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Preface

Due to the pioneering works of many prominent mathematicians, includ-
ing A. N. Tikhonov and M. A. Lavrentiev, the concept of inverse/ill-posed
problems has been widely accepted and received much attention in math-
ematical sciences as well as applied disciplines, e.g., heat transfer, medical
imaging and geophysics. Inverse theory has played an extremely important
role in many scientific developments and technological innovations.

Amongst numerous existing approaches to numerically treat ill-posed
inverse problems, Tikhonov regularization is the most powerful and ver-
satile general-purposed method. Recently, Tikhonov regularization with
nonsmooth penalties has demonstrated great potentials in many practical
applications. The use of nonsmooth regularization can improve signifi-
cantly the reconstruction quality. Their Bayesian counterparts also start
to attract considerable attention. However, it also brings great challenges
to its mathematical analysis and efficient numerical implementation.

The primary goal of this monograph is to blend up-to-date mathematical
theory with state-of-art numerical algorithms for Tikhonov regularization.
The main focus lies in nonsmooth regularization and their convergence anal-
ysis, parameter choice rules, nonlinear problems, efficient algorithms, direct
inversion methods and Bayesian inversion. A clear understanding of these
different facets of Tikhonov regularization, or more generally nonsmooth
models for inverse problems, is expected to greatly broaden the scope of
the approach and to promote further developments, in particular in the
search of better model/methods. However, a seamless integration of these
facets is still rare due to its relatively recent origin.

The presentation focuses on two components of applied inverse theory:
mathematical theory (linear and nonlinear Tikhonov theory) and numerical
algorithms (including nonsmooth optimization algorithms, direct inversion

v



August 6, 2014 8:17 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-fm page vi

vi Inverse Problems: Tikhonov Theory and Algorithms

methods and Bayesian inversion). We discuss nonsmooth regularization
in the context of classical regularization theory, especially consistency, con-
vergence rates, and parameter choice rules. These theoretical developments
cover both linear and nonlinear inverse problems. The nonsmoothness of
the emerging models poses significant challenges to their efficient and ac-
curate numerical solution. We describe a number of efficient algorithms
for relevant nonsmooth optimization problems, e.g., augmented Lagrangian
method and semismooth Newton method. The sparsity regularization is
treated in great detail. In the application of these algorithms, often a
good initial guess is very beneficial, which for a class of inverse problems
can be obtained by direct inversion methods. Further, we describe the
Bayesian framework, which quantifies the uncertainties associated with one
particular solution, the Tikhonov solution, and provides the mechanism for
choosing regularization parameters and selecting the proper regularization
model. We shall describe the implementation details of relevant computa-
tional techniques.

The topic of Tikhonov regularization is very broad, and surely we are
not able to cover it in one single volume. The choice of materials is strongly
biased by our limited knowledge. In particular, we do not intend to present
the theoretical results in their most general form, but to illustrate the main
ideas. However, pointers to relevant references are provided throughout.

The book is intended for senior undergraduate students and beginning
graduate students. The prerequisite includes basic partial differential equa-
tions and functional analysis. However, experienced researchers and prac-
titioners in inverse problems may also find it useful.

The book project was started during the research stay of the second
author at University of Bremen, as an Alexandre von Humboldt postdoc-
toral fellow, and largely developed the stay of the second author at Texas
A&M University and his visits at North Carolina State University and The
Chinese University of Hong Kong. The generous support of the Alexandre
von Humboldt foundation and the hospitality of the hosts, Peter Maass,
William Rundell, and Jun Zou, are gratefully acknowledged. The authors
also benefitted a lot from the discussions with Dr. Tomoya Takeuchi of
University of Tokyo.

Raleigh, NC and Riverside, CA

November 2013, Kazufumi Ito and Bangti Jin
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Chapter 1

Introduction

In this monograph we develop mathematical theory and solution methods
for the model-based inverse problems. That is, we assume that the un-
derlying mathematical models, which describe the map from the physical
parameters and unknowns to observables, are known. The objective of the
inverse problem is to construct a stable inverse map from observables to the
unknowns. Thus, in order to formulate an inverse problem it is essential
to select unknowns of physical relevance and analyze their physical proper-
ties and then to develop effective and accurate mathematical models for the
forward map from the unknowns to observables. In practice, it is quite com-
mon that observables measure a partial information of the state variables
and that the state variables and unknowns satisfy the binding constraints
in terms of equations and inequalities. That is, observables only provide
indirect information of unknowns.

The objective is to determine unknowns or its distribution from ob-
servables by constructing stable inverse maps. The mathematical analysis
includes the uniqueness and stability of the inverse map, the development
and analysis of reconstruction algorithms, and efficient and effective imple-
mentation. In order to construct a reconstruction algorithm it is necessary
to de-convolute the convoluted forward map. To this end, we formulate the
forward map in a function space framework and then develop a variational
approach and a direct sampling method for the unknowns and use a sta-
tistical method based on the Bayes formula to analyze the distribution of
unknowns. Both theoretical and computational aspects of inverse analysis
are developed in the monograph. Throughout, illustrative examples will be
given to demonstrate the feasibility and applicability of our specific analysis
and formulation. The outline of our presentation is as follows.

A function space inverse problem has unknowns in function spaces and

1
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the constraints in the form of (nonlinear) partial differential and nonlocal
equations for modeling many physical, bio-medical, chemical, social, and
engineering processes. Unknowns may enter into the model in a very non-
linear manner. In Chapter 2 we describe several examples that motivate
and illustrate our mathematical formulation and framework in various ar-
eas of inverse problems. For example, in the medium inverse problem such
as electrical impedance tomography and inverse medium scattering, the un-
known medium coefficient enters as a multiplication. These models will be
used throughout the book to illustrate the underlying ideas of the theory
and algorithms.

An essential issue of the inverse problem is about how to overcome the
ill-posedness of the inverse map, i.e., a small change in the observables may
result in a very large change in the constructed solution. Typical examples
include the inverse of a compact linear operator and a matrix with many
very small singular values. Many tomography problems can be formulated
as solving a linear Volterra/Fredholm integral equation of the first kind for
the unknown. For example, in the inverse medium scattering problem, we
may use Born’s approximation to formulate a linear integral equation for
the medium coefficient. The inverse map can be either severely or mildly
ill-posed, depending on the singularity strength of the kernel function. The
inverse map is unbounded in either case and it is necessary to develop a
robust generalized inverse map that allows a small variation in the problem
data (e.g., right hand side and forward model) and computes an accurate
regularized solution. In Chapters 3 and 4 we describe the Tikhonov regular-
ization method and develop the theoretical and computational treatments
of ill-posed inverse problems.

Specifically, we develop the Tikhonov value function calculus and the
asymptotic error analysis for the Tikhonov regularized inverse map when
the noise level of observables decreases to zero. The calculus can be used for
analyzing several choice rules, including the discrepancy principle, Hanke-
Raus rule and quasi-optimality criterion, for selecting the crucial Tikhonov
regularization parameter, and for deriving a priori and a posteriori error
estimates of the Tikhonov regularized solution.

It is very essential to incorporate all available prior information of un-
knowns into the mathematical formulation and reconstruction algorithms
and also develop an effective selection method of the (Tikhonov) regulari-
zation parameters. We systematically use the Bayesian inference for this
purpose and develop the augmented Tikhonov formulation. The formu-
lation uses multiple prior distributions and Gamma distributions for the
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regularization parameters and an appropriate fidelity function based on
the noise statistics. Based on a hierarchical Bayesian formulation we de-
velop and analyze a general balancing principle for the selection of the
regularization parameters. Further, we extend the augmented approach
to the emerging topic of multi-parameter regularization, which enforces si-
multaneously multiple penalties in the hope of promoting multiple distinct
features. We note that multiple/multiscale features can be observed in
many applications, especially signal/image processing. A general conver-
gence theory will be developed to partially justify their superior practical
performance. The objective is to construct a robust but accurate inverse
map for a class of real world inverse problems including inverse scattering,
tomography problems, and image/signal processing.

Many distributed parameter identifications for partial differential equa-
tions are inherently nonlinear, even though the forward problem may be
linear. The nonlinearity of the model calls for new ingredients for the
mathematical analysis of related inverse problems. We extend the linear
Tikhonov theory and analyze regularized solutions based on a generalized
source condition. We shall recall the classical convergence theory, and de-
velop a new approach from the viewpoint of optimization theory. In par-
ticular, the second-order optimality conditions provide a unified framework
for deriving convergence rate results. The problem structure is highlighted
for a general class of nonlinear parameter identification problems, and illus-
trated on concrete examples. The role of conditional stability in deriving
convergence rates is also briefly discussed.

In Chapter 5 we discuss the optimization theory and algorithms for vari-
ational optimization, e.g., maximum likelihood estimate of unknowns based
on the augmented Tikhonov formulation, optimal structural design, and
optimal control problems. We focus on a class of nonsmooth optimization
arising from the nonsmooth prior distribution, e.g., sparsity constraints. In
order to enhance and improve the resolution of the reconstruction we use
nonsmooth prior and the noise model in our Tikhonov formulation. For
example, a Laplace distribution of function unknowns and its derivatives
can be used. We derive the necessary optimality based on a generalized
Lagrange multiplier theory for nonsmooth optimization. It is a coupled
nonlinear system of equations for the primal variable and the Lagrange
multiplier and results in a decomposition of coordinates. The nonsmooth-
ness of the cost functional is treated using the complementarity condition
on the Lagrange multiplier and the primal variable. Thus, Lagrange mul-
tiplier based gradient methods can be readily applied. Further, we develop
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a primal dual active set method based on the complementarity condition,
and resulting algorithms are described in details and solve the inequality
constraints, sparsity optimization, and a general class of nonsmooth op-
timizations. Also we develop a unified treatment of a class of nonconvex
and nonsmooth optimizations, e.g., L0(Ω) penalty, based on a generalized
Lagrange multiplier theory.

For a class of inverse problems we can develop direct methods. For ex-
ample, multiple signal classification (MUSIC) for estimating the frequency
contents of a signal from the autocorrelation matrix has been used for
determining point scatterers from the multi-static response matrix in in-
verse scattering. The direct sampling method is developed for the multi-
path scattering to probe medium inhomogeneities. For the inverse Sturm-
Liouville problem, one develops an efficient iterative method based on
the Gel’fand-Levitan-Marchenko transform. For the analytic extension of
Cauchy data one can use the Taylor series expansion based on the Cauchy-
Kowalevski theory. In Chapter 6 we present and analyze a class of direct
methods for solving inverse problems. These methods can efficiently yield
first estimates to certain nonlinear inverse problems, which can be either
used as an initial guess for optimization algorithms in Chapter 5, or ex-
ploited to identify the region of interest and to shrink the computational
domain.

In Chapter 7 we develop an effective use of Bayesian inference in the
context of inverse problems, i.e., incorporation of model uncertainties, mea-
surement noises and approximation errors in the posterior distribution, the
evaluation of the effectiveness of the prior information, and the selection of
regularization parameters and proper mathematical models. The Bayesian
solution – the posterior distribution – encompasses an ensemble of inverse
solutions that are consistent with the given data, and it can quantify the
uncertainties associated with one particular solution, e.g., the Tikhonov
minimizer, via credible intervals. We also discuss computational and the-
oretical issues for applying Markov chain Monte Carlo (MCMC) methods
to inverse problems, including the Metropolis-Hastings algorithm and the
Gibbs sampler. Advanced computational techniques for accelerating the
MCMC methods, e.g., preconditioning, multilevel technique, and reduced-
order modeling, are also discussed. Further, we discuss a class of deter-
ministic approximate inference methods, which can deliver reasonable ap-
proximations within a small fraction of computational time needed for the
MCMC methods.
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Chapter 2

Models in Inverse Problems

2.1 Introduction

In this chapter, we describe several mathematical models for linear and
nonlinear inverse problems arising in diverse practical applications. The
examples focus on practical problems modeled by partial differential equa-
tions, where the available data consists of indirect measurements of the
PDE solution. Illustrative examples showcasing the ill-posed nature of the
inverse problem will also be presented. The main purpose of presenting
these model problems is to show the diversity of inverse problems in prac-
tice and to describe their function space formulations.

Let us first recall the classical notion of well-posedness as formulated by
the French mathematician Jacques Hadamard. A problem in mathemati-
cal physics is said to be well-posed if the following three requirements on
existence, uniqueness and stability hold:

(a) There exists at least one solution;
(b) There is at most one solution;
(c) The solution depends continuously on the data.

The existence and uniqueness depend on the precise definition of a “solu-
tion”, and stability is very much dependent on the topologies for measuring
the solution and problem data. We note that mathematically, by suitably
changing the topologies, an unstable problem might be rendered stable.
However, such changes are not always plausible or possible for practical
inverse problems for which the data is inevitably contaminated by noise
due to imprecise data acquisition procedures. One prominent feature for
practical inverse problems is the presence of data noise.

Given a problem in mathematical physics, if one of the three require-

5
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ments fail to hold, then it is said to be ill-posed. For quite a long time,
ill-posed problems were thought to be physically irrelevant and mathemat-
ically uninteresting. Nonetheless, it is now widely accepted that ill-posed
problems arise naturally in almost all scientific and engineering disciplines,
as we shall see below, and contribute significantly to scientific developments
and technological innovations.

In this chapter, we present several model inverse problems, arising in
elliptic (partial) differential equations and tomography, which serve as pro-
totypical examples for linear and nonlinear inverse problems.

2.2 Elliptic inverse problems

In this part, we describe several inverse problems for a second-order elliptic
differential equation

−∇ · (a(x)∇u) + b(x) · ∇u+ p(x)u = f(x) in Ω. (2.1)

Here Ω ⊂ Rd (d = 1, 2, 3) is an open domain with a boundary Γ = ∂Ω.
The equation (2.1) is equipped with suitable boundary conditions, e.g.,
Dirichlet or Neumann boundary conditions. The functions a(x), b(x) and
p(x) are known as the conductivity/diffusivity, convection coefficient and
the potential, respectively, and the function f(x) is the source/sink term. In
practice, the elliptic problem (2.1) can describe the stationary state of many
physical processes, e.g., heat conduction, time-harmonic wave propagation,
underground water flow and quasi-static electromagnetic processes.

There is an abundance of inverse problems related to equation (2.1),
e.g., recovering one or several of the functions a(x), b(x), q(x) and f(x),
boundary conditions/coefficients, or other geometrical quantities from (of-
ten noisy) measurements of the solution u, which can be either in the inte-
rior of the domain Ω or on the boundary Γ. Below we describe five inverse
problems: Cauchy problem, inverse source problem, inverse scattering prob-
lem, inverse spectral problem, and inverse conductivity problem. The last
one will be described in Section 2.3.

2.2.1 Cauchy problem

The Cauchy problem for elliptic equations is fundamental to the study of
many elliptic inverse problems, and has been intensively studied. One for-
mulation is as follows. Let Γc and Γi = Γ \ Γc be two disjointed parts of
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the boundary Γ, which refer to the experimentally accessible and inaccessi-
ble parts, respectively. Then the Cauchy problem reads: given the Cauchy
data g and h on the boundary Γc, find u on the boundary Γi, i.e.,

−∇ · (a(x)∇u) = 0 in Ω,

u = g on Γc,

a
∂u

∂n
= h on Γc.

This inverse problem itself arises also in many practical applications,
e.g., thermal analysis of re-entry space shuttles/missiles [23], electrocardio-
graphy [121] and geophysical prospection. For example, in the analysis of
space shuttles, one can measure the temperature and heat flux on the inner
surface of the shuttle, and one is interested in the flux on the outer surface,
which is not directly accessible.

The Cauchy problem is known to be severely ill-posed, and lacks a con-
tinuous dependence on the data [25]. There are numerous deep mathemat-
ical results on the Cauchy problem. We shall not delve into these results,
but refer interested readers to the survey [2] for stability properties. In
his essay of 1923 [122], Jacques Hadamard provided the following example,
showing that the solution of the Cauchy problem for Laplace’s equation
does not depend continuously on the data.

Example 2.1. Let the domain Ω = {(x1, x2) ∈ R2 : x2 > 0} be the upper
half plane, and the boundary Γc = {(x1, x2) ∈ R2 : x2 = 0}. Consider the
solution u = un, n = 1, 2, . . ., to the Cauchy problem

∆u = 0 in Ω,

u = 0 on Γc,
∂u

∂n
= −n−1 sinnx1 on Γc.

It can be verified directly that un = n−2 sinnx1 sinhnx2 is a solution to the
problem, and further the uniqueness is a direct consequence of Holmgren’s
theorem for Laplace’s equation. Hence it is the unique solution. Clearly,
∂un

∂n |Γc → 0 uniformly as n → ∞, whereas for any x2 > 0, un(x1, x2) =
n−2 sinnx1 sinhnx2 blows up as n→ ∞.

A closely related inverse problem is to recover the Robin coefficient γ(x)
on the boundary Γi from the Cauchy data g and h on the boundary Γc:

a
∂u

∂n
+ γu = 0 on Γi.
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It arises in the analysis of quenching process and nuclear reactors, and
corrosion detection. In heat conduction, the Robin boundary condition de-
scribes a convective heat conduction across the interface Γi, and it is known
as Newton’s law for cooling. In this case the coefficient is also known as
heat transfer coefficient, and it depends strongly on at least twelve vari-
ables or eight nondimensional groups [307]. Thus its accurate values are
experimentally very expensive and inconvenient, if not impossible at all, to
obtain. As a result, in thermal engineering, a constant value assumption
on γ is often adopted, and a look-up table approach is common, which
constrains the applicability of the model to simple situations. Hence, en-
gineers seek to estimate the coefficient from measured temperature data.
In corrosion detection, the Robin boundary condition occurs due to the
roughening effect of corrosion as the thickness tends to zero and rapidity
of the oscillations diverges, and the coefficient could represent the dam-
age profile [192, 151]. It also arises naturally from a linearization of the
nonlinear Stefan-Boltzmann law for heat conduction of radiation type. We
refer interested readers to [175] for a numerical treatment via Tikhonov
regularization and [53] for piecewise constant Robin coefficients.

2.2.2 Inverse source problem

A second classical linear inverse problem for equation (2.1) is to recover a
source/sink term f , i.e.,

−∆u = f

from the Cauchy data (g, h) on the boundary Γ:

u = g and
∂u

∂n
= h on Γ.

Exemplary applications include electroencephalography and electrocardio-
graphy. The former records brain’s spontaneous electrical activities from
electrodes placed on the scalp, whereas the latter determines the heart’s
electrical activity from the measured body-surface potential distribution.
One possible clinical application of the inverse problem is the noninvasive
localization of the accessory pathway tract in the Wolff-Parkinson-White
syndrome. In the syndrome, the accessary path bridges atria and ventri-
cles, resulting in a pre-excitation of the ventricles [121]. Hence the locus
of the dipole “equivalent” sources during early pre-excitation can possibly
serve as an indicator of the site of the accessory pathway.

Retrieving a general source term from the Cauchy data is not unique.
Physically, this is well understood in electrocardiography, in view of the fact
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that the electric field that the source generates outside any closed surface
completely enclosing them can be duplicated by equivalent single-layer or
double-layer sources on the closed surface itself [121, 225]. Mathematically,
it can be seen that by adding one compactly supported function, one obtains
a different source without changing the Cauchy data. The uniqueness issue
remains delicate even within the admissible set of characteristic functions.
We illustrate the nonuniqueness with one example [86].

Example 2.2. Let Ω be an open bounded domain in Rd with a boundary
Γ. Let ωi (i = 1, 2) be two balls centered both at the origin O and with
different radius ri, respectively, and lie within the domain Ω, and choose
the scalars λi such that λ1r

d
1 = λ2r

d
2 . Then we take the source fi = λiχωi ,

where χS denotes the characteristic function of the set S, in the Laplace
equation {

−∆ui = fi in Ω,

ui = g on Γ.

Then for any v ∈ H(Ω) = {v ∈ H2(Ω) : ∆v = 0}, we have by Green’s
identity that ∫

Ω

fivdx =
∫

Γ

g
∂v

∂n
ds−

∫
Γ

∂ui
∂n

vds.

Meanwhile, by the mean value theorem for harmonic functions∫
Ω

fivdx = |ωi|v(O).

By the construction of fi and these two identities, we obtain∫
Γ

(
∂u1

∂n
− ∂u2

∂n

)
vds = 0 ∀v ∈ H(Ω).

Since for every h ∈ H
1
2 (Γ), there exists a harmonic function v ∈ H(Ω) such

that v = h on Γ and H
1
2 (Γ) is dense in L2(Γ), one can conclude that

∂u1

∂n
=
∂u2

∂n
on Γ,

i.e., the two sources yield identical Cauchy data.

For the purpose of numerical reconstruction, practitioners often con-
tent with minimum-norm sources or harmonic sources (i.e., ∆f = 0). In
some applications, the case of localized sources, as modeled by monopoles,
dipoles or their combinations, is deemed more suitable. In the latter case,
a unique recovery is ensured (as a consequence of Holmgren’s theorem).
Further, efficient direct algorithms for locating dipoles and monopoles have
been developed; see Section 6.2. We refer to [121, 225] for an overview of
regularization methods for electrocardiography inverse problem.



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch02 page 10

10 Inverse Problems: Tikhonov Theory and Algorithms

2.2.3 Inverse scattering problem

Inverse scattering is concerned with imaging obstacles and inhomogeneities
via acoustic, electromagnetic and elastic waves with applications to a wide
variety of fields, e.g., radar, sonar, geophysics, medical imaging (e.g., mi-
crowave tomography) and nondestructive evaluation. Microwave tomog-
raphy provides one promising way to assess functional and pathological
conditions of soft tissues, complementary to the more conventional com-
puterized tomography and magnetic resonance imaging [275]. It is known
that the dielectric properties of tissues with high (muscle) and low (fat
and bone) water content are significantly different. The dielectric contrast
between tissues forms its physical basis. Below we describe the case of
acoustic waves, and refer to [73] for a comprehensive treatment.

We begin with the modeling of acoustic waves, where the medium can
be air, water or human tissues. Generally, acoustic waves are considered as
small perturbations in a gas or fluid. By linearizing the equations for fluid
motion, we obtain the governing equation

1
c2
∂2p

∂t2
= ∆p,

for the pressure p = p(x, t), where c = c(x) denotes the local speed of sound
and the fluid velocity is proportional to ∇p. For time-harmonic acoustic
waves of the form

p(x, t) = �{u(x)e−iωt}
with frequency ω > 0, it follows that the complex valued space dependent
part u satisfies the reduced wave equation

∆u+
ω2

c2
u = 0.

In a homogeneous medium, the speed of sound c is constant and the equa-
tion becomes the Helmholtz equation

∆u+ k2u = 0, (2.2)

where the wave number k is given by k = ω/c. A solution to the Helmholtz
equation whose domain of definition contains the exterior of some sphere is
called radiating if it satisfies the Sommerfeld radiation condition

lim
r→∞ r

d−1
2

(
∂us

∂r
− ikus

)
= 0, (2.3)

where r = |x| and the limit holds uniformly in all directions x/|x|.
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We focus on the following two basic scattering scenarios, i.e., scattering
by a bounded impenetrable obstacle and scattering by a penetrable inho-
mogeneous medium of compact support. First we note that for a vector
d ∈ Sd−1, the function eikx·d satisfies the Helmholtz equation (2.2) for all
x ∈ Rd. It is called a plane wave, since ei(kx·d−ωt) is constant on the planes
kx · d = const, where the wave fronts travel with a velocity c in the direc-
tion d. Throughout, we assume that the incident field ui impinged on the
scatterer/inhomogeneity is given by a plane wave ui(x) = eikx·d.

Let D ⊂ Rd be the space occupied by the obstacle. We assume that D
is bounded, and its boundary ∂D is connected. Then the simplest obstacle
scattering problem is to find the scattered field us satisfying (2.3) in the
exterior Rd \D such that the total field u = ui+ us satisfies the Helmholtz
equation (2.2) in Rd \D and the Dirichlet boundary condition

u = 0 on ∂D.

It corresponds to a sound-soft obstacle with the total pressure, i.e., the
excess pressure over the static pressure, vanishing on the boundary. Alter-
native boundary conditions other than the Dirichlet one are also possible.

The simplest scattering problem for an inhomogeneous medium assumes
that the speed of sound c is constant outside a bounded domain D. Then
the total field u = ui + us satisfies

∆u+ k2n2u = 0 in Rd (2.4)

and the scattered field us fulfills the Sommerfeld radiation condition (2.3),
where the wave number k is given by k = ω/c0 and n2 = c20/c

2 is the
refractive index, i.e., the ratio of the square of the sound speed c0 in the
homogeneous medium to that in the inhomogeneous one. The refractive
index n2 is always positive, with n2(x) = 1 for x ∈ Rd \ D. Further, an
absorbing medium can be modeled by adding an absorption term which
leads to a refractive index n2 with a positive imaginary part, i.e.,

n2 =
c20
c2

+ i
γ

k
,

where the absorption coefficient γ is possibly space dependent.
Now the direct scattering problem reads: given the incident wave ui =

eikd·x and the physical properties of the scatterer, find the scattered field us

and in particular its behavior at large distances from the scatterer, i.e., its
far field behavior. Specifically, radiating solutions us have the asymptotic
behavior

us(x) =
eik|x|

|x|
(
u∞(x̂, d) +

1
|x|
)

as |x| → ∞,
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uniformly for all directions x̂ = x/|x|, where the function u∞(x̂, d), x̂, d ∈
Sd−1, is known as the far field pattern of the scattered field us.

The inverse scattering problem is to determine either the sound-soft ob-
stacle D or the refraction index n2 from a knowledge of the far field pattern
u∞(x̂, d) for x̂ and d on the unit sphere Sd−1 (or a subset of Sd−1). In prac-
tice, near-field scattered data is also common. Then the inverse problem is
to retrieve the shape of the scatterer Ω or the refractive index n2 from noisy
measurements of the scattered field us on a curve/surface Γ, corresponding
to one or multiple incident fields (and/or multiple frequencies). Inverse
obstacle scattering is an exemplary geometrical inverse problem, where the
geometry of the scatterer (or qualitative information, e.g., the size, shape,
locations, and the number of components) is sought for.

The inverse scattering problems as formulated above are highly nonlin-
ear and ill-posed. There are many inverse scattering methods, which can
be divided into two groups: indirect methods and direct methods. The
former is usually iterative in nature, based on either Tikhonov regulariza-
tion or iterative regularization. Such methods requires the existence of the
Fréchet derivative of the solution operator, and its characterization (e.g.,
for Newton update) [198, 251]; see also [210] for a discussion on Tikhonov
regularization. Generally, these methods are expensive due to the repeated
evaluation of the forward operator and require a priori knowledge, e.g., the
number of components. These issues can be overcome by direct inversion
methods. Prominent direct methods include the linear sampling method,
factorization method, multiple signal classification, and direct sampling
method etc. We shall briefly survey these methods in Chapter 6. In gen-
eral, indirect methods are efficient, but yield only information about the
scatterer support, which might be sufficient in some practical applications,
whereas indirect methods can yield distributed profiles with full details but
at the expense of much increased computational efforts.

Analogous methods exist for the inverse medium scattering problem.
Here reconstruction algorithms are generally based on an equivalent refor-
mulation of (2.4), i.e., the Lippmann-Schwinger integral equation

u = ui + k2

∫
Ω

(n2(y) − 1)G(x, y)u(y)dy, (2.5)

where G(x, y) is the fundamental solution for the open field, i.e.,

G(x, y) =


i
4
H1

0 (k|x− y|), d = 2,

1
4π

eik|x−y|

|x− y| , d = 3,
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whereH1
0 refers to the zeroth-order Hankel function of the first kind. Mean-

while, direct methods apply also to the inverse medium scattering problem
(2.4), with the goal of determining the support of the refractive index n2−1.
Further, we note that by ignoring multiple scattering, we arrive the follow-
ing linearized model to (2.5):

u = ui + k2

∫
Ω

(n2(y) − 1)G(x, y)ui(y)dy,

which is obtained by approximating the total field u by the incident field
ui. It is known as Born’s approximation in the literature, and has been
customarily adopted in reconstruction algorithms.

2.2.4 Inverse spectral problem

Eigenvalues and eigenfunctions are fundamental to the understanding of
many physical problems, especially the behavior of dynamical systems, e.g.,
beams and membranes. Here eigenvalues, often known as the natural fre-
quencies or energy states, can be measured by observing the dynamical
behavior of the system. Naturally, one expects eigenvalues and eigenfunc-
tions can tell a lot about the underlying system, which gives rise to assorted
inverse problems with spectral data.

Generally, the forward problem can be formulated as

Lu = λu in Ω,

with suitable boundary condition on ∂Ω, where L is an elliptic operator,
and λ ∈ C and u are the eigenvalue and respective eigenfunction. The
operator L can also be a discrete analogue of the continuous formulation,
resulting from proper discretization via, e.g., finite difference method or
finite element method. In the latter case, it amounts to matrix eigenvalue
problem with a structured matrix, e.g., tridiagonal or circulant. The matrix
formulation is common in structural analysis, e.g., vibration.

The inverse spectral problem is to recover the coefficients in the oper-
ator L or the geometry of the domain Ω from partial or multiple spectral
data, where the spectral data refer to the knowledge of complete or partial
information of the eigenvalues or eigenfunctions. In the discrete case, it
is concerned with reconstructing a structured matrix from the prescribed
spectral data. Below we describe two versions of inverse spectral problems,
i.e., inverse Sturm-Liouville problem and isospectral problem.

The simplest elliptic differential operator L is given by Lu = −u′′ + qu

over the unit interval (0, 1), where q is a potential. Then the classical
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Sturm-Liouville problem reads: given a potential q and nonnegative con-
stants h andH , find the eigenvalues {λk} and eigenfunctions {uk} such that

−u′′ + q(x)u = λu

u′(0) − hu(0) = 0,

u′(1) +Hu(1) = 0.
The set of eigenvalues {λk} are real and countable. The respective inverse
problem, i.e., the inverse Sturm-Liouville problem, consists of recovering
the potential q(x), h and H from a knowledge of spectral data. The spec-
tral data can take several different forms, and this gives rise to a whole
family of related inverse problems. A first spectral data is one complete
spectrum {λk}∞k=1. It is well known that this is insufficient for the recov-
ery of a general potential q, and thus some additional information must be
provided. Several possible choices of extra data are listed below.

(i) The two-spectrum case. In addition to the spectrum {λk}∞k=1, a
second spectrum {µk}∞k=1 is provided, where H is replaced by H̃ �=
H . Then the potential q, h, H and H̃ can be uniquely determined
from the spectra {λk}∞k=1 and {µk}∞k=1 [34, 214]. It is one of the
earliest inverse problems studied mathematically, dating at least
back to 1946 [34].

(ii) Spectral function data. Here one seeks to reconstruct the potential
q from its spectral function, i.e., the eigenvalues {λk}∞k=1 and the
norming constants ρk := ‖uk‖2

L2(0,1)/uk(0)2 for a finite h and ρk :=

‖uk‖2
L2(0,1)/u

′
k(0)2 when h = ∞. Then the spectral data {λk}∞k=1

and {ρk}∞k=1 uniquely determines the set q(x), h, H , and H̃ [100].
(iii) The symmetric case. If it is known that q is symmetric about the

midpoint of the interval, i.e., q(x) = q(1 − x), and the boundary
condition obeys the symmetry condition h = H , then the knowl-
edge of a single spectrum {λk}∞k=1 uniquely determines q [34].

(iv) Partially known q(x). If the potential q is given over at least one
half of the interval, e.g., 1/2 ≤ x ≤ 1, then again one spectrum
{λk}∞k=1 suffices to recover the potential q [138].

Apart from eigenvalues and norming constants, other spectral data is also
possible. One such data is nodal points, i.e., locations of the zeros of the
eigenfunctions. In the context of vibrating systems, the nodal position is
the location where the system does not vibrate. The knowledge of the po-
sition of one node of each eigenfunction and the average of the potential q
uniquely determines the potential [232].
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Now we turn to the two-dimensional case: What does the complete
spectrum (with multiplicity counted) tell us about the domain Ω. A special
case leads to the famous question raised by Mark Kac [185], i.e., “Can one
hears the shape of a drum?”. Physically, the drum is considered as an
elastic membrane whose boundary is clamped, and the sound it makes is
the list of overtones. Then we need to infer information about the shape of
the drumhead from the list of overtones. Mathematically, the problem can
be formulated as the Dirichlet eigenvalue problem on the domain Ω ⊂ R2:

−∆u = λu in Ω,

u = 0 on ∂Ω.

Then the inverse problem is: given the frequencies {λk}, can we tell the
shape of the drum, i.e., the domain Ω? The problem was answered nega-
tively in 1992 by Gordon, Webb and Wolpert [113], who constructed a pair
of regions in the plane that have different shapes but identical eigenvalues.
These regions are nonconvex polygons. So the answer to Kac’s question
is: for many shapes, one cannot hear the shape of the drum completely.
However, some information can be still inferred, e.g., domain volume.

The numerical treatment of inverse spectral problems is generally deli-
cate. Least squares type methods are often inefficient, and constructive al-
gorithms (often originating from uniqueness proofs) are more efficient. We
refer to [266] for an elegant approach for the inverse Sturm-Liouville prob-
lem, and [67] for a comprehensive treatment of inverse (matrix) eigenvalue
problems. The multidimensional inverse spectral problems are numerically
very challenging, and little is known. We will describe one approach for the
inverse Sturm-Liouville problem in Chapter 6.

2.3 Tomography

In this part, we describe several tomographic imaging techniques, which
are very popular in medical imaging and nondestructive evaluation. We
begin with two classical tomography problems of integral geometry type,
i.e., computerized tomography and emission tomography, and then turn to
PDE-based imaging modalities, including electrical impedance tomography,
optical tomography and photoacoustic tomography.
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2.3.1 Computerized tomography

Computerized tomography (CT) is a medical imaging technique that uses
computer-processed X-rays to produce images of specific areas of the body.
It can provide information about the anatomical details of an organ: the
map of the linear attenuation function is essentially the map of the den-
sity. The cross-sectional images are useful for diagnostic and therapeutic
purposes. The physics behind CT is as follows. Suppose a narrow beam of
X-ray photons passes through a path L. Then according to Beer’s law, the
observed beam density I is given by

I

I0
= e−

R
L
µ(x)dx,

where I0 is the input intensity, and µ = µ(x) is the attenuation coefficient.
It depends on both the density of the material and the nuclear composition
characterized by the atomic number. By taking negative logarithm on both
sides, we get ∫

L

µ(x)dx = − log
I

I0
.

The inverse problem is to recover the attenuation coefficient µ from the
measured fractional decrease in intensity.

Mathematically, the integral transform here is known as the Radon
transform. It is named after Austrian mathematician Johann Radon, who
in 1917 introduced the two-dimensional version and also provided a formula
for the inverse transformation. Below we briefly describe the transform and
its inverse in the two-dimensional case, and refer to [240] for the general
d-dimensional case.

In the 2D case, the line L with a unit normal vector θ(α) = (cosα, sinα)
(i.e., α is the angle between the normal vector to L and the x1-axis) and
distance s to the origin is given by

Lα,s = {x ∈ R2 : x · θ = s}.
Then the Radon transform of a function f : R2 → R is a function defined
on the set of lines

Rf(α, s) =
∫
Lα,s

f(x)ds(x).

The line Lα,s can be parameterized with respect to arc length t by

(x1(t), x2(t)) = sθ(α) + tθ(α)⊥,
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where θ⊥ = (sinα,− cosα). Then the transform can be rewritten as

Rf(α, s) =
∫ ∞

−∞
f
(
sθ + tθ⊥

)
dt.

The Radon transform is closely related to the Fourier transform, which
in d-dimension is defined by

f̂(ω) =
1

(2π)
d
2

∫
f(x)e−ix·ωdx,

and the inverse transform is given by

f̌(x) =
1

(2π)
d
2

∫
f̂(ω)eix·ωdω.

To see the connection, we denote Rαf(s) = Rf(α, s) since the Fourier
transform makes sense only in the s variable. Then there holds [240]

R̂α[f ](σ) =
√

2πf̂(σθ(α)).

Roughly speaking, the two-dimensional Fourier transform of f along the
direction θ coincides with the Fourier transform of its Radon transform in
the variable s. This connection allows one to show the unique invertibility
of the transform on suitably chosen function spaces, and to derive analytic
inversion formulas, e.g., the popular filtered backprojection method and its
variants for practical reconstruction.

We conclude this part with the singular value decomposition (SVD), cf.
Appendix A, of the Radon transform [78].

Example 2.3. In this example we compute the SVD of the Radon trans-
form. We assume that f is square integrable and supported on the unit
disc D centered at the origin. Then the Radon transform Rf is given by

(Rf)(α, s) =
∫ w(s)

−w(s)

f(sθ + tθ⊥)dt, |s| ≤ 1,

where w(s) =
√

1 − s2. By the Cauchy-Schwarz inequality

|Rf(α, s)|2 ≤ 2w(s)
∫ w(s)

−w(s)

|f(sθ + tθ⊥)|2dt,

which upon manipulation yields∫ 1

−1

w−1(s)|Rf(α, s)|2ds ≤ 2
∫
D

|f(x)|2dx.
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This naturally suggests the following weighted norm on the range Y of the
Radon transform

‖g‖2
Y =

∫ 2π

0

∫ 1

−1

w−1(s)|g(α, s)|2dsdα.

Next we recall Chebyshev polynomials Um(s) of the second kind, defined
by

Um(s) =
sin(m+ 1) arccos s

sin arccos s
, m = 0, 1, . . .

which are orthogonal with respect to the weight w(s):∫ 1

−1

w(s)Um(s)Um′(s)ds =
π

2
δm,m′ .

Further, any function g(α, s) in Y can be represented in terms of w(s)Um(s)
for fixed α. This suggests to consider the subspace Ym of Y spanned by

gm(α, s) =

√
2
π
w(s)Um(s)u(α), m = 0, 1, . . .

where u(α) is an arbitrary square integrable function of α. Clearly,
‖gm‖2

Y =
∫ 2π

0
|u(α)|2dα. The next step is to show that RR∗ maps Ym

into itself. It is easy to verify that

R∗g(x) =
∫ 2π

0

g(α, θ · x)w−1(θ · x)dα.

Hence for gm ∈ Ym, there holds

RR∗gm(α, s) =

√
2
π

∫ w(s)

−w(s)

∫ 2π

0

Um(θ′ · (sθ + tθ⊥))u(α′)dα′

=
4π

m+ 1

√
2
π
w(s)Um(s)ū(α),

with

ū(α) =
1
2π

sin(m+ 1)(α− α′)
sin(α− α′)

u(α′)dα′. (2.6)

Hence the operator RR∗ transforms a function in Ym into another function
in Ym, and further, the restriction of RR∗ to the subspace Ym is equivalent
to the integral operator defined in (2.6). In view of the completeness of
Chebyshev polynomials, we can find all eigenvalues and eigenfunctions of
RR∗. Upon noting the identity

1
2π

sin(m+ 1)(α− α′)
sin(α− α′)

=
m∑
k=0

Ym−2k(α)Y ∗
m−2k(α

′),
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with Yl(α) = 1√
2π
e−ilα and by the orthonormality of Yl(α), Ym−2k(α) are

the eigenfunctions of the integral operator associated with the eigenvalue
1. Next we introduce the functions

um,k(α, s) =

√
2
π
w(s)Um(s)Ym−k(α) k = 0, 1, . . . ,m.

Clearly, these functions are orthonormal in Y , and further,

RR∗um,k = σ2
mum,k, k = 0, 1, . . . ,m,

with σm =
√

4π
m+1

. It remains to show that the functions

vm,k(x) =
1
σm

R∗um,k

constitute a complete set of orthonormal functions in L2(D), which follows
from the fact that vm,k(x) can be expressed in terms of Jacobi polynomials
[240]. Therefore, the singular values of the Radon transform decays to zero,
and with the multiplicity counted, it decays at a rate 1/

√
m+ 1, which is

fairly mild, indicating that the inverse problem is only mildly ill-posed.

2.3.2 Emission tomography

In emission tomography one determines the distribution f of a radiophar-
maceutical in the interior of an object by measuring the radiation outside
the object in a tomographic fashion. Let µ be the attenuation distribution
of the object, which one aims to determine. Then the intensity measured
by a detector collimated to pick up only radiation along the line L is given
by

I =
∫
L

f(x)e−
R

L(x) µ(y)dydx, (2.7)

where L(x) is the line segment of L between x and the detector. This is
the mathematical model for single particle emission computed tomography
(SPECT). Thus SPECT gives rise to the attenuated ray transform

(Pµf)(θ, x) =
∫
f(x+ tθ)e−

R ∞
t
µ(x+τθ)dτdt, x ∈ θ⊥, θ ∈ Sd−1.

In positron emission tomography (PET), the sources eject particles pair-
wise in opposite directions, and they are detected in coincidence mode, i.e.,
only events with two particles arriving at opposite detectors at the same
time are counted. In that case, (2.7) has to be replaced by

I =
∫
L

f(x)e
− R

L+(x) µ(y)dy−R
L−(x) µ(y)dy

dx, (2.8)
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where L+(x) and L−(x) are two half-lines of L with end point x. Since the
exponent adds up to the integral over L, we can write

I = e−
R

L
µ(y)dy

∫
L

f(x)dx.

In PET, one is only interested in f , not µ. Usually one determines f from
the measurements, assuming µ to be known or simply ignoring it.

Emission tomography is essentially stochastic in nature. In case of a
small number of events, the stochastic aspect is pronounced. Thus besides
the above models based on integral transforms, stochastic models have been
popular in the applied community. These models are completely discrete.
We describe a widely used model for PET due to Shepp and Vardi [276].

In the model, we subdivide the reconstruction region into pixels or vox-
els. The number of events in pixel (or voxel) j is a Poisson random variable
ξj whose expectation fj = E[ξj ] is a measure of the activity in pixel/voxel
j. The vector f = (f1, . . . , fm)t ∈ Rm is the sought-for quantity. The
measurement vector g = (g1, . . . , gn)t ∈ Rn is considered a realization
of a Poisson random variable γ = (γ1, . . . , γn)t, where γi is the number
of events detected in detector i. The model is described by the matrix
A = [aij ] ∈ Rn×m, where the entry aij denotes the probability that an
event in pixel/voxel j is detected in detector i. These probabilities are
determined either theoretically or by measurements. We have

E[γ] = Af. (2.9)

One conventional approach to estimate f is the maximum likelihood
method, which consists in maximizing the likelihood function

L(f) =
∏ (Af)gi

i

gi!
e−(Af)i .

Shepp and Vardi [276] devised an expectation maximization algorithm for
efficiently finding the maximizer; see [298] for the convergence analysis and
[119, 47] for further extensions to regularized variants.

2.3.3 Electrical impedance tomography

Electrical impedance tomography is a diffusive imaging modality for de-
termining the electrical conductivity of an object from electrical measure-
ments on the boundary [33]. The experimental setup is as follows. One
first attaches a set of electrodes to the surface of the object, then injects
an electrical current through these electrodes and measures the resulting
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electrical voltages on these electrodes. In practice, several input currents
are applied, and the induced electrical potentials are measured. The goal is
to determine the conductivity distribution from the noisy voltage data. We
refer to Fig. 2.1 for a schematic illustration of one EIT system at University
of Eastern Finland.

Fig. 2.1 Schematic illustration of EIT system.

There are several different mathematical models for the experiment.
One popular model in medical imaging is the complete electrode model
[278]. Let Ω be an open bounded domain, referring to the space occupied by
the object, in Rd (d = 2, 3) and Γ be its boundary. The electrical potential
u in the interior of the domain is governed by the following second-order
elliptic differential equation

−∇ · (σ∇u) = 0 in Ω.

A careful modeling of boundary conditions is very important for ac-
curately reproducing experimental data. Let {el}Ll=1 ⊂ Γ be a set of L
electrodes. We assume that each electrode el consists of an open and con-
nected subset of the boundary Γ, and the electrodes are pairwise disjoint.
Let Il ∈ R be the current applied to the lth electrode el and denote by
I = (I1, . . . , IL)t the input current pattern. Then we can describe the
boundary conditions on the electrodes by

u+ zlσ
∂u

∂n
= Ul on el, l = 1, 2, . . . , L,∫

el

σ
∂u

∂n
ds = Il for l = 1, 2, . . . , L,

σ
∂u

∂n
= 0 on Γ\ ∪Ll=1 eL,

where {zl} are contact impedances of the electrodes.
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The complex boundary conditions takes into account the following im-
portant physical characteristics of the experiment: (a) The electrodes are
inherently discrete; (b) The electrode el is a perfect conductor, which im-
plies that the potential along each electrode is constant: u|el

= Ul, and the
current Il sent to the lth electrode el is completely confined to el; (c) When a
current is applied, a highly resistive layer forms at the electrode-electrolyte
interface due to dermal moisture, with contact impedances {zl}Ll=1, which
is known as the contact impedance effect in the literature. Ohm’s law
asserts that the potential at electrode el drops by zlσ

∂u
∂n . Experimental

studies show that the model can achieve an accuracy comparable with the
measurement precision [278].

The inverse problem consists of estimating the conductivity distribution
σ from the measured voltages U = (U1, . . . , UL)t ∈ RL for multiple input
currents. It has found applications in noninvasive imaging, e.g., detection
of skin cancer and location of epileptic foci, and nondestructive testing,
e.g., locating resistivity anomalies due to the presence of minerals [64].

In the idealistic situation, one assumes that the input current g is applied
at every point on the boundary ∂Ω, i.e.,

σ
∂u

∂n
= g on ∂Ω,

and further the potential u is measured everywhere on the boundary ∂Ω,
i.e., the Dirichlet trace u = f . If the measurement can be made for every
possible input current g, then the data consists of the complete Neumann-
to-Dirichlet map Λσ. This model is known as the continuum model, and it
is very convenient for mathematical studies, i.e., uniqueness and stability.
EIT is an example of inverse problems with operator-valued data. We
note that the complete electrode model can be regarded as a Galerkin
approximation of the continuum model [148].

We refer interested readers to [264, 68, 263, 171] for impedance imag-
ing with Tikhonov regularization.

We end this section with the ill-posedness of the EIT problem.

Example 2.4. We consider a radially symmetric case. For the unit disk
Ω = {x ∈ R2 : |x| < 1}, consider the conductivity distribution

σ(x) =
{
κ, |x| < ρ,

1, ρ < |x| < 1,

with a constant κ > 0 and 0 < ρ < 1. Solving the forward problem explicitly
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using polar coordinates x = reiξ yields the spectral decomposition

Λσ :


1√
π

cos kξ

1√
π

sin kξ

 
→ 1
k

1 + µρ2k

1 − µρ2k


1√
π

cos kξ

1√
π

sin kξ

 ,

with µ = 1−κ
1+κ ∈ (−1, 1); cf. [250]. Hence asymptotically, the eigenvalue

of the Neumann-to-Dirichlet map decays at a rate O(k−1). Further, the
smaller (exponentially decaying) is the radius ρ, the smaller perturbation
on the Neumann boundary condition. This indicates that the inclusions far
away from the boundary are more challenging to recover.

2.3.4 Optical tomography

Optical tomography is a relatively new imaging modality. It images the
optical properties of the medium from measurements of near-infrared light
on the surface of the object. In a typical experiment, a highly scattering
medium is illuminated by a narrow collimated beam and the light that
propagates through the medium is collected by an array of detectors. It
has potential applications in, e.g., breast cancer detection, monitoring of
infant brain tissue oxygenation level and functional brain activation studies.
The inverse problem is to reconstruct optical properties (predominantly
absorption and scattering distribution) of the medium from these boundary
measurements. We refer to [14] for comprehensive surveys.

The mathematical formulation of the forward problem is dictated pri-
marily by the spatial scale, ranging from the Maxwell equations at the
microscale, to the radiative transport equation at the mesoscale, and to
diffusion equations at the macroscale. Below we describe the radiative
transport equation and its diffusion approximation, following [14].

Light propagation in tissues is usually described by the radiative trans-
port equation. It is a one-speed approximation of the transport equation,
and it assumes that the energy of the particles does not change in the col-
lisions and that the refractive index is constant within the medium. Let
Ω ⊂ Rd, d = 2, 3, be the physical domain with a boundary ∂Ω, and ŝ ∈ Sd−1

denote the unit vector in the direction of interest. Then the frequency do-
main radiative transport equation is of the form

iω
c
φ(x, ŝ) + ŝ · ∇φ(x, ŝ) + (µs + µa)φ(x, ŝ)

= µs

∫
Sd−1

Θ(ŝ, ŝ′)φ(x, ŝ′)dŝ′ + q(x, ŝ), x ∈ Ω,
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where c is the speed of light in the medium, ω is the angular modulation
frequency of the input signal, and µa = µa(x) and µs = µs(x) are the
absorption and scattering coefficients of the medium, respectively. Further,
φ(x, ŝ) is the radiance, Θ(ŝ, ŝ′) is the scattering phase function and q(x, ŝ)
is the source inside Ω. The function Θ(ŝ, ŝ′) describes the probability that
a photon with an initial direction ŝ′ will have a direction ŝ after a scattering
event. The most usual phase function Θ(ŝ · ŝ′) is the Henyey-Greenstein
scattering function, given by

Θ(ŝ · ŝ′) =


1
2π

1 − g2

1 + g2 − 2gŝ · ŝ′ , d = 2,

1
4π

1 − g2

(1 + g2 − 2gŝ · ŝ′)3/2 , d = 3.

The scattering shape parameter g, taking values in (−1, 1), defines the
shape of the probability density.

For the boundary condition, we assume that no photons travel in an
inward direction at the boundary ∂Ω except at the source point εj ⊂ ∂Ω,
thus

φ(x, ŝ) =

{
φ0(x, ŝ), x ∈ εj, ŝ · n < 0,

0, x ∈ ∂Ω \ ∪εj , ŝ · n < 0,
(2.10)

where φ0(x, ŝ) is a boundary source term. This boundary condition implies
that once a photon escapes the domain Ω it does not re-enter the domain.
In optical tomography, the measurable quantity is the exitance J+(x) on
the boundary ∂Ω of the domain Ω, which is given by

J+(x) =
∫
ŝ·n>0

(ŝ · n)φ(x, ŝ)dŝ, x ∈ ∂Ω.

The forward simulation of the radiative transport equation is fairly ex-
pensive, due to its involvement of the scattering term. Hence simplifying
models are often adopted. Here we describe the popular diffusion approx-
imation, which is a first-order spherical harmonic approximation to the
radiative transport equation. Specifically, the radiance φ(x, ŝ) is approxi-
mated by

φ(x, ŝ) ≈ Φ(x) − dŝ · (κ∇Φ(x)),

where Φ(x) is the photon density defined by

Φ(x) =
1

|Sd−1|
∫
Sd−1

φ(x, ŝ)dŝ.

Here κ = (d(µa + µ′
s))

−1 is the diffusion coefficient, with µ′s = (1 − g1)µs
being the reduced scattering coefficient and g1 being the mean of the cosine
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of the scattering angle. In the case of the Henyey-Greenstein scattering
function, we have g1 = g. The diffusion coefficient κ represents the length
scale of an equivalent random walk step. By inserting the approximation
and adopting similar approximations for the source term q(x, ŝ) and the
scattering phase function Θ(ŝ, ŝ′), we obtain

−∇ · (κ∇Φ(x)) + µaΦ(x) + iω
c

Φ(x) = q0(x),

where q0(x) is the source inside Ω. This represents the governing equation
of the diffusion approximation.

The boundary condition (2.10) cannot be expressed using variables of
the diffusion approximation directly. Instead it is often replaced by an
approximation that the total inward directed photon current is zero. Fur-
ther, to take into account the mismatch between the refractive indices of
the medium and surrounding medium, a Robin type boundary condition is
often adopted. Then the boundary condition can be written as

Φ(x) +
1

2γd
κξ
∂Φ(x)
∂n

=


Is
γd
, x ∈ εi,

0, x ∈ ∂Ω \ ∪εi,
where Is is a diffuse boundary current at the source position εj ⊂ ∂Ω, γd is
a constant with γ2 = 1/π and γ3 = 1/4, and the parameter ξ determines the
internal reflection at the boundary ∂Ω. In the case of matched refractive
index, ξ = 1. Further, the exitance J+(x) is given by

J+(x) = −κ∂Φ(x)
∂n

=
2γd

ξ
Φ(x).

The standard inverse problem in optical tomography is to recover in-
trinsic optical parameters, i.e., the absorption coefficient µa and scattering
coefficient µs, from boundary measurements of the transmitted and/or re-
flected light. We refer to [85] and [281] for an analysis of Tikhonov reg-
ularization formulations for the diffusion approximation and the radiative
transport equation, respectively.

2.3.5 Photoacoustic tomography

Photoacoustic tomography (PAT), also known as thermoacoustic or op-
toacoustic tomography, is a rapidly emerging technique that holds great
potentials for biomedical imaging. It exploits the thermoacoustic effect for
signal generation, first discovered by Alexander Graham Bell in 1880, and
seeks to combine the high electromagnetic contrast of tissue with the high
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spatial resolution of ultrasonic methods. It has several distinct features.
Because the optical absorption properties of a tissue is highly correlated
to its molecular constitution, PAT images can reveal the pathological con-
dition of the tissue, and hence facilitate a wide range of diagnostic tasks.
Further, when employed with optical contrast agents, it has the potential
to facilitate high-resolution molecular imaging of deep structures, which
cannot be easily achieved with pure optical methods. Below we describe
the mathematical model following [215, 304].

In PAT, a laser or microwave source is used to irradiate an object,
and the thermoacoustic effect results in the emission of acoustic signals,
indicated by the pressure field p(x, t), which can be measured by using
wide-band ultrasonic transducers located on a measurement aperture. The
objective of PAT is to estimate spatially varying electromagnetic absorption
properties of the tissue from the measured acoustic signals. The photoa-
coustic wavefield p(x, t) in an inviscid and lossless medium is governed by
a wave equation (

∇2 − 1
c2

∂2

∂t2

)
p(x, t) = − β

κc2
∂2T (x, t)
∂t2

,

where T (x, t) denotes the temperature rise within the object. The quanti-
ties β, κ and c denote the thermal coefficient of volume expansion, isother-
mal compressibility and speed of sound, respectively.

When the temporal width of the exciting electromagnetic pulse is suf-
ficiently short, the pressure wavefield is produced before significant heat
conduction can take place. This occurs when the temporal width τ of the
exciting electromagnetic pulse satisfies τ < d2c

4αth
, where dc and αth denote

the characteristic dimension of the heated region and the thermal diffusiv-
ity, respectively. Then the temperature function T (x, t) satisfies

ρCV
∂T (x, t)
∂t

= H(x, t),

where ρ and CV denote the mass density and specific heat capacity of the
medium at constant volume, respectively. The heating function H(x, t)
describes the energy per unit volume per unit time that is deposited in
the medium by the exciting electromagnetic pulse. The amount of heat
generated by tissue is proportional to the strength of the radiation. Con-
sequently, one obtains the simplified photoacoustic wave equation(

∇2 − 1
c2
∂2

∂t2

)
p(x, t) = − β

Cp

∂H(x, t)
∂t

,
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where Cp = ρc2κCV denotes the specific heat capacity of the medium at
constant pressure. Sometimes, it is convenient to work with the velocity
potential φ(x, t), i.e., p(x, t) = −ρ∂φ(x,t)

∂t
. Then we have(

∇2 − 1
c2

∂2

∂t2

)
φ(x, t) =

β

ρCp
H(x, t).

In practice, it is appropriate to consider the following separable form of
the heating function

H(x, t) = A(x)I(t),

where A(x) is the absorbed energy density and I(t) denotes the temporal
profile of the illuminating pulse. When the exciting electromagnetic pulse
duration τ is short enough, i.e., τ < dc

c , all the thermal energy has been
deposited by the electromagnetic pulse before the mass density or volume
of the medium has had time to change. Then one can approximate I(t)
by a Dirac delta function I(t) ≈ δ(t). Hence, the absorbed energy density
A(x) is related to the induced pressure wavefield p(x, t) at t = 0 as

p(x, t = 0) = ΓA(x),

where Γ is the dimensionless Grueneisen parameter. The goal of PAT is to
determine A(x), or equivalently p(x, t = 0) from measurements of p(x, t)
acquired on a measurement aperture. Mathematically, it is equivalent to
the initial value problem(

∇2 − 1
c2

∂2

∂t2

)
p(x, t) = 0,

subject to

p(x, t)|t=0 = ΓA(x) and
∂p(x, t)
∂t

|t=0 = 0.

When the object possesses homogeneous acoustic properties that match
a uniform and lossless background medium, and the duration of the irradiat-
ing pulse is negligible, the pressure wavefield p(x0, t) recorded at transducer
location x0 can be expressed as

p(x0, t) =
β

4πCp

∫
A(x)

d

dt

δ(t− |x0−x|
c0

)
|x0 − x| dx, (2.11)

where c0 is the speed of sound in the object and background medium. The
function A(x) is compactly supported, bounded and nonnegative. Equation
(2.11) represents the canonical imaging model for PAT. The inverse problem
is then to estimate A(x) from the knowledge of p(x0, t).
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Equation (2.11) can be expressed in an alternative but mathematically
equivalent form as

g(x0, t) =
∫
A(x)δ

(
t− |x0 − x|

c0

)
dx, (2.12)

where the integrated data function g(x0, t) is defined as

g(x0, t) ≡ 4πCpc0
β

t

∫ t

0

p(x0, t
′)dt′.

Note that g(x0, t) represents a scaled version of the acoustic velocity poten-
tial φ(x0, t). The reformulation (2.12) represents a spherical Radon trans-
form, and indicates that the integrated data function describes integrals
over concentric spherical surfaces of radii c0t that are centered at the re-
ceiving transducer location x0. Equations (2.11) and (2.12) form the basis
for deriving exact reconstruction formulas for special geometries, e.g., cylin-
drical, spherical or planar surfaces; see [204] for a comprehensive overview.
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Chapter 3

Tikhonov Theory for Linear Problems

Inverse problems suffer from instability, which poses significant challenges
to their stable and accurate numerical solution. Therefore, specialized tech-
niques are required. Since the ground-breaking work of the Russian math-
ematician A. N. Tikhonov [286–288], regularization, especially Tikhonov
regularization, has been established as one of the most powerful and pop-
ular techniques for solving inverse problems.

In this chapter, we discuss Tikhonov regularization for linear inverse
problems

Ku = g†, (3.1)

where K : X → Y is a bounded linear operator, and the spaces X and
Y are Banach spaces. In practice, we have at hand only noisy data gδ,
whose accuracy with respect to the exact data g† = Ku† (u† is the true
solution) is quantified in some error metric φ, which measures the model
output g† relative to the measurement data gδ. We will denote the accuracy
by φ(u, gδ) to indicate its dependence on the data gδ, and mostly we are
concerned with the choice

φ(u, gδ) = ‖Ku− gδ‖p.
We refer to Table 3.1 for a few common choices, and Appendix B for their
statistical motivation.

In Tikhonov regularization, we solve a nearby well-posed optimization
problem of the form

min
u∈C

{
Jα(u) = φ(u, gδ) + αψ(u)

}
, (3.2)

and take its minimizer, denoted by uδα, as a solution. The functional Jα is
called the Tikhonov functional. It consists of two terms, the fidelity term
φ(u, gδ) and the regularization term ψ(u). Roughly, the former measures

29
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the proximity of the model output Ku to the observational data gδ and
hence incorporates the information in the data gδ , whereas the latter en-
codes a priori information, e.g., smoothness, sparsity, monotonicity, and
other structural properties of the unknown. The nonnegative scalar α is
known as the regularization parameter, and it controls the relative weight
given to the two terms. The choice of the parameter α is essential for suc-
cessfully applying Tikhonov regularization to practical problems. The set
C ⊂ X is convex and closed, and it reflects constraint on the sought-for
solution, e.g., positivity and other physical constraints.

An appropriate choice of the functionals φ and ψ depends very much on
specific applications, or more precisely, on the noise model and prior infor-
mation, respectively. A list of some common choices for the fidelity φ and
regularization ψ is shown in Tables 3.1 and 3.2, respectively. The fidelity φ
and penalty ψ are often derived in a Bayesian setting, since Tikhonov min-
imizer is identical with the maximum a posteriori estimate of the posterior
distribution; see Chapter 7 for related discussions.

Table 3.1 Common data fidelity functionals φ(u, gδ). In the table, Ω is
bounded domain. For Poisson and speckle noises, the fidelity functionals
are not nonnegative, since a constant depending on the data gδ is omitted.

noise model φ(u, gδ)

additive Gaussian ‖Ku− gδ‖2
L2(Ω)

additive impulsive ‖Ku− gδ‖L1(Ω)

Poisson
R
Ω(Ku− gδ logKu)dx

speckle noise
R
Ω
(logKu+ gδ

Ku
)dx

Huber ‖Lδ(Ku− gδ)‖L1(Ω), Lδ(t) =

(
1
2
t2, |t| ≤ δ,

δ(t − δ
2
), |t| > δ.

Table 3.2 Several common regularization func-
tionals ψ(u). In the table, Ω is an open bounded
domain.
prior model ψ(u)

generalized Gaussian ‖u‖p
Lp(Ω)

, 1 ≤ ν ≤ 2

BV or TV ‖u‖BV (Ω) or |u|TV(Ω)

Sobolev ‖u‖p
W1,p(Ω)

elastic-net ‖u‖�1 + γ
2
‖u‖2

�2

sparsity ‖u‖p
�p , 0 ≤ p < 2

The rest of the chapter is organized as follows. First we discuss the fun-
damental question of the existence and stability of a Tikhonov minimizer
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uδα, and consistency, i.e., the convergence of the minimizer uδα as the noise
level δ tends to zero (with the parameter α suitably chosen). These are nec-
essary for the well-posedness of the Tikhonov formulation. Then we discuss
the value function calculus due to A. N. Tikhonov, which are important for
designing and analyzing Tikhonov models. Next we discuss convergence
rates, which is concerned with the quality of the approximation uδα rela-
tive to a true solution u†, under different conditions on the “true” solution
u†. The regularization parameter α is essential for the performance of the
Tikhonov method, and we discuss several choice rules in Sections 3.4; see
also Section 3.5 for related discussions. Finally, we discuss an extension of
the formulation Jα to the case of multiple penalties, to accommodate mul-
tiple distinct features, as are often observed in many practical problems.

3.1 Well-posedness

Now we discuss the well-posedness of the Tikhonov model, i.e., existence,
stability and consistency of a minimizer. For simplicity, we restrict our
discussion to the case that the fidelity φ is norm powered, i.e.,

φ(u, gδ) = ‖Ku− gδ‖p.
The results below can be extended more general cases.

Throughout, we make the following assumption on φ and ψ.

Assumption 3.1. Let X be reflexive, and the set C be convex and closed.
Let the nonnegative functionals φ(u, yδ) = ‖Ku− gδ‖p and ψ(u) satisfy:

(a) The functional Jα is coercive, i.e., for any sequence {un} such that
the functional value {Jα(un)} is uniformly bounded, then the se-
quence {un} is uniformly bounded in X .

(b) The functional ψ is sequentially weak lower semicontinuous.
(c) The operator K is bounded.

Remark 3.1. The assumption that X is reflexive can be relaxed to nonre-
flexive. Accordingly the weak lower semicontinuity in (b) should be replaced
with weak ∗ lower semicontinuity. Also the coercivity on Jα can be replaced
with a compactness assumption of the constraint set C.

Remark 3.2. The boundedness of the operatorK implies that K is weakly
continuous, i.e., un → u weakly in X implies Kun → Ku weakly in Y .
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We recall also the H-property of a functional ψ.

Definition 3.1. A functional ψ(u) is said to have the H-property on the
space X if any sequence {un} ⊂ X that satisfies that the conditions un → u

weakly for some u ∈ X and ψ(un) → ψ(u) imply that un converges to u
in X .

Remark 3.3. Norms on Hilbert spaces, Lp(Ω) spaces and Sobolev spaces
Wm,p(Ω) with 1 < p <∞ and m ≥ 1 satisfy the H-property.

Now we state an existence result.

Theorem 3.1. Let Assumption 3.1 hold. Then for every α > 0, there
exists at least one minimizer uδα to the functional Jα defined by (3.2).

Proof. Since the functionals φ and ψ are nonnegative, there exists a
minimizing sequence {un} ⊂ C, such that

lim
n→∞ ‖Kun − gδ‖p + αψ(un) = inf

u∈C
‖Ku− gδ‖p + αψ(u) := η.

Hence the sequence of functional values {Jα(un)} is uniformly bounded.
By Assumption 3.1(a), there exists a subsequence of {un}, also denoted by
{un}, and some u∗ ∈ X such that un → u∗ weakly. By the closedness and
convexity of the set C, we have u∗ ∈ C. Now by the lower semi-continuity
of ψ from Assumption 3.1(b) and the weak lower semicontinuity of norms,
we deduce

‖Ku∗ − gδ‖p + αψ(u∗) ≤ lim inf
n→∞ ‖Kun − gδ‖p + α lim inf

n→∞ ψ(un)

≤ lim inf
n→∞ (‖Kun − gδ‖p + αψ(un)) = η,

i.e., u∗ is a minimizer to Jα. �

Remark 3.4. The existence result holds if the functional φ(u, gδ) is weakly
lower semicontinuous with respect to u, for any fixed gδ ∈ Y .

Now we illustrate Theorem 3.1 with several examples.

Example 3.1. This example is concerned with the L1-TV model for restor-
ing images subjected to blurring and impulsive noise, i.e.,

Jα(u) = ‖Ku− gδ‖L1(Ω) + α|u|TV(Ω),

where Ω ⊂ R
2 is an open bounded domain, and the blurring operator K

is continuous with respect to Lp(Ω), 1 < p < 2 and 1 /∈ Null(K). The
L1 fidelity term makes the model robust with respect to outliers in the
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data, and the penalty term preserves the edges in the images [265]. Here
the space X = BV(Ω) and Y = L1(Ω). The space BV(Ω) of functions of
bounded variation is given by

BV(Ω) = {v ∈ L1(Ω) : ‖v‖L1(Ω) + |v|TV(Ω) <∞},
where the total variation seminorm |v|TV(Ω) is defined by

|v|TV(Ω) = sup
w∈C1

0 (Ω;Rd)
‖w‖L∞(Ω)≤1

∫
vdivφdx.

By the compact embedding of the space BV(Ω) into Lp(Ω), 1 < p < 2 [16],
and the continuity of K in Lp(Ω), the operator K is weakly continuous.
The assumption 1 /∈ Null(K) implies that functional is coercive on the
space X = BV(Ω). Further, the regularization functional ψ(u) = |u|TV is
BV weak ∗ lower semicontinuous. Therefore, by Theorem 3.1, there exists
at least one minimizer to Jα.

Example 3.2. In this example, we consider the sparsity regularization

Jα(u) = 1
2‖Ku− gδ‖2 + α‖u‖p�p ,

with p ∈ (0, 1], where �p = {u ∈ �2 :
∑

k |uk|p < ∞}, and endowed with
‖u‖p�p =

∑
k |uk|p. For 0 < p < 1, ‖ ·‖�p is a quasi-norm. The operator K is

bounded from �2 to �2. To show the existence, we use a reparametrization
u = γ(v), v ∈ �2, introduced in [311], where

ui = γ(v)i = |vi|2/psgn(vi).

Then vi = |ui|p/2−1ui, and γ : �2 → �p is an isomorphism, with |γ(v)|p =
|v|2/p2 . Then it follows that the problem is equivalent to

Jα(v) = 1
2
‖Kγ(v) − gδ‖2 + α‖v‖2.

Next we claim that γ : �2 → �2 is sequentially weakly continuous, i.e.
vn → v̄ weakly in �2 implies that γ(vn) → γ(v̄) weakly in �2. Let r = 2

p+1 ∈
[3,∞), and r∗ be the conjugate exponent, given by r∗ = p

2 + 1 ∈ (1, 3/2].
Then γ is the duality mapping from �r to �r

∗
, i.e.,

(γ(v), v)�r∗ ,�r = ‖γ(v)‖�r∗‖v‖�r , |γ(v)|�r∗ = |v|�r .

If vn → v̄ weakly in �2, then vn → v̄ weakly in �r. Since the duality
mapping γ : �r → �r

∗
is sequentially weakly continuous ([69], pp. 97) we

have γ(vn) → γ(v̄) weakly in �r
∗
. Using that r∗ ≤ 2, this implies that

γ(vn) → γ(v̄) weakly in �2. Then the existence follows from the arguments
in Theorem 3.1.
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The Tikhonov model Jα is stable, i.e., the minimizer uδα depends con-
tinuously on the data gδ, which is stated next.

Theorem 3.2. Let Assumption 3.1 hold. Let the sequence {gn} ⊂ Y be
convergent to gδ ∈ Y , and un be a minimizer to the functional Jα with gn in
place of gδ. Then the sequence {un} contains a subsequence converging to a
minimizer to Jα. Further, if the minimizer to Jα is unique, then the whole
sequence converges. Moreover, if the functional ψ satisfies the H-property,
then the convergence is actually strong.

Proof. Let uδα be a minimizer to Jα. The minimizing property of un
yields

‖Kun − gn‖p + αψ(un) ≤ ‖Kuδα − gn‖p + αψ(uδα).

Hence the sequences {‖Kun − gn‖p} and {ψ(un)} are uniformly bounded.
Further, in view of the triangle inequality,

‖Kun − gδ‖p ≤ 2p−1(‖Kun − gn‖p + ‖gn − gδ‖p),
the sequence {‖Kun − gδ‖} is also uniformly bounded. Then, by Assump-
tion 3.1(a), the sequence {un} is uniformly bounded in X , and there exists a
subsequence, also denoted by {un}, converging weakly in X to some u∗ ∈ C.
By the weak continuity of K and the convergence of gn to gδ in Y , we have
Kun−gn → Ku∗−gδ weakly. Now the weak lower semicontinuity of norms
and Assumption 3.1(b) imply that

‖Ku∗ − gδ‖p + αψ(u∗) ≤ lim inf
n→∞ ‖Kun − gn‖p + α lim inf

n→∞ ψ(un)

≤ lim inf
n→∞ (‖Kun − gn‖p + αψ(un))

≤ lim inf
n→∞ ‖Kuδα − gn‖p + αψ(uδα)

= ‖Kuδα − gδ‖p + αψ(uδα).

(3.3)

Hence, the limit u∗ is a minimizer to the functional Jα. If the minimizer
uδα is unique, then u∗ = uδα, and every subsequence contains a subsubse-
quence that converges to u∗ weakly. Therefore, the whole sequence con-
verges weakly.

Now we show that the functional value ψ(un) converges to ψ(u∗). As-
sume the contrary, i.e., lim supn→∞ ψ(un) > lim infn→∞ ψ(un) ≥ ψ(u∗).
Then there exists a subsequence {unk

} of {un} such that

c := lim sup
k→∞

ψ(unk
) > ψ(u∗).
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Meanwhile, by taking uδα = u∗ in (3.3) yields

lim
k→∞

‖Kunk
− gnk

‖p + αψ(unk
) = ‖Ku∗ − gδ‖p + αψ(u∗).

This two identities together yield

lim
k→∞

‖Kunk
− gnk

‖p = ‖Ku∗ − gδ‖p + α(ψ(u∗) − c) < ‖Ku∗ − gδ‖p,

which is in contradiction with the weak lower semicontinuity of norms, i.e.,

‖Ku∗ − gδ‖ ≤ lim inf
k→∞

‖Kunk
− gnk

‖.

Hence limn→∞ ψ(un) = ψ(u∗). This together with the H-property yields
the third assertion. �

Next we turn to the behavior of the minimizer uδα, as the noise level
δ goes to zero. A fundamental analysis on the Tikhonov regularization
method is whether the approximate solution uδα converges to the true solu-
tion, i.e., the ψ-minimizing solution u† defined below, as the noise level δ
tends to zero. This is referred to as the consistency in the literature.

Definition 3.2. An element u† ∈ X is called a ψ-minimizing solution to
the problem Ku = g† if it satisfies

Ku† = g† and ψ(u†) ≤ ψ(u) ∀u ∈ {u ∈ C : Ku = g†}.

The existence of a ψ-minimizing solution follows from Assumption 3.1.

Theorem 3.3. Let Assumption 3.1 hold. Then there exists at least one
ψ-minimizing solution to (3.1).

Proof. Suppose that there does not exist a ψ-minimizing solution in C.
Then there exists a sequence {un} ⊂ C of solutions to (3.1) such that
ψ(un) → c and

c < ψ(u), ∀u ∈ {u ∈ C : K(u) = g†}.
Hence, the functional Jα(un) (for any fixed α) with g† in place of gδ is
uniformly bounded, and by the coercivity of Jα, cf. Assumption 3.1(i), the
sequence {un} contains a subsequence, also denoted by {un}, and some u∗ ∈
C such that un → u∗ weakly. Then Ku∗ = g†, and by Assumption 3.1(ii),
there holds ψ(u∗) = limn→∞ ψ(un) = c. This contradicts the assumption,
and completes the proof. �
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Theorem 3.4. Let Assumption 3.1 hold, and {gδn}n ⊂ Y be a sequence
of noisy data, with δn = ‖g† − gδ‖ → 0. Then the sequence of minimizers
{uδn

αn
} has a subsequence converging weakly to a ψ-minimizing solution u†,

if the regularization parameter αn ≡ α(δn) satisfies

lim
n→∞

δpn
αn

= 0 and lim
n→∞αn = 0.

Further, if the ψ-minimizing solution u† is unique, then the whole sequence
converges weakly. Moreover, if the functional ψ satisfies the H-property,
then the convergence is actually strong.

Proof. By the minimizing property of the minimizer uδn
αn

, we have
‖Kuδn

αn
− gδn‖p + αnψ(uδn

αn
) ≤ ‖Ku† − gδn‖p + αnψ(u†)

≤ δpn + αnψ(u†).
By the choice of the sequence {αn}, the sequences {‖uδn

αn
− gδn‖p} and

{ψ(uδn
αn

)} are both uniformly bounded. Further,
‖Kuδn

αn
− g†‖p ≤ 2p−1(‖Kuδn

αn
− gδn‖p + ‖gδn − g†‖p).

Thus the sequence {‖Kuδn
αn

−g†‖p} is also uniformly bounded. By Assump-
tion 3.1(a), the sequence {uδn

αn
}n is uniformly bounded, and thus contains

a subsequence, also denoted by {uδn
αn

}, converging to some u∗ weakly. By
the convexity and closedness of the set C, u∗ ∈ C.

By the weak lower semicontinuity of norms we deduce
‖Ku∗ − g†‖p ≤ lim inf

n→∞ ‖Kuδn
αn

− gδn‖p

≤ lim sup
n→∞

‖Kuδn
αn

− gδn‖p + αnψ(uδn
αn

) = 0,

i.e., Ku∗ = g. Next we show that u∗ is a ψ-minimizing solution. It follows
from the minimizing property of uδn

αn
and weak lower semicontinuity of the

functional ψ, cf. Assumption 3.1(b), that
ψ(u∗) ≤ lim inf

n→∞ ψ(uδn
αn

) ≤ lim sup
n→∞

ψ(uδn
αn

)

≤ lim
n→∞

(
δpn
αn

+ ψ(u†)
)

= ψ(u†).

Now the first assertion follows directly from this and the fact that u† is a
ψ-minimizing solution.

If the ψ-minimizing solution u† is unique, then u∗ = u†. Clearly, ev-
ery subsequence of {uδn

αn
} contains a subsubsequence converging weakly

to u†, and thus the whole sequence converges weakly. This shows the
second assertion. By taking u† = u∗ in the preceding inequality yields
limn→∞ ψ(uδn

αn
) = ψ(u∗). This together with the H-property of ψ yields

the third assertion. �
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Definition 3.3. A normed vector space X is called uniformly convex if for
every ε > 0 there is some δ > 0 so that for any two vectors with ‖u‖ = 1
and ‖v‖ = 1, the condition ‖u− v‖ ≥ ε implies that

∥∥u+v
2

∥∥ ≤ 1 − δ.

Hilbert spaces and Lp(Ω) spaces, 1 < p <∞, are examples of uniformly
convex spaces. If the space X is uniformly convex, and ψ(u) = ‖u‖pX,
1 < p < ∞, then the ψ-minimizing solution u† can be characterized by
ξ = ∂ψ(u†) ∈ Range(K∗). Here the subdifferential ∂ψ(u) for a convex
functional ψ on X denotes the set of all subgradients ξ ∈ X∗ such that

ψ(ũ) ≥ ψ(u) + 〈ξ, ũ− u〉 ∀ũ ∈ X.

Proposition 3.1. If X is uniformly convex, ψ(u) = ‖u‖pX, 1 < p < ∞,
and C = X. Then there exists a ψ-minimizing solution u†, and it satisfies
∂ψ(u†) ∈ Range(K∗).

Proof. The set S = {u ∈ X : Ku = g†} ⊂ X is nonempty and closed
since g† ∈ Range(K) and K is a continuous linear operator. Hence the
uniform convexity of the space X guarantees the existence and uniqueness
of a ψ-minimizing solution u†. Further, there holds for any ξ ∈ ∂ψ(u†)

〈ξ, u†〉 ≤ 〈ξ, u〉, ∀u ∈ S.

Let v be an arbitrary element in Null(K). Then u† ± v ∈ S, and thus

〈ξ, u†〉 ≤ 〈ξ, u† ± v〉 = 〈ξ, u†〉 ± 〈ξ, v〉.
It follows that 〈ξ, v〉 = 0. Hence ξ ∈ Null(K)⊥ = Range(K∗). �

Last, we derive a result characterizing the solution uδα for the case Y is
a Hilbert space, φ(u, gδ) = 1

2
‖Ku − gδ‖2 and ψ(u) = 1

p
‖u‖pX with p ≥ 1,

and in the absence of convex constraint C. Below ‖ · ‖X∗ denotes the dual
norm of the dual space X∗.

Theorem 3.5. Let Y be a Hilbert space, φ(u, gδ) = 1
2‖Ku− gδ‖2, ψ(u) =

1
p‖u‖pX , and ‖K∗gδ‖X∗ 
= 0. Then the following statements hold.

(i) If p > 1, then for any α > 0, there holds

〈K∗(Kuδα − gδ), uδα〉 = −pαψ(uδα),

‖K∗(gδ −Kuδα)‖X∗ = α‖uδα‖p−1
X .

