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Preface

Image segmentation is a key technique in image processing and computer vision,
which extracts meaningful objects from an image. It is an essential step before
people or computers perform any further processing, such as enhancement, editing,
recognition, retrieval and understanding, and its results affect the performance of
these applications significantly. According to the requirement of human interac-
tions, image segmentation can be classified into interactive segmentation and
automatic segmentation. In this book, we focus on Interactive Segmentation
Techniques, which have been extensively studied in recent decades. Interactive
segmentation emphasizes clear extraction of objects of interest, whose locations
are roughly indicated by human interactions based on high level perception. This
book will first introduce classic graph-cut segmentation algorithms and then dis-
cuss state-of-the-art techniques, including graph matching methods, region
merging and label propagation, clustering methods, and segmentation methods
based on edge detection. A comparative analysis of these methods will be pro-
vided, which will be illustrated using natural but challenging images. Also,
extensive performance comparisons will be made. Pros and cons of these inter-
active segmentation methods will be pointed out, and their applications will be
discussed.
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Chapter 1
Introduction

Keywords Interactive image segmentation · Automatic image segmentation ·
Object extraction · Boundary tracking

Image segmentation, which extracts meaningful partitions from an image, is a criti-
cal technique in image processing and computer vision. It finds many applications,
including arbitrary object extraction and object boundary tracking, which are basic
image processing steps in image editing. Furthermore, there are application-specific
image segmentation tasks, such as medical image segmentation, industrial image
segmentation for object detection and tracking, and image and video segmentation
for surveillance [1–5]. Image segmentation is an essential step in sophisticated visual
processing systems, including enhancement, editing, composition, object recognition
and tracking, image retrieval, photograph analysis, system controlling and vision un-
derstanding. Its results affect the overall performance of these systems significantly
[2, 6–8].

To comply with a wide range of application requirements, a substantial amount
of research on image segmentation has been conducted to model the segmentation
problem, and a large number of methods have been proposed to implement segmen-
tation systems for practical usage. The task of image segmentation is also referred
to as object extraction and object contour detection. Its target can be one or multi-
ple particular objects. The characteristics of target objects, such as brightness, color,
location, and size, are considered as “objectiveness”, which can be obtained automat-
ically based on statistical prior knowledge in an unsupervised segmentation system
or be specified by user interaction in an interactive segmentation system. Based on
different settings of objectiveness, image segmentation can be classified into two
main types: automatic and interactive [9].

Automatic segmentation has been widely used in image/video object detection,
multimedia indexing, and retrieval systems, where a quick and coarse region-based
segmentation is sufficient [9]. However, in some applications such as medical image
segmentation and generic image editing, a user may want more accurate segmentation
with an accurate object boundary with all object parts extracted and connected.

J. He et al., Interactive Segmentation Techniques, 1
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2 1 Introduction

In most cases, it is difficult for a computer to determine the “objectiveness” of the
segmentation. In the worst case, even with clearly specified “objectiveness,” the
contrast and luminance of an image is very low and the desired object has similar
colors with background, which may produce weak and ambiguous edges along object
boundaries. Under these situations, automatic segmentation may fail to capture user
intention and produce meaningful segmentation results.

To impose constraints on the segmentation, interactive segmentation involves
user interaction to indicate the “objectiveness” and thus to guide an accurate seg-
mentation. This can generate effective solutions even for challenging segmentation
problems. With prior knowledge of objects (such as brightness, color, location, and
size) and constraints indicated by user interaction, segmentation algorithms often
generate satisfactory results. A variety of statistical techniques has been introduced
to identify and describe segments to minimize the bias between different segmen-
tation results. Most interactive segmentation systems provide an iterative procedure
to allow users to add control on temporary results until a satisfactory segmentation
result is obtained. This application requires the system to process quickly and update
the result immediately for further refinement, which in turn demands an acceptable
computational complexity of interactive segmentation algorithms.

A classic image model is to treat an image as a graph. One can build a graph based
on the relations between pixels, along with prior knowledge of objects. The most
commonly used graph model in image segmentation is the Markov random field
(MRF), where image segmentation is formulated as an optimization problem that
optimizes random variables, which correspond to segmentation labels, indexed by
nodes in an image graph. With prior knowledge of objects, the maximum a posteriori
(MAP) estimation method offers an efficient solution. Given an input image, this
is equivalent to minimizing an energy cost function defined by the segmentation
posterior, which can be solved by graph-cut [10, 11], the shortest path [12, 13],
random walks [14, 15], etc. Another research activity has targeted at region merging
and splitting with emphasis on the completion of object regions. This approach
relies on the observation that each object is composed of homogeneous regions
while background contains distinct regions from objects. The merging and splitting
of regions can be determined by the statistical hypothesis techniques [16–18].

The goal of interactive segmentation is to obtain accurate segmentation results
based on user input and control while minimizing interaction effort and time as much
as possible [19, 20]. To meet this goal, researchers have proposed various solutions
and their improvements [18, 21–24]. Their research has focused on algorithmic
efficiency and satisfactory user interaction experience. Some algorithms have been
developed as practical segmentation tools. Examples include the Magnetic Lasso
Tool, the Magic Wand Tool, and the Quick Select Tool in the Adobe Photoshop [25],
and the Intelligent Scissors [26] and the Foreground Select Tool [27, 28] in another
imaging program GIMP [29].

Each image segmentation method has its pros and cons on different tasks. Perfor-
mance evaluations have been conducted on interactive segmentation methods, includ-
ing segmentation accuracy, running time, user interaction experience, and memory
requirement [2, 9, 22, 24, 30, 31]. In this book, we discuss the strengths and
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weaknesses of several representative methods in practical applications so as to pro-
vide a guidance to users. Users should be able to select proper methods for their
applications and offer simple yet sufficient input signals to the segmentation system
to achieve the segmentation task. Furthermore, discussion on drawbacks of these
methods may offer possible ways to improve these techniques.

We are aware of several existing survey papers on interactive image segmentation
techniques [6, 7, 32, 33]. However, they do not cover the state-of-the-art techniques
developed in the last decade. We describe both classic segmentation methods as well
as recently developed methods in this book. This book provides a comprehensive
updated survey on this fast growing topic and offers thorough performance analysis.
Therefore, it can equip readers with modern interactive segmentation techniques
quickly and thoroughly.

The remainder of this book is organized as follows. In Chap. 2, we give an overview
of interactive image segmentation systems, and classify them into several types. In
Chap. 3, we begin with the classic graph-cut algorithms and then introduce several
state-of-the-art techniques, including graph matching, region merging and label prop-
agation, clustering methods, and segmentation based on edge detection. In Chap. 4,
we conduct a comparative study on various methods with performance evaluation.
Some test examples are selected from natural images in the database [34] and Flickr
images (http://www.flickr.com). Pros and cons of different interactive segmentation
methods are pointed out, and their applications are discussed. Finally, concluding
remarks on interactive image segmentation techniques and future research topics are
given in Chap. 5.
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Chapter 2
Interactive Segmentation: Overview
and Classification

Keywords Graph modeling · Markov random field · Maximum a posteriori ·
Boundary tracking · Label propagation

Being different from automatic image segmentation, interactive segmentation allows
user interaction in the segmentation process by providing an initialization and/or
feedback control. A user-friendly segmentation system is required in practical appli-
cations. Many recent developments have driven interactive segmentation techniques
to be more and more efficient. We give an overview on the design of interactive
segmentation systems, commonly-used graphic models and classification of seg-
mentation techniques in this chapter.

2.1 System Design

A functional view of an interactive image segmentation system is depicted in Fig. 2.1.
It consists of the following three modules:

• User Input Module (Step 1)
This module receives user input and/or control signals, which helps the system
recognize user intention.

• Computational Module (Step 2)
This is the main part of the system. The segmentation algorithm runs automatically
according to user input and generates intermediate segmentation results.

• Output Display Module (Step 3)
The module delineates and displays the intermediate segmentation results.

The above three steps operate in a loop [1]. In other words, the system allows addi-
tional user feedback after Step 3, and then it is back to Step 1. The system runs
iteratively until the user gets a satisfied result and terminates the process.

J. He et al., Interactive Segmentation Techniques, 7
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Fig. 2.1 Illustration of
an interactive image
segmentation system [1],
where a user can control the
process iteratively until a
satisfactory result is obtained

Fig. 2.2 The process of
an interactive segmentation
system

The process of an interactive image segmentation system is shown in Fig. 2.2,
where the segmentation objectives rely on human intelligence. Such knowledge is
offered to the system via human interaction, which is represented in the form of draw-
ing that provides the color, texture, location, and size information. The interactive
segmentation system attempts to understand user intention based on the high-level
information so that it can extract the accurate object regions and boundaries even-
tually. In the process, the system may update and improve the segmentation results
through a series of interactions. Thus, it is a human–machine collaborative method-
ology. On one hand, a machine has to interpret user input and segments the image
through an algorithmic process. On the other hand, a user should know how his/her
input will affect machine behavior to save the iterations.

There are several user interaction types, and all of them aim to offer the information
about background or foreground regions ( e.g., brightness, color, location, and size).
A user can make strokes to label the object and the background in an image, mark
rectangles to locate the object target range, or make control points or seed points
to track object boundaries. User interactions vary according to the segmentation
algorithms, and the control can be soft or hard constraints in the algorithms [2].
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According to Grady [3], an ideal interactive segmentation system should satisfy
the following four properties:

• Fast computation in the computational module;
• Fast and easy editing in the user input module;
• Ability to generate an arbitrary segmentation contour given sufficient user control;
• Ability to provide intuitive segmentation results.

Research on interactive segmentation system design has focused on enhancing
these four properties. Fast computation and user-friendly interface modules are essen-
tial requirements for a practical interactive segmentation system, since an user should
be able to sequentially add or remove strokes/marks based on updated segmentation
results in real time. This implies that the computational complexity of an interactive
image segmentation algorithm should be at an acceptable level. Furthermore, the
system should be capable of generating desired object boundaries accurately with a
minimum amount of user effort.

2.2 Graph Modeling and Optimal Label Estimation

Image segmentation aims to segment out user’s desired objects. Target may consist
of multiple homogeneous regions whose pixels share some common properties while
the discontinuity of brightness, colors, contrast and texture of image pixels indicates
the location of object boundaries [4]. Segmentation algorithms have been developed
using the features of pixels, the relationship between pixels and their neighbors, etc.
To study these features and connections, one typical approach is to model an input
image as a graph, where each pixel corresponds to a node [5].

A graph, denoted by G = (V, E), is a data structure consisting of a set of nodes
V and a set of edges E connecting those nodes [5]. If an edge, which is also referred
to as a link, has a direction, the graph is called a directed graph. Otherwise, it is an
undirected graph. We often model an image as an undirected graph and use a node
to represent a pixel in the image. Since each pixel in an image is connected with
its neighbors, such as 4-connected neighborhood or 8-connected neighborhood as
shown in Fig. 2.3, its associated graph model is structured in the same way. An edge
between two nodes represents the connection of these two nodes. In some cases, we
may treat an over-segmented region as a basic unit, called the superpixel [6–9], and
use a node to represent the superpixel.

An implicit assumption behind the graph approach is that, for a given image
I , there exists a probability distribution that can capture labels of nodes and their
relationship [10]. Specifically, let node x in graph G be associated with random
variable l from set L , which indicates its segmentation status (foreground object or
background), the problem of segmenting image I is equivalent to a labeling problem
of graph G.

It is often assumed that the graph model of an image satisfies the following Markov
properties of conditional independence [5, 10].
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Fig. 2.3 A simple graph example of a 4 × 4 image. The red node has 4 green neighbors in (a)
and 8 green neighbors in (b). a Graph with 4-connected neighborhood. b Graph with 8-connected
neighborhood

• Pairwise Markov independence.
• Any two non-adjacent variables are conditionally independent given all other vari-

ables. Mathematically, for non-adjacent nodes xi and x j (i.e. ei, j �∈ E), label li
and l j are independent when conditioned on all other variables:

Pr(li , l j |LV \{i, j}) = Pr(li |LV \{i, j})Pr(l j |LV \{i, j}). (2.1)

• Local Markov independence.
Given the neighborhood N of node xi , its label li is independent of the rest of
other labels:

Pr(li |LV \{i}) = Pr(li |LN (i)). (2.2)

• Global Markov property.
• Subsets A and B of L are conditionally independent given a separating subset S,

where every path connecting a node in A and a node in B passes through S.

If the above properties hold, the graph of image I can be modeled as a Markov
random field (MRF) under the Bayesian framework. Figure 2.4 shows the MRF of
a 4 × 4 image with 4-connected neighborhood.

Since image segmentation can be formulated as a labeling problem in an MRF,
the task becomes the determination of optimal labels for nodes in the MRF. Some
node labels are set through user interactions in interactive image segmentation. With
the input image as well as this prior knowledge, the maximum a posteriori (MAP)
method provides an effective solution to the label estimation of the remaining nodes
in the graph [5, 10, 11]. According to the Bayesian rule, the posterior probability of
node labels can be written as

Pr(l1···N |x1···N ) =
∏N

i=1 Pr(xi |li )Pr(l1···N )

Pr(x1···N )
, (2.3)
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Fig. 2.4 The MRF model of a 4 × 4 image

where Pr(l) is the prior probability of labels and Pr(x |l) is the conditional proba-
bility of the node value conditioned on a certain label.

