblem a list containing all the undominated
states relative to the last stage is computed; the two lists are then combined in
order to find the optimal solution.

The main feature of the algorithm is the need, in the worst case, for two lists
of 29 — 1 states each, instead of a single list of 2” — 1 states. Hence the time and
space complexities decrease to O (min (2"/2 . nc)), with a square root improvement
in the most favourable case. In many cases, however, the number of undominated
states is much lower than 2"/2, since (a) many states are dominated and (b) for n
sufficiently large, we have, in general, ¢ < 2"/2,

Ahrens and Finke (1975) proposed an algorithm where the technique of Horowitz
and Sahni is combined with a branch-and-bound procedure in order to further
reduce storage requirements. The algorithm works very well for hard problems
having low values of n and very high-values of w; and c, but has the disadvantage
of always executing the branch-and-bound procedure, even when the storage
requirements are not excessive.

We illustrate the Horowitz—Sahni algorithm with a numerical example.

Example 2.3 (continued)

We have g = 3. The algorithm generates the first list for m =1, 2, 3, and the second
for m = 4, 5, 6. The corresponding undominated states are given in Figure 2.6.
Combining the lists corresponding to m = 3 and m = 6 we get the final list of
Figure 2.5. ]

m =1 m =72 m =3 m=06 m=5 m=4
i W;P, W, P, W, P; w; P, W;P;, W,;P,;
0 00 0 0 0 O 0 O 00 00
1 5650 56 50 56 50 17 5 64 46 64 46
2 115 100 80 64 64 46 75 50
3 115 100 75 50 139 96
4 136 114 81 51
5 92 55
6 139 96
7 156 101

Figure 2.6 States of the Horowitz—Sahni algorithm for Example 2.3



44 2 0-1 Knapsack problem
2.6.3 The Toth algorithm

Toth (1980) presented a dynamic programming algorithm based on (a) the
elimination of useless states and (b) a combination of procedures REC1 and REC2.

Several states computed by REC1 or REC2 are of no use for the following stages
since, of course, we are only interested in states capable of producing, at the final
stage, the optimal solution. Useless states produced by REC1 can be eliminated by
the following rule:

If a state, defined at the mth stage, has a total weight W satisfying one of the
conditions

1 W<e- ij.

J=m+1

(11) c —minm<an{Wj} <W <ec.

then the state will never produce P. and, hence, can be eliminated.

A similar rule can be given for REC2 (in this case, however, it is necessary to
keep the largest-weight state satisfying (i)), and the last, i.e. sth, state. The rule
cannot be extended, instead, to the Horowitz—Sahni algorithm, since, in order to
combine the two lists, all the undominated states relative to the two subproblems
must be known.

Example 2.3 (continued)

The states generated by DP2, with REC2 improved through the above elimination
rule, are given in Figure 2.7. []

1 m=2 m=3 m=4 m=5 m=6
] W, P, W, P, W, P, W, P, W, P, W, P,

0 0 0 0 0 0 0 0 0 0 0 0 0
1 56 50 56 50 56 50 80 64 136 114 190 150
2 115 100 80 64 115 100 190 150

3 115 100 136 114

4 136 114 179 146

Figure 2.7 States of the improved version of DP2 for Example 2.3

Algorithm DP2 is generally more efficient than DP1, because of the fewer
number of states produced. Notice however that, for the computation of a single
state, the time and space requirements of DP2 are higher. So, for hard problems,
where very few states are dominated, and hence the two algorithms generate almost
the same lists, DP1 must be preferred to DP2. A dynamic programming algorithm
which effectively solves both easy and hard problems can thus be obtained by
combining the best characteristics of the two approaches. This is achieved by using



2.7 Reduction algorithms 45

procedure REC2 as long as the number of generated states is low, and then passing
to RECI. Simple heuristic rules to determine the iteration at which the procedure
must be changed can be found in Toth (1980).

2.7 REDUCTION ALGORITHMS

The size of an instance of KP can be reduced by applying procedures to fix the
optimal value of as many variables as possible. These procedures partition set
N={1.2..... n} into three subsets:

J1={j € N :x; =1 in any optimal solution to KP},
JO={j € N :x; =0 in any optimal solution to KP},

F =N\(J1UJO).

The original KP can then be transformed into the reduced form

maximize z = E piXxj +p
JEF

subject to Z wix; < ¢,
JEF

x; =0 or 1. J €EF,

where p=5 ", pj, E=C— ) c; W

Ingargiola and Korsh (1973) proposed the first method for determining J 1 and
JO. The basic idea is the following. If setting a variable x; to a given value b
(b = 0 or 1) produces infeasibility or implies a solution worse than an existing one,
then x; must take the value (1 — /) in any optimal solution. Let / be the value of
a feasible solution to KP, and, for j € N, let uj1 (resp. uJQ) be an upper bound for
KP with the additional constraint x; = 1 (resp. x; = 0). Then we have

J1={j €N :u <1I}, (2.39)

JO={j eN :ul <I}. (2.40)

In the Ingargiola—Korsh algorithm, uj1 and ujQ are computed using the Dantzig
bound. Let s be the critical item (see Section 2.2.1) and U, the Dantzig bound for
the original problem. Then ujl = U, for any j < s and ujo = U, for any j > s.
Hence values j > s (resp. j < s) need not be considered in determining J 1 (resp.
J0), since U; > [. The algorithm initializes / to Zj.z_ll p; and improves it during
execution. It is assumed that the items are ordered according to (2.7). Remember

that o!'(j) and o °(j) represent the critical item when it is imposed, respectively,



46 2 0-1 Knapsack problem
x; =1 and x; =0 (see (2.17) and (2.18)).
procedure IKR:

input: n,c.(p;), w));
output: / 1.J0;

begin
J1:=9;
JO :=@; .
determine s =min {j : >/, w; > c};
. -1_ .
[ = st'=1 Pjs
forj :=1tos do
begin
determine ¢°(j) and compute u);
[ :=max (I. Zfi(lj)"lp,-);
i#j
if ud < [ thenJ1:=J1U{j}
end;
forj :=s ton do
begin
determine ¢'(j) and compute u}';
[=max (1 + X007 o),
if u! </thenJj0:=J/0U{;}
end
end.

Notice that the variables corresponding to items in J1 and JO must take the
fixed value in any optimal solution to KP, thus including the solution of value
[ when this is optimal. However, given a feasible solution ¥ of value /, we are
only interested in finding a better one. Hence stronger definitions of J 1 and J 0 are
obtained by replacing strict inequalities with inequalities in (2.39), (2.40), i.e.

J1={j €N :u) <I}, (2.41)
JO={j €N :ul <lI}. (2.42)

If it turns out that the reduced problem is infeasible or has an optimal solution less
than /, then ¥ is the optimal solution to the original problem.

Example 2.4

We use the same instance as in Example 2.2, whose optimal solution, of value 107,
isx=(1,0,0.1,0.0,0):



2.7 Reduction algorithms 47

n =17,
(pj) =0, 20, 39,37, 7, 5, 10);
w;) =31, 10, 20,19, 4, 3, 6);
c =50.

Applying procedure IKR we get:

s=13, [ =90,

j=1: ul=97.  1=96
j=2: ud)=107;

j=3: u=107;

j=3: u =106

j=4: wu =107, =107
j=5: uj=106;

j=6: ui=106;

j=7: u =105,

soJ1=@, J0={56,7}.0J

In order to use definitions (2.41), (2.42) it is simply necessary to replace the
< sign with < in the two tests of procedure IKR. With this modification we get
J1 =0, JO={45.6.7}). The optimal solution value of the reduced problem is
then 90, implying that the feasible solution of value / = 107 is optimal. (Notice
that it is worth storing the solution vector corresponding to / during execution.)

Recently, Murphy (1986) erroneously claimed that definitions (2.41), (2.42)
of J1 and JO are incorrect. Balas, Nauss and Zemel (1987) have pointed out its
mistake.

The time complexity of the Ingargiola—Korsh procedure is O (n?), since O(n)
time is required for each ¢°(j) or ¢!(j) computation (although one can expect
that, on average, these values can be determined with few operations, starting from
s). The time complexity does not change if ujo and uj1 are computed through one
of the improved upper bounding techniques of Section 2.3.

An O(n) reduction algorithm has been independently obtained by Fayard and
Plateau (1975) and Dembo and Hammer (1980). The method, FPDHR, computes
uj0 and uj1 through the values p” = p; — w;p,/wy (see (2.13)). Recalling that | p; |
represents a lower bound on the decrease of z(C (KP)) corresponding to the change
of the jth variable from X; to 1 — X;, we have



48 2 0-1 Knapsack problem
u;) = [z2(C(KP)) - p;]. j=1,....s;

w = z(C(KPY)+p/].  j=s,....n

which are computed in constant time, once z(C (KP)) is known. It is easy to see
that the values uJQ and uj1 obtained in this way are not lower than those of procedure
IKR, so the method is generally less effective, in the sense that the resulting sets
J0 and J 1 have smaller cardinality.