(ii) If p = 1 and α∗ = ‖K∗gδ‖X∗ , then for α ≥ α∗, uδα = 0 and for
α < α∗, there hold

〈K∗(Kuδα − gδ), uδα〉 = −αψ(uδα),

‖K∗(gδ −Kuδα)‖X∗ = α.
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In either case, if the two relations hold, then uδα is a minimizer of Jα.

Proof. First we show (i). Note that the optimality condition for uδα reads

K∗(Kuδα − gδ) + αξδα = 0,

where ξδα ∈ ∂ψ(uδα). Then ∂ψ(uδα) = Ip(uδα), the duality mapping of gauge
g(t) = tp−1 [69] . It satisfies

‖Ip(uδα)‖X∗ = ‖uδα‖p−1
X and 〈Ip(uδα), uδα〉 = ‖u‖pX .

Consequently, the desired relations follow directly. Conversely, the two
relations imply directly that [69]

α−1K∗(gδ −Kuδα) = Ip(uδα) ∈ ∂ψ(uδα),

which is a sufficient condition for the optimality of uδα by noting the con-
vexity of the functional Jα.

Now we turn to (ii). First we note that the optimality condition for uδα
reads

K∗(Kuδα − gδ) + αξδα = 0,

where ξδα ∈ ∂ψ(uδα). By [69] , we have ∂ψ(u) = {u∗ ∈ X∗ : 〈u∗, u〉 =
‖u‖X , ‖u∗‖X∗ = 1} for u 
= 0. Therefore, at uδα 
= 0, the two relations
obviously hold, and the converse follows as before. If uδα = 0, the extremal
property implies that for ∀h ∈ X, ε > 0,

1
2
‖K(εh) − gδ‖2 + αψ(εh) ≥ 1

2
‖gδ‖2.

Letting ε→ 0+ yields αψ(h)− 〈Kh, gδ〉 ≥ 0, Since the inequality holds for
arbitrarily h ∈ X and ‖K∗gδ‖X∗ 
= 0, we have α ≥ α∗ = ‖K∗yδ‖X∗ . The
converse follows by reversing the arguments. �

Remark 3.5. In case of ψ(u) being a seminorm (or its power) on the space
X , i.e., ψ(u) = 1

p |u|pX with p ≥ 1, at a minimum uδα, the identity 〈K∗(Kuδα−
gδ), uδα〉 = −pαψ(uδα) remains valid. However, an explicit characterization
of the critical value α∗ is missing.

3.2 Value function calculus

In this section we present the value function calculus due to A. N. Tikhonov:
it was already used in the classical book by Tikhonov and Arsenin [289],
and further studied in [292]. Value function plays an important role in
the study of Tikhonov regularization, especially in analyzing parameter
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choice rules, e.g., discrepancy principle and balancing principle, and their
numerical implementations. Our description follows [154].

For the model Jα(u), the value function F (α) : R
+ → R is defined by

F (α) = inf
u∈C

Jα(u). (3.4)

We will discuss its important properties, especially differentiability.
A first result shows the monotonicity and concavity of F .

Theorem 3.6. The value function F (α) is nondecreasing and concave.

Proof. Given a α̃ < α, for any u ∈ X , by the nonnegativity of the
functional ψ(u), we have

F (α̃) ≤ Jα̃(u) = φ(u, gδ) + α̃ψ(u) ≤ φ(u, gδ) + αψ(u).

Taking the infimum with respect to u ∈ C yields F (α̃) ≤ F (α). This shows
the monotonicity of the value function F (α).

Next we show the concavity of the function F . Let α1 > 0 and α2 > 0
be given, and set αt = (1 − t)α1 + tα2 for any t ∈ [0, 1]. Then

F ((1 − t)α1 + tα2) = inf
u∈C

Jαt(u)

= inf
u∈C

{
φ(u, gδ) + ((1 − t)α1 + tα2)ψ(u)

}
≥ (1 − t) inf

u∈C
Jα1(u) + t inf

u∈C
Jα2(u)

= (1 − t)F (α1) + tF (α2).

Therefore, the function F (α) is concave. �
A direct consequence of concavity is continuity.

Corollary 3.1. The function F (α) is continuous everywhere.

Next we examine the differentiability of the value function F . To this
end, recall first the definition of one-sided derivatives (Dini derivatives)
D±F of F defined by

D−F (α) = lim
h→0+

F (α) − F (α− h)
h

,

D+F (α) = lim
h→0+

F (α+ h) − F (α)
h

.

The concavity and monotonicity of the function F in Theorem 3.6 en-
sures the existence of one-sided derivatives D±F (α).

Lemma 3.1. The one-sided derivatives D−F (α) and D+F (α) of the value
function F (α) exist for any α > 0, and moreover D±F (α) ≥ 0.
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Proof. For a given α > 0, take any 0 < h1 < h2 < α and set t = 1− h1
h2
<

1. Then α−h1 = tα+(1− t)(α−h2). Now by the concavity of F , we have

F (α− h1) ≥ tF (α) + (1 − t)F (α− h2)

=
(

1 − h1

h2

)
F (α) +

h1

h2
F (α− h2).

Rearranging the terms gives
F (α) − F (α− h1)

h1
≤ F (α) − F (α − h2)

h2
.

Hence the sequence {F (α)−F (α−h)
h }h>0 is monotonically decreasing as

h tends to zero and bounded from below by zero, and the limit
limh→0+

F (α)−F (α−h)
h

exists, i.e., the left-sided derivative D−F (α) exists.
The existence of the right-sided derivative D+F (α) follows analogously. �

As a consequence of the definition of one-sided derivatives, we have:

Corollary 3.2. The one-sided derivatives D−F (α) and D+F (α) are left-
and right continuous, respectively.

Remark 3.6. The preceding results on F (α) do not require the existence
of a minimizer uδα to the Tikhonov functional Jα, and are valid for any
space. In particular, it is also true for nonlinear operators.

Now we characterize the value function F by φ̄ and ψ̄ defined by

φ̄(α) := φ(uδα, g
δ) and ψ̄(α) := ψ(uδα).

Here and below, let Assumption 3.1 hold, and denote the set of minimizers
to Jα by S(α), i.e.,

S(α) = argmin
u∈C

Jα(u).

The set S(α) might contain multiple elements, i.e., distinct uδα, ũ
δ
α ∈ S(α)

such that

F (α) = φ(uδα, g
δ) + αψ(uδα) = φ(ũδα, g

δ) + αψ(ũδα),

while φ(uδα, g
δ) < φ(ũδα, g

δ) and ψ(uδα) > ψ(ũδα). That is, the functions
φ̄ and ψ̄ can be set valued. We always use any but fixed representation
φ̄(α) = φ(uδα, g

δ) and ψ̄(α) = ψ(uδα) for some uδα ∈ S(α).
We illustrate the discontinuity with the L1-TV model.

Example 3.3. Consider the following total variation image denoising
model with the L1 fidelity, i.e.,

Jα(u) = ‖u− gδ‖L1(Ω) + α|u|TV(Ω),
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and the observed image gδ = χBr(0)(x), where Br(0) is a disk centered at
the origin and radius r. One can deduce that for each α, every minimizer
has to be of the form cχBr(0)(x) for some c ∈ [0, 1] [56]. Hence one only
needs to minimize

2παrc+ πr2|1 − c|
over c ∈ [0, 1]. Hence the solution set S(α) is given by

S(α) =


0, α > r/2,

{cχBr(0), c ∈ [0, 1]}, α = r/2,

χBr(0), α < r/2.

Hence the solution is unique for all except one value of the parameter
α = r/2. Clearly, at this α value, the functions φ̄ and ψ̄ are discontinuous.

The continuity of the functions φ̄ and ψ̄ at α can be guaranteed if the
Tikhonov functional Jα has a unique minimizer.

Lemma 3.2. Let Assumption 3.1(a) and (b) hold, and φ(u, gδ) be weakly
lower semicontinuous in u. If Jα, α > 0, has a unique minimizer uδα, then
the functions φ̄ and ψ̄ are continuous at α.

Proof. Let {αn} be any sequence converging to α. Then by the mini-
mizing property of un ≡ uδαn

we have

φ(un, gδ) + αnψ(un) ≤ φ(uδα, g
δ) + αnψ(uδα).

Therefore the sequences {φ(un, gδ)} and {ψ(un)} are uniformly bounded.
By Assumption 3.1(a), the sequence {un} is uniformly bounded, and there
exists a subsequence, also denoted by {un}, such that un → u∗ weakly for
some u∗ ∈ C. By the weak lower semicontinuity of φ and ψ we deduce

φ(u∗, gδ) + αψ(u∗) ≤ lim inf
n→∞ φ(un, gδ) + lim inf

n→∞ αnψ(un)

≤ lim inf(φ(un, gδ) + αnψ(un))

≤ lim inf
n→∞ (φ(uδα, g

δ) + αnψ(uδα))

= φ(uδα, g
δ) + αψ(uδα),

i.e., u∗ is a minimizer to the Tikhonov functional Jα, and by the uniqueness
assumption, u∗ = uδα. A standard argument yields that the whole sequence
converges weakly to uδα. Now we can repeat the proof of Theorem 3.2
to show limn→∞ ψ(un) = ψ(uδα) and limn→∞ φ(un, gδ) = φ(uδα, g

δ), i.e.,
limn→∞ ψ̄(αn) = ψ̄(α) and limn→∞ φ̄(αn) = φ̄(α). �
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In any case, the functions φ̄ and ψ̄ are monotone in α.

Lemma 3.3. Given α1, α2 > 0, if S(α1) and S(α2) are both nonempty,
then for any representations φ̄ and ψ̄, there hold

(ψ̄(α1) − ψ̄(α2))(α1 − α2) ≤ 0,

(φ̄(α1) − φ̄(α2))(α1 − α2) ≥ 0.

Proof. The minimizing property of any uδα1
∈ S(α1) and uδα2

∈ S(α2)
gives

φ̄(α1) + α1ψ̄(α1) ≤ φ̄(α2) + α1ψ̄(α2),

φ̄(α2) + α2ψ̄(α2) ≤ φ̄(α1) + α2ψ̄(α1).

Adding these two inequalities yields the first inequality. Dividing the first
and the second equations by α1 and α2, respectively, and then adding them
yields the second inequality. �

Now the one-sided derivatives D±F (α) can be made more precise.

Lemma 3.4. Suppose that for a given α > 0 the set S(α) is nonempty.
Then there hold

D+F (α) ≤ ψ̄(α) ≤ D−F (α),

F (α) − αD−F (α) ≤ φ̄(α) ≤ F (α) − αD+F (α).

Proof. For any α̃ such that 0 < α̃ < α, we have

F (α̃) = inf
u∈C

Jα̃(u) ≤ Jα̃(uδα) = φ̄(α) + α̃ψ̄(α).

Therefore, we have

F (α) − F (α̃) ≥ φ̄(α) + αψ̄(α) − φ̄(α) − α̃ψ̄(α)

= (α− α̃)ψ̄(α).

Thus we obtain
F (α) − F (α̃)

α− α̃
≥ ψ̄(α).

By passing to limit α̃→ α, it follows that D−F (α) ≥ ψ̄(α). The inequality
D+F (α) ≤ ψ̄(α) follows analogously. The remaining assertion follows from
these two inequalities and the definition of the value function F . �

The next result is an immediate consequence of the above two lemmas,
and it represents the fundamental formula for the value function calculus.

Lemma 3.5. Let the value function F be defined in (3.4).
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(a) If F ′(α) exists at α > 0, then
ψ̄(α) = F ′(α) and φ̄(α) = F (α) − αF ′(α).

(b) There exists a countable set Q ⊂ R
+ such that for any α ∈ R

+ \Q,
F is differentiable, and φ̄(α) and ψ̄(α) are continuous and

ψ̄(α) = F ′(α) and φ̄(α) = F (α) − αF ′(α).

Proof. The assertion (a) is a direct consequence of Lemma 3.4. Assertion
(b) follows from the monotonicity of ψ̄(α) in α from Lemma 3.3, and thus
there exist at most countable discontinuity points. �

By Lemma 3.3, any representations φ̄(α) and ψ̄(α) define measures dφ̄
and dψ̄ [91]. Moreover, the following relation holds.

Theorem 3.7. The measure dφ̄ is absolutely continuous with respect to the
measure dψ̄, and the Radon-Nikodym derivative is given by

dφ̄

dψ̄
(α) = −α. (3.5)

In particular, if either φ̄(α) or ψ̄(α) is differentiable, then the other is also
differentiable and φ̄′(α) + αψ̄′(α) = 0.

Proof. For any α, α̃ > 0, the minimizing property of uδα ∈ S(α) and
uδα̃ ∈ S(α̃) gives

φ̄(α) + αψ̄(α) ≤ φ̄(α̃) + αψ̄(α̃),

φ̄(α̃) + α̃ψ̄(α̃) ≤ φ̄(α) + α̃ψ̄(α).
By rearranging these two relations, we get

−α̃(ψ̄(α) − ψ̄(α̃)) ≤ φ̄(α) − φ̄(α̃) ≤ −α(ψ̄(α) − ψ̄(α̃)).
This shows the first assertion. The rest is obvious from Lemma 3.5. �

Lemma 3.3 indicates the functions φ̄ and ψ̄ are monotone. The next
result provides one simple condition for ensuring their strict monotonicity.

Lemma 3.6. Let the functional Jα satisfy S(α1)∩S(α2) = ∅ for all distinct
α1, α2 > 0. Then the functions φ̄(α) and ψ̄(α) are strictly monotone.

Proof. We proceed by means of contradiction. Assume that there exist
two distinct values α1 and α2 such that φ̄(α1) = φ̄(α2). By the assumption
S(α1) ∩ S(α2) = ∅, we have

φ̄(α1) + α1ψ̄(α1) < φ̄(α2) + α1ψ̄(α2),
which consequently implies that ψ̄(α1) < ψ̄(α2). However, reversing the
role of α1 and α2 gives a contradicting inequality ψ̄(α2) < ψ̄(α1). This
shows the assertion on φ̄. The assertion on ψ̄ follows analogously. �
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By imposing differentiability on φ and ψ, we have the next lemma en-
suring the condition S(α1)∩S(α2) = ∅ for distinct α1 and α2 in the absence
of constraint [292].

Lemma 3.7. Let α∗ = inf{α : ψ(uδα) = infu∈X ψ(u)}, φ and ψ be continu-
ously Frechét differentiable, and ψ be convex. If α∗ <∞, then the identity
S(α1) ∩ S(α2) 
= ∅ for distinct α1 and α2 holds if and only if α1, α2 ≥ α∗.

Proof. The optimality condition reads

J ′
α(uδα) = φ′(uδα, g

δ) + αψ′(uδα) = 0.

Letting α2 > α1 > 0 and noting uδα1
= uδα2

for some uδα1
∈ S(α1) and

uδα2
∈ S(α2) yield (α2 − α1)ψ′(uδα1

) = 0. However, ψ is convex, it is
necessary and sufficient that

uδα1
= uδα2

∈ arg min
u∈X

ψ(u),

and hence that ψ(uδα1
) = ψ(uδα2

) = minu∈X ψ(u). By Lemma 3.3, ψ(uδα) is
monotone, and thus the last equality is possible only if α1, α2 ≥ α∗. �

Remark 3.7. Lemma 3.7 implies that for any distinct α1, α2 ∈ (0, α∗), we
have S(α1) ∩ S(α2) = ∅.

A similar result holds for nonsmooth models. We illustrate this on the
L2-TV and L2-�1 models.

Corollary 3.3. Let φ(u, gδ) = 1
2‖Ku−gδ‖2, ψ(u) = 1

p‖u‖p with p ≥ 1 and
‖K∗gδ‖X∗ > 0. Let α∗ = ‖K∗gδ‖ if p = 1, and α∗ = ∞, if p > 1. Then
for α < α∗, the functions φ̄(α) and ψ̄(α) are strictly monotone.

Proof. By Theorem 3.5, the minimizers uδα1
and uδα2

satisfy

〈K∗(gδ −Kuδαi
), uδαi

〉 = αi‖uδαi
‖pX , i = 1, 2.

This implies S(α1) ∩ S(α2) = ∅, and the desired assertion follows from
Lemma 3.6. �

3.3 Basic estimates

In Section 3.1, we have established basic properties, i.e. existence, stability
and consistency, of the minimizer uδα to the functional Jα. Now we derive
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basic estimates of the minimizer under source conditions on the true solu-
tion u†. For the ease of exposition, we focus our discussion on the case Y
being a Hilbert space, together with a quadratic fidelity, i.e.,

φ(u, gδ) = 1
2‖Ku− gδ‖2.

In particular, we are interested in the quality of the approximation uδα,
which represents a central topic in regularization theory. We discuss two
typical approaches separately, i.e., classical source condition and higher-
order source condition.

3.3.1 Classical source condition

We begin with the most classical source condition: there exists a representer
w ∈ Y and an element ξ† ∈ ∂ψ(u†) such that

K∗w + µ† = ξ† ∈ ∂ψ(u†),

〈µ†, u− u†〉 ≥ 0, ∀u ∈ C, (3.6)

where µ† is the Lagrangian multiplier associated the constraint C.
From the viewpoint of optimization theory, the source condition (3.6)

can be regarded as a necessary optimality condition for the constrained
optimization problem:

min
u∈C

ψ(u) subject to Ku = g†.

To see this, we recall the necessary optimality condition for uα, the mini-
mizer corresponding to g†, which reads

αξα +K∗(Kuα − g†) − αµα = 0,

〈µα, u− uα〉 ≥ 0, ∀u ∈ C,
where ξα ∈ ∂ψ(uα), and µα is the Lagrangian multiplier for the constraint
C. Hence,

ξα = K∗ g
† −Kuα
α

+ µα,

〈µα, u− uα〉 ≥ 0, ∀u ∈ C.
Under minor conditions on ψ, we have uα → u†, and hence ξα → ξ† ∈
∂ψ(u†). If, further, y†−Kuα

α → w weakly (weak ∗) and µα → µ† weakly
(weak ∗), then we arrive at the source condition (3.6). The weak (∗) con-
vergence does not hold a priori, due to nonclosedness of the operator K∗.

Remark 3.8. In view of Proposition 3.1, in the absence of constraint C,
the source condition ξ† ∈ range(K∗) is indeed stronger than the necessary
optimality condition ξ† ∈ range(K∗) for the ψ-minimizing solution u†.
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The rest of this part is devoted to derive various estimates under the
source condition (3.6). The estimates are measured in Bregman distance
dξ(ũ, u) between ũ and u with respect to ξ ∈ ∂ψ(u) given by

dξ(ũ, u) = ψ(ũ) − ψ(u) − 〈ξ, ũ− u〉.
Bregman distance was introduced in 1967 by L. M. Bregman [40], and its
role in convergence rate analysis was first shown in the seminal paper [50]
(see also [258] for further discussions). By definition, it is always nonnega-
tive. However, the Bregman distance is not symmetric and does not satisfy
the triangle inequality, and hence it is not a distance in the usual sense.
Further, to handle the constraint C, we introduce a generalized Bregman
distance

dξ,µ(ũ, u) = ψ(ũ) − ψ(u) − 〈ξ, ũ− u〉 + 〈µ, ũ− u〉,
where µ is a Lagrangian multiplier associated with C, i.e.,

〈µ, ũ − u〉 ≥ 0 ∀ũ ∈ C.
In the absence of the constraint C, the generalized Bregman distance
dξ,µ(ũ, u) coincides with the Bregman distance dξ(ũ, u).

Example 3.4. If ψ(u) = ‖u‖2, then ∂ψ(u) = {2u}, and the Bregman
distance dξ(ũ, u) is given by

dξ(ũ, u) = ‖ũ‖2 − ‖u‖2 − 〈2u, ũ− u〉 = ‖ũ− u‖2.

Remark 3.9. In case of constrained Tikhonov regularization, we may have
w = 0. Further, if the set {µ† 
= 0} has a positive measure, then the term
〈µ†, u − u†〉 provides a strictly positive contribution. These are possible
beneficial consequences due to the presence of constraint.

Remark 3.10. For the constrained Tikhonov regularization a Hilbert space
setting, Neubauer [242, 243] established an O(δ1/2) convergence rate under
a projected source condition, and also discussed its finite dimensional dis-
cretization. Chavent and Kunisch [58] revisited the constrained Tikhonov
regularization from the viewpoint of optimization theory; see also [152] for
further refinement along the line, which will be presented in Chapter 4.
Recently, Flemming and Hofmann [95] studied the connections between
the projected source condition and variational inequalities, an alternative
approach to convergence rate analysis; see Section 4.5.
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Theorem 3.8. If the source condition (3.6) holds, then

dξ†,µ†(uδα, u
†) ≤ 1

2

(
δ√
α

+
√
α‖w‖

)2

,

‖Kuδα − gδ‖ ≤ δ + 2α‖w‖.
Proof. By the minimizing properties of xδα, we have

1
2‖Kuδα − gδ‖2 + αψ(uδα) ≤ 1

2‖Ku† − gδ‖2 + αψ(u†),

which together with the source condition (3.6) gives
1
2‖Kuδα − gδ‖2 + αdξ†,µ†(uδα, u

†) ≤ 1
2δ

2 − α〈w,K(uδα − u†)〉.
By completing square, the identities Ku† = g† and ‖gδ − g†‖ = δ, and the
Cauchy-Schwarz inequality, we get

1
2‖Kuδα − gδ + αw‖2 + αdξ†,µ†(uδα, u

†)

≤ 1
2δ

2 + α‖w‖δ + 1
2α

2‖w‖2 = 1
2 (δ + α‖w‖)2.

The assertion follows directly from this and the triangle inequality. �

Corollary 3.4. Let the source condition (3.6) hold. Then for the choice
α = δ/‖w‖, there holds

dξ†,µ†(uδα, u
†) ≤ 2‖w‖δ and ‖Kuδα − gδ‖ ≤ 3δ.

Remark 3.11. In case that the functional ψ satisfies extra conditions, the
estimate in the Bregman distance also provides an estimate in norm. In
particular, for q-convex functionals, i.e.,

c‖ũ− u‖qH ≤ dξ(ũ, u),

the estimate in Corollary 3.4 provides a norm estimate. Examples of q-
convex functional including ψ(u) = 1

p‖u‖p, where X is a uniformly convex
Banach space and embeds continuously into H , and 1 < p ≤ q [309]. All
�q , q < q ≤ 2, are uniformly convex and continuously embeds into �2 [32].

To gain further insights into the regularization process, one can also
decompose the error, i.e., the Bregman distance dξ†,µ†(uδα, u†) from uδα to
u†, into the approximation error and the propagation error, which refer to
the distance from uα to u† and that from uδα to uα, respectively. Theoreti-
cally, the behavior of the approximation error uα−u† contains information
about how difficult it is to approximate the unknown solution u† and pro-
vides hints on what conditions on u† may be helpful. The behavior of the
propagation error uδα − uα shows how the data noise influences the recon-
struction accuracy. Next we provide estimates for these different terms,
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which will be exploited below for deriving a posteriori error estimates for
heuristic rules.

Theorem 3.9. Let the source condition (3.6) hold. Then the approxima-
tion error and its discrepancy satisfy

dξ†,µ†(uα, u†) ≤ ‖w‖2

2
α and ‖Kuα − g†‖ ≤ 2‖w‖α.

With the choice ξα = −K∗(Kuα − g†)/α + µα, µα being the Lagrangian
multiplier for the constraint C, the propagation error and its discrepancy
satisfy

dξα,µα(uδα, uα) ≤ δ2

2α
and ‖K(uδα − uα)‖ ≤ 2δ.

Proof. The minimizing property of uα yields
1
2‖Kuα − g†‖2 + αψ(uα) ≤ αψ(u†).

Rearranging the terms and noting ξ† ∈ ∂ψ(u†) and ξ† = K∗w + µ† yield
1
2‖Kuα − g†‖2 + αdξ†,µ†(uα, u†) ≤ −α〈w,Kuα − g†〉. (3.7)

The non-negativity of dξ†,µ†(uα, u†) and the Cauchy-Schwarz inequality
imply

1
2‖Kuα − g†‖2 ≤ α‖w‖‖Kuα − g†‖.

Appealing again to inequality (3.7) and using the Cauchy-Schwarz and
Young’s inequalities, we arrive at

1
2
‖Kuα − g†‖2 + αdξ†,µ†(uα, u†) ≤ α2‖w‖2

2
+ 1

2
‖Kuα − g†‖2.

This shows the first assertion.
Next we use the minimizing property of uδα to get

1
2‖Kuδα − gδ‖2 + αdξα(uδα, uα) ≤ 1

2‖Kuα − gδ‖2 − α〈ξα, uδα − uα〉.
Using the optimality of uα, we have

ξα = −K∗(Kuα − g†)/α+ µα ∈ ∂ψ(uα),

〈µα, u− uα〉 ≥ 0, ∀u ∈ C.
Plugging in the expression for ξα and rearranging the formula give

1
2
‖K(uδα − uα)‖2 + αdξα,µα(uδα, uα) ≤ −〈g† − gδ,K(uδα − uα)〉. (3.8)

Now the non-negativity of dξα,µα(uδα, uα) and the Cauchy-Schwarz inequal-
ity yield ‖K(uα − uδα)‖ ≤ 2δ. Next by inequality (3.8) and the Cauchy-
Schwarz and Young’s inequalities, we obtain

1
2‖K(uδα − uα)‖2 + αdξα,µα(uδα, uα)

≤ δ‖K(uδα − uα)‖ ≤ δ2

2
+ 1

2
‖K(uδα − uα)‖2,

which concludes the proof. �
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As was noted earlier, the Bregman distance dξ,µ(ũ, u) in general does
not satisfy a triangle inequality. Nonetheless, the total error dξ†,µ†(uδα, u

†)
behaves like the sum of the approximation error dξ†,µ†(uα, u†) and the
propagation error dξα,µα(uδα, uα). Indeed there holds for a, b ≥ 0 that (a+
b)2/2 ≤ a2+b2 ≤ (a+b)2 and hence, we see that the total error does behave
like the sum of dξ†,µ†(uα, u†) and dξα,µα(uδα, uα).

The connection between the total error in the Bregman distance and
the approximation and propagation errors can be made a bit more precise
using the following Pythagoras identity for the Bregman distance.

Lemma 3.8. Let ξ† ∈ ∂ψ(u†) and ξ ∈ ∂ψ(u). Then there holds for any ũ

dξ† (ũ, u
†) = dξ(ũ, u) + dξ†(u, u

†) + 〈ξ† − ξ, u− ũ〉.

Proof. Straightforward calculation yields

dξ†(ũ, u
†) = ψ(ũ) − ψ(u†) − 〈ξ†, ũ− u†〉

= dξ(ũ, u) + ψ(u) − ψ(u†) − 〈ξ†, ũ− u†〉 + 〈ξ, ũ− u〉
= dξ(ũ, u) + dξ† (u, u

†) + 〈ξ† − ξ, u− ũ〉.
This shows the identity. �

The following useful result is a consequence of Lemma 3.8.

Corollary 3.5. Let the source condition (3.6) be fulfilled. Then for the
choice ξα = −K∗(Kuα − g†)/α + µα, µα being the Lagrangian multiplier
for the constraint C, there holds

|dξ†,µ†(uδα, u
†) − (dξα,µα(uδα, uα) + dξ†,µ†(uα, u†))| ≤ 6‖w‖δ.

Proof. Taking u = uα, ũ = uδα, ξ† = K∗w+µ† and ξ = ξα = −K∗(Kuα−
g†)/α+ µα, in the Pythagoras identity (cf. Lemma 3.8), we deduce

dξ†(u
δ
α, u

†) = dξα(uδα, uα) + dξ†(uα, u
†) + 〈ξ† − ξα, uα − uδα〉.

Now for the last term, we have

〈ξ† − ξα, uα − uδα〉
= 〈K∗w + µ† +K∗(Kuα − g†)/α− µα, uα − uδα〉
= 〈w + (Kuα − g†)/α,K(uα − uδα)〉 + 〈µ† − µα, uα − uδα〉,

and

〈µ† − µα, uα − uδα〉 = 〈µ†, uα − u†〉 − 〈µ†, uδα − u†〉 + 〈µα, uδα − uα〉.
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Consequently, we arrive at

dξ†,µ†(uδα, u
†) = dξα,µα(uδα, uα) + dξ†,u†(uα, u†)

+ 〈w + (Kuα − g†)/α,K(uα − uδα)〉.
Now the Cauchy-Schwarz inequality and Theorem 3.9 give

|〈w + (Kuα − g†)/α,K(uα − uδα)〉|
≤ (‖w‖ + ‖Kuα − g†‖/α)‖K(uδα − uα)‖ ≤ 6‖w‖δ.

This concludes the proof. �

Hence the total error dξ†,µ† (uδα, u
†) differs from the sum of approxima-

tion and propagation errors only by a term of order δ. In general, the
difference can be either positive or negative.

Last, we give an estimate for the generalized Bregman distance between
two regularized solutions for the same data gδ but different regularization
parameters. This estimate underlies the quasi-optimality criterion in Sec-
tion 3.4.

Proposition 3.2. Let ξδα = −K∗(Kuδα − gδ)/α + µδα, with µδα being the
Lagrangian multiplier for the constraint C. For q ∈ ]0, 1[, there holds

dξδ
α,µ

δ
α
(uδqα, u

δ
α) ≤ (1 − q)2‖Kuδα − gδ‖2

2αq
.

Moreover, if the source condition (3.6) holds, then

‖K(uδqα − uδα)‖ ≤ 2(1 − q)(δ + 2α‖w‖).
Proof. The minimizing property of uδqα implies

1
2
‖Kuδqα − gδ‖2 + qαψ(uδqα) ≤ 1

2
‖Kuδα − gδ‖2 + qαψ(uδα).

Rearranging the terms gives
1
2
‖Kuδqα − gδ‖2 + qαdξδ

α,µ
δ
α
(uδqα, u

δ
α)

≤ 1
2‖Kuδα − gδ‖2 + q〈Kuδα − gδ,K(uδqα − uδα)〉,

which leads to

qαdξδ
α,µ

δ
α
(uδqα, u

δ
α) ≤ −(1− q)〈Kuδα− gδ,K(uδqα− uδα)〉 − 1

2
‖K(uδqα−uδα)‖2.

Appealing again to the Cauchy-Schwarz and Young’s inequalities gives the
first assertion. Using the Cauchy-Schwarz inequality in

1
2‖K(uδqα − uδα)‖2 ≤ −(1 − q)〈Kuδα − gδ,K(uδqα − uδα)〉,

and Theorem 3.8 shows the remaining assertion. �
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Last, we note that the solution uδα can also be measured using the
symmetric Bregman distance ds(ũ, u) defined by

ds(ũ, u) = dξ,µ(ũ, u) + dξ̃,µ̃(u, ũ)

= 〈ξ̃ − ξ − µ̃+ µ, ũ− u〉,
where ξ ∈ ∂ψ(u) and ξ̃ ∈ ψ(ũ), and µ and µ̃ are the respective Lagrange
multiplier for the constraint C. The symmetric Bregman distance is always
nonnegative, and it depends on the choice of the subgradients ξ and ξ̃.
Then we can state a basic estimate due to [27].

Theorem 3.10. Let the source condition (3.6) hold. Then for the choice
ξα = −K∗(Kuα − g†)/α + µα, µα being the Lagrangian multiplier for the
constraint C, there holds

1
2
‖Kuδα − gδ‖2 + 1

2
‖K(uδα − u†)‖2 + αds(uδα, u

†)

≤ 1
2‖Ku† − gδ‖2 − α〈w,K(uδα − u†)〉.

Proof. The optimality condition for uδα implies
ξδα = K∗(gδ −Kuδα)/α+ µδα ∈ ∂ψ(uδα),

with µδα being the Lagrange multiplier for the constraint C, i.e.,
〈µδα, u− uδα〉 ≥ 0 ∀u ∈ C.

Consequently, we have
〈K∗(Kuδα − gδ), uδα − u†〉 + α〈(ξδα − µδα)−(ξ† − µ†), uδα − u†〉

= −α〈(ξ† − µ†), uδα − u†〉,
which together with the source condition (3.6) yields

〈Kuδα − gδ,K(uδα − u†)〉 + αds(uδα, u
†) = −α(w,K(uδα − u†)〉.

Now from the identity
1
2‖Ku† − gδ‖2 − 1

2‖Kuδα − gδ‖2 − 〈gδ−Kuδα,K(uδα − u†)〉
= 1

2‖Kuδα −Ku†‖2 ≥ 0,
the desired assertion follows immediately. �

Corollary 3.6. Let the source condition (3.6) hold. Then for the choice
α = δ/‖w‖, there holds

ds(uδα, u
†) ≤ δ‖w‖ and ‖Kuδα − gδ‖ ≤ √

2δ.

Proof. It follows from Theorem 3.10 and Young’s inequality that
ds(uδα, u

†) ≤ 1
2
( δ

2

α
+ α‖w‖2) and ‖Kuδα − gδ‖ ≤

√
δ2 + α2‖w‖2.

The rest follows directly from these estimates and the choice of α. �

Remark 3.12. Other basic estimates can also be derived in terms of the
symmetric Bregman distance ds(u, ũ). In particular, this implies that the (a
posteriori) error estimates in Section 3.4 might also be measured in ds(u, ũ).



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch03 page 52

52 Inverse Problems: Tikhonov Theory and Algorithms

3.3.2 Higher-order source condition

One can obtain higher-order convergence rates by imposing stronger source
conditions. One such condition reads

K∗Kw = ξ† ∈ ∂ψ(u†). (3.9)
This condition was first considered in [258] in the context of the Banach
space, which generalizes the classical approach and its proof [88]; see also
[245, 131, 132]. An alternative approach is via a dual formulation of the
Tikhonov functional [116]. We shall describe the results from [258] when
there is no convex constraint C.

Theorem 3.11. Let condition (3.9) hold. Then for α > 0, there holds
dξ†(uα, u

†) ≤ dξ†(u
† − αw, u†),

‖K(uα − u†)‖ ≤ α‖Kw‖ +
√

2αdξ†(u† − αw, u†).

Proof. It follows from the minimizing property of uα that
1
2

[‖Kuα − g†‖2 − ‖Ku− g†‖2]︸ ︷︷ ︸
I

+α (ψ(uα) − ψ(u))︸ ︷︷ ︸
II

≤ 0.

By expanding the terms, the term I can be rewritten as
I = ‖Kuα‖2 − ‖Ku‖2 − 2〈K(uα − u), g†〉

= ‖Kuα‖2 − ‖Ku‖2 − 2〈K(uα − u),Ku†〉.
Appealing to the source condition (3.9), the term II can be rewritten into

II = dξ† (uα, u
†) − dξ† (u, u

†) + 〈K∗Kw, uα − u〉
= dξ† (uα, u

†) − dξ† (u, u
†) + 〈K(uα − u),Kw〉.

Further, by completing the square, we deduce
1
2
I + α〈K(uα − u),Kw〉 = 1

2
‖K(uα − u† + αw)‖2 − 1

2
‖K(u− u† + αw)‖2.

Combining these identities together yields
1
2‖K(uα − u† + αw)‖2 + αdξ†(uα, u

†)

≤ 1
2
‖K(u− u† + αw)‖2 + αdξ†(u, u

†).
This last inequality is valid for any u ∈ X , in particular u = u† − αw.
Hence, we have

1
2‖K(uα − u† + αw)‖2 + αdξ†(uα, u

†) ≤ αdξ†(u
† − αw, u†).

The first estimate is an immediate consequence of this inequality. The
second estimate follows from the triangle inequality

‖K(uα − u†)‖ ≤ α‖Kw‖ + ‖K(uα − u† + αw)‖
≤ α‖Kw‖ +

√
2αdξ†(u† − αw, u†).

This completes the proof. �
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The following result gives an estimate in case of noisy data.

Theorem 3.12. Let condition (3.9) hold. Then for α > 0, there holds

dξ†(u
δ
α, u

†) ≤ dξ† (u
† − αw, u†) +

δ2

α
+
δ

α

√
δ2 + αdξ† (u† − αw, u†),

‖K(uδα − u†)‖ ≤ α‖Kw‖ + δ +
√
δ2 + αdξ†(u† − αw, u†).

Proof. It follows from the minimizing property of uδα that
1
2 [‖Kuδα − gδ‖2 − ‖Ku− gδ‖2]︸ ︷︷ ︸

I

+α (ψ(uδα) − ψ(u))︸ ︷︷ ︸
II

≤ 0.

Now by the relation Ku† = g†, the term I can be rewritten as
I = ‖Kuδα‖2 − ‖Ku‖2 − 2〈K(uδα − u), gδ〉

= ‖Kuδα‖2 − ‖Ku‖2 − 2〈K(uδα − u),Ku†〉 − 2〈K(uδα − u), gδ − g†〉.
Appealing to the source condition (3.9), we deduce

II = dξ†(u
δ
α, u

†) − dξ†(u, u
†) + 〈K(uδα − u),Kw〉.

Now by completing the square, we deduce
1
2
I + α〈K(uδα−u),Kw〉 = 1

2
‖K(uδα − u† + αw)‖2

− 1
2‖K(u− u† + αw)‖2 − 〈K(uδα − u), g† − gδ〉.

Therefore, one has for any u ∈ X that
T (uδα) ≤ T (u),

where the functional T (u) is defined by
T (u) = 1

2‖K(u− u† + αw)‖2 + αdξ†(u, u
†) − 〈Ku, gδ − g†〉.

Upon setting u = u† − αw, one obtains
1
2‖K(uδα − u† + αw)‖2 + αdξ†(u

δ
α, u

†)

≤ 〈K(uδα − u† + αw), gδ − g†〉 + αdξ†(u
† − αw, u†).

Let γ = ‖K(uδα − u† − αw)‖2. Then by neglecting the first and then the
second term in the left-hand side one gets respectively,

αdξ†(u
δ
α, u

†) ≤ γδ + αdξ†(u
† − αw, u†)

and
γ2 ≤ 2γδ + 2αdξ†(u

† − αw, u†),
which implies

γ ≤ δ +
√
δ2 + αdξ†(u† − αw, u†).

Consequently, the first estimate holds. The second estimate follows from
this and the triangle inequality

‖K(uδα − u†)‖ ≤ γ + α‖Kw‖.
This completes the proof of the theorem. �
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A direct consequence of Theorems 3.11 and 3.12 is as follows.

Corollary 3.7. Let condition (3.9) hold. If the functional ψ is twice dif-
ferentiable in a neighborhood of u† and there exists an M > 0 such that
〈ψ′′(u)v, v〉 ≤ M‖v‖2 for any u in the neighborhood and for any v ∈ X,
then

dξ†(uα, u
†) = O(α2),

dξ†(u
δ
α, u

†) = O(δ
4
3 ) if α ∼ δ

2
3 .

Proof. By Theorems 3.11 and 3.12, it suffices to estimate dξ†(u† −
αw, u†). By Taylor’s expansion around u† and the identity ξ† = ψ′(u†),
one has for small α

dξ†(u
† − αw, u†) = ψ(u† − αw) − ψ(u†) − 〈ψ′(u†),−αw〉

= 〈ψ′′(ζα)(−αw),−αw〉
= α2〈ψ′′(ζα)w,w〉 ≤M‖w‖2α2,

where ζα belongs to the segment [u†, u†−αw]. The desired assertion follows
from the choice of α. �

Remark 3.13. In the presence of a convex constraint C, it is unclear
whether the estimates in Theorems 3.11 and 3.12 are still valid, since the
crucial choice u = u† − αw does not necessarily belong to C and thus may
be infeasible.

There are several alternative approaches to convergence rates, e.g., ap-
proximate source condition [130, 133], variational inequalities [141], and
conditional stability [65]. We will discuss variational inequalities and con-
ditional stability in Chapter 4.

Remark 3.14. The a priori parameter choice, i.e., α is a function of the
noise level δ, has been customarily used for choosing the regularization pa-
rameter. However, it is not always convenient for practical applications,
since the optimal choice would require the knowledge of the source repre-
senter w, which is generally inaccessible. Therefore, it is of interest to derive
a posteriori parameter choice rules, which uses only the given data gδ and
possibly also the noise level δ, for selecting the regularization parameter α.
In the following sections, we describe several a posteriori choice rules, e.g.,
discrepancy principle and balancing principle.
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3.4 A posteriori parameter choice rules

A proper choice of the regularization parameter α lies at the very heart of
practical applications of the Tikhonov model Jα. However, it is a highly
nontrivial issue. In this part, we discuss three a posteriori parameter
choice rules, including discrepancy principle, Hanke-Raus rule and quasi-
optimality criterion. In comparison with the a priori choices discussed in
Section 3.3, they do not require a knowledge of the source representer w,
and are readily applicable to practical problems. Throughout, we focus on
the Tikhonov model Jα discussed in Section 3.3, i.e., Y is a Hilbert space,
and φ(u, gδ) = 1

2‖Ku− gδ‖2.

3.4.1 Discrepancy principle

Amongst existing a posteriori choice rules, the discrepancy principle due
to Morozov [238] or its variants remain the most popular choice, provided
that an estimate of the noise level δ is available. This is attributed to
its solid theoretical underpinnings and easy numerical implementation; see
[31, 173, 9, 7] for some studies in the context of nonsmooth regularization.
The principle determines the parameter α = α(δ) such that

‖Kuδα − gδ‖ = cmδ, (3.10)

where cm ≥ 1 is a fixed constant. A slightly relaxed version takes the form

cm,1δ ≤ ‖Kuδα − gδ‖ ≤ cm,2δ,

for some constants 1 ≤ cm,1 < cm,2. The rationale of the principle is
that one cannot expect the inverse solution uδα to be more accurate than
the data gδ in terms of the residual. Note that the inverse solution uδα
is only implicitly defined through the functional Jα, and thus in practice
the principle requires solving a highly nonlinear and potentially nonsmooth
equation (3.10) of α. In this part, we discuss its theoretical justifications
and efficient numerical realizations.

Remark 3.15. The discrepancy principle can be characterized using the
value function F (α). To see this, we define a function Υ(α) by

Υ(α) =
F (α) − δ2/2

α
1

1−γ

,

where the constant γ ∈ [0, 1). A critical point α of Υ satisfies

γαψ̄(α) + φ̄(α) = δ2

2 ,
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which for γ = 0 reduces to the discrepancy principle (3.10). In general, the
rule Υ(α) can be regarded as a damped discrepancy principle.

First we state the existence of a solution α(δ) to equation (3.10).

Theorem 3.13. If the function ‖Kuδα − gδ‖ is continuous with respect to
α, and limα→+∞ ‖Kuδα− gδ‖ > cmδ and limα→0+ ‖Kuδα− gδ‖ < cmδ, then
there exists at least one positive solution α(δ) to equation (3.10).

Proof. By Lemma 3.3, the function ‖Kuδα−gδ‖ is monotonically increas-
ing in α. Now the desired assertion follows directly from the continuity
assumption. �

Remark 3.16.

(i) The uniqueness of the minimizer to the functional Jα guarantees
the continuity of the functions φ̄(α) and ψ̄(α) in α, cf. Theorem
3.2. Uniqueness in general is necessary for the continuity of the
function φ̄(α); see Example 3.3 on the L1-TV formulation.

(ii) Under the continuity assumption, the solutions to (3.10) can form a
closed interval. Unique solvability can be deduced under conditions
in Theorem 3.5, from which the strict monotonicity of the function
φ̄(α) in α follows directly.

The next theorem shows the consistency of the discrepancy principle,
i.e., the convergence of the solution uδα(δ) to a ψ-minimizing solution as the
noise level δ tends to zero.

Theorem 3.14. Let Assumption 3.1 hold, {gδn} be a sequence of noisy
data with δn = ‖g†−gδn‖ → 0 as n→ ∞, and {αn ≡ α(δn)} be determined
by (3.10). Then the sequence {uαn} has a subsequence converging weakly
to a ψ-minimizing solution, and if the ψ-minimizing solution u† is unique,
the whole sequence converges weakly. Further, if the functional ψ verifies
the H-property, then the convergence is strong.

Proof. Let u† be a ψ-minimizing solution, and αn = α(δn). The mini-
mizing property of the inverse solution uδn

αn
implies

1
2
‖Kuδn

αn
− gδn‖2 + αnψ(uδn

αn
) ≤ 1

2
‖Ku† − gδn‖2 + αnψ(u†)

≤ 1
2
δ2n + αnψ(u†),

which together with (3.10) implies ψ(uδn
αn

) ≤ ψ(u†), i.e., the sequence
{ψ(uδn

αn
)} is uniformly bounded. Further,

‖Kuδn
αn

− g†‖ ≤ ‖Kuδn
αn

− gδn‖ + ‖gδn − g†‖ ≤ (cm + 1)δn,
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i.e., the sequence {‖Kuδn
αn

− g†‖} is also uniformly bounded. Now by As-
sumption 3.1, there exists a subsequence of {uδn

αn
}, also denoted as {uδn

αn
},

and some u∗ ∈ C, such that

uδn
αn

→ u∗ weakly in X.

Now the weak lower-semicontinuity of ψ implies

ψ(u∗) ≤ lim inf
n→∞ ψ(uδn

αn
) ≤ lim sup

n→∞
ψ(uδn

αn
) ≤ ψ(u†). (3.11)

Moreover, there holds,

‖Ku∗ − g†‖ = lim inf
n→∞ ‖Kuδn

αn
− g†‖

≤ lim inf
n→∞ (‖Kuδn

αn
− gδn‖ + ‖gδn − g†‖)

≤ lim inf
n→∞ (cm + 1)δ = 0,

i.e., ‖Ku∗ − g†‖ = 0, and thus Ku∗ = g†. Therefore, u∗ is a ψ-minimizing
solution and ψ(u∗) = ψ(u†). If the ψ-minimizing solution u† is unique,
then u∗ = u† and a standard subsequence argument yields that the whole
sequence converges weakly to u†.

For every weakly convergent subsequence {uδn
αn

} with a limit u∗ ∈ C, we
deduce from ψ(u∗) = ψ(u†) and equation (3.11) that

ψ(u†) ≤ ψ(u∗) ≤ lim inf
n→∞ ψ(uδn

αn
) ≤ lim sup

n→∞
ψ(uδn

αn
) ≤ ψ(u†),

from which it follows that limn→∞ ψ(uδn
αn

) = ψ(u∗) = ψ(u†). This together
with the H-property of ψ concludes the desired strong convergence. �

The next result shows the convergence rate under the classical source
condition (3.6).

Theorem 3.15. Let the source condition (3.6) hold, and α be determined
by the discrepancy principle (3.10). Then there holds

dξ†,µ†(uδα, u
†) ≤ (1 + cm)‖w‖δ.

Proof. The proof of Theorem 3.14 indicates that ψ(uδα) ≤ ψ(u†) and the
triangle inequality implies that

‖K(uδα − u†)‖ = ‖Kuδα − g†‖ ≤ (1 + cm)δ.

Now the source condition gives

dξ†,µ†(uδα, u
†) = ψ(uδα) − ψ(u†) − 〈ξ†, uδα − u†〉 + 〈µ†, uδα − u†〉

≤ 〈K∗w, u† − uδα〉 ≤ ‖w‖‖K(u† − uδα)‖ ≤ (1 + cm)‖w‖δ.
This concludes the proof of the theorem. �
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Remark 3.17. It is known that in a Hilbert space setting, the best possible
convergence rate for the discrepancy principle is O(δ1/2), and higher-order
source conditions do not lead to a better rate. However, there are variants
for which optimal convergence rates hold [269, 284]. It is unclear whether
the same observation holds in a Banach space setting.

Remark 3.18. In practice, the estimate of the noise level δ can be impre-
cise. Hence it is important to know the sensitivity of the Morozov’s choice
(uδα, α) with respect to δ. We illustrate this with the standard quadratic
regularization, i.e.,

Jα(u) = 1
2
‖Ku− gδ‖2 + α

2
‖u‖2.

The optimality condition together with the discrepancy principle reads
K∗Kuδα + αuδα = K∗gδ,

‖Kuδα − gδ‖2 = δ2.

Upon differentiating the system with respect to δ, we arrive at
K∗Ku̇δα + αu̇δα + α̇uδα = 0,

〈Ku̇δα,Kuδα − gδ〉 = δ,
(3.12)

where

u̇δα =
duδα
dδ

and α̇ =
dα

dδ
.

By taking inner product between the optimality condition and u̇δα, and
comparing it with (3.12), we deduce

α〈u̇δα, uδα〉 = −δ.
Equivalently, with the notation ψ(u) = 1

2
‖u‖2, we have

dψ̄(α)
dδ

= − δ

α
. (3.13)

Similarly, there holds
dα

dδ
=

1
2ψ̄(α)

(
δ − 1

2
d

dδ
‖Kuδα‖2

)
.

It follows from the monotonicity (increasing) of the function φ̄(α) in α that
dα
dδ

≥ 0, cf. Lemma 3.3. Hence, the above relation implies d
dδ
‖Kuδα‖2 ≤ 2δ.

In practice, one observes that the term ‖Kuδα‖ is relatively insensitive to α
due to the smoothing property of K, and thus we might deduce that

dα

dδ
≈ δ

2ψ̄(α)
.

We note that the relation (3.13) can be derived in a very framework. By
the value function calculus, cf. Theorem 3.7, we have dψ̄

dφ̄
= − 1

α , and thus

dψ̄

dδ
= − 1

α

dφ̄

dδ
= − δ

α
.



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch03 page 59

Tikhonov Theory for Linear Problems 59

Remark 3.19. Contemporaneously with Morozov, Arcangeli [10] pub-
lished a discrepancy-like method. He proposed to choose the regularization
parameter α by the condition

‖Kuδα − gδ‖ = δ/
√
α.

As was discussed earlier, provided that the functional Jα has a unique
minimizer for every α, for fixed δ > 0, the function

Υa(α) =
√
α‖Kuδα − gδ‖

is continuous, increasing and

lim
α→0

Υa(α) = 0 and lim
α→∞ Υa(α) = ∞.

Therefore, there exists a value α = α(δ) satisfying the rule Υa. Next we
claim that if the functional Jα with the exact data g† satisfies that for every
α > 0, there holds uα 
= u†, then there holds

lim
δ→0

α(δ) = 0 and lim
δ→0

δ2

α(δ)
= 0,

from which it follows directly that Arcangeli’s rule is consistent, cf. Theo-
rem 3.4. To show the first identity, we assume the contrary. Let {δn} be a
sequence with δn → 0 and α(δn) → α0 > 0. Then by the definition of the
rule (possibly only on a subsequence)

0 = lim
n→∞

√
α(δn)‖Kuδn

α(δn) − gδn‖
=

√
α0‖Kuα0 − g†‖.

Therefore, ‖Kuα0 − g†‖ = 0, which contradicts the assumption uα0 
= u†.
Meanwhile, it follows from the definition of the rule that

δ2

α(δ) = ‖Kuδα(δ) − gδ‖2 ≤ 2Jα(uδα(δ))

≤ 2(1
2
‖Ku† − gδ‖ + α(δ)ψ(u†))

≤ δ2 + 2α(δ)ψ(u†).

This together with the first identity shows the second identity δ2n/α(δn) → 0
as n → ∞. We refer interested readers to [193] for related discussions on
convergence rates.

Now we turn to efficient numerical algorithms, i.e., the model function
approach and a quasi-Newton method, for solving equation (3.10) with
cm = 1.

The model function approach was first proposed by Ito and Kunisch
in 1992 [160], and then improved in [206, 308, 173]. The basic idea is to
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express the discrepancy φ̄(α) in terms of the value function F (α), and then
to approximate F (α) with rational functions, a.k.a. Padé approximations,
which are called model functions.

By Lemma 3.5, if ψ̄(α) is continuous in α, which we shall assume here-
after, equation (3.10) can be rewritten as

F (α) − αF ′(α) = δ2

2
. (3.14)

The value function F (α) is highly nonlinear. In the model function
approach, we approximate it by the following model function mk(α) at the
k-th iteration,

mk(α) = b+
ck

tk + α
,

where b, ck and tk are constants to be determined. The constant b is
determined by asymptotics, i.e., mk(0+) or mk(+∞). The latter choice
merits better theoretical underpinnings and numerical performance [308],
and thus we focus on this variant, i.e., fixing b at

b = lim
α→∞ φ̄(α).

By enforcing the Hermite interpolation conditions at αk, i.e.,

mk(αk) = F (αk) and m′
k(αk) = F ′(αk),

we derive that

ck = − (F (αk) − b)2

ψ̄(αk)
and tk =

b− φ̄(αk)
ψ̄(αk)

− 2αk.

The sign of the parameter tk is in general indefinite, and it is positive
if and only if

b− φ̄(αk) − 2αkψ̄(αk) > 0. (3.15)

Inequality (3.15) holds if the regularization parameter αk is sufficiently
small. If tk > 0 holds, then the model function mk(α) preserves the asymp-
totic behavior, monotonicity and concavity of F (α). With the approxima-
tion mk in place of F (α) in (3.14), we arrive at an approximate discrepancy
equation

mk(α) − αm′
k(α) = δ2

2
. (3.16)

Next we introduce

G(α) = F (α) − αF ′(α) and Gk(α) = mk(α) − αm′
k(α).
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Observe that

G′
k(α) = −αm′′

k(α) =
−2ckα

(tk + α)3
> 0, (3.17)

i.e., the approximation Gk(α) preserves the monotonicity of G(α).
The next result shows the local solvability of (3.16).

Lemma 3.9. Let tk be positive, and F be continuously differentiable. If αk
is close to a solution of the discrepancy equation (3.10), then there exists a
unique positive solution to (3.16).

Proof. The uniqueness follows from the strict monotonicity of G′
k(α), cf.

(3.17). Equation (3.16) at the kth step reads

b+
ck

tk + α
+ α

ck
(tk + α)2

=
δ2

2

We discuss separately two cases, i.e. φ̄(αk) > δ2

2
and φ̄(αk) < δ2

2
. In the

former case, by the monotonicity, we need only to consider

lim
α→0+

(
b+

ck
tk + α

+ α
ck

(tk + α)2

)
= b +

ck
tk
.

Therefore, a positive solution to (3.16) exists if and only if b + ck

tk
< δ2

2 ,
which by substituting the formulas for ck and tk is equivalent to

(b− δ2

2 )
(
b− φ̄(αk)
F ′(αk)

− 2αk

)
<

(b− F (αk))2

F ′(αk)
.

Now the identity F ′ = ψ from Lemma 3.5 and rearranging the terms gives

(φ̄(αk) − δ2

2
)
(
b − φ̄(αk) − 2αkψ̄(αk)

)
< α2

kψ̄(αk)2,

which together with the assumption that φ̄(αk) ≈ δ2

2
yields the assertion.

In the other case, we need only to consider

lim
α→+∞

(
b+

ck
tk + α

+ α
ck

(tk + α)2

)
= b > δ2

2
,

for which a positive solution is guaranteed. �

Remark 3.20. Lemma 3.9 remains true when the value of the constant
b is set to any other constant larger than b, especially for large b, e.g.,
b = 2 limα→∞ φ̄(α), which automatically guarantees the positivity of tk, by
observing the monotonicity and asymptotes of F (α).
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Lemma 3.9 indicates that equation (3.16) is only locally solvable, and
thus the resulting algorithm is at best locally convergent. To circumvent
the issue, we employ the idea of relaxation, i.e., replacing Gk(α) by

Ĝk(α) = Gk(α) + α̃k(Gk(α) −Gk(αk)).

Assume that Gk(αk) > δ2/2. The sign of the second term is determined
by the sign of α̃k as Gk(α) ≤ Gk(αk) for α ∈ [0, αk]. The constant α̃k is
chosen such that the equation

Ĝk(α) = δ2

2
(3.18)

always has a unique solution. This can be achieved by prescribing Ĝk(0) <
δ2/2, or specifically Ĝk(0) = γδ2, ∀γ ∈ [0, 1/2), which suggests

α̃k = Gk(0)−γδ2
Gk(αk)−Gk(0)

.

From the monotonicity of Gk(α) we know 1+α̃k > 0 as long as G(αk) > δ2,
which implies that Ĝ′

k(α) > 0, i.e., it preserves the monotonicity. The
complete algorithm is described in Algorithm 3.1. The stopping criterion
at step 5 can be based on the relative change of the iterates {αk}.

Algorithm 3.1 Model function approach
1: Choose α0 and K, and set k = 0.
2: for k = 1, . . . ,K do
3: Solve (3.2) for uδαk

, and update tk and ck;
4: Set the kth model function mk(α), and solve (3.18) for αk+1.
5: Check the stopping criterion.
6: end for
7: output approximations αK and uδαK

.

Lemma 3.10. Let the function ψ̄(α) be continuous, the condition (3.15)
hold for all k, and the sequence αk be convergent to ᾱ. Then

lim
k→∞

Gk+1(αk+1) = lim
k→∞

Gk(αk+1).

Proof. By the definition of the model function mk(α),

Gk(α) = b+
ck

tk + α
+ α

ck
(tk + α)2

= b− (F (αk) − b)2
b− φ̄(αk) − 2(αk − α)ψ̄(αk)

(b − φ̄(αk) − (2αk − α)ψ̄(αk))2
.
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Hence we have

Gk+1(αk+1) −Gk(αk+1)

= φ̄(αk+1) − b+ (F (αk) − b)2
b − φ̄(αk) − 2(αk − αk+1)ψ̄(αk)

(b− φ̄(αk) − (2αk − αk+1)ψ̄(αk))2
.

Now by the continuity assumption on ψ̄(α), φ̄(α) is also continuous, cf.
Lemma 3.6. Hence, each term in Gk+1(αk+1) − Gk(αk+1) is continuous
and has a limit. The assertion follows directly from the limit law. �

The next theorem shows the monotone convergence of Algorithm 3.1 in
the case of ‘large’ initial guesses α0, i.e., G(α0) > δ2/2.

Theorem 3.16. Let φ̄(α) and ψ̄(α) be continuous in α, and the solution
α† to (3.10) be unique, and α0 satisfy G(α0) > δ2/2. Then the sequence
{αk}k generated by Algorithm 3.1 is well-defined. Moreover, the sequence
is either finite, i.e., it terminates at some αk satisfying G(αk) ≤ δ2/2, or
it is infinite and converges to α† strictly monotonically decreasingly.

Proof. It suffices to show that if Ĝk(αk) ≤ δ2/2 is never reached then
αk converges to α†. So we may assume that Ĝk(αk) > δ2/2 for all k. This
and the monotonicity of Ĝk(α) yield αk+1 < αk. Secondly, the relation

Ĝk(αk) = Gk(αk) = G(αk)

together with the assumption implies αk > α† for all k. Therefore, the
sequence {αk}k converges to some ᾱ ≥ α† by the monotone convergence
theorem. We next show that ᾱ = α†. Taking the limit in αk and noting
the continuity assumption on ψ̄(α) and φ̄(α), we observe that the sequences
{ck}k and {tk}k both converge. Next, the relation G(αk+1) = Gk+1(αk+1)
and the definition of Gk(α) yield

G(ᾱ) = lim
k→∞

G(αk+1) = lim
k→∞

Gk+1(αk+1) = lim
k→∞

Gk(αk+1),

where the last line follows from Lemma 3.10. Now in the equation
Gk(αk+1) + α̃k(Gk(αk+1) − Gk(αk)) = δ2/2, by the definitions of Gk(α)
and α̃k and the convergence of αk, we see

lim
k→∞

{Gk(αk+1) −Gk(αk)} = 0,

and that α̃k is convergent. This gives G(ᾱ) = δ2/2, and by the uniqueness
assumption, we have ᾱ = α†. �
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Numerically, Algorithm 3.1 converges robustly and reasonably fast dur-
ing the initial stage of the iteration process. In the implementation, we
need an initial guess for the parameter α. The following result gives an
upper bound [299] in the case of norm penalties.

Theorem 3.17. Suppose that the functional

Jα(u) = 1
2‖Ku− gδ‖2 + α

p ‖u‖p,
with p ≥ 1, reaches its minimum at uδα 
= 0 on X. Then

α ≤ ‖K‖p‖Kuδα − gδ‖
(‖gδ‖ − ‖Kuδα − gδ‖)p−1

.

Proof. If Jα reaches its minimum at uδα on X , then it achieves its mini-
mum on elements of the form (1 − s)uδα, s ∈ R, at s = 0, i.e.,

Jα((1 − s)uδα) − Jα(uδα) ≥ 0 ∀s ∈ R.

Next by the triangle inequality ‖K(1−s)uδα−gδ‖ ≤ ‖Kuδα−gδ‖+s‖Kuδα‖,
we bound the first term Jα((1 − s)uδα) from above with s ∈ [0, 1] by

Jα((1 − s)uδα) = 1
2
‖Kuδα − gδ − sKuδα‖2 + α

p
‖(1 − s)uδα‖p

≤ 1
2‖Kuδα − gδ‖2 + s‖Kuδα − gδ‖‖Kuδα‖

+ s2

2 ‖Kuδα‖2 + α
p (1 − s)p‖uδα‖p.

Consequently,

0 ≤ Jα((1 − s)uδα) − Jα(uδα)

≤ s‖Kuδα − gδ‖‖Kuδα‖ + s2

2 ‖Kuδα‖2 + α
p ((1 − s)p − 1)‖uδα‖p,

which upon dividing both sides by s and letting s→ 0+ yields

α ≤ ‖Kuδα − gδ‖‖Kuδα‖
‖uδα‖p

.

Further, with the inequality ‖Kuδα‖ ≤ ‖K‖‖uδα‖, we deduce

α ≤ ‖Kuδα − gδ‖‖K‖
‖uδα‖p−1

.

Next we estimate ‖uδα‖ from below by

‖uδα‖ ≥ ‖Kuδα‖/‖K‖ ≥ (‖gδ‖ − ‖Kuδα − gδ‖)/‖K‖.
Substituting this lower bound for ‖uδα‖ yields the desired assertion. �

Remark 3.21. The space Y in Theorem 3.17 can be a general Banach
space.
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Corollary 3.8. If the parameter α is selected on the basis of the discrepancy
principle ‖Kuδα − gδ‖ = cmδ, then

α ≤ cm‖K‖pδ
(‖gδ‖ − cmδ)p−1

.

Remark 3.22. Theorem 3.17 indicates that the value determined by the
principle is at most of order δ, i.e., O(δ), which has been a quite popular
a priori choice for inverse problems in Banach spaces. It shows also clearly
the suboptimality of the principle for Tikhonov regularization in Hilbert
spaces: It cannot achieve optimal convergence rates for the following source
condition u† = (K∗K)νw, when the source parameter ν lies within the
range ]1/2, 1], since then the optimal convergence rate can only be realized
for a choice larger than O(δ) [88]. The parameter α(δ) can be quite close to
zero, thus a lower bound is often not available without further assumptions.

The local convergence of Algorithm 3.1 seems relatively slow, which
necessitates developing faster algorithms. The secant method does not
require derivative evaluation and merits local superlinear convergence for
smooth equations. Hence it can be used for accelerating the algorithm,
which lends itself to a hybrid algorithm, combining their virtues, i.e., the
robustness of the model function approach and the fast local convergence
of the secant method.

Consider the case of the L2-L2 model in a Hilbert spaces, i.e., φ(u, gδ) =
1
2
‖Ku − gδ‖2 and ψ(u) = 1

2
‖Lu‖2 with L being a differential operator or

identity operator. Then it is well known that the function φ̄(α) is convex in
the α−1 coordinate; see the proposition below. This suggests implementing
a quasi-Newton method in the α−1 coordinate since Newton type methods
for convex functions are ensured to converge, and moreover, the convergence
is monotone. For general nonsmooth models, the convexity may not hold,
but numerical experiments with the secant method are very encouraging.

Proposition 3.3. For φ(u, gδ) = 1
2‖Ku − gδ‖2 and ψ(u) = 1

2‖Lu‖2, the
function φ

(
uδα−1 , gδ

)
is convex in α.

Proof. It suffices to show that d2

dα2 φ̄(α−1) ≥ 0. First, u = uδα−1 solves

(K∗K + α−1L∗L)u = K∗gδ.

Differentiating the equation with respect to α implies that u′ = du
dα and

u′′ = d2u
dα2 respectively satisfy

(K∗K + α−1L∗L)u′ = α−2L∗Lu,

(K∗K + α−1L∗L)u′′ = 2α−2L∗Lu′ − 2α−3L∗Lu.
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Upon denotingQα = (K∗K+α−1L∗L)−1 and the identity I−α−1QαL
∗L =

QαK
∗K, we have

u′ = α−2QαL
∗Lu,

u′′ = 2α−3(α−1QαL
∗L− I)QαL∗Lu

= −2α−3QαK
∗KQαL∗Lu.

Now with the relation K∗(Ku− gδ) = −α−1L∗Lu, we arrive at
d2

dα2
φ̄(α−1) = 〈K∗(Ku− gδ), u′′〉 + 〈Ku′,Ku′〉

= 3α−4‖KQαL∗Lu‖ ≥ 0.
This completes the proof of the proposition. �

3.4.2 Hanke-Raus rule

According to Theorem 3.8, the estimate for the total error dξ†,µ†(uδα, u
†)

differs from that for the squared residual by a factor of 1/α:
‖Kuδα − gδ‖2

α
≤ (δ + 2α‖w|)2

α
=
( δ√

α
+ 2

√
α‖w‖

)2

≈ 1
2

( δ√
α

+
√
α‖w‖

)2

≥ dξ†,µ†(uδα, u
†).

Since the value ‖Kuδα − gδ‖2/α can be evaluated a posteriori without a
knowledge of the noise level δ, one can use it as an estimate of the total error
and to choose an appropriate regularization parameter α by minimizing the
function

Φhr(α) =
‖Kuδα − gδ‖2

α
. (3.19)

This resembles the parameter choice due to Hanke and Raus [125] for clas-
sical Tikhonov regularization. The developments here follow [169].

Before we proceed to the analysis of the rule Φhr, we recall that so-
called Bakushinskĭı’s veto, i.e., theoretically speaking, all heuristic rules,
which do not make use of the knowledge about the exact noise level δ,
can suffer from nonconvergence in the framework of worst-case scenario
analysis. Bakushinskĭı’s veto [18] reads:

Theorem 3.18. Let G be a mapping from a subset D of one metric space
(Y, ρY ) to another metric space (X, ρX). Assume that G is regularizable by
a family Rδ of the regularized mapping from Y to X, i.e.,

sup
g̃∈Y, ρY (g̃,g)≤δ

ρX(Rδ(g̃), G(g)) → 0 as δ → 0+ (3.20)
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for all g ∈ D. Then G is regularizable by a mapping R which does not
depend on δ > 0 if and only if G can be extended to all Y and the extension
is continuous in D.

Proof. For the sufficiency part, we take R = G, the extension of G on Y ,
which is continuous on D ⊂ Y . For the necessity part, we first note that R
is continuous on D since for g̃1, g̃2 ∈ D with ρY (g̃1, g̃2) ≤ δ

ρX(R(g̃1), R(g̃2)) ≤ ρX(R(g̃1), G(g̃1)) + ρX(R(g̃2), G(g̃1)) → 0 as δ → 0+

by the assumption. By taking g̃ = g in (3.20), the assumption implies that
G(g) = R(g), g ∈ D and thus R is a desired extension. �

For example, let K ∈ L(X,Y ), D = range(K) and G(g) = K−1g, g ∈
D. If G is regularizable by any rule R on Y , especially R(gδ) = (K∗K +
α(gδ)I)−1K∗gδ, then G must be continuous on D and thus range(K) is
closed and K is boundedly invertible.

Remark 3.23. In some sense, Bakushinskĭı’s veto discourages the use of
heuristic rules. However, this does not imply that heuristic rules are useless.
In practice, one usually has additional knowledge for calibrating the model.
It is known that weak assumptions on the exact data g† as well as noisy data
gδ, hence leaving the worst-case scenario analysis, lead to provable error
estimates [197, 244, 196]. Further, in a statistical context, Bakushinskĭı’s
veto is not valid [24].

In view of Theorem 3.18, a priori error estimates for heuristic rules,
including the Hanke-Raus rule, are usually not feasible, unless further con-
ditions on the noise and exact data are imposed. First we derive a posteriori
error estimates, by which we measure the distance between the approximate
solution uδα∗ and the exact one u† in terms of the noise level δ = ‖gδ − g†‖,
the residual δ∗ = ‖Kuδα∗ − gδ‖ and other relevant quantities.

Theorem 3.19. Let the source condition (3.6) hold, and α∗ be defined as
α∗ ∈ arg minα∈[0,‖K‖2] Φhr(α). If δ∗ := ‖Kuδα∗ − gδ‖ 
= 0, then there holds

dξ†,µ†(uδα∗ , u†) ≤ C
(
1 +

(
δ
δ∗

)2)max(δ, δ∗).

Proof. By Corollary 3.5, we have

dξ†,µ†(uδα, u
†) ≤ dξ†,µ†(uα, u†) + dξα,µα(uδα, uα) + 6‖w‖δ.
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It suffices to estimate the Bregman distance terms. First we estimate the
approximation error dξ†,µ†(uα∗ , u†) for α = α∗. By Theorem 3.9, we obtain

dξ†,µ†(uα∗ , u†) ≤ ‖w‖‖Kuα∗ − g†‖
≤ ‖w‖ (‖K(uα∗ − uδα∗)‖ + ‖Kuδα∗ − gδ‖ + δ

)
≤ ‖w‖(2δ + δ∗ + δ) ≤ 4‖w‖max(δ, δ∗).

Next we estimate the term dξα∗ ,µα∗ (uδα∗ , uα∗). Using Theorem 3.9, we get

dξα∗ ,µα∗ (uδα∗ , uα∗) ≤ δ2

2α∗ =
( δ
δ∗

)2 ‖Kuδα∗ − gδ‖2

2α∗ . (3.21)

By the definition of α∗, we only increase the right hand side if we replace
α∗ by any other ᾱ ∈ [0, ‖K‖2]. We use ᾱ = c̄δ with c̄ = min(1, δ−1)‖K‖2

and deduce from Theorem 3.8 that

‖Kuδᾱ − gδ‖ ≤ (1 + 2c̄‖w‖)δ.
Replacing α∗ by ᾱ in the right hand side of inequality (3.21), we have

dξα∗ (uδα∗ , uα∗) ≤
( δ
δ∗

)2 ‖Kuδᾱ − gδ‖2

2ᾱ
≤
( δ
δ∗

)2 (1 + 2c̄‖w‖)2δ
2c̄

.

By combining the above two estimates, we finally arrive at

dξ†,µ†(uδα∗ , u†) ≤ 4‖w‖max(δ, δ∗) +
( δ
δ∗

)2 (1 + 2c̄‖w‖)2
2c̄

δ + 6‖w‖δ

≤ C(1 +
(
δ
δ∗

)2)max(δ, δ∗)

with C = max(10‖w‖, (1 + 2c̄‖w‖)2/(2c̄)) as desired. �

By stipulating additional conditions on the data gδ, we can get rid of the
prefactor δ

δ∗
in the estimates and even obtain convergence of the method.

To show this, we denote by Q the orthogonal projection onto the orthogonal
complement of the closure of range(K).

Corollary 3.9. If for the noisy data gδ, there exists some ε > 0 such that

‖Q(g† − gδ)‖ ≥ ε‖g† − gδ‖,
then α∗ according to (3.19) is positive. Moreover, under the conditions of
Theorem 3.19, there holds

dξ†,µ†(uδα∗ , u†) ≤ C
(
1 + 1

ε2

)
max(δ, δ∗).
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Proof. We observe

‖Kuδα − gδ‖ ≥ ‖Q(Kuδα − gδ)‖ = ‖Qgδ‖
= ‖Q(gδ − g†)‖ ≥ ε‖gδ − g†‖. (3.22)

This shows δ∗ ≥ εδ and especially that Φhr(α) → +∞ as α → 0. Hence,
there exists an α∗ > 0 minimizing Φhr(α) over [0, ‖K‖2]. The remaining
assertion follows from (3.22) and the respective error estimate. �

The next theorem shows the convergence of the Hanke-Raus rule under
the condition that ‖Q(g† − gδ)‖ ≥ ε‖g† − gδ‖ holds uniformly for the data
gδ as δ tends to zero.

Theorem 3.20. Let the functional Jα be coercive and have a unique min-
imizer. Further, assume that there exists an ε > 0 such that for every
δ > 0:

‖Q(g† − gδ)‖ ≥ ε‖g† − gδ‖. (3.23)

Then there holds

dξ†,µ†(uδα∗(gδ), u
†) → 0 for δ → 0.

Proof. By the definition of α∗, we observe that the sequence {α∗ ≡
α∗(gδ)}δ≥0 is uniformly bounded and hence, there exists an accumulation
point ᾱ. We distinguish the two cases ᾱ = 0 and ᾱ > 0.

We first consider the case ᾱ = 0. By Corollary 3.5, we split the error

dξ†,µ†(uδα∗ , u†) ≤ dξα∗ ,µα∗ (uδα∗ , uα∗) + dξ†,µ†(uα∗ , u†) + 6‖w‖δ, (3.24)

and estimate the data and approximation errors separately.
For the error dξα∗ ,µα∗ (xδα∗ , uα∗), we deduce from Theorem 3.9 and as-

sumption (3.23) that

dξα∗ ,µα∗ (uδα∗ , uα∗) ≤ δ2

2α∗ ≤ ‖Kuδα∗ − gδ‖2

2ε2α∗ =
Φhr(α∗)

2ε2
.

Therefore, it suffices to show that Φhr(α∗) goes to zero as δ → 0. By
Theorem 3.8, there holds for every α ∈ [0, ‖K‖2] that

Φhr(α∗) ≤ Φhr(α) ≤
( δ√

α
+ 2‖w‖√α

)2

.

Hence, we may choose α(δ) such that α(δ) → 0 and δ2/α(δ) → 0 for δ → 0.
This shows Φhr(α∗) → 0 for δ → 0.

For the approximation error dξ†,µ†(uα∗ , u†), we deduce from the fact
that ᾱ = 0 and Theorem 3.9 that

dξ†,µ†(uα∗ , u†) ≤ α∗‖w‖2

2
→ ᾱ‖w‖2

2
= 0 for δ → 0.
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Hence, all three terms on the right hand side of inequality (3.24) tend to
zero for δ → 0 as desired.

Next we consider the case ᾱ > 0. we use α∗ ≤ ‖K‖2 to get

Φhr(α∗) ≥ ‖Kuδα∗ − gδ‖2

‖K‖2
≥ 0.

Since Φhr(α∗) goes to zero for δ → 0 we deduce that ‖Kuδα∗ − gδ‖ tends to
zero as well. Next by the minimizing property of uδα∗ , we have

1
2‖Kuδα∗ − gδ‖2 + α∗ψ(uδα∗) ≤ 1

2‖Ku† − gδ‖2 + α∗ψ(u†).

Therefore, both sequences {‖Kuδα∗ − gδ‖} and {ψ(uδα∗)} are uniformly
bounded by the assumption ᾱ > 0. By the coercivity of the functional
Jα, the sequence {uδα∗} is uniformly bounded, and thus there exists a sub-
sequence, still denoted by {uδα∗}, that converges weakly to some û ∈ C. By
the weak lower semicontinuity of the norm and the functional ψ, we have

‖Kû− g†‖ ≤ lim inf
δ→0

‖Kuδα∗ − gδ‖ = 0, ψ(û) ≤ lim inf
δ→0

ψ(uδα∗). (3.25)

Consequently, for any u
1
2
‖Kû− g†‖2 + ᾱψ(û) ≤ 1

2
‖Ku− g†‖2 + ᾱψ(u). (3.26)

Hence û minimizes the functional 1
2‖Ku−g†‖2+ ᾱψ(u), and by the unique-

ness of the minimizer, û = uᾱ, and the whole sequence converges weakly.
Further, by taking u = uᾱ in (3.26), we deduce

1
2
‖Kuᾱ − g†‖2 + ᾱψ(uᾱ) = lim

δ→0
{ 1

2
‖Kuδα∗ − gδ‖2 + α∗ψ(uδα∗)}, (3.27)

and the arguments in the proof of Theorem 3.2 yield

ψ(uδα∗) → ψ(uᾱ). (3.28)

Next we show that uᾱ is a ψ-minimizing solution to the equation Ku = g†.
However, this follows directly from inequality (3.25) that ‖Kuᾱ − g†‖ = 0,
and from inequality (3.26)

ψ(uᾱ) ≤ ψ(u) ∀u with Ku = g†,

which in particular by choosing u in the set of ψ-minimizing solutions of
Ku = g† shows the claim. Now we deduce that

lim
δ→0

dξ†,µ†(uδα∗ , u†) = lim
δ→0

(
ψ(uδα∗) − ψ(u†) − 〈ξ† − µ†, uδα∗(gδ) − u†〉

)
= 0,

by observing identity (3.28) and the weak convergence of the sequence
{uδ

α∗(gδ)} to u†. This concludes the proof of the theorem. �
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3.4.3 Quasi-optimality criterion

Now we turn to a third a posteriori choice rule, the quasi-optimality cri-
terion. Throughout this part, we assume that there is no constraint C.
The motivation of the criterion is as follows. By Proposition 3.2 for any
q ∈ (0, 1),

dξδ
α
(uδqα, u

δ
α) ≤ (1 − q)2

2q
Φhr(α).

In particular, for a geometrically decreasing sequence of regularization pa-
rameters, the Bregman distance of two consecutive regularized solutions are
bounded from above by a constant times the estimator Φhr. This suggests
itself a parameter choice rule which resembles the classical quasi-optimality
criterion [289, 291]. Specifically, for the given data gδ and q ∈ (0, 1) we
define a quasi-optimality sequence as

µδk = dξδ

qk−1
(uδqk , u

δ
qk−1).

The quasi-optimality criterion consists of choosing the regularization pa-
rameter αqo = qk such that µδk is minimal over a given range k ≥ k0. The
quasi-optimality sequence for the exact data g† will be denoted by

µk = dξ
qk−1 (uqk , uqk−1).

Remark 3.24. The classical quasi-optimality criterion [291] chooses αqo

such that the quantity ‖αduδ
α

dα
‖ is minimal. For a general convex penalty ψ,

this is not applicable since the mapping α �→ uδα is in general not dif-
ferentiable. For example, in the case of �1 regularization, the solution
path, i.e., uδα with respect to α, is piecewise linear [84]. Hence we opt
for the discrete version which is also used in [290]. The literature on the
quasi-optimality criterion in the Hilbert space setting is quite extensive; see
[290, 291, 212, 211, 110, 21, 197, 196], where a priori convergence rates
were established under certain conditions on the exact data and the noise
(thereby leaving the worst-case scenario error estimate).

