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Preface

This book provides a comprehensive introduction to the modern study of computer
algorithms. It presents many algorithms and covers them in considerable depth, yet makes
their design and analysis accessible to all levels of readers. We have tried to keep
explanations elementary without sacrificing depth of coverage or mathematical rigor.

Each chapter presents an algorithm, a design technique, an application area, or a related topic.
Algorithms are described in English and in a "pseudocode" designed to be readable by anyone
who has done a little programming. The book contains over 230 figures illustrating how the
algorithms work. Since we emphasize efficiency as a design criterion, we include careful
analyses of the running times of all our algorithms.

The text is intended primarily for use in undergraduate or graduate courses in algorithms or
data structures. Because it discusses engineering issues in algorithm design, as well as
mathematical aspects, it is equally well suited for self-study by technical professionals.

In this, the second edition, we have updated the entire book. The changes range from the
addition of new chapters to the rewriting of individual sentences.

To the teacher

This book is designed to be both versatile and complete. You will find it useful for a variety
of courses, from an undergraduate course in data structures up through a graduate course in
algorithms. Because we have provided considerably more material than can fit in a typical
one-term course, you should think of the book as a "buffet" or "smorgasbord" from which you
can pick and choose the material that best supports the course you wish to teach.

You should find it easy to organize your course around just the chapters you need. We have
made chapters relatively self-contained, so that you need not worry about an unexpected and
unnecessary dependence of one chapter on another. Each chapter presents the easier material
first and the more difficult material later, with section boundaries marking natural stopping
points. In an undergraduate course, you might use only the earlier sections from a chapter; in
a graduate course, you might cover the entire chapter.

We have included over 920 exercises and over 140 problems. Each section ends with
exercises, and each chapter ends with problems. The exercises are generally short questions
that test basic mastery of the material. Some are simple self-check thought exercises, whereas
others are more substantial and are suitable as assigned homework. The problems are more
elaborate case studies that often introduce new material; they typically consist of several
questions that lead the student through the steps required to arrive at a solution.

We have starred (*) the sections and exercises that are more suitable for graduate students
than for undergraduates. A starred section is not necessarily more difficult than an unstarred



one, but it may require an understanding of more advanced mathematics. Likewise, starred
exercises may require an advanced background or more than average creativity.

To the student

We hope that this textbook provides you with an enjoyable introduction to the field of
algorithms. We have attempted to make every algorithm accessible and interesting. To help
you when you encounter unfamiliar or difficult algorithms, we describe each one in a step-by-
step manner. We also provide careful explanations of the mathematics needed to understand
the analysis of the algorithms. If you already have some familiarity with a topic, you will find
the chapters organized so that you can skim introductory sections and proceed quickly to the
more advanced material.

This is a large book, and your class will probably cover only a portion of its material. We
have tried, however, to make this a book that will be useful to you now as a course textbook
and also later in your career as a mathematical desk reference or an engineering handbook.

What are the prerequisites for reading this book?

e You should have some programming experience. In particular, you should understand
recursive procedures and simple data structures such as arrays and linked lists.

e You should have some facility with proofs by mathematical induction. A few portions
of the book rely on some knowledge of elementary calculus. Beyond that, Parts [ and
VIII of this book teach you all the mathematical techniques you will need.

To the professional

The wide range of topics in this book makes it an excellent handbook on algorithms. Because
each chapter is relatively self-contained, you can focus in on the topics that most interest you.

Most of the algorithms we discuss have great practical utility. We therefore address
implementation concerns and other engineering issues. We often provide practical alternatives
to the few algorithms that are primarily of theoretical interest.

If you wish to implement any of the algorithms, you will find the translation of our
pseudocode into your favorite programming language a fairly straightforward task. The
pseudocode is designed to present each algorithm clearly and succinctly. Consequently, we do
not address error-handling and other software-engineering issues that require specific
assumptions about your programming environment. We attempt to present each algorithm
simply and directly without allowing the idiosyncrasies of a particular programming language
to obscure its essence.

To our colleagues

We have supplied an extensive bibliography and pointers to the current literature. Each
chapter ends with a set of "chapter notes" that give historical details and references. The
chapter notes do not provide a complete reference to the whole field of algorithms, however.
Though it may be hard to believe for a book of this size, many interesting algorithms could
not be included due to lack of space.



Despite myriad requests from students for solutions to problems and exercises, we have
chosen as a matter of policy not to supply references for problems and exercises, to remove
the temptation for students to look up a solution rather than to find it themselves.

Changes for the second edition

What has changed between the first and second editions of this book? Depending on how you
look at it, either not much or quite a bit.

A quick look at the table of contents shows that most of the first-edition chapters and sections
appear in the second edition. We removed two chapters and a handful of sections, but we have
added three new chapters and four new sections apart from these new chapters. If you were to
judge the scope of the changes by the table of contents, you would likely conclude that the
changes were modest.

The changes go far beyond what shows up in the table of contents, however. In no particular
order, here is a summary of the most significant changes for the second edition:

o CIiff Stein was added as a coauthor.

o Errors have been corrected. How many errors? Let's just say several.

e There are three new chapters:

o Chapter 1 discusses the role of algorithms in computing.

o Chapter 5 covers probabilistic analysis and randomized algorithms. As in the
first edition, these topics appear throughout the book.

o Chapter 29 is devoted to linear programming.

o Within chapters that were carried over from the first edition, there are new sections on

the following topics:
o perfect hashing (Section 11.5),
o two applications of dynamic programming (Sections 15.1 and 15.5), and
o approximation algorithms that use randomization and linear programming
(Section 35.4).

e To allow more algorithms to appear earlier in the book, three of the chapters on
mathematical background have been moved from Part [ to the Appendix, which is Part
VIII.

e There are over 40 new problems and over 185 new exercises.

e We have made explicit the use of loop invariants for proving correctness. Our first
loop invariant appears in Chapter 2, and we use them a couple of dozen times
throughout the book.

e Many of the probabilistic analyses have been rewritten. In particular, we use in a
dozen places the technique of "indicator random variables," which simplify
probabilistic analyses, especially when random variables are dependent.

e We have expanded and updated the chapter notes and bibliography. The bibliography
has grown by over 50%, and we have mentioned many new algorithmic results that
have appeared subsequent to the printing of the first edition.

We have also made the following changes:

o The chapter on solving recurrences no longer contains the iteration method. Instead, in
Section 4.2, we have "promoted" recursion trees to constitute a method in their own
right. We have found that drawing out recursion trees is less error-prone than iterating



recurrences. We do point out, however, that recursion trees are best used as a way to
generate guesses that are then verified via the substitution method.

e The partitioning method used for quicksort (Section 7.1) and the expected linear-time
order-statistic algorithm (Section 9.2) is different. We now use the method developed
by Lomuto, which, along with indicator random variables, allows for a somewhat
simpler analysis. The method from the first edition, due to Hoare, appears as a
problem in Chapter 7.

e We have modified the discussion of universal hashing in Section 11.3.3 so that it
integrates into the presentation of perfect hashing.

e There is a much simpler analysis of the height of a randomly built binary search tree in
Section 12.4.

e The discussions on the elements of dynamic programming (Section 15.3) and the
elements of greedy algorithms (Section 16.2) are significantly expanded. The
exploration of the activity-selection problem, which starts off the greedy-algorithms
chapter, helps to clarify the relationship between dynamic programming and greedy
algorithms.

e We have replaced the proof of the running time of the disjoint-set-union data structure
in Section 21.4 with a proof that uses the potential method to derive a tight bound.

e The proof of correctness of the algorithm for strongly connected components in
Section 22.5 is simpler, clearer, and more direct.

o Chapter 24, on single-source shortest paths, has been reorganized to move proofs of
the essential properties to their own section. The new organization allows us to focus
earlier on algorithms.

e Section 34.5 contains an expanded overview of NP-completeness as well as new NP-
completeness proofs for the hamiltonian-cycle and subset-sum problems.

Finally, virtually every section has been edited to correct, simplify, and clarify explanations
and proofs.

Web site

Another change from the first edition is that this book now has its own web site:
http://mitpress.mit.edu/algorithms/. You can use the web site to report errors, obtain a list of
known errors, or make suggestions; we would like to hear from you. We particularly welcome
ideas for new exercises and problems, but please include solutions.

We regret that we cannot personally respond to all comments.
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Part I: Foundations

Chapter List

Chapter 1: The Role of Algorithms in Computing

Chapter 2: Getting Started

Chapter 3: Growth of Functions

Chapter 4: Recurrences

Chapter 5: Probabilistic Analysis and Randomized Algorithms

Introduction

This part will get you started in thinking about designing and analyzing algorithms. It is
intended to be a gentle introduction to how we specify algorithms, some of the design
strategies we will use throughout this book, and many of the fundamental ideas used in
algorithm analysis. Later parts of this book will build upon this base.

Chapter 1 is an overview of algorithms and their place in modern computing systems. This
chapter defines what an algorithm is and lists some examples. It also makes a case that
algorithms are a technology, just as are fast hardware, graphical user interfaces, object-
oriented systems, and networks.

In Chapter 2, we see our first algorithms, which solve the problem of sorting a sequence of n
numbers. They are written in a pseudocode which, although not directly translatable to any
conventional programming language, conveys the structure of the algorithm clearly enough
that a competent programmer can implement it in the language of his choice. The sorting
algorithms we examine are insertion sort, which uses an incremental approach, and merge
sort, which uses a recursive technique known as "divide and conquer." Although the time
each requires increases with the value of #n, the rate of increase differs between the two
algorithms. We determine these running times in Chapter 2, and we develop a useful notation
to express them.

Chapter 3 precisely defines this notation, which we call asymptotic notation. It starts by
defining several asymptotic notations, which we use for bounding algorithm running times
from above and/or below. The rest of Chapter 3 is primarily a presentation of mathematical
notation. Its purpose is more to ensure that your use of notation matches that in this book than
to teach you new mathematical concepts.

Chapter 4 delves further into the divide-and-conquer method introduced in Chapter 2. In
particular, Chapter 4 contains methods for solving recurrences, which are useful for
describing the running times of recursive algorithms. One powerful technique is the "master
method," which can be used to solve recurrences that arise from divide-and-conquer
algorithms. Much of Chapter 4 is devoted to proving the correctness of the master method,
though this proof may be skipped without harm.



Chapter 5 introduces probabilistic analysis and randomized algorithms. We typically use
probabilistic analysis to determine the running time of an algorithm in cases in which, due to
the presence of an inherent probability distribution, the running time may differ on different
inputs of the same size. In some cases, we assume that the inputs conform to a known
probability distribution, so that we are averaging the running time over all possible inputs. In
other cases, the probability distribution comes not from the inputs but from random choices
made during the course of the algorithm. An algorithm whose behavior is determined not only
by its input but by the values produced by a random-number generator is a randomized
algorithm. We can use randomized algorithms to enforce a probability distribution on the
inputs-thereby ensuring that no particular input always causes poor performance-or even to
bound the error rate of algorithms that are allowed to produce incorrect results on a limited
basis.

Appendices A-C contain other mathematical material that you will find helpful as you read
this book. You are likely to have seen much of the material in the appendix chapters before
having read this book (although the specific notational conventions we use may differ in some
cases from what you have seen in the past), and so you should think of the Appendices as
reference material. On the other hand, you probably have not already seen most of the
material in Part [. All the chapters in Part [ and the Appendices are written with a tutorial
flavor.

Chapter 1: The Role of Algorithms in
Computing

What are algorithms? Why is the study of algorithms worthwhile? What is the role of
algorithms relative to other technologies used in computers? In this chapter, we will answer
these questions.

1.1 Algorithms

Informally, an algorithm is any well-defined computational procedure that takes some value,
or set of values, as input and produces some value, or set of values, as output. An algorithm is
thus a sequence of computational steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational problem.
The statement of the problem specifies in general terms the desired input/output relationship.
The algorithm describes a specific computational procedure for achieving that input/output
relationship.

For example, one might need to sort a sequence of numbers into nondecreasing order. This
problem arises frequently in practice and provides fertile ground for introducing many
standard design techniques and analysis tools. Here is how we formally define the sorting
problem:

e Input: A sequence of n numbers [lay, az, ..., a, .
e Output: A permutation (reordering) @ . ... a.lof the input sequence such that

; - F - - ¥
a) =iy = 2,



For example, given the input sequence 131, 41, 59, 26, 41, 58(1, a sorting algorithm returns
as output the sequence [126, 31, 41, 41, 58, 59[1. Such an input sequence is called an instance
of the sorting problem. In general, an instance of a problem consists of the input (satisfying
whatever constraints are imposed in the problem statement) needed to compute a solution to
the problem.

Sorting is a fundamental operation in computer science (many programs use it as an
intermediate step), and as a result a large number of good sorting algorithms have been
developed. Which algorithm is best for a given application depends on-among other factors-
the number of items to be sorted, the extent to which the items are already somewhat sorted,
possible restrictions on the item values, and the kind of storage device to be used: main
memory, disks, or tapes.

An algorithm is said to be correct if, for every input instance, it halts with the correct output.
We say that a correct algorithm solves the given computational problem. An incorrect
algorithm might not halt at all on some input instances, or it might halt with an answer other
than the desired one. Contrary to what one might expect, incorrect algorithms can sometimes
be useful, if their error rate can be controlled. We shall see an example of this in Chapter 31
when we study algorithms for finding large prime numbers. Ordinarily, however, we shall be
concerned only with correct algorithms.

An algorithm can be specified in English, as a computer program, or even as a hardware
design. The only requirement is that the specification must provide a precise description of the
computational procedure to be followed.

What kinds of problems are solved by algorithms?

Sorting is by no means the only computational problem for which algorithms have been
developed. (You probably suspected as much when you saw the size of this book.) Practical
applications of algorithms are ubiquitous and include the following examples:

e The Human Genome Project has the goals of identifying all the 100,000 genes in
human DNA, determining the sequences of the 3 billion chemical base pairs that make
up human DNA, storing this information in databases, and developing tools for data
analysis. Each of these steps requires sophisticated algorithms. While the solutions to
the various problems involved are beyond the scope of this book, ideas from many of
the chapters in this book are used in the solution of these biological problems, thereby
enabling scientists to accomplish tasks while using resources efficiently. The savings
are in time, both human and machine, and in money, as more information can be
extracted from laboratory techniques.

e The Internet enables people all around the world to quickly access and retrieve large
amounts of information. In order to do so, clever algorithms are employed to manage
and manipulate this large volume of data. Examples of problems which must be solved
include finding good routes on which the data will travel (techniques for solving such
problems appear in Chapter 24), and using a search engine to quickly find pages on
which particular information resides (related techniques are in Chapters 11 and 32).

e Electronic commerce enables goods and services to be negotiated and exchanged
electronically. The ability to keep information such as credit card numbers, passwords,
and bank statements private is essential if electronic commerce is to be used widely.



Public-key cryptography and digital signatures (covered in Chapter 31) are among the
core technologies used and are based on numerical algorithms and number theory.

e In manufacturing and other commercial settings, it is often important to allocate scarce
resources in the most beneficial way. An oil company may wish to know where to
place its wells in order to maximize its expected profit. A candidate for the presidency
of the United States may want to determine where to spend money buying campaign
advertising in order to maximize the chances of winning an election. An airline may
wish to assign crews to flights in the least expensive way possible, making sure that
each flight is covered and that government regulations regarding crew scheduling are
met. An Internet service provider may wish to determine where to place additional
resources in order to serve its customers more effectively. All of these are examples of
problems that can be solved using linear programming, which we shall study in

Chapter 29.

While some of the details of these examples are beyond the scope of this book, we do give
underlying techniques that apply to these problems and problem areas. We also show how to
solve many concrete problems in this book, including the following:

e We are given a road map on which the distance between each pair of adjacent
intersections is marked, and our goal is to determine the shortest route from one
intersection to another. The number of possible routes can be huge, even if we
disallow routes that cross over themselves. How do we choose which of all possible
routes is the shortest? Here, we model the road map (which is itself a model of the
actual roads) as a graph (which we will meet in Chapter 10 and Appendix B), and we
wish to find the shortest path from one vertex to another in the graph. We shall see
how to solve this problem efficiently in Chapter 24.

e Weare given a sequence (141, 4y, ..., 4,1 of n matrices, and we wish to determine
their product 4; 4, 4,. Because matrix multiplication is associative, there are several
legal multiplication orders. For example, if n = 4, we could perform the matrix
multiplications as if the product were parenthesized in any of the following orders:
(41(42(4344))), (41((4243)44)), (4142)(A344)), (A1(4243))4s), or ((4142)43)A44). T
these matrices are all square (and hence the same size), the multiplication order will
not affect how long the matrix multiplications take. If, however, these matrices are of
differing sizes (yet their sizes are compatible for matrix multiplication), then the
multiplication order can make a very big difference. The number of possible
multiplication orders is exponential in #, and so trying all possible orders may take a
very long time. We shall see in Chapter 15 how to use a general technique known as
dynamic programming to solve this problem much more efficiently.

e We are given an equation ax = b (mod n), where a, b, and n are integers, and we wish
to find all the integers x, modulo 7, that satisfy the equation. There may be zero, one,
or more than one such solution. We can simply try x =0, 1, ..., n - 1 in order, but
Chapter 31 shows a more efficient method.

e We are given n points in the plane, and we wish to find the convex hull of these
points. The convex hull is the smallest convex polygon containing the points.
Intuitively, we can think of each point as being represented by a nail sticking out from
a board. The convex hull would be represented by a tight rubber band that surrounds
all the nails. Each nail around which the rubber band makes a turn is a vertex of the
convex hull. (See Figure 33.6 on page 948 for an example.) Any of the 2" subsets of
the points might be the vertices of the convex hull. Knowing which points are vertices
of the convex hull is not quite enough, either, since we also need to know the order in




which they appear. There are many choices, therefore, for the vertices of the convex
hull. Chapter 33 gives two good methods for finding the convex hull.

These lists are far from exhaustive (as you again have probably surmised from this book's
heft), but exhibit two characteristics that are common to many interesting algorithms.

1. There are many candidate solutions, most of which are not what we want. Finding one
that we do want can present quite a challenge.

2. There are practical applications. Of the problems in the above list, shortest paths
provides the easiest examples. A transportation firm, such as a trucking or railroad
company, has a financial interest in finding shortest paths through a road or rail
network because taking shorter paths results in lower labor and fuel costs. Or a routing
node on the Internet may need to find the shortest path through the network in order to
route a message quickly.

Data structures

This book also contains several data structures. A data structure is a way to store and
organize data in order to facilitate access and modifications. No single data structure works
well for all purposes, and so it is important to know the strengths and limitations of several of
them.

Technique

Although you can use this book as a "cookbook" for algorithms, you may someday encounter
a problem for which you cannot readily find a published algorithm (many of the exercises and
problems in this book, for example!). This book will teach you techniques of algorithm design
and analysis so that you can develop algorithms on your own, show that they give the correct
answer, and understand their efficiency.

Hard problems

Most of this book is about efficient algorithms. Our usual measure of efficiency is speed, i.e.,
how long an algorithm takes to produce its result. There are some problems, however, for
which no efficient solution is known. Chapter 34 studies an interesting subset of these
problems, which are known as NP-complete.

Why are NP-complete problems interesting? First, although no efficient algorithm for an NP-
complete problem has ever been found, nobody has ever proven that an efficient algorithm for
one cannot exist. In other words, it is unknown whether or not efficient algorithms exist for
NP-complete problems. Second, the set of NP-complete problems has the remarkable property
that if an efficient algorithm exists for any one of them, then efficient algorithms exist for all
of them. This relationship among the NP-complete problems makes the lack of efficient
solutions all the more tantalizing. Third, several NP-complete problems are similar, but not
identical, to problems for which we do know of efficient algorithms. A small change to the
problem statement can cause a big change to the efficiency of the best known algorithm.

It is valuable to know about NP-complete problems because some of them arise surprisingly
often in real applications. If you are called upon to produce an efficient algorithm for an NP-
complete problem, you are likely to spend a lot of time in a fruitless search. If you can show



that the problem is NP-complete, you can instead spend your time developing an efficient
algorithm that gives a good, but not the best possible, solution.

As a concrete example, consider a trucking company with a central warehouse. Each dayj, it
loads up the truck at the warehouse and sends it around to several locations to make
deliveries. At the end of the day, the truck must end up back at the warehouse so that it is
ready to be loaded for the next day. To reduce costs, the company wants to select an order of
delivery stops that yields the lowest overall distance traveled by the truck. This problem is the
well-known "traveling-salesman problem," and it is NP-complete. It has no known efficient
algorithm. Under certain assumptions, however, there are efficient algorithms that give an
overall distance that is not too far above the smallest possible. Chapter 35 discusses such
"approximation algorithms."

Exercises 1.1-1

Give a real-world example in which one of the following computational problems appears:
sorting, determining the best order for multiplying matrices, or finding the convex hull.

Exercises 1.1-2

Other than speed, what other measures of efficiency might one use in a real-world setting?

Exercises 1.1-3

Select a data structure that you have seen previously, and discuss its strengths and limitations.
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How are the shortest-path and traveling-salesman problems given above similar? How are
they different?

sl
>
Q
=
(]
— o
wn
(9]
wn
[S—
[
1

(9]

Come up with a real-world problem in which only the best solution will do. Then come up
with one in which a solution that is "approximately" the best is good enough.

1.2 Algorithms as a technology



Suppose computers were infinitely fast and computer memory was free. Would you have any
reason to study algorithms? The answer is yes, if for no other reason than that you would still
like to demonstrate that your solution method terminates and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a problem would do. You
would probably want your implementation to be within the bounds of good software
engineering practice (i.e., well designed and documented), but you would most often use
whichever method was the easiest to implement.

Of course, computers may be fast, but they are not infinitely fast. And memory may be cheap,
but it is not free. Computing time is therefore a bounded resource, and so is space in memory.
These resources should be used wisely, and algorithms that are efficient in terms of time or
space will help you do so.

Efficiency

Algorithms devised to solve the same problem often differ dramatically in their efficiency.
These differences can be much more significant than differences due to hardware and
software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as
insertion sort, takes time roughly equal to ¢;n” to sort n items, where ¢, is a constant that does
not depend on 7. That is, it takes time roughly proportional to #*. The second, merge sort,
takes time roughly equal to c,n 1g n, where Ig n stands for log, # and ¢; is another constant
that also does not depend on n. Insertion sort usually has a smaller constant factor than merge
sort, so that ¢; < c;. We shall see that the constant factors can be far less significant in the
running time than the dependence on the input size n. Where merge sort has a factor of Ig n in
its running time, insertion sort has a factor of n, which is much larger. Although insertion sort
is usually faster than merge sort for small input sizes, once the input size n becomes large
enough, merge sort's advantage of Ig n vs. n will more than compensate for the difference in
constant factors. No matter how much smaller ¢; is than ¢;, there will always be a crossover
point beyond which merge sort is faster.

For a concrete example, let us pit a faster computer (computer A) running insertion sort
against a slower computer (computer B) running merge sort. They each must sort an array of
one million numbers. Suppose that computer A executes one billion instructions per second
and computer B executes only ten million instructions per second, so that computer A is 100
times faster than computer B in raw computing power. To make the difference even more
dramatic, suppose that the world's craftiest programmer codes insertion sort in machine
language for computer A, and the resulting code requires 2x” instructions to sort » numbers.
(Here, c; = 2.) Merge sort, on the other hand, is programmed for computer B by an average
programmer using a high-level language with an inefficient compiler, with the resulting code
taking 50n lg n instructions (so that ¢; = 50). To sort one million numbers, computer A takes

2. {102 instructions

- - = 2000 seconds .
107 instructions/second

while computer B takes



50 - 107 1z 107 instructions
= =2 10 seconds .

107 instructions/second

By using an algorithm whose running time grows more slowly, even with a poor compiler,
computer B runs 20 times faster than computer A! The advantage of merge sort is even more
pronounced when we sort ten million numbers: where insertion sort takes approximately 2.3
days, merge sort takes under 20 minutes. In general, as the problem size increases, so does the
relative advantage of merge sort.

Algorithms and other technologies

The example above shows that algorithms, like computer hardware, are a technology. Total
system performance depends on choosing efficient algorithms as much as on choosing fast
hardware. Just as rapid advances are being made in other computer technologies, they are
being made in algorithms as well.

You might wonder whether algorithms are truly that important on contemporary computers in
light of other advanced technologies, such as

e hardware with high clock rates, pipelining, and superscalar architectures,
e easy-to-use, intuitive graphical user interfaces (GUIs),

e object-oriented systems, and

e local-area and wide-area networking.

The answer is yes. Although there are some applications that do not explicitly require
algorithmic content at the application level (e.g., some simple web-based applications), most
also require a degree of algorithmic content on their own. For example, consider a web-based
service that determines how to travel from one location to another. (Several such services
existed at the time of this writing.) Its implementation would rely on fast hardware, a
graphical user interface, wide-area networking, and also possibly on object orientation.
However, it would also require algorithms for certain operations, such as finding routes
(probably using a shortest-path algorithm), rendering maps, and interpolating addresses.

Moreover, even an application that does not require algorithmic content at the application
level relies heavily upon algorithms. Does the application rely on fast hardware? The
hardware design used algorithms. Does the application rely on graphical user interfaces? The
design of any GUI relies on algorithms. Does the application rely on networking? Routing in
networks relies heavily on algorithms. Was the application written in a language other than
machine code? Then it was processed by a compiler, interpreter, or assembler, all of which
make extensive use of algorithms. Algorithms are at the core of most technologies used in
contemporary computers.

Furthermore, with the ever-increasing capacities of computers, we use them to solve larger
problems than ever before. As we saw in the above comparison between insertion sort and
merge sort, it is at larger problem sizes that the differences in efficiencies between algorithms
become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one characteristic that
separates the truly skilled programmers from the novices. With modern computing



technology, you can accomplish some tasks without knowing much about algorithms, but
with a good background in algorithms, you can do much, much more.

Exercises 1.2-1

Give an example of an application that requires algorithmic content at the application level,
and discuss the function of the algorithms involved.

Exercises 1.2-2

Suppose we are comparing implementations of insertion sort and merge sort on the same
machine. For inputs of size n, insertion sort runs in 8x* steps, while merge sort runs in 64 g
n steps. For which values of n does insertion sort beat merge sort?

Exercises 1.2-3

What is the smallest value of # such that an algorithm whose running time is 100 runs faster
than an algorithm whose running time is 2" on the same machine?

Problems 1-1: Comparison of running times

For each function f{n) and time ¢ in the following table, determine the largest size n of a
problem that can be solved in time ¢, assuming that the algorithm to solve the problem takes
f(n) microseconds.

second minute hour day month year century



Chapter notes

There are many excellent texts on the general topic of algorithms, including those by Aho,
Hopcroft, and Ullman [5, 6], Baase and Van Gelder [26], Brassard and Bratley [46, 47],
Goodrich and Tamassia [128], Horowitz, Sahni, and Rajasekaran [158], Kingston [179],
Knuth [182, 183, 185], Kozen [193], Manber [210], Mehlhorn [217, 218, 219], Purdom and
Brown [252], Reingold, Nievergelt, and Deo [257], Sedgewick [269], Skiena [280], and Wilf
[315]. Some of the more practical aspects of algorithm design are discussed by Bentley [39,
40] and Gonnet [126]. Surveys of the field of algorithms can also be found in the Handbook
of Theoretical Computer Science, Volume A [302] and the CRC Handbook on Algorithms
and Theory of Computation [24]. Overviews of the algorithms used in computational biology
can be found in textbooks by Gusfield [136], Pevzner [240], Setubal and Medinas [272], and
Waterman [309].

Chapter 2: Getting Started

This chapter will familiarize you with the framework we shall use throughout the book to
think about the design and analysis of algorithms. It is self-contained, but it does include
several references to material that will be introduced in Chapters 3 and 4. (It also contains
several summations, which Appendix A shows how to solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem introduced in
Chapter 1. We define a "pseudocode" that should be familiar to readers who have done
computer programming and use it to show how we shall specify our algorithms. Having
specified the algorithm, we then argue that it correctly sorts and we analyze its running time.
The analysis introduces a notation that focuses on how that time increases with the number of
items to be sorted. Following our discussion of insertion sort, we introduce the divide-and-
conquer approach to the design of algorithms and use it to develop an algorithm called merge
sort. We end with an analysis of merge sort's running time.

2.1 Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced in Chapter 1:

o Input: A sequence of » numbers [ay, ay, . . .,a,[ .
e Output: A permutation (reordering) @i- @ ... a;}of the input sequence such that
rj'; EHE B oees Eu:‘.

The numbers that we wish to sort are also known as the keys.

In this book, we shall typically describe algorithms as programs written in a pseudocode that
is similar in many respects to C, Pascal, or Java. If you have been introduced to any of these
languages, you should have little trouble reading our algorithms. What separates pseudocode
from "real" code is that in pseudocode, we employ whatever expressive method is most clear
and concise to specify a given algorithm. Sometimes, the clearest method is English, so do not
be surprised if you come across an English phrase or sentence embedded within a section of
"real" code. Another difference between pseudocode and real code is that pseudocode is not
typically concerned with issues of software engineering. Issues of data abstraction,



modularity, and error handling are often ignored in order to convey the essence of the
algorithm more concisely.

We start with insertion sort, which is an efficient algorithm for sorting a small number of
elements. Insertion sort works the way many people sort a hand of playing cards. We start
with an empty left hand and the cards face down on the table. We then remove one card at a
time from the table and insert it into the correct position in the left hand. To find the correct
position for a card, we compare it with each of the cards already in the hand, from right to
left, as illustrated in Figure 2.1. At all times, the cards held in the left hand are sorted, and
these cards were originally the top cards of the pile on the table.

Figure 2.1: Sorting a hand of cards using insertion sort.

Our pseudocode for insertion sort is presented as a procedure called INSERTION-SORT,
which takes as a parameter an array A[1 [] n] containing a sequence of length 7 that is to be
sorted. (In the code, the number n of elements in 4 is denoted by length[A4].) The input
numbers are sorted in place: the numbers are rearranged within the array 4, with at most a
constant number of them stored outside the array at any time. The input array 4 contains the
sorted output sequence when INSERTION-SORT is finished.

INSERTION-SORT (A)

1 for j « 2 to length[A]

2 do key « A[7]

3 > Insert A[j] into the sorted sequence A[l [] 7 - 17].
4 i 37 -1

5 while i > 0 and A[i] > key

6 do A[i + 1] « A[1]

7 i« 1i-1

8 Ali + 1] < key

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for 4 = [15, 2, 4, 6, 1, 3[1. The index j indicates
the "current card" being inserted into the hand. At the beginning of each iteration of the
"outer" for loop, which is indexed by j, the subarray consisting of elements A[1 [1 - 1]
constitute the currently sorted hand, and elements A[j + 1 [] n] correspond to the pile of cards
still on the table. In fact, elements A[1 []j - 1] are the elements originally in positions 1
through j - 1, but now in sorted order. We state these properties of A[1 [] j -1] formally as a
loop invariant.



e At the start of each iteration of the for loop of lines 1-8, the subarray A[1 [ - 1]
consists of the elements originally in A[1 [Jj - 1] but in sorted order.
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Figure 2.2: The operation of INSERTION-SORT on the array 4 = [15, 2, 4, 6, 1, 3[1. Array
indices appear above the rectangles, and values stored in the array positions appear within the
rectangles. (a)-(e) The iterations of the for loop of lines 1-8. In each iteration, the black
rectangle holds the key taken from A[;], which is compared with the values in shaded
rectangles to its left in the test of line 5. Shaded arrows show array values moved one position
to the right in line 6, and black arrows indicate where the key is moved to in line 8. (f) The
final sorted array.

We use loop invariants to help us understand why an algorithm is correct. We must show
three things about a loop invariant:

o Initialization: It is true prior to the first iteration of the loop.

e Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

e Termination: When the loop terminates, the invariant gives us a useful property that
helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration of the
loop. Note the similarity to mathematical induction, where to prove that a property holds, you
prove a base case and an inductive step. Here, showing that the invariant holds before the first
iteration is like the base case, and showing that the invariant holds from iteration to iteration is
like the inductive step.

The third property is perhaps the most important one, since we are using the loop invariant to
show correctness. It also differs from the usual use of mathematical induction, in which the
inductive step is used infinitely; here, we stop the "induction" when the loop terminates.

Let us see how these properties hold for insertion sort.

o Initialization: We start by showing that the loop invariant holds before the first loop
iteration, when j = 2." The subarray A[1 [] j - 1], therefore, consists of just the single
element A[1], which is in fact the original element in A[1]. Moreover, this subarray is
sorted (trivially, of course), which shows that the loop invariant holds prior to the first
iteration of the loop.

e Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the outer for loop works by
moving A[ j - 1], A[ j - 2], A[j - 3], and so on by one position to the right until the
proper position for 4[ j] is found (lines 4-7), at which point the value of 4[/] is inserted
(line 8). A more formal treatment of the second property would require us to state and
show a loop invariant for the "inner" while loop. At this point, however, we prefer not
to get bogged down in such formalism, and so we rely on our informal analysis to
show that the second property holds for the outer loop.



Termination: Finally, we examine what happens when the loop terminates. For
insertion sort, the outer for loop ends when j exceeds n, i.e., whenj =n + 1.
Substituting n + 1 for j in the wording of loop invariant, we have that the subarray A[1
] n] consists of the elements originally in A[1 [J n], but in sorted order. But the
subarray A[1 [ n] is the entire array! Hence, the entire array is sorted, which means
that the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this chapter and in
other chapters as well.

Pseudocode conventions

We use the following conventions in our pseudocode.

1.

Indentation indicates block structure. For example, the body of the for loop that begins
on line 1 consists of lines 2-8, and the body of the while loop that begins on line 5
contains lines 6-7 but not line 8. Our indentation style applies to if-then-else
statements as well. Using indentation instead of conventional indicators of block
structure, such as begin and end statements, greatly reduces clutter while preserving,
or even enhancing, clarity.””

The looping constructs while, for, and repeat and the conditional constructs if, then,
and else have interpretations similar to those in Pascal.l®! There is one subtle
difference with respect to for loops, however: in Pascal, the value of the loop-counter
variable is undefined upon exiting the loop, but in this book, the loop counter retains
its value after exiting the loop. Thus, immediately after a for loop, the loop counter's
value is the value that first exceeded the for loop bound. We used this property in our
correctness argument for insertion sort. The for loop header in line 1 is for j < 2 to
length[A], and so when this loop terminates, j = length[A]+1 (or, equivalently, j = n+1,
since n = length[A]).

The symbol "»>" indicates that the remainder of the line is a comment.

A multiple assignment of the form i «— j «— e assigns to both variables i and j the value
of expression e; it should be treated as equivalent to the assignment j «— e followed by
the assignment i «— j.

Variables (such as i, j, and key) are local to the given procedure. We shall not use
global variables without explicit indication.

Array elements are accessed by specifying the array name followed by the index in
square brackets. For example, 4[i] indicates the ith element of the array 4. The
notation "[]" is used to indicate a range of values within an array. Thus, 4[1 [1 ]
indicates the subarray of 4 consisting of the j elements A[1], A[2], ..., A[/].
Compound data are typically organized into objects, which are composed of attributes
or fields. A particular field is accessed using the field name followed by the name of
its object in square brackets. For example, we treat an array as an object with the
attribute /ength indicating how many elements it contains. To specify the number of
elements in an array 4, we write length[A]. Although we use square brackets for both
array indexing and object attributes, it will usually be clear from the context which
interpretation is intended.

A variable representing an array or object is treated as a pointer to the data
representing the array or object. For all fields f of an object x, setting y «<— x causes f[y]
= f[x]. Moreover, if we now set f[x] «— 3, then afterward not only is f[x] = 3, but f[y] =



3 as well. In other words, x and y point to ("are") the same object after the assignment
Y x.

Sometimes, a pointer will refer to no object at all. In this case, we give it the special
value NIL.

8. Parameters are passed to a procedure by value: the called procedure receives its own
copy of the parameters, and if it assigns a value to a parameter, the change is not seen
by the calling procedure. When objects are passed, the pointer to the data representing
the object is copied, but the object's fields are not. For example, if x is a parameter of a
called procedure, the assignment x «— y within the called procedure is not visible to the
calling procedure. The assignment f'[x] < 3, however, is visible.

9. The boolean operators "and" and "or" are short circuiting. That is, when we evaluate
the expression "x and y" we first evaluate x. If x evaluates to FALSE, then the entire
expression cannot evaluate to TRUE, and so we do not evaluate y. If, on the other
hand, x evaluates to TRUE, we must evaluate y to determine the value of the entire
expression. Similarly, in the expression "x or y" we evaluate the expression y only if x
evaluates to FALSE. Short-circuiting operators allow us to write boolean expressions
such as "x # NIL and f[x] = y" without worrying about what happens when we try to
evaluate f[x] when x is NIL.

Exercises 2.1-1

Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the array 4 =
1131, 41, 59, 26, 41, 58[1.

Exercises 2.1-2

Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of
nondecreasing order.

Exercises 2.1-3

Consider the searching problem:

o Input: A sequence of n numbers 4 = [lay, az, . . ., a,/ | and a value v.
e Output: An index i such that v = A[i] or the special value NIL if v does not appear in
A.

Write pseudocode for linear search, which scans through the sequence, looking for v. Using a
loop invariant, prove that your algorithm is correct. Make sure that your loop invariant fulfills
the three necessary properties.



Exercises 2.1-4

Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A
and B. The sum of the two integers should be stored in binary form in an (n + 1)-element
array C. State the problem formally and write pseudocode for adding the two integers.

['When the loop is a for loop, the moment at which we check the loop invariant just prior to
the first iteration is immediately after the initial assignment to the loop-counter variable and
just before the first test in the loop header. In the case of INSERTION-SORT, this time is
after assigning 2 to the variable j but before the first test of whether j < length[A].

2M[n real programming languages, it is generally not advisable to use indentation alone to
indicate block structure, since levels of indentation are hard to determine when code is split
across pages.

BIMost block-structured languages have equivalent constructs, though the exact syntax may
differ from that of Pascal.

2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the algorithm
requires. Occasionally, resources such as memory, communication bandwidth, or computer
hardware are of primary concern, but most often it is computational time that we want to
measure. Generally, by analyzing several candidate algorithms for a problem, a most efficient
one can be easily identified. Such analysis may indicate more than one viable candidate, but
several inferior algorithms are usually discarded in the process.

Before we can analyze an algorithm, we must have a model of the implementation technology
that will be used, including a model for the resources of that technology and their costs. For
most of this book, we shall assume a generic one-processor, random-access machine (RAM)
model of computation as our implementation technology and understand that our algorithms
will be implemented as computer programs. In the RAM model, instructions are executed one
after another, with no concurrent operations. In later chapters, however, we shall have
occasion to investigate models for digital hardware.

Strictly speaking, one should precisely define the instructions of the RAM model and their
costs. To do so, however, would be tedious and would yield little insight into algorithm
design and analysis. Yet we must be careful not to abuse the RAM model. For example, what
if a RAM had an instruction that sorts? Then we could sort in just one instruction. Such a
RAM would be unrealistic, since real computers do not have such instructions. Our guide,
therefore, is how real computers are designed. The RAM model contains instructions
commonly found in real computers: arithmetic (add, subtract, multiply, divide, remainder,
floor, ceiling), data movement (load, store, copy), and control (conditional and unconditional
branch, subroutine call and return). Each such instruction takes a constant amount of time.



The data types in the RAM model are integer and floating point. Although we typically do not
concern ourselves with precision in this book, in some applications precision is crucial. We
also assume a limit on the size of each word of data. For example, when working with inputs
of size n, we typically assume that integers are represented by c Ig » bits for some constant ¢ >
1. We require ¢ > 1 so that each word can hold the value of #, enabling us to index the
individual input elements, and we restrict ¢ to be a constant so that the word size does not
grow arbitrarily. (If the word size could grow arbitrarily, we could store huge amounts of data
in one word and operate on it all in constant time-clearly an unrealistic scenario.)

Real computers contain instructions not listed above, and such instructions represent a gray
area in the RAM model. For example, is exponentiation a constant-time instruction? In the
general case, no; it takes several instructions to compute x” when x and y are real numbers. In
restricted situations, however, exponentiation is a constant-time operation. Many computers
have a "shift left" instruction, which in constant time shifts the bits of an integer by &k
positions to the left. In most computers, shifting the bits of an integer by one position to the
left is equivalent to multiplication by 2. Shifting the bits by £ positions to the left is equivalent
to multiplication by 2*. Therefore, such computers can compute 2 in one constant-time
instruction by shifting the integer 1 by & positions to the left, as long as & is no more than the
number of bits in a computer word. We will endeavor to avoid such gray areas in the RAM
model, but we will treat computation of 2¥ as a constant-time operation when £ is a small
enough positive integer.

In the RAM model, we do not attempt to model the memory hierarchy that is common in
contemporary computers. That is, we do not model caches or virtual memory (which is most
often implemented with demand paging). Several computational models attempt to account
for memory-hierarchy effects, which are sometimes significant in real programs on real
machines. A handful of problems in this book examine memory-hierarchy effects, but for the
most part, the analyses in this book will not consider them. Models that include the memory
hierarchy are quite a bit more complex than the RAM model, so that they can be difficult to
work with. Moreover, RAM-model analyses are usually excellent predictors of performance
on actual machines.

Analyzing even a simple algorithm in the RAM model can be a challenge. The mathematical
tools required may include combinatorics, probability theory, algebraic dexterity, and the
ability to identify the most significant terms in a formula. Because the behavior of an
algorithm may be different for each possible input, we need a means for summarizing that
behavior in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a given algorithm, we
still face many choices in deciding how to express our analysis. We would like a way that is
simple to write and manipulate, shows the important characteristics of an algorithm's resource
requirements, and suppresses tedious details.

Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input: sorting a thousand
numbers takes longer than sorting three numbers. Moreover, INSERTION-SORT can take
different amounts of time to sort two input sequences of the same size depending on how
nearly sorted they already are. In general, the time taken by an algorithm grows with the size
of the input, so it is traditional to describe the running time of a program as a function of the



size of its input. To do so, we need to define the terms "running time" and "size of input"
more carefully.

The best notion for input size depends on the problem being studied. For many problems,
such as sorting or computing discrete Fourier transforms, the most natural measure is the
number of items in the input-for example, the array size n for sorting. For many other
problems, such as multiplying two integers, the best measure of input size is the fotal number
of bits needed to represent the input in ordinary binary notation. Sometimes, it is more
appropriate to describe the size of the input with two numbers rather than one. For instance, if
the input to an algorithm is a graph, the input size can be described by the numbers of vertices
and edges in the graph. We shall indicate which input size measure is being used with each
problem we study.

The running time of an algorithm on a particular input is the number of primitive operations
or "steps" executed. It is convenient to define the notion of step so that it is as machine-
independent as possible. For the moment, let us adopt the following view. A constant amount
of time is required to execute each line of our pseudocode. One line may take a different
amount of time than another line, but we shall assume that each execution of the ith line takes
time ¢; , where ¢; is a constant. This viewpoint is in keeping with the RAM model, and it also
reflects how the pseudocode would be implemented on most actual computers.™

In the following discussion, our expression for the running time of INSERTION-SORT will
evolve from a messy formula that uses all the statement costs ¢; to a much simpler notation
that is more concise and more easily manipulated. This simpler notation will also make it easy
to determine whether one algorithm is more efficient than another.