O (n?) reduction algorithms more effective than the Ingargiola-Korsh method
have been obtained by Toth (1976), Lauriere (1978) and Fayard and Plateau (1982).

An effective reduction method, still dominating the Ingargiola—Korsh one, but
requiring O (nlogn) time, has been proposed by Martello and Toth (1988). The
algorithm differs from procedure IKR in the following main respects:

(a) u and u}' are computed through the stronger bound U»;

(b) J1 and JO are determined at the end, thus using the best heuristic solution
found;

(c) at each iteration, upper bound and improved heuristic solution value are
computed in O (logn) time by initially defining w; = _/_ w; andp, = 3"/, pi
(j =1, ... ,n) and then determining, through binary search, the current critical
item 5 (i.e. 6%(j) or o' ())).

The procedure assumes that the items are ordered according to (2.7) and that
Pj/Wj = —0oC lf] < 1 ,pj/Wj=+OC lf] > n.

procedure MTR:

input: n.c.(p;), w));
output: /1.J0./;

begin
for j := 0 to n do compute p; = ,.jzlp,- and w; = Zijzl Wi;
find, through binary search, s such that w_; < ¢ < wy;
[P0
C:=C—W,_q;

forj =s+1tondo
if w; < ¢ then

begin
[ =1+pj;
Cc =C — Wj
end;
forj :=1tos do
begin

find, through binary search, s such that
Wi < c+w < Wi
ci=c+w — Wiy,



2.7 Reduction algorithms 49
ujo :=Pps_; — pj + max (|cpse1/Wse1] .
B | pr — (W5 — O)ps_1 /ws_1));
[:==max (I.p-_, —pj)
end;
forj :=s5 ton do
begin
find, through binary search, 5 such that
Wi <¢c—w; < Wy,
c:=c — W - Ws_1;
u! :=Pps_y +pj+max (|Tps /wsei]. [ps — s — O)ps—_1/ws_1 ]);
[:==max (I.ps_, +p))
end;
Jl={j<s:u) <lI}
JO:={j>s:ul <lI}
end.

Example 2.4 (continued)

Applying procedure MTR we have
(p;) = (0, 70, 90, 129, 166, 173, 178, 188);

w;)=(0, 31, 41, 61, 80, 84, 87, 93),
§=3,1=90,c=09;

[ =102, ¢=2;
j=1: 5=57¢= lLul= 97
j=2: 5=3,2=19,u) =107,
j=3: 5=4,¢= 9,u=107;
j=3: 5=1,=30,u3 = 99;
=4: 5=2,c= 0,u; =107,1 =107,
j=5: s=3,c= 5,u51=106;
j=6: 5=3,c= 6,ui =106
j=7: 5=3,¢= 3,u =105;

J1=1{1,2,3}, J0=1{3,456 7).

The reduced problem is infeasible (x3 is fixed both to 1 and to 0 and, in addition,
Y ies1 Wi > ©), so the feasible solution of value 107 is optimal. []

Procedure MTR computes the initial value of / through the greedy algorithm.
Any other heuristic, requiring no more than O (nlogn) time, could be used with no
time complexity alteration.

The number of fixed variables can be further increased by imposing conditions
(2.5), (2.6) to the reduced problem, i.e. setting JO = JOU {j € F : w; >



50 2 0-1 Knapsack problem

¢ —Yjenwitand, if . w; <=3 i, w;, J1 = J1UF. In addition,
the procedure can be re-executed for the items in F' (since the values of ujp and

ujl relative to the reduced problem can decrease) until no further variable is fixed.
This, however, would increase the time complexity by a factor n, unless the number
of re-executions is bounded by a constant.

2.8 APPROXIMATE ALGORITHMS

In Section 2.4 we have described the greedy algorithm, which provides an
approximate solution to KP with worst-case performance ratio equal to %, in time
O (n) plus O(n log n) for the initial sorting. Better accuracy can be obtained through
approximation schemes, which allow one to obtain any prefixed performance
ratio. In this section we examine polynomial-time and fully polynomial-time
approximation schemes for KP. Besides these deterministic results, the probabilistic
behaviour of some approximate algorithms has been investigated. A thorough
analysis of probabilistic aspects is outwith the scope of this book. The main results
are outlined in Section 2.8.3 and, for the subset-sum problem, in Section 4.3.4. (The
contents of such sections are based on Karp, Lenstra, McDiarmid and Rinnooy Kan
(1985).)

2.8.1 Polynomial-time approximation schemes

The first approximation scheme for KP was proposed by Sahni (1975) and makes
use of a greedy-type procedure which finds a heuristic solution by filling, in order
of decreasing p; /w; ratios, that part of ¢ which is left vacant after the items of a
given set M have been put into the knapsack. Given M C N and assuming that
the items are sorted according to (2.7), the procedure is as follows.

procedure GS:
input: n.c.(pj).(w;).M;

output: z¢ . X ;

begin
z8 :=0;
¢=c— ZjeM Wi
X =0,

forj :=1ton do
ifj ¢ M and w; < ¢ then

begin
z8 == z8 + pj;
¢ =0 —wj;
X =X U{j}
end

end.



2.8 Approximate algorithms 51

Given a non-negative integer parameter k, the Sahni scheme S(k) is

procedure S(k):
input: n.c. (pj), W));
output: z" X*;

begin
zh = 0;
foreach M C {1..... n} suchthat [M|<kand ), w; <cdo
begin
call GS;
if 28 + 3y pj > 2" then
begin
zh =28 + jem Pis
Xt =XUM
end
end
end.

Since the time complexity of procedure GS is O(n) and the number of times it is
executed is O(n*), the time complexity of S(k) is O(n**'). The space complexity
is O(n).

Theorem 2.3 (Sahni, 1975) The worst-case performance ratio of S(k) is r(S(k)) =
k/(k +1).

Proof. (a) Let Y be the set of items inserted into the knapsack in the optimal
solution. If |Y| < k, then S(k) gives the optimum, since all combinations of
size |Y | are tried. Hence, assume |Y | > k. Let M be the set of the k items of

highest profit in Y, and denote the remaining items of ¥ with j;..... Jr, assuming
pi,/Wj, > Pj./Wj., (i =1,...,r —1). Hence, if z is the optimal solution value,
we have ,

Pij, Sk—+_1 fori=1,...,r. (243)

Consider now the iteration of S(k) in which M =M, and let Jm be the first item of
{ji.....Jjr} not inserted into the knapsack by GS. If no such item exists then the

heuristic solution is optimal. Otherwise we can write z as
m—1 r
2= pi+ > _pi+ Y P (2.44)
ieM i=1 i=m
while for the heuristic solution value returned by GS we have

m—1
z8 > Zp,- + ij, + Zpi, (2.45)
i=1

iEM i€Q



52 2 0-1 Knapsack problem

where Q denotes the set of those items of N\M which are in the heuristic
solution but not in {jj..... j-} and whose index is less than j,. Let ¢* =
C— DiemWi — Z:’;lwﬁ and ¢ = ¢* — ) ;cowi be the residual capacities
available, respectively, in the optimal and the heuristic solution for the items of

N \M_ following j,_1. Hence, from (2.44),

m-—1 p;

2 <Y pit Y p

= - Wi
ieM i=1

by definition of m we have ¢ < w;, and p;/w; > p;, /w;, fori € Q, so

m-—1
2< Y pi+ > pi*tPint Y _pil
=1

i€EM i€Q
Hence, from (2.45), z < z& +p;, and, from (2.43),

zg> k
z k+1

(b) To prove that the bound is tight, consider the series of instances with:
n=k+2; p1=2. wi=1; pj=wj=L>2forj=2,... ,k+2;, c =(k+1)L. The
optimal solution value is z = (k + 1)L, while S(k) gives z" = kL + 2. Hence, for L
sufficiently large, the ratio z* /z is arbitrarily close to k /(k +1). (]

Let M denote the maximum cardinality subset of {I..... n} such that

> jem Wi < c. Then, clearly, for any k > |M |, S(k) gives the optimal solution.

Example 2.5

Consider the instance of KP defined by
n =8

(pj) = (350, 400, 450, 20, 70, 8, 5, 5);

(w;) =(25, 35, 45, 5,25,3,2,2)
c = 104.

The optimal solution X = {1.3.4.5.7.8} has value z = 900.

Applying S(k) with k = 0, we get the greedy solution: X" = {1, 2, 4, 5, 6, 7, 8},
zh = 858.

Applying S(k) with & = 1, we re-obtain the greedy solution for
M = {1}, {2}, {4}, {5}, {6}, {7}, {8}. For M = {3}, we obtain X" =
{1, 3, 4,5, 6}, z" =898.

