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Preface

The rapid growth in electronic systems in the past decade has boosted re-
search in the area of computational intelligence. As it has become increasingly
easy to generate, collect, transport, process, and store huge amounts of data,
the role of intelligent algorithms has become prominent in order to visualize,
manipulate, retrieve, and interpret the data. For instance, intelligent search
techniques have been developed to search for relevant items in huge collec-
tions of web pages, and data mining and interpretation techniques play a very
important role in making sense out of huge amounts of biomolecular measure-
ments. As a result, the added value of many modern systems is no longer
determined by hardware only, but increasingly by the intelligent software that
supports and facilitates the user in realizing his or her objectives.

Over the past years, considerable progress has been made in the area of com-
putational intelligence, which can be positioned at the intersection of computer
science, discrete mathematics, and cognitive science. This has led to a grow-
ing community of practitioners within Philips Research that develop, analyze,
and apply intelligent algorithms. The Symposium on Intelligent Algorithms
(SOIA) intends to provide this community of practitioners with a platform to
exchange information. The first edition of SOIA, held in 2002, addressed the
topic of intelligent algorithms in ambient intelligence. To share the output of
the symposium with a larger audience, a selection of papers was edited and
published by Kluwer in the Philips Research Book Series under the title “Al-
gorithms in Ambient Intelligence.” For the second edition, held in 2004, the
scope of the symposium was broadened so as to comply with the three main

consists of 17 chapters, divided over three parts corresponding to the strategic
topics mentioned above. The main topic in Healthcare is the understanding
of biological processes, for Lifestyle the main topic is content retrieval and
manipulation, and finally for Technology most contributions relate to media
processing. Below we present more detailed information about the individual
chapters.

logy. Again a selection of papers was edited, resulting in the present book. It
topics of the Philips company strategy, i.e., Healthcare, Lifestyle and Techno-

xvii



xviii Preface

Part I consists of four chapters. In Chapter 1, Chris Clack discusses the
topic of modeling biological systems, thus allowing to perform in-silico exper-
iments by means of computer simulation, to formulate hypotheses. In Chapter
2, Nevenka Dimitrova gives an overview of the reverse approach, where one
does not use computers to simulate biological processes, but where one uses
biology to perform computations, in DNA computing and synthetic biology.
In Chapter 3, Martin Kersten and Arno Siebes discuss data management in-
spired by biology, resulting in an organic database system. In Chapter 4, Kees
van Zon discusses how to achieve machine consciousness, and how it can be
applied.

problem of making a schedule of preferred TV programs, while at the same
time selecting TV programs for recording, under the assumption of a limited
number of tuners. In Chapter 6, Mauro Barbieri, Nevenka Dimitrova, and
Lalitha Agnihotri present a technique to automatically summarize video into a
condensed preview, allowing one to quickly browse and access large amounts
of stored programs. Chapters 7–9 concerns audio applications. First, Janto
Skowronek and Martin McKinney discuss in Chapter 7 the topic of automatic
classification of audio and music, for which they developed the automatic ex-
traction of the higher-level feature of percussiveness. In Chapter 8, Steffen
Pauws presents a technique to automatically extract the key from a piece of
music, providing an emotional connotation to it, and making it possible to
build well-sounding music mixes. In Chapter 9, Zharko Aleksovski, Warner
ten Kate, and Frank van Harmelen address the problem of combining multiple
databases of music data in a semantic way, by approximating matches of music
classes. Next, Jan Korst, Gijs Geleijnse, Nick de Jong, and Michael Verschoor
discuss in Chapter 10 the possibilities to fill a knowledge database, using an
ontology to collect and structure data from web pages. In the last chapter of
part II, which Wim Verhaegh, Aukje van Duijnhoven, Pim Tuyls, and Jan Ko-
rst resolve the privacy issue of population-based recommenders by encrypting
the users’ profiles and performing the required algorithms on encrypted data.

Part III consists of six chapters, focusing on the technology underlying in-
telligent algorithms and intelligent systems. The first two chapters discuss
theoretical aspects of intelligent algorithms. In Chapter 12, Peter Grünwald
gives an overview on the minimum description length principle to resolve the
problem of model selection, based on the fundamental idea to see learning as
a form of data compression. In Chapter 13, Herman ter Horst discusses the
computational complexity of reasoning with semantic web ontologies, such as
RDF Schema and OWL. Next, Wojciech Zajdel, Ben Kröse, and Nikos Vlas-
sis present in Chapter 14 an introduction to dynamic Bayesian networks, and
show their application in robot localization and multiple-person tracking. In

content management and retrieval. In Chapter 5, Wim Verhaegh discusses the
Par tII consists of eight chapters, addressing problems from the area of



Preface xix

Chapter 15, Berry Schoenmaker and Pim Tuyls discuss efficient protocols for
securely matching two user profiles, without leaking information on the de-
tails of the profiles. Finally, Chapters 16 and 17 address resource issues in
intelligent systems. In Chapter 16, Sai Shankar N., Richard Chen, Ruediger
Schmitt, Chun-Ting Chou, and Kang Shin revisit fairness in multi-rate wire-
less networks, and present a solution to fairly schedule airtime. Finally, in
Chapter 17, Akash Kumar and Sergei Sawitzki discuss the design alternatives
of Reed Solomon decoders, and address the problem of making optimal design
decisions to obtain a high-throughput, low-power solution.

We are convinced that the chapters presented in this book comprise an in-
teresting collection of examples of the use of intelligent algorithms in different
settings, and that the book reconfirms that the area of computational intelli-
gence is a truly challenging field of research.

WIM F.J. VERHAEGH, EMILE AARTS, AND JAN KORST
Philips Research Laboratories Eindhoven
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Chapter 1

BIOSCIENCE COMPUTING AND THE ROLE OF
COMPUTATIONAL SIMULATION IN BIOLOGY

Christopher D. Clack

Abstract Bioscience computing exploits the synergy of challenges facing both computer
science and biology, drawing inspiration from biology to solve computer sci-
ence challenges and simultaneously using new bio-inspired adaptive software to
model and simulate biological systems. This chapter first provides an introduc-
tion to bioscience computing — discussing the role of computational simulation
in terms of hypothesis formulation and prototyping for biologists and medics,
and explaining how bioscience computing is both timely and well-suited to sys-
tems biology. A concrete example of computational simulation is then provided
— the artificial cytoskeleton, which utilises swarm agents and a cellular au-
tomaton to model cell morphogenesis. Morphological adaptation for tasks such
as chemotaxis and phagocytosis are presented, and the role of the artificial cy-
toskeleton and its swarm-based techniques in both computer science and biology
is explained.

Keywords Bioscience computing, systems biology, computational simulation, morphogen-
esis, adaptive systems, agent based modelling, swarm agents.

1.1 Introduction to bioscience computing
Bioscience computing exploits the synergy of challenges facing both com-

puter science and biology, drawing inspiration from biology to solve problems
in computer science and simultaneously using new bio-inspired adaptive soft-
ware to model and simulate self-organising, adaptive, biological systems.

There has recently been a substantial increase in inter-disciplinary research
interactions between computer science and the life sciences. From the biolo-
gist’s perspective, the post-genomic era is characterised by huge amounts of
data but little understanding of how genes map to physiological functions, and
there is an urgent need for the application of intelligent computing techniques
to gain increased understanding. From the computer scientist’s perspective,
the new biological data and expanding understanding of biological processes

3

© 2006 Springer. Printed in the Netherlands. 
Wim F.J. Verhaegh et al. (Eds.), Intelligent Algorithms in Ambient and Biomedical Computing, 3-19.



4

provide both an excellent driver for new methods in bioinformatics and an in-
creasing source of ideas for new computational techniques in areas such as
intelligent systems and artificial life.

The purpose of the first part of this chapter is to provide an introduction to
the biological context and to explain the role of bioscience computing within
that context.

1.1.1 A change of focus in biology and medicine
The traditional reductionist view of biology is rooted in analysis and bio-

physics; it is based on a hierarchical perspective where the functioning of the
physiome1 is the deterministic product of a ‘one-way upward causation from
genes to cells, organs, system and whole organisms’ [Noble, 2002], and has
been remarkably successful with fundamental achievements such as discov-
ering the structure of DNA and mapping the genome for not one but several
organisms. The traditional role of computer science in biology (e.g. of bioin-
formatics) has been to support this endeavour by providing data-handling, data
visualisation, numerical simulation and data-mining services.

However, in the post-genomic era the super-abundance of data and relative
paucity of understanding, coupled with a clearer perspective of the complexity
of living organisms, are causing biologists to question whether the traditional
view is sufficient as a basis for a full understanding of nature. The traditional
view is giving way to a new biology, often referred to as systems biology.

The rise of systems biology has caused a much closer relationship to develop
between biologists and computer scientists. In systems biology, the computer
science techniques are no longer merely a data service to the biologists, but are
intimately involved in the formulation of biological hypotheses as biologists
embrace the process-oriented world of the computer scientist. systems biology
considers an organism as a self-organising, adaptive, complex, dynamic sys-
tem providing an information framework with global constraints and multiple
feedback and regulation paths between high and low levels (e.g. controlling
gene expression); the sub-modules are too inextricably connected, there are
too many interactions between levels, for a one-way hierarchy to be possible
[Noble, 2002]. Biologists now experiment not just in-vivo and in-vitro, but
increasingly in-silico. These in-silico experiments are the basis for what we
term bioscience computing.

1.1.2 Modelling and simulation
The primary aims of modelling and simulation in biology are to improve

understanding of a process or hypothesis, to highlight gaps in knowledge, and

1A glossary of biological terms is provided in Table 1.1 at the end of this chapter.

Christopher D. Clack
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to make clear, testable predictions [Kirkwood et al., 2003]. Note, however,
that an in-silico experiment itself can never truly be used to test a biological
hypothesis — rather, computational simulation in biology should be viewed as
a process of prototyping to assist hypothesis formulation.

Wet-lab experimental techniques tend to focus analytic attention on single
mechanisms. By contrast, computational simulation can contribute to the activ-
ity of synthesis, of integrating many separate elements that form a network of
activity. The resultant interaction and synergy can provide a qualitatively much
improved experimental framework. These in-silico results may then guide the
choice of (more expensive) subsequent wet-lab experiments.

proaches which generally represent qualitative features of a system, to low-
level mechanistic simulations which typically represent quantitative aspects
(though abstraction and quantification need not be mutually exclusive con-
cepts [Ideker & Lauffenburger, 2003]). Examples of available techniques in-
clude statistical data-mining, clustering and classification (e.g. support vector
machines), Bayesian networks, Markov chains, fractal theory, Boolean logic,
and fuzzy logic. At the mechanistic extreme there are cellular automata and
agent-based simulations. Differential equations are widely used and capable
of capturing detail at varying levels of abstraction. See Figure 1.1.

Statistical
mining

Bayesian
networks

Markov
chains

Cellular
automata

(Partial) differential equations

Phenomenological
global state
a-priori variables & relations

Mechanistic
local state

adaptive

Figure 1.1. Comparative spectrum of available techniques.

Phenomenological models tend to focus on the global state of a system. Of-
ten they describe an a-priori given set of relations between an a-priori given
set of variables [Giavitto et al., 2002]; the two sets cannot evolve jointly with
the running system, and very few of these models successfully capture a rich
enough semantics to be able to predict complex behaviour [Anderson & Chap-
lain, 1998]. By contrast, mechanistic models provide local interaction mod-
elling, where cells react (often adaptively) to a local environment, not to the
state of the system as a whole (thereby supporting heterogeneity). This leads

Techniques. There is a wide spectrum of techniques available to support
modelling and simulation, ranging from high-level phenomenological ap-

to a rich model of spatiotemporal dynamics, and offers insights into the

Bioscience Computing and Computational Simulation in Biology
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Differential equations and partial differential equations provide an excellent
mechanism for detailed expression of behaviours of many kinds, but are unsat-

In

An interesting mechanistic approach is the use of cellular automata — e.g.
Scalerandi’s 2D model of cardiac growth dynamics [Scalerandi et al., 2002].
When coupled with agent-based modelling, using a ‘swarm’ of thousands of
tiny agents (a mechanism itself inspired by nature) each representing a separate
macromolecule, this method has the advantages of both mathematical simplic-
ity and that the spatiotemporal fates of individual components (cell, proteins
etc.) can be tracked in minute detail. The resulting system is very good at rep-
resenting spatiotemporal dynamics and organisational behaviour, particularly
for the simulation of adaptive behaviour.

Objects and processes. The specific attraction of computational simulation
is that the computational approach corresponds more naturally to the way that
biologists think about their subject. Biologists (in particular molecular biolo-
gists) naturally focus on objects, interactions and processes.

Computational simulation permits biologists to express biological systems
in terms of computational objects, interactions and processes that relate di-
rectly to their biological counterparts and are therefore far easier to under-
stand and easier to manipulate than differential equations. Computational
simulations can be expressed in terms of information networks and can use
interaction-centric models (e.g. local-neighbourhood operations within a cel-
lular automaton grid), all of which naturally map onto (for example) cell struc-
ture and the interaction of macromolecules.

The experience of systems biology has been that biologists have increas-
ingly adopted the computational systems concepts of computer scientists. This
should not come as a surprise, since computer scientists have extensive ex-
perience of building, modelling, and simulating complex systems that require
analysis and synthesis at many different levels of abstraction.

parameters and mechanisms responsible for system dynamics [Gatenby &
Maini, 2003] and for collective organisational behaviour at the microscopic
level [Patel, 2004].

McElwain, 2004]. For example, where precise local effects due to inter-
isfactory for some highly detailed spatiotemporal behaviours [Araujo &

molecular interactions and random molecular movement are required, a great
number of equations must be generated and solved [Succi et al., 2002].
practice, the computational limits on solving a large number of related partial
differential equations leads to the technique normally being applied only to
abstractions of internal mechanisms and processes.

Christopher D. Clack
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1.1.3 A computational approach to biological complexity
The computational approach to biology enables simulations as dynamic

emergent hierarchies of biological complexity, with interactions and feedback
between the levels, for example as illustrated in Figure 1.2. At the lowest level,
system components are lightweight agents governed by local-neighbourhood
rules. The rules provide the system of dynamic interaction between agents,
and from this comes the self-organising properties of the simulated organ-
ism (threshold parameters may need to be derived via automatic search meth-

neighbourhood rules, the regulatory effects that arise from the self-organising
properties of those rules, and sets of global constraints (which may be derived
from experimental observation). The result is a complex, dynamic system,
which can itself be considered as an agent in a larger network of agents of simi-
lar complexity, each undergoing interactions according to local-neighbourhood
rules at a higher level, and from which yet more complex behaviour emerges.

co-operative & competitive
agent interactions

rules of
interaction

emergent
regulatory

effects

stochastic
non-chaotic
patterns of
behaviour

Higher-Level
Agents

Higher-Level
Self Organisation

Higer-Level
Emergence

Global Constraints

co-operative & competitive
agent interactions

rules of
interaction

emergent
regulatory

effects

stochastic
non-chaotic
patterns of
behaviour

Agents Self Organisation Emergence

Global Constraints

Emergent regulatory effects
can constrain behaviour at the
same level or at any other level This dynamic, complex system

is itself an agent in a higher-
level system (above)

Figure 1.2. The dynamic emergence of hierarchies of biological complexity.

ods). The emergent behaviour of the system is dependent on a combination
of the competitive and co-operative interactions of the underlying local-

hierarchy of levels each can constrain the realisable solutions of the other
While emergent behaviour has the potential for chaotic results, in a

Bioscience Computing and Computational Simulation in Biology
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1.1.4 Summary: The role of bioscience computing
The first part of this chapter has explored the role of bioscience computing

in biology and argued that it is both timely and well-suited to the emergence of
systems biology: it provides in-silico experiments; focuses on interactions and
integration of concurrent mechanisms; is intimately involved in the formula-
tion of biological hypotheses; manipulates objects, processes and interactions;
is mathematically straightforward, with a low barrier to uptake; and captures
rich spatiotemporal detail at low computational cost.

1.2 Simulating adaptive behaviour
This second part provides a concrete example of the bioscience computing

techniques discussed in the first part of this chapter, and presents the artificial
cytoskeleton, a computational simulation of the development and adaptation of
the shape and form of an organism: morphogenesis. The work is more fully
described by Bentley & Clack [2004; 2005].

Organisms in nature exhibit complex adaptive behaviour that far surpasses
the ability of current state-of-the-art autonomous software and robotics. Our
research focuses on morphological adaptation, the continuous lifetime re-
configuration of phenotypic form (shape) exhibited by natural systems in or-
der to continue to survive in a changing environment. Many unicell organisms
exhibit complex adaptations of their shape in rapid response to environmental
changes — e.g. fibroblast cells change shape to assist movement during wound
healing, and immune system cells change shape to eat invading bacteria —
even though they have no centralized control system. We aim to understand
the underlying mechanisms and principles that govern this adaptive behaviour,
to explore the concept of morphological adaptation as a mapping from envi-
ronment to phenotype rather than merely from genotype to phenotype, and to
draw inspiration from those mechanisms to improve the adaptive behaviour of
artificial systems.

The detailed spatiotemporal aspects of morphogenesis are difficult to com-
pute using partial differential equations and so we turned to a bioscience com-
puting technique; a cellular automaton and agent-based computing using a very
large number of simple agents (‘swarm’ agents).

1.2.1 The artificial cytoskeleton
Our mechanism, the ‘artificial cytoskeleton’, is closely modelled on the eu-

karyotic cytoskeleton, a complex, dynamic network of protein filaments which
extends throughout the cytoplasm and which gives the cell dynamic structure

levels — thus, an understanding of dynamic emergence in complex hierarchies
is a fundamental step in understanding the underlying mechanisms of biology.

Christopher D. Clack
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In particular actin cytoskeleton microfilaments are involved

3D cellular automaton (CA) rules to allow proteins to exist and interact with
their 26 nearest neighbours in a 3D voxellated environment. The agent-based
swarm technique permits the modelling and tracking of individual components
and their interactions. The CA simplifies visualization, supports 3D spatial
placement and movement, and reduces system complexity. The combination
of the two techniques (agent-based swarm and CA) provides opportunities for
optimizing computational overhead (e.g. it is not always necessary to compute
interactions for all cells in the CA — only those that contain or abut an agent).
The CA rules for chemical diffusion and agent interactions can be checked
against current understanding of the biology.

toskeleton via a pathway of protein reactions: the transduction pathway (TP).
See Figure 1.3. For efficiency, the artificial cytoskeleton and transduction path-
way comprise only a small selection of proteins — just those necessary for a
particular experiment. The artificial cytoskeleton’s non-rigid form permits it to
disassemble rapidly and re-form in a more advantageous distribution; it con-
stantly responds to environmental cues by reorganizing, i.e. altering the cell’s
internal topography and the membrane morphology.

tural proteins (actin and a nucleator), which make up the filaments, and several
accessory proteins, which regulate a filament’s behaviour (e.g. inhibiting, ac-
tivating, severing, bundling). Environmental signals filter into the cell via the
transduction pathway, affecting concentrations of accessory proteins and struc-
tural protein behaviour. The cooperative and competitive interactions of these
structural and accessory proteins can dramatically alter the cytoskeleton’s fila-
mentous structure, affecting the shape and structure of the cell as a whole, and
resulting in rich diversity in cell shape [Alberts et al., 1994].

The protein interactions are defined by a set of functions; these functions
encapsulate the complete mapping from environmental cues to cell morphol-
ogy (which in turn may affect the environment). We call this function set the
‘environment-phenotype map’ (or ‘E-P map’). Different cell behaviours may
require different E-P maps. The following explanation of the underlying mech-
anism will focus on the E-P map for chemotaxis; see Figures 1.3 and 1.4.

Each voxel in the cellular automaton contains one of the following units:

1. environment which may contain concentrations of a chemoattractant ‘C’.

2. cytoplasm which may contain concentrations of the protein profilin;

and function.
in rapid changes to membrane shape in response to environmental signals
[Alberts et al., 1994]. We use agent-based swarm techniques combined with

receptors (sensors) in the membrane relay external signals to the artificial cy-
The artificial cytoskeleton resides within a membrane-bound ‘cell’ and

The underlying mechanism. The artificial cytoskeleton consists of struc-

Bioscience Computing and Computational Simulation in Biology
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Figure 1.3. A generalized environment-phenotyope map. The cytoskeleton is affected by
input from the environment (Env) via the transduction pathway (TP) and can affect the shape of
the cell, and thereby also the environment.

Figure 1.4. The environment-phenotype map as by Bentley & Clack [2004] abstracted from
the biological pathway for fibroblast chemotaxis. The simplified transduction pathway (TP)
contains a receptor and two macromolecules PIP2 and WASP, which convey information to the
artificial cytoskeleton (ArtCyto).

Christopher D. Clack
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3. an agent which may be either:

actin: which may be in the states S-actin (inactive), P1, P2, or F-actin
(in a filament) and which has 2 opposing binding sites (‘+’,‘ ’); or

a nucleator: the protein complex ‘Arp 2/3’, which may be switched on
or off and has one binding site.

The interactions of these two agents drive the creation, growth and dis-
association of actin filaments. The growth of actin filaments forces local
membrane shape changes, therefore altering the cell’s overall shape.

4. cell membrane which may contain a receptor and/or the two transduction
pathway proteins WASP and PIP2.

The membrane separates the cell from the environment. Initially, no
membrane units contain WASP or PIP2 but each has a probability of
containing a receptor.

Cell surface receptors are embedded in the membrane and mediate sig-
nals from the external environment to the cytoskeleton. Membrane units
containing receptors sum the concentration of C in their adjacent envi-
ronment voxels. If the sum exceeds a threshold, a cascade reaction inside
the cell is triggered; WASP and PIP2 are activated for the receptor and
for its adjacent membrane voxels. If the receptor deactivates, WASP and
PIP2 deactivate. See Figure 1.5.

The WASP proteins, when activated by a receptor, recruit agents nucle-
ator and P1 actin to the membrane (see below for a further explanation
of recruitment). A recruited nucleator agent will switch on and recruited
P1 actin changes state to P2 actin. Activated PIP2 releases a one-off
plume of protein profilin which diffuses through cytoplasm units. Deac-
tivated PIP2 causes removal of all profilin in the membrane unit’s adja-
cent cytoplasm voxels [Holt & Koffer, 2001].

Protein behaviour is governed by both general rules and specific rules of
interaction. The general rules are:

1. Diffusion: accessory proteins are represented as concentration gradients
which diffuse through cytoplasm voxels. Diffusion is calculated as by
Glazier & Graner [1993]; each cytoplasm voxel has a protein threshold,
the excess being evenly distributed to its cytoplasm neighbours.

2. Random movement: when not bound or stuck, an agent moves randomly.
When it moves to a new position, the protein concentration currently in
that position is diffused away and the voxel acquires the agent’s identi-
fier; the agent’s previous voxel becomes cytoplasm.

–
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Figure 1.5. Artificial cytoskeleton interactions. Receptors detect chemoattractant, WASP and
PIP2 activate and cause the cytoskeletal behaviours shown in stages 1 6, see text for details.

3. Recruitment: the biological concept of recruitment of proteins, to a spe-
cific protein S, is modelled as follows: an agent follows random move-
ment until it encounters an S in its nearest neighbours. It then can only
move such that an S is still in its nearest neighbours. Recruitment stops
if there is no S nearest neighbour.

The specific rules of interaction for the chemotaxis environment-phenotype
map consist of rules governing actin filament formation (and destruction) and
rules governing modifications to the shape of the cell membrane. These are
illustrated in Figure 1.5 and the stages are described in detail below:

An actin filament (AF) is created when a nucleator agent combines with an
actin agent. Figure 1.5 illustrates a chain of F-actin agents ‘F’ and a nucleator
(‘Arp2/3’). Each F-actin agent has two binding sites (‘+’/‘ ’): filament growth
occurs at the end with the exposed ‘+’ binding site. Subsequently other actin
agents may join the filament by attaching to an actin agent already in the fil-
ament. Over time the nucleator disassociates (and un-sticks) from its AF and
deactivates (stage 1). Similarly actin in a filament (F-actin) loses affinity for
the filament allowing cofilin (a severing protein) to disassociate it; it then gets
sequestered and changes to the inactive S-actin state (stage 2). Disassociation
always occurs at the filament’s ‘ ’ end. The actin or nucleator agent disassoci-
ates with a probability that increases with time spent in a filament. As the ‘+’
end of the filament grows, the ‘ ’ end shrinks and the filament, as a higher level
entity, moves towards the membrane.

Actin agents are initiated in the inactive state S-actin; S-actin units sum
the concentration of profilin in their nearest neighbours — if it exceeds the
threshold then the actin binds to profilin and changes to state P1, removing
an amount of profilin from the surrounding cytoplasm (stage 3). P1 actin is
recruited to active WASP to form P2 (stage 4). After recruited movement,

–

–

–

–
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if P2 actin has an actin filament ‘+’ site in its nearest neighbours, it binds
to it, changes state to F-actin, releases profilin to the surrounding cytoplasm,
and moves to the nearest neighbour cytoplasm voxel that permits its ‘ ’ site to
directly abut the actin filament ‘+’ site (stage 5).

A nucleator agent activates when recruited by WASP and then can nucleate
(start) actin filaments and set their orientation by binding to a P2 actin agent in
its nearest neighbours (also see push-out rule below). If there is a fully bound
F-actin nearest neighbour, then a nucleator can also ‘stick’ to it and nucleate a
branch actin filament (stage 6 [Alberts et al., 1994]).

There are three interactions affecting the cell membrane:

1. A gap must exist or be created between the AF’s ‘+’ end and the mem-
brane to allow P2 actin to bind either to F-actin or a nucleator. Adjacent
membrane is ‘pushed-out’ — the membrane voxels become cytoplasm
and the adjacent environment voxels become membrane (C is diffused
away first).2 The precise biology for this process is unclear [Condeelis,
2001].

2. To keep cytoplasm volume constant following ‘push-out’, the cytoplasm
or agent (but not F-actin) voxel within the cell that is furthest from the
newly created cytoplasm is replaced with a membrane voxel (any af-
fected profilin or agent is displaced).

3. If a membrane unit has no contact with inner cellular units, it is removed
(becomes an environment unit); this ensures there are no doubled-up
layers of membrane.

The combination of the above three interactions contracts the cell at the
opposite side to a leading edge and allows the cell’s centre of mass to move.

Experiments. Chemotaxis experiment. The artificial cytoskeleton was tested
in a simple experiment based on animal cell chemotaxis, requiring the cell to
undergo transformations in form in response to an external chemical stimulus.
The specific E-P map for our chemotaxis experiment [Bentley & Clack, 2004]
is given in Figure 1.4. The artificial cytoskeleton’s response to the stimulus
mimicked that of a real fibroblast cell (Figure 1.6), forming a leading edge
with protrusions. It moved towards the chemical source purely by lifetime
adapation of shape: see Figure 1.7.

Phagocytosis experiment. In nature, a single adaptive mechanism is able to
provide different morphologies in response to different environmental stimuli.

2After implementing this rule, a nucleator would switch off as it would no longer have WASP nearest
neighbours, so we permit a nucleator to remain switched on if any of its 26 nearest neighbours or any of
their surrounding 98 voxels contain WASP.

–
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For example, compare chemotaxis (movement morphology) with phagocyto-
sis (ingestion morphology): these two examples are distinct both topologically
and functionally, yet are known to be controlled by the same underlying bi-
ological mechanism. In chemotaxis, a cell detects a chemical gradient and
transforms its morphology in order to follow it to the source. By contrast,
phagocytosis is the process of engulfment of a foreign particle for degradation
or ingestion [Castellano et al., 2001]; a fairly universal cell function relying on
profound rearrangements of the cell membrane.

In phagocytosis, cell surface receptors trigger and bind to the particle, teth-
ering it; this causes reactions involving the same proteins downstream as in
chemotaxis, but leading to a different morphology — in this case, internal
structure change near the edge touching the particle causes an enclosing con-
cave morphology called a ‘phagocytic cup’; see Figure 1.8. The simulated
morphology is shown in Figure 1.9 — by comparing the medial axis functions
for chemotaxis and phagocytosis shapes, we were able to demonstrate a bifur-
cation of morphology based on a single E-P map; this is a clear demonstration
of the potential of E-P maps, and of our ability to reproduce the multifunction-
ality of nature in our artificial simulations.

Figure 1.6. Figure 1.7. Simulation of chemotaxis
leading edge morphology.

Figure 1.8.
the cup forms around the particle.

Figure 1.9. Simulation of phagocytic
cup morphology (particle not shown).

Leading edge morphology
(top left) during chemotaxis movement.

Phagocytic cup morphology

Christopher D. Clack
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1.3 Impact and future directions for bioscience computing
In the computer sciences. An improved understanding of the internal mech-
anisms and organisational principles of adaptive behaviour and lifetime plas-
ticity, especially adaptation of morphology, will provide foundational results
that are applicable to many forms of adaptive response. The improved under-
standing of plasticity will provide the basis for a new breed of software sys-
tems that are adaptable to continuously changing, dynamic and unpredictable
environments, are robust in the face of unexpected change, and are efficient.
This includes improvements to synthetic systems such as autonomous soft-
ware agents (e.g. as used for trading and fund optimisation in the financial
markets, which need to adapt to a constantly changing environment — note
that ‘shape’ may be remapped into an analogous concept such as asset alloca-
tion), automatic design systems for physical artefacts, some automatic systems
in clinical medicine, some control systems in the automotive and aeronautical
industries, and embodied robots (which currently either have a fixed shape or
comprise several modular units that may be dynamically reconfigured).

As in nature, when a software agent alters its ‘shape’, it alters its exposure
to and interaction with its environment. Further benefit will be in the area
of mechanisms for the distributed control of adaptive response. Overall, the
impact of our work will be better designed, more robust, more reliable, more
adaptable, more efficient and more effective systems.

In the life sciences.
simulation techniques from our collaborators at the Natural History Museum
(NHM), at the UCL Department of Oncology, and elsewhere. For example,
with the UCL Department of Oncology we are currently using agent-based
swarm techniques to simulate the transport of antibody-based drugs through
the extra-cellular matrix during cancer therapy, aiming to improve understand-
ing and increase the efficacy of therapy. A particular attraction is the use of
computational simulation as a biologist’s ‘hypothesis prototyping tool’, and the
fact that the simulation permits the fate of individal molecules to be tracked.

Collaboration with the Natural History Museum (NHM). Our initial work
with the NHM was a study of the morphogenesis of diatoms (single-celled
algae), whose patterned cell walls are thought to be an adaptive response to
their environment. Diatoms are one of the most important groups of primary
producers on the planet, which have thousands of forms and behaviours, each
adapted to a different environment. If their adaptive response to environmental
pressure were better understood, they would be a good bio-indicator of changes
occurring in the natural environment [Davey & Crawford, 1986].

The observable diatom cell wall morphologies are not explicable by the
electron microscopy studies reveal that the

There is much current interest in our computational

physics of diffusion alone;

Bioscience Computing and Computational Simulation in Biology



16

also incorporate the use of cytoplasmic organelles as moulds for different cell
wall components. Our simulation of cell wall morphogenesis used the artifi-
cial cytoskeleton to represent the physical position of cell wall and cytoskeletal
components, and a genetic algorithm to evolve the cytoskeletal control mech-
anism. Our model generated representations of diatom cell walls that were,
at each stage of development, consistent with empirical observations and ex-
hibited some of the functions of diatom cell walls. More importantly, under-

effects and developmental genetic encoding. This was a significant advance
in understanding for the NHM and a fruitful collaboration for both parties, for
example leading to three research publications: [Bentley et al., 2005], [Bentley
& Clack, 2004] and [Bentley & Clack, 2005].

We are currently seeking funding to conduct a further experiment to aid the
NHM in the understanding of diatom colony behaviour. Certain species of
diatom have developed a complex set of interactions during morphogenesis,
which allows them to form and disband colonies, triggered by environmental
cues and giving them a greater chance of survival (e.g. by altering sinking rates
to optimize nutrient and light exposure). In general, a colony-forming diatom
will, upon cell division, grow two new cells such that their abutting cell walls
interlock and hold the cells together; this continues until the filament reaches
a certain average length, then (statistically) the most central dividing cell will
divide into two new cells that do not interlock, thus dividing the filament in
two [Davey & Crawford, 1986]. Diatom colony formation is an explicit and
interesting example of morphological adaptation to environmental changes;
it is a type of cyclomorphosis (where adaptation cycles through two or more
forms). There has been a large amount of speculation as to how and why certain
species of diatom form colonies; it contributes to current understanding within
diatom research, and also provides a good model to improve understanding of
the hierarchical adaptive systems that underlie morphological plasticity.

1.4 Summary and conclusions
Bioscience computing draws inspiration from biology to solve computer sci-

ence challenges and simultaneously uses new bio-inspired adaptive software to
simulate biological systems. It is a rapidly emerging field for interdisciplinary

Biologists have a computational, process-oriented understanding of their
subject — they think in terms of objects, interactions and processes: processes
are more important than the end result; dynamic behaviour is more impor-

cytoskeleton is intimately involved in the patterning of the cell wall and may

improved; e.g. the need to consider not only genetics but also environmental
standing of the mechanism of the cytoskeleton during morphogenesis was

sciences.
research, with synergistic benefits for both computer science and the life

Christopher D. Clack
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tant than equilibrium; and behaviour and interactions of individual objects are
important. Computational simulation provides in-silico experiments as a pro-
totyping technique for hypothesis formulation that more directly maps to the
biologists’ understanding of their subject, and can more directly assist their
thought processes. The process-oriented approach to simulating biological
complexity leads to an increased understanding of dynamic emergence and
regulatory interaction and control: this is a fundamental step towards a future
theory of biology.

The artificial cytoskeleton has been presented as an example of the computa-
tional simulation techniques of bioscience computing, illustrating real benefits
accruing to both computer science and the life sciences.

Acknowledgements
research contributions of the following colleagues are

nowledged: Katie Bentley (artifical cytoskeleton, PhD student),
Cox (diatom morphology, NHM), Dr. Sylvia Nagl (oncology
matical biology) and Manish Patel (model integration, PhD

cs.ucl.ac.uk/research/bioscience).

References
Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson [1994]. Molecular Biology

of The Cell. Garland Publishing, 3rd edition.
Anderson, A.R.A., and M.A.J. Chaplain [1998]. Continuous and discrete mathematical models

of tumour-induced angiogenesis. Bulletin of Mathematical Biology, 60:857–900.
Araujo, R., and D. McElwain [2004]. A history of the study of solid tumour growth: The con-

tribution of mathematical modelling. Bulletin of Mathematical Biology, 66:1039–1091.
Bentley, K., and C.D. Clack [2004]. The artificial cytoskeleton for lifetime adaptation of mor-

thesis of Living Systems (ALIFE IX), pages 13–16.
Bentley, K., and C.D. Clack [2005]. Morphological plasticity: Environmentally driven mor-

phogenesis. Proceedings of the 8th European Conference on Artificial Life (ECAL 2005),
Lecture Notes in Artificial Intelligence, 3630:118–127.

Bentley, K., E. Cox, and P. Bentley [2005]. Nature’s batik: A computer evolution model of
diatom valve morphogenesis. Nanoscience and Nanotechnology Journal, 5(1):25–34.

Castellano, F., P. Chavrier, and E. Caron [2001]. Actin dynamics during phagocytosis. Seminars
in Immunology, 13:347–355.

Condeelis, J. [2001]. How is actin polymerization nucleated in vivo? TRENDS in Cell Biology,
11(7):288–293.

Davey, M.C., and R.M. Crawford [1986]. Filament formation in the diatom melosira granulata.
Journal of Phycology, 22:144–150.

Gatenby, R.A., and P.K. Maini [2003]. Mathematical oncology: Cancer summed up. Nature,
421:321–324.

The gratefully ack-
Dr. Eileen

and mathe-
student).

All are members of the UCL BioScience Computing Interest Group (www.

phology. SODANS Workshop proceedings of the 9th Intl. Conf. on the Simulation and Syn-

Bioscience Computing and Computational Simulation in Biology



18

Giavitto, J-L., C. Godin, O. Michel, and P. Prusunkiewicz [2002]. Modelling and Simulation of
Biological Processes in the Context of Genomics, chapter Computational Models for Inte-
grative and Developmental Biology. Hermes.

Glazier, J.A., and F. Graner [1993]. Simulation of the differential adhesion driven rearrangement
of biological cells. Physical Review E, 47(3):2128–2154.

Holt, M.R., and A. Koffer [2001]. Cell motility: Proline-rich proteins promote protrusions.
TRENDS in Cell Biology, 11(1):38–46.

Ideker, T., and D. Lauffenburger [2003]. Building with a scaffold: emerging stategies for high-
to low-level cellular modelling. Trends in Biotechnology, 21(6):255–262.

Kirkwood, T.B.L., R.J. Boys, C.S. Gillespie, C.J. Proctor, D.P. Shanley, and D.J. Wilkinson
[2003]. Towards an e-biology of ageing: Integrating theory and data. Nature Reviews, Mole-
cular Cell Biology, 4:243–249.

Noble, D. [2002]. The rise of computational biology. Nature Reviews, Molecular Cell Biology,
3:460–463.

Patel, M. [2004]. Internal report. Department of Clinical Oncology, UCL.
Priami C. (ed.) [2003]. Proc. 1st Workshop Computational Methods in Systems Biology.

Springer.
Scalerandi, M., B. Capogrosso Sansone, C. Benati, and C.A. Condat [2002]. Competition effects

in the dynamics of tumor cords. Physical Review E, 65(5 Pt 1):051918.
Succi, S., I.V. Karlin, and H. Chen [2002]. Colloquium: Role of the h theorem in lattice boltz-

mann hydrodynamics simulations. Reviews of Modern Physics, 74:1203–1220.

Table 1.1. Glossary of biological terms.

term description

actin A protein that links into chains (polymers), forming microfilaments
in muscle and other contractile elements in cells.

allele The precise sequence of nucleotides for a specified gene.
cellular secretion The escape of substances from a cell to its environment.
chemotaxis Migration of cells along a concentration gradient of an attractant.
chromosome The self-replicating genetic structure of cells containing the cellular

DNA that contains the linear array of genes.
cytoplasm The contents of a cell (but not including the nucleus).
cytoskeleton A system of molecules within eukaryotic cells providing shape, in-

ternal spatial organization, and motility, and may assist in communi-
cation with other cells.

diatoms Microscopic algae with cell walls made of silicon and of two separat-
ing halves.

eukaryote A cell or organism with a membrane-bound nucleus (and other sub-
cellular compartments). Includes all organisms except viruses, bacte-
ria, and bluegreen algae.

extracellular matrix
(ECM)

Any material produced by cells and secreted into the surrounding
medium. The properties of the ECM determine the properties of the
tissue (e.g. bone versus tendon) and can also affect the behaviour of
cells.

fibroblast A cell found in most tissues of the body, involved in wound repair
and closure; they migrate towards the wound site via chemotaxis.
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Glossary of biological terms.

term description

gene The fundamental unit of heredity; a sequence of nucleotides in a par-
ticular position on a chromosome that encodes a specific functional
product (e.g. a protein).

gene expression The process by which a gene’s coded information is translated into
the structures present and operating in the cell (either proteins or
RNA).

genome The set of different types of gene for a specified organism, distin-
guished by allele type and position on the chromosome.

genotype The set of different gene alleles existing in an organism.
leukocyte A white blood cell, an important component of the body’s immune

system.
macromolecule A molecule composed of a very large number of atoms. Includes

proteins, starches and nucleic acids (e.g. DNA).
metabolic pathway A series of chemical reactions in a cell resulting in either a metabolic

product to be used/stored by the cell or the initiation of another
metabolic pathway.

morphogenesis The development and adaptation of the shape and form of an organ-
ism.

nucleotide A subunit of DNA or RNA.
organelle A membrane-bound structure in a eukaryotic cell that partitions the

cell into regions which carry out different cellular functions.
phagocytic cup An inward folding of the cell membrane creating an interior pocket,

formed by an actin dependent process during phagocytosis.
phagocytosis The engulfment of a particle or a microorganism by leukocytes.
phenotype The physical characteristics of an organism.
physiome The functional behavior of the physiological state of an individual or

species, describing the physiological dynamics of the normal intact
organism.

PIP2 Phosphatidylinositol [4, 5]-biphosphate; formed and broken down in
the cell membrane; mediates cell motility in fibroblast chemotaxis.

protist An organism with eukaryotic cells that is neither plant nor animal nor
fungi.

protrusions Thin fingerlike extensions from the surface of a cell.
WASP Wiskott-Aldrich syndrome protein. Regulates the formation of actin

chains.

Table 1.1 (contd).
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Chapter 2

THE MANY STRANDS OF DNA COMPUTING

Nevenka Dimitrova

Abstract Reaching the theoretical limit of Moore’s law has inspired new computing para-
digms. DNA computing uses properties of biomolecules and techniques from
molecular biology to perform computations, instead of using the traditional
silicon-based computer technologies. To date experiments have been performed
both in-vitro and in-vivo. In this chapter, we will give an overview and exam-
ples of the different implementations of DNA computing: molecular computing,
aqueous computing, DNA Turing machines, and the nascent field of synthetic
biology.

Keywords DNA computing, aqueous computing, molecular computing.

2.1 Introduction
The advances in biology since the discovery of the structure of the double

helix in 1953 can be only described as big strides. New areas of biology have
been born giving rise to new approaches in widely varied fields such as agri-
culture, medicine, and forensics. Most prominently, genomics and proteomics
have greatly improved our knowledge of the components of biological systems
at the molecular level. Scientists have elucidated the complete gene sequences
of several model organisms and provided general understanding of the mole-
cular machinery involved in gene expression. Next is the combination of dis-
parate types of data that interpret changes in genes, proteins, and metabolites
on a cellular level, to result in a set of parameters that can provide a definitive
means of diagnosis and evaluation of therapeutic intervention to alter disease
outcome.

Now, all these advances have also facilitated a change in attitude. We un-
derstand enough biology now to tinker with molecules in a predictable manner
and ‘compute’ the outcome. So the topic is to use biology with an engineer-
ing approach: to compute with molecules or to synthesize new reactions and
organisms with the available biological knowledge. In this chapter we will
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provide a brief overview of the advances in DNA computing and synthetic
biology.

We give an overview of DNA computing in Section 2.2 and the more nascent
field of synthetic biology in Section 2.3. In Section 2.4, we conclude and
suggest open new directions for future research.

2.2 DNA computing
DNA computing is a form of computing that uses DNA and molecular bi-

ology, instead of the traditional silicon-based computer technologies. This
field was started by Leonard Adleman of the University of Southern Cali-
fornia [Adleman, 1994]. In 1994, Adleman demonstrated a proof-of-concept
use of DNA as form of computation that was used to solve the Hamiltonian
path problem. Since the initial Adleman experiments, DNA computing has
made advances and has shown to have potential as a means to solve several
large-scale combinatorial search problems. There has been research over one-
dimensional lengths, two-dimensional tiles, and even three-dimensional DNA
graphs processing, self-assembling DNA graphs [Sa-Ardyen et al., 2003]. A
new term, natural computing, has been introduced to describe computing go-
ing on in nature and computing inspired by nature [Brauer et al., 2002]. The
advancements in the field include computing with membranes – P systems
[Paŭn, 2000]. A P system is a computing model which abstracts from the way
the alive cells process chemical compounds in their compartmental structure.
Benenson et al. [2003] constructed a DNA computer, coupled with an input
and output module, capable of diagnosing cancerous activity within a cell, and
then releasing an anti-cancer drug upon diagnosis [Benenson et al., 2004].

The field of DNA computing has been expanding greatly as evidenced by
the variety of topics covered at the 11th International Meeting on DNA Com-
puting, held in 2005 in London Ontario (see http://www.csd.uwo.ca/dna11/).
Here we decided to present only a cross section of approaches to DNA com-
puting: molecular computing, aqueous computing, and Turing machines.

2.2.1 Molecular computing
In 1994 Leonard Adleman published his paper: Molecular Computation of

Solutions to Combinatorial Problems [Adleman, 1994] in which he described
the experimental use of DNA as a computational system. He showed how to
solve a seven-node instance of the Hamiltonian Path problem, an NP-Complete
problem similar to the traveling salesman problem. While the seven-node in-
stance is considered a toy problem, this paper is the first known example of the
successful use of DNA to compute an algorithm.

In Adleman’s version of the Hamiltonian Path Problem (HPP), a hypothet-
ical salesman tries to find an optimum route through a set of cities so that he
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visits each city exactly once. As the number of cities increases, the solution
run time grows exponentially relative to the number of cities at which point
the problem requires brute force search methods. HPPs with a large number
of cities quickly become computationally expensive, making them less than
feasible to solve on even the latest super- or grid- computer. Adlemans demon-
stration only involves seven cities, making it in some sense a trivial problem.
If the problem involves a large number of cities the molecular computing ap-
proach would also be very difficult because of the required mass of molecules.
Nevertheless, his work is significant for a number of reasons:

It is the first time to combine computer science, chemistry, and biology.
It illustrated the possibilities of using DNA to solve a class of problems
that is difficult or impossible to solve using traditional computing meth-
ods.

It is an example of computation at a molecular level, potentially a size
limit that may never be reached by the semiconductor industry.

In an innovative way the DNA is used as a data structure to encode sym-
bols.

It showed the potential use of DNA as memory: We should note here
that DNA at 0.34 nm spacing between the bases, produces 18 Mbits per
inch (linear); or 1 million Gbits = 1 petabits/sq. inch. This is important
because current hard disk drives have a capacity of 400 GB. In research,
Seagate has reached densities of 50 terabits (Tb) per square. In 50 ter-
abits we can store over 3.5 million high-resolution photos, 2800 audio
CDs, 1600 hours of television, or the entire printed collection of the US
Library of Congress.

The computing machinery works at molecular levels with the use only
of DNA strands and enzymes.

It demonstrated the possibility for massively parallel computation, as
many enzymes can work on many DNA molecules simultaneously.

Consider the example of Figure 2.1, where we have to find a path from
Boston to Phoenix that visits each city exactly once. For this example, the
molecular solution is as follows.