We start with some basic observations of the quasi-optimality sequence.

Lemma 3.11. Let the source condition (3.6) hold. Then the quasi-
optimality sequences {µδk} and {µk} satisfy

(1) lim
k→−∞

µδk = 0,

(2) lim
k→−∞

µk = 0 and lim
k→∞

µk = 0.
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Proof. Appealing to Proposition 3.2, we have

µδk ≤ (1 − q)2

2q

‖Kuδqk−1 − gδ‖2

qk−1
.

Since the sequence {‖Kuδqk−1 − gδ‖}k stays bounded for k → −∞, the
first claim follows directly. Setting δ = 0 in assertion (1) shows the first
statement of assertion (2). Now we use Theorem 3.9 and estimate

µk ≤ (1 − q)2

2
‖Kuqk−1 − g†‖2

qk
≤ 2(1 − q)2‖w‖2qk−2.

This shows the second statement of assertion (2). �

Now we show that the quasi-optimality sequences for exact and noisy
data approximate each other for a vanishing noise level.

Lemma 3.12. Let the source condition (3.6) hold. Then for any k1 ∈ Z,
there holds

lim
δ→0

sup
k≤k1

|µδk − µk| = 0.

Proof. We will use the abbreviations uδk = uδqk , uk = uqk , ξδk =
−K∗(Kuδk − gδ) and ξk = −K∗(Kuk − g). By the definition of µδk and
µk, we have

|µδk − µk| = |dξδ
k−1

(uδk, u
δ
k−1) − dξk

(uk, uk−1)|
=
∣∣ψ(uδk) − ψ(uδk−1) − 〈ξδk−1, u

δ
k − uδk−1)

− ψ(uk) + ψ(uk−1) + 〈ξk−1, uk − uk−1〉
∣∣

= |dξk
(uδk, uk) − dξk−1(u

δ
k−1, uk−1)

+ 〈ξk−1 − ξδk−1, u
δ
k − uδk−1〉 + 〈ξk − ξk−1, u

δ
k − uk〉|.

Now we estimate all four terms separately. Using Theorem 3.9 we can
bound the first two terms by

dξk
(uδk, uk) ≤

δ2

2qk
, dξk−1(u

δ
k−1, uk−1) ≤ δ2

2qk−1
.

For the third term, we get from Theorem 3.9 and Proposition 3.2

〈ξk−1 − ξδk−1, u
δ
k − uδk−1〉

= 〈K(uk−1 − uδk−1) + (gδ − g†),K(uδk − uδk−1)〉/qk−1

≤ (‖K(uk−1 − uδk−1)‖ + δ)‖K(uδk − uδk−1)‖/qk−1

≤ 6δ(1 − q)(δ + 2qk‖w‖)/qk−1.
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Similarly, we can estimate the last term by

〈ξk − ξk−1, u
δ
k − uk〉 ≤ 8δ(1 − q)‖w‖/q.

Hence, all four terms are bounded for k ≤ k1 and decrease to zero as δ → 0.
This proves the claim. �

In general, the quasi-optimality sequences {µδk} and {µk} can vanish for
finite indices k. Fortunately, their positivity can be guaranteed for a class
of p-convex functionals ψ, cf. Remark 3.11.

Lemma 3.13. Let the functional ψ be p-convex, ψ(u) = 0 only for u = 0
and satisfy that for any u the value 〈ξ, u〉 is independent of the choice of
ξ ∈ ∂ψ(u). If the data g† (respectively gδ) admits nonzero α̃ for which
uα̃ 
= 0, then µk > 0 (respectively µδk > 0) for all k ≥ [ln α̃/ ln q].

Proof. It suffices to prove the assertion on µk. By the optimality condi-
tion for uα, we have

−K∗(Kuα − g†) ∈ α∂ψ(uα).

By assumption, the value 〈ξα, uα〉 is independent of the choice of ξα ∈
∂ψ(uα) and hence, taking duality pairing with uα gives for any ξα ∈ ∂ψ(uα)

〈Kuα,Kuα − g†〉 + α〈ξα, uα〉 = 0.

For non-zero uα we have that 〈ξα, uα〉 is non-zero and hence, we get

α =
〈Kuα,Kuα − g†〉

〈ξα, uα〉 . (3.29)

Next by the assumption that the data g† admits nonzero α̃ for which uα̃ 
= 0,
then for any α < α̃, 0 cannot be a minimizer of the Tikhonov functional.
To see this, we assume that 0 is a minimizer, i.e.,

1
2
‖g†‖2 = 1

2
‖K0 − g†‖2 + αψ(0) ≤ 1

2
‖Kuα̃ − g†‖2 + αψ(uα̃)

< 1
2‖Kuα̃ − g†‖2 + α̃ψ(uα̃),

by the strict positivity of ψ for nonzero u. This contradicts the optimality
of uα̃. Now let α1, α2 < α̃ be distinct. Then both sets S(α1) and S(α2)
contain no zero element. Next we show that the two sets are disjointed.
Assume that S(α1) and S(α2) intersects nontrivially, i.e., there exists some
nonzero ũ such that ũ ∈ S(α1) ∩ S(α2). Then by equation (3.29) and
choosing any ξ̃ ∈ ∂ψ(ũ), we have

α1 =
〈Kũ,Kũ− g†〉

〈ξ̃, ũ〉 = α2,



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch03 page 74

74 Inverse Problems: Tikhonov Theory and Algorithms

which is in contradiction with the distinctness of α1 and α2. Therefore, for
distinct α1, α2 < α̃, S(α1) ∩ S(α2) = ∅. Consequently, we have

‖uα1 − uα2‖ > 0.

Now by the p-convexity of ψ, we deduce for qk−1 ≤ α̃ that

µk = dξ
qk−1 (uqk , uqk−1) ≥ C‖uqk − uqk−1‖p > 0,

which shows the assertion for µk. �

Remark 3.25. The assumptions on ψ in Lemma 3.13 are satisfied for many
commonly used regularization functionals, e.g., ‖u‖p�p , ‖u‖pLp(Ω) with p > 1
and elastic-net [170]. However, the special case of ‖u‖�1 is not covered.
Indeed, the �1 minimization can retrieve the support of the exact solution
for sufficiently small noise level δ and α [219]. Hence, both µδk and µk
vanish for sufficiently large k, due to the lack of p-convexity. The bound α̃
depends on g(gδ), and for nonvanishing g(gδ) can be either positive or +∞.
The choice of k0 should be related to α̃ such that µδk0(µk0) is nonzero.

Corollary 3.10. Let the source condition (3.6) hold. Then under the con-
ditions of Lemma 3.13 and k0 ≥ [ln α̃]/ ln q, the parameter αqo chosen by
the quasi-optimality criterion satisfies that for any sequence δn → 0 there
holds αqo → 0.

Proof. By definition, αqo = qk
∗

where k∗ is such that µδk is minimal. By
the triangle inequality, µδk ≤ µk+|µδk−µk|. Now, let ε > 0. By Lemma 3.11,
µk → 0 for k → ∞ and hence, there exists an integer k such that µk ≤ ε/2.
Moreover, by Lemma 3.12, for any k1 there is δ̄ > 0 such that |µδk−µk| ≤ ε/2
for all k ≤ k1, in particular with k. Hence µδk ≤ µk + |µk − µδk| < ε for the
same value of k.

By Lemma 3.13, for any finite integer k1, the set {µk}k1k=k0 is finite
and positive, and thus there exists a constant σ > 0 such that µk > σ

for k = k0, . . . , k1. Lemma 3.12 indicates that µδk is larger than σ/2 for
k = k0, . . . , k1 and sufficiently small δ. Thus the sequence {αqo}δn can
contain terms on {qk}k1k=k0 only if δ is not too small, since µδk goes to zero
as δ tends to zero. Since the choice k1 is arbitrarily, this implies the desired
assertion. �

As was remarked earlier, it is in general impossible to show the con-
vergence of uδα to u† for a heuristic parameter choice in the context of
worst-case scenario analysis. For the quasi-optimality criterion, Glasko
et al [110] introduced the notion of auto-regularizable set as a condition
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on the exact as well as noisy data. In the case of the continuous quasi-
optimality criterion this is the set of gδ such that

‖αduδ
α

dα
− αduα

dα
‖

‖uδα − uα‖ ≥ q > 0

holds uniformly in α and δ. This abstract condition on the exact data has
been replaced by a condition on the noise in [197, 21].

In our setting, the following sets are helpful for proving convergence.

Definition 3.4. For r > 0, q ∈ (0, 1), K : X → Y and g† ∈ range(K) we
define the sets

Dr =
{
gδ ∈ Y : |dξδ

qk−1
(uδqk , u

δ
qk−1) − dξ

qk−1 (uqk , uqk−1)|

≥ rdξ
qk

(uδqk , uqk) ∀k
}
.

The condition gδ ∈ Dr can be regarded as a discrete analogue of the above-
mentioned auto-regularizable condition. With the set Dr at hand, we can
now show another result on the asymptotic behavior of the quasi-optimality
sequence. The condition is that the noisy data belongs to some set Dr.
Lemma 3.14. Let the source condition (3.6) hold, k0 ≥ [ln α̃/ ln q], gδ ∈ Dr
for some r > 0 and ψ(uδα) → ∞ for α→ 0. Then µδk → ∞ for k → ∞.

Proof. We observe that

rdξ
qk

(uδqk , uqk) ≤ |dξδ

qk−1
(uδqk , u

δ
qk−1) − dξ

qk−1 (uqk , uqk−1)|
= |µδk − µk|.

(3.30)

By the definition of the Bregman distance and Theorem 3.9 we have for
ξα = −K∗(Kuα − g†)/α that

dξα(uδα, uα) = ψ(uδα) − ψ(uα) − 〈ξα, uδα − uα〉
= ψ(uδα) − ψ(uα) + 1

α
〈Kuα − g†,K(uδα − uα)〉

≥ ψ(uδα) − ψ(uα) − 4‖w‖δ.
Since ψ(uα) is bounded for α→ 0, dξα(uδα, uα) → ∞ for α→ 0. This means
that for k → ∞ there holds that dξ

qk
(uδqk , uqk) → ∞ and since µk → 0, the

claim follows from (3.30). �

Now we state the convergence for the quasi-optimality criterion.

Theorem 3.21. Let the source condition (3.6) hold, k0 ≥ [ln α̃/ ln q], and
{δn}n, δn > 0, be a sequence converging to zero such that gδn → g† ∈
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range(K) and gδn ∈ Dr for some r > 0. Let {αqo
n = αqo

n (gδn)}n be chosen
by the quasi-optimality criterion. Then

lim
n→∞ dξ† (u

δn

α
qo
n
, u†) = 0.

Proof. We denote αqo
n by qkn . Then by using Corollary 3.5, we derive

dξ†(u
δn

qkn
, u†) ≤ dξ

qkn
(uδn

qkn
, uqkn ) + dξ†(uqkn , u

†) + 6‖w‖δn
≤ 1
r
|dξδ

qkn−1
(uδqkn , u

δ
qkn−1) − dξ

qkn−1 (uqkn , uqkn−1)|
+ dξ†(uqkn , u

†) + 6‖w‖δn
=

1
r
|µδkn

− µkn | + dξ†(uqkn , u
†) + 6‖w‖δn.

Now all three terms on the right hand side tend to zero for n → ∞ (the
first due to Lemma 3.12 and the second due to qkn = αqo

n → 0 by Corol-
lary 3.10). �

Remark 3.26.

• The important question on how the sets Dr look like, and especially,
under what circumstance they are non-empty, remains open. In [110],
Glasko and Kriksin use spectral theory to investigate this issue – a tool
which is unfortunately unavailable in Banach space setting.

• In the presence of a convex constraint C, one needs an extension of
Lemma 3.13 to the constrained case.

Remark 3.27. The efficient implementation of the Hanke-Raus rule and
the quasi-optimality criterion is still unclear. It seems that both objective
functions are plagued with local minima, and hence their minimization is
not straightforward, and has not received due attention.

3.5 Augmented Tikhonov regularization

In this part, we describe the augmented Tikhonov regularization, a re-
cent framework derived from hierarchical Bayesian modeling, and discuss
its built-in mechanism for parameter choice: balancing principle. The ap-
proach was first derived in [174], and further analyzed in [156, 154]. Fi-
nally, we present analytical results for the balancing principle, especially
variational characterization, a posteriori error estimates and efficient im-
plementation.
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3.5.1 Augmented Tikhonov regularization

We begin with finite-dimensional linear inverse problems

Ku = gδ ,

where K ∈ R
n×m, u ∈ R

m and gδ ∈ R
n represent discrete form of contin-

uous operator K, unknown u and data gδ. Using a hierarchical Bayesian
formulation (see Section 7.1 for detailed derivations), one arrives at the
following functional J(u, λ, τ) for the maximum a posteriori estimator:

J(u, λ, τ) =
τ

2
‖Ku− gδ‖2 +

λ

2
‖Lu‖2 + b0τ − a′0 ln τ + b1λ− a′1 ln τ,

where a′0 = n
2 − 1 + a0 and a′1 = m′

2 − 1 + a1, and L ∈ R
m′×m is the

regularizing matrix and it is of full column rank. Each term in the functional
J(u, λ, τ) admits the following statistical interpretation

(1) The first term follows from an independent identically distributed Gaus-
sian assumption on the noise in the data gδ, and τ is the inverse variance
(a.k.a. precision) of the Gaussian noise.

(2) The second term assumes a Markov random field on the unknown,
with the interaction structure encoded by the matrix L, and the scalar
λ determines the strength of interactions between neighboring sites.

(3) The third and fourth terms assume a Gamma distribution on the pre-
cision τ and scale λ, with parameter pair being (a0, b0) and (a1, b1),
respectively, i.e., τ ∼ G(τ ; a0, b0) and λ ∼ G(λ; a1, b1).

The functional J(u, λ, τ) is called augmented Tikhonov regularization in
that the first two terms of the functional reproduce the classical Tikhonov
regularization (with a regularization parameter α = λτ−1), while the re-
maining terms provide the mechanism to automatically determine the noise
precision τ and the parameter λ. One distinct feature of the augmented ap-
proach is that it determines the solution u and the regularization parameter
simultaneously from the data gδ.

By taking the limit of the discrete functional J(u, λ, τ), we arrive at a
general augmented Tikhonov functional

J(u, λ, τ) = τφ(u, gδ) + λψ(u) + b0λ− a0 lnλ+ b1τ − a1 ln τ, (3.31)

which extends the Tikhonov functional Jα defined in (3.2) in the hope
of automatically choosing also a regularization parameter. The parameter
pairs (a0, b0) and (a1, b1) in (3.31) should be the limit of the discrete values.

Since the functional J(u, λ, τ) might be nonsmooth and nonconvex, we
resort to optimality in a generalized sense.
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Definition 3.5. A tuple (u∗, λ∗, τ∗) ∈ X × R
+ × R

+ is called a critical
point of the functional J(u, λ, τ) if it satisfies

u∗ = arg min
u∈X

{
φ(u, gδ) + λ∗(τ∗)−1ψ(u)

}
,

ψ(u∗) + b0 − a0
1
λ∗ = 0,

φ(u∗, gδ) + b1 − a1
1
τ∗ = 0.

(3.32)

It follows from the optimality system (3.32) that the automatically de-
termined regularization parameter α∗ = λ∗(τ∗)−1 satisfies

α∗ := λ∗ · (τ∗)−1 = γ
φ̄(α∗) + b1
ψ̄(α∗) + b0

, (3.33)

where the constant γ = a0/a1, which is determined by the statistical a
priori knowledge (shape parameters in the Gamma distributions).

We now establish an alternative variational characterization. To this
end, we introduce a functional G by

G(u) = lnφ((u, gδ) + b1) + γ ln(ψ(u) + b0).

Clearly, under the assumption b1 > 0 or limα→0+ φ(uδα, gδ) > 0, the exis-
tence of a minimizer to the functional G follows directly since it is bounded
from below, weakly lower semi-continuous and tends to +∞ as ‖u‖ → +∞.

Theorem 3.22. If the functional Jα is convex and φ and ψ are continu-
ously differentiable, then uδα∗ is a Tikhonov solution with α∗ computed by
the rule (3.31) if and only if it is a critical point of the functional G.

Proof. Under the premise that the functionals φ(u, gδ) and ψ(u) are
differentiable, a critical point u∗ of the functional G satisfies

(φ(u∗, gδ) + b1)−1φ′(u∗, gδ) + γ
ψ(u∗)+b0

ψ′(u∗) = 0.

Setting α∗ = γ(φ(u∗, gδ) + b1)(ψ(u∗) + b0)−1 gives

φ′(u∗, gδ) + α∗ψ′(u∗) = 0,

i.e., u∗ is a critical point of the functional Jα∗ . If the functional Jα∗ is
convex, then u∗ is also a minimizer of the functional Jα∗ and u∗ = uδα∗ . �

Balancing principle Now we discuss briefly the connections of the aug-
mented approach to existing choice rules for the classical L2-L2 model.

One distinct feature of the augmented approach is that it utilizes both
the fidelity φ̄(α) and penalty ψ̄(α) to determine the regularization param-
eter α. In the literature, there are several rules based on the simultaneous
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Fig. 3.1 Parameter choice for the L2-L2 model. Left: the L-curve ; Right: criteria Φγ

and Ψγ , with γ = 1. In the left panel, the solid and dashed lines denote the L-curve and

the tangent line at the “corner”, respectively.

use of the quantities φ̄(α) and ψ̄(α). The most prominent one is the L-
curve criterion [127] (see Fig. 3.1 for an illustration), which plots these two
quantities in a doubly logarithmic scale, and selects the regularization pa-
rameter corresponding to the “corner” of the curve, often indicated by the
point with the maximum curvature. Alternatively, Regińska [257] proposed
the local-minimum criterion, which minimizes the function φ̄(α)γ ψ̄(α). Its
first-order optimality condition reads

−φ̄(α) + αγψ̄(α) = 0. (3.34)

It can be deemed as an algebraic counterpart of the L-curve criterion: it
selects the point on the curve whose tangent has a slope −γ. We refer to
Fig. 3.1 for an illustration. Obviously, (3.34) is a special case of the aug-
mented Tikhonov functional. We shall call equation (3.34) by balancing
principle since it attempts to balance the fidelity φ̄(α) and the penalty
ψ̄(α) with γ being the relative weight. It was independently derived sev-
eral times in the literature [257, 181, 206]. In [181], the case of γ = 1 was
called the zero-crossing method. It is very popular in the biomedical en-
gineering community, e.g., electrocardiography [181], and some analysis of
the method was provided in [182]. Some a posteriori error estimates were
derived for the local minimum criterion in [220]. We note that the termi-
nology balancing principle occasionally refers to a principle due to Lepskii
[213, 230, 208].

Example 3.5. In this example, we provide a derivation of the balancing
principle via the model function approach, cf. Section 3.4.1, for the L2-L2
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model, following [206]. Here one uses a model function

mk(α) = Ck
α

α+ Tk
,

where the parameters Ck and Tk are determined from the interpolation
conditions of the value function F (α) and its derivative at αk, i.e.,

Ck =
F 2(αk)
φ̄(αk)

and Tk =
α2
kψ̄(αk)
φ̄(αk)

.

One heuristic procedure for estimating the noise level δ is as follows: first
one computes the y-intercept y0 of the tangent to the curve y = mk(α) at
αk, and then finds αk+1 from mk(αk+1) = σy0, with the parameter σ > 1
(instead of σ ≤ 1 in [206]). Clearly, the intercept y0 = φ̄(αk), and thus

F 2(αk)
φ̄(αk)

αk+1

α2
kψ̄(αk)

φ̄(αk)
+ αk+1

= σφ̄(αk),

Upon convergence, the limit α∗ satisfies

α∗ψ̄(α∗) = (σ − 1)φ̄(α∗).

This is identical with equation (3.34). The preceding derivation provides a
geometrical interpretation of the balancing principle.

Note that with noninformative priors on λ and τ , we deduce from (3.32)
that augmented Tikhonov regularization satisfies also (3.34). Hence, we
arrive at the following interesting observation:

Observation 3.1. Hierarchical Bayesian inference with noninformative hy-
perpriors is balancing.

Remark 3.28. Generally, the choice of “hyper-parameter” γ in the bal-
ancing rule, should be model-dependent, due to the very distinct features of
different models. In practice, it might be determined by a simulation-based
approach: we generate artificial examples using the prescribed operator
but with fictitious (expected) exact and noisy data and then perform the
inversion for calibrating the hyperparameter γ.

3.5.2 Variational characterization

In this part, we analyze the balancing principle, which finds α > 0 such
that

φ̄(α) = γαψ̄(α). (3.35)
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An equivalent characterization (for the L2-L2 model) is the local minimum
criterion introduced in [257], which determines an optimal α > 0 by mini-
mizing

Ψγ(α) = φ̄(α)γ ψ̄(α). (3.36)

This criterion is not very convenient for analysis, as we shall see below.
Hence we introduce an alternative variational characterization of the prin-
ciple. Throughout, we assume F (α) is positive for all α > 0, which holds
for all commonly used models. The rule finds an α > 0 by minimizing

Φγ(α) =
F 1+γ(α)

α
. (3.37)

The rule Φγ follows from (3.35): If the function F is differentiable, then
Lemma 3.5 implies φ̄(α) − γαψ̄(α) = F (α) − (1 + γ)αF ′(α) = 0. Hence,
the identity

(1 + γ)
dF

F
=
dα

α

holds, and upon integration, we obtain the rule (3.37).

Remark 3.29. The criterion Ψγ can also be derived from (3.35). By The-
orem 3.7, (3.35) can be rewritten as γ dφ̄

φ̄
= −dψ̄

ψ̄
, whose primitive is ln φ̄γ ψ̄.

As to the existence of a minimizer of the rule Φγ, we have the following
remark. If there exists an element ũ ∈ X such that ψ(ũ) = 0, then the
optimality of uδα implies directly the uniform boundedness of F (α). Then,
obviously, α = +∞ is a global minimizer of Φγ . The existence of a finite
minimizer to Φγ is not always guaranteed. However, this can be remedied
by a simple modification

Φ̃γ(α) =
(F (α) + b0α)1+γ

α
, (3.38)

where b0 > 0 is a small number, and its optimality condition reads

α =
1
γ

φ̄(α)
ψ̄(α) + b0

,

i.e., (3.33) with b1 = 0. Obviously, limα→+∞ Φ̃γ(α) = +∞. Under the
condition limα→0+ φ̄(α) > 0, it follows that limα→0+ Φ̃γ(α) = +∞. Thus,
a finite minimizer 0 < α <∞ is guaranteed.

It is worth noting that uniqueness of the minimizer to Jα is not needed
for properly defining Φγ since it solely depends on the continuous function
F . Hence the problem of minimizing Φγ over any bounded closed intervals is
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meaningful. However, the uniqueness of the minimizer uδα to Jα is generally
necessary in order to properly define (3.36) and (3.35). They are ill-defined
if the functions φ̄(α) and ψ̄(α) are multi-valued/discontinuous. We shall
show below that Φγ indeed extends Ψγ to nonsmooth models in that they
share the set of local minimizers when F ′′ exists and is negative. However,
the rule Φγ admits (1) easier theoretical justifications (a posteriori error
estimates), and (2) an efficient numerical algorithm with practically very
desirable monotone convergence. There seem no known results on either
a posteriori error estimates for the criterion Ψγ or its efficient numerical
implementation.

A first result characterizes the minimizer and sheds insight into the
mechanism of the rule Φγ : the necessary optimality condition coincides
with (3.35), and hence it does implement the balancing idea.

Theorem 3.23. If α > 0 is a local minimizer of Φγ(α), then F is differ-
entiable at α and (3.35) holds for all minimizers uδα ∈ S(α).

Proof. If α is a local minimizer of Φγ , then

D+Φγ(α) ≥ 0 and D−Φγ(α) ≤ 0

where

D±Φγ(α) = ((1 + γ)αD±F (α) − F (α))
F γ

α2
.

However, by Theorem 3.4, D+F (α) ≤ D−F (α), which implies D+F (α) =
D−F (α). Thus F is differentiable at α and

Φ′
γ(α) = (γα ψ̄(α) − φ̄(α))

F γ(α)
α2

= 0. (3.39)

Simplifying the formula gives (3.35). �

Remark 3.30. Theorem 3.23 holds also for nonlinear and/or constrained
problems.

In the next three results, we show that the rule Φγ is an extension of
the criterion Ψγ . To this end, we scale Φγ by the factor cγ = γγ

(1+γ)1+γ and
denote cγΦγ by Φγ. A first result compares Φγ with Ψγ .

Theorem 3.24. For any γ > 0, there holds

Ψγ(α) ≤ Φγ(α) for all α.

The equality is achieved if and only if α solves (3.35).
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Proof. Recall that for any a, b ≥ 0 and p, q > 1 with 1
p

+ 1
q

= 1, there
holds ab ≤ ap

p + bq

q , and the equality holds if and only if ap = bq. Let

p = 1+γ
γ

and q = 1 + γ. Applying the inequality with a = φ̄
γ

1+γ α− γ
2(1+γ)

and b = (γψ̄)
1

1+γ α
1

2(1+γ) gives

φ̄
γ

1+γ (γψ̄)
1

1+γ α
1−γ

2(1+γ) ≤ γ

1 + γ

φ̄+ αψ̄

α
1
2

=
γ

1 + γ

F (α)
α

1
2
.

Collecting terms in the inequality yields

φ̄
γ

1+γ ψ̄
1

1+γ ≤ γ−
1

1+γ
γ

1 + γ

F (α)

α
1

1+γ

.

Hence, we have

Ψγ(α) ≤ γγ

(1 + γ)1+γ
F 1+γ(α)

α
= Φγ(α).

The equality holds if and only if

[φ̄
γ

1+γ α− γ
2(1+γ) ]

1+γ
γ = [(γψ̄)

1
1+γ α

1
2(1+γ) ]1+γ ,

which yields precisely the relation (3.35). �

Next we show that the rule Φγ is indeed an extension of Ψγ: The set of
strict local minimizers of Ψγ coincides with that of Φγ if D±F ′ < 0.

Theorem 3.25. Let F ′ exist and be continuous, and D±F ′ < 0. Then
α > 0 is a strict local minimizer of Ψγ if and only if it is a strict local
minimizer of Φγ.

Proof. Let α > 0 be a strict local minimizer of Ψγ , i.e., there exists an
open neighborhood U of α such that Ψγ(α) < Ψγ(ζ) for all ζ ∈ U \ {α}.

We first claim that φ̄(α) ≡ F − αF ′ 
= 0. If this does not hold, then
(3.3) and the nonnegativity of φ̄(ζ) indicate that φ̄(ζ) = 0 for all 0 < ζ < α.
Hence F ′(ζ)

F (ζ) = 1
ζ and F (ζ) = Cζ, contradicting the assumption D±F ′(ζ) <

0. This assertion and the necessary optimality conditions D+Ψγ(α) ≥ 0
and D−Ψγ(α) ≤ 0, where

D±Ψγ(α) = −(F − αF ′)γ−1D±F ′[(1 + γ)αF ′ − F ], (3.40)

imply

(1 + γ)αF ′ − F = γαψ̄(α) − φ̄(α) = 0.

Now Theorem 3.24 yields

Φγ(α) = Ψγ(α) < Ψγ(ζ) ≤ Φγ(ζ) ∀ζ ∈ U \ {α},
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i.e., α is a strict local minimizer of Φγ.
Next let α be a strict local minimizer of Φγ . Then by Theorem 3.24,

Ψ′
γ(α) = 0, and there exits a small h > 0 such that

Φ′
γ(ζ) < 0, α− h < ζ < α and Φ′

γ(ζ) > 0, α < ζ < α+ h. (3.41)

In view of (3.39), (3.40) and the condition D±F ′ < 0, we deduce

Φ′
γ(ζ)D

+Ψγ(ζ) > 0 and Φ′
γ(ζ)D

−Ψγ(ζ) > 0.

Hence we have D±Ψγ(ζ) < 0 if α − h < ζ < α and D±Ψγ(ζ) > 0 if
α < ζ < α+ h, i.e., α is a strict local minimizer of Ψγ. �

Numerically, we observe that Ψγ is flatter than Φγ in the neighbor-
hood of a local minimizer; see Fig. 3.1. The following result justifies the
observation.

Theorem 3.26. Let F ′′ exist and be continuous. If the inequality Φ′′
γ > 0

holds at a local minimizer α∗, then Ψ′
γ

Φ′
γ
< 1 in its neighborhood.

Proof. Direct computation gives

Φ′′
γ =

γγ

(1 + γ)1+γ
F γ−1

α3

[
γ(1 + γ)(αF ′)2 + (1 + γ)α2F ′′F

−2(1 + γ)αF ′F + 2F 2
]
.

Consequently,

α2Φ′′
γ

Φγ
= γ(1 + γ)

(αF ′)2

F 2
+ (1 + γ)

α2F ′′

F
− 2(1 + γ)

αF ′

F
+ 2

= γ(1 + γ)θ2 + (1 + γ)
α2F ′′

F
− 2(1 + γ)θ + 2,

where θ = αF ′
F

. Upon rearranging the terms, we get

−(1 + γ)
α2F ′′

F
= γ(1 + γ)θ2 − 2(1 + γ)θ + 2 − α2Φ′′

γ

Φγ
.

Assisted with this identity, we deduce

Ψ′
γ

Φ′
γ

= [−F ′′]φ̄γ−1α2(γ + 1)γ+1γ−γF−γ

=
(
1 + γ−1

)γ · (1 + γ)
−α2F ′′

F
·
(
φ̄

F

)γ−1

=
(
1 + γ−1

)γ · [γ(1 + γ)θ2 − 2(1 + γ)θ + 2 − α2Φ′′
γ

Φγ

]
· (1 − θ)γ−1.
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At a local minimizer α∗, we have θ = 1
1+γ

, and thus

Ψ′
γ

Φ′
γ

= 1 − (1 + γ−1
) α2Φ′′

γ

Φγ
< 1,

by noting the assumption Φ′′
γ(α) > 0 at α∗. The remaining assertion follows

from the continuity condition of F ′′. �

As was mentioned in Remark 3.28, the hyperparameter γ in principle
should be calibrated from synthetic data, or estimated from a priori statis-
tical knowledge of the problem. Here we provide a sensitivity analysis of
the selected regularization parameter α with respect to γ.

Remark 3.31. We assume that the functions φ̄ and ψ̄ are differentiable.
It follows from the balancing equation (3.35) and the chain rule that

dα

dγ
(φ̄′ − αγψ̄′ − γψ̄) − αψ̄ = 0,

and meanwhile the second-order derivative of Φγ(α) at a local minimizer
α∗ is given by

d2

dα2
Φγ(α)|α=α∗ =

γψ̄ + γα∗ψ̄′ − φ̄′

(α∗)2
F γ(α∗).

At a strict local minimizer, we have d2Φγ

dα2 (α∗) > 0, and thus

dα

dγ
< 0,

i.e., the selected parameter α∗ is a decreasing function of γ. Next we derive
a semi-analytic and semi-heuristic formula. Note that by Theorem 3.7,
there holds

φ̄′ − αγψ̄′ − γψ̄ = −(1 + γ)αψ̄′ − γψ̄,

and that ψ̄′ ≤ 0 and ψ̄ ≥ 0. Therefore, overall its definitiveness is unclear.
However, in practice, it may happen that

−βαψ̄′ ≤ ψ̄.

Then we expect an estimate of the form dψ̄
ψ̄

≤ −β dα
α

i.e., ψ̄ ≤ α−β . Hence,

under the condition that −(1 + γ)αψ̄′ − γψ̄ ≈ −β̃ψ̄, we have

−dα
dγ
β̃ − αψ̄ ≈ 0,

i.e., α ≈ α(γ̄)e−β̃(γ−γ̄). In other words, the regularization decays (locally)
exponentially with the increase of the parameter γ.
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Now we provide justifications of the balancing principle by deriving a
posteriori error estimates for the case of a Hilbertian Y and φ(u, gδ) =
1
2‖Ku − gδ‖2. First, let X be a Hilbert space, ψ(u) = 1

2‖u‖2 and there is
no constraint.

Theorem 3.27. Assume that the exact solution u† ∈ Xµ,ρ = {u ∈ X : u =
(K∗K)µw, ‖w‖ ≤ ρ} for some 0 < µ ≤ 1. Let α∗ be determined by the rule
Φγ , and δ∗ := ‖gδ −Kuδα∗‖. Then the following estimate holds

‖u† − uδα∗‖ ≤ C

(
ρ

1
1+2µ +

F (δ
2

1+2µ )
1+γ
2

F (α∗)
1+γ

2

)
max{δ, δ∗}

2µ
1+2µ . (3.42)

Proof. We decompose the error u† − uδα into

u† − uδα = rα(K∗K)u† + gα(K∗K)K∗(g† − gδ),

where gα(t) = 1
α+t

and rα(t) = 1 − tgα(t) = α
α+t

. In view of the source
condition and the interpolation inequality, we derive

‖rα(K∗K)u†‖ = ‖rα(K∗K)(K∗K)µw‖
≤ ‖(K∗K)

1
2 +µrα(K∗K)w‖ 2µ

2µ+1 ‖rα(K∗K)w‖ 1
2µ+1

= ‖rα(KK∗)Ku†‖ 2µ
2µ+1 ‖rα(K∗K)w‖ 1

2µ+1

≤ c
(‖rα(KK∗)gδ‖ + ‖rα(KK∗)(gδ − g†)‖) 2µ

2µ+1 ‖w‖ 1
2µ+1 ,

where the constant c depends only on the maximum of rα over [0, ‖K‖2].
This together with the relation rα∗(KK∗)gδ = gδ −Kuδα∗ yields

‖rα∗(K∗K)u†‖ ≤ c(δ∗ + cδ)
2µ

2µ+1 ρ
1

2µ+1 ≤ c1 max{δ, δ∗}
2µ

2µ+1 ρ
1

2µ+1 .

It remains to estimate the term ‖gα∗(K∗K)K∗(gδ − g†)‖. The standard
estimate [88] yields

‖gα∗(K∗K)K∗(gδ − g†)‖ ≤ c
δ√
α∗ .

However, by the minimizing property of α∗, we have

F (α∗)1+γ

α∗ ≤ F (α̂)1+γ

α̂
.

We may take α̂ = δ
2

1+2µ , and then we have

1
α∗ ≤ F (δ

2
1+2µ )1+γ

F (α∗)1+γ
1

δ
2

1+2µ

.
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Combining the preceding estimates, we arrive at

‖u† − uδα∗‖ ≤ c1 max{δ, δ∗}
2µ

2µ+1 ρ
1

2µ+1 + c
F (δ

2
1+2µ )

1+γ
2

F (α∗)
1+γ
2

δ
2µ

1+2µ

≤ C

(
ρ

1
1+2µ +

F (δ
2

1+2µ )
1+γ
2

F (α∗)
1+γ

2

)
max{δ, δ∗}

2µ
1+2µ .

This shows the desired a posteriori error estimate. �
Next we a second a posteriori error estimate for a general convex penalty.

Theorem 3.28. Let condition (3.6) hold, and δ∗ = ‖Kuδα∗ − gδ‖. Then
for each α∗ given by the rule Φγ, the following estimate holds

dξ†,µ†(uδα∗ , u†) ≤ C

(
1 +

F (δ)1+γ

F (α∗)1+γ

)
max{δ, δ∗}.

Proof. By Corollary 3.5, we have for any α
dξ†,µ†(uδα, u

†) ≤ dξα,µα(uδα, uα) + dξ†,µ†(uα, u†) + 6‖w‖δ.
By the proof of Theorem 3.19, we have

dξ†,µ†(uα∗ , u†) ≤ 4‖w‖max(δ, δ∗).
It remains to estimate the term dξα,µα(uδα, uα). By Theorem 3.9, we have
dξα∗ ,µα∗ (uδα∗ , uα∗) ≤ δ2

2α∗ . The minimizing property of α∗ implies that for
α̂

F (α∗)1+γ

α∗ ≤ F (α̂)1+γ

α̂
, i.e.

1
α∗ ≤ F (α̂)1+γ

F (α∗)1+γ
1
α̂
.

We may take α̂ = δ and combine the above two inequalities to arrive at

dξα∗ ,µα∗ (uδα∗ , uα∗) ≤ F (δ)1+γ

F (α∗)1+γ
δ

2
.

Now summarizing these three estimates gives

dξ†,µ†(uδα∗ , u†) ≤ C

(
1 +

F (δ)1+γ

F (α∗)1+γ

)
max{δ, δ∗},

with C = max{10‖w‖, 1
2
}. �

Remark 3.32. If the discrepancy δ∗ is of order δ, Theorems 3.27 and 3.28
imply that the approximation uδα∗ with α∗ chosen by the balancing principle
converges to the exact solution u† at the same rate as a priori parameter
choice rules under identical source conditions. If δ∗ does not decrease as
quickly as δ, then the convergence would be suboptimal. More dangerous is
the case that δ∗ decreases more quickly. Then the prefactor may blow up,
and the approximation may diverge. Hence the value of δ∗ should always
be monitored as an a posteriori check: The computed approximation uδα∗

should be discarded if δ∗ is deemed too small. This applies to other heuristic
rules, e.g., the Hanke-Raus rule.
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3.5.3 Fixed point algorithm

Now we develop a fixed point algorithm, cf. Algorithm 3.2, to determine
an optimal α by the rule Φγ . We provide a local convergence analysis of
the algorithm for the following scenario.

Assumption 3.2. Let the interval [ζ0, ζ1] satisfy: (a) ψ̄(ζ1) > 0; and (b)
There exists an optimal parameter αb in [ζ0, ζ1] such that D±Φγ(α) < 0
for ζ0 ≤ α < αb and D±Φγ(α) > 0 for αb < α ≤ ζ1.

In view of Lemma 3.3, ψ̄(ζ1) > 0 implies ψ̄(α) > 0 for any α ∈ [0, ζ1].
Assumption 3.2(a) guarantees the well-definedness of the algorithm, and it
holds for a broad class of nonsmooth models, e.g., the L2-�1 and L2-TV
model. Assumption 3.2(b) ensures that there exists only one local min-
imizer αb to Φγ in the interval [ζ0, ζ1]. In Algorithm 3.2, the stopping
criterion can be based on monitoring the relative change of consecutive
iterates (either uδα or α). It will terminate automatically when two con-
secutive iterates coincide, i.e., αk0+1 = αk0 for some k0 (then the sequence
{αk} is finite).

Algorithm 3.2 Fixed point algorithm
1: Set k = 0 and choose α0;
2: for k = 0, 1, . . . ,K do
3: Solve for uδαk

by (3.2) with α = αk, i.e.,

uδαk
∈ arg min

u∈C
{φ(u, gδ) + αkψ(u)}.

4: Update the regularization parameter αk+1 by

αk+1 =
1
γ

φ(uδαk
, gδ)

ψ(uδαk
)
.

5: Check the stopping criterion.
6: end for
7: Return approximation (uδαK

, αK).

The following lemma provides a monotonicity of the regularization pa-
rameter computed by Algorithm 3.2, which is key to analyzing its conver-
gence. We introduce

r(α) = φ̄(α) − γαψ̄(α)

for uδα ∈ S(α) used in the representation φ̄ and ψ̄. The identity r(α) = 0
implies that (3.35) holds.
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Lemma 3.15. Let Assumption 3.2 hold, and α0 ∈ [ζ0, ζ1]. Then the se-
quence {αk}k generated by Algorithm 3.2 satisfies

(a) It is either finite or infinite and strictly monotone, and increasing
(decreasing) if r(α0) > 0 (r(α0) < 0);

(b) It is contained in [ζ0, αb] ([αb, ζ1]) if r(α0) > 0 (r(α0) < 0).

Proof. We consider only the case r(α0) > 0 since the other case follows
analogously. The proof proceeds by induction on k. By definition, α1 =
(γψ̄(α0))−1φ̄(α0) > α0. Now let us assume αk > αk−1. By Lemma 3.3, we
have

αk+1 − αk = γ−1 φ̄(αk)
ψ̄(αk)

− γ−1 φ̄(αk−1)
ψ̄(αk−1)

=
[φ̄(αk) − φ(ᾱk−1)]ψ̄(αk−1)

γψ̄(αk−1)ψ̄(αk)

+
φ̄(αk−1)[ψ̄(αk−1) − ψ̄(αk)]

γψ̄(αk−1)ψ̄(αk)
≥ 0.

Hence the sequence {αk} is monotonically increasing. Here are two possible
situations: (1) αk+1 = αk, the algorithm terminates and the sequence is
finite; (2) αk+1 > αk, and the induction continues. This shows the assertion
in part (a).

By virtue of the preceding proof, {αk} is strictly monotone for all k ≤ k0

(k0 is possibly +∞). Thus the identity

αk+1 − αk = (γψ̄(αk))−1r(αk)

implies r(αk) > 0 for all k ≤ k0 − 1. Obviously, it suffices to show (b) for
{αk}k00 . Theorem 3.4 and Lemma 3.3 indicate

D+Φγ(α) ≤ α−2F γ(α)(γαψ̄(α) − φ̄(α))

= α−2F γ(α)(−r(α)) ≤ D−Φγ(α).
(3.43)

Consequently, D+Φγ(α0) < 0, which together with Assumption 3.2 implies
ζ0 ≤ α0 < αb. Now let us assume ζ0 ≤ αk < αb. We claim that

r(α) > 0 for all α ∈ (αk, αk+1). (3.44)

If this claim is not true, then there exists an α̂ ∈ (αk, αk+1) such that
r(α̂) ≤ 0, i.e., (γψ̄(α̂))−1φ̄(α̂) ≤ α̂. However, Lemma 3.3 implies

αk+1 = (γψ̄(αk))−1φ̄(αk) ≤ (γψ̄(α̂))−1φ̄(α̂) ≤ α̂.

This is a contradiction. Finally, we assert αk+1 ≤ αb, which would con-
clude the proof. Suppose the contrary, i.e., αb < αk+1, then (3.44) im-
plies r(αb) > 0. This contradicts the assumption r(αb) = 0, and thus
ζ0 ≤ αk+1 ≤ αb. �
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The monotonicity result holds for any minimizer uδα of Jα and the
uniqueness of the solution is not required. If r(α0) < 0, then the se-
quence {αk} is decreasing and is bounded from below by zero, and thus,
αk ↓ α∗. Meanwhile, it is monotonically increasing for r(α0) > 0. Then
αk ↑ α∗ < +∞ if it is also bounded. It may tend to +∞, reminiscent of the
fact that +∞ is a global minimizer. Algorithm 3.2 adapts straightforwardly
to (3.38) by changing Step 4 to

αk+1 =
1
γ

φ̄(αk)
ψ̄(αk) + β1

.

Theorem 3.29 below remains valid for this modification.
Now we prove the descent property of the fixed point algorithm.

Theorem 3.29. Let Assumption 3.2 hold, and α0 ∈ [ζ0, ζ1]. Then the
following statements hold for the sequence {αk} generated by Algorithm 3.2

(a) The sequence {Φγ(αk)} is monotonically decreasing.
(b) The sequence {αk} converges to the local minimizer αb.

Proof. We focus on r(α0) > 0. By Lemma 3.15, it suffices to consider
αk < αk+1. The concavity of F implies its local Lipschitz continuity (see pp.
236 of [91]), and hence Φγ is locally Lipschitz continuous and absolutely
continuous on any bounded closed interval. Moreover, Φ′

γ exists almost
everywhere with Φ′

γ(α) = α−2F γ(α)(−r(α)), and it is locally integrable.
Therefore, the following identity holds

Φγ(αk+1) = Φγ(αk) +
∫ αk+1

αk

Φ′
γ(α) dα,

which together with (3.44) yields Φγ(αk+1) < Φγ(αk). This shows part (a).
By Lemma 3.15(b), there exists a limit α∗ ∈ [ζ0, ζ1] to the sequence. We

shall show D−Φγ(α∗) = 0. We treat two cases separately: A finite sequence
{αk}k0k=1 and αk < αk+1 for all k. For the former, the relations (3.43) and
γαψ̄(αk0 ) − φ̄(αk0) = 0 indicate D±Φγ(αk0) = 0. By Assumption 3.2, αk0
is the local minimizer αb. For the latter, Theorem 3.4 indicates

1
γ

F (αk) − αkD
−F (αk)

D−F (αk)
≤ αk+1 =

1
γ

φ̄(αk)
ψ̄(αk)

≤ 1
γ

F (αk) − αkD
+F (αk)

D+F (αk)
.

By virtue of the left continuity of D−F and the inequalities D−F (ζ) ≤
D+F (α) ≤ D−F (α) for all α < ζ, we deduce limk→∞D±F (αk) =
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D−F (α∗), and

α∗ =
1
γ

F (α∗) − α∗D−F (α∗)
D−F (α∗)

,

i.e., D−Φγ(α∗) = 0. Hence, the limit α∗ is the local minimizer αb. �

3.6 Multi-parameter Tikhonov regularization

In this part, we turn to multi-parameter Tikhonov regularization

Jα(u) = φ(u, gδ) +α ·ψ(u) over u ∈ C, (3.45)

where C ⊂ X is a closed convex (feasible solution) set, and takes its min-
imizer, denoted by uδα (uα in case of the exact data g†), as a solution.
The notation α ·ψ(u) denotes the dot product between the regularization
parameters α = (α1, . . . , αn)t ∈ R

n
+ and the vector-valued regularization

functionals ψ(u) = (ψ1(u), . . . , ψn(u))t.
In comparison with Tikhonov regularization discussed earlier, the model

(3.45) involves multiple regularization. This is motivated by empirical ob-
servations. For example, images typically exhibit multiple distinct fea-
tures/structures. However, single regularization generally favors one feature
over others, and thus inappropriate for simultaneously preserving multiple
features. A reliable and simultaneous recovery of several distinct features
calls for multiple regularization. This idea has been pursued earlier in the
literature. For instance, in [162] the authors proposed a model to preserve
both flat and gray regions in natural images by combining total variation
regularization with Sobolev smooth regularization. One classical example
of multi-parameter Tikhonov regularization is elastic net [313, 170].

There are a number of theoretical developments on multi-parameter
regularization in a Hilbert space setting. In [26, 41], the L-hypersurface
and generalized cross validation were suggested for determining the reg-
ularization parameters for finite-dimensional linear systems, respectively.
In [62], a multi-resolution analysis for ill-posed linear operator equations
was given, and some convergence rates results were shown; see [221] also
for error estimates for the discrepancy principle. In this part, we extend
the augmented approach in Section 3.5 to multi-parameter regularization,
following [153, 155]. We derive the balancing principle and a novel hy-
brid principle, i.e., balanced discrepancy principle, analyze their theoretical
properties, and discuss efficient numerical implementations.
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3.6.1 Balancing principle

First we extend the augmented Tikhonov regularization to the context of
multiple penalties. For the multi-parameter model (3.45), it can be de-
rived analogously from hierarchical Bayesian inference, and the resulting
augmented Tikhonov functional J(u,λ, τ) is given by

J(u,λ, τ) = τφ(u, gδ) + λ · ψ(u) +
n∑
i=1

(biλi − ai lnλi) + b0τ − a0 ln τ,

where (ai, bi) are hyperparameter pairs for λ and τ , reflecting a priori
statistical knowledge about these parameters. Let αi = λi

τ . Then the
necessary optimality condition of any minimizer (uδα,λ, τ) to the functional
J(u,λ, τ) is given by

uδα = argmin
u∈C

{
φ(u, gδ) +α · ψ(u)

}
,

λi =
ai

ψi(uδα) + bi
, i = 1, . . . , n,

τ =
a0

φ(uδα, gδ) + b0
.

(3.46)

Upon rewriting the system, we arrive at the following system for (uδα,α)
uδα = argmin

u∈C
{
φ(u, gδ) +α · ψ(u)

}
,

αi =
1
γi

φ(uδα, gδ) + b0
ψi(uδα) + bi

, i = 1, . . . , n,
(3.47)

where the scalars γi are defined by γi = a0
ai

. The system (3.47) represents
the balancing principle for selecting an optimal α.

Now we introduce the value function F (α) for Jα:

F (α) = inf
u∈C

Jα(u).

The following lemma provides the essential calculus for multi-parameter
Tikhonov regularization, where the subscript αi in Fαi denotes the deriva-
tive of F (α) with respect to αi. The proof is analogous to the single-
parameter counterpart, and hence omitted.

Lemma 3.16. The function F (α) is monotone and concave, and hence
almost everywhere differentiable. Further, if it is differentiable, then

Fαi(α) = ψi(uδα).
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Now we can provide an alternative characterization. For simplicity, we
focus on the case n = 2. We consider the function Φ̄ defined by

Φ(α) =
F (α)1+

1
γ1

+ 1
γ2

α
1

γ1
1 α

1
γ2
2

,

where F (α) = φ(α) + α · ψ(α) with φ(α) = φ(uδα, g
δ) + b0 and ψi(α) =

ψi(uδα)+ bi. The necessary optimality condition for Φ(α), if F (α) is every-
where differentiable, is given by

∂Φ
∂α1

=
F (α)

1
γ1

+ 1
γ2

α
1

γ1
1 α

1
γ2
2

(−γ2F (α) + α1(γ1 + γ2 + γ1γ2)Fα1(α)
)

γ1γ2α1
= 0,

∂Φ
∂α2

=
F (α)

1
γ1

+ 1
γ2

α
1

γ1
1 α

1
γ2
2

(−γ1F (α) + α2(γ1 + γ2 + γ1γ2)Fα2(α)
)

γ1γ2α2
= 0,

which, in view of Lemma 3.16, is equivalent to{−γ2φ+ α1γ1(1 + γ2)ψ1 − α2γ2ψ2 = 0,
−γ1φ− α1γ1ψ1 + α2(1 + γ1)γ2ψ2 = 0.

Solving the system with respect to ψi, one obtains that for i = 1, 2

αi =
1
γi

φ

ψi
=

1
γi

φ(uδα, gδ) + b0
ψi(uδα) + bi

.

Hence, the optimality system of Φ coincides with that of the augmented
functional. In summary, we have the following equivalence.

Proposition 3.4. Let the value function F (α) be differentiable everywhere.
Then the critical points of the function Φ are solutions to the optimality
system (3.47) of the augmented Tikhonov functional J(u,λ, τ).

The function Φ is rather flexible and provides a wide variety of possibili-
ties: the vector γ may be fine tuned to achieve specific desirable properties.
In the case of one single γi = γ in Φ for some fixed positive constant γ and
also bi = b, the function Φ can be compactly written as

Φγ(α) =
(F (α) + b0 + b‖α‖1)

n+γ∏n
i=1 αi

. (3.48)

In view of the concavity in Lemma 3.16, the problem of minimizing Φγ over
any bounded and closed region in R

n
+ is well defined.

The next result characterizes a strict minimizer to Φγ . It also explains
the term balancing principle: the selected parameter α∗ balances the reg-
ularization ψ and the fidelity φ with a weight γ.
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Proposition 3.5. If the value function F (α) is differentiable at a mini-
mizer of Φγ, then the following optimality system holds

γαiψ̄i(α) = φ̄(α). (3.49)
Conversely, if α is a strict minimizer of Φγ, then F is differentiable at α.

In practice, it is important to incorporate all prior information about
the sought-for solution u whenever it is available, which can be achieved
by imposing further constraints. For example, for the noise level informa-
tion φ(u, gδ) ≤ c, the constraint C reads C = {φ(u, gδ) ≤ c}, and by the
Lagrangian approach, the augmented Tikhonov functional is given by

J(u,λ, τ, µ) = τφ(u, gδ)+λ ·ψ(u) +
n∑
i=1

(biλi − ai lnλi)

+ b0τ − a0 ln τ + τ〈φ(u, gδ) − c, µ〉,
where the unknown scalar µ ≥ 0 is the Lagrange multiplier for the inequality
constraint φ(u, gδ) ≤ c. The respective optimality system reads

uδα = argmin
u

{
φ(u, gδ) +α · ψ(u) + 〈φ(u, gδ) − c, µ〉} ,

λi =
ai

ψi(uδα) + bi
,

τ =
a0

(1 + µ)φ(uδα, gδ) + b0
,

c ≥ φ(uδα, g
δ).

Then the inequality constraint φ(x, gδ) ≤ c and the balancing principle are
simultaneously satisfied: for i = 1, 2, . . . , n

γiαi(ψi(uδα) + bi) = (1 + µ)φ(uδα, g
δ) + b0. (3.50)

In case of one single regularization, the identity γ1α1(ψ1(uδα) + b1) =
(1 + µ)φ(uδα, gδ) + b0 does not provide any additional constraint since the
Lagrange multiplier µ ≥ 0 is unknown. If the constraint φ(uδα, gδ) ≤ c is
active, i.e., φ(uδα, gδ) = c, then it directly leads to the discrepancy principle.
Note that, in case of multiple regularization, the identity φ(uδα, gδ) = c

alone does not uniquely determine the vector α, and hence an auxiliary rule
must be supplied in order to uniquely select an appropriate regularization
parameter. The derivations suggest incorporating (3.50), which might help
resolve the nonuniqueness issue inherent to the discrepancy principle. In
particular, this gives rise to a new principle{

φ(uδα, g
δ) = c,

γiαi(ψi(uδα) + bi) = const, i = 1, . . . , n.
We shall name the new principle by the balanced discrepancy principle since
it augments the discrepancy principle with a balancing principle.
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3.6.2 Error estimates

In this part, we shall derive error estimates in case that the space Y is
a Hilbert space and the fidelity φ(u, gδ) is given by φ(u, gδ) = 1

2
‖Ku −

gδ‖2, with a focus on the case of two penalty terms. Then the balanced
discrepancy principle reads: for some cm ≥ 1 (with bi = 0){

‖Kuδα − gδ‖ = cmδ,

γiαiψi(uδα) = const, i = 1, 2.
(3.51)

First, we discussed the consistency and an a priori error estimate for the
hybrid principle (3.51). The consistency is ensured under a priori positive
upper and lower bounds on the ratio of the selected parameter α.

Assumption 3.3. For any α > 0, the functional Jα(u) is coercive and its
level set {u ∈ C : Jα(u) ≤ c} for any c > 0 is weakly compact, and the
functionals φ and ψi are weakly lower semi-continuous.

Theorem 3.30. Let Assumption 3.3 hold, and t(δ) = α1(δ)
α1(δ)+α2(δ)

. Let the
sequence {α(δ)}δ be determined by (3.51). If a subsequence {α(δ)}δ con-
verges and t̃ ≡ limδ→0 t(δ) ∈ (0, 1), then the subsequence {uδα(δ)}δ contains
a subsequence weakly convergent to a [t̃, 1 − t̃] · ψ-minimizing solution and

lim
δ→0

[t(δ), 1 − t(δ)] ·ψ(uδα) = [t̃, 1 − t̃] ·ψ(u†).

Proof. The minimizing property of the minimizer uδα indicates

1
2
‖Kuδα − gδ‖2 +α ·ψ(uδα) ≤ 1

2
‖Ku† − gδ‖2 +α ·ψ(u†)

≤ 1
2δ

2 +α ·ψ(u†).

By virtue of the constraint ‖Kuδα − gδ‖ = cmδ, we deduce

α · ψ(uδα) ≤ α ·ψ(u†).

Now the assumption t̃ ∈ (0, 1) implies that the sequence {ψi(uδα)}δ is uni-
formly bounded. Hence the weak compactness of the functional Jα in
Assumption 3.1 indicates that there exists a subsequence, also denoted by
{uδα}δ, and some u∗, such that uδα → u∗ weakly. The weak lower semicon-
tinuity of the functional φ and the triangle inequality imply

0 ≤ ‖Ku∗ − g†‖ ≤ lim inf
δ→0

(‖Ku† − gδ‖ + ‖Kuδα − gδ‖)
≤ lim inf

δ→0
(1 + cm)δ = 0,
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i.e., Kx∗ = g†. Again, by the weak lower semicontinuity of ψi, we deduce

[t̃, 1 − t̃] · ψ(u∗) ≤ lim inf
δ→0

[t(δ), 1 − t(δ)] · ψ(uδα)

≤ lim sup
δ→0

[t(δ), 1 − t(δ)] · ψ(uδα)

≤ lim
δ→0

[t(δ), 1 − t(δ)] ·ψ(u†) = [t̃, 1 − t̃] · ψ(u†),

which implies that u∗ is a [t̃, 1 − t̃] · ψ-minimizing solution. The desired
identity follows from the above inequalities with u∗ in place of u†. �

Remark 3.33. By definition, γ1α1(δ)ψ1(uδα) = γ2α2(δ)ψ2(uδα), the con-
dition in Theorem 3.30 amounts to the uniform boundedness of ψi(uδα),
which seems plausible in practice.

Now we state a convergence rates result.

Theorem 3.31. If the exact solution u† satisfies the following source con-
dition: for any t ∈ [0, 1], there exists a wt ∈ Y such that

K∗wt = ξt ∈ ∂
(
[t, 1 − t] ·ψ(u†)

)
.

Then for any α∗ determined by the principle (3.51), there holds

dξt∗ (uδα∗ , u†) ≤ (1 + cm)‖wt∗‖δ,
where the weight t∗ ≡ t∗(δ) ∈ [0, 1] is given by α∗

1(δ)
α∗

1(δ)+α∗
2(δ) .

Proof. In view of the minimizing property of the approximation uδα∗ and
the constraint ‖Kuδα∗ − gδ‖ = cmδ, we have

[t∗, 1 − t∗] ·ψ(uδα∗) ≤ [t∗, 1 − t∗] · ψ(u†).

The source condition implies that there exists a ξt∗ ∈ ∂
(
[t∗, 1 − t∗] · ψ(u†)

)
and wt∗ ∈ Y such that ξt∗ = K∗wt∗ . This and the Cauchy-Schwarz inequal-
ity imply

dξt∗ (uδα∗ , u†) = [t∗, 1 − t∗] ·ψ(uδα∗) − [t∗, 1 − t∗] ·ψ(u†) − 〈ξt∗ , uδα∗ − u†〉
≤ −〈ξt∗ , uδα∗ − u†〉 = −〈K∗wt∗ , uδα∗ − u†〉
= −〈wt∗ ,K(uδα∗ − u†)〉 ≤ ‖wt∗‖‖K(uδα∗ − u†)‖
≤ ‖wt∗‖

(‖Kuδα∗ − gδ‖ + ‖gδ −Ku†‖) ≤ (1 + cm)‖wt∗‖δ.
This shows the desired estimate. �

Remark 3.34. For the error estimate in Theorem 3.31, the order of conver-
gence relies on the constraint (discrepancy principle), whereas the weight t∗

is determined by the reduced balancing system (3.50). Hence the reduced
system (3.50) helps resolve the vast nonuniqueness issue.
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Next we give a posteriori error estimates for the balancing principle.
We shall focus on the specific choice b = b0 = 0 for the principle, i.e.,

Φγ(α) =
F 2+γ(α)
α1α2

. (3.52)

We treat two scenarios separately: quadratic regularization and general
convex regularization. In the former case, we consider the choice ψ1(u) =
1
2‖L1u‖2 and ψ2(u) = 1

2‖L2u‖2 with linear operators Li fulfilling ker(Li)∩
ker(K) = {0}, i = 1, 2. A typical choice of this type is that ψ1 and ψ2

imposes the L2-norm and higher-order Sobolev smoothness, respectively,
e.g., ψ1(u) = 1

2
‖u‖2

L2(Ω) and ψ2(u) = 1
2
‖u‖2

H1(Ω). We shall use a weighted
norm ‖ · ‖t defined by

‖u‖2
t = t‖L1u‖2 + (1 − t)‖L2u‖2,

where the weight t ≡ t(α) ∈ [0, 1] is defined as before. Also we denote by

Qt = tL∗
1L1 + (1 − t)L∗

2L2, Lt = Q
1/2
t , and K̃t = KL−1

t .

Obviously, ‖u‖t = ‖Ltu‖.
Theorem 3.32. Let µ ∈ [0, 1] be fixed. If the exact solution u† satisfies
the following source condition: for any t ∈ [0, 1], there exists a wt ∈ Y

such that Ltu† = (K̃tK̃t)µwt, then for any α∗ selected by the rule Φγ, the
following estimate holds

‖uδα∗ − u†‖t∗ ≤ C

(
‖wt∗‖

1
2µ+1 +

F
2+γ
4 (δ

2
2µ+1 e)

F
2+γ
4 (α∗)

)
max{δ∗, δ}

2µ
2µ+1 ,

where e = (1, 1)t and δ∗ = ‖Kuδα∗ − gδ‖.
Proof. First, we decompose the error uδα − u† into

uδα − u† = (uδα − uα) + (uα − u†).

It suffices to bound the two terms separately. First we estimate the error
uδα − uα. It follows from the optimality conditions for uα and uδα that

(K∗K + α1L
∗
1L1 + α2L

∗
2L2)(uα − uδα) = K∗(g† − gδ).

Multiplying the identity with uα − uδα and using the Cauchy-Schwarz and
Young’s inequalities give

‖K(uδα − uα)‖2 + α1‖L1(uδα − uα)‖2 + α2‖L2(uδα − uα)‖2

= 〈K(uδα − uα), g† − gδ〉
≤ ‖K(uδα − uα)‖2 + 1

4
‖g† − gδ‖2.
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From this we derive

s(t‖L1(uδα − uα)‖2 + (1 − t)‖L2(uα − uδα)‖2) ≤ 1
4‖g† − gδ‖2,

where s = α1 + α2, i.e.,

‖uδα − uα‖t ≤ ‖gδ − g†‖
2
√
s

≤ δ

2
√
s
≤ δ

2
√

maxi αi
.

Meanwhile, the minimizing property of α∗ to Φγ implies that for any α̂

F 2+γ(α∗)
max(α∗

i )2
≤ F 2+γ(α∗)

α∗
1α

∗
2

≤ F 2+γ(α̂)
α̂1α̂2

.

In particular, we may take α̂ = δ
2

2µ+1 e to get

1√
maxi α∗

i

≤ F
2+γ
4 (δ

2
2µ+1 e)

F
2+γ
4 (α∗)

δ−
1

2µ+1 .

Consequently, we have

‖uδα∗ − uα‖t∗ ≤ F
2+γ
4 (δ

2
2µ+1 e)

F
2+γ

4 (α∗)
δ

2µ
2µ+1 .

Next we estimate the approximation error uα−u†. To this end, we observe

uα − u† = (K∗K + α1L
∗
1L1 + α2L

∗
2L2)−1(α1L

∗
1L1 + α2L

∗
2L2)u†

= s(K∗K + sQt)−1Qtu
†

= sL−1
t (L−1

t K∗KL−1
t + sI)−1Ltu

†.

Hence, there holds

Lt(uα − u†) = s(K̃∗
t K̃t + sI)Ltu†.

Consequently, we deduce from the source condition and the moment in-
equality

‖uα − u†‖t = ‖Lt(uα − u†)‖ = ‖s(K̃∗
t K̃t + sI)−1Ltu

†‖
= ‖s(K̃∗

t K̃t + sI)−1(K̃∗
t K̃t)µwt‖

≤ ‖s(K̃∗
t K̃t + sI)−1(K̃∗

t K̃t)
1
2+µwt‖

2µ
2µ+1 ‖s(K̃∗

t K̃t+sI)−1wt‖ 1
2µ+1

= ‖s(K̃∗
t K̃t + sI)−1K̃tLtu

†‖ 2µ
2µ+1 ‖s(K̃∗

t K̃t + sI)−1wt‖
≤ c(‖s(K̃tK̃

∗
t + sI)−1gδ‖ + ‖s(K̃tK̃

∗
t + sI)−1(gδ − g†)‖) 2µ

2µ+1

× ‖wt‖ 1
2µ+1 ,
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where the constant c(≤ 1) depends only on the maximum of rs(t) = s
s+t

over [0, ‖K̃t‖2]. Further, we note the relation

s(K̃tK̃
∗
t + sI)−1gδ = gδ − (K̃tK

∗
t + sI)−1K̃tK̃

∗
t g
δ

= gδ − K̃(K̃∗
t K̃t + sI)−1K̃∗

t g
δ

= gδ −K(K∗K + sQt)−1K∗gδ = gδ −Kuδα.

Hence, we deduce

‖uα∗ − u†‖t∗ ≤ c(δ∗ + cδ)
2µ

2µ+1 ‖wt‖ 1
2µ+1 ≤ c1 max{δ∗, δ}

2µ
2µ+1 .

Combining the above two estimates yields the desired estimate. �

Similarly, we can state an estimate for general convex penalties.

Theorem 3.33. Let u† satisfy the following source condition: for any t ∈
[0, 1] there exists a wt ∈ Y such that K∗wt = ξt ∈ ∂

(
[t, 1 − t] ·ψ(u†)

)
.

Then for every α∗ determined by the rule Φγ , the following estimate holds

dξt∗ (uδα∗ , u†) ≤ C

(
‖wt∗‖ +

F 1+ γ
2 (δe)

F 1+ γ
2 (α∗)

)
max(δ, δ∗),

with e = (1, 1)t, δ∗ = ‖Kuδα∗ − gδ‖ and t∗ = α∗
1/(α∗

1 + α∗
2).

Remark 3.35. For general multiple regularization, there holds

dξβ∗ (uδα∗ , u†) ≤ C

(
‖wt∗‖ +

F 1+ γ
n (δe)

F 1+ γ
n (α∗)

)
max(δ, δ∗),

under the following source condition: there exists a wβ∗ ∈ Y such that

K∗wβ∗ = ξβ∗ ∈ ∂(β∗ · ψ(u†)),

where the parameter α∗ is determined by the rule Φγ, and β∗ = α∗/‖α∗‖1.

3.6.3 Numerical algorithms

In this section, we describe algorithms for computing the regularization
parameter by the hybrid principle, and the balancing principle, in the case
of two regularization and with the choice b = 0.

In practice, the application of the hybrid principle invokes solving the
nonlinear system (3.51), which is nontrivial due to its potential nonsmooth-
ness and high degree of nonlinearity. We propose the following Broyden’s
method [44] for its efficient solution; see Algorithm 3.3 for a complete de-
scription.
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Algorithm 3.3 Broyden’s method for system (3.51).
1: Set k = 0 and choose α0.
2: Compute the Jacobian J0 = ∇T(α0) and equation residual T(α0).
3: for k = 1, . . . ,K do
4: Calculate the quasi-Newton update ∆α = −J−1

k−1T(αk−1)
5: Update the regularization parameter α by αk = αk−1 + ∆α
6: Evaluate the equation residual T(αk) and set ∆T = T(αk) −

T(αk−1)
7: Compute Jacobian update

Jk = Jk−1 +
1

‖∆α‖2
[∆T − Jk∆α] · ∆αt.

8: Check the stopping criterion.
9: end for

10: Output the solution

Numerically, we reformulate system (3.51) equivalently as

T(α) ≡
(
φ̄(α) − δ2 + α2ψ̄2(α) − α1ψ̄1(α)

φ̄(α) − δ2 + α1ψ̄1(α) − α2ψ̄2(α)

)
= 0. (3.53)

In Algorithm 3.3, the Jacobian J0 can be approximated by finite difference.
Step 7 is known as Broyden update. The stopping criterion can be based
on monitoring the residual norm ‖T(α)‖. Our experiences indicate that
the algorithm converges fast and steadily, however, a convergence analysis
is still missing.

Now we describe a fixed point algorithm for computing a minimizer of
the rule Φγ. One basic version is listed in Algorithm 3.4, which extends
Algorithm 3.2 to the multi-parameter model. An equally interesting variant
of Algorithm 3.4 is to update the parameter α by

αk+1
1 =

1
γ

φ(uδαk , g
δ)

ψ1(uδαk)
and αk+1

2 =
1
γ

φ(uαk , gδ)
ψ2(uαk)

. (3.54)

Our experiences indicate that this variant converges fairly steadily and fast,
but its theoretical analysis remains unclear.

To analyze Algorithm 3.4, we first introduce an operator T by (with
φ̄(α) := φ(uδα, g

δ) and ψ̄i(α) = ψi(uδα)):

T (α) = (1 + γ)−1


φ̄(α) + α2ψ̄2(α)

ψ̄1(α)
φ̄(α) + α1ψ̄1(α)

ψ̄2(α)

 .
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Algorithm 3.4 Fixed point algorithm for minimizing (3.48).
1: Set k = 0 and choose α0.
2: Solve for uδαk by the Tikhonov regularization

uδαk = argmin
u

{
φ(u, gδ) +αk · ψ(u)

}
.

3: Update the regularization parameter αk+1 by

αk+1
1 =

1
1 + γ

φ(uδαk , g
δ) + αk2ψ2(uδαk)
ψ1(uδαk )

,

αk+1
2 =

1
1 + γ

φ(uδαk , g
δ) + αk1ψ1(uδαk)
ψ2(uδαk )

.

4: Check the stopping criterion.

By Lemma 3.3, the following monotonicity result holds. Here the sub-
script −i refers to the index different from i.

Lemma 3.17. The function ψ̄i(α) is monotonically decreasing in αi, and

∂

∂αi
(φ̄(α) + α−iψ̄−i(α)) + αi

∂

∂αi
ψ̄i(α) = 0, i = 1, 2.

We have the following monotone result for the fixed point operator T .

Proposition 3.6. Let the function F (α) be twice differentiable for any α.
Then the map T (α) is monotone if F 2Fα1α1Fα2α2 > (Fα1Fα2 − FFα1α2)2.

Proof. Let A(α) = φ̄ + α2ψ̄2 and B(α) = φ̄ + α1ψ̄1. By Lemma 3.17,
there hold the following relations

∂A

∂α1
+ α1

∂ψ̄1

∂α1
= 0 and

∂B

∂α2
+ α2

∂ψ̄2

∂α2
= 0. (3.55)

With the help of these two relations, we deduce

∂

∂α1

A

ψ̄1
=
ψ̄1

∂A
∂α1

−A∂ψ̄1
∂α1

ψ̄2
1

=
ψ1(−α1

∂ψ̄1
∂α1

) −A∂ψ̄1
∂α1

ψ̄2
1

= − 1
ψ̄2

1

∂ψ̄1

∂α1
(α1ψ̄1 +A) = − F

ψ̄2
1

∂ψ̄1

∂α1
,



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch03 page 102

102 Inverse Problems: Tikhonov Theory and Algorithms

and

∂

∂α2

A

ψ̄1
=
ψ̄1

∂A
∂α2

−A∂ψ̄1
∂α2

ψ̄2
1

=
ψ̄1

∂
∂η2

(F − α1ψ̄1) − (F − α1ψ̄1)∂ψ̄1
∂α2

ψ̄2
1

=
1
ψ̄2

1

[
ψ̄1ψ̄2 − F

∂ψ̄1

∂α2

]
,

where we have used Lemma 3.16. Similarly, we have

∂

∂α2

B

ψ̄2
= − F

ψ̄2
2

∂ψ̄2

∂α2
and

∂

∂α1

B

ψ̄2
=

1
ψ̄2

2

[
ψ̄1ψ̄2 − F

∂ψ̄2

∂α1

]
.

Therefore, the Jacobian ∇T of the operator T (α) is given by

∇T = (1 + γ)−1

 − F

ψ̄2
1

∂ψ̄1

∂α1

1
ψ̄2

1

[
ψ̄1ψ̄2 − F

∂ψ̄1

∂α2

]
1
ψ̄2

2

[
ψ̄1ψ̄2 − F

∂ψ̄2

∂α1

]
− F

ψ̄2
2

∂ψ̄2

∂α2

 .

The monotonicity of the function ψ̄i(α) with αi from Lemma 3.17 im-
plies that −∂ψ̄i

∂αi
≥ 0. Therefore, it suffices to show that the determinant

|∇T | of the Jacobian ∇T is positive. However, it follows from Lemma 3.16
that the identity

∂ψ̄1

∂α2
= Fα2α2 =

∂ψ̄2

∂α1

holds, and hence the determinant |∇T | is given by

|∇T | = (1 + γ)−1 1
ψ̄2

1ψ
2
2

[
F 2 ∂ψ̄1

∂α1

∂ψ̄2

∂α2
−
(
ψ̄1ψ̄2 − F

∂ψ̄2

∂α1

)2
]
.

Hence, the nonnegativity of |∇T | follows from the assumption
F 2Fα1α1Fα2α2 − (Fα1Fα2 − FFα1α2)2 > 0. This concludes the proof. �

Bibliographical notes

In our presentation we have largely focused on quadratic fidelity in Hilbert
spaces. A direct generalization is powered norms, for which convergence
analysis is also relatively complete. The case of L1 fitting is very popular,
especially in image processing [70], due to its robustness with respect to
impulsive type noises/data outliers [147]; see [246] for some interesting dis-
cussions and [144] for an improved convergence analysis. Apart from the
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L1 fidelity, the other popular nonquadratic fidelity is the Kullback-Leibler
divergence for Poisson data. It has been analyzed in [259] for linear inverse
problems. A general convergence theory for convergence rate analysis was
discussed in [92, 93]. Further, we would like to point out that we have not
touched the important topic of stochastic models, such as Hilbert processes.
We refer to [29, 306, 98] for relevant error estimates.

Very recently in [241, 96], Naumova et al analyzed a slightly different
multi-penalty formulation

‖K(u1 + u2) − gδ‖2 + α‖u1‖2 + β‖Lu2‖2,

where L is a densely defined operator. This formulation enforces constraints
separately on the components, which is different from the multi-parameter
model discussed in Section 3.6. In particular, they showed the optimality of
convergence rates for the classical discrepancy principle for the formulation.
Similar models have been extensively used in the imaging community [55].

We would like to note that the iterative refinement of Tikhonov reg-
ularization, i.e., iterated Tikhonov regularization, can improve the recon-
struction accuracy under certain circumstances. In a Hilbert space set-
ting, it was studied in [87, 268, 124]. Recently, Jin [178, 180] presented
some first study of the method for nonsmooth penalties. This is closely
related to iterative regularization methods, e.g., the Landweber method
and Gauss-Newton method. Iterative methods achieves regularization by
early stopping. These methods have been also intensively studied in the
context of nonsmooth regularization, and we refer to the monograph [272]
for a comprehensive treatment, [271, 189, 134, 135, 177, 179, 227] for the
Landweber method and [189, 188, 145, 190] for Gauss-Newton method.

One especially popular nonsmooth regularization model is sparsity con-
straints, which originate from lasso in statistics [285]. It can take sev-
eral different forms: �1-penalty [77], �q-penalty (0 < q < 1) (also known
as bridge penalty in statistics), and measures (including Radon mea-
sures [71, 39], total variation [265, 55] and total generalized variation [37]
etc.). In particular, the analysis of the �1- and �q-regularization has re-
ceived intensive studies, and various refined estimates have been developed
[218, 117, 38, 114, 256, 115, 118, 194, 297, 49, 8] for a very incomplete
list, and the survey [172] for its application to parameter identifications.
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Chapter 4

Tikhonov Theory for Nonlinear
Inverse Problems

In this chapter, we consider ill-posed nonlinear operator equations

K(u) = g†, (4.1)

where the nonlinear operator K : X → Y is Fréchet (Gâteaux) differen-
tiable, and the spaces X and Y are Banach spaces, with the norm both
denoted by ‖ ·‖. In practice, one has only access to the noisy data gδ whose
accuracy relative to the exact data

g† = K(u†),

where u† ∈ X is the exact solution, is measured by the noise level

δ = ‖g† − gδ‖.
In practice, the unknown u may be subjected to pointwise constraint,

e.g., u ≥ c almost everywhere. This is especially true for distributed co-
efficient estimation in differential equations to ensure the well-definedness
of the operator K; see, e.g., [19] for relevant examples. We denote the
constraint set by C ⊂ X , and assume that it is closed and convex and the
sought-for solution u† ∈ C.

The now classical approach for obtaining an accurate yet stable ap-
proximation is Tikhonov regularization, which consists of minimizing the
following Tikhonov functional

Jα(u) = ‖K(u)− gδ‖p + αψ(u), (4.2)

where the two terms are the fidelity incorporating the information in the
data gδ and a regularization for stabilizing the problem, respectively. A
minimizer of Jα over the set C will be denoted by uδα, and by uα in case of
exact data. As was discussed in Chapter 3, a correct choice of the fidelity
should faithfully reflect the statistical characteristics of noise corrupting the

105
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data. Meanwhile, the penalty ψ is chosen to reflect a priori knowledge (such
as smoothness) and constraint on the expected solutions, and nonsmooth
penalties are now very popular and commonly employed.

In this chapter, we shall analyze the Tikhonov model Jα, e.g., existence,
consistency, stability and convergence rates, and demonstrate the appli-
cation of the approach to distributed parameter identification problems,
which can serve as prototypical examples of nonlinear inverse problems.
The outline of the chapter is as follows. We begin with the well-posedness
of the Tikhonov model Jα in a general setting, following the classical works
[89, 274] and the recent works [141]. The rest of the chapter focuses on
convergence rate analysis. We first recall the Hilbert space setting from
[89] and subsequent developments. Then we present a new approach from
optimization viewpoint [152] in Section 4.3. The optimization approach
will be illustrated on a class of nonlinear parameter identification problems
in Section 4.4. Extensions of the classical approach to the Banach space
setting, especially via variational inequalities, are discussed in Section 4.5.
Finally, in Section 4.6, we discuss an alternative approach via conditional
stability [65].

4.1 Well-posedness

In this section, we address the well-posedness, i.e., the existence, stability
and consistency of minimizers to the Tikhonov functional Jα. Throughout,
we make the following assumption.

Assumption 4.1. The operator K : X → Y , X being reflexive, and the
nonnegative functional ψ : Y → R

+ satisfy

(i) The functional Jα(u) is coercive, i.e., Jα(un) → ∞ as ‖un‖X → ∞.
(ii) The operator K : X → Y is sequentially weakly closed, i.e., un → u∗

weakly in X implies that F (un) → F (u∗) weakly in Y .
(iii) The functional ψ is proper, convex and weakly lower semicontinuous.

Remark 4.1. The coercivity assumption on Jα can be replaced by a com-
pactness assumption on the set C. In case that the space X is nonreflexive,
the weak convergence should be replaced with weak ∗ convergence.