Applying S(k) with k = 2, we obtain the optimal solution when M = {3.7}.



2.8 Approximate algorithms 53

The Sahni algorithm is a polynomial-time approximation scheme, in the sense
that any prefixed worst-case performance ratio can be obtained in a time bounded
by a polynomial. However, the degree of the polynomial increases with k, so the
time complexity of the algorithm is exponential in k, i.e. in the inverse of the
worst-case relative error € =1 —r.

2.8.2 Fully polynomial-time approximation schemes

Ibarra and Kim (1975) have obtained a fully polynomial-time approximation scheme,
i.e. a parametric algorithm which allows one to obtain any worst-case relative
error (note that imposing ¢ is equivalent to imposing ) in polynomial time
and space, and such that the time and space complexities grow polynomially
also with the inverse of the worst-case relative error . The basic ideas in the
Ibarra—Kim algorithm are: (a) to separate items according to profits into a class of
“large” items and one of “small” items; (b) to solve the problem for the large
items only, with profits scaled by a suitable scale factor 6, through dynamic
programming. The dynamic programming list is stored in a table T of length
|(3/¢)?] +1; T(k) = “undefined” or is of the form (L(k). P (k), W (k)), where L(k)
is a subset of {1,...,n}, P(k) = ZjeL(k)pj’ W (k) = ZjeL(k)wj and k = ZjeL(k)ﬁj
with p; = [ p;/6]. It is assumed that the items are ordered according to (2.7) and
that the “small” items are inserted in set S preserving this order.

procedure [K(¢) :
input: n,¢c,(p;),(w));
output: z" X*;
begin
find the critical item s (see Section 2.2.1);
if Zj:l w;j = ¢ then
begin
2= 30 by
Xh={1,...,5s —1};
return
end,
z= st=l Dj
comment: 7 /2 < z < Z, since z > max (st;l‘pj Ds);
6 = 2(e /3)%;
S = 0;
T(0) := (L(0),P(0),W (0)) := (8,0,0);
q = |£/6] (comment: ¢ = [(3/2)?));
comment: dynamic programming phase;
for i :=1to g do T (i) := “undefined”;
forj :=1ton do
ifp; <ez/3thenS =S U{,}
else



54 2 0-1 Knapsack problem

begin
pj = Lpi/é];
fori:=q —p, to O step —1 do
if (i) # “undefined” and W (i) + w; < c¢ then
if T(i +p;) = “undefined”
orW(i+p;)>W(i)+w; then
T@i+p;):=WLEU{j}, PO)+p;W(i)+w))
end;
comment: greedy phase;
"= 0;
fori :=0to g do
if T(i) # “undefined” then
begin
z :=P@)+ ZjeA pj, where A is obtained by filling the residual
capacity ¢ — W (i) with items of S in the greedy way;

if Z > z" then
begin
zh =7
X" =L3i)UA
end

end
end.

The dynamic programming recursion is executed n times and, at each iteration,
no more than g states are considered: since each state takes a constant amount
of time, the dynamic programming phase has time complexity O(ng). The final
greedy phase is performed at most ¢ times, each iteration taking O (n) time. Hence
the overall time complexity of IK(¢) is O(ng), i.e. O(n/<?) by definition of ¢, plus
O (nlogn) for the initial sorting.

The space required by the algorithm is determined by the [(3/¢)?| entries of
table T. Each entry needs no more than 2 + r words, where ¢ is the number of
items defining the state. If p, ,...,p; are the scaled profits of such items, we have
t < g/min {p,,...,p; } < 3/c. Hence the overall space complexity of IK(¢) is
O (n) (for the input) + O(1/<3).

Theorem 2.4 (Ibarra and Kim, 1975) For any instance of KP, (z — z")/z < ¢,
where z is the optimal solution value and z" the value returned by IK(¢).

Proof. If the algorithm terminates in the initial phase with z# = Zj: ! p; then z*
gives the optimal solution. Otherwise, let {iy,...,i;} be the (possibly empty) set

of items with p; > %52 in the optimal solution, i.e.

k
zZ = E pi +a,
=1



2.8 Approximate algorithms 55

where a is a sum of profits of items in S. Defining p* = Zle p;,andw” = le;l Wi,
we have, at the end of the dynamic programming phase, T(p*) # “undefined”
and W (p") < w* (since W (i) is never increased by the algorithm). Let L(p*) =
{jis---, ju}. (This implies that p* = Z?:l p; and W (p*) = Z;’zl wj,.) Then the sum
Z = ZLl p;, + 13, where 3 is a sum of profits of elements in S, has been considered
in the greedy phase (when i = p™*), so z# > Z. Observe that p; = |pi/é] = 3/e,
from which p;6 < p; <(p; + 1)é =p;6(1+1/p;) < p;6(1 +¢/3). It follows that

po+a<z gﬁ*6(1+%6)+a,
Pro+ B <z <pro(l+1e)+ 3,

from which

z—Z Sp (55/3+(a—ﬁ)S €+a—ﬁ.
z z z

U0

Since W (p™) < w* and the items in S are ordered by decreasing p; /w; ratios, it
follows that (o« — ) cannot'be greater than the maximum profit of an item in S,
ie.a— (< %52. Hence (z —2)/z < %5(1 +%/z). Since 7 < z" and 7 < 2z, then

z—-zM/)z <e. [

Example 2.5 (continued)

We apply IK(¢) with € = %

s =3;

Z = 1200;
100

b= —;
3

S =@ (items with p; < ¢Z/3 =200 will be inserted in S);
T(0) = (8.0.0);
q = 36;
dynamic programming phase:
j=1:p, =10, T(10) = ({1}, 350, 25);
J=2:p,=12,T(22)= ({1, 2}, 750, 60),
T(12) = ({2}, 400, 35);
J=3: p3=13,T(25)= ({2, 3}, 850, 80),



56 2 0-1 Knapsack problem

T(23) = ({1, 3}, 800, 70),
T(13) = ({3}, 450, 45);
j=4,...,8: S=1{4,56,7,8);

greedy phase:

for all the entries of table T save T (23) and T (25), we have c — W (i) > Zjes w; =
37. Hence the best solution produced by such states is P(22)+ Zjes p; = 858.T(23)
gives P(23) + Zje{4.5 61 Pi = 898; T(25) gives P(25) + Zj€{4.6.7.8} p; = 888. It
follows that z" = 898. X" = {1, 3, 4, 5, 6}.

The solution does not change for all values ¢ > %. For ¢ < 51—0, we have
£Z/3 < 8, so items 1-6 are considered “large” and the algorithm finds the optimal
solution using entry 7({) = ({1, 3, 4, 5}, 890, 100). The value of g, however, is

at least 22 500 instead of 36. []

Ibarra and Kim (1975) have also proposed a modified implementation having
improved time complexity O (nlogn) + O((1/¢%log(1/¢)), with the second term
independent of n. Further improvements have been obtained by Lawler (1979), who
used a median-finding routine (to eliminate sorting) and a more efficient scaling
technique to obtain time complexity O(nlog(1/¢) + 1/¢*) and space complexity
O(n + 1/¢3). Magazine and Oguz (1981) have further revised the Lawler (1979)
scheme, obtaining time complexity O (n?log(n /<)) and space complexity O (n /¢).

A fully polynomial-time approximation scheme for the minimization version of
KP was found, independently of the Ibarra—Kim result, by Babat (1975). Its time
and space complexity of O(n*/c) was improved to O(n? /<) by Gens and Levner
(1979).

Note that the core memory requirements of the fully polynomial-time
approximation schemes depend on ¢ and can become impractical for small values of
this parameter. On the contrary, the space complexity of Sahni’s polynomial-time
approximation scheme is O(n), independently of r.

2.8.3 Probabilistic analysis

The first probabilistic result for KP was obtained by d’Atri (1979). Assuming that
profits and weights are independently drawn from the uniform distribution over {1,
2, ..., n}, and the capacity from the uniform distribution over {1. 2. ..., kn} (k
an integer constant), he proved that there exists an O (n) time algorithm giving the
optimal solution with probability tending to 1 as n — oc.

Lueker (1982) investigated the properties of the average value of (z(C (KP))—
z(KP)) (difference between the solution value of the continuous relaxation and the
optimal solution value of KP). Assuming that profits and weights are independently
generated from the uniform distribution between 0 and 1 by a Poisson process with
n as the expected number of items, and that the capacity is ¢ = 3n for some constant
3, he proved that:



2.9 Exact algorithms for large-size problems 57

(a) if 7 > % then all items fit in the knapsack with probability tending to 1, so the
question is trivial;

b) if < % then the expected value of (z(C(KP)) — z(KP)) is O(logzn/n) and
Q(1/n).