Step 1. Represent the cities in the graph (i.e. encode) with single stranded
DNA sequences, as shown in Figure 2.2,

Step 2. Generate all possible connections (represented by edges in the
graph) using DNA hybridization. As shown in Figure 2.2, a connection be-
tween two cities is encoded by taking the complement of three letters from the
starting city ‘tac’ which is ‘atg’ and the complement of the first three letters of
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New York Detroit

Boston Ottawa

St. Louis Phoenix

Figure 2.1. An example HP graph.

the ending city ‘atc’, which is ‘tag’. The connection from Boston to Phoenix
is encoded as ‘atgtag’. In this manner, all the different connections can be
encoded.

Step 3. Select itineraries that start and end with the correct city. In this
step, the goal is to copy and amplify paths that start with Boston and end
with Phoenix. To achieve this, polymerase chain reaction (PCR) is used, with
primers that are complimentary to Boston and Phoenix.

Step 4. Select itineraries with the correct number of cities. In order to
achieve this, first the DNA is sorted by length, and then only chains with ex-
actly six cities are selected. In this process, so-called gel electrophoresis is
used to select the chains with six cities.

Step 5. Select itineraries that contain each city only once. To acheive this
goal, affinity purification is used to fish out the correct ending city with a
magnetic bead attached to the complement of the desired city, i.e. Phoenix,
as shown in Figure 2.3. We should note here that if there is more than one
solution then all the solutions will be attracted.

Step 6. The final answer is obtained by sequencing, i.e. reading, the output
or by using so-called graduated PCR.

2.2.2 Aqueous computing
Aqueous computing refers to a method of recording information on DNA

molecules while they are dissolved in water [Head et al., 2002b].
The resulting solution of information containing molecules is considered to

constitute a ‘fluid memory’. He also introduced schemes for reading infor-
mation from these molecules. A simple instance of the Satisfiability Problem
(SAT) of a set of boolean clauses was proposed. Given a set of boolean clauses
in a number of variables, the problem is to find truth values for the variables for
which the clauses are satisfied (true). A procedure for solving SAT is described
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Boston

t a c t a c

Phoenix

a t c g a c

Boston

t a c t a c

Phoenix

a t c g a c

Boston → Phoenix

a t g t a g

Figure 2.2. City and connection representation with DNA sequences.

Boston

t a c

New York

a g g t c g

Ottawa

g c a a c c

Detroit

t c t c t c

St. Louis

c g t c g g

Phoenix

a t c g a ct a c

a t g t c c a g c c g c t g g a g a g a g g c a g c c t a g

B → NY NY → O O → D D → SL SL → P

c t g

Figure 2.3. Affinity purification example.

by Head et al. [2002b] that illustrates the DNA computing method called the
aqueous algorithm. The wet-lab procedure for the aqueous computing has been
carried out in the laboratory of Susannah Gal. A projected transparency illus-
trated the reading procedure and confirmed that the computation was correctly
carried out. This work is part of a world-wide search for information storage
techniques and computational procedures that take advantage of the vast paral-
lelism of biomolecular operations. All known sequential solutions of the SAT
problem, which is NP-complete, require a number of steps that grows expo-
nentially in the size of the problem instance. The number of steps required
by the aqueous algorithm grows only linearly. Another application of aqueous
computing is the cardinality of a maximal independent subset of a graph has
been computed and reported by Head et al. [2000]. The cardinality of a mini-
mal dominating subset of a graph has also been computed by the same group.
The satisfiability of a set of four disjunctive clauses in three boolean variables
has been determined and reported by Head et al. [2002b], with preliminary re-
ports by Head et al. [1999]. The aqueous approach suggests a convenient way
to carry out computations in the style introduced by Lipton [1995]. Finding
the patterns in which non-attacking knights can be placed on a 3 3 chessboard
has been reported by Heat et al. [2002a].

×
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In aqueous computing there are three basic operations: partition, unite, and
write.

Partition is the action of fast replication of the entire memory, i.e. divid-
ing the memory into n segments

Unite is the fast action to merge separate units of fluid memory, yielding
a single uniform unit containing all the information that was present in
the previously separate units.

A write into memory is the bit alteration at the same station on every
word of memory in a given body of fluid. Although the words in a fluid
memory cannot be addressed individually, processes are available that
allow individual bit locations on each molecule to be addressed, with the
provision that the same bit location on every molecule in the memory
is acted on in the same way. We will call these crucial locations on the
molecule the stations of the molecule.

We should note here that this kind of abstract computation can be implemented
in different ways. One possibility is to use a protein or a polypeptide as the
molecule to write on, if writing can be done by attachment of anti-bodies to
specific sites on the peptide.

Next, we discuss how the operations Partition, Unite, and Write can be or-
chestrated to provide a useful computation. We will do this for the maximum
independent set problem.

For example, let us consider a procedure for determining the cardinality
of a maximum independent set in the graph G = (V,E), with vertex set V =
{a,b,c,d,e, f} and four undirected edges {a,b},{b,c},{c,d},{d,e}. Let m
be a molecule that possesses six stations, each admitting a write operation. We
designate these six stations with the vertices a, b, c, d, e, f , respectively. Also,
assume that the initial condition of each of the stations is a representation of
the bit ‘1’. A station at which a write has been performed will be regarded as
a representation of the bit ‘0’. This entails that when a write is performed at a
station, the bit ‘0’ is written at the station. If a ‘0’ has previously been written
at a station then a second write performed at that station is ‘0’ again, i.e. it
entails no change.

With each memory molecule, m, we associate a non-negative integer P(m).
At each phase of the computation, the value of P(m) will be the number of
stations that remain in their original condition, i.e. representing a ‘1’. Thus,
initially P(m) = 6 for each m. We also suppose that the molecules can be sorted
by this parameter and that the value of the parameter can be determined for
each of the classes resulting from the sort. Next, we introduce the procedure.
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Initialize test tube T0 to contain, in solution, a large number of the memory
molecules.T0 now contains only molecules that encode 111111 representing
the set {a,b,c,d,e, f}.

1. Partition T0 into tubes denoted as T1 and T2. In T1 write at station a; in
T2 write at station b.

2. Unite T1 & T2 into T0. After this step, T0 contains molecules represent-
ing 011111 & 101111, which encode the two subsets {b,c,d,e, f} &
{a,c,d,e, f} of the vertex set V .

3. Partition T0 into tubes T1 and T2. In T1 write at station b; in T2 write at
station c.

4. Unite the contents from T1 & T2 into T0. After this step, T0 contains
molecules representing 001111, 010111, 101111 & 100111.

5. Partition the contents of T0 into tubes T1 and T2. In T1 write at station c;
in T2 write at station d.

6. Unite T1 & T2 into T0. After this step, T0 contains molecules representing
000111, 001011, 010111, 010011, 100111, 101011, 100111 & 100011.

7. Partition T0 into tubes T1 and T2. In T1 write at station d; in T2 write at
station e.

8. Unite T1 & T2 into T0. After this step, T0 contains molecules representing
000011, 000101, 001011, 001001, 010011, 010101, 010011, 010001,
100011, 100101, 101011, 101001, 100011 & 100001, each representing
an independent set.

9. Sort the memory molecules m remaining in T0 according to their values
P(m).

The cardinality of a maximum independent set of vertices in the graph G is
max{P(m)|m ∈ T0}.

In the present case, the largest parameter value is expected to be attained by
the molecules representing 101011. For each such molecule m, P(m) = 4 and
m represents the set {a,c,e, f}, i.e., the expected maximal independent set.

One can think of the above program as follows: a FOR loop that is traversed
once for each edge of the graph G; followed by a Sort treated as a single step.
The number of steps required to find the cardinality of a maximal independent
subset of a graph, following this abstract program, grows linearly in the num-
ber of edges of the graph. Finding such a cardinal number for a graph is, of
course, one of the classical complete algorithmic problems [Garey & Johnson,
1979]. Of course one limiting factor for graphs with large number of edges
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would be the number of molecules that are required to provide the solution. In
addition, if a solution contains a huge number of different molecules the ques-
tion is whether these molecules can find and bind with each other therefore
posing a question whether the write actions can be performed in constant time.
Consequently, the finding of a high-speed dependable technology for imple-
menting this abstract aqueous program would be a substantial contribution to
computing.

2.2.3 DNA approach to Turing machines
One of the most exciting moments in DNA computing was the physical real-

ization of an abstract Turing machine using DNA molecules [Benenson et al.,
2001]. The paradigm is to use DNA as software, and enzymes as hardware.
The way in which these molecules undergo chemical reactions with each other
allows simple operations to be performed as a byproduct of the reactions. The
devices can be controlled by the composition of the DNA software molecules.
Of course this is a completely different approach as compared to pushing elec-
trons around a dry circuit in a conventional computer.

Turing machines. In the 1930’s several mathematicians began to think about
what it means to be able to compute a function. Alan Turing and Alonzo
Church independently arrived at equivalent conclusions. As we might phrase
their common definition now, a function is computable if it can be computed
by a Turing machine.

In fact, a Turing machine (TM) is a very simple machine. Yet, a TM has
the power of any digital computing machinery. A Turing machine processes
an infinite tape. This tape is divided into squares (cells), any square of which
may contain a symbol from a finite alphabet, with the restriction that there can
be only finitely many non-blank squares on the tape. The TM has a read/write
head positioned at some square on the tape. Furthermore, at any time, the
Turing machine is in any one of a finite number of internal states. The Turing
machine is further specified by a set of instructions of the following form:

(currentState, currentSymbol, nextState, newSymbol, left/right).

This instruction means: if the TM is now in currentState, and the sym-
bol under the readwrite head is currentSymbol, change its internal state to
nextState, replace the symbol on the tape at its current position by newSymbol,
and move the readwrite head one square in the given direction (left or right). If
a Turing machine is in a condition for which it has no instruction, it halts.

DNA implementation of Turing machines. In 2001 Shapiro and colleagues
introduced the first version of a Turing machine (biomolecular computer) cre-
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ated in a test tube capable of performing simple mathematical calculations [Be-
nenson et al., 2001; Regev et al., 2002]. In this implementation they used ATP
molecules for energy. An improved design that uses its input DNA molecule
as its sole source of energy, was introduced in 2003 [Benenson et al., 2003].

In this approach, symbols are encoded with 5 base pairs: the symbol a is
encoded by ‘tggct’, the symbol b is encoded by ‘gcagg’ and the terminal sym-
bol t is encoded by ‘gtcgg’. The sticky ends for state-symbol pairs are encoded
as follows: 〈S1,a〉 is encoded by ‘tggc’, 〈S1,b〉 is encoded by ‘gcag’, 〈S1, t〉 is
encoded by ‘gtcg’, 〈S0,a〉 is encoded by ‘ggct’, 〈S0,b〉 is encoded by ‘cagg’,
〈S0, t〉 is encoded by ‘tcgg’. The ‘hardware’ is implemented using the property
of the FokI enzyme and recognition site: FokI always recognizes the sequence
‘ggatg’ and then ‘cuts’ 9 and 13 nucleotides on the 5′ → 3′ and 3′ → 5′ strands,
respectively, leaving ‘sticky’ (not even) ends (see Figure 2.4). DNA stores en-
ergy, available upon hybridization of complementary strands or hydrolysis of
its phosphodiester backbone.

n g g a t g n n n n n n n n n n n n n
n c c t a c n n n n n n n n n n n n n

5′ 3′

FokI recognition
sequence 9 nucleotides

13 nucleotides

Figure 2.4. FokI enzyme recognition sequence and cutting action.

Figure 2.5 shows an example of the DNA molecules that embody the soft-
ware (i.e. transition rules): each molecule realizes a different transition rule by
detecting a current state and symbol and determining a next state. Each transi-
tion consists of a FokI recognition site, 〈state,symbol〉 detector molecule (four
nucleotides, single stranded). A so called spacer double stranded DNA of
variable length that determines the FokI cutting site inside the next symbol is
introduced. The spacers define the next state. There are empty spacers that re-
alize S1 to S0 transition, 1-base-pair long spacers that maintain the current state,
and 2-base-pair spacers that transfer S0 to S1. For transition T1, the molecule
contains the FokI recognition site, then one base pair spacer, followed by the
ccga which is the complement of 〈S0,a〉 (represented by ‘ggct’, as introduced
above). The software molecules (shown in Figure 2.5) effectively operate as a
family of cofactors of variable specificity to FokI enzyme, each determining a
specific FokI cleavage site on the input molecule. A fixed amount of software
and hardware molecules can process any input molecule of any length.

An example of an input molecule is shown in Figure 2.6 where the exposed
uneven (or ‘sticky’) end at the 5′ terminus of the DNA molecule encodes the

–
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g g a t g c
c c t a c g c c g a

T1: S0 → S0
a

g g a t g c c
c c t a c g g c c g a

T2: S0 → S1
a

g g a t g c
c c t a c g g t c c

T3: S0 → S0
b

g g a t g c c
c c t a c g g g t c c

T4: S0 → S1
b

Figure 2.5. DNA sequences representing transitions starting with state S0.

initial state and first symbol. Each symbol is encoded with 5 base pairs sepa-
rated by 3-base-pair spacers.

Figure 2.6 illustrates one computational cycle of the automaton. The com-
putation proceeds via a series of transition cycles. During each transition, the
hardware-software complex cuts and scatters one input symbol. This is exem-
plified with the input molecule that starts with ab . . . in the initial state S0 and
the transition S0

a→ S1. At the top of the figure there is a software molecule and
an input molecule. In the middle of the figure a ligated software-input mole-
cule is shown with the recognition site for the FokI enzyme. FokI cuts the input
molecule inside the next symbol as shown in the third row of the figure. We
should note here that the hardware-software molecules are recycled. Each sub-
sequent computational step of the automaton consists of a reversible hybridiza-
tion between a software molecule – and an input molecule, followed by an
irreversible software-directed cleavage (cutting) of the input molecule, which
drives the computation forward by increasing entropy and releasing heat. The
cleavage uses the capability of the restriction enzyme FokI, which serves as
the hardware, to operate on a noncovalent software-input hybrid. In Shapiro’s
initial implementation, the software-input ligation step consumed one software
molecule and two ATP molecules per step. In this implementation there is no
need for ligation, which means that a fixed amount of software and hardware
molecules can, in principle, process any input molecule of any length without
external energy.

Medical computer using DNA Turing machines. A novel application of the
DNA turing machine is to assess concentrations of specific RNA molecules
[Benenson et al., 2004] (in vitro), which may be overproduced or underpro-
duced, in specific types of cancer. Using pre-programmed medical knowledge,
the computer then makes its diagnosis based on the detected RNA levels. In
response to a cancer diagnosis, the output unit of the computer can initiate the
controlled release of a single-stranded DNA molecule that is known to inter-
fere with the cancer cell’s activities, causing it to self-destruct (apoptosis). In
case everything looks normal the drug does not get released.
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g g a t g c c
c c t a c g g c c g a

T2: S0 → S1
a5′ end

g g c t c c c g c a g g c c c
g g g c g t c c g g g

n n n g t c g g
n n n c a g c c

3′ end〈S0,a〉 spacer b spacer ... t

g g a t g c c
c c t a c g g c c g a

g g c t c c c g c a g g c c c
g g g c g t c c g g g

n n n g t c g g
n n n c a g c c

FokI recognition site 9 nt

13 nt

g g a t g c c
c c t a c g g c c g a

g g c t c c c g c a g g c c c

g g g c g t c c g g g
n n n g t c g g
n n n c a g c c

FokI cutting

g g c t c c c g g g c g t c

Processed input symbols

Figure 2.6. Software computation of the input sequence ab . . .

Critics question what is special about this method. In truth, the novelty of
their study does not lie in the method of recognizing cancer; they do rely on
existing diagnostic methodology. What is different about their approach is its
potential for performing diagnostics and therapy within tissue itself. Tradi-
tional diagnostic methods require tissue extraction, isolation of the molecular
marker in question, and its comparison to the normal tissue. The end goal for
the medical computer in the future is to be administered as a drug, and distrib-
uted throughout the body by the blood stream to detect specific disease markers
autonomously and independently in every cell. In this manner, a single cancer
cell could be detected and destroyed before the tumor develops.

The most interesting achievement to date in DNA computing is the pro-

four base codon framework by employing the protein synthesis mechanism
of E. coli. The best student paper award went to this paper. This is the first
in vivo implementation of a Turing machine paving the way to doctor-in-a-
cell/programmable DNA computer.

2.3 Synthetic biology
Synthetic biology is a nascent field that is leveraging natural structures as

ways of building things on the molecular scale. This is different from mole-
cular computing (or DNA computing) which is trying to solve NP-complete

The

grammable and autonomous in vivo computer using E. coli by Nakagawa
et al. [2005]. They implemented finite state automata based on their previous

synthetic Biology 1.0 conference was held at MIT on June 10–12, 2004.
mathematical problems with molecules, or compute with DNA. The first
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purpose of Synthetic Biology 1.0 was to ignite the formation of a tight-knit,
cooperative community of researchers that can tackle the scope and complex-
ity of synthetic biology’s challenges and consider potential misguided applica-
tions of future biological technology. ‘Synthetic biology’ is the blanket term
for a multidisciplinary attempt to identify a class of standard operational com-
ponents that can be assembled into functioning molecular machines. Central to
that effort is the ability to isolate discrete biomolecular mechanisms and define
standard interfaces for them so that they can be assembled in much the same
way as electronic circuits. This confluence of computer science and biology is
so remarkable that this new movement rises to the level of moon shot initia-
tives: to reverse-engineer life itself. Nanotechnologists are finding that natu-
rally occurring biological functions can be redirected to tasks such as building
molecular circuits.

Pharmaceutical companies are finding that naturally occurring metabolic
pathways in bacteria that produce useful drugs, are not as efficient as re-
engineered pathways. The approach taken by synthetic biology is that engi-
neered organisms represent the quickest route for a true nanotechnology that
could manufacture materials and systems on a molecular scale. There is a new
research promise by DNA computing and synthetic biology in various appli-
cation areas. Traditional genetic engineering has focused at adding or deleting
genes that confer specific traits. Now, synthetic biologists are trying to as-
semble an entire genome from scratch and have predictable interactions with
existing and new chemically synthesized genomes. They use only the genes
necessary for an organism’s survival and those that are of functional value for
the specific task. The complexity of such engineering is quite high. Applica-
tions of synthetic biology span a vast variety of application domains, such as:
energy production (photosynthesis, hydrogen production), biochemical syn-
thesis, e.g. production of materials such as natural polymers, engineering ma-
terials, bioactive substances, communication systems, sensing processes, e.g.
biological sentinels, and intelligent therapeutic agents.

The idea introduced Weiss et al. at MIT was to assemble genes into net-
works designed to direct cells to perform almost any task programmers can
conceive [Weiss et al. 2003]. To achieve the engineering goal of designing
complex circuits, they started with a genetic component library and a biocircuit
design methodology for assembling these components into compound circuits.
The main challenge in biocircuit design lies in selecting well-matched genetic
components that, when coupled, reliably produce the desired behavior. In this
process they apply rational design and directed evolution to optimize genetic
circuit behavior. In the rational design approach, they used simulation tools to
guide circuit design, to select the appropriate components, and to genetically
modify existing components until the desired behavior is achieved. Directed
evolution is the process that directs cells to mutate their own DNA until they
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find gene network configurations that exhibit the desired system characteristics
(analogous to selective breeding of animals).

Here, instead of electrical signals representing streams of binary ones and
zeros, the chemical concentrations of specific DNA-binding proteins and in-
ducer molecules act as the input and output signals of the genetic logic gates.
Within the cell, these molecules interact with other proteins, bind specific DNA
sites, and ultimately regulate the expression of other proteins. An advantage of-
fered by synthetic biology is the ability to study cellular regulation and behav-
ior using novel regulatory networks. The hope is that the future applications of
synthetic systems will also extend to the fields of medicine and biotechnology
[McDaniel et al., 2005]. There are engineered E. coli populations programmed
to exhibit spatial patterns with various shapes (e.g. polka dot pattern). This
type of programmed behaviour can possibly extend to physical structures (e.g.
tissue) useful in making new biomaterials and tissue engineering.

2.4 Conclusion and future directions
DNA computing has made huge strides since Adleman’s experiment in

1994. The field has made quite a lot of progress in theoretical aspects, ex-
perimental computing with biomolecules, as well as practical aspects in deal-
ing with nano-sized robots and microfluidics. With the current advancements,
there is a great promise that DNA computing can have impact on diagnostic
and therapeutic methods in the future. With all the ongoing work there are
more research questions that answers. However, future directions can be along
the following questions:

What are the potential experimental designs that can lead to discovery
of gene regulation mechanisms? How can we use the various Web re-
sources and available computational genomics tools to hypothesize dif-
ferent experimental designs in order to discover essential computable
elements for molecular computing outside and inside the cell?

Does the environment within the cell provide a mechanism that would
enable computations that are (1) predictable, (2) safe, and (3) control-
lable? When computations are performed in vitro, we have a highly
controlled environment. When computations are done in vivo, the input
can be any of the products of the signaling pathways of the cell. All
these byproducts can interfere with the computable procedure that we
want the cell to carry out, either in a positive or in a negative way.

How can we build up complete understanding of the elements that would
perform molecular computations in a failsafe mode? What are all the
mechanisms by which one can stop a DNA computing process at desir-
able points in time?
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How can we extend any of the current imaging modalities for reading the
results? Various types of fluorescent protein (green, red, yellow) are used
today to show that a certain reaction has happened. In this manner, gene
activity can be visualized and ‘seen’ under ordinary light microscope.
However, this approach is not practical for many tissues in the human
body. Is there an equivalent of fluorescent protein that ‘lights up’ under
a different imaging modality?

If certain genes can be expressed only under specific conditions (pres-
ence/absence of repressor/promoter binding proteins), then, can we com-
bine this knowledge with one of the diagnostic imaging modalities in
order to get more specific readout from specific tissue cells which are in
the ‘middle’ of their activities?

Can we use any of the imaging modalities to monitor the progress of the
diagnostic and therapeutic computations?

Can any of the molecular imaging modalities be used for controlling the
biomolecular computations in-vivo?

In the future, many of these research questions will open up a plethora of
new engaging topics. Both DNA computing and synthetic biology are nascent
areas and have much to answer and evolve from the current systems to true
understanding of real dynamic systems.
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Paŭn, G. [2000]. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143.

Regev, A., and E. Shapiro [2002]. Cellular abstractions: Cells as computation. Nature, 419:343.
Sa-Ardyen, P., N. Jonoska, and N.C. Seeman [2003]. Self-assembling DNA graphs. DNA-Based

Computers VIII, Lecture Notes in Computer Science, 2568:1–9.
Watson, J.D., and A. Berry [2003]. DNA: The Secret of Life. Random House.
Weiss, R., S. Basu, S. Hooshangi, S., A. Kalmbach, D. Karig, R. Mehreja, and I. Netravali

[2003]. Genetic circuit building blocks for cellular computation, communications, and signal
processing. Natural Computing, 2(1):47–84.

–

The Many Strands of DNA Computing



Chapter 3

BIO-INSPIRED DATA MANAGEMENT

Abstract The pervasive penetration of database technology may suggest that we have
reached the end of the database research era. The contrary is true. Emerging
technology, in hardware, software, and connectivity, brings a wealth of oppor-
tunities to push technology to a new level of maturity. Furthermore, ground
breaking results are obtained in Quantum- and DNA-computing using nature as
inspiration for its computational models. This chapter provides a vision on a new
brand of database architectures, i.e. an Organic Database System where a large
collection of connected, autonomous data cells implement a semantic meaning-
ful store/recall information system. It explores the analogy of a biological com-
plex to charter the contours of this research vision. A concrete computational
model is defined and illustrated by examples as a step into this direction. 1

Keywords

3.1 Introduction
The innovation thrust of current database research comes from attempts to

deploy its technology in non-trivial application areas. Enhancements proposed
to the core functionality are primarily triggered by the specific needs encoun-
tered, e.g. multi-media, data mining, and sensor systems.

This chapter presents a vision on an alternative track for database archi-
tecture research. One grown over a decade as a temporary escape from our
contract-research work, which dictated most of our agenda. As such, the vision
presented is by no means complete, nor explored in all its depths, let alone be
implemented in a eye-catching demonstrator. It is, however, a significant step
forward from the first version, presented at the RIDE 97 workshop on research
issues in databases and published by Kersten [1997], master student projects

1The work is carried out in Bsik/BRICKS project Databases for personalised ubiquitous intelligent devices.
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to construct a prototype since, presentations given at VLDB [Kersten et al.,
2003] and ICDE [Kersten, 2003], and interaction with people from Philips

Boncz [2004a; 2004b]. All are minor steps on a long road ahead.
The premises is that database technology has contributed significantly to so-

ciety over several decades, but it is also time to challenge its key assumptions.
A few issues considered to be dogmatic and a bottleneck for progress are:

A database is larger then the main memory of the computer on which
the DBMS runs and a great deal of effort should be devoted to efficient
management of crossing the chasms between disk and memory.

A DBMS should adhere to a standard datamodel, whether it be rela-
tional, an object-relational, xml-based, and leave functional and deduc-
tive models as a playground for theoretical research.

A DBMS provides quick response to any (unrealistically complex)
query, optimizing resource usage wherever possible without concern on
the effect of concurrent users.

A DBMS should support concurrent access by multiple users at the
smallest granularity level (record) and reconcile the different perspec-
tives on the database contents transparently.

A DBMS provides a transaction models based on the ACID (atomic-
ity, consistency, isolation, and durability) principles, or a semantically
enriched version, regardless its primary domain of application.

This list is by no means complete, but merely indicates the delineation of
research activities in the database community. A prototype DBMS ignoring
these points is not taken seriously in the research realm. Albeit, in each of
the assumptions reality is threatening, e.g. the web challenges the rigid data
models, the transaction models, and replication management.

The research agenda derived at the Asilomar workshop2 rightfully acknowl-
edge that in the near future all but the largest relational tables will be memory
resident, calling for a complete overhaul of the current data structures, algo-
rithms and system architecture. This observation is re-iterated in the context
of personalized and organic databases at the Lowell workshop on the database
research agenda in 2003.3

A grand challenge for the database community is: The information utility:
make it easy for everyone to store, organize, access and analyse the majority of

2http://www.acm.org/sigmod/record/issues/9812/asilomar.html
3http://research.microsoft.com/ gray/lowell

Nat. Lab. to isolate tangible intermediate versions as described by Fontijn &
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human information online. The key question then boils down to “Is the current
architectural conception of database technology a sufficient basis to meet this
challenge?” Our preliminary answer to this question is negative. The threats
to the database dogmas are evidence of their failure. Instead we need a more
unorthodox approach to break our historical bonds. A broader perspective on
computer science research may be of help here.

Recent major fundamental advances in computer science have found their
inspiration in nature. DNA computing uses biochemistry to implement massive
parallel computation and the engineering of DNA computing device seems
tractable [Landweber & Baum, 1996; Rubin & Wood, 1997; Paŭn et al., 1998].
Quantum computing uses the physics of light to design a new computational
model. Hurdles to be taken here include non-destructive observation of the
result of a computation. Theoretically both quantum- and DNA-computation
have been shown to crack hard problems in cryptography.

Theoretical models of computation based in the bio-analogy have received
quite some attention in recent years. For example, the research school around
membrane computing has studied a rich class of variations of the traditional
Turing model using a direct analogy of cells in biology. It has been shown that
such models can capture inherent massive parallelism and still provide insight
[Paŭn, 2001; Paŭn, 2002].

Further back into the history of computing, we find the notion of self-
reproducing automata [Von Neumann, 1966]. A study severally hindered by
the state-of-the-art in computer architecture, but nevertheless an intriguing
concept. A more mundane use of nature as a stimulus for novel program-
ming paradigms have let to such broad fields as evolutionary computing and
neural nets. A large community deploys these concepts to realize new kinds
of applications, e.g. adaptive, intelligent, and even socially acceptable agents
[Weiss, 1999; Hunds & Singh, 1998] .

With these examples in mind, it is worth considering how nature can inspire
us in the design of a new database management paradigm. The remainder of
this chapter charters the contours of such an Organic Database System, i.e. a
large collection of connected, autonomous data cells that implement a semantic
meaningful store/recall information system.

In a nutshell, the architecture is centered around the concept of a data cell,
characterised by three components: an interface, a cell body and a nucleus. The
cell interface is a semi-permeable membrane taking two forms; RECEPTORS,
where objects in the cell’s environment may enter the cell; and EMITTERS,
which enable objects in the cell’s interior to migrate to the outer world. The
cell’s body is a memory structure for the tree-structured objects received. It
is a persistent store organised by object entrance/creation time. The nucleus
consists of genetic code strings interpreted under triggering events, i.e. objects
stored in the cell’s body.

Bio-Inspired Data Management
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As such, a data cell models a physical container capable of managing a
small database, limited in capacity, without a fixed foothold, and equipped with
behavioral knowledge, described by RECALL-FORGET-KEEP genes, which re-
place the role of procedural methods. The cells live in a resource rich envi-
ronment, which enable them to migrate or to clone as soon as the physical
boundaries are met.

The Internet is assumed as the underlying communication network, where
cells are addressable with a URN and live in a hierarchically organized name-
space. To survive in this dynamic world, a cell may decide to seed a copy of
its state. It is resurrected upon request to recover from a physical disaster.

Querying the organic database is a non-atomic process. A query is mapped
to a membrane modification that allows answers to pass to the communica-
tion interchange, where they can be picked up by the issuer. Since cells may
be temporary dormant or inaccessible, the issuer should be prepared to wait
for all cells to respond or be satisfied with partial answers. The net effect is
that querying becomes probabilistic, much like searching the Web. One never
knows for sure if all information has been obtained.

The remainder of this chapter is organized as follows. Section 3.2 introduces
the data cell, its internal architecture, and a notation for reasoning. Section 3.3
introduces the modalities of communication. Section 3.4 addresses the life
cycle of an individual cell, its sensors, its cloning, and seeds to survive disas-
ters. Section 3.5 presents a small application with mockup traces to illustrate
the projected behavior. Section 3.6 boils down to a summary, and raises some
fundamental research issues to be considered next.

3.2 Data cell overview
In this section we introduce the notion of a data cell, the basic building block

of an Organic Database System. We take an inward exploration, starting with
the cell’s membrane, followed by its memory structure, and to finish with the
behavior described by its nucleus.

3.2.1 The data cell and its membrane
A data cell is a physically bounded resource to store and recall persistent

information. Physically boundedness is interpreted as anything from a simple
smart-card in a mobile phone, up to large multi-processor SMP machine. In
our search for a new architecture we favor the former, because it challenges us
to go for minimal and razor-blade components. An SMP context merely leads
to challenging engineering issues related to scale.

Martin L. Kersten and Arno P.J.M. Siebes
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Definition 3.1. A data cell type D = 〈M,N,T 〉 named D, consists of a set of
receptor- and emitter- membranes M = {Mi}, a set of genetic code strings in
the nucleus N = {Nj}, and T = {Tk} a collection of data types.

Definition 3.2. The instances of a data cell type D are denoted by the type
Cid, i.e. globally unique, life-time tags.

Definition 3.3. Object structures are defined by a context-free grammar
G = 〈N,V,P,D〉 with non-terminals N, terminal variables V , their productions
P.

Definition 3.4. A RECEPTOR membrane is defined by the structure: Name
RECEPTOR W WHERE P(B) where Name is an optional membrane tag, W
a derivation tree for a term in L(G) starting at D, and B the binding table for
variables in W.

Definition 3.5. An EMITTER membrane is defined by the structure: Name
EMITTER W WHERE P(B) where Name is an optional membrane tag, W a
derivation tree for a term in L(G), and B the binding table for variables in W.

The membrane definitions are based on our conjuncture that most objects
for information exchange can be described formally, and exhaustively, with
a context-free grammar.4 This grammar provides a structured name space to
access and to reason about the components. The degrees of freedom lie in the
production rules, i.e. the type constructors, and the lexical tokens, i.e. the data
types. This relationship between structure and values is factored out in the
binding table B. A parse tree for an object then contains bound variables as
leafs.

The last component of a membrane is a predicate over the object compo-
nents, represented by the (dynamically typed) variables V . The predicate is
safe when all its variables are bound. Otherwise the predicate fails. The predi-
cate language relies on operators defined for the data types T . For all practical
purposes considered in this chapter, we assume T to include the standard set
of basic types available in the programming environment. Furthermore, T in-
cludes N, the grammar non-terminals and Cid, the cell identities.

Definition 3.6. A membrane Mi for data cell D accepts (emits) objects from
(to) its environment if it satisfies both the structure implied by the grammar G,
the values T , and the predicate P(B) holds.

The parser derived from the RECEPTOR membrane grammar looks for ex-
ternal object structures tagged by the cell type name, i.e. the grammar’s start

4Notational convention: identifiers starting with a lower-case character act as cell names, their components,
and as object structure tags. Those starting with an upper-case character are used as variables.

The data cell and its membrane are defined as follows:
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symbol. The object structures are taken from the environment and stored in
the cell’s body. The EMITTER looks for qualifying object structures in the cell
body and emit them to the environment.

Receptors and emitters map to autonomous threads. They may inspect ob-
jects concurrently in their environment, but only one may finalise the transac-
tion (passage of a cell’s membrane). Objects rejected by all RECEPTORS are
left to the responsibility of the cell’s environment. Objects failing the EMITTER
membrane remain in the cell body.

A full fledged implementation of the data cell may exploit standard nota-
tional conventions, such as XML structures. The sole requirement for the ob-
ject description language is that a message can be mapped onto the grammar
and binding table of the membrane, i.e. the parse is unambiguous irrespective
the lexical convention. A concrete syntax for cell identities Cid could be an
URN.

Example.
marbles. The data cell defined below looks in its environment for red marbles.
All encountered are catched and stored in the cell’s body as marble(

”

red”).
The first emitter may pick up the marbles again and thrown them back into
the environment. The second emitter looks for marbles changed (by magic)
to those with a primary and secondary color. They are sent to cells interested
in multi-coloured marbles. The last part illustrates initialization with a few
marbles.

CELL marble;
RECEPTOR K WHERE K = red ;
EMITTER marble(K) ;
EMITTER marble(Primary,Secondary)

WHERE Secondary = orange ;
marble( orange );
marble( green );
marble( yellow , orange );

END marble;

3.2.2 Structure unification terms
The organic database system exploits the equivalent of Watson-Crick com-

plementary feature provided ‘for free’ by the nature. This feature stipulates
the programming power in DNA-strands, where bases opposite each other are
complementary. During the construction of the double helix strands, genes are
unified with the nucleotides to find matches.

The equivalent notion exploited here is to unify object terms in predicates
with the parse trees of the object structures received. Unification is supported

As a running example we consider a toy database of colored
”

”

”

””

””

””

”

”

”
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by the operator ‘:’, i.e. the term X : Y succeeds if the operands can be unified.
The terms considered are classified into (un)ordered- and (un)tagged-object
terms.

ordered (X0, · · · ,Xj), which exhausts a single object component list
structure.

unordered {Xi, · · · ,Xj}, where all elements mentioned denote path ex-
pressions binding different components in a single object structure.

prefixed, cntxt(X0, · · · ,Xj) and cntxt{Xi, · · · ,Xj} are called prefixed
object terms, all components mentioned belong to a single object struc-
ture reachable through the path expression cntxt.

Example. Consider the term marble(primary(P), secondary(S)),
which unifies with any variable Z. Subsequently Z can also be unified with
marble(X ,Y ) and M(X,Y ) where M binds with marble. The unordered uni-
fication Z : {marble.primary(X)} and Z : {primary(X)} hold, because
the paths exist in the structure referenced by Z. The prefixed terms Z :
marble(primary,secondary) and Z : marble{primary,secondary} hold, while
Z : {marble.P,marble.Z,marble.secondary} fails, because the three argu-
ments can not be bound to different object components. Finally, we permit
unification with a type name to denote membership, e.g.

”

red”: string also
holds. With this notational convention, predicates over the hierarchical object
base becomes condense and easy to interpret.

3.2.3 The cell’s body
The cell’s body is a persistent memory structure, where objects passing

the membrane are kept. Its organization affects the subsequent computational
model, both internally and externally. One extreme is to consider memory as a
set of tree structured objects, freely floating within the cell’s body. The effect
is that all sequential behavior calls for ‘sorting’, or the cell behavior becomes
purely probabilistic. Given that nature also processes cell DNA strands in se-
quential fashion, we choose for a time-organized sequence.

The memory sequence comes with two maintenance operations: KEEP and
FORGET. A KEEP V operation adds the object V to the end of this sequence in
an atomary step, while FORGET V ‘zaps’ the (bound) object from the memory
sequence, leaving no traces behind. Information in the memory sequence can
be located with a RECALL operation followed by an ordered list of object terms.
Its semantics is to traverses the memory sequence in reverse direction, i.e. it
unifies terms to the latest objects entered. Moreover, no two terms in the recall
list unify to the same object (component).

Bio-Inspired Data Management
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Example. The table below illustrates

though their structure and value are identical.

marble Memory sequence X , (Y ,Z)

0 marble( red ) 0, 1
1 marble( red , orange ) 2, 1
2 marble( yellow ) 3, 1
3 marble( red )

3.2.4 The cell’s nucleus
The nucleus of a cell contains a set of chromosomes, gene strands, that

define its behavior. A gene strand consists of RECALL FORGET-KEEP
statements. Each gene inspects and changes the memory sequence under all
possible variable bindings.

Definition 3.7. A gene G is described by the structure:

G RECALL L WHERE P(L)
FORGET Fl WHERE P(L∪Fl)
KEEP Sl WHERE P(L∪Fl ∪Sl);

where G is an optional gene tag, L, Fl, and Sl term lists to locate objects, and
P(α) a clause over the variables in the term lists indicated.

The interpretation of a gene is that each completed binding leads to an
atomary action against the memory sequence. Some objects bound are
prepared for removal, and new object structures are prepared to inclusion.
These changes take immediate effect for each term binding encountered.

Definition 3.8. A chromosome is a structure G = RECALL Cl{G0; · · · ;Gk}
where Cl is a term list and Gi is either a gene or a chromosome sequence.

The scope of variables introduced in the chromosome RECALL list is
defined by the corresponding gene sequence. For simplicity we assume no
redefinition of variables.

Definition 3.9. A chromosome G is independently activated for each bindings
of its memory recall list Cl.

The chromosome describes a hierarchical sequence of behavioral actions.
The RECALL is an implicit loop through memory and the qualified update state-
ments are guarded commands. Conceptually, each time an object appears in

a memory sequence. The right part
illustrates the successive term unifications that result from the RECALL

”

””

”

”

”

”

””

”

marble(X),marble(Y,Z). Note, the two red marbles are distinct objects, al-

–
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the cell’s body it will arbitrarily activate a chromosome interested in the ob-
ject. All valid bindings are explored before the chromosome ceases activity.
Since binding works its way back into object history, and KEEPs are always
at the head of the sequence, this process will eventually terminate. A limited
set of additional functions controls the life-cycle of a cell. This includes EN-
ABLE/DISABLE of cell components, WAKEUP peer cells, going to HIBERNATE,
RUNning linked in routines, and CLONEing itself.

Example. The intended behavior of the cell nucleus is illustrated using our
marble toy database. Each time the membrane stores an object marble( red ),
the nucleus is inspected for a qualifying chromosome, i.e one whose first ele-
ment in the RECALL term list unifies with the object. Once detected, a process
thread interprets the chromosome, consuming the object and creating a new
object for emission later on.5

CELL marble;
RECEPTOR K WHERE K = red ;
EMITTER marble(K) WHERE K �= red ;

NUCLEUS
RECALL marble(Msg)

FORGET IT
KEEP marble( green );

END marble;

The probabilistic behavior of chromosome selection and their inter-
relationships are illustrated below. In the next fragment one chromosome ar-
bitrarily transforms a red marble into either green or orange. With each color
change we also remove any trace of the red marble received. Note that the
probabilistic behavior envisioned may also lead to emission of red marbles,
before they are inspected by any of the chromosomes. They may then end-up
in cells capable to react.

CELL marble;
RECEPTOR K WHERE K = red ;
EMITTER marble(K);

NUCLEUS
RECALL marble( red )

FORGET IT
KEEP marble( green );

RECALL marble( red )
FORGET IT

5The keyword IT stands for all objects bound in the memory recall list.
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KEEP marble( orange );
END marble;

The second fragment replicates a red marble into both red and green by
being bound with each chromosome once. Moreover, it accumulates the red
marbles in its memory, because they are never forgotten.

CELL marble;
RECEPTOR K WHERE K = red ;
EMITTER marble(K) WHERE K �= red ;

NUCLEUS
RECALL marble( red )

KEEP marble( green );
RECALL marble( red )

KEEP marble( orange );
END marble;

To get rid of the red marbles too, we have to encode state information in
the data cell. A possible solution using tagged intermediate results is shown
below. The tag is attached to each object indicated by the KEEP to indicate the
chromosome responsible for its creation.

CELL marble;
RECEPTOR K WHERE K = red ;
EMITTER marble(K);

NUCLEUS
RECALL marble( red )

KEEP m1( green );
RECALL marble( red )

KEEP m2( orange );
RECALL m1(A), m2(B), marble( red )

FORGET IT;
KEEP marble(A), marble(B);

END marble;

3.3 The communication infrastructure
Data cells in isolation are of limited use. A communication infrastruc-

ture gives the Organic database system access to its sensory components and
circumvents the physical boundaries imposed by hardware. This section de-
scribes the analogue of biological communication schemes in the context of
our Organic Database System.
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3.3.1 Artery system
Nature has found an efficient solution for communication in the form of ar-

teries, where the transport medium need not worry about the message content.
It merely passes objects around and leaves it to the autonomous cells attached
to the artery to filter out objects of interest. In practice, the artery system can
be seen as an unfolded hierarchical communication scheme. The top contains
a ‘pump’ to move information down the hierarchy to the smallest components,
whereafter the flow is reversed and aggregated upward for the next cycle.

We use this hierarchical scheme for the organic database as the backbone
communication infrastructure. It consists of artery segments, which are effec-
tively containers for a limited number of message objects floating through the
system. Furthermore, each segment shares a membrane with (a limited num-
ber of) data cells, looking for messages of interest passing by. These cells get
access to the messages in a probabilistic manner. Furthermore, the segment
may be linked with sensors to the outside world, giving it eyes and ears to
communicate with the user.

The artery system metaphor provides a natural communication scheme, but
also possesses some dangers. First, the artery system may become polluted
with messages of no interest to any cell. Second, the probabilistic flow does
not guarantee that a message will reach a destination cell in acceptable time.
Although this reflects real-life on the Internet, it may be unacceptable in a con-
fined application environment. The solution to consider then is to introduce
many cells on the artery system, such that the probability steeply increases.
Alternatively, a multi-level artery system can be designed through which mes-
sages quickly reach their intended destination. For example, nature often uses
a nerve system to sent simple information around quickly. This includes inter-
mediate control centers to handle local issues and shortcuts.

Example. Pollution of an artery segment with unwanted messages can be
controlled by tagging them with an age component. A single cell removes
them as waste when they get too old. The artery cell below is charged with this
functionality.

CELL message
RECEPTOR (M, age(C));
EMITTER message(X,Y);

NUCLEUS
RECALL (M, age(C))

WHERE C <= 1000
FORGET IT
KEEP message(M, age(N)) WHERE N is C+1;

RECALL (M, age(C))
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WHERE C > 1000
FORGET IT;

END message;

3.3.2 Neurons
Every data cell carries an unique identifier. Knowing this identifier permits

direct addressing of a target cell using a dedicated transport scheme. It merely
has to be constructed. Nature’s realisation for this can be found in neurons.
It is a one-to-one communication channel, orthogonal to the artery system.
They have to be ‘learned’ and they involve much less overhead in terms of
communication and analysis.

A neuron can only fire when the target cell is alive, leaving an object at the
target cell’s membrane for direct inclusion. In this sense, neurons communica-
tion can be seen as a kind of synchronous communication. This makes them
part of the processing thread(s) of the nucleus, where they block progress until
the message is delivered.

Example. The fragment below illustrates how a marble cell handles a query
of a client. The client issues the request getAll(SELF) to pass its identity
to the marble cell. It expects copies of the objects to arrive at its membrane in
return. The marble catches the request with the first chromosome, and activates
the neuron stream of answers. It also illustrates a complex chromosome with
sequential behavior.

CELL marble
RECEPTOR getAll(Mid);

NUCLEUS
RECALL getAll(Msg) {
FORGET IT;
RECALL client(Mid), Object

NEURON Mid(Object);
}

END marble;

3.3.3 Membrane sharing
The third communication scheme between cells is based on sharing a MEM-

BRANE definition and being alive in the same environment. In nature it occurs
directly after a cell split, before both have evolved by taking their autonomous
role in the environment.

Temporarilly sharing the object collection with peers provide a powerful
construct to built data-distributed applications. The objects satisfying the
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membrane freely move between the cells.6 It is based on common definitions
and mutual trust. As time progress, the cell may shut down this feature and
regulate all access through its membrane.

Example. The fragment below illustrates two instances of a marble cells
sharing the term membrane. This makes the marbles stored directly accessible
to the other cell. When cell marble#1 finds an orange marble, it will remove
any green marble in cell marble#0 and marble#1. Conversely, marble#0
looks up any red marble in both bodies and transform it to green. As such, the
cell are functionally specialized.

CELL marble#0;
RECEPTOR K WHERE K �= orange ;
MEMBRANE marble(X);
marble( green ); marble( red );

NUCLEUS
RECALL marble( red ) KEEP marble( green );

END marble;

CELL marble#1;
RECEPTOR K WHERE K = orange ;
MEMBRANE marble(X);

NUCLEUS
RECALL marble( orange ), marble(Z)

WHERE K = green
FORGET marble(K);

END marble;

3.4 The life cycle
The textual definitions given for the data cells are their ‘seed’ state. They

can be resurrected from this state by an external entity, which is typically a
organic database system kernel implementation or a cell using a WAKEUP call.
Once active, it can CLONE itself, and return to HIBERNATE state as part of its
nucleus behavior. These issues are described below.