In the MAP estimation, we search for labels l̂1···N that maximize the posterior
probability:

l̂1···N = arg max
l1···N

Pr(l1···N |x1···N )

= arg max
l1···N

N∏

i=1

Pr(xi |li )Pr(l1···N )

= arg max
l1···N

N∑

i=1

log[Pr(xi |li )] + log[Pr(l1···N )] (2.4)

By using the pairwise Markov property and the clique potential of the MRF, we
have

Pr(l1···N ) ∝ exp(−
∑

(i, j)∈E

E2(i, j)), (2.5)

where E2 is the pairwise clique potential. It can be regarded as an energy function to
measure the compatibility of neighboring labels [5]. In the segmentation literature,
it is also called the smoothness term or the boundary term because of its physical
meaning in the segmentation [1, 12, 13].

The first term in Eq. (2.4) is a log likelihood function. By following Eq. (2.4) and
with the following association

E1(i) = − log[Pr(xi |li )], (2.6)
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which is referred to as the data term or the regional term [1, 12, 13], we can define
the total energy function as

E(l1···N ) =
∑

i∈V

E1(i) +
∑

(i, j)∈E

E2(i, j). (2.7)

Then, the MAP estimation problem is equivalent to the minimization of the energy
function E :

l̂1···N = arg min
l1···N

∑

i∈V

E1(i) +
∑

(i, j)∈E

E2(i, j). (2.8)

The set L of labels that minimizes energy function E yields the optimal solution.
Finally, segmentation results can be obtained by extracting pixels or regions associ-
ated with the foreground labels. We will present several methods to solve the above
energy minimization problem in Chap. 3.

2.3 Classification of Solution Techniques

One can classify interactive segmentation techniques into several types based on
different viewpoints. They are discussed in detail below.

• Application-Driven Segmentation
One way to classify interactive segmentation methods is based on their applica-
tions. Some techniques target at generic natural image segmentation, while others
address medical and industrial image applications as shown in Fig. 2.5. Natural
images tend to have rich color information, which offer a wide range of inten-
sity features for the segmentation purpose. The challenges lie in weak boundaries
and ambiguous objects. An ideal segmentation method should be robust in han-
dling a wide variety of images consisting of various color intensity, luminance,
object size, object location, etc. Furthermore, no shape prior is used. In contrast,
for image segmentation in medical and industrial applications, most images are
monochrome and segmentation objects are often specific such as cardiac cells [14],
neuron [15], and brain and born CT [3]. Without the color information, medical
image segmentation primarily relies on the luminance information. It is popular

Fig. 2.5 Application-
driven interactive image
segmentation algorithms

http://dx.doi.org/10.1007/978-981-4451-60-4_3
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to learn specific object shape priors to add more constraints so as to cut out the
desired object.

• Mathematical Models and Tools
Another way to classify image segmentation methods is based on the mathematical
models and tools. Graph models were presented in Sect. 2.2. Other models and
tools include Bayesian theory, Gaussian mixture models [6], Gaussian mixture
Markov random fields [16], Markov random fields [10], random walks [3], random
walks with restart [17], min-cut/max-flow [12, 18], cellular automation [19], belief
propagation [20], and spline representation [21].

• Form of Energy Function
Another viewpoint is to consider the form of the energy function. Generally, the
energy function consists a data term and a smoothness term. The data term rep-
resents labeled image pixels or superpixels of objects and background defined
through user interactions. The smoothness term specifies local relations between
pixels or super pixels with their neighborhood (such as color similarity and the
edge information). The combined energy function should strike a balance between
those two terms. The mathematical tool for energy minimization and the similarity
measure also provides a categorization tool for segmentation methods.

• Local Versus Global Optimization
It is typical to adopt one of the following two approaches to minimize the energy
function. One is to find the local discontinuity of the image amplitude attribut-
ion to locate the boundary of a desired object and cut it out directly. The other
is to model the image as a probabilistic graph and use some prior information
(such as user scribbles, shape priors, or even learned models) to determine the
labels of remaining pixels under some global constraints. Commonly used oper-
ations include classification, clustering, splitting and merging, and optimization.
The global constraints are used to generate smooth and desired object regions by
connecting neighboring pixels of similar attributes and separating pixels in dis-
continuous regions (i.e., boundary regions between objects and the background)
as much as possible. Here, a graph model is built to capture not only the color
features of pixels but also the spatial relationship between adjacent pixels. The
global optimization should consider these two kinds of relations. Image segmen-
tation approaches also vary on the definitions of the attributions of the probabilis-
tic graphs and the measurements of feature similarities between local connected
nodes.

• Pixel-wise Versus Region-wise Processing
Pre-processing and post-processing techniques can be used to speedup the com-
putation time and improve segmentation accuracy [6–8]. Pixelwise processing has
the potential to yield more accurate results along object boundaries. However, it
may not be necessary to apply it to all pixels of an image since pixels in homo-
geneous regions have high similarity and their segmentation labels are likely the
same. Based on this observation, it is possible to apply a pre-segmentation method
that merges locally homogeneous pixels into local regions. This results in over-
segmentation where each local region can be treated as a superpixel [6–8] and
modeled as a node in a graph model as shown in Fig. 2.6. This strategy reduces
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Fig. 2.6 A graph model for a 7×7 image with over-segmentation. Homogeneous pixels are merged
into a superpixel, and then represented as a node in the graph in (b), where edges connect neighboring
superpixels in (a). a Image with oversegmentation. b Graph based on superpixels

the processing time of large images significantly. On the other hand, it may cause
errors near object boundaries. Since the segmentation is based on superpixels, it is
challenging to locate accurate boundaries. For objects with soft boundaries, a hard
boundary segmentation is not acceptable. Then, a post-segmentation procedure is
needed to refine object boundaries. Image matting [6, 8, 20, 22] can be viewed as
a post-processing technique as well.

• Boundary Tracking Versus Label Propagation
Based on interaction types, interactive image segmentation algorithms can be
classified into two main categories as shown in Fig. 2.7: (1) tracking the object
boundary, and (2) propagating segment labels . To track the object boundary, a
user can move the cursor along the object boundary so that the system can find
boundary contours based on cursor movement. Once the boundary is closed as a
loop, an object can be extracted along the boundary. For example, a user can move
the cursor to conduct online segmentation in intelligent scissors [23, 24]. In this
category, one focuses on the location of boundaries rather than on the optimization
of an energy function. An alternative approach is to propagate user labels from parts
of the object and background of an input image to the remaining parts. Then, the
image can be segmented into two or multiple partitions as object and background
according to the label of each pixel. There are several ways to propagate user
labels, such as graph-cut [25], region-based splitting and merging [26], and graph
matching [8]. Segmentation accuracy varies depending on the efficiency of label
propagation. Due to different algorithmic complexities, user interactions can be
done offline or online. Examples include offline stroking and marking a rectangular
object region offline [13, 25] or online interactions [6, 8]. The trend is to move
from offline to online interactions by either lowering the complexity or enhancing
the computational power of the machine.
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Fig. 2.7 Classification of interactive segmentation methods based on interaction types

As an extension, an interactive segmentation system can segment multiple objects
at once [8]. It is also possible for an algorithm to conduct the segmentation task on
multiple similar images at once [8, 27] and even for video segmentation [22]. Fur-
thermore, one often encounters 3D (or volumetric) images in the context of medical
imaging. Some techniques have been generalized from the 2D to the 3D case for
medical image segmentation [21, 25]. In this book, we focus on the 2D image seg-
mentation.
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Chapter 3
Interactive Image Segmentation Techniques

Keywords Graph-cut · Random walks · Active contour · Matching attributed rela-
tional graph · Region merging · Matting

Interactive image segmentation techniques are semiautomatic image processing
approaches. They are used to track object boundaries and/or propagate labels to
other regions by following user guidance so that heterogeneous regions in one image
can be separated. User interactions provide the high-level information indicating the
“object” and “background” regions. Then, various features such as locations, color
intensities, local gradients can be extracted and used to provide the information to
separate desired objects from the background. We introduce several interactive image
segmentation methods according to different models and used image features.

This chapter is organized as follows. First, we introduce several popular methods
based on the common graph-cut model in Sect. 3.1. Next, we discuss edge-based,
live-wire, and active contour methods that track object boundaries in Sect. 3.2, and
examine methods that propagate pixel/region labels by random walks in Sect. 3.3.
Then, image segmentation methods based on clustered regions are investigated in
Sect. 3.4. Finally, a brief overview of the boundary refinement technique known as
matting is offered in Sect. 3.5.

3.1 Graph-Cut Methods

Boykov and Jolly [1] first proposed a graph-cut approach for interactive image seg-
mentation in 2001. They formulated the interactive segmentation as a maximum a
posteriori estimation problem under the Markov random field (MAP-MRF) frame-
work [2], and solved the problem for a globally optimal solution by using a fast
min-cut/max-flow algorithm [3]. Afterwards, several variants and extensions such
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as GrabCut [4] and Lazy Snapping [5] have been developed to make the graph-cut
approach more efficient and easier to use.

3.1.1 Basic Idea

In interactive segmentation, we expect a user to provide hints about objects that
are to be segmented out from an input image. In other words, a user provides the
information to meet the segmentation objectives. For example, in Boykov and Jolly’s
work [1], a user marks certain pixels as either the “object” or the “background,” which
are referred to as seeds, to provide hard constraints for the later segmentation task.
Then, a graph-cut optimization procedure is performed to obtain a globally optimum
solution among all possible segmentations that satisfy these hard constraints. At the
same time, boundary and region properties are incorporated in the cost function of
the optimization problem, and these properties are viewed as soft constraints for
segmentation.

As introduced in Sect. 2.2, Boykov et al. [1, 7] defined a directional graph G =
{V, E}, which consists of a set, V , of nodes (or vertices) and a set, E , of directed
edges that connect nodes. In interactive segmentation, user seeded pixels for objects
and background are, respectively, represented by source node s and sink node t . Each
unmarked pixel is associated with a node in the 2D plane. As a result, V consists of
two terminal nodes, s and t , and a set of non-terminal nodes in graph G which is
denoted by I . We connect selected pairs of nodes with edges and assign each edge a
non-negative cost. The edge cost from node xi and node x j is denoted as c(xi , x j ).
In a directed graph, the edge cost from xi to x j is in general different from that from
x j to xi . That is,

c(xi , x j ) �= c(x j , xi ). (3.1)

Figure 3.1b shows a simple graph with terminal nodes s and t and non-terminal
nodes xi and x j .

An edge is called a t-link, if it connects a non-terminal node in I to terminal node
t or s. An edge is called a n-link, if it connects two non-terminal nodes in I . Let F
be the set of n-links. One can partition E into two subsets F and E − F [7], where

E − F = {(s, xi ), (x j , t),∀xi , x j ∈ I }. (3.2)

In Fig. 3.1, t-links are shown in black while n-links are shown in red.
A cut C ⊂ E partitions vertices in a graph into two disjoint subsets S and T ,

where source node s belongs to S and sink node t belongs to T . Figure 3.1b shows
an example of a cut. Typically, a cost function is used to measure the efficiency of
a cut. The weight of an n-link represents a penalty for discontinuity between its
connecting nodes while the weight of a t-link indicates the labeling cost to associate
a non-terminal node to the source or the sink [8]. The cost of a cut is the sum of
weights of edges severed by the cut. The optimal cut C minimizes the cut cost.

http://dx.doi.org/10.1007/978-981-4451-60-4_2
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Fig. 3.1 A simple graph example of a 3 × 3 image, where all nodes are connected to source node
s and sink node t and edge thickness represents the strength of the connection [6]. a 3 × 3 image.
b A graph model for (a). c A cut for (a)

Ford and Fulkerson’s theorem [9] states that minimizing the cut cost is equivalent
to maximizing the flow through the graph network from source node s to sink node
t . The corresponding cut is called a minimum cut. Thus, finding a minimum cut is
equivalent to solving the max-flow problem in the graph network. Many algorithms
have been developed to solve the min-cut/max-flow problem, e.g., [2, 10]. One
may use any of the algorithms to obtain disjoint sets S and T and label all pixels,
corresponding to nodes in S, as the “foreground object” and label the remaining
pixels, corresponding to nodes in T , as the “background”. Then, the segmentation
task is completed.