We start by presenting the INSERTION-SORT procedure with the time "cost" of each
statement and the number of times each statement is executed. For eachj =2, 3, ..., n, where
n = length[A], we let ¢; be the number of times the while loop test in line 5 is executed for that
value of j. When a for or while loop exits in the usual way (i.e., due to the test in the loop
header), the test is executed one time more than the loop body. We assume that comments are
not executable statements, and so they take no time.

INSERTION-SORT (A) cost times
1 for j —« 2 to length[A] Cy n
2 do key < A[7F] Cy n -1
3 > Insert A[7j] into the sorted
sequence A[l [ 7 - 17. 0 n -1
4 I« 3j-1 Cy n -1
5 while i > 0 and A[i] > key Cs Yiaali
6 do A[i + 1] « A[4] Ce Lialti =1
7 i 1i-1 c Fimalty— 1)
8 Ali + 1] < key Cg n -1

The running time of the algorithm is the sum of running times for each statement executed; a
statement that takes ¢; steps to execute and is executed » times will contribute ¢z to the total
running time."”! To compute 7(x), the running time of INSERTION-SORT, we sum the
products of the cost and times columns, obtaining
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Even for inputs of a given size, an algorithm's running time may depend on which input of
that size is given. For example, in INSERTION-SORT, the best case occurs if the array is
already sorted. For eachj =2, 3, ..., n, we then find that A[i] < key in line 5 when i has its
initial value of j - 1. Thus ;=1 forj =2, 3, . . ., n, and the best-case running time is

Tny=cin+cx(n-1)+cymn-1)+cs(n-1)+cg(n-1)
=(c1tcrtestestceg)n-(crtestestcs).

This running time can be expressed as an + b for constants a and b that depend on the
statement costs ¢; ; it is thus a linear function of n.

If the array is in reverse sorted order-that is, in decreasing order-the worst case results. We
must compare each element A[;j] with each element in the entire sorted subarray A[1 [ - 1],
andso t;,=j forj=2, 3, ..., n. Noting that
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(see Appendix A for a review of how to solve these summations), we find that in the worst
case, the running time of INSERTION-SORT is

P y nin 4+ 1)
Tiny = epp+ealn—1)4+e4(n — |'+-:";.( - == l)
nin—1) nin—1) I
+ <5 5 + 7 5 +cgin — 1)
_ ({'_-', Cg {'?) 3 i i ) g U | )
= -E+E+?- H+(f|+fj+f4+?—?—?—{h)n

—({cy 4+ g4 05+ g).

This worst-case running time can be expressed as an® + bn + ¢ for constants a, b, and ¢ that
again depend on the statement costs ¢; ; it is thus a quadratic function of n.

Typically, as in insertion sort, the running time of an algorithm is fixed for a given input,
although in later chapters we shall see some interesting "randomized" algorithms whose

behavior can vary even for a fixed input.

Worst-case and average-case analysis



In our analysis of insertion sort, we looked at both the best case, in which the input array was
already sorted, and the worst case, in which the input array was reverse sorted. For the
remainder of this book, though, we shall usually concentrate on finding only the worst-case
running time, that is, the longest running time for any input of size n. We give three reasons
for this orientation.

o The worst-case running time of an algorithm is an upper bound on the running time for
any input. Knowing it gives us a guarantee that the algorithm will never take any
longer. We need not make some educated guess about the running time and hope that
it never gets much worse.

o For some algorithms, the worst case occurs fairly often. For example, in searching a
database for a particular piece of information, the searching algorithm's worst case
will often occur when the information is not present in the database. In some searching
applications, searches for absent information may be frequent.

o The "average case" is often roughly as bad as the worst case. Suppose that we
randomly choose #» numbers and apply insertion sort. How long does it take to
determine where in subarray A[1 [ - 1] to insert element A[;]? On average, half the
elements in A[1 [] j - 1] are less than A[/], and half the elements are greater. On
average, therefore, we check half of the subarray A[1 [ - 1], so ¢, =/2. If we work
out the resulting average-case running time, it turns out to be a quadratic function of
the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the average-case or expected running time
of an algorithm; in Chapter 5, we shall see the technique of probabilistic analysis, by which
we determine expected running times. One problem with performing an average-case
analysis, however, is that it may not be apparent what constitutes an "average" input for a
particular problem. Often, we shall assume that all inputs of a given size are equally likely. In
practice, this assumption may be violated, but we can sometimes use a randomized
algorithm, which makes random choices, to allow a probabilistic analysis.

Order of growth

We used some simplifying abstractions to ease our analysis of the INSERTION-SORT
procedure. First, we ignored the actual cost of each statement, using the constants c¢; to
represent these costs. Then, we observed that even these constants give us more detail than we
really need: the worst-case running time is an® + bn + ¢ for some constants a, b, and ¢ that
depend on the statement costs ¢;. We thus ignored not only the actual statement costs, but also
the abstract costs ¢;.

We shall now make one more simplifying abstraction. It is the rate of growth, or order of
growth, of the running time that really interests us. We therefore consider only the leading
term of a formula (e.g., an®), since the lower-order terms are relatively insignificant for large
n. We also ignore the leading term's constant coefficient, since constant factors are less
significant than the rate of growth in determining computational efficiency for large inputs.
Thus, we write that insertion sort, for example, has a worst-case running time of ©(#°)
(pronounced "theta of n-squared"). We shall use ®-notation informally in this chapter; it will
be defined precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another if its worst-case running
time has a lower order of growth. Due to constant factors and lower-order terms, this



evaluation may be in error for small inputs. But for large enough inputs, a ©(n?) algorithm, for
example, will run more quickly in the worst case than a ©(r°) algorithm.

Exercises 2.2-1

Express the function #°/1000 - 100n - 100n + 3 in terms of @-notation.

Exercises 2.2-2

Consider sorting n numbers stored in array A by first finding the smallest element of 4 and
exchanging it with the element in A[1]. Then find the second smallest element of A4, and
exchange it with 4[2]. Continue in this manner for the first n - 1 elements of 4. Write
pseudocode for this algorithm, which is known as selection sort. What loop invariant does
this algorithm maintain? Why does it need to run for only the first # - 1 elements, rather than
for all n elements? Give the best-case and worst-case running times of selection sort in ®-
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Consider linear search again (see Exercise 2.1-3). How many elements of the input sequence
need to be checked on the average, assuming that the element being searched for is equally
likely to be any element in the array? How about in the worst case? What are the average-case
and worst-case running times of linear search in ®-notation? Justify your answers.

Exercises 2.2-4

How can we modify almost any algorithm to have a good best-case running time?

M There are some subtleties here. Computational steps that we specify in English are often
variants of a procedure that requires more than just a constant amount of time. For example,
later in this book we might say "sort the points by x-coordinate," which, as we shall see, takes
more than a constant amount of time. Also, note that a statement that calls a subroutine takes
constant time, though the subroutine, once invoked, may take more. That is, we separate the
process of calling the subroutine-passing parameters to it, etc.-from the process of executing
the subroutine.



BIThis characteristic does not necessarily hold for a resource such as memory. A statement
that references m words of memory and is executed » times does not necessarily consume mn
words of memory in total.

2.3 Designing algorithms

There are many ways to design algorithms. Insertion sort uses an incremental approach:
having sorted the subarray A[1 []j - 1], we insert the single element A[;] into its proper place,
yielding the sorted subarray A[1 [ j].

In this section, we examine an alternative design approach, known as "divide-and-conquer."
We shall use divide-and-conquer to design a sorting algorithm whose worst-case running time
is much less than that of insertion sort. One advantage of divide-and-conquer algorithms is
that their running times are often easily determined using techniques that will be introduced in

Chapter 4.
2.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem, they call
themselves recursively one or more times to deal with closely related subproblems. These
algorithms typically follow a divide-and-conquer approach: they break the problem into
several subproblems that are similar to the original problem but smaller in size, solve the
subproblems recursively, and then combine these solutions to create a solution to the original
problem.

The divide-and-conquer paradigm involves three steps at each level of the recursion:

o Divide the problem into a number of subproblems.

o Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

o Combine the solutions to the subproblems into the solution for the original problem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. Intuitively, it
operates as follows.

o Divide: Divide the n-element sequence to be sorted into two subsequences of r/2
elements each.

e Conquer: Sort the two subsequences recursively using merge sort.

o Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion "bottoms out" when the sequence to be sorted has length 1, in which case there
is no work to be done, since every sequence of length 1 is already in sorted order.

The key operation of the merge sort algorithm is the merging of two sorted sequences in the
"combine" step. To perform the merging, we use an auxiliary procedure MERGE(4, p, g, r),
where A4 is an array and p, ¢, and r are indices numbering elements of the array such that p < g
< r. The procedure assumes that the subarrays A[p [ g] and A[g + 1 [] r] are in sorted order.
It merges them to form a single sorted subarray that replaces the current subarray A[p [ r].



Our MERGE procedure takes time ®(n), where n =r - p + 1 is the number of elements being
merged, and it works as follows. Returning to our card-playing motif, suppose we have two
piles of cards face up on a table. Each pile is sorted, with the smallest cards on top. We wish
to merge the two piles into a single sorted output pile, which is to be face down on the table.
Our basic step consists of choosing the smaller of the two cards on top of the face-up piles,
removing it from its pile (which exposes a new top card), and placing this card face down
onto the output pile. We repeat this step until one input pile is empty, at which time we just
take the remaining input pile and place it face down onto the output pile. Computationally,
each basic step takes constant time, since we are checking just two top cards. Since we
perform at most n basic steps, merging takes @(n) time.

The following pseudocode implements the above idea, but with an additional twist that avoids
having to check whether either pile is empty in each basic step. The idea is to put on the
bottom of each pile a sentinel card, which contains a special value that we use to simplify our
code. Here, we use o as the sentinel value, so that whenever a card with oo is exposed, it
cannot be the smaller card unless both piles have their sentinel cards exposed. But once that
happens, all the nonsentinel cards have already been placed onto the output pile. Since we
know in advance that exactly 7 - p + 1 cards will be placed onto the output pile, we can stop
once we have performed that many basic steps.

MERGE (4, p, g, r)
1 meg-p+1

2 n, «r -gq

3 create arrays L[l 0 n; + 1] and R[1 [ n, + 1]
4 for i « 1 to n;

5 do L[i] « Alp + 1 - 1]
6 for j —« 1 to n,

7 do R[j] « Alg + 7]

8 Lln, + 1] « =

9 R[n, + 1] «
10 1 « 1
11 7 <« 1
12 for k « p to r
13 do if L[i] £ RI[7]
14 then A[k] « L[i]
15 i~ 1+1
16 else Alk] « R[7]
17 J - F+1

In detail, the MERGE procedure works as follows. Line 1 computes the length n; of the
subarray A[p [ ¢], and line 2 computes the length 7, of the subarray A[g + 1 [] r]. We create
arrays L and R ("left" and "right"), of lengths n; + 1 and n, + 1, respectively, in line 3. The for
loop of lines 4-5 copies the subarray A[p [ ¢] into L[1 [ n;], and the for loop of lines 6-7
copies the subarray A[g + 1 [] 7] into R[1 [ ny]. Lines 8-9 put the sentinels at the ends of the
arrays L and R. Lines 10-17, illustrated in Figure 2.3, perform the » - p + 1 basic steps by
maintaining the following loop invariant:

o At the start of each iteration of the for loop of lines 12-17, the subarray A[p [ k- 1]
contains the k - p smallest elements of L[1 [ n; + 1] and R[1 [] ny + 1], in sorted
order. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not
been copied back into 4.
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Figure 2.3: The operation of lines 10-17 in the call MERGE(4, 9, 12, 16), when the subarray
A[9 ] 16] contains the sequence (12,4, 5,7, 1, 2, 3, 6[1. After copying and inserting
sentinels, the array L contains (12, 4, 5, 7, «o[], and the array R contains [11, 2, 3, 6, col].
Lightly shaded positions in 4 contain their final values, and lightly shaded positions in L and
R contain values that have yet to be copied back into 4. Taken together, the lightly shaded
positions always comprise the values originally in A[9 [] 16], along with the two sentinels.
Heavily shaded positions in 4 contain values that will be copied over, and heavily shaded
positions in L and R contain values that have already been copied back into A. (a)-(h) The
arrays A, L, and R, and their respective indices £, i, and j prior to each iteration of the loop of
lines 12-17. (i) The arrays and indices at termination. At this point, the subarray in A[9 [ 16]
is sorted, and the two sentinels in L and R are the only two elements in these arrays that have
not been copied into 4.

We must show that this loop invariant holds prior to the first iteration of the for loop of lines
12-17, that each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

o Initialization: Prior to the first iteration of the loop, we have k = p, so that the
subarray A[p [| k - 1] is empty. This empty subarray contains the &k - p = 0 smallest
elements of L and R, and since i =j = 1, both L[i] and R[/] are the smallest elements of
their arrays that have not been copied back into 4.
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e Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that L[] < R[j]. Then L[i] is the smallest element not yet copied back into 4.
Because A[p [ k - 1] contains the & - p smallest elements, after line 14 copies L[i] into
A[k], the subarray A[p [ k] will contain the & - p + 1 smallest elements. Incrementing
k (in the for loop update) and 7 (in line 15) reestablishes the loop invariant for the next



iteration. If instead L[i] > R[/], then lines 16-17 perform the appropriate action to
maintain the loop invariant.

e Termination: At termination, k= + 1. By the loop invariant, the subarray A[p [ k -
1], which is A[p [ r], contains the k - p =7 - p + 1 smallest elements of L[1 [] n; + 1]
and R[1 [ ny + 1], in sorted order. The arrays L and R together containn; + n, +2 =r
- p + 3 elements. All but the two largest have been copied back into 4, and these two
largest elements are the sentinels.

To see that the MERGE procedure runs in ®(n) time, where n = r - p + 1, observe that each of
lines 1-3 and 8-11 takes constant time, the for loops of lines 4-7 take ®(n; + ny) = O(n)
time,[g] and there are n iterations of the for loop of lines 12-17, each of which takes constant
time.

We can now use the MERGE procedure as a subroutine in the merge sort algorithm. The
procedure MERGE-SORT(4, p, r) sorts the elements in the subarray A[p [ r]. If p > r, the
subarray has at most one element and is therefore already sorted. Otherwise, the divide step
simply computes an index ¢ that partitions A[p [] 7] into two subarrays: A[p [ g], containing

[7/2] elements, and A[g + 1 (I #], containing | 7/2| elements.”

MERGE-SORT (4, p, r)

1 if p < r

2 then g « | (p + r)/2]
MERGE-SORT (&, p, Q)
MERGE-SORT (4, g + 1, r)
MERGE (4, p, q, )

g W

To sort the entire sequence 4 = [1A[1], A[2], . .., A[n][], we make the initial call MERGE-
SORT(A4, 1, length[A]), where once again length[A] = n. Figure 2.4 illustrates the operation of
the procedure bottom-up when 7 is a power of 2. The algorithm consists of merging pairs of
1-item sequences to form sorted sequences of length 2, merging pairs of sequences of length 2
to form sorted sequences of length 4, and so on, until two sequences of length n/2 are merged
to form the final sorted sequence of length n.

sorted sequence
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Figure 2.4: The operation of merge sort on the array 4 = [15, 2,4, 7, 1, 3, 2, 6[ 1. The lengths
of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

2.3.2 Analyzing divide-and-conquer algorithms



When an algorithm contains a recursive call to itself, its running time can often be described
by a recurrence equation or recurrence, which describes the overall running time on a
problem of size n in terms of the running time on smaller inputs. We can then use
mathematical tools to solve the recurrence and provide bounds on the performance of the
algorithm.

A recurrence for the running time of a divide-and-conquer algorithm is based on the three
steps of the basic paradigm. As before, we let 7' (n) be the running time on a problem of size
n. If the problem size is small enough, say n < ¢ for some constant c, the straightforward
solution takes constant time, which we write as ®(1). Suppose that our division of the
problem yields a subproblems, each of which is 1/b the size of the original. (For merge sort,
both a and b are 2, but we shall see many divide-and-conquer algorithms in which a # b.) If
we take D(n) time to divide the problem into subproblems and C(n) time to combine the
solutions to the subproblems into the solution to the original problem, we get the recurrence

T () = &l ifn<c,
" laTi(n /by + D{my+C(n) otherwise .

In Chapter 4, we shall see how to solve common recurrences of this form.
Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the number of elements is
not even, our recurrence-based analysis is simplified if we assume that the original problem
size is a power of 2. Each divide step then yields two subsequences of size exactly n/2. In
Chapter 4, we shall see that this assumption does not affect the order of growth of the solution
to the recurrence.

We reason as follows to set up the recurrence for 7' (), the worst-case running time of merge
sort on n numbers. Merge sort on just one element takes constant time. When we have n > 1
elements, we break down the running time as follows.

o Divide: The divide step just computes the middle of the subarray, which takes
constant time. Thus, D(n) = O(1).

o Conquer: We recursively solve two subproblems, each of size n/2, which contributes
2T (n/2) to the running time.

o Combine: We have already noted that the MERGE procedure on an n-element
subarray takes time ®(n), so C(n) = O(n).

When we add the functions D(n) and C(n) for the merge sort analysis, we are adding a
function that is ®(n) and a function that is @(1). This sum is a linear function of », that is,
®(n). Adding it to the 27 (n/2) term from the "conquer" step gives the recurrence for the
worst-case running time 7 (n) of merge sort:

2.1) 0, . |8 ifn=1,
H - 2T (n/2)+ &) ifm=1.

In Chapter 4, we shall see the "master theorem," which we can use to show that 7' (n) is O(n g
n), where lg n stands for log, n. Because the logarithm function grows more slowly than any



linear function, for large enough inputs, merge sort, with its ®(n lg n) running time,
outperforms insertion sort, whose running time is O(n?), in the worst case.

We do not need the master theorem to intuitively understand why the solution to the
recurrence (2.1) is 7'(n) = O(n 1g n). Let us rewrite recurrence (2.1) as

(22) B e ifth=1,
;{”} s ?..Tl:”,l'llzl + i ifn =1,

where the constant ¢ represents the time required to solve problems of size 1 as well as the
time per array element of the divide and combine steps."™!

Figure 2.5 shows how we can solve the recurrence (2.2). For convenience, we assume that 7 is
an exact power of 2. Part (a) of the figure shows 7' (n), which in part (b) has been expanded
into an equivalent tree representing the recurrence. The cn term is the root (the cost at the top
level of recursion), and the two subtrees of the root are the two smaller recurrences 7T (n/2).
Part (c) shows this process carried one step further by expanding 7 (n/2). The cost for each of
the two subnodes at the second level of recursion is cn/2. We continue expanding each node
in the tree by breaking it into its constituent parts as determined by the recurrence, until the
problem sizes get down to 1, each with a cost of ¢. Part (d) shows the resulting tree.
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Figure 2.5: The construction of a recursion tree for the recurrence 7(n) = 27(n/2) + cn. Part
(a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The



fully expanded tree in part (d) has Ig n + 1 levels (i.e., it has height Ig n, as indicated), and
each level contributes a total cost of cn. The total cost, therefore, is cn 1g n + cn, which is O(n

g n).

Next, we add the costs across each level of the tree. The top level has total cost cn, the next
level down has total cost c(n/2) + c(n/2) = cn, the level after that has total cost c(n/4) + c(n/4)
+ ¢(n/4) + ¢(n/4) = cn, and so on. In general, the level i below the top has 2’ nodes, each
contributing a cost of ¢(n/2"), so that the ith level below the top has total cost 2’ ¢(n/2") = cn.
At the bottom level, there are n nodes, each contributing a cost of ¢, for a total cost of cn.

The total number of levels of the "recursion tree" in Figure 2.5 is Ig n + 1. This fact is easily
seen by an informal inductive argument. The base case occurs when n = 1, in which case there
is only one level. Since Ig 1 = 0, we have that Ig n + 1 gives the correct number of levels.
Now assume as an inductive hypothesis that the number of levels of a recursion tree for 2’
nodes is Ig 2’ + 1 =i + 1 (since for any value of i, we have that Ig 2’ = /). Because we are
assuming that the original input size is a power of 2, the next input size to consider is 2. A
tree with 2! nodes has one more level than a tree of 2° nodes, and so the total number of
levelsis (i + 1)+ 1=1g 2" + 1.

To compute the total cost represented by the recurrence (2.2), we simply add up the costs of
all the levels. There are 1g n + 1 levels, each costing cn, for a total cost of cn(lgn+ 1) =cn Ig

n + cn. Ignoring the low-order term and the constant ¢ gives the desired result of ®(n Ig n).

Exercises 2.3-1

Using Figure 2.4 as a model, illustrate the operation of merge sort on the array 4 = [13, 41,
52,26, 38, 57,9,4911.

Exercises 2.3-2

Rewrite the MERGE procedure so that it does not use sentinels, instead stopping once either
array L or R has had all its elements copied back to 4 and then copying the remainder of the
other array back into 4.

Exercises 2.3-3

Use mathematical induction to show that when 7 is an exact power of 2, the solution of the
recurrence

2 ifn=2,

T =l i o
%) 2T (n/2y+n ifn=2% fork > 1

isTin)=mnlgn.
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Insertion sort can be expressed as a recursive procedure as follows. In order to sort A[1 [ n],
we recursively sort A[1 [ n -1] and then insert A[n] into the sorted array A[1 [ n - 1]. Write a
recurrence for the running time of this recursive version of insertion sort.

Exercises 2.3-5

Referring back to the searching problem (see Exercise 2.1-3), observe that if the sequence 4 is
sorted, we can check the midpoint of the sequence against v and eliminate half of the
sequence from further consideration. Binary search is an algorithm that repeats this
procedure, halving the size of the remaining portion of the sequence each time. Write
pseudocode, either iterative or recursive, for binary search. Argue that the worst-case running
time of binary search is ®(lg n).

Exercises 2.3-6

Observe that the while loop of lines 5 - 7 of the INSERTION-SORT procedure in Section 2.1
uses a linear search to scan (backward) through the sorted subarray 4[1 [ - 1]. Can we use a
binary search (see Exercise 2.3-5) instead to improve the overall worst-case running time of
insertion sort to O(n g n)?
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Describe a ®(n 1g n)-time algorithm that, given a set S of # integers and another integer x,
determines whether or not there exist two elements in § whose sum is exactly x.

Problems 2-1: Insertion sort on small arrays in merge sort

Although merge sort runs in @(n lg 1) worst-case time and insertion sort runs in @(n”) worst-
case time, the constant factors in insertion sort make it faster for small #. Thus, it makes sense
to use insertion sort within merge sort when subproblems become sufficiently small. Consider
a modification to merge sort in which n/k sublists of length k are sorted using insertion sort
and then merged using the standard merging mechanism, where £ is a value to be determined.



a. Show that the n/k sublists, each of length £, can be sorted by insertion sort in O(nk)
worst-case time.

b. Show that the sublists can be merged in ®(n lg (n/k) worst-case time.

c. Given that the modified algorithm runs in @(nk + n 1g (n/k)) worst-case time, what is
the largest asymptotic (®notation) value of k as a function of n for which the modified
algorithm has the same asymptotic running time as standard merge sort?

d. How should k& be chosen in practice?

Problems 2-2: Correctness of bubblesort

Bubblesort is a popular sorting algorithm. It works by repeatedly swapping adjacent elements
that are out of order.

BUBBLESORT (A)
1 for i « 1 to length[A]

2 do for j — Iength[A] downto i + 1
3 do if A[j] < A[jF - 1]
4 then exchange A[j] « A[jF - 1]

a. Let A" denote the output of BUBBLESORT(A). To prove that BUBBLESORT is
correct, we need to prove that it terminates and that

23)ANI=A2) <= A'ln].

b. where n = length[A]. What else must be proved to show that BUBBLESORT actually
sorts?

The next two parts will prove inequality (2.3).

b. State precisely a loop invariant for the for loop in lines 2-4, and prove that this loop
invariant holds. Your proof should use the structure of the loop invariant proof
presented in this chapter.

c. Using the termination condition of the loop invariant proved in part (b), state a loop
invariant for the for loop in lines 1-4 that will allow you to prove inequality (2.3).
Your proof should use the structure of the loop invariant proof presented in this
chapter.

d. What is the worst-case running time of bubblesort? How does it compare to the
running time of insertion sort?

Problems 2-3: Correctness of Horner's rule

The following code fragment implements Horner's rule for evaluating a polynomial
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L=
= ap+xlay Falas+ -+ x{a- ) +xay)---0,

given the coefficients ao, ay, . . . , a, and a value for x:
2 1 <« n

3 while i 2 0

4 do v« a; + x -y

5 1« 1 -1

a. What is the asymptotic running time of this code fragment for Horner's rule?

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that
computes each term of the polynomial from scratch. What is the running time of this
algorithm? How does it compare to Horner's rule?

c. Prove that the following is a loop invariant for the while loop in lines 3 -5.

At the start of each iteration of the while loop of lines 3-5,

a—{a+11

s E : A
¥ = il X

L=l

Interpret a summation with no terms as equaling 0. Your proof should follow the
structure of the loop invariant proof presented in this chapter and should show that, at
termination, ¥ = i dt’,

d. Conclude by arguing that the given code fragment correctly evaluates a polynomial
characterized by the coefficients ao, ai, . . ., a,.

Problems 2-4: Inversions

Let A[1 [1 n] be an array of n distinct numbers. If i <j and A[i] > A[j], then the pair (i, j) is
called an inversion of A.

a. List the five inversions of the array [12, 3, 8, 6, 1[].

b. What array with elements from the set {1, 2, ..., n} has the most inversions? How
many does it have?

c. What is the relationship between the running time of insertion sort and the number of
inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any permutation on 7
elements in O(n lg n) worst-case time. (Hint: Modify merge sort.)

['We shall see in Chapter 3 how to formally interpret equations containing ©-notation.



UIThe expression [x] denotes the least integer greater than or equal to x, and | x| denotes the
greatest integer less than or equal to x. These notations are defined in Chapter 3. The easiest

way to verify that setting ¢ to | (p +r)/2] yields subarrays A[p [1 g] and A[q + 1 [ r] of sizes

[1n/2] and [n/2], respectively, is to examine the four cases that arise depending on whether
each of p and r is odd or even.

(8J1t is unlikely that the same constant exactly represents both the time to solve problems of
size 1 and the time per array element of the divide and combine steps. We can get around this
problem by letting c be the larger of these times and understanding that our recurrence gives
an upper bound on the running time, or by letting ¢ be the lesser of these times and
understanding that our recurrence gives a lower bound on the running time. Both bounds will
be on the order of n 1g n and, taken together, give a @(n 1g n) running time.

Chapter notes

In 1968, Knuth published the first of three volumes with the general title The Art of Computer
Programming [182, 183, 185]. The first volume ushered in the modern study of computer
algorithms with a focus on the analysis of running time, and the full series remains an
engaging and worthwhile reference for many of the topics presented here. According to
Knuth, the word "algorithm" is derived from the name "al-Khowéarizmi," a ninth-century
Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algorithms as a means of
comparing relative performance. They also popularized the use of recurrence relations to
describe the running times of recursive algorithms.

Knuth [185] provides an encyclopedic treatment of many sorting algorithms. His comparison
of sorting algorithms (page 381) includes exact step-counting analyses, like the one we
performed here for insertion sort. Knuth's discussion of insertion sort encompasses several
variations of the algorithm. The most important of these is Shell's sort, introduced by D. L.
Shell, which uses insertion sort on periodic subsequences of the input to produce a faster
sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical collator capable of
merging two decks of punched cards in a single pass was invented in 1938. J. von Neumann,
one of the pioneers of computer science, apparently wrote a program for merge sort on the
EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [133], who credits P.
Naur with the first article in this field. Gries attributes loop invariants to R. W. Floyd. The
textbook by Mitchell [222] describes more recent progress in proving programs correct.

Chapter 3: Growth of Functions

Overview



The order of growth of the running time of an algorithm, defined in Chapter 2, gives a simple
characterization of the algorithm's efficiency and also allows us to compare the relative
performance of alternative algorithms. Once the input size n becomes large enough, merge
sort, with its @(n g n) worst-case running time, beats insertion sort, whose worst-case running
time is ©(n%). Although we can sometimes determine the exact running time of an algorithm,
as we did for insertion sort in Chapter 2, the extra precision is not usually worth the effort of
computing it. For large enough inputs, the multiplicative constants and lower-order terms of
an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of the running
time relevant, we are studying the asymptotic efficiency of algorithms. That is, we are
concerned with how the running time of an algorithm increases with the size of the input in
the limit, as the size of the input increases without bound. Usually, an algorithm that is
asymptotically more efficient will be the best choice for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic analysis of
algorithms. The next section begins by defining several types of "asymptotic notation," of
which we have already seen an example in ®-notation. Several notational conventions used
throughout this book are then presented, and finally we review the behavior of functions that
commonly arise in the analysis of algorithms.

3.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an algorithm are defined in
terms of functions whose domains are the set of natural numbers N = {0, 1, 2, ...}. Such
notations are convenient for describing the worst-case running-time function 7' (n), which is
usually defined only on integer input sizes. It is sometimes convenient, however, to abuse
asymptotic notation in a variety of ways. For example, the notation is easily extended to the
domain of real numbers or, alternatively, restricted to a subset of the natural numbers. It is
important, however, to understand the precise meaning of the notation so that when it is
abused, it is not misused. This section defines the basic asymptotic notations and also
introduces some common abuses.

O-notation

In Chapter 2, we found that the worst-case running time of insertion sort is 7' (1) = @(n?). Let
us define what this notation means. For a given function g(n), we denote by ®(g(n)) the set of
functions

®(g(n)) = {f(n) : there exist positive constants cj, ¢,, and ny such that 0 < c¢;g(n) < fin) < c,g(n)
for all n > ny}. 1

A function f(n) belongs to the set ®(g(n)) if there exist positive constants ¢; and ¢, such that it
can be "sandwiched" between cg(n) and c,g(n), for sufficiently large n. Because ®(g(n)) is a
set, we could write "f(n) [] ©(g(n))" to indicate that f{(n) is a member of ®(g(n)). Instead, we
will usually write "f(n) = ®(g(n))" to express the same notion. This abuse of equality to denote
set membership may at first appear confusing, but we shall see later in this section that it has
advantages.



Figure 3.1(a) gives an intuitive picture of functions f(n) and g(n), where we have that f{n) =
O(g(n)). For all values of n to the right of ny, the value of f(n) lies at or above c¢;g(n) and at or
below cyg(n). In other words, for all n > ny, the function f{(n) is equal to g(n) to within a
constant factor. We say that g(n) is an asymptotically tight bound for f(n).
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Figure 3.1: Graphic examples of the ®, O, and Q notations. In each part, the value of ny
shown is the minimum possible value; any greater value would also work. (a) ®-notation
bounds a function to within constant factors. We write f{n) = ©(g(n)) if there exist positive
constants no, ¢, and ¢, such that to the right of no, the value of f(n) always lies between c¢;g(n)
and c,g(n) inclusive. (b) O-notation gives an upper bound for a function to within a constant
factor. We write f(n) = O(g(n)) if there are positive constants 7y and ¢ such that to the right of
no, the value of f(n) always lies on or below cg(n). (c) Q-notation gives a lower bound for a
function to within a constant factor. We write f(n) = Q(g(n)) if there are positive constants 7
and c¢ such that to the right of ny, the value of f{n) always lies on or above cg(n).

The definition of ®(g(n)) requires that every member f(n) [1 ©(g(n)) be asymptotically
nonnegative, that is, that f(n) be nonnegative whenever n is sufficiently large. (An
asymptotically positive function is one that is positive for all sufficiently large n.)
Consequently, the function g(n) itself must be asymptotically nonnegative, or else the set
O(g(n)) is empty. We shall therefore assume that every function used within ®-notation is
asymptotically nonnegative. This assumption holds for the other asymptotic notations defined
in this chapter as well.

In Chapter 2, we introduced an informal notion of ®-notation that amounted to throwing away
lower-order terms and ignoring the leading coefficient of the highest-order term. Let us
briefly justify this intuition by using the formal definition to show that 1/2n - 3n = @(n*). To
do so, we must determine positive constants cj, ¢, and ny such that

o’ < 1/2n% - 3n < con?
for all n > no. Dividing by »” yields
c1 < 1/2-3/n <o.

The right-hand inequality can be made to hold for any value of n > 1 by choosing ¢, > 1/2.
Likewise, the left-hand inequality can be made to hold for any value of n > 7 by choosing ¢; <
1/14. Thus, by choosing ¢; = 1/14, ¢, = 1/2, and no = 7, we can verify that 1/2n° - 3n = O(n?).
Certainly, other choices for the constants exist, but the important thing is that some choice
exists. Note that these constants depend on the function 1/2x” - 3n; a different function
belonging to @(n*) would usually require different constants.

We can also use the formal definition to verify that 6n° # ©(n°). Suppose for the purpose of
contradiction that ¢, and ng exist such that 6n° < czn2 for all n > ny. But then n < ¢,/6, which
cannot possibly hold for arbitrarily large n, since ¢, is constant.



Intuitively, the lower-order terms of an asymptotically positive function can be ignored in
determining asymptotically tight bounds because they are insignificant for large n. A tiny
fraction of the highest-order term is enough to dominate the lower-order terms. Thus, setting
c1 to a value that is slightly smaller than the coefficient of the highest-order term and setting
¢, to a value that is slightly larger permits the inequalities in the definition of ®-notation to be
satisfied. The coefficient of the highest-order term can likewise be ignored, since it only
changes c¢; and ¢; by a constant factor equal to the coefficient.

As an example, consider any quadratic function f{n) = an” + bn + ¢, where a, b, and ¢ are
constants and a > 0. Throwing away the lower-order terms and ignoring the constant yields
fn) = @(nz). Formally, to show the same thing, we take the constants ¢; = a/4, ¢, = 7a/4, and
i = 2-max((1bl fah. /Uil o)), The reader may verify that 0 < c1n2 <an*+bn+c< cm2 for all n > ny.
In general, for any polynomial #(") = £lqan' where the g; are constants and a; > 0, we have
p(n) = O(n) (see Problem 3-1).

Since any constant is a degree-0 polynomial, we can express any constant function as @(n’),
or ®(1). This latter notation is a minor abuse, however, because it is not clear what variable is
tending to infinity.””! We shall often use the notation ®(1) to mean either a constant or a
constant function with respect to some variable.

O-notation

The ®-notation asymptotically bounds a function from above and below. When we have only
an asymptotic upper bound, we use O-notation. For a given function g(n), we denote by
O(g(n)) (pronounced "big-oh of g of n" or sometimes just "oh of g of n") the set of functions

O(g(n)) = {f(n): there exist positive constants ¢ and ny such that 0 < f{n) < cg(n) for all n >
I’l()}.

We use O-notation to give an upper bound on a function, to within a constant factor. Figure
3.1(b) shows the intuition behind O-notation. For all values 7 to the right of ny, the value of
the function f{(n) is on or below g(n).

We write f(n) = O(g(n)) to indicate that a function f{n) is a member of the set O(g(n)). Note
that f{n) = ©(g(n)) implies f(n) = O(g(n)), since ®-notation is a stronger notion than O-
notation. Written set-theoretically, we have ®(g(n)) (] O(g(n)). Thus, our proof that any
quadratic function an® + bn + ¢, where a > 0, is in ©(n*) also shows that any quadratic
function is in O(n%). What may be more surprising is that any /inear function an + b is in
O(n%), which is easily verified by taking ¢ = a + |b| and ny = 1.

Some readers who have seen O-notation before may find it strange that we should write, for
example, n = O(n”). In the literature, O-notation is sometimes used informally to describe
asymptotically tight bounds, that is, what we have defined using ®-notation. In this book,
however, when we write f(n) = O(g(n)), we are merely claiming that some constant multiple
of g(n) is an asymptotic upper bound on f{n), with no claim about how tight an upper bound it
is. Distinguishing asymptotic upper bounds from asymptotically tight bounds has now
become standard in the algorithms literature.

Using O-notation, we can often describe the running time of an algorithm merely by
inspecting the algorithm's overall structure. For example, the doubly nested loop structure of



the insertion sort algorithm from Chapter 2 immediately yields an O(n”) upper bound on the
worst-case running time: the cost of each iteration of the inner loop is bounded from above by
O(1) (constant), the indices i and j are both at most 7, and the inner loop is executed at most
once for each of the n” pairs of values for i and j.

Since O-notation describes an upper bound, when we use it to bound the worst-case running
time of an algorithm, we have a bound on the running time of the algorithm on every input.
Thus, the O(n”) bound on worst-case running time of insertion sort also applies to its running
time on every input. The ®(n*) bound on the worst-case running time of insertion sort,
however, does not imply a ©(n%) bound on the running time of insertion sort on every input.
For example, we saw in Chapter 2 that when the input is already sorted, insertion sort runs in
O(n) time.

Technically, it is an abuse to say that the running time of insertion sort is O(?), since for a
given n, the actual running time varies, depending on the particular input of size n. When we
say "the running time is O(x?)," we mean that there is a function f{n) that is O(n*) such that for
any value of n, no matter what particular input of size » is chosen, the running time on that
input is bounded from above by the value f{n). Equivalently, we mean that the worst-case
running time is O(n”).

O-notation

Just as O-notation provides an asymptotic upper bound on a function, Q2-notation provides an
asymptotic lower bound. For a given function g(n), we denote by Q(g(n)) (pronounced "big-
omega of g of n" or sometimes just "omega of g of n") the set of functions

Q(g(n)) = {f(n): there exist positive constants ¢ and ny such that 0 < cg(n) < f(n) for all n >
I’l()}.

The intuition behind Q-notation is shown in Figure 3.1(c). For all values 7 to the right of ny,
the value of f(n) is on or above cg(n).

From the definitions of the asymptotic notations we have seen thus far, it is easy to prove the
following important theorem (see Exercise 3.1-5).

Theorem 3.1

For any two functions f{(n) and g(n), we have f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and
fn) = Q(g(n)).

As an example of the application of this theorem, our proof that an® + bn + ¢ = @(n?) for any
constants a, b, and ¢, where a > 0, immediately implies that an® +bn+c= Q(nz) and an’® + bn
+ ¢ = O(n®). In practice, rather than using Theorem 3.1 to obtain asymptotic upper and lower
bounds from asymptotically tight bounds, as we did for this example, we usually use it to
prove asymptotically tight bounds from asymptotic upper and lower bounds.



Since Q-notation describes a lower bound, when we use it to bound the best-case running
time of an algorithm, by implication we also bound the running time of the algorithm on
arbitrary inputs as well. For example, the best-case running time of insertion sort is Q(n),
which implies that the running time of insertion sort is Q(n).

The running time of insertion sort therefore falls between Q(n) and O(n?), since it falls
anywhere between a linear function of #» and a quadratic function of n. Moreover, these
bounds are asymptotically as tight as possible: for instance, the running time of insertion sort
is not Q(n?), since there exists an input for which insertion sort runs in ®(n) time (e.g., when
the input is already sorted). It is not contradictory, however, to say that the worst-case running
time of insertion sort is Q(n?), since there exists an input that causes the algorithm to take
Q(n*) time. When we say that the running time (no modifier) of an algorithm is Q(g(n)), we
mean that no matter what particular input of size n is chosen for each value of n, the running
time on that input is at least a constant times g(n), for sufficiently large n.

Asymptotic notation in equations and inequalities

We have already seen how asymptotic notation can be used within mathematical formulas.
For example, in introducing O-notation, we wrote "n = O(rn”)." We might also write 2n* + 3n
+1=2n" + ©(n). How do we interpret such formulas?

When the asymptotic notation stands alone on the right-hand side of an equation (or
inequality), as in n = O(n®), we have already defined the equal sign to mean set membership:
n [ O(n®). In general, however, when asymptotic notation appears in a formula, we interpret
it as standing for some anonymous function that we do not care to name. For example, the
formula 2n” + 3n + 1 = 2n* + O(n) means that 2n* + 3n + 1 = 2n” + f{n), where f{n) is some
function in the set @(n). In this case, f(n) = 3n + 1, which indeed is in O(n).

Using asymptotic notation in this manner can help eliminate inessential detail and clutter in an
equation. For example, in Chapter 2 we expressed the worst-case running time of merge sort
as the recurrence

T(n) =2T (n/2) + O(n).

If we are interested only in the asymptotic behavior of 7(n), there is no point in specifying all
the lower-order terms exactly; they are all understood to be included in the anonymous

function denoted by the term O(n).

The number of anonymous functions in an expression is understood to be equal to the number
of times the asymptotic notation appears. For example, in the expression
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there is only a single anonymous function (a function of 7). This expression is thus not the
same as O(1) + O(2) + . .. + O(n), which doesn't really have a clean interpretation.

In some cases, asymptotic notation appears on the left-hand side of an equation, as in

2n” + O(n) = O(n).



We interpret such equations using the following rule: No matter how the anonymous functions
are chosen on the left of the equal sign, there is a way to choose the anonymous functions on
the right of the equal sign to make the equation valid. Thus, the meaning of our example is
that for any function f{(n) [1 ®(n), there is some function g(n) [ ©(n?) such that 2n* + fin)=
g(n) for all n. In other words, the right-hand side of an equation provides a coarser level of
detail than the left-hand side.

A number of such relationships can be chained together, as in

2n* +3n+1=2n"+ O(n)
= Q).

We can interpret each equation separately by the rule above. The first equation says that there
is some function f{n) [ O(n) such that 2n> + 3n + 1 = 2n* + f{n) for all n. The second equation
says that for any function g(n) [ ®(n) (such as the f(n) just mentioned), there is some function
h(n) O ©(n*) such that 2n* + g(n) = h(n) for all n. Note that this interpretation implies that 2n>
+3n+ 1 = ©(n%), which is what the chaining of equations intuitively gives us.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymptotically tight.
The bound 21* = O(n?) is asymptotically tight, but the bound 21 = O(n?) is not. We use o-
notation to denote an upper bound that is not asymptotically tight. We formally define o(g(n))
("little-oh of g of n") as the set

o(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant ny > 0 such that 0 < f(n)
< cg(n) for all n > ny}.

For example, 2n = o(n?), but 2n* # o(n?).
The definitions of O-notation and o-notation are similar. The main difference is that in f(n) =
O(g(n)), the bound 0 < f(n) < cg(n) holds for some constant ¢ > 0, but in f{n) = o(g(n)), the

bound 0 < f(n) < cg(n) holds for all constants ¢ > 0. Intuitively, in the o-notation, the function
f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

G.D lim AL =1.
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Some authors use this limit as a definition of the o-notation; the definition in this book also
restricts the anonymous functions to be asymptotically nonnegative.

w-notation

By analogy, w-notation is to Q-notation as o-notation is to O-notation. We use w-notation to
denote a lower bound that is not asymptotically tight. One way to define it is by

f(n) U w(g(n)) if and only if g(n) ) o(f(n)).

Formally, however, we define w(g(n)) ("little-omega of g of n") as the set



w(g(n)) = {f(n): for any positive constant ¢ > 0, there exists a constant 7y > 0 such that 0 <
cg(n) <f(n) for all n > ny}.