Remark 4.2. The assumption that F is weakly sequentially closed is
nontrivial to verify for most nonlinear inverse problems. This is due to
the low regularity of the solution to the differential equations with rough
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coefficients; see Example 4.1 below for an illustration. However, there exist
a variety of stronger conditions, which imply sequential weak closeness. In
particular, all linear operators and all weak-weak continuous operators are
weakly sequentially closed.

Theorem 4.1. Let Assumption 4.1 hold. Then for every α > 0, there
exists a minimizer to Jα.

Proof. Since C �= ∅ and gδ ∈ Y , there exists at least one ũ ∈ C such that
Jα(ũ) <∞. Hence, there is a sequence {un} ⊂ C such that

lim
n→∞ Jα(un) = inf

u∈C
Jα(u).

By Assumption 4.1(i), the sequence {un} is uniformly bounded in X and
contains a subsequence, still denoted by {un}, and some u∗ ∈ C (by the con-
vexity and closedness of C) such that un → u∗ weakly. Since the functional
ψ is weakly lower semicontinuous, cf. Assumption 4.1(iii), we have

ψ(u∗) ≤ lim inf
n→∞ ψ(un).

By Assumption 4.1(ii), K is weakly closed, i.e., K(un) − gδ → K(u∗) − gδ

weakly in Y . Now by the weak lower semicontinuity of norms

‖K(u∗) − gδ‖p ≤ lim inf
n→∞ ‖K(un) − gδ‖p.

Combining the preceding two estimates implies that u∗ is a minimizer. �

Now we give an example on verifying the sequential weak closedness of
a nonlinear operator K.

Example 4.1. This example considers the recovery of a Robin boundary
condition from boundary observation. Let Ω ⊂ R

2 be an open bounded
domain with a Lipschitz boundary Γ consisting of two disjoint parts Γi and
Γc. We consider the equation

−∆y = 0 in Ω,
∂y

∂n
= f on Γc,

∂y

∂n
+ uy = 0 on Γi.

(4.3)

The inverse problem consists in recovering the Robin coefficient u defined
on Γi from noisy observational data gδ on the boundary Γc, i.e., K maps
u ∈ X = L2(Γi) to γΓcy(u) ∈ Y = L2(Γc), where γΓc denotes the Dirichlet
trace operator, and similarly γΓi , and y(u) is the solution to (4.3). We shall
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seek u in the admissible set C = {u ∈ L∞(Γi) : u ≥ c} ⊂ X for some fixed
c > 0, by means of Tikhonov regularization∫

Γc

(K(u) − gδ)2ds+ α

∫
Γi

u2ds.

We shall denote the mapping of u ∈ C to the solution y ∈ H1(Ω) of
(4.3) by y(u). By Lax-Milgram theorem, for any u ∈ C, problem (4.3) has
a unique solution y ∈ H1(Ω) and

‖y‖H1(Ω) ≤ C‖f‖
H− 1

2 (Γc)
. (4.4)

Next we verify the weak sequentially closedness of K. Let the sequence
{un} ⊂ C converging weakly in L2(Γi) to u∗ ∈ C. We need to show

K(un) → K(u∗) in L2(Γc).

For un ∈ U , set yn = y(un) ∈ H1(Ω). By the a priori estimate from (4.4),
the sequence {yn} is uniformly bounded in H1(Ω) and has a convergent
subsequence, also denoted by {yn}, such that there exists y∗ ∈ H1(Ω) with

yn ⇀ y∗ in H1(Ω).

The trace theorem and the Sobolev embedding theorem [1] imply

yn → y∗ in Lp(Γc)

for any p < +∞. In particular, we will take p = 4. Then we have∣∣∣∣∫
Γi

un(yn − y∗)vds
∣∣∣∣ ≤ ‖un‖L2(Γi)‖yn − y∗‖L4(Γi)‖v‖L4(Γi) → 0

by the weak convergence of {un} in L2(Γi) and the strong convergence of
{yn} in L4(Γi). Therefore, we have

lim
n→∞

∫
Γi

unynvds = lim
n→∞

(∫
Γi

un(yn − y∗)vds+
∫

Γi

uny
∗vds
)

=
∫

Γi

u∗y∗vds.

Now passing to the limit in the weak formulation indicates that y∗ satisfies∫
Ω

∇y∗ · ∇vdx +
∫

Γi

u∗y∗vds =
∫

Γc

fvds for all v ∈ H1(Ω),

i.e., y∗ = y(u∗). Since every subsequence has itself a subsequence converg-
ing weakly in H1(Ω) to y(u∗), the whole sequence converges weakly. The
sequential weak closedness of K : u �→ y(u)|Γc then follows from the trace
theorem and Sobolev compact embedding theorem.



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch04 page 109

Tikhonov Theory for Nonlinear Inverse Problems 109

Now we turn to the stable dependence of the Tikhonov minimizer uδα
with respect to perturbations in the data gδ.

Theorem 4.2. Let Assumption 4.1 hold. Let {gn} be a sequence converging
to gδ in Y , and {un} be the sequence of minimizers to Jα, with gn in place
of gδ. Then the sequence {un} contains a weakly convergent subsequence,
and the limit is a minimizer to the functional Jα. Further, if the minimizer
is unique, then the whole sequence converges weakly, and if the functional
ψ satisfies the H-property, then the convergence is strong.

Proof. Let uδα ∈ C be a minimizer to the functional Jα. By the minimiz-
ing property of un, we have

‖K(un) − gn‖p + αψ(un) ≤ ‖K(uδα) − gn‖p + αψ(uδα).

This together with the inequality (a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and
p ≥ 1 yields

‖K(un) − gδ‖p + αψ(un)

≤ 2p−1(‖K(un) − gn‖p + αψ(un) + ‖gn − gδ‖p)
≤ 2p−1(‖K(uδα) − gn‖p + αψ(uδα) + ‖gn − gδ‖p).

Now by the coercivity of Jα from Assumption 4.1(i), the sequence {un} ⊂ C
contains a subsequence, also denoted by {un}, and some u∗ ∈ C such that
un → u∗ weakly. By the sequential weak closedness of the operator K,
cf. Assumption 4.1(ii), K(un) → K(u∗) weakly in Y . Now by the norm
convergence of gn to gδ, K(un) − gn → K(u∗) − gδ weakly. This together
with the weak lower semicontinuity of norms yield

‖K(u∗) − gδ‖p ≤ lim inf
n→∞ ‖K(un) − gn‖p. (4.5)

Now it follows from the weak lower semicontinuity of the functional ψ, cf.
Assumption 4.1(iii) that

‖K(u∗) − gδ‖p + αψ(u∗) ≤ lim inf
n→∞ ‖K(un) − gn‖p + α lim inf

n→∞ ψ(un)

≤ lim inf
n→∞ (‖K(un) − gn‖p + αψ(un))

≤ lim
n→∞(‖K(uδα) − gn‖p + αψ(uδα))

≤ ‖K(uδα) − gδ‖p + αψ(uδα).

By the minimizing property of uδα to Jα, u∗ is a minimizer to Jα. Further
by taking uδα = u∗ in the inequalities yield

lim
n→∞ ‖K(un) − gn‖p + αψ(un) = ‖K(u∗) − gδ‖p + αψ(u∗). (4.6)
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If the minimizer uδα is unique, then by a standard subsequence argument,
the whole sequence converges to uδα. Next we show that ψ(un) converges
to ψ(u∗) by contradiction. Assume that the contrary holds. Then by the
lower semicontinuity of ψ, we have

c := lim sup
n→∞

ψ(un) > ψ(u∗).

We take a subsequence {un} such that ψ(un) → c. Then from (4.6), on
this subsequence we have

lim
n→∞ ‖K(un) − gn‖p = lim

n→∞(‖K(un) − gn‖p + αψ(un)) − α lim
n→∞ψ(un)

= ‖K(u∗) − gδ‖p + α(ψ(u∗) − c) < ‖K(u∗) − gδ‖p,
which contradicts (4.5), and thus ψ(un) → ψ(u∗). This together with the
H-property of ψ yields the desired assertion. �

The Tikhonov minimizer uδα is also stable with respect to other model
perturbations, e.g., the regularization parameter α.

Theorem 4.3. Let Assumption 4.1 hold. Let {αn} ⊂ R
+ be a sequence

converging to α > 0 in Y , and {uδαn
} be the sequence of minimizers to Jαn .

Then the sequence {uδαn
} contains a weakly convergent subsequence, and

the limit is a minimizer to the functional Jα. Further, if the minimizer is
unique, then the whole sequence converges weakly, and if the functional ψ
satisfies the H-property, then the convergence is strong.

Proof. Let uδα ∈ C be a minimizer to the functional Jα. By the minimiz-
ing property of un ≡ uδαn

, we have

‖K(un) − gδ‖p + αnψ(un) ≤ ‖K(uδα) − gδ‖p + αnψ(uδα).

Since the sequence αn → α > 0, we may assume that αmin := infn αn and
αmax := supαn satisfy 0 < αmin, αmax <∞. Then we have

‖K(un) − gδ‖p + αminψ(un) ≤ ‖K(uδα) − gδ‖p + αmaxψ(uδα),

i.e., the sequence {Jαmin(un)} is uniformly bounded. The rest of the proof
is essentially identical with that for Theorem 4.2, and hence omitted. �

Like in the linear case, the proper generalized solution concept is the
ψ-minimizing solution:

Definition 4.1. An element u† ∈ C is called an ψ-minimizing solution if

ψ(u†) ≤ ψ(u), ∀u ∈ {u ∈ C : K(u) = g†}.
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The next result shows the existence of a ψ-minimizing solution.

Theorem 4.4. Let Assumption 4.1 hold, and there exist a solution to (4.1).
Then there exists at least one ψ-minimizing solution.

Proof. Suppose that there does not exist a ψ-minimizing solution in C.
Then there exists a sequence {un} ⊂ C of solutions to (4.1) such that
ψ(un) → c and

c < ψ(u), ∀u ∈ {u ∈ C : K(u) = g†}.

Therefore, the functional Jα(un) with g† in place of gδ is uniformly
bounded, and by the coercivity of Jα, cf. Assumption 4.1(i), the sequence
{un} contains a subsequence, also denoted by {un}, and some u∗ ∈ C such
that un → u∗ weakly. By the weak lower semicontinuity of the functional
ψ in Assumption 4.1(iii), there holds ψ(u∗) = limn→∞ ψ(un) = c. Now,
by the weak sequential closedness of K from Assumption 4.1(ii), we have
K(u∗) = g†. This contradicts the assumption, and completes the proof. �

Finally we give a consistency result, i.e., the convergence of minimizers
uδα to a ψ-minimizing solution as the noise level δ tends to zero. This is the
central property for a regularization scheme. Assumption 4.1 in connection
with an appropriate rule for choosing α is sufficient.

Theorem 4.5. Let Assumption 4.1 hold. Let the sequence {δn} be conver-
gent to zero, and gδn satisfy ‖g† − gδn‖ = δn. Further, the parameter α(δ)
is chosen such that

lim
δ→0

α(δ) = 0 and lim
δ→0

δp

α(δ)
= 0.

Let {uδn

α(δn)} be a sequence of minimizers to Jα(δn) with gδn in place of gδ.
Then it contains a subsequence converging weakly to ψ-minimizing solution.
Further, if the ψ-minimizing solution u† is unique, then the whole sequence
converges weakly, and if the functional ψ satisfies the H-property, then the
convergence is strong.

Proof. By the minimizing property of un ≡ uδn

α(δn) and the identity
K(u†) = g†, we have

‖K(un) − gδn‖p + α(δn)ψ(un) ≤ ‖K(u†) − gδn‖p + α(δn)ψ(un)

≤ δpn + α(δn)ψ(u†).
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Now the choice of the sequence {α(δn)} yields that the sequences {‖K(un)−
gδn‖p} and {ψ(un)} are uniformly bounded. Further, it follows from the
inequality (a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p ≥ 1 that

‖K(un) − g†‖p ≤ 2p−1(‖K(un) − gδn‖p + δpn) < c.

Therefore, we have

‖K(un) − g†‖p + ψ(un) ≤ c.

By the coercivity of the functional Jα from Assumption 4.1(i), the sequence
{un} is uniformly bounded, and contains a subsequence, also denoted by
{un}, and some u∗ ∈ C, such that un → u∗ weakly. By the weak sequen-
tial closedness of K, cf. Assumption 4.1(ii), there holds K(un) → K(u∗)
weakly, which together with the norm convergence gδn → g† implies
K(un) − g† → K(u∗) − g†. Now the weak lower semicontinuity of norms
and the choice of α(δn) yields

0 ≤ ‖K(u∗) − g†‖p ≤ lim inf
n→∞ ‖K(un) − gn‖p

≤ lim inf
n→∞ δpn + α(δn)ψ(u†) = 0,

i.e., K(u∗) = g†. Furthermore, by the weak lower semicontinuity of the
functional ψ, cf. Assumption 4.1(iii), we deduce

ψ(u∗) ≤ lim inf
n→∞ ψ(un) ≤ lim inf

n→∞ ( δp
n

α(δn)
+ ψ(u†)) = ψ(u†).

Hence u∗ is a ψ-minimizing solution. The rest of the proof follows as before,
and hence it is omitted. �

So far we have discussed basic properties of the Tikhonov model, i.e., the
existence, stability and consistency of a Tikhonov minimizer uδα. Naturally
there is also the important question of uniqueness of the minimizer uδα. In
general, this is not guaranteed for nonlinear inverse problems. However, in
the Hilbert space setting, we shall mention one such result in Section 4.2.

4.2 Classical convergence rate analysis

In this part, we discuss convergence rate analysis in a Hilbert space setting,
i.e., both X and Y are Hilbert spaces, and the Tikhonov approach amounts
to the following constrained optimization problem:

min
u∈C
{
Jα(u) ≡ ‖K(u) − gδ‖2 + α‖u‖2

}
. (4.7)
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Like before, the minimizer of (4.7) is denoted by uδα, and respectively,
the minimizer for the exact data g† by uα. By convergence rate analysis,
we aim at estimating the distance between the approximation uδα and the
ground truth u† in terms of the noise level δ, and at developing rules for
determining the scalar parameter α > 0 automatically so as to obtain robust
yet accurate approximations uδα to the exact solution u†. In practice, one
might have some preliminary knowledge about u†, e.g., in the neighborhood
of u∗, then the functional Jα can be modified to ‖K(u)−gδ‖2 +α‖u−u∗‖2

in order to accommodate such a priori information. The analysis below
adapts straightforwardly to the case.

4.2.1 A priori parameter choice

In this part, we shall first recall the classical convergence theory due to
Engl, Kunisch and Neubauer [89], and discuss several a posteriori choice
rules and their convergence rates.

In order to derive convergence rates results, we require assumptions on
the smoothness of the operator K, a restriction on the nonlinearity of K
in a neighborhood of u† and a source condition, which relates the penalty
term to the operator K at u†.

Assumption 4.2. The operator K satisfies:

(i) K has a continuous Fréchet derivative;
(ii) there exists an L > 0 such that ‖K′(u†) −K ′(u)‖L(X,Y ) ≤ L‖u† − u‖

for all x ∈ C ∩Bρ(u†), with ρ > 2‖u†‖; and
(iii) there exists a w ∈ Y such that u† = K ′(u†)∗w and L‖w‖ < 1.

Now we can present the classical result in the pioneering work [89].

Theorem 4.6. Let K : X → Y be continuous and weakly sequentially
closed and Assumption 4.2 hold with ρ = 2‖u†‖ + δ/

√
α. Then the mini-

mizer uδα to Jα satisfies

‖uδα − u†‖ ≤ δ + α‖w‖√
α(1 − L‖w‖) and ‖K(uδα) − g†‖ ≤ δ + 2α‖w‖.

Proof. By the minimizing property of uδα to Jα(u), we obtain
‖K(uδα) − gδ‖2 + α‖uδα‖2 ≤ δ2 + α‖u†‖2,

which implies the boundedness of {Jα(uδα)} and due to the choice α ∼ δ

also the uniform boundedness of {uδα}. A straightforward calculation shows
‖K(uδα) − gδ‖2 + α‖uδα − u†‖2 ≤ δ2 − 2α〈uδα − u†, u†〉. (4.8)
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By the source condition from Assumption (4.2)(iii), we deduce

‖K(uδα) − gδ‖2 + α‖uδα − u†‖2 ≤ δ2 − 2α〈K ′(u†)(uδα − u†), w〉. (4.9)

To apply Assumption (4.2)(ii) to bound the inner product, we appeal again
to inequality (4.8). Upon neglecting the term ‖K(uδα) − gδ‖2 on the left
hand side and applying the Cauchy-Schwarz inequality, we arrive at

α‖uδα − u†‖2 ≤ δ2 + 2α‖u†‖‖u† − uδα‖,
and consequently,

(‖uδα − u†‖ − ‖u†‖)2 ≤ ‖u†‖2 +
δ2

α
.

Hence, uδα ∈ Bρ(u†) with ρ = 2‖u†‖ + δ/
√
α. Now Assumptions 4.2(i)

and (ii), i.e., Lipschitz continuity of the derivative and the convexity of the
admissible set C, imply

‖K(uδα) −K(u†) −K ′(u†)(uδα − u†)‖

= ‖
∫ 1

0

(
K ′(u† + t(uδα − u†)) −K ′(u†)

)
(uδα − u†)dt‖

≤
∫ 1

0

Lt‖uδα − u†‖2dt =
L

2
‖uδα − u†‖2.

(4.10)

By adding and subtracting K(uδα) −K(u†) in (4.9), and appealing to the
Cauchy-Schwarz inequality, we obtain

〈−K ′(u†)(u† − uδα), w〉 ≤L
2 ‖w‖‖uδα − u†‖2

+ ‖w‖‖K(uδα) − gδ‖ + ‖w‖δ. (4.11)

Inserting (4.11) in (4.9) and quadratic completion yields

(‖K(uδα) − gδ‖ − α‖w‖)2 + α(1 − L‖w‖)‖uδα − u†‖2

≤δ2 + 2α‖w‖δ + α2‖w‖2 = (δ + α‖w‖)2.
The desired assertion follows from this and the condition 1 − L‖w‖ > 0 in
Assumption 4.2(iii). �

Remark 4.3. The proof of Theorem 4.6 indicates the following estimates
for exact data g†:

‖uα − u†‖ ≤ ‖w‖√
1 − L‖w‖

√
α and ‖K(uα) − g†‖ ≤ 2α‖w‖.

Further, with the choice α ∼ δ, we have

‖uδα − u†‖ = O(
√
δ) and ‖K(uδα) − g†‖ = O(δ).
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Remark 4.4. The restriction on the nonlinearity of K, i.e., Assumption
4.2(ii) of Theorem 4.6, can be reformulated in several different ways. For
example, the condition

‖K ′(u)(u− ũ)‖ ≤ C‖K(u) −K(ũ)‖
has been studied. It leads to a more direct estimate for the critical inner
product in (4.11):

|〈−K ′(u†)(u† − uδα), w〉| ≤ ‖K ′(u†)(u† − uδα)‖‖w‖
≤ C‖K(u†) −K(uδα)‖‖w‖
≤ C(‖w‖δ + ‖w‖‖gδ −K(uδα)‖)

and the proof proceeds identically thereafter. We would like to note that
the crucial inner product (4.11) generally is of indefinite sign and thus does
not necessarily cause any trouble. For an analysis along this line of thought,
we refer to Section 4.3.

Example 4.2. This example continues Example 4.1 on the differentiability
of the operatorK for the Robin inverse problem, and Lipschitz continuity of
the derivative operator. In particular, we show thatK is twice differentiable
on C: The mapping u �→ y(u) is twice Fréchet differentiable from L2(Γi)
to H1(Ω), on C and for every u ∈ C and all directions h1, h2 ∈ L2(Γi), the
derivatives are given by

(i) y′(u)h1 ∈ H1(Ω) is the solution z of∫
Ω

∇z · ∇vdx+
∫

Γi

uzvds = −
∫

Γi

h1y(u)vds

for all v ∈ H1(Ω), and the following estimate holds

‖y′(u)h1‖H1(Ω) ≤ C‖h1‖L2(Γi).

(ii) y′′(u)(h1, h2) ∈ H1(Ω) is the solution z of∫
Ω

∇z · ∇vdx+
∫

Γi

uzvds = −
∫

Γi

h1y
′(u)h2vds−

∫
Γi

h2y
′(u)h1vds

for all v ∈ H1(Ω), and the following estimate holds

‖y′′(u)(h1, h2)‖H1(Ω) ≤ C‖h1‖L2(Γi)‖h2‖L2(Γi).

In particular, (ii) implies that the derivative map K ′(u) is Lipschitz contin-
uous. Here the characterization of the derivatives in (i) and (ii) follows from
direct calculation. It remains to show the boundedness and continuity. By
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setting v = y′(u)h1 in the weak formulation, Hölder’s inequality, the trace
theorem and the a priori estimate (4.4), we have

‖y′(u)h1‖2
H1(Ω) ≤ C‖y′(u)h1‖L4(Γi)‖h1‖L2(Γi)‖y(u)‖L4(Γi)

≤ C‖y′(u)h1‖H1(Ω)‖h1‖L2(Γi)‖y(u)‖H1(Ω)

≤ C‖y′(u)h1‖H1(Ω)‖h1‖L2(Γi),

from which the first estimate follows. Analogously we deduce that

‖y(u+ h1) − y(u)‖H1(Ω) ≤ C‖h1‖L2(Γi).

Next let w = y(u+ h1) − y(u) − y′(u)h1, which satisfies∫
Ω

∇w · ∇vdx+
∫

Γi

uwvds = −
∫

Γi

h1(y(u+ h1) − y(u))vds

for all v ∈ H1(Ω). By repeating the proof of the preceding estimate, we
deduce that

‖w‖H1(Ω) ≤ C‖h1‖L2(Γi)‖y(u+ h1) − y(u)‖H1(Ω),

from which it follows directly that y′(u)h1 defined above is indeed the
Fréchet derivative of y(u) at u. By arguing similarly and using the first
assertion, the second assertion follows.

Example 4.3. We illustrate the range inclusion condition u† = K ′(u†)∗w
for Example 4.1. From Example 4.2, the derivative K ′(u†) : L2(Γi) →
L2(Γc) is given by K ′(u†)h = γΓcz, where z ∈ H1(Ω) solves∫

Ω

∇z · ∇vdx +
∫

Γi

u†zvds = −
∫

Γi

hy(u†)vds.

The adjoint operator K ′(u†)∗ : L2(Γc) → L2(Γi) is given by

K ′(u†)∗w = −γΓi(y(u
†)z̃(u†)),

where z̃(u†) ∈ H1(Ω) solves∫
Ω

∇z̃ · ∇vdx +
∫

Γi

u†z̃vds =
∫

Γc

wvds.

The adjoint representation K ′(u†)∗w follows from setting v = z̃ and v = z

in the weak formulations for z and z̃:

〈K ′(u†)h,w〉L2(Γc) = 〈−hy(u†), z̃〉L2(Γi)

= 〈h,−y(u†)z̃〉L2(Γi) ≡ 〈h,K ′(u†)∗w〉.
Consequently, the source condition reads: u† = −γΓi(y(u†)z̃(u†)). Since
both y(u†) and z̃(u†) belongs to the space H1(Ω), it follows from trace
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theorem that −γΓi(y(u
†)z̃(u†)) ∈ Lp(Γi), for any p < ∞. This is already

much stronger than the condition u† ∈ L2(Γi) as was required by Tikhonov
regularization. Alternatively, we can write

z̃(u†) =
−u†
y(u†)

on Γi.

Hence, for the existence of an element w ∈ L2(Γc), by the trace theorem,
the right hand side −u†

γΓiy(u
†) must at least belong to the spaceH

1
2 (Γi), which

imposes a certain smoothness condition on u†.

4.2.2 A posteriori parameter choice

Theorem 4.6 provides error estimates under a priori parameter choice. It is
not necessarily convenient for practical purposes, since a reasonable value
would necessarily require a knowledge of the source representer w, which
is generally inaccessible. Therefore, there has been of immense interest
in developing a posteriori rules with provable (optimal) convergence rates.
One classical rule is the discrepancy principle, where the regularization
parameter α is determined from the following nonlinear equation:

‖K(uδα) − gδ‖ = cmδ, (4.12)

for some cm ≥ 1. The existence of a solution to the nonlinear equation
(4.12) is highly nontrivial to verify, and we defer the issue to Section 4.2.3.
We also refer to Section 3.4.1 for its efficient implementation.

Theorem 4.7. Let Assumption 4.2 hold, and α be determined by the dis-
crepancy principle (4.12). Then there holds

‖uδα − u†‖ ≤
√

2(1 + cm)‖w‖
1 − L‖w‖

√
δ.

Proof. It follows from the minimizing property of uδα and (4.12) that
‖uδα‖2 ≤ ‖u†‖2. Now the source condition and nonlinearity condition from
Assumption 4.2 yields

‖uδα − u†‖2 ≤ −2〈uδα − u†, u†〉
≤ −2〈K ′(u†)(uδα − u†), w〉
= 2〈K(uδα) −K(u†) −K ′(u†)(uδα − u†), w〉
− 2〈K(uδα) −K(u†), w〉

≤ L‖w‖‖uδα − u†‖2 + 2‖w‖‖K(uδα) −K(u†)‖.



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch04 page 118

118 Inverse Problems: Tikhonov Theory and Algorithms

Meanwhile, the discrepancy principle (4.12) gives

‖K(uδα) −K(u†)‖ ≤ ‖K(uδα) − gδ‖ + ‖gδ −K(u†)‖ = (1 + cm)δ.

This concludes the proof of the theorem. �

One well-known drawback of the discrepancy principle is the subop-
timality for higher-order source conditions, e.g., u† = (K ′(u†))∗K ′(u†)w.
Hence it has been of interest to develop alternative a posteriori rules which
achieve optimal convergence rates. We first give some basic estimates [284]
on the approximation error ‖uα − u†‖ and propagation error ‖uδα − uα‖,
which represent the nonlinear analogues for Theorem 3.9 and are important
for deriving convergence rates for a posteriori choice rules. In the proofs,
one crucial ingredient is the optimality equation for uα:

K ′(uα)∗(K(uα) − g†) + αuα = 0, (4.13)

which is valid if uα is an interior point of C.

Theorem 4.8. Let Assumption 4.2 hold with ρ = 2‖x†‖. If 3L‖w‖ < 2,
then

‖uα − u†‖ ≤
√
α‖w‖

2
√

1 − L‖w‖ and ‖K(uα) − g†‖ ≤ α‖w‖.

Proof. Let Aα = K ′(uα) and A = K ′(u†). Equation (4.13) implies

α‖uα − u†‖2 = α(uα − u†,−u†) + α(uα − u†, uα)

= − α(uα − u†, u†) + (Aα(u† − uα),K(uα) − g†).

Upon adding ‖K(uα) − g†‖2 on both sides, and appealing to the source
condition u† = A∗w from Assumption 4.2 and estimate (4.10), we arrive at

‖K(uα) − g†‖2 + α‖uα − u†‖2

= − α(g† +A(uα − u†) −K(uα), w) − α(K(uα) − g†, w)

+ (K(uα) +Aα(u† − uα) − g†,K(uα) − g†)

≤ α
L‖w‖

2
‖uα − u†‖2 + α‖w‖‖K(uα) − g†‖

+
L

2
‖uα − u†‖2‖K(uα) − g†‖.

It follows directly from the proof of Theorem 4.6, cf. Remark 4.3, that

‖K(uα) − g†‖ ≤ 2α‖w‖,
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and consequently

‖K(uα) − g†‖2 + α‖uα − u†‖2

≤ α
3L‖w‖

2
‖uα − u†‖2 + α‖w‖‖K(uα) − g†‖.

This together with the condition 3L‖w‖ < 2 implies ‖K(uα) − g†‖2 ≤
α‖w‖‖K(uα) − g†‖, i.e., the second estimate.

Now we use this estimate and Young’s inequality to obtain

‖K(uα) − g†‖2+α‖uα − u†‖2

≤ αL‖w‖‖uα − u†‖2 + α‖w‖‖K(uα) − g†‖

≤ αL‖w‖‖uα − u†‖2 +
α2‖w‖2

4
+ ‖K(uα) − g†‖2,

which gives (1 − L‖w‖)‖uα − u†‖2 ≤ α‖w‖2/4, and hence also the first
estimate. �

Now we estimate the propagation error ‖uδα − uα‖.
Theorem 4.9. Let Assumption 4.2 hold with ρ = δ/

√
α + 2‖x†‖. If

3L‖w‖ < 2, then

‖uδα − uα‖ ≤ 1√
1 − L‖w‖

δ√
α

and ‖K(uδα) − gδ + g† −K(uα)‖ ≤ δ.

Proof. By the minimizing property of uδα, we obtain

‖K(uδα) − gδ‖2 + α‖uδα‖2 ≤ ‖K(uα) − gδ‖2 + α‖uα‖2.

Adding both sides the expression

2(K(uδα) − gδ, g† −K(uα)) + ‖K(uα) − g†‖2 + α[−2(uδα, uα) + ‖uα‖2],

completing the square, and equation (4.13) yield

‖K(uδα) − gδ + g† −K(uα)‖2 + α‖uδα − uα‖2

≤ ‖g† − gδα‖2 + 2(K(uα) − g†,K(uα) −K(uδα)) + 2α(uα, uα − uδα)

= ‖g† − gδ‖2 + 2(K(uα) − g†,K(uα) +K ′(uα)(uδα − uα) −K(uδα))

≤ δ2 + L‖K(uα) − g†‖‖uδα − uα‖2.

In view of Theorem 4.8, we deduce

‖K(uδα) − gδ + g† −K(uα)‖2 + α‖uδα − uα‖2 ≤ δ2 + Lα‖w‖‖uδα − uα‖2.

Now the desired estimates follow directly from the condition L‖w‖ < 1. �
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Now we give two a posteriori rules circumventing the early saturation
issue of the discrepancy principle:

Υ1(α) = ‖(Rδα)1/2[K(uδα) − gδ]‖ = cδ, (4.14)

Υ2(α) =
‖(Rδα)1/2[K(uδα) − gδ]‖2

‖Rδα[K(uδα) − gδ]‖ = cδ, (4.15)

where c > 1 is a fixed constant. In the rules Υ1 and Υ2, the operator
Rδα is given by Rδα = α(Aδα(Aδα)∗ + αI)−1, and Aδα = K ′(uδα). The first
rule Υ1 was proposed by Scherzer et al [269], and it represents a nonlinear
extension of the rule due to Gfrerer [104]. The rule Υ2 is an extension of
the monotone error rule [283] for linear inverse problems to the nonlinear
case [284].

Both rules are based on error estimation. We first briefly derive the
rules. First, we note that the necessary optimality condition for uα:

K ′(uα)∗(K(uα) − g†) + αuα = 0,

which upon formal differentiation with respect to α yields

K ′(uα)∗K ′(uα)
duα
dα

+ (K ′(uα)∗)′(K(uα) − g†) + α
duα
dα

= −uα.
By ignoring the term involving (K ′(uα)∗)′, we get

duα
dα

≈ −(αI +K′(uα)∗K ′(uα))−1uα, (4.16)

Similarly, the weak form with uα − u† as a test function can be recast into

(K(uα) − g†,K ′(uα)(uα − u†)) ≈ α2

(
duα
dα

, uα − u†
)

+ α

(
K ′(uα)

duα
dα

,K ′(uα)(uα − u†)
)
.

(4.17)

By the above splitting procedure, the total error can be bounded from
above by 1

2
‖uα−u†‖2 + c δ

2

α
, cf. Theorem 4.9. Hence it is natural to choose

α such that

min 1
2
‖uα − u†‖2 + c

δ2

α

where c is a fixed positive constant. The necessary optimality condition for
this function is given by

cδ2 = α2

(
duα
dα

, uα − u†
)
.
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Inserting this into (4.17) yields

(K(uα)− g†,K ′(uα)(uα−u†)) ≈ cδ2 +α

(
K ′(uα)

duα
dα

,K ′(uα)(uα − u†)
)
.

Next we approximate K ′(uα)(uα−u†) by K(uα)−K(u†), and obtain from
the approximation for duα

dα
that

‖K(uα)− g†‖2 + α(K(uα)− g†,K ′(uα)(αI +K ′(uα)∗K ′(uα))−1uα) ≈ cδ2,

which upon rearrangements yields

α(K(uα) − g†, (αI +K ′(uα)K ′(uα)∗)−1(K(uα) − g†)) ≈ cδ2.

Finally, to arrive at a computable rule, we replace g† by gδ, and conse-
quently uα by uδα, we arrive at the rule Υ1:

α(K(uδα) − gδ, (αI +K ′(uδα)K ′(uδα)∗)−1(K(uδα) − gδ)) = cδ2.

Next we derive the monotone error rule. It looks for a computable
regularization parameter α∗ which is as small as possible and guarantees
the property d

dα‖uδα − u†‖2 > 0 for all α ∈ (α∗,∞). With

Aδα = K ′(uδα) and Rδα = α(αI +Aδα(Aδα)∗)−1,

we have

1
2

d

dα
‖uδα − u†‖2

=
(
uδα − u†,

duδα
dα

)
≈ (uδα − u†,−(αI + (Aδα)∗Aδα)−1uδα)

= (uδα − u†, α−1(αI + (Aδα)∗Aδα)−1(Aδα)∗(K(uδα) − gδ))

= α−2(Aδα(uδα − u†), Rδα(K(uδα) − gδ))

≈ α−2(K(uδα) − gδ + gδ − g†, Rδα(K(uδα) − gδ))

≥ α−2‖Rδα(K(uδα) − gδ)‖
(
‖(Rδα)

1
2 (K(uδα) − gδ)‖2

‖Rδα(K(uδα) − gδ)‖ − δ

)
.

In the derivations, we have employed (4.16) and the approximation
K ′(uδα)(uδα − u†) ≈ K(uδα) −K(u†). This suggests the following monotone
error rule for choosing a suitable α:

‖(Rδα)
1
2 (K(uδα) − gδ)‖2

‖Rδα(K(uδα) − gδ)‖ = cδ

for some c ≥ 1, which (approximately) ensures the desired relation d
dα

‖uδα−
u†‖2 ≥ 0. This gives the rule Υ2.
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The next result gives a lower bound for α(δ) determined by rules Υ1

and Υ2.

Lemma 4.1. Let α be chosen by rule Υ1 or Υ2 with c > 1, and Assumption
4.2 hold with ρ = δ/

√
α+ 2‖u†‖. If L‖w‖ < 1, then

α ≥ c− 1
‖w‖ δ.

Proof. For the rule Υ1, we deduce from ‖Rδα‖ ≤ 1 and Theorems 4.8 and
4.9 that

cδ = ‖(Rδα)1/2[K(uδα) − gδ]‖ ≤ ‖K(uδα) − gδ‖ ≤ δ + α‖w‖
which gives the desired assertion for rule Υ1. For rule Υ2, we use the
estimate

cδ =
‖(Rδα)1/2[K(uδα) − gδ]‖2

‖Rδα[K(uδα) − gδ]‖ ≤ ‖K(uδα) − gδ‖,
and the rest follows as above. �

The next result shows the convergence rate [284] for the rules Υ1 and
Υ2 under Assumption 4.2.

Theorem 4.10. Let α be chosen by rule Υ1 or Υ2 with c > 1, and As-
sumption 4.2 hold with ρ = δ/

√
α + 2‖u†‖. Further, assume that L‖w‖ is

sufficiently small such that 3L‖w‖ < 2 and

ε1 :=

√
L‖w‖

2
+ L‖w‖ +

L‖w‖
8
√

1 − L‖w‖
c+ 1
c− 1

< 1

hold. Then

‖uδα − u†‖ ≤ 1
1 − ε1

{
(c+ 1)1/2 + 1

2(c− 1)−1/2
}
‖w‖1/2δ1/2.

Proof. For convenience, we introduce the following notation
Aα = K ′(uα), Aδα = K ′(uδα),

Rδα = α(Aδα(Aδα)∗ + αI)−1,

R̂δα = α((Aδα)∗Aδα + αI)−1.

First we show the result for the rule Υ1. By the optimality condition for
uδα, we obtain

((Aδα)∗Aδα + αI)(uδα − u†)

= (Aδα)∗Aδα(uδα − u†) + α(uδα − u†)

= (Aδα)∗Aδα(uδα − u†) + (Aδα)∗(gδ −K(uδα)) − αu†

= − αu† + (Aδα)∗(gδ +Aδα(uδα − u†) −K(uδα)).
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Multiplying both sides of the identity by ((Aδα)∗Aδα + αI)−1 yields the
following error representation

uδα − u† = −R̂δαu† + ((Aδα)∗Aδα + αI)−1(Aδα)∗(gδ +Aδα(uδα − u†) −K(uδα)).

Now by the inequality

‖((Aδα)∗Aδα + αI)−1(Aδα)∗‖ ≤ 1
2
√
α
,

(4.10), and the triangle inequality, we deduce

‖uδα − u†‖ ≤ ‖R̂δαu†‖ +
1

2
√
α

(
δ +

L

2
‖uδα − u†‖2

)
≤ ‖R̂δαu†‖ +

1
2
√
α

(
δ +

L

2
δ + α‖w‖/2√
α
√

1 − L‖w‖‖u
δ
α − u†‖

)

≤ ‖R̂δαu†‖ +
1
2

√
‖w‖
c− 1

√
δ +

L‖w‖
8
√

1 − L‖w‖
c+ 1
c− 1

‖uδα − u†‖,

where the last line follows from the inequality δ/α ≤ ‖w‖/(c−1) in Lemma
4.1. Now by the Lipschitz continuity of K ′(u) from Assumption 4.2, source
condition and the estimate ‖R̂δα‖ ≤ 1, we obtain

‖R̂δαu†‖2 = (R̂δαu
†, R̂δα(Aδα)∗w) + (R̂δαu

†, R̂δα(A∗ − (Aδα)∗)w)

≤ (R̂δαu
†, R̂δα(Aδα)∗w) + ‖R̂δαu†‖L‖w‖‖uδα − u†‖,

which together with the implication c2 ≤ a+ bc⇒ c ≤ √
a+ b for a, b, c ≥ 0

and the estimate ‖(R̂δα)
1
2 ‖ ≤ 1 gives

‖R̂δαu†‖ ≤
√

(R̂δαu†, R̂δα(Aδα)∗w) + L‖w‖‖uδα − u†‖
≤ ‖(Rδα)3/2Aδαu

†‖1/2‖w‖1/2 + L‖w‖‖uδα − u†‖.
To estimate the term ‖(Rδα)3/2Aδαu†‖1/2, we appeal again to the optimality
condition for uδα to obtain

Aδα(Aδα)∗(K(uδα) − gδ) = −αAδαuδα.
Adding the expression α(K(uδα) − gδ) to both sides and then multiplying
by (Aδα(Aδα)∗ + αI)−1 yields

K(uδα) − gδ = Rδα(K(uδα) −Aδαu
δ
α − gδ)

= Rδα(K(uδα) +Aδα(u† − uδα) − gδ) −RδαA
δ
αu

†.

Multiplying by (Rδα)1/2 gives

−(Rδα)3/2Aδαu
† = (Rδα)1/2(K(uδα)−gδ)−(Rδα)3/2(K(uδα)+Aδα(u†−uδα)−gδ).
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Now by the definition of rule Υ1, we obtain

‖(Rδα)3/2Aδαu
†‖1/2 ≤

√
cδ + δ +

L

2
‖uδα − u†‖2

≤ √
c+ 1

√
δ +

√
L

2
‖uδα − u†‖.

Now the assertion for Υ1 follows from the preceding estimates.
To prove the assertion for Υ2, we note that the definition of Υ1 has only

been exploited in Lemma 4.1 and the last step. However, due to Lemma
4.1 and the relation Υ1(α) ≤ Υ2(α), these estimates are also valid for Υ2.
This completes the proof of the theorem. �

4.2.3 Structural properties

Lastly, we mention some structural properties of the functional Jα. In
general, the functional Jα is nonconvex, and have multiple local minima,
which represents one of the major computational inconveniences of the
approach for nonlinear inverse problems. The following result shows its
local convexity [203]. We denote by M = supu∈C ‖K ′(u)‖.
Theorem 4.11. Let Assumption 4.2 hold, and δ ≤ α/6L, 12L‖w‖ ≤ 1.
Then the functional Jα is strongly convex on the ball Br(uδα), with r =
α/(12ML), with the constant of strong convexity θ = α/4. Further, it is
convex on the ball Bα/(3LM)(uδα).

Proof. It is straightforward to show that

〈J ′
α(u) − J ′

α(v), u− v〉 = α‖u− v‖2 + 〈K ′(u)∗K(u) −K ′(u)∗K(v), u− v〉
+ 〈K ′(u)∗(K(v) − gδ) −K ′(v)(K(v) − gδ), u− v〉.

By the mean value theorem, we obtain

〈K ′(u)∗K(u) −K ′(u)K(v), u− v〉

= 〈K ′(u)∗
∫ 1

0

K ′(v + t(u− v))(u − v)dt, u − v〉

= 〈K ′(u)∗
∫ 1

0

[K ′(v + t(u− v)) −K ′(u)](u − v)dt, u− v〉

+ ‖K ′(u)(u− v)‖2 ≥ − 1
2
LM‖u− v‖3 ∀u, v ∈ C.

Further, there holds

〈K ′(u)∗(K(v) − gδ) −K ′(v)∗(K(v) − gδ), u− v〉
≤ ‖K ′(u)∗ −K ′(v)∗‖‖K(v) − gδ‖‖u− v‖.
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We note that

‖K ′(u)∗ −K ′(v)∗‖ = ‖K ′(u) −K ′(v)‖ ≤ L‖u− v‖
and by Theorem 4.6,

‖K(v) − gδ‖ ≤ ‖K(v) −K(uδα)‖ + ‖K(uδα) − gδ‖

≤ ‖
∫ 1

0

K ′(uδα + t(v − uδα))(v − uδα)dt‖ + δ + 2α‖w‖

≤M‖uδα − v‖ + δ + 2α‖w‖.
Consequently

|〈K ′(u)∗(K(v)−gδ) −K ′(v)∗(K(v) − gδ), u− v〉|
≤ L‖u− v‖2(M‖uδα − v‖ + δ + 2α‖w‖).

Combing the preceding estimates yields

〈J ′
α(u) − J ′

α(v), u − v〉 ≥ ‖u− v‖2
(
α− 1

2LM‖u− v‖
−LM‖uδα − v‖ − L(δ + 2α‖w‖)) ∀u, v ∈ C.

Now for all u, v ∈ Br(uδα), there holds ‖u− v‖ < 2r and ‖uδα− v‖ < r, and
hence

〈J ′
α(u) − J ′

α(v), u − v〉 ≥ ‖u− v‖2(α − 2LMr− L(δ + 2α‖w‖))
≥ α

2
‖u− v‖2 ∀u, v ∈ Br(uδα).

Hence Jα is strongly convex on the ball Br(uδα) with a constant of strong
convexity α/4. �

Corollary 4.1. The global minimizers to Jα are isolated.

Theorem 4.12. Let Assumption 4.2 hold, δ ≤ α/6L, 12L‖w‖ ≤ 1. The
gradient J ′

α has the Fejér property with parameter η = α/2 on B(uδα),
r = α/(3LM), i.e.,

〈J ′
α(u), u− uδα〉 ≥ η‖u− uδα‖2 ∀u ∈ Br(uδα).

Proof. We set v = uδα in the proof of Theorem 4.11. Accordingly we
estimate

|〈K ′(u)∗(K(uδα)−gδ)−K ′(uδα)∗(K(uδα)−gδ), u−uδα〉| ≤ L‖u−uδα‖2(δ+2α‖w‖).
Now with the equality J ′

α(uδα) = 0, we arrive at

〈J ′
α(u), u− uδα〉 ≥ ‖u− uδα‖2(α− 1

2
LMr − L(δ + 2α‖w‖))

≥ α
2 ‖u− uδα‖2 > 0 ∀u ∈ Br(uδα).

This completes the proof of the theorem. �
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The uniqueness of the Tikhonov minimizer to Jα is important for defin-
ing a posteriori rules, e.g., discrepancy principle. Hence, we shall briefly
discuss relevant sufficient conditions. It is known that the uniqueness is
guaranteed for a class of weakly nonlinear operators [59]. Below we describe
an approach developed in [176], which imposes the following assumption on
the minimum-norm solution u† and the operator K.

Assumption 4.3. The true solution u† and the operator K satisfy

(i) There is a number r > 4‖u†‖ such that Br(u†) ⊂ C.
(ii) There is a constant K2 such that for every (u, v, z) ∈ Br(u†)×Br(u†)×

X there is an element k(u, v, z) ∈ X such that

(K ′(u) −K ′(v))z = K ′(v)k(u, v, z),

‖k(u, v, z)‖ ≤ K2‖z‖‖u− v‖.

Theorem 4.13. Let Assumption 4.3 hold, c1 > 1 and α ≥ (c1δ)2 be chosen
such that c1r > 2, and τ0 := K2

c1
< 1. If ‖u†‖ is sufficiently small such that

K2‖u†‖ < 1 − τ0, then for δ > 0 sufficiently small, the functional Jα has a
unique solution.

Proof. Let ũδα be another solution of Jα. It follows directly from the
comparison Jα(ũδα) ≤ Jα(u†) that ‖ũδα‖ ≤ δ√

α
+ ‖u†‖. Hence for the choice

α ≥ (c1δ)2,

‖ũδα‖ ≤ 1
c1

+ ‖u†‖, (4.18)

since c1r ≥ 2, we have 1
c1

+ 2‖u†‖ < r, i.e., ũδα is an interior point of C.
Hence the following first-order optimality condition holds:

K ′(ũδα)∗(K(ũδα) − gδ) + αũδα = 0.

This together with the definition of uδα yields

‖K(uδα) −K(ũδα)‖2 + α‖uδα − ũδα‖2

= 2(K(uδα) −K(ũδα), gδ −K(ũδα)) + 2α(uδα − ũδα,−ũδα)

= 2(K(uδα) −K(ũδα) −K ′(ũδα)(uδα − ũδα), gδ −K(ũδα)).

Now by Assumption 4.3(ii), there holds

K(uδα) −K(ũδα) −K ′(ũδα)(uδα − ũδα) = K ′(ũδα)
∫ 1

0

k̃tdt,
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with k̃t = k(ũδα + t(uδα − ũδα), ũδα, uδα− ũδα) and ‖ ∫ 10 k̃tdt‖ ≤ K2
2 ‖uδα − ũδα‖2.

Using the optimality condition again, we obtain

‖K(uδα) −K(ũδα)‖2 + α‖uδα − ũδα‖2

≤ 2(
∫ 1

0

k̃tdt,K
′(ũδα)∗(gδ −K(uδα)))

= 2α(
∫ 1

0

k̃tdt, ũ
δ
α) ≤ αK2‖ũδα‖‖uδα − ũδα‖2.

Hence it suffices to show 1 −K2‖ũδα‖ > 0, which however follows directly
from the assumption and (4.18). �

Corollary 4.2. Let the assumptions in Theorem 4.13 hold. Then the map-
ping α �→ uδα is continuous, as is the mapping α �→ ‖K(uδα) − gδ‖.
Proof. By Theorem 4.13, the minimizer to Jα is unique. Let {αk} be any
sequence converging to α, and {uk} be the sequence of minimizers {Jαk

}.
Then by repeating the arguments in the proof of Theorem 4.2, the whole
sequence {uk} converges weakly to uδα, and further ‖uk‖ → ‖uδα‖. This
completes the proof of the corollary. �

The last result gives an upper bound on the regularization parameter α
selected by the discrepancy principle [300], generalizing Theorem 3.17.

Theorem 4.14. Let the operator K be radially differentiable, i.e.,

lim
t→0

K(uδα + tuδα) −K(uδα)
t

= K̃uδα

for some K̃ ∈ L(X,Y ). Then there holds

α ≤ ‖K̃uδα‖
‖uδα‖2

‖K(uδα) − gδ‖.

Proof. By the minimizing property of uδα, for sufficiently small t, |t| ≤ γ,
γ > 0, we have

Jα(uδα + tuδα) − Jα(uδα) ≥ 0.

Further,

‖(1 + t)uδα‖2 − ‖uδα‖2 = 2t‖uδα‖2 + t2‖uδα‖2,

and

‖K(uδα + tuδα) − gδ‖2 − ‖K(uδα) − gδ‖2 = 2‖K(uδα) − gδ‖ζ + ζ2,
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with

ζ = ‖K(uδα + tuδα) − gδ‖ − ‖K(uδα) − gδ‖.
By the triangle inequality, |ζ| ≤ ‖K(uδα + tuδα) − K(uδα)‖ and thus
limt→0

|ζ|
|t| ≤ ‖K̃uδα‖. By choosing t < 0 sufficiently small, we get

2‖K(uδα) − gδ‖ζ + ζ2 ≥ α(−2t+ t2)‖uδα‖2 ≥ 0,

and hence

α ≤ 2‖K(uδα) − gδ‖|ζ| + ζ2

(−2t+ t2)‖uδα‖2
.

Now letting t→ 0−, we arrive at the desired assertion. �

Remark 4.5. The radial differentiability is weaker than Gâteaux differen-
tiability. In the latter case, the estimate can be deduced directly from the
optimality condition.

4.3 A new convergence rate analysis

In this section, we develop a new approach to convergence rate analysis
in the presence of convex constraints from the viewpoint of optimization
theory, along the line of [58, 243]. We begin with a second-order necessary
condition for the minimizer uα. Then we propose using a second-order
sufficient condition as a nonlinearity condition, show its connection with
classical conditions, establish its role in deriving basic error estimates and
convergence rate analysis. In Section 4.4, we shall illustrate the approach
on a class of nonlinear parameter identifications.

4.3.1 Necessary optimality condition

Consider the following generic constrained Tikhonov regularization formu-
lation

min
u∈C

φ(u, g†) + αψ(u),

where the fidelity φ(u, g) is differentiable in the first argument, the penalty
ψ(u) is convex and (weakly) lower semi-continuous, and the constraint set
C is convex and closed.

Let uα be a minimizer of the problem, i.e.,

φ(uα, g†) + αψ(uα) ≤ φ(v, g†) + αψ(v) ∀v ∈ C.
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Since ψ is convex, for v = uα + t (u− uα) ∈ C with u ∈ C, 0 < t ≤ 1

φ(v, g†) − φ(uα, g†)
t

≥ −α ψ(v) − ψ(uα)
t

≥ −α (ψ(u) − ψ(uα)).

By letting t→ 0+, we obtain the necessary optimality condition

〈φ′(uα, gδ), u − uα〉 + α(ψ(u) − ψ(uα)) ≥ 0 ∀u ∈ C.
Consequently, it follows from the convexity of ψ that if there exists an
element ξα ∈ ∂ψ(uα) and let

µα =
1
α

(
φ′(uα, g†) + αξα

)
,

then we have 
φ′(uα, g†) + αξα − αµα = 0,
〈µα, u− uα〉 ≥ 0 ∀u ∈ C,
ξα ∈ ∂ψ(uα).

(4.19)

Thus, µα ∈ X∗ serves as a Lagrange multiplier for the constraint C, cf.
Theorem 3.2 of [231]. If ψ′(uα) ∈ X∗ exists, then ξα = ψ′(uα) and thus
µα = 1

α
φ′(uα, g†)+ψ′(uα). In a more general constrained optimization, the

existence of a Lagrange multiplier µα ∈ X∗ is guaranteed by the regular
point condition [231, 163]. The inequality (4.19) is the first-order optimal-
ity condition. We refer to [231, 163] for a general theory of second-order
conditions.

4.3.2 Source and nonlinearity conditions

Now we turn to problem (4.7). We will propose a new nonlinearity condition
based on a second-order sufficient optimality condition. To this end, we first
introduce the second-order error E(u, ũ) of the operator K defined by

E(u, ũ) = K(u) −K(ũ) −K ′(ũ)(u− ũ).

E(u, ũ) quantitatively measures the degree of nonlinearity, or pointwise lin-
earization error, of the operatorK, and will be used in deriving a nonlinear-
ity condition. We also recall the first-order necessary optimality condition
for uα, cf., (4.19){

K ′(uα)∗(K(uα) − g†) + αuα − αµα = 0,
〈µα, u− uα〉 ≥ 0 ∀u ∈ C, (4.20)

where µα is a Lagrange multiplier for the constraint C. In view of the
differentiability of the penalty, the Lagrange multiplier µα is explicitly given
by µα = uα + 1

αK
′(uα)∗(K(uα) − g†).
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Now we derive a second-order necessary optimality condition for prob-
lem (4.7).

Lemma 4.2. The necessary optimality condition of a minimizer uα to the
functional Jα with the exact data g† is given by: for any u ∈ C

1
2‖K(uα) −K(u)‖2 + α

2 ‖uα−u‖2 + α〈µα, u− uα〉
+ 〈K(uα) − g†, E(u, uα)〉 ≥ 0,

(4.21)

where µα is a Lagrange multiplier associated with the constraint C.

Proof. By the minimizing property of uα, we have that for any u ∈ C
1
2‖K(uα) − g†‖2 + α

2 ‖uα‖2 ≤ 1
2‖K(u)− gδ‖2 + α

2 ‖u‖2.

Straightforward computations show the following two elementary identities
1
2‖uα‖2 − 1

2‖u‖2 = − 1
2‖uα − u‖2 − 〈uα, u− uα〉,

1
2
‖K(uα) − g†‖2 − 1

2
‖K(u)− g†‖2 = − 1

2
‖K(uα) −K(u)‖2

− 〈K(uα) − g†,K(u) −K(uα)〉.
Upon substituting these two identities, we arrive at

− 1
2‖K(uα) −K(u)‖2 − α

2 ‖uα − u‖2 − α〈uα, u− uα〉
− 〈K(uα) − g†,K(u) −K(uα)〉 ≤ 0.

(4.22)

Now, the optimality condition for the minimizer uα (cf. (4.20)) is given by

K ′(uα)∗(K(uα) − g†) + αuα − αµα = 0,

where µα is a Lagrange multiplier for the constraint C. Consequently,

α〈uα, u− uα〉 + 〈K(uα) − g†,K ′(uα)(u − uα)〉 − α〈µα, u− uα〉 = 0.

Together with this identity and the second-order error E(u, uα), inequality
(4.22) yields immediately the desired assertion. �

Remark 4.6. The case of a general convex ψ can be handled similarly
using the generalized Bregman distance. In particular, repeating the proof
in Lemma 4.2 gives the following necessary optimality condition

1
2‖K(uα) −K(u)‖2 + ηdξα,µα(u, uα) + 〈K(uα) − g†, E(u, uα)〉 ≥ 0

where ξα ∈ ψ(uα) and µα is a Lagrangian multiplier. Then all the results in
this section can be adapted to a general penalty ψ by replacing 1

2‖u− ũ‖2

with the Bregman distance dξ,µ(u, ũ).
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One salient feature of the optimality condition (4.21) is that it is true
for any u ∈ C and thus it is a global one. Also, the term 〈µα, u − uα〉 is
always nonnegative. The necessary condition (4.21) may be strengthened
as follows: there exist some cs ∈ [0, 1) and ε′ > 0 such that

1
2
‖K(uα) −K(u)‖2 + α

2
‖uα − u‖2 + 〈K(uα) − g†, E(u, uα)〉

+ α〈µα, u− uα〉 ≥ cs

2
‖K(uα) −K(u)‖2 + ε′α

2
‖u− uα‖2 ∀u ∈ C.

(4.23)

That is, the left hand side of (4.23) is coercive in the sense that it is bounded
from below by the positive term cs

2 ‖K(uα)−K(u)‖2 + ε′α
2 ‖u− uα‖2. This

condition is analogous to, but not identical with, the positive definiteness
requirement on the Hessian in classical second-order conditions in optimiza-
tion theory [231, 163]. Nonetheless, we shall call condition (4.21)/(4.23) a
second-order necessary/sufficient optimality condition.

Note that there always holds uα → u† subsequentially as α → 0†, cf.
Theorem 4.5. Now we further assume that g†−K(uα)

α → w weakly and
µα → µ† weakly in suitable spaces as α → 0+. Then by taking limit in
equation (4.20) as α→ 0+, we arrive at a source condition: There exists a
w ∈ H and µ† ∈ X∗ such that{−K ′(u†)∗w + u† − µ† = 0,

〈µ†, u− u†〉 ≥ 0 ∀u ∈ C. (4.24)

Now if the source representer w does satisfy w = limα→0
g†−K(uα)

α

(weakly), then asymptotically, we may replace K(uα) − g† in (4.23) with
−αw, divide (4.23) by α and take α→ 0 to obtain the following nonlinearity
condition: There exists some ε > 0 and cr ≥ 0 such that

cr

2 ‖K(u) −K(u†)‖2 + 1
2‖u− u†‖2 − 〈w,E(u, u†)〉

+ 〈µ†, u− u†〉 ≥ ε
2
‖u− u†‖2 ∀u ∈ C, (4.25)

upon assuming the convergence of 1−cs

α to a finite constant cr. Here the
constant cr may be made very large to accommodate the nonlinearity of
the operator K. The only possibly indefinite term is 〈w,E(u, u†)〉. Hence,
the analysis of 〈w,E(u, u†)〉 is key to demonstrating (4.25) for concrete
problems.

Remark 4.7. The source condition (4.24) is equivalent to assuming the
existence of a Lagrange multiplier w (for the equality constraintK(u) = g†)
for the minimum-norm problem

min ‖u‖ subject to K(u) = g† and u ∈ C,
and, hence, the source condition (4.24) represents a necessary optimality
condition for the minimum-norm solution u†.
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Remark 4.8. On the nonlinearity condition (4.25), we have the following
two remarks.

(1) In case of constrained Tikhonov regularization, we may have w = 0,
which results in 〈w,E(u, u†)〉 = 0 and thus the nonlinearity condition
(4.25) automatically holds. For example, if C = {u : u ≥ c}, with c

being a positive constant, and u† = c is the exact solution (i.e., g† =
K(u†)), then w = 0 and µ† = u† satisfy the source condition (4.24).

(2) One classical nonlinearity condition is from Assumption 4.2, which re-
quires that K′(u) is (locally) Lipschitz continuous with a Lipschitz
constant L and further

L‖w‖ < 1. (4.26)

There are several other nonlinearity conditions. A very similar condi-
tion [133] is given by ‖E(u, ũ)‖ ≤ L

2 ‖u − ũ‖2 with L‖w‖ < 1, which
clearly implies condition (4.25). Another popular condition reads

‖E(u, ũ)‖ ≤ cE‖K(u) −K(ũ)‖‖u− ũ‖. (4.27)

It has been used for analyzing iterative regularization methods. Clearly,
it implies (4.25) for cr > (cE‖w‖)2. We note that it also implies (4.23)
after applying Young’s inequality.

The following lemma shows that condition (4.25) is weaker than (4.26).
Similarly one can show this for condition (4.27). Therefore, the proposed
approach does cover the classical results.

Lemma 4.3. Condition (4.26) implies condition (4.25).

Proof. A direct estimate shows that under condition (4.26), we have

|〈w,E(u, u†)〉| ≤ ‖w‖‖E(u, u†)‖ ≤ ‖w‖ · L2 ‖u− u†‖2

by ‖E(u, u†)‖ ≤ L
2
‖u − u†‖2 from the Lipschitz continuity of the operator

K ′(u). Consequently,

1
2‖u− u†‖2 − 〈w,E(u, u†)〉 + 〈µ†, u− u†〉

≥ 1
2
‖u− u†‖2 − 1

2
L‖w‖‖u− u†‖2 + 〈µ†, u− u†〉

≥ 1−L‖w‖
2 ‖u− u†‖2,

by noting the relation 〈µ†, u − u†〉 ≥ 0 for any u ∈ C. This shows that
condition (4.25) holds with ε = 1 − L‖w‖ > 0 and cr = 0. �
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Remark 4.9. The condition L‖w‖ < 1 is used for bounding the nonlinear-
ity term 〈w,E(uα, u†)〉 from above. This is achieved by the Cauchy-Schwarz
inequality, and thus the estimate might be too pessimistic since in general
〈w,E(u, u†)〉 can be either indefinite or negative. This might explain the
effectiveness of Tikhonov regularization in practice even though assumption
(4.26) on the solution u† and the operator K(u) may be not verified.

The drastic difference from the classical source condition is further illu-
minated by the following one-dimensional example: the smallness assump-
tion (L‖w‖ < 1) in the classical condition (4.26) is violated while (4.25) is
always true.

Example 4.4. Let the nonlinear operator K : R → R be given by

K(u) = εu(1 − u),

where ε > 0. The solution depends sensitively on u if ε is very small, hence
it mimics the ill-posed behavior of inverse problems. Let the exact data g†

(necessarily smaller than ε
4
) be given, then the minimum-norm solution u†

is given by

u† = 1
2

(
1 −
√

1 − 4ε−1g†
)
.

It is easy to verify that

K ′(u†) = ε(1 − 2u†),

and

E(u, u†) = K(u) −K(u†) −K ′(u†)(u − u†)

= εu(1 − u) − εu†(1 − u†) − ε(1 − 2u†)(u− u†)

= −ε(u− u†)2.

Now the source conditionK ′(u†)∗w = u† implies that the source representer
w is given by w = u†

ε(1−2u†) . Therefore, the nonlinearity term 〈w,E(u, u†)〉
is given by

〈w,E(u, u†)〉 =
−u†

1 − 2u†
(u− u†)2

which is smaller than zero for a fixed but sufficiently small g† > 0. More-
over, the prefactor

∣∣∣ u†
1−2u†

∣∣∣ can be made arbitrarily large, thereby indicating
that the smallness assumption (L‖w‖ < 1) can never be satisfied then. Ac-
tually, the Lipschitz constant L of K ′(u) is L = 2ε, and L|w| = 2u†

|1−2u†| ,
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which can be arbitrarily large (if u† is sufficiently close to 1
2), and thus

(4.26) is violated. Hence (4.25) is indeed weaker.
This simple example also sheds light into the structure of the second-

order sufficient condition (4.23). A direct calculation shows

〈K(uα) − g†, E(u, uα)〉 = α
uα

1 − 2uα
(u− uα)2.

Observe that the form of 1
α 〈K(uα) − g†, E(u, uα)〉 coincides with that of

−〈w,E(u, u†)〉. With this explicit representation at hand, the nonnegativ-
ity of the term 〈K(uα)− g†, E(u, uα)〉, and thus the second-order sufficient
condition (4.23), can be numerically verified for a given g† and every pos-
sible α since the Tikhonov minimizer uα can be found by solving a cubic
equation.

4.3.3 Convergence rate analysis

Now we illustrate conditions (4.24) and (4.25) for convergence rate analysis.
First, we give a convergence rates result for a priori parameter choices.

Theorem 4.15. Under conditions (4.24) and (4.25), we have the following
estimates

‖uδα − u†‖ ≤ ε−
1
2

(√
1+2crα

α δ +
√

α
1−2crα

‖w‖ +
√

2‖w‖δ
)
,

‖K(uδα) − gδ‖ ≤ 1√
1−2crα

(√
1 + 2crαδ + 2√

1−2crα
α‖w‖ +

√
2‖w‖αδ

)
.

Proof. In view of the optimality of the minimizer uδα and the source
condition (4.24), we have

1
2
‖K(uδα) − gδ‖2 + α

2
‖uδα − u†‖2

≤ 1
2‖K(u†) − gδ‖2 − α〈u†, uδα − u†〉

= 1
2‖K(u†) − gδ‖2 − α〈w,K ′(u†)(uδα − u†)〉 − α〈µ†, uδα − u†〉.

With the help of the second-order error E(u, ũ), we deduce

1
2
‖K(uδα) − gδ‖2 + α

2
‖uδα−u†‖2 − α〈w,E(uδα, u

†)〉 + α〈µ†, uδα − u†〉
≤ 1

2
‖K(u†) − gδ‖2 − α〈w,K(uδα) −K(u†)〉.
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Now from the nonlinearity condition (4.25) and the Cauchy-Schwarz and
Young’s inequalities, we obtain

1 − 2crα
2

‖K(uδα) − gδ‖2 +
εα

2
‖uδα − u†‖2

≤ 1 + 2crα
2

‖K(u†) − gδ‖2 − α〈w,K(uδα) −K(u†)〉

≤ 1 + 2crα
2

δ2 + α‖w‖ (‖K(uδα) − gδ‖ + ‖g† − gδ‖)
≤ 1 + 2crα

2
δ2 + α‖w‖‖K(uδα) − gδ‖ + αδ‖w‖,

where we have made use of the inequality

‖K(uδα) −K(u†)‖2 ≤ 2‖K(uδα) − gδ‖2 + 2‖K(u†) − gδ‖2.

Using Young’s inequality again and the implication c2 ≤ a2 + b2(a, b, c ≥
0) ⇒ c ≤ a + b gives the estimate for ‖uδα − u†‖. Meanwhile, by ignoring
the term ε

2
‖uδα−u†‖2, we deduce from the implication c2 ≤ a2 +bc(a, b, c ≥

0) ⇒ c ≤ √
a+ b the estimate on ‖K(uδα) − gδ‖. �

Hence the a priori choice α ∼ δ achieves a convergence rate O(δ
1
2 ) and

O(δ) for the error ‖uδα−u†‖ and the discrepancy ‖K(uδα)−g†‖, respectively,
which coincide with that for the classical approach, cf. Theorem 4.6.

Next we illustrate the proposed approach on the discrepancy principle
(4.12). The next result shows that the new approach recovers the canonical
convergence rate O(δ

1
2 ), cf. Theorem 4.7.

Theorem 4.16. Let conditions (4.24) and (4.25) be fulfilled, and α be de-
termined by the discrepancy principle (4.12). Then the solution uδα satisfies

‖uδα − u†‖ ≤ 1√
ε

(√
2(1 + c)‖w‖δ 1

2 + (1 + c)
√
crδ
)
.

Proof. The minimizing property of uδα and the defining relation (4.12)
imply ‖uδα‖2 ≤ ‖u†‖2. Upon utilizing the source condition (4.24) and the
second-order error E(uδα, u

†), we deduce
1
2
‖uδα − u†‖2 ≤ −〈u†, uδα − u†〉

= −〈K ′(u†)∗w + µ†, uδα − u†〉
= −〈w,K ′(u†)(uδα − u†)〉 − 〈µ†, uδα − u†〉
= −〈w,K(uδα) −K(u†)〉 + 〈w,E(uδα, u

†)〉 − 〈µ†, uδα − u†〉.
Now the nonlinearity condition (4.25) yields

ε
2
‖uδα − u†‖2 ≤ ‖w‖‖K(uδα) −K(u†)‖ + cr

2
‖K(uδα) −K(u†)‖2

≤ (c+ 1)‖w‖δ + cr

2
(1 + c)2δ2,
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where we have used the triangle inequality and (4.12) as follows

‖K(uδα) −K(u†)‖ ≤ ‖K(uδα) − gδ‖ + ‖K(u†) − gδ‖ ≤ (1 + c)δ.

The desired estimate follows immediately from these inequalities. �
We derive two basic estimates under the source condition (4.24) and

the nonlinearity condition (4.25): the approximation error ‖uα − u†‖ due
to the use of regularization and the propagation error ‖uδα − uα‖ due to
the presence of data noise. These estimates are useful for a posteriori
convergence rate analysis.

Lemma 4.4. Assume that conditions (4.24) and (4.25) hold. Then the
approximation error ‖uα − u†‖ satisfies

‖uα − u†‖ ≤ ε−
1
2 ‖w‖

√
α√

1 − crα
and ‖K(uα) − g†‖ ≤ 2α

1 − crα
‖w‖.

Moreover, if there exists some ε′ > 0 independent of α such that condition
(4.23) holds for all u ∈ C, then the propagation error ‖uδα − uα‖ satisfies

‖uδα − uα‖ ≤ 1√
ε′cs

δ√
α

and ‖K(uδα) −K(uα)‖ ≤ 2δ
cs
.

Proof. The minimizing property of uα and the relation g† = K(u†) imply
1
2‖K(uα) − g†‖2 + α

2 ‖uα‖2 ≤ α
2 ‖u†‖2.

The source condition (4.24) and Cauchy-Schwarz inequality give
1
2
‖K(uα) − g†‖2 + α

2
‖uα − u†‖2

≤− α〈u†, uα − u†〉
= − α〈w,K ′(u†)(uα − u†)〉 − α〈µ†, uα − u†〉
= − α〈w,K(uα) − g†〉 + α〈w,E(uα, u†)〉 − α〈µ†, uα − u†〉
≤ α‖w‖‖K(uα) − g†‖ + α〈w,E(uα, u†)〉 − α〈µ†, uα − u†〉.

By appealing to the nonlinearity condition (4.25), we arrive at
1 − crα

2
‖K(uα) − g†‖2 +

εα

2
‖uα − u†‖2 ≤ α‖w‖‖K(uα) − g†‖.

Consequently, by ignoring the term εα
2 ‖uα − u†‖2, we derive the estimate

‖K(uα) − g†‖ ≤ 2α
1 − crα

‖w‖,
and meanwhile, by Young’s inequality, we have

1 − crα

2
‖K(uα) − g†‖2 +

εα

2
‖uα − u†‖2

≤ 1
2(1 − crα)

α2‖w‖2 +
1 − crα

2
‖K(uα) − g†‖2.
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This shows the first assertion.
Next we turn to the propagation error ‖uδα−uα‖. We use the optimality

of the minimizer uδα to get
1
2‖K(uδα)−gδ‖2+ α

2 ‖uδα−uα‖2 ≤ 1
2‖K(uα)−gδ‖2−α〈uα, uδα−uα〉. (4.28)

Upon substituting the optimality condition of uα (cf. (4.20)), i.e.,

αuα = −K ′(uα)∗(K(uα) − g†) + αµα,

into (4.28), we arrive at
1
2‖K(uδα) − gδ‖2 + α

2 ‖uδα − uα‖2

≤ 1
2‖K(uα) − gδ‖2 + 〈K(uα) − g†,K ′(uα)(uδα − uα)〉 − α〈µα, uδα − uα〉

= 1
2‖K(uδα) − gδ‖2 + 1

2‖K(uδα) −K(uα)‖2− 〈K(uδα) − gδ,K(uδα) −K(uα)〉
+ 〈K(uα) − g†,K ′(uα)(uδα − uα)〉 − α〈µα, uδα − uα〉.

Now the second-order error E(uδα, uα) and the Cauchy-Schwarz inequality
yield

1
2
‖K(uδα) −K(uα)‖2 + α

2
‖uδα − uα‖2 + α〈µα, uδα − uα〉

≤ − 〈K(uα) − gδ,K(uδα) −K(uα)〉 + 〈K(uα) − g†,K ′(uα)(uδα − uα)〉
= 〈gδ − g†,K(uδα) −K(uα)〉 − 〈K(uα) − g†, E(uδα, uα)〉
≤ ‖gδ − g†‖‖K(uδα) −K(uα)‖ − 〈K(uα) − g†, E(uδα, uα)〉.

Consequently, we have
1
2
‖K(uδα) −K(uα)‖2 + α

2
‖uδα−uα‖2 + 〈K(uα) − g†, E(uδα, uα)〉

+ α〈µα, uδα − uα〉 ≤ δ‖K(uδα) −K(uα)‖.
Finally, the second-order sufficient optimality condition (4.23) implies

‖K(uδα) −K(uα)‖ ≤ 2δ
cs

and ‖uδα − uα‖ ≤ 1√
ε′cs

δ√
α
.

This completes the proof of the lemma. �

Now we can derive convergence rates for a posteriori choice rules, i.e.
the balancing principle and Hanke-Raus rule. The balancing principle,
introduced in [154] and discussed in Section 3.5, chooses an optimal regu-
larization parameter α by minimizing

α = arg min
α∈[0,‖K‖2]

{
Φ(α) :=

F 1+γ(α)
α

}
, (4.29)

where F (α) = Jα(uδα) is the value function, and γ > 0 is a fixed constant.
First, we give an a posteriori error estimate for the approximation uδα.
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Theorem 4.17. Let the conditions in Lemma 4.4 hold, α be determined
by rule (4.29), and δ∗ = ‖K(uδα) − gδ‖ be the realized residual. Then the
following estimate holds

‖uδα − u†‖ ≤ c

(
ε−

1
2 + ε′−

1
2
F

γ+1
2 (δ)

F
γ+1
2 (α)

)
max(δ, δ∗)

1
2 .

Proof. By the triangle inequality, we have the error decomposition

‖uδα − u†‖ ≤ ‖uδα − uα‖ + ‖uα − u†‖.
It suffices to bound the approximation error ‖uα−u†‖ and the propagation
error ‖uδα − uα‖. For the former, we have from the source condition (4.24)
(cf. the proof of Lemma 4.4) that

1
2‖uα − u†‖2 ≤ −〈w,K ′(u†)(uα − u†)〉 − 〈µ†, uα − u†〉

= −〈w,K(uα) −K(u†)〉 + 〈w,E(uα, u†)〉 − 〈µ†, uα − u†〉.
Consequently, we get

1
2‖uα − u†‖2 − 〈w,E(uα, u†)〉 + 〈µ†, uα − u†〉 ≤ ‖w‖‖K(uα) − g†‖.

However, by the triangle inequality and Lemma 4.4, the term ‖K(uα)−g†‖
can be estimated by

‖K(uα) − g†‖ ≤ ‖K(uα) −K(uδα)‖ + ‖K(uδα) − gδ‖ + ‖gδ − g†‖
≤ 2δ
cs

+ δ∗ + δ ≤ 2 + 2cs
cs

max(δ, δ∗).

This together with the nonlinearity condition (4.25) yields
ε
2‖uα − u†‖2 ≤ ‖w‖‖K(uα) − g†‖ + cr

2 ‖K(uα) − g†‖2,

i.e.,

‖uα − u†‖ ≤ 1√
ε

(
2
√

1 + cs√
cs

√
‖w‖max(δ, δ∗)

1
2 +

2 + 2cs
cs

√
cr max(δ, δ∗)

)
.

Next we estimate the propagation error ‖uδα−uα‖. The minimizing property
of the selected parameter α implies 1

α
≤ Fγ+1(δ)

Fγ+1(α)
1
δ
. By Lemma 4.4, we have

‖uδα − uα‖ ≤ 1√
ε′

1√
csα

δ ≤ 1√
csε′

F
γ+1

2 (δ)

F
γ+1
2 (α)

δ
1
2

≤ 1√
csε′

F
γ+1
2 (δ)

F
γ+1
2 (α)

max(δ, δ∗)
1
2 .

The desired estimate follows from this. �
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We note that both δ and δ∗ are naturally bounded, so the constant c
in Theorem 4.17 can be made independent of max(δ, δ∗). The estimate
provides an a posteriori check of the selected parameter. Nonetheless, its
consistency remains unaddressed, even for linear inverse problems. We
make a first attempt to this issue. First, we show a result on the realized
residual δ∗.

Lemma 4.5. Let the minimizer α ≡ α(δ) of rule (4.29) be realized in
(0, ‖K‖2). Then there holds

‖K(uδα) − gδ‖ → 0 as δ → 0.

Proof. By virtue of Theorem 3.23, the following balancing equation

γα‖uδα‖2 = ‖K(uδα) − gδ‖2

holds at the local minimizer α. This together with the optimality of the
selected parameter α that

[(1 + γ−1)‖K(uδα) − gδ‖2]γ+1

α
=
F γ+1(α)

α
≤ F γ+1(α̃)

α̃
, (4.30)

for any α̃ ∈ [0, ‖K‖2]. However, with the choice α̃ = δ and by the optimality
of the minimizer uδα̃, we have

F (α̃) ≡ 1
2‖K(uδα̃) − gδ‖2 + α̃

2 ‖uδα̃‖2

≤ 1
2
‖K(u†) − gδ‖2 + α̃

2
‖u†‖2

≤ δ2

2 + δ‖u†‖2 ∼ δ.

Hence, by noting the condition γ > 0 and the a priori bound α ∈ [0, ‖K‖2],
we deduce that the rightmost term in (4.30) tends to zero as δ → 0. This
shows the desired assertion. �

We can now state a consistency result.

Theorem 4.18. Let there exist some M > 0 such that ‖u†‖ ≤ M , and
the assumption in Lemma 4.5 be fulfilled under the constraint C = {u ∈
X : ‖u‖ ≤ M}. If the operator K is weakly closed and injective, then the
sequence {uδα(δ)}δ of solutions converges weakly to u†.

Proof. Lemma 4.5 implies ‖K(uδα) − gδ‖ → 0 as δ → 0. The a priori
bound ‖uδα‖ ≤ M from the constraint C implies the existence of a sub-
sequence of {uδα}, also denoted by {uδα}, and some u∗ such that uδα → u∗

weakly. However, the sequential weak closedness of K and weak lower semi-
continuity of norms yield ‖K(u∗) − g†‖ = 0. Hence, K(u∗) = g†, which
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together with the injectivity of the operator K implies u∗ = u†. Since
every subsequence has a subsequence converging weakly to u†, the whole
sequence converges weakly to u†. �

Remark 4.10. Hence, the balancing principle is consistent provided that
there exists a known upper bound on the solution u†, which is often avail-
able from physical considerations. This provides partial justification of its
encouraging empirical results. In view of the uniform bound on the sequence
{α(δ)} in the defining relation (4.29), {α(δ)} naturally contains a conver-
gent subsequence. However, it remains unclear whether the (sub)sequence
{α(δ)} will also tend to zero as δ → 0.

The Hanke-Raus rule [125] is based on error estimation: the squared
residual ‖K(uδα)− gδ‖2 divided by the regularization parameter α behaves
like an estimate for the total error (cf. Theorem 4.15). Hence, it chooses
an optimal regularization parameter α by

α∗ = arg min
α∈[0,‖K‖2]

‖K(uδα) − gδ‖2

α
. (4.31)

We have the following a posteriori error estimate for the rule (4.31).

Theorem 4.19. Let the conditions in Lemma 4.4 hold, α be determined by
rule (4.31), and δ∗ = ‖K(uδα) − gδ‖ �= 0 be the realized residual. Then for
any small noise level δ, there holds

‖uδα − u†‖ ≤ c
(
ε−

1
2 ‖w‖ 1

2 + ε′−
1
2 δ
δ∗

)
max(δ, δ∗)

1
2 .