3.1.2 Interactive Graph-Cut

Boykov and Jolly [1] proposed an interactive graph-cut method, where a user indi-
cates the locations of source and sink pixels. The problem was cast in the MAP-MRF
framework [2]. A globally optimal solution was derived and solved by a fast min-
cut/max-flow algorithm. The energy function is defined as

E(L) =
∑

i∈V

Di (Li ) +
∑

(i, j)∈E

Vi, j (Li , L j ), (3.3)

where L = {Li |xi ∈ I } is a binary labeling scheme for image pixels (i.e., Li = 0
if xi is a background pixel and Li = 1 if xi is a foreground object pixel), Di (·) is a
pre-specified likelihood function used to indicate the labeling preference for pixels
based on their colors or intensities, Vi, j (·) denotes a boundary cost, and (i, j) ∈ E
means that xi and x j are adjacent nodes connected by edge (xi , x j ) in graph G. The
boundary cost, Vi, j , encourages the spatial coherence by penalizing the cases where
adjacent pixels have different labels [8]. Normally, the penalty gets larger, when xi

and x j are similar in colors or intensities, and it approaches zero when the two pixels
are very different. The similarity between xi and x j can be measured in many ways
(e.g., local intensity gradients, Laplacian zero-crossing or gradient directions). Note
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Fig. 3.2 Two segmentation results obtained by using the interactive graph-cut algorithm [3, 6].
a Original image with user markup. b Segmentation result of the flower. c Original image with user
markup. d Segmentation result of the man

that this type of energy functions, composed of regional and boundary terms, are
employed in most graph-based segmentation algorithms.

The interactive graph-cut algorithm often uses a multiplier λ ≥ 0 to specify a
relative importance of regional term Di in comparison with boundary term Vi, j .
Thus, we rewrite Eq. (3.3) as:

E(L) = λ ·
∑

xi ∈I

Di (Li ) +
∑

(xi ,x j )∈N

Vi, j (Li , L j ). (3.4)

The intensities of marked seed pixels are used to estimate the intensity distributions
of foreground objects and background regions, denoted as Pr(I |F) and Pr(I |B),
respectively. Being motivated by [2], the interactive graph-cut algorithm defines the
regional term with negative log-likelihoods in the following form:

DI (Li = 1) = − ln Pr(I (i)|F), (3.5)

DI (Li = 0) = − ln Pr(I (i)|B), (3.6)
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where I (i) is the intensity of pixel xi and Pr(I (i)|L) can be computed based on the
intensity histogram. The boundary term can be defined as:

Vi, j (Li , L j ) ∝ |Li − L j | exp

(

− (I (i) − I ( j))2

2σ 2

)

· 1

d(i, j)
, (3.7)

where d(i, j) is the spatial distance between pixels xi and x j and the deviation, σ ,
is a parameter related to the camera noise level. The similarity of pixels xi and x j

is computed based on the Gaussian distribution. Finally, the interactive graph-cut
algorithm obtains the labeling (or segmentation) result L by minimizing the energy
function in (3.4).

Figure 3.2 shows two segmentation results of the interactive graph-cut algorithm,
where the red strokes indicate foreground objects while the blue strokes mark the
background region to model the intensity distributions. Segmentation results are
obtained by minimizing the cost function in (3.4).

3.1.3 GrabCut

Rother et al. [4] proposed a GrabCut algorihtm by extending the interactive graph-
cut algorithm with an iterative process. GrabCut uses the graph-cut optimization
procedure as discussed in Sect. 3.1.2 at each iteration. It has three main features.

1. GrabCut uses a Gaussian mixture model (GMM) to represent pixel colors
(instead of the monochrome histogram model in the interactive graph-cut algo-
rithm).

2. GrabCut alternates between object estimation and GMM parameter estimation
iteratively while the optimization is done only once in the interactive graph-cut
algorithm.

3. GrabCut demands less user interaction. Basically, a user only has to place a
rectangle or lasso around an object (instead of detailed strokes) as illustrated
in Fig. 3.3. A user can still draw strokes for further refinement if needed.

GrabCut processes a color image in the RGB space. It uses GMMs to model
the color distributions of the object and background, respectively. Each GMM is
trained to be a full-covariance Gaussian mixture with K components. Let k =
(k1, . . . , kn, . . . , kN ), kn ∈ {1, . . . , K }, where subscript n denotes the pixel index
and N is the total number of pixels within the marked region. Vector k assigns each
pixel a unique GMM component. The object model and the background model of
a pixel with index n are denoted by αn = 0 and 1, respectively. Then, the energy
function can be written as

E(α, k, θ, z) = U (α, k, θ, z) + V (α, z), (3.8)

where z is the image data, θ represents the GMM model parameters,
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Fig. 3.3 Segmentation results of GrabCut, which requires a user to simply place a rectangle around
the object of interest. a Original image with rectangle markup. b Segmentation result of the flower
and butterfly. c Original image with rectangle markup. d Segmentation result of the kid

θ = {π(α, k), μ(α, k),Σ(α, k)} (3.9)

where α = 0, 1, k = 1, . . . , K ; π is the mixing weight, and μ and Σ are the mean
and the covariance matrix of a Gaussian component. The data term is given by

U (α, k, θ, z) =
∑

n

D(αn, kn, θn, zn), (3.10)

where

D(αn, kn, θ, zn) = − log π(αn, kn)+ 1

2
log |Σ(αn, kn)|

+ 1

2
(zn − μ(αn, kn)])T (Σ(αn, kn))−1(zn − μ(αn, kn)) (3.11)

The smoothness term V in (3.8) is computed using the Euclidean distance in the
RGB color space,
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V (α, z) = γ ·
∑

(m,n)∈E

Ψ (αn �= αm) exp (−β||zm − zn||2), (3.12)

where Ψ (·) is the indicator function that has value 1 if the statement is true and 0,
otherwise.

The system first assumes an initial segmentation result by choosing membership
vectors k and α. Then, it determines the GMM parameter vector θ by minimizing
the energy function in (3.8). Afterwards, with fixed parameter vector θ , it refines the
segmentation result α and the Gaussian component membership k by also minimizing
the energy function in (3.8). The above two steps are iteratively performed until the
system converges.

Rother et al. also proposed a border matting scheme in [4] that refines binary
segmentation results to become soft results near the boundary strip of fixed width,
where the segmented boundaries are smoother.

3.1.4 Lazy Snapping

Li et al. [5] proposed the Lazy Snapping algorithm as an improvement over the
interactive graph-cut scheme in two areas—speed and accuracy.

• To enhance the segmentation speed, Lazy Snapping adopts over-segmented super-
pixels to construct a graph so as to reduce the number of nodes in the labeling com-
putation. A novel graph-cut formulation is proposed by employing pre-computed
image over-segmentation results instead of image pixels. The processing speed is
accelerated by about 10 times [5].

• To improve the segmentation accuracy, the watershed algorithm [11], which can
locate boundaries in an image well and preserve small differences inside each
segment, is used to initialize the over-segmentation in the pre-segmentation stage;
it also optimizes the object boundary by maximizing color similarities within
the object and gradient magnitudes across the boundary between the object and
background.

Figure 3.4 shows pre-segmented superpixels , which are used as nodes for the
min-cut formulation.

After watershed’s pre-segmentation, an image is decomposed into small regions.
Each small region corresponds a node in graph G = {V, E}. The location and
the color of a node are given by the central position and the average color of the
corresponding small region, respectively. The cost function is defined as

E(X) =
∑

i∈V

E1(xi ) + λ ·
∑

(i, j)∈E

E2(xi , x j ), (3.13)

where label xi takes a binary value (e.g., 1 or 0 if region i belongs to an object or
background, respectively), E1(xi ) is the likelihood energy used to encode the color
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Fig. 3.4 Illustration of the Lazy Snapping algorithm: super-pixels and user strokes (left) and each
superpixel being converted to a node in the graph (right). In this example, red strokes stand for the
foreground region while blue strokes denote the background region. Then, superpixels containing
seed pixels are labeled according to their stroke types. The segmentation problem is cast as the
labeling of the remaining nodes in the graph. a Superpixels and user strokes. b Graph with seeded
nodes

similarity of nodes and E2(xi , x j ) is a penalty term when adjacent nodes are assigned
different labels. The terms E1(xi ) and E2(xi , x j ) are defined below.

Each node in the graph represents a small region. Furthermore, we can define
foreground seed F and background seed B for some nodes. The colors of F and B
are computed by the K-means algorithm, and the mean color clusters are denoted by
K F

n and K B
m , respectively. Then, the minimum distance from node i with color C(i)

to the foreground and background are defined, respectively, as

d F
i = min

n
‖C(i) − K F

n ‖, and d B
i = min

m
‖C(i) − K B

m ‖. (3.14)

Then, E1(xi ) is defined as follows:

⎧
⎪⎨

⎪⎩

E1(xi = 1) = 0 and E1(xi = 0) = ∞, if i ∈ F
E1(xi = 1) = ∞ and E1(xi = 0) = 0, if i ∈ B

E1(xi = 1) = d F
i

d F
i +d B

i
and E1(xi = 0) = d B

i

d F
i +d B

i
, otherwise.

(3.15)

The prior energy, E2(xi , x j ), defines a penalty term when adjacent nodes are
assigned with different labels. It is in form of

E2(xi , x j ) = |xi − x j |
1 + Ci j

, (3.16)
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Fig. 3.5 Boundary editing which allows pixel-level refinement on boundaries [5]

where Ci j is the mean color difference between regions i and j , which is normalized
by the shared boundary length.

Another feature of Lazy Snapping is that it supports boundary editing to achieve
pixel-level accuracy as shown in Fig. 3.5. It first converts segmented object bound-
aries into an editable polygon. Then, it provides two methods for boundary editing:

• Direct vertex editing
It allows users to adjust the shape of the polygon by dragging vertices directly.

• Overriding brush
It enables users to add strokes to replace the polygon.

Then, regions around the polygon can be segmented with pixel-level accuracy
using the graph-cut. To achieve this objective, the segmentation problem is formu-
lated at the pixel level. The prior energy is redefined using the polygon location as
the soft constraint:

E2(xi , x j ) = |xi − x j |
1 + (1 − β)Ci j + βη

D2
i j +1

, (3.17)

where xi is the label for pixel i , Di j is the distance from the center of arc (i, j) to the
polygon, η is the scale parameter, and β ∈ [0, 1] is used to balance the influence of
Di j . The likelihood energy, E1, is defined in the same way as (3.15). The final seg-
mentation result is generated by minimizing the energy function. Some segmentation
examples can be found in [5] and the website http://youtu.be/WoNwNXkenS4.

3.1.5 Geodesic Graph-Cut

The graph-cut approach sometimes suffers from the problem of short-cutting, which
is caused by a lower cost along a shorter cut than that of a real boundary. As shown in

http://youtu.be/WoNwNXkenS4


26 3 Interactive Image Segmentation Techniques

Fig. 3.6 Comparison of segmentation results with the same scribbles as the user input: a the
short-cutting problem in the standard graph-cut [6]; b the false boundary problem in the geodesic
segmentation [13]; c the geodesic graph-cut [12]; and d the geodesic confidence map in [12] to
weight between the edge finding and the region modeling

Fig. 3.6, the geodesic graph-cut algorithm [12] attempts to overcome this problem by
utilizing the geodesic distance. It also provides users more freedom to place scribbles.

The Euclidean distance between two vertices, xi = (xi1, xi2) and x j = (x j1, x j2),
is defined as the l-2 norm of vector vi, j that connects xi and x j :

di, j = ||νi, j ||2 =
√

(xi1 − x j1)2 + (xi2 − x j2)2. (3.18)

The Euclidean distance, which is often used in the graph-cut algorithm, computes
the color similarity, e.g., in Eq. (3.7), without taking other properties of pixels along
the path into consideration. The geodesic distance between vertices xi and x j is
defined as the lowest cost of the transfering path between them, where the cost
between two adjacent pixels may vary depending on several factors. If there is no
path connecting vertices xi and x j , the geodesic distance between them is infinite.
The data term in the standard graph-cut algorithm is typically calculated based on
the log-likelihood of the color histogram without considering factors such as the
locations of object boundaries and seeded points. In contrast, the geodesic graph-cut
method uses the geodesic distance as one of the data terms.

Each seed pixel s is either labeled as foreground (F) or background (B). We
use Ωl to denote the set of labeled seed pixels with label l ∈ {F, B} and dl(xi , x j )

to denote the geodesic distance from pixel xi to pixel x j based on a color model
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and Ωl . Then, dl(xi , x j ) is defined to be the minimum cost among all paths, Cxi ,x j ,
connecting xi and x j . Mathematically, we have

dl(xi , x j ) = min
Cxi ,x j

∫ 1

0
|Wl · Ċxi ,x j (p)|dp, (3.19)

where Wl are weights along path Cxi ,x j . Often, Wl is set to the gradient of the
likelihood that pixel x on this path belongs to the foreground; namely

Wl(x) = 
Pl(x), (3.20)

where

Pl(x) = Pr (c(x)|l)
Pr (c(x)|F) + Pr (c(x)|B)

, (3.21)

and where c(x) is the color of pixel x and Pr (c(x)|l) is the probability of color c(x)

given a color model and Ωl . Then, the geodesic distance Dl(xi ) of pixel xi is defined
as the smallest geodesic distance dl(s, xi ) from pixel xi to each seed pixel in form of

Dl(xi ) = min
s∈Ωl

dl(s, xi ). (3.22)

Finally, pixel xi will be labeled with the same label of the nearest seed pixels
measured by the geodesic distance.