3.4.1 Cloning a data cell
A data cell may CLONE itself to form a data cell tissue, a collection of cells

with identical behavior. This process is triggered by a nucleus action and con-
sists of two phases. In the first phase, all activity is stopped as if the cell M

6Subject to a proper semantics of the memory sequence.
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goes into hibernation state. Then a textual ‘seed’ copy C is created, which con-
tains half of the memory sequence, a MEMBRANE definition, and the object
parent(M). This phase ends with forgetting the objects moved to the clone
and placing the object child(C) and the MEMBRANE definition in the body
of M. Following, in phase two, cell M becomes receptive to external requests
again when the object child is forgotten. Cell C follows the normal awak-
ening sequence, where it will react to the parent object before it accepts any
further request.

A major difference between cloning and the creation of a cell is that a clone
is connected to its heritage via membrane sharing. This sharing allows the cell
tissue to act as one cell as far as data storing and retrieving is concerned. To an
outsider it is immaterial which cell in a tissue acts upon his request as long as
it is acted upon.

At the moment a cell is cloned -or created- the artery system has to be ad-
justed as well. The identity of the new cell should be announced to this com-
munication channel.

3.4.2 Hibernation and wakeup
Hibernation is a multi-step procedure. First, the cell’s receptors are deacti-

vated, the chromosomes are instructed to stop as soon as possible in a recov-
erable state, the emitters finish sending all qualifying objects. They also stop
when the environment does not accept the objects emitted anymore. Finally,
the cell status is saved to disk.

Example. The marble cells goes into hibernation after receiving a blue
marble.

CELL marble
RECEPTOR marble( blue );

NUCLEUS
RECALL marble( blue )

FORGET IT
HIBERNATE;

END marble;

A dormant cell can be awakened by any cell using a WAKEUP call passing
the cell’s identity. This typically takes place in an artery segment, triggered by
the cell name in a message header. If an artery segment runs out of resources,
it may decide in a probabilistic manner what cell to ask for hibernation or to
migrate a cell under its control to another segment.

An awakened cell starts with RECEPTOR and EMITTER elements in passive
mode first. They should be activated by a chromosome. The triggering event
is existence of the object ‘resurrected’ in the cell’s body. This unifies with the
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corresponding initialization chromosome. The default -shown below- looks up
all (still passive) membrane structures and activates each.

NUCLEUS RECALL resurrected {
RECALL E:EMITTER {ACTIVATE E;}
RECALL R:RECEPTOR {ACTIVATE R;}
FORGET resurrected;
}

3.5 Application challenges
In this section we illustrate the Organic Database System using a distributed

phone book, one whose data cells may indeed live in our digital organizer, our
PC, and mobile phone concurrently. As such it is close to what one would ex-
pect from a store/recall information system. We start with a sensory interface,
the eyes and ears of the system. Following we give a concrete definition of the
phone book, one that will not (!) immediately work, but which highlights the
issues to be dealt with. Finally, we indicate routes to implement an organic
database system.

3.5.1 Sensors
The data cells introduced so far were blind actors. They communicate

amongst one-another using the biological inspired schemes. However, at least
one cell should provide a bridge to the real-world, where we observe and con-
trol the behavior of an organic database.

This calls for the equivalent of sensors, the eyes and ears of the system.
Since the functionality of sensors are tightly coupled with the environment
where they operate, it has to rely on linked-in libraries. The minimal set to be
considered for a first implementation are a direct link to the stdio library and
XML for web-based interaction.

A sensor cell has an event loop triggered both by the external interface and
the messages from the cells. The latter are screened for type correctness. Sub-
sequently, they may be picked up by a chromosome to be executed. This essen-
tially makes a sensor cell a wrapper around a user-supplied interface library.

Example. The ascii sensor below assumes an io-library, which interacts with
the user through an text-based interface.

CELL ascii USE stdio;
RECEPTOR print(Msg:string);
RECEPTOR printf(Format:string,Msg:string);

NUCLEUS
RECALL Action RUN stdio.Action;

END ascii;

Bio-Inspired Data Management
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3.5.2 A phone book

CELL phone;
RECEPTOR person(name(N),tel(I))

WHERE N:string AND I:integer;
RECEPTOR lookup(name(N))

WHERE N:string;
RECEPTOR delete(N));
EMITTER answer(Msg);

NUCLEUS
RECALL lookup(N) {

RECALL person(name(Nme),T)
WHERE Nme == N {

FORGET lookup(N);
KEEP answer(N,T));}

}
RECALL delete(N) {

RECALL person(name(Nme),T)
WHERE Nme == N FORGET IT;

FORGET delete(N);
}
RECALL count(P:person) > 10 CLONE;

END phone;

Figure 3.1.

Figure 3.1 illustrates the starting position of the phone cell. This definition
is no more complex than a class definition in an object-oriented paradigm, or
an SQL-3 table definition. Each time an object passes the membrane it is added
to the persistent store, as is to be expected from a database system. Using the
textual interface we might add some persons.

> phone.person(name( Smith ),tel(808717));
> phone.person(name( Jones ),tel(828503));
> phone.person( Jones ,tel(808717));

The structure for Jones does not match the receptor, leaving it in the artery.
A waste recovery cell (see Section 3.3.1) can be used to get rid of these mes-
sages. Alternatively, we could accept a broader class of person structures and
emit an error message where appropriate. The necessary additions become:

The phone book.
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RECEPTOR person;
EMITTER error(X);
RECALL P:person

WHERE NOT(P:person(name(N),tel(T)))
KEEP error(P);

Lookup of Smith’s telephone number is straight forward requested by:

> phone.lookup( Smith );

However, the user does not know when the answer will arrive, because, due
to cloning, the actual cell containing this information may be temporarily inac-
cessible. This is generally the case with interrogation of an organic structure.
Getting an answer to the question “Is Smith not part of the phone book”, can
only be answered from the contextual knowledge that all cells are active and
have dealt with this question.

The cell also contains a chromosome to clone itself when it accumulates
too many telephone entries. Its controlling predicate is an aggregate over the
memory sequence. However, such constructs require extreme care, because
membrane-based sharing implies that we always count all elements in the data
tissue. This leads to a cascade of clones after receiving 10 persons. A way out
of this dilemma is to consider non-sharing clones or quantified bindings, i.e.

RECALL count(ALL LOCAL P:person) > 10 CLONE;

Being able to inject a receptor, emitter, or chromosome into a cell modifies
its behavior. This is particularly useful if we want to extract information, i.e.
query its content. A ‘virus’ cell penetration of the phone book might be a road
to explore. It may take the following form:

CELL virus;
EMITTER steal(X);

NUCLEUS
RECALL resurrected

ACTIVATE steal;
RECALL Y KEEP steal(Y);

END virus;

Once we are able to bind this virus with an object passing the phone book
membrane (possibly as a Trojan horse), it awakes from its hibernated state.
Both symbiotic and harmful viruses are easy to design.

3.5.3 Implementation strategies
The organic database system outlined does not require a start from scratch.

Many ingredients for its realization are readily available.

”

”
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The history for the cell architecture can be traced back as far as the Von
Neumann cellular automata, a dream where computers conquer free space to
grow and solve intricate problems [Von Neumann, 1966]. The abundance of
literature on cellular automata in the 60s provide further hints to formalize parts
of the data cell semantics [Wolfram, 1982]. The work on associative memories
[Oskarahan, 1986; Su, 1988] in the 70s can be regarded as preliminary steps to
improve the cell’s memory.

The declarative model underlying the interrogation of the cell’s memory
sequence is a natural extension to SQL- and logic-based systems. Modern
prototype database engines to be considered are Lore [McHugh et al., 1997]
and MonetDB [Boncz et al., 1996a; Boncz et al., 1996b; Boncz et al., 1998].
They provide a lean implementation to start from. Furthermore, Java-beans
technology may be a pivot in realisation of cells with a small footprint.

Likewise, the problems posed by cloning find their analogy in distributed
belief systems. Recent developments in agent technology, especially the li-
braries being developed for agent-based applications on the web, may provide
the seeds to quickly build a prototype organic database system [Weiss, 1999].

The data sharing that results from the membrane replication, may use tech-
niques from distributed computation models, such as explored in Linda [Gel-
ertner, 1985]. The temporal aspects of the memory sequence can be borrowed
from [Snodgrass et al., 1994].

3.6 Conclusion
Much of the research activities in the database area take the underlying data-

model, query language, and transaction features as a fact of life. The conse-
quence is that penetration of database technology into non-administrative ap-
plication domains is a slow, engineering-rich and tedious process. A quantum
leap in technology is required instead.

The vision developed in this chapter provides an innovative computational
model, data model, and architecture for database processing. We consider this
chapter a success, if the reader has raised questions about the limitations of the
organic database approach, thought of refinements, or envisioned a concrete
realization. Moreover, the biological metaphor may have to be extended into
other fruitful directions or being corrected as a result of our limited knowledge
on the biological mechanics.

The research road ahead is thus marked with many fundamental questions
calling for in-depth studies. Amongst these, the most pregnant are to describe
cloning as reflexive behavior, to use symbiotic behavior, and to better under-
stand the implications for large-scale application development. At an archi-
tectural level, embedding data cells in hardware ranging from smart-cards up
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to super-computers with their wildly differing communication infrastructure
stresses the need for strong interface definitions.

Fortunately, the AmbientDB project undertaken at the cross-section of in-
dustrial research and curiosity-driven research, may provide the setting to take
slow, but consciuous steps into the realisation of our grand vision.
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Chapter 4

AN INTRODUCTION TO
MACHINE CONSCIOUSNESS

Kees van Zon

Abstract Neuro-scientific research suggests that consciousness plays an important role in
human cognition, and may even be required for human-level intelligence. Ma-
chine consciousness is an emerging ‘technology of mind’ that aims at achieving
consciousness in man-made systems. It is in an early stage, and much is yet to be
discovered and proven. The hope is that machine consciousness will add to the
existing suite of artificial intelligence techniques and enhance the performance
and capabilities of autonomous agents. In this chapter, we briefly review the con-
cept of biological consciousness, then introduce machine consciousness, present
some practical approaches, address its relevance, and discuss applications.

Keywords Machine consciousness, artificial consciousness, autonomous agents, robotics.

4.1 Introduction
In an age in which electronics and data networks are to be found practically

everywhere, one might wonder if technology is close to reaching a saturation
point. There are good reasons however to believe that quite the opposite is the
case — that technology is merely getting started. Since technology supports
the development of more advanced technology, it will tend to grow exponen-

As a result, the
world may find itself in a complexity spiral for as long as technology translates
into money.

With electronics and networks invading every aspect of our lives, industries
will find a continuing challenge in shielding consumers from needless com-
plexity while providing added value. Consumers expect products that are sim-
ple to use and that work in intuitive, natural interaction modalities. Advanced
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believed to require an increasing degree of smartness. Besides artificial
technologies that support modern lifestyles in this manner are commonly

tially or even faster (e.g. [Moravec, 1998; Kurzweil, 1999].
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physics, bio-chemistry,

When searching for new AI techniques, we often tend to look at nature.
Well-known examples of bio-inspired techniques are evolutionary computing,
genetic algorithms, and neural networks, but to name a few. Many improve-
ments in AI are actually based on progress in the cognitive sciences. An im-
portant recent finding of neuroscience, for example, is the understanding that
human decision making is not predominantly driven by rational thinking but
by emotional states. Cued by dozens of neurotransmitters and neuromodula-
tors, decisions are only retro-rationalized by inner speech after a decision has
actually been taken [Damasio, 1999]. Such findings have led to the field of
emotive computing.

While many aspects of the human mind and brain have been considered by
AI, the role of consciousness has been rather overlooked until recently. Con-
sciousness is intimately related to intuitive, natural interaction. It has been
shown to play a role in functions that range from speculation, planning, and
decision making to inner speech, social skills, and empathy, among many oth-
ers. Owing to rapid progress in the neurosciences, consciousness has become
one of humankind’s last scientific challenges. This challenge is being tackled
by a multi-disciplinary effort of chemists, physicists, psychologists, philoso-
phers, neurobiologists, cognicists, computer scientists, and many others who
have joined into a new scientific endeavor.

Recent findings suggest that the limbic system not only plays a major role in
emotional processes but also is an important element of consciousness. Even
extended damage to the neocortex can leave a patient conscious, while local-
ized damage to the limbic system or the thalamic system usually impairs con-
sciousness anywhere from mildly to severely [Damasio, 1999]. This reveals
that in the human brain, consciousness and emotions are anatomically linked.
If man-made systems must have the kinds of functions that involve conscious-
ness in humans, it is therefore reasonable to assume they may have to possess
— or at least mimic — consciousness themselves. Such ideas have lead to
a new AI discipline called machine consciousness (MC). Also known as ar-
tificial consciousness, MC is an emerging technology that aims at achieving
consciousness in man-made systems, with the expectation that this will enable
a wide variety of new products and applications. The current state of affairs
is far from being merely theoretical; concrete system architectures have been
proposed and are being tried out. In this chapter we introduce MC, present
some practical examples, address its relevance, and discuss applications. For
reference, we start with a brief review of biological consciousness.

intelligence (AI) in support of consumers, it will also be required for solving
e.g.more and more complex problems in other areas,

and healthcare.
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4.2 Biological consciousness
As human beings we are all intimately familiar with consciousness; most

generally, it is equated with experience, awareness, subjectivity, sentience.
For many people, the word ‘consciousness’ has strong metaphysical or even
religious connotations, and for a long time consciousness was a scientific non-
starter. Driven by, amongst others things, dramatic advances in neurosciences
and brain imaging (e.g. [Changeux, 1995; Freeman, 1999]), it has, over the
past two decades, come to be recognized as a fascinating research topic, giving
rise to an explosion of academic research and several scientific societies with
conferences and peer-reviewed journals1,2.

Despite progress on many fronts however, consciousness remains very hard
to define or explain. The lack of a clear definition confuses discussions, for
instance when consciousness gets mixed up with other mental capacities such
as mind, intelligence, and cognition — for which there are no generally ac-
cepted definitions either. Another complicating aspect is that consciousness
(like many other mental phenomena) is inherently a first-person phenomenon,
and is therefore not accessible for direct observation or study3,4. And while
mental capacities like intelligence and reasoning are rather well understood
and can even be modeled, the very essence of consciousness remains unclear5.
[Holland, 2004] sums up the situation: “we can’t define it; we don’t know how
it arises; and it’s peculiar — and that’s what makes it interesting.”

In order to have somewhat of a working definition, we propose the follow-
ing: mental phenomena are all non-physical, high-level phenomena that go on
in the human brain6; they include perception, proprioception; drives, emotions,
feelings; memory, thinking, inner speech, reasoning, knowledge, intelligence,
qualia; egoic structures; and developmental lines. We define the complete set
of these phenomena as the mind.

1Including the Association for Scientific Study of Consciousness (http://www.assc.caltech.edu/,
with an annual conference and two journals); the Journal of Consciousness Studies
(http://www.imprint.co.uk/jcs.html); and the Towards a Science of Consciousness conference
(http://consciousness.arizona.edu/conference/tucson2004/) that is held every two years.
2For a comprehensive textbook on consciousness, see [Blackmore, 2004]. [Velmans, 2000] is also recom-
mended.
3Giving rise to the ‘Zombie Hypothesis’, which asserts that if there were people among us with normal
behavior but no subjectivity, we would be unable to tell them from normal people. First mentioned in [Kirk,
1974].
4Many academic efforts are underway that try to identify the ‘neural correlates of consciousness’. The hope
is that observing such correlates will reveal what goes on in consciousness; but it has been pointed out that
a correlate of a thing is not that thing itself.
5Giving rise to a spectrum of philosophies about the nature of consciousness, ranging from materialism
(everything is matter, consciousness is an illusion) through dualism (matter and consciousness are funda-
mentally different aspects of reality), to idealism (everything is consciousness, matter is an illusion).
6Physical phenomena being e.g. blood flow and neuron activity; an analogy is information flow vs. electron
flow in a computer.

An Introduction to Machine Consciousness
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be partially conscious, partially unconscious.
An aspect of biological consciousness that is important for our purpose is

that it is not an on-off thing, but comes in degrees instead. There is increasing
evidence that animals have minds like we do, be they simpler to some degree
[Hauser, 2000]; and acceptance of the idea that at least higher-order animals
have consciousness is growing. Our own human consciousness also exhibits
growth, both through the evolution of our species (phylogeny) and through the
course of our individual lifetimes (ontogeny)7. The former is exposed when
we compare for instance the human rights paradigm of primeval societies with
that of modern democracies; the latter becomes apparent by comparing one’s
awareness of self and the world as a child to the awareness one has as an adult.

A final point is that biological consciousness makes physical matter aware
of itself, a fact that is rather hard to explain. Many indeed agree that, as
[Chalmers, 1995] famously puts it, “The really hard problem of conscious-
ness is the problem of experience. ... In this central sense of ‘consciousness’,
an organism is conscious if there is something it is like to be that organism,
and a mental state is conscious if there is something it is like to be in that
state. Sometimes terms such as ‘phenomenal consciousness’ and ‘qualia’ are
also used here, but I find it more natural to speak of ‘conscious experience’
or simply ‘experience.”’ The question we have to ask now is if it is, even in
principle, possible to make artificial systems that can experience themselves
and the world like we do. How would one do that? And why?

4.3 Machine consciousness
[Chalmers, 1995] contrasts the hard problem of consciousness with a num-

ber of related phenomena, for instance, “the reportability of mental states; the
ability of a system to access its own internal states; the focus of attention.”
He considers these phenomena as the easy problems of consciousness because
they are “straight-forwardly vulnerable to explanation in terms of computa-
tional or neural mechanisms.” This is a reference to theories that consider
the human brain to be a computational device, and state that the computations
it performs could be implemented by silicon hardware just as well as by our
brain’s neural wetware.

Among such theories is the Computational Theory of Mind (CTM), which
was “first expressed by the mathematician Alan Turing, the computer scien-
tists Alan Newell, Herbert Simon, and Marvin Minsky, and the philosophers

7While controversial, these two strands of evolution are sometimes said to show parallels, in the sense that
our individual growth resembles a miniature version of the growth of our species. This effect is summarized
in the maxim “ontogeny recapitulates phylogeny” [Haeckel, 1899].

Kees van Zon
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Hillary Putnam and Jerry Fodor” [Pinker, 1997]. Underlying CTM is “what is
known as the physicalist assumption: Mind is what brain does, or something
very like it in relevant ways” [Franklin, 1995]. In this view, the human brain
is the physical substrate from which our mind emerges. CTM claims that al-
ternative substrates can implement the basic computations of our brain, and
thereby that human minds can emerge from artificial substrates. [Chalmers,
1993] puts it as follows: “there is a certain class of computations such that any
system implementing that computation is cognitive” and, more specifically, “a
model that is computationally equivalent to a mind will itself be a mind.” Such
artificial minds solve the ‘easy’ problems of consciousness; but can they come
to have experiences? MC researchers think that they can indeed.

One instance of CTM is Global Workspace Theory (GWT), proposed in
[Baars, 1988; Baars, 1997]. GWT is based on the concept of a human working
memory — the “inner domain in which we can rehearse telephone numbers
to ourselves or, more interestingly, in which we carry on the narratives of our
lives. It is usually thought to include inner speech and visual imagery.” The
contents of this small, short-term memory closely correspond to what we are
conscious of, and get broadcast to the vast multitude of unconscious cogni-
tive brain processes which require entrance into the workspace to be globally
accessible. These unconscious processes, operating in parallel with limited
communication between them, can form coalitions whose participants coop-
erate to achieve certain goals. Individual as well as allied processes compete
for access to the global workspace, striving to disseminate their messages to
all other processes in an effort to obtain more cohorts and thereby increase
the likelihood of achieving their goals. While [Baars, 1997] concedes that the
global workspace “is closely related to conscious experience, though not iden-
tical to it,” GWT can successfully explain several characteristics of conscious-
ness, such as its role in handling novel situations, its limited capacity, and its
sequential nature. Moreover, it lends itself well to computational modeling.

GWT has been put into practice; an example instantiation is IDA (Intelligent
Distribution Agent), developed at the Conscious Software Research Group at
the University of Memphis. In line with [Baars, 1988; Baars, 1997], IDA’s
mental father Stan Franklin observes in [Franklin, 2003] that “consciousness
has many functions. It helps us deal with novel or problematic situations for
which we have no automatized response. It makes us aware of potentially dan-
gerous situations. It alerts us to opportunities presented by the environment. It
allows us to perform tasks that require knowledge of location, shape, size or
other features of objects in our environments.” An autonomous agent, which
is “a system situated in, and part of, an environment, which senses that envi-
ronments and acts on it, over time, in pursuit of its own agenda,” can thus be
said to possess functional consciousness “if its architecture and mechanisms
allow it a number of these and, perhaps, other functions.” With this in mind,

An Introduction to Machine Consciousness
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Franklin defines a functionally conscious autonomous agent as an agent that
implements global workspace theory, emphasizing, that “it’s functional con-
sciousness that’s being claimed, not phenomenal consciousness.” IDA is a
software implementation of GWT, and, by Franklin’s own definition, is there-
fore functionally conscious. IDA’s task is to negotiate new assignments for
sailors in the US Navy after they end a tour of duty, by matching each individ-
ual’s skills and preferences with the Navy’s needs. IDA interacts with Navy
databases and communicates with the sailors via natural language email dia-
log “while adhering to some ninety [Navy] policies.” The IDA computational
model was developed during 1996–2001 at the Conscious Software Research
Group at the University of Memphis. It “consists of approximately a quarter-
million lines of [Java] code, and almost completely consumes the resources of
a 2001 high-end workstation.” It heavily relies on codelets, which are “spe-
cial purpose, relatively independent, mini-agent[s] typically implemented as
a small piece of code running as a separate thread.” Figure 4.1 shows IDA’s
architecture, which arose from a top-down approach in which high-level cog-
nitive functions are explicitly modeled. [Franklin, 1995] and [Franklin, 2003]
explain the various functions and their underlying concepts.
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database
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constraint
satisfaction deliberation negotiation

problem
solving

behavior net 

 ‘ consciousness’ and workspace 
expectation
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automation

associative
memory

episodic
memory

emotions
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Figure 4.1. IDA architecture (source: [Franklin, 2003]).

Whereas GWT is a top-down approach since it starts from a high-level
model of consciousness, an extreme bottom-up CTM approach is found in
[Cotterill, 2003]. This paper presents “a project aimed at searching for the
neural correlates of consciousness through computer simulation. The underly-
ing model is based on the known circuitry of the mammalian nervous system,
the neuronal groups of which are approximated as binary composite units. The
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simulated nervous system includes just two senses — hearing and touch — and
it drives a set of muscles that serve vocalisation, feeding and bladder control.
These functions were chosen because of their relevance to the earliest stages
of human life, and the simulation has been given the name CyberChild.” The
computer-bound CyberChild is born with just a few basic reflexes, and has to
learn to ease discomfort (hunger caused by an empty stomach, pain caused
by a full diaper) by getting the operator’s attention, for instance to obtain a
new bottle of milk or to have its diaper changed. Starting with random muscle
movements, it also needs to learn from scratch how to bring the milk bottle to
its mouth in order to feed itself. The model will be made more precise and
complete over time, counting on Moore’s Law to maintain real-time operation.
The underlying assumption is that “consciousness will one day emerge from
the blinking lights that are the simulation’s graphical representations of the
neural units.” While Cotterill concedes that “it takes a lot of faith in the reduc-
tionist canon” that this will happen, he believes that “it may be possible to infer
the presence of consciousness in the simulation ... from the monitoring of its
ability to ontogenetically acquire novel reflexes.” He suggests that “this ability
is the crucial evolutionary advantage of possessing consciousness.” [Cotterill,
2004] reports that there is no evidence of consciousness in CyberChild as of
yet.

An incremental bottom-up approach somewhat resembling Cotterill’s is
suggested by [Holland and Goodman, 2003]. Rather than modeling the ner-
vous system however, they “emphasize a single mechanism — internal mod-
eling — as the possible underpinning of consciousness. ... Their approach is
rooted in robotics; their claim is that a robot able to deal intelligently with the
complexities of the real world will have to engage in planning, and that this
requirement will inevitably demand the creation of an internal model not just
of the world, but of many aspects of the embodied agent itself. They speculate
that such an internal agent-model may give rise to some consciousness-like
phenomena. Their strategy, like Cotterill’s, is developmental, but rather than
allowing an entity to modify and extend its own capabilities, they propose to
re-engineer the robot by themselves, adding and changing whatever is neces-
sary to deal with the progressively more difficult environmental contingencies
to which they intend to expose it. ... [their] starting point is a robot that they
claim is definitely not conscious; from there, as they remark, ‘The only way is
up.”’

A very different bottom-up approach to MC is proposed by [Haikonen,
2003]. His starting point is that classical rule-based computing is inadequate:
“the brain is definitely not a computer. Thinking is not an execution of pro-
grammed strings of commands. The brain is not a numerical calculator

Conventional artificial neural network
approaches are also of no avail, as they can be implemented on computers.
either. We do not think by numbers.”

An Introduction to Machine Consciousness



64

Rather than trying to achieve mind and consciousness by identifying and im-

hind these. This machine would produce higher-level functions by the power
of the elementary processing units, the artificial neurons, without algorithms
or programs”8. Haikonen believes that a machine based on this architecture,
which is shown in Figure 4.2, can develop consciousness, which he sees as “a
style and way of operation, characterized by distributed signal representation,
perception process, cross-modality reporting and availability for retrospection.
There is no need for special ‘conscious neurons’, conscious matter or a spe-
cial seat of consciousness. There is no discrete machine supervisor self, the
supervision is distributed in the machine.”
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Figure 4.2. IDA architecture (source: [Haikonen, 2003]).

8Emphasis added; refer to [Haikonen, 2003] for details.

plementing their underlying computational rules, Haikonen proposes “a spe-

imagery, inner speech, pain, pleasure, emotions and the cognitive functions be-
cial cognitive architecture to reproduce the processes of perception, inner
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Haikonen is not alone in this process view of consciousness, or in the view
that MC will spontaneously emerge in autonomous agents that have a suitable
neuro-inspired architecture of complexity; these are shared by many, as wit-
nessed for instance in [Freeman, 1999] and [Cotterill, 2003]. Interestingly,
Haikonen claims that the artificial neurons that underlie his architecture “can-
not be implemented by existing digital microcircuits,” apparently because they
are hybrid analog/digital circuit that require dedicated chips9.

Along the way, all MC researchers will face the same daunting problem:
how to know if the contraption they just made is consciousness? This impor-
tant problem is being approached in various ways. [Alexander and Dunmall,
2003] are trying to construct an axiomatic framework to test for conscious-
ness, taking the view that “it is only through an assessment and analysis of
the mechanisms of the organism that we can conclude whether such mech-
anisms can support consciousness or not within that organism.” [Damasio,
1999] points out that consciousness has observable manifestations, such as
wakefulness, emotions, attention, and reporting of internal experiences. Others
try to find the neural correlates of consciousness, assisted by rapid advances
in real-time brain imaging10; the hope is that once found, those correlates can
be generalized to apply to MC. [DeGroot, 2004] proposes the use of powerful
computer visualization techniques to identify consciousness. Of considerable
importance is also a basic human trait. Our intentional stance, discussed by
[Dennett, 1987], tends to make us attribute typical human qualities to animals
or objects. If a machine would behave as if it were conscious, we would be
very tempted to ascribe consciousness to it irrespective of it being conscious
or not11. Axioms, manifestations or correlates will have to result in reliable
identifiers in order to prevent anyone from deceitfully claiming ‘Conscious-
ness Inside’.

4.4 Is it relevant?
A well-accepted premise is that consciousness needs a substrate to arise

from. In biological organisms, that substrate is the brain. A view that is gain-
ing ground is that consciousness spontaneously emerges from substrates with
suitable architecture and complexity, and, once emerged, can positively im-
pact the functioning of such systems. Consciousness, in this view, may be an
evolutionary adaptation that increases the probability of survival of complex

9In principle it ought to be possible to implement the synapses on a general purpose computer. Such a
sequential implementation would be rather inefficient however for a system containing millions or billions
of neurons all operating in parallel; dedicated hardware would indeed be a better choice for implementing
such a system.
10Especially PET scans and fMRI.
11In fact, this is all we can do even with our fellow humans, as there is no way to know for sure whether
other humans are conscious because of the first-person nature of consciousness.
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organisms in a complex environment (e.g. [Humphrey, 1983]). If that is cor-
rect, it should be possible to identify the benefits of being conscious. [Baars,
1997], which states that “consciousness is a supremely functional adaptation,”
suggests a variety of functions in which consciousness plays a role: prioriti-
zation of alternatives, problem solving, decision making, brain processes re-
cruiting, action control, error detection, planning, learning, adaptation, context
creation, and access to information. Based on extensive neurological research,
[Damasio, 1999] even considers consciousness among the life regulation de-
vices of an organism that possesses it12. Consciousness allows emotions and
feelings to be known to the organism; this awareness gives it a concern for
its own survival and thereby increases its survival drive. Crucially, Damasio
argues that consciousness comes into play before high reason, suggesting that
human-level cognitive abilities require the presence of consciousness.

Our discussion of IDA showed that attempts to instill functions that require
consciousness into an autonomous agent by designing around a consciousness
mechanism can lead to systems that adequately handle complex human tasks.
An alternative view is that an agent whose architecture mimics the cognitive
processes of the human brain with sufficient detail will spontaneously develop
consciousness; Haikonen’s work falls in this school of thought. It has not
been proven that high-levels of cognitive functioning cannot be achieved with-
out consciousness being involved. An important consideration however is that
high-level cognitive processes can be partially conscious, partially unconscious
(cf. section 4.2) which means that the ontological nature of consciousness dif-
fers from that of other mental phenomena, including intelligence, knowledge,
learning etc. Consciousness, whether biological or artificial, therefore clearly
adds something unique.

An important point is that the pursuit of MC has got people thinking about
architectures for autonomous systems in new ways, creating the potential for
a variety of new products and applications. [Haikonen, 2003] puts it bluntly:
“New technology will arise. Cheap common sense in a chip will be in demand.
Those who master the new technology of artificial cognition and consciousness
will reap magnificent profits in growing markets. There will be new applica-
tions and products, ones never seen before. Some of them will be trivial, others
quite unexpected.” His role as Principal Scientist at Nokia Research gives this
statement weight. Several industrial activities can actually be identified today,
which is relevant given that MC is in an early stage and most of the efforts go
on in academia.

12These devices include basic life regulation (metabolism, reflexes, drives), emotions (stereotyped responses
that are physical and public), feelings (representations of emotions that are mental and private), and high
reason (planned responses).
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While Haikonen may well be right, the drive for MC is, in the author’s opin-
ion, not only of a commercial nature. Consciousness is perhaps the ultimate
scientific challenge13, and if MC is fundamentally possible, mankind’s insa-
tiable curiosity and drive for innovation make it inevitable that it will some day
be achieved. And whether that quest succeeds or not, it is likely to result in a
variety of spin-offs with commercial value. To stick with the metaphor — it is
safe to assume that there will be plenty of crusaders on the lookout for MC.

MC undeniably has a philosophical aspect; but engineers have by no means
lagged in the field, as witnessed by the efforts mentioned above. Artificial in-
telligence and expert systems evolve at a fast pace, supported by the increasing
understanding of cognitive processes and the independent field of informa-

processing and all come together in fields such as

awareness may prove to be the right paradigm for advanced systems to deal
with the fuzzy complexity of our world. This is for instance reflected in Eu-
ropean Commission’s calls for IT proposals such as Bio-I3, which focuses on
three topics: reverse-engineering brains; growth and plasticity, and self-aware
control systems14. European Integrated Projects in the making as part of this
framework will cover topics such as awareness engines and self-aware robots.
Self-awareness is very close to consciousness, and it is therefore no surprise

3 agenda15.
In terms of ultimate relevance, machine consciousness will become signif-

icant to the extreme if the predictions of futurologists like Hans Moravec and
Ray Kurzweil come true. Comparing estimates of the compute power of the
human brain (in the order of 1016 operations per second) with the growth of
computer power as predicted by Moore’s Law, [Moravec, 1998] predicts that
“computers suitable for humanlike robots will appear in the 2020s.” [Kurzweil,
1999] likewise predicts that a “$1,000 computing device (in 1999 dollars) is [in
2019] approximately equal to the computational ability of the human brain.”
He goes on to extrapolate all the way up to 2099, and foresees that not only will
machines be conscious by then, but humans will have evolved into conscious
machines...

4.5 Applications
Current MC thinking is mainly concerned with the plausibility of the con-

cept and the feasibility of proposed mechanisms. In comparison, not that much
is being said about the application of conscious technology. If we assume that

13Even Nobel-prize winners like G.M. Edelman and F. Crick have embarked on the study of consciousness.
14Bio-I3 stands for Bio-Inspired Intelligent Information Systems; see http://www.cordis.lu/ist/fet/bioit.htm.
15See for example http://fp6.cordis.lu/ist/fet/proposal details.cfm?ID EVENT=49.

Artificial Life (e.g., [Steels and Brooks (eds.), 1994]). Context-, system- and self-
tion theory, which

that MC is explicitly on the Bio-I
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MC technology will some day be mature and available though, where and how
will we apply it? We will speculate on an example application, but first at-
tempt to sketch some general characteristics of MC application areas and of
the conscious machiness operating in it.

To identify MC application areas, we propose to look for environments in
which consciousness is considered to be beneficial. These would predomi-
nantly be complex environments that are subject to frequent, unpredictable
changes. For MC technology to benefit an artificial autonomous agent operat-
ing in this type of environment, the agent would be required to fulfill one or
more non-trivial tasks in which it can only succeed by properly reacting to en-
vironmental changes. The high degree of adaptability this would require from
the agent ought, as we saw above, to benefit from consciousness. Within the
boundaries of its mission, the agent would need a large degree of autonomy,
as the capability to influence both itself and its environment would allow it the
‘learn and live’ type of survival that played a role in the rise of biological con-
sciousness. Responsibility for its own survival would in fact have to be among
the agent’s primary drives, in the sense that substandard performance would
lead to its deterioration and possible termination. The agent should moreover
be capable of at least simple emotions and feelings, derived from more ele-
mentary pain and pleasure mechanisms. Its goals would then be defined by the
avoidance of certain events (pain) and the pursuit of others (pleasure).

With this in mind, we now briefly speculate, as promised, on an actual appli-
cation. As our complex environment, we choose a modern home in a techno-
logically advanced society of the not-too-distant future16. This home consists
of the common framework of walls, doors, windows etcetera, which define
its living spaces. These spaces interact with each other and with the envi-
ronment outside, for instance through human activity, movement of objects,
various electronic communication channels, and the effects of the weather. In-
tegrated into the framework is a large set of sensors and actuators. The sen-
sors provide the status of such properties as light, temperature, and humidity,
they accept user commands, they identify objects and/or persons along with
their positions and activities, they measure the usage of electronic and other
resources, etc. Likewise, the actuators provide for instance heating, cooling,
and lighting, and include a variety of appliances, infotainment sources, and
user interfaces. When these sensors and actuators are tied together via MC
technology, the entire home can be regarded as a conscious agent. Appropri-
ate ‘pleasure drives’ for this agent would be maintaining the integrity of the
house and the safety, health and comfort of all occupants, as well as receiving
compliments and system upgrades from the occupants.

16For instance, some Western society ten years from now.
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the home framework, preventing reprimands, and steering clear of any system
downgrade, replacement, or discard. The normal lives of the occupants, includ-
ing their communications with the outside world, along with the weather with
its, well, weathering effects on the home, make for a complex and dynamic en-
vironment; and the tasks of keeping a family happy and a house in good shape
are far from trivial, as most of us probably know. If we consider the increased
complexity and the fast pace of today’s life and extrapolate, the idea that peo-
ple will try to turn their passive shelters into proactive support entities is not
that inconceivable. A relatively simple MC concept like this can clearly spur
a lot of technical and philosophical debate17, but may also make clear that a
key application as well as challenge for MC technology will be to make things
better and simpler for us humans, not harder and more complicated.

4.6 Conclusion
Neuro-scientific research suggests that consciousness plays an important

role in human cognition, and may even be required for human-level intelli-
gence. Machine consciousness is an emerging ‘technology of mind’ that aims
at achieving consciousness in man-made systems. It is in an early stage, and
much is yet to be discovered and proven. The hope is that MC will add to the
existing suite of AI techniques and enhance the performance and capabilities
of autonomous agents. First-generation architectures exist and were proven to
be meaningful. If MC succeeds and lives up to expectations, it can be an en-
abling technology for new products and applications, suggesting that there is
commercial potential. In fact, there is already some industrial activity despite
the early stage the field is in. Products and applications that come to possess
MC will be self-aware; they will in a certain sense be alive, posing ethical
questions never encountered before. All in all, good reasons exits for keeping
an eye on the development of MC technology.
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Chapter 5

OPTIMAL SELECTION OF TV SHOWS
FOR WATCHING AND RECORDING

Wim F.J. Verhaegh

Abstract In this chapter we address a problem from the area of personalized electronic
program guides (EPGs), concerning the selection of a number of TV shows for
watching and recording, given a number of available tuners, such that the total
value of the selected shows is maximized. Furthermore, the shows selected for
watching are to be scheduled in a given time interval. We give a mathematical
model for this problem, and show that it is NP-hard. Next, we present a dynamic
programming approach that solves the problem to optimality. Furthermore, we
present a few options to reduce the run time, albeit at the cost of losing the
guarantee of finding an optimal solution. Finally, we perform some experiments
on actual EPG data.

Keywords Electronic program guide, recommender system, channel, TV show, dynamic
programming.

5.1 Introduction
With the ever increasing number of available television channels, either

through terrestrial connections, satellite, or cable, the problem for the user to
select TV shows is becoming too big to handle manually. With the advent of
digital television, the number of channels and hence the number of options to
choose from are becoming even larger. As a result, users will lose the overview,

Because of the large number of TV shows available each week, printed pro-
gram guides are no longer a viable option, as they would simply become too
big and heavy to handle. Electronic program guides (EPGs) form a solution to
this problem, by presenting the available TV shows for a number of channels
onto the TV screen. Unfortunately, the number of channels and the length of
the time interval of the portion shown on the screen is very limited, because of

interesting.
and it is very likely that a user will miss TV shows that he would find very
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the poor resolution of a TV screen for this kind of information. However, even
if the resolution were high enough, simply showing all available TV content
would overwhelm the average user.

In order to alleviate the problem of what TV shows to select, EPGs offer the
option to search for keywords, in this way reducing the number of TV shows
to a tractable number. Another way to weed out many uninteresting TV shows
is by the use of recommender systems [Gutta et al., 2000; Smyth & Cotter,
2000]. These systems maintain a preference profile of the user, indicating what
he likes and dislikes, and use that to predict to what extent the user will like the
newly offered TV shows. Then, the top-scoring shows can be highlighted in
an EPG, or the user can be given a list of top-scoring shows. A problem with
these solutions, however, is that they do not take into account whether shows
overlap in time or not, so it is still left up to the user to compile a nice program
of TV shows to watch during e.g. an evening. In other words, whereas filters
and recommenders come up with a list of individual shows, we would like to
offer the user a sequence of shows to watch. This problem, which has hardly
been addressed in the literature, is the topic of this chapter.

When considering the problem of determining an optimal TV experience
for a user for a certain time interval, there are numerous aspects to be taken
into account. On the one hand we are currently compiling a list of aspects that
play a role and are assessing their relevance, while on the other hand we have
started investigating the problem area in a bottom-up fashion, concentrating
on a few aspects at a time. By starting with a simplified problem setting and
investigating how it can be solved, we gain first insights into the problem area.
Building on this, future research will focus on extending the problem setting
to include more aspects, and on investigating how the developed algorithms
can be elaborated to solve more complex settings. Furthermore, in this chapter
we concentrate on a mathematical formulation and solution technique of the
discussed problem, and discard the user interaction aspects for the moment.

The scope of this chapter covers the problem of what shows to select for
watching or recording with a given number of available tuners. We assume
here that the number of tuners is limited, whereas recording multiple shows
at the same time is no issue, using today’s hard-disk recorders. Furthermore,
we assume that we are given a preference value for each show, indicating how
much the user likes it. This value may be given explicitly by the user, but
more realistically it is given by a recommender tool. Finally, we assume for
the moment that the total value of a number of shows is given by the sum of
the values of the individual shows.

In our problem setting we consider the option to time-shift shows that have
been selected for watching, thereby also introducing a scheduling aspect next
to the selection aspect. Including this makes the problem formally hard to solve
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optimally, but we nevertheless present a dynamic programming approach that
does so in a reasonable time for problem instances of practical size.

The remainder of this chapter is organized as follows. In Section 5.2 we
present a formal definition of the problem that we consider, of which we show
in Section 5.3 that it is formally hard to solve. In Section 5.4 we show that
the TV shows can be considered in a particular order for scheduling, which we
use in Section 5.5 to derive a dynamic programming approach. A few ways
to reduce the run time are presented in Section 5.6. Finally, we perform some
experiments on actual EPG data, in Section 5.7.

5.2 Problem definition
Informally, the problem we consider consists of two aspects. First, we have

to select the shows we want to receive (which will be recorded). Secondly,
from this first selection we have to decide which shows we want to watch
during a given interval (e.g. that evening) and at what time. We assume a
certain value per show to be given for receiving it, and an additional value is
given if it is also selected for watching. For instance, a sports program gets
a certain value for being received (and recorded), and an additional value if it
can be watched during the evening of broadcast.

More formally, the problem we consider is the following.

Definition 5.1 (Time-shifted show selection problem (TSSP)). Given is a
set S of TV shows, where each show s is broadcast from begin time bs to end
time es, and a number m of tuners. Furthermore, for each show a value v r

s is
given for receiving it, and an additional value vw

s for watching it. Finally, a
begin time b and an end time e are given, indicating the interval [b,e) during
which the user wants to watch shows.

The question is to determine a subset S r ⊆ S of shows to be received (and
recorded), and a subset Sw ⊆ S r of shows that are going to be watched, such
that at all times at most m shows have to be received, i.e., for all times x we
have

|{s ∈ S r | bs ≤ x < es}| ≤ m,

such that the set Sw of shows selected for watching can be scheduled in the
time interval [b,e), and such that the total value of this solution, given by

∑
s∈S r

v r
s + ∑

s∈Sw
vw

s ,

is maximized.
The constraint that the set Sw selected for watching can be scheduled in the

time interval [b,e) means that we also have to determine for each of the shows
s in this set a time ws at which it is started to be watched, such that for all
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s ∈ Sw,

ws ≥ bs

ws ≥ b
ws + es −bs ≤ e,

and such that for all s, t ∈ Sw, s �= t,

ws ≥ wt + et −bt ∨ wt ≥ ws + es −bs.

Note that scheduling the shows selected for watching may introduce gaps in
the schedule. Such a gap will, for instance, be introduced if it is better to wait
some time for a show to come that has a very high value.

evening. The shows in Sw can be watched that evening, while the shows in
S r \ Sw can be watched at another occasion. For example, they can be used if
shows in Sw turn out to be disappointing, or they can be used on other days
when there are no good shows broadcast. Although a following instance of the
problem, e.g., the next day, may hence have a set of shows already recorded,
which may be selected for watching, we discard that for the time being.

5.3 Computational complexity
First we show that TSSP is formally hard to solve. To this end, we define

a decision variant TSSP-D in which the question is whether a solution exists
with a value of at least a certain bound V .

Theorem 5.1. TSSP-D is NP-complete.
Proof. First, we note that we can verify a solution to TSSP-D, given by the
sets S r and Sw and the times ws for all s ∈ Sw, straightforwardly in polynomial
time. Hence TSSP-D is in NP.

Next, we give a reduction from Subset Sum [Garey & Johnson, 1979]. In
Subset Sum we are given a multiset X = {x1,x2, . . . ,xk} of numbers and an
integer B, and the question is whether a subset X ′ ⊆ X exists with ∑x∈X ′ x = B.

Subset Sum can be reduced to TSSP-D by means of the following trans-
formation. For each number x ∈ X , we create a show s with bs = 0, es = x,
v r

s = 0, and vw
s = x. Furthermore, we set b = 0, e = B, m = k, and V = B. Then,

the Subset Sum instance has a solution if and only if the constructed TSSP-D
instance has a solution. This can be seen by using the straightforward relation
that we include a number x in X ′ if and only if we select the corresponding
show for watching (and reception).

The above theorem basically states that selecting a set of shows for watching
that completely fills the interval [b,e) is hard.

The above problem is typically solved for a limited time interval, e.g. an
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Even though TSSP is NP-hard, we are going to solve it to optimality at first
by means of dynamic programming. Before doing so, we address the actual
scheduling of the shows selected for watching.

5.4 Scheduling shows for watching
The actual scheduling of the shows for watching, once they have been se-

lected, is not a hard problem, as the next theorem states.

Theorem 5.2. Without loss of feasibility, a set Sw of shows selected for watch-
ing can be scheduled in a time interval [b,e) in order of increasing begin time.
Proof. Suppose we have a feasible schedule, given by the start times ws for
all s ∈ Sw, and suppose we have two shows s, t, with s being scheduled directly
before t, but with t being available before s, i.e., bt < bs. Then, swapping s and
t also gives a feasible schedule, which can be seen as follows.

Consider a new schedule w′ which is given by the same start times for all
shows except for shows s and t, which are given by

w′
t = ws

w′
s = w′

t + et −bt .

See Figure 5.1 for a visualization of this swap. This swap only affects shows

s t

st

schedule w

schedule w′

ws wt

Figure 5.1. Swapping directly-succeeding shows s and t.

s and t and not the other shows, so we only have to check s and t for meeting
the constraints. To this end, we derive

w′
t = ws ≥ b

w′
t = ws ≥ bs > bt

w′
t + et −bt ≤ wt + et −bt ≤ e

w′
s ≥ ws ≥ b

w′
s ≥ ws ≥ bs

w′
s + es −bs = ws + et −bt + es −bs ≤ wt + et −bt ≤ e.