Proof. By the proof of Theorem 4.17, it suffices to estimate the error
‖uδα − uα‖. The definitions of α and δ∗ indicate δ2∗

α
≤ ‖K(uδ

α̃)−gδ‖2

α̃
for any

α̃ ∈ [0, ‖K‖2]. By taking α̃ = δ in the inequality and noting Lemma 4.4,
we deduce

α−1 ≤ δ−2
∗ δ−1‖K(uδδ) − gδ‖2

≤ δ−2
∗ δ−1
(‖K(uδδ) −K(uδ)‖ + ‖K(uδ) − g†‖ + ‖g† − gδ‖)2

≤ δ−2
∗ δ−1

(
2δ
cs

+
2δ

1 − 2crδ
‖w‖ + δ

)2

=
(

2 + cs
cs

+
2

1 − 2crδ
‖w‖
)2

δδ−2
∗ .
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Using again Lemma 4.4, we arrive at the following estimate

‖uδα − uα‖ ≤ 1√
csε′

1√
α
δ

≤ 1√
csε′

δ

δ∗

(
2 + cs
cs

+
2

1 − 2crδ
‖w‖
)
δ

1
2

≤ 1√
csε′

δ

δ∗

(
2 + cs
cs

+
2

1 − 2crδ
‖w‖
)

max(δ, δ∗)
1
2 .

After setting c = max(2
√

1+cs√
cs

√‖w‖ + 2+2cs

cs

√
cr max(δ, δ∗)

1
2 , 1√

cs
( 2+cs

cs
+

2
1−2crδ

‖w‖)), the desired assertion follows from the triangle inequality. �

4.4 A class of parameter identification problems

Now we revisit conditions (4.24) and (4.25) for a general class of nonlinear
parameter identification problems, and illustrate their features by using the
structure of the adjoint operator K ′(u†)∗. Then we specialize to problems
with bilinear structures, and show the unnecessity of the source representer
w for (numerically) evaluating the nonlinearity term 〈w,E(u, u†)〉. Finally,
we describe several concrete examples.

4.4.1 A general class of nonlinear inverse problems

Generically, parameter identification problems can be described by{
e(u, y) = 0,
K(u) = Cy(u),

where e(u, y) : X × Y → Y ∗ denotes a (differential) operator which is
differentiable with respect to both arguments u and y, and the derivative
ey is assumed to be invertible. The notation y(u) ∈ Y refers to the unique
solution to the operator equation e(u, y) = 0 for a given u, and the operator
C is linear and bounded. Typically, the operatorC represents an embedding
or trace operator.

To make the source condition (4.24) more precise and tangible, we com-
pute the derivativeK ′(u)δu (with the help of the implicit function theorem)
and the adjoint operator K ′(u)∗. Observe that the derivative y′(u)δu of the
solution y(u) with respect to u in the direction δu satisfies

eu(u, y(u))δu+ ey(u, y(u))y′(u)δu = 0,
from which follows the derivative formula

y′(u)δu = −(ey(u, y(u)))−1eu(u, y(u))δu.
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Consequently, we arrive at the following explicit representation

K ′(u)δu = −C(ey(u, y(u)))−1eu(u, y(u))δu.

Obviously, the adjoint operator K ′(u)∗ is given by

K ′(u)∗w = −eu(u, y(u))∗(ey(u, y(u)))−∗C∗w.

With the expression for the adjoint operator K ′(u)∗, the source condi-
tion (4.24), i.e., K ′(u†)∗w = u† − µ†, can be expressed explicitly as

−eu(u†, y(u†))∗(ey(u†, y(u†)))−∗C∗w = u† − µ†.

This identity remains valid by setting ρ = −(ey(u†, y(u†)))−∗C∗w. In other
words, instead of the source condition (4.24), we require the existence of
ρ ∈ Y and µ† such that

eu(u†, y(u†))∗ρ = u† − µ†, (4.32)

and 〈µ†, u− u†〉 ≥ 0 for any u ∈ C. This identity represents an alternative
(new) source condition. A distinct feature of this approach is that poten-
tially less regularity is imposed on ρ, instead of on w. This follows from
the observation that the existence of ρ ∈ Y does not necessarily guarantee
the existence of an element w ∈ H satisfying ρ = −(ey(u†, y(u†)))−∗C∗w
due to possibly extra smoothing property of the operator (ey(u†, y(u†)))−∗;
see Example 4.5 below for an illustration. Conversely, the existence of w
always implies the existence of ρ satisfying the new source condition (4.32).
Therefore, it opens an avenue to relax the regularity requirement of the
source representer. Such a source condition underlies the main idea of the
interesting approach in [90] for a parabolic inverse problem.

Under the source condition (4.32), we have

〈w,E(u, u†)〉 = 〈w,Cy(u) − Cy(u†) − Cy′(u†)(u − u†)〉
= 〈C∗w, y(u) − y(u†) − y′(u†)(u− u†)〉
= −〈ρ, ey(u†, y(u†))(y(u) − y(u†) − y′(u†)(u− u†))〉.

Accordingly, the nonlinearity condition (4.25) can be expressed by
cr

2 ‖K(u)−K(u†)‖2 + 1
2‖u− u†‖2 + 〈µ†, u− u†〉

+ 〈ρ, ey(u†, y(u†))(y(u) − y(u†) − y′(u†)(u − u†))〉
≥ ε

2
‖u− u†‖2 ∀u ∈ C.

(4.33)

Therefore, the term 〈ρ, ey(u†, y(u†))(y(u)−y(u†)−y′(u†)(u−u†))〉 will play
an important role in studying the degree of nonlinearity of the operator
K, and in analyzing related Tikhonov regularization methods. We shall
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illustrate its usage in Example 4.7. We would like to point out that the
nonlinearity condition (4.33) can be regarded as the (weak) limit of the
second-order sufficient condition (4.23), which in the current context reads

1
2
‖K(uα) −K(u)‖2 + α

2
‖uα − u‖2 + α〈µα, u− uα〉

+ 〈ey(uα, y(uα))−∗C∗(K(uα) − g†),

ey(uα, y(uα))(y(u) − y(uα) − y′(uα)(u − uα))〉
≥ cs

2
‖K(uα) −K(u)‖2 + ε′α

2
‖u− uα‖2.

Conditions (4.32) and (4.33) can yield identical convergence rates for
nonlinear Tikhonov models as (4.24) and (4.25), since the former is exactly
the representations of the latter in the context of parameter identifications.
The main changes to the proofs are the following two key identities

〈w,K ′(u†)(u − u†)〉 = 〈ρ, eu(u†, y(u†))(u − u†)〉(= 〈u† − µ†, u− u†〉),
〈w,K(u) −K(u†)〉 = −〈ρ, ey(u†, y(u†))(y(u) − y(u†))〉,

and the remaining steps proceed identically.
In the rest, we further specialize to the case where the operator equation

e(u, y) = 0 assumes the form

A(u)y − f = 0.

A lot of parameter identification problems for linear partial differential
equations (systems) can be cast into this abstract model, e.g., the second-
order elliptic operator A(u)y = −∇ · (a(x)∇y) +b(x) · ∇y+ c(x)y with the
parameter u being one or some combinations of a(x), b(x) and c(x). Then
upon denoting the derivative of A(u) with respect to u by A′(u), we have

eu(u, y(u))δu = A′(u)δuy(u)

and

ey(u, y(u)) = A(u).

The derivative A′(u)δuy(u) can be either local (separable) or nonlocal. For
example, in the former category, A(u)y = (−∆ + u)y with A′(u)δuy(u) =
y(u)δu. The case A(u)y = −∇· (u∇y) with A′(u)δuy(u) = −∇· (δu∇y(u))
belongs to the latter category. The local case will be further discussed in
Section 4.4.2. Consequently, the (new) source and nonlinearity conditions
respectively simplify to

eu(u†, y(u†))∗ρ = u† − µ†

and
cr

2 ‖K(u) −K(u†)‖2 + 〈ρ,A(u†)(y(u) − y(u†) − y′(u†)(u − u†))〉
+ 1

2
‖u− u†‖2 + 〈µ†, u− u†〉 ≥ ε

2
‖u− u†‖2 ∀u ∈ C.



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch04 page 144

144 Inverse Problems: Tikhonov Theory and Algorithms

4.4.2 Bilinear problems

Here we elaborate the structure of 〈w,E(u, u†)〉 in (4.25). Interestingly, it
admits a representation without resorting to the source representer w for
bilinear problems. Specifically, the following class of inverse problems is
considered. Let the operator e(u, y) be (affine) bilinear with respect to the
arguments u and y for fixed y and u, respectively, and for a given u, eu(u, y)
is defined pointwise (local/separable).

We begin with the second-order error E(u, u†) for bilinear problems.
The bilinear structure of the operator e(u, y) implies

0 = e(u, y(u)) − e(u†, y(u†))

= ey(u†, y(u†))(y(u) − y(u†)) + eu(u, y(u))(u− u†),

i.e.,

y(u) − y(u†) = −(ey(u†, y(u†)))−1eu(u, y(u))(u− u†).

Therefore, we deduce that

E(u, u†) = K(u) −K(u†) −K ′(u†)(u − u†)

= Cy(u) − Cy(u†) + C(ey(u†, y(u†)))−1eu(u†, y(u†))(u − u†),

= −C(ey(u†, y(u†)))−1eu(u, y(u†))(u − u†)

+ C(ey(u†, y(u†)))−1eu(u†, y(u†))(u − u†)

= −C(ey(u†, y(u†)))−1(eu(u, y(u)) − eu(u†, y(u†)))(u − u†).

With the help of the preceding three relations, the source condition
K ′(u†)∗w = u† − µ† and locality (separability) of eu(u, y(u)), we get

〈w,E(u, u†)〉= 〈w,−C(ey(u†, y(u†)))−1(eu(u, y(u))−eu(u†, y(u†)))(u− u†)〉
=
〈−eu(u†, y(u†))∗(ey(u†, y(u†)))−∗C∗w,

eu(u, y(u)) − eu(u†, y(u†))
eu(u†, y(u†))

(u− u†)
〉

=
〈
K ′(u†)∗w,

eu(u, y(u)) − eu(u†, y(u†))
eu(u†, y(u†))

(u − u†)
〉

=
〈
u† − µ†,

eu(u, y(u)) − eu(u†, y(u†))
eu(u†, y(u†))

(u− u†)
〉
.

Therefore, we have arrived at the following concise representation

〈w,E(u, u†)〉 =
〈
u† − µ†,

eu(u, y(u)) − eu(u†, y(u†))
eu(u†, y(u†))

(u− u†)
〉
. (4.34)

Remark 4.11. The derivations indicate that the source representer w ac-
tually is not needed for evaluating 〈w,E(u, u†)〉, which enables possible
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numerical verification of the nonlinearity condition (4.25). Note that even
if we do know the exact solution u†, the representer w is still not accessi-
ble since the operator equation K ′(u†)∗w = u† is generally also ill-posed.
Hence, the representation (4.34) is of much practical significance.

Remark 4.12. Another important consequence is that it may enable es-
timates of form (4.27), thereby validating condition (4.25). This can be
achieved by applying Hölder-type inequality if the image of K(u) and the
coefficient u share the domain of definition, e.g., in recovering the poten-
tial/leading coefficient in an elliptic equation from distributed measure-
ments in the domain; see Example 4.7 below for an illustration.

Finally, we point out that formally the representation (4.34) can be
regarded as the limit of〈

uα − µα,
eu(u, y(u)) − eu(uα, y(uα))

eu(uα, y(uα))
(u− uα)

〉
as α goes to zero, which might be computationally amenable, and hence
enable possible numerical verification of (4.23).

4.4.3 Three elliptic examples

In this part, we illuminate the nonlinearity condition (4.25) and the struc-
ture of the term 〈w,E(u, u†)〉 with examples, and discuss the usage of the
source and nonlinearity conditions (4.32) and (4.33).

First, we consider an elliptic parameter identification problem to show
that the smallness assumption L‖w‖ < 1 of the classical nonlinearity con-
dition (4.26) is unnecessary by deriving an explicit representation of the
nonlinearity term 〈w,E(u, u†)〉. The derivations also illustrate clearly struc-
tural properties developed in Section 4.4.2.

Example 4.5. We continue Example 4.1 with the structure of the term
〈w,E(u, u†)〉. We know from Example 4.2 that K : L2(Γi) �→ L2(Γc) is
Fréchet differentiable with a Lipschitz continuous derivative, and

K ′(u†)δu = γΓc z̃(u
†),

E(u, u†) = γΓcv(u, u
†),

K ′(u†)∗w = −γΓi(y(u
†)z(u†)),
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where the functions z̃(u†), v(u, u†) and z(u†) ∈ H1(Ω) satisfy∫
Ω

∇z̃ · ∇ṽdx+
∫

Γi

u†z̃ṽds = −
∫

Γi

δuy(u)ṽds ∀ṽ ∈ H1(Ω),∫
Ω

∇v · ∇ṽdx +
∫

Γi

u†vṽds = −
∫

Γi

(u− u†)(y(u) − y(u†))ṽds ∀ṽ ∈ H1(Ω),∫
Ω

∇z · ∇ṽdx+
∫

Γi

u†zṽds =
∫

Γc

wṽds ∀ṽ ∈ H1(Ω).

Assume that the source condition (4.25) holds with the representer w ∈
L2(Γc). Then by setting ṽ = z(u†) and ṽ = v(u, u†) respectively in the
their weak formulations, it follows that

〈w,E(u, u†)〉L2(Γc) =
〈
u† − µ†, (u− u†)

y(u) − y(u†)
y(u†)

〉
L2(Γi)

.

Hence, the term 〈w,E(u, u†)〉 exhibits the desired structure, cf. (4.34).
Next, by maximum principle, the solution y(u) is positive for positive f .
Moreover there holds∫

Ω

|∇(y(u) − y(u†))|2dx+
∫

Γi

u(y(u) − y(u†))2ds

+
∫

Γi

(u − u†)y(u†)(y(u) − y(u†))ds = 0.

Note also the monotonicity relation, i.e., if u ≥ u†, then y(u) ≤ y(u†). It
follows from the above two relations that if u† − µ† ≥ 0, then

−〈w,E(u, u†)〉 ≥ 0.

This shows that the nonlinearity condition (4.25) holds without resorting
to the smallness condition L‖w‖ < 1 in the classical nonlinearity condition
(4.26) under the designated circumstance.

Next we contrast the source condition (4.32) with the conventional
one (4.24). The operator e(u, y) is bilinear, and eu(u, y(u)) = γΓiy(u),
eu(u, y(u))∗ρ = γΓi(ρy(u)). Hence the new source condition (4.32) requires
the existence of some element ρ ∈ H1(Ω) such that

γΓi(ρy(u
†)) = u† − µ†.

This admits an easy interpretation: for γΓiρ to be fully determined,
γΓiy(u

†) cannot vanish, which is exactly the identifiability condition. The
representers ρ and w are related by (in weak form)∫

Ω

∇ρ · ∇ṽdx+
∫

Γi

u†ρṽds = −
∫

Γc

wṽds ∀ṽ ∈ H1(Ω).
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This relation shows clearly the different regularity assumptions on ρ and
w: the existence of ρ ∈ H1(Ω) does not actually guarantee the existence of
w ∈ L2(Γc). To ensure the existence of w ∈ L2(Γc), one necessarily needs
higher regularity on ρ than H1(Ω), presumably ρ ∈ H

3
2 (Ω). Conversely, the

existence of w ∈ L2(Γc) automatically ensures the existence of ρ ∈ H1(Ω).

Next we give an example of inverse medium scattering to show the same
structure of the nonlinearity term 〈w,E(u, u†)〉 but with less definitiveness.

Example 4.6. Here we consider the two-dimensional time-harmonic in-
verse scattering problem, cf. Section 2.2.3, of determining the index of
refraction n2 from near-field scattered field data us, given one incident field
yi. Let y = y(x) denote the transverse mode wave and satisfy

∆y + n2k2y = 0.
Let the incident plane wave be yi = ekx·d with d = (d1, d2) ∈ S

1 being the
incident direction. Then for the complex coefficient u = (n2 − 1)k2 with its
support within Ω ⊂ R

2, the total field y = ytot satisfies

y = yi +
∫

Ω

G(x, z)u(z)y(z)dz,

where G(x, z) is the free space fundamental solution, i.e., G(x, z) =
i
4
H1

0 (k|x− z|), the Hankel function of the first kind and zeroth order. The
inverse problem is to determine the refraction coefficient u from the scat-
tered field

ys(x) =
∫

Ω

G(x, z)u(z)y(z)dz

measured on a near-field boundary Γ. Consequently, we have K(u) =
γΓy

s(x) ∈ L2(Γ). The Tikhonov approach for recovering u takes the form

min
u∈C

∫
Γ

|K(u) − gδ|2ds+ α

∫
Ω

|u|2dx.
Here gδ denotes the measured scattered field, and the constraint set C is
taken to be C = {u ∈ L∞(Ω) : �(u) ≥ 0, supp(u) ⊂⊂ Ω}. It can be shown
that the forward operator K : L2(Ω) �→ L2(Γ) is Fréchet differentiable,
and the derivative is Lipschitz continuous on C. Now let G†(x, z) be the
fundamental solution to the elliptic operator ∆ + k2 + u†. Then we can
deduce

K ′(u†)δu = −
∫

Ω

G†(x, z)δuy(u†)dz x ∈ Γ,

E(u, u†) = −
∫

Ω

G†(x, z)(u− u†)(y(u) − y(u†))dz x ∈ Γ,

K ′(u†)∗w = −y(u†)
∫

Γ

G†(x, z)w(x)dx,
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where the overbar refers to complex conjugate. Then, by the source condi-
tion K ′(u†)∗w = u† − µ†, we get

〈w,E(u, u†)〉L2(Γ)

= −
∫

Γ

w(x)
∫

Ω

G†(x, z)(u(z) − u†(z))(y(u)(z) − y(u†)(z))dzdx

= −
∫

Ω

y(u†)
∫

Γ

G†(x, z)w(x)dx(u(z) − u†(z))
y(u)(z) − y(u†)(z)

y(u†)(z)
dz

=
〈
u† − µ†, (u− u†)

y(u) − y(u†)
y(u†)

〉
L2(Ω)

.

Note that the structure of 〈w,E(u, u†)〉L2(Γ) coincides with that in Ex-
ample 4.5, which further corroborates the theory for bilinear problems in
Section 4.4.2. However, an analogous argument for definitive sign is miss-
ing since the maximum principle does not hold for the Helmholtz equation.
Nonetheless, one might still expect some norm estimate of the form (4.27),
which remains open. In particular, then a small u† − µ† would imply the
nonlinearity condition (4.25).

The last example shows the use of the source condition (4.32) and non-
linearity condition (4.33).

Example 4.7. Let Ω ⊂ R
2 be an open bounded domain with a smooth

boundary Γ. We consider the following elliptic equation{−∇ · (u∇y) = f in Ω,
y = 0 on Γ.

Let y(u) ∈ H1
0 (Ω) be the solution. We measure y (denoted by gδ ∈ H1

0 (Ω))
in the domain Ω with ‖∇(gδ − y(u†))‖L2(Ω) ≤ δ, i.e., K(u) = y(u), and are
interested in recovering the conductivity u ∈ C = {u ∈ H1(Ω) : c0 ≤ u ≤
c1} for some finite c0, c1 > 0 by means of Tikhonov regularization

min
u∈C

∫
Ω

|∇(K(u) − gδ)|2dx+ α

∫
Ω

|u|2 + |∇u|2dx.

It follows from Meyers’ theorem [234] that the operator K : H1(Ω) �→
H1

0 (Ω) is Fréchet differentiable and the derivative is Lipschitz continuous.
The operator A(u) is given by −∇ · (u∇·). It is easy to see that

A′(u)δuy(u) = −∇ · (δu∇y(u)),

eu(u, y(u))∗ρ = ∇y(u) · ∇ρ.
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Consequently, the source condition (4.32) reads: there exists some ρ ∈
H1

0 (Ω) such that

∇y(u†) · ∇ρ = (I − ∆)u† − µ†,

which amounts to the solvability condition ∇y(u†) �= 0 (cf., e.g., [261, 161]).
The nonlinearity condition (4.33) is given by

cr

2 ‖∇(y(u) − y(u†))‖2
L2(Ω) − 〈u†∇ρ,∇E(u, u†)〉

+ 1
2
‖u− u†‖2

H1(Ω) + 〈µ†, u− u†〉 ≥ ε
2
‖u− u†‖2

H1(Ω) ∀u ∈ C,
where E(u, u†) = K(u)−K(u†)−K ′(u†)(u−u†) is the second-order error.
By setting ṽ = ρ in the weak formulation of E(u, u†), i.e.,∫
u†∇E(u, u†) ·∇ṽdx = −

∫
Ω

(u−u†)∇(y(u)−y(u†)) ·∇ṽdx ∀ṽ ∈ H1
0 (Ω),

and applying the generalized Hölder’s inequality and Sobolev embedding
theorem, we get

|〈u†∇ρ,∇E(u, u†)〉| ≤ ‖∇(y(u) − y(u†))‖L2(Ω)‖u− u†‖Lq(Ω)‖∇ρ‖Lp(Ω)

≤ C‖∇ρ‖Lp(Ω)‖∇(y(u) − (y†))‖L2(Ω)‖u− u†‖H1(Ω),

where the exponents p, q > 2 satisfy 1
p

+ 1
q

= 1
2

(the exponent p can be any
number greater than 2). Therefore, we have established condition (4.27)
for the inverse conductivity problem, and the nonlinearity condition (4.33)
holds provided that the source representer ρ ∈ W 1,p

0 (Ω) for some p > 2.
We note that the smallness of the representer ρ is not required for the
nonlinearity condition (4.33) for this example. The convergence theory
in Section 4.3 implies a convergence rate ‖uδα − u†‖H1(Ω) ≤ C

√
δ for the

Tikhonov model with the a priori choice α ∼ δ.
The classical source condition (4.24) reads: there exists some w ∈ H1

0 (Ω)
such that

K ′(u†)∗w = (I − ∆)u† − µ†,

or equivalently in the weak formulation

〈∇K ′(u†)h,∇w〉 = 〈u†, h〉H1(Ω) − 〈µ†, h〉 ∀h ∈ H1(Ω).

This source condition is difficult to interpret due to the lack of an explicit
characterization of the range of the adjoint operator K ′(u†)∗. Also the
weak formulation of K ′(u†)h ∈ H1

0 (Ω), i.e.,

〈u†∇K ′(u†)h,∇v〉 = 〈h∇y(u†),∇v〉 ∀v ∈ H1
0 (Ω),
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does not directly help due to subtle differences in the relevant bilinear forms.
Nonetheless, the representers ρ and w are closely related by

ρ = (A(u†))−1(−∆)w.

This relation indicates that the operator (A(u†))−1(−∆) renormalizes the
standard inner product 〈∇·,∇·〉 on H1

0 (Ω) to a problem-adapted weighted
inner product 〈u†∇·,∇·〉, and thus facilitates the interpretation of the re-
sulting source condition. This shows clearly the advantage of the source
condition (4.32).

Remark 4.13. With stronger regularity on the representer w, e.g., w ∈
W 1,∞

0 (Ω) ∩ W 2,p(Ω) (p > 2), one might also establish the nonlinearity
condition for L2(Ω) data, i.e., gδ ∈ L2(Ω).

4.5 Convergence rate analysis in Banach spaces

Now we turn to convergence rate analysis for general convex variational
penalty, i.e.,

Jα(u) = 1
2‖K(u)− gδ‖2 + αψ(u).

Like in the linear case, the main tool for the analysis is Bregman distance.
In order to obtain convergence rates, one assumes source condition on the
true solution u† and nonlinearity condition on the operator K. In this
part, we discuss several extensions of the classical approach in Section 4.2,
including generalizing the source condition and the nonlinearity condition,
especially variational inequalities.

4.5.1 Extensions of the classical approach

We observe that the starting point of the basic convergence rate analysis
is a comparison of the functional values Jα(uδα) with Jα(u†), which yields
after reordering

1
2
‖K(uδα) − gδ‖2 + α

(
ψ(uδα) − ψ(u†)

) ≤ 1
2
‖K(u†) − gδ‖2.

Analogous to quadratic completion, we add −α〈ξ†, uδα − u†〉 to both
sides, and obtain a Bregman distance dξ†(uδα, u

†) with ξ† ∈ ∂ψ(u†):
1
2
‖K(uδα)− gδ‖2 +αdξ†(u

δ
α, u

†) ≤ 1
2
‖K(u†)− gδ‖2 −α〈ξ†, uδα−u†〉. (4.35)

The constraint can be incorporated by using instead the generalized Breg-
man distance dξ†,µ†(uδα, u

†). The final steps of the proof in Theorem 4.6
need two essential ingredients:
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(a) A source condition on u†, which allows us to estimate −〈ξ†, uδα − u†〉
and to transfer these quantities in X and X ′ to quantities in Y ;

(b) An assumption on the operator K, typically a restriction on the non-
linearity of K, which allows to estimate this quantity in Y .

There are several viable approaches to these conditions. We begin with
the most natural extension [260].

Theorem 4.20. Let Assumption 4.1 hold, and further there hold:

(i) K is Gâteaux differentiable;
(ii) there exists a w ∈ Y and a Lagrange multiplier µ† ∈ X∗, i.e.,

〈µ†, u− u†〉 ≥ 0 ∀u ∈ C,
such that K ′(u†)∗w + µ† = ξ† ∈ ∂ψ(u†).

(iii) there exists an L > 0 with L‖w‖ < 1, such that for all u ∈ C
‖E(u, u†)‖ ≤ Ldξ†,µ†(u, u†).

Then the minimizer uδα to the functional Jα satisfies

dξ†,µ†(uδα, u
†) ≤ 1

2(1 − L‖w‖)
(

δ√
α

+
√
α‖w‖
)2

,

‖K(uδα) − gδ‖ ≤ δ + 2α‖w‖.
In particular, with the choice α ∼ δ, there hold

dξ†,µ†(uδα, u
†) = O(δ) and ‖K(uδα) − g†‖ = O(δ).

Proof. It follows from (4.35) and the source condition (ii) that
1
2‖K(uδα) − gδ‖2 + αdξ†,µ†(uδα, u

†)

≤ 1
2‖K(u†) − gδ‖2 − α〈w,K ′(u†)(uδα − u†)〉.

We rewrite the term −〈w,K ′(u†)(uδα − u†)〉 into

−〈w,K ′(u†)(uδα − u†)〉 = −〈w,K(uδα) −K(u†)〉 + 〈w,E(uδα, u
†)〉.

Applying the Cauchy-Schwarz inequality and (iii) gives
1
2
‖K(uδα) − gδ‖2 + αdξ†,µ†(uδα, u

†)

≤ 1
2‖K(u†) − gδ‖2 − α〈w,K(uδα) −K(u†)〉 + α〈w,E(uδα, u

†)〉
≤ 1

2‖K(u†) − gδ‖2 − α〈w,K(uδα) −K(u†)〉 + L‖w‖dξ†,µ†(uδα, u
†).

By completing squares, we deduce
1
2‖K(uδα) − gδ − αw‖2 + α(1 − L‖w‖)dξ†,µ†(uδα, u

†)

≤ 1
2‖K(u†) − gδ − αw‖2,

from which the desired assertions follow directly. �
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Alternatively, one can control the term −〈E(u, u†), w〉 directly [50].

Theorem 4.21. Let Assumption 4.1 hold, and further there hold:

(i) K is Gâteaux differentiable;
(ii) there exists a w ∈ Y and a Lagrange multiplier µ† ∈ X∗, i.e.,

〈µ†, u− u†〉 ≥ 0 ∀u ∈ C,
such that K ′(u†)∗w + µ† = ξ† ∈ ∂ψ(u†).

(iii) there exists a γ > 0, such that for all u ∈ C
−〈E(u, u†), w〉 ≤ γ‖K(u)−K(u†)‖‖w‖.

Then the minimizer uδα to the functional Jα satisfies

dξ†,µ†(uδα, u
†) ≤ 1

2α (δ + (γ + 1)‖w‖α)2 ,

‖K(uδα) − gδ‖ ≤ δ + 2(γ + 1)α‖w‖.
Proof. We proceed as in the proof of Theorem 4.20, and obtain

1
2
‖K(uδα) − gδ‖2 + αdξ†,µ†(uδα, u

†) ≤ 1
2
‖K(u†) − gδ‖2

− α〈w,K(uδα) −K(u†)〉 + α〈w,E(uδα, u
†)〉.

Now condition (iii) yields

1
2
‖K(uδα) − gδ‖2 + αdξ†,µ†(uδα, u

†) ≤ 1
2
δ2 + (γ + 1)α‖w‖‖K(uδα) −K(u†)‖.

From this and the implication a2 ≤ b2 + ac ⇒ a ≤ b + c for a, b, c ≥ 0 the
desired assertions follow directly. �

4.5.2 Variational inequalities

Now we relax the assumptions on the source condition to variational in-
equalities, which was first introduced in [141], and further developed in
[117, 35, 94, 143, 142]. Variational inequalities are tailored such that the
estimates exploiting the source condition and the restriction on the non-
linearity of K are circumvented in one shot. Below we first give the main
result from [141], and then discuss the case of a more general approach
using the index function.

Theorem 4.22. Let Assumption 4.1 hold, and further there exist β1, β2 >

0, β1 < 1 and a ξ† ∈ ∂ψ(u†) such that for all u ∈ C
−〈ξ†, u− u†〉 ≤ β1dξ†(u, u

†) + β2‖K(u) −K(u†)‖.
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Then for any minimizer uδα to Jα, there hold

dξ(uδα, u
†) ≤ 1

2α(1 − β1)
(δ2 + α2β2

2 + 2αβ2δ),

‖K(uδα) − gδ‖ ≤ δ +
√

2αβ2δ + 2β2α.

In particular, the choice α ∼ δ yields

dξ(uδα, u
†) = O(δ) and ‖K(uδα) − g†‖ = O(δ).

Proof. By (4.35) and the variational inequality, we deduce

1
2
‖K(uδα) − gδ‖2 + αdξ(uδα, u

†)

≤ 1
2δ

2 + α(β1dξ(uδα, u
†) + β2‖K(uδα) −K(u†)‖)

≤ 1
2δ

2 + αβ1dξ(uδα, u
†) + αβ2‖K(uδα) − gδ‖ + αβ2δ.

The result follows directly from an application of Young’s inequality. �

Remark 4.14. The variational inequality in Theorem 4.22 holds under the
conditions in Theorem 4.20 (in the absence of constraints):

|〈ξ, u − u†〉| = |〈w,K ′(u†)(u− u†)〉|
≤ ‖w‖‖K(u)−K(u†)‖+‖w‖‖K(u)−K(u†) −K ′(u†)(u − u†)‖
≤ ‖w‖‖K(u)−K(u†)‖+L‖w‖dξ(u, u†).

Hence one may take β2 = ‖w‖ and β1 = L‖w‖ < 1 so as to arrive at
the desired variational inequality. Clearly, it remains valid if the equality
ξ = K ′(u†)w is replaced with the inequality

|〈ξ, u− u†〉| ≤ |〈w,K ′(u†)(u− u†)〉| ∀u ∈ C.
Analogously, the condition in Theorem 4.21 can also be absorbed into a
variational inequality with β1 = 0 and β2 = (1 + γ)‖w‖:
〈ξ, u− u†〉 ≤ 〈K ′(u†)∗w, u − u†〉

= 〈w,K ′(u†)(u − u†)〉
= 〈w,K(u†) +K ′(u†)(u− u†) −K(u)〉 + 〈w,K(u) −K(u†)〉
≤ (1 + γ)‖w‖‖K(u)−K(u†)‖.

The source condition of Theorem 4.22 can be further weakened. To mo-
tivate the source condition of [117] we start again with the basic comparison
Jα(uδα) ≤ Jα(u†), which upon rearranging yields

1
2‖K(uδα) − gδ‖2 + α

(
ψ(uδα) − ψ(u†)

) ≤ 1
2δ

2.
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The source condition of Theorem 4.22 was obtained by adding the crucial
term −α〈ξ, uδα−u†〉 on both sides, which did yield the Bregman distance on
the left hand side. Hence it requires a source condition that gives a bound
of this term. The source condition there was given in terms of a Bregman
distance. Grasmair et al [117] introduced a new source condition, which
states an estimate directly for ψ(uδα) − ψ(u†).

Theorem 4.23. Let Assumption 4.1 hold, and further there exist β1, β2 > 0
and r > 0 such that for all u ∈ C

ψ(u) − ψ(u†) ≥ β1‖u− u†‖r − β2‖K(u)−K(u†)‖.
Then for any minimizer uδα to Jα, there holds

‖uδα − u†‖r ≤ δ2 + αβ2δ + (αβ2)2/2
αβ1

,

‖K(uδα) − gδ‖2 ≤ 2δ2 + 2αβ2δ + (αβ2)2.

Proof. The minimizing property of uδα yields
1
2‖K(uδα) − gδ‖2 + α

(
ψ(uδα) − ψ(u†)

) ≤ 1
2δ

2,

which together with the variational inequality gives
1
2
‖K(uδα) − gδ‖2 + α(β1‖u− u†‖r − β2‖K(uδα) −K(u†)‖) ≤ 1

2
δ2.

Upon rearranging the terms and using the Young’s inequality, we get
1
2
‖K(uδα) − gδ‖2+αβ1‖u− u†‖r

≤ 1
2
δ2 + αβ2‖K(uδα) −K(u†)‖

≤ 1
2
δ2 + αβ2δ + αβ2‖K(uδα) − gδ‖.

The desired assertion follows from this directly. �

Remark 4.15. Theorem 4.23 states a convergence rate O(δ1/r) if the
rather abstract source condition is fulfilled. In particular, it would yield
a surprising convergence rate ‖uδα − u†‖ = O(δ) if one can establish the
source condition for the case r = 1. Then one can achieve a reconstruction
error on the same level as the data error δ, and thus the reconstruction
problem is no longer ill-posed!

We illustrate the abstract source condition in Theorem 4.23 with �1

regularization for sparse signals, taken from [117], inspired by earlier works
[218]. Sparsity constraints are very common in signal and image processing,
and recently also in parameter identifications [172].

Example 4.8. Let X be a Hilbert space, and {ϕi} ⊂ X be a given
frame. We consider the �1-penalty, i.e., ψ(u) =

∑
i |〈ϕi, u〉|. Then under

the following assumption, the variational inequality in Theorem 4.23 holds.
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(i) The operator equation K(u) = g† has a ψ-minimizing solution u† that
is sparse with respect to {ϕi}.

(ii) K is Gâteaux differentiable at u†, and for every finite set J ⊂ N, the
restriction of its derivative K ′(u†) to {ϕj : j ∈ J} is injective.

(iii) There exists γ1, γ2 > 0 such that for all u ∈ C:

ψ(u)−ψ(u†) ≥ γ1‖K(u)−K(u†)−K ′(u†)(u−u†)‖−γ2‖K(u)−K(u†)‖.
(iv) There exists ξ ∈ ∂ψ(u†) and γ3 > 0 such that for all u ∈ C:

ψ(u) − ψ(u†) ≥ −γ3〈ξ, u− u†〉 − γ2‖K(u) −K(u†)‖.
To show the claim, we define J := {j ∈ N : |〈ϕj , ξ〉| ≥ 1/2} and W =
span{ϕj : j ∈ J}. Since ξ ∈ X , J is finite. Thus there exists C > 0 such
that C‖K ′(u†)w‖ ≥ ‖w‖ for all w ∈ W . Next we denote πW , π⊥W : X → X

the projections

πWu =
∑
j∈J

〈ϕj , u〉 and π⊥Wu =
∑
j /∈J

〈ϕj, u〉.

By assumption 〈ϕj , u†〉 = 0, if j /∈ J, i.e., u† = πW u
†, and π⊥Wu

† = 0.
Hence,

‖u− u†‖ ≤ ‖πW (u− u†)‖ + ‖π⊥Wu‖
≤ C‖K ′(u†)(πW (u− u†)‖ + ‖π⊥Wu‖
≤ C‖K ′(u†)(u − u†)‖ + (1 + C‖K ′(u†)‖)‖π⊥Wu‖.

Next we denote by m = max{|〈ϕj , ξ〉| : ξ /∈ J}, which, in view of the
fact {〈ξ, ϕj〉} ∈ �2, is well defined. Using the inequality 0 ≤ m < 1 and
〈ϕj , ξ〉 ≤ m, the assumption ξ ∈ ∂ψ(u†) and (iv), we can estimate with
c = 1

1−m

‖π⊥Wu‖ =

∑
j /∈J

|〈ϕj , u〉|2
1/2

≤
∑
j /∈J

|〈ϕj , u〉|

≤ c
∑
j∈J

(1 −m)|〈ϕj , u〉|

≤ c
∑
j∈J

(|〈ϕj , u〉| − 〈ϕj , ξ〉〈ϕj , u〉)

≤ c
∑
j∈N

(|〈ϕj , u〉| − 〈ϕj , u†〉 − 〈ϕj , ξ〉〈ϕj , u− u†〉)

= c(ψ(u) − ψ(u†) − 〈ξ, u− u†〉)
≤ c((1 + γ−1

3 )(ψ(u) − ψ(u†)) + γ2/γ3‖K(u)−K(u†)‖).
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Here the third to the last lines follow from the definition of a subgradient
and the fact that 〈ϕj , u†〉 = 0 for j /∈ J. For the term ‖K ′(u†)(u− u†)‖ we
estimate from (iii) by

‖K ′(u†)(u − u†)‖ ≤ ‖K(u) −K(u†) −K ′(u†)(u− u†)‖ + ‖K(u)−K(u†)‖
≤ γ−1

1 (ψ(u) − ψ(u†)) + (1 + γ2/γ1)‖K(u) −K(u†)‖.
Now the desired claim follows by collecting terms.

Remark 4.16. The local injectivity assumption in Example 4.8 is crucial to
the estimate. Usually it is difficult to verify, and holds only under restrictive
assumptions on the unknown. The constant in the estimate is usually large
for ill-posed problems. We refer interested readers to [171] for an application
to electrical impedance tomography.

Last, we describe an approach of generalized variational inequalities
using an index function [143, 95, 142].

Definition 4.2. A function ϕ : (0,∞) → (0,∞) is called an index func-
tion if it is continuous, strictly increasing, and satisfies the limit condition
limt→0+ ϕ(t) = 0.

Assumption 4.4. There exists a constant 0 < β ≤ 1 and a concave index
function ϕ such that for some ξ† ∈ ∂ψ(u†)

βdξ†(u, u
†) ≤ ψ(u) − ψ(u†) + ϕ(‖K(u) −K(u†)‖). (4.36)

The variational inequality directly gives several basic estimates.

Lemma 4.6. Let Assumption 4.4 hold. Then for α > 0, there hold

ψ(u†) − ψ(uδα) ≤ ϕ(‖K(uδα) −K(u†)‖),
ψ(uδα) − ψ(u†) ≤ δ2

2α
.

Proof. The first assertion is an immediate consequence of (4.36), β > 0
and dξ(u, u†) ≥ 0. By the minimizing property of uδα, we derive

1
2
‖K(uδα) − gδ‖2 + αψ(uδα) ≤ 1

2
‖K(u†) − gδ‖2 + αψ(u†)

≤ 1
2
δ2 + αψ(u†),

from which the second assertion follows. �

Lemma 4.7. Under Assumption 4.4, for α > 0, there holds

‖K(uδα) −K(u†)‖2 ≤ 4δ2 + 4αϕ(‖K(uδα) −K(u†)‖).
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Proof. It follows from (4.36) and the minimizing property of uδα that

0 ≤ ψ(uδα) − ψ(u†) + ϕ(‖K(uδα) −K(u†)‖)
≤ α−1

(
1
2δ

2 − 1
2‖K(uδα) − gδ‖2

)
+ ϕ(‖K(uδα) −K(u†)‖).

Meanwhile, by Young’s inequality,
1
2‖K(uδα) − gδ‖2 ≥ 1

4‖K(uδα) −K(u†)‖2 − 1
2δ

2.

Inserting it into the first inequality, we deduce

0 ≤ δ2 − 1
4‖K(uδα) −K(u†)‖2 + αϕ(‖K(uδα) −K(u†)‖),

which completes the proof. �

There are several possible ways to use Lemma 4.7. First, given a specific
value of the regularization parameter α > 0, one can bound the fidelity from
above. Second, the value of α can be bounded from below if the fidelity is
larger than δ. To this end, we introduce the function

ϕ̃ =
t2

ϕ(t)
t > 0,

where ϕ is an arbitrary concave index function. By the concavity of ϕ, ϕ̃(t)
is an index function.

Corollary 4.3. Let α∗ be determined by α∗ = ϕ̃(δ). Then for α ≤ α∗,
there holds

‖K(uδα) −K(u†)‖ ≤ 8δ.

Proof. We treat the two cases ‖K(uδα) − K(u†)‖ > δ and ‖K(uδα) −
K(u†)‖ ≤ δ separately. If ‖K(uδα) −K(u†)‖ > δ, then by Lemma 4.7 and
the value for α∗, we obtain

1
2
‖K(uδα) −K(u†)‖2 ≤ 2δ2 + 2αϕ(‖K(uδα) −K(u†)‖)

≤ 2δ2 + 2α∗ϕ(‖K(uδα) −K(u†)‖).
Now the choice of the value α∗ gives

α∗ϕ(‖K(uδα) −K(u†)‖) = δ2
ϕ(‖K(uδα) −K(u†)‖)

ϕ(δ)
.

Combing this with the preceding inequality, together with the condition
‖K(uδα)−K(u†)‖ > δ and the monotonicity of the index function ϕ, yields

‖K(uδα) −K(u†)‖2 ≤ 4δ2
(

1 +
ϕ(‖K(uδα) −K(u†)‖)

ϕ(δ)

)
≤ 8δ2

ϕ(‖K(uδα) −K(u†)‖)
ϕ(δ)

.



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch04 page 158

158 Inverse Problems: Tikhonov Theory and Algorithms

Now the concavity of the index function ϕ yields

ϕ(‖K(uδα) −K(u†)‖) ≤ δ−1‖K(uδα) −K(u†)‖ϕ(δ).

The desired assertion now follows immediately. Clearly, the bound is also
valid for ‖K(uδα) −K(u†)‖ ≤ δ. This completes the proof of the lemma. �

Corollary 4.4. Let τ > 1. Suppose that the parameter α > 0 is chosen
such that ‖K(uδα) − gδ‖ > τδ. Then there holds

α ≥ 1
4
τ2 − 1
τ2 + 1

ϕ̃((τ − 1)δ).

Proof. Using the minimizing property uδα and the first assertion in
Lemma 4.6, we have

τ2δ2 ≤ ‖K(uδα) − gδ‖2

≤ δ2 + 2α(ψ(u†) − ψ(uδα))

≤ δ2 + 2αϕ(‖K(uδα) −K(u†)‖).
Therefore,

δ2 ≤ 2
τ2 − 1

αϕ(‖K(uδα) −K(u†)‖).

Upon plugging it into Lemma 4.7, we obtain (with tα = ‖K(uδα)−K(u†)‖)
that

t2α ≤ 4δ2 + 4αϕ(tα) ≤ 4
τ2 − 1

αϕ(tα) + 4αϕ(tα)

= 4
τ2 + 1
τ2 − 1

αϕ(tα).

Since τδ ≤ tα + δ, we arrive, using the function ϕ̃, at

ϕ̃((τ − 1)δ) ≤ ϕ̃(tα) ≤ 4
τ2 + 1
τ2 − 1

α.
�

Now we state a convergence rate result under Assumption 4.4.

Theorem 4.24. Let Assumption 4.4 hold, and α∗ = α∗(δ) = ϕ̃(δ). Then
for sufficiently small δ, there hold

dξ†(u
δ
α∗ , u

†) = O(ϕ(δ)),

‖K(uδα∗) −K(u†)‖ = O(δ),

|ψ(uδα∗) − ψ(u†)| = O(ϕ(δ)).
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Proof. Corollary 4.3 yields a bound on the discrepancy, i.e.,

‖K(uδα∗) −K(u†)‖ ≤ 8δ.

In view of the first assertion of Lemma 4.6 and the concavity of the index
function ϕ, this also bounds ψ(u†) − ψ(uδα∗) by

ψ(u†) − ψ(uδα∗) ≤ ϕ(‖K(uδα∗) −K(u†)‖)
≤ ϕ(8δ) ≤ 8ϕ(δ).

Further, by the second assertion of Lemma 4.6 and the choice of α∗, we
have

ψ(uδα∗) − ψ(u†) ≤ δ2

2α∗
≤ 1

2
ϕ(δ).

These two estimates together give the desired bound on |ψ(uδα∗) − ψ(u†)|.
It follows from (4.36) that

dξ†(u
δ
α∗ , u

†) ≤ 1
β

(
ψ(uδα∗) − ψ(u†) + ϕ(‖K(uδα∗) −K(u†)‖)) ≤ 17

2β
ϕ(δ).

This completes the proof of the theorem. �

We end this part with an a posteriori parameter choice, the discrepancy
principle. We restrict the selection of the regularization parameter to a
discrete exponential grid. More precisely, we fix 0 < q < 1, choose a largest
α0, and consider the set

∆q = {αj : αj = qjα0, j = 1, 2, . . .}.
Theorem 4.25. Let Assumption (4.4) hold. Let τ > 1 be given, α∗ ∈ ∆q,
α∗ < α1 be chosen by the discrepancy principle, as the largest parameter
from ∆q for which

‖K(uδα) − gδ‖ ≤ τδ.

Then there hold

dξ†(u
δ
α∗ , u

†) = O(ϕ(δ)),

‖K(uδα∗) −K(u†)‖ = O(δ),

|ψ(uδα∗) − ψ(u†)| ≤ O(ϕ(δ)).

Proof. We first bound

‖K(uδα∗) −K(u†)‖ ≤ ‖K(uδα∗) − gδ‖ + ‖gδ −K(u†)‖ ≤ (τ + 1)δ.

Under Assumption 4.4, this also gives

ψ(u†) − ψ(uδα∗) ≤ ϕ((τ + 1)δ) ≤ (τ + 1)ϕ(δ),
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cf. Lemma 4.6. Next we note that the parameter α∗/q fulfills the assump-
tion of Corollary 4.4, and hence

α∗
q

≥ 1
4
τ2 − 1
τ2 + 1

ϕ̃((τ − 1)δ).

This together with the second assertion of Lemma 4.6 yields

ψ(uδα∗) − ψ(u†) ≤ 2 τ
2+1
τ2−1δ

2

qϕ̃((τ − 1)δ)

=
1
2q

4
(τ − 1)2

τ2 + 1
τ2 − 1

ϕ((τ − 1)δ)

≤ 2
q(τ − 1)2

τ2 + 1
τ2 − 1

ϕ((τ + 1)δ)

≤ 2
q

τ2 + 1
(τ − 1)3

ϕ(δ).

The convergence rate in Bregman distance follows directly from these two
estimates and (4.36). �

4.6 Conditional stability

In this section, we briefly discuss an alternative approach for obtaining er-
ror estimates, i.e., conditional stability due to Cheng and Yamamoto [65].
It connects two distinct research topics in inverse problems, regularization
theory and conditional stability estimates. We note that many conditional
stability estimates exist for inverse problems for partial differential equa-
tions. One general setting is as follows: Let K be a densely defined and
injective operator from a Banach space X to a Banach space Y . Let Z ⊂ X

be another Banach space and let the embedding Z ↪→ X be continuous.
We set UM = {u ∈ Z : ‖u‖Z ≤M} for M > 0 and choose Q ⊂ Z arbitrary.

Let the function ω = ω(ε) (ε ≥ 0) be nonnegative and monotonically
increasing and satisfy

lim
ε↓0

ω(ε) = 0 and ω(kε) ≤ B(k)ω(ε) for k ∈ (0,∞)

where B(k) is a positive function defined in (0,∞).

Definition 4.3. The operator equation K(u) = g is said to satisfy a condi-
tional stability, if for a given M > 0, there exists a constant c = c(M) > 0
such that

‖u1 − u2‖X ≤ c(M)ω(‖K(u1) −K(u2)‖Y )
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for all u1, u2 ∈ UM ∩ Q. The function ω is called the modulus of the
conditional stability.

Now we consider the Tikhonov functional

Jα(u) = ‖Ku− gδ‖2
Y + α‖u‖2

Z .

One basic result is a convergence rate for an a priori choice strategy.

Theorem 4.26. Let the operator equation K(u) = g satisfy the conditional
stability and K(u†) = g†, u† ∈ Q∩Z, and ‖gδ − g†‖Y ≤ δ. Let uδα ∈ Q∩Z
be an approximate minimizer in the sense

Jα(uδα) ≤ inf
u∈Q∩Z

Jα(u) + c0δ
2

where c0 > 0 is a constant. Then with the choice rule α ∼ δ2, there holds

‖uδα − u†‖X ≤ cω(δ).

Proof. Let M = ‖u†‖Z . Since Jα(uδα) ≤ Jα(u) + c0δ
2 for any u ∈ Q∩Z,

we have
‖K(uδα) − gδ‖2

Y + α‖uδα‖2
Z ≤ ‖K(u†) − gδ‖2

Y + α‖u†‖2
Z + c0δ

2

= ‖g† − gδ‖2
Y + α‖x†‖2

Z + c0δ
2

≤ (1 + c0)δ2 + αM2.

This together with the choice c1δ2 ≤ α ≤ c2δ
2 gives

‖K(uδα) − gδ‖Y ≤ (1 + c0 + c2M
2)

1
2 δ

and

‖uδα‖Z ≤ ((1 + c0)c−1
1 +M2)

1
2 ≡M1.

Consequently,

‖K(uδα) −K(u†)‖Y ≤ ‖K(uδα) − gδ‖Y + ‖gδ − g†‖Y ≤ (c+ 1)δ,

with c = (1 + c0 + c2M
2)

1
2 . Finally, the conditional stability yields

‖uδα − u†‖X ≤ c(M1)ω((c+ 1)δ) ≤ c(M1)B(c+ 1)ω(δ),

which completes the proof of the theorem. �

Remark 4.17.

(i) In Theorem 4.26, the existence of a minimizer to the functional Jα is
not required. However, this does not resolve the problem of finding
an approximate minimizer. Further, in the Tikhonov functional Jα,
the fidelity and penalty are both restricted to powered norms. It is
unclear how to incorporate general convex variational penalties into
the framework.
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(ii) In Theorem 4.26, the choice α = O(δ2) is different from other choice
rules based on canonical source conditions. The goal here is to control
the size of the discrepancy, while bounding uniformly the norm of the
approximate minimizer.

Apart from the a priori choice α = O(δ2), the classical discrepancy
principle can reproduce an almost identical convergence rate.

Theorem 4.27. Let the operator equation K(u) = g satisfy the conditional
stability and K(u†) = g†, u† ∈ Q∩Z, and ‖gδ − g†‖Y ≤ δ. Let uδα ∈ Q∩Z
be an approximate minimizer in the sense

Jα(uδα) ≤ inf
u∈Q∩Z

Jα(u) + c0δ
2.

Let α(δ) be determined by the discrepancy principle
c1δ ≤ ‖K(uδα) − gδ‖Y ≤ c2δ,

where c2 > c1 ≥ √
1 + c0. Then there holds the following estimate

‖uδα − u†‖X ≤ cω(δ).

Proof. Let M = ‖u†‖Z . Then by the minimizing property of uδα we have
‖K(uδα) − gδ‖2

Y + α‖uδα‖2
Z ≤ ‖Ku† − gδ‖2

Y + α‖u†‖2 + c0δ
2

= (1 + c0)δ2 + α‖u†‖2
Z .

This together with the definition of the discrepancy principle yields
‖uδα‖2

Z ≤ ‖u†‖2
Z .

However,
‖K(uδα) −K(u†)‖Y ≤ ‖K(uδα) − gδ‖Y + ‖gδ −K(u†)‖Y

≤ (c2 + 1)δ.
Then the conditional stability estimate yields

‖uδα − u†‖X ≤ C(M)ω(‖K(uδα) −K(u†)‖Y )

≤ C(M)ω((c2 + 1)δ) ≤ C(M)B(c2 + 1)ω(δ).
This completes the proof of the theorem. �

Remark 4.18. One distinct feature of the approach via conditional stabil-
ity is that no source/ nonlinearity conditions are required for the conver-
gence rate, by using conditional stability estimates instead. However, con-
ditional stability estimates on computationally amenable Sobolev/Banach
spaces can be very challenging to derive. This is practically important
since otherwise faithfully minimizing the Tikhonov functional (respecting
the smoothness assumption) might be very difficult, if the involved norms
‖ · ‖Y and ‖ · ‖Z are exotic.
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Typically for PDE inverse problems, conditional stability is established
via Carleman estimates. We refer interested readers to [48, 202, 310] for
the applications of Carleman estimate in inverse problems. We conclude
the section with one classical linear inverse problem, the backward heat
problem, taken from [216].

Example 4.9. In this example, we consider the heat equation

yt = A(x)y in Ω × (0, T ),

y = 0 on ∂Ω × (0, T ),
(4.37)

where Ω is a bounded domain in R
d(d = 2, 3) with a smooth boundary ∂Ω,

and A(x) is a second-order self-adjoint elliptic operator

A(x)y = ∇ · (a(x)∇y) − c(x)y,

where the nonnegative function c(x) ∈ L∞(Ω) and a(x) ∈ C1(Ω) with
a ≥ α0 for some α0 > 0. Let ω be an arbitrary subdomain of Ω, τ > 0 be a
fixed constant. The inverse problem is to reconstruct the initial temperature
y(·, 0) from the measurement data of y in ω× (τ, T ). To show a conditional
stability estimate, we first introduce an admissible set UM by: for any fixed
ε ∈ (0, 1) and M > 0

UM = {a ∈ H2ε(Ω) : ‖a‖H2ε(Ω) ≤M}.
Then for any y(·, 0) ∈ A, there exists a constant κ = κ(M, ε) such that

‖y(·, 0)‖L2(Ω) ≤ C(M, ε)(− log ‖y‖L2(ω×(τ,T )))−κ. (4.38)

In particular, with the help of this estimate (4.38), one can show that
in Tikhonov regularization, if one chooses the setup as

X = L2(Ω), Y = L2(ω × (τ, T )),

Q = Z = H2ε(Ω), ω(η) = (− log η)−κ,

then the (approximate) Tikhonov minimizer uδα, with either the a priori
parameter choice α ∼ δ2 or the discrepancy principle, satisfies a convergence
rate O(ω(δ)).

We shall assume that ‖y‖L2(ω×(τ,T )) is sufficiently small, and show the
conditional stability estimate (4.38) in three steps.
step (i): application of a Carleman estimate. First we show that for any
fixed θ ∈ (τ, T ), there exists constants C = C(M) > 0 and κ1 ∈ (0, 1) such
that

‖y(·, θ)‖L2(Ω) ≤ C‖y‖κ1
L2(ω×(τ,T )). (4.39)
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To show this, we first introduce two weight functions

ϕ(x, t) =
eλd(x)

(t− τ)(T − t)
,

α(x, t) =
eλd(x) − e2λ‖d‖C(Ω)

(t− τ)(T − t)
,

where d(x) is a suitably chosen positive function in Ω [150, 310]. Then by
the Carleman estimates (c.f Theorem 2.1 of [150] or [310]) for the solution
y(x, t) to (4.37), there exists some constant s0 such that for all s ≥ s0 and
(x, t) ∈ Ω × (τ, T ) there holds∫ T

τ

∫
Ω

(
1
sϕ

|∇y|2 + sϕy2

)
e2sαdxdt ≤ C

∫ T
τ

∫
ω

sϕy2e2sαdxdt. (4.40)

Further, for any two arbitrarily fixed θ1, θ2 with τ < θ1 < θ2 < T , clearly
we have

ϕe2sα ≤ C̃ for (x, t) ∈ ω × (τ, T ),

ϕe2sα ≥ c̃, ϕ−1e2sα ≥ c̃ for (x, t) ∈ Ω × (θ1, θ2),

where the positive constants C̃ and c̃ depend only on τ, T, θ1 and θ2. Then
it follows from (4.40) that

‖y‖L2(θ1,θ2;H1(Ω)) ≤ CM‖y‖L2(ω×(τ,T )). (4.41)

Meanwhile, multiplying both sides of (4.37) by any v ∈ H1
0 (Ω) yields∫

Ω

ytvdx = −
∫

Ω

a∇y · ∇v −
∫

Ω

cyvdx,

which together with (4.41) gives

‖yt‖L2(θ1,θ2;H−1(Ω)) ≤ C‖y‖L2(θ1,θ2;H1(Ω))

≤ CM‖y‖L2(ω×(τ,T )).

Therefore, these two estimates and Sobolev embedding give

‖y‖C([θ1,θ2];H−1(Ω)) ≤ CM‖y‖L2(ω×(τ,T )). (4.42)

Furthermore, by the semigroup theory [249], we have y(t) = etAy(·, 0),
where the elliptic operator A is defined on the domain D(A) = H1

0 (Ω) ∩
H2(Ω). Then for any γ > 0, there exists a constant Cγ > 0 such that

‖(−A)γetA‖ ≤ Cγt
−γ ,

‖a‖H2γ(Ω) ≤ Cγ‖(−A)γa‖L2(Ω).
(4.43)
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This implies

‖y‖C([θ1,θ2];H2γ(Ω)) ≤ Cγ‖(−A)γetAy(·, 0)‖C([θ1,θ2];L2(Ω))

≤ Cγ
θγ1

‖y(·, 0)‖L2(Ω) ≤ CγM

θγ1
.

From this and (4.42), by the interpolation theory, we deduce

‖y‖C([θ1,θ2];L2(Ω)) ≤ ‖y‖
2γ

2γ+1

C([θ1,θ2];H−1(Ω))
‖y‖

1
2γ+1

C([θ1,θ2];H2γ(Ω))

≤ C
2γ

2γ+1
M

(
CγM

θγ1

) 1
2γ+1

‖y‖
2γ

2γ+1

L2(ω×(τ,T ))
,

which completes the proof of (4.39).
step (ii) logarithmic convexity inequality. Next we show an important log-
arithmic convexity inequality

‖y(·, t)‖L2(Ω) ≤ ‖y(·, 0)‖1− t
θ

L2(Ω)‖y(·, θ)‖
t
θ

L2(Ω) ∀0 ≤ t ≤ θ. (4.44)

To show this, we consider the function V (t) = ‖y(·, t)‖2
L2(Ω). Using (4.37)

and integration by parts we deduce

V ′(t) = 2
∫

Ω

y(x, t)yt(x, t)dx = 2
∫

Ω

y(x, t)(Ay)(x, t)dx

= −2
∫
Ω

(a|∇y|2 + cy2)dx.

Further differentiation and integration by parts yields

V ′′(t) = −4
∫

Ω

a∇y · ∇yt + cyytdx = 4
∫

Ω

ytAydx = 4
∫

Ω

y2
t dx.

Using these formulae for V ′(t) and V ′′(t) and the Cauchy-Schwarz inequal-
ity, we have

V ′(t)2 − V ′′(t)V (t) = (2
∫

Ω

yytdx)2 − 4
∫

Ω

y2
t dx

∫
Ω

y2dx ≤ 0,

which yields

(log V (t))′′ =
V ′′(t)V (t) − V ′(t)2

V (t)2
≥ 0.

Therefore, we know that logV (t) is convex, i.e., logV (t) ≤ (1− t
θ ) log V (0)+

t
θ log V (θ), from which the inequality (4.44) follows immediately. Upon
squaring both sides of (4.44) and then integrating over t ∈ (0, θ), we obtain∫ θ

0

‖y(·, t)‖2
L2(Ω)dt ≤ CM

∫ θ
0

‖y(·, θ)‖ 2t
θ

L2(Ω)dt.
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It follows from this and (4.39) that

‖y‖L2(0,θ;L2(Ω)) ≤ CM (− log ‖y(·, θ)‖L2(Ω))−
1
2

≤ CM (− log ‖y‖L2(ω×(τ,T )))−
1
2 .

(4.45)

step (iii) stability estimate. By the semigroup representation of the solution
y(·, t), we have

yt(·, t) = AetAy(·, 0) = −(−A)1−εetA(−A)εy(·, 0).

Now by appealing to (4.43), we obtain

‖yt(·, t)‖L2(Ω) ≤ Ctε−1‖(−A)εy(·, 0)‖L2(Ω).

Now for any 1 < p < 1/(1 − ε), upon noting y(·, 0) ∈ A, we deduce∫ θ
0

‖yt(·, t)‖pL2(Ω)dt ≤ C

∫ θ
0

tp(ε−1)dt‖(−A)εy(·, 0)‖pL2(Ω)

≤ C‖y(·, 0)‖pH2ε(Ω) ≤ C(M),

i.e.,

‖y‖W1,p(0,θ;L2(Ω)) ≤ C(M). (4.46)

We choose p such that 1 < p ≤ 2. Now by (4.45) and the inequality
‖η‖Lp(0,T ) ≤ C‖η‖L2(0,T ) for p ≤ 2, we have

‖y‖Lp(0,θ;L2(Ω)) ≤ C(M)(− log ‖y‖L2(ω×(τ,T )))−
1
2 . (4.47)

Using (4.46), (4.47) and Sobolev interpolation, we derive that for 0 < s < 1

‖y‖W1−s,p(0,θ;L2(Ω)) ≤ C(M)(− log ‖y‖L2(ω×(τ,T )))−
s
2 .

Now we choose s ∈ (0, 1) such that (1 − s)p > 1 and thus the space
W 1−s,p(0, θ;L2(Ω)) continuously embeds into C([0, θ];L2(Ω)). Conse-
quently,

‖y‖C([0,θ];L2(Ω)) ≤ C‖y‖W1−s,p(0,θ;L2(Ω))

≤ C(M)(− log ‖y‖L2(ω×(τ,T )))−
s
2 .

This shows the claimed conditional stability estimate (4.38).
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Bibliographical notes

Our discussions in Section 4.2 on the convergence rate analysis in Hilbert
space setting have exclusively focused on the classical source condition, i.e.
u† = K ′(u†)∗w. This is largely motivated by its easier interpretation as
a necessary optimality condition, especially in the context of parameter
identification for differential equations. However, there are more general
source conditions. One is the power-type source condition

u† = (K ′(u†)∗K ′(u†))νw,

where the parameter 0 < ν ≤ 1 controls the smoothness of the solution u†.
A more general case reads

u† = ϕ(K ′(u†)∗K(u†))w,

where ϕ is a continuous nondecreasing index function defined on some in-
terval [0, σ] containing the spectrum of K ′(u†)∗K ′(u†), and ϕ(0) = 0. The
convergence rate analysis can be extended to these cases, provided certain
further conditions on the operator K are met with. We shall not dwell
into these interesting theoretical issues here, but refer interested readers to
[284, 222]. The existence of a source representer w for parameter identifi-
cation problems is nontrivial to verify. Nonetheless, there are a few studies,
where sufficient conditions were provided. We refer to [90] for a parabolic
inverse problem, and [128] for an elliptic inverse problem.

The variational inequality approach is fairly versatile for representing
structural properties of nonlinear inverse problems. However, the applica-
tion to concrete inverse problems remains fairly scarce. It is known that
it is more general than the classical source condition; see [49] for the case
of sparsity constraints. The approach of conditional stability was further
studied in [184]; see also [79] for an application to the Landweber method.



May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws

This page intentionally left blankThis page intentionally left blank



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch05 page 169

Chapter 5

Nonsmooth Optimization

In this chapter we discuss optimization theory for a general class of vari-
ational problems arising in Tikhonov formulations of inverse problems.
Throughout, we let X and Y be Banach spaces, and H be a Hilbert space
lattice, the functional F : X → R

+ and the map E : X → Y be continu-
ously differentiable. Further, we let C ⊂ X be a closed convex subset of X ,
and Λ ∈ L(X,H) be a bounded linear operator from X to H . Throughout,
we denote by ‖ · ‖ the norm, and | · | the absolute value or the Euclidean
norm on R

d, d = 2, 3.
We shall consider minimization problems of the form

min
x∈C

J(x) = F (x) + αψ(Λx) (5.1)

subject to the equality constraint

E(x) = 0.

Problem (5.1) encompasses a wide variety of optimization problems includ-
ing variational inequalities of the first and second kind [112, 111]. Here ψ is
a nonsmooth functional on H . One example is the L1-type regularizations
for inverse medium problems, which are often used to obtain geometrically
sharp and enhanced minimizers. Then the functional ψ(z) is given by

ψ(z) =
∫

Ω

|z| dω,

and the linear operator Λ is the natural injection for the sparsity imaging
method, Λ = ∇ for the total variation regularization, and Λ = ∆ for the
biharmonic nonlinear filter. Alternatively, one may consider the following
nonconvex functional

ψ(z) =
∫

Ω

|z|p dω, 0 ≤ p < 1.

169



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch05 page 170

170 Inverse Problems: Tikhonov Theory and Algorithms

Then the minimizers feature sparsity structure, e.g., point-like distribution
and clustered medium. Especially, L0(Ω) with p = 0 represents the mea-
sure of support set {z �= 0} of the function z. As was mentioned in Chapter
3, it is very essential to select proper regularization functionals to obtain
an enhanced yet robust reconstruction that captures distinct features and
properties of the medium. In particular, one may use multiple regulariza-
tion functionals {ψk} and ψ =

∑
k αk ψk to capture different features and

properties of the sought-for medium. We note that the constraint x ∈ C
can also be formulated by the nonsmooth functional ψ by

ψ(x) = IC ≡
{

0, x ∈ C,
∞, x /∈ C.

In a general class of inverse problems (control problems), the functional
F denotes the fidelity or performance index, ψ represents the regularization,
and α > 0 is the regularization parameter. In many applications we have
the natural decomposition of coordinate x = (y, u) ∈ X1 ×X2 and E(x) =
E(y, u) = 0 represents the equality constraint for the state y ∈ X1 and the
control/design/medium variable u ∈ C ⊂ X2. So we have a constrained
minimization problem of the form

F (y) + αψ(u),

subject to E(y, u) = 0.
(5.2)

Throughout, we always assume that E(y, u) = 0 has a (locally) unique
solution y = y(u) ∈ X1 for any given u ∈ C ⊂ X2. Then Problem (5.2)
is equivalent to Problem (5.1) with F (u) = F (y(u), u). In general, the
equality constraint E(y, u) = 0 is governed by partial differential equations.

Now we give two examples illustrating the abstract setup, one elliptic
problem and one parabolic problem.

Example 5.1. This example is concerned with inverse medium problems
for elliptic equations. For the inverse medium problem, we have

F (u) = ‖Cy(u) − z‖2
Y and ψ = ψ(u),

where C ∈ L(X,Y ) is an observation operator, typically a trace operator
or restriction to a subdomain, and z ∈ Y is the observational data. For
example, for the inverse medium scattering problem, the equality constraint
E(y, u) = 0 represents the Helmholtz equation

E(y, u) = ∆y + n2k2y = 0,
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where k is the wave number and u = n2 (with 1 ≤ u ≤ umax almost
everywhere) represents the refractive index of the medium. In the inverse
potential problem, E(y, u) = 0 represents the Schrodinger equation

E(y, u) = −∆y + V y = 0,
where u = V is the spatially dependent potential function. For the inverse
conductivity problem, e.g., electrical impedance tomography, it represents
the conductivity equation

E(y, u) = −∇ · (σ∇y) = 0,
together with suitable boundary conditions, where u = σ is the electrical
conductivity of the medium. Due to physical constraints, we usually assume
the medium function u belongs to the bilateral constraint set C = {0 <

umin ≤ u ≤ umax}.
For the control problem, the equality constraint is often given by

E0y + f(y, u) = 0, (5.3)
where the operator E0 ∈ L(X0, X

∗
0 ), with X0 being a closed subspace of

L2(Ω), is boundedly invertible. We refer the existence, uniqueness, and
regularity of weak solutions y to (5.3) for a given u ∈ C to classical PDE
theory, cf. e.g., [294, 106].

Example 5.2. This example is concerned with optimal control of the heat
equation. Let Q = (0, T )×Ω, with Ω ⊂ R

d being an open bounded domain.
The functional F and equality constraint E are respectively given by

F (y, u) =
∫ T

0

(�(y(t)) + h(u(t))) dt +G(y(T )),

and

E0y =
∂

∂t
y − div(σ∇y + b y).

Here the space X0 is given by X0 = {y ∈ L2(0, T ;H1(Ω)), yt ∈
L2(0, T ; (H1(Ω))∗)}, and the functionals �, h and G in the performance
index F are nonnegative and Lipschitz continuous. Specifically, for the
boundary control problem

ν · (σ∇y + by) = c(y)u on ∂Ω,
where ν is the unit outward normal to the boundary ∂Ω, we have for a.e.
t ∈ (0, T ) and all φ ∈ H1(Ω) such that

〈E0y + f(y, u), φ〉(H1(Ω))∗×H1(Ω)

= 〈∂y
∂t
, φ〉 +

∫
Ω

(σ∇y + by,∇φ)dω +
∫
∂Ω

c(y)uφds.

In the formulation, σ, b and c are known medium parameters, and u ∈
L2(0, T ;L2(∂Ω)) is the control function.
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5.1 Existence and necessary optimality condition

Now we discuss the existence of minimizers to problem (5.1) and derive the
necessary optimal condition.

5.1.1 Existence of minimizers

First we discuss the existence of minimizers to problem (5.1). We make the
following assumption.

Assumption 5.1. Problem (5.1) satisfies the following assumptions:

(i) It is feasible, i.e., there exists an element x0 ∈ C such that E(x0) =
0.

(ii) Either C is bounded in X or J is coercive, i.e.,
J(x) → ∞ as |x| → ∞, x ∈ C satisfying E(x) = 0.

(iii) The operator E is weakly (weakly star) continuous, i.e., for xn → x̄

weakly/weakly ∗ in X , there holds
E(xn) → E(x̄) weakly in Y.

(iv) J(x) is weakly (weakly ∗) lower sequentially semi-continuous, i.e.
for any sequence xn → x̄ weakly/weakly ∗ in X , there holds J(x̄) ≤
lim infn→∞ J(xn).

Remark 5.1. If the functionals F and ψ are convex, then J is weakly
(weakly star) lower sequentially semi-continuous [16].

Now we can state an existence result.

Theorem 5.1. Let Assumption 5.1 hold. Then there exists a minimizer of
problem (5.1).

Proof. By Assumption 5.1(i), there exists a minimizing sequence {xn} ⊂
C satisfying E(xn) = 0 such that

lim
n→∞ J(xn) = inf

x∈C, E(x)=0
J(x),

and further it is uniformly bounded by Assumption 5.1(ii). Hence, there
exists a subsequence, also denoted by {xn}, that converges weakly/weakly
star to some x̄ ∈ C (by the convexity and closedness of C). By Assump-
tion 5.1(iii), E(x̄) = 0. Now by the weak lower semicontinuity of J from
Assumption 5.1(iv), there holds

J(x̄) ≤ lim inf
n→∞ J(xn) = inf

x∈C, E(x)=0
J(x),

i.e., x̄ is a minimizer. �
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5.1.2 Necessary optimality

Now we derive the necessary optimality condition for problem (5.1). First
we consider the case in the absence of the equality constraint E(x) = 0.
We shall assume that the functional F is C1 continuous and ψ is convex,
i.e., for all x1, x2 ∈ X and t ∈ [0, 1]:

ψ((1 − t)x1 + x2) ≤ (1 − t)ψ(x1) + tψ(x2).

Then we have a variational inequality as the necessary optimality.

Theorem 5.2. Let x∗ ∈ C be a minimizer to problem (5.1), F be C1

continuous and ψ be convex. Then there holds for all x ∈ C
〈F ′(x∗), x− x∗〉 + α(ψ(Λx) − ψ(Λx∗)) ≥ 0.

Proof. Let xt = x∗ + t (x − x∗) for all x ∈ C and 0 ≤ t ≤ 1. By the
convexity of the set C, xt ∈ C. The optimality of x∗ ∈ C yields

F (xt) − F (x∗) + α(ψ(Λxt) − ψ(x∗)) ≥ 0.

By the convexity of ψ, we have

ψ(Λxt) − ψ(Λx∗) ≤ t (ψ(Λx) − ψ(Λx∗)).

Meanwhile, by the differentiability of F , there holds

F (xt) − F (x∗)
t

→ F ′(x∗)(x − x∗) as t→ 0+.

Now the desired variational inequality follows by letting t→ 0+. �

We illustrate Theorem 5.2 with L1(Ω) optimization.

Example 5.3. Let U be a closed convex subset in R. We consider the
following minimization problem on X = L2(Ω) and C = {u ∈ U a.e. in Ω}:

min
u∈C

1
2
‖Ku− b‖2

Y + α

∫
Ω

|u(ω)| dω,

where the operator K ∈ L(X,Y ). Then by Theorem 5.2, the optimality
condition is given by:

(Ku∗ − b,K(u− u∗))Y + α

∫
Ω

(|u| − |u∗|) dω ≥ 0 ∀u ∈ C. (5.4)

Next we derive a pointwise representation of the optimality condition.
To this end, we let p = −K∗(Ku∗ − b) ∈ X and

u =

{
v, |ω − ω̄| ≤ δ,

u∗, otherwise,



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch05 page 174

174 Inverse Problems: Tikhonov Theory and Algorithms

where the scalar v ∈ U , δ > 0 is a small number, and the point ω̄ ∈ Ω is
fixed. It follows from (5.4) that

1
δ

∫
|ω−ω̄|≤δ

(−p(v − u∗(ω)) + α (|v| − |u∗(ω)|) dω ≥ 0.

Now suppose u∗ ∈ L1(Ω). Then by letting δ → 0+ we obtain from
Lebesgue’s theorem that

−p(v − u∗(ω̄)) + α (|v| − |u∗(ω̄)|) ≥ 0

holds almost everywhere ω̄ ∈ Ω (Lebesgue points of |u∗| and for all v ∈ U).
That is, u∗(ω̄) ∈ U minimizes

−pu+ α |u| over u ∈ U. (5.5)

First we consider the case U = R. Then (5.5) implies that if |p| < α,
then u∗ = 0 and otherwise p = α u∗

|u∗| = α sign(u∗). Thus, we obtain the
following pointwise necessary optimality

(K∗(Ku∗ − b))(ω) + α∂|u∗|(ω) = 0, a.e. ω in Ω,

where the subdifferential ∂|u| of |u| is defined by

∂|u|(ω) =


1, u(ω) > 0,
[−1, 1], u(ω) = 0,
−1, u(ω) < 0.

Next, we consider the case U = [−1, 1]. Then (5.5) has the optimality
condition u∗ ∈ Ψ(p) defined by

Ψ(p) =


0, |p| < α,

[0, 1], p = α,

1, p > α,

[−1, 0], p = −α,
−1, p < −α.

(5.6)

In general, the optimality condition (5.5) is a monotone graph u∗ ∈ Ψ(p).

Next we consider the constrained case, i.e., x = (y, u), E(y, u) = 0 and
F (x) = F (y), where y ∈ X1 denotes the state and u ∈ C ⊂ X2 represents
the medium parameters/control/design variables, i.e.,

min
u∈C

F (y) + αψ(Λu) subject to E(y, u) = 0. (5.7)

We shall assume that at x∗ = (y∗, u∗) ∈ X1 ×X2, the map

Ey(y∗, u∗) : X1 → Y = X∗
1
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is bijective. Then by the implicit function theorem, there exists a unique
solution graph y = y(u) in a neighborhood of (y∗, u∗) for E(y, u) = 0.
Consequently, one can rewrite problem (5.7) as

min
u∈C

F (y(u)) + αψ(u).

Next we introduce the associated Lagrange functional for λ ∈ X1

L(y, u, λ) = F (y) + αψ(Λu) + 〈λ,E(y, u)〉.
Now we can state the fundamental Lagrange calculus.

Lemma 5.1. Let Ey(y, u) be boundedly invertible, and let F̂ (u) = F (y(u)).
Then for all d ∈ X2, there holds

F̂ ′(u)(d) = 〈λ,Eu(y, u)(d)〉,
where the adjoint λ ∈ X1 satisfies

Ly(y, u, λ) = (Ey(y, u))∗λ+ F ′(y) = 0.

Proof. It follows from the implicit function theorem that

(F̂ ′(u), d) = (F ′(y), ẏ),

where ẏ satisfies Ey(y, u)ẏ + Eu(y, u)d = 0. Thus the claim follows from

(F ′(y), ẏ) = −((Ey(y, u))∗λ, ẏ) = −〈λ,Ey(y, u)ẏ〉 = 〈λ,Eu(y, u)d〉. �

Thus, we obtain the following necessary optimality condition.

Corollary 5.1. Let u∗ ∈ C be a minimizer of (5.7), then there holds for
all u ∈ C

〈Eu(y∗, u∗)∗λ, u − u∗〉 + α(ψ(Λu) − ψ(Λu∗)) ≥ 0.

Now we illustrate the necessary optimality condition with two examples.

Example 5.4. This example illustrates the necessary optimality condition
with one inverse medium problem, i.e., electrical impedance tomography.
Let Ω ⊂ R

d, d = 2, 3, be an open bounded domain. We consider the
following variational formulation:

min
1
2

N∑
k=1

∫
∂Ω

|fk − uk|2ds+ αψ(Λσ)

subject to

∇ · (σ∇uk) = 0, in Ω,

σ ∂
∂ν
uk = gk, on ∂Ω,
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and over the admissible set C = {0 < σ ≤ σ ≤ σ̄ < ∞, a.e.}. Here fk is
the (noisy) voltage measurement corresponding to the kth applied current
gk, 1 ≤ k ≤ N . The necessary optimality can be written as

N∑
k=1

∇uk · ∇pk + αΛ∗µ+ λ = 0, µ ∈ ∂ψ(Λσ),

λ = max(0, λ+ c (σ − σ̄)) + min(0, λ+ c (σ − σ)),
∇ · (σ∇pk) = 0 in Ω,

σ
∂

∂ν
pk = fk − uk at ∂Ω,

where the constant c > 0 is arbitrary and the complementarily condition
on (σ, λ) is for the bilateral constraint σ ∈ C.