Bai et al. [13] extended the above solution to the soft segmentation problem, in
which the alpha matte, α(x), for each pixel x is computed explicitly via

α(x) = wF (x)

wF (x) + wB(x)
, (3.23)

where
wl(x) = Dl(x)−r · Pl(x), l ∈ {F, B}. (3.24)

For the hard segmentation problem, the foreground object has α = 1 while the
background region has α = 0. The final segmentation results can be obtained by
extracting regions with α = 1. Sometimes, a threshold for α is set to extract parts of
the translucent boundaries along with solid foreground objects.

There are several other geodesic graph-cut algorithms. For example, based on a
similar geodesic distance defined in [13], Criminisi et al. [14] computed the geodesic
distance to offer a set of sensible and restricted possible segments, and obtained an
optimal segmentation by finding the solution that minimizes the cost energy. Being
different from the conventional global energy minimization, Criminisi et al. [14]
addressed this problem by finding a local minimum.

Another example is the geodesic graph-cut algorithm proposed by Price et al. [12].
They used the geodesic distance to measure the regional term. Based on the cost
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function in Eq. (3.4), the regional term is defined as

Rl(xi ) = sl(xi ) + Ml(xi ) + Gl(xi ), (3.25)

where sl(xi ) is a term to represent user stokes, Ml(xi ) is a global color model and
Gl(xi ) is the geodesic distance defined in Eq. (3.22). Mathematically, we have

MF (xi ) = PB(xi ), MB(xi ) = PF (xi ), (3.26)

sF (xi ) =
{∞, if xi ∈ ΩB,

0, Otherwise,
(3.27)

and

sB(xi ) =
{∞, if xi ∈ ΩF ,

0, Otherwise.
(3.28)

and

Gl(xi ) = Dl(xi )

DF (xi ) + DB(xi )
, l ∈ {F, B}, (3.29)

which is normalized by the foreground and background geodesic distance DF (xi )

and DB(xi ).
Price et al. [12] redefined this regional term and minimized the cut cost in Eq. (3.4).

The overall cost function becomes

E(L) = λR ·
∑

i∈V

RLi (xi ) + λB ·
∑

(i, j)∈E

E2(i, j), (3.30)

where E2 is the same boundary term as that in Eq. (3.16), and λR and λB are parame-
ters used to weight the relative importance of the region and boundary components.
A greater value in λR helps reduce the short-cutting problem, which is caused by
a small boundary cost term. For robustness, Price et al. [12] introduced a global
weighting parameter to control the estimation error of the color model and two local
weighting parameters for the geodesic regional and boundary terms based on the
local confidence of geodesic components.

The geodesic graph-cut outperforms the conventional graph-cut [6] and the geo-
desic segmentation [13]. It performs well when user interactions separate the fore-
ground and background color distributions effectively as shown in Fig. 3.6.

3.1.6 Graph-Cut with Prior Constraints

Since the standard graph-cut method in Sect. 3.1.2 may fail in cases of objects with
diffused or ambiguous boundaries, research has been done to mitigate the boundary
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problem by providing shape priors under the min-cut/max-flow optimization frame-
work. A shape prior means the prior knowledge of a shape curve template provided
by user interaction. Freedman et al. [15] introduced an energy term based on a shape
prior by incorporating the distance between the segmented curve, c, and a template
curve, c̄, in the energy function as

E = (1 − λ)Ei + λEs (3.31)

where Ei is the energy function defined in Eq. (3.4), Es is the energy term associated
with the shape prior, and λ is a weight used to balance these two term. Specifically,
Es is in form of

Es =
∑

(i, j)∈E,lxi �=lx j

φ̄(
xi + x j

2
), (3.32)

where xi and x j are neighboring pixels in image I , and lx is the label of pixel x , and
φ̄(·) is a distance function that all pixels x on the template curve c̄ has φ̄(x) = 0.
The final segmentation is obtained by minimizing the energy function in Eq. (3.31).

Veksler [16] implemented a star shape prior for convex object segmentation. As
shown in Fig. 3.7, the star shape prior assumes that every single point x j , which is on
the straight line connecting the center, C0, of the star shape and any point xi inside
the shape should also be inside the shape.

Veksler defined the shape constraint term as

Es =
∑

(xi ,x j )∈N

Sxi ,x j (li , l j ), (3.33)

where

Sxi ,x j (li , l j ) =
⎧
⎨

⎩

0, if li = l j ,

∞, if li = F and l j = B,

β, if li = B and l j = F,

(3.34)

Fig. 3.7 A star shape defined
in [16]. Since red point xi is
inside the object, the green
point x j on the line connecting
xi with center C0 should
be labeled with the same
label as xi
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which is used to penalize the assignment of x j with a label l j different from that
of xi . Parameter β can be set as a negative value, which might encourage the long
extension of the prior shape curve. The final segmentation is the optimal labeling
obtained by minimizing the energy function in Eq. (3.31).

Being different from other interactive segmentation methods, a user just provides
the center location of a star shape (rather than the strokes for foreground and back-
ground regions) in this system. The limitation of the star shape prior [16] is that
it only works for star convex objects. To extend this star shape prior to objects of
an arbitrary shape, Gulshan et al. [17] implemented multiple star constraints in the
graph-cut optimization, and introduced the geodesic convexity to compute the dis-
tances from each pixel to the star center using the geodesic distance. We show how
the shape constraint improves the result of object segmentation in Fig. 3.8.

Another drawback of the standard graph-cut method is that it tends to produce an
incomplete segmentation on images with elongated thin objects. Vicente et al. [18]
imposed a connectivity prior as a constraint. With additional marks for the dis-
connected pixels, their algorithm can modify the optimal object boundary so as
to connect marked pixels/regions by calculating the Dijkstra graph cut [18]. This
approach allows a user to explicitly specify whether a partition should be connected
or disconnected to the main object region.

Fig. 3.8 Performance comparison of graph-cut segmentation with and without the shape con-
straint [17]. A flower is segmented out with a specified shape prior while other flowers are filtered
out as background in the right image. a Segmentation by IGC [6]. b Segmentation with shape
constraint [17]
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Fig. 3.9 Structure of multi-resolution graph-cut [20]. With the segmentation on low-level image,
the computation of min-cut on high-level image is highly reduced

3.1.7 Multi-Resolution Graph-Cut

Besides improving the accuracy of the graph-cut segmentation, research has been
conducted to increase segmentation efficiency, e.g., reducing the processing time and
the memory requirement of a segmentation system (Fig. 3.9).

Wang et al. [19] proposed a pre-segmentation scheme based on the mean-shift
algorithm to reduce the number of graph nodes in the optimization process, which
will be detailed in Sect. 3.4.1.2. They also extended the approach to video segmen-
tation, and proposed an additional spatiotemporal alpha matting scheme as a post-
processing to refine the segmented boundary. To reduce the memory requirement for
the processing of high resolution images, Lombaert et al. [20] proposed a scheme
that conducts segmentation on a down-sampled input image, and then refines the
segmentation result back to the original resolution level (Fig. 3.9). The complexity
of the resulting algorithm can be near-linear, and the memory requirement is reduced
while the segmentation quality can be preserved.

3.1.8 Discussion

The graph-cut segmentation method is popular in practical applications and becomes
one of the most important interactive segmentation techniques because of its solid
theoretical foundation and good performance. The min-cut/max-flow framework is
based on the maximal a posteriori (MAP), which is the conditional probability of
user interactions. The segmentation cost consists of a regional cost term, which is the
posterior of the labeling with the knowledge of seed pixels labeled by the user, and
a boundary term, which is used to locate object boundaries. A stress on either of the
two terms will emphasize different aspects. With the global optimization, a graph-
cut method can extract objects of interest with sufficient user interactions. To speed
up, the global optimization process may not provide segmentation with pixel-wise
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accuracy in some cases. However, there are ways to recover the desired accuracy of
object boundaries and object connectivity.

The improvement of the graph-cut based segmentation technique can be pursued
along the following directions:

• increasing the processing speed [5, 20];
• finding accurate boundary [16, 17];
• overcoming the short-cutting problem [12, 13].

All of these efforts attempt to achieve a more accurate segmentation result at a
faster speed with less user interaction.

3.2 Edge-Based Segmentation Methods

Edge detection techniques transform images into edge images by examining the
changes in pixel amplitudes. Thus, one can extract meaningful object boundaries
based on detected edges as well as prior knowledge from user interaction. In this
section, we present edge-based segmentation methods and show how users can guide
the process.

Edges, serving as basic features of an image, reveal the discontinuity of the image
amplitude attribution or image texture properties. The location and strength of an
edge provide important information of object boundaries and indicate the physical
extent of objects in the image [21]. Edge detection refers to the process of identifying
and locating sharp discontinuities in an image. It is the key and basic step toward
image segmentation problems [22]. In the context of interactive segmentation, many
algorithms have been proposed to segment objects of interest based on edge features,
combined with user guidance and interaction. Live-wire and active contour are two
basic methods that extract objects based on edge features. These two methods will
be detailed after an overview on edge detectors.

3.2.1 Edge Detectors

Many edge-detection techniques based on different ideas and tools have been studied,
including error minimization, objective function maximization, wavelet transform,
morphology, genetic algorithms, neural networks, fuzzy logic, and the Bayesian
approach. Among them, the differential-based edge detectors have the longest history,
and they can be classified into two types: detection using the first-order derivative
and the second-order derivative [22].

The first-order edge detectors calculate the first-order derivative at all pixels in
an image. Examples include Sobel, Prewitt, Krisch, Robinson, and Frei-Chen opera-
tors. Sobel detectors are suitable for detecting edges along the horizontal and vertical
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directions while Roberts detectors work better for edges along 45◦ and 135◦ direc-
tions.

An operator involving only a small neighborhood is sensitive to noise in the
image, which may result in inaccurate edge points. This problem can be alleviated by
extending the neighborhood size [21]. The Canny edge detector was proposed in [23]
to reduce the data amount while preserving the important structural information
in an image. There have been a number of extensions of Canny’s edge detector,
e.g., [24–26].

The second-order edge detectors employ the spatial second-order differentiation
to accentuate edges. The following two second-order derivative methods are popular:

• The Laplacian operator [27]
• The zero crossings of the Laplacian of an image indicate the presence of an edge.

Furthermore, the edge direction can be determined during the zero-crossing detec-
tion process. The Laplacian of Gaussian (LoG) edge detector was proposed in [28]
in which the Gaussian-shaped smoothing is performed before the application of
the Laplacian operator.

• The directed second-order derivative operator [29]
• This detector first estimates the edge direction and, then, computes the one-

dimensional second-order derivative along the edge direction [29].

For color edge detection, a color image contains not only the luminance infor-
mation but also the chrominance information. Different color space can be used to
represent the color information. A comparison of edge detection in RGB, YIQ, HSL
and Lab space is given in [30]. Several definitions of a color edge have been exam-
ined in [31]. One is that an edge in a color image exists if and only if its luminance
representation contains a monochrome edge. This definition ignores discontinuities
in hue and saturation. Another one is to consider any of its constituent tristimulus
components. A third one is to compute the sum of the magnitude (or the vector sum)
of the gradients of all three color components.

3.2.2 Live-Wire Method and Intelligent Scissors

Live-wire boundary snapping for image segmentation was initially introduced
in [32, 33]. This technique has been used in interactive segmentation in [34–41].
One of its implementations, called the Intelligent Scissors, has been widely used as
an object selection tool in an image editing program, GIMP [42], and medical image
segmentation applications. Intelligent Scissors can be well controlled even when the
target image has a low contrast end weak edges.

Intelligent Scissors offer an object selection tool that allows rapid and accurate
object segmentation from complex background using simple gesture motions with
a mouse [32, 34, 35, 40, 41]. When a user sweeps the cursor around an object, a
live-wire [32] automatically snaps to and wraps around detected object boundaries
with real-time visual feedback. Since the user can control the mouse movement to
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guide the object boundary selection interactively, the segmentation result is generated
according to user control and interaction.

The optimal object boundaries in Intelligent Scissors are obtained by imposing a
weighted graph on the image and interactively computing the optimal path from a user
selected seed point to all other possible path points using an efficient (linear-time)
version of Dijkstra’s graph search algorithm [43]. The process is detailed below.

The input image is viewed as a weighted graph, where nodes in the graph represent
the pixel and directed and weighted edges are the links between each pixel with its
4-connected or 8-connected neighbors. The local cost of each directed link in this
graph is the weighted sum of the component cost of image features such as Laplacian
zero-crossing fZ , gradient magnitude fG and gradient direction fD . The Laplacian
zero-crossing is defined as

fZ (i) =
{

0 if IL(i) = 0
1 if IL(i) �= 0

(3.35)

where IL is the Laplacian zero-crossing map of input image I and i is the node (or
pixel) index. The gradient magnitude, fG , is computed as an inverse linear ramp
function [40] so that pixels of larger gradient magnitudes have smaller fG . The
gradient direction, fD , is used to measure the directional consistency of each pixel
with its neighbors.

The local cost l(p, q) on the directed path from p to its neighboring pixel q is a
weighted sum of component cost functions:

l(p, q) = wZ · fZ (q) + wG · fG(q) + wD · fD(p, q)

+ wP · fP (q) + wI · f I (q) + wO · fO(q) (3.36)

where fP , f I and fO denote the current, inside and outside values, respectively,
which are defined as the pixel along, on the left and on the right of the boundary
element [37]. Since fZ , fG and fD are static cost functions, they can be computed
initially. In contrast, fP , f I and fO have to be updated dynamically since their values
depend on the segmentation result. Note that pixels that have strong edge features
will have a low local cost.