So, scheduling the shows for watching can be done in order of increasing begin
time. Furthermore, assigning tuners to the shows to be received corresponds to
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coloring an interval graph, which can also be done in order of increasing be-
gin time by means of the so-called left-edge coloring algorithm [Korst, 1992].
This allows us to apply a dynamic programming approach [Papadimitrious &
Steiglitz, 1982], where we iteratively consider the shows in order of increasing
begin time, and determine for each show whether to skip, receive, or receive
& watch it. For the remainder, we hence assume the shows to be numbered
s = 1,2, . . . ,n, with bs ≤ bs+1 for all s = 1, . . . ,n−1.

5.5 A dynamic programming approach
As mentioned, we are going to apply a dynamic programming approach in

which the shows are considered in order of increasing begin time. The state
space that we choose should be such that when considering a certain show s,
we have all the relevant information of previous decisions in order to determine
the effect of skipping, receiving, or receiving & watching it (possibly time-
shifted).

Therefore we define a state by giving for each of the m tuners the time from
which onwards it is (again) available for receiving a next show, plus for the user
the time from which onwards he can watch another show. Given this informa-
tion, we can determine whether we can skip, receive, or receive & watch a next
show s under consideration, and what the effect is of these choices. Without
loss of generality, we can keep the times for the tuners sorted in non-decreasing
order, as all tuners are identical.

In addition to the above parameters to keep track of the state, we also main-
tain for each state the value of the already selected shows for reception and
watching. Furthermore, we store for each state the sets S r and Sw of shows
selected for reception and watching, respectively, so afterwards we can simply
read out what the solution is.

More formally, a state is given by an (m+4)-tuple (a1, . . . ,am;a;v;S r,Sw),
where a1, . . . ,am indicate the times at which the tuners are again available, with
ai ≤ ai+1 for all i = 1, . . . ,m−1, a indicates the time at which the user is again
ready to watch the next show, and v is the total value of shows selected up to
now.

The begin state for dynamic programming is given by ai = b1 for all i =
1, . . . ,m, i.e., the tuners are available from the first beginning of any show,
a = b, i.e., the user can start watching from time b onwards, a value v = 0,
and sets S r = Sw = /0. The set of possible states is hence initialized by P0 =
{(b1, . . . ,b1;b;0; /0; /0)}.

Next, given the set of possible states Ps−1 at the beginning of iteration
s = 1, . . . ,n of the dynamic programming approach, we can calculate the set
of possible states Ps at the end of this iteration as follows. For each state
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(a1, . . . ,am;a;v;S r,Sw) ∈ Ps−1, we can do (at most) three possible actions for
the show s under consideration.

The first action is to simply skip show s. This does not change the state
at all, so we get an identical state (a1, . . . ,am;a;v;S r,Sw) in Ps.

The second action is to receive show s, which can be done if and only
if there is a tuner available at time bs. As the tuner availability times
are sorted, this can be checked by checking whether a1 ≤ bs holds. If
so, we can use any available tuner for receiving the show without loss of
optimality, as all shows t = s+1, . . . ,n to be considered in later iterations
have a begin time bt ≥ bs. So, we choose the first tuner for this, and it
will again be available at the end time es. As a result, we get a new state
(es,a2, . . . ,am;a;v + v r

s ;S r ∪{s},Sw) in Ps, where the availability times
es,a2, . . . ,am should next be sorted.

Thirdly, we can decide to select show s for reception & watching (pos-
sibly time-shifted), which is possible if and only if there is a tuner avail-
able at time bs, i.e., a1 ≤ bs, and there is still time to watch show s. For
the latter, the user is again available from time a onwards, and the show
is available from time bs onwards, so watching this show can start at
time ws = max{a,bs}. Note that if a > bs, the show will be time-shifted.
Watching shows should be finished by time e, so max{a,bs}+es−bs ≤ e
has to hold. If these two conditions are met, show s can be selected
for watching. Again, the first tuner is used for receiving the show,
so it is available again at time es. Furthermore, the show is sched-
uled for watching at time ws = max{a,bs}, so the user can continue
watching from time ws + es − bs onwards. So, this gives a new state
(es,a2, . . . ,am;ws + es − bs;v + v r

s + vw
s ;S r ∪{s},Sw ∪{s}) in Ps, where

again the availability times es,a2, . . . ,am should be sorted.

Next, the set Ps of states may be pruned, as some states may dominate other
states. Before doing so, however, we can update the states in Ps as follows.
Because the next show begins at time bs+1 (where we may define bn+1 = ∞)
and the following ones do not begin earlier, a tuner availability time ai < bs+1
might as well be replaced by an availability time ai = bs+1. Similarly, the time
a at which the user is again available for watching may as well be replaced
by bs+1 if bs+1 > a. Note that in the latter case the watching schedule of the
corresponding state will have a gap.

After the updating step, we remove dominated states. A state σ =
(a1, . . . ,am;a;v;S r,Sw) ∈ Ps is called to dominate another state σ′ =
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(a′1, . . . ,a
′
m;a′;v′;S′ r,S′w) ∈ Ps if and only if the next three conditions hold:

ai ≤ a′i for all i = 1, . . . ,m
a ≤ a′

v ≥ v′.

So, the availability of the tuners and the user in state σ are no later than in state
σ′, whereas the value of σ is at least as good as the value of σ′. In this situation,
σ′ can be removed from Ps without loss of optimality. This results in a smaller
set of states, and hence in a shorter run time of the algorithm.

To remove all dominated states, we would have to do a check for each pair of
states, which takes a number of steps that is quadratic in the number of states.
As this will be too time consuming in practice, we perform a less complete
check by first sorting the states in lexicographical order, and next comparing
each pair of successive states. This results in a good trade-off between the run
time required for domination checks and the run time saved by reducing the
state space. Pseudo code for the resulting dynamic programming approach is
given in Figure 5.2.

5.6 Run time improvements
In this section we discuss two approaches to reduce the run time, at the cost

of losing the guarantee of finding an optimal solution.

5.6.1 Reducing the state space
Key in the dynamic programming approach presented in Section 5.5 is that

the state space can be reduced after each step by removing dominated states,
and that in this way the state space can be kept reasonably small. An important
factor in this is the time granularity of the problem instance at hand. If the
time granularity is relatively large, compared to the total time span, then the
number of possible availability times is quite small. For instance, if all shows
begin and end at multiples of half an hour, and the earliest time point is 18:00
and the latest one is 23:00, then each availability time (of each tuner and of
the user) can assume only 11 values. If we have two tuners, then there are 66
possible pairs (a1,a2) of tuner availability times, so the state space contains at
most 66 ·11 = 726 states, regardless of the number of shows. If, however, the
time granularity is one minute, then the number of possible availability times
is much larger, and hence the state space may become very large.

A way to prevent the state space from becoming very large, is by artificially
making the time granularity larger. For instance, all times may be rounded to
multiples of five minutes.

For the availability time a of the user, we can stay on the safe side by only
rounding upwards. Then, the amount of shows selected for watching with
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{initialization}
P0 = {(b1, . . . ,b1;b;0; /0; /0)};
for s = 1 to n do
begin

for σ = (a1, . . . ,am;a;v;S r,Sw) ∈ Ps−1 do
begin

{first action: skip s}
copy σ into Ps;
{second action: receive s}
if a1 ≤ bs
then add (sort(es,a2, . . . ,am);a;v+ v r

s ;S r ∪{s},Sw) to Ps;
{third action: receive & watch s}
if a1 ≤ bs ∧ max{a,bs}+ es −bs ≤ e
then add (sort(es,a2, . . . ,am);max{a,bs}+ es −bs;v+ v r

s + vw
s ;S r ∪{s},Sw ∪{s}) to Ps;

end;
{update states}
for σ = (a1, . . . ,am;a;v;S r,Sw) ∈ Ps do
begin

for i = 1 to m do
begin

ai = max{ai,bs+1};
end;
a = max{a,bs+1};

end;
sort the states σ1, . . . ,σp in Ps in lexicographically increasing order
{remove dominated states}
for j = 1 to p−1 do
begin

if σ j dominates σ j+1
then remove σ j+1 from Ps;

end;
end;
{end result: the (single) state in Pn}

Figure 5.2. Pseudo code for the dynamic programming approach for TSSP.

rounded times can certainly be watched if times are not rounded. In other
words, the found solution is guaranteed to be feasible, but we may lose opti-
mality. Rounding the availability time to the nearest (not necessarily higher)
multiple of the time granularity may also be done, but then the end time e may
be exceeded by the eventual solution.

For the availability times ai of the tuners i = 1, . . . ,m, we can also stay on the
safe side by only rounding upwards. A drawback of this approach, however, is
that two shows that directly succeed each other on a channel, may not be se-
lected together. For instance, if the first show is selected, and the corresponding
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tuner is available again from the end time of this show, then by rounding up
this availability time we may conclude that it is not possible to also receive
the next show with this same tuner. If the begin and end times of the shows
are such that there is a gap between the end of one show and the beginning
of the next one on the same channel (for instance because of commercials in
between), then this effect of rounding need not occur. Furthermore, if it is not
an issue that the beginning of a show is missed, one may resolve the problem
caused by rounding times upwards by simply increasing all begin times by a
certain amount.

5.6.2 Filtering shows
A second way to reduce the run time of the dynamic programming approach,

is to prune the set of shows before solving the instance. To this end, we set a
lower bound pmin on the preference ps of a show, and we simply remove all
shows with ps < pmin. In Section 5.7 we show the effect of this step. Key
in this pre-filtering step is that a sufficient number of uninteresting shows are
removed, but still a sufficient number of interesting shows is kept to choose
from.

5.7 Experiments
The dynamic programming approach has been implemented in C++. For a

first experiment, we ran the algorithm on an instance of Dutch EPG data of
June 27, 2004, as shown in Figure 5.3. We selected all shows that started be-
tween 18:00h and 00:00h, giving 191 shows in total. The preference values
for reception in this example were randomly drawn between 1 and 20. Fur-
thermore, when a show is selected for watching, its value gets doubled (i.e.
vw

s = v r
s). The begin and end time for watching were b = 18:00h and e =

23:00h, and we used four tuners. The run time for this instance was about 2
minutes and 54 seconds on a Linux server with two 2.4 GHz Intel Xeon proces-
sors, with a maximum number of states reached in any iteration of 176,571.
The shows selected for reception and watching are also shown in Table 5.1.
Note that the time interval for watching has been filled completely, and that the
shows selected for watching have an almost maximal preference value.

Reducing the number of tuners to only two, drastically reduces the run time
to about 2.7 seconds, with a maximum of 6144 states in any iteration. The
resulting shows selected for reception and watching are shown in Table 5.2.

5.7.1 Varying the time granularity
Next, we are going to increase the granularity of the user availability time a

from 1 to 30 minutes to determine the effect on the number of states, the run
time, and the total value. For the effect on the number of states, see Figure 5.4.
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The effect of the granularity on the run time of the dynamic programming
algorithm is shown in Figure 5.5. The effect of the granularity on the total
value of the solution is less than 1%. It turned out, for instance, that for a
granularity of 30 minutes the optimal solution contained shows selected for
watching that all last a multiple of 30 minutes. For these shows, the effect of
rounding the user availability time is void.

5.7.2 Filtering shows
Next, we are going to filter shows on their preference density value, and see

what the effect is on the run time and total value. To this end, we applied a
threshold 1, . . . ,20 on the preference density value of the shows, and solved

Figure 5.3. A practical example of TV shows and the resulting schedule. The dark grey boxes
indicate the shows that have been selected for watching, for which the schedule is given at the
bottom, and the light grey boxes indicate the shows that have been selected for recording. The
height of a box indicates the preference value of the corresponding show. The number of tuners
is four in this example.

time
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18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00

18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00

resulting watch schedule
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Table 5.1. The list of shows selected for reception and watching. For shows to be watched, the
time indicates when they are scheduled for watching, and between brackets the corresponding
time shift is given. The value is given by the weight (2 for watching, 1 for reception only) times
the duration in minutes times the preference value.

time (shift) channel show value

receive & watch:
18:00–19:00 TMF Babetrap 2 ·60 ·20
19:00–19:31 (0:52) ARD Sportschau: EK voetbal 2 ·31 ·20
19:31–19:32 (0:52) ARD Ein gutes Los für alle 2 ·1 ·20
19:32–19:35 (0:32) Nederland 3 Nederland 3 2 ·3 ·18
19:35–20:25 (0:30) Nickelodeon Saved by the bell 2 ·50 ·20
20:25–21:25 (0:25) TMF Interactive charts 2 ·60 ·20
21:25–22:50 (0:50) Nederland 3 Tegenlicht 2 ·85 ·20
22:50–23:00 (0:15) Nederland 3 NOS-Journaal 2 ·10 ·19

receive only:
18:00–18:05 KETNET/Canvas Hopla 1 ·5 ·12
18:00–18:15 Nederland 3 Sesamstraat 1 ·15 ·20
18:00–18:55 SBS 6 Klussen & wonen 1 ·55 ·19
18:05–18:08 ARD Der 7er Sinn 1 ·3 ·4
18:15–18:25 Nederland 3 Melatten 1 ·10 ·15
18:25–18:30 Nederland 3 Buikzingen 1 ·5 ·20
18:30–19:00 RTL 5 Stapel op auto’s 1 ·30 ·16
18:40–19:05 Nickelodeon Kuifje 1 ·25 ·15
18:55–20:30 Veronica The Dukes of Hazzard 1 ·95 ·19
19:00–19:30 Yorin De modepolitie 1 ·30 ·19
19:03–19:33 Nederland 3 Gewe(e)st 1 ·30 ·14
19:30–20:00 RTL 4 RTL Nieuws 1 ·30 ·16
19:33–20:35 Nederland 3 R.A.M. Compilatie 1 ·62 ·19
19:58–20:00 ARD Heute Abend im Ersten 1 ·2 ·13
20:00–20:15 WDR Fernsehen Tagesschau 1 ·15 ·15
20:15–20:45 Nederland 1 De vakantierechter 1 ·30 ·18
20:30–22:20 NET 5 Outrageous fortune 1 ·110 ·17
20:45–22:28 Nederland 1 KRO Detectives: Second sight 1 ·103 ·20
21:00–22:00 Discovery Channel Xtreme martial arts 1 ·60 ·20
22:00–23:00 Discovery Channel Xtreme martial arts 1 ·60 ·19
22:00–23:00 National Geographic Innovation: Spy catchers 1 ·60 ·14
22:25–22:35 Nederland 3 D66 1 ·10 ·18
22:30–00:35 Veronica The Emerald forest 1 ·125 ·16
22:45–23:40 Yorin The bachelor 1 ·55 ·17
23:00–23:15 BBC 1 Nieuws en weerbericht 1 ·15 ·11
23:08–01:07 Nederland 1 KRO Filmtheater: Musicbox 1 ·119 ·11
23:15–00:20 SBS 6 Reportage: Oog in oog met ... 1 ·65 ·20
23:45–00:25 Nederland 2 De nieuwe pest 1 ·40 ·18
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Table 5.2. The list of shows selected for reception and watching in case of two tuners.

time (shift) channel show value

receive & watch:
18:00–18:55 SBS 6 Klussen & wonen 2 ·55 ·19
18:55–19:55 (0:55) TMF Babetrap 2 ·60 ·20
19:55–20:45 (0:50) Nickelodeon Saved by the bell 2 ·50 ·20
20:45–20:47 (0:47) ARD Heute Abend im Ersten 2 ·2 ·13
20:47–21:17 (0:32) Nederland 1 De vakantierechter 2 ·30 ·18
21:17–23:00 (0:32) Nederland 1 KRO Detectives: Second sight 2 ·103 ·20

receive only:
18:55–20:30 Veronica The Dukes of Hazzard 1 ·95 ·19
19:00–19:03 Nederland 3 Nederland 3 1 ·3 ·18
20:00–20:15 WDR Fernsehen Tagesschau 1 ·15 ·15
20:35–22:00 Nederland 3 Tegenlicht 1 ·85 ·20
22:00–23:00 Discovery Channel Xtreme martial arts 1 ·60 ·19
22:30–00:35 Veronica The Emerald forest 1 ·125 ·16
23:00–23:15 BBC 1 Nieuws en weerbericht 1 ·15 ·11
23:15–00:20 SBS 6 Reportage: Oog in oog met ... 1 ·65 ·20

the instance with the shows having this value or higher. The results are shown
in Figure 5.6. As we can see, we can save quite some run time by applying a
threshold before the quality of the end solution drops.

5.8 Conclusion
We have presented the problem of how to optimally select a number of TV

shows for reception and watching, and showed that the problem is NP-hard.
Next, we have presented a dynamic programming approach that finds optimal
solutions, and works in a reasonable run time in practice. We also presented
and tested a few ways to reduce the run time of the approach, thereby finding
approximate solutions.

Future work concerns the extension of the presented problem to include ad-
ditional relevant problem aspects, to refine the objective function by including
dependencies between shows, and the extension of the solution approach. Fur-
thermore, when the techniques are to be used in real applications, actual values
for the threshold, the time granularity, the time horizon, etcetera, have to be
made.

Next, the second stage of TV evening programming has to be addressed,
which concerns the compilation of sequences of shows from the set of selected
and stored shows, and eventually shows also have to be chosen for deletion, in
order to make room for new ones.
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Figure 5.4. The number of states as a function of the iteration number 1, . . . ,191, for a gran-
ularity of 1 (top line), 2, 5, 10, 15, and 30 (bottom line) minutes, for the example with four
tuners.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

granularity

ru
n 

tim
e

Figure 5.5. The run time of the dynamic programming approach (in seconds) as a function of
the granularity (in minutes), for the example with four tuners.

Wim F.J. Verhaegh



87

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20
0

5000

10000

15000

20000

25000

30000

preference threshold

ru
n 

tim
e

to
ta

l v
al

ue

total value

run time

Figure 5.6. The effect of applying a threshold of 1, . . . ,20 for the preference value on the run
time (in seconds, lower graph and left scale), and on the total value (upper graph, right scale),
for the example with four tuners.
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Chapter 6

MOVIE-IN-A-MINUTE: AUTOMATICALLY
GENERATED VIDEO PREVIEWS

Abstract Movie-in-a-minute is a summarization method that enables quick browsing and
access to hundreds of hours of stored video programs. A movie-in-a-minute is a
short video sequence composed of automatically selected portions of the original
video that aims at conveying key aspects of a program and its story in an efficient
but entertaining way. In this chapter we discuss an approach to generating movie-
in-a-minute summaries using film grammar rules to guide the selection of video
segments that are indexed using automatically computed signal-level features.

Keywords Automatic content analysis, video content analysis, multimedia summarization,
video browsing, personal video recorders.

6.1 Introduction
Summarization has become a highly necessary tool in browsing and search-

ing home video collections and produced video archives, saving users’ time
and offering great control and overview. Various types of summarization meth-
ods have been offered in the literature: visual table of contents, skimming,
and multimedia summaries [Barbieri et al., 2003]. Also, various domains
have been explored such as structured video summarization for news, music
videos, and sports. On the other hand, the Holy Grail remains to be narra-
tive video summarization, which includes methods for summarizing narrative
content such as movies, documentaries and home videos. In this chapter we
present Movie-In-A-MInute (Miami), also known as ‘video preview’ or ‘video
thumbnail’. Miami is a short video sequence dynamically composed of se-
lected portions from the original video. It aims at conveying key aspects of a
program and its story with an array of important images and segments. Miami
videos help users selecting programs (instead of zapping channels), deleting,
downloading or simply recalling watched programs. These features are

Mauro Barbieri, Nevenka Dimitrova and Lalitha Agnihotri

89

© 2006 Springer. Printed in the Netherlands. 
Wim F.J. Verhaegh et al. (Eds.), Intelligent Algorithms in Ambient and Biomedical Computing, 89-101.



90

While video summaries aim at conveying all the information of the origi-
nal content in shorter and more efficient versions, Miami videos aim only at
giving users clues for selecting programs. Therefore a Miami video does not
need to be comprehensive, or to include all highlights. Video trailers are some-
what similar to Miami videos although they purely aim at teasing consumers,
attracting their attention and creating expectations that can or cannot be met by
consuming the real content.

In this chapter we will first discuss related work to video summarization in
Section 6.2. We will detail the requirements for Miami video in Section 6.3.
In Section 6.4 we will introduce a formal model within an optimization frame-
work that translates the requirements into constraints. Implementation and
results of this model will be given in Section 6.5. Section 6.6 will introduce
the need for personalization of video summaries, and Section 6.7 will conclude
the chapter.

6.2 Related work
In the recent literature various video summarization methods have been in-

troduced: video skim, highlights, and multimedia summaries.
Video skim is a temporally condensed form of the video stream that prefer-

ably preserves the most important information. It is a set of short video se-
quences composed of automatically selected portions of the original video.
A method for generating visual skims based on scene analysis and using the
grammar of film language is presented by [Sundaram et al., 2002]. [Ma et al.,
2002] proposed an attention model that includes visual, audio, and text modal-
ities for video summarization. With respect to these summarization methods,
Miami videos are not meant to convey all the information of the original con-
tent but aim at including only key aspects of a program to allow users to quickly
see what it is about and make a selection.

Video highlights is a form of summary that aims at including the most impor-
tant events in the video. Various methods have been introduced for extracting
highlights from specific genres of sports programs: goals in soccer video, hits
in tennis video or pitching in baseball [Zhong et al., 2001], important events in
car racing video [Petkovic et al., 2002], and others.

Multimedia video summary is a collection of audio, visual, and text seg-
ments that preserve the essence and the structure of the underlying video (e.g.
pictorial summary, story boards, surface summary). A multimedia video sum-
mary of audio-video presentations is presented in [He et al., 1999]. The sum-

indispensable for large video archives, such as personal video recorders and
home network systems [Paulussen et al., 2003].

interactions with presentations in order to generate a multimedia summary.
marization system uses slide-transitions in video, in audio and userpitch
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6.3 Requirements
The automatic creation of a Miami video can be formulated as the problem

of selecting the best set of segments of a given duration of the original program
that satisfies a certain list of requirements.

Two different approaches can be followed for the design of an algorithm that
generates Miami videos: the machine learning approach and the knowledge-
explicit approach. In the machine learning approach a statistical classifier is
trained with positive and negative examples, selected by humans, with the aim
of generalizing the common underlying properties of the examples in such a
way that the classifier learns to distinguish between ‘good’ previews and ‘bad’
previews. This approach has the advantages of being generic and potentially
reusable for all types of video and video previews. However, in practice the
main problem is the amount of proper positive and negative examples required
to train a classifier that can achieve a proper level of generalization. A simpler
problem that could be tackled using machine learning is deciding for each
segment of the original program whether or not it is suitable for being included
in a preview. Although appealing, this method neglects to consider that a good
preview is not simply a preview formed by including ‘good’ segments. The
meaning conveyed by a video lies largely in the relationships and the temporal
order of the segments of which it is composed.

In the knowledge-explicit approach, the designer embeds in the algorithm
the knowledge on how to make a video preview in the form of requirements
and constraints that drive the search for the best subset of the original program
and the composition of the video preview. Machine learning can then still be
used to fine-tune the parameters of the model in an objective and systematic
way. Based on a study of cinematic production rules we have developed our
own knowledge-explicit approach.

To allow fast and convenient content selection, a video preview should meet
more than thirty requirements that have been collected by analyzing related lit-
erature on video summarization [Ma et al., 2002; Pfeiffer et al., 1996] and film
production [Mascelli, 1965; Zettl, 2001] and interviewing a restricted num-
ber of ‘expert’ users. The requirements can be grouped into seven categories:
duration, continuity, priority, uniqueness, exclusion, structural and temporal
order:

Duration requirements deal with the durations of the preview and of its
sub-parts. Each segment chosen for the preview has a minimum time re-
quired for comprehension depending on its type, complexity, and gener-
ically speaking, amount of information it conveys.

Continuity requirements necessitate that a video preview should be as
continuous as possible; users will not appreciate a preview with many
abrupt ‘jumps’.

Movie-in-a-Minute: Automatically Generated Video Previews
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Priority requirements indicate which content should be included in the
preview to convey as much information on the program as possible in
the shortest amount of time. Examples are: including sequences with
close-ups of the main actors as well as action segments and dialogues
giving clues on the story line.

Uniqueness requirements aim at maximizing the efficiency of the pre-
view by minimizing redundancy.

Exclusion requirements indicate which content should not be included
in the preview. For example a preview of a recorded broadcast program
should not include any commercial advertisement. Additionally, in order
not to spoil the plot of the program and allow users to later view the
content in its entirety, the video preview should not disclose the end of
the story.

Structural requirements dictate rules that pay attention to the structural
properties of video. For example, in order to provide a good overview, a
video preview should cover uniformly the entire program and mimic its
original mood and tempo.

Temporal order requirements concern the temporal order of the se-
quences included in the preview. In this category, users have indicated
conflicting requirements. Keeping the original order certainly helps
users to understand the story line given the few clues provided by the
preview. On the other hand, changing the order prevents revealing too
much of the story line in case users want to later view the entire content.
The choice of which requirement to follow can be left to the final user
of the system.

The requirements are formalized in computable constraints in order to be
used to select a subset of segments from the original program that is admis-
sible for being a video preview. At the same time, to create a good preview
it is necessary to compare admissible sets of segments to select ‘the best’ set.
The comparison is based on a function that numerically estimates the value of a
preview, the importance score. Given a computational model of the constraints
and an importance score function to maximize, the problem of automatic gen-
eration of video previews is a constrained optimization problem and its solu-
tion can be found with known methods (e.g. constraint logic programming,
local search techniques [Aarts & Lenstra, 1997]).

6.4 Formal model
In this section, the previously listed requirements are mapped to a part of an

objective function or to a constraint that the Miami video should fulfill.
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In formalizing the problem of automatic preview generation, the original
program can be seen as a finite sequence of successive video segments, with
synchronized audio and subtitle V = v1, · · · ,vM where vi is the i-th video seg-
ment in the original program. M depends on the original program duration and
on the actual segmentation. The desired video preview can be represented as a
finite sequence of successive positions that can be taken by any video segment
belonging to the original program: S = s1, · · · ,sN where s j is the j-th posi-
tion in the preview. N depends on the duration of the preview that is fixed by
the user to a certain amount D: ∑N

j=1 duration(s j) ≤ D. The duration of each
video segment should not be shorter than a certain minimum amount, to be un-
derstandable out of its original context and, at the same time, it should not be
longer than a certain maximum value in order not to give away too many details
of the story. This can be formalized by requiring: dmin ≤ duration(s j) ≤ dmax.

The objective function whose absolute maximum denotes the best preview,
has the following structure:

eval(S) = α ·π(S)−β ·ρ(S)+ γ ·η(S)+δ ·ω(S) . (6.1)

In (6.1) the priority requirements are taken into consideration in π(S) that is
defined as:

π(S) =
N

∑
j=1

π(s j) (6.2)

where π(s j) is the priority score of segment s j and it is defined as follows:

π(s j) = w ·A(s j) (6.3)

in which w is a vector of weighting factors and A(s j) is a column vector of
attributes associated to segment s j in the range [0,1]. These attributes are
computed by applying several low- and mid-level content analysis algorithms

& Chang, 2000], music/speech/noise/silence [McKinney & Breebaart, 2003],
and camera motion [Tan et al., 2000]. The relative importance of the various
attributes can be linearly tuned using the weighting factors w.

The term ρ(S) in equation (6.1) estimates the degree of redundancy of the
preview that in our case has a negative sign, which means we promote unique-
ness and penalize redundancy. It is defined as a linear combination of visual
and textual redundancy:

ρ(S) = β1 ·
N−1

∑
i=1

N

∑
j=i+1

σv(si,s j)+β2 ·
N−1

∑
i=1

N

∑
j=i+1

σt(si,s j) (6.4)

where σv(si,s j) represents the visual similarity of segments si and s j and is
computed based on automatically extracted visual features. Textual redun-
dancy is measured by extracting keywords in the closed captions or in the

et al., 2001], faces [Abdel-Mottaleb & Elgammal, 1999], dialogues [Sundaram
such as: computation of contrast, audio loudness, detection of action [Peker
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speech transcript, K(si), and by counting the number of times they are repeated
in the preview segments:

σt(si,s j) =
∣∣K(si)∩K(s j)

∣∣ . (6.5)

The continuity requirements can be taken into account by considering the
shots as elementary segments constituting the program. The shot boundaries
can be found by performing shot cut detection. Additionally, sentences should
be included entirely and not be abruptly cut while subtitles should be displayed
for a sufficient amount of time to be read. If we represent the synchronized
audio stream A as A = a1, · · · ,aQ (a j being the j-th audio segment and Q the
number of audio segments), the synchronized subtitles C as C = c1, · · · ,cR (ck
being the k-th subtitle and R the total number of subtitles), and we indicate with
bs, es, and �s respectively the start time, the end time and the time-span of
the video, audio or subtitle segment s, the continuity requirement of including
complete audio segments can be formalized with the following constraints (the
same applies to subtitles):

ba ∈�s ∀s ∈ S,∀a : ea ∈�s
ea ∈�s ∀s ∈ S,∀a : ba ∈�s

(6.6)

The requirement of not including commercial blocks can be easily fulfilled
by removing the segments indicated by our commercial block detector [Schaf-
fer et al., 2002]. Additionally, we take into consideration the requirement of
not disclosing the end of the program by discarding a certain percentage1 of
segments at the end (e.g. 10%).

The structural requirement of uniform coverage of the whole program can be
fulfilled by considering a segmentation of the program into L different scenes
(Uj, j = 1, · · · ,L) and maximizing η(S) in equation (6.1) that is the product of
the relative durations of the selected segments belonging to each scene:

η(S) = L

√√√√ L

∏
j=1

∑s∈S,s∈Uj duration(s)
duration(Uj)

. (6.7)

Scene boundaries are computed using a time-constrained clustering proce-
dure similar to the one described in [Boreczky et al., 2000].

Temporal order requirements different from the original order are taken into
consideration in the term ω(S) of equation (6.1). For example, to generate a
preview having all the action segments at the end, ω(S) is defined as follows:

ω(S) =
N

∑
i=1

i ·action(si) (6.8)

1A statistically sound percentage can be found by identifying for a large set of programs at which point the
end is disclosed.
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where action(si) indicates whether segment si is classified as action segment.
The original order constraint is implicitly solved during optimization by keep-
ing the video segments chronologically ordered.

Each factor in equation (6.1) has a different scale and the weights α, β, γ,
and δ are used as normalization factors for the different contributions. They
can also allow personalizing the generation of the preview (as discussed in Sec-
tion 6.6) by changing the relative impact of the different types of requirements
on the value of the objective function.

6.5 Implementation and results
The generation of a Miami video can be divided into four main steps (see

Figure 6.1):

1. audio and video feature extraction,

2. audio and video segmentation and classification,

3. segment selection, and

4. preview composition.

Figure 6.1. Steps for the generation of a Miami video

6.5.1 Audio and video feature extraction
Various algorithms are applied to the audio and video signals to extract the

features required by the next steps and for computing the priority score accord-
ing to equation (6.3) after normalization over the entire video. Video features
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include low-level attributes such as contrast, color distribution, motion activity
and mid-level attributes such as face location and size, and camera motion. Au-
dio features include RMS value, spectral centroid, bandwidth, zero-crossing
rate, and MFCC (see [McKinney & Breebaart, 2003] for a detailed descrip-
tion).

6.5.2 Audio and video segmentation and classification
This step can be divided into five sub-steps:

a. Shot segmentation and clustering: a standard shot cut detection algo-
rithm [Lienhart, 1999] is applied to divide the video stream into contin-
uous shots. Time-constrained clustering [Boreczky et al., 2000] is then
applied to group together visually consistent shots that are not far apart
in time.

b. Audio classification: the synchronized audio stream is classified into co-
herent audio classes such as silence, speech, music, noise, etc. Changes
in the audio class indicate the audio segment boundaries used to verify
constraints (6.6).

c. Micro-segmentation: segments exceeding the maximum duration after

min
based clues such as: a change in the audio class, appearance or disap-
pearance of a detected face, a change in camera motion or object motion.
The micro-segmentation step can be easily formalized as an integer lin-
ear programming problem and solved with standard methods (e.g. sim-
plex method).

d. Segment compensation: successive segments violating constraints (6.6)
are merged until the continuity requirement is fulfilled without violating
the maximum segment duration dmax. When this is not possible, the
segmentation induced by the audio classifier is used as primary instead
of the shot-based one.

e. Pre-filtering: commercial detection [Schaffer et al., 2002] is performed
over the entire video and the detected commercials are discarded from
the set of segments available for the generation of the Miami video. In
order not to disclose the end of the program, an extra 10% of segments
is removed from the end.

6.5.3 Segment selection
The segment selection step consists of searching the best set of segments

that maximize the objective function (6.1) in the space of all possible previews.

the shot segmentation are further divided into sub-segments with durations
bigger than d and with boundaries possibly aligned with content-
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The space of all possible previews can be explored using a local search method
such as simulated annealing or a genetic algorithm [Aarts & Lenstra, 1997]
because at this point each requirement or constraint has either been solved in

Miami video is to provide a rough overview of the content of a program, the
goal of finding the absolute maximum of (6.1) can be relaxed to finding a good
approximation, a preview with a reasonably high value of eval(S).

We have implemented a heuristic search strategy that iteratively improves an
initial set of selected segments. The starting set is constructed by selecting for
each scene the segment with the highest priority score π(s j) that generates the
minimum redundancy ρ(S). At every iteration, the first segments of each scene
that improve the objective function are added to the set. The algorithm stops
after a certain fixed number of iterations or if eval(S) cannot be significantly
improved. The solution is not optimal but usually good enough for the typical
Miami video usage.

6.5.4 Preview composition
The last step consists of the actual composition of the preview by fusing the

selected segments into one continuous audiovisual stream. Abrupt audio and
video transitions between segments are smoothed using fading and dissolve
effects.

6.5.5 Prototype implementation
A prototype of Miami video has been implemented in C++ (MPEG-2 de-

coding and content analysis algorithms) and JavaTM(local search, segment se-
lection and preview composition) for the generation of previews of recorded
broadcast programs in MPEG-2 video format. The generation of a Miami video
on a state-of-the-art personal computer requires no longer than the actual pro-
gram duration. Most of the CPU time is used for video decoding and content
analysis algorithms; the segment selection step requires only a fraction of the
total running time.

In preliminary tests the system has been manually tuned and tested with a
large set of narrative programs such as feature films and documentaries. The
typical duration of a Miami video for a two-hours-long feature film is usually
set to 60 or 90 seconds.

6.5.6 Results
The first reaction of most of the users to the seeing the generated previews

was always very positive. However evaluation of the results has always been a
difficult task for video summarization. Just as there are many ways to describe

Movie-in-a-Minute: Automatically Generated Video Previews
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an event or a scene, users can produce many video previews that they consider
acceptable. Objective evaluation and benchmarking of different algorithms are
still open challenges.

To judge whether the Miami video algorithm fulfils actual users’ require-
ments, whether we should consider other requirements and, ultimately, if a
Miami video provides a good overview of a program, we performed a user
study involving ten subjects, male and female in various age categories. None
of the participants were in any way involved in the development of the Miami
video.

We conducted guided interviews organized in three parts. The first part was
aimed at getting an impression of how much of the story line is comprehensi-
ble, the second part contained questions related to requirements and the third
part consisted of a benchmark of against a preview generated by uniform sub-
sampling.

In the first part participants had to write down a description of the story line
of four movies after seeing only the corresponding Miami videos 60 or 120
seconds long. Some of the users had seen some of the four movies at least
once in the near past. However only half of the participants who did see the
movie and one third of the participants who did not see the movie could give a
correct description of the story. Overall, 23% of all participants gave a wrong
description. These results indicate that it is difficult to grasp the story line of
a movie from a 60 or 120 seconds long Miami video. However presenting the
ambiance of a movie is just as important. To this respect, most of the users
indicated that Miami video is a useful tool.

In the second part, participants were shown examples of Miami videos and
were asked various questions related to each of the seven categories of require-
ments presented in Section 6.3. The results indicate that the set of requirements
considered by the Miami algorithm is relevant and complete. Generally speak-
ing, participants were moderately positive about the degree of fulfillment of
the requirements. In particular, segment duration and speech continuity were
not perceived as satisfactory in many cases. Fulfillment of these requirements
can be improved by using a more accurate and robust audio classifier and video
segmentation algorithm.

In the third part of the interview subjects were shown two versions of a
video preview (for five movies of various genres) and were asked to choose
which one they preferred and why. The two versions were a Miami video and
a preview generated by uniformly sub-sampling the program while preserving
shot boundaries. The tests indicate that Miami video is only slightly more
appreciated than uniform sub-sampling. Moreover users found it very difficult
to choose between the two previews.

This could be related to the fact that some requirements (e.g. continuity)
were not fully met. Users might have perceived the Miami videos as randomly
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composed as the sub-sampled versions (although this type of randomness is
different from the randomness introduced by uniform sub-sampling). To ver-
ify this hypothesis, a new user test should be performed using Miami videos
‘manually repaired’ to fully meet the users’ requirements.

6.6 Need for personalization
As content availability continues to grow, personalized summaries become

important. For example a movie mainly containing action scenes could also
have a poignant love story embedded in it. Persons who particularly like love
stories might like previews highlighting these love story elements. Users will
require summaries to be personalized so that they can choose the movie they
like to watch and not miss out on a movie because the preview did not include
sections that might appeal to them more.

Any of the requirements of duration, continuity, priority, uniqueness, exclu-
sion, structural, and temporal order, that were presented in Section 6.3, can be
subject to personalization. For example, a user might desire to see more of
the introduction segments, which will then affect the structural requirements.
The priority requirements can also be based on a user profile: for a person who
prefers ‘dark’, ‘silent’ scenes, we should include those as opposed to ‘bright’,
‘dialog’ scenes.

So far the user preferences on summarization have not been fully explored
by the research community. An exploration panel of experts and users [Agni-
hotri et al., 2003] on issues of multimedia summarization indicated in general
that summaries should be personalized. For what concerns previews for the
purpose of making a selection among a large collection of available content,
users indicated in another study that previews should include scenes that might
shocking. In this way they can more easily decide not to watch the entire con-
tent.

As with any personalization, the problem is twofold: to have an extensive
good profile that reflects the user’s needs and to have an accurate model for per-
forming the computational matching of the user profile to the video analysis
features. The challenge here is to ask the ‘right’ questions in order to gen-
erate this user profile. One approach is to pose this as a problem of learning
from examples where users would be shown many previews and would need
to select the one that appeals to them the most. Once the system is trained to
the type of previews that a user likes, the different weights that were presented
in Section 6.4 can be worked out in order to generate personalized previews.
However a question arises whether changing the weights is sufficient to in-
fluence the segment selection step (see Section 6.5.3) in order to generate a
preview that is really perceived as personalized.

Movie-in-a-Minute: Automatically Generated Video Previews
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6.7 Conclusions
Producing movie trailers in the production world is an art in itself. On the

other hand, previews, or as we call them movie-in-a-minute (Miami) videos are
not available for all the different types of narrative programs and home videos.
Moreover, people with various tastes would like to see personalized previews.
In this chapter we introduced a knowledge-based computational framework for
generating Miami videos that includes: audio and video feature extraction, au-
dio and video segmentation and classification, segment selection, and preview
composition.

The framework has been implemented and manually tuned for narrative type
of content such as feature films and documentaries. We conducted an initial
user study that confirms that the requirements considered by the Miami video
algorithm are relevant and complete. Users find it rather difficult to under-
stand the story line of a movie if they see only the Miami video. However they
also indicate that Miami video gives a good representation of the ambience
of a program. The ambience or mood of a program seems to be an impor-
tant characteristic for selecting among large collections at least in the case of
home use. The study also revealed that some requirements are not yet com-
pletely fulfilled. More precise and robust content analysis algorithms could
help achieving a higher level of user satisfaction.

Future work will include a formal method to fine-tune the model parameters,
a more accurate benchmark of the quality of the Miami video algorithm with
respect to other methods of generating video previews and another user study
aiming at assessing the usefulness of Miami video in selecting programs in
large video archives.
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Chapter 7

FEATURES FOR AUDIO CLASSIFICATION:
PERCUSSIVENESS OF SOUNDS

Janto Skowronek and Martin McKinney

Abstract Automatic classification of audio and music provides a core technology for vari-
ous applications, e.g. database management tools. State of the art algorithms use
various low-level signal parameters for this type of classification but recent de-
velopments focus on higher-level features that are more tangible to users. In an
experimental study we investigated the percussiveness of sounds as one possible
higher-level feature. We implemented an algorithm to describe the percussive-
ness of individual sounds and use this information for further classification of
music. We were able to discriminate between and detect several music genres
based only on these percussiveness features.

Keywords Music information retrieval, timbre, percussiveness, automatic classification.

7.1 Introduction
Current Internet, broadcast and storage technologies enable users to access

large amounts of multimedia content. For many applications and products (e.g.
portable devices), users require simple and automatic tools to access, filter,
process and store these amounts of data. Automatic classification is such a tool
and typically consists of two stages: (1) feature extraction and (2) statistical
classification.

We have investigated various low-level features such as zero-crossing rates
as well as simple auditory models for different classification tasks [McKinney
& Breebaart, 2003]. Our current focus is to extend these bottom-up approaches
with some top-down-knowledge. We are investigating higher-level features,
which are for instance based on knowledge from musicology like musical key
or tempo. The idea is to use them for improving classification performance
and providing features that are more tangible for users. The work presented
here focuses on those higher-level features that are related to the timbre and in
particular to the percussiveness of an audio signal.
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7.1.1 Percussiveness of sounds
In general the term timbre is used for those characteristics of a sound that

help humans to distinguish it from another sound, even if both sounds have
the same loudness and the same pitch. We know from timbre research that it
is rather difficult to describe timbre with one single parameter. Various signal
characteristics have been found to contribute to the perception of timbre, in-
cluding spectral characteristics, such as the number and distribution of spectral
components, and temporal parameters, such as the attack time.

Automatic classification of sounds based on such timbre parameters has
been attempted in several studies (e.g. [Jensen, 1999]) although such studies
deal with the identification of single instrument sounds. There have been a few
attempts (e.g. [Gouyon & Herrera, 2001]) at automatic identification of a sin-
gle instrument in polyphonic music, however the problem remains unsolved. A
major problem is that in polyphonic music we are confronted with overlapping
instruments and quite often with synthesized or manipulated sounds, which
introduce new and often time-variant timbres. The known timbre features typi-
cally refer to single monophonic instruments and are not easily applied to such
sounds. This means that there is a need for more general features, which de-
scribe the timbre of arbitrary sound textures without determining the source
type (e.g. music instrument) itself.

One of these general features that we are investigating is the percussiveness
of a sound.

”

Percussiveness” does not necessarily mean a sound coming from
a percussion instrument. It is rather a term used for short sounds having a
sharp attack-decay characteristic. In order to get a better idea of what the term
percussiveness means, consider the following four examples.

Flute-sound: you would classify it as a typical non-percussive sound.

Snare-drum: you would classify it as a typical percussive sound.

Violin played sustained (the string is excited with a bow): you would
classify it as a typical non-percussive sound.

The same violin, but this time played pizzicato (the string is plucked
with the fingers): you would agree that the sound is now more percussive
than the latter one. The reason is that the sound has now a different time
characteristic, whereas the underlying spectral structure (e.g. regularity
of spectral components) is almost the same.

The examples show that we define percussiveness as a generalized description
of the signal’s temporal envelope.
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Figure 7.1. The A-D&S-R phases of two
sounds.

Figure 7.2. Detection of A-D&S-R
phases using the envelope and its first
derivative.

7.1.2 Study on percussiveness
In order to investigate the concept of percussiveness as a feature for clas-

sifying audio and music, we performed an experimental study that comprised
three major tasks: first find a parametric description of percussiveness and
implement a corresponding feature extraction algorithm (Section 7.2). Then
test, whether the extracted features, in fact, do describe the percussiveness of
sounds (Section 7.3.1). Finally extend the algorithm to polyphonic music and
test if a classification of different music genres is possible (Section 7.3.2).

7.2 Feature extraction algorithm
Because percussiveness refers to the envelope of a sound, the feature ex-

traction algorithm should compute a parametric description of that envelope.
Our approach applies first a three-phase approximation (see Figure 7.1) of the
signal’s envelope using parameters from synthesizer technology: Attack (A),
Decay & Sustain (D&S) and Release (R). Secondly, several features are com-
puted relating to the time durations, level differences and curve shape of these
phases.
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7.2.1 A-D&S-R approximation
The first step of determining the desired A-D&S-R approximation is to de-

termine the phases’ start and end points. Our approach is similar to that pro-
posed by Jensen [1999], which consists of a three stage process. First we
compute a heavily smoothed envelope and determine the desired start and
end points. Secondly we adjust these points step by step using less and less
smoothed versions of the envelope until the unsmoothed version is reached.

Jensen’s procedure of detecting the time instances from the heavily
smoothed envelope has been developed for single harmonic components of
instrument sounds. He computed the first derivative of the smoothed envelope
and used different derivative thresholds in order to find good candidates for the
desired start and end points. But to make it work properly for the broadband
signals in which we were interested, we extended Jensen’s approach by using
combinations of thresholds for the first derivative and for the envelope itself
(see Figure 7.2):

1. The algorithm searches for the steepest point (derivative criterion) hav-
ing a reasonable value (envelope criterion) and claims this as the middle
of attack phase (moa). Starting from this moa point, the algorithm goes
backward until certain derivative and envelope criteria are fulfilled and
defines this point as start of attack phase (soa). Then starting from moa
again, the algorithm goes forward and uses another derivative and enve-
lope criterion for finding the end of attack phase (eoa)1.

2. The algorithm looks for the start and end points of the release phase
(sor, eor) in a similar way, this time starting with the identification of
the middle of release (mor) and using negative derivative criteria.

3. Finally the Decay/Sustain phase is defined as the period beginning at the
end of attack (eoa) and ending at the start of release (sor).