For example, n*/2 = w(n), but n*/2 # w(n®). The relation f{n) = w(g(n)) implies that

. ‘(n)
lim A 0o
n==oz g{n)

if the limit exists. That is, f{n) becomes arbitrarily large relative to g(n) as n approaches
infinity.

Comparison of functions

Many of the relational properties of real numbers apply to asymptotic comparisons as well.
For the following, assume that f(n) and g(n) are asymptotically positive.

Transitivity:

f(n) = B(g(n)) and g(n) = O(h(n)) imply f(rn) = O(h(n)),
fn) = O(g(n)) and g(n) = O(h(n)) imply f(rn) = O(h(n)),
fln) = Q(g(n)) and g(n) = Q(h(n)) imply f(n) = Q(h(n)),
f(n) = o(g(n)) and g(n) = o(h(n)) imply f{n) = o(h(n)),
fn) = o(g(n)) and g(n) = w(h(n)) imply f(in) = w(h(n)).

Reflexivity:
fn) = 6(f(n)),
fn) = O(f(n)),
fin) = Q(f(n)).
Symmetry:

f(n) = O(g(n)) if and only if g(n) = O(f(n)).
Transpose symmetry:

f(n) = O(g(n)) if and only if g(n) = Q(f(n)),
fA(n) = o(g(n)) if and only if g(n) = w(f(n)).

Because these properties hold for asymptotic notations, one can draw an analogy between the
asymptotic comparison of two functions f'and g and the comparison of two real numbers a
and b:



We say that f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)), and f(n) is
asymptotically larger than g(n) if f(n) = w(g(n)).

One property of real numbers, however, does not carry over to asymptotic notation:

e Trichotomy: For any two real numbers a and b, exactly one of the following must
hold: a<b,a=b,ora>b.

Although any two real numbers can be compared, not all functions are asymptotically
comparable. That is, for two functions f{n) and g(n), it may be the case that neither f(n) =
O(g(n)) nor f{n) = Q(g(n)) holds. For example, the functions z and n'**"" cannot be compared
using asymptotic notation, since the value of the exponent in n' ™" oscillates between 0 and
2, taking on all values in between.

Exercises 3.1-1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of ®-
notation, prove that max(f{n), g(n)) = O(f(n) + g(n)).

Exercises 3.1-2

Show that for any real constants a and b, where b > 0,

3.2) (n+a)" = &(a").

Exercises 3.1-3

Explain why the statement, "The running time of algorithm 4 is at least O(n*)," is
meaningless.

Exercises 3.1-4

Is 2" = 0(2")? Is 2*" = 0(2")?



Exercises 3.1-5
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Prove that the running time of an algorithm is ®(g(n)) if and only if its worst-case running
time is O(g(n)) and its best-case running time is (g(n)).
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Prove that o(g(n)) N w(g(n)) is the empty set.

Exercises 3.1-8

We can extend our notation to the case of two parameters n and m that can go to infinity
independently at different rates. For a given function g(n, m), we denote by O(g(n, m)) the set
of functions

O(g(n, m)) = {f(n, m): there exist positive constants c, ny, and m such that 0 < f(n, m) < cg(n,
m) for all n > ny and m > my}.

Give corresponding definitions for Q(g(n, m)) and ®(g(n, m)).

Uwithin set notation, a colon should be read as "such that."

2IThe real problem is that our ordinary notation for functions does not distinguish functions
from values. In A-calculus, the parameters to a function are clearly specified: the function n?
could be written as An.n’, or even Ar.r”. Adopting a more rigorous notation, however, would
complicate algebraic manipulations, and so we choose to tolerate the abuse.

3.2 Standard notations and common functions

This section reviews some standard mathematical functions and notations and explores the
relationships among them. It also illustrates the use of the asymptotic notations.



Monotonicity

A function f(n) is monotonically increasing if m < n implies f(m) < f(n). Similarly, it is
monotonically decreasing if m < n implies f(m) > f(n). A function f(n) is strictly increasing if
m < n implies f(m) < f(n) and strictly decreasing if m < n implies f(m) > f(n).

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to x by |x] (read "the

floor of x") and the least integer greater than or equal to x by [x] (read "the ceiling of x"). For
all real x,

B3)x=1< |x] =x=[x] <x+1.

For any integer n,

[n/2] + |n/2] =n,
and for any real number n > 0 and integers a, b > 0,

GBdInfal /bl = [njab] .
(3.5) | |nfa] /b Lnfab)| .
(3.6) [a/b] (a0 + (h— 10 /B .
(3.7) la/b] ({a—(b—10)/b.

<=
=

The floor function fix) = [ x| is monotonically increasing, as is the ceiling function f{x) = [x].
Modular arithmetic

For any integer a and any positive integer n, the value @ mod # is the remainder (or residue)
of the quotient a/n:

(B8 amodn=a— |afn|n.

Given a well-defined notion of the remainder of one integer when divided by another, it is
convenient to provide special notation to indicate equality of remainders. If (¢ mod n) = (b
mod n), we write a = b (mod n) and say that a is equivalent to b, modulo n. In other words, a
= b (mod n) if a and b have the same remainder when divided by n. Equivalently, a = b (mod

n) if and only if n is a divisor of b - a. We write a # b (mod n) if a is not equivalent to b,
modulo 7.

Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function p(n) of the form

al

pin) = Zu,-u" i

=1



where the constants ay, a, ..., ag are the coefficients of the polynomial and a; # 0. A
polynomial is asymptotically positive if and only if a; > 0. For an asymptotically positive
polynomial p(n) of degree d, we have p(n) = @(n“). For any real constant a > 0, the function
n“ is monotonically increasing, and for any real constant a > 0, the function »n“ is
monotonically decreasing. We say that a function f{n) is polynomially bounded if f{n) = O(n")
for some constant .

Exponentials

For all real a > 0, m, and n, we have the following identities:

0
a =1,
1 _
a =da,
a'= 1/a,
(am)n — amn’
(@) =(@")",
m n_ _mtn
a a =a .

For all n and a > 1, the function a" is monotonically increasing in n. When convenient, we
shall assume 0° = 1.

The rates of growth of polynomials and exponentials can be related by the following fact. For
all real constants a and b such that a > 1,

from which we can conclude that
n” = o(a").

Thus, any exponential function with a base strictly greater than 1 grows faster than any
polynomial function.

Using e to denote 2.71828..., the base of the natural logarithm function, we have for all real x,
- 3 S |

(3.10) o e = 1 |

where "!" denotes the factorial function defined later in this section. For all real x, we have the

inequality

Bl e =1+x,

where equality holds only when x = 0. When |x| < 1, we have the approximation

GBI 1+x<ef <1+x+x%.



When x — 0, the approximation of ¢* by 1 + x is quite good:
e =1+x+0x).

(In this equation, the asymptotic notation is used to describe the limiting behavior as x — 0
rather than as x — o.) We have for all x,

(3.13) ”l'l!]_]‘- (! | l)a =g .

N
Logarithms

We shall use the following notations:

lgn=1og,n (binary logarithm),

Inn=1log,n (natural logarithm),

lgk n={(lg n)* (exponentiation) ,
lg Ig n = Ig(lg n) (composition) .

An important notational convention we shall adopt is that logarithm functions will apply only
to the next term in the formula, so that Ig n + k will mean (Ig n) + k and not Ig(n + k). If we
hold » > 1 constant, then for n > 0, the function log,, # is strictly increasing.

Forallreala>0,b>0,c>0, and n,

3.14)  a = bowe,
log, (ab)

log, a4+ log, B,

log,a” = nlog,a,

i log. a
985 4 log, b
G159 log,(1/a) = —log,a,
| |
po i = ,
Eb I{:-g_ i b
H](‘r;—:;, ¢ c log,, a

where, in each equation above, logarithm bases are not 1.

By equation (3.14), changing the base of a logarithm from one constant to another only
changes the value of the logarithm by a constant factor, and so we shall often use the notation
"lg n" when we don't care about constant factors, such as in O-notation. Computer scientists
find 2 to be the most natural base for logarithms because so many algorithms and data
structures involve splitting a problem into two parts.

There is a simple series expansion for In(1 + x) when |x| < 1:

3 <
- xd X
 SEY — e —

5

3

-

In(ll +x)=1x

(]|



We also have the following inequalities for x > -1:

(3.16) * < Infl+x) < x,

1 4+x

where equality holds only for x = 0.

We say that a function f{n) is polylogarithmically bounded if f(n) = O(Ig" n) for some
constant k. We can relate the growth of polynomials and polylogarithms by substituting Ig »
for n and 2“ for a in equation (3.9), yielding

lg” n ,
———— = |Iim
n—00 (2“]'1‘-’” n—ooc pY

From this limit, we can conclude that
1g” n = o(n“)

for any constant @ > 0. Thus, any positive polynomial function grows faster than any
polylogarithmic function.

Factorials

The notation n! (read "n factorial") is defined for integers n > 0 as

i ifn=0.
M= n-n—=1" ifn=0.

Thus,n!'=1-2-3 n.

A weak upper bound on the factorial function is n! <n", since each of the n terms in the
factorial product is at most n. Stirling's approximation,

(317, _ ;’m(i—r)(l_“(}r)) '

where e is the base of the natural logarithm, gives us a tighter upper bound, and a lower bound
as well. One can prove (see Exercise 3.2-3)

(3.18) n! = aln"),

al = w2,

lg(n!l) = Ginlgn),

where Stirling's approximation is helpful in proving equation (3.18). The following equation
also holds for all n > 1:

(3.19) 1 = M(ﬂ)r L

e



where

(3.20) ! '

<y o —,
120 + 1 ! 120

Functional iteration

We use the notation /”(r) to denote the function f{n) iteratively applied i times to an initial
value of n. Formally, let f{(n) be a function over the reals. For nonnegative integers i, we
recursively define

fn) = n ifi =0,
PP =N £(r9-Dmyy ifi > 0.

For example, if f{n) = 2n, then f7(n) = 2'n.

The iterated logarithm function

We use the notation 1g* n (read "log star of n") to denote the iterated logarithm, which is
defined as follows. Let 1g 1 be as defined above, with f(n) = Ig n. Because the logarithm of a
nonpositive number is undefined, 1g” n is defined only if Ig" n > 0. Be sure to distinguish _
1g” n (the logarithm function applied i times in succession, starting with argument ) from lg’
n (the logarithm of n raised to the ith power). The iterated logarithm function is defined as

lg* n=min {i=0:1g” n<1}.

The iterated logarithm is a very slowly growing function:

lg*2=1,
lg*4=2,

lg* 16 =3,
lg* 65536 =4,

1g*(25536) = 5.

Since the number of atoms in the observable universe is estimated to be about 1080, which is
much less than 2°°°*°, we rarely encounter an input size n such that Ig* n > 5.

Fibonacci numbers

The Fibonacci numbers are defined by the following recurrence:

B2 ko = 0,
Fo=1,
FF = F_1+ Fi_a fori = 2.

Thus, each Fibonacci number is the sum of the two previous ones, yielding the sequence

0,1,1,2,3,5,8, 13,21, 34, 55, ...



Fibonacci numbers are related to the golden ratio ¢ and to its conjugate ¢, which are given by
the following formulas:

(3.22) 1 +4/5
¢ = —
1.61803 ... .
- 1 — /5
"= 2
= —.6I1803... .

Specifically, we have

(323), _¢ ¢

i \.-'rﬁ ¥
which can be proved by induction (Exercise 3.2-6). Since 14| < I, we have 1#1/v/5 < 1/+/5 < 172
so that the ith Fibonacci number F; is equal to #'/v5rounded to the nearest integer. Thus,
Fibonacci numbers grow exponentially.

Exercises 3.2-1

Show that if f{(n) and g(n) are monotonically increasing functions, then so are the functions
f(n) + g(n) and f (g(n)), and if f{n) and g(n) are in addition nonnegative, then f(n) - g(n) is
monotonically increasing.

Exercises 3.2-2

Prove equation (3.15).
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Which is asymptotically larger: 1g(lg* n) or lg*(lg n)?

Exercises 3.2-6

Prove by induction that the ith Fibonacci number satisfies the equality

r,lll}n' ou: {Tbl
I ,U.E ]

"'1-1

where g is the golden ratio and #is its conjugate.
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Prove that for i > 0, the (i + 2)nd Fibonacci number satisfies Fiiy > ¢'.

Problems 3-1: Asymptotic behavior of polynomials

.

et

a

pln) = Za;u" .

=i

where a; > 0, be a degree-d polynomial in 7, and let £ be a constant. Use the definitions of the
asymptotic notations to prove the following properties.

If k> d, then p(n) = O(n").
If k < d, then p(n) = Q(n").
If k = d, then p(n) = O(1").
If k > d, then p(n) = o(n").
If k < d, then p(n) = w(n").

°poos

Problems 3-2: Relative asymptotic growths



Indicate, for each pair of expressions (4, B) in the table below, whether 4 is O, o, Q, w, or ®
of B. Assume that k> 1, [J > 0, and ¢ > 1 are constants. Your answer should be in the form of
the table with "yes" or "no" written in each box.

A B 00Qw®

a lgbn | n"
b. n* | ¢
c 5 nsin n
d " 2n/2
e nlg c clg n

f lg(n?) 1g(n")
Problems 3-3: Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement g, g2,
..., @30 of the functions satisfying g; = €2(g»), g2 = (g3), ..., 20 = €2(g30). Partition your
list into equivalence classes such that f(n) and g(n) are in the same class if and only if

fin) = ©(g(n)).

' = o ]
lg(lg*ny 2" (J2)kE n’ n! (g n)!
Yo 2 el 5 [
(5)" n? lg=n lg(n!) L plf lgn
Inlnn lg* n n-2"  plelen Inn I
jl:'-"' Hg ”]l:.:u e I_1_|_I-' ] (n+ 1! \".I.I-g n
lg* Aa 2lgn N At
g (lgn) 2Vt n 2 nlgn 2

b. Give an example of a single nonnegative function f{#n) such that for all functions gi(n)
in part (a), f(n) is neither O(gi(n)) nor Q(gi(n)).

Problems 3-4: Asimﬁtotic notation ﬁroierties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following
conjectures.

a. f(n)= 0O(g(n)) implies g(n) = O(f(n)).

b. fln) + g(n) = O(min(f(n), g(n))).

c. f(n)=0O(g(n)) implies lg(f(n)) = O(lg(g(n))), where 1g(g(n)) > 1 and f{n) > 1 for all
sufficiently large n.

d. fln) = O(g(n)) implies 2 = 0 (25™).

e. flm) = O((An))").

f.  f(n) = O(g(n)) implies g(n) = Q(f(n)).



g. fin) = O(fnl2)).
h. fin) + o( f(n)) = O(f(n)).

Problems 3-5: Variations on O and Q

Some authors define Q in a slightly different way than we do; let's use {(read "omega
infinity") for this alternative definition. We say that /() = &(z(a))if there exists a positive
constant ¢ such that f(n) > cg(n) > 0 for infinitely many integers n.

a. Show that for any two functions f(n) and g(n) that are asymptotically nonnegative,
either f{n) = O(g(n)) or fin = S(z(mor both, whereas this is not true if we use Q in
place of .

b. Describe the potential advantages and disadvantages of using ¢tinstead of Q to
characterize the running times of programs.

Some authors also define O in a slightly different manner; let's use O’ for the alternative
definition. We say that f{n) = O'(g(n)) if and only if |f{n)| = O(g(n)).

c. What happens to each direction of the "if and only if" in Theorem 3.1 if we substitute
O' for O but still use Q?

Some authors define O (read "soft-oh") to mean O with logarithmic factors ignored:

O (g(n)) = {f(n): there exist positive constants ¢, k, and n, such that 0 < f{(n) < cg(n) lgk(n) for
all n>no}.

d. Define ftand #in a similar manner. Prove the corresponding analog to Theorem 3.1.

Problems 3-6: Iterated functions

The iteration operator* used in the Ig* function can be applied to any monotonically
increasing function f{n) over the reals. For a given constant ¢ [] R, we define the iterated
function /by

fHn)=min{i 20: fm < ¢},

which need not be well-defined in all cases. In other words, the quantity f¢}is the number of
iterated applications of the function frequired to reduce its argument down to ¢ or less.

For each of the following functions f{n) and constants c, give as tight a bound as possible on
frm,

f(n) ¢ s



f(n) ¢ |frin
. n-110
lgn |1
n/2 |1
n/2 2
Ji2
Jno|(1

2

2
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a
b
C.
d.
e.
f
g | n
h

. n/lgn

Chapter notes

Knuth [182] traces the origin of the O-notation to a number-theory text by P. Bachmann in
1892. The o-notation was invented by E. Landau in 1909 for his discussion of the distribution
of prime numbers. The Q and ® notations were advocated by Knuth [186] to correct the
popular, but technically sloppy, practice in the literature of using O-notation for both upper
and lower bounds. Many people continue to use the O-notation where the ®-notation is more
technically precise. Further discussion of the history and development of asymptotic notations
can be found in Knuth [182, 186] and Brassard and Bratley [46].

Not all authors define the asymptotic notations in the same way, although the various
definitions agree in most common situations. Some of the alternative definitions encompass
functions that are not asymptotically nonnegative, as long as their absolute values are
appropriately bounded.

Equation (3.19) is due to Robbins [260]. Other properties of elementary mathematical
functions can be found in any good mathematical reference, such as Abramowitz and Stegun
[1] or Zwillinger [320], or in a calculus book, such as Apostol [18] or Thomas and Finney
[296]. Knuth [182] and Graham, Knuth, and Patashnik [132] contain a wealth of material on
discrete mathematics as used in computer science.

Technicalities

In practice, we neglect certain technical details when we state and solve recurrences. A good
example of a detail that is often glossed over is the assumption of integer arguments to
functions. Normally, the running time 7' (n) of an algorithm is only defined when # is an
integer, since for most algorithms, the size of the input is always an integer. For example, the
recurrence describing the worst-case running time of MERGE-SORT is really

(4.2) T(n) = el ifn=1,
) T2+ T n/2])+O(n) ifn=1.

Boundary conditions represent another class of details that we typically ignore. Since the
running time of an algorithm on a constant-sized input is a constant, the recurrences that arise
from the running times of algorithms generally have 7(n) = ®(1) for sufficiently small ».
Consequently, for convenience, we shall generally omit statements of the boundary conditions



of recurrences and assume that 7 (n) is constant for small n. For example, we normally state
recurrence (4.1) as

(4.3) T(n) =2T(n/2)+ B(n).

without explicitly giving values for small n. The reason is that although changing the value of
T (1) changes the solution to the recurrence, the solution typically doesn't change by more
than a constant factor, so the order of growth is unchanged.

When we state and solve recurrences, we often omit floors, ceilings, and boundary conditions.
We forge ahead without these details and later determine whether or not they matter. They
usually don't, but it is important to know when they do. Experience helps, and so do some
theorems stating that these details don't affect the asymptotic bounds of many recurrences
encountered in the analysis of algorithms (see Theorem 4.1). In this chapter, however, we
shall address some of these details to show the fine points of recurrence solution methods.

4.1 The substitution method

The substitution method for solving recurrences entails two steps:

1. Guess the form of the solution.
2. Use mathematical induction to find the constants and show that the solution works.

The name comes from the substitution of the guessed answer for the function when the
inductive hypothesis is applied to smaller values. This method is powerful, but it obviously
can be applied only in cases when it is easy to guess the form of the answer.

The substitution method can be used to establish either upper or lower bounds on a
recurrence. As an example, let us determine an upper bound on the recurrence

@44 Tn)=2T(n/2)) +n,

which is similar to recurrences (4.2) and (4.3). We guess that the solution is 7' (n) = O(n 1g n).
Our method is to prove that T (n) < cn Ig n for an appropriate choice of the constant ¢ > 0. We

start by assuming that this bound holds for [#/2 |, that is, that T ([ n/2]) <c |n/2] 1g(|n/2]).
Substituting into the recurrence yields

T = (¢ | n2)1g(Ln/2])) +n
<cnlgn/2)+n
=cnlgn-cnlg2+n
=cnlgn-cn+n
<cnlgn,

where the last step holds as long as ¢ > 1.
Mathematical induction now requires us to show that our solution holds for the boundary

conditions. Typically, we do so by showing that the boundary conditions are suitable as base
cases for the inductive proof. For the recurrence (4.4), we must show that we can choose the



constant ¢ large enough so that the bound 7(n) = cn lg n works for the boundary conditions as
well. This requirement can sometimes lead to problems. Let us assume, for the sake of
argument, that 7/ (1) = 1 is the sole boundary condition of the recurrence. Then for n = 1, the
bound 7' (n) = cn lg nyields T (1) =cl 1g 1 = 0, which is at odds with 7 (1) = 1. Consequently,
the base case of our inductive proof fails to hold.

This difficulty in proving an inductive hypothesis for a specific boundary condition can be
easily overcome. For example, in the recurrence (4.4), we take advantage of asymptotic
notation only requiring us to prove 7 (n) = cn lg n for n > ny, where ny is a constant of our
choosing. The idea is to remove the difficult boundary condition 7' (1) = 1 from consideration
in the inductive proof. Observe that for n > 3, the recurrence does not depend directly on 7'
(1). Thus, we can replace 7' (1) by T (2) and 7 (3) as the base cases in the inductive proof,
letting ny = 2. Note that we make a distinction between the base case of the recurrence (n = 1)
and the base cases of the inductive proof (n = 2 and n = 3). We derive from the recurrence that
T (2)=4and T (3) = 5. The inductive proof that 7 (n) < cn Ig n for some constant ¢ > 1 can
now be completed by choosing ¢ large enough so that 7 (2) <c21g2and T (3) <c3 1g 3. As it
turns out, any choice of ¢ > 2 suffices for the base cases of » =2 and n = 3 to hold. For most
of the recurrences we shall examine, it is straightforward to extend boundary conditions to
make the inductive assumption work for small n.

Making a good guess

Unfortunately, there is no general way to guess the correct solutions to recurrences. Guessing
a solution takes experience and, occasionally, creativity. Fortunately, though, there are some
heuristics that can help you become a good guesser. You can also use recursion trees, which
we shall see in Section 4.2, to generate good guesses.

If a recurrence is similar to one you have seen before, then guessing a similar solution is
reasonable. As an example, consider the recurrence

T(n)=2T(\n2] +17)+n,

which looks difficult because of the added "17" in the argument to 7 on the right-hand side.
Intuitively, however, this additional term cannot substantially affect the solution to the

recurrence. When # is large, the difference between T (| n/2]) and T'(|n/2] + 17) is not that
large: both cut n nearly evenly in half. Consequently, we make the guess that 7' (n) = O(n 1g
n), which you can verify as correct by using the substitution method (see Exercise 4.1-5).

Another way to make a good guess is to prove loose upper and lower bounds on the
recurrence and then reduce the range of uncertainty. For example, we might start with a lower
bound of 7 (n) = Q(n) for the recurrence (4.4), since we have the term # in the recurrence, and
we can prove an initial upper bound of 7' (n) = O(n*). Then, we can gradually lower the upper
bound and raise the lower bound until we converge on the correct, asymptotically tight
solution of 7' (n) = ®(n Ig n).

Subtleties

There are times when you can correctly guess at an asymptotic bound on the solution of a
recurrence, but somehow the math doesn't seem to work out in the induction. Usually, the



problem is that the inductive assumption isn't strong enough to prove the detailed bound.
When you hit such a snag, revising the guess by subtracting a lower-order term often permits
the math to go through.

Consider the recurrence

T(n)=T(n2])+T([n/2])+1.

We guess that the solution is O(n), and we try to show that 7' (n) < cn for an appropriate
choice of the constant c. Substituting our guess in the recurrence, we obtain

r(m=, |n/2] +c[n2] +1
=cnt+1,

which does not imply 7 (n) < cn for any choice of c. It's tempting to try a larger guess, say T’
(n) = O(n*), which can be made to work, but in fact, our guess that the solution is 7' (n) = O(n)
is correct. In order to show this, however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we're only off by the constant 1, a lower-order term.
Nevertheless, mathematical induction doesn't work unless we prove the exact form of the
inductive hypothesis. We overcome our difficulty by subtracting a lower-order term from our
previous guess. Our new guess is 7' (n) < cn - b, where b > 0 is constant. We now have

T = (¢ |n2] - b) + (c [n2] - b) + 1
=cn-2b+1
<cn-b,

as long as b > 1. As before, the constant ¢ must be chosen large enough to handle the
boundary conditions.

Most people find the idea of subtracting a lower-order term counterintuitive. After all, if the
math doesn't work out, shouldn't we be increasing our guess? The key to understanding this
step is to remember that we are using mathematical induction: we can prove something
stronger for a given value by assuming something stronger for smaller values.

Avoiding pitfalls

It is easy to err in the use of asymptotic notation. For example, in the recurrence (4.4) we can
falsely "prove" T (n) = O(n) by guessing T (n) < cn and then arguing

T'(n)= 2(c |n/2])+n

<cn-+tn

~ O(n) , €wrong!!

since c¢ is a constant. The error is that we haven't proved the exact form of the inductive
hypothesis, that is, that 7" (n) < cn.



Changing variables

Sometimes, a little algebraic manipulation can make an unknown recurrence similar to one
you have seen before. As an example, consider the recurrence

T(n)=2T (|V/n])+1gn,

which looks difficult. We can simplify this recurrence, though, with a change of variables. For
convenience, we shall not worry about rounding off values, such as v#, to be integers.
Renaming m = 1g n yields

TQ™=2TQ2"%) +m.

We can now rename S(m) = T(2") to produce the new recurrence

S(m) =28(m/2) + m,

which is very much like recurrence (4.4). Indeed, this new recurrence has the same solution:
S(m) = O(m 1g m). Changing back from S(m) to T (n), we obtain T (n) = T (2") = S(m) = O(m
lg m)=0O(g nlglg n).

Exercises 4.1-1

Show that the solution of 7' (n) = T'([n/2]) + 1 is O(lg n).

Exercises 4.1-2

We saw that the solution of 7' (n) = 2T (| n/2]) + n is O(n 1g n). Show that the solution of this
recurrence is also Q(n Ig n). Conclude that the solution is @(n 1g n).
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Show that by making a different inductive hypothesis, we can overcome the difficulty with
the boundary condition 7' (1) = 1 for the recurrence (4.4) without adjusting the boundary
conditions for the inductive proof.

Exercises 4.1-4

Show that ®(n 1g n) is the solution to the "exact" recurrence (4.2) for merge sort.



Exercises 4.1-5

Show that the solution to 7' (n) = 2T (|n/2| + 17) + nis O(n 1g n).

Exercises 4.1-6

Solve the recurrence Tin = 2T(/n) + Iby making a change of variables. Your solution should be
asymptotically tight. Do not worry about whether values are integral.

4.2 The recursion-tree method

Although the substitution method can provide a succinct proof that a solution to a recurrence
is correct, it is sometimes difficult to come up with a good guess. Drawing out a recursion
tree, as we did in our analysis of the merge sort recurrence in Section 2.3.2, is a
straightforward way to devise a good guess. In a recursion tree, each node represents the cost
of a single subproblem somewhere in the set of recursive function invocations. We sum the
costs within each level of the tree to obtain a set of per-level costs, and then we sum all the
per-level costs to determine the total cost of all levels of the recursion. Recursion trees are
particularly useful when the recurrence describes the running time of a divide-and-conquer
algorithm.

A recursion tree is best used to generate a good guess, which is then verified by the
substitution method. When using a recursion tree to generate a good guess, you can often
tolerate a small amount of "sloppiness," since you will be verifying your guess later on. If you
are very careful when drawing out a recursion tree and summing the costs, however, you can
use a recursion tree as a direct proof of a solution to a recurrence. In this section, we will use
recursion trees to generate good guesses, and in Section 4.4, we will use recursion trees
directly to prove the theorem that forms the basis of the master method.

For example, let us see how a recursion tree would provide a good guess for the recurrence 7'

(n)=3T (|n/4]) + O(n?). We start by focusing on finding an upper bound for the solution.
Because we know that floors and ceilings are usually insubstantial in solving recurrences
(here's an example of sloppiness that we can tolerate), we create a recursion tree for the
recurrence T (n) = 3T(n/4) + cn?, having written out the implied constant coefficient ¢ > 0.

Figure 4.1 shows the derivation of the recursion tree for T (n) = 3T (n/4) + cn®. For
convenience, we assume that » is an exact power of 4 (another example of tolerable
sloppiness). Part (a) of the figure shows 7T (n), which is expanded in part (b) into an equivalent
tree representing the recurrence. The cn” term at the root represents the cost at the top level of
recursion, and the three subtrees of the root represent the costs incurred by the subproblems of
size n/4. Part (c) shows this process carried one step further by expanding each node with cost
T (n/4) from part (b). The cost for each of the three children of the root is ¢(n/4)>. We continue



expanding each node in the tree by breaking it into its constituent parts as determined by the
recurrence.
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Figure 4.1: The construction of a recursion tree for the recurrence 7(n) = 37(n/4) + cn’. Part
(a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The

fully expanded tree in part (d) has height log, n (it has logs n + 1 levels).

Because subproblem sizes decrease as we get further from the root, we eventually must reach
a boundary condition. How far from the root do we reach one? The subproblem size for a
node at depth 7 is n/4’. Thus, the subproblem size hits # = 1 when n/4' = 1 or, equivalently,
when i = logs n. Thus, the tree has log 4n + 1 levels (0, 1, 2...., loga n).

Next we determine the cost at each level of the tree. Each level has three times more nodes
than the level above, and so the number of nodes at depth i is 3'. Because subproblem sizes
reduce by a factor of 4 for each level we go down from the root, each node at depth i, for i =
0,1,2....,logs n - 1, has a cost of ¢(n/4")*. Multiplying, we see that the total cost over all nodes
atdepth i, fori=0, 1,2,...,logsn - 1,is 3’ c(n/4’.)2 = (3/16) cn’. The last level, at depth logy n,
has 3+ = w'nodes, each contributing cost 7 (1), for a total cost of #**'T (1) which is @),

Now we add up the costs over all levels to determine the cost for the entire tree:
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(3/16) — | (



This last formula looks somewhat messy until we realize that we can again take advantage of
small amounts of sloppiness and use an infinite decreasing geometric series as an upper
bound. Backing up one step and applying equation (A.6), we have

logy an=1 3%
Ti(n) — | en* + @(n'*d)
Z ( H"J)

=0
g x I ‘
Z — | cn® + @(n'd
—\16

|

= ——ent 4 O
1 —(3/16) '

A

| [ :
B l_" cn® 4 @(n'm ‘}
.l

= 0.

Thus, we have derived a guess of T (n) = O(n?) for our original recurrence T (n) = 37T (| n/4])
+ ©(n%). In this example, the coefficients of cn” form a decreasing geometric series and, by
equation (A.6), the sum of these coefficients is bounded from above by the constant 16/13.
Since the root's contribution to the total cost is cn?, the root contributes a constant fraction of
the total cost. In other words, the total cost of the tree is dominated by the cost of the root.

In fact, if O(n?) is indeed an upper bound for the recurrence (as we shall verify in a moment),
then it must be a tight bound. Why? The first recursive call contributes a cost of @(n*), and so
Q (n%) must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was correct, that is, 7 (n) =

O(n?) is an upper bound for the recurrence 7 (n) = 3T (| n/4|)+O(n*). We want to show that T’
(n) < dn” for some constant d > 0. Using the same constant ¢ > 0 as before, we have

I(n) = 3T(Ln/4]) + cn’
<3d|n/4)* + cn®
< 3d(n/4)* + cn*
=3/16 dn* + cn®
< dnz,

where the last step holds as long as d > (16/13)c.

As another, more intricate example, Figure 4.2 shows the recursion tree for 7' (n) = T(n/3) +
7(2n/3) + O(n).



Total: O lg i)
Figure 4.2: A recursion tree for the recurrence 7(n) = T (n/3) + T (2n/3) + cn.

(Again, we omit floor and ceiling functions for simplicity.) As before, we let ¢ represent the
constant factor in the O(n) term. When we add the values across the levels of the recursion
tree, we get a value of cn for every level. The longest path from the root to a leafis n —
(2/3)n — (2/3)*n — =+ — 1. Since (2/3)'n = 1 when k = logs» n, the height of the tree is logs
n.

Intuitively, we expect the solution to the recurrence to be at most the number of levels times
the cost of each level, or O(cn logs, n) = O(n 1g n). The total cost is evenly distributed
throughout the levels of the recursion tree. There is a complication here: we have yet to
consider the cost of the leaves. If this recursion tree were a complete binary tree of height
logs/, n, there would be 2*#:* = s*2?]eaves. Since the cost of each leaf is a constant, the total
cost of all leaves would then be &%) which is w(n lg n). This recursion tree is not a
complete binary tree, however, and so it has fewer than »***leaves. Moreover, as we go down
from the root, more and more internal nodes are absent. Consequently, not all levels
contribute a cost of exactly cn; levels toward the bottom contribute less. We could work out
an accurate accounting of all costs, but remember that we are just trying to come up with a
guess to use in the substitution method. Let us tolerate the sloppiness and attempt to show that
a guess of O(n Ig n) for the upper bound is correct.

Indeed, we can use the substitution method to verify that O(n 1g n) is an upper bound for the
solution to the recurrence. We show that 7' (n) < dn Ig n, where d is a suitable positive
constant. We have

T(n) < T(n/3) + T(2n/3) + cn
<d(n/3)lg(n/3) + d(2n/3)lg(2n/3) + cn
= (d(n/3)lgn - d(n/3)lg 3) + (d(2n/3) Ig n - d(2n/3)I1g(3/2)) + cn
=dnlgn-d((n/3)1g3+(2n/3)1g(3/2)) + cn
=dnlgn-d((n/3)1g3+(2n/3)1g3-(2n/3)lg2)+cn
=dnlgn-dn(lg3-2/3)+cn
<dnlgn,

as long as d > ¢/(Ig 3 - (2/3)). Thus, we did not have to perform a more accurate accounting of
costs in the recursion tree.

Exercises 4.2-1



Use a recursion tree to determine a good asymptotic upper bound on the recurrence 7(n) =

3T(|n/2]) + n. Use the substitution method to verify your answer.
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Argue that the solution to the recurrence T (n) = T (n/3) + T (2n/3) + cn, where c is a constant,
is Q(n 1g n) by appealing to a recursion tree.
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Draw the recursion tree for T (n) = 4T (| n/2|)+cn, where c is a constant, and provide a tight
asymptotic bound on its solution. Verify your bound by the substitution method.

Exercises 4.2-4

Use a recursion tree to give an asymptotically tight solution to the recurrence 7(n) = T(n - a) +
T(a) + cn, where a > 1 and ¢ > 0 are constants.

Exercises 4.2-5

Use a recursion tree to give an asymptotically tight solution to the recurrence 7(n) = T(an) +
T((1 - a)n) + cn, where « is a constant in the range 0 <a < 1 and ¢ > 0 is also a constant.

4.3 The master method

The master method provides a "cookbook" method for solving recurrences of the form
(4.5) T(n) =aT(n/b)y+ f(n),.

where a > 1 and b > 1 are constants and f'(n) is an asymptotically positive function. The
master method requires memorization of three cases, but then the solution of many

recurrences can be determined quite easily, often without pencil and paper.

The recurrence (4.5) describes the running time of an algorithm that divides a problem of size
n into a subproblems, each of size n/b, where a and b are positive constants. The a



subproblems are solved recursively, each in time 7 (n/b). The cost of dividing the problem
and combining the results of the subproblems is described by the function f(n). (That is, using
the notation from Section 2.3.2, f(n) = D(n)+C(n).) For example, the recurrence arising from
the MERGE-SORT procedure has a =2, b =2, and f(n) = O(n).

As a matter of technical correctness, the recurrence isn't actually well defined because n/b
might not be an integer. Replacing each of the a terms T (n/b) with either T (| n/b|) or T

([n/b]) doesn't affect the asymptotic behavior of the recurrence, however. (We'll prove this in
the next section.) We normally find it convenient, therefore, to omit the floor and ceiling
functions when writing divide-and-conquer recurrences of this form.

The master theorem
The master method depends on the following theorem.

Theorem 4.1: (Master theorem)

Leta>1 and b > 1 be constants, let /(n) be a function, and let 7 (n) be defined on the
nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

where we interpret n/b to mean either | n/b| or [n/b]. Then T (n) can be bounded
asymptotically as follows.

1. If fin) = 0n"™*““)for some constant [| > 0, then Tin) = B(n*=)

2. If fin)=@n"%) then Tin) = B{n'"# " Ign),

3. If fim) = @n"™“*)for some constant [ > 0, and if a /' (n/b) < c¢f (n) for some constant ¢ <
1 and all sufficiently large n, then T (n) = O(f (n)).

Before applying the master theorem to some examples, let's spend a moment trying to
understand what it says. In each of the three cases, we are comparing the function f'(n) with
the function #**“, Intuitively, the solution to the recurrence is determined by the larger of the
two functions. If, as in case 1, the function »**“is the larger, then the solution is T(n) = &™)
If, as in case 3, the function f'(n) is the larger, then the solution is 7' (n) = O(f (n)). If, as in
case 2, the two functions are the same size, we multiply by a logarithmic factor, and the
solution is T{n) = © "% 1gn) = B(f(n)lgn)

Beyond this intuition, there are some technicalities that must be understood. In the first case,
not only must f'(n) be smaller than #***, it must be polynomially smaller. That is, f(n) must be
asymptotically smaller than #"*#*by a factor of n for some constant [] > 0. In the third case,
not only must f'(n) be larger than a***_ it must be polynomially larger and in addition satisfy
the "regularity" condition that af (n/b) < cf(n). This condition is satisfied by most of the
polynomially bounded functions that we shall encounter.



It is important to realize that the three cases do not cover all the possibilities for /' (n). There is
a gap between cases 1 and 2 when f'(n) is smaller than #**"but not polynomially smaller.
Similarly, there is a gap between cases 2 and 3 when f'(n) is larger than #**"but not
polynomially larger. If the function f'(n) falls into one of these gaps, or if the regularity
condition in case 3 fails to hold, the master method cannot be used to solve the recurrence.
Using the master method

To use the master method, we simply determine which case (if any) of the master theorem
applies and write down the answer.

As a first example, consider

T (n)=9T(n/3) + n.

For this recurrence, we have a =9, b = 3, f(n) = n, and thus we have that #"* = #"** = &),
Since flm = 0" where [] = 1, we can apply case 1 of the master theorem and conclude
that the solution is T (n) = O(?).

Now consider

T(n)=T@2n/3)+1,

inwhicha=1,b5=3/2, f(n) =1, and s*=" = s*==" = 4" = 1. Case 2 applies, since
fim) = 8(n*=) = a(l), and thus the solution to the recurrence is 7(n) = O(lg n).

For the recurrence

T(n) =3T(n/4) + nlgn,

we have a =3, b=4, f(n) =n lg n, and #*** = 2" = 0:"™)_Since

fin) =" where [ = 0.2, case 3 applies if we can show that the regularity condition
holds for f'(n). For sufficiently large n, af (n/b) = 3(n/4)lg(n/4) < (3/4)n 1g n = cf (n) for c =
3/4. Consequently, by case 3, the solution to the recurrence is 7(n) = O(nlg n).

The master method does not apply to the recurrence

T(n)=2T(n/2) + nlgn,

even though it has the proper form: a =2, b =2, f{in) = n 1g n, and »"* = n. It might seem that
case 3 should apply, since f(n) = n 1g n is asymptotically larger than «#* = ». The problem is
that it is not polynomially larger. The ratio f(#)/n"™*" = (nlgn)/n = lgnjs asymptotically less than

n for any positive constant [1. Consequently, the recurrence falls into the gap between case 2
and case 3. (See Exercise 4.4-2 for a solution.)

Exercises 4.3-1

Use the master method to give tight asymptotic bounds for the following recurrences.



a. T(n)=4T(n/2)+n.
b. T(n)=4T(n/2) + n’.
c. T(n)=4Tn/2)+n’.

Exercises 4.3-2

The recurrence 7(n) = 7T (n/2)+n* describes the running time of an algorithm 4. A competing
algorithm 4’ has a running time of 7"(n) = aT'(n/4) + n*. What is the largest integer value for a
such that 4" is asymptotically faster than 4?

Exercises 4.3-3

Use the master method to show that the solution to the binary-search recurrence 7(n) = T (n/2)
+ 0(1) is T(n) = O(Ig n). (See Exercise 2.3-5 for a description of binary search.)
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Can the master method be applied to the recurrence T () = 4T(n/2) + n* 1g n? Why or why
not? Give an asymptotic upper bound for this recurrence.
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Consider the regularity condition af (n/b) < cf(n) for some constant ¢ < 1, which is part of case
3 of the master theorem. Give an example of constants @ > 1 and b > 1 and a function f () that
satisfies all the conditions in case 3 of the master theorem except the regularity condition.

1 4.4: Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1). The proof need not be
understood in order to apply the theorem.

The proof is in two parts. The first part analyzes the "master" recurrence (4.5), under the
simplifying assumption that 7(») is defined only on exact powers of b > 1, that is, forn =1, b,
b%, ..0J This part gives all the intuition needed to understand why the master theorem is true.
The second part shows how the analysis can be extended to all positive integers » and is
merely mathematical technique applied to the problem of handling floors and ceilings.



In this section, we shall sometimes abuse our asymptotic notation slightly by using it to
describe the behavior of functions that are defined only over exact powers of 5. Recall that the
definitions of asymptotic notations require that bounds be proved for all sufficiently large
numbers, not just those that are powers of . Since we could make new asymptotic notations
that apply to the set {b': i =0, 1,...}, instead of the nonnegative integers, this abuse is minor.

Nevertheless, we must always be on guard when we are using asymptotic notation over a
limited domain so that we do not draw improper conclusions. For example, proving that 7' (n)
= O(n) when n is an exact power of 2 does not guarantee that 7' (n) = O(n). The function T (n)
could be defined as

n iftn=1,2,48,...,
Lim= ‘”: otherwise ,
in which case the best upper bound that can be proved is T (n) = O(n°). Because of this sort of
drastic consequence, we shall never use asymptotic notation over a limited domain without
making it absolutely clear from the context that we are doing so.

4.4.1 The proof for exact powers

The first part of the proof of the master theorem analyzes the recurrence (4.5)
T'(n)=aT (n/b) +f(n),

for the master method, under the assumption that » is an exact power of b > 1, where b need
not be an integer. The analysis is broken into three lemmas. The first reduces the problem of
solving the master recurrence to the problem of evaluating an expression that contains a
summation. The second determines bounds on this summation. The third lemma puts the first
two together to prove a version of the master theorem for the case in which # is an exact
power of b.

Lemma 4.2

Leta>1 and b > 1 be constants, and let /' (n) be a nonnegative function defined on exact
powers of b. Define T (n) on exact powers of b by the recurrence

T (1) = e(1) iftn=1,
" all(n/By+ fimy ifn=48,

where i is a positive integer. Then

logy a—1
GO 1y = (aowe) + D, afnfbh).