The shortest path cost from pixel p to seed point s, denoted by c(p), is the
minimum cumulative cost along the path from s to p. It can be calculated via

c(p) = min{c(q) + l(p, q)}, (3.37)

where q is a pixel in the neighbor of p, c(q) is the shortest path cost from q to s, and
l(p, q) is given by Eq. (3.36).

A simple example of finding the shortest path from a seed with Dijkstra’s algo-
rithm [43] is shown in Fig. 3.10. For the ease of illustration, we use the static shortest
path in this example.
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Fig. 3.10 An example of computing the shortest path cost from any node in the graph to the seed
marked in red using Dijkstra’s spanning tree algorithm [43]. a Initial static costs are computed
and given on the upper left of each pixel. Each pixel is initialized with an infinite path cost to the
seed point given inside the pixel. We start from the seed point in red and set its cost to zero. The
cost of its neighbor node is the sum of the cost of the seed and the path cost to this seed, which is
assumed to be 1. We add its neighbors to the node list L = {1, 1, 1, 1} and sort the list. b Remove
the head node from L , which is the southern node of the seed in this example. Add its path cost to
its neighbors. If the new cost is smaller, update the path cost and the path direction. Add updated
nodes to L , sort L = {1, 1, 1, 3, 3}. c Remove the head node from L , which is the northern node
of the seed in this example. Add its path cost to its neighbors. If the new cost is smaller, update the
path cost and the path direction. Add spanned nodes to L and sort L . d Iteratively span the graph
until all nodes are spanned (L = �). This is the spanning tree results and the shortest paths from
all nodes in this graph to the seed are marked in red

When the cursor moves, this algorithm can compute an optimal path from the
current position to the seed point automatically as shown in Fig. 3.10. Each optimal
path is displayed, allowing the user to select an optimal object contour segment which
visually corresponds to a portion of the desired object boundary. Figure 3.11 shows
a segmentation result obtained by Intelligent Scissors.

Mortensen and Barrett [40] proposed “boundary cooling” and“on-the-fly training”
to improve user experience. Boundary cooling relieves users of placing most seed
points by automatically selecting a pixel on the current active live-wire segment that
has a “stable” history to be a new seed point. The live-wire is restricted by “on-the-
fly training,” which refines the tracking boundary yet adheres to the specific type of
current edge (rather than simply choosing the strongest edge).

Although a desired segmentation result can be obtained by involving a sufficient
amount of human interaction and guidance, pre-calculation of the cost map for the
graph in each tracking step often slows down the overall processing speed of Intelli-
gent Scissors. To overcome this drawback, several acceleration strategies have been
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Fig. 3.11 A segmentation
example using Intelligent
Scissors

proposed, e.g., [36–39, 44]. A scheme called the toboggan-based Intelligent Scissors
was proposed in [44], which reduces the processing time by partitioning the input
image into homogeneous regions before imposing a weighted planar graph onto
region boundaries.

3.2.3 Active Contour Method

The active contour method is also called the snake or the deformable model. It is
manually initialized to provide a rough approximation to an object boundary. Then,
one can perform iterative contour refinement to determine the optimal boundary
that minimizes an energy functional at each step. Being similar to Live-Wire, active
contours use the edge features to derive an optimal object boundary under user
guidance. All boundary points can be adjusted in parallel in an attempt to minimize
the energy functional. This technique has been widely used in medical imaging when
objects have similar shapes [45–47], where one can obtain prior knowledge of the
desired contour conveniently.

Kass et al. [48] introduced a global minimum energy contour. The energy func-
tional is a combination of internal forces (e.g., the boundary curvature and the dis-
tance between points) and external forces (e.g., the image gradient magnitude and
the edge direction). In contrast with Intelligent Scissors which control the boundary
seed points directly, the active contour method refines the shape of the initial contour
via energy minimization. If the resulting boundary is not good, the process can be
repeated with further boundary approximation. An active contour is globally optimal
over the entire object contour space, while Intelligent Scissors compute the optimal
path between a pixel and its closest seed point locally [35].

Given an initial approximation to a target contour, the active contour method
locates the closest minimum energy contour by iteratively minimizing an energy
functional. It combines internal forces to keep the active contour smooth and external
forces to attract the snake to image features and constraint forces which help define
the overall shape of the contour. The basic model is a controlled continuous spline
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under the constraint forces. The combined energy (or called the snake energy) of
contour ν can be written as

Esnake(ν(s)) =
∫ 1

s=0
α(s)|dν

ds
|2 + β(s)|d2ν

ds2 |2 − γ |∇ I (ν)|ds, (3.38)

where the first two terms are the internal energy terms used to measure the continuity
and the smoothness of contour ν, respectively, the last term is the external energy
that takes into account how close ν is to the actual contour in image I , and α, β and
γ are weighting parameters. The contour evolves from the initial drawn contour to
the desired object boundary by minimizing the energy functional iteratively.

3.2.4 Discussion

The edge-based interactive segmentation methods are designed to extract the object
boundary out directly. Live-wire methods find the local shortest path defined on edge
features so as to locate the object boundary. The active contour method applies both
boundary and regional constraints to determine a well-shaped object contour. Both
of them can be controlled by users to get better results. For an extensive study on
contour detection techniques, we refer to a recent survey in [49], which presents an
overview of edge- and line-oriented approaches to contour detection in the last two
decades.

Since the original proposal of the active contour method [48], a lot of variants
have been developed, falling broadly into three classes:

• Parametric active contour [48, 50–60];
• Non-parametric or geometric active contour [61–65];
• Physics inspired particle-based techniques [66, 67].

Liang et al. [68] proposed a “united snake” scheme that unifies several important
snake varaints, such as the finite difference [48], the B-spline [50] and Hermite poly-
nomial snakes [69] under the finite-element framework, and imposed the live-wire
technique as a complementary hard constraint. As compared with edge-based snakes,
region-based snakes [63, 70] are robust to image degradation and less sensitive to
initialization since more global statistics are involved. Region-based snakes can be
integrated with texture models for texture segmentation [71]. Several shape-based
active contour methods, e.g., [72, 73], add an energy term, Eshape, to emphasize
the shape force. In particular, the convex active contour (CAC) [73] performs well
in locating object boundaries. We will compare the performance of various active
contour methods in Chap. 4.

http://dx.doi.org/10.1007/978-981-4451-60-4_4
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3.3 Random-Walk Methods

The random walk (RW) on a graph is a special case of the Markov Chain [74]. It
has been wildly applied in computer vision, including image colorization, interactive
image segmentation, automatic image segmentation and clustering, mesh segmenta-
tion and de-noising, shape presentation, image/stereo matching and image fusion. In
interactive image segmentation, the RW algorithm offers a general-purpose multi-
label (multi-object) image segmentation method that allows a user to initialize the
background and object seeds [75].

As discussed before, image segmentation can be treated as a labeling problem that
labels pixels as the foreground object or background, or as different objects in the
multiple labeling context. The RW-based segmentation methods label an unseeded
pixel by resolving the following question. Given a random walker starting at this
location, what is the probability that it first reaches each of the seeded points [76]?
The segmentation result is obtained by selecting the most probable seed destination
of a random walker for each pixel.

To increase the processing speed, one can perform some offline task before the
interactive segmentation procedure. For example, Grady et al. [77] proposed a scheme
to compute several eigenvectors of the weighted Laplacian matrix of a graph and
use this information to produce a linear-time approximation of the random walker
segmentation algorithm. Kim et al. [78] used a generative model to segment images
based on random walks with restart (RWR), which solves the weak boundary problem
and the texture problem.

3.3.1 Random Walk (RW)

A simple example of 2-D RW on a graph is given in Fig. 3.12. In interactive image
segmentation, a walker starts from a seeded node, s. At each step, this walker moves
from its current position to one of its neighbors with a probability, which is specified

Fig. 3.12 An example of 2-D
random walk on a graph
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by the weight of the edge as shown in Fig. 3.12. In this example, the random walker
at node i may move to nodes k, l, m and n in the next step with probabilities of 0.12,
0.55, 0.08 and 0.25, respectively.

Under the Markov chain assumption, the state of each node at a certain time
instance is only related to the states of its neighbors. According to the Bayesian rule
in Eq. (2.3), the posterior distribution of an image label is proportional to the product
of the likelihood function and the prior distribution. When the prior label distribution
of is uniform, the posterior label distribution is proportional to the label likelihood
function. Then, the segmentation problem can be solved by finding the maximum
likelihood. This is equivalent to the following problem: by starting from the pixel of
interest, which seeded pixels s and t will this random walker reach first?

Given image f (i), we can build an undirected graph G = (V, E) as discussed in
Sect. 3.1. The edge connecting vertices νi and ν j is denoted by ei j . The weight of
edge ei j is denoted by wi j = w(ei j ), which is used to indicate a random walker bias
from νi to ν j . In the undirected graph, we have wi j = w ji , and wi j > 0. The degree
of a vertex νi is di = ∑

w(ei j ) for all edges ei j incident on νi .
Let P be the transition matrix [74] of an RW. The probability of a random walker

to stay at node i after t iterations can be written as

π(t) = Pπ(t−1) = Ptπ(0). (3.39)

If the steady-state vector π exists, we can obtain

Pπ = π. (3.40)

We see from above that π is an eigenvector of P with eigenvalue equal to 1.
As stated in [76], the random walker probabilities have the same solutions as the
combinatorial Dirichlet problem. The Dirichlet integral was defined as [79]:

D[μ] = 1

2

∫

Ω

|∇μ|2dΩ (3.41)

over a field μ ∈ Ω . The harmonic function satisfying the Laplace equation is

∇2μ = 0. (3.42)

The harmonic function that satisfies the boundary conditions can minimize the
Dirichlet integral in Eq. (3.41), since the Laplace equation is the Euler-Lagrange
equation for the Dirichlet integral [79]. The combinatorial Laplacian matrix can be
defined as [80]:

Li j =
⎧
⎨

⎩

di , when i = j,
−wi j , when vi and v j are connected,

0, otherwise.
(3.43)

http://dx.doi.org/10.1007/978-981-4451-60-4_2
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where di = ∑
j wi j . The m × n edge-node incidence matrix is defined as

Aei j vk =
⎧
⎨

⎩

1 when i = k
−1 when j = k
0 otherwise

(3.44)

A can be interpreted as a combinatorial gradient operator while AT as a combinatorial
divergence. Matrix L can be decomposed into L = AT C A [76], where C is an m×m
diagonal matrix with the edge weights along the diagonal. The Dirichlet integral in
Eq. (3.41) can be approximated via

D[x] = xT Lx = 1

2
(Ax)T C(Ax) = 1

2
xT Lx = 1

2

∑

ei j ∈E

wi j (xi − x j )
2. (3.45)

Since L is positive semidefinite, the critical points of D[x] are the minima and
the combinatorial harmonic is the vector, x , that minimizes Eq. (3.45).

The seeded (or marked) vertices and the unseeded (or unknown) vertices in graph
G are denoted by VM as VU , respectively. We have

VM

⋃
VU = V, and VM

⋂
VU = φ. (3.46)

We order L and x to ensure seeded vertices come first and unseeded points next.
Then, Eq. (3.45) can written as

D[x] = 1

2

∣
∣ xT

M xT
U

∣
∣
∣
∣
∣
∣

L M B
BT LU

∣
∣
∣
∣

∣
∣
∣
∣

xM

xU

∣
∣
∣
∣

= 1

2
(xT

M L M xM + 2xT
U BT xM + xT

U LU xU ) (3.47)

where xM and xU correspond to the potentials of the seeded and the unseeded vertices.
To find the critical point, we differentiate D[x] with respect to xU and set it to zero.
Then, we have

LU xU = −BT xM , (3.48)

which is a system of linear equations with VU unknowns. Random walkers in G
connect each unknown vertex with a seed node. Then, for each label, s, the solution
to the combinatorial Dirichlet problem can be found by solving

LU xs = −BT ms, (3.49)

where xs
i is the probability of labeling vertex vi as s and ms

i = 1 when vertex vi is
labeled with si ; otherwise, ms

i = 0. Equation (3.49) can also be written with respect
to all labels s = 1, . . . , K , where K is the total number of labels, in form of
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LU X = −BT M (3.50)

where both X and M have K columns with each column for one seed. For each node,
the probabilities of labeling sum to unity:

∑

s

xs
i = 1, ∀vi ∈ V . (3.51)

There are only K − 1 sparse linear systems to solve. For binary segmentation with
K = 2, there is only one sparse linear system left.

To summarize, the RW segmentation algorithm can be stated as follows:

1. The image intensities are mapped to edge weights via

w(ei j ) = exp(−β(gi − g j )
2), (3.52)

where gi is the image intensity at pixel i , β is a parameter to normalize the square
gradients (gi − g j )

2.
2. Based on user’s interaction, seeded nodes for a set, VM . The probability at an

unknown node can be found by solving Eq. (3.49), or the probabilities of all
unknown nodes can be determined at once by solving Eq. (3.50).