This gives start end and points of the three phases for the smoothed envelope.
In the second stage the adjustment of the found time instances to the un-

smoothed case we used an iterative procedure. Step by step a less smoothed
version of the envelope is computed and the time instances (soa, eoa, sor, eor)
are adjusted using a certain time and level criterion: The new candidate must
not be too far away from the former time instance and its new envelope value
not too far from the former envelope value1.

Once we found the above mentioned start and end points, we can apply the
three-phase approximation of the signal envelope. Since we are interested in

1The used criteria were chosen empirically by testing the algorithm with about 40 different instrument
sounds including piano, violins played sustained or pizzicato, flutes played vibrato or non-vibrato, different
drums etc.

–
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an efficient parametric description of the envelope, we applied for each phase
a curve shape approximation proposed by Jensen [1999]: Curve(x) = ν0 +
(ν1−ν0)(1−(1−x)n)1/n. The boundary conditions ν0 and ν1 are the envelope
values for the start and end points of the phase. The variable x is the time
normalized between zero and one (t = start → x = 0, t = end → x = 1). The
scalar parameter n determines the curve form: If n is equal to 1, then the curve
form is linear; if n is smaller than 1, then the curve form has an exponential
characteristic; and if n is greater than 1, then the curve form is logarithmic.
The optimal curve form parameter nopt is found by minimizing the least-square
error between the resulting curve form and the envelope.

In summary the algorithm provides a three-phase parametric description of
the envelope with 11 parameters: 4 time instances (soa, eoa, sor, eor), 4 level
values (env(soa), env(eoa), env(sor), env(eor)) and 3 curve shape parameters
(one for each phase: nA, nD&S, nR).

7.2.2 Multi-band analysis
The above described A-D&S-R approximation has been designed for calcu-

lating a parametric envelope description in one band over the whole frequency
range. But in our study we used this method for a multi-band analysis as well.

For that purpose the algorithm filters the signals with a filter bank (24 ERB-
rate scaled [Moore & Glasberg, 1996] approximately rectangular band-passes,
linear-phase FIR filters) and computes the A-D&S-R parameters for each filter
output separately.

7.2.3 Adaptation to polyphonic music
Preliminary tests with about 40 sounds showed that the algorithm works

properly for single instrument sounds. In order to apply it to polyphonic music
we chose an approach consisting of two steps.

1. Slice a continuous music or audio stream into (broadband) pieces start-
ing at occurring onsets and ending at the subsequent onsets. For the
onset detection we used a method implemented by Schrader [Schrader,
2003].

2. Apply the A-D&S-R approximation (broadband and multi-band analy-
sis) and compute the features for estimating percussiveness for each au-
dio piece.

7.2.4 Feature sets
From the derived A-D&S-R parameters, we computed an extensive list of

features which were likely to be useful for our classification tasks. We orga-
nized the features into nine general groups.

Features for Audio Classification: Percussiveness of Sounds
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Group 1 (broadband computation): low level features per A-D&S-R
phase: Time duration of phase, level difference between start and end
point of phase, steepness (level difference over time duration) of phase.

Group 2 (broadband computation): curve form description per A-D&S-
R phase.

– Curve form parameter n of phase.
– An additional parameter that describes the error between approxi-

mation curve and real signal envelope. It is a parameter based on
the autocorrelation function (ACF) of that error function. The pa-
rameter is the height of the first peak besides the zero-lag point of
the ACF. It describes the

’

strength’ of the periodicity of the error
function and is therefore called error regularity’.

Group 3 (multi band computation): features that describe the asynchrony
of start and end points of the phases per band. We defined asynchrony
as the deviation of the time instances soa, eoa, sor and eor in one band
from their mean value across all bands. Two scalar features are then
computed: The mean and the variance of the asynchrony values across
bands.

Group 4 (multi band computation): mean values across bands of group
1 features, which were computed per band beforehand.

Group 5 (multi band computation): mean values across bands of group
2 features, which were computed per band beforehand.

Group 6 (multi band computation): variance values across bands of
group 1 features, which were computed per band beforehand.

Group 7 (multi band computation): variance values across bands of
group 2 features, which were computed per band beforehand.

Group 8 (multi band computation): features that describe the shape of
group 1 feature values across all bands.
Shape means the distribution of the single-band feature values when they
are plotted as a function of bands. The shape is described by two para-
meters similar to the curve form parameter and the error regularity para-
meter mentioned above:

– One parameter that describes the approximation of the shape us-
ing a linear curve. The parameter is the gradient m of the linear
approximation.

– One parameter describing the regularity of the error between shape
and linear approximation. Similar to the error regularity parameter

Janto Skowronek and Martin McKinney
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it is based on an ACF of the error between the linear approximation
and the real shape.

Group 9 (multi band computation): Shape parameters for group 2 fea-
tures.

7.3 Experiments
We investigated the performance of the implemented algorithm in two ex-

periments that comprised a number of different classification tasks. We used
a framework providing a classification algorithm based on quadratic discrim-
inant analysis (QDA) [Duda & Hart, 1973] and a feature ranking procedure
(see below). In the first experiment we tested whether the extracted features,
in fact, describe the percussiveness of sounds, while in the second experiment
we tested their ability to classify different music genres.

7.3.1 Experiment 1: Percussiveness of single instrument
sounds

Experiment set up. We used single instrument sounds as test and training
data, because for these sounds, the envelope approximation algorithm worked
best. This minimized the probability that misclassifications occurred due to
wrong detections of the A-D&S-R phases. Thus the classification results were
as independent as possible from the feature extraction algorithm, meaning that
the results were mainly affected by the type of features themselves.

The database comprised 722 single instrument sounds (classical instru-
ments, acoustical and synthesizer drums) that we grouped into three classes:
(1) percussive and non-harmonic, (2) percussive and harmonic, (3) non-
percussive. The labels were assigned per instrument and play style. For in-
stance all sounds coming from a cello that is played pizzicato were assigned to
class 2, all sounds coming from a cello that is played sustained were assigned
to class 3.

Goals and method. Some of the questions that we investigated with this
experiment were: What is a good number of features? What is the value of the
more complex features? What is the best feature set?

Since these questions are meant in terms of classification performance, we
performed several classification runs, which consisted of four steps:

1. Define the conditions of the classification run:

(a) The feature set that we want to investigate.

select.
(b) The number of features that the available ranking method shall

Features for Audio Classification: Percussiveness of Sounds
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2. Run the feature ranking procedure:

(a) Take the complete feature set.
(b) Eliminate one feature and estimate the error probability ε of the

(c) Repeat this for all other features.
(d) Take that feature, whose elimination from the feature set yielded

the lowest error, as the least important feature (last ranking place).
(e) Repeat steps (b) to (d) for the remaining feature set.
(f) Continue this procedure until all features are ranked.

3. Estimate the classification performance using a 70/30-fold method with
25 bootstrap repetitions:

training data.
(b) Estimate the classes of the test data using the QDA method and

compare them with their real labels.
(c) Store the number of correct and incorrect classifications per class

in a confusion matrix.
(d) Put the test data back to the training data (

”

Bootstrap”) and repeat
this procedure 25 times.

(e) Compute the mean value and the standard deviation over the result-
ing 25 confusion matrices leading to a confusion matrix containing
the average classification rates and their deviation intervals.

4. Compute the mean classification performance by averaging the values in
the main diagonal (correct classifications) of the mean confusion matrix.

Investigation A: Dependency of performance on the number of features.
Here we checked how the classification accuracy depends on the number of
features by computing the classification performance for the different feature
sets using the 3, 6 and 9 best ranked features, as well as all features from each
set.

We see in Table 7.1 that the classification performance increases in most
cases with an increasing number of used features. The improvement between
using the best three and using the best six features is in most cases significant.
A further addition of features has a slightly lower impact on the classifica-
tion performance, indicating a saturation effect. Therefore we had to find a
good compromise between classification performance and classification effort
in terms of number of used features: we chose to use nine features.

[Papoulis, 1991].
remaining set, based on the so called Bhattacharyya distances

(a) Pick randomly 30% of the feature vectors as test data and 70% as
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Table 7.1. Classification performance depending on the number of used features. For a de-
tailed description of the feature groups see Section 7.2.4.

no. feature
set

number
of
ranked
features

classification
performance

1 group 1 3 69 ± 7%
6 76 ± 8%
9 87 ± 8%

2 group 2 3 74 ± 8%
6 82 ± 8%

3 group 3 3 62 ± 8%
6 71 ± 8%
8 72 ± 8%

4 group 4 3 76 ± 8%
6 84 ± 9%
9 90 ± 9%

5 group 5 3 87 ± 8%
6 86 ± 7%

no. feature
set

number
of
ranked
features

classification
performance

6 group 6 3 74 ± 7%
6 78 ± 8%
9 80 ± 9%

7 group 7 3 69 ± 14%
6 82 ± 8%

8 group 8 3 70 ± 7%
6 76 ± 8%
9 79 ± 9%
18 84 ± 9%

9 group 9 3 61 ± 7%
6 69 ± 7%
9 72 ± 7%
12 72 ± 7%

Investigation B: Classification performance dependent on feature com-
plexity. If we have a closer look at the nine general feature groups, we
see that each group requires a different computational effort. Based on the
computation time, we assigned each feature set into one of three groups (A,
B, C) of computational efficiency (A being most efficient, C being least effi-
cient). Since the multi-band features are a kind of secondary features based
on primary features computed per band, we distinguish between the feature
complexity for the primary (per-band) and secondary (across-bands) features.
Note that most of the different features sets are computed by a systematic step-
by-step increase of computational complexity. Only group 3 does not fit into
that system and is therefore omitted in the following discussion. Table 7.2
gives an overview about the remaining feature groups, their major computa-
tional requirements and their assigned levels for both the primary and sec-
ondary features. Especially for future applications it is interesting to see which
complexity level is actually needed in order to achieve a good performance. In
order to be fair, we decided to use the same number of features per set. For

Features for Audio Classification: Percussiveness of Sounds
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Table 7.2. Complexity levels of the different feature sets.

feature
set

primary (per-band) features secondary (across-bands) features

requirements level requirements level

group 1 three-phase approximation +
some basic calculations

A

group 2 three-phase approximation +
optimization method for find-
ing the best curve form para-
meter

B

group 4 three-phase approximation +
some basic calculations

A mean-value operations A

group 5 three-phase approximation +
optimization method for find-
ing the best curve form para-
meter

B mean-value operations A

group 6 three-phase approximation +
some basic calculations

A variance-value operations B

group 7 three-phase approximation +
optimization method for find-
ing the best curve form para-
meter

B variance-value operations B

group 8 three-phase approximation +
some basic calculations

A optimization method for find-
ing the best shape parameter
over bands

C

group 9 three-phase approximation +
optimization method for find-
ing the best curve form para-
meter

B optimization method for find-
ing the best shape parameter
over bands

C

that reason we chose the six (the size of the smallest feature set) best ranked
features per set.

First we considered the different complexity levels of the primary (per-
band) features for each level of secondary (across-bands) features separately.
That means that we compared the performance results of group 1 with group
2, group 4 with group 5, and so on. We see in Table 7.3 that using the curve
shape parameters (primary level B) has a slightly positive influence on the
results, except for the last case, where the performance even decreases signif-
icantly. Regarding this case, we saw in the data that group 9 showed a bad
performance in general.

In a second comparison we considered the different levels of secondary fea-
tures for both primary feature levels separately (e.g. group 4 vs. group 6 vs.

–

–

–

–
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Table 7.3. Classification performance

no. feature
set

primary
level

classification
performance

1 group 1 A 76 ± 8%
group 2 B 82 ± 8%

2 group 4 A 84 ± 9%
group 5 B 86 ± 7%

3 group 6 A 78 ± 8%
group 7 B 82 ± 8%

4 group 8 A 76 ± 8%
group 9 B 69 ± 7%

Table 7.4.

complexity.

no. feature
set

secondary
level

classification
performance

1 group 4 A 84 ± 9%
group 6 B 78 ± 8%
group 8 C 76 ± 8%

2 group 5 A 86 ± 7%
group 7 B 82 ± 8%
group 9 C 69 ± 7%

group 8). Table 7.4 shows that the mean values (level A) as secondary across-
bands features led to the best performance, followed by the variances (level B)
and the shape parameters (level C).

An open issue is whether it is beneficial to use the group 3 features (syn-
chrony of envelopes). Because they are not based on the single-band features,
we had to examine them differently. We compared the classification perfor-
mances between group 3 and the other feature sets. With a performance of
72 ± 8%, the group 3 features belong to the lowest performing feature sets
(compare with results in Table 7.3). As a consequence we skipped these group
3 features.

Investigation C: Best feature set. Following the discussions in Investigation
A, we were interested in the best nine features. Considering Investigation B
we decided to keep both levels of primary features (low-level parameters &
curve shape parameters). Regarding the secondary features, we chose only the
mean values due to their best performance among the multi-band features. This
pre-selection led us finally to the following feature groups: 1, 2, 4 and 5.

We tested various combinations of the preselected groups: each group alone,
both single-band groups together, both multi-band groups together, all four
groups together. The classification accuracies in Table 7.5 are relatively high
(about 80 to 90%). In addition we see a slight tendency that with about 90%
the combinations No. 3 (group 4 alone) and No. 6 (4 & 5 together) achieved
the best results.

complexity.
depending on the level of featureprimary

Classification performance
depending on the secondary level of feature

Features for Audio Classification: Percussiveness of Sounds
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Table 7.5. Classification performance for different combinations of the feature sets.

no. feature set classification
performance

1 group 1 87 ± 8%
2 group 2 82 ± 8%
3 group 4 90 ± 9%
4 group 5 86 ± 7%
5 groups 1 & 2 85 ± 8%
6 groups 4 & 5 89 ± 8%
7 groups 1, 2, 4 & 5 83 ± 8%

In summary we can state that we are able to predict the percussiveness of
sounds with the extracted features.

7.3.2 Experiment 2: Percussiveness for classifying
polyphonic music

In this second experiment we checked, whether the concept of percussive-
ness is useful for music genre classification. Our approach for that purpose is a
three stage process. First we extracted single sounds from a 6-seconds long
audio stream and estimate their percussiveness using an adequately trained
classifier (first classifier). Secondly we computed secondary features (e.g. sta-
tistics) over these percussiveness estimations per audio file. And thirdly we
used those secondary features for the final genre classification of the audio file
(second classifier).

The idea behind this approach is relatively straight forward: we assume
that different music genres contain different degrees of percussive sounds, e.g.
dance music should contain a relative greater percentage of percussive sounds
than classical music.

Percussiveness predictor. The task of the first classifier is to predict the per-
cussiveness of the extracted sounds. Based on the results in Section 7.3.1 we
decided to implement seven predictors consisting of the different combinations
of the selected feature sets (Table 7.5), in order to figure out which predictor
performs best. The training material of this first classifier consisted of sounds
automatically extracted by the algorithm from 455 audio files. With the help of
a user interface, a human annotator assigned the sounds into one of three cate-
gories: percussive, between percussive and non-percussive, non-percussive.

Janto Skowronek and Martin McKinney
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Secondary features. The secondary features used for the second classifier
(music genre classification) were computed per audio file. First we took all
percussiveness predictions from the first classifier belonging to one audio file.
Then we computed per audio file how often (in%) the sounds are assigned to
the different classes of percussiveness, e.g. 50% percussive, 30% between
percussive and non-percussive, 20% non-percussive. Finally we used these
percentages as secondary features.

Experiment set up. As test and training data for the final classification
(second classifier) we used the above mentioned audio database, but according
to the experiments in [McKinney & Breebaart, 2003], we took only those files
from that database (188 in total) that belong to one of seven music genres:
Jazz, Folk, Electronica, R&B, Rock, Reggae and Vocal music. We used the
same performance evaluation method as described in Section 7.3.1: QDA and
70/30-fold bootstrapping procedure. We computed the performances for three
different tasks: classify all seven genres at once, detect each genre out of the
other six, discriminate between two music genres.

Results. Table 7.6 shows the average classification performance for the seven
predictors for the

’

all at once’ experiment. First we see that the differences
between the used percussiveness predictors are lower than the performance
variability within the single predictors. That means there is no dominatant
percussiveness predictor that outperforms the others. Secondly we see that the
results are in general quite poor. Only average performance values far below
50 % are achieved.

The poor performance shows that the approach used here does not allow
classification of all seven music genres at once. However, the algorithm might
be able to detect certain classes out of the remaining ones. In order to check
this, we assigned one music genre to class 1 and all others to class 2 and we
rerun the classification. This we repeated for all music genres. Since there was
no clear best performing percussiveness predictor, we performed these tests
for all seven percussiveness predictors. Table 7.7 shows the detection perfor-
mance for the seven music genres of those predictors that achieved the highest
accuracy. First we see that for detecting different classes, different predictors

In a last test we investigated the algorithm’s ability to discriminate between
two music genres. For that purpose the algorithm had to classify two types
of music, whereas all other music genres were excluded. This we did for each
combination of the genres and for the seven predictors. Figure 7.3 shows a ma-
trix with the discrimination performance. The numbers depicted in the fields

allowed the best detection. Secondly the detection of classes is moderate
(70%). The results suggest that this algorithm might be useful for tasks in
which a certain type of music is to be detected.

Features for Audio Classification: Percussiveness of Sounds
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Table 7.6. Classification performance
for classifying seven music genres.

percussiveness
predictor

classification
performance

1 22.96 ± 14.24%
2 24.65 ± 13.30%
3 30.65 ± 15.40%
4 33.51 ± 13.34%
5 22.80 ± 15.25%
6 31.94 ± 12.93%
7 34.44 ± 14.07%

Table 7.7. Accuracy of correct detections of a
music genre out of the remaining six.

music
genre

best perc.
predictor

detection
performance

jazz 7 70.41 ± 8.56%
folk 3 65.58 ± 11.8%
electronica 3 72.25 ± 10.86%
R&B 6 73.18 ± 7.58%
rock 7 72.46 ± 9.25%
reggae 7 80.5 ± 9.91%
vocal 4 84.25 ± 12.49%

Figure 7.3.

below the main diagonal are the average discrimination accuracy of each class
pair, while the numbers above the main diagonal denote the best predictor for
each class pair. With average values of about 60 % the genres Jazz, Folk and

Accuracy of discriminating between two music genes. The values below main
diagonal are the average accuracies, the numbers above the main diagonal denote the best
predictors.
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well as Reggae vs. Vocal.

7.4 Summary
In an experimental study we tested percussiveness as a new feature for

In a first experiment we tested an algorithm that describes the envelope of
a sound with a parametric three-phase description (Attack Decay/Sustain
Release). Performing classification runs, we saw that some of these features
were able to predict the percussiveness of single instrument sounds quite well
(around 90% accuracy).

Encouraged by these findings we did a second experiment in which we tried
to use predictions of percussiveness as input for a seven music genre classifier.
First the algorithm extracted sound events from continuous audio streams and
predicted their percussiveness. Then simple statistics on these predictions were
computed and used as input features in order to classify the seven music genres.
When classifying all seven genres at once, we obtained disappointingly poor
results. Nevertheless, two further tests showed, that at least the detection and
discrimination of some music genres is possible using these percussiveness
features.

In fact we expected that the percussiveness as one descriptor for the timbre
of sounds will not be sufficient for classifying all types of music genres. Addi-
tional descriptors that analyze other aspects of timbre (e.g. spectral structure)
will be necessary in order to improve the classification.

In summary, we have introduced the percussiveness of sounds as a higher
level feature for classifying (at least some) music genres. Although there is
some necessity to improve the algorithm, the major advantage is that percus-
siveness is a tangible feature for users. It enables the development of classifica-
tion applications, where a user will have more control about the used features.
For instance he could adjust the search criteria of music database systems in
terms of how percussive the desired music should be.
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Chapter 8

EXTRACTING THE KEY FROM MUSIC

Steffen Pauws

Abstract Extracting a sense of key from music audio is indispensable for various un-
equalled end-user applications dealing with music playback. This chapter
presents an audio key extraction algorithm that is based on models of human
auditory perception and music cognition. It is straightforward and has mini-
mal computing requirements. First, it computes a chroma spectrum from short
non-overlapping time frames of audio; a chroma spectrum represents the spec-
tral energies collected over all pitches that share the same chroma. This chroma
spectrum is compared with profiles for all existing 24 Western keys; a key pro-
file represents the perceived stability of each chroma within a given key. The
key profile that compares best with the computed chroma spectrum is taken as
the most likely key. An evaluation with 237 CD recordings of Classical piano
sonatas indicated a classification accuracy of 86%. By considering keys that are
‘friendly’ to each other as equal keys, the accuracy is even 96%.

Keywords Audio feature extraction, signal processing, music retrieval.

8.1 Introduction
Musical key is an important feature of Western (tonal) music. Knowing

the key of a piece of music is often required to do further music analysis,
segmentation, or classification. It provides a meaningful encoding of melodic
and harmonic events [Krumhansl, 1990]. It is also essential to some unequalled
end-user applications:

Advanced music playback.
Mixing songs is a skillful art done by professional DJs to create seam-
less transitions between songs. If two songs are mixed by aligning their
beats (i.e., the perceived pulse in the music that makes us tap and dance),
we talk about ‘beat mixing’. If songs are mixed with respect to similar
keys (or similar harmonic/chordal contexts), we talk about ‘harmonic
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mixing’. The latter is not pursued by all contemporary DJs as it requires
a definite ‘music-ear’. However, clashing keys in a mix can be startling,
though do not sound as clumsy as misaligned beat structures do.

Ambiance creation.
The mode of a key (whether it is major or minor) is deemed to provide
a specific emotional connotation, leaving all other music features in-
tact [Kastner & Crowder, 1990]. This provides ample opportunities for
ambiance creation using calm technology like ambient light colouring
while music is played back.

For many recordings of (Historical) Classical music, the key is provided in
the title of the piece. In all other cases, it is cumbersome to get at the key of
a song recording. By mere listening, only musically well-trained people are
able to identify a key in music. After hearing the first measure of a Bach com-
position, university majors were able to sing, though not name as that requires
absolute pitch labelling, the scale of the key correctly in 75% of the times [Co-
hen, 1977]. To enable above-mentioned applications, online key extraction
algorithms are required that work directly on the raw audio.

This chapter presents a key extraction algorithm, which has as input (PCM)
audio data. It is based on human auditory models and music cognition and
needs only a small amount of computing resources. In short, it computes a
chroma spectrum from non-overlapping 100 msecs time frames of audio.

share the same chroma. Then, the chroma spectrum is compared with the pro-
files for all 24 Western keys. A key profile represents the perceived stability of
each chroma within the context of a particular musical key. The key profile that
has maximum correspondence with the computed chroma spectrum is taken as
the most likely key.

8.1.1 Related work
Many key extraction algorithms that are found in the literature work on

symbolic data only (e.g., MIDI or notated music) by eliminating keys if the
pitches are not contained in the key scales [Longuet-Higgins & Steedman,
1971], by looking for key-establishing harmonic aspects [Holtzman, 1977]
or key-establishing aspects at accent locations [Chafe et al., 1982], by using
key profile correlation [Krumhansl, 1990] extended with the role of subsidiary
pitches and sensory memory [Huron & Parncutt, 1993], by searching for keys
in the scalar and chordal domain in parallel [Vos & Van Geenen, 1996], by har-
monic analysis [Temperley, 1997], by median filtering using an inter-key dis-
tance [Shmulevich & Yli-Harja, 2000], or by computing a inter-key distance
using a geometric topology of tonality (i.e., the spiral array) [Chew, 2002].

A chromaspectrum represents the spectral energiescollected overall pitches that
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Extracting key from music audio attracts more attention lately in the music
cognition and music retrieval literature. They are based on modelling human
tone center recognition [Leman, 1994], on a chroma spectrum representation
as input to key profile correlation or a machine learning technique [Gómez &
Herrera, 2004], on a constant Q transform and a fuzzy distance measure with
a reference set [Purwins et al., 2000], or on a rule-based approach for rhythm
structure and chord changes using a chroma spectrum representation [Shenoy
et al., 2004]. Reported accuracies are in the range 59-64% for a classical music
database of 217 titles [Gómez & Herrera, 2004] and 90% for a set of only 20
popular songs [Shenoy et al., 2004].

8.2 Musical pitch and key
Western music has specialized itself in the use of musical harmony, which

refers to the accompaniment of a melody by chords or other melodies. Other
music cultures have, for instance, strong origins in melody and rhythm. There-
fore, the sense of a musical key is an important concept for composers and
listeners, especially in (Historical) Classical music. But what is musical key
and what is musical pitch?

Musical pitch is a categorical percept, which requires the perceptual pitch
continuum expressed in Hertz-frequencies to be organized in discrete steps
called semitones. To this end, the pitch continuum is first divided into octaves.
An octave is an interval containing 12 semitones; two pitches that are an octave
apart are a twofold of one another in frequency. The twelve positions within an
octave are called chromas or pitch classes. They are notated by their standard
note name (i.e., C, C�, D, · · · , B) or numbered from 1 to 12. Two musical
pitches that are separated by an integral number of octaves share the same
value of chroma. To convey both its chroma and octave, a musical pitch is
often notated by its chroma and its octave number. For instance, C3, C4, and
C5 share all the same chroma but occur in different octaves.

A tuning system provides frequencies to all musical pitches. In general,
contemporary Western music uses equal temperament in which the size of a
seminote is defined as a single frequency ratio within an octave, that is, 1 :
21/12 ≈ 1.05946. Using A4 at 440 Hz as reference frequency1 to anchor this
tuning system, it is easy to calculate that a musical pitch that is i semitones
apart from A4 has a frequency f of

f = 440 ·2i/12Hz. (8.1)

1A4 means the musical pitch labelled as ‘A’ in the fourth octave. This comes down to key number 49
counted from the left on a grand piano. Since the end of the 17th century, the frequency of this pitch has
ranged from 373.7 to 457.6 Hz. Only in 1939, A4 became 440 Hz known as the concert pitch.

Extracting the Key from Music
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In a piece of Western tonal music, there is a particular pitch that sounds
most often and acts as the ‘most stable’ melodic base to return to. Together
with this so-called tonic, six other pitches are chosen from the twelve pitches
in an octave to construct a scale. These seven pitches are used as a basis for
a composition. In a musically harmonic context, we do not hear these seven
pitches as equal, let alone, the remaining five pitches in an octave. Put dif-
ferently, the pitches are organized in a tonal hierarchy in which some pitches
are ‘more stable’ than others [Krumhansl, 1990]. This organized set of seven
pitches is called the musical key of a piece. In summary, a musical key defines
the tonal material that is primarily used in a composition.

Most compositions have a main or ‘home’ key. Many composers (of Clas-
sical music) have their favourite key [Purwins et al., 2003]. For instance, Bach
preferred A-minor, C-minor and C-major, Vivaldi preferred C-major and D-
major and Chopin favored A�-major. However, a composition rarely has a
single key in its entirety. Typically, it starts and ends with the same key with
some key changes (called modulations) in the middle; such a composition is
called monotonal. If there were no key changes in the music, the music would
be rather dull to listen to, not considering melodic, rhythmic and dynamic as-
pects. Key changes build up tension and expectations in the music.

Keys are characterized by their tonic and their mode. The mode defines
what pitches are actually assigned to a key denoted as distances (i.e., semitone
intervals) from the tonic. Contemporary Western music uses major mode and
minor mode. For instance, the major key with C as tonic contains all white
keys on the piano. Its minor variant exhanges two white piano keys for two
black ones. It is this mode of a key that is believed to have specific emotional
connotation [Kastner & Crowder, 1990], with minor mode referring to ‘sad’
and major mode referring to ‘happy’.

As keys borrow seven notes from the same set of available twelve notes,
keys are interrelated. Keys are said to be ‘friendly’ to each other if they share
all or almost all pitches. ‘Friendliness’ means that some keys blend nicely,
whereas others ‘clash’ when used simultaneously or successively (e.g., in a
key change). Without going in-depth, a major key (e.g., C-major) is ‘friendly’
to its relative minor (A-minor), its dominant (G-major), and its subdominant
(F-major), and, to a lesser extent, to its parallel (C-minor). Friendly keys are
often a cause of confusion in music analysis by human experts and computer
algorithms.

8.3 Method
In short, a chroma spectrum is computed over six octaves (i.e., 72 pitches)

from A0 (27.5 Hz) to A6 (1760 Hz) using the raw audio data, which will be
discussed in Section 3.1. Note that a grand piano starts at A0 (27.5 Hz) and
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ends at C8 (4186 Hz), so about 81% (72/88) of the keys on the piano are
covered. Then, as will be explained in Section 3.2, this chroma spectrum is
used as input to a key profile distance algorithm to get the musical key.

8.3.1 Chroma spectrum
As described in Section 2, a chroma represent one of the twelve note posi-

tions within an octave. By mapping the musical pitches along different octaves
in a spectral representation to their respective chromas using the rules of A440-
equal temperament (see Equation 8.1), we arrive at a chroma spectrum. In this
way, the chroma spectrum summarizes the harmonic content of a music sample
as a compact 12-element feature vector.

General model. A chroma ci, where i = 1, . . . ,12, represents a set of pitches
{pik|k = 1, . . . ,K}, where K denotes the number of octaves, that have the same
position i within a given octave, but that differ in octave number k. To arrive
at a likelihood score for a single chroma, we have to collect the likelihood
scores for all pitches sharing the same chroma in the music signal. The pitches
can originate from any music instrument, from a melody, a chord, or musical
background. We will extend on an existing spectral model that copes with
the correlation in spectral energy between the pitches of a leading soloist and
musical background [Shalev-Shwartz et al., 2002].

Let O = o1 . . .oT be a sequence of vectors of length T . Each vector repre-
sents a spectrum representation of the music signal over a short time frame.
The problem can be formulated as finding the likelihood P(ot ;ci) of ‘hearing’
a chroma ci in vector ot .

We denote the spectral distribution of the music signal at frequency f as
S( f ). Part of it consists of the spectral content of the chroma ci to be found,
denoted as C( f ). As an ideal simplification, we model a single tone of a music
instrument as a harmonic series. Its spectrum contains high energy bursts at
integral multiples npik, for integer n referring to the index of the harmonic.
The spectral content of ci can then be modelled as a combination of harmonic
series for all pitches pik sharing ci. In other words,

C( f ) =
K

∑
k=1

N

∑
n=1

Gik(n)δ(npik − f ), (8.2)

where N denotes the number of harmonics, Gik(n) is the amplitude gain for
the n-th harmonic of pitch pik, and δ() is Dirac’s delta function, which is 1 at
the origin and zero elsewhere. Note that we ignore the fact that the harmonics
of different pitches may coincide.

Another part of S( f ) consists of the spectral content of the musical back-
ground. We assume that the spectral energy of this background affects the
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entire spectrum S( f ), though it matches the energy of the pitches to be found.
Its spectral energy at frequency f is denoted as η( f ). The spectral content of
the music signal at frequency f is then modelled as,

S( f ) =
K

∑
k=1

N

∑
n=1

Gik(n)(η( f )+δ(npik − f )). (8.3)

With some rearrangement, the background energy level at frequency f ,
η( f ), is,

η( f ) =
S( f )−∑K

k=1 ∑N
n=1 Gik(n)δ(npik − f )

∑K
k=1 ∑N

n=1 Gik(n)
. (8.4)

The characteristics of the musical background, η( f ), are unknown. A sim-
ple assumption is to model it as a random variable from a zero-mean multi-
variate Gaussian process with statistical independence at all frequencies f and
equal variance ν. Then, the joint conditional probability density function (pdf),
given the unknown variables, is given by,

f (η|ν) =
1

(2πν)L/2 e−
‖η‖2

2ν , (8.5)

where L denotes the spectrum resolution (or, the number of independent
observations) and ‖ · ‖2 is the l2-norm.

The maximum likelihood (ML) estimator [Eliason, 1993] for the unknown
variables can be obtained by maximizing the log-likelihood function with re-
spect to the unknown variables:

(ν̂, Ĝik(n))ML = arg max
ν,Gik(n)

Lη(ν,Gik(n)) where (8.6)

Lη(ν,Gik(n))
�
= −L

2
log(2πν)− ‖η‖2

2ν
. (8.7)

By maximizing the log-likelihood function for the unknown background
variance ν, one obtains

ν̂ =
‖η‖2

L
. (8.8)

A sensible choice for the unknown harmonic amplitudes Gik(n) is by letting
them correspond with the spectral peaks S(npik) at the harmonics of the pitch
frequency pik. This is sensible because we can expect that the musical back-
ground level η( f ) is relatively small compared to the energy at the harmonics
of pik. By substituting the estimates for Gik(n) and ν and using Equation 8.4,
the log-likelihood score becomes
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Lη(ν̂, Â(n)) = −L
2
(log(2π)+ log(‖η‖2)− log(L)+1)

= c+
L
2

log
( ‖C‖2

‖N‖2

)
, (8.9)

where ‖C‖2 denotes the energy of the spectrum from Equation 8.2 in which
the gains Gik(n) are substituted by their estimates, and ‖N‖2 denotes the energy
in the musical background spectrum N( f ) = S( f )−C( f ).

We consider the musical background only as a random part of the model.
Consequently, the likelihood as provided by Equation 8.9 also constitutes the
likelihood for finding the chroma in the spectrum. In other words,

P(ot ;ci) ∝
‖C‖2

‖N‖2 . (8.10)

The right-hand expression of Equation 8.10 represents the calculation of
an element of the chroma spectrum vector corresponding to chroma ci. The
chroma spectrum of an observation sequence O = o1 . . .oT with multiple non-
overlapping observation vectors is defined as the mean vector of all individual
chroma spectra for each ot .

Implementation. To identify the musical pitches more easily, the subhar-
monic sum spectrum [Hermes, 1988] is used as a spectral representation in
Equation 8.10. All harmonics are resolved (or, folded) to their fundamental by
harmonic compression (i.e., by multiplying the frequency scale by an integral
factor). In other words,

H( f ) =
N

∑
n=1

hn−1W (n f )A(n f ), (8.11)

where N is the number of harmonics, h ≤ 1 is a factor controlling the contribu-
tion of each harmonic to its fundamental, W (·) is an auditory sensitivity filter,
and A(·) is the amplitude spectrum.

In the calculation of Equation 8.11, the following properties are imple-
mented for reducing computing time resources and increasing frequency reso-
lution.

1. The input music signal is partitioned in non-overlapping time frames of
100 milliseconds.

2. The signal is low-pass filtered and downsampled to cut off spectral con-
tent above 5 kHz for performing harmonic compression over 6 octaves.
It is assumed that harmonics above 5 kHz do not contribute significantly
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to the pitches below 5 kHz, though we might miss highly-tuned instru-
ments. A Hamming-window 1024-point FFT is used to compute the
amplitude spectrum.

3. Spectral components (i.e., the peaks) are enhanced to cancel out spurious
peaks that do not contribute to pitches.

4. Only a limited number of harmonically compressed spectra are added.
We use N = 15. Spectral components at higher frequencies contribute
less to pitch than spectral components at lower frequencies. We use
h = 0.75.

5. Harmonic compression on a linear frequency scale is implemented as a
harmonic shift in the logarithmic frequency scale by using s = log2 f .
Instead of Equation 8.11, we use

H(s) =
N

∑
n=1

hn−1W (s+ log2 n)A(s+ log2 n). (8.12)

To achieve a higher frequency resolution, interpolation is used in the
logarithmic frequency scale. In total, 171 (�1024/6�) points per octave
are interpolated over 6 octaves by a cubic spline method. If we would use
the original frequency resolution provided to us by FFT, we would get a
frequency resolution of 9.77 Hz (10,000/1024). The lowest octave A0-
A1 that we consider has a frequency range of 27.5 Hz, so this resolution
would be far too low as it covers about 35% of this octave.

6. A weighting function is used to model the human auditory sensitivity for
frequencies below 1250 Hz. We use a raised arc-tangent function.

The chroma spectrum for each frame is computed by locating and re-
mapping the spectral regions in the harmonically compressed spectrum that
correspond with each chroma in A-440 equal temperament. For the chroma C,
this comes down to the spectral regions centered around the pitch frequencies
for C1 (32.7 Hz), C2 (65.4 Hz), C3 (130.8 Hz), C4 (261.6 Hz), C5 (523.3 Hz)
and C6 (1046.5 Hz). The width of each spectral region is taken as a half semi-
tone around this center to reduce the effects of ‘slightly mistuned’ pitches. The
amplitudes in all spectral regions are combined to form one chroma region.
The chroma spectrum elements are computed using Equation 8.10. Adding
and averaging the chroma spectra over all frames results in a chroma spectrum
for the complete music sample (use Figure 8.1 and 8.2 for an example).

8.3.2 Maximum key-profile correlation
The maximum key-profile correlation (MKC) is an algorithm for find-

ing the most prominent key in a music sample [Krumhansl & Kessler,
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Figure 8.1. The first measure of the First Prelude in C major from Book I composed by J.S.
Bach.

Figure 8.2. The first eight graphs present the harmonically compressed spectra for each note in
the first measure of a piano performance of the First Prelude in C major from Book I composed
by J.S. Bach. The frequency positions of the musical pitches over several octaves corresponding
to chromas are marked in the spectra. The last graph at the bottom presents the chroma spectrum
of all eight notes collecting the information in all eight spectra.
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Figure 8.3. Mean probe tone rating (or key profiles) in the context of the key C major (a) and
the key C minor (b).

1982; Krumhansl, 1990]. It has shown its value in research on psychologi-
cal tonality measures for music [Takeuchi, 1994] and harmonic progression in
improvised jazz music [Järvinen, 1995]. Originally, the algorithm was devised
for symbolic encodings of music (i.e., MIDI, notated music). Here, it is used
as a back-end to a signal processing step that works on raw audio data.

The MKC algorithm is based on key profiles that represent the perceived sta-
bility of each chroma within the context of a particular musical key. Krumhansl
and Kessler [Krumhansl, 1990; Krumhansl & Kessler, 1982] derived the key
profiles by a probe tone rating task. In this task, subjects were asked to rate,
on a scale of 1 to 7, the suitability of various concluding pitches after they had
listened to a preceding musical sample that established a particular key. The
mean ratings represent the key profiles used in the current algorithm. These
key profiles are shown for the keys C major and C minor in Figure 8.3. The
graph indicates clearly that there are differences in the perceived stability of the
chromas: highest ratings are given to the tonic (C), and the other two pitches
of the triad (G, E), followed by the rest of pitches of the scale (F, A, D, B) to
be concluded by the non-scale pitches (all sharps and flats).

Key profiles only depend on the relationship between a pitch and a tonal
center and not on absolute pitches. Consequently, profiles for different major
or minor keys are all transpositions of each other. For instance, the key profile
for C major can be shifted six positions to arrive at a key profile for G major.

As discussed in Section 2, if music is composed in a particular key, the
pitches are likely to be drawn from a single major or minor scale. Some pitches
are more stable than others. The MKC algorithm is based on the assumption
that the most stable chromas occur most often in a music sample. This is found
to be true at least for Classical tonal compositions [Knopoff & Hutchinson,
1983]. The MKC algoritm computes the correlation (i.e., Pearson’s product
moment correlation) between the distribution of chroma occurrences in the
musical sample and all 24 key profiles. Recall the chroma spectrum takes
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the role of this distribution of chroma occurences given as a vector with 12
elements. The key profile that provides the maximum correlation with the
chroma spectrum is taken as the most probable key of the musical sample. The
correlation value can be used as the salience of the perceived key or the degree
of tonal structure of the music sample.

8.4 Evaluation
The evaluation of the algorithm consisted of an assessment of finding the

correct key from a set of 237 performances of Classical piano sonatas on CD.
The correct key was defined as the main key for which the musical composition
was originally composed. Recall that music composers use various key mod-
ulating techniques to build up tension and relaxation in the music. However,
many compositions start and end with the same key; these pieces are called
monotonal. All recordings of the following CDs were used in the experiment.

J.S. Bach played by Rosalyn Tureck
The Well-tempered Clavier Books I & II, 48 Preludes and Fugues
Deutsche Grammophon, 1999.

J.S. Bach played by Jeno Jando
The Well-tempered Clavier Book I, 24 Preludes and Fugues
Naxos Classical, 1995.

D. Shostakovich played by Vladimir Askenazy
24 Preludes & Fugues, op.87,
Decca, 1999.

J. Brahms played by Glenn Gould
The Glenn Gould Edition,
Sony Classical, 1993.

F.F. Chopin played by Evgeny Kissin
24 Preludes Op. 28, Sonate no. 2, Marche funebre / Polonaise op.53
Sony Classical, 1999.

The original main key of the composition was compared with the extracted
key from the CD-PCM data of the complete piano performances. In the left-
hand graph of Figure 8.4, the results are shown in terms of percentage correct
classification. In 86.1% of the recordings, the algorithm identified correctly
the key in which the work was originally composed and performed. If we are
only interested in the tonic of the key, we obtain the same accuracy, as there
were no confusion between parallel keys. If we are only interested in the mode
of the key, the accuracy is 92.4%. As discussed in Section 2, ‘friendly’ keys
are often a source of confusion. If we consider the ‘friendly’ keys, that is, the
exact key, its relative key, its dominant key (V), and its sub-dominant key (IV),
as equal keys, the accuracy runs up to 96.2%. In other words, for only 3.8%
(nine recordings out of a total of 237), the algorithm provided a key whose
incorrectness could not be easily interpreted on music theoretic grounds.

In the right-hand graph of Figure 8.4, the same results are projected across
composers. The year and time period when the pieces were composed are
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Figure 8.4. Key extraction accuracy: (Left-hand) Accuracy for finding the exact main key,
the tonic of the key, the mode of the key, and all ‘friendly’ keys in 237 complete piano sonatas.
‘Friendly’ keys are the exact main key, its relative key, its dominant key (V), and its sub-
dominant key (IV). (Right-hand) Accuracy for finding the exact main key for works of different
composers.

shown as well. It is evident that the algoritm was less accurate for the works of
Shostakovich (i.e., 75%). In addition, for five pieces, the algorithm identified a
key which was not one of the ‘friendly’ keys. These works can still be consid-
ered highly tonal, but contain modern interpretations of harmony use because
of its recency.

8.5 Conclusion
Musical key extraction from music audio is a prerequisite for matchless

end-user applications like advanced music playback (e.g., automatic dj) and
ambiance creation (e.g., music and lights). We presented an algorithm that
correlates a chroma spectrum from audio data with profiles for all possible 24
Western keys. The key profile that has the highest correlation with the provided
chroma spectrum is taken as the key of the musical fragment. The algorithm
needs only minimum amount of computing necessities; it runs about 100 times
real-time on a P4-2GHz platform.

The algorithm identifies correctly the exact main key in 86.1% of the cases
by analyzing the complete CD recordings of Classical piano sonatas. If we
assume exact, relative, dominant, sub-dominant and parallel keys as similar, it
achieves a 96.2% accuracy. We have no data on recordings with other instru-
mentation or from other musical idioms.

The following points of the current algorithm need attention.

Modelling the tone of an instrument as a harmonic series is highly ide-
alized, accounting only for a single tone in a steady state. For instance,
it does not account for instrument, playing, and tuning characteristics.
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A signal pre-processing stage might reveal fragments in a musical per-
formance that contain key-relevant information and fragments that do
not. This stage may check on masking effects, harmonicity, and tran-
sients to clearly discern fragments with harmonic instruments carrying
perceived information on musical key from noisy, percussive instru-
ments.

Currently, key profiles are used that were the result of empirical work.
Alternatively, the profiles can also be trained by a supervised machine
learning method. The whole approach transforms then into a classifica-
tion problem.

Music perceptive and cognitive factors that establish a musical key at
a human listener can be further integrated into the algorithm. Tempo-
ral, rhythmic and musical harmonic factors of pitches are not modelled,
whereas it is known that the temporal order of pitches and the position
of pitches in a metrical organization (e.g., the first beat, strong accents)
influence the perception of a tonal center (i.e., the tonic of the key).

Music theoretical and compositional constructs are not modelled in the
algorithm. Composers use various key modulation techniques in which
they signify how strong a new key will be established.
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Chapter 9

APPROXIMATE SEMANTIC MATCHING
OF MUSIC CLASSES ON THE INTERNET

Zharko Aleksovski, Warner ten Kate, and Frank van Harmelen

Abstract We address the problem of semantic matching, which concerns the search for
semantic agreement between heterogeneous concept hierarchies. We propose a
new approximation method to discover and assess the “strength” (preciseness)
of a semantic match between concepts from two such concept hierarchies. We
apply the method in the music domain, and present the results of preliminary
tests on concept hierarchies from actual sites on the Internet.

Keywords Music genre, music style, ontology, semantic web, semantic matching, approxi-
mation.

9.1 Introduction
The progress of information technology has made it possible to store and

access large amounts of data. However, since people think in different ways
and use different terminologies to store information, it becomes hard to search
each other’s data stores. With the advent of the Internet, which has enabled the
integrated access of an ever-increasing number of such data stores, the problem
becomes even more serious. The music domain is no exception. (We restrict
ourselves to legal distributions.) The variety and size of offered content makes
it difficult to find music of interest. It is often cumbersome to retrieve even a
known piece of music.

Our ultimate goal is to improve this search for music on the Internet. We
aim to use semantics in the retrieval process, which is conveyed in the Se-
mantic Web. In this context we study the problem of semantic matching over
different music provider’s schemas. More specific, the problem is to find pairs
of concepts (genres, styles, classes...) from different metadata schemas that
have an equivalent meaning. It is not sufficient to use the concept labels only,
since, for example, their position in the schemas influences their meaning as
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well. Figure 9.1 illustrates the problem with an example from existing music
schemas.

Figure 9.1. Two music genres. Although the labels are equivalent Experimental, they repre-
sent different classes.

The problem of finding music that fits a user’s preferences is similar to the
problem of matching the schemas of two different providers. In the latter case
we usually need to find the pairs of concepts that have equivalent meaning. In
the first case, we can regard the user’s preferences as a concept description,
and then the problem is to match this concept with those in the provider’s
terminology.

Being able to search for matches at the level of concepts, without using
instances, is important. The search may use instances (artists, releases, tracks),
of which there are various such approaches existing [Hayes & Cunningham,
2003; Ichise et al., 2003; Maynard et al., 2004]. However, when it comes to
user preferences, people think of them semantically [Ten Kate, Ter Horst &
Pauws, 2003], and these can be usually expressed in terms of concepts. Also,
the provider sites publish their content in a structured way, organized in classes.
Finally, the number of comparisons to be conducted reduces significantly when
matching at the concept level.