Example 5.5. This example is concerned with an inverse problem in heat
conduction of determining the heat transfer coefficient/radiation coefficient
γ in the heat equation for u = u(t, x), (t, x) ∈ (0, T )× Ω:

∂

∂t
u− ∆u = 0, in Ω,

∂u

∂ν
= γu, on Γ1,

∂u

∂ν
= 0, on Γ2,

u(0) = u0, in Ω,

where Ω ⊂ R
d, d = 1, 2, 3, is an open bounded domain, Γ1 and Γ2 are two

disjoint parts of the boundary ∂Ω, and u0 is the initial data. We formulate
the following optimization problem

min 1
2

∫ T

0

∫
Γ2

|f − u|2dsdt+ αψ(Λγ)

subject to the above equation and the constraint γ ∈ C = {γ ≥
0 a.e. in Γ1}, where f is a (noisy) measurement of the temperature u(t, x)
on the lateral boundary (0, T ) × Γ2. The necessary optimality condition
can be written as 

up+ αΛ∗µ+ λ = 0,

µ ∈ ∂ψ(Λγ),

λ = max(0, λ− c γ),
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where the adjoint variable p satisfies

− ∂

∂t
p+ ∆p = 0, in Ω,

∂p

∂ν
= γ p, on Γ1,

∂p

∂ν
= u− f, on Γ2,

p(T ) = 0, in Ω.

In general, we have the following Lagrange multiplier theorem [163].

Theorem 5.3. Let x∗ ∈ C be a minimizer of problem (5.1). Assume that
the regular point condition holds at x∗, i.e., 0 ∈ int {E′(x∗)(x−x∗) : x ∈ C}
and that ψ is C1 continuous. Then there exists a Lagrange multiplier λ ∈ X

such that for all x ∈ C:

〈(E′(x∗))∗λ+ F ′(x∗) + αΛ∗ψ′(Λx∗), x− x∗〉 ≥ 0, E(x∗) = 0.

Meanwhile, if ψ is convex and the regular point condition holds, then there
exists a Lagrange multiplier λ ∈ X such that for all x ∈ C:

〈(E′(x∗))∗λ+ F ′(x∗) + αΛ∗µ, x− x∗〉 ≥ 0,
µ ∈ ∂ψ(Λx∗), E(x∗) = 0.

5.2 Nonsmooth optimization algorithms

In this section, we describe several algorithms for nonsmooth optimization,
including augmented Lagrangian method, exact penalty method, Gauss-
Newton method and semismooth Newton method. The implementation of
these algorithms will be discussed.

5.2.1 Augmented Lagrangian method

First we discuss the augmented Lagrangian method for the following con-
strained minimization problem

min
x∈C

F (x) subject to E(x) = 0, G(x) ≤ 0. (5.8)

The inequality constraint G(x) ≤ 0 can be fairly general. For example, a
polygonal constraint on x can be written as

G(x) = Gx− c ≤ 0

for some G ∈ L(X,Z).
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First we consider the case of equality constraint E(x) = 0. Then the
augmented Lagrangian functional Lc(x, λ) reads

Lc(x, λ) = F (x) + (λ,E(x)) +
c

2
‖E(x)‖2,

where the constant c > 0 is arbitrary.
The augmented Lagrangian method is an iterative method, and it con-

sists of the update step

xn+1 = argminx∈C Lc(x, λn),

λn+1 = λn + cE(xn).

The augmented Lagrangian method is a hybridization of the multiplier
method (c = 0) and the penalty method (λ = 0). It can be shown [163]
that the method is locally convergent provided that the Hessian L′′

c (x, λ)
(with respect to x) is uniformly positive near the solution pair (x̄, λ̄). We
observe that there holds

L′′
c (x̄, λ̄) = F ′′(x̄) + (λ̄, E′′(x̄)) + cE′(x̄)∗E′(x̄).

Therefore, the augmented Lagrangian method has an enlarged convergent
basin. In contrast to the penalty method, it is not necessary to let c→ ∞ in
the augmented Lagrangian functional Lc(x, λ) since the Lagrange multiplier
update speeds up the convergence.

Next for the case of inequality constraint G(x) ≤ 0, we consider the
equivalent formulation:

min
(x,z)∈C×Z

F (x) +
c

2
‖G(x) − z‖2 + (µ,G(x) − z)

subject to

G(x) = z and z ≤ 0.

Minimizing this objective functional with respect to z over the constraint
set {z ≤ 0} yields that z∗ = min(0, µ+cG(x)

c ) attains the minimum. Conse-
quently, we obtain

min
x∈C

F (x) +
1
2c

(‖max(0, µ+ cG(x))‖2 − ‖µ‖2).

Based on these discussions, for the general case (5.8), given (λ, µ) and
c > 0, we define the following augmented Lagrangian functional

Lc(x, λ, µ) = F (x) + (λ,E(x)) + c
2
‖E(x)‖2

+
1
2c

(‖max(0, µ+ cG(x))‖2 − ‖µ‖2).
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Algorithm 5.1 First-order augmented Lagrangian method
1: Initialize (λ0, µ0) and set n = 0
2: Let xn be a solution to

min
x∈C

Lc(x, λn, µn).

3: Update the Lagrange multipliers

λn+1 = λn + cE(xn),

µn+1 = max(0, µn + cG(xn)).

4: Stop or set n = n+ 1 and return to step 1.

With the augmented Lagrangian functional Lc(x, λ, µ) at hand, we can
now describe a first-order augmented Lagrangian method, cf. Algorithm
5.1. In essence, it is a sequential minimization of Lc(x, λ, µ) over x ∈ C.

We have following remark concerning Algorithm 5.1.

Remark 5.2. Let the value function Φ be defined by Φ(λ, µ) =
minx∈C Lc(x, λ, µ). Then, one can show that the gradients Φλ and Φµ satisfy

Φλ = E(x) and Φµ = max(0, µ+ cG(x)).

Therefore, the Lagrange multiplier update in Algorithm 5.1 is a gradient
ascent method for maximizing Φ(λ, µ).

Now we examine the constraints more closely. First, for the equality
constraint case, i.e., E(x) = 0, we have

Lc(x, λ) = F (x) + (λ,E(x)) +
c

2
‖E(x)‖2,

and

L′
c(x, λ) = L′

0(x, λ+ cE(x)).

The necessary optimality for the saddle point problem

max
λ

min
x

Lc(x, λ)

is given by

L′
c(x, λ) = L′

0(x, λ + cE(x)) = 0 and E(x) = 0.
A natural idea to achieve faster convergence is to apply the Newton method
to the system. Hence, we obtain the Newton updates δx = x+ − x and
δλ = λ+ − λ from
„
L′′

0 (x, λ+ cE(x)) + cE′(X)∗E′(x)) E′(x)
E′(x) 0

« „
δx
δλ

«
= −

„
L′

0(x, λ+ cE(x))
E(x)

«
.
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Next we turn to the case of inequality constraint G(x) ≤ 0 (e.g., Gx− c̃ ≤
0 for some G ∈ L(X,Z)). Then the augmented Lagrangian functional
Lc(x, µ) is given by

Lc(x, µ) = F (x) +
1
2c

(‖max(0, µ+ cG(x))‖2 − ‖µ‖2),

and the necessary optimality condition is given by

F ′(x) +G′(x)∗µ = 0,

µ = max(0, µ+ cG(x)),

where the constant c > 0 is arbitrary. Based on the complementarity
condition

µ = max(0, µ+ cG(x)),

we can derive a primal-dual active set method, cf. Algorithm 5.2, for the
special case G(x) = Gx − c̃. In the algorithm, GA = {Gk}, k ∈ A. For a
general nonlinear operator G, we take

G′(x)(x+ − x) +G(x) = 0 on A = {k : (µ+ cG(x))k > 0},
where we have linearized the nonlinear map G(x) at the current iterate x.

Algorithm 5.2 Primal-dual active set method
1: Define the active index and inactive index by

A = {k : (µ+ c (Gx− c̃))k > 0},
I = {j : (µ+ c (Gx− c̃))j ≤ 0}.

2: Let µ+ = 0 on I and Gx+ = c̃ on A.
3: Solve for (x+, µ+)

F ′′(x)(x+ − x) + F ′(x) +G∗
Aµ

+ = 0, GAx+ − c̃ = 0

4: Stop or set n = n+ 1 and return to step 1,

The primal dual active set method is a semismooth Newton method.
That is, if we define a generalized (Newton) derivative of s→ max(0, s) by
0 on (−∞, 0] and 1 on (0,∞). Note that s→ max(0, s) is not differentiable
at s = 0 and we define the derivative at s = 0 as the limit of the derivatives
from s < 0. So, we select the generalized derivative of max(0, s) as 0, s ≤ 0
and 1, s > 0. Hence the generalized Newton update is given by

µ+ − µ+ 0 = 0, if µ+ c (Gx− c̃) ≤ 0,

G(x+ − x) +Gx− c̃ = Gx+ − c̃ = 0, if µ+ c (Gx− c̃) > 0,
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which results in the following active set strategy

µ+
j = 0, j ∈ I and (Gx+ − c̃)k = 0, k ∈ A.

Later in Section 5.2.5, we will introduce a class of semismooth functions
and the semismooth Newton method in function spaces. In particular,
the pointwise (coordinate) operation s → max(0, s) defines a semismooth
function from Lp(Ω) → Lq(Ω), p > q > 1.

5.2.2 Lagrange multiplier theory

Now we present the Lagrange multiplier theory for nonsmmoth optimization
problems of the form

min
x∈C

f(x) + αϕ(Λx). (5.9)

The nonsmoothness is represented by the convex functional ϕ. We de-
scribe the Lagrange multiplier theory to deal with the nonsmoothness of
the functional ϕ. To this end, we first note that (5.9) is equivalent to

min f(x) + αϕ(Λx− u)
subject to x ∈ C and u = 0 in H.

Upon treating the equality constraint u = 0 by the augmented Lagrangian
method, we arrive at the following minimization problem

min
x∈C,u∈H

f(x) + α
{
ϕ(Λx− u) + (λ, u)H +

c

2
‖u‖2

H

}
,

where λ ∈ H is a Lagrange multiplier and c > 0 is a penalty parameter.
Next we can rewrite the optimization problem as

min
x∈C

Lc(x, λ) = f(x) + αϕc(Λx, λ), (5.10)

where the functional ϕc is defined by

ϕc(u, λ) = inf
v∈H

{
ϕ(u− v) + (λ, v)H +

c

2
‖v‖2

H

}
.

For u, λ ∈ H and c > 0, the functional ϕc(u, λ) is called the generalized
Yoshida-Moreau approximation of ϕ. It can be shown that u→ ϕc(u, λ) is
continuously Fréchet differentiable with a Lipschitz continuous derivative.
Then, the augmented Lagrangian functional [161–163] of (5.9) is given by

Lc(x, λ) = f(x) + αϕc(Λx, λ).

Let ϕ∗ be the convex conjugate of ϕ, i.e.,

ϕ(z) = sup
y∈H

{(y, z)− ϕ∗(y)} .
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Then the Yoshida-Moreau approximation ϕc can be characterized as

ϕc(u, λ) = inf
z∈H

{
ϕ(z) + (λ, u − z)H + c

2
‖u− z‖2

H

}
= inf

z∈H

{
sup
y∈H

{(y, z)− ϕ∗(y)} + (λ, u− z)H + c
2
‖u− z‖2

H

}
= sup

y∈H

{− 1
2c
‖y − λ‖2 + (y, u) − ϕ∗(y)

}
.

(5.11)

Therefore, there holds

ϕ′
c(u, λ) = yc(u, λ) = argmaxy∈H{− 1

2c
‖y − λ‖2 + (y, u) − ϕ∗(y)}

= λ+ c vc(u, λ),

where

vc(u, λ) = arminv∈H{ϕ(u− v) + (λ, v) +
c

2
‖v‖2}.

Let xc ∈ C be the solution to (5.10). Then it satisfies

〈f ′(xc) + Λ∗λc, x− xc〉X∗,X ≥ 0, for all x ∈ C
λc = ϕ′

c(Λxc, λ).

Under appropriate conditions [161–163], the pair (xc, λc) ∈ C × H has a
(strong-weak) cluster point (x̄, λ̄) as c→ ∞ such that x̄ ∈ C is the minimizer
of (5.9) and that λ̄ ∈ H is a Lagrange multiplier in the sense that

〈f ′(x̄) + Λ∗λ̄, x− x̄〉X∗,X ≥ 0, for all x ∈ C, (5.12)

with the complementarity condition

λ̄ = ϕ′
c(Λx̄, λ̄), for each c > 0. (5.13)

System (5.12)–(5.13) is a coupled nonlinear system for the primal-dual
variable (x̄, λ̄). Here the distinct feature is that the frequently employed
differential inclusion λ̄ ∈ ∂ϕ(Λx̄) is replaced by the equivalent nonlinear
equation (5.13). With the help of system (5.12)-(5.13), we can give a first-
order augmented Lagrangian method for (5.9), cf. Algorithm 5.3.

Algorithm 5.3 First-order augmented Lagrangian method
1: Select λ0 and set n = 0
2: Let xn = argminx∈CLc(x, λn)
3: Update the Lagrange multiplier by λn+1 = ϕc(Λxn, λn).
4: Stop or set n = n+ 1 and return to step 1.

In many applications, the convex conjugate functional ϕ∗ of ϕ is given
by an indicator function, i.e.,

ϕ∗(v) = IK∗(v),
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where K∗ is a closed convex set in H and IS denotes the indicator function
of a set S. It follows from (5.11) that

ϕc(u, λ) = sup
y∈K∗

{− 1
2c
‖y − λ‖2 + (y, u)}

and consequently (5.13) is equivalent to a projection

λ̄ = ProjK∗(λ̄+ cΛx̄), (5.14)

which forms the basis of the augmented Lagrangian method.

Example 5.6. This example is concerned with inequality constraint. Let
H = L2(Ω) and ϕ = IC with C = {z ∈ L2(Ω) : z ≤ 0 a.e.}, i.e.,

min
x∈{x: Λx−c̃≤0}

f(x).

In this case

ϕ∗(v) = IK∗(v) with K∗ = −C,

and the complementarity relation (5.14) implies that

f ′(x̄) + Λ∗λ̄ = 0
λ̄ = max(0, λ̄+ c (Λx̄− c̃)).

Example 5.7. This example is concerned with L1(Ω) optimization. Let
H = L2(Ω) and ϕ(v) =

∫
Ω
|v| dω, i.e.,

min f(x) + α

∫
Ω

|Λx|2 dω.

In this case

ϕ∗(v) = IK∗(v) with K∗ = {z ∈ L2(Ω) : |z|2 ≤ 1, a.e.},

and the complementarity relation (5.14) implies that
f ′(x̄) + αΛ∗λ̄ = 0,

λ̄ =
λ̄+ cΛx̄

max(1, |λ̄+ cΛx̄|2)
a.e..
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5.2.3 Exact penalty method

Now we consider the exact penalty method for the following inequality
constraint minimization

min F (x), subject to Gx ≤ c,

where G ∈ L(X,L2(Ω)). As we have seen earlier in Section 5.2.1, if x∗ is a
minimizer of the problem, the necessary optimality condition is given by

F ′(x∗) +G∗µ = 0,

µ = max(0, µ+Gx∗ − c), a.e. in Ω.

For any fixed α > 0, the penalty method is defined by

min F (x) + αψ(Gx − c) (5.15)

where the penalty functional ψ is defined by

ψ(y) =
∫

Ω

max(0, y) dω.

The necessary optimality condition reads

−F ′(x) ∈ αG∗∂ψ(Gx− c),

where the subdifferential ∂ψ is given by

∂ψ(s) =


0, s < 0,
[0, 1], s = 0,
1, s > 0.

If the Lagrange multiplier µ satisfies

sup
ω∈Ω

|µ(ω)| ≤ α, (5.16)

then µ ∈ α∂ψ(Gx∗ − c) and thus x∗ satisfies the necessary optimality
condition of (5.15). Moreover, if (5.15) has a unique minimizer x in a
neighborhood of x∗, then x = x∗.

Due to the singularity and the non-uniqueness of the subdifferential of
∂ψ, the direct treatment of the condition (5.15) may not be convenient for
numerical computation. Hence we define a regularized function maxε(0, s),
for ε > 0, of max(0, s) defined by

maxε(0, s) =


ε
2 , s ≤ 0,
1
2ε
|s|2 + ε

2
, 0 ≤ s ≤ ε,

s, s ≥ ε,
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and consider the regularized problem of (5.15)

min Jε(x) = F (x) + αψε(Gx− c), (5.17)

where the regularized penalty functional ψε is given by ψε(y) =∫
Ω

maxε(0, y) dω.
We have the following consistency result for the solution xε to the reg-

ularized problem (5.17).

Theorem 5.4. Let F be weakly lower semi-continuous. Then for any α >
0, any weak cluster point of the solutions {xε}ε>0 of the regularized problem
(5.17) is a solution to the nonsmooth problem (5.15) as ε→ 0.

Proof. First, we note that 0 ≤ maxε(s) − max(0, s) ≤ ε
2

holds for all
s ∈ R. Let x be a solution to (5.15) and xε be a solution of the regularized
problem (5.17). Then by the optimality of x and xε, we have

F (xε) + αψε(xε) ≤ F (x) + αψε(x),

F (x) + αψ(x) ≤ F (xε) + αψ(xε).

Adding these two inequalities yields

ψε(xε) − ψ(xε) ≤ ψε(x) − ψ(x).

Further, we have

ψε(xε) − ψ(x̄) = ψε(xε) − ψ(xε) + ψ(xε) − ψ(x̄)

≤ ψε(x) − ψ(x) + ψ(xε) − ψ(x̄).

Consequently, the weak lower semicontinuity of ψ and the weak convergence
of the subsequence {xε} yield

lim
ε→0+

(ψε(x) − ψ(x) + ψ(xε) − ψ(x̄)) ≤ 0.

This together with the weakly lower semicontinuity of F implies that for
any cluster point x̄ of {xε}ε>0, there holds

F (x̄) + αψ(x̄) ≤ F (x) + αψ(x),

i.e., x̄ is a minimizer to (5.15). This concludes the proof of the theorem.�

As an immediate consequence of the theorem, we have:

Corollary 5.2. If (5.15) has a unique minimizer in a neighborhood of x∗

and (5.16) holds, then the sequence {xε}ε>0 converges to the solution x∗ of
(5.15) as ε→ 0.
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The necessary optimality condition for (5.17) is given by

F ′(x) + αG∗ψ′
ε(Gx− c) = 0. (5.18)

The optimality condition (5.18) bypasses the nonuniqueness issue of the
subdifferential through regularization, however, it is still nonlinear. To
design a numerical method, we first observe that the derivative max′

ε(s)
has an alternative representation, i.e.,

max′
ε(s) = χε(s)s, χε(s) =

{
0, s ≤ 0,

1
max(ε,s) , s > 0.

This suggests the following semi-implicit fixed point iteration:

P (xk+1 − xk) + F ′(xk) + αG∗χk(Gxk+1 − c) = 0,

χk = χε(Gxk − c),
(5.19)

where χk is a diagonal operator (matrix), the operator P is positive and
self-adjoint and serves as a preconditioner for F ′.

Upon letting dk = xk+1 − xk, equation (5.19) for xk+1 can be recast
into the following equivalent equation for dk

Pdk + F ′(xk) + αG∗χk(Gxk − c+Gdk) = 0,

which gives rise to

(P + αG∗χkG)dk = −F ′
ε(x

k), (5.20)

where the right hand side F ′
ε(xk) is defined by

F ′
ε(x

k) = F ′(xk) + αG∗χk(Gxk − c).

The direction dk is a decent direction for Jε(x) at xk. Indeed, there holds

(dk, J ′
ε(x

k)) = −((P + αG∗χkG)dk, dk)

= −(Pdk, dk) − α(χkGdk, Gdk) < 0,

since the operator P is strictly positive definite. So the iteration (5.19) can
be seen as a preconditioned gradient decent method; see Algorithm 5.4 for
the complete procedure.

Let us make some remarks on Algorithm 5.4. In many applications, F ′

and G are sparse block diagonal, and the system (5.20) for the direction
dk then becomes a linear system with a sparse symmetric positive-definite
matrix; and can be efficiently solved, e.g., by the Cholesky decomposition
method. The update (5.19) represents only one of many possible choices.
For example, if F (x) = 1

2 (x,Ax) − (b, x) (with A being symmetric positive
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Algorithm 5.4 Algorithm (Fixed point iteration)
1: Set parameters: α, ε, P, tol
2: Compute the direction by (P + αG∗χkG)dk = −F ′

ε(x
k)

3: Update xk+1 = xk + dk.

4: If |J ′
ε(x

k)| < tol, then stop. Otherwise repeat Steps 1-3.

definite), then we have F ′(x) = Ax − b, and we may use the alternative
update

P (xk+1 − xk) +Axk+1 − b+ αG∗χk(Gxk+1 − c) = 0,

provided that it does not cost much to perform this fully implicit step. In
practice, we observe that Algorithm 5.4 is globally convergent practically
and the following results justify the fact.

Lemma 5.2. Let R(x, x̂) = −(F (x)−F (x̂)−F ′(x̂)(x−x̂))+(P (x−x̂), x−x̂).
Then, we have

R(xk+1, xk) + F (xk+1) − F (xk) +
α

2
(χkGdk, Gdk)

+
α

2
(χk, |Gxk+1 − c|2 − |Gxk − c|2) = 0.

Proof. Upon taking inner product between (5.19) and dk = xk+1 − xk,
we arrive at

(Pdk , dk) − (F (xk+1) − F (xk) − F ′(xk)dk)

+ F (xk+1) − F (xk) + Ek = 0,

where the term Ek is defined by

Ek = α(χk(Gxk+1 − c), Gdk) =
α

2
(χkGdk, Gdk)

+
α

2
(χk, |Gxk+1 − c|2 − |Gxk − c|2),

where the last line follows from the elementary identity 2(a, a− b) = ‖a−
b‖2 + ‖a‖2 − ‖b‖2. �

Theorem 5.5. Assume that R(x, x̂) ≥ ω‖x− x̂‖2 for some ω > 0 and for
all x and x̂, and that all inactive indices remain inactive. Then

ω‖xk+1 − xk‖2 + Jε(xk+1) − Jε(xk) ≤ 0

and the sequence {xk} is globally convergent.
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Proof. By the concavity of the function ψε(
√
t) and the identity ψε(

√
t) =

1
2 max(

√
t,ε)

for t ≥ 0, we deduce that

ψε(
√
s) − ψε(

√
t) ≤ s− t

2 max(ε,
√
t)
, ∀s, t ≥ 0.

Consequently, by summing up the inequality componentwise we deduce

(χk, |(Gxk+1 − c)|2 − |(Gxk − c)|2) ≥ 2(ψε(Gxk+1 − c) − ψε(Gxk − c)).

Thus, we arrive at

F (xk+1) + αψε(Gxk+1 − c) +
α

2
(χkGdk, Gdk)

+R(xk+1, xk) ≤ F (xk) + αψε(Gxk − c).

Now it follows from the assumption R(x, x̂) ≥ ω‖x − x̂‖2 for some ω > 0
that the sequence {Jε(xk)} is monotonically decreasing and upon summing
up over the index k, we arrive at∑

k

‖xk+1 − xk‖2 <∞.

This completes the proof of the theorem. �

Remark 5.3. The role of the operator P as a preconditioner is reflected
in the condition R(x, x̂) ≥ ω‖x− x̂‖2 for some ω > 0. In the case F (x) =
1
2 (x,Ax) − (x, b), A being symmetric positive definite, R(x, x̂) is given by

R(x, x̂) = (P (x̂− x), x̂− x) − 1
2 (A(x− x̂), x− x̂).

In particular, with the choice P = 1
2
A+ I, the condition holds.

5.2.4 Gauss-Newton method

Consider the regularized nonlinear least L1 fitting problem:

min ‖F (x)‖L1(Ω) + α‖x‖L1(Ω),

subject to the pointwise constraint |x| ≤ 1 a.e.. If the operator F : L2(Ω) →
L1(Ω) is weakly continuous, then there exists at least one minimizer to the
problem. The necessary optimality is given by

(F ′(x∗))∗µ+ p = 0, x∗ ∈ Ψ(p),

µ =
µ+ c F (x∗)
|µ+ c F (x∗)| , a.e.
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where the monotone graph Ψ is defined by (5.6). The Gauss-Newton
method is an iterative method, i.e., given xk the update xk+1 minimizes

min ‖F ′(xk)(x − xk) + F (xk)‖L1(Ω) + α‖x‖L1(Ω)

subject to the pointwise constraint |x| ≤ 1, a.e., which reads

(F ′(xk))∗µ+ pk+1 = 0, xk+1 ∈ Ψ(pk+1),

µ =
µ+ c (F ′(xk)(xk+1 − xk) + F (xk))
|µ+ c(F ′(xk)(xk+1 − xk) + F (xk))| a.e.

5.2.5 Semismooth Newton Method

Now we present the semismooth Newton method for the nonsmooth neces-
sary optimality condition. Consider the nonlinear equation

F (y) = 0

in a Banach space X . The generalized Newton update is given by

yk+1 = yk − V −1
k F (yk), (5.21)

where Vk is a generalized derivative of F at yk. In the finite dimensional
space, for a locally Lipschitz continuous function F , let DF denote the set
of points at which F is differentiable. Rademacher’s theorem states that
every locally Lipschitz continuous function in a finite dimensional space
is differentiable almost everywhere. Hence, DF is dense. Now for any
x ∈ X = R

n, we define ∂BF (x) by

∂BF (x) =
{
J : J = lim

xi→x, xi∈DF

∇F (xi)
}
.

Thus, we can take Vk ∈ ∂BF (yk) in the generalized Newton method.
In infinite dimensional spaces, notions of generalized derivatives for

functions which are not C1 continuous cannot rely on Rademacher’s theo-
rem. Instead, we shall mainly utilize a concept of generalized derivative that
is sufficient to guarantee the superlinear convergence of Newton’s method
[163]. This notion of differentiability is called Newton derivative. We refer
to [163, 137, 61, 296] for further discussions of the notions and topics.

Definition 5.1 (Newton differentiability). Let X and Z be real Ba-
nach spaces and D ⊂ X be an open set.
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(1) F : D ⊂ X → Z is called Newton differentiable at x, if there ex-
ists an open neighborhood N(x) ⊂ D and mappings G : N(x) →
L(X,Z) such that

lim
‖h‖X→0

‖F (x+ h) − F (x) −G(x+ h)h‖Z
‖h‖X = 0.

The family {G(y) : y ∈ N(x)} is called a N -derivative of F at x.
(2) F is called semismooth at x, if it is Newton differentiable at x and

lim
t→0+

G(x+ t h)h exists uniformly in ‖h‖X = 1.

Semismoothness was originally introduced in [235] for scalar functions.
In finite-dimensional spaces, convex functions and real-valued C1 functions
are examples of semismooth functions [254, 255].

For example, if F (y)(s) = ψ(y(s)) point-wise, then G(y)(s) ∈ ∂Bψ(y(s))
is an N -derivative in Lp(Ω) → Lq(Ω) under appropriate conditions [163].
We often use ψ(s) = |s| and ψ(s) = max(0, s) in the necessary optimality
conditions.

Suppose F (y∗) = 0. Then, y∗ = yk + (y∗ − yk) and

‖yk+1 − y∗‖ = ‖V −1
k (F (y∗) − F (yk) − Vk(y∗ − yk)‖

≤ ‖V −1
k ‖o(‖yk − y∗‖).

Thus, the semismooth Newton method is q-superlinear convergent provided
that the Jacobian sequence Vk is uniformly invertible as yk → y∗. That
is, if one can select a sequence of quasi-Jacobian Vk that is consistent, i.e.,
|Vk −G(y∗)| as yk → y∗, and uniformly invertible, the generalized Newton
method (5.21) is still q-superlinear convergent.

In the rest of this part, we focus on the L1-type optimization, i.e.,

ϕ(v) =
∫

Ω

|v|2dω.

The complementarity condition is given by

λmax(1 + ε, |λ+ c v|) = λ+ c v, (5.22)

for some small ε ≥ 0. It is often convenient (but not essential) to use a very
small ε > 0 to avoid the singularity for the implementation of algorithms.
To this end, we let

ϕε(s) =


s2

2ε
+
ε

2
, if |s| ≤ ε,

|s|, if |s| ≥ ε.
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Then, equation (5.22) corresponds to the complementarity condition for a
regularized L1-optimization:

min Jε(y) = F (y) + αϕε(Λy).

The semismooth Newton update is given by

F ′(y+) + αΛ∗λ+ = 0,
λ+ = v+

ε , if |λ+ cv| ≤ 1 + ε,

|λ+ c v|λ+ +
(
λ
(
λ+c v
|λ+c v|

)t)
(λ+ + c v+)

= λ+ + c v+ + |λ+ c v|λ, if |λ+ c v| > 1 + ε.

There is no guarantee that the system is solvable for λ+ and is stable. In
order to obtain a compact yet unconditionally stable formula we use the
following damped and regularized algorithm with β ≤ 1:

λ+ = v
ε
, if |λ+ cv| ≤ 1 + ε,

|λ+ cv|λ+ − β

(
λ

max(1,|λ|)
(
λ+cv
|λ+cv|

)t)
(λ+ + cv+)

= λ+ + cv+ + β|λ + c v| λ
max(1,|λ|) , if |λ+ cv| > 1 + ε.

(5.23)
Here, the purpose of the regularization λ

max(1,|λ|) is to constrain the dual
variable λ into the unit ball. The damping factor β is selected to achieve
the numerical stability. Let

d = |λ+ cv|, η = d− 1, a =
λ

max(1, |λ|) , b =
λ+ cv

|λ+ cv| , F = abt.

Then, (5.23) is equivalent to

λ+ = (ηI + βF )−1((I − βF )(cv+) + βda),

where by Sherman–Morrison formula

(ηI + βF )−1 =
1
η

(
I − β

η + β a · bF
)
.

Then,

(ηI + βF )−1βda =
βd

η + βa · ba.

In view of the relation F 2 = (a · b)F ,

(ηI + βF )−1(I − βF ) =
1
η

(
I − βd

η + βa · bF
)
.
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In order to achieve the stability, we set
βd

η + βa · b = 1, i.e., β =
d− 1
d− a · b ≤ 1.

Consequently, we obtain a compact Newton step

λ+ =
1

d− 1
(I − F )(cv+) +

λ

max(1, |λ|) , (5.24)

which results in a primal-dual active set method for L1 regularization, cf.
Algorithm 5.5. Our experiences indicate that the algorithm is uncondition-
ally stable and is rapidly convergent [159].

Algorithm 5.5 Primal-dual active set method (L1-optimization)
1: Initialize: λ0 = 0 and solve F ′(y0) = 0 for y0. Set k = 0.
2: Set inactive set Ik and active set Ak by

Ik = {|λk + cΛyk| > 1 + ε}, and Ak = {|λk + cΛyk| ≤ 1 + ε}.
3: Solve for (yk+1, λk+1) ∈ X ×H :

F ′(yk+1) + αΛ∗λk+1 = 0

λk+1 =
1

dk − 1
(I − F k)(cΛyk+1) +

λk

max(1, |λk |) in Ak and

Λyk+1 = ε λk+1 in Ik.
4: Convergent or set k = k + 1 and return to Steps 2 and 3.

We have the following two remarks concerning Algorithm 5.5.

Remark 5.4.

(i) If a · b → 1+, then β → 1. Suppose that (λ, v) is a fixed point of
the iteration (5.24). Then(

1 − 1
max(1, |λ|)

(
1 − 1

d− 1
(λ+ c v) · (cv)

|λ+ c v|
))

λ =
1

d− 1
cv,

and thus the angle between λ and λ+ c v is zero. Consequently,

1 − 1
max(1, |λ|) =

c

|λ| + c |v| − 1

( |v|
|λ| −

|v|
max(1, |λ|)

)
,

which implies |λ| = 1. It follows that

λ+ c v =
λ+ c v

max(|λ+ c v|, 1 + ε)
.

That is, if the algorithm converges and a · b→ 1, then |λ| → 1 and
the algorithm is consistent.
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(ii) Consider the substitution iterate:
F ′(y+) + αΛ∗λ+ = 0,

λ+ =
1

max(ε, |v|)v
+, v = Λy.

(5.25)

Note that(
v+

|v| , v
+ − v

)
=
( |v+|2 − |v|2 + |v+ − v|2

2|v|
)

=
(
|v+| − |v| − (|v+| − |v|)2 + |v+ − v|2

2|v|
)
.

In case a quadratic functional F , i.e., F (y) = 1
2‖Ay− b‖2, we have

Jε(v+) ≤ Jε(v),

with Jε(v) =
∫
ψε(|v|)dω and ψε(t)

ψε(t) =

{
1
2ε
t2 + ε

2
, 0 ≤ t ≤ ε,

t, t ≥ ε.

Further, the equality holds only if v+ = v. This fact can be used to
prove the iterative method (5.25) is globally convergent [163, 165].
It also suggests the use of a hybrid method: for 0 < µ < 1

λ+ =
µ

max(ε, |v|)v
+ + (1 − µ)

(
1

d− 1
(I − F )v+ +

λ

max(1, |λ|)
)
,

in order to enhance the global convergence property without losing
the fast convergence of the Newton method.

5.3 �p sparsity optimization

In this section we consider �p minimization of the form

1
2‖Ax− b‖2 + α‖x‖p�p ,

where A ∈ L(�2), b ∈ �2, and p ∈ [0, 1). We shall discuss the cases p = 0 and
p ∈ (0, 1), separately, and derive numerical schemes based on regularization,
following [165].
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5.3.1 �0 optimization

First we consider the �0 minimization
1
2
‖Ax− b‖2 + αN0(x) (5.26)

where N0(x) denotes the number of nonzero elements of x, i.e.,

N0(x) =
∑

|xk|0,
where |s|0 = 1, s �= 0 and |0|0 = 0. It can be shown that N0 is a complete
metric.

Theorem 5.6. Problem (5.26) has a solution x̄ ∈ �0.

Proof. Let N(s) = 0 if s = 0, and otherwise N(s) = 1. Let {xn} be a
minimizing sequence of (5.26). Since c′ = �1, there exists a subsequence of
{N(xn)} converging in �1 weakly star to N(x̄) and xn converges to x̄ in �2.
Thus, limn→∞N0(xn) = 〈N(xn), 1〉 → 〈N(x̄), 1〉 = N0(x̄). Thus, we have

1
2‖Ax̄− b‖2 + αN0(x̄) ≤ inf

x∈�0
1
2‖Ax− b‖2 + αN0(x),

and x̄ is a minimizer. �

Theorem 5.7. Let x̄ be a minimizer to Problem (5.26). Then it satisfies
the following necessary optimality condition{

x̄i = 0, if |(Ai, fi)| <
√

2α|Ai|,
(Ai, Ax̄− b) = 0 if |(Ai, fi)| >

√
2α|Ai|,

(5.27)

where Ai = Aei, fi = b − A(x̄ − x̄iei). For the second case of (5.27),
|(Ai, fi)| >

√
2α|Ai| is equivalent to |x̄i| >

√
2α

|Ai| .

Proof. By the minimizing property of x̄ ∈ �0, we deduce that x̄i ∈ R

minimizes

G(xi) = 1
2 |Aixi − fi|2 + α|xi|0.

If xi = z �= 0 is a minimizer of G(xi), then

|Ai|2 z − (Ai, fi) = 0,

G(z) = − (Ai, fi)2

2|Ai|2 + α+G(0).

First, if G(z) < G(0), i.e., |(Ai, fi)| >
√

2α|Ai|, then x̄i = z is the unique
minimizer and |x̄i| >

√
2α

|Ai| . Second, if |(Ai, fi)| <
√

2α|Ai|, then x̄i = 0 is
the unique minimizer of G(xi). Last, if |(Ai, fi)| =

√
2α|Ai|, then there are

two minimizers, i.e., 0 and z. This completes the proof of the theorem. �
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It follows from the proof of Theorem 5.7 that a minimizer to (5.26) is
not necessarily unique. In general, for a nonlinear functional F (x), we can
define

Gi(x) = F (x) − F (x̃i), where x̃k = xk, k �= i and x̃i = 0.

This definition in the case of (5.26) recovers Gi(x) = 1
2(|Aixi−fi|2 −|fi|2).

Further, we have the following necessary optimality condition.

Corollary 5.3. Let x̄ ∈ �0 is a minimizer of

min F (x) + αN0(x).

Then it satisfies the following necessary optimality condition

F ′(x̄) + λ̄ = 0, λ̄ix̄i = 0 for all i.

where x̄ and λ̄ satisfy the complementarity condition{
x̄i = 0, if Gi(x̄) ≥ α,

λ̄i = 0, if Gi(x̄) < α.

5.3.2 �p (0 < p < 1)-optimization

Now we turn to �p, 0 < p < 1, minimization of the form
1
2
‖Ax− b‖2 + αNp(x) (5.28)

whereNp(x) =
∑ |xk|p. Np(x) is a complete metric and weakly sequentially

lower continuous for p > 0 [165], and Np(x) → N0(x) as p → 0+. Any
convergent subsequence of minimizers xp to (5.28) converges to a minimizer
of (5.26) as p→ 0+. The goal of this part is to derive a globally convergent
method based on a regularized formulation.

In order to overcome the singularity near s = 0 for (|s|p)′ = ps
|s|2−p , for

ε > 0, we consider a regularized problem

Jε(x) = 1
2
‖Ax− b‖2 + αΨε(|x|2), (5.29)

where the regularized functional Ψε(t), t ≥ 0, is defined by

Ψε(t) =


p

2
t

ε2−p
+ (1 − p

2
) εp, t ≤ ε2,

t
p
2 , t ≥ ε2.

For any ε > 0, we consider the following iterative algorithm for the solution
of the regularized problem (5.29):

A∗Axk+1 +
αp

max(ε2−p, |xk|2−p) x
k+1 = A∗b, (5.30)
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where the second term on the left hand side is short for the vector compo-
nent αp

max(ε2−p,|xk
i |2−p)

xk+1
i . Taking inner product between this identity and

xk+1 − xk, we arrive at

‖Axk+1‖2 − ‖Axk‖2 + ‖A(xk+1 − xk)‖2 − 2(A∗b, xk+1 − xk)

+
∑
i

αp

max(ε2−p, |xki |2−p)
(|xk+1

i |2 − |xki |2 + |xk+1
i − xki |2) = 0.

Now from the relation
1

max(ε2−p, |xki |2−p)
p

2
(|xk+1

i |2 − |xki |2) = Ψ′
ε(|xki |2)(|xk+1

i |2 − |xki |2),

and the concavity of the map t→ Ψε(t), we deduce

Ψε(|xk+1
i |2) − Ψε(|xki |2) −

1
max(ε2−p, |xki |2−p)

p

2
(|xk+1

i |2 − |xki |2) ≤ 0,

and thus
Jε(xk+1) + 1

2
‖A(xk+1 − xk)‖2

+
∑
i

αp

max(ε2−p, |xki |2−p)
1
2 |xk+1

i − xki |2 ≤ Jε(xk).
(5.31)

We have the following convergence result:

Theorem 5.8. For ε > 0, let {xk} be generated by the fixed-point iteration
(5.30). Then the sequence {Jε(xk)} is monotonically nonincreasing, and
{xk} converges to the minimizer of Jε defined in (5.29).

Proof. It follows from (5.31) that the sequence {xk} is bounded in �2

and thus in �∞. Consequently, from (5.31) there exists κ > 0 such that

Jε(xk+1) + 1
2
‖A(xk+1 − xk)‖2 + κ‖xk+1 − xk‖2 ≤ Jε(xk).

This implies the first assertion. Further, it yields
∞∑
k=0

‖xk+1 − xk‖2 <∞.

Now by the uniform boundedness of {xk} in �2, there exists a subsequence
of {xk}, also denoted by {xk}, and x∗ ∈ �p such that xk → x∗ weakly. By
the above inequality, limk→∞ xki = x∗i . Now testing (5.30) componentwise
with ei gives

A∗Ax∗ +
αp

max(ε2−p, |x∗|2−p) x
∗ = A∗b,

i.e., x∗ is a minimizer to Jε. �
The iterative method (5.30) can be used as a globalization step for the

semismooth Newton method discussed below.
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5.3.3 Primal-dual active set method

In this part we develop the augmented Lagrangian formulation and the
primal-dual active set strategy for the �0 optimization (5.26). Let P be a
nonnegative self-adjoint operator P and Λk = ‖Ak‖2

2 + Pkk. We consider
the following augmented Lagrangian functional

L(x, v, λ) = 1
2‖Ax− b‖2 + 1

2 (Px, x) + α
∑
k

|vk|0

+
∑
k

(
Λk

2 |xk − vk|2 + (λk, xk − vk)
)
.

The purpose of the introducing the regularization functional (x, Px) is to
regularize the problem, in case that the operator A is nearly singular.

For a given (x, λ), the functional L(x, v, λ) is minimized at

v = Φ(x, λ) =

{
λk+Λk xk

Λk
if |λk + Λk xk|2 > 2Λkα,

0 otherwise.

Meanwhile, for a given (v, λ), the functional L(x, v, λ) is minimized at x
that satisfies

A∗(Ax − b) + Px+ Λ(x− v) + λ = 0,

where Λ is a diagonal operator with entries Λk.
Thus, the augmented Lagrangian method [163] uses the update:

A∗(Axn+1 − b) + Pxn+1 + Λ(xn+1 − vn) + λn = 0,

vn+1 = Φ(xn+1, λn),

λn+1 = λn + Λ(xn+1 − vn+1).

If the method converges, i.e., xn, vn → x and λn → λ, then
A∗(Ax− b) + Px+ λ = 0,

λk = 0, if |xk|2 > 2α
Λk

,

xk = 0, if |λk|2 ≤ 2αΛk.

That is, the limit (x, λ) satisfies the necessary optimality condition (5.27).
Motivated by the augmented Lagrangian formulation we propose the

following primal-dual active set method, cf. Algorithm 5.6.
Note that {

λk = 0 if k ∈ {k : |λk + Λkxk |2 > 2αΛk},
xj = 0 if j ∈ {j : |λj + Λjxj |2 ≤ 2αΛj},
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Algorithm 5.6 Primal-dual active set method (sparsity optimization)
1: Initialize: λ0 = 0 and x0 is determined by A∗(Ax0 − b) + Px0 = 0. Set
n = 0

2: Solve for (xn+1, λn+1);

A∗(Axn+1 − b) + Pxn+1 + λn+1 = 0,

where {
λn+1
k = 0, if k ∈ {k : |λnk + Λkxnk |2 > 2αΛk}
xn+1
j = 0, if j ∈ {j : |λnj + Λjxnj |2 ≤ 2αΛj}

3: Convergent or set k = k + 1 and Return to Step 2.

provides a complementarity condition for (5.27). Thus, if the active set
method converges, then the converged (x, λ) satisfies the necessary opti-
mality (5.27). Numerically, the active set method converges globally.

We have the following remark on Algorithm 5.6.

Remark 5.5.

(i) It follows from the complementarity condition (xn+1, λn+1) = 0 that
((A∗A+ P )xn+1, xn+1) ≤ (Axn+1, f),

and thus the sequence ‖Axn+1‖2+(Pxn+1, xn+1) is uniformly bounded.
(ii) Numerically, Algorithm 5.6 converges globally. The following estimate

is a key to establish its global convergence. Note that
0 = (A∗(Axn+1 − b) + Pxn+1 + λn+1, xn+1 − xn)

= 1
2(‖Axn+1 − b‖2 + (xn+1, Pxn+1)) − 1

2 (‖Axn − b‖2 + (xn, Pxn))

+ 1
2‖A(xn+1 − xn)‖2 + (xn+1 − xn, P (xn+1 − xn)) − (λn+1, xn).

The term (λn+1, xn) is related to the switching between the active and
inactive sets.

(iii) The global convergence of Algorithm 5.6 has been analyzed in [165] for
the case when Q = A∗A + P is an M-matrix and f = A∗b > 0, and
under the following uniqueness assumption.

Let (x, λ) be a solution to (5.27), and Λk is the kth diagonal entry ofQ =
A∗A + P . The necessary optimality condition (5.27) can be equivalently
written as 

A∗(Ax − b) + Px+ λ = 0, λkxk = 0 for all k,

λk = 0, if k ∈ I,
xj = 0, if j ∈ A,

(5.32)
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where the sets I and A are respectively given by
I = {k : |λk + Λkxk|2 > 2αΛk},
A = {k : |λk + Λkxk|2 ≤ 2αΛk}.

We have the following uniqueness under a diagonal dominance assump-
tion on Q = P +A∗A.

Theorem 5.9. We assume the strict complementarity, i.e., there exists a
δ > 0 such that

min
I

‖Λ− 1
2 (Λx+ λ)‖ − max

A
‖Λ− 1

2 (Λx+ λ)‖ ≥ δ
√

2α,

and Q is diagonally dominant, i.e., there exists 0 ≤ ρ < 1 such that

‖
√

Λ
− 1

2 (Q− Λ)
√

Λ
− 1

2 ‖∞ ≤ ρ.

If δ > 2ρ
1−ρ , then (5.32) has a unique solution.

Proof. Assume that there exist two pairs (x, λ) and (x̂, λ̂) satisfying the
necessary optimality (5.32). Then we have

Q(x− x̂) + λ− λ̂ = 0,

Λ− 1
2 (Λx+ λ− (Λx̂+ λ̂)) = Λ− 1

2 (Λ −Q)Λ− 1
2 Λ

1
2 (x − x̂).

Now we let S = {k : xk = x̂k = 0}c. By the triangle inequality,

|Λ− 1
2

k (λk − Λkxk)| − |Λ− 1
2

k (λ̂k − Λkx̂k)| ≤ |Λ− 1
2

k (λk − λ̂k + Λk(xk − x̂k))|.
The diagonal dominance assumption implies

‖Λ− 1
2 (λ− λ̂+ Λ(x− x̂))‖ = ‖Λ− 1

2 (Λ −Q)Λ− 1
2 Λ

1
2 (x− x̂)‖

≤ ρ‖Λ 1
2 (x− x̂)‖ = ρ‖

(
Λ

1
2 (x− x̂)

)
S
‖.

In particular, this yields
min
I

‖Λ− 1
2 (Λx+ λ)‖ − max

A
‖Λ− 1

2 (Λx+ λ)‖
≤ ‖Λ− 1

2 (Λx+ λ)‖ − ‖Λ− 1
2 (Λx̂+ λ̂)‖

≤ ρ‖
(
Λ

1
2 (x − x̂)

)
S
‖.

A second application of the triangle inequality yields
‖
(
Λ

1
2 (x − x̂)

)
S
‖ ≤ ‖Λ− 1

2 (λ − λ̂)‖ + ρ‖
(
Λ

1
2 (x− x̂)

)
S
‖.

Now by the complementarity condition, we have
|(Λ− 1

2λ)k| ≤
√

2α if xk = 0, |(Λ− 1
2 λ̂)k| ≤

√
2α if x̂k = 0.

Consequently,

‖Λ 1
2 (x− x̂)‖S ≤ 2

1 − ρ

√
2α.

Combining the preceding estimates give

min
I

‖Λ− 1
2 (Λx+ λ)‖ − max

A
‖Λ− 1

2 (Λx+ λ)‖ ≤ 2ρ
1 − ρ

√
2α.

It thus follows that δ ≤ 2ρ
1−ρ , which contradicts the assumption δ > 2ρ

1−ρ .�
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5.4 Nonsmooth nonconvex optimization

In this section we consider a class of nonsmooth non-convex constrained
optimization

min
x∈X

F (x) + ψ(x),

where the constraint C reads

C = {x(ω) ∈ U a.e.},
with U being a closed convex set in R

m. In particular, we discuss L0(Ω)
optimization and Lp(Ω), 0 < p < 1, optimization in detail, following [164].
Throughout, we assume that the functional ψ(x) admits the following in-
tegral representation

ψ(x) =
∫

Ω

h(x(ω)) dω,

where h is a lower semi-continuous, but nonconvex and nonsmooth, regu-
larization functional on R

m. Here X is a Banach space and continuously
embeds into H = (L2(Ω))m and let F : X → R

+ be C1 continuous.
For an integrable function x∗, δ > 0, s ∈ Ω and u ∈ U , we define another

measurable function x, known as the needle perturbation of (the optimal
solution) x∗, by

x =
{
x∗, on Ω \B(s, δ),
u, on B(s, δ),

where the set B(s, δ) = {ω : |ω − s| ≤ δ}. Further, we assume that the
functional F satisfies

|F (x) − F (x∗) − (F ′(x∗), x− x∗)| ∼ o(vol(B(s, δ))). (5.33)

Further, we introduce the Hamiltonian H of h defined by

H(x, λ) = (λ, x) − h(x), x, λ ∈ R
m.

Then we have the following pointwise necessary optimality condition.

Theorem 5.10. Let condition (5.33) hold, and x∗ be an integrable function
attaining the minimum. Then for a.e. ω ∈ Ω, there holds

F ′(x∗) + λ = 0,
H(u, λ(ω)) ≤ H(x∗(ω), λ(ω)) for all u ∈ U.
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Proof. By the minimizing property of x∗, we observe that

0 ≥ F (x) + ψ(x) − (F (x∗) + ψ(x∗))

= F (x) − F (x∗) − (F ′(x∗), x− x∗)

+
∫
B(s,δ)

(F ′(x∗), u− x∗) + h(u) − h(x∗)) dω.

By the lower semicontinuity of h and condition (5.33) that at a Lebesgue
point s = ω of x∗ the desired necessary optimality holds. �

For λ ∈ R
m, we define a set-valued function by

Φ(λ) = argmaxx∈U{(λ, x) − h(x)}.
Then the necessary optimality condition in Theorem 5.10 reads

x∗(ω) ∈ Φ(−F ′(x∗(ω)). (5.34)

5.4.1 Biconjugate function and relaxation

The graph of Φ is monotone, i.e.,

(λ1 − λ2, y1 − y2) ≥ 0 for all y1 ∈ Φ(λ1), y2 ∈ Φ(λ2).

but it not necessarily maximal monotone. Thus, it is not easy to show
the existence of solutions to (5.34). Let h∗ be the conjugate function of
function h defined by

h∗(λ) = max
x

H(x, λ).

Then, h∗ is necessarily convex. Further, note that if u ∈ Φ(λ), then for any
λ̂ ∈ R

m,

h∗(λ̂) ≥ (λ̂, y) − h(u) = (λ̂− λ, y) + h∗(u),

and thus u ∈ ∂h∗(λ). By the convexity of h∗, ∂h∗ is maximal monotone
and thus ∂h∗ is the maximal monotone extension of Φ.

Let h∗∗ be the biconjugate function of h, i.e.,

h∗∗(x) = sup
λ

{
(x, λ) − sup

y
H(y, λ)

}
,

whose epigraph epi(h∗∗) is the convex envelope of the epigraph of h, i.e.,

epi(h∗∗) = {λ1 y1 + (1 − λ) y2 for all y1, y2 ∈ epi(h) and λ ∈ [0, 1]} .
Then, h∗∗ is necessarily convex and is the convexification of h and

λ ∈ ∂h∗∗(u) if and only if u ∈ ∂h∗(λ)
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and

h∗(λ) + h∗∗(u) = (λ, u).

Now we consider the following relaxed problem:

min F (x) + ψ∗∗(x), (5.35)

where the functional ψ∗∗(x) is defined by

ψ∗∗(x) =
∫

Ω

h∗∗(x(ω)) dω.

By the convexity of the function h∗∗, the functional ψ∗∗(x) is weakly lower
semi-continuous, and thus there exists at least one minimizer x to the re-
laxed problem (5.35). Further, it follows from Theorem 5.10 that the nec-
essary optimality condition of (5.35) reads

−F ′(x)(ω) ∈ ∂h∗∗(x(ω)),

or equivalently

x ∈ ∂h∗(−F ′(x)).

If the strict complementarity holds, i.e., x(ω) satisfies (5.34) a.e., then x

also minimizes the original cost functional.

Example 5.8. In this example, we apply the analysis to the case of volume
control by L0(Ω), i.e., h : R → R is given by

h(u) = α
2
|u|2 + β|u|0,

where the function | · |0 is defined by

|u|0 =

{
0, if u = 0,

1, if u �= 0.

Hence ∫
Ω

|u(ω)|0 dω = meas({u(ω) �= 0}).

In this case Theorem 5.10 yields

Φ(λ) := argmax
u∈R

(λu− h(u))

=

{
λ
α , for |λ| ≥

√
2αβ,

0, for |λ| <
√

2αβ,
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and the conjugate function h∗ of h is given by

h∗(λ) = λΦ(λ) − h(Φ(λ))

=

{
1
2α |λ|2 − β, for |λ| ≥

√
2αβ,

0, for |λ| <
√

2αβ.

The biconjugate function h∗∗(x) is given by

h∗∗(x) =


α
2 |x|2 + β, |x| >

√
2β
α ,√

2αβ|x|, |x| ≤
√

2β
α .

Clearly, the function Φ : R → R is monotone, but not maximal monotone.
The maximal monotone extension Φ̃ = ∂h∗ of Φ is given by

Φ̃(λ) ∈


λ
α
, for |λ| >

√
2αβ,

[0, λ
α
], for |λ| =

√
2αβ,

0, for |λ| <
√

2αβ.

If the functional F (x) is strictly convex, i.e., F (x)−F (x∗)−F ′(x∗)(x−x∗) >
0 for |x − x∗| > 0, then the choice x∗(ω) = 0, λ

α at |λ| =
√

2αβ is a mea-
surable selection from ∂h∗ and it is optimal, i.e., the original optimization
problem has a solution.

Example 5.9. In this example, we consider the Lp(Ω) optimization, 0 ≤
p < 1, i.e., h(u) = α

2
|u|2 + β |u|p and

min
u∈R

−(λ, u) +
α

2
|u|2 + β |u|p. (5.36)

For 0 < p < 1, if u > 0 attains the minimum, then there holds

αu− λ+ βpup−1 = 0 and α
2
u2 − λu+ βup ≤ 0,

where the first is the first-order optimality condition, and the second com-
pares the function value with that at u = 0. Let ū satisfy

α ū2−p − λū1−p + βp = 0,
α
2 ū

2−p − λū1−p + β = 0.
(5.37)

That is, both ū and 0 are minimum points to (5.36). Therefore,

ū = up =
(

2(1 − p)β
α

) 1
2−p

.

It follows from (5.37) that u ≥ ū if q ≥ µp, where

µp = αū+ βū1−p = (2(1 − p))
p−1
2−p (2 − p) (α1−pβ)

1
2−p .
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If p = 0, µp =
√

2αβ and if p = 1, µp = β. Let z = z(λ) be a maximum
solution to

α z + βpz1−p = λ. (5.38)

Note that z(λ) = λ
α asymptotically as |λ| → ∞. Thus, we obtain the

following complementarity condition

u = Φp(λ) =


0, |λ| < µp,

{0, up}, |λ| = µp,

z(λ), |λ| > µp,

for the minimizer u of (5.36). The conjugate function h∗(λ) is given by

h∗(λ) =

{
0, |λ| ≤ µp,

α
2
|z(λ)|2 + (p− 1)|z(λ)|p, |λ| > µp,

and

∂h∗(λ) =


0, |λ| < µp,

[0, up], |λ| = µp,

z(λ), |λ| > µp.

On the Lp(Ω) optimization, we have the following remark.

Remark 5.6.

(i) For |q| > µp, equation (5.38) is nonlinear in z. One may use successive
linearization to approximately solve (5.38), i.e.,

z+ =
q

α+ βpzp−2
.

(ii) The sparsity condition, i.e., |λ| ≤ µp, is determined by a function of α,
β and p.

(iii) The graph Φ is not maximal and the maximized graph ∂h∗ is set-valued
at |q| = µp, except p = 1.

5.4.2 Semismooth Newton method

Like in the case of L0(Ω) optimization, ∂h∗∗(x) is a set-valued function in
general. Thus, we consider the Yoshida-Moreau approximation of h

hc(x, λ) = inf
z

{
h∗∗(z) + (λ, x− z)H +

c

2
‖x− z‖2

}
.
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It follows from [163] that

λ ∈ ∂h∗∗(x) iff λ ∈ h′c(x, λ) for some c > 0,

h′c(x, λ) = pc(λ+ cx),

where the function pc(λ) is given by

pc(λ) = argmin
{

1
2c‖p− λ‖2 + h∗(p)

}
.

The necessary optimality condition is written as

−F ′(x) = λ and λ = h′c(x, λ). (5.39)

In general the function h′c(x, λ) is Lipshitz continuous and it is a system
of semismooth equations. Hence, one can apply the semismooth Newton
method. We illustrate this with Examples 5.8 and 5.9.

Example 5.10. Here we derive the semismooth Newton update formulas
for Examples 5.8 and 5.9. For Example 5.8, h(x) = α

2
‖x‖2+β‖x‖0. Further,

we have

h′c(x, λ) =



λ, if |λ+ cx| ≤
√

2αβ,√
2αβ, if

√
2αβ ≤ λ+ cx ≤ (1 + c

α
)
√

2αβ,

−
√

2αβ, if
√

2αβ ≤ −(λ+ cx) ≤ (1 + c
α
)
√

2αβ,
λ
α+c if |λ+ cx| ≥ (1 + c

α)
√

2αβ.

Hence the semismooth Newton update is given by

− F ′(xn+1) = λn+1,

xn+1 = 0, if |λn + cxn| ≤
√

2αβ,

λn+1 =
√

2αβ, if
√

2αβ < λn + cxn < (1 + c
α
)
√

2αβ,

λn+1 = −
√

2αβ, if
√

2αβ < −(λn + cxn) < (1 + c
α
)
√

2αβ,

xn+1 = λn+1

α , if |λn + cxn| ≥ (1 + c
α)
√

2αβ.

Similarly, for the case of Lp(Ω) optimization from Example 5.9, h(u) =
α
2
|u|2 + β|u|p, the complementarity equation becomes

x = 0, |λ+ cu| ≤ µp,

λ = µp, |λ+ cu| = µp + cup,

x = z(λ), |λ+ cu| > µp + cup.

(5.40)

This relation can be exploited for designing a primal-dual active set algo-
rithm for the Lp(Ω)-optimization; see Algorithm 5.7 below for details.
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5.4.3 Constrained optimization

Now we consider the constrained minimization problem of the form:

min
u∈U

J(x, u) =
∫

Ω

(�(x) + h(u)) dω, (5.41)

subject to the equality constraint

Ẽ(x, u) = Ex+ f(x) +Bu = 0.

Here U = {u ∈ L2(Ω)m : u(ω) ∈ U a.e. in Ω}, where U is a closed
convex subset of R

m. The space X is a closed subspace of L2(Ω)n and
E : X × U → X∗ with E ∈ L(X,X∗) being boundedly invertible,
B ∈ L(L2(Ω)m, L2(Ω)n) and f : L2(Ω)n → L2(Ω)n are Lipschitz con-
tinuous. We assume that Ẽ(x, u) = 0 has a unique solution x = x(u) ∈ X ,
for any given u ∈ U , that there exist a solution (x̄, ū) to Problem (5.41),
and that the adjoint equation

(E + fx(x̄))∗p+ �′(x̄) = 0, (5.42)

has a solution in X .
To derive a necessary condition for this class of (nonconvex) problems,

we use a maximum principle approach. For an arbitrary s ∈ Ω, we shall
utilize needle perturbations of the optimal solution ū defined by

v(ω) =

{
u, on B(s, δ),

ū(ω), otherwise,
(5.43)

where u ∈ U is a constant and δ > 0 is sufficiently small so that the ball
B(s, δ) := {ω : |ω − s| < δ} ⊂ Ω.

The following additional properties on the optimal state x̄ and each
perturbed state x(v) will be assumed.

Assumption 5.2. The optimal state x̄ and x(v), with v being a needle
perturbation defined in (5.43), satisfy

(a) ‖x(v) − x̄‖2
L2(Ω) = o(meas(B(s, δ)));

(b) the linear form �(·, ·) satisfies∫
Ω

(
�(·, x(v)) − �(·, x̄) − �x(·, x̄)(x(v) − x̄)

)
dω = O(‖x(v) − x̄‖2

L2(Ω));

(c) The function f(·, ·) satisfies

〈f(·, x(v)) − f(·, x̄) − fx(·, x̄)(x(v) − x̄), p〉X∗,X = O(‖x(v) − x̄‖2
L2(Ω)).
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Theorem 5.11. Let (x̄, ū) ∈ X × U be optimal for problem (5.41), p ∈ X

satisfy the adjoint equation (5.42) and Assumption 5.2 hold. Then the nec-
essary optimality condition is that ū(ω) minimizes h(u)+(p,Bu) pointwise
a.e. in Ω.

Proof. Let v be a needle perturbation and x = x(v). Then by the opti-
mality of ū and Assumption 5.2(b), we have

0 ≤ J(v) − J(ū)

=
∫

Ω

(
�(·, x(v)) − �(·, x(ū)) + h(v) − h(ū)

)
dω

=
∫

Ω

(�x(·, x̄)(x− x̄) + h(v) − h(ū)) dω +O(‖x− x̄‖2
L2(Ω)).

Now using the adjoint variable p ∈ X defined in (5.42), we deduce

(�x(·, x̄)(x− x̄), p) = −〈(E + fx(·, x̄)(x− x̄)), p〉,
and consequently

0 = 〈E(x − x̄) + f(·, x) − f(·, x̄) +B(v − ū), p〉
= 〈E(x − x̄) + fx(·, x̄)(x − x̄) +B(v − ū), p〉 +O(‖x − x̄‖2

L2(Ω)).

Thus, we obtain

0 ≤ J(v) − J(ū)

≤
∫

Ω

((−B∗p, v − ū) + h(v) − h(ū))dω +O(‖x− x̄‖2
L2(Ω)).

Now we restrict s to be a Lebesgue point of the mapping

ω → (−B∗p, v − ū) + h(v) − h(ū)).

Let S denote the set of these Lebesgue points and note that meas(Ω\S) = 0.
Upon dividing the inequality by meas(B(s, δ)) > 0, letting δ → 0, and using
Assumption 5.2(a) and lower semiconitinuity of the function h, we obtain
the desired assertion at a Lebesgue point s of the mapping, and the desired
claim follows directly. �

Consider the relaxed problem of (5.41):

min
u∈U

J(x, u) =
∫

Ω

(�(x) + h∗∗(u)) dω.

The pointwise necessary optimality is given by
Ex̄+ f ′(x̄) +Bū = 0,

(E + f ′(x̄))∗p+ �′(x̄) = 0,

ū ∈ ∂h∗(−B∗p),



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch05 page 208

208 Inverse Problems: Tikhonov Theory and Algorithms

or equivalently

λ = h′c(u, λ) and λ = B∗p,

where hc is the Yoshida-Moreau approximation of the biconjugate function
h∗∗.

Based the complementarity condition (5.40) we have a primal dual ac-
tive set method for the Lp(Ω) optimization, 0 < p < 1, i.e., the case
h(u) = α

2
|u|2 + β |u|p; cf. Algorithm 5.7.

Algorithm 5.7 Primal dual active set method for Lp(Ω) optimization.
1: Initialize u0 ∈ X and λ0 ∈ H . Set n = 0.
2: Solve for (yn+1, un+1, pn+1)

Eyn+1 +Bun+1 = g, E∗pn+1 + �′(yn+1) = 0, λn+1 = B∗pn+1

and

un+1 = − λn+1

α+ βp|un|p−2
if ω ∈ {|λn + c un| > (µp + cup}

λn+1 = µp if ω ∈ {µp ≤ λn + cun ≤ µp + cun}.
λn+1 = −µp if ω ∈ {µp ≤ −(λn + cun) ≤ µp + cun}.
un+1 = 0, if ω ∈ {|λn + cun| ≤ µp}.

3: Stop, or set n = n+ 1 and return to the second step.



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch06 page 209

Chapter 6

Direct Inversion Methods

In this chapter, we describe several direct inversion methods for extracting
essential characteristics of inverse solutions, e.g., location and size of the
inclusions, which might be sufficient for some applications. Usually, direct
inversion methods are very fast and easy to implement, however, their re-
constructions are not very accurate when compared with that obtained by
other more expensive inversion techniques, like Tikhonov regularization.
Nonetheless, the reconstructions by direct inversion methods can serve as
good initial guesses for Tikhonov regularization, which may provide a more
refined estimate but at the expense of (much) increased computational ef-
forts. Meanwhile, a good initial guess can essentially reduce the computa-
tional efforts, e.g., by refining the region of interest only. The development
of direct inversion methods is an important ongoing research topic. In this
chapter, we describe a number of direct inversion methods, including the
MUSIC algorithm, linear sampling method, direct sampling method, El
Badia-HaDuong algorithm, numerical continuation method, and Gel’fand-
Levitan-Marchenko transformation, for a number of representative (nonlin-
ear) inverse problems, including inverse scattering, inverse source problem,
analytic continuation, and inverse Sturm-Liouville problem. The main goal
of describing these methods is to give a flavor of such techniques, instead
of a comprehensive survey on all direct inversion techniques.

6.1 Inverse scattering methods

In this section, we briefly describe three direct inversion methods for in-
verse scattering, including the MUSIC algorithm, linear sampling method
and direct sampling method. All three methods rely on constructing a cer-
tain easy-to-compute indicator function over the sampling domain. The

209
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differences between them lie in their motivation and the indicator function,
and hence the requirements on the data and implementation.

6.1.1 The MUSIC algorithm

One popular direct inversion technique in engineering is MUltiple SIgnal
Classification (MUSIC). Originally, it was developed in the signal process-
ing community for estimating the frequency contents of a given signal.
Then it was extended to inverse scattering problems. We first describe the
method for signal processing, and then for inverse scattering problems.

MUSIC in signal processing In many signal processing problems, the
objective is to estimate a set of constant parameters from noisy measure-
ments of the received signal. It was first systematically formulated by R.
O. Schmidt in 1977, but the final paper appeared only in 1986 [270]. He
was the first to correctly exploit the measurement model for parameter es-
timation. The resulting algorithm was called MUSIC. Since then it has
attracted considerable interest in signal processing, and now is a standard
tool for frequency analysis. Mathematically, MUSIC is essentially a method
for characterizing the range of an operator.

Let us first consider the self-adjoint case. Let A be a self-adjoint op-
erator with eigenvalues λ1 ≥ λ2 ≥ . . . and the respective (orthonormal)
eigenvectors v1, v2, . . . . Now suppose that the eigenvalues λM+1, λM+2, . . .

are all zero for some M ∈ N. In other words, the vectors vM+1, vM+2, . . .

span the null space of the operator A. In practice, due to the presence of
measurement noise, the eigenvalues λM+1, λM+2, . . . generally do not van-
ish but level off at a small value determined by the noise level of the system.
We denote by the noise subspace of A the subspace span({vj}j≥M+1), and
let Pns be the orthogonal projection onto the noise subspace, i.e.,

Pns =
∑
j>M

vj ⊗ v̄j .

The idea of MUSIC is as follows: because the operator A is self-adjoint,
its noise subspace is orthogonal to the essential range. Therefore, a vector
f is in the range of A if and only if its projection on the noise subspace is
zero, i.e., ‖Pnsf‖ = 0. However, this happens if and only if 1

‖Pnsf‖ = ∞.
This motivates the following definition of the indicator function

Ψ(f) =
1

‖Pnsf‖ ,
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and then one plots the indicator function over the sampling domain. The
peaks in the plot corresponds to the essential signal components.

For a general non-self-adjoint compact operator A, MUSIC can be ac-
complished with singular value decomposition, cf. Appendix A, instead of
eigenvalue decomposition. Let the singular system of A be

A =
∑
j

σjuj ⊗ v̄j ,

where the (always nonnegative) singular values σj are ordered decreasingly,
i.e., σ1 ≥ σ2 ≥ . . .. The orthonormal vectors uj and vj are the left- and
right-singular vectors corresponding to σj , respectively, and further there
holds

AA∗uj = σ2
juj and A∗Avj = σ2

j vj .

Now suppose that there is an M ∈ N such that σM+1, σM+2 . . . all vanish.
Then the null space of the operatorA is spanned by {vj}j>M , and the range
of the operator A is given by span{uj}Mj=1. Accordingly, the noise subspace
of A is the span of the vectors {uj}j≥M+1, and the respective orthogonal
projection onto the noise subspace is given by

Pns =
∑
j>M

uj ⊗ ūj .

This leads to an analogous definition of the indicator function. Practically
speaking, the choice of M is essential for the performance of the algo-
rithm, playing a role analogous to the regularization parameter in classical
Tikhonov regularization, and its value should depend on the noise level.
In particular, if the spectrum has a significant gap, then M may be set to
the index of the onset of the gap. Alternatively, the projection Pns can be
computed as

Pns = I −
M∑
j=1

uj ⊗ ūj .

This formulation is convenient if the dimension M of the signal subspace is
small, which is the case for a limited amount of data.

Example 6.1. In this example, we reconstruct a signal f containing two
sinusoidal components f1 and f2, i.e.,

f1 = e−i π
10x and f2 = ei

π
6 x,

and we measure ten noisy versions of the random combinations of the two
components: for j = 1, 2, . . . , 6

gδj (x) = f1ξ1 + f2ξ2 + ζ,
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with ξ1, ξ2 ∼ N(ξ; 0, 1), and both the real and imaginary parts of ζ(x)
follow (ζ; 0, σ2), with σ = 0.1 being the noise level. The measurements
were sampled at six points, i.e., x = 0, . . . , 5. Hence the measurements
form a matrix of size 6× 10, and the left singular vectors are shown in Fig.
6.1(a) and (b), and the singular values are in Fig. 6.1(c). One observes that
there are only two significant singular values, and the remaining four are
much smaller in magnitude. The magnitudes of small singular values are
of the order of the noise level. This indicates a choice p = 2 in the MUSIC
indicator function Ψ(θ) ≡ Ψ(fθ), with fθ = e−iθx. The function Ψ(θ) is
plotted in Fig. 6.1(d), where the dashed lines refer to the locations of the
true frequency components. The locations of the recovery agrees perfectly
with the true ones, indicating the accuracy of the algorithm.

MUSIC in inverse scattering The MUSIC algorithm has been ex-
tended to inverse scattering problems to estimate the locations of point like
scatterers, first done by Devaney [81] and later extended to electromag-
netic scattering by Ammari et al [4, 5] as well as extended obstacles; see
also [200, 63] for comparisons with the factorization method, cf. Section
6.1.2. We describe the method in the context of wave propagation in free
space. The mathematical model is the Helmholtz equation

∆u+ k2u = 0.

Suppose there are n antennas located at the points {yj}nj=1, transmitting
spherically spreading waves. If the jth antenna is excited by an input ej , the
induced field uij at the point x by the jth antenna is uij = G(x, yj)ej , where
G(x, y) is the fundamental solution to the free-space Helmholtz equation.

We assume that the scatterers, located at {xi}mi=1, are small, weak and
well separated, so that the Born approximation, cf. Section 2.2.3, is valid.
Thus if the induced field ui is incident on the ith scatterer (at xi), it pro-
duces at x the scattered field G(x, xi)τiui(xi), where τi is the strength of
the ith scatterer. The scattered field from the whole cloud of scatterers is∑

iG(x, xi)τiui(xi). Thus the total scattered field due to the field emanat-
ing from the jth antenna is given by usj(x) =

∑
iG(x, xi)τiG(xi, yj)ej, and

the measured field at the lth antenna is

usj(yl) =
∑
i

G(yl, xi)τiG(xi, yj)ej.

This gives rise to the multi-static response matrix K = [klj ] ∈ C
n×n, with

klj given by

klj =
∑
i

G(yl, xi)τiG(xi, yj).
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(a) �(uj) (b) 	(uj)

(c) σj (d) Ψ(θ).

Fig. 6.1 MUSIC algorithm for recovering the frequency components.

The multi-static response matrix maps the vector of input amplitudes
(e1, e2, . . . , en)t to the vector of measured amplitudes on the n antennas.
By letting gi = (G(y1, xi), G(y2, xi), . . . , G(yn, xi))t, then the matrix K has
the following rank-one representation

K =
∑
i

τigig
t
i . (6.1)

In view of the symmetry of the fundamental solution G(x, y), i.e., G(x, y) =
G(y, x), the matrix K is symmetric, but not self-adjoint. Further, the rep-
resentation (6.1) indicates that the range of K is spanned by {gi}, which
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can be used to compute the range, its orthogonal complement – the noise
subspace, and the orthogonal projection Pns. Alternatively, we may form
a self-adjoint matrix A = K∗K. Physically speaking, the matrix K∗ is the
time-reversed multi-static response matrix, hence K∗K performs a scatter-
ing experiment, time-reversing the received signal and using them as input
for a second scattering experiment.

Devaney’s insight is that the MUSIC algorithm in Section 6.1.1 can
be used to determine the locations {xi} of the scatterers as follows.
Given any point xp from the sampling domain, we form the vector gp =
(G(y1, xp), G(y2, xp), . . . , G(yn, xp))t. The point xp coincides with the lo-
cation of a scatterer, i.e., xp ∈ {xi}mi=1, if and only if

Pnsg
p = 0.

Thus we can form an image of the scatterers by plotting, at each point xp
in the sampling domain, the quantity

Ψ(xp) =
1

‖Pnsgp‖ .

The resulting plot will have large peaks at the locations of the scatterers,
which provides an indicator of the presence of scatterers. The mathematical
justification of the MUSIC algorithm has also received considerable interest.
We refer interested readers to Chapter 4 of [201]. The above derivation is
for point scatterers, and there have also been much attention to extend the
algorithm to extended objects [146, 60].

Example 6.2. In this example we illustrate the MUSIC algorithm for re-
covering point scatterers. The true scatterers are located at (0,−0.5), (0, 0)
and (0, 0.5), cf. Fig. 6.2(a), with a wave number k = 2π and wavelength
λ = 1. The data consist of the scattered field at 30 points uniformly dis-
tributed on a circle of radius 5, and for 8 incident directions. The scattered
field is contaminated with 20% noise for both real and imaginary parts. The
singular values of the multi-static matrix is given in Fig. 6.2(b). There is no
distinct gap in the singular value spectrum, indicating a numerical rank of
eight. We note that for exact data, there are only three significant singular
values, and the rest are almost zero, reminiscent of the fact that there are
only three point scatterers, which actually leads to almost perfect focusing
on the true scatterers. The reconstruction for the noisy data is shown in
Fig. 6.2(c). The locations of the scatterers are well resolved.
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(a) true scatterer (b) σj (c) Ψ(xp).

Fig. 6.2 MUSIC algorithm for recovering point scatterers.

6.1.2 Linear sampling method

The linear sampling method [72] is one of the most prominent direct meth-
ods for inverse scattering. In this part, we briefly describe the method,
and refer to complete technical developments to the monograph [51] and
surveys [252, 74].

Consider a sound-soft scatterer D, which is assumed to the open com-
plement of an unbounded domain of class C2 in R

d (d = 2, 3). The obstacle
may consist of a finite number of open connected subdomains {Di}, i.e.,
D = ∪Di. Given a plane-wave incident field ui = eikx·d, with d ∈ S

d−1

and k > 0 being respectively the incident direction and the wave num-
ber, the presence of the obstacle D induces a scattered field us. Let
u(x) = ui(x) + us(x) be the total field. Then the total field u satisfies,
cf. Section 2.2.3 

∆u+ k2u = 0 in R
d \D,

u = 0 on ∂D,
limr→∞ r(d−1)/2(∂u

s

∂r − ikus) = 0,
(6.2)

where r = |x| for any x ∈ R
d. It is known that the asymptotic behavior at

infinity of the scattered field us(x) satisfies

us(x) =
eik|x|

|x| d−1
2

(
u∞(x̂) + O

(
1
|x|
))

as |x| → ∞

uniformly for all directions x̂ = x/|x| ∈ S
d−1. The analytic function

u∞ = u∞(x̂, d) is called the far-field pattern. Then the inverse obstacle
scattering problem is to determine the boundary ∂D from the measure-
ment of u∞(x̂, d) for all x̂, d ∈ S

d−1.
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Next we introduce the far-field operator F : L2(Sd−1) �→ L2(Sd−1)
defined by

(Fg)(x̂) =
∫

Sd−1
u∞(x̂, d)g(d)ds(d), x̂ ∈ S

d−1.

The linear sampling method, proposed by Colton and Kirsch in 1996 [72],
solves the following far-field equation

(Fg)(x̂) = G∞(x̂, z), x̂ ∈ S
d−1, z ∈ R

d, (6.3)

whereG∞(x̂, z) is the far-field pattern of the radiating fundamental solution
G(x, z) (see Section 2.2.3), i.e.,

G∞(x̂, z) = γe−ikx̂·z, (6.4)

with the constant γ = 1
4π in d = 3 and γ = eiπ/

√
8πk in d = 2.

The linear sampling method is motivated by the next result.

Theorem 6.1. Assume that k2 is not a Dirichlet eigenvalue for −∆ in D.
Then the following two statements hold.

(i) For z ∈ D and a fixed ε > 0, there exists a gzε ∈ L2(Sd−1) such that

‖Fgzε −G∞(·, z)‖L2(Sd−1) < ε and lim
z→∂D

‖gzε ‖L2(Sd−1) = ∞.

(ii) For z ∈ R
d \D and any given ε > 0, every gzε ∈ L2(Sd−1) satisfying

‖Fgzε −G∞(·, z)‖L2(Sd−1) < ε

satisfies

lim
ε→0

‖gzε ‖L2(Sd−1) = ∞.

By Theorem 6.1, the (approximate) solution of the far-field equation
(6.3) will have a large L2(Sd−1)-norm outside and close to the boundary ∂D.
This suggests to obtain an image of the obstacle D by plotting the norm of
the (approximate) solution gzε to (6.3). This leads to the following elegant
direct algorithm for the inverse obstacle scattering problem: given test
points z ∈ R

d, solve approximately the linear far-field equation, compute
the norm of the solution gzε and plot the solution norms. The complete
procedure is given in Algorithm 6.1. The distinct features of the method
are manifold: with necessarily data available, it is easy to implement and
the reconstruction is readily obtained.

Note that the far-field equation (6.3) involves an analytic kernel u∞, and
thus it is severely ill-posed. Hence, in practice, regularization techniques,
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Algorithm 6.1 Linear sampling method
1: Select a sampling domain Ω with D ⊂ Ω, and a set of sampling points;
2: Solve approximately (6.3) for each sampling point z;
3: Plot the solution norm.

e.g., Tikhonov regularization, are employed for the stable solution of equa-
tion (6.3). Numerically, it has been very successful, and is one of the most
popular methods for inverse scattering, including many other scattering
scenarios, e.g., sound-hard obstacles, medium scattering, crack scattering,
electromagnetic and elastic scattering.