3. To determine the most probable seeded node, we select maxs(xs
i ) for vertices vi ,

and assign the label of maxs(xs
i ) to vi .

Then, the final segmentation is obtained.
Grady et al. [76] demonstrated that the RW method yields a better segmentation

result than the graph-cut method [1] in terms of robustness to noise, weak boundary
detection and ambiguous region segmentation. An example is given in Figs. 3.13
and 3.14.

Recently, a constrained RW algorithm was proposed in [81], which considers
three types of user interaction (namely, the foreground and background seed input,

Fig. 3.13 Robustness of the RW segmentation when applied to a noisy image [76]. When the noise
is too strong, RW fails to segment the object in (c). a Noisy image segmentation by IGC [1]. b
Noisy image segmentation by RW [76]. c More noisy image segmentation by RW [76]
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Fig. 3.14 Segmentation results by RW [76]

the soft constraint input and the hard constraint input) as well as their combinations.
The soft constraint input allows a user to indicate whether there is a boundary passing
through this region. Being assisted with the soft input, the segmentation result can
be easily guided as shown in Fig. 3.15.

Fig. 3.15 Segmentation results with the soft input [81]. a Hard strokes for RW: red for foreground;
blue for background. b Segmentation result with input (a). c Soft input: green strokes to indicate
the location of boundaries. d Segmentation result with input (c)
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3.3.2 Random Walk with Restart (RWR)

One problem of RW is that a different initialization of seeded points may still pro-
duce the same steady-state vector, π . Kim et al. [78] proposed a generative image
segmentation scheme by using random walk with restart (RWR). To enhance the
importance of the initialization process, RWR constrains a random walker by setting
up a restarting probability. That is, at each step of RWR, the walker has two choices:
randomly moving to one of it neighbors with probability c and jump back to its initial
seed point and restart its random walking with probability 1 − c.

Consider a joint distribution model of pixels and labels, p(lk, xi ), where xi ∈
X = {x1, x2, . . . , xN } is a pixel, and lk ∈ L = {l1, l2, . . . , lK } is a label that takes K
different values. The joint distribution can be computed by the prior label probability
p(lk) and the pixel likelihood p(xi |lk) of the RWR process. By the Bayes’ rule, the
posterior probability of the RWR process can be written as

p(lk |xi ) = p(xi |lk)p(lk)
∑K

n=1 p(x |ln)p(ln)
. (3.53)

Assume that there are more than one seed points for each label, and Slk =
{slk

1 , slk
2 , . . . , slk

Mk
} is the set of Mk seed pixels with label lk . Then, we can repre-

sent the likelihood as

p(xi |lk) = 1

z

Mk∑

m=1

p(xi |slk
m , lk)p(slk

m |lk) = 1

z × Mk

Mk∑

m=1

p(xi |slk
m , lk), (3.54)

where Z is a normalization constant. Each likelihood of pixel xi is modeled by a
mixture of distribution p(xi |slk

m , lk) from each seed slk
m , which has a seed distribution

p(slk
m |lk).
Under the assumption that the seed distribution is uniform (i.e., 1/Mk), the likeli-

hood of RWR in Eq. (3.54) will be calculated as the average of the pixel distributions
of all seed pixels with label lk . This makes RWR robust against the number of seed
pixels.

The overall RWR segmentation algorithm can be described below.

• Build a weighted graph for an image. In [78], the weight between pixels xi and x j

is defined as the typical Gaussian weighting function given by

wi j = exp(−||gi − g j ||2
σ

). (3.55)

• Calculate the likelihood in Eq. (3.54) using the RWR process and, then, assign the
label with the maximum posterior probability in Eq. (3.53) to each pixel in the
graph.
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The link between the RWR process in graph G and the computation of Eq. (3.54)
will be explained below.

Consider a random walker who starts from the m-th seed with label lk (or xi = slk
m )

with a restarting probability c. The steady-state probability for this random walker
to stay at pixel xi , can be written as

p(xi |slk
m , lk) ≈ rlk

im (3.56)

For N nodes on a graph, we can form the N -dimensional vector rlk
m = [rlk

im]N×1.
The adjacent matrix for all edges in graph G is W = [wi j ]N×N , where wi j is defined
in Eq. (3.55). Then, we have the following relationship [82]:

rlk
m = (1 − c)Prlk

m + cblk
m

= c(I − (1 − c)P)−1blk
m

= Qblk
m (3.57)

where blk
m = [bi ]N×1 is the N -dimensional vector with a binary value (bi = 1 when

xi = slk
m , and bi = 0 otherwise), Q = [qi j ]N×N is a matrix to compute the affinity

between two pixels, and P = [pi j ]N×N is the transition matrix. It is easy to show
that P is the row-normalized adjacency matrix W ; namely, P = D−1W , where
D = diag(D1, D2, · · · , DN ) and where Di = ∑N

j=1 wi j . Then, through Eq. (3.54),
we have

[p(xi |lk)]N×1 = 1

Z × Mk
Qblk . (3.58)

For Q, qi j is the likelihood that xi has the same label as x j . Thus, we have

Q = c(I − (1 − c)P)−1 = c
∞∑

t=0

(1 − c)t Pt , (3.59)

where Pt is the t-th order transition matrix, pt
i j is the total probability for a random

walker starting from xi walks to x j after t iterations, considering all possible paths
between these two pixels. As t increases, we iteratively update Pt until it converges.
The resulting matrix Q can be solved via matrix inversion as shown in Eq. (3.59).
The label si of pixel xi is decided by

si = arg max
lk

p(lk |xi ) = arg max
lk

p(xi |lk). (3.60)

By assigning a label to each pixel in the graph, we obtain the final segmentation.
As compared with the graph-cut method [1] and the random walker method [76],

the RWR algorithm can segment images with weak edges and textures more effi-
ciently. Examples are shown in Figs. 3.16 and 3.17.
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Fig. 3.16 Performance comparison between the graph-cut (GC), the random-walker (RW) and the
random walker with restart (RWR) for an image with weak edges. a Test image with user stokes:
red for foreground; blue for background. b Segmentation result by IGC [1]. c Segmentation result
by RW [76]. d Segmentation result by RWR [78].

Fig. 3.17 Performance comparison between the graph-cut (GC), the random-walker (RW) and the
random walker with restart (RWR) for an textured image. a Test image with user stokes: white
for foreground; red for background. b Segmentation result by IGC [1]. c Segmentation result by
RW [76]. d Segmentation result by RWR [78].
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3.3.3 Discussion

The exact solution of both RW and RWR demands matrix inversion, where the
matrix is often diagonally concentrated and of a large dimension [83]. How to reduce
the computational complexity to facilitate online segmentation applications is an
interesting problem. Built upon the RW image segmentation [76], a fast approximate
random walker was proposed in [77] by pre-computing an approximation to the
random walk probability matrix.

Fast RWR methods include Hub-vector decomposition [84], block-structure-
based [85] and fingerprint-based [86] methods. A novel solution was proposed in [83]
by exploiting two properties shared by many graphs: the block-wise community-like
structure and linear correlations across rows and columns of the adjacency matrix. As
compared with [77], it only requires pre-computing and storing a low-rank approx-
imation to a large sparse matrix, and the inversion of several matrices of a smaller
size.

3.4 Region-Based Methods

Region-based interactive image segmentation methods segment images based on
regions rather than pixels. They partition an input image into regions that are similar
according to a set of criteria. Thresholding [87], region grow [88], region splitting
and region merging [89] are main examples in this category.

3.4.1 Pre-Processing for Region-Based Segmentation

Before elaborating on region-based interactive segmentation methods, we have a brief
review on the pre-processing step for region-based segmentation in this subsection.
Two well known algorithms are the watershed and the mean-shift algorithms, which
are developed for the processing of monochrome and color images, respectively.

3.4.1.1 Watershed Algorithm

The watershed algorithm, also called the watershed transform, borrows tools from
mathematical morphology [90]. Topographic and hydrology concepts are useful in
the development of region segmentation methods. In this context, a monochrome
image is regarded as an altitude surface in which high-amplitude pixels correspond
to ridge points while low-amplitude pixels correspond to valley points. If a drop
of water falls on a point of the altitude surface, it moves to a lower altitude until it
reaches a local altitude minimum. The accumulation of water in the vicinity of a local
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minimum is called a catchment basin. All points that drain into a common catchment
basin are part of the same watershed. A valley is a region that is surrounded by a
ridge. A ridge is the location of the maximum gradient of the altitude surface.

There are two approaches to watershed computation in an image [21, 87, 91], as
described below.

• The rainfall approach
• The local minima in an image are first located. Each local minimum is given a

unique tag. Adjacent local minima are combined with a unique tag. When a con-
ceptual water drop is placed at each untagged pixel, it moves to its lower-amplitude
neighbor until the drop reaches a tagged pixel. Then, this pixel is assigned with
this tag value.

• The flooding approach
• A conceptual single pixel hole is pierced at every local minimum. The amplitude

surface is lowered into a large body of water. The water enters the holes and
proceeds to fill each catchment basin. If a basin is about to overflow, a conceptual
dam is built on its surrounding ridge line to a height equal to the highest altitude
ridge point.

The watershed algorithm tends to produce over-segmented results as shown in
Fig. 3.18. Research has been done to alleviate this over-segmentation effect [92].

3.4.1.2 Mean-Shift Algorithm

The mean-shift algorithm is a non-parametric clustering technique for the analysis of
a complex multi-modal feature space and for delineating arbitrarily shaped clusters.
It searches for local maximal density points and groups pixels into clusters defined
by these maximal density points.

The rationale behind this clustering approach is that the feature space can be
regarded as an empirical probability density function (PDF) of the represented feature

Fig. 3.18 An watershed example, which yields over-segmented subregions. a A cow image. b Its
watersheding result with colored subregions
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Fig. 3.19 A mean-shift segmentation example from [93], which yields an over-segmented result. a
A butterfly image. b Its mean-shift segmentation result with subregion boundaries colored in white

vector. Dense regions in the feature space correspond to local maximum of the PDF,
which offers one mode of the unknown density. Once the location of the mode is
determined, the cluster associated with it is delineated based on the local structure
of the feature space.

Figure 3.19 gives an example of the meanshift segmentation result from [93],
where homogeneous pixels are clustered in one subregion. It offers an over-
segmented result.

3.4.2 Seeded Region Growing (SRG)

The seeded region growing (SRG) method was proposed by Adams and Bischof [88]
for interactive image segmentation. Although it does not have a solid mathematical
basis under the statistical, optimizational or probabilistic formulation and suffers
from certain limitations, it has gained popularity due to its fast processing speed and
simplicity in implementation.

The SRG method demands a user to select a set of seed points, which are assigned
labels according to user desired segmentation result. For a binary segmentation, there
are two labels; namely, the foreground label and the background label. For multiple
objects segmentation, one can assign a label to each object. Two binary segmentation
examples are shown in Fig. 3.20.

At each iteration, pixels in subregions adjacent to the foreground or background
subregions are added to the active set. The initial seeds are then replaced by the
centroids of generated homogeneous regions by involving added pixels. All pixels in
the new subregion are assigned to the label of the seed point in the same subregion.
If a pixel in a subregion encounters two or more labels, it chooses the one with the
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Fig. 3.20 Two segmentation examples by using the SRG method [3]. a A flower image with simple
markups, where red for the foreground object and blue for background. b The segmentation result
of the flower image, where the flower is segmented out completely. c A cat image with simple
markups, where red for the foreground object and blue for background. d The segmentation result
of the cat image, where part of background is confused to be the foreground, and vice versa

minimum distance to the average color of pixels in the subregion. The algorithm
iterates until all pixels in the image are assigned to a label. The segmentation results
can be obtained by extracting pixels with the same label.

Figure 3.20 shows two segmentation examples of the SRG method from [3]. We
see that the SRG method produces a good result for the flower image, where the object
has sharp boundaries and its color is distinguished from the background. However,
it does not produce a satisfactory result for the cat image, part of background is
confused to be the foreground, and vice versa, due to the color similarity of the
foreground and background.

The SRG method suffers from the pixel sorting problem in propagating seed
points. Mehnert and Jackway [94] showed that a different order of processing pixels
leads to different final segmentation results. Since region boundaries are used to
define the boundaries of different image components, Fan et al. [95] proposed a
boundary-oriented technique to accelerate the seeded pixel labeling procedure as
well as an automatic seed point selection method.
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3.4.3 GrowCut

The GrowCut method [96] is a foreground extraction and background removal tool.
It is implemented as a plug-in for Photoshop-compatible graphics editors. Being
similar the graph-cut methods, the GrowCut method let user provide seed points to
indicate the objects of interest. GrowCut allows user correction and guidance in the
segmentation process, providing more efficient control and, thus, leading to more
accurate segmentation results especially in some challenging cases [96].

Although GrowCut has a name similar to Graph cut and GrabCut, it is actually
quite different. It is a region growing method with its root in Cellular automata (CA).
GrowCut was first proposed by Von Neumann and Burks in [97]. Its theory and
applications were recently reviewed in [98, 99]. Its simplicity and ease of parallel
implementation make it a popular choice in the area of medical image processing
where the data dimension could be 3D or 4D (space plus time) [100].