We address the problem of matching between two different music concept
hierarchies, which can be seen as metadata schemas as well (for survey on on-
tology matching techniques see the survey of Maynard et al. [2004]. We base
ourselves on the approach proposed by Bouquet et al. [2003]. Main contribu-
tions of this chapter are the following.

We propose a new method to find approximate mappings between con-
cepts from two different concept hierarchies (see next section). Given
two concepts from different concept hierarchies, our method checks
whether the first concept is a subconcept of the second as described by
Bouquet et al. [2003], but in addition, when that is not the case, it cal-
culates “how strongly” the first concept can be considered a subconcept
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of the second. This is indicated by a value that we call sloppiness and
ranges between 0.0 and 1.0 for each pair of concepts. The sloppiness in-
dicates the error in the subsumption relation between the two concepts.
Close to 0.0 means that most of the (semantic) content of the first concept
is also present in the second concept, while values close to 1.0 indicate
that there is no subsumption relation.

We present first results from an analysis of the approximation method.
In our study, we conducted experiments using actual data from mu-
sic providers sites on the Internet. We extracted the music metadata
schemas, which were underlying the navigation paths at the provider
sites. We applied our approximation method on those schemas and com-
pared them with the matches based on the instances (music artists) clas-
sified in the schemas. We discuss the problems we encountered in

concepts and instances.

The rest of the chapter is structured as follows: In order to make the chapter
self-contained, in Section 9.2 we discuss the approach of Bouquet et al. [2003],
for the part relevant to this chapter. In Section 9.3 we discuss the present situ-
ation of music metadata schemas on the Internet. In Section 9.4 we introduce
and explain our idea of approximate matching. In Section 9.5 we present some
experimental results from applying the method. In Section 9.6 we discuss pos-
sible improvements on this work. Finally, Section 9.7 concludes the chapter
with a brief summary.

9.2 Semantic coordination
We have taken the approach of Bouquet et al. [2003]; we summarize it

briefly in this section, as relevant to our contribution. The goal is to find map-
pings between the concepts of two concept hierarchies.

Mapping means a relation between a pair of concepts from the two differ-
ent hierarchies. There are five main types of mappings, which are subclass,
superclass, equivalent, disjoint, and overlapping. For the current discussion a
concept hierarchy can be thought of as a rooted tree where each node and each
edge has a label, where a node represents a concept and an edge the subconcept
relation between the concepts. It has the explicit purpose to provide an object
classification.

The method compares nodes from two concept hierarchies. It proceeds in
two phases. In the first phase, called explicitation, it creates a logic expres-
sion that represents each node. In the second phase it pairwise compares the
nodes (logic expressions) for their relationship, in particular, whether one is
subsumed by the other.
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The first phase, next to the label of the nodes, the method accounts for the
position of the nodes in the hierarchy. There are two main points in the phase:

Linguistic interpretation: The senses that WordNet1 returns on the words
in node’s label are combined as propositional terms to form the base of
the logical formula. The formula represents all the possible linguistic
interpretations of the label.

Contextualization: The position of the nodes in the hierarchy is encoded
in the logical formula. Each node’s formula is considered in conjunction
with its ancestor’s formula, i.e. each node is assumed to be in the inter-
section with its ancestor. This makes sense because we expect a class
to contain everything that its subclasses contain. In a similar way the
disjointness of siblings in the hierarchy can be encoded into the formula.

In the second phase the method proceeds with:

Semantic comparison: The so-obtained formulas from both hierarchies
are evaluated for the five relationships. This is done by pair-wise com-
bining the formulas in a grand formula that expresses the relationship to
be tested. The test is performed by a SAT solver, which tests whether
the grand formula is satisfiable.

For more details, see [Bouquet et al., 2003].

9.3 Internet music schemas
On the Internet, music metadata schemas mostly exist in the form of a nav-

igation path when browsing through the music offered. A metadata schema is
not always offered next to the music, but a visitor can interactively navigate
through different pages that list the music offered. We consider this structure
of navigation paths together with the labeling on the links and pages as the
metadata schema of that provider.

9.3.1 Overview of the extracted data
After considering several music provider sites, we selected seven of them

and extracted the schema, i.e. the navigation path, of each of them: CD-
NOW(Amazon.com)2, MusicMoz3, Artist Direct Network4, CD Baby5, All

1http://wordnet.princeton.edu/
2http://www.cdnow.com
3http://musicmoz.org
4http://artistdirect.com
5http://www.cdbaby.com
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Music Guide6, Yahoo Launchcast7 and Artist Gigs8. All of the schemas have
a form of concept hierarchies that only used the subclass relationship. Sibling
classes often have overlap (they are not disjoint). A general overview of the
data is shown in Figure 9.2.

Figure 9.2. The extracted schemas from the Internet provider sites.

We simplified the extracted data. This included normalization of the labels,
correcting typing mistakes, removing abbreviations and so on. Such changes
were needed in order to make the data more suitable for our experiments.

Providers named the classes in their schemas following different criteria,
and some even included classes whose meaning lies outside the music domain.
Artist Direct Network tends to classify music by decades and has two levels
depth in its schema. In general they follow the naming pattern that the first
level classes are styles of music and the second level are decades. CDNOW
does not strictly follow division by music-styles, but a big part of its schema
has a structure adjusted for human-friendly browsing. They use classes named
Music Accessories, Vinyl releases, which, while being a useful navigational
path, do not represent a music style in our context.

Most of the labels in the schemas appeared to be of one of the following
forms: style of music (the genre of the music like Blues), geographic region
with music style (region where the music originates from, for example Ameri-
can Blues) and time or historical period when the music was created (decades
like 90’s, named periods like Baroque...).

The labels usually consist of more than one word. In most cases, the in-
tended meaning is either an intersection of the meanings of the separate words,
or there are multiwords involved whose meaning must be considered as such.
For example, the first case appears in the label Chicago Blues, and the second

6http://allmusic.com
7http://launch.yahoo.com
8http://www.artistgigs.com
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case appears in New Zealand Rock where the meaning of the words New and
Zealand can not be treated separately. The first case happens most often.

9.3.2 Fuzziness in music classification
Musical genres are not precisely defined, see e.g. [Aucouturier & Pachet,

2003; Pachet & Cazaly, 2000]. There are no objective criteria that sharply
define music classes. As a result, different providers often classify the same
music entities (artists, albums, songs...) differently. Widely used terms like
Pop and Rock do not denote the same sets of artists at different portals. Such
disagreement also appears for more specific styles of music like Speed Metal.

In our experiments, we compared the found matches between the classes
in the schemas with the actual instance data in those classes. We restricted to
the artists shared by MusicMoz and Artist Direct Network, i.e. artists that are
present and classified in both portals9. In the sequel we refer to MusicMoz and
Artist Direct Network as MM and ADN, respectively.

As Figure 9.3 shows, in the class named Rock (including its subclasses) in
MM there are 471 shared classified artists, in ADN there are 245, and 196
shared artists are classified under Rock in both of them. Hence, from all the
artists classified under Rock in at least one of the two portals, only about 38% is
classified under Rock in both portals. This example shows that there is a high
degree of fuzziness present in the music domain. This observation supports
our expectation that the rigid exact-matching methods will not find matches
that users would expect. Some form of flexibility is required in the matching,
and approximating methods will appear to be more useful.

Figure 9.3. The class Rock in ADN and MM.

9In MusicMoz there is a substantial number of annotated artists that are not classified in the music-style
schema.
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9.4 Approximate matching
In this section we explain how we extend the approach of Bouquet et al.

[2003] with a form of approximation to deal with the impreciseness occurring
in actual data. In our notation we use propositional logic, but we interpret
the formulas as sets, and we use the operators union, intersection, and subset
instead of the logical operators disjunction, conjunction, and implication, re-
spectively. This set interpretation is justified with the fact that our formulas
represent classes of music entities (artists, songs, releases...), so they actually
are sets of these entities.

We focus on the problem of checking whether a subclass relation holds be-
tween two formulas. We first rewrite the formulas in normal forms. The left-
hand formula is transformed into disjunctive normal form and the right-hand
formula into conjunctive normal form. In this way, the subclass check can be
split into a set of subproblems, each checking if one (left) disjunct is a subclass
of a (right) conjunct. If all the subproblems are satisfied, the original problem
is satisfied. In our approximation, we allow a few of the subproblems to be un-
satisfiable, while still declaring the original problem satisfiable. The (relative)
number of satisfiable subproblems is a measure of how strongly the subclass
relation between the two given formulas hold. Below, we explain the approach
more formally.

9.4.1 Normal forms
Given two propositional logic formulas A and B, the problem is to check

whether the relation A ⊆ B holds. We transform A into disjunctive normal
form and B into conjunctive normal form.

The Disjunctive Normal Form (DNF) has the following form:

A = (A1
1 ∩A2

1 ∩· · ·∩An1
1 )∪ (A1

2 ∩A2
2 ∩·· ·∩An2

2 )∪·· ·∪ (A1
I ∩A2

I ∩·· ·∩AnI
I ),

where each An
i is an atomic concept. Shortly it can be written as A = A1 ∪A2 ∪

·· · ∪AI where Ai = (A1
i ∩A2

i ∩ ·· · ∩Ani
i ) for i = 1, . . . , I. Each Ai is called a

disjunct.
The Conjunctive Normal Form (CNF) has the following form:

B = (B1
1 ∪B2

1 ∪·· ·∪Bm1
1 )∩ (B1

2 ∪B2
2 ∪· · ·∪Bm2

2 )∩·· ·∩ (B1
J ∪B2

J ∪· · ·∪BmJ
J ),

where each Bm
j is an atomic concept. Shortly it can be written as B = B1∩B2∩

·· · ∩BJ where B j = (B1
j ∪B2

j ∪ ·· · ∪Bm j
j ) for j = 1, . . . ,J. Each B j is called a

conjunct.
Now, the problem to check whether A ⊆ B can be written as

A1 ∪A2 ∪·· ·∪AI ⊆ B1 ∩B2 ∩· · ·∩BJ.
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This relation holds if and only if (iff) anything that belongs to some of the
disjuncts Ai on the left-hand side also belongs to all of the conjuncts B j on the
right-hand side. Written formally:

A1 ∪A2 ∪·· ·∪AI ⊆ B1 ∩B2 ∩·· ·∩BJ ⇔∀i=1,...,I ∀ j=1,...,J Ai ⊆ B j.

Hence, the problem whether A ⊆ B is transformed into I ·J number of subprob-
lems of the following form:

∀i, j Ai ⊆ B j. (9.1)

One such a pair (Ai,B j) will be referred to as a disjunct-conjunct pair.
Now we introduce the idea of approximation: the relation A⊆B holds iff for

all disjunct-conjunct pairs the subclass relation (9.1) holds. If (9.1) holds for
most of the disjunct-conjunct pairs we say that the relation A ⊆ B almost holds.
Even more, we can express the strength at which the relation A ⊆ B holds as
the ratio between the number of disjunct-conjunct pairs that satisfy the subclass
relations and the total number of pairs. We call this ratio the sloppiness and
use the letter s to denote its value:

s(A ⊆ B) =
|{(i, j) | Ai �⊆ B j}|

I · J .

Here |{(i, j) | Ai �⊆ B j}| denotes the number of disjunct-conjunct pairs that do
not satisfy the subclass relation, I is the number of disjuncts in the DNF of A,
and J is the number of conjuncts in the CNF of B.

Note that this method works on the concept level and can be applied when
no information about the instances is available.

9.5 Experiment with approximate matching
In this section we summarize the results of experiments that we conducted

using the approximate matching method. We used the metadata schemas ex-
tracted from ArtistDirectNetwork and MusicMoz.

The linguistic interpretation (i.e., the formulas build from the labels of the
nodes) were obtained using simple techniques. For example, Alternative Rock
was transformed into the following formula:

(Alternative∩Rock)∪Alternative Rock.

Special characters “&” and “/” were treated as logical union. For example, Pop
& Rock was transformed into the formula Pop∪Rock. No background knowl-
edge was used. When using background knowledge, each atomic concept (e.g.,
Alternative, Rock, Alternative Rock) should be replaced with the union of the
different senses for that concept.

We made the assumption that concepts with the same label have the same
meaning. When comparing the disjunct-conjunct relations we made a simpli-
fication: a disjunct Ai is considered to be a subclass of a conjunct B j when
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some literal in the disjunct (which is an intersection of literals) is present in the
conjunct (which is an union of literals). So, given a disjunct-conjunct pair:

Ai = (A1
i ∩A2

i ∩·· ·∩Ani
i ),B j = (B1

j ∪B2
j ∪·· ·∪Bm j

j ),

we say that Ai ⊆ B j if An
i = Bm

j for some n and m. If no such pair is found, the
disjunct Ai is not considered to be a subclass of the conjunct B j. This simpli-
fication, however, may lead to some incorrect rejections of subclass relations.
Also, more sophisticated techniques can be used to match the names [Bilenko
et al., 2003].

9.5.1 Example of an approximate matching
Now we explain the process of approximate inferring an equivalence rela-

tion in detail. For the sake of the explanation we have chosen an example that
produces simple formulas, however, in practice these formulas can grow bigger
and be more complex.

In our example, consider the relation between two styles from ADN and
MM that are named Glam Rock on both portals (Figure 9.4).

Figure 9.4. Glam Rock style from the schemas of ADN and MM.

The first step is to transform the concepts into formulas. We first transform
the Glam Rock style from ADN. Note that Glam Rock is a substyle of Rock
as shown in Figure 9.4. Also note that Glam Rock consists of two words. For
the formula, we therefore have to take into account the separate meanings of
those words (i.e., the intersection of their meanings), as well as those words
constituting a single term (as is the case in “New Zealand”). Therefore the
formula representing the meaning of Glam Rock from ADN is the following:

Glam Rock A = Rock∩ ((Glam∩Rock)∪Glam Rock).

This leads to the following normal forms:

Glam Rock DNF A = (Glam∩Rock)∪ (Glam Rock∩Rock), (9.2)
Glam Rock CNF A = (Rock)∩ (Glam∪Glam Rock). (9.3)

Approximate Semantic Matching of Music Classes on the Internet



142

Analogously, the “Glam Rock” style from MM is transformed into the for-
mula:

Glam Rock B = Rock∩Glam∩ ((Glam∩Rock)∪Glam Rock)
= Rock∩Glam.

The literal Glam Rock in the formula is discarded because of the absorption
rule [Mendelson, 1997]. This leads to the following normal forms:

Glam Rock DNF B = (Glam∩Rock), (9.4)
Glam Rock CNF B = (Rock)∩ (Glam). (9.5)

The normal forms can be used to test the equivalence relation between the
concepts Glam Rock A and Glam Rock B. We therefore have to check the
subclass relation for those two concepts in both directions.

In order to check the subsumption Glam Rock B ⊆ Glam Rock A the nor-
mal forms (9.3) and (9.4) are needed. Glam Rock B consists of only one dis-
junct, and Glam Rock A consists of two conjuncts. We therefore have to check
two disjunct-conjunct pairs:

(Glam∩Rock) ⊆ (Rock) − true (Rock is on both sides),
(Glam∩Rock) ⊆ (Glam∪Glam Rock) − true (Glam is on both sides).

Both disjunct-conjunct pairs satisfy the relation, so Glam Rock B ⊆
Glam Rock A holds with a sloppiness of 0%.

In order to check the subsumption Glam Rock A ⊆ Glam Rock B the nor-
mal forms (9.2) and (9.5) are needed. Glam Rock A consists of two disjuncts,
and Glam Rock B consists of two conjuncts. We therefore have to check four
disjunct-conjunct pairs:

(Glam∩Rock) ⊆ (Rock) − true (Rock is on both sides),
(Glam∩Rock) ⊆ (Glam) − true (Glam is on both sides),
(Glam Rock∩Rock) ⊆ (Rock) − true (Rock is on both sides),
(Glam Rock∩Rock) ⊆ (Glam) − false.

Three out of four disjunct-conjunct pairs satisfy the relation, however, one
disjunct-conjunct pair does not. Hence, 25% of the disjunct-conjunct pairs
do not satisfy the subsumption relation, and the relation Glam Rock A ⊆
Glam Rock B therefore holds with a sloppiness of 25%.

When assessing the sloppiness in the equivalence relation between
Glam Rock A and Glam Rock B, we take the maximum of the sloppiness val-
ues calculated in the two subsumptions. The equivalence relation between
Glam Rock A and Glam Rock B therefore holds with a sloppiness of 25%.
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9.5.2 Comparison with instance data
For our experiments we extracted real data from the Internet (Section 9.3).

In the following, the results are presented that were obtained using the data sets
MM and ADN (Table 9.1).

Table 9.1. Size of the data in ArtistDirectNetwork and MusicMoz.

name number of number of number of number of
classes artists classified shared classified

artists artists

Artist Direct Network 465 16072 16072
MusicMoz 1073 6451 2356

1183

Most of the shared classified artists are classified under Rock-related classes
(e.g., Alternative Rock, Glam Rock, Heavy Metal). A significant limitation of
our dataset is that the number of instances is of the same order as the number
of classes.

The tests were performed to discover the equivalence matchings between
the classes in both hierarchies, i.e., whether each is a subclass of the other.
Different values for the sloppiness measure were used in the tests. In order
to assess the success of the matching we introduce a value called significance,
which we define as the cardinality ratio between the intersection and the union
of the two classes. Formally:

significance(A ⇔ B) =
|A∩B|
|A∪B| .

The significance is close to 0 when the two classes have no overlap, i.e., a
relatively small amount of instances belong to their intersection. When the
value is close to 1 (or 100%) then the two classes denote almost the same set
of instances.

Figure 9.5 presents the average significance for different values of the slop-
piness in case of equivalence testing between ADN and MM. Only classes
that have at least 3 instances were observed, leaving to compare roughly 150
against 350 classes. The figure shows that the significance stays constant with
increasing sloppiness before dropping down. On the other hand the number of
matched equivalences was found to increase with sloppiness: from 18 matches
at 0%, to 51 at 30%, to 140 at 45%, to 900 at 55%, where the onset is passed
of exploding to all possible 43000 matches at 100%. This increase at constant
significance suggests that the matches additionally found at first do represent
correct matches. Above 40% incorrect matches prevail.
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Figure 9.5. Significance of matched equivalences between ADN and MM.

The relatively low value of the initial average significance reflects the pres-
ence of fuzziness, as discussed in Section 9.3.2. It is a notification that peo-
ple have large deviation in the way they think about the music style names.
It is stated by Aucouturier & Pachet [2003] that the music domain constantly
evolves, and there is no centralized authority that can assign styles to the artists.
They are classified in different ways, although the same name is given by the
music providers.

Figure 9.6 shows the number of equivalence relations inferred given some
value for the sloppiness parameter. The number of inferences increases when
the sloppiness is increased. At the beginning, the number of inferences in-
creases slowly. This is reasonable since a relatively small amount of pairs of
classes from different sources should be considered to be equivalent or approx-
imately equivalent. In general, most of the pairs of classes are not related at all,
and adding sloppiness should not change this. Still, as said, more classes were
found, and most of them were relevant, not altering the significance. From
50% toward the end, the number of inferences increases more rapidly. At
100% there is a “cliff”, because all classes are considered to be equivalent
with a sloppiness of 100%.

9.6 Future work
The presented general scheme of approximation can be improved in several

directions. For example, not all disjunct-conjunct pairs are equally important
in their contribution to the tested formulas. Disjuncts and conjuncts can have

Literals may
also have different size when it comes to the sets of instances they denote.
Accounting for these differences, e.g., weighing may result in a more accurate
sloppiness measure.

a different size, i.e., a different number of literals they contain.
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Figure 9.6. Number of equivalent relations inferred between ADN and MM using different
sloppiness parameter.

Using background knowledge is another way to improve the mapping
scheme. Given that two concepts are synonyms, they can be considered as
equivalent in the matching process, and therefore provide a better match. Also,
other relations, such as subclass between concepts, will boost the quality of the
results. For example, using the fact that the Chicago region is part of America,
the method can discover that Blues, Chicago is a subclass of Blues, American.

Prerequisite is the availability of the background knowledge. We are not
aware of such an ontology existing in the music domain. One approach is to
create one through knowledge discovery mechanisms. We conducted some
preliminary experiments in which we considered two ways to extract relations
between terms from the music domain. For the first we used The Free Dictio-
nary10 as a source, and in the second we used Google11. In The Free Dictionary
we used as measure how strongly two terms are related, the co-occurrence of
words between the pages that describe the terms. In the Google case, we as-
sumed that related terms occur on the same pages; then, the number of Google

10http://www.thefreedictionary.com/
11http://www.google.com/
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hits when querying for both terms relative to the number of hits when querying
for each term separately, was used as strength measure for the term relation.
The experiments produced useful results and we plan to continue in this direc-
tion in the future.

9.7 Conclusion
In this chapter, we have presented a new method to do approximate match-

ing between classes from different concept hierarchies. We presented the re-
sults from applying this method to the music domain. The method is based
on the approach of semantic models [Bouquet et al., 2003], and it discovers
matches using logic inferencing.

We discussed the present problems in music artist classifications on the In-
ternet, based on music content data extracted from Internet music providers.
In the course of this analysis, we identified the need of integrating music con-
tent from different providers. Further, we discussed that fuzziness, as one of
the main characteristics of the domain, makes the problem of matching music
classes from different sources even more severe.

We applied our approximate matching method on music data extracted from
the Internet. We presented and discussed the first results from these experi-
ments. There is clear indication that the method helps to deal with this prob-
lem.

This is a preliminary work; additional research should focus not only upon
implementing the suggested improvements and testing against other state-of-
the-art methods, but also testing with richer data, and data from other domains.
Due to the size limitations of the test data, in our study we couldn’t assess the
performance of the method accurately.
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Chapter 10

ONTOLOGY-BASED
INFORMATION EXTRACTION
FROM THE WORLD WIDE WEB

Jan Korst, Gijs Geleijnse, Nick de Jong, and Michael Verschoor

Abstract We study possibilities to automatically extract information from the Internet, by
structuring and combining data from web pages. The web pages are found with
the use of a search engine and the information is structured by using ontologies.
The ontologies are populated with the use of statistical and linguistic techniques.

We present the results of a case study that is aimed at finding the names of
famous persons. The results indicate that, even if we only use the summaries
that Google provides of web pages, the approach results in a high precision and
recall for the specific application.

Keywords Information extraction, ontology, Google, World Wide Web, famous persons.

10.1 Introduction
In less than ten years time, the World Wide Web (WWW) has become the

world’s largest knowledge source. Although not all web pages contain correct
information, we can benefit from the collective knowledge that it contains.

This chapter describes methods to find, identify, structure, and combine the
information available. More specifically, we investigate how information for
a given knowledge domain can be extracted from the WWW. We assume that
the structure of the knowledge domain is given by an ontology that specifies
the type of objects (classes) and the relations (properties) between them. An
example of a knowledge domain is topography, where the ontology specifies
classes such as country, region, city, and river, and relations such as capital-
of (country, city) and lies-in (city, region). In addition, we assume that for
some classes a number of example instances are given. The objective is to
automatically extend the set of instances of each class and to determine the
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properties of these instances. For example, given a few examples of countries,
we want to find a complete list of all countries, identify large cities that lie in
each country, and determine which countries are neighbors.

The extracted information can be used in various specific settings. For ex-
ample, it can be used by a recommender system to acquire additional metadata
to make meaningful recommendations for TV programs, by establishing links
that would not have been found through the direct mapping of keywords rep-
resenting a user’s preferences to the metadata of TV programs. For example,
if a user has expressed a preference for TV programs relating to Italy, then
by using the extracted information the recommender system will be able to
recognize terms as Tuscany, Rome, and Uffizi as relevant. Likewise, if the
user has expressed a preference for TV programs relating to photography the
system will be able to recognize the names of famous photographers as Cartier-
Bresson and Moholy-Nagy. The extraction of information from the WWW as
described in this chapter is complementary to the extraction of low-level fea-
tures from the audio/video content itself that can also be used to intelligently
reason about this content [Breebaart & McKinney, 2004].

In addition, the approach to automatically extract information from web
pages can be instrumental in developing the semantic web [Berners-Lee,
Hendler & Lassila, 2001]. This development aims at adding more structure
to web pages, by using XML-based web languages as RDF(S) and OWL, such
that machine interpretation of the content of web pages is facilitated. Unfortu-
nately, the vast majority of web pages is not yet ‘semantic-web’-enabled. The
approach described in this chapter can be seen as a first step in automatically
generating semantic web content from the ordinary WWW.

The main advantage of the use of the WWW as data source is that we need
not restrict ourselves to using only a few expert sources. Instead, we can com-
bine data from numerous pages to populate our ontology. In addition, errors
that occur in some web pages can be filtered out if these are outweighed by
enough correct web pages. Also, once we are able to automatically extract
relevant information for a given knowledge domain, we can also automatically
update it to add newly available information at regular intervals. In addition, it
will be possible to adapt the database of available information to the changing
preferences of the user(s).

The subject addressed in this chapter is referred to as information extrac-
tion or ontology population. It touches on multiple disciplines including in-
formation retrieval [Van Rijsbergen, 1979; Salton & McGill, 1983; Frakes &
Baeza-Yates, 1992], natural language processing [Jurafsky & Martin, 2001],
data mining [Fayyad, Piatetsky-Shapiro, Smith & Uthurusamy, 1996], web
mining [Cooley, Mobasher & Srivastava, 1997], and other fields. It relates to
areas as automatic thesaurus construction [Grefenstette, 1994] automatic term
recognition [Frantzi, 1999] as well as to question-answering systems [Kwok,
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Etzioni & Weld, 2001]. The problem has recently drawn quite some attention
from these different fields and the approaches to tackle the problem are cor-
respondingly quite diverse [Brin, 1998; Clerkin, Cunningham & Hayes, 2001;
Faatz & Steinmetz, 2002]. Quite some papers propose methods that exten-
sively apply linguistic techniques to parse natural language documents such
as [Buchholtz, 2001]. One of the objectives of our work is to investigate to
what extent one can extract information without extensive use of linguistic
techniques.

The organization of this chapter is as follows. In Section 10.2 we formu-
late the problem of extracting information as an ontology completion problem,
and we consider two important subproblems, called similar instances prob-
lem (SIP) and similar statements problem (SSP). In Section 10.3 we present a
general solution approach that is applicable to both SIP and SSP. Next, in Sec-
tion 10.4 we give a detailed discussion on a case study that aims at finding the
names of famous people from the WWW. We present experimental results, and
give an indication of the precision and recall. Finally, we end with concluding
remarks in Section 10.5.

10.2 Problem definition
The subject of this chapter is to automatically instantiate the classes and

properties in a given ontology that specifies an arbitrary knowledge domain.
The ontology is assumed to consist of a set of classes C, a set of instances for
each of these classes I, a set of properties P and a set of instances for each of
these properties T , where a property is a relation, i.e., a subset of the Cartesian
product of the instance sets of two given classes. The classes and properties
together define the structure of the knowledge domain, the instances populate
this structure. Before giving a formal problem definition, we first define the
concepts of reference ontology and partial ontology.

Definition 10.1. A reference ontology O is defined by a 4-tuple O =
(C, I,P,T ), where

C = (c1,c2, . . . ,cn) is a set of n classes,
where ci is the name of the i-th class,

I = (I1, I2, . . . , In), where Ii is the set of instances of class ci,

P = (p1(c1,1,c1,2), p2(c2,1,c2,2), . . . , pm(cm,1,cm,2)) is a set of m properties,
where p j is the name of the j-th property
and c j,1,c j,2 ∈C are the names that identify the associated classes,

T = (T1,T2, . . . ,Tm), where Tj is the set of instances of property p j,
i.e., the pairs (a,b) ∈ I j,1 × I j,2 for which property p j holds.
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Examples of classes in C are country and city, examples of properties in
P are capital-of (country, city) and lies-in (city, country). Of the reference
ontology only the set C of classes and the set P of properties are explicitly
given. The instance sets in I and T are only partially given. The problem is to
extend the partially given ontology to the complete reference ontology.

Definition 10.2. For a reference ontology O = (C, I,P,T ), a partial ontology
O′ is defined as a 4-tuple O′ = (C, I′,P,T ′), where

C and P are given by O,

I′ = (I′1, I
′
2, . . . , I

′
n), with I′i ⊆ Ii for i = 1, . . . ,n, and

T ′ = (T ′
1,T

′
2, . . . ,T

′
m), with T ′

j ⊆ Tj for j = 1, . . . ,m.

Now, the problem can be stated as follows.

Definition 10.3 (Ontology Completion Problem). For a reference ontology
O = (C, I,P,T ) describing a given knowledge domain, let O′ = (C, I′,P,T ′) be
a partial ontology. Extend O′ to O′′ = (C, I′′,P,T ′′) such that O′′ approximates
the reference ontology O as well as possible, that is, I′′i approximates Ii for
each ci ∈C and T ′′

j approximates Tj for each p j ∈ P.

The performance of an algorithm that aims at automatically extending a partial
ontology by extracting information from web pages will obviously depend on
the availability of web pages relating to the knowledge domain. To quantify
‘approximating as well as possible’ we use the common notions of precision
and recall, where the precision and recall for a class ci ∈C are given by

precision(ci) =
|Ii ∩ I′′i |
|I′′i |

and recall(ci) =
|Ii ∩ I′′i |
|Ii| .

Precision gives the fraction of relevant instances in the total set of found

evant instances. Precision and recall for a property p j ∈ P are defined analo-
gously.

The instance sets in I and T are typically not given explicitly. For some
knowledge domains, human experts might even disagree on the exact content
of the reference ontology. For example a list of the 1000 most important com-
posers will be difficult to generate as musicologists will probably disagree on
who should be included. However, disagreement will probably be only on a
small fraction of the potential instances of a class. For our experiments, we
assume that there is an undisputed knowledge source to determine the quality
of our ontology completion algorithm.
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Given the above definition of the ontology completion problem, we can now
consider two subproblems that can be studied in isolation.

Definition 10.4 (Similar Instances Problem (SIP)). Let I′i ⊆ Ii be given for
a class ci ∈ C. Extend I′i to I′′i such that α · precision(ci) + β · recall(ci) is
maximized, for given α,β ∈ R

+.

Definition 10.5 (Similar Statements Problem (SSP)). Let T ′
j ⊆ Tj be given

for a property p j ∈ P. Extend T ′
j to T ′′

j such that α · precision(p j) + β ·
recall(p j) is maximized, for given α,β ∈ R

+.

For SSP we can distinguish three variants. In the first variant, the complete
instance sets I1, j and I2, j are given and the problem reduces to finding out which
of the pairs (a,b) from I1, j × I2, j are instances of property p j. In the second
variant, only one of the instance sets is given completely. In the third variant,
none of the instance sets are given completely. In the case study discussed in
Section 10.4, we will concentrate on the second variant.

10.3 Solution approach
To handle subproblems SIP and SSP, we propose the following general so-

lution approach. To illustrate the approach, let us assume that we want to
extract the dates of birth of a given set of persons. The approach consists of
the following four phases.

1. Preselection. First a preselection of potentially relevant web pages is
made by issuing one or more queries to a given search engine. In our
experiments we used Google as search engine. For the example, we may
issue a query “Charles Darwin was born on”.

2. Extraction. The text of the web pages is scanned for occurrences of rele-
vant phrases. If such an occurrence is found, then its context is extracted
to identify potentially relevant terms. For the example, we may extract
the text fragments that directly follow the phrase “was born on” and end
with a 4-digit number expressing a year.

3. Normalization. Instances of a given class may occur in different textual
formats. Multiple extracted text fragments that refer to the same instance
are normalized to some canonical form. For the example, we may trans-
form Feb. 12, 1809, February 12th, 1809, 12 February, 1809, and the
12th of February 1809 to February 12, 1809.

4. Filtering. The list of potentially relevant terms found in the extraction
phase will contain errors or incomplete instances. By using occurrence
statistics and by performing additional checks, we want to filter these
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out. For the example, we might discard the text fragment this day in
1809 as incomplete, as it does not contain the name of a month. In
general, the filtering phase will increase the algorithm’s precision but it
will potentially decrease recall.

For many applications, the above solution approach can be applied iteratively,
where the terms extracted in one iteration can be used in the preselection phase
of the next iteration [Geleijnse & Korst, 2005]. In the following section, we
describe the four phases in more detail for a given case study.

10.4 Case study: Finding famous people on the Web
The goal of this case study is to extract the names of famous people from

the Web and to determine the period in which they lived, restricting ourselves
to persons that are born after the year 1000 and have already died. For this case
study, the given partial ontology is given by O′ = (C, I′,P,T ′), with

C = (name, year-of-birth, year-of-death),

I′ = ( /0,{1000, . . . ,1990},{1015, . . . ,2004}),
P = (born-in(name,year-of-birth), died-in(name,year-of-death)), and

T ′ = ( /0, /0).

We assume that a potentially famous person has at least reached the age of 15.
As we are interested in extracting an “eternal hall of fame”, we restrict our-

selves to persons that have already died. For a living person, the number of
web pages that contain his or her name may vary considerably over time. And
very often, fame turns out to be of a temporary nature.

Note that in many cases person names are not unique. A name may refer
to multiple persons, e.g., Theo van Gogh refers to the brother of the painter
Vincent van Gogh as well as to the movie director that has been murdered in
Amsterdam in 2004. Since we restrict ourselves to persons that have already
died, we can in addition use the years of birth and death to uniquely identify a
person.

This section is organized as follows. We first present the preselection, ex-
traction, normalization and filtering phases of our solution approach in more
detail. Next, we present a possible measure of fame that allows us to rank the
persons found. Finally, we describe the results of a number of tests that we
have carried out to estimate recall and precision of the extraction and filtering
algorithms.
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10.4.1 Preselection
The first phase in our solution approach is to make a preselection of poten-

tially relevant web pages by issuing appropriate queries to Google. The pages
that Google returns can then be analyzed in the following phases.

Now, what would be an appropriate query to find the names of famous per-
sons in web pages? One possibility is to look for text fragments as “was born
in” or “died in” in web pages to analyze the text that directly precedes and suc-
ceeds these text fragments to identify person names and years, respectively. A
drawback of these queries is that they are not specific enough. Google returns
at most 1000 pages for each query, which considerably restricts the number
of persons that we can find in this way. More specific queries are “was born
in x” and “died in x”, where x is a year chosen from the set of possible birth
and death years. Although this considerably increases the potential number of
persons that we can find in this way, these queries might still not be specific
enough. For example, query “was born in 1685 ” will result in at most 1000
pages, that are likely to be dominated by Johann Sebastian Bach. Other less
famous persons that are born in this year might not be found in this way.

To generate enough specific queries, we instead use the lifetime of persons
to try to find the corresponding person names. To this end, we simply issue
Google queries of the form

“(y1 – y2)”

with y1 ∈ [1000..1990], y2 − y1 ∈ [15..110], and y2 ≤ 2004, resulting in a total
of approximately 100,000 queries. In other words, we search for persons who
were born during the last millennium and who died at an age between 15 and
110.

Since we are only interested in potentially famous people, we want to avoid
web pages that offer genealogical data. To this end, we restrict ourselves to
web pages that do not contain words as genealogy or genealogie.

10.4.2 Extraction
For each of these issued queries, we scan the (at most) 1000 excerpts that

Google returns. In each of these excerpts, we determine the first occurrence of
the queried pair of numbers. Since Google ignores non-alphanumeric charac-
ters, the queried pair of numbers may also occur as y1,y2 or as y1/y2. If the
queried pair of numbers is in the intended context (y1−y2), i.e., if the numbers
are separated by a hyphen and surrounded by brackets, then the words directly
preceding this first occurrence are stored for later analysis, to a maximum of
six words. In this way, we obtain for each queried pair of numbers up to 1000
short text fragments that potentially contain person names. In addition, for
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10.4.3 Normalization
We observe that a single person is often identified in different ways, e.g.

Johann Sebastian Bach, JS Bach, JOHANN SEBASTIAN BACH and Bach,
Johann Sebastian all refer to the same person. The latter variant is called an in-
version. The latter two variants can be transformed into the first variant by sub-
stituting upper-case characters by lower-case ones and by adjusting the order of
first and last names1. Of the words that only consist of multiple upper-case let-
ters we transform the upper-case into lower-case letters, except for the first one
(with some specific exceptions concerning initials, ordinal numbers of kings,
queens, etc., composite names including hyphens or apostrophes, and Scottish
and Irish names). Complicating factors in the identification of inversions are
(i) that a comma between last name and first names is sometimes omitted and
(ii) that many first names also occur as last names. An additional complication
is that the first names of a name sometimes vary per language.

We assume the combination of last name and lifetime to be specific enough
to uniquely identify famous persons. Clearly, examples can be found were
multiple persons share the same last name and lifetime, especially when they
have a common last name such as Smith. However, we assume the probability
that two of these are both well known to be negligible.

In addition, we also want to filter out other multiple occurrences of the same
person name. These occurrences are caused by variations in spelling of names
and errors in the lifetimes. To this end, we carried out the following filtering
steps.

1. Keeping only the first-name variant that occurs most often. For each
last-name/lifetime combination, we often find different variants of first
names preceding it. For example, Bach (1685 – 1750) is preceded by,
e.g., Johann Sebastian, JS, and Johann S. Of all these variants we only
keep the one that is found most often, i.e., the variant that occurs most
often in the text fragments we found in the 1000 excerpts that Google
returned on query “(1685 – 1750)”.

2. Filtering out small variations in name. If two names have exactly the
same lifetime and the edit distance [Levenshtein, 1966; Gusfield, 1997]
between these full names is less than a given threshold, then only the

1We use ‘first names’ to identify given names as William and Johann Sebastian and ‘last names’ to identify
family names as Shakespeare and Bach, even though for some countries as Hungary and Japan it is more
common to place the family name before the given name.
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variant that is found most often is kept. As threshold we use an edit
distance of two.

3. Filtering out single errors in lifetimes. If two names are completely
identical but their lifetimes differ in only the year of birth or the year of
death, then only the variant that is found most often is kept.

Experiments indicate that in this step we reduce the candidate set of names by
approximately 25%.

10.4.4 Filtering
Not all text fragments we have found after the first three phases will be

person names. Typically, historic periods, art styles, geographic names, etc.
can also directly precede a time interval. Table 10.1 illustrates the difficulties
in discriminating between person names and other text fragments. We note
that West Mae is supposed to be an inversion of the name Mae West and that
Napoleon Hill refers to a person as well as to a geographic location in the state
Idaho (USA).

Table 10.1. Some examples to illustrate the difficulties in discriminating between persons
names and other text fragments.

person name non-person names

Art Blakey Art Deco
West Mae West Virginia
Amy Beach Miami Beach
HP Lovecraft HP Inkjet
Napoleon Hill Napoleon Hill

To filter out non-person names, we distinguish the following three ap-
proaches.

1. Looking for negative clues. By using a list of words that typically do not
occur in person names, we can filter out all text fragments that contain
one of more of these words.

2. Looking for positive clues. By using a list of common first and last
names, we can select only the text fragments that contain one or more of
these names.

3. Looking for further evidence. By issuing additional Google queries (“X
was born in”), one can build up further evidence on whether or not the
candidate name refers to a person.
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Experimental results indicate that the third approach seems to be less effective
for this application, although it requires the least amount of specific knowl-
edge, and as such is the most generally applicable one. Comparing the first
two approaches, we observe that selecting on negative clues puts more empha-
sis on high recall, while selecting on positive clues puts more emphasis on high
precision. Since we aim at generating a list of famous persons that is as com-
plete as possible, we prefer to filter out on negative clues. Hence, we chose to
use the first approach.

To obtain a list of words that typically do not occur in person names, we
cannot simply use the words occurring in a dictionary, for the following two
reasons. First of all, many common words that occur in a dictionary also occur
in person names. Table 10.2 gives a number of examples. Furthermore, we
do not want to restrict ourselves to web pages that are written in one or a few
languages.

Table 10.2. Examples illustrating that common words as well as geographic names can be
part of a person name.

Philip Glass Jack London Charles Herbert Best
Alonzo Church Shirley Temple Edwin Herbert Land
Nicci French Dorothy Day Bernard Law Montgomery
Christopher Love Irving Berlin Isambard Kingdom Brunel
Max Born Sitting Bull Francis de Sales
Vincent Voiture Florence Nightingale Hound Dog Taylor
Witte de With Wilhelm Reich Edward Mandell House

Instead, we semi-automatically generated a list of words that do not occur
in person names, as follows. For the words that occur in the text fragments
we have generated so far, we determined how often they occur in the text frag-
ments. More specifically, we determined how often they occur with a capital
and how often they occur without a capital. If words mostly occur without a
capital, then this is a strong indication that they do not occur in person names.
Of these candidates, we next checked by hand the ones that occurred most often
in the text fragments. This resulted in a list of less than 2500 words, where dif-
ferent variants of the same word are counted separately. For example, Archive,
Archives, archive, and archives are four of the 2500 words. Hence, these 2500
words represent only a very small fraction of the total number of words that oc-
cur in the various languages. Experiments indicate that in this step we reduce
the candidate set of names by approximately 10%.
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10.4.5 Measure of fame
To be able to rank the persons found, we use the Google page count (GPC)

as our measure of fame, i.e., the number of web pages that contain the person’s
name as estimated by Google. Now, the question is which query we should
issue to Google to determine the GPC of a person. The query should be neither
too general nor too specific.

The problem is that very often person names are not unique. We have al-
ready observed that a full name is often not specific enough to uniquely identify
a person but that we assume the combination of last name and years of birth
and death to uniquely identify a person. Consequently, we issue the following
query to determine the GPC:

“last-name (year-of-birth – year-of-death)”,

where last-name is simply the last word in a candidate person name consisting
of one or more words. In this way Johann Sebastian Bach (1685 – 1750), JS
Bach (1685 – 1750), and Bach (1685 – 1750) are all covered by this same
query. For kings, queens, popes, etc., we use the Latin ordinal number as last
name. In this way Charles V (1500 – 1558), Carlos V (1500 – 1558), and Karel
V (1500 – 1558) are all covered by query “V (1500 – 1558)”.

10.4.6 Experimental results
By carrying out the successive phases as described above, we obtained a

list of approximately 450,000 candidate famous persons. For each of the last
name/lifetime combinations found, we issued a query to Google to determine
the corresponding GPC. The list was next sorted on descending GPC. In

table, we make the following observations. First of all, we observe that the
top is dominated by composers of western classical music. Their music is
offered for sale by many Internet shops, which explains their relatively high
GPC. On the whole, we observe that the top 80 indeed contains persons that
are of international fame, with maybe two exceptions: Melvin Jones (founder
of the International Lions Club Association) and John Bartlett (editor of Fa-
miliar Quotations). Their high GPC is the result of relatively few web sites.
This suggests to base our measure of fame not (only) on number of web pages
but (also) on the number of web sites. This is considered an issue for further
research. In addition, we observe that Ronald Reagan has a relatively high
score. In general, we observe that persons who have recently died, such as
Ronald Reagan and Yasser Arafat receive a relatively high score. For example,
for Yasser Arafat we observed a GPC of more than 80,000 some two weeks
after his death in November 2004, while in January 2005 his GPC had dropped
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to 15,300. This suggests to not only exclude living persons from our list but
also persons who have recently died.

In Tables 10.4–10.8, we present the top 30 persons found for the 11th, 13th,
15th, 17th, and 19th century, respectively. Assuming that on average a person
establishes his/her fame at an age of around 30, we assign a person to the
century in which he/she reaches an age of 30. However, for persons that died
at an age of a, with a < 50, the year of his/her � 10+a

2 �-th anniversary is used.
From these table we again conclude that indeed the presented approach is able
to extract famous persons, even for the Late Middle Ages.

When considering the top of all ten centuries, one can make the following
observations. The number of persons found per century increases considerably
for the successive centuries. In addition, the average GPC of the top 30 in-
creases considerably for the successive centuries. In the 17th, 18th, and 19th
centuries, we observe that composers of western classical music dominate the
top. In the 11th, 12th, and 13th centuries, we observe that kings and wise men
from various religious backgrounds dominate the top.

Recall. We estimate the recall by choosing a diverse set of six books contain-
ing short biographies of persons whom we expect to find in our list. For each
of these books, we determined for the persons that could potentially be found
by our algorithm (i.e., the persons who are born in the intended time period
and have died), the fraction of persons that are actually in our list. Table 10.9
gives an overview of the recall we obtained for each of the books. For further
details on the books we refer to the list of references. We observe that the re-
call is close to one, for each of the six books, even for a more specialized topic
as 17th century Dutch painters. Of the total 108 of these painters mentioned
in the book, 106 were found. We note that of the 16 persons that did not ap-
pear in our list, there were 4 persons for which the books could not provide the
lifetime.

In addition, we carried out some more tests. From these tests, we conclude
that our list contains all 37 American presidents that are no longer alive. Also,
our list contains all 6 rulers of the former USSR that passed away, and all 33
popes from Clement VIII who was elected pope in 1592 are in our list.

Precision. All kinds of imperfections can still be observed in our list, such as
remaining inversions, missing parts of a name, and errors in lifetimes, although
each of these occurs relatively infrequently. We concentrate on estimating the
fraction of names that do not relate to persons. The corresponding precision
that is obtained by the algorithm has been estimated as follows. We selected
three decennia, namely 1220–1229, 1550–1559 and 1880–1889, and analyzed
for each the candidate persons that were born in this decennium. For the first
two decennia we analyzed the complete list, for decennium 1880–1889 we
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Table 10.3. The 80 persons of the 2nd millenium that have the highest GPC.