=0

Proof We use the recursion tree in Figure 4.3. The root of the tree has cost f(n), and it has a
children, each with cost f'(n/b). (It is convenient to think of a as being an integer, especially
when visualizing the recursion tree, but the mathematics does not require it.) Each of these
children has a children with cost f (n/b?), and thus there are a* nodes that are distance 2 from



the root. In general, there are @ nodes that are distance j from the root, and each has cost f
(n/b). The cost of each leaf'is T'(1) = ®(1), and each leaf is at depth logs n, since /" = 1,
There are «**" = «*=“]eaves in the tree.
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Figure 4.3: The recursion tree generated by 7' (n) = aT (n/b) + f (n). The tree is a complete a-
ary tree with «*=“leaves and height log; n. The cost of each level is shown at the right, and
their sum is given in equation (4.6).

We can obtain equation (4.6) by summing the costs of each level of the tree, as shown in the
figure. The cost for a level j of internal nodes is @ f{n/b'), and so the total of all internal node
levels is

oz, i —1

Z a' fin/b" .

Jul}

In the underlying divide-and-conquer algorithm, this sum represents the costs of dividing
problems into subproblems and then recombining the subproblems. The cost of all the leaves,
which is the cost of doing all »*=“subproblems of size 1, is &™),

In terms of the recursion tree, the three cases of the master theorem correspond to cases in
which the total cost of the tree is (1) dominated by the costs in the leaves, (2) evenly
distributed across the levels of the tree, or (3) dominated by the cost of the root.

The summation in equation (4.6) describes the cost of the dividing and combining steps in the
underlying divide-and-conquer algorithm. The next lemma provides asymptotic bounds on the
summation's growth.

Lemma 4.3

Leta>1 and b > 1 be constants, and let f{n) be a nonnegative function defined on exact
powers of b. A function g(n) defined over exact powers of b by



4‘7 logy, n—1 ;
( )fmu= Y af)

=i
can then be bounded asymptotically for exact powers of b as follows.

1. If fim = 0w “ifor some constant [1 > 0, then #(n) = Q")
2_ If finy= ['J[.rll"""}’ then flH) = ) (0 |J__'- # b'
3. Ifaf (n/b) < cf(n) for some constant ¢ < 1 and for all n > b, then g(n) = O(f(n)).

Proof For case 1, we have f(m = 0™ which implies that f{n/6) =0tin/B=)
Substituting into equation (4.7) yields

logg n—1 i
48) g(n) = U( FZ af(%)h*" ) .

=0

We bound the summation within the O-notation by factoring out terms and simplifying, which
leaves an increasing geometric series:

log, m—1 log, r—1
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Since b and [] are constants, we can rewrite the last expression as #™ " @n') =ty
Substituting this expression for the summation in equation (4.8) yields

!

a{n) = D“I'“—"-" ay
and case 1 is proved.

Under the assumption that /1t = &' "ifor case 2, we have that f(n/b'} =@i(n/b))
Substituting into equation (4.7) yields

Nk .
42 gln) = H( Z 5 (;_!J)lu ) _

jul)

We bound the summation within the ® as in case 1, but this time we do not obtain a geometric
series. Instead, we discover that every term of the summation is the same:
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Substituting this expression for the summation in equation (4.9) yields

g(n) = ([‘]l_fl: Tl |1l¥_._ Al

= (t—}-;ﬂ"'-"'" lg )

b
and case 2 is proved.

Case 3 is proved similarly. Since f(n) appears in the definition (4.7) of g(n) and all terms of
g(n) are nonnegative, we can conclude that g(n) = Q(f(n)) for exact powers of b. Under our
assumption that af{n/b) < cf(n) for some constant ¢ < 1 and all n > b, we have f(n/b) <
(c/a)f(n). Tterating j times, we have f(n/b') < (c/a) f(n) or, equivalently, & f(n/b) < f(n).
Substituting into equation (4.7) and simplifying yields a geometric series, but unlike the series
in case 1, this one has decreasing terms:

logg n—1

Z a’ f(n/b')

J=0

zin)

loge n—1

< Z {'f...f'{J'H

J=l0

s
j':n}z{'“

j=0

|
_Hn}(] _{_)

O f(n)),

since c is constant. Thus, we can conclude that g(n) = ®(f(n)) for exact powers of b. Case 3 is
proved, which completes the proof of the lemma.

We can now prove a version of the master theorem for the case in which # is an exact power
of b.

Lemma 4.4

Leta>1 and b > 1 be constants, and let f{n) be a nonnegative function defined on exact
powers of b. Define 7(n) on exact powers of b by the recurrence



T el ifn=1,
\R) = aT(n/by+ fin) ifn=4,

where i is a positive integer. Then 7(n) can be bounded asymptotically for exact powers of b
as follows.

—

If fin) = O"“")for some constant [ | > 0, then T(n) = S(n"),

2. If Find = Erintwer ), then Tin) EE T g )

3. If fim) = Q"™ **)for some constant [ > 0, and if af (n/b) < cf(n) for some constant ¢ <
1 and all sufficiently large n, then 7(n) = O(f(n)).

Proof We use the bounds in Lemma 4.3 to evaluate the summation (4.6) from Lemma 4.2.
For case 1, we have

T(n) = @'y 4 (T

o
= B{n")
2

and for case 2,

T(n) = Gnssdy 4 ':'.h:.'llu: " l:T: 113
= iﬂ](rll"""' |_u.l|:|.

For case 3,

T(n) = S (a"BT) @ f ()
= 0O(f(n)),

because [ = ST

4.4.2 Floors and ceilings

To complete the proof of the master theorem, we must now extend our analysis to the
situation in which floors and ceilings are used in the master recurrence, so that the recurrence
is defined for all integers, not just exact powers of b. Obtaining a lower bound on

(4.10) T(n) = al([n/b]) + f(n)
and an upper bound on
4.11) T'(n) =aT([n/bl)+ f(n)

is routine, since the bound [n/b]| > n/b can be pushed through in the first case to yield the

desired result, and the bound | n/b] < n/b can be pushed through in the second case. Lower
bounding the recurrence (4.11) requires much the same technique as upper bounding the
recurrence (4.10), so we shall present only this latter bound.



We modify the recursion tree of Figure 4.3 to produce the recursion tree in Figure 4.4. As we
go down in the recursion tree, we obtain a sequence of recursive invocations on the arguments
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Figure 4.4: The recursion tree generated by 7(n) = aT([n/b]) + f(n). The recursive argument
n; is given by equation (4.12).

[n/b] ,
[[n/b]l/b] ,
[[[n/b]l/bl/B] ,

Let us denote the jth element in the sequence by n;, where

(4.12)  _ |n if j =0,
P Ty bl i =0,

Our first goal is to determine the depth & such that ; is a constant. Using the inequality [x] <
x + 1, we obtain

Ry = n,
n

o — | .
n = e =+
n - e + I 1 |
£ = B b ’
i | |
H = —=+—=+=-+1,

b* bt b

In general,
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Letting j = [log, n], we obtain
" b
i n b
= hlogy -1 = h—1
oon b
- u_l.-‘h h—1
- b
h—1
= (1)

and thus we see that at depth |log, 1], the problem size is at most a constant.
From Figure 4.4, we see that

4, 1 3 Loy, 1] —1
( : T(n) = O(n"®) + Z a'fin;),

J=0

which is much the same as equation (4.6), except that n is an arbitrary integer and not
restricted to be an exact power of b.

We can now evaluate the summation

(4 14) | bogg m]—1

gln) = Z a’ fing)

=0

from (4.13) in a manner analogous to the proof of Lemma 4.3. Beginning with case 3, if

af([n/b]) < cfin) for n> b+ b/(b - 1), where ¢ < 1 is a constant, then it follows that dﬂnj) <
df(n). Therefore, the sum in equation (4.14) can be evaluated just as in Lemma 4.3. For case
2, we have fin = 8] If we can show that fin,) = 0" fu’) = 0(in/b")"**) then the proof for

case 2 of Lemma 4.3 will go through. Observe that j = < | log, n| implies #/n < 1. The bound
fimy = 0 “fimplies that there exists a constant ¢ > 0 such that for all sufficiently large 7,

n b oz, ex
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since ¢! + b/th = 1™ "i5 a constant. Thus, case 2 is proved. The proof of case 1 is almost
identical. The key is to prove the bound /7,} = 0**™) "which is similar to the corresponding
proof of case 2, though the algebra is more intricate.

We have now proved the upper bounds in the master theorem for all integers . The proof of
the lower bounds is similar.

Exercises 4.4-1: [

Give a simple and exact expression for #; in equation (4.12) for the case in which b is a
positive integer instead of an arbitrary real number.

Exercises 4.4-2: [

Show that if ftn) = @™ “1g" n) where k > 0, then the master recurrence has solution
Tin) = @™ ), For simplicity, confine your analysis to exact powers of b.

Exercises 4.4-3: [

Show that case 3 of the master theorem is overstated, in the sense that the regularity condition
af(n/b) < cf(n) for some constant ¢ < 1 implies that there exists a constant [| > 0 such that

fim) = Q(n'oraitey

Problems 4-1: Recurrence examples

Give asymptotic upper and lower bounds for 7(#) in each of the following recurrences.
Assume that 7(n) is constant for n < 2. Make your bounds as tight as possible, and justify your
answers.

T(n) = 21(n/2) + n’.
T(n) = T(9n/10) + n.
T(n) = 16T(n/4) + n’.
T (n)=7T(n/3) + n*.
T(n) = 1T(n/2) + n*.

Tind 27 {n/4) 4 W

T(n)=T(n - 1)+n

Tim =T/ m+1

SR e a0 o



Problems 4-2: Findini the missini inteier

An array A[1 [J n] contains all the integers from 0 to n except one. It would be easy to
determine the missing integer in O(n) time by using an auxiliary array B[0 [ #] to record
which numbers appear in 4. In this problem, however, we cannot access an entire integer in A
with a single operation. The elements of 4 are represented in binary, and the only operation
we can use to access them is "fetch the jth bit of 4[i]," which takes constant time.

Show that if we use only this operation, we can still determine the missing integer in O(n)
time.

Problems 4-3: Parameter—ﬁassini costs

Throughout this book, we assume that parameter passing during procedure calls takes
constant time, even if an N-element array is being passed. This assumption is valid in most
systems because a pointer to the array is passed, not the array itself. This problem examines
the implications of three parameter-passing strategies:

1. An array is passed by pointer. Time = @(1).

2. An array is passed by copying. Time = @(N), where N is the size of the array.

3. An array is passed by copying only the subrange that might be accessed by the called
procedure. Time = ®(q - p + 1) if the subarray A[p [] ¢] is passed.

a. Consider the recursive binary search algorithm for finding a number in a sorted array
(see Exercise 2.3-5). Give recurrences for the worst-case running times of binary
search when arrays are passed using each of the three methods above, and give good
upper bounds on the solutions of the recurrences. Let N be the size of the original
problem and 7 be the size of a subproblem.

b. Redo part (a) for the MERGE-SORT algorithm from Section 2.3.1.

Problems 4-4: More recurrence examﬁles

Give asymptotic upper and lower bounds for 7(#) in each of the following recurrences.
Assume that 7(n) is constant for sufficiently small ». Make your bounds as tight as possible,
and justify your answers.

T(n)=3T(n/2) + nlgn.

T(n) = 5T(n/5) + n/ 1g n.
Tim=4Tin/ D +n*n

T(n)=3T(n/3 +5) +n/2.

T(n) =2T(n/2) + n/ g n.

T(n) = T(n/2) + T(n/4) + T(n/8) + n.
TI(n)y=T(n-1)+ 1/n.

@ o Ao o



h. T(n)=T(n-1)+l1gn.
. Tn)=Tn-2)+2l1gn.

j‘ Timy = JaT i /m) 40

Problems 4-5: Fibonacci numbers

This problem develops properties of the Fibonacci numbers, which are defined by recurrence
(3.21). We shall use the technique of generating functions to solve the Fibonacci recurrence.
Define the generating function (or formal power series) F as

N
FG@) = » Fi

jmi)

= O0+z+22+22 +3 +5°5 + 8+ 1327 + 2128 + - -
where F; is the ith Fibonacci number.

a. Show that F (z) =z +z F (2) + ZF(2).

b. Show that
Fin = %t
- (1 —ghz)(] —{‘E:
= | ( 1 | )
W5\ — ¢z l—q.df;_
where
5
&im # = 1.61803...
and
- — 5
b = e L O T
c. Show that

~
¢ ~

F(z)= E —=(¢' —g¢")z' .

=) V5

d. Prove that i = ¢'/¥5for i > 0, rounded to the nearest integer. (Hint: Observe 19l <1)
e. Prove that Fi» > ¢' for i > 0.

Problems 4-6: VLSI chip testing



Professor Diogenes has n supposedly identical VLSI™ chips that in principle are capable of
testing each other. The professor's test jig accommodates two chips at a time. When the jig is
loaded, each chip tests the other and reports whether it is good or bad. A good chip always
reports accurately whether the other chip is good or bad, but the answer of a bad chip cannot
be trusted. Thus, the four possible outcomes of a test are as follows:

Chip A says Chip B says Conclusion

Bisgood Aisgood both are good, or both are bad
Bisgood A isbad at least one is bad
B is bad Ais good  atleast one is bad
B is bad A is bad at least one is bad

a. Show that if more than n/2 chips are bad, the professor cannot necessarily determine
which chips are good using any strategy based on this kind of pairwise test. Assume
that the bad chips can conspire to fool the professor.

b. Consider the problem of finding a single good chip from among » chips, assuming that

more than n/2 of the chips are good. Show that | n/2 ] pairwise tests are sufficient to
reduce the problem to one of nearly half the size.

c. Show that the good chips can be identified with @(#) pairwise tests, assuming that
more than 7/2 of the chips are good. Give and solve the recurrence that describes the
number of tests.

Problems 4-7: Monge arrays

An m x n array A of real numbers is a Monge array if for all i, j, k, and / such that | <i<k<
mand 1 <j</<n,we have

Ali, j1+ Alk, [ < A[i, I] + A[k, j].

In other words, whenever we pick two rows and two columns of a Monge array and consider
the four elements at the intersections of the rows and the columns, the sum of the upper-left
and lower-right elements is less or equal to the sum of the lower-left and upper-right
elements. For example, the following array is Monge:

1017 13 28 23
17221629 23
24 28223424
1113 6 17 7
4544323723
36331921 6
75 66 51 53 34



a. Prove that an array is Monge if and only if foralli=1,2,...,m-landj=1,2,...,n-
1, we have

Ali, jl+Ali + 1, j+ 1] <A[i, j+ 1]+ A[i + 1, /].
Note (For the "only if" part, use induction separately on rows and columns.)

b. The following array is not Monge. Change one element in order to make it Monge.
(Hint: Use part (a).)

37232232
216 710
53343031
3213 9 6
432115 8

c. Let f(i) be the index of the column containing the leftmost minimum element of row i.
Prove that (1) <f(2) < -+ < f(m) for any m x n Monge array.
d. Here is a description of a divide-and-conquer algorithm that computes the left-most
minimum element in each row of an m x n Monge array A4:
o Construct a submatrix 4" of 4 consisting of the even-numbered rows of 4.
Recursively determine the leftmost minimum for each row of A’. Then
compute the leftmost minimum in the odd-numbered rows of 4.

Explain how to compute the leftmost minimum in the odd-numbered rows of 4 (given
that the leftmost minimum of the even-numbered rows is known) in O(m + n) time.

e. Write the recurrence describing the running time of the algorithm described in part (d).
Show that its solution is O(m + n log m).

[L/LSI stands for "very large scale integration,” which is the integrated-circuit chip
technology used to fabricate most microprocessors today.

Chapter notes

Recurrences were studied as early as 1202 by L. Fibonacci, for whom the Fibonacci numbers
are named. A. De Moivre introduced the method of generating functions (see Problem 4-5)
for solving recurrences. The master method is adapted from Bentley, Haken, and Saxe [41],
which provides the extended method justified by Exercise 4.4-2. Knuth [182] and Liu [205]
show how to solve linear recurrences using the method of generating functions. Purdom and
Brown [252] and Graham, Knuth, and Patashnik [132] contain extended discussions of
recurrence solving.

Several researchers, including Akra and Bazzi [13], Roura [262], and Verma [306], have
given methods for solving more general divide-and-conquer recurrences than are solved by




the master method. We describe the result of Akra and Bazzi here, which works for
recurrences of the form

4.15 -
( ) Tin) = Zu. Filn/bi])+ fln}),

i=]

where k > 1; all coefficients a; are positive and sum to at least 1; all b; are at least 2; f(n) is
bounded, positive, and nondecreasing; and for all constants ¢ > 1, there exist constants ng, d >
0 such that f{(n/c) > df (n) for all n > ny. This method would work on a recurrence such as 7(n)

=T(1n/3]) + T([2n/3]) + O(n), for which the master method does not apply. To solve the

P P_
recurrence (4.15), we first find the value of p such that Lim @b = L (Such a p always

exists, and it is unique and positive.) The solution to the recurrence is then

Timy=6{n"+6 (”ﬁf f:i? ﬂ'.r) :
o X

for n' a sufficiently large constant. The Akra-Bazzi method can be somewhat difficult to use,
but it serves in solving recurrences that model division of the problem into substantially
unequally sized subproblems. The master method is simpler to use, but it applies only when
subproblem sizes are equal.

Chapter 5: Probabilistic Analysis and
Randomized Algorithms

This chapter introduces probabilistic analysis and randomized algorithms. If you are
unfamiliar with the basics of probability theory, you should read Appendix C, which reviews
this material. Probabilistic analysis and randomized algorithms will be revisited several times
throughout this book.

5.1 The hiring problem

Suppose that you need to hire a new office assistant. Your previous attempts at hiring have
been unsuccessful, and you decide to use an employment agency. The employment agency
will send you one candidate each day. You will interview that person and then decide to either
hire that person or not. You must pay the employment agency a small fee to interview an
applicant. To actually hire an applicant is more costly, however, since you must fire your
current office assistant and pay a large hiring fee to the employment agency. You are
committed to having, at all times, the best possible person for the job. Therefore, you decide
that, after interviewing each applicant, if that applicant is better qualified than the current
office assistant, you will fire the current office assistant and hire the new applicant. You are
willing to pay the resulting price of this strategy, but you wish to estimate what that price will
be.

The procedure HIRE-ASSISTANT, given below, expresses this strategy for hiring in
pseudocode. It assumes that the candidates for the office assistant job are numbered 1 through
n. The procedure assumes that you are able to, after interviewing candidate i, determine if



candidate i is the best candidate you have seen so far. To initialize, the procedure creates a
dummy candidate, numbered 0, who is less qualified than each of the other candidates.

HIRE-ASSISTANT (n)

1 best « 0 — candidate 0 is a least-qualified dummy candidate
2 for i « 1 ton

3 do interview candidate 1

4 if candidate i is better than candidate best

5 then best « 1

6 hire candidate 1

The cost model for this problem differs from the model described in Chapter 2. We are not
concerned with the running time of HIRE-ASSISTANT, but instead with the cost incurred by
interviewing and hiring. On the surface, analyzing the cost of this algorithm may seem very
different from analyzing the running time of, say, merge sort. The analytical techniques used,
however, are identical whether we are analyzing cost or running time. In either case, we are
counting the number of times certain basic operations are executed.

Interviewing has a low cost, say c¢;, whereas hiring is expensive, costing c;. Let m be the
number of people hired. Then the total cost associated with this algorithm is O(nc; + mcy). No
matter how many people we hire, we always interview n candidates and thus always incur the
cost nc; associated with interviewing. We therefore concentrate on analyzing mcy, the hiring
cost. This quantity varies with each run of the algorithm.

This scenario serves as a model for a common computational paradigm. It is often the case
that we need to find the maximum or minimum value in a sequence by examining each
element of the sequence and maintaining a current "winner." The hiring problem models how
often we update our notion of which element is currently winning.

Worst-case analysis

In the worst case, we actually hire every candidate that we interview. This situation occurs if
the candidates come in increasing order of quality, in which case we hire n times, for a total
hiring cost of O(ncy,).

It might be reasonable to expect, however, that the candidates do not always come in
increasing order of quality. In fact, we have no idea about the order in which they arrive, nor
do we have any control over this order. Therefore, it is natural to ask what we expect to
happen in a typical or average case.

Probabilistic analysis

Probabilistic analysis is the use of probability in the analysis of problems. Most commonly,
we use probabilistic analysis to analyze the running time of an algorithm. Sometimes, we use
it to analyze other quantities, such as the hiring cost in procedure HIRE-ASSISTANT. In
order to perform a probabilistic analysis, we must use knowledge of, or make assumptions
about, the distribution of the inputs. Then we analyze our algorithm, computing an expected
running time. The expectation is taken over the distribution of the possible inputs. Thus we
are, in effect, averaging the running time over all possible inputs.



We must be very careful in deciding on the distribution of inputs. For some problems, it is
reasonable to assume something about the set of all possible inputs, and we can use
probabilistic analysis as a technique for designing an efficient algorithm and as a means for
gaining insight into a problem. For other problems, we cannot describe a reasonable input
distribution, and in these cases we cannot use probabilistic analysis.

For the hiring problem, we can assume that the applicants come in a random order. What does
that mean for this problem? We assume that we can compare any two candidates and decide
which one is better qualified; that is, there is a total order on the candidates. (See Appendix B
for the definition of a total order.) We can therefore rank each candidate with a unique
number from 1 through », using rank(i) to denote the rank of applicant i, and adopt the
convention that a higher rank corresponds to a better qualified applicant. The ordered list
<rank(1), rank(2), ..., rank(n)> is a permutation of the list <1, 2, ..., n>. Saying that the
applicants come in a random order is equivalent to saying that this list of ranks is equally
likely to be any one of the n! permutations of the numbers 1 through n. Alternatively, we say
that the ranks form a uniform random permutation; that is, each of the possible n!
permutations appears with equal probability.

Section 5.2 contains a probabilistic analysis of the hiring problem.
Randomized algorithms

In order to use probabilistic analysis, we need to know something about the distribution on the
inputs. In many cases, we know very little about the input distribution. Even if we do know
something about the distribution, we may not be able to model this knowledge
computationally. Yet we often can use probability and randomness as a tool for algorithm
design and analysis, by making the behavior of part of the algorithm random.

In the hiring problem, it may seem as if the candidates are being presented to us in a random
order, but we have no way of knowing whether or not they really are. Thus, in order to
develop a randomized algorithm for the hiring problem, we must have greater control over the
order in which we interview the candidates. We will, therefore, change the model slightly. We
will say that the employment agency has n candidates, and they send us a list of the
candidates in advance. On each day, we choose, randomly, which candidate to interview.
Although we know nothing about the candidates (besides their names), we have made a
significant change. Instead of relying on a guess that the candidates will come to us in a
random order, we have instead gained control of the process and enforced a random order.

More generally, we call an algorithm randomized if its behavior is determined not only by its
input but also by values produced by a random-number generator. We shall assume that we
have at our disposal a random-number generator RANDOM. A call to RANDOM(a, b)
returns an integer between a and b, inclusive, with each such integer being equally likely. For
example, RANDOM(O0, 1) produces 0 with probability 1/2, and it produces 1 with probability
1/2. A call to RANDOM(3, 7) returns either 3, 4, 5, 6 or 7, each with probability 1/5. Each
integer returned by RANDOM is independent of the integers returned on previous calls. You
may imagine RANDOM as rolling a (b - a + 1)-sided die to obtain its output. (In practice,
most programming environments offer a pseudorandom-number generator: a deterministic
algorithm returning numbers that "look" statistically random.)a

Exercises 5.1-1



Show that the assumption that we are always able to determine which candidate is best in line
4 of procedure HIRE-ASSISTANT implies that we know a total order on the ranks of the
candidates.

Exercises 5.1-2: [

Describe an implementation of the procedure RANDOM(a, b) that only makes calls to
RANDOM(O0, 1). What is the expected running time of your procedure, as a function of a and
b?

Exercises 5.1-3: [

Suppose that you want to output 0 with probability 1/2 and 1 with probability 1/2. At your
disposal is a procedure BIASED-RANDOM, that outputs either O or 1. It outputs 1 with some
probability p and 0 with probability 1 - p, where 0 < p < 1, but you do not know what p is.
Give an algorithm that uses BIASED-RANDOM as a subroutine, and returns an unbiased
answer, returning 0 with probability 1/2 and 1 with probability 1/2. What is the expected
running time of your algorithm as a function of p?

5.2 Indicator random variables

In order to analyze many algorithms, including the hiring problem, we will use indicator
random variables. Indicator random variables provide a convenient method for converting
between probabilities and expectations. Suppose we are given a sample space S and an event
A. Then the indicator random variable 1 {4} associated with event 4 is defined as

(5.1) [{A] = I if A occurs .
00 if A does not occur .

As a simple example, let us determine the expected number of heads that we obtain when
flipping a fair coin. Our sample space is S = {H, T}, and we define a random variable ¥ which
takes on the values H and 7, each with probability 1/2. We can then define an indicator
random variable Xy, associated with the coin coming up heads, which we can express as the
event Y = H. This variable counts the number of heads obtained in this flip, and it is 1 if the
coin comes up heads and 0 otherwise. We write

| if¥=H,
Ap=lib=ll=gy gy 7
The expected number of heads obtained in one flip of the coin is simply the expected value of
our indicator variable Xy



E[Xu] = E[I{Y = H}]
=1-Pr{Y=H}+0-Pr{Y=T}
=1-(172)+0-(1/2)
=1/2.

Thus the expected number of heads obtained by one flip of a fair coin is 1/2. As the following
lemma shows, the expected value of an indicator random variable associated with an event 4
is equal to the probability that 4 occurs.

Lemma 5.1

Given a sample space S and an event 4 in the sample space S, let Xy =I[{4}. Then E[X,] =
Pr{4}.

Proof By the definition of an indicator random variable from equation 1) and the definition of
expected value, we have

E[X,] = E[I{4}]
=1-Pr{d} +0-Pr{A}
=Pr{d},

where A denotes S - 4, the complement of 4.

Although indicator random variables may seem cumbersome for an application such as
counting the expected number of heads on a flip of a single coin, they are useful for analyzing
situations in which we perform repeated random trials. For example, indicator random
variables give us a simple way to arrive at the result of equation (C.36). In this equation, we
compute the number of heads in 7 coin flips by considering separately the probability of
obtaining 0 heads, 1 heads, 2 heads, etc. However, the simpler method proposed in equation
(C.37) actually implicitly uses indicator random variables. Making this argument more
explicit, we can let X; be the indicator random variable associated with the event in which the
ith flip comes up heads. Letting Y; be the random variable denoting the outcome of the ith flip,
we have that X; =I[{Y; = H}. Let X be the random variable denoting the total number of heads
in the 7 coin flips, so that

X --il,’i.’_..

We wish to compute the expected number of heads, so we take the expectation of both sides
of the above equation to obtain

E|x1=r-.[ix,] .




The left side of the above equation is the expectation of the sum of #» random variables. By
Lemma 5.1, we can easily compute the expectation of each of the random variables. By
equation (C.20)-linearity of expectation-it is easy to compute the expectation of the sum: it
equals the sum of the expectations of the » random variables. Linearity of expectation makes
the use of indicator random variables a powerful analytical technique; it applies even when
there is dependence among the random variables. We now can easily compute the expected
number of heads:

(%]
= ;Epf,l
Iil”z

= nf2.

E[X]

Thus, compared to the method used in equation (C.36), indicator random variables greatly
simplify the calculation. We shall use indicator random variables throughout this book.

Analysis of the hiring problem using indicator random variables

Returning to the hiring problem, we now wish to compute the expected number of times that
we hire a new office assistant. In order to use a probabilistic analysis, we assume that the
candidates arrive in a random order, as discussed in the previous section. (We shall see in
Section 5.3 how to remove this assumption.) Let X be the random variable whose value equals
the number of times we hire a new office assistant. We could then apply the definition of
expected value from equation (C.19) to obtain

E[X] = z.r Pr{X =x} ,
r=I

but this calculation would be cumbersome. We shall instead use indicator random variables to
greatly simplify the calculation.

To use indicator random variables, instead of computing E[X] by defining one variable
associated with the number of times we hire a new office assistant, we define n variables
related to whether or not each particular candidate is hired. In particular, we let X; be the
indicator random variable associated with the event in which the ith candidate is hired. Thus,

(5.2) — Tleandidate i i< h __ )1 if candidate i is hired ,
Ay L candidate vl fnirecy w 0 if candidate § is not hired ,

and

(53) X=X+X2+---+X,.

By Lemma 5.1, we have that



E[X;] = Pr {candidate i is hired},

and we must therefore compute the probability that lines 5-6 of HIRE-ASSISTANT are
executed.

Candidate i is hired, in line 5, exactly when candidate i is better than each of candidates 1
through 7 - 1. Because we have assumed that the candidates arrive in a random order, the first
i candidates have appeared in a random order. Any one of these first i/ candidates is equally
likely to be the best-qualified so far. Candidate i has a probability of 1/i of being better
qualified than candidates 1 through 7 - 1 and thus a probability of 1/i of being hired. By
Lemma 5.1, we conclude that

54D Exi1=1/i.

Now we can compute E[X]:

5.5 L
(5:3) E[X] E |:Z X.j| (by equation (5.3))
=1

= Z E[X;] (by linearity of expectation)
i=]
(5.6) - Z 1fi (by equation (5.4))
r=l1
= Inn+ O(1) (byequation (A7) .

Even though we interview n people, we only actually hire approximately In # of them, on
average. We summarize this result in the following lemma.

Lemma 5.2

Assuming that the candidates are presented in a random order, algorithm HIRE-ASSISTANT
has a total hiring cost of O(c;, In n).

Proof The bound follows immediately from our definition of the hiring cost and equation
(5.6).

The expected interview cost is a significant improvement over the worst-case hiring cost of
O(ncy).

Exercises 5.2-1

In HIRE-ASSISTANT, assuming that the candidates are presented in a random order, what is
the probability that you will hire exactly one time? What is the probability that you will hire
exactly n times?



Exercises 5.2-2

In HIRE-ASSISTANT, assuming that the candidates are presented in a random order, what is
the probability that you will hire exactly twice?
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Use indicator random variables to compute the expected value of the sum of » dice.

Exercises 5.2-4

Use indicator random variables to solve the following problem, which is known as the hat-
check problem. Each of n customers gives a hat to a hat-check person at a restaurant. The hat-
check person gives the hats back to the customers in a random order. What is the expected
number of customers that get back their own hat?

Exercises 5.2-5

Let A[1 .. n] be an array of n distinct numbers. If i <j and A[i] > 4[], then the pair (7, j) is
called an inversion of A. (See Problem 2-4 for more on inversions.) Suppose that each
element of 4 is chosen randomly, independently, and uniformly from the range 1 through n.
Use indicator random variables to compute the expected number of inversions.

5.3 Randomized algorithms

In the previous section, we showed how knowing a distribution on the inputs can help us to
analyze the average-case behavior of an algorithm. Many times, we do not have such
knowledge and no average-case analysis is possible. As mentioned in Section 5.1, we may be
able to use a randomized algorithm.

For a problem such as the hiring problem, in which it is helpful to assume that all
permutations of the input are equally likely, a probabilistic analysis will guide the
development of a randomized algorithm. Instead of assuming a distribution of inputs, we
impose a distribution. In particular, before running the algorithm, we randomly permute the
candidates in order to enforce the property that every permutation is equally likely. This
modification does not change our expectation of hiring a new office assistant roughly In n
times. It means, however, that for any input we expect this to be the case, rather than for
inputs drawn from a particular distribution.



We now explore the distinction between probabilistic analysis and randomized algorithms
further. In Section 5.2, we claimed that, assuming that the candidates are presented in a
random order, the expected number of times we hire a new office assistant is about In n. Note
that the algorithm here is deterministic; for any particular input, the number of times a new
office assistant is hired will always be the same. Furthermore, the number of times we hire a
new office assistant differs for different inputs, and it depends on the ranks of the various
candidates. Since this number depends only on the ranks of the candidates, we can represent a
particular input by listing, in order, the ranks of the candidates, i.e., <rank(1), rank(2), ...,
rank(n)>. Given the rank list 4, =<1, 2, 3,4, 5, 6,7, 8,9, 10>, a new office assistant will
always be hired 10 times, since each successive candidate is better than the previous one, and
lines 5-6 will be executed in each iteration of the algorithm. Given the list of ranks A4, = <10,
9,8,7,6,5,4, 3,2, 1>, anew office assistant will be hired only once, in the first iteration.
Given a list of ranks 435=<5,2, 1, 8, 4,7, 10, 9, 3, 6>, a new office assistant will be hired
three times, upon interviewing the candidates with ranks 5, 8, and 10. Recalling that the cost
of our algorithm is dependent on how many times we hire a new office assistant, we see that
there are expensive inputs, such as 4, inexpensive inputs, such as 4,, and moderately
expensive inputs, such as 4.

Consider, on the other hand, the randomized algorithm that first permutes the candidates and
then determines the best candidate. In this case, the randomization is in the algorithm, not in
the input distribution. Given a particular input, say 43 above, we cannot say how many times
the maximum will be updated, because this quantity differs with each run of the algorithm.
The first time we run the algorithm on A43, it may produce the permutation 4, and perform 10
updates, while the second time we run the algorithm, we may produce the permutation 4, and
perform only one update. The third time we run it, we may perform some other number of
updates. Each time we run the algorithm, the execution depends on the random choices made
and is likely to differ from the previous execution of the algorithm. For this algorithm and
many other randomized algorithms, no particular input elicits its worst-case behavior. Even
your worst enemy cannot produce a bad input array, since the random permutation makes the
input order irrelevant. The randomized algorithm performs badly only if the random-number
generator produces an "unlucky" permutation.

For the hiring problem, the only change needed in the code is to randomly permute the array.

RANDOMIZED-HIRE-ASSISTANT (n)
1 randomly permute the list of candidates
2 best « 0 — candidate 0 is a least-qualified dummy candidate
3 for i « 1 to n
do interview candidate 1
if candidate i is better than candidate best
then best « 1
hire candidate 1

~ o O

With this simple change, we have created a randomized algorithm whose performance
matches that obtained by assuming that the candidates were presented in a random order.

Lemma 5.3

The expected hiring cost of the procedure RANDOMIZED-HIRE-ASSISTANT is O(cy, In n).



Proof After permuting the input array, we have achieved a situation identical to that of the
probabilistic analysis of HIRE-ASSISTANT.

The comparison between Lemmas 5.2 and 5.3 captures the difference between probabilistic
analysis and randomized algorithms. In Lemma 5.2, we make an assumption about the input.
In Lemma 5.3, we make no such assumption, although randomizing the input takes some
additional time. In the remainder of this section, we discuss some issues involved in randomly
permuting inputs.

Randomly permuting arrays

Many randomized algorithms randomize the input by permuting the given input array. (There
are other ways to use randomization.) Here, we shall discuss two methods for doing so. We
assume that we are given an array 4 which, without loss of generality, contains the elements 1
through n. Our goal is to produce a random permutation of the array.

One common method is to assign each element 4[7] of the array a random priority P[], and
then sort the elements of 4 according to these priorities. For example if our initial array is 4 =
<1, 2, 3, 4> and we choose random priorities P = <36, 3, 97, 19>, we would produce an array
B=<2,4,1, 3>, since the second priority is the smallest, followed by the fourth, then the first,
and finally the third. We call this procedure PERMUTE-BY-SORTING:

PERMUTE-BY-SORTING (4)

1l n « lengthl[A]

2 for i « 1 to n

3 do P[i] = RANDOM(1l, n°)
4 sort A, using P as sort keys
5 return A

Line 3 chooses a random number between 1 and n°. We use a range of 1 to n’ to make it likely
that all the priorities in P are unique. (Exercise 5.3-5 asks you to prove that the probability
that all entries are unique is at least 1 - 1/n, and Exercise 5.3-6 asks how to implement the
algorithm even if two or more priorities are identical.) Let us assume that all the priorities are
unique.

The time-consuming step in this procedure is the sorting in line 4. As we shall see in Chapter
8, if we use a comparison sort, sorting takes Q(n g n) time. We can achieve this lower bound,
since we have seen that merge sort takes @(n 1g n) time. (We shall see other comparison sorts
that take ®(n lIg n) time in Part I1.) After sorting, if P[i] is the jth smallest priority, then A4[i]
will be in position j of the output. In this manner we obtain a permutation. It remains to prove
that the procedure produces a uniform random permutation, that is, that every permutation of
the numbers 1 through 7 is equally likely to be produced.

Lemma 5.4

Procedure PERMUTE-BY-SORTING produces a uniform random permutation of the input,
assuming that all priorities are distinct.



Proof We start by considering the particular permutation in which each element A[i] receives
the ith smallest priority. We shall show that this permutation occurs with probability exactly
I/n!. Fori=1, 2, ..., n, let X; be the event that element A[7] receives the ith smallest priority.
Then we wish to compute the probability that for all i, event X; occurs, which is

Pr {X] ﬂXz mX3 n-- ﬂXn_l an}

Using Exercise C.2-6, this probability is equal to

Pr {X]} : PI’{XQ |X1} : PI‘{X3 |X2 ﬂX]} : PI‘{X4 |X3 N X, le}
PI‘{)(, |)(,'_1 n)(i_z n-- ﬂXl} PI’{X,, |)(,1_1 n-- ﬂXl}

We have that Pr {X;} = 1/n because it is the probability that one priority chosen randomly out
of a set of n is the smallest. Next, we observe that Pr {X; | X} = 1/(n - 1) because given that
element A[1] has the smallest priority, each of the remaining » - 1 elements has an equal
chance of having the second smallest priority. In general, for i = 2, 3, ..., n, we have that Pr
{Xi| Xt N Xia N - N X1} =1/(n-i+ 1), since, given that elements A[1] through A[7 - 1] have
the 7 - 1 smallest priorities (in order), each of the remaining n - (i - 1) elements has an equal
chance of having the ith smallest priority. Thus, we have

rixngngan 0tk = (2)()- () ()
n n— e

1

n!’

and we have shown that the probability of obtaining the identity permutation is 1/n!.

We can extend this proof to work for any permutation of priorities. Consider any fixed
permutation ¢ = <a(1), o(2), ..., a(n)> of the set {1, 2, ..., n}. Let us denote by r; the rank of
the priority assigned to element A[7], where the element with the jth smallest priority has rank
Jj. If we define X; as the event in which element A4[i] receives the o(i)th smallest priority, or r; =
a(i), the same proof still applies. Therefore, if we calculate the probability of obtaining any
particular permutation, the calculation is identical to the one above, so that the probability of
obtaining this permutation is also 1/n!.

One might think that to prove that a permutation is a uniform random permutation it suffices
to show that, for each element A[i], the probability that it winds up in position j is 1/n.
Exercise 5.3-4 shows that this weaker condition is, in fact, insufficient.

A better method for generating a random permutation is to permute the given array in place.
The procedure RANDOMIZE-IN-PLACE does so in O(n) time. In iteration Z, the element A[i]
is chosen randomly from among elements A[i] through A[n]. Subsequent to iteration i, A[7] is
never altered.

RANDOMIZE-IN-PLACE (A)
1 n « length[A]
2 for i « to n



3 do swap A[i] - A[RANDOM(i, n)]

We will use a loop invariant to show that procedure RANDOMIZE-IN-PLACE produces a
uniform random permutation. Given a set of n elements, a k-permutation is a sequence
containing k of the n elements. (See Appendix B.) There are n!/(n - k)! such possible .-
permutations.

Lemma 5.5

Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation.
Proof We use the following loop invariant:

e Just prior to the ith iteration of the for loop of lines 2-3, for each possible (i - 1)-
permutation, the subarray A4[1 .. i - 1] contains this (7 - 1)-permutation with probability
(n-i+1)!/n!.

We need to show that this invariant is true prior to the first loop iteration, that each iteration of
the loop maintains the invariant, and that the invariant provides a useful property to show
correctness when the loop terminates.

o Initialization: Consider the situation just before the first loop iteration, so that i = 1.
The loop invariant says that for each possible O-permutation, the sub-array A[1 .. 0]
contains this 0-permutation with probability (n - i + 1)!/n! = n!/n! = 1. The subarray
A[1 .. 0] is an empty subarray, and a O-permutation has no elements. Thus, 4[1 .. 0]
contains any 0-permutation with probability 1, and the loop invariant holds prior to the
first iteration.

e Maintenance: We assume that just before the (i - 1)st iteration, each possible (7 - 1)-
permutation appears in the subarray A4[1 .. i - 1] with probability (n - i + 1)!/n!, and we
will show that after the ith iteration, each possible i-permutation appears in the
subarray A[1 .. ] with probability (n - i)!/n!. Incrementing i for the next iteration will
then maintain the loop invariant.

Let us examine the ith iteration. Consider a particular i-permutation, and denote the
elements in it by <x, x, ..., x7>. This permutation consists of an (i - 1)-permutation
<xi, ..., Xi.1> followed by the value x; that the algorithm places in A[{]. Let E; denote
the event in which the first i - 1 iterations have created the particular (i - 1)-
permutation <xji,..., x.;> in 4[1 .. i - 1]. By the loop invariant, Pr {E,} =(n - i + 1)!/n!.
Let E;, be the event that ith iteration puts x; in position 4[i]. The i-permutation <xj, ...,
x> 1s formed in A[1 .. i] precisely when both E; and E, occur, and so we wish to
compute Pr {£, N E;}. Using equation (C.14), we have

Pr {Ez N El} =PI'{E2 | El}Pr{El}

The probability Pr {E; | £} equals 1/(n-i + 1) because in line 3 the algorithm chooses
x; randomly from the n - i + 1 values in positions A[i .. n]. Thus, we have



Pr{E:NE}) = Pr{iEa| E|}Pr{E,]

1 (n—i-+1)
n—i+1 - n!
(n—i)

i!

e Termination: At termination, i = n + 1, and we have that the subarray A4[1 .. n] is a
given n-permutation with probability (n - n)!/n! = 1/n!.

Thus, RANDOMIZE-IN-PLACE produces a uniform random permutation.

A randomized algorithm is often the simplest and most efficient way to solve a problem. We
shall use randomized algorithms occasionally throughout this book.

Exercises 5.3-1

Professor Marceau objects to the loop invariant used in the proof of Lemma 5.5. He questions
whether it is true prior to the first iteration. His reasoning is that one could just as easily
declare that an empty subarray contains no O-permutations. Therefore, the probability that an
empty subarray contains a 0-permutation should be 0, thus invalidating the loop invariant
prior to the first iteration. Rewrite the procedure RANDOMIZE-IN-PLACE so that its
associated loop invariant applies to a nonempty subarray prior to the first iteration, and
modify the proof of Lemma 5.5 for your procedure.

Exercises 5.3-2

Professor Kelp decides to write a procedure that will produce at random any permutation
besides the identity permutation. He proposes the following procedure:

PERMUTE-WITHOUT-IDENTITY (A)

1 n « length[A]

2 for i « 1 to n

3 do swap A[i] o A[RANDOM(i + 1, n)]

Does this code do what Professor Kelp intends?

Exercises 5.3-3

Suppose that instead of swapping element A[i] with a random element from the subarray A[i ..
n], we swapped it with a random element from anywhere in the array:



PERMUTE-WITH-ALL (A)
1 n « length[A]

3 do swap A[i] < A[RANDOM(1l, n)]

Does this code produce a uniform random permutation? Why or why not?