Goldberg and Marchetti-Spaccamela (1984) improved the €2(1/n) lower bound to
Q(log’n /n), thus proving that the expected value of the difference is @(logzn/ n).
In addition, they proved that, for every fixed ¢ > O, there is a polynomial-time
algorithm which finds the optimal solution to KP with probability at least 1 — <.
(As a function of 1/¢, the running time of the algorithm is exponential.)

Meanti, Rinnooy Kan, Stougie and Vercellis (1989) have determined, for the
same probabilistic model, the expected value of the critical ratio p; /w; as a function
of 3, namely 1/4/63 for 0 < 3 < . 2 —33 for } < < 1. The result has been
used by Marchetti-Spaccamela and Vercellis (1987) to analyse the probabilistic
behaviour of an on-line version of the greedy algorithm. (An on-line algorithm for
KP is required to decide whether or not to include each item in the knapsack as it
is input, i.e. as its profit and weight become known.)

The probabilistic properties of different greedy algorithms for KP have been
studied in Szkatula and Libura (1987).

2.9 EXACT ALGORITHMS FOR LARGE-SIZE PROBLEMS

As will be shown in Section 2.10, many instances of KP can be solved by branch-
and-bound algorithms for very high values of n. For such problems, the preliminary
sorting of the items requires, on average, a comparatively high computing time (for
example, when n > 2000 the sorting time is about 80 per cent of the total time
required by the algorithm of Section 2.5.2). In the present section we examine
algorithms which do not require preliminary sorting of all the items.

The first algorithm of this kind was presented by Balas and Zemel (1980) and
is based on the so-called “core problem”. Suppose, without loss of generality, that

pj/wj > pj+1/wjs1 for j =1,...,n — 1, and, for an optimal solution (x/"), define
the core as

C = {jl, ,jz}.
where

ji=min {j :x =0}. ja=max {j:x =1}
the core problem is then defined as

maximize Z = E PiX;j
jecC



58 2 0-1 Knapsack problem

subject to ijxj <c— Z Wi,

JjecC jE{iZP,/W,>P/1/W/1}
x; =0 or 1. forj € C.

In general, for large problems, the size of the core is a very small fraction of
n. Hence, if we knew “a priori” the values of j; and j,, we could easily solve the
complete problem by setting x = 1forallj € J1={k : py/wi > p; /w;}. x7 =0
for all j € JO = {k : px/wx < pj,/wj,} and solving the core problem through
any branch-and-bound algorithm (so that only the items in C would have to be
sorted). Notice that J 1 and J 0 are conceptually close to the sets of the same name
determined by reduction procedures.

Indices j; and j, cannot be “a priori” identified, but a good approximation of the
core problem can be obtained if we consider that, in most cases, given the critical
item s, we have j; > s — (9/2) and j, < s + (J/2) for some J < n.

2.9.1 The Balas—Zemel algorithm

Balas and Zemel (1980) proposed the following procedure for determining, given
a prefixed value 9, an approximate partition (J 1.C.J0) of N. The methodology
is very close to that used in Section 2.2.2 to determine the critical item s and
the continuous solution (X;), so we only give the statements differing from the
corresponding ones in procedure CRITICAL_ ITEM:

procedure BZC:

input: n.c. (P;) (Wj) J;
output: /1.C . (X)),
begin

while partition = “no” and |JC | > ¥ do
begin
determine the median r, of the first 3 ratios p; /w; in JC;

end;
if |JC| < ¥ then
begin
C =JC;
sort the items in C according to decreasing p; /w; ratios;
determine the critical item s and the solution (X;) of the continuous
relaxation through the Dantzig method applied to the items in C
with the residual capacity ¢
end
else
begin
letE = {e), ..., e, };



2.9 Exact algorithms for large-size problems 59

c=min {j: >l w, >C—c"};

S = ey

foreachj c J1UG U {ey..... e,—1}doXx; =1,
foreachj e JOULU {eys1,.... e;} doX; :=0;

X5 =00 = Die 1\ is) Wi/ Wsi
define C as a sorted subset of JC such that |{C| = 9 and
s is contained, if possible, in the middle third of C, and

correspondingly enlarge set J 1
end

end.

Determining the median of the first three ratios (instead of that of all the ratios)
in JC increases the time complexity of the algorithm to O(n?), but is indicated in
Balas and Zemel (1980) as the method giving the best experimental results. They
had also conjectured that the expected size of the core problem is constant, and
experimentally determined it as ¥ = 25. The conjecture has been contradicted by
Goldberg and Marchetti-Spaccamela (1984), who proved that the expected core
problem size grows (very slowly) with n.

The Balas—Zemel method. also makes use of a heuristic procedure H and a
reduction procedure R. These can be summarized as follows:

procedure H:
input: C .J 1;
output: z (x;);
begin
given an approximate core problem C and a setJ 1 of items j such that x; is
fixed to 1, find an approximate solution for C by using dominance relations
between the items;

define the corresponding approximate solution (x;), and its value z, for KP
end.

procedure R:

input: C;

output: J 1. J0';

begin

fix as many variables of C as possible by applying the reduction test of

algorithm FPDHR, then that of algorithm IKR (see Section 2.7), modified
so as to compute an upper bound on the continuous solution value when
the items are not sorted;

define subsets J 1’ and J (Y, containing the variables fixed, respectively, to 1

and to 0
end.

The Balas—Zemel idea is first to solve, without sorting, the continuous relaxation
of KP, thus determining the Dantzig upper bound (see Section 2.2.1), and then
searching for heuristic solutions of approximate core problems giving the upper



60 2 0-1 Knapsack problem

bound value for KP. When such attempts fail, the reduced problem is solved
through an exact procedure. The algorithm can be outlined as follows (y is a
given threshold value for which Balas and Zemel used y = 50).

procedure BZ:

input: n.c.(p;). (wj). 9. ;
output: z. (x;);

begin
call BZC ;
=3 pi%s
call H ;
if z=|z°] then return;
C:={l..... n};
call R;
J1:=J1;
JO:=J0;
C :=C\(J1UJO0) (comment: new core);
if |C| > v then
begin
call H ;
if z=|z“] then return;
call R;
J1:=J1UJ1;
JO:=JOUJO,;

C :=C\(J1'uJ0) (comment: reduced core);
end;
sort the items in C according to decreasing p; /w; ratios;
exactly solve the core problem through the Zoltners (1978) algorithm;
define the corresponding values of z and (x;) for KP
end.

Two effective algorithms for solving KP without sorting all the items have been
derived from the Balas—Zemel idea by Fayard and Plateau (1982) and Martello and
Toth (1988).

2.9.2 The Fayard-Plateau algorithm

The algorithm, published together with an effective Fortran implementation (see
Fayard and Plateau (1982)), can be briefly described as follows.

procedure FP:
input: n.c.(p;).(w)),
output: z. (x;);
begin

N:={l..... ny;



2.9 Exact algorithms for large-size problems 61

use a procedure similar to CRITICAL_ ITEM (see Section 2.2.2) to determine
the critical item s and the subset /1 C N such that, in the continuous
solution of KP, x; = 1 forj € J 1;

Ci=C =) i1 Wis

z¢ = Zje]lpj +Cps [Wy;

apply the greedy algorithm (without sorting) to the items in N\J 1 with the
residual capacity ¢, and let (x;) (j € N\J 1) be the approximate solution
found;

2= ienibit jeN\J1Pj%;

if z=[z] then return ;

apply reduction algorithm FPDHR (see Section 2.7), defining sets J 1’ and
JO':

C :=N\(J 1’ UJ0) (comment: reduced problem);

sort the items in C according to increasing values of | ;| = | p; — wips/wsl;

exactly solve the reduced problem through a specific enumerative technique;

define the corresponding values of z and (x;) for KP

end.

2.9.3 The Martello-Toth algorithm
The Martello and Toth (1988) algorithm can be sketched as follows.

Step 1. Partition N into J1.J0 and C through a modification of the Balas—Zemel
method. Sort the items in C.

Step 2. Exactly solve the core problem, thus obtaining an approximate solution
for KP, and compute upper bound Us (see Section 2.3.3). If its value
equals that of the approximate solution then this is clearly optimal: stop.
Otherwise

Step 3. Reduce KP with no further sorting: if all variables x; such that j € J1
or j € JO are fixed (respectively to 1 and to 0), then we have it that C
is the exact core, so the approximate solution of Step 2 is optimal: stop.
Otherwise

Step 4. Sort the items corresponding to variables not fixed by reduction and exactly
solve the corresponding problem.

The algorithm improves upon the previous works in four main respects:

(a) the approximate solution determined at Step 2 is more precise (often optimal);
this is obtained through more careful definition of the approximate core and
through exact (instead of heuristic) solution of the corresponding problem;

(b) there is a higher probability that such an approximate solution can be proved



62 2 0-1 Knapsack problem

to be optimal either at Step 2 (because of a tighter upper bound computation)
or at Step 3 (missing in previous works);

(c) the procedures for determining the approximate core (Step 1) and reducing KP
(Step 3) have been implemented more efficiently;

(d) the exact solution of the subproblems (Steps 2 and 4) has been obtained by
adapting an effective branch-and-bound algorithm (procedure MT1 of Section
2.5.2).