Some arguments were presented in [72] to justify the linear sampling
method. However, it is not self evident why the method should work at
all: The right hand side of equation (6.3) is almost never an element of the
range of the operator F , and hence the classical regularization theory is not
directly applicable. Thus, it is unclear why an approximate solution com-
puted by regularization techniques will actually behave like the theoretical
prediction in Theorem 6.1. Some preliminary results in this direction have
been provided in [11, 12].

The mathematical gap in the linear sampling method motivated A.
Kirsch [199] to develop the factorization method, again based on the sin-
gularity behavior of the fundamental solution. To this end, we introduce
the following scattering problem: given the boundary data f ∈ H1/2(∂D),
find a solution v ∈ H1

loc(R
3 \D) such that

∆v + k2v = 0 in R
d \D,

v = f on ∂D,
lim
r→∞ r(∂v

∂r
− ikv) = 0.

(6.5)

It is well known that there exists a unique solution v = v(f) to (6.5).
Let v∞ be the far-field pattern for v(f). Next we define an operator G :
H1/2(∂D) → L2(Sd−1) by G(f) = v∞. If z ∈ R

d ∈ D, then in R
d \ D,

G(x, z) satisfies the Helmholtz equation, and G∞(·, z) is in the range of
G. But if z ∈ R

d \ D, then because of the singularity of G(x, z) at z, it
doest satisfy the Helmholtz equation and G∞(·, z) lies outside the range
of G. In summary, G∞(·, z) ∈ G(H1/2(∂D)) if and only if z ∈ D. Hence
one can determine the scatterer D by testing sampling points z ∈ R

d using
the Picard criterion, if the range of the operator G is known. Kirsch [199]
established the following characterization of the range of G in terms of the
far-field operator F :

R(G) = R((F ∗F )1/4).
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Therefore, the range of G can be determined from the eigenvalues {λj}
and eigenfunctions {vj} of the operator F ∗F . In particular, the range of
(F ∗F )1/4 is given by

R((F ∗F )1/4) =

f :
∑
j

λ
−1/2
j |〈vj , f〉|2 <∞

 .

Following Picard criterion, the factorization method is to plot, at each
sampling point z, the indicator function

Φ(z) =
1∑

j |λj |−1/2|〈vj , G∞(·, z)〉|2 .

It will be identically zero whenever z is outside the obstacle D, and nonzero
whenever z is inside the obstacle D.

We only briefly describe the linear sampling method and factorization
method for inverse scattering. There are several other closely related sam-
pling methods, e.g., singular source methods. We refer to the surveys
[252, 74] for comprehensive introduction as well as historical remarks.

6.1.3 Direct sampling method

Now we describe a direct sampling method for the inverse medium scat-
tering problem of determining the shape of the scatterers/inhomogeneities
from near-field scattering data, recently developed in [157]. The derivation
of the method is carried out for a circular curve/spherical surface Γ, but
the resulting index function is applicable to general geometries. It uses
the fundamental solution G(x, xp) (see Section 2.2.3) associated with the
Helmholtz equation in the homogeneous background:

∆G(x, xp) + k2G(x, xp) = −δxp(x), (6.6)

where δxp(x) refers to the Dirac delta function located at the point xp ∈ ΩΓ

(the domain enclosed by Γ). By multiplying both sides of (6.6) by the con-
jugate G(x, xq) of the fundamental solution G(x, xq) and then integrating
over the domain ΩΓ, we derive∫

ΩΓ

(∆G(x, xp) + k2G(x, xp))G(x, xq)dx = −G(xp, xq).

Next we consider equation (6.6) with xq ∈ ΩΓ in place of xp, and take its
conjugate. Then by multiplying both sides of the resulting equation by
G(x, xp) and integrating over the domain ΩΓ, we obtain∫

ΩΓ

(∆G(x, xq) + k2G(x, xq))G(x, xp)dx = −G(xp, xq).
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Using integration by parts for the terms involving Laplacians in the pre-
ceding two equations, we readily deduce the Helmoltz-Kirchoff identity∫

Γ

[
G(x, xq)

∂G(x, xp)
∂n

− G(x, xp)
∂G(x, xq)

∂n

]
ds

= G(xp, xq) −G(xp, xq) = 2i	(G(xp, xq)).

Next we approximate the right hand side by means of the Sommerfeld
radiation condition for the Helmholtz equation, i.e.,

∂G(x, xp)
∂n

= ikG(x, xp) + h.o.t.

Thus we use the following approximations:
∂G(x, xp)

∂n
≈ ikG(x, xp),

∂G(x, xq)
∂n

≈ −ikG(x, xq),

which are valid if the points xp and xq are not close to the boundary Γ.
Consequently, we arrive at the following approximate relation∫

Γ

G(x, xp)G(x, xq)ds ≈ k−1	(G(xp, xq)). (6.7)

The relation (6.7) represents one of the most crucial identities for de-
riving direct sampling method: in view of the decay behavior of the funda-
mental solutionG(x, y), it indicates that the fundamental solutionsG(x, xp)
and G(x, xq) are roughly orthogonal on the surface Γ.

The second essential ingredient of the derivation is the scattered field
representation by means of the fundamental solution G(x, y). This is
rather straightforward for the Helmholtz equation in view of the Lipmann-
Schwinger integral equation (2.5):

us =
∫

Ω

I(y)G(x, y)dy, (6.8)

where I(x) = η(x)u(x) is the induced current.
With the two ingredients, we are now ready to derive an index func-

tion. To this end, we consider a sampling domain Ω̃ containing the support
Ω. and divide the domain Ω̃ into a set of small elements {τj}. Then by
using the rectangular quadrature rule, we arrive at the following simple
approximation from the integral representation (6.8):

us(x) =
∫

eΩ
G(x, y)I(y)dy ≈

∑
j

wj G(x, yj), (6.9)
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where the point yj ∈ τj , and the weight wj = |τj |I(yj) with |τj | being
the measure of τj . Since the induced current I vanishes outside Ω, the
summation in (6.9) is actually only over those elements intersecting with
Ω. By elliptic regularity theory, the induced current I = η u is smooth
in each subregion, as long as the coefficient η is piecewise smooth. The
relation (6.9) serves only the goal of motivating our method, and is not
needed in the implementation. Physically, (6.9) also admits an interesting
interpretation: the scattered field us at any fixed point x ∈ Γ can be
regarded as a weighted average of that due to the point scatterers located
at {yj} within the true scatterer Ω.

By multiplying both sides of (6.9) by G(x, xp) for any point xp that lies
in the sampling domain Ω̃, then integrating over the boundary Γ and using
(6.7), we obtain the following approximate relation∫

Γ

us(x)G(x, xp) ds ≈ k−1
∑
j

wj	(G(yj , xp)). (6.10)

The relation (6.10) is valid under the premises that the point scatterers
{yj} and the sampling points {xp} are far apart from the surface Γ, and
the elements {τj} are sufficiently small. The relation (6.10) underlies the
essential idea of the direct sampling method. In particular, if a point xp
is close to some physical point scatterer yj ∈ Ω, then G(yj , xp) is nearly
singular and takes a very large value, hence it contributes significantly to
the summation in (6.10). Conversely, if xp is far away from all physical
point scatterers, then the sum will be small due to the decay property of
the fundamental solution G(x, y).

These facts lead us to the following index function for any point xp ∈ Ω̃:

Φ(xp) =
|〈us(x), G(x, xp)〉L2(Γ)|

‖us(x)‖L2(Γ)‖G(x, xp)‖L2(Γ)
.

In practice, if a point xp satisfies Φ(xp) ≈ 1, then it is most likely within
the scatterer support Ω according to the preceding discussions; whereas if
Φ(xp) ≈ 0, then the point xp likely lies outside the support.

The direct method has the following distinct features:

(a) The index Φ(xp) provides the likelihood of the point xp lying within Ω
and hence the coefficient distribution η.

(b) The index Φ involves only evaluating the free-space fundamental so-
lution and its inner product with the measured data us, thus it is
computationally cheap and embarrassingly parallel.
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(c) The data noise enters the index Φ via the integral on Γ. The en-
ergy of the noise is expected to be equally distributed in all Fourier
modes, whereas the fundamental solution G(x, xp) is very smooth on
the curve/surface Γ and concentrates on only low-frequency Fourier
modes. Hence the high-frequency modes (i.e., noises) in the noisy data
is roughly orthogonal to G(x, xp), and contributes little to the index
Φ. Hence the method is robust with respect to the noise.

Now we illustrate the performance of the method with an example.

Example 6.3. In this example, we consider the reconstruction of a ring-
shape square located at the origin, with the outer and inner side lengths
being 0.6 and 0.4, respectively. Two incident directions d1 = 1√

2
(1, 1)t

and d2 = 1√
2
(1,−1)t are considered. The results are shown in Fig. 6.3.

One observes that one incident field is insufficient for recovering the ring
structure, and only some parts of the ring can be resolved, depending on the
incident direction. With two incident waves, the direct sampling method
can provide a quite reasonable estimate of the ring shape. The estimate
remains very stable for up to 20% relative noise in the data.

(a) (b) (c) (d)

Fig. 6.3 Numerical results: (a) true scatterer; (b), (c) and (d), reconstructions respec-
tively for the incident direction d1, d2 and both directions. The first and second rows
are respectively for the exact data and noisy data with 20% noise in the data.

The estimate can be further refined by more expensive inversion techniques.
In particular, it allows screening the computational domain for the indirect
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method, thereby bringing significant computational benefits. In Fig. 6.4,
we present one refinement via a multi-parameter Tikhonov regularization
model (cf. Section 3.6 for the general mathematical theory):

1
2
‖Kη − gδ‖2

L2(Γ) + α‖η‖L1(Ω) +
β

2
‖∇η‖2

L2(Ω),

where the linear operator K is the Lippman-Schwinger integral operator,
cf. (2.5), linearized around the first estimate Φ|D. The purpose of the first
and second penalty terms in the multi-parameter model is to encourage a
groupwise sparsity structure: localized yet smooth within the groups. The
multi-parameter model can be efficiently solved using a semismooth Newton
method, cf. Section 5.2.5. The index Φ identifies a sharp estimate of the
scatterer support, and hence one may restrict the computation to a small
subdomain D, which represents the region of interest, and seeks refinements
only in the region D. The refined reconstructions are very appealing: the
locations and magnitudes are accurately resolved, especially after taking
into account that only two incident fields have been used.

(a) (b) (c) (d)

Fig. 6.4 Numerical results with further refinement: (a) true scatterer; (b) index Φ, (c)
index Φ|D and (d) sparse reconstruction. The first and second rows are respectively for
the exact data and noisy data with 20% noise in the data.

The promising numerical results motivate the extension to more com-
plex scattering scenarios, e.g., Maxwell system and elastic wave system.
The key to such extension is to design probing functions that satisfy the
following important properties: (1) the capability to represent scattered



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch06 page 223

Direct Inversion Methods 223

field representation, and (2) the approximate orthogonality relation. For
the acoustic and electromagnetic scattering, the fundamental solution is a
natural candidate, and numerically have been very successful [157, 158].
However, in general, a systematic strategy is still not available.

The extension of the direct sampling method for far-field scattered data
u∞ is straightforward in view of the asymptotic for the fundamental solu-
tion G(x, y), i.e., (6.4). The index function Φ(xp) is then given by

Φ(xp) =
|〈u∞, G∞(·, xp)〉L2(Sd−1)|

‖u∞‖L2(Sd−1)‖G∞(·, xp)‖L2(Sd−1)

.

Up to a normalizing constant, it is equivalent to

Φ(xp) = |
∫

Sd−1
u∞(x̂)eikx̂·xpdx̂|.

It is known as orthogonality sampling in the literature, first introduced by
Potthast [253] and then analyzed in [120] for the multi-frequency case.

6.2 Point source identification

In this part, we describe a direct method for identifying point sources in the
Laplace equation from the Cauchy data on the whole boundary Γ, developed
by El Badia and Ha-Duong [86]; see Section 2.2.2 for an introduction to the
inverse source problem. The mathematical model is as follows: given the
Cauchy data (f = u|Γ, g = ∂u

∂n |Γ) of a solution u to the Poisson’s equation

−∆u = F in Ω,

we look for a source F is from the admissible set of monopoles

A =

{
F =

m∑
k=1

λkδSk

}
,

i.e., identifying the unknowns m, {λk}mk=1 and {Sk}mk=1. Clearly, this is a
nonlinear inverse problem.

The starting point of the direct inversion method is the reciprocity gap
functional defined by

R(v) = 〈v, g〉
H

1
2 (Γ),H− 1

2 (Γ)
−
〈
f,
∂v

∂n

〉
H

1
2 (Γ),H− 1

2 (Γ)

,

where v is a harmonic function in Ω, i.e., v ∈ H(Ω) = {v ∈ H1(Ω) : ∆v =
0}. Using Green’s formula, it is easy to see

R(v) =
m∑
k=1

λkv(Sk), ∀v ∈ H(Ω). (6.11)
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Therefore, the inverse problem is reduced to determining the unknowns (m,
{λk}, {Sk}) when the sum in (6.11) is known for all v ∈ H(Ω).

The algorithm relies on a clever choice of harmonic test functions. In
the two-dimensional case, the real and imaginary parts of any polynomial
of the complex z = x + iy are both harmonic. Clearly, the formula (6.11)
remains valid for complex-valued harmonic functions v. Hence one may
introduce the complex numbers

αj =: R(zj) =
m∑
k=1

λk(Sk)j ,

where the point source Sk is identified with its complex affix.
Next we introduce matrices Aj = [(Aj)kl] ∈ C

M×m (j ∈ N) with its
klth entry given by (Aj)kl = Sj+k−1

l , where M is an upper bound on the
number of monopoles, and D = diag(S1, S2, . . . , Sm), and the vectors

µj = (αj , . . . , αM+j−1)t,

Λ = (λ1, λ2, . . . , λm)t.

The matrices Aj and D and vectors µj and Λ have the following prop-
erty.

Lemma 6.1. The vectors µj and Λ and matrices Aj and D satisfy

(a) For all j ∈ N, the vectors µj and matrices Aj verify the relations

µj = AjΛ and Aj+1 = AjD.

(b) The rank of the family (µ0, µ1, . . . , µM+1) is r = m, and the vectors
(µ0, µ1, . . . , µm−1) are linearly independent.

Proof. Part (a) of the lemma is immediate. The vectors µj are images
of vectors Λ, DΛ, . . . , DM−1Λ ∈ C

m by the same matrix A0, and hence
r ≤ m. Now let {cj} be complex constants such that

m−1∑
j=0

cjµj = A0

m−1∑
j=0

cjD
jΛ

 = 0.

Since the first m rows and columns of A0 form an invertible Vandermonde
matrix (because Sk are distinct), there holds

m−1∑
j=0

cjD
jΛ = 0,

i.e., a polynomial of degree at most m− 1 with m distinct roots {Sk}mk=1.
The desired assertion in part (b) follows directly. �
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Now we can present a uniqueness theorem, whose proof is constructive
and can be used to develop a direct method.

Theorem 6.2. Let M be a known upper bound for the number m of the
point sources. Then the unknowns m, {λk} and {Sk} are uniquely deter-
mined by 2M numbers {αj}2M−1

j=0 .

Proof. By replacingM by m in the matrices Aj and D and vectors µj ,Λ,
the square matrix A0 is invertible. Further, Lemma 6.1 shows that there
exists a unique matrix T satisfying the relations

µj+1 = Tµj 0 ≤ j ≤ m− 1.

Again from Lemma 6.1, one has for all j:

µj+1 = A0D
j+1Λ = A0DA

−1
0 A0D

jΛ = A0DA
−1
0 µj ,

and thus the matrix T is given by T = A0DA
−1
0 . Therefore,

(1) the affixes {Sk} are the eigenvalues of T ,
(2) the intensity Λ is the solution of the system µ0 = A0Λ.

This shows directly the desired assertion. �

The proof of Lemma 6.1 and Theorem 6.2 contains a constructive
method for finding the locations and strengths of the poles. The com-
plete procedure is listed in Algorithm 6.2. Numerically, one observes that
the algorithm is relatively sensitive to the noise in the Cauchy data, since
the matrix H in part (b) of Lemma 6.1 is a Hankel matrix, which is known
be highly ill-conditioned even if the matrix size is fairly small. This is
reminiscent of the ill-posed nature of the Cauchy problem for the Laplace
equation. A rank-revealing procedure, such as singular value decomposi-
tion (cf. Appendix A), is often employed to determine the effective number
m of poles. We note that by the proof of Theorem 6.2, the matrix T at
step 5 is a companion matrix, and can be found directly by solving a linear
system of size m. We remark that the severe ill-conditioning of the Hankel
matrix indicates that the algorithm can work well only for a small number
of point sources.

Remark 6.1. Algorithm 6.2 can be extended to identify dipole sources:

A =

{
F = −

m∑
k=1

pk · ∇δSk

}
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Algorithm 6.2 El Badia-Ha Duong algorithm
1: Given the Cauchy data (f, g), and upper bound M ;
2: Compute the harmonic moments αj , j = 0, . . . , 2M − 1;
3: Form the matrix H = [µ0 µ1 · · · µM ];
4: Determine the rank m of H by singular value decomposition;
5: Find the eigenvalues of reduced matrix T ;
6: Solve for Λ = [λk] by µ0 = A0Λ.

where the integer m, the centers Sk, and the moments pk of the dipoles
are unknown. It straightforward to see that the reciprocity gap functional
R(v) for the monomials vj = zj is given by

R(vj) =
m∑
k=1

j(pk,1 + ipk,2)S
j−1
k .

Upon letting µj = R(vj)/j, then Algorithm 6.2 can be applied directly.

Algorithm 6.2 can be used efficiently for other more complicated linear
or nonlinear inverse problems. For example, this idea has been pursued in
[126] for the inverse source problem for the Laplace equation, where they
first find the locations and size of the distributed source from the point
source locations and strengths. The rough estimates are then refined by
e.g., Newton method. A similar idea might be applied to the transmission
problem of determining the interfaces or cracks from Cauchy data.

6.3 Numerical unique continuation

In this part, we describe one direct method due to the first author and M.
Yamamoto for numerically continuing a harmonic function from one line
(or line segment) to the domain. Let the domain Ω be Ω = {(x, y) ∈ R

2 :
x > 0}, and its boundary Γ = {(x, y) ∈ R

2 : x = 0}. There holds the
Laplace equation, i.e.,

uxx + uyy = 0 in Ω (6.12)

and the Cauchy data

u = g and ux = h on Γ.

The direct method builds on the fact that the function u(x, y) is
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harmonic and real analytic. Therefore, it can be represented as

u(x, y) = u(0, y) + ux(0, y)x+
1
2
uxx(0, y)x2 +

1
3!
uxxx(0, y)x3 + ...

=
∞∑
i=0

xi

i!
∂iu(0, y)
∂xi

.

Therefore, it suffices to determine the sequence of functions
{
∂iu(0,y)
∂xi

}∞

i=0
.

According to the Cauchy data, u(0, y) = g(y) and ux(0, y) = h(y). To
determine the higher-order derivatives, we utilize the fundamental relation
(6.12). To illustrate the point, we compute uxx(0, y) and uxxx(0, y). It
follows from (6.12) that

uxx(0, y) = −uyy(0, y) = − ∂2

∂y2
(u(0, y))

= − ∂2

∂y2
g(y) = −g′′(y),

and by differentiating (6.12) with respect to x, we arrive at

uxxx(0, y) = −uyyx(0, y) = − ∂2

∂y2
(ux(0, y))

= − ∂2

∂y2
h(y) = −h′′(y).

Analogously to the preceding derivations, we rewrite (6.12) as
uxx(x, y) = −uyy(x, y).

Applying the identity repeatedly yields that for any i > 2
∂i

∂xi
u(0, y) =

∂i−2

∂xi−2

[
∂2

∂x2
u(0, y)

]
=

∂i−2

∂xi−2
[−uyy(0, y)]

=
∂i−4

∂xi−4

∂2

∂x2
[−uyy(0, y)] = (−1)2

∂i−4

∂xi−4

∂4

∂y4
u(0, y)

= · · · =

{
(−1)

i−1
2 h(i−1)(y) odd i,

(−1)
i
2 g(i)(y) even i.

It is easy to verify that the formula holds also for i ≤ 2. Consequently, the
solution u(x, y) can be represented by

u(x, y) =
∞∑
i=0

xi

i!
∂iu(0, y)
∂xi

=
∞∑

i=0,even

xi

i!
∂i

∂xi
u(0, y) +

∞∑
i=0,odd

xi

i!
∂i

∂xi
u(0, y)

=
∞∑

i=0,even

(−1)
i
2xig(i)(y)
i!

+
∞∑

i=0,odd

(−1)
i−1
2 xih(i−1)(y)
i!

.

(6.13)
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The representation (6.13) enables evaluating the value of the function
u(x, y) at any point in the half-plane Ω, if the Cauchy data are sufficiently
differentiable. The method is strictly direct, and only involves computing
the derivatives of the Cauchy data. In practice, the Cauchy data are noisy
and do not allow very high-order differentiation, and thus a truncation of
the expansion order would be needed to stabilize the inherent ill-posedness
of unique continuation. Further, we note that the method is also applicable
to rectangular domains with the Cauchy data specified on one side of the
domain or cubic domains with data on one surface.

6.4 Gel’fand-Levitan-Marchenko transformation

Now we describe an elegant approach for inverse Sturm-Liouville problem
based on the Gel’fand-Levitan-Marchenko transformation [226, 100], and
numerically realized efficiently in [266].

6.4.1 Gel’fand-Levitan-Marchenko transformation

We first recall the transformation due to Gel’fand and Levitan [100], which
in itself originates from an earlier work of Marchenko [226] and has found
applications in many different areas. In essence, it transforms the solution
of one ordinary differential equation into that of the other, via a Volterra
integral operator of the second kind, with the kernel defined by a “wave”-
type equation. The key point of deriving the transformation is to construct
the adjoint operator of the leading part of the elliptic operator, with suit-
able boundary conditions.We illustrate the derivation of the transformation
for three distinct cases, (i) the classical Sturm-Liouville problem (SLP) in
the potential form, (ii) polar coordinate counterpart, and (iii) the discrete
analogue.

case (i): SLP in potential form. Let u(x) and v(x) respectively be
the solutions to

−u′′ + q(x)u = λu,

−v′′ + p(x)v = λv,

and u(0) = v(0) = 0 and u′(0) = v′(0) = 1, where λ ∈ R is a param-
eter. The condition u′(0) = v′(0) = 1 represents a normalization con-
dition. Given a solution v, we define a new function u via the integral
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transformation

u(x) = v(x) +
∫ x

0

K(x, t)v(t)dt,

where the kernel function K(x, t) depends on the potentials q and p, but
not on the parameter λ, such that u(x) is the solution to the preceding
problem. To find the kernel K(x, t), we compute

u′′(x) = v′′(x)+(K(x, x)v(x))′+Kx(x, x)v(x)+
∫ x

0

Kxx(x, t)v(t)dt. (6.14)

Now we define a hyperbolic equation

LxK(x, t) − L∗
tK(x, t) − (p(t) − q(x))K(x, t) = 0,

where the differential operator L is given Lv = −v′′ and L∗ is its adjoint,
and Lx and Lt refer to the differential operator in x and t variable, respec-
tively.

Then by integration by parts and using the boundary conditions v(0) =
0 and v′(0) = 1, we can rewrite the term

∫ x
0
Kxx(x, t)v(t)dt as∫ x

0

Kxx(x, t)v(t)dt =
∫ x

0

(q(x) − p(t))K(x, t)v(t)dt +
∫ t

0

Ktt(x, t)v(t)dt

=
∫ x

0

q(x)K(x, t)v(t)dt +Kt(x, x)v(x) −K(x, x)v′(x)

+K(x, 0) −
∫ x

0

K(x, t)(Lt + p(t))v(t)dt,

where the subscripts x and t refer to taking derivative with respect to x

and t, respectively. Now substituting this back to (6.14) and noting the
relations

(K(x, x)v(x))′ = Kx(x, x)v(x) +Kt(x, x)v(x) +K(x, x)v′(x)

and

(Lt + p(t))v(t) = λv(t),

the definition of u, and the total derivative d
dxK(x, x) = Kx(x, x)+Kt(x, x)

yields

u′′(x) = v′′(x) + 2v(x)
d

dx
K(x, x) +

∫ x

0

q(x)K(x, t)v(t)dt

+K(x, 0) − λ

∫ x

0

K(x, t)v(t)dt,

= p(x)v(x) − λu(x) + 2v(x)
d

dx
K(x, x)

+
∫ x

0

q(x)K(x, t)v(t)dt +K(x, 0).
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Consequently, we have

−u′′(x) + q(x)u(x) = λu(x) + v(x)[q(x) − p(x) − 2
d

dx
K(x, x)] +K(x, 0).

So it suffices to set

2
d

dx
K(x, x) = q(x) − p(x) and K(x, 0) = 0

so that u does solve the initial value problem.

(ii) SLP in polar coordinates. Here the model is reduced from ra-
dial symmetry, and the differential operator L is given by Lv = − 1

r (rv
′)′.

Accordingly, the Sturm-Liouville problem is given by

Lu+ q(r)u = λu,

Lv + p(r)v = λv.

Like before, we define the transformation via

u(r) = v(r) +
∫ r

0

K(r, t)v(t)dt,

and K satisfies the relation

LrK(r, t) − L∗
tK(r, t) + (q(r) − p(t))K(r, t) = 0,

where the adjoint L∗
t reads L∗

tv = −(t( vt )
′)′. Then there hold

Lru(r) = Lrv(r) − 1
r
(rK(r, r))′v(r) −K(r, r)v′(r) −Kr(r, r)v(r)

+
∫ r

0

LrK(r, t)v(t)dt.

By applying integration by parts and the relation Lrv + p(r)v = λv, the
integral term

∫ r
0
LrK(r, t)v(t)dt can be rewritten as∫ r

0

LrK(r, t)v(t)dt =
∫ r

0

(−q(r) + p(t))K(r, t)v(t)dt +
∫ r

0

L∗
tK(r, t)v(t)dt

= −
∫ r

0

q(r)K(r, t)v(t)dt + λ

∫ t

0

K(r, t)v(t)dt

− t(
K(r, t)
t

)t|t=rv(r) +K(r, r)v′(r).

Combining the above two identities with the relation Lrv+p(r)v = λv and
the definition of u yields

Lru(r) + q(r)u(r) = λu(r) + v(r)[−2
d

dr
K(r, r) + q(r) − p(r)].

Upon setting 2 d
drK(r, r) = q(r) − p(r), we arrive at the desired assertion.
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(iii) Discrete SLP. Now we present a discrete analogue of the Sturm-
Liouville problem, i.e.

−δu+ qu = λu,

−δv + pv = λv,

where u(0) = v(0) = 0, and

δui = ui+1 − 2ui + ui−1

is the discrete Laplacian. This arises, e.g., in the finite difference discretiza-
tion of the classical SLP. Then we seek a discrete integral transformation
such that the function u can be expressed in terms of v as

ui = vi +
i∑

j=1

kijvj ,

where the lower-triangle kernel matrix K = [kij ] depends on the (discrete)
potentials q and p, but not on the parameter λ. To find the kernel kij , we
compute

δui = δvi + ki+1,i+1vi+1 − ki−1,ivi +
i∑

j=1

δ1Kijvj ,

where δ1 refers to the discrete Laplacian in the first index. Now we define
a discrete hyperbolic equation

δ1kij − δ2kij + (pj − qi)ki,j = 0,

where δ2 refers to the discrete Laplacian in the second index. Then
upon invoking the summation by parts formula, the discrete summation∑i

j=1 δ1Kijvj can be rewritten as

i∑
j=1

δ1kijvj =
i∑

j=1

(qi − pj)ki,jvj + δ2ki,jvj

=
i∑

j=1

(qi − pj)kijvj +
i∑

j=1

ki,jδvj + ki,i+1vi − kiivi+1 + ki0v1

= qi

i∑
j=1

kijvj − λ
i∑

j=1

kijvj + ki,i+1vi − kiivi+1 + ki0v1.

Now by substituting this back and using the definition of u, we derive

−δui + qiui = λui + (qi − pi)vi − ki+1,i+1vi+1 + ki−1,ivi

− ki,i+1vi + ki,ivi+1 − ki0v1.
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We note that asymptotically, both ki+1,i+1−ki,i and ki,i+1−ki−1,i represent
a discrete analogue of the total derivative d

dx
K(x, x) in the sense that

(ki+1,i+1 − ki,i)vi+1 + (ki,i+1 − ki−1,i)vi → 2
d

dx
K(x, x)v(x).

Hence, the discrete transformation is consistent with the continuous coun-
terpart. Meanwhile, since the values ki,i+1 and ki−1,i are not needed in
the definition of the transformation, and never used in the numerical im-
plementation, one may choose them such that

(ki+1,i+1 − ki,i)vi+1 + (ki,i+1 − ki−1,i)vi = 2(ki+1,i+1 − ki,i)vi.

This simplifies the formula to:

−δui + qiui = λui + (qi − pi)vi − 2(ki+1,i+1 − ki,i)vi − ki0v1.

Consequently, we arrive at the following discrete transformation

δ1kij − δ2kij + (pj − qi)ki,j = 0,

ki0 = 0, qi − pi = 2(ki+1,i+1 − ki,i).

6.4.2 Application to inverse Sturm-Liouville problem

Now we illustrate the use of the Gel’fand-Levitan-Marchenko transforma-
tion for the inverse Sturm-Liouville problem. To this end, we consider an
odd reflection of the differential equation into the domain t < 0 and take
p(x) = 0. It is easy to see that the solution v to the initial value problem
is given by v = sin

√
λx√
λ

. Hence for any given potential q ∈ L2(0, 1) there
exists a function K(x, t) defined on the triangle {0 ≤ |t| ≤ x ≤ 1} such that

u(x, λ) =
sin

√
λx√
λ

+
∫ x

0

K(x, t)
sin

√
λt√
λ

dt, (6.15)

and the kernel K(x, t) = K(x, t; q) solves the characteristic boundary value
problem

Ktt −Kxx + q(x)K = 0 0 ≤ |t| ≤ x ≤ 1,

K(x,±x) = ±1
2

∫ x

0

q(s)ds 0 ≤ x ≤ 1.
(6.16)

On the basis of (6.15) and (6.16), an efficient direct method for the in-
verse Sturm-Liouville problem was developed in [266]. We briefly sketch the
idea of the method for the case of two spectra, i.e., the Dirichlet spectrum
{λj} and Dirichlet-Neumann spectrum {µj}. It consists of the following
two steps.
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(a) Recovery of Cauchy data for K The first step in the method
is to use the given spectral data to determine the Cauchy data for K on
{x = 1}, i.e., the pair of functions {K(1, t),Kx(1, t)} for 0 ≤ t ≤ 1, upon
noting their oddness in t. This can be derived from (6.15). Evaluating
(6.15) with λ = λj and x = 1 gives∫ 1

0

K(1, t) sin
√
λjtdt = − sin

√
λj .

Next differentiating (6.15) with respect to x and evaluating at λ = µj and
x = 1 yield∫ 1

0

Kx(1, t) sin
√
µjtdt = −√

µj cos
√
µj − 1

2
sin

√
µj

∫ 1

0

q(s)ds.

The mean
∫ 1

0
q(s)ds can be extracted from either the sequence {λj}∞j=1

or {µj}∞j=1, using the known asymptotics of these spectral data. Hence
the unique recovery of the Cauchy data for K follows immediately from
the fact that the sequences {sin√λjt} and {sin√

µ
j
t} are complete in the

space L2(0, 1) (under minor conditions on the potential q). We note that
this step is well-posed, and numerically stable.

(b) Recovery of q from Cauchy data With the Cauchy data for
K(x, t) on the line {x = 1}, the coefficient q(x) is then determined from the
system (6.16). It follows from d’Alambert’s formula for the inhomogeneous
wave equation with the Cauchy data {K(1, t),Kx(1, t)} on the line {x = 1}
that the solution K(x, t) is given by

K(x, t) =
1
2
(K(1, 1 + t− x) +K(x+ t− 1)) − 1

2

∫ 1+t−x

t+x−1

Kx(1, s)ds

− 1
2

∫ 1

x

∫ t+x−y

t+y−x
q(y)K(y, s)dsdy.

Hence on the line x = t, there holds

K(x, x) =
1
2

(K(1, 2x− 1) +K(1, 1)) − 1
2

∫ 1

2x−1

Kx(1, s)ds

− 1
2

∫ 1

x

∫ 2x−y

y

q(y)K(y, s)dsdy.

Differentiating the equation with respect to x and using (6.16) gives

q(x) = 2 (Kt(1, 2x− 1) +Kx(1, 2x− 1))−2
∫ 1

x

q(y)K(y, 2x−y)dy, (6.17)
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which is a nonlinear equation in q, since K = K(x, t; q). The term in the
bracket can be computed from the Cauchy data {K(1, t),Kx(1, t)} directly.
The nonlinear equation (6.17) can be solved by the successive approxima-
tion method. It can be shown that the fixed point map defined by the
right-hand side of (6.17) is contractive in L∞(0, 1), and hence there ex-
ists at most one solution [266]. Numerically, one can observe that a few
iterations suffice accurate reconstructions.

Bibliographical notes

The design of direct inversion methods represent an important ongoing
theme in numerical methods for inverse problems, and there are many such
methods in the literature. We only briefly describe a few direct methods
to give a flavor of such methods. It is worth mentioning that for electrical
impedance tomography, there are several direct inversion methods, includ-
ing layer stripping method [279], Ikehata’s complex geometric method [149],
Brühl-Hanke method [45, 46], and D-bar method [277, 239] etc.
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Chapter 7

Bayesian Inference

Now we have developed efficient algorithms for finding a Tikhonov mini-
mizer. A natural question is how plausible it is. Hence, it is highly desirable
to have tools for assessing the quality of the inverse solution. Bayesian infer-
ence is one principled and systematic statistical framework for this purpose.
In this chapter, we describe the basic idea and computational techniques
of Bayesian inference. The starting point of Bayesian inference is Bayes’
formula, i.e., for two random variables X and Y the conditional probability
of X given Y is given by

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)
, (7.1)

where the probability density functions pY |X(y|x) and pX(x) are known
as the likelihood function, i.e., the conditional density of Y given X , and
the prior distribution of X , respectively. Consider the following inverse
problem

F (X) = Y, (7.2)

where X and Y denote the unknown coefficient and the noisy data, re-
spectively, and the forward map F : R

m �→ R
n is in general nonlinear and

stands for the mathematical model. To apply Bayesian inference, we have
regarded both the unknown X and the data Y as random variables, and
encode the prior knowledge in a probability distribution. For example, if
we assume that given X = x, Y follows a Gaussian distribution with mean
F (x) and variance σ2I, then

pY |X(y|x) =
1

(2πσ2)n/2
e−

‖F (x)−y‖2

2σ2 .

In practice, the noise covariance may be more complex, and it can be in-
corporated into the likelihood function pY |X(y|x) directly by changing the

235
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Euclidean norm ‖ · ‖ into a weighted norm. The prior pX(x) encodes the a
priori knowledge of the unknown. For example, if the solution X is sparse,
i.e., it has many entries close to zero but also a few large entries, then a
Laplace distribution on X is appropriate:

pX(x) = (λ2 )me−λ‖x‖1 .

We use the unnormalized posteriori p(x, y) defined by

p(x, y) = pY |X(y|x)pX(x),

and shall often write

pX|Y (x|y) ∝ p(x, y)

to indicate the posterior probability density pX|Y (x|y) up to a multiplica-
tive constant. Similar notation applies to the likelihood and the prior dis-
tribution. The posterior distribution pX|Y (x|y) holds the full information
about the inverse problem. That is, one can evaluate the conditional dis-
tribution of the parameter X from the observation Y = y using the pos-
terior distribution pX|Y (x|y), which in principle can be used to calibrate
the uncertainties associated with the inverse solutions. We shall describe
computational methods for exploring the posterior state space, including
Markov chain Monte Carlo (MCMC) and approximate inference methods.
MCMC methods are exact but expensive, whereas the others are approx-
imate but less expensive. Apart from reliability assessment, we also aim
to improve Tikhonov estimates by means of Bayesian modeling, especially
model selection and hyperparameter estimation.

For the model based inverse problem we have

h(X,Θ) = Y subject to constraint E(X,Θ) = 0

where h is a measurement map and E is a PDE constraint for the state X
and the parameter Θ. We may formulate the model errors for the constraint
E and the measurement errors jointly as

pY |X,Θ(y|x, θ) ∝ e
− ‖E(x,θ)‖2

2σ2
1

− ‖h(x,θ)−y‖2

2σ2
2

where the constants σ1 and σ2 describe both model uncertainties and data
uncertainties, respectively, if we assume Gaussian distributions for errors.
We note that for the first term in the exponential, the (discrete) norm
should be consistent with the natural choice at the continuous level, which
often invokes the Riesz mapping (or Sobolev gradient). This can be re-
garded as preconditioning, and will be essential for the success of the model
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and its efficient exploration. In addition to the prior distribution pΘ(θ) on
the parameter θ, we may also select a prior distribution pX(x) on the state
X . Thus, we have in general the following posterior distribution

p(x, θ|y) ∝ e
−‖E(x,θ)‖2

2σ2
1

− ‖h(x,θ)−y‖2

2σ2
2 pΘ(θ)pX (x). (7.3)

The denominator pY (y) in (7.1) is defined as

pY (y) =
∫
p(x, y) dx or pY (y) =

∫
p(x, θ, y) dx dθ (7.4)

and it is known as the marginal density of Y . We note that the marginalized
parameters are parameters for a specific model, and the only remaining
variable is the identity of the model itself. In this case, the marginalized
likelihood pY (y) is the probability of the data y given the model type,
not assuming any particular model parameters. In this context, it is often
known as the model evidence [224], and indicates the plausibility of a given
model for explaining the data y. It forms the basis of model selection via
Bayes factor [191]. That is, one can rank the prior models pkΘ(θ) using
the corresponding power pkY (y) (7.4) among a family of possible models
expressed in terms of the posterior distributions pkΘ(θ) of the parameter. For
example, one can choose between two candidate models, e.g., the Gaussian
model

p1
Θ(θ) ∝ e−

λ1
2 ‖θ−θ̄‖2

and the Laplace model

p2
Θ(θ) ∝ e−λ2‖θ−θ̄‖1

for the parameter Θ using the model evidence. Also, we have used the
augmented Tikhonov method in Section 3.5, which represents the joint
maximizer of the posterior distribution over the Tikhonov solution and
regularization parameters. In general we may maximize the model evidence
over all prior models

pk(x, θ|y) ∝ pkY |X,Θ(y|x, θ)pkΘ(θ)pX (x)

to select the “best” model.

7.1 Fundamentals of Bayesian inference

The likelihood function pY |X(y|x) and prior distribution pX(x) are the two
basic building blocks in Bayesian modeling. The former contains the in-
formation in the data y, or more precisely the statistics of the noise in the



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch07 page 238

238 Inverse Problems: Tikhonov Theory and Algorithms

data y, whereas the latter encodes a prior knowledge available about the
problem before collecting the data. Bayes’ formula (7.1) provides an infor-
mation fusion mechanism by integrating the prior knowledge together with
the information in the data y.

Below we discuss the basic building blocks, and the application of
Bayesian inference in the context of inverse problems. The more practical
aspects of efficient implementations will be discussed in detail in Sections
7.3 and 7.4.

Noise model The presence of noise in the data y represents one of most
salient features of any practical inverse problem. The likelihood function
pY |X(y|x) is completely determined by the noise statistics (and its depen-
dence on the unknown x). In practice, there are diverse sources of errors
in the model F and the data y:

(a) Modeling errors δF , i.e., F = F † + δF , where F † is the true physics
model. The modeling error δF can be attributed to replacing com-
plex models with reduced ones, e.g., the continuum model in place of
the complete electrode model in electrical impedance tomography, and
diffusion approximation for the radiative transport model in optical
tomography; see Sections 2.3.3 and 2.3.4.

(b) Discretization errors δFh, i.e., F = F † + δFh. In practical inver-
sion algorithms, the forward model must be approximated by a finite-
dimensional one. This can be achieved by the finite element method,
finite difference method, finite volume method or boundary element
method. The discretization error δFh can often be rigorously estimated
in terms of the mesh size h, under certain regularity conditions on the
forward solution.

(c) Data errors δy, i.e., y = y† + δy, where y† is the exact data. One
source of data error is attributed to inherently limited precision of ex-
perimental instruments like thermal sensors. Further, the instruments
occasionally may fail and if not carefully calibrated, can also induce
significant bias. The data error can also come from transmission. For
example, data transmitted in noisy channels are susceptible to cor-
ruptions, typically with pixels either completely corrupted or staying
intact. Similar errors can occur in storage, due to hardware failure.

Often in practice, all sources of errors (e.g., these for the forward model
F ) are lumped into the data y. As was mentioned earlier, a careful model-
ing and account of all errors in the data y is essential for extracting useful
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information using the classical Tikhonov regularization. This remains cru-
cial in the Bayesian setting. The most popular and convenient noise model
is the additive Gaussian model, i.e.,

y = y† + ξ,

where ξ ∈ R
n is a realization of the random variable, with its components

following an independent identically distributed (i.i.d.) Gaussian distribu-
tion with zero mean and variance σ2. Further, if the noise ξ is independent
of the true data y† (and hence the sought-for solution x), then the likelihood
pY |X(y|x) is given by

pY |X(y|x) = (2πσ2)−
n
2 e−

1
2σ2 ‖F (x)−y‖2

.

We shall frequently use the alternative representation τ = 1/σ2 below, and
refer to Appendix B for further discussions on the Gaussian model and
other noise models.

Prior modeling The prior pX(x) encodes the prior knowledge about the
sought-for solution x in a probabilistic manner. The prior knowledge can be
either qualitative or quantitative, including smoothness, monotonicity and
features (sparsity). Generally, the prior knowledge can be based on expert
opinion, historical investigations, statistical studies and anatomical knowl-
edge etc. Since inverse problems are ill-posed due to lack of information,
the careful incorporation of all available prior knowledge is of utmost im-
portance in any inversion technique. So is the case for Bayesian modeling,
and the prior plays the role of regularization in a stochastic setting [97].
Hence, prior modeling stays at the heart of Bayesian model construction,
and crucially affects the interpretation of the data. One very versatile prior
model is Markov random field, i.e.,

pX(x) ∝ e−λψ(x),

where ψ(x) is a potential function dictating the interaction energy between
the components of the random field x, and can be any regularization func-
tional studied earlier, e.g., sparsity, total variation or smoothness penalty.
The scalar λ is a scale parameter, determining the strength of the lo-
cal/global interactions. It plays the role of a regularization parameter in
classical regularization theory, and hence its automated determination is
very important. We shall discuss strategies for choosing the parameter λ
(and other nuance parameters) in Section 7.2.
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Hierarchical models Both likelihood pY |X(y|x) and the prior pX(x) can
contain additional unknown parameters, e.g.,

pY |X(y|x) = pY |X,Υ(y|x, τ) and pX(x) = pX|Λ(x|λ)

where τ and λ are the precision (inverse variance) and the scale parameter,
respectively. These parameters are generically known as hyperparameters.
In Bayesian estimation, the scaling parameter λ of the Markov random
field prior, which acts as a regularization parameter, affects the posterior
distribution pX|Y (x|y), and more explicitly it substantially affects the pos-
terior point estimates and credible intervals. Hierarchical Bayesian model-
ing provides an elegant approach to choose these parameters automatically
[303, 267], in addition to being a flexible computational tool. Specifically,
we view the scale parameter λ and the inverse variance τ as random vari-
ables with their own priors (a.k.a., hyperpriors) and determine them from
the data y. A convenient choice of these priors is their conjugate distri-
bution, which leads to a posterior distribution in the same family as the
prior distribution and often lends itself to computational convenience, while
remaining sufficiently flexible. For both λ and τ , the conjugate distribution
is given by a Gamma distribution:

pΛ(λ) = G(λ; a0, b0) =
ba0
0

Γ(a0)
λa0−1e−b0λ,

pΥ(τ) = G(τ ; a1, b1) =
ba1
1

Γ(a1)
τa1−1e−b1τ .

(7.5)

Here the parameter pairs (a0, b0) and (a1, b1) determines the range of the
prior knowledge on the parameters λ and τ . For the scale parameter λ, a
noninformative prior is often adopted, which roughly amounts to setting
a0 to 1 and b0 close to zero. As to the inverse variance τ , often a quite
reasonable estimate is available by repeated experiments and thus one can
apply a narrowly peaked prior distribution; otherwise one can also employ
a noninformative prior. Once we have selected the prior parameter pairs
(a0, b0) and (a1, b1), we can apply Bayes’ formula (7.1) to form the poste-
rior distribution pX,Λ,Υ|Y (x, λ, τ |y) which determines automatically these
parameters along with the inverse solution x:

pX,Λ,Υ|Y (x, λ, τ |y) ∝ pY |X,Υ(y|x, τ)pX|Λ(x|λ)pΛ(λ)pΥ(τ).

Connection with Tikhonov regularization Before proceeding to the
use and interpretation of Bayesian formulations, let us illustrate its connec-
tion with the classical Tikhonov regularization, and see how the Bayesian
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formulation can complement the (classical) Tikhonov regularization with
new ingredients. We illustrate this with the simplest Gaussian noise model
and the sparsity constraint with a Laplace prior, i.e.,

pY |X,Υ(y|x, τ) ∝ τ−
n
2 e−

τ
2 ‖F (x)−y‖2

,

pX|Λ(x|λ) ∝ λme−λ‖x‖1 .

In case of known λ and τ , a popular rule of thumb is to consider the
maximum a posteriori (MAP) estimate xmap, i.e.,

xmap = argmax
x

pX,Λ,Υ|Y (x, λ, τ |y)
= argmin

x

{
τ
2‖F (x) − y‖2 + λ‖x‖1

}
.

We note that the functional in the curly bracket can be rewritten as
1
2
‖F (x) − y‖2 + λτ−1‖x‖1,

which is nothing other than Tikhonov regularization with sparsity con-
straint and a regularization parameter α = λτ−1. This establishes
the following important connection between Tikhonov regularization and
Bayesian estimation

A Tikhonov minimizer is an MAP estimate of some Bayesian formulation.

If the parameters λ and τ are not known a prior, then it is natural to
adopt a hierarchical model. Specifically, together with a Gamma distribu-
tion on both λ and τ , cf. (7.5), Bayes’ formula gives rise to the following
posterior distribution

pX,Λ,Υ|Y (x, λ, τ |y) ∝ τ
n
2 +a1−1e−

τ
2 ‖F (x)−y‖2

· λm+a0−1e−λ‖x‖1 · e−b1τ · eb0λ.
There are many different ways of handling the posterior distribution
pX,Λ,Υ|Y (x, λ, τ |y). One simple idea is to consider the joint maximum a
posteriori estimate (x, λ, τ)map, which leads to the following minimization
problem (with ã0 = m+ a0 − 1 and ã1 = n

2 + a1 − 1)

(x, λ, τ)map = arg min
x,λ,τ

J(x, λ, τ),

where the functional J(x, λ, τ) is given by

J(x, λ, τ) = τ
2
‖F (x) − y‖2 + λ‖x‖1 − ã0 lnλ+ b0λ− ã1 ln τ + b1τ.

The functional J(x, λ, τ) is the augmented Tikhonov regularization for spar-
sity constraint: the first two terms recover Tikhonov regularization, whereas
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the rest provides the mechanism for automatically determining the regular-
ization parameter. The underlying mechanism essentially follows from the
Gamma prior distributions on the parameters, and it is a balancing prin-
ciple; see Section 3.5 for relevant analysis. We note that the augmented
approach does select the hyperparameters λ and τ automatically, but it
remains a point estimate and completely ignores the statistical fluctuations
around the (joint) mode. Hence, the picture is incomplete from a Bayesian
perspective. We shall discuss two alternative principled approaches, i.e.,
Bayesian information criterion and maximum likelihood method, for select-
ing hyperparameters in Section 7.2.

What is new in Bayesian inference? The posterior distribution
pX,Λ,Υ|Y (x, λ, τ |y) represents the complete Bayesian solution to the inverse
problem (7.2), and holds all the information about the problem. In com-
parison with the more conventional Tikhonov regularization, the Bayesian
approach has the following distinct features.

First, the Bayesian solution pX,Λ,Υ|Y (x, λ, τ |y) is a probability distribu-
tion, and encompasses an ensemble of plausible solutions that are consistent
with the given data y (to various extent). For example one can consider
the mean µ and the covariance C

µ =
∫
xpX|Y (x|y)dx,

C =
∫

(x− µ)(x − µ)tpX|Y (x|y)dx.
In particular, the mean µ can be regarded as a representative inverse so-
lution, whereas the covariance C enables one to quantify the uncertainty
of a specific solution, e.g., with credible intervals. For example, the 95%
credible interval for the ith component µi is given by the interval I centered
around the mean µi, i.e., I = [µi − ∆µi, µi + ∆µi], such that∫

Rm−1

∫
I

pX|Y (x|y)dxidx−i = 95%,

where x−i denotes (x1, . . . , xi−1, xi+1, . . . , xm)t. In the presence of hyper-
parameters λ and τ , one can either fix them at some selected values, e.g.,
by the model selection rules described in Section 7.2 below, or marginal-
ize them out. In contrast, deterministic techniques generally content with
singling out one solution from the ensemble. For example, augmented
Tikhonov regularization only looks for the point that maximizes the pos-
terior distribution pX,Λ,Υ|Y (x, λ, τ |y). Since it completely ignores the sta-
tistical fluctuations, it may not be representative of the ensemble, and the
conclusion drawn with only one solution at hand can be misleading.
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Second, it shows clearly the crucial role of statistical modeling in design-
ing appropriate regularization formulations for practical problems. Usually,
the statistical assumptions of these models are not explicitly spelt out in
classical regularization models, which consider only the worst-case scenario,
and has not receive due attention, despite their obvious importance in ex-
tracting all available information. However, it is now well accepted that a
proper statistical modeling is essential for fully extracting the information
contained in the data. For example, for impulsive noise, an appropriate
likelihood function is the Laplace distribution or t-distribution, since they
are robust to the presence of a significant amount of outliers in the data. An
inadvertent choice of the computationally convenient Gaussian distribution
can significantly compromise the reconstruction accuracy [168].

Third, it provides a flexible regularization since hierarchical modeling
can partially resolve the nontrivial issue of choosing an appropriate regu-
larization parameter. The versatile framework, augmented Tikhonov regu-
larization, discussed in detail in Section 3.5, was derived from hierarchical
modeling, from which a variety of useful parameter choice rules, including
the balancing principle, discrepancy principle and balanced discrepancy
principle etc. Further, many other parameter choice rules can be deduced
from Bayesian modeling; see Section 7.2 for further discussions.

Last, it allows seamlessly integrating structural/multiscale features of
the problem through careful prior modeling. The prior knowledge is essen-
tial for solving many practical inverse problems, e.g., in petroleum engineer-
ing, biomedical imaging and geophysics. For example, in medical imaging,
one can use anatomical information, e.g., segmented region from magnetic
resonance imaging or x-ray computerized tomography can assist emission
tomography image reconstruction. The idea of using one imaging modality
to inform others is now well established.

Because of these distinct features, Bayesian inference has attracted
much attention in a wide variety of applied disciplines in recent years,
including inverse problems, imaging, machine learning and signal process-
ing, to name a few. However, these nice features do come with a price: it
brings huge computational challenges. For systematic methodological de-
velopments, we refer to the monographs [282, 186]. Our discussion shall
focus on model selection and hyperparameter estimation, and the efficient
numerical realization via stochastic and deterministic approaches.
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7.2 Model selection

In practice, we generally have a multitude of models which can explain the
observed data y to various extents. Here a model M generally can refer
to either different priors, e.g., smoothness prior v.s. sparsity prior, as was
indicated earlier. It can also refer to a family of priors that depend on a
parameter, e.g., pX|Λ(x|λ), or their discrete analogues. Hence, an immedi-
ate practical question is which model we shall select to explain the data y.
The marginal pY (y), which crucially depends on the choice of the model
M , contains valuable information about a given model M . In particular,
it measures the plausibility/capability of the model M for explaining the
data y. To indicate the dependence of the marginal pY (y) on the model M ,
we shall write pY |M(y|M). The Bayesian approach to model selection is
to maximize the posterior probability pY |M(y|M) of a model M , given the
noisy data y. By Bayes’ formula (7.1), the posterior probability pM|Y (M |y)
of the model M is given by

pM|Y (M |y) =
pY |M(y|M)pM(M)

pY (y)
,

where pY (y) is the marginal likelihood (over all models) of the data y, and
pM(M) is the prior probability of the model M .

We begin our discussion with the simple case of two models, denoted
by M1 and M2, and use Bayes factor to select between the two models M1

and M2 in question. The Bayes factor is defined as the ratio of the prior
and posterior odds:

BF =
pM(M1)/pM(M2)

pM|Y (M1|y)/pM|Y (M2|y)

=
pM(M1)pM(M2)pY |M(y|M2)
pM(M2)pM(M1)pY |M(y|M1)

=
pY |M(y|M2)
pY |M(y|M1)

.

This number BF serves as an indicator of which of the models Mj is more
supported by the data y. If the factor BF > 1, this indicates that M2

is more strongly supported by the data y; Otherwise, the model M1 is
more strongly supported. Furthermore, the magnitude of the Bayes factor
is a measure of how strong the evidence is for or against the model M1.
According to Kass and Raftery [191], when the Bayes factor exceeds 3, 20
and 150, one can say that, accordingly, a positive, strong and overwhelming
evidence exists that the model M2 is preferred.
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Now we turn to the case of multiple models. If all candidate models
are equally likely, then maximizing the posterior probability of a model Mi

given the data y is equivalent to maximizing the marginal likelihood

pY |M(y|Mi) =
∫
pY |Θ(y|θi)pΘ(θi)dθi,

where θi denotes the parameter vector of the model Mi, and pΘ(θi) is the
(prior) probability distribution of θi, which might vary for different models.
In order to arrive at a concise rule, we approximate the marginal likelihood
pY |M(y|Mi) by Laplace’s method. To this end, we first note that

pY |M(y|Mi) =
∫
pY |Θ(y|θi)pΘ(θi)dθi

=
∫
eln pY |Θ(y|θi)pΘ(θi)dθi.

Next we expand ln pY |Θ(y|θi)pΘ(θi) around the posterior mode θ̃i, i.e., the
MAP estimate, where the posterior distribution pY |Θ(y|θi)pΘ(θi) achieves
its strict maximum (assuming it has one) and so does the log posteriori
Q := ln pY |Θ(y|θi)pΘ(θi). Then we can approximate Q by its second-order
Taylor expansion around θ̃i

Q ≈ Q|θ̃i
+ (θi − θ̃i,∇θiQ|θ̃i

) + 1
2
(θi − θ̃i)tHθi(θi − θ̃i),

where Hθ̃i
is the Hessian matrix. By the optimality of θ̃i, Hθ̃i

is negative
definite, and ∇θiQ|θ̃i

= 0. We denote by H̃θi = −Hθi |θi=θ̃i
and then

approximate pY |M(y|Mi) by

pY |M(y|Mi) ≈
∫
e
Q|θ̃i

− 1
2 (θi−θ̃i)

tH̃θi
(θi−θ̃i)dθi

= eQ|θ̃i

∫
e−

1
2 (θi−θ̃i)

tH̃θi
(θi−θ̃i)dθi

= pY |Θ(y|θ̃i)pΘ(θ̃i)
(2π)|θi|/2

|H̃θi |1/2
.

This procedure is known as Laplace’s method in the literature. The ap-
proximation is reasonable if there are a large number of data points, for
which the posterior distribution is narrowly peaked around the mode θ̃i.
Consequently, we arrive at

2 ln pY |M(y|Mi) ≈ 2 ln pY |Θ(y|θ̃i) + 2 ln pΘ(θ̃i) + |θi| ln 2π + ln |H̃−1
θi

|.
To shed further insight into the approximation, we consider the case of
pΘ(θi) = 1, a noninformative prior. Then the posterior mode θ̃i is identical
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with the maximum likelihood (ML) estimate θ̂i. Further, each entry in the
Hessian H̃θi can be expressed as

H̃jk = −∂
2 ln pY |Θ(y|θi)
∂θi,j∂θi,k

|θi=θ̂i
.

That is, the Hessian H̃θi is the observed Fisher information matrix. More-
over, if the observed data y is i.i.d., and the number n of data points is
large, the weak law of large numbers implies that

ln pY |Θ(y|θi) =
1
n

n∑
l=1

n ln pY |Θ(yl|θi)

→ E[n ln pY |Θ(yl|θi)] in probability.

Consequently, the observed Fisher information matrix H̃jk simplifies to

H̃jk = −∂
2E[n ln pY |Θ(y1|θi)]

∂θi,j∂θi,k
|θi=θ̂i

= −n∂
2E[ln pY |Θ(y1|θi)]

∂θi,j∂θi,k
|θi=θ̂i

= nIjk ,

so |H̃θi | = n|θi||Iθi |, where |θi| is the number of parameters, and Iθi co-
incides with the Fisher information matrix for a single data point y1. In
summary, we get

ln pY |M(y|Mi) ≈ ln pY |Θ(y|θ̃i) + ln pΘ(θ̃i) + |θi|
2

ln 2π

− |θi|
2 lnn− 1

2 ln |Iθi |.
For large n, keeping only the terms involving n and ignoring the rest yields

ln pY |M(y|Mi) = ln pY |Θ(y|θ̃i) − |θi|
2 lnn,

which is known as the Bayesian information criterion for the model Mi. It
is derived under a number of approximations, e.g., the Gaussian approxi-
mation around the mode θ̃i. The term |θi| lnn is a complexity measure of
the model Mi, and penalizes models of high complexity, thereby favoring
models of low complexity.

The consistency of model selection procedures (as n tends to infinity
or equivalently noise level tends to zero) is well studied in the statistical
literature. We shall not dwell on this important issue, but refer interested
readers to [305, 52] and references therein.

Now we give two examples illustrating the usage of the model selection
idea: the first is on sparsity constraints, and the second is a probabilistic
“MUSIC” algorithm.
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Example 7.1. In this example, we consider a linear inverse problem Fx =
y, F ∈ R

n×m, with sparsity constraints, i.e.,

pX|Y (x|y) ∝ e−
τ
2 ‖Fx−y‖2 · e−λ‖x‖1 .

We regard the parametric family of priors pX|Λ(x|λ) as models, pX|Λ(x|λ) ∝
λme−λ‖x‖1 , with λ being the parameter. Surely, the normalizing constant
pY (y) depends on the parameter value λ, i.e., pY |Λ(y|λ). By means of model
selection, a natural idea is to look for the maximizer of the normalizing
constant pY |Λ(y|λ), and with the above derivation, we arrive at the following
Bayesian information criterion for selecting the parameter λ by maximizing

Ψ(λ) = −τ‖Fxλ − y‖2

2n
− df(xλ)

2n
lnn,

where xλ is the posterior mode, and df(xλ) is the degree of freedom of the
estimate xλ. It is known that the support size of xλ, i.e., ‖xλ‖0, is a good
estimate of the degree of freedom for sparsity regularization [314].

Example 7.2. In this example, we consider inverse scattering with one
single point scatterer, i.e.,

−∆u− k2u = δx.

Let y represent a measurement of u on a surface Γ, and F (x) denote the
forward map. We aim to determine the location of the point scatterer using
the model evidence. Under the assumption that the data y is contaminated
by i.i.d. Gaussian noise with mean zero and variance σ2, the likelihood
function pY |X(y|x) is given by

pY |X(y|x) ∝ e−
1

2σ2 ‖y−F (x)‖2
.

Let {xi} be a set of sampling points in the domain and far from the mea-
surement surface Γ. We consider the collection of prior models piX(x) = δxi .
For the prior model piX(x), the model evidence is given by∫

pY |X(y|x)piX (x)dx = e−
1

2σ2 ‖y−F (xi)‖2
.

According to the model selection principle, we select the prior model max-
imizing the model evidence. Note that

e−
1

2σ2 ‖y−F (xi)‖2
= e−

1
2σ2 [‖y‖2−2�(y,F (xi))+‖F (xi)‖2].

Now under the assumption xis are far from Γ, we may assume the term
‖F (xi)‖2 is small for all xi or their magnitudes are commeasurable for
all sampling points {xi}. Further, under Born’s approximation, F (xi) ≈
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G(xi, z). Hence, maximizing the model evidence is equivalent to maxi-
mizing �(y,G(xi, z)), which is almost identical with the MUSIC algorithm
(and the direct sampling method) in Section 6.1. This provides a proba-
bilistic derivation of these algorithms. However, the derivation suggests a
higher-order correction, i.e., ‖F (xi)‖2, if the preceding assumption is in-
valid. Further, the likelihood function can be of alternative form in order
to achieve other nice properties, e.g., robustness. In particular, the Cauchy
likelihood leads directly to the classical MUSIC indicator function. We
observe that here the prior models can be more general, e.g., small circu-
lar/spherical regions centered at xi instead of the point scatterer xi alone
or regions of any other geometrical shapes. The collection of regions can
be viewed as a dictionary for plausible scatterers.

In addition to Bayesian information criterion, one can also employ the
maximum likelihood method. We illustrate this on a Markov random field
prior pX|Λ(x|λ) ∝ e−λψ(x). Given the observational data y, the maximum
likelihood estimate of λ can be found by maximizing the marginal pY |Λ(y|λ)
defined by

pY |Λ(y|λ) =
∫
pX|Y,Λ(x|y, λ)dx =

∫
pY |X(y|x)pX|Λ(x|λ)dx

=
∫
eln pY |X (y|x)−λψ(x)dx∫

e−λψ(x)dx
=
Z(y, λ)
Z(λ)

,

where Z(y, λ) =
∫
eln pY |X (y|x)−λψ(x)dx is the partition function of the pos-

terior density pX|Y,Λ(x|y, λ), and Z(λ) is the partition function of the prior
distribution. Therefore,

ln pY |Λ(y|λ) = lnZ(y, λ) − lnZ(λ)

and the ML estimate of hyperparameter λ is a root of the equation
∂ lnZ(y, λ)

∂λ
=
∂ lnZ(λ)

∂λ
.

It is straightforward to verify that
∂ lnZ(λ)

∂λ
= −EpX|Λ(x|λ)[ψ] and

∂ lnZ(y, λ)
∂λ

= −EpX|Y,Λ(x|y,λ)[ψ].

In short, the ML estimate of λ is a root of the following nonlinear equation

EpX|Λ(x|λ)[ψ] = EpX|Y,Λ(x|y,λ)[ψ].

Statistically, the maximum likelihood method chooses the regularization pa-
rameter λ by balances the expectation of the penalty ψ under the prior dis-
tribution pX|Λ(x|λ) and that under the posterior distribution pX|Y,Λ(x|y, λ).
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This equation can in principle be solved using an expectation-maximization
(EM) algorithm [80], cf. Algorithm 7.1. Steps 3 and 4 are known as the
E-step (Expectation) and M-step (maximization), respectively. An exact
implementation of the EM algorithm is often impractical due to the com-
plexity and high-dimensionality of the posterior distribution pY |X,Λ(x|y, λ)
(and possibly also the prior pX|Λ(x|λ)). There are several different ways to
arrive at an approximation, e.g., variational method in Section 7.4.

Algorithm 7.1 EM algorithm for hyperparameter estimation.
1: Initialize λ0 and set K ∈ N;
2: for k = 0 : K do
3: estimate the complete-data sufficient statistics

ψk := EpX|Y,Λ(x|y,λk)[ψ];

4: determine λk+1 as the solution to

EpX|Λ(x|λ)[ψ(x)] = ψk;

5: check the stopping criterion.
6: end for

We illustrate the maximum likelihood method with one simple example.

Example 7.3. In this example, we apply the maximum likelihood method
to the Gaussian model for a linear inverse problem, i.e.,

pX|Y,Λ(x|y, λ) ∝ e−
τ
2 ‖Ax−y‖2 · λm

2 e−
λ
2 ‖Lx‖2

,

where the matrix L ∈ R
m×m is of full rank. Here the potential function

ψ(x) is given by ψ(x) = 1
2‖Lx‖2. For fixed λk, the posterior pX|Y,Λ(x|y, λk)

is Gaussian with covariance Ck = (τAtA + λkLtL)−1 and mean mk =
CkτAty, and hence the E-step of the EM algorithm is given by

ψk = EpX|Y,Λ(x|y,λ)[ψ(x)] = 1
2
‖Lxk‖2 + 1

2
tr(CkLtL).

Meanwhile, the prior expectation is given by

EpX|Λ(x|λ)[ψ(x)] = 1
2
tr((λLtL)−1LtL) = m

2λ
.

Consequently, the M-step of the EM algorithm reads

λk+1 = m(‖Lxk‖2 + tr(CkLtL))−1.

Clearly, the example can be extended to estimate the precision τ simulta-
neously with the scale parameter λ. A straightforward computation shows
that the EM update for τ is given by

τk+1 = n(‖Kxk − y‖2 + tr(CkAtA))−1.
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We observe that these updates are closely related to the fixed-point algo-
rithm for balancing principle, cf. Algorithm 3.2. Especially, the maximum-
likelihood approach can be regarded as a statistical counterpart of the (de-
terministic) balancing principle discussed in Section 3.5. Further, statistical
priors on the hyperparameters can also be incorporated straightforwardly.

Remark 7.1. In general, the E-step and M-step are nontrivial to compute,
and hence approximations must be sought [312]. In particular, one can
apply the approximate inference methods in Section 7.4 below.

7.3 Markov chain Monte Carlo

The posterior distribution p(x) (we have suppressed the conditional on
y and the subscript X for notational simplicity) lives in a very high-
dimensional space, and the distribution itself is not directly informative.
Therefore, it is necessary to compute summarizing statistics, e.g., mean µ

and covariance C defined by

µ =
∫
xp(x)dx and C =

∫
(x− µ)(x − µ)tp(x)dx.

Below we shall denote µ and C by Ep[x] and Varp[x], respectively. These
are very high-dimensional integrals, and standard quadrature rules are in-
efficient due to the notorious curse of dimensionality. For example, for
a probability density p(x) living on one-hundred dimensional space, a
tensor product type quadrature rule with only two quadrature points in
each direction (thus a very crude approximation) would require evaluating
2100 ≈ 1.27× 1030 points, which is an astronomically large number. A now
standard approach to circumvent the computational issue is to use Monte
Carlo methods, especially Markov chain Monte Carlo (MCMC) methods
[109, 217]. In this part, we describe fundamentals of MCMC methods and
acceleration techniques.

7.3.1 Monte Carlo simulation

The basic procedure of Monte Carlo simulation is to draw a large set of
i.i.d. samples {x(i)}Ni=1 from the target distribution p(x) defined on a high-
dimensional space R

m, which maybe only have implicit form, e.g., in PDE
constrained parameter identifications. One can then approximate the ex-
pectation Ep[f ] of any function f : R

m → R by the sample mean EN [f ] as
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follows

EN [f ] ≡ 1
N

N∑
i=1

f(x(i)) → Ep[f ] =
∫
f(x)p(x)dx as N → ∞.

More specifically, define the Monte Carlo integration error eN [f ] by

eN [f ] = Ep[f ] − EN [f ],

so that the bias is Ep[eN [f ]] and the root mean square error is Ep[eN [f ]2]1/2.
Then the central limit theorem asserts that for large N , the Monte Carlo
integration error

eN [f ] ≈ Varp[f ]
1
2N−1/2ν,

where ν is a standard normal random variable, and Varp[f ] is the variance
of f with respect to p. A more precise statement is

lim
N→∞

Prob

(
a <

√
N√

Varp[f ]
eN [f ] < b

)

= Prob(a < ν < b) =
∫ b

a

(2π)−1/2e−
x2
2 dx.

Hence the error eN [f ] in Monte Carlo integration is of order O(N−1/2) with
a constant depending only on the variance of the integrand f . Further,
the statistical distribution of the error eN [f ] is roughly a normal random
variable. We note that the estimate is independent of the dimensionality
of the underlying space R

m.
Generating a large set of i.i.d. samples from an implicit and high-

dimensional joint distribution, which is typical for nonlinear inverse prob-
lems and nongaussian models of our interest, is highly nontrivial. There-
fore, there have been intensive studies on advanced Monte Carlo methods.
One useful idea is importance sampling. Suppose q(x) is an easy-to-sample
probability density function and it is close to the posterior distribution p(x).
Then we can approximate the expectation of the function f with respect
to p(x) by ∫

f(x)p(x)dx =
∫
f(x)

p(x)
q(x)

q(x)dx

≈ 1
N

N∑
i=1

f(x(i))wi,
(7.6)
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where the i.i.d. samples {x(i)}Ni=1 are drawn from the auxiliary distribution
q(x), and the importance weights wi are given by wi = p(x(i))

q(x(i))
. In the ap-

proximation (7.6), the density p(x) is assumed to be normalized, otherwise
the normalizing constant should also be computed:∫

f(x)p(x)dx ≈
∑N

i=1 f(x(i))wi∑N
i=1 wi

.

The efficiency of importance sampling relies crucially on the quality of
the approximation q(x) to the true posterior distribution p(x) in the main
probability mass region. In inverse problems, a natural idea is to use the
Jacobian approximation of the forward model around the mode, i.e., the
Tikhonov minimizer, which can be efficiently computed (or has already been
computed within the iterative solution process), using the adjoint technique
for PDE parameter identifications. We illustrate this with one example.

Example 7.4. Consider a nonlinear forward model F (x) = y, with a Gaus-
sian noise model and a smoothness prior, i.e.,

p(x) ∝ e−
τ
2 ‖F (x)−y‖2−λ2 ‖Lx‖2

,

where τ and λ are fixed parameters, and L is either the identity operator or
the differential operator, i.e., the prior distribution imposes the smoothness
on the solution. This model arises in many nonlinear inverse problems for
differential equations. A natural candidate model q(x) is a Gaussian ap-
proximation around the mode x∗, i.e., a Tikhonov minimizer. One approach
is to linearize the forward model F (x) around the mode x∗, i.e.,

F (x) = F (x∗) + F ′(x∗)(x− x∗) + h.o.t.,

which gives the following Gaussian approximation

q(x) ∝ e−
τ
2 ‖F ′(x∗)(x−x∗)−(y−F (x∗))‖2−λ

2 ‖Lx‖2

.

We note that the Jacobian F ′(x∗) is required for iterative methods like
Gauss-Newton iteration, and can be computed efficiently via the adjoint
technique. A more refined (and more expensive) approach is to consider
the full Hessian, i.e.,

‖F (x) − y‖2 ≈ ‖F (x∗) − y‖2 + 2〈F ′(x∗)∗(F (x∗) − y), x− x∗〉
+ 〈F ′(x∗)(x − x∗), F ′(x∗)(x− x∗)〉
+ 〈F ′′(x∗)(F (x∗) − y)(x− x∗), x− x∗〉.

In comparison with the approximation based on the linearized model, the
full Hessian approach contains the term involving the second-derivative
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F ′′(x∗) and thus it represents a more faithful approximation, but at the ex-
pense of much increased computational efforts. Generally, the Hessian rep-
resentation involving the last term is not necessarily positive definite, and
may render the approximation a degenerate or even invalid Gaussian. One
remedy is to threshold the small negative eigenvalues of the Hessian by some
small positive values. Meanwhile, for nondifferentiable priors, e.g., Laplace
prior pX(x) ∝ e−λ‖x‖1 or t distribution (see Appendix B), a straightfor-
ward definition of the Hessian can be problematic, since the Hessian for the
prior term is then not well defined, and alternative approximations, e.g.,
via variational approximation or expectation propagation, cf. Section 7.4,
must be sought after.

Remark 7.2. For many inverse problems for differential equations, the op-
erator for the linearized model is compact, and under certain circumstances,
its singular values even decay exponentially. Hence the Hessian can be well
approximated with a few dominant singular vectors, and consequently the
approach can be realized efficiently, e.g., via Lanczos’ method. We refer
interested reader to [228] for one such example.

7.3.2 MCMC algorithms

MCMC is the most popular general-purposed approach for exploring the
posterior distribution p(x). In this part, we provide an introduction to
basic MCMC algorithms and will briefly discuss convergence analysis and
acceleration techniques in Sections 7.3.3 and 7.3.4, respectively.

The idea of MCMC sampling was first introduced by Metropolis [233]
as a method for efficiently simulating the energy levels of atoms in a crys-
talline structure, and was later adapted and generalized by Hastings [129]
to focus on statistical problems. The basic idea is simple. Given a complex
target distribution p(x), we construct an aperiodic and irreducible Markov
chain on the state space such that its stationary distribution is p(x). By
running the chain for sufficiently long, simulated values from the chain can
be regarded as dependent samples from the target distribution p(x), and
used for computing summarizing statistics.

The Metropolis-Hastings algorithm is the most basic MCMC method,
cf. Algorithm 7.2. Here u is a random number generated from the uniform
distribution U(0, 1), p(x) is the target distribution and q(x, x′) is an easy-
to-sample proposal distribution. Having generated a new state x′ from the
distribution q(x, x′), we then accept this point as the new state of the chain
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with probability α(x, x′) given by

α(x, x′) = min
{

1,
p(x′)q(x′, x)
p(x)q(x, x′)

}
. (7.7)

However, if we reject the proposal x′, then the chain remains in the current
state x. Note that the target distribution p(x) enters the algorithm only
through α via the ratio p(x′)/p(x), so a knowledge of the distribution only
up to a multiplicative constant is sufficient for implementation. Further,
in the case where the proposal distribution q is symmetric, i.e., q(x, x′) =
q(x′, x), the acceptance probability function α(x, x′) reduces to

α(x, x′) = min
{

1,
p(x′)
p(x)

}
. (7.8)

The Metropolis-Hastings algorithm guarantees that the Markov chain
converges to the target distribution p(x) for any reasonable proposal distri-
bution q(x) (see Section 7.3.3 for details). There are many possible choices
for the proposal distribution q(x, x′), the defining ingredient of the algo-
rithm, and we list a few common choices below.

Algorithm 7.2 Metropolis-Hastings algorithm.

1: Initialize x(0) and set N ;
2: for i = 0 : N do
3: sample u ∼ U(0, 1);
4: sample x(∗) ∼ q(x(i), x(∗))
5: if u < α(x(i), x(∗)), c.f., (7.7) then
6: x(i+1) = x(∗);
7: else
8: x(i+1) = x(i);
9: end if

10: end for

random walk updating If the proposal distribution q(x, x′) = f(x′−x)
for some probability density f , then the candidate proposal is of the form
x(∗) = x(i) + ξ, where ξ ∼ f . The Markov chain is driven by a random
walk. There are many common choices for the density f , including uniform
distribution, multivariate normal distribution or a t-distribution. These
distributions are symmetric, so the acceptance probability α(x, x′) is of the
simple form (7.8). In particular, with the components being i.i.d. and
following the Gaussian distribution N(0, σ2), x(∗)

j = x
(i)
j + ξ, with ξ ∼
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N(ξ; 0, σ2). The variance σ2 of the proposal distribution f controls the size
of the random walks, and should be carefully tuned to improve the MCMC
convergence and estimation efficiency.

The size of the move (like σ2 in the random walk sampler) can signif-
icantly affect the convergence and mixing of the chain, i.e., exploration of
the state space. It is necessary to tune the scale parameter σ2 carefully
so as to achieve good mixing. Heuristically, the optimal acceptance ratio
should be around 0.25 for some model problems [102]. Theoretically, the
efficiency of the MCMC samples is determined by the correlation between
the samples, cf. Theorem 7.2.

independence sampler If q(x, x′) = q(x′), then the candidate proposal
x′ is drawn independently of the current state x of the chain. In this case,
the acceptance probability α(x, x′) can be written as

α(x, x′) = min{1, w(x′)/w(x)},
where w(x) = p(x)/q(x) is the importance weight function used in im-
portance sampling given observations generated from f . The ideas of im-
portance sampling and independence samplers are closely related. The
essential difference between the two is that the former builds probability
mass around points with large weights, by choosing these points relatively
frequently. In contrast, the latter builds up probability mass on points with
high weights by remaining at those points for a long period of time. The in-
dependence sampler is attractive if the proposal distribution q(x) is a good
approximation to the target distribution p(x). There are many different
ways to generate the independent proposal distribution q(x), e.g., Gaussian
approximations from the linearized forward model, coarse-scale/reduced-
order representation (cf. Section 7.3.4), and approximate inference methods
in Section 7.4.

Remark 7.3. Each iteration of Algorithm 7.2 requires evaluating the ac-
ceptance probability α(x(i), x(∗)), in order to determine whether the pro-
posal x(∗) should be accepted. It boils down to evaluating the likelihood
pY |X(y|x(∗)) (and the prior pX(x(∗)), which is generally much cheaper), and
thus invokes the forward simulation F (x(∗)). For PDE-constrained param-
eter identifications, it amounts to solving one differential equation (system)
for the proposed parameter vector x(∗). However, one forward simulation
can already be expensive, and thus a straightforward application of the al-
gorithm might be impractical. We shall describe several ways to alleviate
the associated computational challenges in Section 7.3.4 below.
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In Algorithm 7.2, the initial guess x(0) can be faraway from the station-
ary distribution, and the first samples are poor approximations as samples
from the target distribution p(x). Hence, one often discards these initial
samples, which is called the burning-in period. To this end, one needs to
assess the convergence of the MCMC chains, which is a highly nontrivial is-
sue. There are several heuristic rules in the literature. For example, Brooks
and Gelman [42] proposed the following diagnostic statistics. Suppose that
we have L Markov chains, each of N samples, with the ith sample from the
jth chain denoted by x(i)

j . Then we compute

V̂ =
N − 1
N

W +
(

1 +
1
L

)
B

N
,

where

W =
1

L(N − 1)

L∑
j=1

N∑
i=1

(x(i)
j − x̄j)(x

(i)
j − x̄j)t,

B

N
=

1
L− 1

L∑
j=1

(x̄j − x̄)(x̄j − x̄)t,

which represent respectively the within and between-sequence covariance
matrix estimates. One can then monitor the distance between V̂ and W to
determine the chain convergence.