Exercises 5.3-4

Professor Armstrong suggests the following procedure for generating a uniform random
permutation:

PERMUTE-BY-CYCLIC (A)

1 n < length[A]

2 offset — RANDOM(1l, n)

3 for i « 1 ton

4 do dest « 1 + offset

5 if dest > n

6 then dest « dest -n
7 Bldest] « A[i]

8 return B

Show that each element A[7] has a 1/n probability of winding up in any particular position in
B. Then show that Professor Armstrong is mistaken by showing that the resulting permutation
is not uniformly random.

Exercises 5.3-5: [

Prove that in the array P in procedure PERMUTE-BY-SORTING, the probability that all
elements are unique is at least 1 - 1/n.

Exercises 5.3-6

Explain how to implement the algorithm PERMUTE-BY-SORTING to handle the case in
which two or more priorities are identical. That is, your algorithm should produce a uniform
random permutation, even if two or more priorities are identical.

5.4 [] Probabilistic analysis and further uses of indicator
random variables

This advanced section further illustrates probabilistic analysis by way of four examples. The
first determines the probability that in a room of & people, some pair shares the same birthday.



The second example examines the random tossing of balls into bins. The third investigates
"streaks" of consecutive heads in coin flipping. The final example analyzes a variant of the
hiring problem in which you have to make decisions without actually interviewing all the
candidates.

5.4.1 The birthday paradox

Our first example is the birthday paradox. How many people must there be in a room before
there is a 50% chance that two of them were born on the same day of the year? The answer is
surprisingly few. The paradox is that it is in fact far fewer than the number of days in a year,

or even half the number of days in a year, as we shall see.

To answer this question, we index the people in the room with the integers 1, 2, ..., k, where k
is the number of people in the room. We ignore the issue of leap years and assume that all
years have n =365 days. Fori=1, 2, ..., k, let b; be the day of the year on which person i's
birthday falls, where 1 < b; < n. We also assume that birthdays are uniformly distributed
across the n days of the year, so that Pr {b;=r} =1/nfori=1,2, ..., kandr=1,2, ..., n.

The probability that two given people, say i and j, have matching birthdays depends on
whether the random selection of birthdays is independent. We assume from now on that
birthdays are independent, so that the probability that i's birthday and j's birthday both fall on
day ris

Pr {b;=rand b;=r} = Pr{b;=r}Pr{b,=r}
= 1/n".

Thus, the probability that they both fall on the same day is

(5.7) Pr{b; = b;)

Z Prib; =rand bh; =r}
ral

i:{ 1 ;’rr:]
r=|

1fn.

More intuitively, once b; is chosen, the probability that b; is chosen to be the same day is 1/n.
Thus, the probability that i and j have the same birthday is the same as the probability that the
birthday of one of them falls on a given day. Notice, however, that this coincidence depends
on the assumption that the birthdays are independent.

We can analyze the probability of at least 2 out of £ people having matching birthdays by
looking at the complementary event. The probability that at least two of the birthdays match is
1 minus the probability that all the birthdays are different. The event that £ people have
distinct birthdays is

E.

B = ﬂ A;



where A; is the event that person i's birthday is different from person j's for all j <i. Since we
can write B, = Ay N By.1, we obtain from equation (C.16) the recurrence

(58) Pr {H{} = PF{H{ “" Pr [.r’!,.'_ H,{ |} :
where we take Pr{B;} = Pr{4,} =1 as an initial condition. In other words, the probability that
by, by, ..., by are distinct birthdays is the probability that by, b, ..., by are distinct birthdays
times the probability that b, # b; fori=1, 2, ..., k - 1, given that by, by, ..., by are distinct.
If by, bs, ..., by are distinct, the conditional probability that by # b; fori=1, 2, ..., k- 1 is Pr
{4k | Br-1} = (n - k+ 1)/n, since out of the n days, there are n - (k - 1) that are not taken. We
iteratively apply the recurrence (5.8) to obtain
PI'{HI] = Pr“?l ]ipl'iﬂj__ | R;' l%

PriBi_z2]PridAcs | By} PriA; | B}

= Pr{B;|Pr{A; | B|}Pr{Ay| By} ---Pr{A; | B}
B Il(u—l)(n—l)nl(u—k+l)

a n ] i
I R

Inequality (3.11), 1 + x <e,, gives us

e 1fm . 2fm ik=11/m

Pr{B;) e, ..e

| A

5k
p— & ey

;—k(k—=1)2n
L&
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when -k(k - 1)/2n < In(1/2). The probability that all & birthdays are distinct is at most 1/2 when
k(k - 1) =2n In 2 or, solving the quadratic equation, when * = (1 + T+ &mIim/2, For n = 365,
we must have k£ > 23. Thus, if at least 23 people are in a room, the probability is at least 1/2
that at least two people have the same birthday. On Mars, a year is 669 Martian days long; it
therefore takes 31 Martians to get the same effect.

An analysis using indicator random variables

We can use indicator random variables to provide a simpler but approximate analysis of the
birthday paradox. For each pair (i, j) of the k people in the room, we define the indicator
random variable Xj, for 1 <i <j <k, by

X = I{personi and person j have the same birthday}

1 if person i and person j have the same birthday |
() otherwise .

By equation (5.7), the probability that two people have matching birthdays is 1/, and thus by
Lemma 5.1, we have



E [X;] = Pr{person i and person j have the same birthday}
= 1/n.

Letting X be the random variable that counts the number of pairs of individuals having the
same birthday, we have

[ [}
X=3_ % Xy

i=1 j=i+l]

Taking expectations of both sides and applying linearity of expectation, we obtain

i
¥ 3 By
fmm] e ]
kY
(2)5
k(k = 1)
2n '

E[X]

When k(k - 1) > 2n, therefore, the expected number of pairs of people with the same birthday
is at least 1. Thus, if we have at least ¥27+ lindividuals in a room, we can expect at least two
to have the same birthday. For n = 365, if k = 28, the expected number of pairs with the same
birthday is (28 - 27)/(2 - 365) = 1.0356.

Thus, with at least 28 people, we expect to find at least one matching pair of birth-days. On
Mars, where a year is 669 Martian days long, we need at least 38 Martians.

The first analysis, which used only probabilities, determined the number of people required
for the probability to exceed 1/2 that a matching pair of birthdays exists, and the second
analysis, which used indicator random variables, determined the number such that the
expected number of matching birthdays is 1. Although the exact numbers of people differ for

the two situations, they are the same asymptotically: ®iv7),

5.4.2 Balls and bins

Consider the process of randomly tossing identical balls into b bins, numbered 1, 2,..., b. The
tosses are independent, and on each toss the ball is equally likely to end up in any bin. The
probability that a tossed ball lands in any given bin is 1/b. Thus, the ball-tossing process is a
sequence of Bernoulli trials (see Appendix C.4) with a probability 1/b of success, where
success means that the ball falls in the given bin. This model is particularly useful for
analyzing hashing (see Chapter 11), and we can answer a variety of interesting questions
about the ball-tossing process. (Problem C-1 asks additional questions about balls and bins.)

How many balls fall in a given bin? The number of balls that fall in a given bin follows the
binomial distribution b(k; n, 1/b). If n balls are tossed, equation (C.36) tells us that the
expected number of balls that fall in the given bin is n/b.




How many balls must one toss, on the average, until a given bin contains a ball? The number
of tosses until the given bin receives a ball follows the geometric distribution with probability
1/b and, by equation (C.31), the expected number of tosses until success is 1/(1/b) = b.

How many balls must one toss until every bin contains at least one ball? Let us call a toss in
which a ball falls into an empty bin a "hit." We want to know the expected number # of tosses
required to get b hits.

The hits can be used to partition the n tosses into stages. The ith stage consists of the tosses
after the (7 - 1)st hit until the ith hit. The first stage consists of the first toss, since we are
guaranteed to have a hit when all bins are empty. For each toss during the ith stage, there are i
- 1 bins that contain balls and b - i + 1 empty bins. Thus, for each toss in the ith stage, the
probability of obtaining a hit is (b-i +1)/b.

Let n; denote the number of tosses in the ith stage. Thus, the number of tosses required to get

f
b hits is " = 2-i=1 i . Each random variable n; has a geometric distribution with probability of
success (b - i + 1)/b and, by equation (C.31),

E(n] b
in]l= ————.
) h—i+1

By linearity of expectation,

oot

=1

= iE[u,]
i=l
= b
- Zh R

]
R
= } I
J.Z;"
= hilnb 4+ O(1)).

The last line follows from the bound (A.7) on the harmonic series. It therefore takes
approximately b In b tosses before we can expect that every bin has a ball. This problem is
also known as the coupon collector's problem, and says that a person trying to collect each of
b different coupons must acquire approximately b In » randomly obtained coupons in order to
succeed.

5.4.3 Streaks

Suppose you flip a fair coin n times. What is the longest streak of consecutive heads that you
expect to see? The answer is O(lg n), as the following analysis shows.

We first prove that the expected length of the longest streak of heads is O(lg n). The
probability that each coin flip is a head is 1/2. Let A;; be the event that a streak of heads of
length at least k£ begins with the ith coin flip or, more precisely, the event that the &



consecutive coin flips i, i+ 1, ..., i + k- 1 yield only heads, where | <k<nand 1 <i<n-k
+1. Since coin flips are mutually independent, for any given event 4, the probability that all
k flips are heads is
(5.9) PriAyg) =1/2".

Fork =2 [lgn],

Pr{ﬂa_l'lgn': = ].";21-]'“”-I
1 Ill,zﬁ lgn

1A

= 1/n",

and thus the probability that a streak of heads of length at least 2 [1g n| begins in position i is
quite small. There are at most n - 2 [1g n] + 1 positions where such a streak can begin. The

probability that a streak of heads of length at least 2 [1g n| begins anywhere is therefore

510 n jilgn' 1 n :Ilg.l.' =1
( ) F'rl U YT } = E I,-"u2

i=l1 |

i],ﬁnz
i=1

1/n,

A

since by Boole's inequality (C.18), the probability of a union of events is at most the sum of
the probabilities of the individual events. (Note that Boole's inequality holds even for events
such as these that are not independent.)

We now use inequality (5.10) to bound the length of the longest streak. For j =0, 1, 2,..., n, let
L; be the event that the longest streak of heads has length exactly j, and let L be the length of
the longest streak. By the definition of expected value,

G gy = Y iPriL;}.

j=0

We could try to evaluate this sum using upper bounds on each Pr {L;} similar to those
computed in inequality (5.10). Unfortunately, this method would yield weak bounds. We can
use some intuition gained by the above analysis to obtain a good bound, however. Informally,
we observe that for no individual term in the summation in equation (5.11) are both the

factors j and Pr {L,} large. Why? Whenj >2 [lg n], then Pr {L;} is very small, and when j <

2 [1gn], then; is fairly small. More formally, we note that the events L; for j =0, 1,..., n are
disjoint, and so the probability that a streak of heads of length at least 2 [1g n] begins
anywhere is 2= L), By inequality (5.10), we have j-ann PriLil < 1/n Also, noting that
YJwPril) =1 we have that Zi-o PriLi) =1 Thus, we obtain
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= 2[lgn] Z PriL;}+n Z PriL;}

j=0 j=2[gnl
< 2[lgn]-14+n-(1/n)
= Olgn).

The chances that a streak of heads exceeds r [1g n] flips diminish quickly with . For > 1,

the probability that a streak of 7 [1g n| heads starts in position i is

Pr {Ai,r[ 1gn]} - 1/21’[ lgn]
<1/

Thus, the probability is at most n/n” = 1/n"" that the longest streak is at least » [1g n], or
equivalently, the probability is at least 1 - 1/n"" that the longest streak has length less than r

[1gn].

As an example, for n = 1000 coin flips, the probability of having a streak of at least 2 [lg n| =

20 heads is at most 1/n = 1/1000. The chances of having a streak longer than 3 [Ig n] = 30
heads is at most 1/n” = 1/1,000,000.

We now prove a complementary lower bound: the expected length of the longest streak of
heads in n coin flips is Q(lg n). To prove this bound, we look for streaks of length s by

partitioning the » flips into approximately n/s groups of s flips each. If we choose s = | (Ig

n)/2], we can show that it is likely that at least one of these groups comes up all heads, and
hence it is likely that the longest streak has length at least s = Q(lg n). We will then show that
the longest streak has expected length Q(lg n).

We partition the 7 coin flips into at least |n/ | (Ig n)/2] | groups of | (Ig n)/2] consecutive
flips, and we bound the probability that no group comes up all heads. By equation (5.9), the
probability that the group starting in position i comes up all heads is

Pr {A; | gy}~ 17219871
> 1/

The probability that a streak of heads of length at least | (Ig n)/2] does not begin in position i

is therefore at most ! = 1/v/#, Since the | n/ | (g n)/2] | groups are formed from mutually



exclusive, independent coin flips, the probability that every one of these groups fails to be a
streak of length | (g n)/2] is at most

(1 — ”JE}LJT.-‘U!EM-‘ZJJ il Uﬁln.{l{lgnuz}_]
< (=1
<= E.—I:Ir:,"lg.«r—n;ﬁ
—_ G{(’_Ig'"}
= O(l/n).

For this argument, we used inequality (3.11), 1 + x <¢", and the fact, which you might want
to verify, that (2a/lgn = 1)/ = lgnfor sufficiently large n.

Thus, the probability that the longest streak exceeds | (Ig n)/2] is

(5-12) Z PriL;} = 1-0(/n).

F=1ilgmyf2]+1

We can now calculate a lower bound on the expected length of the longest streak, beginning
with equation (5.11) and proceeding in a manner similar to our analysis of the upper bound:

R
E[L] = ) jPr(L))

j=0
Lilgaif2] i

= 3 JPLj+ Y jPriLy)
=0 i=llgnf2]+1
Lilgmi 2] n

> 3 0-PriLj+ Y Lgm)/2lPr{L;)
J=0 J=[ilgn)f2]+1

Lilgnhf2) "
= 0- ) Pr{L;}+lagm/2] D Pr(Ly)

=0 J=lgmyj2]+1
= 04 [(lgn)/2](1 —O(1/n)) (by inequality (5.12))
= S(lgn).

As with the birthday paradox, we can obtain a simpler but approximate analysis using
indicator random variables. We let Xj; = [{4;} be the indicator random variable associated
with a streak of heads of length at least £ beginning with the ith coin flip. To count the total
number of such streaks, we define

n—k+1

X = ;xm.

Taking expectations and using linearity of expectation, we have



n=k+1
E[X] = E[ X.-;]
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By plugging in various values for k&, we can calculate the expected number of streaks of length
k. If this number is large (much greater than 1), then many streaks of length & are expected to
occur and the probability that one occurs is high. If this number is small (much less than 1),
then very few streaks of length & are expected to occur and the probability that one occurs is
low. If k = c 1g n, for some positive constant ¢, we obtain

n—clan+1
E[X] = 1—ng
n=clgn+1
- R
1 (clgn = 1)/n
T opel el
= (/.

If ¢ is large, the expected number of streaks of length ¢ lg n is very small, and we conclude
that they are unlikely to occur. On the other hand, if ¢ < 1/2, then we obtain E [X] = ©(1/n"*")
= @(n'"), and we expect that there will be a large number of streaks of length (1/2) Ig n.
Therefore, one streak of such a length is very likely to occur. From these rough estimates
alone, we can conclude that the length of the longest streak is ®@(lg n).

5.4.4 The on-line hiring problem

As a final example, we consider a variant of the hiring problem. Suppose now that we do not
wish to interview all the candidates in order to find the best one. We also do not wish to hire
and fire as we find better and better applicants. Instead, we are willing to settle for a candidate
who is close to the best, in exchange for hiring exactly once. We must obey one company
requirement: after each interview we must either immediately offer the position to the
applicant or must tell them that they will not receive the job. What is the trade-off between
minimizing the amount of interviewing and maximizing the quality of the candidate hired?

We can model this problem in the following way. After meeting an applicant, we are able to
give each one a score; let score(i) denote the score given to the ith applicant, and assume that
no two applicants receive the same score. After we have seen j applicants, we know which of
the j has the highest score, but we do not know if any of the remaining # - j applicants will
have a higher score. We decide to adopt the strategy of selecting a positive integer k < n,
interviewing and then rejecting the first & applicants, and hiring the first applicant thereafter
who has a higher score than all preceding applicants. If it turns out that the best-qualified



applicant was among the first & interviewed, then we will hire the nth applicant. This strategy
is formalized in the procedure ON-LINE-MAXIMUM(k, n), which appears below. Procedure
ON-LINE-MAXIMUM returns the index of the candidate we wish to hire.

ON-LINE-MAXIMUM (k, n)

1 bestscore « -«

2 for i « to k

3 do if score(i) > bestscore

4 then bestscore — score (i)
5 for i « Kk + 1 to n

6 do if score (i) > bestscore

7 then return 1

8

We wish to determine, for each possible value of £, the probability that we hire the most
qualified applicant. We will then choose the best possible &, and implement the strategy with
that value. For the moment, assume that & is fixed. Let M(j) = max<<; {score(i)} denote the
maximum score among applicants 1 through ;. Let S be the event that we succeed in choosing
the best-qualified applicant, and let S; be the event that we succeed when the best-qualified
applicant is the ith one interviewed. Since the various S; are disjoint, we have that

Pris) = L1 PriSil, Noting that we never succeed when the best-qualified applicant is one of the
first k, we have that Pr {S;} =0 fori =1, 2...., k. Thus, we obtain

We now compute Pr {S;}. In order to succeed when the best-qualified applicant is the ith one,
two things must happen. First, the best-qualified applicant must be in position i, an event
which we denote by B;. Second, the algorithm must not select any of the applicants in
positions k£ + 1 through 7 - 1, which happens only if, for eachj such thatk+ 1 <;<i- 1, we
find that score(j) < bestscore in line 6. (Because scores are unique, we can ignore the
possibility of score(j) = bestscore.) In other words, it must be the case that all of the values
score(k + 1) through score(i - 1) are less than M(k); if any are greater than M(k) we will
instead return the index of the first one that is greater. We use O; to denote the event that none
of the applicants in position £ + 1 through i - 1 are chosen. Fortunately, the two events B; and
O; are independent. The event O; depends only on the relative ordering of the values in
positions 1 through i - 1, whereas B; depends only on whether the value in position i is greater
than all the values 1 through i - 1. The ordering of positions 1 through i - 1 does not affect
whether i is greater than all of them, and the value of i does not affect the ordering of
positions 1 through i - 1. Thus we can apply equation (C.15) to obtain

Pr {Sl} =Pr {Bl N 01} =Pr {Bl} Pr {01}

The probability Pr {B;} is clearly 1/n, since the maximum is equally likely to be in any one of
the n positions. For event O; to occur, the maximum value in positions 1 through i - 1 must be
in one of the first k positions, and it is equally likely to be in any of these i - 1 positions.
Consequently, Pr {O;} = k/(i - 1) and Pr {S;} = k/(n(i - 1)). Using equation (5.13), we have
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We approximate by integrals to bound this summation from above and below. By the
inequalities (A.12), we have

" I n—1 1 n—1 I
—dx = E — = [ —ddx .
kX perill Je=1 X

k

Evaluating these definite integrals gives us the bounds
k k

—(Inn —Ink) = Pr{S) = =(Inin — 1) —In{k = 1)),

n n

which provide a rather tight bound for Pr {S}. Because we wish to maximize our probability
of success, let us focus on choosing the value of k that maximizes the lower bound on Pr {S}.
(Besides, the lower-bound expression is easier to maximize than the upper-bound expression.)
Differentiating the expression (k/n)(In n - In k) with respect to k, we obtain

1
—(lnn—=1Ink—-1).
n

Setting this derivative equal to 0, we see that the lower bound on the probability is maximized
when In k= In n - 1 = In(n/e) or, equivalently, when k = n/e. Thus, if we implement our
strategy with k = n/e, we will succeed in hiring our best-qualified applicant with probability at
least 1/e.

Exercises 5.4-1

How many people must there be in a room before the probability that someone has the same
birthday as you do is at least 1/2? How many people must there be before the probability that
at least two people have a birthday on July 4 is greater than 1/2?

Exercises 5.4-2

Suppose that balls are tossed into b bins. Each toss is independent, and each ball is equally
likely to end up in any bin. What is the expected number of ball tosses before at least one of
the bins contains two balls?



Exercises 5.4-3: []

For the analysis of the birthday paradox, is it important that the birthdays be mutually
independent, or is pairwise independence sufficient? Justify your answer.
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What is the probability that a k-string over a set of size  is actually a k-permutation? How
does this question relate to the birthday paradox?

Exercises 5.4-6: [

Suppose that » balls are tossed into # bins, where each toss is independent and the ball is
equally likely to end up in any bin. What is the expected number of empty bins? What is the
expected number of bins with exactly one ball?

Exercises 5.4-7: []

Sharpen the lower bound on streak length by showing that in » flips of a fair coin, the
probability is less than 1/n that no streak longer than Ig n-2 lg Ig n consecutive heads occurs.

Problems 5-1: Probabilistic countin

With a b-bit counter, we can ordinarily only count up to 2" - 1. With R. Morris's probabilistic
counting, we can count up to a much larger value at the expense of some loss of precision.



We let a counter value of i represent a count of n; fori =0, 1,..., 2° -1, where the n; form an
increasing sequence of nonnegative values. We assume that the initial value of the counter is
0, representing a count of ny = 0. The INCREMENT operation works on a counter containing
the value i in a probabilistic manner. If i = 2° - 1, then an overflow error is reported.
Otherwise, the counter is increased by 1 with probability 1/(n;; - n;), and it remains
unchanged with probability 1 - 1/(ni41 - ny).

If we select n; = i for all i > 0, then the counter is an ordinary one. More interesting situations
arise if we select, say, n; = 2" fori>0orn=F, (the ith Fibonacci number-see Section 3.2).

For this problem, assume that "2*~1is large enough that the probability of an overflow error is
negligible.

a. Show that the expected value represented by the counter after » INCREMENT
operations have been performed is exactly 7.

b. The analysis of the variance of the count represented by the counter depends on the
sequence of the n;. Let us consider a simple case: n; = 100i for all i > 0. Estimate the
variance in the value represented by the register after n INCREMENT operations have
been performed.

Problems 5-2: Searching an unsorted array

Thus problem examines three algorithms for searching for a value x in an unsorted array A4
consisting of n elements.

Consider the following randomized strategy: pick a random index 7 into 4. If A[i] = x, then we
terminate; otherwise, we continue the search by picking a new random index into 4. We
continue picking random indices into 4 until we find an index j such that A[;] = x or until we
have checked every element of 4. Note that we pick from the whole set of indices each time,
so that we may examine a given element more than once.

a. Write pseudocode for a procedure RANDOM-SEARCH to implement the strategy
above. Be sure that your algorithm terminates when all indices into 4 have been
picked.

b. Suppose that there is exactly one index i such that 4[i] = x. What is the expected
number of indices into 4 that must be picked before x is found and RANDOM-
SEARCH terminates?

c. Generalizing your solution to part (b), suppose that there are £ > 1 indices i such that
A[i] = x. What is the expected number of indices into 4 that must be picked before x is
found and RANDOM-SEARCH terminates? Your answer should be a function of
and k.

d. Suppose that there are no indices i such that A[i] = x. What is the expected number of
indices into 4 that must be picked before all elements of 4 have been checked and
RANDOM-SEARCH terminates?

Now consider a deterministic linear search algorithm, which we refer to as
DETERMINISTIC-SEARCH. Specifically, the algorithm searches 4 for x in order,



considering A[1], A[2], A[3],..., A[n] until either 4[{] = x is found or the end of the array is
reached. Assume that all possible permutations of the input array are equally likely.

e. Suppose that there is exactly one index i such that A[i] = x. What is the expected
running time of DETERMINISTIC-SEARCH? What is the worst-case running time of
DETERMINISTIC-SEARCH?

f. Generalizing your solution to part (e), suppose that there are £ > 1 indices i such that
A[i] = x. What is the expected running time of DETERMINISTIC-SEARCH? What is
the worst-case running time of DETERMINISTIC-SEARCH? Your answer should be
a function of n and £.

g. Suppose that there are no indices i such that A[i] = x. What is the expected running
time of DETERMINISTIC-SEARCH? What is the worst-case running time of
DETERMINISTIC-SEARCH?

Finally, consider a randomized algorithm SCRAMBLE-SEARCH that works by first
randomly permuting the input array and then running the deterministic linear search given
above on the resulting permuted array.

h. Letting k be the number of indices i such that A[i] = x, give the worst-case and
expected running times of SCRAMBLE-SEARCH for the cases in which £ =0 and £ =
1. Generalize your solution to handle the case in which £ > 1.

i.  Which of the three searching algorithms would you use? Explain your answer.

Chapter notes

Bollobas [44], Hofti [151], and Spencer [283] contain a wealth of advanced probabilistic
techniques. The advantages of randomized algorithms are discussed and surveyed by Karp
[174] and Rabin [253]. The textbook by Motwani and Raghavan [228] gives an extensive
treatment of randomized algorithms.

Several variants of the hiring problem have been widely studied. These problems are more
commonly referred to as "secretary problems." An example of work in this area is the paper
by Ajtai, Meggido, and Waarts [12].

Part II: Sorting and Order Statistics

Chapter List

Chapter 6: Heapsort

Chapter 7: Quicksort
Chapter 8: Sorting in Linear Time

Chapter 9: Medians and Order Statistics

Introduction

This part presents several algorithms that solve the following sorting problem:

e Input: A sequence of » numbers [ay, ay, ..., a,[].



e Output: A permutation (reordering) (@ @: -.-. d.lof the input sequence such that
oy Sy S-Sy

The input sequence is usually an n-element array, although it may be represented in some
other fashion, such as a linked list.

The structure of the data

In practice, the numbers to be sorted are rarely isolated values. Each is usually part of a
collection of data called a record. Each record contains a key, which is the value to be sorted,
and the remainder of the record consists of satellite data, which are usually carried around
with the key. In practice, when a sorting algorithm permutes the keys, it must permute the
satellite data as well. If each record includes a large amount of satellite data, we often permute
an array of pointers to the records rather than the records themselves in order to minimize data
movement.

In a sense, it is these implementation details that distinguish an algorithm from a full-blown
program. Whether we sort individual numbers or large records that contain numbers is
irrelevant to the method by which a sorting procedure determines the sorted order. Thus, when
focusing on the problem of sorting, we typically assume that the input consists only of
numbers. The translation of an algorithm for sorting numbers into a program for sorting
records is conceptually straightforward, although in a given engineering situation there may
be other subtleties that make the actual programming task a challenge.

Why sorting?

Many computer scientists consider sorting to be the most fundamental problem in the study of
algorithms. There are several reasons:

e Sometimes the need to sort information is inherent in an application. For example, in
order to prepare customer statements, banks need to sort checks by check number.

e Algorithms often use sorting as a key subroutine. For example, a program that renders
graphical objects that are layered on top of each other might have to sort the objects
according to an "above" relation so that it can draw these objects from bottom to top.
We shall see numerous algorithms in this text that use sorting as a subroutine.

e There is a wide variety of sorting algorithms, and they use a rich set of techniques. In
fact, many important techniques used throughout algorithm design are represented in
the body of sorting algorithms that have been developed over the years. In this way,
sorting is also a problem of historical interest.

e Sorting is a problem for which we can prove a nontrivial lower bound (as we shall do
in Chapter 8). Our best upper bounds match the lower bound asymptotically, and so
we know that our sorting algorithms are asymptotically optimal. Moreover, we can use
the lower bound for sorting to prove lower bounds for certain other problems.

e Many engineering issues come to the fore when implementing sorting algorithms. The
fastest sorting program for a particular situation may depend on many factors, such as
prior knowledge about the keys and satellite data, the memory hierarchy (caches and
virtual memory) of the host computer, and the software environment. Many of these
issues are best dealt with at the algorithmic level, rather than by "tweaking" the code.

Sorting algorithms



We introduced two algorithms that sort n real numbers in Chapter 2. Insertion sort takes @(n°)
time in the worst case. Because its inner loops are tight, however, it is a fast in-place sorting
algorithm for small input sizes. (Recall that a sorting algorithm sorts in place if only a
constant number of elements of the input array are ever stored outside the array.) Merge sort
has a better asymptotic running time, @(#n 1g n), but the MERGE procedure it uses does not
operate in place.

In this part, we shall introduce two more algorithms that sort arbitrary real numbers. Heapsort,
presented in Chapter 6, sorts # numbers in place in O(n 1g n) time. It uses an important data
structure, called a heap, with which we can also implement a priority queue.

Quicksort, in Chapter 7, also sorts » numbers in place, but its worst-case running time is
©(n*). Its average-case running time is @(n 1g n), though, and it generally outperforms
heapsort in practice. Like insertion sort, quicksort has tight code, so the hidden constant factor
in its running time is small. It is a popular algorithm for sorting large input arrays.

Insertion sort, merge sort, heapsort, and quicksort are all comparison sorts: they determine the
sorted order of an input array by comparing elements. Chapter 8 begins by introducing the
decision-tree model in order to study the performance limitations of comparison sorts. Using
this model, we prove a lower bound of Q(n lg n) on the worst-case running time of any
comparison sort on z inputs, thus showing that heapsort and merge sort are asymptotically
optimal comparison sorts.

Chapter 8 then goes on to show that we can beat this lower bound of Q(n Ig n) if we can
gather information about the sorted order of the input by means other than comparing
elements. The counting sort algorithm, for example, assumes that the input numbers are in the
set {1, 2, ..., k}. By using array indexing as a tool for determining relative order, counting sort
can sort n numbers in @(k + n) time. Thus, when k£ = O(n), counting sort runs in time that is
linear in the size of the input array. A related algorithm, radix sort, can be used to extend the
range of counting sort. If there are » integers to sort, each integer has d digits, and each digit
is in the set {1, 2, ..., k}, then radix sort can sort the numbers in ®(d(n + k)) time. When d is a
constant and & is O(n), radix sort runs in linear time. A third algorithm, bucket sort, requires
knowledge of the probabilistic distribution of numbers in the input array. It can sort » real
numbers uniformly distributed in the half-open interval [0, 1) in average-case O(n) time.

Order statistics

The ith order statistic of a set of » numbers is the ith smallest number in the set. One can, of
course, select the ith order statistic by sorting the input and indexing the ith element of the
output. With no assumptions about the input distribution, this method runs in Q(n Ig ») time,
as the lower bound proved in Chapter 8 shows.

In Chapter 9, we show that we can find the ith smallest element in O(n) time, even when the
elements are arbitrary real numbers. We present an algorithm with tight pseudocode that runs
in ® (%) time in the worst case, but linear time on average. We also give a more complicated
algorithm that runs in O(n) worst-case time.

Background



Although most of this part does not rely on difficult mathematics, some sections do require
mathematical sophistication. In particular, the average-case analyses of quicksort, bucket sort,
and the order-statistic algorithm use probability, which is reviewed in Appendix C, and the
material on probabilistic analysis and randomized algorithms in Chapter 5. The analysis of the
worst-case linear-time algorithm for order statistics involves somewhat more sophisticated
mathematics than the other worst-case analyses in this part.

Chapter 6: Heapsort

Overview

In this chapter, we introduce another sorting algorithm. Like merge sort, but unlike insertion
sort, heapsort's running time is O(n lg n). Like insertion sort, but unlike merge sort, heapsort
sorts in place: only a constant number of array elements are stored outside the input array at
any time. Thus, heapsort combines the better attributes of the two sorting algorithms we have
already discussed.

Heapsort also introduces another algorithm design technique: the use of a data structure, in
this case one we call a "heap," to manage information during the execution of the algorithm.
Not only is the heap data structure useful for heapsort, but it also makes an efficient priority
queue. The heap data structure will reappear in algorithms in later chapters.

We note that the term "heap" was originally coined in the context of heapsort, but it has since
come to refer to "garbage-collected storage," such as the programming languages Lisp and
Java provide. Our heap data structure is not garbage-collected storage, and whenever we refer
to heaps in this book, we shall mean the structure defined in this chapter.

.1 Heaps

The (binary) heap data structure is an array object that can be viewed as a nearly complete
binary tree (see Section B.5.3), as shown in Figure 6.1. Each node of the tree corresponds to
an element of the array that stores the value in the node. The tree is completely filled on all
levels except possibly the lowest, which is filled from the left up to a point. An array 4 that
represents a heap is an object with two attributes: length[ 4], which is the number of elements
in the array, and heap-size[A], the number of elements in the heap stored within array 4. That
is, although A[1 [] length[A]] may contain valid numbers, no element past A[ heap-size[A]],
where heap-size[A] < length[A], is an element of the heap. The root of the tree is A[1], and
given the index i of a node, the indices of its parent PARENT(), left child LEFT(7), and right
child RIGHT(7) can be computed simply:

PARENT (1)

return |i/2]

LEFT (1)
return 21

RIGHT (1)
return 2i + 1
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Figure 6.1: A max-heap viewed as (@) a binary tree and (b) an array. The number within the
circle at each node in the tree is the value stored at that node. The number above a node is the
corresponding index in the array. Above and below the array are lines showing parent-child
relationships; parents are always to the left of their children. The tree has height three; the
node at index 4 (with value 8) has height one.

On most computers, the LEFT procedure can compute 2i in one instruction by simply shifting
the binary representation of i left one bit position. Similarly, the RIGHT procedure can
quickly compute 2i + 1 by shifting the binary representation of i left one bit position and

adding in a 1 as the low-order bit. The PARENT procedure can compute | /2| by shifting i
right one bit position. In a good implementation of heapsort, these three procedures are often
implemented as "macros" or "in-line" procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, the values in
the nodes satisfy a heap property, the specifics of which depend on the kind of heap. In a
max-heap, the max-heap property is that for every node i other than the root,

A[PARENT (i)] =2 A[1] ,

that is, the value of a node is at most the value of its parent. Thus, the largest element in a
max-heap is stored at the root, and the subtree rooted at a node contains values no larger than
that contained at the node itself. A min-heap is organized in the opposite way; the min-heap
property is that for every node 7 other than the root,

A[PARENT (i) ] < A[i]
The smallest element in a min-heap is at the root.

For the heapsort algorithm, we use max-heaps. Min-heaps are commonly used in priority
queues, which we discuss in Section 6.5. We shall be precise in specifying whether we need a
max-heap or a min-heap for any particular application, and when properties apply to either
max-heaps or min-heaps, we just use the term "heap."

Viewing a heap as a tree, we define the height of a node in a heap to be the number of edges
on the longest simple downward path from the node to a leaf, and we define the height of the
heap to be the height of its root. Since a heap of n elements is based on a complete binary tree,
its height is O(lg ) (see Exercise 6.1-2). We shall see that the basic operations on heaps run
in time at most proportional to the height of the tree and thus take O(lg n) time. The remainder
of this chapter presents five basic procedures and shows how they are used in a sorting
algorithm and a priority-queue data structure.

e The MAX-HEAPIFY procedure, which runs in O(Ig n) time, is the key to maintaining
the max-heap property.

e The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-heap
from an unordered input array.



e The HEAPSORT procedure, which runs in O(n lg n) time, sorts an array in place.

e The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY, and
HEAP-MAXIMUM procedures, which run in O(lg n) time, allow the heap data
structure to be used as a priority queue.
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Show that an n-element heap has height |1g n].

Exercises 6.1-3

Show that in any subtree of a max-heap, the root of the subtree contains the largest value
occurring anywhere in that subtree.
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Exercises 6.1-5

Is an array that is in sorted order a min-heap?

Exercises 6.1-6

Is the sequence 123, 17, 14, 6, 13, 10, 1, 5, 7, 1211 a max-heap?

Exercises 6.1-7



Show that, with the array representation for storing an n-element heap, the leaves are the
nodes indexed by |n/2| + 1, [n/2] +2,...,n

6.2 Maintaining the heap property

MAX-HEAPIFY is an important subroutine for manipulating max-heaps. Its inputs are an
array A and an index 7 into the array. When MAX-HEAPIFY is called, it is assumed that the
binary trees rooted at LEFT(7) and RIGHT(7) are max-heaps, but that A[i] may be smaller than
its children, thus violating the max-heap property. The function of MAX-HEAPIFY is to let
the value at A[7] "float down" in the max-heap so that the subtree rooted at index i becomes a
max-heap.

MAX-HEAPIFY (A4, 1)

1 1 « LEFT (1)

2 r « RIGHT (1)

3 if 1 < heap-size[A] and A[1l] > A[i]
4 then largest ~ 1

5 else largest — 1

6 if r £ heap-size[A] and A[r] > A[largest]
7 then largest — r

8 if Iargest # 1

9 then exchange A[i] « A[largest]
0 MAX-HEAPIFY (A, largest)

1
Figure 6.2 illustrates the action of MAX-HEAPIFY. At each step, the largest of the elements
Ali], A[LEFT()], and A[RIGHT(7)] is determined, and its index is stored in /argest. If A[i] is
largest, then the subtree rooted at node i is a max-heap and the procedure terminates.
Otherwise, one of the two children has the largest element, and A4[i] is swapped with
Allargest], which causes node i and its children to satisfy the max-heap property. The node
indexed by largest, however, now has the original value A[7], and thus the subtree rooted at
largest may violate the max-heap property. Consequently, MAX-HEAPIFY must be called
recursively on that subtree.
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Figure 6.2: The action of MAX-HEAPIFY (4, 2), where heap-size[A] = 10. (a) The initial
configuration, with 4[2] at node i = 2 violating the max-heap property since it is not larger
than both children. The max-heap property is restored for node 2 in (b) by exchanging A4[2]



with A[4], which destroys the max-heap property for node 4. The recursive call MAX-
HEAPIFY (4, 4) now has i = 4. After swapping A[4] with 4[9], as shown in (c), node 4 is
fixed up, and the recursive call MAX-HEAPIFY(4, 9) yields no further change to the data
structure.

The running time of MAX-HEAPIFY on a subtree of size n rooted at given node i is the ®(1)
time to fix up the relationships among the elements A[i], A[LEFT(7)], and A[RIGHT(7)], plus
the time to run MAX-HEAPIFY on a subtree rooted at one of the children of node i. The
children's subtrees each have size at most 2n/3-the worst case occurs when the last row of the
tree is exactly half full-and the running time of MAX-HEAPIFY can therefore be described
by the recurrence

T (n) <T(2n/3) + O(1).

The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1), is T (n) = O(lg
n). Alternatively, we can characterize the running time of MAX-HEAPIFY on a node of
height 4 as O(h).

Exercises 6.2-1

Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY(4, 3) on the array 4
=027,17,3,16,13,10,1,5,7,12,4, 8,9, 001.

Exercises 6.2-2

Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure MIN-
HEAPIFY (4, i), which performs the corresponding manipulation on a min-heap. How does
the running time of MIN-HEAPIFY compare to that of MAX-HEAPIFY?

Exercises 6.2-3

What is the effect of calling MAX-HEAPIFY (4, i) when the element A[i] is larger than its
children?

Exercises 6.2-4

What is the effect of calling MAX-HEAPIFY (4, i) for i > heap-size[A]/2?



Exercises 6.2-5

The code for MAX-HEAPIFY is quite efficient in terms of constant factors, except possibly
for the recursive call in line 10, which might cause some compilers to produce inefficient
code. Write an efficient MAX-HEAPIFY that uses an iterative control construct (a loop)
instead of recursion.

Exercises 6.2-6

Show that the worst-case running time of MAX-HEAPIFY on a heap of size n is Q(Ig n).
(Hint: For a heap with n nodes, give node values that cause MAX-HEAPIFY to be called
recursively at every node on a path from the root down to a leaf.)

6.3 Building a heap

We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an array A[1 [
n], where n = length[A], into a max-heap. By Exercise 6.1-7, the elements in the subarray

A[(Ln/2]+1) [ n] are all leaves of the tree, and so each is a 1-element heap to begin with. The
procedure BUILD-MAX-HEAP goes through the remaining nodes of the tree and runs MAX-
HEAPIFY on each one.

BUILD-MAX-HEAP (A)
1 heap-size[A] — length[A]

2 for i « |length[A]/2]| downto 1
3 do MAX-HEAPIFY (A, 1)

Figure 6.3 shows an example of the action of BUILD-MAX-HEAP.
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Figure 6.3: The operation of BUILD-MAX-HEAP, showing the data structure before the call
to MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array 4 and the
binary tree it represents. The figure shows that the loop index i refers to node 5 before the call
MAX-HEAPIFY (4, i). (b) The data structure that results. The loop index i for the next
iteration refers to node 4. (c)-(e) Subsequent iterations of the for loop in BUILD-MAX-
HEAP. Observe that whenever MAX-HEAPIFY is called on a node, the two subtrees of that
node are both max-heaps. (f) The max-heap after BUILD-MAX-HEAP finishes.

To show why BUILD-MAX-HEAP works correctly, we use the following loop invariant:

o At the start of each iteration of the for loop of lines 2-3, eachnode i+ 1,i+2,...,n
is the root of a max-heap.

We need to show that this invariant is true prior to the first loop iteration, that each iteration of
the loop maintains the invariant, and that the invariant provides a useful property to show
correctness when the loop terminates.

o [Initialization: Prior to the first iteration of the loop, i = | #n/2]. Each node |n/2] + 1,

|n/2] +2,...,nisaleaf and is thus the root of a trivial max-heap.

e Maintenance: To see that each iteration maintains the loop invariant, observe that the
children of node i are numbered higher than i. By the loop invariant, therefore, they
are both roots of max-heaps. This is precisely the condition required for the call MAX-
HEAPIFY (4, i) to make node i a max-heap root. Moreover, the MAX-HEAPIFY call
preserves the property that nodes i + 1,7+ 2, ..., n are all roots of max-heaps.
Decrementing i in the for loop update reestablishes the loop invariant for the next
iteration.

e Termination: At termination, i = 0. By the loop invariant, eachnode 1, 2, ..., n1is
the root of a max-heap. In particular, node 1 is.



We can compute a simple upper bound on the running time of BUILD-MAX-HEAP as
follows. Each call to MAX-HEAPIFY costs O(lg n) time, and there are O(n) such calls. Thus,
the running time is O(n 1g n). This upper bound, though correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to run at a node
varies with the height of the node in the tree, and the heights of most nodes are small. Our

tighter analysis relies on the properties that an n-element heap has height |lg n] (see Exercise
6.1-2) and at most [7/2""'] nodes of any height 4 (see Exercise 6.3-3).

The time required by MAX-HEAPIFY when called on a node of height / is O(h), so we can
express the total cost of BUILD-MAX-HEAP as

Ugrl Ug n)
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The last summation can be evaluated by substituting x = 1/2 in the formula (A.8), which

Thus, the running time of BUILD-MAX-HEAP can be bounded as

LI = h
0 HZE = 0 nzﬁ

=0 = hi=()

= Oin).
Hence, we can build a max-heap from an unordered array in linear time.
We can build a min-heap by the procedure BUILD-MIN-HEAP, which is the same as
BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced by a call to
MIN-HEAPIFY (see Exercise 6.2-2). BUILD-MIN-HEAP produces a min-heap from an

unordered linear array in linear time.

Exercises 6.3-1

Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the array 4 =
15,3,17, 10, 84, 19, 6, 22, 901.

Exercises 6.3-2

Why do we want the loop index i in line 2 of BUILD-MAX-HEAP to decrease from
| length[A]/2] to 1 rather than increase from 1 to |length[A]/2]?



Exercises 6.3-3

Show that there are at most [#/2""'] nodes of height / in any n-element heap.