Step 1

The procedure to determine the approximate core problem receives in input four
parameters: Y (desired core problem size), «, ( (tolerances) and 7 (bound on the
number of iterations). It returns a partition (/1. C.J0) of N, where C defines an
approximate core problem having residual capacity ¢ = ¢ — Zje 71 Wj» such that

i) (1 —a)d <[C] < (1+8)7,

(i) Y ccw >T>0,

(i) max {px/wi 1k €J0} < p;j/w; <min {pi/wy 1k €J1} forallj € C.

J 1 and JO are initialized to empty, and C to N. At any iteration we try to move
elements from N to J1 or JO, until |C| is inside the prefixed range. Following
Balas and Zemel (1980), this is obtained by partitioning (through a tentative value
M) set C into three sets of items j such that p; /w; is less than A (set L), equal to A
(set E) or greater than A (set G). Three possibilities are then considered, according
to the value of the current residual capacity ¢:

(a) ZjEG w; <T < ZjecuE wj, i.e., A = ps/wy: if | E| is large enough, the desired
core is defined; otherwise A is increased or decreased, according to the values
of |G| and | L|, so that | C| results closer to the desired size at the next iteration;

(b) D jegw > T ie, A < ps/wstif |G is large enough we move the elements
of LUE from C to JO and increase A; otherwise we decrease A so that, at the
next iteration, | G| results larger;

(©) Y icgue Wi <G, ie, A > py/wsif |L|is large enough we move the elements
of GUE from C to J 1 and decrease A; otherwise we increase A so that, at the
next iteration, |L| results larger.

In the following description of procedure CORE, M 3(S) denotes the median of
the profit/weight ratios of the first, last and middle element of S. If the desired
C is not obtained within 7 iterations, execution is halted and the current partition
(J1.C .JO0) is returned. In this case, however, condition (i) above is not satisfied,
i.e. | C| is not inside the prefixed range.



2.9 Exact algorithms for large-size problems

procedure CORE:

input: n.c.(p;j). (w;). J.a. 3. 1;
output: /1.C.JO0;

begin
J1:=0;
JO:=0;
C:={1..... ni;
¢ =,
k :=0;
A =M3(C);
while |C| > (1+ 3)J and k < 1 do

begln

¢ JEG
c=CH Y g WS
if ¢/ <T < c¢"” then
if |E| > (1 — a)d then
begin
letE ={e;..... €q};
cr=min{j: Y w, >T—c'};
5= e,
C ={e..... e, } with r .t such that
t —r+ 1is as close as possible to ¥
and (t+r)/2to s;
JO:=JOULU {e..... €}
J1:=J1UG U{ey..... er—1}
end
else
if | GUE| < ¢ then A := M3(L)
else A :=M3(G)
else
if ¢/ > T then
if |G| < (1— )0 then X :=M3(L)
else
begin
JO:=JOULUE;
C =G;
A:=M3(C)
end
else
if |L| < (1 — a)d then X := M3(G)
else
begin
J1:=J1UG UE;
C =1L

¢c:=¢C—c";

63



64 2 0-1 Knapsack problem

A=M3(C)
end:
k:=k+1
end
end.

The heaviest computations in the “while” loop ( partitioning of C and definition
of ¢’ and ¢'") require O(n) time. Hence, if 7 is a prefixed constant, the procedure
runs in linear time.

Steps 2, 4

Exact solutions (£;) of the core problem and of the reduced problem are obtained
through procedure MT1 of Section 2.5.2, modified so as also to compute, if
required, the value u of upper bound Us (Section 2.3.3) for KP. We refer to this
procedure as MT1’ and call it by giving the sets C (free items) and J 1 (items j
such that x; is fixed to 1).

procedure MT1’:
input: n.c.(p;). (w;).C.J 1, bound,
output: (X;). u;
begin
define the sub-instance KP’ consisting of the items in C with residual capacity
¢ — Zje]l Wi,
if bound = “no” then call MT1 for KP’
else call MT1 for KP’ with determination of u = Ukg;
let (£;) be the solution vector returned by MT1
end.

Step 3

Reduction without sorting is obtained through the following procedure, which
receives in input the partition determined at Step 1 (with only the items in C
sorted according to decreasing p;/w; ratios) and the value z" of the approximate
solution found at Step 2. The procedure defines sets J1 and JO according to the
same rules as in procedure MTR (Section 2.7), but computing weaker bounds ujo

and uj1 when the current critical item § is not in C.

procedure MTR’:
input: n.c.(p;).w;).z".J1.C.J0;
output: J 1,J0;
begin
comment: it is assumed that the items in C are 1.2..... f(f=
| C|), sorted according to decreasing p, /w; ratios;
=0 = ZjEJl Wi,
D=2 e Pis

ol



2.9 Exact algorithms for large-size problems 65

for j :=1to f do compute w; = 3/ w; and p, = >/, pi;
find, through binary search, s € C such that w;_| < T < wy;
foreachj € J1U{l..... s} do
if ¢ +w; <wy then
begin
find, through binary search, s € C such that

Lps — (W5 — Ops—1/ws_1]);
" i=max (z".p —p; +ps_))
end
else
begin
u) :=p —p; +P; + [(T+w; — Wp)py /wrl;
b i=max (z".p —Dpj +Py)
end;
foreachj c JOU {s..... f} do
if ¢ —w; > w; then
begin

u! :=p +p; +ps_, +max (I_?p§+1/11/'§+lj.
| ps — W5 — Ops—1/Ws—1))s
z" 1= max (z”.ﬁ+pj +ps_1)
end
else
begin
u' == |p+p +@—wpi1/wil;
if T —w; > 0then z" :=max (z".p +p;)
. end;
JO:={jeJOU{s..... f}oul <z},
J1:={

end.
The heaviest computations are involved in the two “for each” loops: for O (n)

times a binary search, of time complexity O (log|C |), is performed. The overall
time complexity is thus O(nlog| C|), i.e. O(n) for fixed |C|.

Algorithm

The algorithm exactly solves KP through Steps 14, unless the size of core C
determined at Step 1 is too large. If this is the case, the solution is obtained



66 2 0-1 Knapsack problem

through standard sorting, reduction and branch-and-bound. On input, the items are
not assumed to be sorted.

procedure MT2:
input: n.c.(p;). (w;). V. . 3,1
output: z. (x;);
begin
forj :=1ton dox; :=0;
comment: Step 1;

call CORE;
if |C|<(1— a)nthen
begin

sort the items in C by decreasing p; /w; ratios;
comment: Step 2;
bound = “yes”;
call MT1;
zh = > jenPi T 2jec Pi%ii
if z/ = u then
foreachj e J1U{k €C : & =1} dox; =1
else (comment: Step 3)
begin
call MTR'; o
if/12>J1andJ0 D JO then
foreachj e J1U{k €C : % =1} dox; =1
else (comment: Step 4)
begin L
C:={l..... n\( 1UJ0);
sort the items in C according to
decreasing p; /w; ratios;

bound := “no”;
J1:=J1;
call MT1';
foreachj € J1U{k €C : 5 =1} dox; :=1
end
end
end
else (comment: standard solution)
begin
sort all the items according to decreasing p; /w; ratios;
call MTR;
zh =1,
C:={1.... ni\(J 1UJ0);
bound:= “no’;
call MT1/;

foreachj € J1U{k e€C : 5 =1} dox; =1
end;



2.10 Computational experiments 67

2= ) P
if z < z" then
begin
define the solution vector (x;) corresponding to z";
z :=z"
end
end.

On the basis of the computational experiments reported in the next section, the
four parameters needed by MT2 have been determined as

{ n if n < 200,
2\/n otherwise;

a=02;
8 =1.0;
n = 20.

The Fortran implementation of MT2 is included in the present volume.

2.10  COMPUTATIONAL EXPERIMENTS

In this section we analyse the experimental behaviour of exact and approximate
algorithms for KP on sets of randomly generated test problems. Since the difficulty
of such problems is greatly affected by the correlation between profits and weights,
we consider three randomly generated data sets:

uncorrelated: p; and w; uniformly random in [1, v];

weakly correlated.: w; uniformly random in [1, v],
p; uniformly random in [w; — r. w; +r];
strongly correlated: w; uniformly random in [1, v],
Pj = W; +r.

Increasing correlation means decreasing value of the difference max ;{ p;/w;} —
min; { p; /w; }, hence increasing expected difficulty of the corresponding problems.
According to our experience, weakly correlated problems are closer to real world
situations.