A bi-direction deterministic CA is used in GrowCut to propagate the label of one
pixel to its neighborhood based on the color similarity and the label strength. An
N-dimensional (N ≥ 2) image is presented as a triplet, A = (S, N , δ), where S is
the set of label states of pixels, N is the neighborhood of pixels (called the Neumann
neighborhood or the Moore neighborhood) [99], and δ is the rule to propagate the
labels of seed points and update the state of each pixel during the iteration. In each
iteration, the pixel state is updated according to rule δ by considering the pixel
strength and its color dissimilarity with their neighbors [96]. The final propagation
result is obtained when the iterated propagation process converges.

To smoothen the segmented boundaries of an object, Vezhnevets et al. [96] defined
an additional rule to control the propagation of states along boundaries. Since the
strength of pixel states can be enhanced by user input, the interaction can serve as a
soft constraint and guide the system to reach the desired segmentation result while
reducing the error in the region controlled by user input.

The GrowCut method can be applied to multiple object segmentation at once, since
the states in the iteration can have multiple values. Each state represents the label of
one object. Since the label propagation is performed locally and independently, the
GrowCut method allows parallel implementation for speed-up.

The accuracy of GrowCut’s segmentation is highly dependent on image content
and user interaction. The performance of the Growcut method, the Interactive Graph
Cut (IGC) method [1], the Grabcut method [4] and the Random Walk method [101]
was compared by Vezhnevets et al. in [96]. For the GrowCut plug-in for Photoshop,
please refer to (http://growcut.com).

3.4.4 Maximal Similarity-Based Region Merging

The Maximal Similarity-based Region Merging (MSRM) method [102] begins with
the over-segmentation result of the mean shift algorithm. User strokes are used to

http://growcut.com
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indicate the position and main features of the object and background. The non-
markup background subregions are automatically merged and labeled, while the
non-markup foreground subregions are identified and prevented from being merged
with background. Once all non-markup subregions are labeled, the foreground object
contour can be readily extracted.

The mean-shift algorithm as a pre-processing step can be replaced by other algo-
rithms such as the watershed algorithm and the level set algorithm. The region merg-
ing process is conducted by merging a region into one of its neighboring regions,
which has the most similarity. A region can be described in several attributes such
as color, edge, texture, shape, and size. The color histogram was chosen in [102] as
an effective region descriptor.

To measure the similarity between regions R and Q, one criterion is

ρ(R, Q) =
4096∑

μ=1

√
HistμR · HistμQ, (3.61)

where HistR and HistQ are the normalized histogram of R and Q, in which each
color channel is quantized into 16 levels, and the histogram of each region is calcu-
lated in the RGB space of 16 × 16 × 16 = 4096 bins. The higher the ρ(R, Q) is,
the higher the similarity between them. Although two perceptually different regions
may have similar histograms, such a likelihood is very low for neighboring regions
in real-world images.

As shown in Fig. 3.21, the MSRM process consists of two stages, which are
repeatedly executed until no new merging occurs. Its strategy is to merge as many
background regions as possible while keeping the foreground region from being
merged. Thus, its first stage is to start from background regions. For each neigh-
boring region of a background region, MSRM calculates its similarities with its
neighbor regions. If the most similar neighbored region has been labeled as back-
ground, MSRM merges this region into background. Whenever there is a merging
process, the histogram of the new merged region is updated. Because of the histogram
statistics and similarity calculation in each merging step, the overall computational
complexity is high. This background merging procedure is iteratively implemented
until, for all the background regions, there is no region to be merged.

After the background merging stage, there are still non-marker regions left, which
might be foreground or background. For each non-marker region, one can calculate
the similarities between it and its adjacent regions. Then, one can assign the same
label to this region with its adjacent region, which has the largest similarity. This
procedure is iteratively performed until all regions are labeled.

The MSRM method can extract user’s interested object with a sharper contour
than the Interactive Graph Cut (IGC) method [6]. On the other hand, it has some
limitations. Accurate extraction requires sufficient user input to cover the main feature
regions. Being similar to [103], the MSRM method relies on initial over-segmentation
results. If the initial segmentation does not provide a good basis for region merging,
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Fig. 3.21 A segmentation example by using the MSRM method [102]. a An initial over-segmented
image with user’s markups, where green is for the object and blue for background. b An interme-
diate result to show the background merging process. c Further background merging result. d All
background regions are merged. e The remaining non-markup regions are merged

the MSRM method may fail. On the other hand, if there are too many over-segmented
regions, the MSRM method will demand longer merging time.

3.4.5 Region-Based Graph Matching

The matching attributed relational graph (MARG) method [103] also begins with
over-segmented sub-regions. User labeled strokes are propagated by exploiting the
color and structure information on the graph constructed by over-segmented sub-
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regions. The objects of interest from the input image are indicated by user interaction
such as scribbles drawn over the image. The main region merging procedure is
performed by matching two graphs: the input graph, which represents the over-
segmented image; and the model graph, which is constructed by sub-regions that
have user-assigned labels.

Noma et al. [103] applied the watershed algorithm [87] and generated an initial
segmentation of the input image with many small sub-regions, each of which is homo-
geneous in attributes. Each sub-region created by this over-segmentation procedure
is described as a graph node. The entire input image is presented as an attributed
relational graph (ARG), G(V, E, u, v), which can represent the image color infor-
mation and the structural information (spatial relations) via user scribbles. An ARG
contains the following:

• V is a set of vertices, each of which represents the centroid of a sub-region;
• E is a set of edges connecting graph nodes;
• Attribute u is the property of each sub-region;
• Attribute v is the property of each edge.

Attribute u is typically chosen to be the normalized mean intensity of a sub-region.
Any two adjacent sub-regions have an edge. To explore the structural information of
the graph, each directed edge is assigned a vector denoted by v, which has a direction
and a magnitude. The relationship of edge vectors v1 and v2 can be characterized
by [104]:

Cvec(v1, v2) = λ2
| cos θ − 1|

2
+ (1 − λ2)

||v1| − |v2||
CS

, (3.62)

where θ is the angle between vectors v1 and v2 and |v1| and |v2| are their magnitudes.
The graph of an input image yields the input graph, Gi , while the image with user

scribbles can be represented by a model graph denoted by Gm . One can propagate user
labels by conducting a mapping between these two ARGs. As there are different node
numbers in the two ARGs, this mapping is an inexact homomorphism [104, 105].

Noma et al. [106] proposed a deformed graph approach to match Gi and Gm . A
deformed graph is constructed from the nodes of the input graph Gi . The process of
deformed graph matching is showed in Fig. 3.22. The deformed graph matching is
calculated by minimizing the following cost function:

E(vi , vm) = λ1dA + (1 − λ1)
∑

deformed edges

dS, (3.63)

where dA evaluates the dissimilarity between the attribution of the deformed vertex,
vd , and the model vertex, vm , in form of

dA(vd , vm) ∝ d(u(vd), u(vm)), (3.64)
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where d(·, ·) is the Euclidean distance. The cost function in Eq. (3.63) attempts to
balance the weight distributions of the graph intensity term, dA, and the structure
term, dS . The structure term of matching Gd and Gm is defined as

dS(Gd(vi , vm), Gm) = 1

|E(vd)|
∑

ed∈E(vd )

Cvec(v(ed), v(em)), (3.65)

where Gd(vi , vm) denotes the deformed graph by taking vi as vd . Thus, the matching
of two graph is only related to the deformed vertex and its connected vertices, since
other vertices and edges remain the same as illustrated in Fig. 3.22.

By finding the minimum energy cost of matching, each vi of Gi can be matched
to a vertex, vm , of model graph Gm and assigned with the same label of its matched
vertex vm . The segmentation result can be generated by extracting the partition of
the image with the same label (Fig. 3.23).

The MARG method can be easily extended to multiple object segmentation, since
all initialized vertex sets with user labels can get their matches by the same matching
procedure. To get better results, two post-processing strategies were proposed in [103]
to fill in holes in objects and remove isolated partitions. In [5], a simple pixel-
based refinement was applied along the object boundary to enhance robustness and
accuracy. Some segmentation results are shown in Fig. 3.24.

Since MARG handles the structure similarity of an object based on user scrib-
bles, Noma et al. [106] attempted to segment multiple images of a similar structure
(i.e., images from a sequence) at once. They built model graph Gm based on one
image with user scribbles and, then, used this model graph to segment other images
containing the same object with a changing location.

Fig. 3.22 Illustration of the deformed graph matching [103]. a Some of the graph nodes from the
over-segmented image. b Model graph with user labeled nodes vm (in red). c Deformed graph with
node vd
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3.4.6 Discussion

The segmentation methods based on region merging/splitting and growing provide
an efficient way to extract object regions. The SRG and the GrowCut methods are
region growing methods starting from the label of seed pixels. The can be computed
quickly due to its simplicity. The MSRM and MARG methods start from an initial
over-segmented image. Although the computation within a region can be saved, the
final segmentation quality will be affected by the initial segmentation. For example,
when there is a weak edge that cannot be well detected in the over-segmentation
process, the edge will not be detected in the region merging/growing process. To
handle this problem, a boundary refinement procedure has to be applied to re-classify
boundary pixels.

3.5 Local Boundary Refinement

In the last several sections, we introduced methods that either track object boundary
or propagate user labels throughout the input image. An object can be extracted
out by a looped contour or with the same label. In this section, we examine two
post-processing techniques to improve the accuracy of segmentation results.

One post-processing technique is to merge a small isolated sub-region to its sur-
rounding sub-region as proposed in [103]. For example, as shown in Fig. 3.25, region
A is a small region without a label, it can be merged into its surrounding region by
this post-processing technique. On the other hand, in order to segment this small
region out, a user should assign a label to this region explicitly.

For more accurate segmentation of the object boundary, we can develop a pixel-
based refinement scheme along the boundary [4, 5]. In Lazy Snapping, Li et al. [5]
represented an object boundary using triangles and allowed users to edit the boundary

Fig. 3.23 Label propagation in the MARG method [103]
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Fig. 3.24 a Input images with scribbles; b segmented masks from MARG; and c composition with
new background [103]

Fig. 3.25 An isolated region
A without a label can be
merged into its surrounding
partition [103]

by dragging and moving boundary points. It is helpful to get better boundary locations
with user editing.

For complex object boundaries such as hairy, furry, motion blurred, and trans-
parent boundaries, it is difficult to get a satisfactory hard-segmentation result even
with user editing. Instead, it is often to apply the alpha matting technique as a post-
processing step to refine the object boundary in this case. The goal of alpha matting
is to calculate a soft segmentation to separate the foreground and background as
accurately as possible. Since the object in a physical scene may have a finer spatial
resolution than the size of a discretized image pixel, one pixel may contain a mix of
both the foreground and background information [107].
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The soft segmentation can be represented in the form of

I (x, y) = α(x, y)F(x, y) + [1 − α(x, y)]B(x, y), (3.66)

where I (x, y) is the observed image value at pixel (x, y), F(x, y) are B(x, y) are the
foreground and background values at (x, y), and 0 ≤ α(x, y) ≤ 1 is the alpha matte
function. This model was first proposed in [108] for the purpose of anti-aliasing in
image segmentation. Each pixel along the object boundary is the blending result of
foreground and background colors on the boundary, and the alpha value controls the
weight of the foreground color.

When we calculate Eq. (3.66) in the color space, there are 7 unknowns (namely,
colors of F(x, y) and B(x, y) and the alpha value α(x, y)) to be determined with
only known value I (x, y) at each pixel location. Thus, the problem is ill-posed. Many
regularization schemes have been proposed for Eq. (3.66) by setting constraints on
F , B and α [13, 107, 109, 110]. Generally speaking, the constraints on F(x, y),
B(x, y) are based on the assumption that F(x, y) and B(x, y) are smooth functions.

A couple of matting models have been proposed such as the Poisson matting,
Bayes matting, RW matting, closed-form matting, robust matting, etc. Sometimes,
user input is required to identify foreground, background, and transitional regions,
which are referred to as the trimap [13]. In the current context, a trimap can be gen-
erated automatically from the segmentation step by extracting the object boundary
bound [103]. The Soft Scissor (SS) [111] offers a real-time interactive matting tool,
and it is implemented as Digital Film Tools Power Mask (http://www.digitalfilmtools.
com/powermask/) with a user input similiar to that of edge-based Intelligent Scis-
sors [41].

Another efficient boundary refinement technique is to apply an active contour
method with an additional constraint [112] that is used to determine a global optimal
object boundary. It aims to locate the most likely object boundary by considering both
the boundary and the regional information. For segmentation methods with a hard
segmentation result, a probability map based on the GMM models of the foreground
and background colors is first constructed. Then, the constrained active contour
technique is adopted to find the optimal boundary location. As shown in [112],
this technique is effective in improving randow-walk methods [6] and the geodesic
segmentation method [13] by generating an improved hard segmentation result.