6.4 The heapsort algorithm

The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input
array A[1 [] n], where n = length[A]. Since the maximum element of the array is stored at the
root A[1], it can be put into its correct final position by exchanging it with A[x]. If we now
"discard" node n from the heap (by decrementing heap-size[A]), we observe that A[1 [] (n -
1)] can easily be made into a max-heap. The children of the root remain max-heaps, but the
new root element may violate the max-heap property. All that is needed to restore the max-
heap property, however, is one call to MAX-HEAPIFY (4, 1), which leaves a max-heap in A[1
"] (n - 1)]. The heapsort algorithm then repeats this process for the max-heap of size n - 1
down to a heap of size 2. (See Exercise 6.4-2 for a precise loop invariant.)

HEAPSORT (A4)

1 BUILD-MAX-HEAP (A)

2 for i « length[A] downto 2

3 do exchange A[l] o A[1]

4 heap-size[A] — heap-sizel[A] - 1
5 MAX-HEAPIFY (4, 1)

Figure 6.4 shows an example of the operation of heapsort after the max-heap is initially built.
Each max-heap is shown at the beginning of an iteration of the for loop of lines 2-5.
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Figure 6.4: The operation of HEAPSORT. (a) The max-heap data structure just after it has
been built by BUILD-MAX-HEAP. (b)-(j) The max-heap just after each call of MAX-
HEAPIFY in line 5. The value of i at that time is shown. Only lightly shaded nodes remain in
the heap. (k) The resulting sorted array A.



The HEAPSORT procedure takes time O(n Ig n), since the call to BUILD-MAX-HEAP takes
time O(n) and each of the n - 1 calls to MAX-HEAPIFY takes time O(Ig n).

Exercises 6.4-1

Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array 4 = [15, 13,
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Argue the correctness of HEAPSORT using the following loop invariant:

o At the start of each iteration of the for loop of lines 2-5, the subarray 4[1 [ {] is a
max-heap containing the i smallest elements of A[1 [] n], and the subarray A[i + 1 []
n] contains the n - i largest elements of A[1 [1 n], sorted.

Exercises 6.4-3

What is the running time of heapsort on an array 4 of length » that is already sorted in
increasing order? What about decreasing order?

Exercises 6.4-4

Show that the worst-case running time of heapsort is Q(#n 1g n).
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Show that when all elements are distinct, the best-case running time of heapsort is Q(n 1g n).

6.5 Priority queues

Heapsort is an excellent algorithm, but a good implementation of quicksort, presented in
Chapter 7, usually beats it in practice. Nevertheless, the heap data structure itself has
enormous utility. In this section, we present one of the most popular applications of a heap: its



use as an efficient priority queue. As with heaps, there are two kinds of priority queues: max-
priority queues and min-priority queues. We will focus here on how to implement max-
priority queues, which are in turn based on max-heaps; Exercise 6.5-3 asks you to write the
procedures for min-priority queues.

A priority queue is a data structure for maintaining a set S of elements, each with an
associated value called a key. A max-priority queue supports the following operations.

e INSERT(S, x) inserts the element x into the set S. This operation could be written as S
— S0 {x}.

o MAXIMUMC(S) returns the element of S with the largest key.

e EXTRACT-MAX(S) removes and returns the element of S with the largest key.

o INCREASE-KEY(S, x, k) increases the value of element x's key to the new value £,
which is assumed to be at least as large as x's current key value.

One application of max-priority queues is to schedule jobs on a shared computer. The max-
priority queue keeps track of the jobs to be performed and their relative priorities. When a job
is finished or interrupted, the highest-priority job is selected from those pending using
EXTRACT-MAX. A new job can be added to the queue at any time using INSERT.

Alternatively, a min-priority queue supports the operations INSERT, MINIMUM,
EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an event-
driven simulator. The items in the queue are events to be simulated, each with an associated
time of occurrence that serves as its key. The events must be simulated in order of their time
of occurrence, because the simulation of an event can cause other events to be simulated in
the future. The simulation program uses EXTRACT-MIN at each step to choose the next
event to simulate. As new events are produced, they are inserted into the min-priority queue
using INSERT. We shall see other uses for min-priority queues, highlighting the
DECREASE-KEY operation, in Chapters 23 and 24.

Not surprisingly, we can use a heap to implement a priority queue. In a given application,
such as job scheduling or event-driven simulation, elements of a priority queue correspond to
objects in the application. It is often necessary to determine which application object
corresponds to a given priority-queue element, and vice-versa. When a heap is used to
implement a priority queue, therefore, we often need to store a handle to the corresponding
application object in each heap element. The exact makeup of the handle (i.e., a pointer, an
integer, etc.) depends on the application. Similarly, we need to store a handle to the
corresponding heap element in each application object. Here, the handle would typically be an
array index. Because heap elements change locations within the array during heap operations,
an actual implementation, upon relocating a heap element, would also have to update the
array index in the corresponding application object. Because the details of accessing
application objects depend heavily on the application and its implementation, we shall not
pursue them here, other than noting that in practice, these handles do need to be correctly
maintained.

Now we discuss how to implement the operations of a max-priority queue. The procedure
HEAP-MAXIMUM implements the MAXIMUM operation in ®(1) time.

HEAP-MAXIMUM (A)
1 return A[l]



The procedure HEAP-EXTRACT-MAX implements the EXTRACT-MAX operation. It is
similar to the for loop body (lines 3-5) of the HEAPSORT procedure.

HEAP-EXTRACT-MAX (A4)

1 if heap-size[A] < 1

2 then error "heap underflow"

3 max « A[1l]

4 A[l] « Alheap-sizel[A]]

5 heap-size[A] < heap-sizel[A] - 1
6 MAX-HEAPIFY (A4, 1)
7 return max

The running time of HEAP-EXTRACT-MAX is O(lg n), since it performs only a constant
amount of work on top of the O(lg n) time for MAX-HEAPIFY.

The procedure HEAP-INCREASE-KEY implements the INCREASE-KEY operation. The
priority-queue element whose key is to be increased is identified by an index i into the array.
The procedure first updates the key of element A[i] to its new value. Because increasing the
key of A[i] may violate the max-heap property, the procedure then, in a manner reminiscent of
the insertion loop (lines 5-7) of INSERTION-SORT from Section 2.1, traverses a path from
this node toward the root to find a proper place for the newly increased key. During this
traversal, it repeatedly compares an element to its parent, exchanging their keys and
continuing if the element's key is larger, and terminating if the element's key is smaller, since
the max-heap property now holds. (See Exercise 6.5-5 for a precise loop invariant.)

HEAP-INCREASE-KEY (A4, 1, key)

1 if key < A[1]

2 then error "new key is smaller than current key"
3 A[i] « key

4 while i > 1 and A[PARENT(1)] < A[1i]
5 do exchange A[i] ~ A[PARENT (1) ]
6 i < PARENT (1)

Figure 6.5 shows an example of a HEAP-INCREASE-KEY operation. The running time of
HEAP-INCREASE-KEY on an n-element heap is O(lg n), since the path traced from the node
updated in line 3 to the root has length O(lg n).
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Figure 6.5: The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a)
with a node whose index is i heavily shaded. (b) This node has its key increased to 15. (¢)
After one iteration of the while loop of lines 4-6, the node and its parent have exchanged keys,



and the index i moves up to the parent. (d) The max-heap after one more iteration of the while
loop. At this point, A[PARENT(7)] > A[7]. The max-heap property now holds and the
procedure terminates.

The procedure MAX-HEAP-INSERT implements the INSERT operation. It takes as an input
the key of the new element to be inserted into max-heap 4. The procedure first expands the

max-heap by adding to the tree a new leaf whose key is -co. Then it calls HEAP-INCREASE-
KEY to set the key of this new node to its correct value and maintain the max-heap property.

MAX-HEAP-INSERT (A, key)

1 heap-size[A] — heap-sizel[A] + 1

2 Alheap-sizel[A]] « -«

3 HEAP-INCREASE-KEY (A, heap-sizel[A], key)

The running time of MAX-HEAP-INSERT on an n-element heap is O(lg n).

In summary, a heap can support any priority-queue operation on a set of size n in O(lg n)
time.

Exercises 6.5-1

[lustrate the operation of HEAP-EXTRACT-MAX on the heap 4 = [115, 13,9, 5, 12, 8, 7, 4,
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Exercises 6.5-2

[Nlustrate the operation of MAX-HEAP-INSERT(4, 10) on the heap 4 = 115, 13,9, 5, 12, 8,
7,4,0,6,2, 101, Use the heap of Figure 6.5 as a model for the HEAP-INCREASE-KEY call.

Exercises 6.5-3

Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN, HEAP-
DECREASE-KEY, and MIN-HEAP-INSERT that implement a min-priority queue with a
min-heap.

Exercises 6.5-4

Why do we bother setting the key of the inserted node to -c© in line 2 of MAX-HEAP-
INSERT when the next thing we do is increase its key to the desired value?



Exercises 6.5-5

Argue the correctness of HEAP-INCREASE-KEY using the following loop invariant:

o At the start of each iteration of the while loop of lines 4-6, the array A[1 [ heap-
size[A]] satisfies the max-heap property, except that there may be one violation: A[7]
may be larger than A[PARENT(7)].

Exercises 6.5-6

Show how to implement a first-in, first-out queue with a priority queue. Show how to
implement a stack with a priority queue. (Queues and stacks are defined in Section 10.1.)

Exercises 6.5-7

The operation HEAP-DELETE(4, i) deletes the item in node i from heap 4. Give an
implementation of HEAP-DELETE that runs in O(Ig n) time for an n-element max-heap.

Exercises 6.5-8

Give an O(n 1g k)-time algorithm to merge & sorted lists into one sorted list, where 7 is the
total number of elements in all the input lists. (Hint: Use a min-heap for k-way merging.)

Problems 6-1: Building a heap using insertion

The procedure BUILD-MAX-HEAP in Section 6.3 can be implemented by repeatedly using
MAX-HEAP-INSERT to insert the elements into the heap. Consider the following
implementation:

BUILD-MAX-HEAP' (A)
1 heap-sizel[A] « 1
for i — 2 to length[A]
do MAX-HEAP-INSERT (A, A[i])

w N

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP' always create the
same heap when run on the same input array? Prove that they do, or provide a
counterexample.



b. Show that in the worst case, BUILD-MAX-HEAP' requires O(# 1g n) time to build an
n-element heap.

Problems 6-2: Analysis of d-ary heaps

A d-ary heap is like a binary heap, but (with one possible exception) non-leaf nodes have d
children instead of 2 children.

a. How would you represent a d-ary heap in an array?

b. What is the height of a d-ary heap of n elements in terms of » and d?

c. Give an efficient implementation of EXTRACT-MAX in a d-ary max-heap. Analyze
its running time in terms of d and n.

d. Give an efficient implementation of INSERT in a d-ary max-heap. Analyze its running
time in terms of 4 and n.

e. Give an efficient implementation of INCREASE-KEY (4, i, k), which first sets A[i] «
max(A4[i], k) and then updates the d-ary max-heap structure appropriately. Analyze its
running time in terms of d and n.

Problems 6-3: Young tableaus

An m x n Young tableau is an m x n matrix such that the entries of each row are in sorted
order from left to right and the entries of each column are in sorted order from top to bottom.
Some of the entries of a Young tableau may be oo, which we treat as nonexistent elements.
Thus, a Young tableau can be used to hold » < mn finite numbers.

a. Draw a 4x4 Young tableau containing the elements {9, 16, 3, 2, 4, 8, 5, 14, 12}.

b. Argue that an m x n Young tableau Y is empty if Y]1, 1] = co. Argue that Y is full
(contains mn elements) if Y[m, n] < .

c. Give an algorithm to implement EXTRACT-MIN on a nonempty m x n Young
tableau that runs in O(m + n) time. Your algorithm should use a recursive subroutine
that solves an m x n problem by recursively solving either an (m - 1) x nor an m X (n -
1) subproblem. (Hint: Think about MAX-HEAPIFY.) Define 7(p), where p = m + n,
to be the maximum running time of EXTRACT-MIN on any m x n Young tableau.
Give and solve a recurrence for 7(p) that yields the O(m + n) time bound.

d. Show how to insert a new element into a nonfull m x n Young tableau in O(m + n)
time.

e. Using no other sorting method as a subroutine, show how to use an n X n Young
tableau to sort n* numbers in O(n°) time.

f. Give an O(m+n)-time algorithm to determine whether a given number is stored in a
given m X n Young tableau.

Chapter notes



The heapsort algorithm was invented by Williams [316], who also described how to
implement a priority queue with a heap. The BUILD-MAX-HEAP procedure was suggested

by Floyd [90].

We use min-heaps to implement min-priority queues in Chapters 16, 23 and 24. We also give
an implementation with improved time bounds for certain operations in Chapters 19 and 20.

Faster implementations of priority queues are possible for integer data. A data structure
invented by van Emde Boas [301] supports the operations MINIMUM, MAXIMUM,
INSERT, DELETE, SEARCH, EXTRACT-MIN, EXTRACT-MAX, PREDECESSOR, and
SUCCESSOR in worst-case time O(lg Ig C), subject to the restriction that the universe of
keys is the set {1, 2, ..., C}. If the data are b-bit integers, and the computer memory consists
of addressable b-bit words, Fredman and Willard [99] showed how to implement MINIMUM
in O(1) time and INSERT and EXTRACT-MIN in ©(/lgnitime. Thorup [299] has improved
the @iembound to O((lg Ig n)*) time. This bound uses an amount of space unbounded in 7,

but it can be implemented in linear space by using randomized hashing.

An important special case of priority queues occurs when the sequence of EXTRACT-MIN
operations is monotone, that is, the values returned by successive EXTRACT-MIN operations
are monotonically increasing over time. This case arises in several important applications,
such as Dijkstra's single-source shortest-paths algorithm, which is discussed in Chapter 24,
and in discrete-event simulation. For Dijkstra's algorithm it is particularly important that the
DECREASE-KEY operation be implemented efficiently. For the monotone case, if the data
are integers in the range 1, 2, . . ., C, Ahuja, Melhorn, Orlin, and Tarjan [8] describe how to
implement EXTRACT-MIN and INSERT in O(lg C) amortized time (see Chapter 17 for more
on amortized analysis) and DECREASE-KEY in O(1) time, using a data structure called a
radix heap. The O(Ig C) bound can be improved to i+/2Clusing Fibonacci heaps (see Chapter
20) in conjunction with radix heaps. The bound was further improved to O(Ig"*" C) expected
time by Cherkassky., Goldberg, and Silverstein [58], who combine the multilevel bucketing
structure of Denardo and Fox [72] with the heap of Thorup mentioned above. Raman [256]
further improved these results to obtain a bound of O(min(lg"*"" C, 1g"**"

~ n)), for any fixed
71> 0. More detailed discussions of these results can be found in papers by Raman [256] and

Thorup [299].
Chapter 7: Quicksort

Quicksort is a sorting algorithm whose worst-case running time is ©(n°) on an input array of n
numbers. In spite of this slow worst-case running time, quicksort is often the best practical
choice for sorting because it is remarkably efficient on the average: its expected running time
is O(n 1g n), and the constant factors hidden in the ®(n lg n) notation are quite small. It also
has the advantage of sorting in place (see page 16), and it works well even in virtual memory
environments.

Section 7.1 describes the algorithm and an important subroutine used by quicksort for
partitioning. Because the behavior of quicksort is complex, we start with an intuitive
discussion of its performance in Section 7.2 and postpone its precise analysis to the end of the
chapter. Section 7.3 presents a version of quicksort that uses random sampling. This algorithm
has a good average-case running time, and no particular input elicits its worst-case behavior.



The randomized algorithm is analyzed in Section 7.4, where it is shown to run in @(xn”) time
in the worst case and in O(n lg n) time on average.

7.1 Description of quicksort

Quicksort, like merge sort, is based on the divide-and-conquer paradigm introduced in Section
2.3.1. Here is the three-step divide-and-conquer process for sorting a typical subarray A[p [

r].

o Divide: Partition (rearrange) the array A[p [ ] into two (possibly empty) subarrays
Alp 1 g-1]and A[g + 1 [] r] such that each element of A[p [] g - 1] is less than or
equal to A[g], which is, in turn, less than or equal to each element of A[g + 1 [ 7].
Compute the index ¢ as part of this partitioning procedure.

e Conquer: Sort the two subarrays A[p [] g -1] and A[g +1 [] r] by recursive calls to
quicksort.

o Combine: Since the subarrays are sorted in place, no work is needed to combine
them: the entire array A[p [ r] is now sorted.

The following procedure implements quicksort.

QUICKSORT (4, p, r)

1 if p < r

2 then g — PARTITION (A, p, I)
3 QUICKSORT (4, p, g - 1)
4 QUICKSORT (A4, g + 1, r)

To sort an entire array 4, the initial call is QUICKSORT(4, 1, length[A]).
Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subarray A[p [
r] in place.

PARTITION (4, p, r)

1 x « A[r]

3 for j - ptor -1

4 do if A[j] £ x

5 then i « 1 + 1

6 exchange A[i1] o A[7]
7 exchange A[i + 1] o Alr]

8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION always
selects an element x = A[r] as a pivot element around which to partition the subarray A[p [ r].
As the procedure runs, the array is partitioned into four (possibly empty) regions. At the start
of each iteration of the for loop in lines 3-6, each region satisfies certain properties, which we
can state as a loop invariant:
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Figure 7.1: The operation of PARTITION on a sample array. Lightly shaded array elements
are all in the first partition with values no greater than x. Heavily shaded elements are in the
second partition with values greater than x. The unshaded elements have not yet been put in
one of the first two partitions, and the final white element is the pivot. (@) The initial array and
variable settings. None of the elements have been placed in either of the first two partitions.
(b) The value 2 is "swapped with itself" and put in the partition of smaller values. (c)-(d) The
values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8 are swapped,
and the smaller partition Grows. (f) The values 3 and 8 are swapped, and the smaller partition
grows. (g)-(h) The larger partition grows to include 5 and 6 and the loop terminates. (i) In
lines 7-8, the pivot element is swapped so that it lies between the two partitions.

o At the beginning of each iteration of the loop of lines 3-6, for any array index £,
1. If p <k<i,then A[k] <x.
2. Ifi+1<k<j-1,then A[k] > x.
3. Ifk=r, then A[k] =x.

Figure 7.2 summarizes this structure. The indices between j and 7 - 1 are not covered by any
of the three cases, and the values in these entries have no particular relationship to the pivot x.

ll:l - - 1+ I ]—l_l_]_[_l—l JI < + + - I -
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Figure 7.2: The four regions maintained by the procedure PARTITION on a subarray A[p [
r]. The values in A[p [ i] are all less than or equal to x, the values in A[i + 1 [ - 1] are all
greater than x, and A[r] = x. The values in 4A[j [ r - 1] can take on any values.

We need to show that this loop invariant is true prior to the first iteration, that each iteration of
the loop maintains the invariant, and that the invariant provides a useful property to show
correctness when the loop terminates.



o Initialization: Prior to the first iteration of the loop, i = p - 1, and j = p. There are no
values between p and 7, and no values between i + 1 and j - 1, so the first two
conditions of the loop invariant are trivially satisfied. The assignment in line 1
satisfies the third condition.

e Maintenance: As Figure 7.3 shows, there are two cases to consider, depending on the
outcome of the test in line 4. Figure 7.3(a) shows what happens when A[j] > x; the
only action in the loop is to increment j. After j is incremented, condition 2 holds for
A[j - 1] and all other entries remain unchanged. Figure 7.3(b) shows what happens
when A[j] < x; i is incremented, 4[] and A[/] are swapped, and then j is incremented.
Because of the swap, we now have that A[i] < x, and condition 1 is satisfied. Similarly,
we also have that A[j - 1] > x, since the item that was swapped into 4[j - 1] is, by the
loop invariant, greater than x.
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Figure 7.3: The two cases for one iteration of procedure PARTITION. (@) If 4[j] > x,
the only action is to increment j, which maintains the loop invariant. (b) If A[j] <x,
index i is incremented, A[i] and A4[j] are swapped, and then j is incremented. Again,
the loop invariant is maintained.

e Termination: At termination, j = r. Therefore, every entry in the array is in one of the
three sets described by the invariant, and we have partitioned the values in the array
into three sets: those less than or equal to x, those greater than x, and a singleton set
containing x.

The final two lines of PARTITION move the pivot element into its place in the middle of the
array by swapping it with the leftmost element that is greater than x.

The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p [1 r] is ®(n), where n =r - p + 1 (see
Exercise 7.1-3).

Exercises 7.1-1

Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array 4 = [113,
19,9,5,12,8,7,4,11,2,6,21[1.



Exercises 7.1-2

What value of ¢ does PARTITION return when all elements in the array A[p [ r] have the
same value? Modify PARTITION so that ¢ = (p+r)/2 when all elements in the array A[p [ 7]
have the same value.

Exercises 7.1-3

Give a brief argument that the running time of PARTITION on a subarray of size n is O(n).

Exercises 7.1-4

How would you modify QUICKSORT to sort into nonincreasing order?

7.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is balanced or unbalanced,
and this in turn depends on which elements are used for partitioning. If the partitioning is
balanced, the algorithm runs asymptotically as fast as merge sort. If the partitioning is
unbalanced, however, it can run asymptotically as slowly as insertion sort. In this section, we
shall informally investigate how quicksort performs under the assumptions of balanced versus
unbalanced partitioning.

Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning routine produces one
subproblem with n - 1 elements and one with 0 elements. (This claim is proved in Section
7.4.1.) Let us assume that this unbalanced partitioning arises in each recursive call. The
partitioning costs ®(n) time. Since the recursive call on an array of size 0 just returns, 7(0) =
O(1), and the recurrence for the running time is

T(n)=T(n-1)+ T(0) + O(n)
=T(n-1)+6(n).

Intuitively, if we sum the costs incurred at each level of the recursion, we get an arithmetic
series (equation (A.2)), which evaluates to ®(rn?). Indeed, it is straightforward to use the
substitution method to prove that the recurrence 7(n) = T(n - 1) + ®(n) has the solution 7(n) =
O(n?). (See Exercise 7.2-1.)



Thus, if the partitioning is maximally unbalanced at every recursive level of the algorithm, the
running time is @(n?). Therefore the worst-case running time of quicksort is no better than
that of insertion sort. Moreover, the ®(n”) running time occurs when the input array is already
completely sorted-a common situation in which insertion sort runs in O(n) time.

Best-case partitioning

In the most even possible split, PARTITION produces two subproblems, each of size no more

than n/2, since one is of size | n/2] and one of size [n/2]- 1. In this case, quicksort runs much
faster. The recurrence for the running time is then

T (n)<2T (n/2) +0O(n),

which by case 2 of the master theorem (Theorem 4.1) has the solution 7 (n) = O(n 1g n). Thus,
the equal balancing of the two sides of the partition at every level of the recursion produces an
asymptotically faster algorithm.

Balanced partitioning

The average-case running time of quicksort is much closer to the best case than to the worst
case, as the analyses in Section 7.4 will show. The key to understanding why is to understand
how the balance of the partitioning is reflected in the recurrence that describes the running
time.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1 proportional
split, which at first blush seems quite unbalanced. We then obtain the recurrence

T(n) < T (9n/10) + T (n/10) + cn

on the running time of quicksort, where we have explicitly included the constant ¢ hidden in
the ®(n) term. Figure 7.4 shows the recursion tree for this recurrence. Notice that every level
of the tree has cost cn, until a boundary condition is reached at depth log;on = ®(lgn), and
then the levels have cost at most cn. The recursion terminates at depth logjoon = ®(lg n). The
total cost of quicksort is therefore O(n g n). Thus, with a 9-to-1 proportional split at every
level of recursion, which intuitively seems quite unbalanced, quicksort runs in O(n 1g n) time-
asymptotically the same as if the split were right down the middle. In fact, even a 99-to-1 split
yields an O(n 1g n) running time. The reason is that any split of constant proportionality yields
a recursion tree of depth ®(lg n), where the cost at each level is O(n). The running time is
therefore O(n lg n) whenever the split has constant proportionality.



1
W e e - i

i o /N

k. kL
T 7] T Ll T [l — s O

log gt J.f i / 3 /A . ;"'II. \-w

= el | T Iis- '
"I I MK} L [LE L)

Qinlguy
Figure 7.4: A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-
1 split, yielding a running time of O(n lIg n). Nodes show subproblem sizes, with per-level
costs on the right. The per-level costs include the constant ¢ implicit in the ®@(n) term.

Intuition for the average case

To develop a clear notion of the average case for quicksort, we must make an assumption
about how frequently we expect to encounter the various inputs. The behavior of quicksort is
determined by the relative ordering of the values in the array elements given as the input, and
not by the particular values in the array. As in our probabilistic analysis of the hiring problem
in Section 5.2, we will assume for now that all permutations of the input numbers are equally
likely.

When we run quicksort on a random input arrayi, it is unlikely that the partitioning always
happens in the same way at every level, as our informal analysis has assumed. We expect that
some of the splits will be reasonably well balanced and that some will be fairly unbalanced.
For example, Exercise 7.2-6 asks you to show that about 80 percent of the time PARTITION
produces a split that is more balanced than 9 to 1, and about 20 percent of the time it produces
a split that is less balanced than 9 to 1.

In the average case, PARTITION produces a mix of "good" and "bad" splits. In a recursion
tree for an average-case execution of PARTITION, the good and bad splits are distributed
randomly throughout the tree. Suppose for the sake of intuition, however, that the good and
bad splits alternate levels in the tree, and that the good splits are best-case splits and the bad
splits are worst-case splits. Figure 7.5(a) shows the splits at two consecutive levels in the
recursion tree. At the root of the tree, the cost is n for partitioning, and the subarrays produced
have sizes n - 1 and 0: the worst case. At the next level, the subarray of size n - 1 is best-case
partitioned into subarrays of size (n - 1)/2 - 1 and (n - 1)/2. Let's assume that the boundary-
condition cost is 1 for the subarray of size 0.

Figure 7.5: (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n
and produces a "bad" split: two subarrays of sizes 0 and 7 - 1. The partitioning of the subarray
of size n - 1 costs n - 1 and produces a "good" split: subarrays of size (n-1)/2 - 1 and (n -



1)/2. (b) A single level of a recursion tree that is very well balanced. In both parts, the
partitioning cost for the subproblems shown with elliptical shading is @(#). Yet the
subproblems remaining to be solved in (a), shown with square shading, are no larger than the
corresponding subproblems remaining to be solved in (b).

The combination of the bad split followed by the good split produces three subarrays of sizes
0,(n-1)/2-1,and (n - 1)/2 at a combined partitioning cost of ®(n) + O(n - 1) = O(n).
Certainly, this situation is no worse than that in Figure 7.5(b), namely a single level of
partitioning that produces two subarrays of size (n - 1)/2, at a cost of @(n). Yet this latter
situation is balanced! Intuitively, the ®(n - 1) cost of the bad split can be absorbed into the
O(n) cost of the good split, and the resulting split is good. Thus, the running time of quicksort,
when levels alternate between good and bad splits, is like the running time for good splits
alone: still O(n lg n), but with a slightly larger constant hidden by the O-notation. We shall
give a rigorous analysis of the average case in Section 7.4.2.

Exercises 7.2-1

Use the substitution method to prove that the recurrence 7' (rn) = T (n - 1) + ®(n) has the
solution 7 (1) = ©(n%), as claimed at the beginning of Section 7.2.

Exercises 7.2-2

What is the running time of QUICKSORT when all elements of array 4 have the same value?

Exercises 7.2-3

Show that the running time of QUICKSORT is ©(n*) when the array 4 contains distinct
elements and is sorted in decreasing order.

Exercises 7.2-4

Banks often record transactions on an account in order of the times of the transactions, but
many people like to receive their bank statements with checks listed in order by check
number. People usually write checks in order by check number, and merchants usually cash
them with reasonable dispatch. The problem of converting time-of-transaction ordering to
check-number ordering is therefore the problem of sorting almost-sorted input. Argue that the
procedure INSERTION-SORT would tend to beat the procedure QUICKSORT on this
problem.



Exercises 7.2-5

Suppose that the splits at every level of quicksort are in the proportion 1 - & to a, where 0 < a
<1/2 is a constant. Show that the minimum depth of a leaf in the recursion tree is
approximately - Ig n/ 1g a and the maximum depth is approximately -lg n/ 1g(1 - a). (Don't
worry about integer round-off.)

Exercises 7.2-6: %

Argue that for any constant 0 < a < 1/2, the probability is approximately 1 - 2a that on a
random input array, PARTITION produces a split more balanced than 1-a to a.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption that all
permutations of the input numbers are equally likely. In an engineering situation, however, we
cannot always expect it to hold. (See Exercise 7.2-4.) As we saw in Section 5.3, we can
sometimes add randomization to an algorithm in order to obtain good average-case
performance over all inputs. Many people regard the resulting randomized version of
quicksort as the sorting algorithm of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the input. We could do
so for quicksort also, but a different randomization technique, called random sampling, yields
a simpler analysis. Instead of always using 4[r] as the pivot, we will use a randomly chosen
element from the subarray A[p [ r]. We do so by exchanging element A[r] with an element
chosen at random from A[p [ r]. This modification, in which we randomly sample the range
p,-...F, ensures that the pivot element x = A[r] is equally likely to be any of the - p + 1
elements in the subarray. Because the pivot element is randomly chosen, we expect the split
of the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition procedure, we
simply implement the swap before actually partitioning:

RANDOMIZED-PARTITION (A, p, r)
1 i « RANDOM(p, r)

2 exchange A[r] o A[1]

3 return PARTITION (A, p, r)

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:

RANDOMIZED-QUICKSORT (A, p, r)

1 if p < r

then g — RANDOMIZED-PARTITION (A, p, r)
RANDOMIZED-QUICKSORT (A, p, g - 1)
RANDOMIZED-QUICKSORT (A, g + 1, r)

DS N



We analyze this algorithm in the next section.

Exercises 7.3-1

Why do we analyze the average-case performance of a randomized algorithm and not its
worst-case performance?

Exercises 7.3-2

During the running of the procedure RANDOMIZED-QUICKSORT, how many calls are
made to the random-number generator RANDOM in the worst case? How about in the best
case? Give your answer in terms of ®-notation.

7.4 Analysis of quicksort

Section 7.2 gave some intuition for the worst-case behavior of quicksort and for why we
expect it to run quickly. In this section, we analyze the behavior of quicksort more rigorously.
We begin with a worst-case analysis, which applies to either QUICKSORT or
RANDOMIZED-QUICKSORT, and conclude with an average-case analysis of
RANDOMIZED-QUICKSORT.

7.4.1 Worst-case analysis

We saw in Section 7.2 that a worst-case split at every level of recursion in quicksort produces
a O(n”) running time, which, intuitively, is the worst-case running time of the algorithm. We
now prove this assertion.

Using the substitution method (see Section 4.1), we can show that the running time of
quicksort is O(n%). Let T (n) be the worst-case time for the procedure QUICKSORT on an
input of size n. We have the recurrence

7.0 Tn)= max (I'g)+Tn—gq-1))+8(n),
D=g=n—I|

where the parameter g ranges from 0 to n - 1 because the procedure PARTITION produces
two subproblems with total size n - 1. We guess that T (1) < cn” for some constant c.
Substituting this guess into recurrence (7.1), we obtain

Tin) = max (eg® +cln —q — 1)*) + O(n)
U=g=n—I

= c-max (g2 +(n—q—17)+(n).
O=g=n—I

The expression g* +(n-¢-1)* achieves a maximum over the parameter's range 0 < g < - 1 at
either endpoint, as can be seen since the second derivative of the expression with respect to ¢
is positive (see Exercise 7.4-3). This observation gives us the bound maxgqg,,_l(q%r (n-q-1))
<(n-1)*=n* - 2n+ 1. Continuing with our bounding of T (1), we obtain



T(n) <cn® - ¢c(2n - 1) + O(n)
< cnz,

since we can pick the constant ¢ large enough so that the ¢(2n - 1) term dominates the ®(n)
term. Thus, 7 (n) = O(n*). We saw in Section 7.2 a specific case in which quicksort takes
©(n”) time: when partitioning is unbalanced. Alternatively, Exercise 7.4-1 asks you to show
that recurrence (7.1) has a solution of 7 (1) = @(n”). Thus, the (worst-case) running time of
quicksort is ©(n?).

7.4.2 Expected running time

We have already given an intuitive argument why the average-case running time of
RANDOMIZED-QUICKSORT is O(n lg n): if, in each level of recursion, the split induced by
RANDOMIZED-PARTITION puts any constant fraction of the elements on one side of the
partition, then the recursion tree has depth O(lg n), and O(n) work is performed at each level.
Even if we add new levels with the most unbalanced split possible between these levels, the
total time remains O(n Ig n). We can analyze the expected running time of RANDOMIZED-
QUICKSORT precisely by first understanding how the partitioning procedure operates and
then using this understanding to derive an O(n lg n) bound on the expected running time. This
upper bound on the expected running time, combined with the ®(n Ig n) best-case bound we
saw in Section 7.2, yields a ®(n 1g n) expected running time.

Running time and comparisons

The running time of QUICKSORT is dominated by the time spent in the PARTITION
procedure. Each time the PARTITION procedure is called, a pivot element is selected, and
this element is never included in any future recursive calls to QUICK-SORT and
PARTITION. Thus, there can be at most » calls to PARTITION over the entire execution of
the quicksort algorithm. One call to PARTITION takes O(1) time plus an amount of time that
is proportional to the number of iterations of the for loop in lines 3-6. Each iteration of this
for loop performs a comparison inline 4, comparing the pivot element to another element of
the array 4. Therefore, if we can count the total number of times that line 4 is executed, we
can bound the total time spent in the for loop during the entire execution of QUICKSORT.

Lemma 7.1

Let X be the number of comparisons performed in line 4 of PARTITION over the entire
execution of QUICKSORT on an n-element array. Then the running time of QUICKSORT is

O(n + X).

Proof By the discussion above, there are n calls to PARTITION, each of which does a
constant amount of work and then executes the for loop some number of times. Each iteration
of the for loop executes line 4.



Our goal, therefore is to compute X, the total number of comparisons performed in all calls to
PARTITION. We will not attempt to analyze how many comparisons are made in each call to
PARTITION. Rather, we will derive an overall bound on the total number of comparisons. To
do so, we must understand when the algorithm compares two elements of the array and when
it does not. For ease of analysis, we rename the elements of the array 4 as zj, z»,..., z,, With z;
being the ith smallest element. We also define the set Z;; = {z,, z;11,..., z;} to be the set of
elements between z; and z;, inclusive.

When does the algorithm compare z; and z;? To answer this question, we first observe that
each pair of elements is compared at most once. Why? Elements are compared only to the
pivot element and, after a particular call of PARTITION finishes, the pivot element used in
that call is never again compared to any other elements.

Our analysis uses indicator random variables (see Section 5.2). We define
X;j =1 {z;1s compared to z;} ,

where we are considering whether the comparison takes place at any time during the
execution of the algorithm, not just during one iteration or one call of PARTITION. Since
each pair is compared at most once, we can easily characterize the total number of
comparisons performed by the algorithm:

n—1 ]

X =le_lx

Taking expectations of both sides, and then using linearity of expectation and Lemma 5.1, we
obtain

(72) E[X] = E|:i Z x”}

=1 f=i+l
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n=1| n
- Z Z Pr{z; is compared to z;} .
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It remains to compute Pr {z; is compared to z;}.

It is useful to think about when two items are not compared. Consider an input to quicksort of
the numbers 1 through 10 (in any order), and assume that the first pivot element is 7. Then the
first call to PARTITION separates the numbers into two sets: {1, 2, 3,4, 5, 6} and {8, 9, 10}.
In doing so, the pivot element 7 is compared to all other elements, but no number from the
first set (e.g., 2) is or ever will be compared to any number from the second set (e.g., 9).

In general, once a pivot x is chosen with z; < x < z;, we know that z; and z; cannot be compared
at any subsequent time. If, on the other hand, z; is chosen as a pivot before any other item in
Zj;, then z; will be compared to each item in Z;;, except for itself. Similarly, if z; is chosen as a
pivot before any other item in Zj;, then z; will be compared to each item in Z;; , except for
itself. In our example, the values 7 and 9 are compared because 7 is the first item from Z7 9 to



be chosen as a pivot. In contrast, 2 and 9 will never be compared because the first pivot
element chosen from Z, is 7. Thus, z; and z; are compared if and only if the first element to
be chosen as a pivot from Zj; is either z; or z;.

We now compute the probability that this event occurs. Prior to the point at which an element
from Z;; has been chosen as a pivot, the whole set Z;; is together in the same partition.
Therefore, any element of Z;; is equally likely to be the first one chosen as a pivot. Because
the set Z; has j - i + 1 elements, the probability that any given element is the first one chosen
as apivotis 1/(j - i + 1). Thus, we have

(7.3) Pr{z; is compared to z;} = Pr{z; or z; is first pivot chosen from Z;;}
= Pr{z is first pivot chosen from Z;;}
+ Pr{z; is first pivot chosen from Z;;}
1 |
J=i+41 +_f—:’—=—1
-

J=i+1’

The second line follows because the two events are mutually exclusive. Combining equations
(7.2) and (7.3), we get that

n—1 n 2
E""“EZ.W'

We can evaluate this sum using a change of variables (k = - i) and the bound on the
harmonic series in equation (A.7):

n=1 i
4 pryy = EZ%

= Olgm)

= Oinlgn).

Thus we conclude that, using RANDOMIZED-PARTITION, the expected running time of
quicksort is O(n Ig n).

Exercises 7.4-1

Show that in the recurrence



T(n) = max I{?'w:l FT{n—q—1))+6(n),

=g <

T(n) = Q(n%).
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Show that quicksort's best-case running time is Q(#n 1g n).
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Show that ¢> + (n - g - 1)* achieves a maximum over ¢ =0, 1,...,n- 1 wheng=0org=n- 1.

Exercises 7.4-4

Show that RANDOMIZED-QUICKSORT's expected running time is Q(n 1g n).
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The running time of quicksort can be improved in practice by taking advantage of the fast
running time of insertion sort when its input is "nearly" sorted. When quicksort is called on a
subarray with fewer than k elements, let it simply return without sorting the subarray. After
the top-level call to quicksort returns, run insertion sort on the entire array to finish the sorting
process. Argue that this sorting algorithm runs in O(nk + n 1g(n/k)) expected time. How
should k be picked, both in theory and in practice?
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Consider modifying the PARTITION procedure by randomly picking three elements from
array A4 and partitioning about their median (the middle value of the three elements).
Approximate the probability of getting at worst an ato-(1 - a) split, as a function of a in the
range 0 <a < 1.

Problems 7-1: Hoare partition correctness




The version of PARTITION given in this chapter is not the original partitioning algorithm.
Here is the original partition algorithm, which is due to T. Hoare:

HOARE-PARTITION (A, p, I)

1 x < Alp]
3 j — r + 1

4 while TRUE

5 do repeat j ~ j - 1

6 until A[j] < x

7 repeat 1 - 1 + 1

8 until A[i] 2 x

9 if i < 5
10 then exchange A[i] o A[7]
11 else return j

a. Demonstrate the operation of HOARE-PARTITION on the array 4 =113, 19,9, 5,
12,8,7,4,11, 2, 6,211, showing the values of the array and auxiliary values after
each iteration of the for loop in lines 4-11.

The next three questions ask you to give a careful argument that the procedure HOARE-
PARTITION is correct. Prove the following:

b. The indices i and j are such that we never access an element of 4 outside the subarray

Alp [ r].

When HOARE-PARTITION terminates, it returns a value j such that p <j <r.

d. Every element of A[p [ ] is less than or equal to every element of A[j +1 [] ] when
HOARE-PARTITION terminates.

e

The PARTITION procedure in Section 7.1 separates the pivot value (originally in 4[r]) from
the two partitions it forms. The HOARE-PARTITION procedure, on the other hand, always
places the pivot value (originally in A[p]) into one of the two partitions A[p [ j] and A[j + 1 [
r]. Since p <j < r, this split is always nontrivial.

e. Rewrite the QUICKSORT procedure to use HOARE-PARTITION.

Problems 7-2: Alternative iuicksort analisis

An alternative analysis of the running time of randomized quicksort focuses on the expected
running time of each individual recursive call to QUICKSORT, rather than on the number of
comparisons performed.

a. Argue that, given an array of size n, the probability that any particular element is
chosen as the pivot is 1/n. Use this to define indicator random variables X; = I[{ith
smallest element is chosen as the pivot}. What is E [X;]?

b. Let 7 (n) be a random variable denoting the running time of quicksort on an array of
size n. Argue that
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Show that equation (7.5) simplifies to
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(Hint: Split the summation into two parts, one for k=1, 2,..., [#/2] - 1 and one for k =

[n/2],...,n-1))

Using the bound from equation (7.7), show that the recurrence in equation (7.6) has
the solution E [T (n)] = O(n Ig n). (Hint: Show, by substitution, that E[T (n)] < an log
n - bn for some positive constants @ and b.)

P

roblems 7-3: Stooge sort

-

Professors Howard, Fine, and Howard have proposed the following "elegant" sorting
algorithm:

STOOGE-SORT (A, i, 7)

O J o U b wNE

if A[i] > A[7]

then exchange A[i] o A[7]

if i+ 1> 5

then return

ke« |(F -1+ 1)/3] » Round down.
STOOGE-SORT (A4, i, j - k) > First two-thirds.
STOOGE-SORT (A4, 1 + k, 7) » Last two-thirds.
STOOGE-SORT (A4, i, j - k) » First two-thirds again.

Argue that, if n = length[A4], then STOOGE-SORT(4, 1, length[A]) correctly sorts the
input array A[1 [ n].

Give a recurrence for the worst-case running time of STOOGE-SORT and a tight
asymptotic (®-notation) bound on the worst-case running time.

Compare the worst-case running time of STOOGE-SORT with that of insertion sort,
merge sort, heapsort, and quicksort. Do the professors deserve tenure?

Problems 7-4: Stack depth for quicksort



The QUICKSORT algorithm of Section 7.1 contains two recursive calls to itself. After the
call to PARTITION, the left subarray is recursively sorted and then the right subarray is
recursively sorted. The second recursive call in QUICKSORT is not really necessary; it can
be avoided by using an iterative control structure. This technique, called #ail recursion, is
provided automatically by good compilers. Consider the following version of quicksort,
which simulates tail recursion.

QUICKSORT' (4, p, r)

1 while p < r

2 do » Partition and sort left subarray.
3 g « PARTITION (A, p, r)

4 QUICKSORT' (4, p, g - 1)

5 p g+ 1

a. Argue that QUICKSORT'(4, 1, length[A]) correctly sorts the array A.

Compilers usually execute recursive procedures by using a stack that contains pertinent
information, including the parameter values, for each recursive call. The information for the
most recent call is at the top of the stack, and the information for the initial call is at the
bottom. When a procedure is invoked, its information is pushed onto the stack; when it
terminates, its information is popped. Since we assume that array parameters are represented
by pointers, the information for each procedure call on the stack requires O(1) stack space.
The stack depth is the maximum amount of stack space used at any time during a
computation.

b. Describe a scenario in which the stack depth of QUICKSORT!' is ®(n) on an n-element
input array.

c. Modify the code for QUICKSORT!' so that the worst-case stack depth is O(lg n).
Maintain the O(n 1g n) expected running time of the algorithm.