2ND MILLENNIUM

Johann Sebastian Bach (1685–1750) 98700 Gabriel Faure (1845–1924) 34200

Wolfgang Amadeus Mozart (1756–1791) 88800 Felix Mendelssohn-Bartholdy (1809–1847) 34000

Ludwig van Beethoven (1770–1827) 80700 Benjamin Britten (1913–1976) 33800

Albert Einstein (1879–1955) 76800 Arnold Schoenberg (1874–1951) 33300

Franz Schubert (1797–1828) 69300 Camille Saint-Saens (1835–1921) 32800

Johannes Brahms (1833–1897) 65200 Mark Twain (1835–1910) 32100

William Shakespeare (1564–1616) 57300 Bela Bartok (1881–1945) 32100

Franz Joseph Haydn (1732–1809) 52900 Sigmund Freud (1856–1939) 32000

Johann Wolfgang Goethe (1749–1832) 52900 Domenico Scarlatti (1685–1757) 31900

Charles Darwin (1809–1882) 52000 Galileo Galilei (1564–1642) 31900

Robert Schumann (1810–1856) 51800 Arcangelo Corelli (1653–1713) 31700

Leonardo da Vinci (1452–1519) 50600 Georges Bizet (1838–1875) 31200

Giuseppe Verdi (1813–1901) 47900 Sergei Prokofiev (1891–1953) 31200

Frederic Chopin (1810–1849) 46800 Sergei Rachmaninov (1873–1943) 31200

Antonio Vivaldi (1678–1741) 46700 Francois Couperin (1668–1733) 31100

Richard Wagner (1813–1883) 44700 Charles Gounod (1818–1893) 31000

Ronald Reagan (1911–2004) 44300 Cesar Franck (1822–1890) 30900

Franz Liszt (1811–1886) 43700 Melvin Jones (1879–1961) 30700

Claude Debussy (1862–1918) 42300 Jean-Philippe Rameau (1683–1764) 30600

Henry Purcell (1659–1695) 41500 Carl Maria von Weber (1786–1826) 29900

Voltaire (1694–1778) 40300 Friedrich Nietzsche (1844–1900) 29700

Immanuel Kant (1724–1804) 40100 John Dowland (1563–1626) 29300

James Joyce (1882–1941) 39900 Paul Hindemith (1895–1963) 29300

Friedrich Schiller (1759–1805) 39900 George Bernard Shaw (1856–1950) 29200

Georg Philipp Telemann (1681–1767) 39800 Francis Bacon (1561–1626) 29100

Antonin Dvorak (1841–1904) 39200 Oscar Wilde (1854–1900) 29000

Gustav Mahler (1860–1911) 39000 Pablo Picasso (1881–1973) 28900

Richard Strauss (1864–1949) 38700 Jacques Offenbach (1819–1880) 28900

Giacomo Puccini (1858–1924) 38700 Samuel Barber (1910–1981) 28200

Rene Descartes (1596–1650) 38500 John Bartlett (1820–1905) 28200

Maurice Ravel (1875–1937) 37900 Jorge Luis Borges (1899–1986) 28000

Winston Churchill (1874–1965) 37900 Vincent van Gogh (1853–1890) 28000

Gioacchino Rossini (1792–1868) 36400 Mahatma Gandhi (1869–1948) 28000

Hector Berlioz (1803–1869) 35800 Bedrich Smetana (1824–1884) 27700

Bertrand Russell (1872–1970) 35000 Leos Janacek (1854–1928) 27500

Anton Bruckner (1824–1896) 34700 Ottorino Respighi (1879–1936) 27400

Benjamin Franklin (1706–1790) 34500 Henry I (1100–1135) 27200

Napoleon Bonaparte (1769–1821) 34500 Roland de Lassus (1532–1594) 27100

Jean Sibelius (1865–1957) 34300 Martin Luther (1483–1546) 27000

Isaac Newton (1642–1727) 34200 Anton Webern (1883–1945) 26600

Ontology-Based Information Extraction from the World Wide Web



162

Table 10.4. The 30 persons of the 11th century that have the highest GPC.

11TH CENTURY

Edward the Confessor (1042–1066) 20300 Marpa (1012–1097) 550

Anselm of Canterbury (1033–1109) 3750 Alfonso VI (1065–1109) 535

Shlomo Yitzchaki (1040–1105) 2880 Vratislav II (1061–1092) 518

king of Navarre (1000–1035) 2550 Sima Guang (1019–1086) 518

Su Shi (1037–1101) 1510 Malcolm III (1058–1093) 512

Omar Khayyam (1048–1122) 1200 Tughril Beg (1037–1063) 474

Heinrich IV (1056–1106) 1050 Naropa (1016–1100) 459

Heinrich II (1002–1024) 952 William the Conqueror (1027–1087) 446

Abu Hamid al-Ghazali (1058–1111) 927 Henry I (1068–1135) 417

Ramanuja (1040–1137) 674 Henry III (1017–1056) 375

Malcolm II (1005–1034) 636 Robert I (1032–1076) 352

Seton Kunrig (1025–1113) 621 Isaac I Comnenus (1007–1060) 336

Wladyslaw Herman (1079–1102) 599 Constantine X Ducas (1006–1067) 335

Milarepa (1040–1123) 560 Alexius I Comnenus (1057–1118) 331

Philip I (1060–1108) 560 Romanus IV Diogenes (1032–1072) 331

Table 10.5. The 30 persons of the 13th century that have the highest GPC.

13TH CENTURY

Edward I (1239–1307) 24100 Meister Eckhart (1260–1328) 1040

Dante Alighieri (1265–1321) 22300 Eihei Dogen (1200–1253) 977

Alfonso X (1221–1284) 15900 Ramon Llull (1232–1316) 939

Thomas Aquinas (1225–1274) 10200 Henry III (1216–1272) 879

Giotto di Bondone (1266–1337) 6050 Alexander III (1249–1286) 790

Jalal al-Din Rumi (1207–1273) 5000 Edward II (1284–1327) 785

Saint Francis of Assisi (1182–1226) 4580 Roger Bacon (1214–1294) 781

Marco Polo (1254–1324) 4530 Kublai Khan (1215–1294) 778

Saint Bonaventure (1217–1274) 3570 Friedrich II (1194–1250) 747

Albertus Magnus (1193–1280) 1640 Madhva (1199–1278) 739

Philip II Augustus (1180–1223) 1360 Alexander II (1214–1249) 718

Cimabue (1240–1302) 1320 Leonardo of Pisa (1175–1250) 708

Nasreddin Hoca (1208–1284) 1300 Louis IX (1226–1270) 692

Dogen Zenji (1200–1253) 1290 Robert Greathead (1175–1253) 617

Snorri Sturluson (1179–1241) 1180 Afonso III (1248–1279) 605

analyzed only the first 1000 as well as the last 1000 names. This resulted in
a precision of 0.94, 0.95, and 0.98, respectively. As the decennium of 1880–
1889 resulted in considerably more names, we take a weighted average of these
results. This yields an estimated precision for the complete list of 0.98.
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Table 10.6. The 30 persons of the 15th century that have the highest GPC.

15TH CENTURY

Leonardo da Vinci (1452–1519) 50600 Benozzo Gozzoli (1420–1497) 1560

Niccolo Machiavelli (1469–1527) 13300 Guru Nanak (1469–1539) 1530

duc de Bourbon (1439–1503) 5330 Charles VI (1380–1422) 1510

Guillaume Jouvenel des Ursins (1401–1472) 5280 Andrea Mantegna (1431–1506) 1480

Charles VII (1403–1461) 5270 Donato Bramante (1444–1514) 1470

Leon Battista Alberti (1404–1472) 4010 Henry the Navigator (1394–1460) 1450

Sandro Botticelli (1445–1510) 3850 Amerigo Vespucci (1454–1512) 1440

Hieronymus Bosch (1450–1516) 3470 John Skelton (1460–1529) 1420

Paolo Uccello (1397–1475) 2890 Giovanni Pico della Mirandola (1463–1494) 1330

Donatello (1386–1466) 2880 Domenico Ghirlandaio (1449–1494) 1290

Desiderius Erasmus (1466–1536) 2490 Nikolaus von Kues (1401–1464) 1280

Kaiser Friedrich III (1440–1493) 2200 Enrique IV (1454–1474) 1240

Tommaso Masaccio (1401–1428) 2160 Friedrich III (1415–1493) 1220

Alessandro di Mariano Filipepi (1445–1510) 2030 Guillaume Dufay (1400–1474) 1200

Henry VI (1422–1461) 1960 Jeanne d’Arc (1412–1431) 1180

Table 10.7. The 30 persons of the 17th century that have the highest GPC.

17TH CENTURY

Henry Purcell (1659–1695) 41500 Jonathan Swift (1667–1745) 11800

Rene Descartes (1596–1650) 38500 Baruch Spinoza (1632–1677) 11500

Isaac Newton (1642–1727) 34200 Christiaan Huygens (1629–1695) 10900

Arcangelo Corelli (1653–1713) 31700 Rembrandt van Rijn (1606–1669) 10300

Francois Couperin (1668–1733) 31100 Michel-Richard Delalande (1657–1726) 8080

Alessandro Scarlatti (1660–1725) 26400 Moliere (1622–1673) 8080

Blaise Pascal (1623–1662) 25800 Nicolas Poussin (1594–1665) 7770

Jean-Baptiste Lully (1632–1687) 25800 John Dryden (1631–1700) 7760

John Locke (1632–1704) 25400 Louis XIV (1643–1715) 7300

Johannes Kepler (1571–1630) 24900 Johannes Vermeer (1632–1675) 7210

Gottfried Wilhelm Leibniz (1646–1716) 22600 Heinrich Schuetz (1585–1672) 7180

Thomas Hobbes (1588–1679) 16500 Pierre de Fermat (1601–1665) 7160

John Donne (1572–1631) 15200 Jean de la Fontaine (1621–1695) 7040

Peter Paul Rubens (1577–1640) 14200 Johann Pachelbel (1653–1706) 7000

John Milton (1608–1674) 13700 Orlando Gibbons (1583–1625) 6560

Regarding the precision of the properties born-in and died-in, we make the
following observations. Considering the list of 450,000 potential instances that
our algorithm found for this property, we observe that 235 were found with a
GPC of at least 10,000 and 2450 were found with a GPC of at least 1000.
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Table 10.8. The 30 persons of the 19th century that have the highest GPC.

19TH CENTURY

Ludwig van Beethoven (1770–1827) 80700 Hector Berlioz (1803–1869) 35800

Franz Schubert (1797–1828) 69300 Anton Bruckner (1824–1896) 34700

Johannes Brahms (1833–1897) 65200 Jean Sibelius (1865–1957) 34300

Charles Darwin (1809–1882) 52000 Gabriel Faure (1845–1924) 34200

Robert Schumann (1810–1856) 51800 Felix Mendelssohn-Bartholdy (1809–1847) 34000

Giuseppe Verdi (1813–1901) 47900 Camille Saint-Saens (1835–1921) 32800

Frederic Chopin (1810–1849) 46800 Mark Twain (1835–1910) 32100

Richard Wagner (1813–1883) 44700 Sigmund Freud (1856–1939) 32000

Franz Liszt (1811–1886) 43700 Georges Bizet (1838–1875) 31200

Claude Debussy (1862–1918) 42300 Charles Gounod (1818–1893) 31000

Antonin Dvorak (1841–1904) 39200 Cesar Franck (1822–1890) 30900

Gustav Mahler (1860–1911) 39000 Carl Maria von Weber (1786–1826) 29900

Richard Strauss (1864–1949) 38700 Friedrich Nietzsche (1844–1900) 29700

Giacomo Puccini (1858–1924) 38700 George Bernard Shaw (1856–1950) 29200

Gioacchino Rossini (1792–1868) 36400 Oscar Wilde (1854–1900) 29000

Table 10.9. Recall for six popular scientific editions.

book nr. of candidates nr. found recall

The Science Book 156 147 0.94
The Art Book 358 353 0.99
The Dutch Painters: 100 17th Century Masters 108 106 0.98
Philosophy: 100 Essential Thinkers 78 78 1.00
Herinneringen in Steen 195 195 1.00
Scientists and Inventions 154 154 1.00

Clearly, the probability that instances with a high GPC contain spelling errors
in last name or lifetime is quite low, since accidental spelling errors in the last
name or in the lifetime will result in a low GPC. Indeed, we found that the
accuracy of our results was better than that of the information in some of the
books. Especially The Art Book contained several errors in the lifetimes and
even spelling errors in the last name of two of the artists.

There are two sources of errors influencing the precision of the properties
born-in and died-in that we want to mention explicitly. For kings, queens,
emperors, etc., the period in which they reigned is also found quite often in
combination with their name. If lifetime and period of reign end with the same
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year, and if the person name is found more often in combination with the period
of reign, then the name/lifetime combination might even be filtered out. But
since the period of reign is always a subinterval of the corresponding lifetime,
very often ending in the same year, this could be handled more carefully. We
consider this an issue for further research. Another source of errors that we
observe, albeit very infrequently, is the occurrence of living persons in our list.
Very often this is caused by a publication that is devoted to a specific period
from the life of that person, where the name of the person and the period is
mentioned explicitly in the title.

A more detailed analysis of the precision is required to get a more accurate
estimate of the fraction of errors that are caused by the various error sources.

10.5 Concluding remarks
The presented case study on finding famous persons indicates that non-

trivial results can be obtained by extracting information from the WWW, even
if we restrict ourselves to using the excerpts that Google provides. The case
study shows that high recall and precision can be obtained. Currently, we are
extending the case study to also automatically extract for example the corre-
sponding nationality and professions of persons. In this way we can automati-
cally extract subsets of persons such as 17th century Dutch painters as well as
further details that are profession dependent.

The case study supports current social studies, where it is argued that col-
lective knowledge can sometimes be more powerful than individual knowledge
[Surowiecki, 2004]. The obtained list of persons seems to extend far beyond
the list of well-known persons that are known to a single person.

Experiments as the one presented above show that the approach described
in this chapter provides an effective method to extract information. However,
adapting the approach to a knowledge domain of interest still requires manual
effort to e.g. identify text fragments that can best be applied in the preselec-
tion step. Moreover, manual effort is required to adapt the normalization and
filtering phases. Automatic adaption to a knowledge domain by e.g. automatic
detection of appropriate text fragments that express relevant properties is con-
sidered an important next step in our research.
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Chapter 11

PRIVACY PROTECTION IN COLLABORATIVE
FILTERING BY ENCRYPTED COMPUTATION

Wim F.J. Verhaegh, Aukje E.M. van Duijnhoven, Pim Tuyls, and Jan Korst

Abstract We present a method to protect users’ privacy in collaborative filtering by per-
forming the computations on encrypted data. We focus on the commonly-used
memory-based approach, and show that the two main steps in collaborative fil-
tering, being the determination of similarities and the prediction of ratings, can
be performed on encrypted profiles. We discuss both user-based and item-based
collaborative filtering, and for a number of variants of the similarity measures
and prediction formulas described in literature, we show how they can be com-
puted using encrypted data only. Although we consider collaborative filtering in
this chapter, the techniques of comparing profiles using encrypted data only is
useful in a much wider range of applications.

Keywords Collaborative filtering, privacy, encryption.

11.1 Introduction
One of the key characteristics of ambient intelligence [Aarts & Marzano,

2003] is personalization, which ensures tailored applications and services to
users. In order to realize personalization, electronic systems need user pro-
files, indicating the specific characteristics and preferences of users. If such
personalization is realized by a stand-alone device, there is no issue, but if the
personalization is offered by a service on the internet, the privacy of users may
be at stake. Although most internet services, such as Amazon, have a privacy
statement on their web site, users may be reluctant to give their personal data
away, for several reasons. First, they may not trust every server. Secondly, they
may trust the server, but do not want to run the risk that it gets hacked. Thirdly,
the server may be reliable, but if it goes bankrupt, the user profiles represent
valuable information that may be sold to third parties. Of course the privacy
concern depends on the kind of data, e.g. preferences for books may be less
sensitive information than users’ medical records.
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In order to protect the users’ privacy, we investigate the possibilities that
encryption techniques offer. The idea is that a user only releases personal
information in an encrypted form, and that all the computations necessary for
the personalization are done on the encrypted data. In the end, the user will
receive an encrypted personalization result, which he can decrypt and use.

In this chapter we show how the above can be realized for recommendation
services based on collaborative filtering [Herlocker et al., 1999; Shardanand &
Maes, 1995], as a first personalization application that we select. Collabora-
tive filtering is a well-known technique to recommend e.g. new music or books
to users, and helps users in coping with the overload of content that is avail-
able through the internet. Based on a user’s likes and dislikes for previously
encountered content, it estimates to what extent he would like other content
that is available. To this end, collaborative filtering uses the preferences of a
community of users.

We can distinguish two global types of collaborative filtering approaches:
memory-based [Herlocker et al., 1999] and model-based [Canny, 2002].
Memory-based collaborative filtering is the most commonly used approach.
In this approach, which is a lazy learning approach in machine learning terms,
the preferences (in the form of ratings for content) of a community of users
are collected at a web server. Then, a similarity measure is computed between
each pair of users based on the content they jointly rated. Next, recommenda-
tions for a particular user can be made by considering users that are similar to
him, and checking for content that they liked but that has not yet been rated by
the user or that is not yet in the user’s collection.

Model-based approaches pursue a more active learning strategy. First, the
collected preference data is processed to build a model of the users’ profile
space. For instance, Canny [2002] describes a factor-analysis approach, which
first distills a basis of user preference profiles and expresses the individual
users’ profiles in terms of this basis. Next, this model is used to make predic-
tions.

As mentioned, we want to develop a system that prevents any information
about a user’s preferences to become known to others. This not only means that
we want to keep the user’s ratings for items secret, but even the information of
what items he has rated. Furthermore, we do not even want to reveal this kind
of information anonymously, as we do not want to run the risk that the identity
of the user is traced back somehow, after which his data is in the clear. Finally,
as similarities between users also give information about a user’s preferences,
we also want to keep this data secret.

In addition to the above requirements from a user’s perspective, we add the
requirement that the server should maintain some control over the service, i.e.,
it should not be possible for a user to trivially retrieve valuable gathered data
to set up a recommendation service too.
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Whereas Canny [2002] focuses on model-based collaborative filtering, we
discuss in this chapter how the more commonly used memory-based collabo-
rative filtering technique can be performed on encrypted data. This holds for
all variants of similarity measures and prediction formulas that we describe.

The remainder of this chapter is organized as follows. First, in Section 11.2
we discuss the procedures and formulas behind memory-based collaborative
filtering, where we distinguish user-based and item-based approaches. Next,
in Section 11.3 we briefly describe the proposed encryption system and its
beneficial properties. Then, we discuss how the above requirements can be
met, by describing how to perform the collaborative-filtering computations on
encrypted data for the user-based and item-based approaches in Sections 11.4
and 11.5, respectively.

Although we focus in this chapter on encryption of preference information
in collaborative filtering, the techniques we present are applicable in a much
broader context, as many more ambient intelligence applications will use some
form of matching profiles. Also these applications may be much better ac-
cepted by users if private information can be protected. We will however not
elaborate on this.

11.2 Memory-based collaborative filtering
Most memory-based collaborative filtering approaches work by first de-

termining similarities between users, by comparing their jointly rated items.
Next, these similarities are used to predict the rating of a user for a particular
item, by interpolating between the ratings of the other users for this item. Typ-
ically, all computations are performed by the server, upon a user request for a
recommendation.

Next to the above approach, which is called a user-based approach, one can
also follow an item-based approach. Then, first similarities are determined
between items, by comparing the ratings they have gotten from the various
users, and next the rating of a user for an item is predicted by interpolating
between the ratings that this user has given for the other items.

Before discussing the formulas underlying both approaches, we first intro-
duce some notation. We assume a set U of users and a set I of items. Whether
a user u ∈ U has rated item i ∈ I is indicated by a boolean variable bui which
equals one if the user has done so and zero otherwise. In the former case, also
a rating rui is given, e.g. on a scale from 1 to 5. The set of users that have rated
an item i is denoted by Ui, and the set of items that have been rated by a user u
is denoted by Iu.

Privacy Protection in Collaborative Filtering by Encrypted Computation
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11.2.1 The user-based approach
User-based algorithms are probably the oldest and most widely used collab-

are two main steps: determining similarities and calculating predictions. For
both we discuss commonly used formulas, of which we show later that they all
can be computed on encrypted data.

Similarity measures. Quite a number of similarity measures have been
presented in the literature before. We distinguish three kinds: correlation mea-
sures, distance measures, and counting measures.

Correlation measures. A common similarity measure used in literature is the
so-called Pearson correlation coefficient (see e.g. [Sarwar et al., 2000]), given
by1

s(u,v) =
∑i∈Iu∩Iv(rui − ru)(rvi − rv)√

∑i∈Iu∩Iv(rui − ru)2 ∑i∈Iu∩Iv(rvi − rv)2
, (11.1)

where ru denotes the average rating of user u for the items he has rated. The
numerator in this equation gets a positive contribution for each item that is ei-
ther rated above average by both users u and v, or rated below average by both.
If one user has rated an item above average and the other user below average,
we get a negative contribution. The denominator in the equation normalizes
the similarity, to fall in the interval [−1,1], where a value 1 indicates complete
correspondence and −1 indicates completely opposite tastes.

Related similarity measures are obtained by replacing ru in (11.1) by the
middle rating (e.g. 3 if using a scale from 1 to 5) or by zero. In the latter
case, the measure is called vector similarity or cosine, and if all ratings are
non-negative, the resulting similarity value will then lie between 0 and 1.

Distance measures. Another type of measures is given by distances between
two users’ ratings, such as the mean-square difference [Shardanand & Maes,
1995] given by

∑i∈Iu∩Iv(rui − rvi)2

|Iu ∩ Iv| , (11.2)

or the normalized Manhattan distance [Aggarwal et al., 1999] given by

∑i∈Iu∩Iv |rui − rvi|
|Iu ∩ Iv| . (11.3)

1Note that if Iu ∩ Iv = Ø, then the similarity s(u,v) is undefined, and it should be discarded in the prediction
formulas (11.9)–(11.11).
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Such a distance is zero if the users rated their overlapping items identically, and
larger otherwise. A simple transformation converts a distance into a measure
that is high if users’ ratings are similar and low otherwise.

Counting measures. Counting measures are based on counting the number of
items that two users rated (nearly) identically. A simple counting measure is
the majority voting measure [Nakamura & Abe, 1998] of the form

s(u,v) = (2− γ)cuvγ duv , (11.4)

where γ is chosen between 0 and 1, cuv = |{i ∈ Iu ∩ Iv | rui ≈ rvi}| gives the
number of items rated ‘the same’ by u and v, and duv = |Iu ∩ Iv| − cuv gives
the number of items rated ‘differently’. The relation ≈ may here be defined as
exact equality, but also nearly-matching ratings may be considered sufficiently
equal.

Another counting measure is given by the weighted kappa statistic [Cohen,
1968], which is defined as the ratio between the observed agreement between
two users and the maximum possible agreement, where both are corrected for
agreement by chance. More formally, the measure is given by

s(u,v) =
ouv − euv

1− euv
. (11.5)

Here, ouv is the observed fraction of agreement, given by

ouv =
∑i∈Iu∩Iv w(rui,rvi)

|Iu ∩ Iv| , (11.6)

where weights w(x,y), with 0 ≤ w(x,y) = w(y,x) ≤ 1 and w(x,x) = 1, indicate
the degree of correspondence between ratings x and y. The offset euv is the
expected fraction of agreement, and is given by

euv = ∑
x∈X

∑
y∈X

pu(x)pv(y)w(x,y), (11.7)

where X is the set of possible ratings, and pu(x) is the fraction of items that u
has given a rating x, i.e.,

pu(x) =
|{i ∈ Iu | rui = x}|

|Iu| . (11.8)

Prediction formulas. The second step in collaborative filtering is to use the
similarities to compute a prediction for a certain user-item pair. Also for this
step several variants exist. For all formulas, we assume that there are users that
have rated the given item; otherwise no prediction can be made.
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Weighted sums. The first prediction formula, as used by Herlocker et al.
[1999], is given by

r̂ui = ru +
∑v∈Ui s(u,v)(rvi − rv)

∑v∈Ui |s(u,v)| . (11.9)

So, the prediction is the average rating of user u plus a weighted sum of devi-
ations from the averages. In this sum, all users are considered that have rated
item i. Alternatively, one may restrict them to users that also have a sufficiently
high similarity to user u, i.e., we sum over all users in Ui(t) = {v∈Ui | s(u,v)≥
t} for some threshold t.

An alternative, somewhat simpler prediction formula is given by

r̂ui =
∑v∈Ui s(u,v)rvi

∑v∈Ui |s(u,v)| . (11.10)

Note that if all ratings are positive, then this formula only makes sense if all
similarity values are non-negative, which may be realized by choosing a non-
negative threshold.

Maximum total similarity. A second type of prediction formula is given by
choosing the rating that maximizes a kind of total similarity, as is done in the
majority voting approach, given by

r̂ui = arg maxx∈X ∑
v∈Ux

i

s(u,v), (11.11)

where Ux
i = {v ∈Ui | rvi ≈ x} is the set of users that gave item i a rating similar

to value x. Again, the relation ≈ may be defined as exact equality, but also
nearly-matching ratings may be allowed. Also in this formula one may use
Ui(t) instead of Ui to restrict oneself to sufficiently similar users.

Time complexity. The time complexity of user-based collaborative filtering
is as follows.

For the first step, there are O (|U |2) pairs of users between which a sim-
ilarity has to be computed. Similarity measures (11.1)–(11.4) require sums
of O (|I|) items, hence giving a total time complexity of O (|U |2|I|) to deter-
mine all similarities. The computation of the weighted kappa statistic (11.5)
requires per pair of users O (|I|) steps to compute (11.6) and O (|X |2) steps
to compute (11.7), where for the latter one needs to compute (11.8) in O (|I|)
steps once per user and per value in X . So, this gives a total time complexity
of O (|U |2|I|+ |U |2|X |2 + |U ||I||X |) for the kappa statistic. As |X | is typically
bounded by a small constant, say between 5 and 10, this reduces to the same
time complexity O (|U |2|I|) as for the other measures.
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If for all users all items with a missing rating are to be given a prediction,
then this requires O(|U ||I|) predictions to be computed. Prediction formulas
(11.9) and (11.10) can be computed in O(|U |) steps, where (11.9) requires
O(|I|) steps once per user u to compute his average ratings ru. So, this gives a
total complexity of O(|U |2|I|) to compute all predictions. Prediction formula
(11.11) however requires O(|U ||X |) steps per prediction, thereby giving a to-
tal complexity of O(|U |2|I||X |) to compute all predictions. Again, if |X | is
bounded by a constant, this time complexity reduces to O(|U |2|I|).

11.2.2 The item-based approach
As mentioned, item-based algorithms [Karypis, 2001; Sarwar et al., 2001]

first compute similarities between items, e.g. by using a similarity measure

s(i, j) =
∑u∈Ui∩Uj(rui − ru)(ru j − ru)√

∑u∈Ui∩Uj(rui − ru)2 ∑u∈Ui∩Uj(ru j − rv)2
. (11.12)

Note that the exchange of users and items as compared to (11.1) is not com-
plete, as still the average rating ru is subtracted from the ratings. The reason
to do so is that this subtraction compensates for the fact that some users give
higher ratings than others, and there is no need for such a correction for items.

The standard item-based prediction formula to be used for the second step
is given by

r̂ui = ri +
∑ j∈Iu s(i, j)(ru j − r j)

∑ j∈Iu |s(i, j)| . (11.13)

The other similarity measures and prediction formulas we presented for the
user-based approach can in principle also be turned into item-based variants,
but we will not show them here.

Also in the time complexity for item-based collaborative filtering the roles
of users and items interchange as compared to the user-based approach, as
expected. For the first step, O(|I|2) similarity measures (11.12) have to be
computed, each of which takes O(|U |) steps. The prediction formula (11.13)
requires O(|I|) steps for each user and each item, where the average rating ri
takes O(|U |) steps once per item i. As a result, the total time complexity is
given by O(|U ||I|2).

If the number |U | of users is much larger than the number |I| of items, the
time complexity of the item-based approach is favorable over that of user-based
collaborative filtering. Another advantage in this case is that the similarities are
generally based on more elements, which gives more reliable measures. A fur-
ther advantage of item-based collaborative filtering, as argued by Sarwar et al.
[2001], is that correlations between items may be more stable than correlations
between users, but we will not elaborate on this.

Privacy Protection in Collaborative Filtering by Encrypted Computation
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11.3 Encryption
In the next section we show how the presented formulas for collaborative

filtering can be computed on encrypted ratings. Before doing so, we present
the encryption system we use, and the specific properties it possesses that allow
for the computation on encrypted data.

11.3.1 A public-key cryptosystem
The cryptosystem we use is the public-key cryptosystem presented by Pail-

lier [1999]. We will not describe it in full detail, for which we refer to the
chapter, but we briefly describe how data is encrypted.

First, encryption keys are generated. To this end, two large primes p and
q are chosen randomly, and we compute n = pq and λ = lcm(p− 1, q− 1).
Furthermore, a generator g is computed from p and q (for details, see [Paillier,
1999]). Now, the pair (n,g) forms the public key of the cryptosystem, which is
sent to everyone, and λ forms the private key, to be used for decryption, which
is kept secret.

Next, a sender who wants to send a message m ∈ Zn = {0,1, . . . ,n−1} to a
receiver with public key (n,g) computes a ciphertext ε(m) by

ε(m) = gmrn mod n2, (11.14)

where r is a number randomly drawn from Z
∗
n = {x∈Z | 0 < x < n∧gcd(x,n) =

1}. This r prevents decryption by simply encrypting all possible values of m
(in case it can only assume a few values) and comparing the end result. The
Paillier system is hence called a randomized encryption system.

Decryption of a ciphertext c = ε(m) is done by computing

m =
L(cλ mod n2)
L(gλ mod n2)

mod n,

where L(x) = (x− 1)/n for any 0 < x < n2 with x ≡ 1 (mod n). During de-
cryption, the random number r cancels out.

Note that in the above cryptosystem the messages m are integers. Never-
theless, rational values are possible by multiplying them by a sufficiently large
number and rounding off [Fouque, Stern & Wackers, 2002]. For instance, if
we want to use messages with two decimals, we simply multiply them by 100
and round off. Usually, the range Zn is large enough to allow for this multipli-
cation.
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11.3.2 Properties
The above presented encryption scheme has the following nice properties.

The first one is that

ε(m1)ε(m2) ≡ gm1rn
1gm2rn

2 ≡ g(m1+m2)(r1r2)n ≡ ε(m1 +m2) (mod n2),

which allows us to compute sums on encrypted data. Secondly,

ε(m1)m2 ≡ (gm1rn
1)

m2 ≡ gm1m2(rm2
1 )n ≡ ε(m1m2) (mod n2),

which allows us to compute products on encrypted data. An encryption scheme
with these two properties is called a homomorphic encryption scheme. The
Paillier system is one homomorphic encryption scheme, but more ones exist.

We can use the above properties to calculate sums of products, as required
for the similarty measures and predictions, using

∏
j

ε(a j)b j ≡ ∏
j

ε(a jb j) ≡ ε(∑
j

a jb j) (mod n2). (11.15)

So, using this, two users a and b can compute an inner product between a
vector of each of them in the following way. User a first encrypts his entries a j
and sends them to b. User b then computes (11.15), as given by the left-hand
term, and sends the result back to a. User a next decrypts the result to get the
desired inner product. Note that neither user a nor user b can observe the data
of the other user; the only thing user a gets to know is the inner product.

A final property we want to mention is that

ε(m1)ε(0) ≡ gm1rn
1g0rn

2 ≡ gm1(r1r2)n ≡ ε(m1) (mod n2).

This action, which is called (re)blinding, can be used also to avoid a trial-and-
error attack as discussed above, by means of the random number r2 ∈ Z

∗
n. We

will use this in Section 11.4.2.

11.3.3 A threshold version of the cryptosystem
The Paillier cryptosystem can also be implemented in a threshold version

[Fouque, Poupard & Stern, 2000], in which the decryption key is shared among
a number l of users, and a ciphertext can only be decrypted if more than a
threshold t of users cooperate. In this version, the generation of the keys is
somewhat more complicated, as well as the decryption mechanism. With-
out further going into details, for which we refer to Fouque, Poupard & Stern
[2000], we briefly discuss the decryption procedure in the threshold cryptosys-
tem. For this, first a subset of at least t +1 users is chosen that will be involved
in the decryption. Next, each of these users receives the ciphertext and com-
putes a decryption share, using his own share of the key. Finally, these decryp-
tion shares are combined to compute the original message. As long as at least
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t +1 users have combined their decryption share, the original message can be
reconstructed.

11.4 Encrypted user-based algorithm
Having all ingredients in place, we now explain how memory-based col-

laborative filtering can be performed on encrypted data, in order to compute a
prediction r̂ui for a certain user u and item i. Note that although the computa-
tions are done on encrypted data, the outcome is of course identical to that of
the original collaborative filtering algorithm.

We consider a setup as depicted in Figure 11.1, where user u communicates
with other users v through a server. Furthermore, each user has generated his
own key, and has published the public part of it. As we want to compute a
prediction for user u, the steps below will use the keys of u.

user
u

server users
v

Figure 11.1. The setup for the user-based algorithm.

11.4.1 Computing similarities on encrypted data
First we take the similarity computation step, for which we start with the

Pearson correlation given in (11.1). Although we already explained in Sec-
tion 11.3 how to compute an inner product on encrypted data, we have to re-
solve the problem that the iterator i in the sums in (11.1) only runs over Iu ∩ Iv,
and this intersection is not known to either user. Therefore, we first introduce

qui =
{

rui − ru if bui = 1, i.e., user u rated item i,
0 otherwise,

and rewrite (11.1) into

s(u,v) = ∑i∈I quiqvi√
∑i∈I q2

uibvi ∑i∈I q2
vibui

. (11.16)

The idea that we used is that any i �∈ Iu ∩ Iv does not contribute to any of the
three sums because at least one of the factors in the corresponding term will be
zero. Hence, we have rewritten the similarity into a form consisting of three
inner products, each between a vector of u and one of v.

The protocol now runs as follows. First, user u calculates encrypted en-
tries ε(qui), ε(q2

ui), and ε(bui) for all i ∈ I, using (11.14), and sends them
to the server. The server forwards these encrypted entries to each other

Wim F.J. Verhaegh et al.



179

user v1, . . . ,vm. Next, each user v j, j = 1, . . . ,m, computes ε(∑i∈I quiqv ji),
ε(∑i∈I q2

uibv ji), and ε(∑i∈I q2
v jibui), using (11.15), and sends these three results

back to the server, which forwards them to user u. User u can decrypt the total
of 3m results and compute the similarities s(u,v j), for all j = 1, . . . ,m. Note
that user u now knows similarity values with the other m users, but he need not
know who each user j = 1, . . . ,m is. The server, on the other hand, knows who
each user j = 1, . . . ,m is, but it does not know the similarity values.

For the other similarity measures, we can also derive computation schemes
using encrypted data only. For the mean-square distance, we can rewrite (11.2)
into

∑i∈Iu∩Iv(r
2
ui −2ruirvi + r2

vi)
|Iu ∩ Iv| = ∑i∈I r2

uibvi +2∑i∈I rui(−rvi)+∑i∈I r2
vibui

∑i∈I buibvi
,

(11.17)
where we additionally define rui = 0 if bui = 0 in order to have well-defined
values. So, this distance measure can also be computed by means of four inner
products.

The computation of normalized Manhattan distances is somewhat more
complicated. Given the set X of possible ratings, we first define for each x ∈ X ,

bx
ui =

{
1 if bui = 1∧ rui = x,
0 otherwise,

and

ax
ui =

{ |rui − x| if bui = 1,
0 otherwise.

Now, (11.3) can be rewritten into

∑i∈I ∑x∈X bx
uia

x
vi

∑i∈I buibvi
= ∑x∈X ∑i∈I bx

uia
x
vi

∑i∈I buibvi
. (11.18)

So, the normalized Manhattan distance can be computed from |X | + 1
inner products. Furthermore, for the numerator a user v can compute
∏x∈X ε(∑i∈I bx

uia
x
vi) ≡ ε(∑x∈X ∑i∈I bx

uia
x
vi), and send this result, together with

the encrypted denominator, back to user u.
The majority-voting measure can also be computed in the above way, by

defining

ax
ui =

{
1 if bui = 1∧ rui ≈ x,
0 otherwise. (11.19)

Then, cuv used in (11.4) is given by

cuv = ∑
x∈X

∑
i∈I

bx
uia

x
vi, (11.20)
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which can again be computed in a way as described above. Furthermore,

duv = ∑
i∈I

buibvi − cuv.

Finally, we consider the weighted kappa measure (11.5). Again, ouv can be
computed by defining

ax
ui =

{
w(x,rui) if bui = 1,
0 otherwise,

and then calculating

ouv = ∑x∈X ∑i∈I bx
uia

x
vi

∑i∈I buibvi
. (11.21)

Furthermore, euv can be computed in an encrypted way if user u encrypts pu(x)
for all x ∈ X and sends them to each other user v, who can then compute

∏
x∈X

∏
y∈Y

ε(pu(x))pv(y)w(x,y) ≡ ε(euv), (11.22)

and send this back to u for decryption.

11.4.2 Computing predictions on encrypted data
For the second step of collaborative filtering, user u can calculate a predic-

tion for item i in the following way. First, we rewrite the quotient in (11.9)
into

∑v∈U s(u,v)qvi

∑v∈U |s(u,v)|bvi
. (11.23)

So, first user u encrypts s(u,v j) and |s(u,v j)| for each other user v j,
j = 1, . . . ,m, and sends them to the server. The server then forwards
each pair ε(s(u,v j)),ε(|s(u,v j)|) to the respective user v j, who computes
ε(s(u,v j))

qv j iε(0) ≡ ε(s(u,v j)qv ji) and ε(|s(u,v j)|)bv j iε(0) ≡ ε(|s(u,v j)|bv ji),
where he uses reblinding to prevent the server from getting knowledge from
the data going back and forth to user v j by trying a few possible values. Each
user v j next sends the results back to the server, which then computes

m

∏
j=1

ε(s(u,v j)qv ji) ≡ ε(
m

∑
j=1

s(u,v j)qv ji)

and
m

∏
j=1

ε(|s(u,v j)|bv ji) ≡ ε(
m

∑
j=1

|s(u,v j)|bv ji),

and sends these two results back to user u. User u can then decrypt these mes-
sages and use them to compute the prediction. The simple prediction formula
of (11.10) can be handled in a similar way.
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The maximum total similarity prediction as given by (11.11) can be handled
as follows. First, we rewrite

∑
v∈Ux

i

s(u,v) =
m

∑
j=1

s(u,v j)ax
v ji, (11.24)

where ax
v ji is as defined by (11.19). Next, user u encrypts s(u,v j) for each other

user v j, j = 1, . . . ,m, and sends them to the server. The server then forwards
each ε(s(u,v j)) to the respective user v j, who computes ε(s(u,v j))

ax
v j iε(0) ≡

ε(s(u,v j)ax
v ji), for each rating x ∈ X , using reblinding. Next, each user v j sends

these |X | results back to the server, which then computes
m

∏
j=1

ε(s(u,v j)ax
v ji) ≡ ε(

m

∑
j=1

s(u,v j)ax
v ji), (11.25)

for each x ∈ X , and sends the |X | results to user u. Finally, user u decrypts
these results and determines the rating x that has the highest result.

11.4.3 Time complexity revisited
The effect of encryption on the time complexity of computing the similari-

ties and predictions, is as follows.
The time complexity to compute (11.16) and (11.17) is determined by the

server, which has to forward for each user u, O(|I|) encrypted items to all
users v j. This can be done in a total of O(|U |2|I|) steps, which equals the
time complexity of the unencrypted case. For (11.18) and (11.20), O(|I||X |)
encrypted items have to be forwarded for each user u to all users v j, giving a
total of O(|U |2|I||X |) steps, which is a factor O(|X |) more than in the unen-
crypted case. Finally, for the weighted kappa statistic we first need O(|I||X |)
steps per pair u,v to compute ouv in (11.21), and secondly we need to compute
euv. The latter takes for each u, O(|U ||X |) steps for the server to forward the
encrypted items ε(pu(x)) to all other users v j, and O(|X |2) steps for all users
v j to compute (11.22). Note that the latter users can do so in parallel, and
hence the total time complexity of computing all kappa statistics is given by
O(|U |2|I||X |+ |U |2|X |+ |U ||X |2).

For the prediction formulas, encryption does not have an effect on the time
complexity. Formulas (11.23) and the encrypted version of (11.10) still require
O(|U |) steps per user u and item i for the work done by the user u himself and
the server, giving a total time complexity of O(|U |2|I|). The time complexity
to compute (11.24) in an encrypted way is determined by the server, which has
to calculate O(|X |) products (11.25) over O(|U |) entries for each user u and
item i, giving a total time complexity of O(|U |2|I||X |).

Although the time complexity is not much affected, we note that the run
time of course will increase, because of the more demanding computations on
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encrypted data. This overhead is determined by the length of the encryption
key.

11.5 Encrypted item-based algorithm
Also item-based collaborative filtering can be done on encrypted data, using

the threshold system of Section 11.3.3. The general working of the item-based
approach is slightly different than the user-based approach, as first the server
determines similarities between items, and next uses them to make predictions.

So, first the server considers each pair i, j ∈ I of items to determine their
similarity as given in (11.12). Again, we first have to resolve the problem that
the iterator, u in this case, does not run over the entire set U . To this end, we
rewrite (11.12) into

∑u∈U quiqu j√
∑u∈U q2

uibu j ∑u∈U q2
u jbui

.

So, we have to compute three sums, where each user u ∈ U can compute his
own contributions to them. Each of the three sums can be computed in the
following way. First, the users compute their contributions, encrypt them us-
ing the threshold encryption scheme, and send the encrypted contributions to
the server. The server multiplies all encrypted contributions, and gets in this
way an encrypted version of the respective sum. Next, the server sends this
encrypted sum back to the users, who each compute their decryption share of
it. These decryption shares are sent back to the server, and if the server has
received more shares than the threshold, it can decrypt the respective sum.

Next, we consider the prediction formula (11.13). For this, first the server
computes the average rating ri of each item i, which can be written as

ri = ∑u∈U rui

∑u∈U bui
,

where again we define rui = 0 if bui = 0. The two sums in this quotient can
again be computed by the server in the same way as described above.

Secondly, user u can compute a prediction for item i if we rewrite (11.13)
into

∑ j∈I bu j|s(i, j)|ri +∑ j∈I ru js(i, j)+∑ j∈I bu js(i, j)(−r j)
∑ j∈I bu j|s(i, j)| . (11.26)

Inspecting the four sums in this equation reveals that they are inner products
between vectors of u and of the server. Note that the similarity values and
item averages are valuable data to the server, so it does not want to share this
with the users. So, user u encrypts his entries bu j and ru j and sends them to
the server. The server then computes the sums in the encrypted domain, and
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sends the results back to u. User u then can decrypt the sums, and compute the
prediction. Note that the server need not send all four encrypted sums back,
as it can compute the denominator in (11.26) in the encrypted domain. It then
only sends the encrypted denomimator and numerator back to u.

The time complexity of encrypted item-based collaborative filtering is not
affected by encryption, apart from the computational overhead of computing
with encrypted numbers. For the similarity measure, the server has to col-
lect O(|U |) contributions for three sums, for each pair i, j, giving a total time
complexity of O(|U ||I|2). Securely computing the average scores ri requires
O(|U |) steps per item i, giving O(|U ||I|) in total. Finally, computing the pre-
dictions in an encrypted way takes O(|I|) steps per user u and item i, giving
also a total of O(|U ||I|2).

11.6 Conclusion
We have shown how collaborative filtering can be done on encrypted data.

In this way, sensitive information about a user’s preferences, as discussed in
the introduction, is kept secret, as it only leaves the user’s system in an en-
crypted form. We have listed a number of variants of the similarity measures
and prediction formulas described in literature, and showed for each of them
how they can be computed using encrypted data only, without affecting their
results.

Compared to the original set-up of collaborative filtering, the new set-up
requires a more active role of the users’ devices. This means that instead of a
(single) server that runs an algorithm, we now have a system running a distrib-
uted algorithm, where all the nodes are actively involved in parts of the algo-
rithm. The time complexity of the algorithm basically stays the same, except
for an additional factor |X | (typically between 5 and 10) for some similarity
measures, and the overhead from computing with large encrypted numbers.

Although we showed that collaborative filtering can in principle be done
on encrypted data, there are a few more issues to be resolved for a practical
implementation. For instance, one should take into account the computational
and communication overhead required due to the encryption and decryption of
data. Furthermore, the system should be made robust against more complex

to other users, each time using a profile with only one item. These issues are
topic of further research.

Although we only discussed collaborative filtering, the technique of com-
puting similarities between profiles on encrypted data only is interesting for
other applications as well, such as user matching and service discovery. In the
vision of ambient intelligence, where much more (sensitive) profiling will be
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used in the future, this may play a crucial role in getting these applications
accepted by a wide audience. This is also topic of further research.

References
Aarts, E., and S. Marzano [2003]. The New Everyday: Visions of Ambient Intelligence. 010

Publishing, Rotterdam, The Netherlands.
Aggarwal, C., J. Wolf, K.-L. Wu, and P. Yu [1999]. Horting hatches an egg: A new graph-

theoretic approach to collaborative filtering. Proceedings ACM KDD’99 Conference, pages
201-212.

Breese, J., D. Heckerman, and C. Kadie [1998]. Empirical analysis of predictive algorithms
for collaborative filtering. Proceedings 14th Conference on Uncertainty in Artificial Intelli-
gence, pages 43–52.

Canny, J. [2002]. Collaborative filtering with privacy via factor analysis. Proceedings ACM
SIGIR’02, pages 238–245, 2002.

Cohen, J. [1968]. Weighted kappa: Nominal scale agreement with provision for scaled disagree-
ment or partial credit. Psychological Bulletin, 70:213–220.

Fouque, P.-A., G. Poupard, and J. Stern [2000]. Sharing decryption in the context of voting
or loteries. Proceedings of the 4th International Conference on Financial Cryptography,
Lecture Notes in Computer Science, 1962:90–104.

Fouque, P.-A., J. Stern, and J.-G. Wackers [2002]. Cryptocomputing with rationals. Proceedings
of the 6th International Conference on Financial Cryptography, Lecture Notes in Computer
Science, 2357:136–146.