To conclude, boundary editing and isolated region merging offer two post-
processing solutions in image segmentation with explicit control. The alpha matting
technique is particularly efficient in handling hairy and furry complex boundaries.
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Chapter 4
Performance Evaluation

Keywords Interactive graph-cut · Random walks with restart · Convex active
contour · Maximal similarity-based region merging · Matching attributed relational
graph

Interactive segmentation methods are developed to solve the image segmentation
problem in real-world applications. It is desirable that, with user interactions, seg-
mentation techniques can segment out arbitrary objects of interest accurately. The
procedure should be intelligent and easily controllable by users. Nevertheless, there
is a gap between this goal and what today’s algorithms can offer. In this chapter, we
evaluate the performance of several state-of-the-art interactive segmentation methods
with a set of “challenging” images.

The test image set includes those that have dull colors, low contrast, elongated
objects, objects with weak boundaries, cluttered background, and a strong noise
component. The methods under evaluation include:

• the interactive graph-cut (IGC) method [1],
• the random-walk with restart (RWR) method [2],
• the convex active contour (CAC) method [3],
• the maximal similarity-based region merging (MSRM) method [4],
• the matching attributed relational graph (MARG) method [5].

These methods were elaborated in Chap. 3.

4.1 Similarity Measures

One common task in both pixel-based and region-based segmentation methods is
the measure of similarities between adjacent pixels (or super-pixels) so that one can
give them the same label or different labels. Similarity measures can be classified
into two categories:
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• Appearance similarity
Luminance and color intensities can be used to measure the appearance similarity.
As discussed in Chap. 3, these features are used to compute the similarities between
a node and seed nodes. For example, in the IGC method [1], image intensities are
modeled as the luminance histogram, which is less sensitive to color variations of
objects. The GrabCut method [6] uses a color GMM model. It performs well when
objects have colors that are very different from that of the background. However,
when the object and background have similar colors, GrabCut may fail to extract
objects properly with a simple rectangular user markup as illustrated in Fig. 4.1.
Further user’s scribbles are required to generate acceptable results.

• Structure similarity [1, 5, 7]
The definition of structure similarity affects the segmentation performance. For
example, in some cases where the object has colors that are distinctive from those
of the background, the graph-cut method using the Euclidean distance suffers
from the short path problem, yielding incomplete object segmentation as shown

Fig. 4.1 A rectangular markup is not sufficient for the GrabCut method to extract an object when
it and its background have similar colors. a Original image, where red and blue scribbles indicate
the object region and background, respectively. b Segmentation result by IGC. c Original image
with a red rectangular mark indicating the object. d Segmentation result by GrabCut

http://dx.doi.org/10.1007/978-981-4451-60-4_3
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Fig. 4.2 Illustration of the short path problem of the IGC method. a Original image with user
scribbles, where white and red indicate the object and background, respectively. b Segmentation
result by IGC, with missing cow legs. c Segmentation result by GGC, where cow legs are segmented
correctly

in Fig. 4.2. In this example, the geodesic graph-cut (GGC) [7] performs better than
IGC based on the same scribbles from users. This is because the GGC method takes
the local path cost into account in the distance measure. The structure similarity
and constraints are important to maintain the completeness of object segmentation.
This observation was discussed before, e.g., [5, 8, 9].

We see from these two examples that a proper similarity definition will have
a major impact on segmentation results. To achieve better results, we may allow
different similarity definitions based on the characteristics of input images. Besides,
the parameters of each method can be fine-tuned to yield better results.

4.2 Evaluation on Challenging Images

In this section, we compare the performance of several representative methods dis-
cussed in Chap. 3 on a set of challenging images. Our comparative results serve as
an extended evaluation of prior work in [5, 10–13]. Note that better results can be
achieved by adding more user labels. For fair comparison, we compare the perfor-
mances of different methods with the same user input here.

4.2.1 Images with Similar Foreground and Background Colors

The first test image in Fig. 4.3 contains a ceramic model with two main colors, blue
and yellow, placed on a table that has a similar yellow color. The blue parts of the
ceramic model can be easily distinguished from the image. However, the yellow parts
have colors similar to the background, yielding weak boundaries. Also, the overall
contrast of the test image is low. It is therefore challenging to segment the complete
object out with limited user inputs as depicted in Fig. 4.3a.

We have the following observations on the results given in Fig. 4.3. First, RWR
and MARG fail to segment the object out. RWR is sensitive to the locations of user

http://dx.doi.org/10.1007/978-981-4451-60-4_3
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Fig. 4.3 Performance comparison on a test image, where the foreground object and background
share similar colors. a Original image with user inputs, in which green and blue scribbles indicate
the object and background, respectively. b Segmentation result by IGC [1]. c Segmentation result by
RWR [2]. d Segmentation result by CAC [3]. e Segmentation result by MSRM [11]. f Segmentation
result by MARG [5]

scribbles. Without any label on the right side of background, this region is falsely
declared to be the foreground. Similarly, MARG is also sensitive to scribble locations,
since it considers the graphical structure of user labels. IGC, which uses a luminance
histogram model, can segment out the main part of the background. However, some
parts, even blue parts, are missing, since those parts have a luminance level similar to
that of background. CAC attempts to find an accurate object contour with boundary
refinement, yet its result depends on the primary segmentation. MSRM and MARG



4.2 Evaluation on Challenging Images 67

use superpixels. Although the foreground and background have similar colors, a
good pre-segmentation procedure can cluster foreground and background pixels into
different superpixels. In this test, MSRM produces the best result since it merges
superpixels gradually and updates color histogram models at each iteration. However,
some weak boundaries due to the bottom shadow are still incorrectly segmented.
Since all segmentation methods depend on color and edge features, they demand
more user scribbles to segment this test image correctly.

4.2.2 Images with Complex Contents

Besides similar foreground and background colors, the variety and complexity of
foreground and background contents pose a challenge to segmentation tools. Note
that, even if the foreground object and background may have different colors, seed
pixels in the foreground object and background will have a wide range of feature
values due to complex contents.

The test image in Fig. 4.4 contains a banana on a textured table. Both the banana
and the table have complex but little overlapping colors. IGC and RWR fail to segment
the banana in the image. In this test, IGC is not able to use the color information
effectively and, thus, the spatial distance dominates the similarity measure, yielding
an incorrect result. Since roses in background are not well connected, RWR cannot
make all roses reachable with high probabilities from background seeds. Clearly,
more user scribbles are needed for RWR. In contrast, CAC, MSRM and MARG
extract the banana more accurately. CAC provides a more accurate boundary than
MSRM and MARG by employing the convex active contour.

Figure 4.5 gives another complex image, where the object has a net structure. The
object is connected yet with holes. It is demanding to ask a user to label all background
holes, since there are too many isolated parts. Besides, some background parts are
blended with the foreground net. With limited user inputs as shown in Fig. 4.4a,
CAC can generate an acceptable result, while others fail to segment some obvious
background parts from the net. The results of MSRM and MARG are influenced by
their pre-segmented superpixels. They both tend to merge an unlabeled hole into its
neighbor, which is not desirable in extracting the net structure.

4.2.3 Images with Multiple Objects

In this book, our main focus is on extracting a single object from the background. To
segment multiple objects separately, the label propagation technique can be extended
to accept more than two object labels. To give an example, we attempt to extract two
birds as a single foreground object in Fig. 4.6.

The background is smooth in the “Two birds” test image, and it should be relatively
easy to segment the two birds out. However, with simple user inputs as shown in
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Fig. 4.4 Performance comparison on the segmentation of the “Banana” image with cluttered back-
ground. a Original image with user scribbles. b Segmentation result by IGC [1]. c Segmentation
result by RWR [2]. d Segmentation result by CAC [3]. e Segmentation result by MSRM [5].
f Segmentation result by MARG [4]

Fig. 4.6a, IGC and RWR cannot extract the birds completely. IGC misses the wings
and mouths of the birds. RWR fails to identify the background, although it has a
flat and unique color. These results can be improved by adding more user scribbles.
The other three methods can segment the main parts of the birds out, but miss the
elongated mouths. To make the extracted object complete is an important issue. This
problem can be improved by GGC with the shape and connectivity priors [7, 14, 15].
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Fig. 4.5 Performance comparison on the segmentation of the “Net” image with many isolated back-
ground parts. a Original image with user scribbles. b Segmentation result by IGC [1]. c Segmenta-
tion result by RWR [2]. d Segmentation result by CAC [3]. e Segmentation result by MSRM [11].
f Segmentation result by MARG [5]

4.2.4 Images with Noise

Digital images contain noise such as acquisition noise and transmission noise. The
advancement of acquisition sensors and denoising techniques can reduce noise
greatly [16]. However, we still encounter noisy images in practical applications.
In this test, we investigate the robustness of segmentation methods applied to images
with mixed Gaussian and salt-and-pepper noise.

We see from Fig. 4.7 that the superpixel-based approaches, MSRM and MARG,
can produce similar results on images with and without noise. Also, CAC can locate
similar object contours. These results indicate that MSRM, MARG, and CAC are
more robust to noise than IGC and RWR.
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Fig. 4.6 Performance comparison on the segmentation of “Two birds” as one foreground object.
a Original image with user scribbles. b Segmentation result by IGC [1]. c Segmentation result by
RWR [2]. d Segmentation result by CAC [3]. e Segmentation result by MSRM [11]. f Segmentation
result by MARG [5]
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Fig. 4.7 An example of segmenting original and noisy images. a Original image with user scribbles.
b Segmentation of original image by IGC. c Noisy image with user scribbles. d Segmentation
of noisy image by IGC. e Segmentation of original image by RWR. f Segmentation of noisy
image by RWR. g Segmentation of original image by CAC. h Segmentation of noisy image by
CAC. i Segmentation of original image by MSRM. j Segmentation of noisy image by MSRM.
k Segmentation of original image by MARG. l Segmentation of noisy image by MARG

Besides noisy images, images of fog and rain have many small and translucent par-
ticles. They can be treated as noise when we intend to segment objects out. In Fig. 4.8,
we show an image that is covered with a spray of various degree. The segmentation
target is the little boy in the middle. The object is blended with heterogeneous spray
noise and the image contrast is low due to the translucent noise. In this test, IGC and
CAC perform better than others. RWR fails to identify object boundaries. MSRM and
MARG, which are based on pre-segmentation, cannot segment the object correctly
when the object regions falsely merged with background in the pre-processing step.

4.3 Discussion

Generally speaking, the performance of interactive segmentation methods can be
evaluated in terms of regional accuracy, boundary accuracy, the running speed, the
user interaction requirement, and the memory requirement [5, 10–13].
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Fig. 4.8 Segmentation of a hazy image. a Original image with user scribbles. b Segmentation result
by IGC [1]. c Segmentation result by RWR [2]. d Segmentation result by CAC [3]. e Segmentation
result by MSRM [11]. f Segmentation result by MARG [5]

In this chapter, we focused more on the issues of accuracy and robustness, and
evaluated several popular methods on a couple of challenging images under the same
user input. Specifically, we have the following observations:

• The IGC method has the short path problem and may fail on complicated image
contents.

• The RWR method is sensitive to user inputs and noise components.
• The CAC method outperforms others on the net-structured image.
• The MSRM and the MARG methods provide similar performances in most cases

while the MARG method is more sensitive to scribble locations.
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Chapter 5
Conclusion and Future Work

Keywords Segmentation accuracy ·Robustness of user interaction ·Dynamic inter-
action · 3D image segmentation

Interactive segmentation techniques have attracted a wide range of interest and appli-
cations. Many researchers have worked on this topic to improve the efficiency, robust-
ness, speed, and user-friendliness of interactive segmentation. Image features such
as colors, edges, and locations are essential for computers to recognize and extract
objects. By employing various principles such as graph-cut, random-walk, or region
merging/splitting, interactive segmentation methods attempt to balance two con-
straints: regional-homogenuity and boundary-inhomogenuity. These two constraints
are expressed as a cost function in most segmentation methods which is then opti-
mized locally and/or globally. Satisfactory results can be obtained by incorporating
a sufficient amount of user interactions.

For these methods to be applicable in real-world applications, more future research
is needed along the following three major directions.

• Accuracy of segmentation
We tested several state-of-the-art methods and showed that each of them has its own
limitations. How to improve segmentation accuracy for a wide range of images is an
ongoing topic. The region-level accuracy is required to enforce the completeness
of segmentation results while the pixel-level accuracy is important in locating
accurate object boundaries. Soft segmentation with the alpha matte may be needed
for complex boundaries.

• Robustness of user interaction
Although interactive segmentation methods allow users to label foreground objects
and background to facilitate the segmentation process, many segmentation results
are sensitive to the location of initial labels. A good set of initial labels that achieves
the desired goal is highly dependent on image content. It tends to take a beginner
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a long time to learn a proper way to do the labeling. This shortcoming will hinder
the applicability of interactive segmentation methods.

• Two-way dynamic interaction
It is desirable that the computer analyzes the image content and, then, guides users
to provide their input to facilitate the segmentation task. After the first round of
segmentation, the user should only highlight the region that is not satisfactory
and the computer can react with further refinement. How to make the two-way
interaction more effective so as to reduce the number of interactive segmentation
rounds is an important topic.

Finally, interactive segmentation tools should be generalized to 3D images and
video. So far, there is little work along this direction. It is not a trivial task to design
friendly tools for visualization and user interaction on these high-dimensional data.
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