Problems 7-5: Median-of-3 partition

One way to improve the RANDOMIZED-QUICKSORT procedure is to partition around a
pivot that is chosen more carefully than by picking a random element from the subarray. One
common approach is the median-of-3 method: choose the pivot as the median (middle
element) of a set of 3 elements randomly selected from the subarray. (See Exercise 7.4-6.) For
this problem, let us assume that the elements in the input array A[1 [] n] are distinct and that »
> 3. We denote the sorted output array by A'[1 [ n]. Using the median-of-3 method to choose
the pivot element x, define p; = Pr{x = A'[i]}.

a. Give an exact formula for p; as a function of n and i for i = 2, 3,..., n - 1. (Note that p;
=pn=0.)
b. By what amount have we increased the likelihood of choosing the pivot as x = A'[[ (n

+1/2]], the median of A[1 [J n], compared to the ordinary implementation? Assume
that n — oo, and give the limiting ratio of these probabilities.



c. Ifwe define a "good" split to mean choosing the pivot as x = A'[i], where n/ <i < 2n/3,
by what amount have we increased the likelihood of getting a good split compared to
the ordinary implementation? (Hint: Approximate the sum by an integral.)

d. Argue that in the Q(n 1g n) running time of quicksort, the median-of-3 method affects
only the constant factor.

Problems 7-6: Fuzzi sortini of intervals

Consider a sorting problem in which the numbers are not known exactly. Instead, for each
number, we know an interval on the real line to which it belongs. That is, we are given n
closed intervals of the form [a;, b;], where a; < b;. The goal is to fuzzy-sort these intervals, i.e.,
produce a permutation [y, iy,..., i,[J of the intervals such that there exist ¢/ © 1% %1 satisfying
ClISCr =" =Cp

a. Design an algorithm for fuzzy-sorting # intervals. Your algorithm should have the
general structure of an algorithm that quicksorts the left endpoints (the a; 's), but it
should take advantage of overlapping intervals to improve the running time. (As the
intervals overlap more and more, the problem of fuzzy-sorting the intervals gets easier
and easier. Your algorithm should take advantage of such overlapping, to the extent
that it exists.)

b. Argue that your algorithm runs in expected time ®(n Ig n) in general, but runs in
expected time ®(n) when all of the intervals overlap (i.e., when there exists a value x
such that x [ [a;, b;] for all 7). Your algorithm should not be checking for this case
explicitly; rather, its performance should naturally improve as the amount of overlap
increases.

Chapter Notes

The quicksort procedure was invented by Hoare [147]; Hoare's version appears in Problem 7-
1. The PARTITION procedure given in Section 7.1 is due to N. Lomuto. The analysis in
Section 7.4 is due to Avrim Blum. Sedgewick [268] and Bentley [40] provide a good
reference on the details of implementation and how they matter.

Mcllroy [216] showed how to engineer a "killer adversary" that produces an array on which
virtually any implementation of quicksort takes ®(x”) time. If the implementation is
randomized, the adversary produces the array after seeing the random choices of the quicksort
algorithm.

Chapter 8: Sorting in Linear Time

Overview

We have now introduced several algorithms that can sort » numbers in O(n 1g n) time. Merge
sort and heapsort achieve this upper bound in the worst case; quicksort achieves it on average.



Moreover, for each of these algorithms, we can produce a sequence of n input numbers that
causes the algorithm to run in ®(n Ig n) time.

These algorithms share an interesting property: the sorted order they determine is based only
on comparisons between the input elements. We call such sorting algorithms comparison
sorts. All the sorting algorithms introduced thus far are comparison sorts.

In Section 8.1, we shall prove that any comparison sort must make ®(»n 1g n) comparisons in
the worst case to sort n elements. Thus, merge sort and heapsort are asymptotically optimal,
and no comparison sort exists that is faster by more than a constant factor.

Sections 8.2, 8.3, and 8.4 examine three sorting algorithms-counting sort, radix sort, and
bucket sort-that run in linear time. Needless to say, these algorithms use operations other than
comparisons to determine the sorted order. Consequently, the ®(n 1g n) lower bound does not
apply to them.

8.1 Lower bounds for sorting

In a comparison sort, we use only comparisons between elements to gain order information
about an input sequence [lay, a, . . ., a,/]. That is, given two elements a; and a;, we perform
one of the tests a; < a;, a; < a;, a; = a;, a; > a;, or a; > a; to determine their relative order. We
may not inspect the values of the elements or gain order information about them in any other
way.

In this section, we assume without loss of generality that all of the input elements are distinct.
Given this assumption, comparisons of the form a; = a; are useless, so we can assume that no
comparisons of this form are made. We also note that the comparisons a; < a;, a; > a;, a; > aj,
and a; < a; are all equivalent in that they yield identical information about the relative order of
a; and a;. We therefore assume that all comparisons have the form a; < a;.

The decision-tree model

Comparison sorts can be viewed abstractly in terms of decision trees. A decision tree is a full
binary tree that represents the comparisons between elements that are performed by a
particular sorting algorithm operating on an input of a given size. Control, data movement,
and all other aspects of the algorithm are ignored. Figure 8.1 shows the decision tree
corresponding to the insertion sort algorithm from Section 2.1 operating on an input sequence
of three elements.

((1.3.2)} (3.1.2)] (2313 [3.2.1))

Figure 8.1: The decision tree for insertion sort operating on three elements. An internal node
annotated by i: j indicates a comparison between a; and a;. A leaf annotated by the
permutation [In(1), m(2), . . ., m(n)[! indicates the ordering ax1) < ax2) < *** dnn). The shaded
path indicates the decisions made when sorting the input sequence [la; =6, a, =8, a3 = 5[]



the permutation (13, 1, 27 at the leaf indicates that the sorted ordering isa; =5 a; =6 a, =8.
There are 3! = 6 possible permutations of the input elements, so the decision tree must have at
least 6 leaves.

In a decision tree, each internal node is annotated by i: j for some i and j in the range 1 <4, j n,
where 7 is the number of elements in the input sequence. Each leaf is annotated by a
permutation [Iw(1), n(2), . . ., m(n)[]. (See Section C.1 for background on permutations.) The
execution of the sorting algorithm corresponds to tracing a path from the root of the decision
tree to a leaf. At each internal node, a comparison a; a; is made. The left subtree then dictates
subsequent comparisons for a; a;, and the right subtree dictates subsequent comparisons for a;
> a;. When we come to a leaf, the sorting algorithm has established the ordering ax(1) @x2) -
an)- Because any correct sorting algorithm must be able to produce each permutation of its
input, a necessary condition for a comparison sort to be correct is that each of the n!
permutations on # elements must appear as one of the leaves of the decision tree, and that
each of these leaves must be reachable from the root by a path corresponding to an actual
execution of the comparison sort. (We shall refer to such leaves as "reachable.") Thus, we
shall consider only decision trees in which each permutation appears as a reachable leaf.

A lower bound for the worst case

The length of the longest path from the root of a decision tree to any of its reachable leaves
represents the worst-case number of comparisons that the corresponding sorting algorithm
performs. Consequently, the worst-case number of comparisons for a given comparison sort
algorithm equals the height of its decision tree. A lower bound on the heights of all decision
trees in which each permutation appears as a reachable leaf is therefore a lower bound on the
running time of any comparison sort algorithm. The following theorem establishes such a
lower bound.

Theorem 8.1

Any comparison sort algorithm requires €(n 1g n) comparisons in the worst case.

Proof From the preceding discussion, it suffices to determine the height of a decision tree in
which each permutation appears as a reachable leaf. Consider a decision tree of height 4 with /
reachable leaves corresponding to a comparison sort on n elements. Because each of the »!
permutations of the input appears as some leaf, we have n! </. Since a binary tree of height /
has no more than 2" leaves, we have

nt<i12",
which, by taking logarithms, implies

h<lg(n!)  (since the Ig function is monotonically
increasing)

= Q(n 1g n) (by equation (3.18)).

Corollai 8.2




Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof The O(n 1g n) upper bounds on the running times for heapsort and merge sort match the
Q(n 1g n) worst-case lower bound from Theorem 8.1.

Exercises 8.1-1

What is the smallest possible depth of a leaf in a decision tree for a comparison sort?

Exercises 8.1-2

Obtain asymptotically tight bounds on lg(n!) without using Stirling's approximation. Instead,
evaluate the summation Li-1'8* using techniques from Section A.2.

Exercises 8.1-3

Show that there is no comparison sort whose running time is linear for at least half of the n!
inputs of length n. What about a fraction of 1/n of the inputs of length n? What about a
fraction 1/2"?

Exercises 8.1-4

You are given a sequence of n elements to sort. The input sequence consists of n/k
subsequences, each containing k elements. The elements in a given subsequence are all
smaller than the elements in the succeeding subsequence and larger than the elements in the
preceding subsequence. Thus, all that is needed to sort the whole sequence of length 7 is to
sort the k£ elements in each of the n/k subsequences. Show an Q(n lg k) lower bound on the
number of comparisons needed to solve this variant of the sorting problem. (Hint: It is not
rigorous to simply combine the lower bounds for the individual subsequences.)

8.2 Counting sort

Counting sort assumes that each of the » input elements is an integer in the range 0 to &, for
some integer k. When k = O(n), the sort runs in ®(n) time.

The basic idea of counting sort is to determine, for each input element x, the number of
elements less than x. This information can be used to place element x directly into its position
in the output array. For example, if there are 17 elements less than x, then x belongs in output



position 18. This scheme must be modified slightly to handle the situation in which several
elements have the same value, since we don't want to put them all in the same position.

In the code for counting sort, we assume that the input is an array A[1 [] n], and thus
length[A] = n. We require two other arrays: the array B[1 [n] holds the sorted output, and the
array C[0 [J k] provides temporary working storage.

COUNTING-SORT (A, B, k)
1 for i « 0 to k
do C[i] « O
for 7 — 1 to length[A]

do C[A[j]] « CI[A[F]] + 1

» C[i] now contains the number of elements equal to 1i.
for i « 1 to k
do C[i] « C[i] + C[i - 1]

> C[i] now contains the number of elements less than or equal to 1.
for j « length[A] downto 1
do B[C[A[Jj]]] < A[j]
ClA[J]] <« CIA[j]] - 1
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Figure 8.2 illustrates counting sort. After the initialization in the for loop of lines 1-2, we
inspect each input element in the for loop of lines 3-4. If the value of an input element is i, we
increment C[i]. Thus, after line 4, C[i] holds the number of input elements equal to i for each
integeri =0, 1, .. .,k. In lines 6-7, we determine for each i =0, 1, . . .,k, how many input
elements are less than or equal to i by keeping a running sum of the array C.

o oMo oo

Figure 8.2: The operation of COUNTING-SORT on an input array A[1 [ 8], where each
element of 4 is a nonnegative integer no larger than £ = 5. (a) The array A and the auxiliary
array C after line 4. (b) The array C after line 7. (c)-(e) The output array B and the auxiliary
array C after one, two, and three iterations of the loop in lines 9-11, respectively. Only the
lightly shaded elements of array B have been filled in. (f) The final sorted output array B.

Finally, in the for loop of lines 9-11, we place each element A4[/] in its correct sorted position
in the output array B. If all n elements are distinct, then when we first enter line 9, for each
A[j], the value C[A[/]] is the correct final position of A[/] in the output array, since there are
C[A[/]] elements less than or equal to 4[;]. Because the elements might not be distinct, we
decrement C[A[j]] each time we place a value A[/] into the B array. Decrementing C[A[/]]
causes the next input element with a value equal to A4[/], if one exists, to go to the position
immediately before 4[/] in the output array.

How much time does counting sort require? The for loop of lines 1-2 takes time ®(k), the for
loop of lines 3-4 takes time ®(n), the for loop of lines 6-7 takes time ®(k), and the for loop of
lines 9-11 takes time ®(n). Thus, the overall time is ®@(k+n). In practice, we usually use
counting sort when we have k£ = O(n), in which case the running time is @(n).



Counting sort beats the lower bound of Q(n 1g n) proved in Section 8.1 because it is not a
comparison sort. In fact, no comparisons between input elements occur anywhere in the code.
Instead, counting sort uses the actual values of the elements to index into an array. The @(n Ig
n) lower bound for sorting does not apply when we depart from the comparison-sort model.

An important property of counting sort is that it is stable: numbers with the same value appear
in the output array in the same order as they do in the input array. That is, ties between two
numbers are broken by the rule that whichever number appears first in the input array appears
first in the output array. Normally, the property of stability is important only when satellite
data are carried around with the element being sorted. Counting sort's stability is important for
another reason: counting sort is often used as a subroutine in radix sort. As we shall see in the
next section, counting sort's stability is crucial to radix sort's correctness.

Exercises 8.2-1

Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the array 4 =
16,0,2,0,1,3,4,6, 1, 3, 2.

Exercises 8.2-2

Prove that COUNTING-SORT is stable.

Exercises 8.2-3

Suppose that the for loop header in line 9 of the COUNTING-SORT procedure is rewritten as
9 for j < 1 to length[A]

Show that the algorithm still works properly. Is the modified algorithm stable?

Exercises 8.2-4

Describe an algorithm that, given n integers in the range 0 to &, preprocesses its input and then
answers any query about how many of the # integers fall into a range [a [J b] in O(1) time.
Your algorithm should use ®(n + k) preprocessing time.

8.3 Radix sort

Radix sort is the algorithm used by the card-sorting machines you now find only in computer
museums. The cards are organized into 80 columns, and in each column a hole can be



punched in one of 12 places. The sorter can be mechanically "programmed" to examine a
given column of each card in a deck and distribute the card into one of 12 bins depending on
which place has been punched. An operator can then gather the cards bin by bin, so that cards
with the first place punched are on top of cards with the second place punched, and so on.

For decimal digits, only 10 places are used in each column. (The other two places are used for
encoding nonnumeric characters.) A d-digit number would then occupy a field of d columns.
Since the card sorter can look at only one column at a time, the problem of sorting » cards on
a d-digit number requires a sorting algorithm.

Intuitively, one might want to sort numbers on their most significant digit, sort each of the
resulting bins recursively, and then combine the decks in order. Unfortunately, since the cards
in 9 of the 10 bins must be put aside to sort each of the bins, this procedure generates many
intermediate piles of cards that must be kept track of. (See Exercise 8.3-5.)

Radix sort solves the problem of card sorting counterintuitively by sorting on the /east
significant digit first. The cards are then combined into a single deck, with the cards in the 0
bin preceding the cards in the 1 bin preceding the cards in the 2 bin, and so on. Then the entire
deck is sorted again on the second-least significant digit and recombined in a like manner.
The process continues until the cards have been sorted on all 4 digits. Remarkably, at that
point the cards are fully sorted on the d-digit number. Thus, only d passes through the deck
are required to sort. Figure 8.3 shows how radix sort operates on a "deck" of seven 3-digit
numbers.

329 720 720 329
457 355 329 355
657 436 436 436
839 il 457 i 839 w457
436 657 355 657
720 329 457 720
355 839 657 839

Figure 8.3: The operation of radix sort on a list of seven 3-digit numbers. The leftmost
column is the input. The remaining columns show the list after successive sorts on
increasingly significant digit positions. Shading indicates the digit position sorted on to
produce each list from the previous one.

It is essential that the digit sorts in this algorithm be stable. The sort performed by a card
sorter is stable, but the operator has to be wary about not changing the order of the cards as
they come out of a bin, even though all the cards in a bin have the same digit in the chosen
column.

In a typical computer, which is a sequential random-access machine, radix sort is sometimes
used to sort records of information that are keyed by multiple fields. For example, we might
wish to sort dates by three keys: year, month, and day. We could run a sorting algorithm with
a comparison function that, given two dates, compares years, and if there is a tie, compares
months, and if another tie occurs, compares days. Alternatively, we could sort the information
three times with a stable sort: first on day, next on month, and finally on year.



The code for radix sort is straightforward. The following procedure assumes that each element
in the n-element array 4 has d digits, where digit 1 is the lowest-order digit and digit d is the
highest-order digit.

RADIX-SORT (A, d)
1 for i « 1 to d
2 do use a stable sort to sort array A on digit I

—
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Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-
SORT correctly sorts these numbers in ®(d(n + k)) time.

Proof The correctness of radix sort follows by induction on the column being sorted (see
Exercise 8.3-3). The analysis of the running time depends on the stable sort used as the
intermediate sorting algorithm. When each digit is in the range 0 to £-1 (so that it can take on
k possible values), and £ is not too large, counting sort is the obvious choice. Each pass over n
d-digit numbers then takes time O(n + k). There are d passes, so the total time for radix sort is
O(d(n + k)).

When d is constant and k£ = O(n), radix sort runs in linear time. More generally, we have some
flexibility in how to break each key into digits.

Lemma 8.4

Given n b-bit numbers and any positive integer » < b, RADIX-SORT correctly sorts these
numbers in O((b/r)(n + 2")) time.

Proof For a value r < b, we view each key as having d = [ b/r]| digits of r bits each. Each digit
is an integer in the range 0 to 2" - 1, so that we can use counting sort with k=2" - 1. (For
example, we can view a 32-bit word as having 4 8-bit digits, so that b =32, r=8,k=2"-1=
255, and d = b/r = 4.) Each pass of counting sort takes time ®(n + k) = ®(n + 2") and there are
d passes, for a total running time of @(d(n + 2" )) = O((b/r)(n + 2")).

For given values of n and b, we wish to choose the value of , with » < b, that minimizes the

expression (b/r)(n +2"). If b < [1g n], then for any value of r b, we have that (n +2") = O(n).
Thus, choosing » = b yields a running time of (b/b)(n + 2°) = @(n), which is asymptotically

optimal. If b > |1g n], then choosing = |lg n] gives the best time to within a constant factor,
which we can see as follows. Choosing » = |1g n] yields a running time of ®@(bn/ 1g n). As we
increase r above |lg n], the 2" term in the numerator increases faster than the » term in the

denominator, and so increasing 7 above |Ig n] yields a running time of @(bn/ 1g n). If instead



we were to decrease 7 below |lg n], then the b/r term increases and the n + 2" term remains at
O(n).

Is radix sort preferable to a comparison-based sorting algorithm, such as quick-sort? If b =
O(lg n), as is often the case, and we choose » = 1g n, then radix sort's running time is @(n),
which appears to be better than quicksort's average-case time of ®(n lg n). The constant
factors hidden in the ®-notation differ, however. Although radix sort may make fewer passes
than quicksort over the n keys, each pass of radix sort may take significantly longer. Which
sorting algorithm is preferable depends on the characteristics of the implementations, of the
underlying machine (e.g., quicksort often uses hardware caches more effectively than radix
sort), and of the input data. Moreover, the version of radix sort that uses counting sort as the
intermediate stable sort does not sort in place, which many of the @(n Ig n)-time comparison
sorts do. Thus, when primary memory storage is at a premium, an in-place algorithm such as
quicksort may be preferable.

Exercises 8.3-1

Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the following list of
English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG,
BIG, TEA, NOW, FOX.

Exercises 8.3-2

Which of the following sorting algorithms are stable: insertion sort, merge sort, heapsort, and
quicksort? Give a simple scheme that makes any sorting algorithm stable. How much
additional time and space does your scheme entail?

Exercises 8.3-3

Use induction to prove that radix sort works. Where does your proof need the assumption that
the intermediate sort is stable?

Exercises 8.3-4

Show how to sort n integers in the range 0 to #* - 1 in O(n) time.

Exercises 8.3-5: %



In the first card-sorting algorithm in this section, exactly how many sorting passes are needed
to sort d-digit decimal numbers in the worst case? How many piles of cards would an operator
need to keep track of in the worst case?

8.4 Bucket sort

Bucket sort runs in linear time when the input is drawn from a uniform distribution. Like
counting sort, bucket sort is fast because it assumes something about the input. Whereas
counting sort assumes that the input consists of integers in a small range, bucket sort assumes
that the input is generated by a random process that distributes elements uniformly over the
interval [0, 1). (See Section C.2 for a definition of uniform distribution.)

The idea of bucket sort is to divide the interval [0, 1) into n equal-sized subintervals, or
buckets, and then distribute the » input numbers into the buckets. Since the inputs are
uniformly distributed over [0, 1), we don't expect many numbers to fall into each bucket. To
produce the output, we simply sort the numbers in each bucket and then go through the
buckets in order, listing the elements in each.

Our code for bucket sort assumes that the input is an n-element array 4 and that each element
A[7] in the array satisfies 0 < A[7] < 1. The code requires an auxiliary array B[0 [1 n - 1] of
linked lists (buckets) and assumes that there is a mechanism for maintaining such lists.
(Section 10.2 describes how to implement basic operations on linked lists.)

BUCKET-SORT (A)
n « length[A]
for i « 1 to n

do insert A[i] into list B[ln A[i]l]]
for i « 0 ton -1
do sort list B[i] with insertion sort
concatenate the lists B[0], B[l], . . ., B[n - 1] together in order
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Figure 8.4 shows the operation of bucket sort on an input array of 10 numbers.
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Figure 8.4: The operation of BUCKET-SORT. (a) The input array 4[1 [ 10]. (b) The array
B[0 [1 9] of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the



half-open interval [i/10, (i + 1)/10). The sorted output consists of a concatenation in order of
the lists B[0], B[1], . . ., B[9].

To see that this algorithm works, consider two elements A[i] and A[j]. Assume without loss of

generality that A[i] < A[j]. Since |n A[i]] [n A[j]], element A[i] is placed either into the same
bucket as A[j] or into a bucket with a lower index. If A[i] and A4[j] are placed into the same
bucket, then the for loop of lines 4-5 puts them into the proper order. If 4[i] and A[/] are
placed into different buckets, then line 6 puts them into the proper order. Therefore, bucket
sort works correctly.

To analyze the running time, observe that all lines except line 5 take O(n) time in the worst
case. It remains to balance the total time taken by the # calls to insertion sort in line 5.

To analyze the cost of the calls to insertion sort, let #; be the random variable denoting the
number of elements placed in bucket B[i]. Since insertion sort runs in quadratic time (see
Section 2.2), the running time of bucket sort is
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Taking expectations of both sides and using linearity of expectation, we have

8.1 a—1 :
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i=F

a=1

= @n)+ ZE | (Jtuf]] (by linearity of expectation)
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= (n)+ Z ) {F.[nf]] (by equation (C.21)) .
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We claim that
(82)E[ni1=2=1/n
fori=0,1,..., n- 1. Itisno surprise that each bucket i has the same value of El#], since each

value in the input array A4 is equally likely to fall in any bucket. To prove equation (8.2), we
define indicator random variables

X;j = I{4[/] falls in bucket 7}

fori=0,1,...,n-land;j=1,2,... n Thus,
n; = ZX;,- ;
=l

To compute El%l, we expand the square and regroup terms:
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where the last line follows by linearity of expectation. We evaluate the two summations
separately. Indicator random variable X is 1 with probability 1/n and 0 otherwise, and
therefore

E[X}] = |.$vu-(| —%)

n’
When k # j, the variables Xj; and Xj are independent, and hence

E[Xi;Xu]l = E[XyIE[Xil]
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Substituting these two expected values in equation (8.3), we obtain
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which proves equation (8.2).

Using this expected value in equation (8.1), we conclude that the expected time for bucket
sort is @(n) + n - O(2 - 1/n) = O(n). Thus, the entire bucket sort algorithm runs in linear
expected time.

Even if the input is not drawn from a uniform distribution, bucket sort may still run in linear
time. As long as the input has the property that the sum of the squares of the bucket sizes is



linear in the total number of elements, equation (8.1) tells us that bucket sort will run in linear
time.

Exercises 8.4-1

Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array 4 =
11.79, .13, .16, .64, .39, .20, .89, .53, .71, .42[1.

Exercises 8.4-2

What is the worst-case running time for the bucket-sort algorithm? What simple change to the
algorithm preserves its linear expected running time and makes its worst-case running time
O(n g n)?

Exercises 8.4-3

Let X be a random variable that is equal to the number of heads in two flips of a fair coin.
What is E [X*]? What is E* [X]?
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We are given n points in the unit circle, p; = (x;, y;), such that U < <+ 3 = ifori=1,2, ..., n.
Suppose that the points are uniformly distributed; that is, the probability of finding a point in
any region of the circle is proportional to the area of that region. Design a ®(n) expected-time

algorithm to sort the z points by their distances “ = v %+ ¥ from the origin. (Hint: Design the
bucket sizes in BUCKET-SORT to reflect the uniform distribution of the points in the unit
circle.)

Exercises 8.4-5: %

A probability distribution function P(x) for a random variable X is defined by P(x) = Pr {X <
x}. Suppose that a list of #n random variables Xj, X3, . . ..X), is drawn from a continuous
probability distribution function P that is computable in O(1) time. Show how to sort these
numbers in linear expected time.



Problems §-1: Averaie—case lower bounds on comiarison sortini

In this problem, we prove an Q(n lg n) lower bound on the expected running time of any
deterministic or randomized comparison sort on z distinct input elements. We begin by
examining a deterministic comparison sort 4 with decision tree 7,,. We assume that every
permutation of A's inputs is equally likely.

a. Suppose that each leaf of 7 is labeled with the probability that it is reached given a
random input. Prove that exactly n! leaves are labeled 1/n! and that the rest are labeled
0.

b. Let D(T) denote the external path length of a decision tree 7T'; that is, D(7) is the sum
of the depths of all the leaves of T. Let 7 be a decision tree with £ > 1 leaves, and let
LT and RT be the left and right subtrees of 7. Show that D(T) = D(LT) + D(RT) + k.

c. Let d(k) be the minimum value of D(7) over all decision trees 7 with k> 1 leaves.
Show that d(k) = min<<-; {d(i) + d(k - i) + k}. (Hint: Consider a decision tree 7 with &
leaves that achieves the minimum. Let iy be the number of leaves in LT and £ - iy the
number of leaves in RT.)

d. Prove that for a given value of £> 1 and 7 in the range 1 <i k - 1, the function i lg i +
(k - i) 1g(k - i) is minimized at i = k/2. Conclude that d(k) = O(k 1g k).

e. Prove that D(T,) = O(n! 1g(n!)), and conclude that the expected time to sort n elements
is O(n lg n).

Now, consider a randomized comparison sort B. We can extend the decision-tree model to
handle randomization by incorporating two kinds of nodes: ordinary comparison nodes and
"randomization" nodes. A randomization node models a random choice of the form
RANDOM(1, ) made by algorithm B; the node has 7 children, each of which is equally likely
to be chosen during an execution of the algorithm.

f.  Show that for any randomized comparison sort B, there exists a deterministic
comparison sort 4 that makes no more comparisons on the average than B does.

Problems 8-2: Sortini in ﬁlace in linear time

Suppose that we have an array of n data records to sort and that the key of each record has the
value 0 or 1. An algorithm for sorting such a set of records might possess some subset of the
following three desirable characteristics:

1. The algorithm runs in O(n) time.

2. The algorithm is stable.

3. The algorithm sorts in place, using no more than a constant amount of storage space in
addition to the original array.

®

Give an algorithm that satisfies criteria 1 and 2 above.
b. Give an algorithm that satisfies criteria 1 and 3 above.
c. Give an algorithm that satisfies criteria 2 and 3 above.



d. Can any of your sorting algorithms from parts (a)-(c) be used to sort n records with b-
bit keys using radix sort in O(bn) time? Explain how or why not.

e. Suppose that the n records have keys in the range from 1 to &. Show how to modify
counting sort so that the records can be sorted in place in O(n + k) time. You may use
O(k) storage outside the input array. Is your algorithm stable? (Hint: How would you
do it for k= 37?)

Problems 8-3: Sorting variable-length items

a. You are given an array of integers, where different integers may have different
numbers of digits, but the total number of digits over all the integers in the array is 7.
Show how to sort the array in O(n) time.

b. You are given an array of strings, where different strings may have different numbers
of characters, but the total number of characters over all the strings is n. Show how to
sort the strings in O(n) time.

(Note that the desired order here is the standard alphabetical order; for example, a < ab
<b.)

Problems 8-4: Water jugs

Suppose that you are given n red and » blue water jugs, all of different shapes and sizes. All
red jugs hold different amounts of water, as do the blue ones. Moreover, for every red jug,
there is a blue jug that holds the same amount of water, and vice versa.

It is your task to find a grouping of the jugs into pairs of red and blue jugs that hold the same
amount of water. To do so, you may perform the following operation: pick a pair of jugs in
which one is red and one is blue, fill the red jug with water, and then pour the water into the
blue jug. This operation will tell you whether the red or the blue jug can hold more water, or if
they are of the same volume. Assume that such a comparison takes one time unit. Your goal is
to find an algorithm that makes a minimum number of comparisons to determine the

grouping. Remember that you may not directly compare two red jugs or two blue jugs.

a. Describe a deterministic algorithm that uses ®(rn”) comparisons to group the jugs into
pairs.

b. Prove a lower bound of ®(n lg n) for the number of comparisons an algorithm solving
this problem must make.

c. Give a randomized algorithm whose expected number of comparisons is O(n 1g n),
and prove that this bound is correct. What is the worst-case number of comparisons for
your algorithm?

Problems 8-5: Average sorting



Suppose that, instead of sorting an array, we just require that the elements increase on
average. More precisely, we call an n-element array 4 k-sorted if, foralli=1, 2, ..., n - k, the
following holds:

A\

YA

[

X il

a. What does it mean for an array to be 1-sorted?

b. Give a permutation of the numbers 1, 2, . . ., 10 that is 2-sorted, but not sorted.

c. Prove that an n-element array is k-sorted if and only if A[i]] < A[i + k] foralli=1,2, ..
L -k

d. Give an algorithm that k-sorts an n-element array in O(n 1g(n/k)) time.
We can also show a lower bound on the time to produce a k-sorted array, when £ is a constant.

e. Show that a k-sorted array of length n can be sorted in O(n 1g k) time. (Hint: Use the
solution to Exercise 6.5-8.)

f. Show that when £ is a constant, it requires O(#n 1g n) time to k-sort an n-element array.
(Hint: Use the solution to the previous part along with the lower bound on comparison
Sorts.)

Problems 8-6: Lower bound on meriini sorted lists

The problem of merging two sorted lists arises frequently. It is used as a subroutine of
MERGE-SORT, and the procedure to merge two sorted lists is given as MERGE in Section
2.3.1. In this problem, we will show that there is a lower bound of 2z - 1 on the worst-case
number of comparisons required to merge two sorted lists, each containing » items.

First we will show a lower bound of 2n - o(n) comparisons by using a decision tree.

a. Show that, given 2n numbers, there are [ )possible ways to divide them into two sorted
lists, each with #» numbers.

b. Using a decision tree, show that any algorithm that correctly merges two sorted lists
uses at least 2n - o(n) comparisons.

Now we will show a slightly tighter 2z - 1 bound.
c. Show that if two elements are consecutive in the sorted order and from opposite lists,
then they must be compared.

d. Use your answer to the previous part to show a lower bound of 2z - 1 comparisons for
merging two sorted lists.

Chapter notes



The decision-tree model for studying comparison sorts was introduced by Ford and Johnson
[94]. Knuth's comprehensive treatise on sorting [185] covers many variations on the sorting
problem, including the information-theoretic lower bound on the complexity of sorting given
here. Lower bounds for sorting using generalizations of the decision-tree model were studied

comprehensively by Ben-Or [36].

Knuth credits H. H. Seward with inventing counting sort in 1954, and also with the idea of
combining counting sort with radix sort. Radix sorting starting with the least significant digit
appears to be a folk algorithm widely used by operators of mechanical card-sorting machines.
According to Knuth, the first published reference to the method is a 1929 document by L. J.
Comrie describing punched-card equipment. Bucket sorting has been in use since 1956, when
the basic idea was proposed by E. J. Isaac and R. C. Singleton.

Munro and Raman [229] give a stable sorting algorithm that performs O(n'"") comparisons in
the worst case, where 0 <[] <1 is any fixed constant. Although any of the O(n Ig n)-time
algorithms make fewer comparisons, the algorithm by Munro and Raman moves data only
O(n) times and operates in place.

The case of sorting n b-bit integers in o(n 1g n) time has been considered by many researchers.
Several positive results have been obtained, each under slightly different assumptions about
the model of computation and the restrictions placed on the algorithm. All the results assume
that the computer memory is divided into addressable b-bit words. Fredman and Willard [99]
introduced the fusion tree data structure and used it to sort # integers in O(n 1g n/ 1g 1g n) time.
This bound was later improved to € /lzntime by Andersson [16]. These algorithms require
the use of multiplication and several precomputed constants. Andersson, Hagerup, Nilsson,
and Raman [17] have shown how to sort z integers in O(n 1g 1g n) time without using
multiplication, but their method requires storage that can be unbounded in terms of n. Using
multiplicative hashing, one can reduce the storage needed to O(n), but the O(n 1g Ig n) worst-
case bound on the running time becomes an expected-time bound. Generalizing the
exponential search trees of Andersson [16], Thorup [297] gave an O(n(Ig 1g n)*)-time sorting
algorithm that does not use multiplication or randomization, and uses linear space. Combining
these techniques with some new ideas, Han [137] improved the bound for sorting to O(n 1g 1g
n g Ig 1g n) time. Although these algorithms are important theoretical breakthroughs, they are
all fairly complicated and at the present time seem unlikely to compete with existing sorting
algorithms in practice.

Chapter 9: Medians and Order Statistics

Overview

The ith order statistic of a set of n elements is the ith smallest element. For example, the
minimum of a set of elements is the first order statistic (i = 1), and the maximum is the nth
order statistic (i = n). A median, informally, is the "halfway point" of the set. When # is odd,
the median is unique, occurring at i = (n + 1)/2. When # is even, there are two medians,
occurring at i = n/2 and i = n/2 + 1. Thus, regardless of the parity of n, medians occur at i =

L(n + 1)/2] (the lower median) and i = [ (n + 1)/2] (the upper median). For simplicity in this
text,however, we consistently use the phrase "the median" to refer to the lower median.



This chapter addresses the problem of selecting the ith order statistic from a set of n distinct
numbers. We assume for convenience that the set contains distinct numbers, although
virtually everything that we do extends to the situation in which a set contains repeated
values. The selection problem can be specified formally as follows:

Input: A set 4 of n (distinct) numbers and a number 7, with 1 <i <n.
Output: The element x [ ] 4 that is larger than exactly i - 1 other elements of A.

The selection problem can be solved in O(n 1g n) time, since we can sort the numbers using
heapsort or merge sort and then simply index the ith element in the output array. There are
faster algorithms, however.

In Section 9.1, we examine the problem of selecting the minimum and maximum of a set of
elements. More interesting is the general selection problem, which is investigated in the
subsequent two sections. Section 9.2 analyzes a practical algorithm that achieves an O(n)
bound on the running time in the average case. Section 9.3 contains an algorithm of more
theoretical interest that achieves the O(n) running time in the worst case.

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n elements? We
can easily obtain an upper bound of n - 1 comparisons: examine each element of the set in
turn and keep track of the smallest element seen so far. In the following procedure, we assume
that the set resides in array A, where length[A] = n.

MINIMUM (A)

1 min « A[1l]

2 for i « 2 to lengthl[A]

3 do if min > A[1]

4 then min « A[1]
5 return min

Finding the maximum can, of course, be accomplished with n - 1 comparisons as well.

Is this the best we can do? Yes, since we can obtain a lower bound of n - 1 comparisons for
the problem of determining the minimum. Think of any algorithm that determines the
minimum as a tournament among the elements. Each comparison is a match in the tournament
in which the smaller of the two elements wins. The key observation is that every element
except the winner must lose at least one match. Hence, n - 1 comparisons are necessary to
determine the minimum, and the algorithm MINIMUM is optimal with respect to the number
of comparisons performed.

Simultaneous minimum and maximum

In some applications, we must find both the minimum and the maximum of a set of n
elements. For example, a graphics program may need to scale a set of (x, y) data to fit onto a
rectangular display screen or other graphical output device. To do so, the program must first
determine the minimum and maximum of each coordinate.



It is not difficult to devise an algorithm that can find both the minimum and the maximum of
n elements using ®(n) comparisons, which is asymptotically optimal. Simply find the
minimum and maximum independently, using n - 1 comparisons for each, for a total of 2n - 2
comparisons.

In fact, at most 3 |n/2] comparisons are sufficient to find both the minimum and the
maximum. The strategy is to maintain the minimum and maximum elements seen thus far.
Rather than processing each element of the input by comparing it against the current
minimum and maximum, at a cost of 2 comparisons per element, we process elements in
pairs. We compare pairs of elements from the input first with each other, and then we
compare the smaller to the current minimum and the larger to the current maximum, at a cost
of 3 comparisons for every 2 elements.

Setting up initial values for the current minimum and maximum depends on whether » is odd
or even. If n is odd, we set both the minimum and maximum to the value of the first element,
and then we process the rest of the elements in pairs. If n is even, we perform 1 comparison
on the first 2 elements to determine the initial values of the minimum and maximum, and then
process the rest of the elements in pairs as in the case for odd n.

Let us analyze the total number of comparisons. If z is odd, then we perform 3 [n/2 ]
comparisons. If # is even, we perform 1 initial comparison followed by 3(n - 2)/2
comparisons, for a total of 3n/2 - 2. Thus, in either case, the total number of comparisons is at

most 3 | n/2].

Exercises 9.1-1

Show that the second smallest of 7 elements can be found with n + [1g n] - 2 comparisons in
the worst case. (Hint: Also find the smallest element.)

Exercises 9.1-2; *

Show that [31/2] - 2 comparisons are necessary in the worst case to find both the maximum
and minimum of » numbers. (Hint: Consider how many numbers are potentially either the
maximum or minimum, and investigate how a comparison affects these counts.)

9.2 Selection in expected linear time

The general selection problem appears more difficult than the simple problem of finding a
minimum. Yet, surprisingly, the asymptotic running time for both problems is the same: ®(n).
In this section, we present a divide-and-conquer algorithm for the selection problem. The
algorithm RANDOMIZED-SELECT is modeled after the quicksort algorithm of Chapter 7.
As in quicksort, the idea is to partition the input array recursively. But unlike quicksort, which
recursively processes both sides of the partition, RANDOMIZED-SELECT only works on



one side of the partition. This difference shows up in the analysis: whereas quicksort has an
expected running time of ®(n lg n), the expected time of RANDOMIZED-SELECT is O(n).

RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION introduced in
Section 7.3. Thus, like RANDOMIZED-QUICKSORT, it is a randomized algorithm, since its
behavior is determined in part by the output of a random-number generator. The following
code for RANDOMIZED-SELECT returns the ith smallest element of the array A[p .. r].

RANDOMIZED-SELECT (4, p, r, 1)
if p=r
then return A[p]
g —~ RANDOMIZED-PARTITION(A, p, r)
k—g-p+1
if i = k > the pivot value is the answer
then return A[qg]
elseif i < k
then return RANDOMIZED-SELECT (A, p, g - 1, 1)
else return RANDOMIZED-SELECT (A, g + 1, r, i - k)

W oo Jo 0 W wdhR

After RANDOMIZED-PARTITION is executed in line 3 of the algorithm, the array A[p .. 7]
is partitioned into two (possibly empty) subarrays A[p .. g - 1] and A[g + 1 .. r] such that each
element of A[p .. g - 1] is less than or equal to A[¢], which in turn is less than each element of
Alg + 1 .. r]. As in quicksort, we will refer to 4[¢] as the pivet element. Line 4 of
RANDOMIZED-SELECT computes the number & of elements in the subarray A[p .. ¢], that
is, the number of elements in the low side of the partition, plus one for the pivot element. Line
5 then checks whether A[¢] is the ith smallest element. If it is, then 4[g] is returned.
Otherwise, the algorithm determines in which of the two subarrays A[p .. ¢ - 1] and 4[g + 1 ..
r] the ith smallest element lies. If i < &, then the desired element lies on the low side of the
partition, and it is recursively selected from the subarray in line 8. If i > k, however, then the
desired element lies on the high side of the partition. Since we already know £ values that are
smaller than the ith smallest element of A[p .. r—namely, the elements of A[p .. g]—the
desired element is the (i - k)th smallest element of A[g + 1 .. 7], which is found recursively in
line 9. The code appears to allow recursive calls to subarrays with 0 elements, but Exercise
9.2-1 asks you to show that this situation cannot happen.

The worst-case running time for RANDOMIZED-SELECT is O(n%), even to find the
minimum, because we could be extremely unlucky and always partition around the largest
remaining element, and partitioning takes ®(n) time. The algorithm works well in the average
case, though, and because it is randomized, no particular input elicits the worst-case behavior.

The time required by RANDOMIZED-SELECT on an input array A[p .. 7] of n elements is a
random variable that we denote by 7(n), and we obtain an upper bound on E [7(n)] as follows.
Procedure RANDOMIZED-PARTITION is equally likely to return any element as the pivot.
Therefore, for each k& such that 1 <k <n, the subarray 4[p .. ¢] has k elements (all less than or
equal to the pivot) with probability 1/a. For k=1, 2...., n, we define indicator random
variables X, where

X = I[{the subarray A[p .. ¢] has exactly k elements} ,
and so we have

O.D) E[X(]=1/n.



When we call RANDOMIZED-SELECT and choose A[¢] as the pivot element, we do not
know, a priori, if we will terminate immediately with the correct answer, recurse on the
subarray A[p .. g - 1], or recurse on the subarray A[¢g + 1 .. r]. This decision depends on where
the ith smallest element falls relative to A[g]. Assuming that 7(#) is monotonically increasing,
we can bound the time needed for the recursive call by the time needed for the recursive call
on the largest possible input. In other words, we assume, to obtain an upper bound, that the ith
element is always on the side of the partition with the greater number of elements. For a given
call of RANDOMIZED-SELECT, the indicator random variable X} has the value 1 for exactly
one value of £, and it is O for all other k. When X} = 1, the two subarrays on which we might
recurse have sizes k - 1 and » - k. Hence, we have the recurrence

Tiny = ZX,; AT (maxik —1.n— kN 4+ O(nh)
L]

= Z[X,;-'I'mmx[i Lam =40+ Om).
E=I

Taking expected values, we have

E[T(n)]
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In order to apply equation (C.23), we rely on X; and T(max(k - 1, n - k)) being independent
random variables. Exercise 9.2-2 asks you to justify this assertion.

Let us consider the expression max(k - 1, n - k). We have

k=1 ifk>[nf2],

max(k — 1.n — k) = I” k ifk =[n/2].

If n is even, each term from T([n/2]) up to T(n - 1) appears exactly twice in the summation,

and if n is odd, all these terms appear twice and 7( | n/2]) appears once. Thus, we have

ey =1
E[T(m] =< = E[T (k) Oiny .
[T (n I‘”L:.Z,.,;z- [T (k)] + O(n)

We solve the recurrence by substitution. Assume that 7(n) < cn for some constant ¢ that
satisfies the initial conditions of the recurrence. We assume that 7(n) = O(1) for n less than
some constant; we shall pick this constant later. We also pick a constant a such that the
function described by the O(n) term above (which describes the non-recursive component of
the running time of the algorithm) is bounded from above by an for all n > 0. Using this
inductive hypothesis, we have
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In order to complete the proof, we need to show that for sufficiently large n, this last
expression is at most cn or, equivalently, that cn/4 - ¢/2 - an > 0. If we add ¢/2 to both sides
and factor out n, we get n(c/4 - a) > c¢/2. As long as we choose the constant ¢ so that ¢/4 - a >
0, i.e., ¢ > 4a, we can divide both sides by c/4 - a, giving

cf2 2

= =

T ofd—a c—4da’

Thus, if we assume that 7(n) = O(1) for n < 2c/(c -4a), we have T(n) = O(n). We conclude that
any order statistic, and in particular the median, can be determined on average in linear time.