Gibbs sampler If the state space is high dimensional, it is rather diffi-
cult to update the entire vector x in one single step since the acceptance
probability α(x, x′) is often very small. A better approach is to update
a part of the components of x each time and to implement an updating
cycle inside each step. This is analogous to block Gauss-Seidel iteration
in numerical linear algebra. The extreme case is the Gibbs sampler due
to Geman and Geman [103], which updates a single component each time.
Specifically, suppose we want to update the ith component xi of x, then we
choose the full conditional as the proposal distribution q(x, x′), i.e.,

q(x, x′) =

{
p(x′i|x−i) x′−i = x−i,

0 otherwise,

where x−i denotes (x1, . . . , xi−1, xi+1, . . . , xm)t. With this proposal, the
acceptance probability α(x, x′) is given by

α(x, x′) =
p(x′)q(x′, x)
p(x)q(x, x′)

=
p(x′)/p(x′i|x−i)
p(x)/p(xi|x′−i)

=
p(x′)/p(x′i|x′−i)
p(x)/p(xi|x−i) =

p(x′−i)
p(x−i)

= 1,
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where the last two steps follow from the fact x−i = x′−i. Thus, at each step,
the only possible jumps are to states x′ that match x on all components
other than the ith component, and these proposals are automatically ac-
cepted. Now we explicitly give the Gibbs algorithm in Algorithm 7.3. We
note that the full conditional p(x′i|x−i) is only available for a limited class
of posterior distributions, mainly for linear inverse problems.

Algorithm 7.3 Gibbs algorithm.
1: Initialize x(0) and set N .
2: for i = 0 : N do
3: sample x(i+1)

1 ∼ p(x1|x(i)
2 , x

(i)
3 , . . . , x

(i)
m ),

4: sample x(i+1)
2 ∼ p(x2|x(i+1)

1 , x
(i)
3 , . . . , x

(i)
m ),

5:
...

6: sample x(i+1)
m ∼ p(xm|x(i+1)

1 , x
(i+1)
2 , . . . , x

(i+1)
m−1 ),

7: end for

Now we give two examples to illustrate the Gibbs sampler for linear
inverse problems, one with the Gaussian model and the other with sparsity
constraints.

Example 7.5. We first illustrate the Gibbs sampler on a linear inverse
problem Ax = y with a Gaussian noise model, smoothness prior and a
Gamma hyperprior p(λ) ∝ λa0−1e−b0λ on the scale parameter λ, i.e., the
posterior distribution

p(x, λ) ∝ e−
τ
2 ‖Ax−y‖2 · λm

2 e−
λ
2 x

tWxλa0−1e−b0λ,

where the matrix W encodes the local interaction structure. In order to
apply the Gibbs sampler, we need to derive the full conditional p(xi|x−i, λ),
which is given by

p(xi|x−i, λ) ∼ N(µi, σ2
i ), µi =

bi
2ai

, σi =
1√
ai
,

with ai and bi given by

ai = τ

n∑
j=1

A2
ji + λWii and bi = 2τ

n∑
j=1

µjAji − λµp,

and µj = yj −
∑

k �=i Ajkxk and µp =
∑

j �=iWjixj +
∑
k �=iWikxk . Lastly,

we deduce the full conditional for λ:

p(λ|x) ∼ G
(
λ; m

2
+ a0,

1
2
xtWx+ β0

)
.
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Example 7.6. The Gibbs sampler can also be applied to posterior distri-
butions that admit Gaussian scale mixtures, which can represent a rich class
of densities, e.g., Laplace distribution and t-distribution. We illustrate its
use with the Laplace prior, which enforces sparsity constraint. This leads
to the posteriori

p(x) ∝ e−
τ
2 ‖Ax−b‖2 · e−λ‖x‖1 .

The posterior is not directly amenable with Gibbs sampling due to non-
gaussian nature of the Laplace prior. To circumvent the issue, we recall the
scale mixture representation of the Laplace distribution [6, 248]

λ
2
e−λ|z| =

∫ ∞

0

1√
2πs

e−
z2
2s · λ2

2
e−

λ2
2 sds.

This suggests the following hierarchical representation of the full model

p(x,w) ∝ e−
τ
2 ‖Ax−b‖2∏

i

w
− 1

2
i e

− x2
i

wi
λ2

2 e
−λ2

2 wi .

The full conditional p(xi|x−i, w) follows a Gaussian distribution, and can
be derived as in Example 7.5. The full conditional p(wi|x,w−i) is given by

p(wi|x,w−i) ∝ w
− 1

2
i e

− x2
i

2wi
−λ2

2 wi ,

which follows the generalized inverse Gaussian distribution

p(t;α, β, δ) =
(βδ )

α
2

2Kα(
√
βδ)

tα−1e−
1
2 ( δ

t +βt) t > 0.

The mean of the distribution p(t;α, β, δ) is
√
δKα+1(

√
βδ)√

βKα(
√
βδ)

, where Kα refers
to modified Bessel function of order α. There is public domain software to
generate samples from the generalized inverse Gaussian distribution.

Remark 7.4. The sparsity constraint is of much recent interest in inverse
problems. There are several alternative Bayesian implementations, e.g., the
relevance vector machine [293] or direct Gibbs sampling [223].

7.3.3 Convergence analysis

We now briefly review the convergence theory of the Metropolis-Hastings
algorithm, following Chapter 7 of [262]. First, we introduce two sets

E = {x : p(x) > 0},
D = {x′ : q(x, x′) > 0 for some x ∈ E}.
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The set E contains all parameter vectors having a positive probability. It is
the set that Algorithm 7.2 should draw samples from. The set D consists
of all samples which can be generated by the proposal distribution q(x, x′),
and hence contains the set that Algorithm 7.2 will actually draw samples
from. A full exploration of the target distribution requires E ⊂ D.

Lemma 7.1. If the relation E ⊂ D holds, then p(x) is a stationary distri-
bution of the chain {x(n)}.
Proof. The transition kernel k(x, x′), which denotes the probability den-
sity that the next state of the chain lies at x′, given that the chain is
currently at state x, is given by

k(x, x′) = k(x, x′)q(x, x′) + r(x)δx(x′),

where δx is the Dirac δ-function at x, and

r(x) = 1 −
∫
q(x, x′)α(x, x′)dx′,

which denotes the size of the point mass associated with a rejection. It is
easy to verify that the transition kernel satisfies

α(x, x′)q(x, x′)p(x) = α(x′, x)q(x′, x)p(x′),

(1 − r(x))δx(x′)p(x) = (1 − r(x′))δx′(x)p(x′),

which together establish the detailed balance relation for the Metropolis-
Hastings chain. Now the distribution p(x) is a stationary distribution fol-
lows directly from classical theory on Markov chain [262]. �

Theorem 7.1. If Ep[|f |] <∞ and

q(x, x′) > 0 for all (x, x′) ∈ E × E . (7.9)

Then there holds

lim
N→∞

EN (f) = Ep[f ].

The condition (7.9) guarantees that the every set of E with a positive
Lebesgue measure can be reached in a single step. Hence it is sufficient
for the chain to be irreducible. Clearly, the condition is satisfied for the
random walk sampler. Lemma 7.1 and Theorem 7.1 together imply that
asymptotically, the sample average EN [f ] computed with samples gener-
ated by Algorithm 7.2 does converge to the desired expected value Ep[f ].

Now we turn to the error bound of the MCMC estimate EN [f ] in the
root mean square error

e(EN (f)) = (Ebp[Ep[f ] − EN [f ]]2)
1
2 ,
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where Ebp denotes the expected value with respect to the empirical distri-
bution by the samples {x(i)} generated by Algorithm 7.2. As usual, it can
be decomposed into the variance of the estimate and the squared bias

e(EN (f))2 = Vbp[EN [f ]] + (Ep[f ] − Ebp[EN [f ]])2.

The two terms correspond to two sources of error in the MCMC estimate:
the first term is the error due to using a finite sample average, and the
second term is due to the samples in the estimate not all being perfect
(i.i.d.) samples from the target distribution p(x).

Bounding the variance and bias of an MCMC estimate in terms of the
number N of samples is not an easy task. The difficulty stems from the
fact that the samples used in the MCMC estimate are correlated. Hence a
knowledge of the covariance structure is required in order to bound the error
of the estimate. Nonetheless, asymptotically, the behavior of the MCMC
related errors can still be described by a central limit theorem.

To this end, we assume that the chain constructed by Algorithm 7.2
is stationary, i.e., x̃(i) ∼ p(x) for all i ≥ 0. The covariance structure for
the empirical distribution p̃ (generated by {x̃(i)}) is still implicitly defined.
However, for all i ≥ 0

Varp̃[f(x̃(i))] = Varp[f(x̃(i))],

Ep̃[f(x̃(i))] = Ep[f(x̃(i))],

and

Covp,p[f(x̃(0)), f(x̃(i))] = Ep,p[(f(x̃(0)) − Ep[f ])(f(x̃(i)) − Ep[f ])],

where Ep,p[z] =
∫ ∫

z(x, x′)dxdx′ for a random variable z depending on x

and x′. Now we can define the asymptotic variance of the MCMC estimate

σ2
f = Varp[f ] + 2

∞∑
i=1

Covp,p[f(x̃(0)), f(x̃(i))].

The stationarity of the chain is assumed only in the definition of σ2
f , and

it is not necessary for the samples actually used in the computation. Then
we have the following central limit theorem (cf. Theorem 6.65 of [262]) for
the MCMC estimate EN [f ].

Theorem 7.2. Suppose σ2
f <∞, condition (7.9) holds, and

Prob(α = 1) < 1. (7.10)

Then we have 1√
N

(EN [f ] − Ep[f ]) → N(0, σ2
f ) in distribution.
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The condition (7.10) is sufficient for the chain to be aperiodic. It is
difficult to show theoretically. In practice, it seems always satisfied, since
not all proposals in Algorithm 7.2 agree perfectly with the observed data
and thus are accepted. The above theorem shows that asymptotically the
sampling error of the MCMC estimator decays at a similar rate to that
based on i.i.d. samples, but the constant σ2

f is generally larger than in the
i.i.d. case. Hence, in order to get high estimation efficiency, the correlation
between MCMC samples should be minimized.

7.3.4 Accelerating MCMC algorithms

The Metropolis-Hastings algorithm described in Section 7.3.2 is very uni-
versal. However, each sample requires evaluating the likelihood function,
which in turn calls for the evaluation of the forward model F (x). For
many inverse problems, the forward model F (x) is described implicitly by
a differential equation. Hence each evaluation requires one forward solve
of the differential equation, which makes the application of MCMC algo-
rithms prohibitively expensive, if not impossible at all. Therefore, there
has been of immense interest to reduce the associated computational ef-
forts. In this part, we describe several promising ideas, including precon-
ditioning [66, 83], multilevel decomposition [195], reduced-order modeling
[166, 167], and approximation error approach [13, 187]. These ideas have
been attested numerically.

Preconditioned MCMC This method is applicable when a cheap
(probably local) approximation p∗x(x), which might be dependent on the
current state x, to the target distribution p(x) is available. For inverse
problems with differential equations, the approximation p∗x(x) can be ei-
ther a local linear approximation or an approximation on coarse grids. The
main idea is as follows. Consider a proposal distribution q(x, x′). To avoid
calculating p(x′) for the proposals that are rejected, we first correct the
proposal with the approximation p∗x(x′) to create a second proposal distri-
bution q∗(x, x′), to be used in a standard Metropolis-Hastings algorithm.
The second proposal hopefully has a high acceptance probability. Thereby,
we sample from p(x), but avoid calculating p(x′) when proposals are re-
jected by p∗x(x

′) and hence gain the desired computational efficiency. The
complete procedure is listed in Algorithm 7.4. Here the acceptance ratio
α(x, x′) is given by α(x, x′) = min{1, q(x′,x)p∗x(x′)

q(x,x′)p∗x(x)
}, and the actual proposal
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q∗(x, x′) is given by

q∗(x, x′) = α(x, x′)q(x, x′) + (1 − r(x))δx(x′),

where r(x) =
∫
α(x, x′)q(x, x′)dx′. The actual acceptance ratio ρ(x, x′) is

given by

ρ(x, x′) = min
{

1,
q∗(x′, x)p(x′)
q∗(x, x′)p(x)

}
.

We observe that the evaluation of ρ(x, x′) does not require r.

Algorithm 7.4 Preconditioned Metropolis-Hastings algorithm
1: Initialize x(0) and set N ;
2: for i = 0 : N do
3: Generate a proposal x(∗) from q(x(i), x(∗));
4: u ∼ U(0, 1),
5: if u < α(x(i), x(∗)) then
6: u ∼ U(0, 1)
7: if u < ρ(x(i), x(∗)) then
8: x(i+1) = x(∗)

9: end if
10: else
11: x(i+1) = x(i);
12: end if
13: end for

Under minor regularity condition on the proposal distribution q and
the approximation p∗x, one can show that Algorithm 7.4 will converge, and
furthermore, the more accurate is the approximation p∗x to the target dis-
tribution p(x), the closer is the acceptance ratio ρ to one [66]. The latter
property essentially leverages the computational efforts on the expensive
model p(x) to the cheaper model p∗x(x).

Remark 7.5. Although we have described only a two-level algorithm, there
is no essential difficulty in extending it to a general multilevel algorithm.
Further, the number of unknowns might also be dependent on the level of
the approximations.

Multilevel MCMC Multilevel MCMC is an extension of the classical
multigrid method for numerical differential equations [195]. The main
idea is to sample from several levels of approximations, and then com-
bines these samples in the framework of multilevel Monte Carlo method



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch07 page 263

Bayesian Inference 263

[136, 108, 107]. Specifically, let {Nl}Ll=1 ⊂ N be an increasing sequence,
and p = pL is the level of interest. For each level l, we denote the pa-
rameter vector by xl and the quantity of interest by fl, and the posterior
distribution by pl. Like multigrid methods for discretizing PDEs, the key
is to avoid estimating the expected value of fl directly on level l but in-
stead to estimate the correction with respect to the next lower level fl−1.
Since the target distribution pl depends on the level l, a multilevel MCMC
estimate has to be defined carefully. The basis of the multilevel estimate is
the following telescopic sum

EpL(fL) = Ep0 [f0] +
L∑
l=1

Epl,pl−1 [fl − fl−1], (7.11)

where the Epl,pl−1 [fl− fl−1] is the expected value with respect to the joint
distribution (pl(xl), pl−1(xl−1)), i.e.,

Epl,pl−1 [fl − fl−1] =
∫ ∫

(fl(xl) − fl−1(xl−1))pl(xl)pl−1(xl−1)dxldxl−1.

The identity (7.11) follows from the linearity of expectation

Epl,pl−1 [fl − fl−1] = Epl [fl]
∫
pl−1dxl−1 − Epl−1 [fl−1]

∫
pldxl

= Epl [fl] − Epl−1 [fl−1].

The idea of a multilevel estimate is to estimate each difference term on the
right hand side of (7.11) independently so as to minimize the variance of the
estimate for fixed computational effort. In particular, we can estimate each
term by the Metropolis-Hastings algorithm. The first term can be estimated
using the standard MCMC estimate described in Algorithm 7.2. The terms
involving difference require an effective two-level version of the standard
Metropolis-Hastings algorithm. For every l ≥ 1, we denote f̃l = fl − fl−1

and define the estimate on level l as

ENl
[f̃l] =

1
Nl

Nl∑
i=0

fl(x
(i)
l ) − fl−1(x

(i)
l−1).

The main ingredient is a judicious choice of samples {(x(i)
l , x

(i)
l−1)} from the

joint distribution (pl, pl−1). This can be constructed by Algorithm 7.5.
In Algorithm 7.5, we assume that the coarse level (level l − 1) random

variable xl−1 is nested into the one xl on the fine level (level l), i.e., xl =
[xl,c xl,f ] with xl,c = xl−1. Hence the fine level proposal ql(xl, x′l) should
impose the constraint x′l,c = x′l−1 and generates only the remaining part
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Algorithm 7.5 Two-level Metropolis-Hastings algorithm

1: Choose initial state x(0)
l−1 and x(0)

l = [x(0)
l−1, x

(0)
l,f ]

2: for i = 0 : N do
3: x

(∗)
l−1 ∼ ql,c(xil−1, x

(∗)
l−1)

4: u ∼ U(0, 1)
5: if u < αl,c(x(i)

l−1, x
(∗)
l−1) then

6: x
(i+1)
l−1 = x

(∗)
l−1

7: else
8: x

(i+1)
l−1 = x

(i)
l−1

9: end if
10: x

(∗)
l ∼ ql(x(i)

l , x
(∗)
l ) with x(∗)

l,c = x
(i+1)
l−1 , x(∗)

l,f ∼ ql,f (x(i)
l,f , x

(∗)
l,f )

11: u ∼ U(0, 1)
12: if u < αl,f (x(i)

l , x
(∗)
l ) then

13: x
(i+1)
l = x

(∗)
l

14: else
15: x

(i+1)
l = x

(i)
l

16: end if
17: end for

x′l,f with a proposal distribution ql,f (xl,f , x′l,f ). Analogous to (7.7), the
acceptance probabilities αl,c(xl−1, x

′
l−1) and αl,f (xl, x′l) on level l − 1 and

level l are respectively given by

αl,c(xl−1, x
′
l−1) = min

{
1,
pl−1(x′l−1)q

l,c(x′l−1, xl−1)
pl−1(xl−1)ql,c(xl−1, x′l−1)

}
,

αl,f (xl, x′l) = min
{

1,
pl(x′l)q

l(x′l, xl)
pl(xl)ql(xl, x′l)

}
.

The cost reduction for the multilevel estimate stems from two obser-
vations. First, samples from pl for l < L are cheaper to generate than
that from pL, reducing the cost of the estimates on the coarser levels for
any fixed number of samples. Second, if the variance Varpl,pl−1 [fl − fl−1]
is small, a small number of samples would suffice an accurate estimate of
Epl,pl−1 [fl− fl−1] on the fine grids, and so the computational effort on fine
grids is also reduced. In view of the latter fact, multilevel MCMC can also
be regarded as a multilevel control variate technique.

Reduced-order modeling The forward model F (x) for inverse prob-
lems are often implicitly defined by differential equations, with the unknown
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x ∈ I (I is the parametric domain), i.e., find u ∈ Vh such that

a(u(x), v;x) = (f, v) ∀v ∈ Vh,

where a is a bilinear form on a suitable finite element space Vh, and f is the
source term. The key observation is that albeit the solution u(x) is high-
dimensional, the parametrically induced manifold M = {u(x), x ∈ I} is
often low dimensional. Hence, general-purposed methods are often unduly
expensive in the many-query context, e.g., Bayesian inference. Instead,
one should represent u(x) in a problem-dependent basis spanning M [166].
This can be efficiently achieved via reduced order modeling. Typically, it
consists of the following three stages.

The first step is to collect snapshots, i.e., solutions {sj = u(xj)} at
a set of parameter values {xj}nj=1 ⊂ I, which are obtained by solving the
full-order system. The snapshots should be rich enough to capture essential
characteristics of the manifold M, and thus many snapshots are needed.
In practice, ad hoc procedures are often invoked.

Then one extracts the essential information about the manifold M in
the snapshots by the SVD, cf. Appendix A. Let S = [s1 s2 . . . sn]. Then
the SVD of the matrix S is given by

S = UΣV t

where U = [u1 u2 . . . un] ∈ R
N×n, with N being the dimension of the

space Vh, and V = [v1 v2 . . . vn] are column orthonormal matrices, and
Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix with nonnegative diagonal
entries, i.e. singular values, in descending order. Then an optimal basis of
cardinality p is given by {uj}pj=1. The cardinality p required to accurately
portray {sj} is the smallest integer such that∑p

j=1 σ
2
j∑n

j=1 σ
2
j

≥ 1 − ε,

where ε is a tolerance. Hence, the singular value σj dictates the significance
of the basis uj , and a fast decay indicates that a handful of basis functions
can accurately represent the snapshots.

Finally, for a given parameter x ∈ I, we approximate the solution u(x)
in the basis {uj}pj=1 e.g., by Galerkin procedure, which leads to a reduced-
order model. The formulation for the reduced-order model is formally iden-
tical with that for the full-order model, but of a much smaller size, which
significantly effects online cost reduction. We note that such a construction
is efficient only for governing equations that are affine linear in the param-
eter x. For problems involving a general nonlinearity term, refinements,
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e.g., discrete empirical interpolation method [57], should be applied as well
to reduced the computational efforts.

Remark 7.6. The accuracy of the reduced-order model depends very much
on the parametric dimension |I|. It is especially suited to low-dimensional
parameter spaces (preferably less than 10). Numerically, it can be used
either as a preconditioner to the MCMC, or as a surrogate to the full
model for cost reduction. If the solution u(x) is smooth with respect to
the parameter x and the dimensionality of the parameter x is low, one can
also use stochastic Galerkin method or stochastic collocation method to
generate a surrogate [105, 229].

Approximation error approach The approximation error approach
[13, 187] adopts a statistical framework to model the discretization error
so as to reducing its effect on the reconstruction resolution. In the preced-
ing discussions, we assume that the finite-dimensional model F (x) is exact
within the measurement accuracy to the physical model, i.e.,

y = F (x) + e.

In the approach, the observation model is rewritten in the form

y = FH(x) + (F (x) − FH(x)) + e

= FH(x) + ε(x) + e,

where FH(x) is the reduced model (e.g., obtained via coarse-level discretiza-
tion), and ε(x) is the modeling error. The modeling error ε(x) describes
the discrepancy between the high-resolution forward model and the reduced
model.

Then, a Gaussian approximation is constructed for ε, i.e.,

ε ∼ N(ε; ε∗, Cε).

Together with a Gaussian model on the data error e, e = N(e; e∗, Ce), the
total error ζ = ε+ e is approximately a Gaussian distribution

ζ ∼ N(ζ; ζ∗, Cζ),

with ζ∗ = ε∗ + e∗ and Cζ = Cε + Ce. Further, if we assume that x and ε

are mutually independent and the prior is given by pX(x), e.g., a Gaussian
model N(x;x∗, Cx) or Markov random field pX(x) ∝ e−λψ(x), we arrive at
the enhanced error model

pX|Y (x|y) ∝ e
− 1

2‖y−FH(x)−ε∗−e∗‖2
C

−1
ζ pX(x).
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It remains to construct the mean ε∗ and the covariance Cε for the ap-
proximation error ε, which can be simulated as follows. We draw a set
of samples {x(l)}Ll=1 from the prior distribution pX(x), and compute the
respective approximation error

ε
(l)
H = F (x(l)) − FH(x(l)).

The mean and covariance of the approximation error ε are estimated from
the samples by

ε∗ =
1
L

L∑
l=1

ε
(l)
H and Cε =

1
L− 1

L∑
l=1

ε
(l)
H ε

(l)
H

t − ε∗εt∗.

We note that the mean ε∗ and the covariance Cε of the approximation
error ε are computed before taking measurements and they are valid for
the employed geometry and other parameters as long as the prior model is
feasible. Therefore, the approximation error ε can be precomputed, and the
online computational burden is essentially identical with the conventional
likelihood model.

Remark 7.7. There are several different ways to exploit the approximation
error model. Often it is used to derive an enhanced Tikhonov model, by
considering the MAP estimate, in the hope of compensating the discretiza-
tion error. Surely, it can also serve as either a preconditioner or a proposal
distribution in the Metropolis-Hastings’ algorithm. One interesting ques-
tion is to extend the approach to the case of nongaussian data noise model,
which seems open so far.

7.4 Approximate inference

For many real-world inverse problems involving differential equations,
MCMC methods are often too expensive to apply. Therefore, there has
been of immense interest in developing approximate inference methods,
which can deliver reliable statistics of the posterior distribution p(x) yet
are far less expensive. In this part, we describe three deterministic approx-
imate inference methods based on minimizing Kullback-Leibler divergence,
i.e., variational Bayes, Gaussian lower bound and expectation propagation.
They are especially attractive when the posterior distribution p(x) exhibits
certain structures.
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7.4.1 Kullback-Leibler divergence

The main idea of approximate inference methods is to transform the in-
ference problem of exploring the posterior distribution pX|Y (x|y) into an
equivalent optimization problem, and solves the optimization problem ap-
proximately to arrive at an approximation. The distributional nature of the
posteriori pX|Y (x|y) requires probabilistic metrics. There are many possi-
ble choices, including Hellinger metric, Kullback-Leibler divergence and L1

metric etc. We shall mainly employ the Kullback-Leibler divergence [205].
Given two probability density functions q(x) and q̃(x), the Kullback-Leibler
divergence DKL(q, q̃) is defined by

DKL(q, q̃) =
∫
q(x) ln

q(x)
q̃(x)

dx.

The divergence DKL(q, q̃) is asymmetric in q and q̃, and does not satisfy
the triangle inequality. It is a special case of the α-divergence Dα(q, q̃),
α ∈ R defined by

Dα(q, q̃) =
∫
αq(x) + (1 − α)q̃(x) − q(x)αq̃(x)1−αdx

α(1 − α)

in the sense that limα→1Dα(q, q̃) = DKL(q, q̃). In view of Jensen’s in-
equality for the convex function ϕ(x) = − lnx, the divergence DKL(q, q̃) is
always nonnegative:

DKL(q, q̃) = −
∫
q(x) ln

q̃(x)
q(x)

dx ≥ − ln
∫
q(x) · q̃(x)

q(x)
dx

= − ln
∫
q̃(x)dx = − ln 1 = 0,

(7.12)

and it vanishes if and only if q = q̃ almost everywhere. This fact will be
used later, and hence we record it in a lemma.

Lemma 7.2. Let q(x) be a probability density function. Then for any prob-
ability density function q̃(x), the divergence DKL(q, q̃) ≥ 0 and vanishes if
and only if q = q̃.

Example 7.7. The divergence between two normal distributions q(x) =
N(x;µ,C) and q̃(x) = N(x; µ̃, C̃), with µ, µ̃ ∈ Rm and C, C̃ ∈ R

m×m being
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positive definite, is given by

DKL(q, q̃)

=
1

2

Z
q(x)

»
− ln

|C|
|C̃| − (x − µ)tC−1(x − µ) + (x − µ̃)tC̃−1(x − µ̃)

–
dx

=
1

2

»
− ln

|C|
|C̃| +

Z
N(z; 0, Im)

h
−‖z‖2 + (µ + C

1
2 z − µ̃)tC̃−1(µ + C

1
2 z − µ̃)

i
dz

–

=
1

2

»
(µ − µ̃)tC̃−1(µ − µ̃) + tr(CC̃−1) − m − ln

|C|
|C̃|

–
,

where the second identity follows from the transformation x = µ + C
1
2 z.

We note that in the special case C = C̃, the Kullback-Leibler divergence
DKL(q, q̃) simplifies to the squared C−1-weighted Euclidean norm

DKL(q, q̃) = 1
2
(µ− µ̃)tC−1(µ− µ̃),

which is symmetric and positive definite.

A direct consequence of Lemma 7.2 is the following lower bound on the
normalizing constant pY (y) =

∫
p(x, y)dx.

Lemma 7.3. For any probability density function q(x), the normalizing
constant pY (y) satisfies

ln pY (y) ≥
∫
q(x) ln

p(x, y)
q(x)

dx.

Proof. By (7.12), there holds

ln pY (y) =
∫
q(x) ln pY (y)dx =

∫
q(x) ln

p(x, y)/q(x)
pX|Y (x|y)/q(x)dx

=
∫
q(x) ln

p(x, y)
q(x)

dx+
∫
q(x) ln

q(x)
pX|Y (x|y)dx

≥
∫
q(x) ln

p(x, y)
q(x)

dx.
�

The lower bound

LB(y, q) :=
∫
q(x) ln

p(x, y)
q(x)

dx (7.13)

in Lemma 7.3 serves the basis of model comparison, hyperparameter es-
timation and optimal experimental design. By the proof of Lemma 7.3,
DKL(q(x), pX|Y (x|y)) is the gap between the margin ln pY (y) and the lower
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bound, and hence maximizing LB is equivalent to minimizing the divergence
DKL(q(x), pX|Y (x|y)) with respect to q.

The approximate inference methods to be described below rely on mini-
mizing the Kullback-Leibler divergence with respect to different arguments.

Theorem 7.3. Let q be a probability distribution with a finite second mo-
ment, µ∗ = Eq[x] and C∗ = Varq[x]. Then there exists a minimizer to

min
q̃ Gaussian

DKL(q, q̃)

over any compact set of Gaussians with a positive definite covariance. Fur-
ther, if N(x;µ∗, C∗) belongs to the interior of the compact set, then it is a
local minimizer.

Proof. The existence follows directly from the compactness assumption,
and the continuity of Kullback-Leibler divergence in the second argument.
Let q̃(x) = N(x;µ,C). The divergence DKL(q, q̃) can be expanded into

DKL(q, q̃) =
∫
q(x)

(
ln(x) + d

2
ln 2π − 1

2
ln|C−1| + 1

2
(µ− x)tC−1(µ− x)

)
dx.

We first compute the gradient ∇µDKL(q, q̃) of the divergence DKL(q, q̃)
with respect to the mean µ of the Gaussian factor q̃(x), i.e.,

∇µDKL(q, q̃) =
∫
q(x)C−1(µ− x)dx

and set it to zero to obtain the first condition µ = Eq[x].
Likewise, we compute the gradient ∇PDKL(q, q̃) of DKL(q, q̃) with re-

spect to the precision P = C−1

∇PDKL(q, q̃) =
∫
q(x)

(− 1
2P

−1 + 1
2(µ− x)(µ − x)t

)
dx,

where we have used the following matrix identities [82]

∂

∂A
log |A| = A−1, xtAx = tr(Axxt) and

∂

∂A
tr(AB) = Bt.

The gradient ∇PDKL(q, q̃) vanishes if and only if the condition C = Eq [(x−
µ)(x − µ)t] holds. Together with the condition on the mean µ, this is
equivalent to C = Varq[x]. Now the second assertion follows from the
convexity of the divergence in the second argument and the assumption
that N(x;µ∗, C∗) is an interior point of the compact set. �
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Remark 7.8. Using the matrix identity [82] ∂A
−1

∂A
= −A−t⊗A−1, one can

deduce that the Hessian ∇2
µ∗,PDKL(q, q̃) is given by

∇2
µ,PDKL(q, q̃) =

[
C−1

1
2C ⊗ C

]
,

where ⊗ denotes matrix Kronecker product. Note that C⊗C is positive def-
inite if and only if C is positive definite. This indicates that the minimizer
N(µ∗, C∗) is locally unique.

7.4.2 Approximate inference algorithms

Based on the Kullback-Leibler divergence DKL, we now describe three al-
gorithms for delivering an approximation q(x) to the posterior distribution
pX|Y (x|y)

(i) separable approximation: q(x) factorizes into
∏
i qi(xi) for some dis-

joint partition {xi} of x;
(ii) parametric approximation: q(x) is a member of a parametric family of

density functions;
(iii) expectation propagation: pX|Y (x|y) =

∏
i ti(x) and q(x) =

∏
i t̃i(x),

with t̃i(x) being a Gaussian approximation to ti(x).

In all three algorithms, the approximation q(x) of the posterior distri-
bution pX|Y (x|y) is achieved by first restricting it to a manageable subclass
of densities with simpler structure (e.g., separability and Gaussian family),
and then minimizing a certain Kullback-Leibler divergence. Now we de-
scribe the three approximations in sequel.

case (i). The separability assumption decouples the interdependence be-
tween different factors, and thus makes the approximation computable. It
is often known as mean field approximation and variational Bayes in the
literature.

The separability assumption on product densities yields explicit solu-
tions for each product component in terms of the others. This lends itself
to an alternating direction iterative scheme for obtaining the simultaneous
solutions, cf. Algorithm 7.6. Now we derive the update in Algorithm 7.6
from (7.12). Under the assumption q(x) =

∏
qi(xi) with xi being disjoint,
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we have

LB =
∫ ∏

i

qi(xi)

{
ln p(x, y) −

∑
i

ln qi(xi)

}
dx

=
∫
qj(xj)


∫

ln p(x, y)
∏
i�=j

qi(xi)dx−j

 dxj

−
∫
qj(xj) ln qj(xj)dxj + T (x−j),

where the term T (x−j) depend only on x−j . Next we define a joint density
function p̃(xj , y) by

p̃(xj , y) ∝ eEq−j(x−j )[ln p(x,y)],

with q−j(x−j) =
∏
i�=j qi(xi). Then

LB =
∫
qj(xj) ln

p̃(xj , y)
qj(xj)

dxj + T (x−j).

By inequality (7.12), the optimal qj(xj) is then given by

qj(xj) = p̃(xj |y) ∝ e
Eq−j(x−j )[ln p(x,y)],

which represent optimality conditions for the optimal densities. Algorithm
7.6 takes a fixed-point iteration of alternating direction type to solve the op-
timality system, which is in the same spirit of the Gibbs sampler described
in Section 7.3.

Algorithm 7.6 Variational Bayes under the product density restriction.
1: Initialize qi(xi), ı = 2, . . . ,M .
2: for k = 1 : K do
3: Update sequentially qj(xj) by

qk+1
j (xj) =

e
E

qk−j
(x−j )[ln p(x,y)]∫

e
E

qk−j
(x−j)[ln p(x,y)]

4: Check the stopping criterion.
5: end for

The convexity property of Kullback-Leibler divergence implies that the
convergence of the algorithm to a local optimum is guaranteed [183, 301].
The algorithm is especially suited to conjugate families. Then the optimal
densities belong to recognizable density families and the updates reduce to
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updating parameters in the conjugate family; see the examples below. In
Algorithm 7.6, the stopping criterion is based on monitoring the conver-
gence of the lower bound. The main computational effort lies in evaluating
the expectations, which in general can be expensive and hence further ap-
proximations are often necessary. In particular, one can apply MCMC or
control variate techniques to compute the expectations [139].

Now we illustrate the variational Bayesian method with two examples
from Section 7.3.

Example 7.8. We revisit a linear inverse problem Ax = y with a smooth-
ness prior, i.e., pX|Λ(x|λ) ∝ λ−

m
2 e−

λ
2 x

tWx, and a Gamma hyperprior on
the scale parameter λ, i.e., qΛ(λ) ∝ λa0−1e−b0λ. This leads to the following
posterior distribution

p(x, λ|y) ∝ e−
τ
2 ‖Ax−y‖2 · λm

2 e−
λ
x

t
Wx · λa0−1e−b0λ.

The posteriori p(x, λ|y) does not admits closed-form solution. Hence an
approximation must be sought. To apply the separable approximation,
we decompose the unknown naturally into two blocks x and λ. Then we
initialize q(λ) to the Gamma distribution q0(λ) ∝ λa0−1e−b0λ. Then the
iterates in Algorithm 7.6 read

ln qk(x) ∝ Eqk−1(λ)[ln p(x, λ, y)],

ln qk(λ) ∝ Eqk(x)[ln p(x, λ, y)].

Now we compute the two expectations

Eqk−1(λ)[ln p(x, λ, y)] = Eqk−1(λ)[− τ
2‖Ax− y‖2 − λ

2x
tWx] + T (λ)

= − τ
2
‖Ax− y‖2 − E

qk−1(λ)[λ]

2
xtWx+ T (λ),

where T (λ) is a constant depending only on λ, and similarly

Eqk(x)[ln p(x, λ, y)] = Eqk(x)[(m2 + a0 − 1) lnλ− (b0λ+ λ
2
xtWx)] + T (x)

= (m
2

+ a0 − 1) lnλ− [b0 + 1
2
Eqk(x)[x

tWx]]λ+ T (x),

where T (x) is a constant depending only on x. It follows from these two up-
dates that the iterates qk(x) and qk(λ) would remain Gaussian and Gamma,
respectively. We observe that this does not follow from the a prior assump-
tion, but from the conjugate form of the posteriori.

Example 7.9. In this example, we revisit Example 7.6 with sparsity
constraints, and adopt the approach of scale mixture representation for the
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Laplace prior, which gives a hierarchical representation of the full Bayesian
model

pX,W |Y (x,w|y) ∝ e−
τ
2 ‖Ax−y‖2∏

i

w
− 1

2
i e

− x2
i

2wi
λ2

2 e
− λ2

2 wi .

The inference is obstructed by the strong coupling between x and w. There-
fore, we decompose the unknowns into two groups, i.e., x and w. Following
the variational method, it leads to the following iterates

ln qk(x) ∝ Eqk−1(w)[ln p(x,w, y)],

ln qk(w) ∝ Eqk(x)[ln p(x,w, y)].

Now we evaluate two expectations, i.e.,

Eqk−1(w)[ln p(x, λ, y)] = Eqk−1(w)[− τ
2
‖Ax− y‖2 −

∑
1

2wi
x2
i ] + T (w)

= − τ
2
‖Ax− y‖2 − 1

2
xtWx+ T (w),

where T (w) is a constant depending only on w and W is a diagonal matrix
with the ith diagonal given by

[W ]ii = Eqk−1(wi)[
1
wi

],

which can be evaluated in closed for a generalized inverse Gaussian distri-
bution. Similarly,

Eqk(x)[ln p(x,w, y)] =
∑
i

Eqk(x)[− 1
2

lnwi − x2
i

2wi
− λ2

2
wi] + T (x)

=
∑
i

[−1
2 lnwi − 1

2wi
Eqk(x)[x

2
i ] − λ2

2 wi] + T (x),

where T (x) is a constant depending only on x. Hence, qk(w) follows a
generalized inverse Gaussian distribution of product form, i.e.,

qk(w) =
∏
i

GIG
(
wi; 1

2
, λ2, Eqk(x)[x

2
i ]
)
.

It follows from these two updates that the iterates qk(x) and qk(w) would
remain Gaussian and (generalized) inverse Gaussian, respectively. We re-
iterate that this does not follow from the a prior assumption, but from the
conjugate form of the posteriori pX,W |Y (x,w|y).
case (ii) Here we assume that the approximating density q(x) belongs
to a particular parametric family, e.g., Gaussians, and then optimize the
Kullback-Leilber divergence DKL(q(x), pX|Y (x|y)) with respect to the pa-
rameters in q(x). In some cases, this leads to a scalable approximation to
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the posterior distribution pX|Y (x|y). In particular, the objective function
is convex for log concave posterior distribution [54].

Theorem 7.4. Let the posterior distribution pX|Y (x|y) be log concave, and
q(x) = N(x;µ,LLt), L ∈ R

m being a positive lower triangular matrix.
Then the functional DKL(q(x), pX|Y (x|y)) is jointly convex in µ and L.

Proof. First, with the shorthand notation p(x) = pX|Y (x|y), straightfor-
ward computation shows

DKL(q(x), p(x)) = −m
2

ln 2π − m

2
− ln |L| −

∫
N(x;µ,LLt) ln p(x)dx.

It is known that the log determinant term − ln |L| is convex. Hence it
suffices to show that the functional J(µ,L) = − ∫ N(x;µ,LLt) ln p(x)dx is
convex. By means of the transformation x = Lz+µ, the functional J(µ,L)
can be rewritten as

J(µ,L) = −
∫
N(z; 0, Im)p(L−1z + µ)dz.

Consequently, for all t ∈ [0, 1], µ1, µ2 ∈ R
m and positive L1, L2 ∈ R

m×m

there holds

J(tµ1 + (1 − t)µ2, tL1 + (1 − t)L2)

= −
∫
N(z; 0, Im) ln p(t(µ1 + L1z) + (1 − t)(µ2 + L2z))dz

≤− t

∫
N(z; 0, Im) ln p(µ1 + L1z)

− (1 − t)
∫
N(z; 0, Im) ln p(µ2 + L2z)dz

= tJ(µ1, L1) + (1 − t)J(µ2, L2),

where the second line follows from the log concavity of the density p. This
shows the desired assertion. �

Now we illustrate the approach by one example on Poisson inverse prob-
lem; see [123] for statistical discussions.

Example 7.10. Consider the Poisson model

yi ∼ Pois(e(ai,x)), i = 1, . . . , n,

where ai ∈ R
m and x ∈ R

m represents the data formation mechanism and
the unknown image, respectively, and (·, ·) refers to the Euclidean inner
product on R

m. The exponential Poisson rate e(ai,x) can be regarded as
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an approximation to 1 + (ai, x), where 1 and (ai, x) are often referred to
as exposure and offset, respectively. The prior distribution pX(x) on the
unknown coefficient x takes the form pX(x) = N(x;µ0, C0). Let A = [at

i] ∈
R
n×m. Then the likelihood pY |X(y|x) is given by

pY |X(y|x) = e(Ax,y)−(eAx,1n)−(ln(y!),1n),

where the vector 1n = [1 . . . 1]t ∈ R
n, and the exponential and logarithm of

a vector are understood to be componentwise operation. The unnormalized
posteriori pX|Y (x|y) is given by

pX|Y (x|y) ∝ (2π)−
m
2 |C0|− 1

2 e(Ax,y)−(eAx,1n)−(log(y!),1n)− 1
2 (x−x0)

tC−1
0 (x−x0).

The marginal likelihood pY (y) is given by

pY (y) = (2π)−
m
2 |C0|− 1

2

∫
e(Ax,y)−(eAx,1n)−(log(y!),1n)− 1

2 (x−x0)
tC0(x−x0)dx,

which involves an intractable integral over R
m. To arrive at a lower bound

with the variational method, we take q(x) to be N(x; x̄, C). Then the lower
bound LB defined in (7.13) admits an explicit expression

LB = ytAx̄− 1t
ne
Ax̄+ 1

2diag(ACAt) − 1
2(x̄ − µ0)tC−1

0 (x̄− µ0)

− 1
2 tr(C−1

0 C) + 1
2 ln |C| − 1

2 ln |C0| + m
2 − 1t ln(y!).

Then one chooses the variational parameters (x̄ and C) to maximize the
lower bound LB so as to make the approximation accurate. To this end,
we compute the gradient of the lower bound LB with respect to x̄ and C.
It follows from the relation ∂(1n,e

Ax̄)
∂x̄

= AteAx̄, that

∂LB
∂x̄

= Aty −AteAx̄+
1
2diag(ACAt) − C−1

0 (x̄− µ0).

Next with the notation D = diag(eAx̄+
1
2diag(ACAt)), we have the following

first-order Taylor expansion

1t
ne
Ax̄+ 1

2diag(A(C+H)At) − 1t
ne
Ax̄+ 1

2diag(ACAt)

≈ (eAx̄+
1
2diag(ACAt), 1

2
diag(AHAt))

= 1
2
tr(DAHAt) = 1

2
(AtDA,H).

Hence, we can deduce

∂LB
∂C

= 1
2

[
−Atdiag(eAx̄+

1
2diag(ACAt))A− C−1

0 + C−1
]
.
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With the optimality condition at hand, a gradient descent or fixed point
iteration algorithm may be applied to find the maximizer. In particular,
one possible fixed point algorithm is given by

Ate
1
2diag(ACAt)eAx̄

k+1
+ C−1

0 x̄k+1 = Aty + C−1
0 µ0,

C−1 = C−1
0 +Atdiag(y −A−tC−1

0 (x̄k+1 − µ0))A.

The first equation remains nonlinear and requires inner iteration (e.g., via
Newton method or fixed-point iteration).

Remark 7.9. In parametric approximations such as Gaussian lower bound,
the covariance C or its inverse can be structured, e.g., blockwise diagonal
and tridiagonal. This can be enforced by incorporating a projection step,
i.e., (Ck+1)−1 = PC(Ck+1)−1, where C denotes the subspace of admissible
covariance. Such structural conditions might be useful in capturing the
essential features of the posterior distribution pX|Y (x|y), while maintaining
reasonable computational efforts.

case (iii). In the expectation propagation (EP) algorithm [236, 237],
one assumes the posteriori pX|Y (x|y) can be factorized into pX|Y (x|y) =∏
ti(x), and then constructs a Gaussian approximation q̃(x) by approxi-

mating each factor ti(x) by one Gaussian t̃i(x) via

t̃i(x) = arg min
t̃ Gaussian

DKL

ti(x)∏
j �=i

t̃j(x), t̃(x)
∏
j �=i

t̃j(x)

 . (7.14)

The goal of the update t̃i(x) is to “learn” the information contained in
the factor ti(x), and by looping over all indices, hopefully the essential
characteristics of the posterior distribution p(x) are captured.

Remark 7.10. Cases (ii) and (iii) both assume a parametric density family,
predominantly Gaussians. However, the minimization problems are differ-
ent. First, case (ii) minimizes the Kullback-Leibler divergence with respect
to the first argument, whereas (iii) in the second argument. Second, there
is no explicit objective function for case (iii), although it can be regarded
a hybridization of (i) and (ii) with a successive iteration method. Last, the
arguments in {t̃i(x)} for the EP algorithm are not necessarily disjoint.

According to Theorem 7.3, minimizing the divergence involves comput-
ing integrals, i.e., mean and covariance. This can be numerically realized
only if the integrals can be reduced to a low-dimensional case. One such
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case is that each factor involves a probability density function of the form
ti(Uix), i.e.,

pX|Y (x|y) =
∏
i

ti(Uix), (7.15)

where the matrices Ui have full row rank and their ranges are of low-
dimensionality, and represent linear combinations of the variables. This
arises quite often in practice, e.g., robust Bayesian formulation with a
Laplace likelihood. The result below provides the formula for transforming
high-dimensional integrals into low-dimensional ones. The proof follows
from a change of variable [99].

Theorem 7.5. Let µ ∈ R
n, C ∈ R

n×n be symmetric positive definite and
U ∈ R

l×n (l ≤ n) be of full rank, Z =
∫
t(Ux)N(x;µ,C)dx be the normal-

izing constant. Then the mean µ∗ = EZ−1t(Ux)N(x;µ,C)[x] and covariance
C∗ = VarZ−1t(Ux)N(x;µ,C)[x] are given by

µ∗ = µ+ CU t(UCU t)−1(s− Uµ),

C∗ = C + CU t(UCU t)−1(C − UCU t)(UCU t)−1UC,

where s ∈ R
l and C ∈ R

l×l are respectively given by

s = EZ−1t(s)N(s;Uµ,UCUt)[s] and C = VarZ−1t(s)N(s;Uµ,UCUt)[s].

The complete procedure is listed in Algorithm 7.7, where we have
adopted the following representation of the approximation t̃i(Uix):

t̃i(Uix) ∝ e(Uix)
thi− 1

2 (Uix)
tKi(Uix), (7.16)

where hi and Ki are parameters to be updated iteratively within the inner
loop. Note that with the representation (7.16), there holds

t̃i(x) = N(x, µi, Ci) ∝ e−
1
2 (x−µi)

tC−1
i (x−µi)

∝ e−
1
2x

tC−1
i x+xtC−1

i µi =: G(x, hi,Ki),

with hi = C−1
i µi and Ki = C−1

i . One distinct feature of the representation
is that the tuple (Ki, hi) is very low-dimensional.

In brevity, Steps 6–7 form the distribution p̃\i =
∏
j �=i t̃j(Ujx), i.e.,

mean µ\i and covariance C\i, and the reduced representation Ĉi = UiC\iU ti
and µ̂i = Uiµ\i. By Theorem 7.5, the integrals of the nongaussian ti(Uix)
against the cavity distribution p̃\i can be reduced to low-dimensional ones.
Steps 8–10 update the parameter pair (hi,Ki) for the ith gaussian factor
t̃i(Uix). Then steps 11–12 update the global approximation (h,K) by the
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Algorithm 7.7 Serial EP algorithm with projection.
1: Initialize with K0 = C−1

0 , h0 = C−1
0 µ0, Ki = I and hi = 0 for i ∈ I

2: K = K0 +
∑
i U

t
iKiUi

3: h = h0 +
∑
i U

t
ihi

4: while not converged do
5: for i ∈ I do
6: Ĉ−1

i = (UiK−1U ti )
−1 −Ki

7: µ̂i = (I − UiK
−1U tiKi)−1(UiK−1h− UiK

−1U ti hi)
8: Z =

∫
ti(si)N(si; µ̂i, Ĉi)dsi

9: Ki = VarZ−1ti(si)N(si;bµi, bCi)
[si]−1 − Ĉ−1

i

10: hi = VarZ−1ti(si)N(si;bµi, bCi)
[si]−1EZ−1ti(si)N(si;bµi, bCi)

[si] − Ĉ−1
i µ̂i

11: K = K0 +
∑

i U
t
iKiUi

12: h = h0 +
∑
i U

t
i hi

13: end for
14: Check the stopping criterion.
15: end while
16: Output the covariance C = K−1 and the mean µ = K−1h.

new values of the ith factor. A parallel variant is obtained by moving steps
11–12 behind the inner loop. It can be much faster on modern multi-core
architectures, but it is less robust than the serial variant.

In general, the convergence of the EP algorithm remains fairly unclear,
and nonconvergence can occur for non log-concave factors, e.g., t likeli-
hood/prior. The next result, essentially due to [273] and slightly extended
in [99], shows the well-definedness of the EP algorithm for the case of log-
concave factors. The proof makes use of several auxiliary results on expo-
nential families and log-concave functions in Appendix C.

Theorem 7.6. Let the factors {ti} in the posteriori
∏
ti(x) be log-concave,

uniformly bounded and have support of positive measure. If at iteration k,
the factor covariances {Ci} of the approximations {t̃i} are positive definite,
then the EP updates at k + 1 step are positive semidefinite.

Proof. By the positive definiteness of the factor covariances {Ci}, the
covariance C\i of the cavity distribution t̃\i =

∏
j �=i t̃j is positive definite.

Next we show that the partition function Z =
∫
N(x;µ\i, C\i)ti(x)dx is log-

concave in µ\i. A straightforward computation yields that N(x;µ\i, C\i)
is log-concave in (x, µ\i). By Lemma C.3 and log-concavity of ti(x),
N(x;µ\i, C\i)ti(x) is log-concave in (x, µ\i), and thus Lemma C.4 implies
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that Z is log-concave in µ\i, and ∇2
µ\i

logZ is negative semi-definite.
Now by Lemma C.1, the covariance C of the distribution

Z−1N(x;µ\i, C\i)ti(x) is given by

C = C\i
(
∇2
µ\i

logZ
)
C\i + C\i.

By the boundedness of factors ti, the covariance

Z−1

∫
N(x;µ\i, C\i)ti(x)(x − µ∗)(x − µ∗)tdx

(with µ∗ = Z−1
∫
N(x;µ\i, C\i)ti(x)xdx) exists, and further by Lemma

C.2 and the assumption on ti, it is positive definite. Hence, C is positive
definite.

Since the Hessian ∇2
µ\i

logZ is negative semi-definite, C − C\i =

C\i
(
∇2
µ\i

logZ
)
C\i is also negative semi-definite, i.e., for any vector w,

wtCw ≤ wtC\iw. Now we let w̃ = C
1
2w. Then ‖w̃‖2 ≤ w̃tC− 1

2C\iC− 1
2 w̃

for any vector w̃. By the minmax characterization of eigenvalues of a Her-
mitian matrix, its minimum eigenvalue λmin(C− 1

2C\iC− 1
2 ) ≥ 1. Conse-

quently, λmax(C
1
2C−1

\i C
1
2 ) ≤ 1, and equivalently ‖w̃‖2 ≥ w̃tC

1
2C−1

\i C
1
2 w̃ for

any vector w̃. With the substitution w = C
1
2 w̃, we get wtC−1w ≥ wtC−1

\i w
for any vector w, i.e., C−1 − C−1

\i is positive semidefinite. The conclu-
sion follows from this and the fact that the inverse covariance of the factor
approximation t̃i is given by C−1 − C−1

\i . �

Remark 7.11. Theorem 7.6 only ensures the well-definedness of the EP
algorithm for one iteration. One might expect that in case of strictly log-
concave factors, the well-definedness holds for all iterations. However, this
would require a strengthened version of the Prékopa-Leindler inequality,
i.g., preservation of strict log-concavity under marginalization.

Nonlinear problems. Now we extend algorithms to the case of a nonlin-
ear operator F by the idea of recursive linearization

F (x) ≈ F (µk) + F ′(µk)(x− µk).

See Algorithm 7.8 for EP. Like optimization algorithms based on lineariza-
tion, step size control is often necessary. It improves robustness of the
algorithm and avoids jumping back and forth between two states, as was
observed for some practical problems. There are many possible rules, and
we only briefly mention the Barzilai-Borwein rule here. It was first proposed
for gradient type methods in [20]. It approximates by a scalar multiple of
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the identity matrix to the Hessian of the problem based on the last two
iterates and gradient descent directions. In this manner, it incorporates
the curvature of the potential to accelerate/stabilize the descent into the
minimum. In our context, we adopt the following simple update rule

µk+1 = µk + sk(µk∗ − µk),

and thus the difference µk∗ −µk serves as a “descent” direction and µk acts
as the iterate in the Barzilai-Borwein rule. The step size sk is computed by

sk =
〈µk − µk−1, (µk∗ − µk) − (µk−1

∗ − µk−1)〉
〈µk − µk−1, µk − µk−1〉 ,

which approximately solves (in a least-squares sense)

sk(µk − µk−1) ≈ (µk∗ − µk) − (µk−1
∗ − µk−1).

In practice, the step size sk is necessarily constrained to [0, 1].

Algorithm 7.8 EP for non-linear problem F (x) = y.
1: Initialize with µ = µ0

2: for k = 0 : K do
3: Linearize around µk;
4: Use EP Algorithm 7.7 to get N(x;µk∗ , C

k
∗ );

5: Compute Barzilai-Borwein step size sk

6: Update µk+1 = µk + sk(µk∗ − µk)
7: Check the stopping criterion.
8: end for
9: Output the covariance C∗ and the mean µ∗.

We illustrate the performance of EP with electrical impedance tomog-
raphy taken from [99].

Example 7.11. In this example, we revisit the sparsity approach for EIT
imaging with the complete electrode model, cf. Section 2.3.3. First we
assume that the voltage measurements U δ are contaminated by additive
noises, i.e., U δ = U(σ†) + ζ, and the noise components ζi follow an i.i.d.
Gaussian distribution with zero mean and inverse variance τ . Then the
likelihood function p(U δ|σ) is given by

p(U δ|σ) ∝ e−
τ
2 ‖F (σ)−Uδ‖2

2 ,

where the forward map F (σ) is determined by the complete electrode model.
The conductivity σ is pointwise non-negative due to physical constraints,



August 6, 2014 8:16 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-ch07 page 282

282 Inverse Problems: Tikhonov Theory and Algorithms

and hence we impose χ[c0,∞](σi) on each component σi with a small c0 > 0.
Further, we assume that the conductivity consists of a known (but possibly
inhomogeneous) background σbg ∈ R

m plus some small inclusions, enforced
by using a Laplace prior on the difference σ − σbg:

(λ2 )me−λ||σ−σ
bg||�1 ,

where λ > 0 is a scale parameter. We note that one may incorporate an ad-
ditional smooth prior to enhance the cluster structure of typical inclusions.
This leads to the following posterior distribution p(σ|U δ)

p(σ|U δ) ∼ e−
α
2 ||F (σ)−Uδ||22e−λ||σ−σ

bg||�1
m∏
i=1

χ[c0,∞](σi).

To apply the EP algorithm to the posterior p(σ|U δ), we factorize it into

t0(σ) = e−
α
2 ||F (σ)−Uδ ||22 ,

ti(σ) = e−λ|σi−σbg
i |χ[c0,∞](σi), i = 1, . . . ,m.

Then the factor t0 is Gaussian (after linearization, see Algorithm 7.8), and
the remaining factors t1, . . . , tm each depend only on one component of σ.
This enables us to rewrite the necessary integrals, upon appealing to Theo-
rem 7.5, into one-dimensional ones. One reconstruction from experimental
data is shown in Fig. 7.1 (see [99] for the experiment setup). The EP re-
constructions using the serial algorithm took about 2 minutes with up to
7 outer iterations and a total of 22 inner iterations on a 2.6 GHz CPU.
Numerically, we observe that EP and MCMC show a very good match on
the mean. For the variance, EP usually captures the same structure as
MCMC, but the magnitudes are slightly different. The variance generally
gets higher towards the center of the watertank (due to less information
encapsulated in the measurements), and at the edges of detected inclusions
(due to uncertainty in the edge’s exact position). The Bayesian recon-
structions with the Laplace prior contain many close-to-zero components,
however it is not truly sparse but only approximately sparse. This is very
different from the Tikhonov formulation, which yields a genuinely sparse
reconstruction, as long as the regularization parameter is large enough.

Remark 7.12. Generally, deterministic inference methods are overshad-
owed by Monte Carlo methods, especially MCMC, for performing approx-
imate inference. They are much faster alternatives to MCMC, especially
for large-scale problems. They are, however, limited in their approximation
accuracy – as opposed to MCMC, which can be made arbitrarily accurate
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mean standard deviation cross section at y = 0

Fig. 7.1 Numerical results for one plastic inclusion: EP (top) v.s. MCMC (bottom).

by increasing the Monte Carlo sample sizes. The issue of accuracy is very
delicate, and still poorly understood; see [302] for discussions on mean field
approximation.

Bibliographical notes

Since the appearance of the seminal works [103, 28], Bayesian inference has
gained great popularity in the inverse problem community. This is made
possible partly by increasingly powerful computing facilities, and partly
by many important algorithmic innovations. Hence, relevant literature on
the topic is quite extensive. In this chapter we have described its basic
ideas, fundamental algorithms and a few examples. Also we briefly mention
several more advanced topics.

On the algorithmic side, Markov chain Monte Carlo methods remain the
first choice. In particular, there are many advanced Markov chain Monte
Carlo methods. We refer interested readers to comprehensive monographs
[109, 262, 217]. In recent years, approximate inference methods also at-
tracted considerable interest. The idea of variational Bayes in Section 7.4
was already contained in [15, 22], and we refer to [301] for an excellent sur-
vey. The book [186] contains many applications from the point of view of
inverse problems; see also [75, 76, 280] for recent theoretical developments,
where well-posedness of the posteriori and finite-dimensional approximation
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errors were discussed.
We have focused on discussions on the modeling and computational

aspects of the Bayesian approach. There are a number of interesting the-
oretical results. We just mention a few below. In [140], the convergence
of the posterior mean to the true solution in Ky Fan metric was studied,
and a certain convergence rate was established, in the context of finite-
dimensional linear inverse problems. The order-optimality was shown in
[247]. However, there seems no analogous result for infinite-dimensional
problems or nonlinear inverse problems.
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Appendix A

Singular Value Decomposition

In this part, we recall the singular value system, and its discrete analogue,
singular value decomposition. The latter is one of the most important tools
for analyzing discrete ill-posed problems.

Singular value system One convenient tool for analyzing regularization
methods in the Hilbert space setting is the singular value system. Let U and
V be infinite-dimensional Hilbert spaces, and K : U → V be an injective
compact linear operator. Then there exist an orthonormal basis {uj} in
U , an orthonormal basis {vj} in V and a nonincreasing sequence {σj} of
nonnegative numbers with a limit 0 as j → ∞ such that for all j

Kuj = σjvj .

We call the system {(σj , uj , vj)} a singular system of the operator K. In
other words, the operator K admits the decomposition

K =
∑

σjuj ⊗ vj .

Example A.1. Consider the integral operator K : L2(0, 1) → L2(0, 1)
defined by (Kf)(s) =

∫ s
0
f(t)dt. Then one can verify directly that

uj(s) =
√

2 cos((j + 1
2
)πs),

vj(t) =
√

2 sin((j + 1
2
)πt),

σj = 1
π(j+ 1

2 )
,

is a singular value system.

With the help of the singular value system, one can state the Picard
condition: in order that there exists a solution f ∈ U to

Kf = g,

285
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the right hand side g must satisfy∑
j

(
(uj , g)
σj

)2

<∞.

The Picard condition implies that for large j, the absolute value of the
coefficients (uj , g) must decay faster than the singular values σjj−

1
2 in order

that a solution exists. This requirement is identical to g ∈ Range(K).
Range characterization and inclusion underlies many inversion algorithms,
e.g, MUSIC algorithm and factorization method.

Singular value decomposition Let A ∈ R
m×n,m ≥ n, be a rectangular

or square matrix. Then the singular value decomposition (SVD) of A is a
decomposition of the form

A = UΣV t =
n∑
j=1

ujσjv
t
j ,

where U = [u1 . . . un] ∈ R
m×n and V = [v1 . . . vn] ∈ R

n×n are matri-
ces with orthonormal columns, U tU = V tV = I, and where the diagonal
matrix Σ = diag(σ1, . . . , σn) has nonnegative diagonal elements in nonin-
creasing order such that

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

The numbers σj are called the singular values of A, while the vectors uj and
vj are the left and right singular vectors of A, respectively. Geometrically
speaking, the SVD of A provides two sets of orthonormal basis vectors,
namely, the columns of U and V , such that the matrix becomes diagonal
when transformed into these two bases.

In connection with discrete ill-posed problems, two characteristic fea-
tures of the SVD are very often found.

(a) The singular values σj decay gradually to zero with no particular gap
in the spectrum. An increase of the dimension of A will increase the
number of small singular values.

(b) The left and right singular vectors uj and vj tend to have more sign
changes in their elements as the index j increases, i.e., as σi decreases.

Both features are consequences of the fact that the SVD of A is closely
related to the singular value expansion of the underlying kernel K. In fact,
the singular values σj of A are in many cases approximations to the singular
values σj of K, and singular vectors uj and vj yield information about the
singular functions of K.
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The SVD also gives important insight into another aspect of discrete
ill-posed problems, i.e., the smoothing effect typically associated with a
square integrable kernel K. As σj decreases, the singular vectors uj and
vj become more and more oscillatory. Now consider the mapping Ax of an
arbitrary vector x. Using the SVD, we get

Ax =
n∑
j=1

σj(vt
jx)uj .

The relation clearly show that due to the multiplication with σj , the high-
frequency components of x are more damped in Ax than the low-frequency
components. The inverse problem, i.e., that of computing x from Ax = b or
min ‖Ax−b‖2, must have the opposite effect: it amplifies the high-frequency
oscillations in the right-hand side b. In particular, the least-squares solution
xls to ‖Ax− b‖2 is given by

xls =
rank(A)∑
j=1

ut
jb

σi
vj .

Clearly, it is the division by small singular values in the expression for the
solution xls that amplifies the high-frequency components in b.
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Appendix B

Noise Models

In this appendix, we describe several popular noise models, which underly
the statistical ground of the fidelity functional in Tikhonov regularization
and also the likelihood function in Bayesian modeling.

additive noise The simplest model for measurement errors is the addi-
tive noise model. Let y† = F (x†) ∈ R

n be the exact/noise-free data, and
ξ ∈ R

n b a realization of certain random variable. If the measured data y
is corrupted from the exact one y† by

y = y† + ξ,

and the noise vector ξ is independent of y†, then the noise formation is called
additive. One common noise model for the random variable ξ is Gaussian,
and others include Laplace noise, Cauchy noise and uniform noise, which
we shall explain briefly. If the true data y† and the noise ξ are independent,
then the likelihood function pY |X(y|x) is given by

pY |X(y|x) = p(y − F (x)).

(i) Gaussian noise The Gaussian noise is definitely the most common
model in practice. In the model, the noise ξ is taken to be a realization of a
Gaussian random variable, typically with mean zero and covariance Σ, i.e.,

ξ ∼ N(0,Σ),

where notation N(ξ̄,Σ) refers to a multivariate Gaussian distribution, with
a mean ξ̄ and covariance matrix Σ. The density function p(ξ) is given by

p(ξ) = (2π)−
n
2 |Σ|− 1

2 e−
1
2 (ξ−ξ̄)tΣ−1(ξ−ξ̄),

where |Σ| denotes the determinant of the covariance Σ. Consequently, the
likelihood function pY |X(y|x) reads

pY |X(y|x) =
1

(2π)
n
2
√|Σ|e

− 1
2 (y−F (x))tΣ−1(y−F (x)).

289
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A particularly simple case is that the covariance matrix Σ is a multi-
ple of the identity matrix In, i.e., Σ = σ2In for some covariance σ2. In
other words, the noise components follow an independent and identically
distributed Gaussian distribution N(0, σ2). Then the likelihood pY |X(y|x)
is given by

pY |X(y|x) =
1

(2πσ2)
n
2
e−

1
2σ2 ‖y−F (x)‖2

.

We often employ the inverse covariance (precision) τ = 1
σ2 in Bayesian

modeling. This formula is used extensively in Chapter 7. The predomi-
nance of the Gaussian model in practice is primarily due to the analytical
and computational tractability (at least for linear models): the mean and
variance can be readily computed, and these statistics fully characterizes
the solution. Theoretically, this is usually justified by appealing to the
central limit theorem, which asserts that for data formed from the average
of many independent random variables, the Gaussian model is a good ap-
proximation. This popularity of the model is also partially supported by
its success in practical applications.

A well acknowledged limitation of the Gaussian model is its lack of ro-
bustness against the outliers, i.e., data points away from the bulk of the
data, in the observations: one single aberrant data point can significantly
influence all the parameters in the model, even for these with little sub-
stantive connection to the outlying observation [101].

(ii) Laplace and Student-t noise The Laplace noise arises in certain
signal processing problems [3]. In comparison with the Gaussian model, one
distinct feature of the these models is that the realizations are more likely to
contain larger values, i.e., the distribution is more heavy tailed. Therefore,
they are appropriate for data in the presence of significant outliers, and
known to be robust with respect to outliers [147, 207].

Under the i.i.d. assumption on the components, the density function
p(ξ) for the Laplace distribution is given by

p(ξ) =
(
σ
2

)n
e−

σ
2 ‖ξ‖1 ,

where σ is a scale parameter. Accordingly, the likelihood pY |X(y|x) is given
by

pY |X(y|x) =
(
σ
2

)n
e−

σ
2 ‖F (x)−y‖1 ,

where ‖ · ‖1 denotes the one-norm of a vector. The t model asserts that the
noise components ξi are i.i.d. according to a centered t distribution, i.e.,

p(ξ; ν, σ) = Γ( ν+1
2 )

Γ( ν
2 )

√
πνσ

{
1 + 1

ν

(
ξ
σ

)2
}− ν+1

2

,
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where ν is a degree of freedom parameter, σ is a scale parameter, and Γ(·)
is Euler’s Gamma function defined by Γ(α) =

∫∞
0
tα−1e−tdt. The t model

is very flexible, and encompasses a number of other interesting models, e.g.,
the Cauchy distribution and the normal distribution as special cases, which
correspond to the case of ν = 1, and ν = ∞, respectively. Accordingly, the
likelihood function pY |X(y|x) is given by

pY |X(y|x) =
(

Γ( ν+1
2 )

Γ( ν
2 )

√
πνσ

)n n∏
i=1

{
1 + 1

ν

(
|(F (x)−y)i|

σ

)2
}− ν+1

2

.

The Laplace model and t-model are particularly attractive for handling
data outliers. In practice, outliers can arise due to, e.g., erroneous recording
and transmission in noisy channels.

multiplicative noise Multiplicative noise occurs as soon as one deals
with active imaging systems, e.g., laser images, microscopic images, syn-
thetic aperture radar images. The precise model is given by

y = f(y†, ξ),
where f denotes the noise formation mechanism, which often denotes point-
wise multiplication and ξ refers to a realization of (non-negative, but not
necessarily i.i.d.) random vector. There are several prominent noise models
with a functional dependence of the noise on the signal, which is neither
multiplicative nor additive. One special case of functional dependence is
the multiplicative noise, for which we have the following representation.

Lemma B.1. Assume that U and V are independent random variables,
with continuous density functions pU(u) and pV (v), and F = UV . Then
we have for u > 0

pV ( fu ) 1
u = pF |U(f |u).

Proof. Let B ⊂ R be an open subset. We have∫
pF |U(f |u)1{f∈B} = P (F ∈ B|U) =

P (F ∈ B,U)
P (U)

=
P ((V = F

U ) ∈ B
U , U)

P (U)
.

Using the fact that U and V are independent, we have
P ((V = F

U
) ∈ B

U
, U)

P (U)
= P ((V =

F

U
) ∈ B

U
)

=
∫
pV (v)1{v∈ B

u }dv

=
∫
pv(

f

u
)1f∈B

df

u
. �
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(v) speckle noise Synthetic aperture radar images are strongly corrupted
by a noise called speckle. A radar sends a coherent wave which is reflected
on the ground and then registered by the radar sensor. If the coherent
wave is reflected on a coarse surface (compared to the radar wavelength),
then the image processed by the radar is degraded by a noise with large
amplitude: this gives a speckled aspect to the image, and this is the reason
such a noise is called speckle noise. The classical approach [295] to model
for such images is

y = y†ξ,

where y is the intensity of the observed image, y† the reflectance of the
scene (which is to be recovered), and ξ the speckle noise. ξ is assumed to
follow a Gamma law with mean equal to 1, i.e.,

p(ξ) =
LL

Γ(L)
ξL−1e−Lξ.

Consequently, according Lemma B.1, the likelihood function pY |X(y|x) is
given

pY |X(y|x) =
∏
i

LL

(Ax)Li Γ(L)
yL−1
i e

− −Lyi
(Ax)i .

A variational approach taking into account such a noise model has been
studied in [17].

The Gamma distribution is a versatile family of probability distributions
for modeling noise, prior and parameter specification. The density function
p(t) takes the form

p(t) = G(t; a, b) =
ba

Γ(a)
ta−1e−bt,

where a and b are known as the shape parameter and the rate parame-
ter, respectively. It covers the exponential distribution a = 1 and the χ2

distribution (a = 2/ν, b = 2) as special cases. It is the conjugate prior
to many likelihood distributions: the Poisson, exponential, normal (with
known mean), Pareto, gamma with known shape parameter, inverse gamma
with known shape parameter etc. Therefore, it is very widely employed.

(vii) salt-and-pepper noise This model is especially common in image
processing, and it reflects a wide variety of processes that result in the same
image degradation: the corrupted data points (where ξr 
= 0) only take a
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fixed maximum (“salt”) or minimum (“pepper”) value. A simple model is
as follows:

yi =


y†i , with probability 1 − r − s,

ymax, with probability r,

ymin, with probability s,

where ymax and ymin are the maximum and minimum of the signal, re-
spectively, and the parameter r, s ∈ (0, 1) (with r + s < 1) represents the
percentage of corrupted data points. A closely related by more challenging
noise is the so-called random-valued impulse noise, which allows arbitrary
random values at the corrupted data points. Specifically, the noise model
is given by

yi =

{
y†i , with probability 1 − r,

y†i + ξ, with probability r,

where ξ is a random variable, e.g., normally distributed with mean zero and
typically large variance. Clearly, this model is generated by the random
variable ξ and reproduces the latter if r = 1. However, its characteristic is
fundamentally different from that of ξ for r < 1: there exist data points
which are not corrupted by noise, which carry a significant amount of in-
formation in the data. Salt-and-pepper noise and random-valued impulse
noise are two prominent models for impulsive noise. The likelihood function
pY |X(y|x) is typically taken to be

pY |X(y|x) ∝ e−τ‖Ax−y‖1,

for a suitable τ > 0.

(vi) Poisson noise Poisson noise are typically employed for modeling pho-
ton counting errors produced by CCD sensors, e.g., florescence microscopy
and optical/infrared astronomy. During the exposure, each sensor counts
the number of incoming photons. The number of photons detected by the
ith sensor can be modeled as a realization of a Poisson distributed random
variable with mean y†i , i.e., yi ∼ Pois(y†i ), where Pois(λ) is the Poisson
distribution with a parameter λ. Specifically, the probability for measuring
the value k ∈ N ∪ {0} at the ith sensor is given by

yi = k with p(k) =
(y†i )

k

k!
e−y

†
i , k = 0, 1, 2, . . . .
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Under the i.i.d. assumption on the noise model, this gives rise to the
following likelihood function

pY |X(y|x) =
n∏
i=1

e−(F (x))i(F (x))yi

i

yi!
.

Usually one approximates the unknown x with a continuous random vari-
able to facilitate the subsequent model exploration [209].
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Appendix C

Exponential Families

Now we recall exponential family [43]. We only need their specialization to
normal distributions, but we follow the general framework for two reasons:
it is the usual form found in the literature, and it allows direct generalization
from normal distributions to other exponential families.

Definition C.1. An exponential family is a set F of distributions with
density of the form

p(x|θ) = eθ
tφ(x)−Φ(θ),

Φ(θ) = ln
∫
eθ

tφ(x)dν(x),

for natural parameter θ from the natural parameter space Θ. The exponen-
tial family is fully characterized by the sufficient statistics φ and the base
measure dν. The natural parameter space Θ is a convex set of all natural
parameters such that p(x|θ) is a valid distribution.

The log partition function Φ allows computing the mean and variance
of φ(x):

∇θΦ = Ep(x|θ)[φ(x)] and ∇2
θΦ = Varp(x|θ)[φ(x)]. (C.1)

Let f(x) be a positive function, and lnEp(x|θ)[f(x)]+Φ(θ) exist for every θ ∈
Θ. Then it defines a new exponential family with a base measure f(x)dν(x),
with the log partition function Φf (θ) given by lnEp(x|θ)[f(x)] + Φ(θ).

We now consider the exponential family of normal distributions. We de-
note a normal distribution with mean µ and covariance C by N(x;µ,C) =
(2π)−

n
2 (detC)−

1
2 e−

1
2 (x−µ)tC−1(x−µ). Hence, the sufficient statistics φ(x)

and the natural parameter θ are given by φ(x) = (x, xxt), and θ =:
(h,K) = (C−1µ,− 1

2C
−1), respectively. This together with (C.1) and chain

295
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rule yields

EN(x;µ,C)[x] = C∇µΦ(θ(µ,C)) and VarN(x;µ,C)[x] = C∇2
µΦ(θ(µ,C))C.

Now we can state a result on a tilted normal distribution f(x)N(x, µ, C).

Lemma C.1. Let N(x;µ,C) be a normal distribution and f a positive
function. Then the mean µf and covariance Cf of the tilted distribution
p̃(x) = Z−1f(x)N(x;µ,C) (Z =

∫
f(x)N(x;µ,C) are given by

µf = C
(∇µ lnEN(x;µ,C)[f(x)]

)
+ µ,

Cf = C
(∇2

µ lnEN(x;µ,C)[f(x)]
)
C + C.

Proof. Let Φ and Φf be the log partition function of the nor-
mal distribution p(x|θ) = N(x;µ,C) and the tilted distribution
p̃(x|θ) = f(x)N(x;µ,C)e−Φf , respectively, with θ(µ,C) = (h,K) =
(C−1µ,− 1

2C
−1). Then Φf (θ) = lnEp(x|θ)[f(x)] + Φ(θ). Further, the first

component of (C.1) reads

∇hΦf (θ) = Ep̃(x|θ)[x] and ∇2
hΦf (θ) = Varp̃(x|θ)[x].

By chain rule there hold

∇µ lnEN(x;µ,C)[f(x)] = C−1∇h lnEp(x|θ)[f(x)],

∇2
µ lnEN(x;µ,C)[f(x)] = C−1∇2

h lnEp(x|θ)[f(x)]C−1.

Consequently, we deduce

Ep̃(x|θ)[x] = ∇hΦf (θ) = C∇µ lnEN(x;µ,C)[f(x)] + ∇hΦ(θ),

Varp̃(x|θ)[x] = ∇2
hΦf (θ) = C∇2

µ lnEN(x;µ,C)[f(x)]C + ∇2
hΦ(θ).

Now the desired assertion follows directly from the relation ∇hΦ(θ) = µ

and ∇2
hΦ(θ) = C using (C.1). �

Lemma C.2. Let p : R
n → R be a probability density function with a

support of positive measure. If the covariance Varp[x] =
∫
p(x)(E[x] −

x)(E[x] − x)tdx exists, then it is positive definite.

Proof. It suffices to show vtVarp[x]v > 0 for any nonzero vector v ∈ R
n.

Let U = {x ∈ supp(p) : vt(E[x] − x) 
= 0}. However, the complement set
supp(p) \U = {x ∈ supp(p) : vt(E[x]−x) = 0} lies in a co-dimensional one
hyperplane in R

n, thus it has only zero measure. This together with the
positive measure assumption of the support supp(p), the set U has positive
measure. Therefore, vtVarp[x]v ≥ ∫

U
p(x)(vt(Ep[x] − x))2dx > 0. �
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Finally we recall the concept of log-concavity. It plays a role in the
theory of expectation propagation as convexity in classical optimization
theory. A nonnegative function f : V → R

+
0 is log-concave if

f(λx1 + (1 − λ)x2) ≥ f(x1)λf(x2)1−λ

holds for all elements x1, x2 from a real convex vector space V and for all
λ ∈ [0, 1].

Lemma C.3. Let f, g : V → R
+
0 be log-concave. Then the product fg is

log-concave.

Log-concavity is preserved by marginalization by the Prékopa-Leindler
inequality [30, 36].

Lemma C.4. Let f : R
n × R

m → R
+
0 be log-concave and bounded. Then

the marginalized function g(x) =
∫

Rm f(x, y)dy is log-concave.
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[48] Bukhgĕım, A. L. and Klibanov, M. V. (1981). Uniqueness in the large of a
class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR 260,
2, pp. 269–272.

[49] Burger, M., Flemming, J. and Hofmann, B. (2013). Convergence rates in
�1-regularization if the sparsity assumption fails, Inverse Problems 29, 2,
pp. 025013, 16 pp.

[50] Burger, M. and Osher, S. (2004). Convergence rates of convex variational



August 6, 2014 8:17 Inverse Problems: Tikhonov Theory and Algorithms - 9in x 6in b1878-bib page 302

302 Inverse Problems: Tikhonov Theory and Algorithms

regularization, Inverse Problems 20, 5, pp. 1411–1421.
[51] Cakoni, F., Colton, D. and Monk, P. (2011). The Linear Sampling Method

in Inverse Electromagnetic Scattering (SIAM, Philadelphia, PA).
[52] Casella, G., Girón, F. J., Mart́ınez, M. L. and Moreno, E. (2009). Consis-

tency of Bayesian procedures for variable selection, Ann. Statist. 37, 3, pp.
1207–1228.

[53] Chaabane, S., Feki, I. and Mars, N. (2012). Numerical reconstruction of a
piecewise constant Robin parameter in the two- or three-dimensional case,
Inverse Problems 28, 6, pp. 065016, 19 pp.

[54] Challis, E. and Barber, D. (2011). Concave Gaussian variational approxi-
mations for inference in large-scale Bayesian linear models, in Proc. 14th
Int. Conf. Artif. Int. Stat. (AISTATS) (Fort Lauderdale, FL).

[55] Chambolle, A. and Lions, P.-L. (1997). Image recovery via total variation
minimization and related problems, Numer. Math. 76, 2, pp. 167–188.
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convergence rates result for Tikhonov regularization in Banach spaces with
non-smooth operators, Inverse Problems 23, 3, pp. 987–1010.
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