For each data set we consider two values of the capacity: ¢ = 2v and
c =05 Z;:] wj. In the first case the optimal solution contains very few items,
so the generated instances are expected to be easier than in the second case, where
about half of the items are in the optimal solution. (Further increasing the value of
¢ does not significantly increase the computing times.)



68 2 0-1 Knapsack problemn
2.10.1 Exact algorithms

We give separate tables for small-size problems (n < 200) and large-size problems
(n > 500).
We compare the Fortran IV implementations of the following algorithms:
HS = Horowitz and Sahni (1974), Section 2.5.1;
MTR+HS = HS preceded by reduction procedure MTR of Section 2.7;
NA = Nauss (1976), with its own reduction procedure;
MT1 = Martello and Toth (1977a), Section 2.5.2;
MTR+MT1 = Martello and Toth (1977a) preceded by MTR;
MTR+DPT = Toth (1980), Section 2.6.3, preceded by MTR;

BZ = Balas and Zemel (1980), Section 2.9.1, with its own reduction
procedure;

FP = Fayard and Plateau (1982), Section 2.9.2, with its own reduction
procedure;

MT2 = Martello and Toth (1988), Section 2.9.3, with MTR and MTR'.

NA, MTI, FP and MT2 are published codes, whose characteristics are given
in Table 2.1. HS, MTR and DPT have been coded by us. For BZ we give the
computing times presented by the authors.

Table 2.1 Fortran codes for KP

Core Number of
Authors memory statements List
Nauss (1976) 8n 280 Available from the author
Martello and Toth (1977a) 8n 280 This volume (also in
Martello and Toth (1978))
Fayard and Plateau (1982) Tn 600 In Fayard and Plateau (1982)
Martello and Toth (1988) 8n 1400 This volume

All runs (except those of Table 2.8) were executed on a CDC-Cyber 730. For
each data set, value of ¢ and value of n, the tables give the average running time,
expressed in seconds, computed over 20 problem instances. Since Balas and Zemel
(1980) give times obtained on a CDC-6600, which we verified to be at least two
times faster than the CDC-Cyber 730 on problems of this kind, the times given in
the tables for BZ are those reported by the authors multiplied by 2.

Code FP includes its own sorting procedure. The sortings needed by HS, NA,
MT1, DPT and MT?2 were obtained through a subroutine (included in MT2), derived



2.10 Computational experiments 69

Table 2.2 Sorting times. CDC-Cyber 730 in seconds. Average times over 20 problems

n 50 100 200 500 1000 2000 5000 10000
time 0.008 0.018 0.041 0.114 0.250 0.529 1.416 3.010

Table 2.3 Uncorrelated problems: p, and w; uniformly random in [1,100]. CDC-Cyber 730
in seconds. Average times over 20 problems

c n HS MTR NA MT1 MTR FP MTR
+HS +MT1 +DPT

50 0.022 0.013 0.015 0.015 0.012 0.013 0.013

200 100 0.039 0.024 0.025 0.026 0.025 0.018 0.029

200 0.081 0.050 0.055 0.051 0.050 0.032 0.055

n 50 0.031 0.016 0.015 0.016 0.013 0.013 0.020
05> w; 100 0.075 0.028 0.029 0.030 0.026 0.021 0.043
Jj=1 200 0.237 0.065 0.073 0.068 0.057 0.053 0.090

Table 2.4 Weakly correlated problems: w, uniformly random in [1,100], p; in [w;—10,
w,+10]. CDC-Cyber 730 in seconds. Average times over 20 problems

c n HS MTR NA MT1 MTR FP MTR
+HS +MT1 +DPT

50 0.031 0.018 0.019 0.017 0.014 0.016 0.022

200 100 0.049 0.029 0.038 0.032 0.024 0.023 0.041

200 0.091 0.052 0.060 0.055 0.048 0.030 0.066

n 50 0.038 0.025 0.035 0.022 0.020 0.021 0.071
05> w; 100 0.079 0.042 0.086 0.040 0.031 0.039 0.158
j=1 200 0.185 0.070 0.151 0.069 0.055 0.057 0.223

Table 2.5 Strongly correlated problems: w, uniformly random in [1,100], p; = w; + 10.
CDC-Cyber 730 in seconds. Average times over 20 problems

c n HS MTR NA MTI1 MTR FP MTR
+HS +MT1 +DPT

50 0.165 0.101 0.117 0.028 0.025 0.047 0.041

200 100 1.035 0.392 0.259 0.052 0.047 0.096 0.070
200 3.584 2.785 3.595 0.367 0.311 0.928 0.111

n 50 time time time 4.870 4.019 17.895 0.370

0.5 Z w; 100 — — — time time time 1.409
Jj=1 200 — — — — — — 3.936




70 2 0-1 Knapsack problem

from subroutine SORTZV of the CERN Library, whose experimental behaviour
is given in Table 2.2. All the times in the following tables include sorting and
reduction times.

Tables 2.3, 2.4 and 2.5 compare algorithms HS, MTR+HS, NA, MTI,
MTR+MT], FP and MTR+DPT on small-size problems (we do not give the times
of MT2, which are almost equal to those of MTR+MT1). For all data sets, v = 100
and r = 10. Table 2.3 refers to uncorrelated problems, Table 2.4 to weakly correlated
problems. All algorithms solved the problems very quickly with the exception ef HS
and, for weakly correlated problems, MTR+DPT. MT1 is only slightly improved
by previous application of MTR, contrary to what happens for HS. Table 2.5 refers
to strongly correlated problems. Because of the high times generally involved,
a time limit of 500 seconds was assigned to each algorithm for solution of the
60 problems generated for each value of c¢. The dynamic programming approach
appears clearly superior to all branch-and-bound algorithms (among which MT]1
has the best performance).

For large-size instances we do not consider strongly correlated problems, because
of the impractical times involved. Tables 2.6 and 2.7 compare algorithms MT]1,
BZ, FP and MT2. Dynamic programming is not considered because of excessive
memory requirements, HS and NA because of clear inferiority. The problems were
generated with v = 1000, r = 100 and ¢ = 0.5 Zf=1 Wj.

FP is fast for n < 2000 but very slow for n > 5000, while BZ has the opposite
behaviour. MT2 has about the same times as FP for n < 2000, the same times
as BZ for n = 5000, and slightly higher than BZ for n = 10000, so it can
be considered, on average, the best code. MT1, which is not designed for large

Table 2.6 Uncorrelated problems: p ; and w, uniformly random in [1,1000]; ¢ = 0.5 27=1 wj.
CDC-Cyber 730 in seconds. Average times over 20 problems

n MT]I BZ FP MT2
500 0.199 — 0.104 0.157
1000 0.381 0.372 0.188 0.258
2000 0.787 0.606 0.358 0.462
5000 1.993 0.958 1.745 0.982

10000 4.265 1.514 7.661 1.979

Table 2.7 Weakly conrrelated problems: w, uniformly random in [1,1000], p, in [w,—100,
w; + 100]; ¢ = 0.5 ijl w;. CDC-Cyber 730 in seconds. Average times over 20 problems

n MTI BZ FP MT2
500 0.367 — 0.185 0.209
1000 0.663 0.588 0.271 0.293
2000 1.080 0.586 0.404 0.491
5000 2.188 0.744 1.782 0.771

10000 3.856 1.018 19.481 1.608




2.10 Computational experiments 71

Table 2.8 Algorithm MT2. w, uniformly random in [1,1000]); ¢ = 0.5 Z}":l W,
HP 9000/840 in seconds. Average times over 20 problems

Uncorrelated problems: Weakly correlated problems:
n p, uniformly random p, uniformly random
in [1,1000] in [w, — 100, w, + 100]

50 0.008 0.015

100 0.016 0.038

200 0.025 0.070

500 0.067 0.076

1 000 0.122 0.160

2000 0.220 0.260

5000 0.515 0.414

10000 0.872 0.739

20000 1.507 1.330

30000 2.222 3.474

40000 2.835 2.664

50000 3.562 3.492

60000 4.185 504.935

70000 4.731 4.644

80000 5.176 5.515

90 000 5.723 6.108

100 0600 7.001 7.046

150 600 9.739 time limit

200000 14.372 —
250 000 17.135 —

problems, is generally the worst algorithm. However, about 80 per cent of its time
Is spent in sorting, so its use can be convenient when several problems are to be
solved for the same item set and different values of ¢. A situation of this kind
arises for multiple knapsack problems, as will be seen in Section 6.4.

n = 10000 is the highest value obtainable with the CDC-Cyber 730 computer
available at the University of Bologna, because of a core memory limitation of 100
Kwords. Hence, we experimented the computational behaviour of MT2 for higher
values of n on an HP 9000/840 with 10 Mbytes available. We used the Fortran
compiler with option “-0”, producing an object with no special optimization. The
results obtained for uncorrelated and weakly correlated problems are shown in
Table 2.8. Uncorrelated problems were solved up to n = 250 000 with very regular
average times, growing less than linearly with n. Weakly correlated problems show
an almost linear growing rate, but less regularity; for high values of n, certain
instances required extremely high times (for n = 60000 one of the instances took
almost 3 hours CPU time, for n = 150000 execution was halted after 4 hours).