Exercises 9.2-1

Show that in RANDOMIZED-SELECT, no recursive call is ever made to a 0-length array.

Exercises 9.2-2

Argue that the indicator random variable Xj and the value T(max(k - 1, n - k)) are
independent.

Exercises 9.2-3



Write an iterative version of RANDOMIZED-SELECT.

Exercises 9.2-4

Suppose we use RANDOMIZED-SELECT to select the minimum element of the array 4 = [
3,2,9,0,7,5,4,8,6, 1. Describe a sequence of partitions that results in a worst-case
performance of RANDOMIZED-SELECT.

9.3 Selection in worst-case linear time

We now examine a selection algorithm whose running time is O(n) in the worst case. Like
RANDOMIZED-SELECT, the algorithm SELECT finds the desired element by recursively
partitioning the input array. The idea behind the algorithm, however, is to guarantee a good
split when the array is partitioned. SELECT uses the deterministic partitioning algorithm
PARTITION from quicksort (see Section 7.1), modified to take the element to partition
around as an input parameter.

The SELECT algorithm determines the ith smallest of an input array of n > 1 elements by
executing the following steps. (If » = 1, then SELECT merely returns its only input value as
the ith smallest.)

1. Divide the n elements of the input array into | /5] groups of 5 elements each and at
most one group made up of the remaining » mod 5 elements.

2. Find the median of each of the [#n/5] groups by first insertion sorting the elements of
each group (of which there are at most 5) and then picking the median from the sorted
list of group elements.

3. Use SELECT recursively to find the median x of the [n/5] medians found in step 2.
(If there are an even number of medians, then by our convention, x is the lower
median.)

4. Partition the input array around the median-of-medians x using the modified version of
PARTITION. Let k£ be one more than the number of elements on the low side of the
partition, so that x is the kth smallest element and there are n-k elements on the high
side of the partition.

5. If i =k, then return x. Otherwise, use SELECT recursively to find the ith smallest
element on the low side if i < &, or the (7 - k)th smallest element on the high side if i >
k.

To analyze the running time of SELECT, we first determine a lower bound on the number of
elements that are greater than the partitioning element x. Figure 9.1 is helpful in visualizing
this bookkeeping. At least half of the medians found in step 2 are greater than'"! the median-

of-medians x. Thus, at least half of the [n/5] groups contribute 3 elements that are greater
than x, except for the one group that has fewer than 5 elements if 5 does not divide n exactly,
and the one group containing x itself. Discounting these two groups, it follows that the
number of elements greater than x is at least



Figure 9.1: Analysis of the algorithm SELECT. The n elements are represented by small
circles, and each group occupies a column. The medians of the groups are whitened, and the
median-of-medians x is labeled. (When finding the median of an even number of elements,
we use the lower median.) Arrows are drawn from larger elements to smaller, from which it
can be seen that 3 out of every full group of 5 elements to the right of x are greater than x, and
3 out of every group of 5 elements to the left of x are less than x. The elements greater than x
are shown on a shaded background.

Similarly, the number of elements that are less than x is at least 3%/10 - 6. Thus, in the worst
case, SELECT is called recursively on at most 7x#/10 + 6 elements in step 5.

We can now develop a recurrence for the worst-case running time 7(n) of the algorithm
SELECT. Steps 1, 2, and 4 take O(n) time. (Step 2 consists of O(n) calls of insertion sort on

sets of size O(1).) Step 3 takes time T([n/5]), and step 5 takes time at most 7(71/10+ 6),
assuming that 7' is monotonically increasing. We make the assumption, which seems
unmotivated at first, that any input of 140 or fewer elements requires O(1) time; the origin of
the magic constant 140 will be clear shortly. We can therefore obtain the recurrence

T(m) < =il EI:H = 140,
— | T([n/3+T(Tn/104+6)+ Qin) iftn = 140,
We show that the running time is linear by substitution. More specifically, we will show that
T(n) < cn for some suitably large constant ¢ and all n > 0. We begin by assuming that 7(n) <
cn for some suitably large constant ¢ and all » < 140; this assumption holds if ¢ is large
enough. We also pick a constant a such that the function described by the O(n) term above
(which describes the non-recursive component of the running time of the algorithm) is
bounded above by an for all n > 0. Substituting this inductive hypothesis into the right-hand
side of the recurrence yields

In)= . [n/5] +c(7n/10 + 6) + an
<cn/5+c+7cn/10 + 6¢ + an
=9¢cn/10+ 7c + an
=cn+ (-cn/10 +7c + an) ,



which is at most cn if
(9.2) —en/10+Te+an = 0.

Inequality (9.2) is equivalent to the inequality ¢ > 10a(n/(n - 70)) when n > 70. Because we
assume that n > 140, we have n/(n - 70) < 2, and so choosing ¢ > 20a will satisfy inequality
(9.2). (Note that there is nothing special about the constant 140; we could replace it by any
integer strictly greater than 70 and then choose ¢ accordingly.) The worst-case running time of
SELECT is therefore linear.

As in a comparison sort (see Section 8.1), SELECT and RANDOMIZED-SELECT determine
information about the relative order of elements only by comparing elements. Recall from
Chapter 8 that sorting requires (n 1g n) time in the comparison model, even on average (see
Problem 8-1). The linear-time sorting algorithms in Chapter 8 make assumptions about the
input. In contrast, the linear-time selection algorithms in this chapter do not require any
assumptions about the input. They are not subject to the Q(n Ig n) lower bound because they
manage to solve the selection problem without sorting.

Thus, the running time is linear because these algorithms do not sort; the linear-time behavior
is not a result of assumptions about the input, as was the case for the sorting algorithms in
Chapter 8. Sorting requires (n g n) time in the comparison model, even on average (see
Problem 8-1), and thus the method of sorting and indexing presented in the introduction to
this chapter is asymptotically inefficient.

Exercises 9.3-1

In the algorithm SELECT, the input elements are divided into groups of 5. Will the algorithm
work in linear time if they are divided into groups of 7?7 Argue that SELECT does not run in
linear time if groups of 3 are used.

Exercises 9.3-2

Analyze SELECT to show that if n > 140, then at least [n/4] elements are greater than the

median-of-medians x and at least [#/4] elements are less than x.

Exercises 9.3-3

Show how quicksort can be made to run in O(n 1g r) time in the worst case.

Exercises 9.3-4: %



Suppose that an algorithm uses only comparisons to find the ith smallest element in a set of n
elements. Show that it can also find the i - 1 smaller elements and the » - i larger elements
without performing any additional comparisons.
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Suppose that you have a "black-box" worst-case linear-time median subroutine. Give a
simple, linear-time algorithm that solves the selection problem for an arbitrary order statistic.

Exercises 9.3-6

The kth quantiles of an n-element set are the & - 1 order statistics that divide the sorted set into
k equal-sized sets (to within 1). Give an O(n 1g k)-time algorithm to list the kth quantiles of a
et.
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Exercises 9.3-7

Describe an O(n)-time algorithm that, given a set S of n distinct numbers and a positive
integer k < n, determines the £ numbers in S that are closest to the median of S.

gl
>
(<)
2
e}
=
2]
o
75]
O
¢
o

Let X1 .. n] and Y [1 .. n] be two arrays, each containing » numbers already in sorted order.
Give an O(Ig n)-time algorithm to find the median of all 2n elements in arrays X and Y.
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Professor Olay is consulting for an oil company, which is planning a large pipeline running
east to west through an oil field of n wells. From each well, a spur pipeline is to be connected
directly to the main pipeline along a shortest path (either north or south), as shown in Figure
9.2. Given x- and y-coordinates of the wells, how should the professor pick the optimal
location of the main pipeline (the one that minimizes the total length of the spurs)? Show that
the optimal location can be determined in linear time.
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Figure 9.2: Professor Olay needs to determine the position of the east-west oil pipeline that
minimizes the total length of the north-south spurs.

Problems 9-1: Lariest 1 numbers in sorted order

Given a set of n numbers, we wish to find the i largest in sorted order using a comparison-
based algorithm. Find the algorithm that implements each of the following methods with the
best asymptotic worst-case running time, and analyze the running times of the algorithms in
terms of n and i.

a. Sort the numbers, and list the i largest.

b. Build a max-priority queue from the numbers, and call EXTRACT-MAX i times.

c. Use an order-statistic algorithm to find the ith largest number, partition around that
number, and sort the i largest numbers.

Problems 9-2: Weighted median

For n distinct elements x1, x,, ..., x, with positive weights wy, w, ..., w, such that 2., i = | the
weighted (lower) median is the element x; satisfying

A
B | =

A
=
1A
bt | —

a. Argue that the median of xy, x», ..., x,, is the weighted median of the x; with weights w;
=1/nfori=12,..,n.

b. Show how to compute the weighted median of n elements in O(n 1g n) worst-case time
using sorting.



c. Show how to compute the weighted median in ®(n) worst-case time using a linear-
time median algorithm such as SELECT from Section 9.3.

The post-office location problem is defined as follows. We are given n points py, p2, ..., Pu
with associated weights wi, wa, ..., w,. We wish to find a point p (not necessarily one of the
input points) that minimizes the sum & (. 7), where d(a, b) is the distance between points
a and b.

d. Argue that the weighted median is a best solution for the 1-dimensional post-office
location problem, in which points are simply real numbers and the distance between
points a and b is d(a, b) = |a - b|.

e. Find the best solution for the 2-dimensional post-office location problem, in which the
points are (x, y) coordinate pairs and the distance between points a = (x1, 1) and b =
(x2, 12) 1s the Manhattan distance given by d(a, b) = |x| - x2| + [y1 - 1.

Problems 9-3: Small order statistics

The worst-case number 7(n) of comparisons used by SELECT to select the ith order statistic
from n numbers was shown to satisfy 7(n) = ®(n), but the constant hidden by the ®-notation
is rather large. When i is small relative to n, we can implement a different procedure that uses
SELECT as a subroutine but makes fewer comparisons in the worst case.

a. Describe an algorithm that uses Uj(n) comparisons to find the ith smallest of
elements, where

Tim ifi =n/2,

i = e s :
i) ln/2] + Ui([n/21)+ T(2i) otherwise .

(Hint: Begin with | n/2]| disjoint pairwise comparisons, and recurse on the set
containing the smaller element from each pair.)
b. Show that, if i < /2, then U(n) = n + O(T (2i) 1g(n/i)).

c. Show that if i is a constant less than n/2, then U(n) = n + O(lg n).
d. Show that if i = n/k for k> 2, then U(n) =n + O(T (2n/k) 1g k).

[Because of our assumption that the numbers are distinct, we can say "greater than" and "less
than" without being concerned about equality.

Chapter notes

The worst-case linear-time median-finding algorithm was devised by Blum, Floyd, Pratt,
Rivest, and Tarjan [43]. The fast average-time version is due to Hoare [146]. Floyd and Rivest




[92] have developed an improved average-time version that partitions around an element
recursively selected from a small sample of the elements.

It is still unknown exactly how many comparisons are needed to determine the median. A
lower bound of 2n comparisons for median finding was given by Bent and John [38]. An
upper bound of 3n was given by Schonhage, Paterson, and Pippenger [265]. Dor and Zwick
[79] have improved on both of these bounds; their upper bound is slightly less than 2.957 and
the lower bound is slightly more than 2x. Paterson [239] describes these results along with
other related work.

Part II1: Data Structures

Chapter List

Chapter 10: Elementary Data Structures
Chapter 11: Hash Tables

Chapter 12: Binary Search Trees
Chapter 13: Red-Black Trees

Chapter 14: Augmenting Data Structures

Introduction

Sets are as fundamental to computer science as they are to mathematics. Whereas
mathematical sets are unchanging, the sets manipulated by algorithms can grow, shrink, or
otherwise change over time. We call such sets dynamic. The next five chapters present some
basic techniques for representing finite dynamic sets and manipulating them on a computer.

Algorithms may require several different types of operations to be performed on sets. For
example, many algorithms need only the ability to insert elements into, delete elements from,
and test membership in a set. A dynamic set that supports these operations is called a
dictionary. Other algorithms require more complicated operations. For example, min-priority
queues, which were introduced in Chapter 6 in the context of the heap data structure, support
the operations of inserting an element into and extracting the smallest element from a set. The
best way to implement a dynamic set depends upon the operations that must be supported.

Elements of a dynamic set

In a typical implementation of a dynamic set, each element is represented by an object whose
fields can be examined and manipulated if we have a pointer to the object. (Section 10.3
discusses the implementation of objects and pointers in programming environments that do
not contain them as basic data types.) Some kinds of dynamic sets assume that one of the
object's fields is an identifying key field. If the keys are all different, we can think of the
dynamic set as being a set of key values. The object may contain satellite data, which are
carried around in other object fields but are otherwise unused by the set implementation. It
may also have fields that are manipulated by the set operations; these fields may contain data
or pointers to other objects in the set.



Some dynamic sets presuppose that the keys are drawn from a totally ordered set, such as the
real numbers, or the set of all words under the usual alphabetic ordering. (A totally ordered set
satisfies the trichotomy property, defined on page 49.) A total ordering allows us to define the
minimum element of the set, for example, or speak of the next element larger than a given
element in a set.

Operations on dynamic sets

Operations on a dynamic set can be grouped into two categories: queries, which simply return
information about the set, and modifying operations, which change the set. Here is a list of
typical operations. Any specific application will usually require only a few of these to be
implemented.

SEARCH(S, k)

e A query that, given a set S and a key value £, returns a pointer x to an element in S
such that key[x] = k, or NIL if no such element belongs to S.

INSERT(S, x)
e A modifying operation that augments the set S with the element pointed to by x. We
usually assume that any fields in element x needed by the set implementation have
already been initialized.

DELETE(S, x)

e A modifying operation that, given a pointer x to an element in the set S, removes x
from S. (Note that this operation uses a pointer to an element x, not a key value.)

MINIMUM(S)

e A query on a totally ordered set S that returns a pointer to the element of .S with the
smallest key.

MAXIMUM(S)

e A query on a totally ordered set S that returns a pointer to the element of .S with the
largest key.

SUCCESSOR(S, x)

e A query that, given an element x whose key is from a totally ordered set S, returns a
pointer to the next larger element in S, or NIL if x is the maximum element.

PREDECESSOR(S, x)

e A query that, given an element x whose key is from a totally ordered set S, returns a
pointer to the next smaller element in S, or NIL if x is the minimum element.



The queries SUCCESSOR and PREDECESSOR are often extended to sets with non-distinct
keys. For a set on n keys, the normal presumption is that a call to MINIMUM followed by 7 -
1 calls to SUCCESSOR enumerates the elements in the set in sorted order.

The time taken to execute a set operation is usually measured in terms of the size of the set
given as one of its arguments. For example, Chapter 13 describes a data structure that can
support any of the operations listed above on a set of size # in time O(lg n).

Overview of Part 111

Chapters 10—14 describe several data structures that can be used to implement dynamic sets;
many of these will be used later to construct efficient algorithms for a variety of problems.
Another important data structure—the heap—has already been introduced in Chapter 6.

Chapter 10 presents the essentials of working with simple data structures such as stacks,
queues, linked lists, and rooted trees. It also shows how objects and pointers can be
implemented in programming environments that do not support them as primitives. Much of
this material should be familiar to anyone who has taken an introductory programming
course.

Chapter 11 introduces hash tables, which support the dictionary operations INSERT,
DELETE, and SEARCH. In the worst case, hashing requires ®(n) time to perform a SEARCH
operation, but the expected time for hash-table operations is O(1). The analysis of hashing
relies on probability, but most of the chapter requires no background in the subject.

Binary search trees, which are covered in Chapter 12, support all the dynamic-set operations
listed above. In the worst case, each operation takes ®(n) time on a tree with n elements, but
on a randomly built binary search tree, the expected time for each operation is O(lg n). Binary
search trees serve as the basis for many other data structures.

Red-black trees, a variant of binary search trees, are introduced in Chapter 13. Unlike
ordinary binary search trees, red-black trees are guaranteed to perform well: operations take
O(lg n) time in the worst case. A red-black tree is a balanced search tree; Chapter 18 presents
another kind of balanced search tree, called a B-tree. Although the mechanics of red-black
trees are somewhat intricate, you can glean most of their properties from the chapter without
studying the mechanics in detail. Nevertheless, walking through the code can be quite
instructive.

In Chapter 14, we show how to augment red-black trees to support operations other than the
basic ones listed above. First, we augment them so that we can dynamically maintain order
statistics for a set of keys. Then, we augment them in a different way to maintain intervals of
real numbers.

Chapter 10: Elementary Data Structures

In this chapter, we examine the representation of dynamic sets by simple data structures that
use pointers. Although many complex data structures can be fashioned using pointers, we
present only the redimentary ones: stacks, queues, linked lists, and rooted trees. We also
discuss a method by which objects and pointers can be synthesized from arrays.



10.1 Stacks and queues

Stacks and queues are dynamic sets in which the element removed from the set by the
DELETE operation is prespecified. In a stack, the element deleted from the set is the one
most recently inserted: the stack implements a last-in, first-out, or LIFO, policy. Similarly, in
a queue, the element deleted is always the one that has been in the set for the longest time: the
queue implements a first-in, first out, or FIFO, policy. There are several efficient ways to
implement stacks and queues on a computer. In this section we show how to use a simple
array to implement each.

Stacks

The INSERT operation on a stack is often called PUSH, and the DELETE operation, which
does not take an element argument, is often called POP. These names are allusions to physical
stacks, such as the spring-loaded stacks of plates used in cafeterias. The order in which plates
are popped from the stack is the reverse of the order in which they were pushed onto the
stack, since only the top plate is accessible.

As shown in Figure 10.1, we can implement a stack of at most n elements with an array S[1,
I n]. The array has an attribute top[S] that indexes the most recently inserted element. The
stack consists of elements S[1 [ top[S]], where S[1] is the element at the bottom of the stack
and S[top[S]] is the element at the top.
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Figure 10.1: An array implementation of a stack S. Stack elements appear only in the lightly
shaded positions. (a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls
PUSH(S, 17) and PUSH(S, 3). (c) Stack S after the call POP(S) has returned the element 3,
which is the one most recently pushed. Although element 3 still appears in the array, it is no

longer in the stack; the top is element 17.

When top[S] = 0, the stack contains no elements and is empty. The stack can be tested for
emptiness by the query operation STACK-EMPTY. If an empty stack is popped, we say the
stack underflows, which is normally an error. If fop[S] exceeds n, the stack overflows. (In our
pseudocode implementation, we don't worry about stack overflow.)

The stack operations can each be implemented with a few lines of code.

STACK-EMPTY (S5)

1 if topl[S] = 0

2 then return TRUE
3 else return FALSE
PUSH (S, x)

1 toplS] « topl[S] + 1
2 Sltop[S]] <« x

POP (S)
1 if STACK-EMPTY (S)
2 then error "underflow"



3 else top[S] « toplS]

-1
4 return S[top[S] + 1

]

Figure 10.1 shows the effects of the modifying operations PUSH and POP. Each of the three
stack operations takes O(1) time.

Queues

We call the INSERT operation on a queue ENQUEUE, and we call the DELETE operation
DEQUEUE,; like the stack operation POP, DEQUEUE takes no element argument. The FIFO
property of a queue causes it to operate like a line of people in the registrar's office. The
queue has a head and a tail. When an element is enqueued, it takes its place at the tail of the
queue, just as a newly arriving student takes a place at the end of the line. The element
dequeued is always the one at the head of the queue, like the student at the head of the line
who has waited the longest. (Fortunately, we don't have to worry about computational
elements cutting into line.)

Figure 10.2 shows one way to implement a queue of at most # - 1 elements using an array Q[ 1
"I n]. The queue has an attribute head[Q] that indexes, or points to, its head. The attribute
tail[ Q] indexes the next location at which a newly arriving element will be inserted into the
queue. The elements in the queue are in locations head[Q], head[Q] +1,..., tail[Q] - 1, where
we "wrap around" in the sense that location 1 immediately follows location # in a circular
order. When head[Q] = tail[ O], the queue is empty. Initially, we have head[Q] = tail[Q] = 1.
When the queue is empty, an attempt to dequeue an element causes the queue to underflow.
When head[Q] = tail[Q] + 1, the queue is full, and an attempt to enqueue an element causes
the queue to overflow.
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Figure 10.2: A queue implemented using an array Q[1 [J 12]. Queue elements appear only in
the lightly shaded positions. (a) The queue has 5 elements, in locations Q[7 [ 11]. (b) The
configuration of the queue after the calls ENQUEUE(Q, 17), ENQUEUE(Q, 3), and
ENQUEUE(Q, 5). (c) The configuration of the queue after the call DEQUEUE(Q) returns the
key value 15 formerly at the head of the queue. The new head has key 6.

In our procedures ENQUEUE and DEQUEUE, the error checking for underflow and overflow
has been omitted. (Exercise 10.1-4 asks you to supply code that checks for these two error
conditions.)

ENQUEUE (0, x)
1 Q[tail[Q]] « x



2 if tail[Q] = length[Q]

3 then tail[Q] « 1

4 else tail[Q] « taill[Q] + 1
DEQUEUE (Q)

1 x « Qlhead[Q]]

2 if head[Q] = length[Q]

3 then head[Q] « 1

4 else head[Q] « head[Q] + 1
5 return x

Figure 10.2 shows the effects of the ENQUEUE and DEQUEUE operations. Each operation
takes O(1) time.

Exercises 10.1-1

Using Figure 10.1 as a model, illustrate the result of each operation in the sequence PUSH(S,
4), PUSH(S, 1), PUSH(S, 3), POP(S), PUSH(S, 8), and POP(S) on an initially empty stack S
stored in array S[1 [] 6].

Exercises 10.1-2

Explain how to implement two stacks in one array 4[1 [ n] in such a way that neither stack
overflows unless the total number of elements in both stacks together is n. The PUSH and
POP operations should run in O(1) time.

Exercises 10.1-3

Using Figure 10.2 as a model, illustrate the result of each operation in the sequence
ENQUEUE(Q, 4), ENQUEUE(Q, 1), ENQUEUE(Q, 3), DEQUEUE(Q), ENQUEUE(Q, 8),
and DEQUEUE(Q) on an initially empty queue Q stored in array Q[1 [ 6].

Exercises 10.1-4

Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow of a queue.

Exercises 10.1-5



Whereas a stack allows insertion and deletion of elements at only one end, and a queue allows
insertion at one end and deletion at the other end, a deque (double-ended queue) allows
insertion and deletion at both ends. Write four O(1)-time procedures to insert elements into
and delete elements from both ends of a deque constructed from an array.

Exercises 10.1-6

Show how to implement a queue using two stacks. Analyze the running time of the queue
operations.

Exercises 10.1-7

Show how to implement a stack using two queues. Analyze the running time of the stack
operations.

10.2 Linked lists

A linked list is a data structure in which the objects are arranged in a linear order. Unlike an
array, though, in which the linear order is determined by the array indices, the order in a
linked list is determined by a pointer in each object. Linked lists provide a simple, flexible
representation for dynamic sets, supporting (though not necessarily efficiently) all the
operations listed on page 198.

As shown in Figure 10.3, each element of a doubly linked list L is an object with a key field
and two other pointer fields: next and prev. The object may also contain other satellite data.
Given an element x in the list, next[x] points to its successor in the linked list, and prev[x]
points to its predecessor. If prev[x] = NIL, the element x has no predecessor and is therefore
the first element, or head, of the list. If next[x] = NIL, the element x has no successor and is
therefore the last element, or tail, of the list. An attribute sead[L] points to the first element of
the list. If head[L] = NIL, the list is empty.
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Figure 10.3: (a) A doubly linked list L representing the dynamic set {1, 4, 9, 16}. Each
element in the list is an object with fields for the key and pointers (shown by arrows) to the
next and previous objects. The next field of the tail and the prev field of the head are NIL,
indicated by a diagonal slash. The attribute sead[L] points to the head. (b) Following the
execution of LIST-INSERT(L, x), where key[x] = 25, the linked list has a new object with key
25 as the new head. This new object points to the old head with key 9. (¢) The result of the
subsequent call LIST-DELETE(L, x), where x points to the object with key 4.



A list may have one of several forms. It may be either singly linked or doubly linked, it may
be sorted or not, and it may be circular or not. If a list is singly linked, we omit the prev
pointer in each element. If a list is sorted, the linear order of the list corresponds to the linear
order of keys stored in elements of the list; the minimum element is the head of the list, and
the maximum element is the tail. If the list is unsorted, the elements can appear in any order.
In a circular list, the prev pointer of the head of the list points to the tail, and the next pointer
of the tail of the list points to the head. The list may thus be viewed as a ring of elements. In
the remainder of this section, we assume that the lists with which we are working are unsorted
and doubly linked.

Searching a linked list

The procedure LIST-SEARCH(L, k) finds the first element with key & in list L by a simple
linear search, returning a pointer to this element. If no object with key k appears in the list,
then NIL is returned. For the linked list in Figure 10.3(a), the call LIST-SEARCH(L, 4)
returns a pointer to the third element, and the call LIST-SEARCH(L, 7) returns NIL.

LIST-SEARCH (L, k)
1 x « head[L]

2 while x # NIL and key[x] # k
3 do x <« next[x]
4 return x

To search a list of n objects, the LIST-SEARCH procedure takes ®(n) time in the worst case,
since it may have to search the entire list.

Inserting into a linked list

Given an element x whose key field has already been set, the LIST-INSERT procedure
"splices" x onto the front of the linked list, as shown in Figure 10.3(b).

LIST-INSERT (L, x)

1 next[x] < head[L]

2 if head[L] # NIL

3 then prev[head[L]] < x
4 head[L] < x

5 prev[x] < NIL

The running time for LIST-INSERT on a list of n elements is O(1).
Deleting from a linked list

The procedure LIST-DELETE removes an element x from a linked list L. It must be given a
pointer to x, and it then "splices" x out of the list by updating pointers. If we wish to delete an
element with a given key, we must first call LIST-SEARCH to retrieve a pointer to the
element.

LIST-DELETE (L, Xx)

1 if prev[x] # NIL

2 then next|[prev[x]] « next[x]
3 else head[L] « next[x]

4 if next[x] # NIL

5 then prev|next[x]] < prev|x]



Figure 10.3(c) shows how an element is deleted from a linked list. LIST-DELETE runs in
O(1) time, but if we wish to delete an element with a given key, ®(n) time is required in the
worst case because we must first call LIST-SEARCH.

Sentinels

The code for LIST-DELETE would be simpler if we could ignore the boundary conditions at
the head and tail of the list.

LIST-DELET' (L, x)
1 next[prev[x]] « next[x]
2 prevlnext[x]] « prev[x]

A sentinel is a dummy object that allows us to simplify boundary conditions. For example,
suppose that we provide with list L an object ni/[L] that represents NIL but has all the fields of
the other list elements. Wherever we have a reference to NIL in list code, we replace it by a
reference to the sentinel ni/[L]. As shown in Figure 10.4, this turns a regular doubly linked list
into a circular, doubly linked list with a sentinel, in which the sentinel ni/[L] is placed
between the head and tail; the field next[nil[L]] points to the head of the list, and prev[nil[L]]
points to the tail. Similarly, both the next field of the tail and the prev field of the head point

to nil[L]. Since next[nil[L]] points to the head, we can eliminate the attribute head[L]
altogether, replacing references to it by references to next[nil[L]]. An empty list consists of
just the sentinel, since both next[nil[L]] and prev[nil[L]] can be set to nil[L].
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Figure 10.4: A circular, doubly linked list with a sentinel. The sentinel nil[L] appears between
the head and tail. The attribute head[L] is no longer needed, since we can access the head of
the list by next[nil[L]]. (a) An empty list. (b) The linked list from Figure 10.3(a), with key 9 at
the head and key 1 at the tail. (¢) The list after executing LIST-INSER'(L, x), where key[x] =
25. The new object becomes the head of the list. (d) The list after deleting the object with key
1. The new tail is the object with key 4.

The code for LIST-SEARCH remains the same as before, but with the references to NIL and
head[L] changed as specified above.

LIST-SEARC' (L, k)
1 X « next[nil[L]]

2 while x # nil[L] and keyl[x] # k
3 do x « next[x]
4 return x

We use the two-line procedure LIST-DELET’ to delete an element from the list. We use the
following procedure to insert an element into the list.

LIST-INSER' (L, x)
1 next[x] « next[nil[L]]
2 previnext[nil[L]]] < x



w

next[nil[L]]

— X
4 prev[x] < nil[L]

Figure 10.4 shows the effects of LIST-INSER' and LIST-DELET' on a sample list.

Sentinels rarely reduce the asymptotic time bounds of data structure operations, but they can
reduce constant factors. The gain from using sentinels within loops is usually a matter of
clarity of code rather than speed; the linked list code, for example, is simplified by the use of
sentinels, but we save only O(1) time in the LIST-INSER' and LIST-DELET' procedures. In
other situations, however, the use of sentinels helps to tighten the code in a loop, thus
reducing the coefficient of, say, n or #” in the running time.

Sentinels should not be used indiscriminately. If there are many small lists, the extra storage
used by their sentinels can represent significant wasted memory. In this book, we use
sentinels only when they truly simplify the code.

sl
>
Q
=
(]
—_
»n
(9]
177]
[a—
S
>
—

Can the dynamic-set operation INSERT be implemented on a singly linked list in O(1) time?
How about DELETE?

Exercises 10.2-2

Implement a stack using a singly linked list L. The operations PUSH and POP should still
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Implement a queue by a singly linked list L. The operations ENQUEUE and DEQUEUE
should still take O(1) time.
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As written, each loop iteration in the LIST-SEARC' procedure requires two tests: one for x #
nil[L] and one for key[x] # k. Show how to eliminate the test for x # ni/[L] in each iteration.

Exercises 10.2-5



Implement the dictionary operations INSERT, DELETE, and SEARCH using singly linked,
circular lists. What are the running times of your procedures?

Exercises 10.2-6

The dynamic-set operation UNION takes two disjoint sets S; and S, as input, and it returns a
set S =S) [1 8, consisting of all the elements of S| and S,. The sets S; and S, are usually
destroyed by the operation. Show how to support UNION in O(/) time using a suitable list
data structure.

Exercises 10.2-7

Give a ©(n)-time nonrecursive procedure that reverses a singly linked list of # elements. The
procedure should use no more than constant storage beyond that needed for the list itself.
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Explain how to implement doubly linked lists using only one pointer value np[x] per item
instead of the usual two (next and prev). Assume that all pointer values can be interpreted as
k-bit integers, and define np[x] to be np[x] = next[x] XOR prev|[x], the k-bit "exclusive-or" of
next[x] and prev[x]. (The value NIL is represented by 0.) Be sure to describe what information
is needed to access the head of the list. Show how to implement the SEARCH, INSERT, and
DELETE operations on such a list. Also show how to reverse such a list in O(1) time.

10.3 Implementing pointers and objects

How do we implement pointers and objects in languages, such as Fortran, that do not provide
them? In this section, we shall see two ways of implementing linked data structures without
an explicit pointer data type. We shall synthesize objects and pointers from arrays and array
indices.

A multiple-array representation of objects

We can represent a collection of objects that have the same fields by using an array for each
field. As an example, Figure 10.5 shows how we can implement the linked list of Figure
10.3(a) with three arrays. The array key holds the values of the keys currently in the dynamic
set, and the pointers are stored in the arrays next and prev. For a given array index x, key[x],
next|[x], and prev|x] represent an object in the linked list. Under this interpretation, a pointer x
is simply a common index into the key, next, and prev arrays.
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Figure 10.5: The linked list of Figure 10.3(a) represented by the arrays key, next, and prev.
Each vertical slice of the arrays represents a single object. Stored pointers correspond to the
array indices shown at the top; the arrows show how to interpret them. Lightly shaded object
positions contain list elements. The variable L keeps the index of the Head.

In Figure 10.3(a), the object with key 4 follows the object with key 16 in the linked list. In
Figure 10.5, key 4 appears in key[2], and key 16 appears in key[5], so we have next[5] = 2 and
prev[2] = 5. Although the constant NIL appears in the next field of the tail and the prev field
of the head, we usually use an integer (such as 0 or -1) that cannot possibly represent an actual
index into the arrays. A variable L holds the index of the head of the list.

In our pseudocode, we have been using square brackets to denote both the indexing of an
array and the selection of a field (attribute) of an object. Either way, the meanings of key[x],
next|x], and prev[x] are consistent with implementation practice.

A single-array representation of objects

The words in a computer memory are typically addressed by integers from 0 to M - 1, where
M is a suitably large integer. In many programming languages, an object occupies a
contiguous set of locations in the computer memory. A pointer is simply the address of the
first memory location of the object, and other memory locations within the object can be
indexed by adding an offset to the pointer.

We can use the same strategy for implementing objects in programming environments that do
not provide explicit pointer data types. For example, Figure 10.6 shows how a single array 4
can be used to store the linked list from Figures 10.3(a) and 10.5. An object occupies a
contiguous subarray A[j (] k]. Each field of the object corresponds to an offset in the range
from 0 to & - j, and a pointer to the object is the index j. In Figure 10.6, the offsets
corresponding to key, next, and prev are 0, 1, and 2, respectively. To read the value of prev[i],
given a pointer i, we add the value i of the pointer to the offset 2, thus reading A[i + 2].
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Figure 10.6: The linked list of Figures 10.3(a) and 10.5 represented in a single array 4. Each
list element is an object that occupies a contiguous subarray of length 3 within the array. The
three fields key, next, and prev correspond to the offsets 0, 1, and 2, respectively. A pointer to
an object is an index of the first element of the object. Objects containing list elements are
lightly shaded, and arrows show the list ordering.



The single-array representation is flexible in that it permits objects of different lengths to be
stored in the same array. The problem of managing such a heterogeneous collection of objects
is more difficult than the problem of managing a homogeneous collection, where all objects
have the same fields. Since most of the data structures we shall consider are composed of
homogeneous elements, it will be sufficient for our purposes to use the multiple-array
representation of objects.

Allocating and freeing objects

To insert a key into a dynamic set represented by a doubly linked list, we must allocate a
pointer to a currently unused object in the linked-list representation. Thus, it is useful to
manage the storage of objects not currently used in the linked-list representation so that one
can be allocated. In some systems, a garbage collector is responsible for determining which
objects are unused. Many applications, however, are simple enough that they can bear
responsibility for returning an unused object to a storage manager. We shall now explore the
problem of allocating and freeing (or deallocating) homogeneous objects using the example of
a doubly linked list represented by multiple arrays.

Suppose that the arrays in the multiple-array representation have length m and that at some
moment the dynamic set contains n < m elements. Then n objects represent elements currently
in the dynamic set, and the remaining m—n objects are firee; the free objects can be used to
represent elements inserted into the dynamic set in the future.

We keep the free objects in a singly linked list, which we call the firee list. The free list uses
only the next array, which stores the next pointers within the list. The head of the free list is
held in the global variable free. When the dynamic set represented by linked list L is
nonempty, the free list may be intertwined with list L, as shown in Figure 10.7. Note that each
object in the representation is either in list L or in the free list, but not in both.
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Figure 10.7: The effect of the ALLOCATE-OBJECT and FREE-OBJECT procedures. (a) The
list of Figure 10.5 (lightly shaded) and a free list (heavily shaded). Arrows show the free-list
structure. (b) The result of calling ALLOCATE-OBJECT() (which returns index 4), setting
key[4] to 25, and calling LIST-INSERT(L, 4). The new free-list head is object 8, which had
been next[4] on the free list. (c) After executing LIST-DELETE(L, 5), we call FREE-
OBJECT(5). Object 5 becomes the new free-list head, with object 8 following it on the free
list.

The free list is a stack: the next object allocated is the last one freed. We can use a list
implementation of the stack operations PUSH and POP to implement the procedures for
allocating and freeing objects, respectively. We assume that the global variable free used in
the following procedures points to the first element of the free list.



ALLOCATE-OBJECT ()

1 if free = NIL

2 then error "out of space"
3 else x « free
4 free « next[x]
5 return x
FREE-OBJECT (x)

1 next[x] «~ free

2 free « x

The free list initially contains all » unallocated objects. When the free list has been exhausted,
the ALLOCATE-OBJECT procedure signals an error. It is common to use a single free list to
service several linked lists. Figure 10.8 shows two linked lists and a free list intertwined
through key, next, and prev arrays.

e

&

| L
Gem el I 2
Lo [ ]
o J key h ks ke
i 3 prev 1] 6 3

Figure 10.8: Two linked lists, L; (lightly shaded) and L, (heavily shaded), and a free list
(darkened) intertwined.

The two procedures run in O(1) time, which makes them quite practical. They can be
modified to work for any omogeneous collection of objects by letting any one of the fields in

the object act like a next field in the free list.

Exercises 10.3-1

Draw a picture of the sequence (113, 4, 8, 19, 5, 110 stored as a doubly linked list using the
multiple-array representation. Do the same for the single-array representation.

Exercises 10.3-2

Write the procedures ALLOCATE-OBJECT and FREE-OBJECT for a homogeneous
collection of objects implemented by the single-array representation.

Exercises 10.3-3

Why don't we need to set or reset the prev fields of objects in the implementation of the
ALLOCATE-OBJECT and FREE-OBJECT procedures?

Exercises 10.3-4



It is often desirable to keep all elements of a doubly linked list compact in storage, using, for
example, the first m index locations in the multiple-array representation. (This is the case in a
paged, virtual-memory computing environment.) Explain how the procedures ALLOCATE>-
OBIJECT and FREE-OBJECT can be implemented so that the representation is compact.
Assume that there are no pointers to elements of the linked list outside the list itself. (Hint:
Use the array implementation of a stack.)

Exercises 10.3-5

Let L be a doubly linked list of length m stored in arrays key, prev, and next of length n.
Suppose that these arrays are managed by ALLOCATE-OBJECT and FREE-OBJECT
procedures that keep a doubly linked free list . Suppose further that of the » items, exactly m
are on list L and n-m are on the free list. Write a procedure COMPACTIFY-LIST(L, F) that,
given the list L and the free list F, moves the items in L so that they occupy array positions 1,
2,..., m and adjusts the free list ' so that it remains correct, occupying array positions m + 1, m
+ 2,..., n. The running time of your procedure should be ®(m), and it should use only a
constant amount of extra space. Give a careful argument for the correctness of your
procedure.

10.4 Representing rooted trees

The methods for representing lists given in the previous section extend to any homogeneous
data structure. In this section, we look specifically at the problem of representing rooted trees
by linked data structures. We first look at binary trees, and then we present a method for
rooted trees in which nodes can have an arbitrary number of children.

We represent each node of a tree by an object. As with linked lists, we assume that each node
contains a key field. The remaining fields of interest are pointers to other nodes, and they vary
according to the type of tree.

Binary trees

As shown in Figure 10.9, we use the fields p, left, and right to store pointers to the parent, left
child, and right child of each node in a binary tree T . If p[x] = NIL, then x is the root. If node
x has no left child, then /efif[x] = NIL, and similarly for the right child. The root of the entire
tree T is pointed to by the attribute root[T]. If root[ T| = NIL, then the tree is empty.



iz
Figure 10.9: The representation of a binary tree 7. Each node x has the fields p[x] (top), left[x]
(lower left), and right[x] (lower right). The key fields are not shown.

Rooted trees with unbounded branching

The scheme for representing a binary tree can be extended to any class of trees in which the
number of children of each node is at most some constant k: we replace the left and right
fields by child,, child,,..., childy. This scheme no longer works when the number of children
of a node is unbounded, since we do not know how many fields (arrays in the multiple-array
representation) to allocate in advance. Moreover, even if the number of children £ is bounded
by a large constant but most nodes have a small number of children, we may waste a lot of
memory.

Fortunately, there is a clever scheme for using binary trees to represent trees with arbitrary
numbers of children. It has the advantage of using only O(n) space for any n-node rooted tree.
The left-child, right-sibling representation is shown in Figure 10.10. As before, each node
contains a parent pointer p, and root[ T] points to the root of tree 7 . Instead of having a
pointer to each of its children, however, each node x has only two pointers:
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Figure 1~0.. 10: The left-child; fi;ght-éiﬁling representation of a tree 7. Each node x has fields
plx] (top), left-child[x] (lower left), and right-sibling[x] (lower right). Keys are not shown.

1. left-child|x] points to the leftmost child of node x, and
2. right-sibling[x] points to the sibling of x immediately to the right.

If node x has no children, then left-child[x] = NIL, and if node x is the rightmost child of its
parent, then right-sibling[x] = NIL.

Other tree representations



We sometimes represent rooted trees in other ways. In Chapter 6, for example, we represented
a heap, which is based on a complete binary tree, by a single array plus an index. The trees
that appear in Chapter 21 are traversed only toward the root, so only the parent pointers are
present; there are no pointers to children. Many other schemes are possible. Which scheme is
best depends on the application.

Exercises 10.4-1

Draw the binary tree rooted at index 6 that is represented by the following fields.

index key left righ

t
1 12 7 3
2 15 8 NIL
3 4 10 NIL
4 10 5 9
5 2 NIL NIL
6 18 1 4
7 7 NIL NIL
8 14 6 2
9 21 NIL NIL

10 5 NIL NIL

Exercises 10.4-2

Write an O(n)-time recursive procedure that, given an n-node binary tree, prints out the key of
each node in the tree.

Exercises 10.4-3

Write an O(n)-time nonrecursive procedure that, given an n-node binary tree, prints out the
key of each node in the tree. Use a stack as an auxiliary data structure.

Exercises 10.4-4

Write an O(n)-time procedure that prints all the keys of an arbitrary rooted tree with # nodes,
where the tree is stored using the left-child, right-sibling representation.



Exercises 10.4-5: [

Write an O(n)-time nonrecursive procedure that, given an n-node binary tree, prints out the
key of each node. Use no more than constant extra space outside of the tree itself and do not
modify the tree, even temporarily, during the procedure.

Exercises 10.4-6: [

The left-child, right-sibling representation of an arbitrary rooted tree uses three pointers in
each node: left-child, right-sibling, and parent. From any node, its parent can be reached and
identified in constant time and all its children can be reached and identified in time linear in
the number of children. Show how to use only two pointers and one boolean value in each
node so that the parent of a node or all of its children can be reached and identified in time
linear in the number of children.

Problems 10-1: Comparisons among lists

For each of the four types of lists in the following table, what is the asymptotic worst-case
running time for each dynamic-set operation listed?

unsorted, singly | sorted, singly unsorted, doubly | sorted, doubly
linked linked linked linked

SEARCH(L, k)
INSERT(L, x)
DELETE(L, x)
SUCCESSOR(L, x)

PREDECESSOR(Z,
x)

MINIMUM(L)
MAXIMUM(L)

Problems 10-2: Mergeable heaps using linked lists

A mergeable heap supports the following operations: MAKE-HEAP (which creat