2.10.2 Approximate algorithms

In Tables 2.9-2.11 we experimentally compare the polynomial-time approximation
scheme of Sahni (Section 2.8.1) and a heuristic version of algorithm MT2



72

2 0-1 Knapsack problem

Table 2.9  Uncorrelated problems: p, and w, uniformly random in [1,1000]; ¢ = 0.5 Z}’:l W,
HP 9000/840 in seconds. Average times (average percentage errors) over 20 problems

MT?2 approx. S(0) S(1) S(2)
n time (% error) time (% error) time (% error) time (% error)
50 0.004(0.10569) 0.005(5.36560) 0.017(5.13968) 0.319(5.05006)
100 0.009(0.05345) 0.009(2.25800) 0.060(2.21412) 2.454(2.19447)
200 0.015(0.03294) 0.017(1.15739) 0.210(1.12217) 19.376(1.11691)
500 0.029(0.00767) 0.049(0.49120) 1.242(0.47978)  299.593(0.47577)
1000 0.058(0.00418) 0.105(0.21213) 4.894(0.20748) —
2 000 0.117(0.00251) 0.224(0.10531) 19.545(0.10338) —
5000 0.296(0.00182) 0.618(0.05540) 125.510(0.05488) —

10 000 0.641(0.00076) 1.320(0.02045) — —

20000 1.248(0.00032) 2.852(0.00897) — —

30000 1.873(0.00016) 4.363(0.00786) — —

40000 2.696(0.00016) 6.472(0.00521) — —

50000 3.399(0.00011) 8.071(0.00428) — —

60 000 3.993(0.00009) 9.778(0.00403) — —

70000 4.652(0.00003)  11.420(0.00301) —_— —

80000 5.307(0.00008)  13.075(0.00329) — —

90000 5.842(0.00016)  14.658(0.00247) — —
100000 6.865(0.00007)  16.347(0.00231) — —
150000 9.592(0.00005)  25.357(0.00156) — —
200000  13.223(0.00008)  35.050(0.00144) — —
250000  16.688(0.00010)  44.725(0.00094) — —

(Section 2.9.3). The fully polynomial-time approximation schemes are not included
since a limited series of experiments showed a dramatic inferiority of these
algorithms (see also Section 4.4.2, where this trend is confirmed for the subset-sum

problem).

The heuristic version of MT2 was obtained by halting execution at the end of
Step 2, and returning the approximate solution of value z”. In order to obtain a
small core problem, procedure CORE was executed with parameters

9=25;

a =0.0;
8=1.0;
n = 200.

As for the Sahni scheme S(k), we experimented S(0), S(1) and S(2), since the
time complexity O (n**!) makes the algorithm impractical for k > 3.

Tables 2.9, 2.10 and 2.11 give the results for the three data sets, with v =
1000. » =100 and ¢ = 0.5 Zj'.'zl w;. For each approximate algorithm, we give (in
brackets) the average percentage error. This was computed as 100(z —z¢)/z, where
z? is the approximate solution value and z either the optimal solution value (when



2.10 Computational experiments

73

Table 2.10 Weakly correlated problems: w, uniformly random in [1,1000], p, in [w, — 100,

w, + 100]; ¢ = 0.5 Z,n=1 w,. HP 9000/840 in seconds. Average times (average percentage
errors) over 20 problems

MT?2 approx.
time (% error)

S(0)
time (% error)

S(1)
time (% error)

S(2)
time (% error)

50 0.006(0.17208) 0.004(2.13512) 0.017(1.81004) 0.302(1.77572)

100 0.008(0.04296) 0.008(0.87730) 0.055(0.78573) 2.281(0.76862)

200 0.013(0.06922) 0.015(0.31819) 0.194(0.28838) 17.779(0.28216)

500 0.033(0.01174) 0.046(0.14959) 1.139(0.14300)  273.118(0.14135)
1 000 0.058(0.00774) 0.103(0.08226) 4.432(0.07842) —
2 000 0.114(0.00589) 0.222(0.03740) 17.626(0.03634) —
5000 0.312(0.00407) 0.619(0.01445) 113.527(0.01413) —
10 000 0.645(0.00261) 1.324(0.00630) — —
20000 1.297(0.00155) 2.802(0.00312) — —
30000 1.943(0.00104) 4.372(0.00216) — —
40000 2.667(0.00052) 6.432(0.00177) — —
50000 3.374(0.00036) 8.013(0.00139) — —
60 000 4.544(0.00028) 9.377(0.00095) — —
70 000 4.662(0.00040)  11.069(0.00083) — —
80000 6.029(0.00031)  13.041(0.00070) — —
90000 6.249(0.00040)  15.662(0.00071) — —
100 000 6.618(0.00017)  16.358(0.00050) — —
150000 10.231(0.00019)  25.530(0.00041) — —
200000  12.991(0.00004)  35.230(0.00027) — —
250000  16.062(0.00009)  45.234(0.00020) — —

Table 2.11  Strongly correlated problems: w, uniformly random in [1,1000], p, = w, + 100;
c=0.5 Z,n=1 w,. HP 9000/840 in seconds. Average times (average percentage errors) over 20
problems

MT?2 approx. S(0) S(1) S(2)
n time (% error) time (% error) time (% error) time (% error)
50 0.008(1.50585) 0.003(3.25234) 0.019(1.68977) 0.340(0.74661)
100 0.008(0.81601) 0.007(1.43595) 0.061(0.73186) 2.574(0.39229)
200 0.015(0.51026) 0.017(0.77478) 0.226(0.40653) 20.877(0.26096)
500 0.029(0.27305) 0.046(0.33453) 1.372(0.17836)  316.804(0.09783)
1000 0.059(0.10765) 0.111¢0.15991) 5.388(0.08409) —
2 000 0.119(0.06850) 0.236(0.08866) 21.173(0.05196) —
5000 0.315(0.02148) 0.614(0.02740)  132.973(0.01421) —
10000 0.679(0.01384) 1.341(0.01573) — —
20000 1.266(0.00559) 2.787(0.00694) — —
30000 1.879(0.00512) 4.333(0.00504) — —
40 000 2.603(0.00292) 6.022(0.00372) — —
50000 3.182(0.00240) 7.598(0.00239) — —
60 000 3.795(0.00224) 9.194(0.00252) — —
70 000 4.529(0.00167)  10.760(0.00214) — —
80000 5.090(0.00154)  12.324(0.00185) — —
90000 5.595(0.00115)  13.968(0.00179) — —
100 000 6.320(0.00132)  15.569(0.00165) — —
150 000 9.141(0.00083)  24.583(0.00082) — —
200000  12.005(0.00077)  34.400(0.00083) — —
250000  15.950(0.00055)  44.001(0.00044) — —




74 2 0-1 Knapsack problem

available) or an upper bound determined by the approximate version of MT2.
The execution of each approximate algorithm was halted as soon as the average
computing time exceeded 100 seconds.

Table 2.9 shows that it is not convenient to heuristically solve uncorrelated
problems, since the exact version of MT2 requires about the same times as its
approximate version, which in turn dominates S(k). The same consideration holds
for weakly correlated problems with n < 50000 (Table 2.10); for n > 50000, the
approximate version of MT2 dominates S(0), while S(1) and S(2) have impractical
time requirements. Table 2.11 shows that the approximate version of MT2: which
dominates S(0), must be recommended for large-size strongly correlated problems;
for small values of n, S(1) and S(2) can produce better approximations but require
dramatically higher computing times.

The Fortran code corresponding to MT2, included in the volume, allows use
either of the exact or the approximate version through an input parameter.

2.11 FACETS OF THE KNAPSACK POLYTOPE

In this section we give an outline of the main results obtained in the study of the
knapsack polytope. Since such results did not lead, up to now, to the design of
effective algorithms for KP, the purpose of the present section is only to introduce
the reader to the principal polyhedral concepts and to indicate the relevant literature
concerning knapsack problems. Detailed introductions to the theory of polyhedra
can be found in Bachem and Gro6tschel (1982), Pulleyblank (1983), Schrijver (1986)
and Nemhauser and Wolsey (1988), among others.

We start with some basic definitions. Given a vector a € R”" and a scalar
ap € R, the set {x € R" : Y7 ax; = ao} is called a hyperplane. A
hyperplane defines two halfspaces, namely {x € R" : Z}Ll ajx; < ap} and
{x ER": Zj'.'zl ajx; > ao}. The intersection of finitely many halfspaces, when it
is bounded and non-empty, is called a polyrope. Hence, polytopes can be written
as P = {x € R" : Zj'.'zla,-jxj < ao fori =1,...,r}; alternatively, they can
be described as the convex hull of finitely many points, i.e. P = conv (§), with
S C R" and | S| finite. m points x'.. ... x™ € R" are called affinely independent if
the equations Y7 Mex* =0 and 37,0, A, =0 imply A\ =0 fork=1..... m.
The dimension of a polytope P C R". dim (P), is | P| — 1, where P is the largest
subset of affinely independent points of P. A subset F of a polytope P C R" is
called a face of P if there exists an inequality Zj'.'zl ajx; < ap which is satisfied by
anyx € P andsuchthat F = {x € P : Zj'.':l a;x; = ap}. In other words, a face is the
intersection of the polytope and a hyperplane defining a halfspace containing the
polytope itself. A face F of P such that dim (F) = dim (P)—1 is called a facer of P.
Hence an inequality Zj'.'zl a;x; < ag defines a facet of P if (a) it is satisfied by any
x € P, and (b) it is satisfied with equality by exactly dim (P) affinely independent
x € P. The set of inequalities defining all the distinct facets of a polytope P



2.11 Facets of the knapsack polytope 75

constitutes the minimal inequality representation of P. Hence the importance of
facets in order to apply linear programming techniques to combinatorial problems.
Coming to KP, its constraint set (conditions (2.2), (2.3)) defines the knapsack

polytope

K = conv xER”:ijxjgc, xj €{0.1} forj=1,...,n
j=1

It is easy to verify that, with assumption (2.6) (w; < ¢ for all j),
dim (K) = n.

In fact (a) dim(K) < n (obvious), and (b) dim (K') > n, since K contains the
n + 1 affinely independent points xk (k=0..... n), where x = (0..... 0) and x*
corresponds to unit vector e, (kK =1..... n). The two main classes of facets of K
are based on minimal covers and (1, k)-configurations.

AsetS CN ={1..... n} is called a cover for K if

ij > C.

JES

A cover is called minimal if

Z w; < c¢ forany i €S
je€s\{i}

The set E(S) =S US’, where
S/={j EN\S . Wj Zmax,-eg {W,'}},

is called the extension of S to N. Let S be the family of all minimal covers § for K.
Balas and Jeroslow (1972) have shown that constraints (2.2), (2.3) are equivalent
to the set of canonical inequalities

Y x5 <I[S|=1 forall §e€S, (2.46)
JEE(S)

in the sense that x € {0, 1}" satisfies (2.2), (2.3) if and only if it satisfies (2.46).
Balas (1975), Hammer, Johnson and Peled (1975) and Wolsey (1975) have given
necessary and sufficient conditions for a canonical inequality to be a facet of K.

A rich family of facets of K can be obtained by “lifting” facets of lower
dimensional polytopes. Given a minimal cover § for K, let Ks C R!S! denote
the | S |-dimensional polytope



76 2 0-1 Knapsack problem

Ks =conv { x € {0.1}I5] - ijxj <cy, (2.47)
Jj€S

i.e. the subset of K containing only points x such that x; = 0 for all j € N\S. It
is known (see, for instance, Balas (1975), Padberg (1975), Wolsey (1975)) that the

inequality Z
X< |S[-1
J€ES

defines a facet of the lower dimensional polytope Ks. Nemhauser and Trotter (1974)
and Padberg (1975) have given a sequential lifting procedure to determine integer
coefficients 3; (j € N\S) such that the inequality

ij' + Z ﬂjxj§|S|—l

j€s JEN\S

defines a facet of K. Calculating these coefficients requires solution of a sequence
of |[N\S| O-1 knapsack problems. Furthermore, the facet obtained depends on the
sequence in which indices j € N\S are considered. Zemel (1978) and Balas and
Zemel (1978) have given a characterization of the entire class of facets associated
with minimal covers, and a simultaneous lifting procedure to obtain them. These
facets have in general fractional coefficients (those with integer coefficients coincide
with the facets produced by sequential lifting).

A richer class of facetial inequalities of K is given by (1, k)-configurations
(Padberg, 1979, 1980). Given a subset M C N andt € N\M, define the set
S =M U{t}.S is a(1,k)-configuration for K if (a) 3, w; < c and (b) QU{r}
is a minimal cover for every Q C M with |Q| =k, where k is any given integer
satisfying 2 < k < |M|. Note that if kK = |[M |, a (1, k)-configuration is a minimal
cover for K (and, conversely, any minimal cover § can be expressed as a (1,k)-
configuration, with k = | S| — 1, for any ¢ € §). Padberg (1980) proved that, given
a (1, k)-configuration S = M U {r} of K, the complete and irredundant set of facets
of the lower dimensional polytope K (see 2.47) is given by the inequalities

r—k+1x + Z x <r,
JES(r)

where S(r) C M is any subset of cardinality », and » is any integer satisfying
k < r < |M]|. Sequential or simultaneous lifting procedures can then be used to
obtain facets of the knapsack polytope K.

Recently, Gottlieb and Rao (1988) have studied a class of facets of K, containing
fractional coefficients, which can be derived from disjoint and overlapping minimal
covers and (1, k)-configurations. For such class, they have given necessary and
sufficient conditions which can easily be verified without use of the computationally



2.12  The multiple-choice knapsack problem 77

heavy simultaneous lifting procedures. The computational complexity of lifted
inequalities has been analysed by Hartvigsen and Zemel (1987) and Zemel (1988).

2.12 THE MULTIPLE-CHOICE KNAPSACK PROBLEM

The Multiple-Choice Knapsack Problem (MCKP), also known as the Knapsack
Problem with Generalized Upper Bound (GUB) Constraints, is a 0-1 knapsack
problem in which a partition Ny..... N, of the item set N is given, and it is
required that exactly one item per subset is selected. Formally,

maximize @z = ijxj (2.48)
Jj=1

subject to Z wix; < c. (2.49)
j=1
Y x=lk=1.... r. (2.50)
JENk
x;=00rl. jeN={l..n}=| N, (2.51)

assuming

Nh ﬂNk=@ for all h # k.

The problem is NP-hard, since any instance of KP, having r elements of profit p;
and weightw; (j =1..... r) and capacity c, is equivalent to the instance of MCKP
obtained by setting n =2r, pj =w; =0 forj =r +1,...,2r and Ny = {k. r +k}
fork=1,...,r.

MCKP can be solved in pseudo-polynomial time through dynamic programming
as follows. Given a pair of integers / (1 </ <r)and ¢ (0 < & < ¢), consider the
sub-instance of MCKP consisting of subsets Nj..... N, and capacity ¢. Let f;(¢)
denote its optimal solution value, i.e.

/1(¢) = max ijxj :ijxj gé,ijzlfork=l, R

JEN JEN JEN,

x, =0orl forj e N



78 2 0-1 Knapsack problem

where N = U kllek, and assume that f;(¢) = —oc if the sub-instance has no
feasible solution. Let

wi =min{w; : j € Ny} fork=1..... r;

clearly,
—oC for¢ =0..... w —1;
hHi@)=
max {p;:j € Ny.w; <¢é} foré=w;..... c;
forl=2..... r we then have
[ — for¢=0..... S Wk — 1

fi©)=<¢ max{fi_(é—w))+p;:j EN.w; <¢}

\ forészka....,c.

The optimal solution is the state corresponding to f,(c). If we have Y, _ Wy > ¢
then the instance has no feasible solution, and we obtain f,(c) = —oc. For each
value of /, the above computation requires O (| N;|c) operations, so the overall time
complexity of the method is O (nc).

The execution of any algorithm for MCKP can be conveniently preceded by a
reduction phase, using the following

Dominance Criterion 2.1. For any Ny(k = 1..... r), if there exist two items
i.j € Ny such that
pi <p; and w, >w;

then there exists an optimal solution to MCKP in which x, = 0, i.e. item i is
dominated.

Proof. Obvious from (2.50). []

As is the case for KP, dynamic programming can solve only instances of limited
size. Larger instances are generally solved through branch-and-bound algorithms,
based on the exact solution of the continuous relaxation of the problem, C (MCKP),
defined by (2.48)—(2.50) and

0<x <1 JjEN. (2.52)

An instance of C (MCKP) can be further reduced through the following

Dominance Criterion 2.2. For any Ny(k = 1..... r), if there exist three items
h.i.j € Ny such that



2.12 The multiple-choice knapsack problem 79

wp <w; <w; and Pi = Ph <pj_pi

Wi — Wy — W — W

(2.53)

then there exists an optimal solution to C (MCKP) in which x; = 0, i.e. item i is
dominated.

We do not give a formal proof of this criterion. However, it can be intuitively
verified by representing the items of N, as in Figure 2.8 and observing that

(1) after application of Dominance Criterion 2.1, the remaining items can only
correspond to points in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>