Herlocker, J., J. Konstan, A. Borchers, and J. Riedl [1999]. An algorithmic framework for per-
forming collaborative filtering. Proceedings ACM SIGIR’99, pages 230–237.

Karypis, G. [2001]. Evaluation of item-based top-n recommendation algorithms. Proceedings
10th Conference on Information and Knowledge Management, pages 247–254.

Nakamura, A., and N. Abe [1998]. Collaborative filtering using weighted majority prediction
algorithms. Proceedings 15th International Conference on Machine Learning, pages 395–
403.

Paillier, P. [1999]. Public-key cryptosystems based on composite degree residuosity classes.
Proceedings Advances in Cryptology EUROCRYPT’99, Lecture Notes in Computer Sci-
ence, 1592:223–238.

Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl [1994]. GroupLens: An open
architecture for collaborative filtering of netnews. Proceedings ACM CSCCW’94 Conference
on Computer-Supported Cooperative Work, pages 175–186.

Sarwar, B., G. Karypis, J. Konstan, and J. Riedl [2000]. Analysis of recommendation algorithms
for e-commerce. Proceedings 2nd ACM Conference on Electronic Commerce, pages 158–
167.

Sarwar, B., G. Karypis, J. Konstan, and J. Riedl [2001]. Item-based collaborative filtering rec-
ommendation algorithms. Proceedings 10th World Wide Web Conference (WWW10), pages
285–295.

Shardanand, U., and P. Maes [1995]. Social information filtering: Algorithms for automating
word of mouth. Proceedings CHI’95, pages 210–217.

van Duijnhoven, A.E.M. [2003]. Collaborative filtering with privacy. Master’s thesis, Technis-
che Universiteit Eindhoven.

Wim F.J. Verhaegh et al.

–



Part III

TECHNOLOGY



Chapter 12

Peter D. Grünwald

Abstract This is an informal overview of Rissanen’s Minimum Description Length
(MDL) Principle. We provide an entirely non-technical introduction to the sub-
ject, focussing on conceptual issues.

Keywords Machine learning, statistics, statistical learning, model selection, universal cod-
ing, prediction, information theory, data compression, minimum description
length.

12.1 Introduction and overview
How does one decide among competing explanations of data given limited

observations? This is the problem of model selection. It stands out as one of the
most important problems of inductive and statistical inference. The Minimum
Description Length (MDL) Principle is a relatively recent method for induc-
tive inference that provides a generic solution to the model selection problem.
MDL is based on the following insight: any regularity in the data can be used

of symbols needed to describe the data literally. The more regularities there
are, the more the data can be compressed. Equating ‘learning’ with ‘finding
regularity’, we can therefore say that the more we are able to compress the
data, the more we have learned about the data. Formalizing this idea leads to
a general theory of inductive inference with several attractive properties:

1. Occam’s razor. MDL chooses a model that trades-off goodness-of-fit
on the observed data with ‘complexity’ or ‘richness’ of the model. As
such, MDL embodies a form of Occam’s razor, a principle that is both
intuitively appealing and informally applied throughout all the sciences.
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to compress the data, i.e., to describe it using fewer symbols than the number
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2. No overfitting, automatically. MDL procedures automatically and in-
herently protect against overfitting and can be used to estimate both the
parameters and the structure (e.g., number of parameters) of a model. In
contrast, to avoid overfitting when estimating the structure of a model,
traditional methods such as maximum likelihood must be modified and
extended with additional, typically ad hoc principles.

3. Bayesian interpretation. MDL is closely related to Bayesian inference,
but avoids some of the interpretation difficulties of the Bayesian ap-
proach1, especially in the realistic case when it is known a priori to the
modeler that none of the models under consideration is true. In fact:

4. No need for ‘underlying truth’. In contrast to other statistical methods,
MDL procedures have a clear interpretation independent of whether or
not there exists some underlying ‘true’ model.

5. Predictive interpretation. Because data compression is formally equiv-
alent to a form of probabilistic prediction, MDL methods can be inter-
preted as searching for a model with good predictive performance on
unseen data.

Here we introduce the MDL Principle in an entirely non-technical way, con-
centrating on its most important applications, model selection and avoiding
overfitting. We will make quite a few claims that we do not substantiate, and
we will touch upon quite a few notions and ideas that we cannot discuss in de-
tail. In all such cases, we refer the reader to our extensive tutorial [Grünwald,
2005], where the MDL Principle is discussed and motivated in much greater,
and technical, detail.

Contents. In Section 12.2 we discuss the relation between learning and
data compression. Section 12.3 introduces model selection and outlines a first,
‘crude’ version of MDL that can be applied to model selection. Section 12.4
indicates how these ‘crude’ ideas need to be refined to tackle small sample sizes
and differences in model complexity between models with the same number
of parameters. Section 12.5 discusses the philosophy underlying MDL, and
considers its relation to Occam’s razor. Sections 12.7 and 12.8 briefly discuss
the past, present and future of MDL. All this is summarized in Section 12.9.

1See [Grünwald, 2005, Section 2.9.2].
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12.2 The fundamental idea: Learning as data compression
We are interested in developing a method for learning the laws and regular-

ities in data. The following example will illustrate what we mean by this and
give a first idea of how it can be related to descriptions of data.

Consider the following three sequences. We assume that each
sequence is 10000 bits long, and we just list the beginning and the end of each
sequence.

00010001000100010001 . . . 000100010001000100010001 (12.1)
01110100110100100110 . . . 101011101011101100010110 (12.2)
00011000001010100000 . . . 001000100001000000100011 (12.3)

The first of these three sequences is a 2500-fold repetition of 0001. Intuitively,
the sequence looks regular; there seems to be a simple ‘law’ underlying it; it
might make sense to conjecture that future data will also be subject to this law,
and to predict that future data will behave according to this law. The second
sequence has been generated by tosses of a fair coin. It is intuitively speaking
as ‘random as possible’, and in this sense there is no regularity underlying it.
Indeed, we cannot seem to find such a regularity either when we look at the
data. The third sequence contains approximately four times as many 0s as
1s. It looks less regular, more random than the first; but it looks less random
than the second. There is still some discernible regularity in these data, but
of a statistical rather than of a deterministic kind. Again, noticing that such a
regularity is there and predicting that future data will behave according to the
same regularity seems sensible.

...and compression. We claimed that any regularity detected in the data can
be used to compress the data, i.e. to describe it in a short manner. Descriptions
are always relative to some description method which maps descriptions D′ in
a unique manner to data sets D. A particularly versatile description method is
a general-purpose computer language like C or PASCAL. A description of D
is then any computer program that prints D and then halts. Let us see whether
our claim works for the three sequences above. Using a language similar to
Pascal, we can write a program

for i = 1 to 2500; print ‘0001

‘

; next; halt

which prints sequence (1) but is clearly a lot shorter. Thus, sequence (1) is
indeed highly compressible. On the other hand, perhaps not surprisingly, it
turns out [Grünwald, 2005, Section 2.2] that if one generates a sequence like

A First Look at the Minimum Description Length Principle
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(2) by tosses of a fair coin, then with extremely high probability, the shortest
program that prints (2) and then halts will look something like this:

print ‘0111010011010000101010........10111011000101100010 ; halt

This program’s size is about equal to the length of the sequence. Clearly, it
does nothing more than repeat the sequence.

The third sequence lies in between the first two: generalizing n = 10000 to
arbitrary length n, [Grünwald, 2005] shows that the first sequence can be com-
pressed to O(logn) bits; with overwhelming probability, the second sequence
cannot be compressed at all; and the third sequence can be compressed to some
length αn, with 0 < α < 1.

Example 12.1 (Compressing various regular sequences). The regularities
underlying sequences (1) and (3) were of a very particular kind. To illustrate
that any type of regularity in a sequence may be exploited to compress that
sequence, we give a few more examples:

The number π. Evidently, there exists a computer program for generating
the first n digits of π – such a program could be based, for example, on
an infinite series expansion of π. This computer program has constant
size, except for the specification of n which takes no more than O(logn)
bits. Thus, when n is very large, the size of the program generating the
first n digits of π will be very small compared to n: the π-digit sequence
is deterministic, and therefore extremely regular.

Physics data. Consider a two-column table where the first column con-
tains numbers representing various heights from which an object was
dropped. The second column contains the corresponding times it took
for the object to reach the ground. Assume both heights and times are
recorded to some finite precision. In Section 12.3 we illustrate that such
a table can be substantially compressed by first describing the coeffi-
cients of the second-degree polynomial H that expresses Newton’s law;
then describing the heights; and then describing the deviation of the time
points from the numbers predicted by H.

Natural language. Most sequences of words are not valid sentences ac-
cording to the English language. This fact can be exploited to substan-
tially compress English text, as long as it is syntactically mostly correct:
by first describing a grammar for English, and then describing an Eng-
lish text D with the help of that grammar [Grünwald, 1996], D can be
described using much less bits than are needed without the assumption
that word order is constrained.
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12.2.1 Kolmogorov complexity and ideal MDL
To formalize our ideas, we need to decide on a description method, that

is, a formal language in which to express properties of the data. The most
general choice is a general-purpose2 CAL.
This choice leads to the definition of the Kolmogorov Complexity [Li &
Vitányi, 1997] of a sequence as the length of the shortest program that prints
the sequence and then halts. The lower the Kolmogorov complexity of a se-
quence, the more regular it is. This notion seems to be highly dependent on
the particular computer language used. However, it turns out that for every two
general-purpose programming languages A and B and every data sequence D,
the length of the shortest program for D written in language A and the length
of the shortest program for D written in language B differ by no more than
a constant c, which does not depend on the length of D. This so-called in-
variance theorem says that, as long as the sequence D is long enough, it is
not essential which computer language one chooses, as long as it is general-
purpose. Kolmogorov complexity was introduced, and the invariance theo-
rem was proved, independently by Kolmogorov [1965], Chaitin [1969] and
Solomonoff [1964]. Solomonoff’s paper, called A Theory of Inductive Infer-
ence, contained the idea that the ultimate model for a sequence of data may be
identified with the shortest program that prints the data. Solomonoff’s ideas
were later extended by several authors, leading to an ‘idealized’ version of
MDL [Solomonoff, 1978; Li & Vitányi, 1997; Gács, Tromp, & Vitányi, 2001].
This idealized MDL is very general in scope, but not practically applicable, for
the following two reasons:

Uncomputability. It can be shown that there exists no computer program
that, for every set of data D, when given D as input, returns the shortest
program that prints D [Li & Vitányi, 1997].

Arbitrariness/dependence on syntax. In practice we are confronted with
small data samples for which the invariance theorem does not say much.
Then the hypothesis chosen by idealized MDL may depend on arbitrary
details of the syntax of the programming language under consideration.

12.2.2 Practical MDL
Like most authors in the field, we concentrate here on non-idealized, prac-

tical versions of MDL that explicitly deal with the two problems mentioned
above. The basic idea is to scale down Solomonoff’s approach so that it does
become applicable. This is achieved by using description methods that are less

2By this we mean that a universal Turing Machine can be implemented in it [Li & Vitányi, 1997].
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expressive than general-purpose computer languages. Such description meth-
ods C should be restrictive enough so that for any data sequence D, we can
always compute the length of the shortest description of D that is attainable
using method C; but they should be general enough to allow us to compress
many of the intuitively ‘regular’ sequences. The price we pay is that, using the
‘practical’ MDL Principle, there will always be some regular sequences which
we will not be able to compress. But we already know that there can be no
method for inductive inference at all which will always give us all the regular-
ity there is — simply because there can be no automated method which for any
sequence D finds the shortest computer program that prints D and then halts.
Moreover, it will often be possible to guide a suitable choice of C by a priori
knowledge we have about our problem domain. For example, below we con-
sider a description method C that is based on the class of all polynomials, such
that with the help of C we can compress all data sets which can meaningfully
be seen as points on some polynomial.

12.3 MDL and model selection
Let us recapitulate our main insights so far:

MDL: The basic idea
The goal of statistical inference may be cast as trying to find regularity in
the data. ‘Regularity’ may be identified with ‘ability to compress’. MDL
combines these two insights by viewing learning as data compression: it
tells us that, for a given set of hypotheses H and data set D, we should try
to find the hypothesis or combination of hypotheses in H that compresses
D most.

This idea can be applied to all sorts of inductive inference problems, but it
turns out to be most fruitful in (and its development has mostly concentrated
on) problems of model selection and, more generally, dealing with overfitting.
Here is a standard example (we explain the difference between ‘model’ and
‘hypothesis’ after the example).

Example 12.2 (Model selection and overfitting). Consider the points in Fig-
ure 12.1. We would like to learn how the y-values depend on the x-values. To
this end, we may want to fit a polynomial to the points. Straightforward lin-
ear regression will give us the leftmost polynomial a straight line that seems
overly simple: it does not capture the regularities in the data well. Since for
any set of n points there exists a polynomial of the (n−1)-st degree that goes
exactly through all these points, simply looking for the polynomial with the
least error will give us a polynomial like the one in the second picture. This
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Figure 12.1. A simple, a complex and a trade-off (3rd degree) polynomial.

polynomial seems overly complex: it reflects the random fluctuations in the
data rather than the general pattern underlying it. Instead of picking the overly
simple or the overly complex polynomial, it seems more reasonable to prefer a
relatively simple polynomial with small but nonzero error, as in the rightmost
picture. This intuition is confirmed by numerous experiments on real-world
data from a broad variety of sources [Rissanen, 1989; Vapnik, 1998; Ripley,
1996]: if one naively fits a high-degree polynomial to a small sample (set of
data points), then one obtains a very good fit to the data. Yet if one tests the
inferred polynomial on a second set of data coming from the same source, it
typically fits this test data very badly in the sense that there is a large distance
between the polynomial and the new data points. We say that the polynomial
overfits the data. Indeed, all model selection methods that are used in practice
either implicitly or explicitly choose a trade-off between goodness-of-fit and
complexity of the models involved. In practice, such trade-offs lead to much
better predictions of test data than one would get by adopting the ‘simplest’
(one degree) or most ‘complex3’ (n− 1-degree) polynomial. MDL provides
one particular means of achieving such a trade-off.

It will be useful to make a precise distinction between ‘model’ and ‘hypoth-
esis’. This is done in the box on the following page. In our terminology, the
problem described in Example 12.2 is a ‘hypothesis selection problem’ if we
are interested in selecting both the degree of a polynomial and the correspond-
ing parameters; it is a ‘model selection problem’ if we are mainly interested in
selecting the degree.

To apply MDL to polynomial or other types of hypothesis and model selection,
we have to make precise the somewhat vague insight ‘learning may be viewed
as data compression’. This can be done in various ways. In this section, we
concentrate on the earliest and simplest implementation of the idea. This is

3Strictly speaking, in our context it is not very accurate to speak of ‘simple’ or ‘complex’ polynomials;
instead we should call the set of first degree polynomials ‘simple’, and the set of 100-th degree polynomials
‘complex’.
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Models vs. hypotheses
We use the phrase point hypothesis to refer to a single probability distri-
bution or function. An example is the polynomial 5x2 + 4x + 3. A point
hypothesis is also known as a ‘simple hypothesis’ in the statistical litera-
ture.
We use the word model to refer to a family (set) of probability distribu-
tions or functions with the same functional form. An example is the set
of all second-degree polynomials. A model is also known as a ‘composite
hypothesis’ in the statistical literature.
We use hypothesis as a generic term, referring to both point hypotheses and
models.

the so-called crude4 two-part code version of MDL:

Crude, two-part version of MDL principle (informally stated)
Let H (1),H (2), . . . be a list of candidate models (e.g., H (k) is the set of
k-th degree polynomials), each containing a set of point hypotheses (e.g.,
individual polynomials). The best point hypothesis H ∈ H (1) ∪H (2) ∪ . . .
to explain the data D is the one which minimizes the sum L(H)+L(D|H),
where

L(H) is the length, in bits, of the description of the hypothesis; and

L(D|H) is the length, in bits, of the description of the data when
encoded with the help of the hypothesis.

The best model to explain D is the smallest model containing the selected
H.

Example 12.3 (Polynomials, continued). In our previous example, the can-
didate hypotheses were polynomials. We can describe a polynomial by de-
scribing its coefficients in a certain precision (number of bits per parameter).

4The terminology ‘crude MDL’ is not standard. It is introduced here for pedagogical reasons, to make clear
the importance of having a single, unified principle for designing codes. It should be noted that Rissanen’s
and Barron’s early theoretical papers on MDL already contain such principles, albeit in a slightly different
form than in their recent papers. Early practical applications [Grünwald, 1996] often do use ad hoc two-part
codes which really are ‘crude’ in the sense defined here.
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Thus, the higher the degree of a polynomial or the precision, the more5 bits
we need to describe it and the more ‘complex’ it becomes. A description of
the data ‘with the help of’ a hypothesis means that the better the hypothesis
fits the data, the shorter the description will be. A hypothesis that fits the data
well gives us a lot of information about the data. Such information can always
be used to compress the data [Grünwald, 2005]. Intuitively, this is because we
only have to code the errors the hypothesis makes on the data rather than the
full data. In our polynomial example, the better a polynomial H fits D, the
fewer bits we need to encode the discrepancies between the actual y-values yi
and the predicted y-values H(xi). We can typically find a very complex point
hypothesis (large L(H)) with a very good fit (small L(D|H)). We can also typ-
ically find a very simple point hypothesis (small L(H)) with a rather bad fit
(large L(D|H)). The sum of the two description lengths will be minimized at a
hypothesis that is quite (but not too) ‘simple’, with a good (but not perfect) fit.

12.4 Crude and refined MDL
Crude MDL picks the H minimizing the sum L(H) + L(D|H). To make

this procedure well-defined, we need to agree on precise definitions for the
codes (description methods) giving rise to lengths L(D|H) and L(H). We now
discuss these codes in more detail. We will see that the definition of L(H)
is problematic, indicating that we somehow need to ‘refine’ our crude MDL
Principle.

12.4.1 Crude MDL: Definition of L(D|H)
Consider a two-part code as described above, and assume for the time being

that all H under consideration define probability distributions; for example,
D = (x1, . . . ,xn) may be a binary sequence of given length n and H (k) may
stand for the class of k-th order Markov chain distributions, where the prob-
ability that the i-th bit is a 1 can depend on the previous k outcomes6. Each
H ∈ H (k) is a specific k-th order Markov chain distribution, which can be iden-
tified with a 2k-dimensional parameter vector �θ = (θ[0...0],θ[0...1], . . . ,θ[1...1]),
each parameter θa1...ak corresponding to the probability that xi is a 1, given that
the previous k bits xi−1, . . . ,xi−k were equal to a1, . . . ,ak respectively.

It turns out that for probabilistic hypotheses (Markov chains or otherwise),
there is only one reasonable choice for the code L(D | H). It is the so-called

5See the previous note.
6Note that in our previous example, H (k) was a set of polynomials and thus did not directly define a
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Shannon-Fano code, satisfying, for all data sequences D,

L(D|H) = �− logP(D|H)�, (12.4)

where P(D|H) is the probability mass of D according to H. It follows from
the Kraft inequality [Cover & Thomas, 1991] – a cornerstone of information
theory – that for every H that defines a probability distribution P(· | H), a code
with lengths (12.4) must exist. Here, as in the sequel, log is logarithm to the
base two, and codelengths are measured in bits. �·� means ‘rounded up to
the nearest integer’. In practice, we conveniently ignore rounding; the error
this introduces in practice is always negligible. As a result, we can simply
write L(D|H) = − logP(D|H). With such a code, the higher the probability
H assigns to D, the shorter the codelength of D. This is what we mean by
‘encoding D with the help of H’: we use a code such that the better H fits D
(i.e., the better H expresses the properties of D), the shorter the codelength.

It follows that, for given data D, the crude two-part MDL Principle tells us
to pick the hypothesis H ∈ H (1)∪H (2)∪ . . . that minimizes the sum

− logP(D | H)+L(H). (12.5)

Example 12.4 (Real-valued data). The use of the Shannon-Fano code with
lengths − logP(D | H) is appropriate if H directly induces a probability mass
function on the data. For example, this is the case if D is a sequence of 0s and
1s. If the xi in D = (x1, . . . ,xn) are real-valued, then, typically, every single D
will have probability mass 0. To deal with that case, we first note that in prac-
tice, data that are analyzed on a computer are always discretized to some pre-
cision. Then each observed point xi should really be interpreted as a small in-
terval containing xi. Such an interval will have probability mass > 0 according
to H, so that P(D|H), defined as the probability mass of the n intervals around
the observed values x1, . . . ,xn, will be larger than 0 after all. If one discretizes
at a fine enough precision, then the codelength − logP(D|H) of a discretized
sequence D = (x1, . . . ,xn) must be approximately equal to − log f (D|H)+c ·n.
Here f is the probability density function of data D according to distribution
P(· | H), c is some number depending on the precision, but not depending on
H. Since the additional term c · n does not depend on H, it plays no role in
the minimization (12.5) and can be dropped. For this reason, in the case of
real-valued data, (12.5) can be restated as: pick the H minimizing

− log f (D | H)+L(H) (12.6)

where f is the density of D given H. The form of P(· | H) and/or f (· | H)
depends on the problem at hand – for, say, Gaussian mixture estimation, it will
look very different than for Markov chain order selection. We now provide a
concrete example.
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Example 12.5 (Non-probabilistic hypotheses). Example 12.2, where H (k)

represented the class of k-th degree polynomials, introduces a further com-
plication: the elements H ∈ H (k) are functions rather than distributions. We
deal with such cases by ‘turning each H into a distribution’, typically by mak-
ing two additional assumptions: (1) (x1,y1), . . . ,(xn,yn) are i.i.d. (indepen-
dently and identically distributed); and (2), rather than expressing Y = H(X),
the function H really expresses that

Y = H(X)+Z, (12.7)

where Z is a normally distributed noise term with mean 0. With these addi-
tional assumptions, the density f (D|H) appearing in (12.6) is well-defined, and
crude MDL can be applied. Let us evaluate this f (D|H) in more detail. The
assumption (12.7) entails that, for given xi, the corresponding yi has a normal
density with mean 0 and some given variance σ2. Therefore, the conditional
density f (yi | xi,H) is given by

f (yi|xi,H) =
1√

2πσ2
e

−(yi−H(xi))
2

2σ2 . (12.8)

The joint density f (D|H) must satisfy

f (D|H) = f (x1, . . . ,xn;y1, . . . ,yn|H)
= f (y1, . . . ,yn|x1, . . . ,xn,H) f (x1, . . . ,xn)

=
n

∏
i=1

f (yi|xi,H) f (xi), (12.9)

where the last step follows by our assumption that the data are i.i.d. Together
(12.8) and (12.9) give

f (D|H) =
n

∏
i=1

1√
2πσ2

e
−(yi−H(xi))

2

2σ2 f (xi), (12.10)

such that

− ln f (D|H) =
n

2σ2 ∑(yi −H(xi))2 +
n
2

ln2πσ2 −∑ ln f (xi). (12.11)

The sum of the ln f (xi) terms does not depend on H. Therefore it plays no
role in the minimization (12.6) and can be dropped from the equation: only
the conditional densities f (yi | xi,H) are relevant to determine the MDL hy-
pothesis. By (12.11), we see that with the assumption of normally distributed
noise Z in (12.7), crude MDL (12.6) becomes a penalized least-squares crite-
rion: we pick the H that minimizes a compromise between its fit on the data
(measured by squared error) and its description length L(H). In practice, the
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variance σ2 will often be unknown. In that case, we can make it part of the
hypothesis and try to learn it from the data. (12.6) then becomes: pick the H
and σ2 minimizing

− log f (D | H,σ2)+L(H,σ2).

where − log f (D | H,σ2) is given by (12.11). Because σ2 has now become a
part of our hypothesis, we must encode it explicitly in the first part of our code.

Consistency (asymptotic convergence). To make crude MDL precise, we
still need to define a code for hypotheses H, leading to codelengths L(H).
Broadly speaking, it turns out that no matter what code we use for encoding
hypothesis, as long as it remains fixed (does not change when more data be-
comes available), the resulting procedure (expressed in (12.5) or (12.6)) is sta-
tistically consistent [Barron & Cover, 1991]. This means that if nature happens
to generate data sequences by sampling from some distribution P(· |H) for a H
which we can represent (H ∈ H (1) ∪H (2) ∪ . . .), then, eventually, we fill find
this H with probability tending to 1. In our polynomial example, suppose data
are sampled from a, say, 10-th degree polynomial H such that L(H) < ∞ (“we
can represent H”), and then Gaussian noise with unit variance is added. Then,
if the available sample D is small, MDL will, with high probability, select a
polynomial of degree lower than 10. As more data becomes available, MDL
will select a polynomial of degree slightly larger or smaller, but close to 10.
And from some sample size on, there will be no more fluctuations and MDL
will keep selecting a degree-10 polynomial, no matter how large the sample
becomes [Grünwald, 2005].

12.4.2 Definition of L(H): A problem for crude MDL
The statistical consistency result that we just presented is encouraging: it

tells us that crude MDL is not a completely arbitrary procedure: eventually
it will converge to the ‘right’ hypothesis, if such an hypothesis exists. This
stands in contrast to some other model selection methods (such as leave-one-
out cross-validation), which may select an overly complex hypothesis forever,
even in the large sample limit.7 But although consistency may be a necessary
requirement of a good hypothesis selection method, it is certainly not sufficient:
since the description length L(H) of any fixed point hypothesis H can be very
large under one code, but quite short under another, our procedure is still quite
arbitrary, and we can give no guarantees at all on how fast MDL will converge.
What we seek is an additional principle for determining L(H), which allows

7This is explained in detail in the FAQ of the neural-nets newsgroup, see
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us to find reasonable approximations of the data generating machinery based
on small samples. In the first publications on MDL [Rissanen, 1978; Rissa-
nen, 1983], it was advocated to choose some sort of minimax code for ,
minimizing, in some precisely defined sense, the shortest worst-case total de-
scription length L(H)+L(D|H), where the worst-case is over all possible data
sequences. Thus, the MDL Principle is employed at a ‘meta-level’ to choose
a code for H. However, this code requires a cumbersome discretization of the
model space , which is not always feasible in practice. Alternatively, Barron
[1985] encoded H by the shortest computer program that, when input D, com-
putes P(D|H). While it can be shown that this leads to similar codelengths, it is
computationally problematic. Later, Rissanen [1984] realized that these prob-
lems could be side-stepped by using a one-part rather than a two-part code.
This development culminated in 1996 in a completely precise prescription of
MDL for many, but certainly not all practical situations [Rissanen, 1996]. We

12.4.3 Refined MDL
In refined MDL, we associate a code for encoding D not with a single H ∈
, but with the full model . Thus, given model , we encode data not in

two parts but we design a single one-part code with lengths L̄(D| ). This
code is designed such that whenever there is a member H ∈ that fits the
data well, in the sense that L(D | H) is small, then the codelength L̄(D| )
will also be small. Codes with this property are called universal codes in the
information-theoretic literature [Barron, Rissanen & Yu, 1998]. Among all
such universal codes, we pick the one that is minimax optimal. The resulting
universal code, defined and explained in detail by Grunwald [2005] , is known
in the information-theoretic literature as the Shtarkov or NML (Normalized
Maximum Likelihood) code.

To give an example, the set (3) of third-degree polynomials is associated
with a code with lengths L̄(· | (3)) such that, the better the data D are fit by
the best-fitting third-degree polynomial, the shorter the codelength L̄(D | ).
L̄(D | ) is called the stochastic complexity of the data given the model.

Parametric complexity. The second fundamental concept of refined MDL is
the parametric complexity of a parametric model , denoted by COMPn( ).
This quantity, which depends on the sample size n, is a measure of the ‘rich-
ness’ of model , indicating its ability to fit random data. To see how it
relates to stochastic complexity, let, for given data D, Ĥ denote the distribution
in which maximizes the probability, and hence minimizes the codelength
L(D | Ĥ) of D. It turns out that

stochastic complexity of D given = L(D | Ĥ)+COMPn( ). (12.12)
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Consider a parametric statistical model H with k degrees of freedom and pa-
rameter sets restricted to a compact (closed and bounded) set Θ ⊂ R

k. In that
case, under weak conditions on the parameterization (the mapping from para-
meters Θ to corresponding distributions P(· | θ)), COMPn(H ) is well-defined
and given by

COMPn(H ) = log ∑
D′∈X n

P(D′ | Ĥ(D′)), (12.13)

where Ĥ(D) is the distribution in H that best fits (maximizes the probability of)
data D, and the data D′ in the denominator ranges over the set X n of all possible
samples of size n. Thus, the complexity is the logarithm of the sum over all
data sequences of length n, of the probability of that data sequence according to
the distribution in the model that best fits that particular data sequence. Clearly,
if H contains just one distribution, Ĥ is the same for all D, and the complexity
is 0. If Ĥ contains many distributions that are substantially different in the
sense that they assign large probability to disjunct events, then the complexity
is large.

To get more insight into (12.13), we note that, for sufficiently “regular”
parametric statistical models COMPn(H ) can be asymptotically expressed as
follows:

COMPn(H ) =
k
2

log
n

2π
+ log

∫
Θ

√
det I(θ)dθ+o(1). (12.14)

Here k is the number of parameters, ‘det’ stands for determinant and I(θ) is the
k× k Fisher information matrix (for a definition see [Grünwald, 2005] or any
basic textbook on statistics). o(1) is a term which goes to 0 with increasing
n. We see from (12.14) that the parametric complexity depends on the num-
ber of degrees of freedom in the model H , where the influence of degree k
grows logarithmically in n. Yet, it also depends on the geometrical structure
of H [Myung, Balasubramanian & Pitt, 2000]. This is expressed by the third
term. Since this term does not grow with n, its contribution becomes negligible
for very large n; yet for practically relevant sample sizes its influence on the
complexity can be substantial – see Example 12.6.

Refined MDL model selection. Refined MDL model selection between two
parametric models (such as the models of first and second degree polynomi-
als) now proceeds by selecting the model such that the stochastic complexity
(12.12) of the given data D is smallest. Although we used a one-part code to en-
code data, refined MDL model selection still involves a trade-off between two
terms: a goodness-of-fit term L(D | Ĥ) and a complexity term COMPn(H ).
Typically, the first term L(D | Ĥ) grows linearly in n, so that for very large
samples, if only two models are compared, then the goodness-of-fit solely de-
termines what model is chosen. But in practice, we often compare a countably
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infinite number of models. In that case, we consider models with arbitrarily
large values of k. Then – although the procedure has to be slightly modified
in this situation, see below – the complexity plays a role in determining what
model is chosen, no matter how large the sample size n is.

Since in refined MDL we do not explicitly encode hypotheses H any more,
there is no arbitrariness any more: it can be shown that COMPn(H ) is inde-
pendent of the arbitrary parameterization in which we represent our models.
The resulting procedure can be interpreted in several different ways, some of
which provide us with rationales for MDL beyond the pure coding interpreta-
tion [Grünwald, 2005]:

Counting/differential geometric interpretation. The parametric com-
plexity of a model is the logarithm of the number of essentially different,
distinguishable point hypotheses within the model.

Two-part code interpretation. For large samples, the stochastic com-
plexity can be interpreted as a two-part codelength of the data after all,
where hypotheses H are encoded with a special code that works by first
discretizing the model space H into a set of ‘maximally distinguishable
hypotheses’, and then assigning equal codelength to each of these.

Bayesian interpretation. In many cases, refined MDL model selection
coincides with Bayes factor model selection based on a non-informative
prior such as Jeffreys’ prior [Bernardo & Smith, 1994]. This prior was
introduced by Jeffreys [1946] as a prior representing the elusive notion
of ‘prior ignorance about the parameter in a model’, and it has the special
property that it is invariant under continuous 1-to-1 reparameterizations
of the model.

Prequential interpretation. Refined MDL model selection can be inter-
preted as selecting the model with the best predictive performance when
sequentially predicting unseen test data [Grünwald, 2005]. This makes
it an instance of Dawid’s [1984] prequential model validation and also
relates it to cross-validation methods.

Refined MDL allows us to compare models of different functional form. It
even accounts for the phenomenon that different models with the same number
of parameters may not be equally ‘complex’.

Example 12.6. Consider two models from psychophysics describing the rela-
tionship between physical dimensions (e.g., light intensity) and their psycho-
logical counterparts (e.g. brightness) [Myung, Balasubramanian & Pitt, 2000]:
y = axb +Z (Stevens’ model) and y = a ln(x+b)+Z (Fechner’s model) where
Z is a normally distributed noise term. Both models have two free parameters;
nevertheless, it turns out that in a sense, Stevens’ model is more flexible or

A First Look at the Minimum Description Length Principle
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complex than Fechner’s. Roughly speaking, this means there are a lot more
data patterns that can be explained by Stevens’ model than can be explained
by Fechner’s model. Myung et at. [2000] generated many samples of size 4
from Fechner’s model, using some fixed parameter values. They then fitted
both models to each sample. In 67% of the trials, Stevens’ model fitted the
data better than Fechner’s, even though the latter generated the data. Indeed, in
refined MDL, the ‘complexity’ associated with Stevens’ model is much larger
than the complexity associated with Fechner’s, and if both models fit the data
equally well, MDL will prefer Fechner’s model.

Warning. Summarizing, refined MDL removes the arbitrary aspect of crude,
two-part code MDL and associates parametric models with an inherent ‘com-
plexity’ that does not depend on any particular description method for hypothe-
ses. We should, however, warn the reader that we only discussed a special,
simple situation in which we compared a finite number of parametric models
that satisfy certain regularity conditions. These conditions are quite strong – in
fact, for most models defined on infinite sample spaces, the parametric com-
plexity is only defined if we restrict the parameter space to a bounded set. This
is the case, for example, for the regression models of Examples 12.5 and 12.6.
Such a boundedness assumption is often quite unnatural, and in that case, our
‘refined’ ideas have to be extended. This can be done in a number of ways,
and to date, it is not clear which, or whether any, of these methods is in any
sense optimal. Reassuringly though, in practice these different extensions tend
to give similar results [De Rooij & Grünwald, 2005]. Also, if we compare an
infinite number of models, then the refined ideas have to be slightly extended
[Grünwald, 2005]. We then obtain a ‘general’ refined MDL Principle, which
employs a combination of one-part and two-part codes.

12.5 The MDL philosophy
The first central MDL idea is that every regularity in data may be used to

compress that data; the second central idea is that learning can be equated with
finding regularities in data. Whereas the first part is relatively straightforward,
the second part of the idea implies that methods for learning from data must
have a clear interpretation independent of whether any of the models under
consideration is ‘true’ or not. Quoting J. Rissanen [1989], the main originator
of MDL:

“We never want to make the false assumption that the observed data actually
were generated by a distribution of some kind, say Gaussian, and then go on
to analyze the consequences and make further deductions. Our deductions may
be entertaining but quite irrelevant to the task at hand, namely, to learn useful
properties from the data.”

Jorma Rissanen [1989]
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Based on such ideas, Rissanen has developed a radical philosophy of learning
and statistical inference that is considerably different from the ideas underlying
mainstream statistics, both frequentist and Bayesian. We now describe this
philosophy in more detail

Regularity as compression. According to Rissanen, the goal of inductive
inference should be to ‘squeeze out as much regularity as possible’ from the
given data. The main task for statistical inference is to distill the meaningful
information present in the data, i.e. to separate structure (interpreted as the
regularity, the ‘meaningful information’) from noise (interpreted as the ‘acci-
dental information’). For the three sequences of Example 12.2.0.0, this would
amount to the following: the first sequence would be considered as entirely
regular and ‘noiseless’. The second sequence would be considered as entirely
random - all information in the sequence is accidental, there is no structure
present. In the third sequence, the structural part would (roughly) be the pat-
tern that 4 times as many 0s than 1s occur; given this regularity, the description
of exactly which of all sequences with four times as many 0s than 1s occurs, is
the accidental information.

Models as languages. Rissanen interprets models (sets of hypotheses) as
nothing more than languages for describing useful properties of the data – a
model H is identified with its corresponding universal code L̄(· | H ). Differ-
ent individual hypotheses within the models express different regularities in
the data, and may simply be regarded as statistics, that is, summaries of certain
regularities in the data. These regularities are present and meaningful indepen-
dently of whether some H∗ ∈ H is the ‘true state of nature’ or not. Suppose
that the model H under consideration is probabilistic. In traditional theories,
one typically assumes that some P∗ ∈ H generates the data, and then ‘noise’
is defined as a random quantity relative to this P∗. In the MDL view ‘noise’
is defined relative to the model H as the residual number of bits needed to
encode the data once the model H is given. Thus, noise is not a random vari-
able: it is a function only of the chosen model and the actually observed data.
Indeed, there is no place for a ‘true distribution’ or a ‘true state of nature’ in
this view – there are only models and data. To bring out the difference to the
ordinary statistical viewpoint, consider the phrase ‘these experimental data are
quite noisy’. According to a traditional interpretation, such a statement means
that the data were generated by a distribution with high variance. According
to the MDL philosophy, such a phrase means only that the data are not com-
pressible with the currently hypothesized model – as a matter of principle, it
can never be ruled out that there exists a different model under which the data
are very compressible (not noisy) after all!

A First Look at the Minimum Description Length Principle
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We have only the data. Many (but not all8) other methods of inductive infer-
ence are based on the idea that there exists some ‘true state of nature’, typically
a distribution assumed to lie in some model H . The methods are then designed
as a means to identify or approximate this state of nature based on as little data
as possible. According to Rissanen9, such methods are fundamentally flawed.
The main reason is that the methods are designed under the assumption that
the true state of nature is in the assumed model H , which is often not the case.
Therefore, such methods only admit a clear interpretation under assumptions
that are typically violated in practice. Many cherished statistical methods are
designed in this way we mention hypothesis testing, minimum-variance un-
biased estimation, several non-parametric methods, and even some forms of
Bayesian inference [Grünwald, 2005, Section 2.9]. In contrast, MDL has a
clear interpretation which depends only on the data, and not on the assumption
of any underlying ‘state of nature’.

Example 12.7 (Models that are wrong, yet useful). Even though the mod-
els under consideration are often wrong, they can nevertheless be very useful.
Examples are the successful ‘Naive Bayes’ model for spam filtering, Hidden
Markov Models for speech recognition (is speech a stationary ergodic process?
probably not), and the use of linear models in econometrics and psychology.
Since these models are evidently wrong, it seems strange to base inferences on
them using methods that are designed under the assumption that they contain
the true distribution. To be fair, we should add that domains such as spam
filtering and speech recognition are not what the fathers of modern statistics
had in mind when they designed their procedures – they were usually think-
ing about much simpler domains, where the assumption that some distribution
P∗ ∈ H is ‘true’ may not be so unreasonable.

MDL and consistency. Let H be a probabilistic model, such that each
P ∈ H is a probability distribution. Roughly, a statistical procedure is called
consistent relative to H if, for all P∗ ∈ H , the following holds: suppose data
are distributed according to P∗. Then given enough data, the learning method
will learn a good approximation of P∗ with high probability. Many traditional
statistical methods have been designed with consistency in mind [Grünwald,
2005].

The fact that in MDL, we do not assume a true distribution may suggest that
we do not care about statistical consistency. But this is not the case: we would
still like our statistical method to be such that in the idealized case where one

8For example, cross-validation cannot easily be interpreted in such terms of ‘a method hunting for the true
distribution’.
9The present author’s own views are somewhat milder in this respect, but this is not the place to discuss
them.
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of the distributions in one of the models under consideration actually generates
the data, our method is able to identify this distribution, given enough data. If
even in the idealized special case where a ‘truth’ exists within our models, the
method fails to learn it, then we certainly cannot trust it to do something rea-
sonable in the more general case, where there may not be a ‘true distribution’
underlying the data at all. So: consistency is important in the MDL philosophy,
but it is used as a sanity check (for a method that has been developed without
making distributional assumptions) rather than as a design principle.

In fact, mere consistency is not sufficient. We would like our method to
converge to the imagined true P∗ fast, based on as small a sample as possible.
Two-part code MDL with ‘clever’ codes achieves good rates of convergence
in this sense (Barron and Cover [1991], complemented by Zhang [2004], show
that in many situations, the rates are minimax optimal). The same seems to be
true for refined one-part code MDL [Barron, Rissanen & Yu, 1998], although
there is at least one surprising exception where inference based on the NML
and Bayesian universal model behaves abnormally – see [Csiszár & Shields,
2000] for the details.

a ‘true distribution’ even exists. Nevertheless, it has been suggested [Webb,
1996; Domingos, 1999] that MDL embodies a naive belief that ‘simple mod-
els’ are ‘a priori more likely to be true’ than complex models. Below we ex-
plain why such claims are mistaken.

12.6 MDL and Occam’s razor
When two models fit the data equally well, MDL will choose the one that is

the ‘simplest’ in the sense that it allows for a shorter description of the data. As
such, it implements a precise form of Occam’s razor – even though as more and
more data becomes available, the model selected by MDL may become more
and more ‘complex’! Occam’s razor is sometimes criticized for being either
(1) arbitrary or (2) false [Webb, 1996; Domingos, 1999]. Do these criticisms
apply to MDL as well?

‘Occam’s razor (and MDL) is arbitrary’. Because ‘description length’ is
a syntactic notion it may seem that MDL selects an arbitrary model: different
codes would have led to different description lengths, and therefore, to differ-
ent models. By changing the encoding method, we can make ‘complex’ things
‘simple’ and vice versa. This overlooks the fact we are not allowed to use just
any code we like! ‘Refined’ MDL tells us to use a specific code, independent

A First Look at the Minimum Description Length Principle
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‘Occam’s razor is false’. It is often claimed that Occam’s razor is false we
often try to model real-world situations that are arbitrarily complex, so why
should we favor simple models? In the words of G. Webb10: ‘What good are
simple models of a complex world?’

The short answer is: even if the true data generating machinery is very com-
plex, it may be a good strategy to prefer simple models for small sample sizes.
Thus, MDL (and the corresponding form of Occam’s razor) is a strategy for in-
ferring models from data (“choose simple models at small sample sizes”), not
a statement about how the world works (“simple models are more likely to be
true”) – indeed, a strategy cannot be true or false, it is ‘clever’ or ‘stupid’. And
the strategy of preferring simpler models is clever even if the data generating
process is highly complex, as illustrated by the following example:

Example 12.8 (‘Infinitely’ complex sources). Suppose that data are subject
to the law Y = g(X)+ Z where g is some continuous function and Z is some
noise term with mean 0. If g is not a polynomial, but X only takes values
in a finite interval, say [−1,1], we may still approximate g arbitrarily well by
taking higher and higher degree polynomials. For example, let g(x) = exp(x).
Then, if we use MDL to learn a polynomial for data D = ((x1,y1), . . . ,(xn,yn)),
the degree of the polynomial f̈ (n) selected by MDL at sample size n will in-
crease with n, and with high probability, f̈ (n) converges to g(x) = exp(x) in the
sense that maxx∈[−1,1] | f̈ (n)(x)− g(x)| → 0. Of course, if we had better prior
knowledge about the problem we could have tried to learn g using a model
class M containing the function y = exp(x). But in general, both our imagina-
tion and our computational resources are limited, and we may be forced to use
imperfect models.

If, based on a small sample, we choose the best-fitting polynomial f̂ within the
set of all polynomials, then, even though f̂ will fit the data very well, it is likely
to be quite unrelated to the ‘true’ g, and f̂ may lead to disastrous predictions
of future data. The reason is that, for small samples, the set of all polynomials
is very large compared to the set of possible data patterns that we might have
observed. Therefore, any particular data pattern can only give us very limited
information about which high-degree polynomial best approximates g. On the
other hand, if we choose the best-fitting f̂ ◦ in some much smaller set such
as the set of second-degree polynomials, then it is highly probable that the
prediction quality (mean squared error) of f̂ ◦ on future data is about the same
as its mean squared error on the data we observed: the size (complexity) of

10Quoted with permission from KDD Nuggets 96:28, 1996.
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the contemplated model is relatively small compared to the set of possible data
patterns that we might have observed. Therefore, the particular pattern that we
do observe gives us a lot of information on what second-degree polynomial
best approximates g.

Thus, (a) f̂ ◦ typically leads to better predictions of future data than f̂ ; and
(b) unlike f̂ , f̂ ◦ is reliable in that it gives a correct impression of how good
it will predict future data even if the ‘true’ g is ‘infinitely’ complex. This
idea does not just appear in MDL, but is also the basis of Vapnik’s [1998]
Structural Risk Minimization approach and many standard statistical methods
for non-parametric inference. In such approaches one acknowledges that the
data generating machinery can be infinitely complex (e.g., not describable
by a finite degree polynomial). Nevertheless, it is still a good strategy to
approximate it by simple hypotheses (low-degree polynomials) as long as the
sample size is small. Summarizing:

The inherent difference between under- and overfitting
If we choose an overly simple model for our data, then the best-fitting point
hypothesis within the model is likely to be almost the best predictor, within
the simple model, of future data coming from the same source. If we overfit
(choose a very complex model) and there is noise in our data, then, even
if the complex model contains the ‘true’ point hypothesis, the best-fitting
point hypothesis within the model is likely to lead to very bad predictions
of future data coming from the same source.

This statement is very imprecise and is meant more to convey the general
idea than to be completely true. It becomes provably true if we use MDL’s
measure of model complexity; we measure prediction quality by logarithmic
loss; and we assume that one of the distributions in H actually generates the
data [Grünwald, 2005].

12.7 History
The MDL Principle has mainly been developed by J. Rissanen in a series

of papers starting with [Rissanen, 1978]. It has its roots in the theory of Kol-
mogorov or algorithmic complexity [Li & Vitányi, 1997], developed in the
1960s by Solomonoff [1964], Kolmogorov [1965] and Chaitin [1966, 1969].
Among these authors, Solomonoff (a former student of the famous philoso-
pher of science, Rudolf Carnap) was explicitly interested in inductive infer-
ence. The 1964 paper contains explicit suggestions on how the underlying
ideas could be made practical, thereby foreshadowing some of the later work
on two-part MDL. While Rissanen was not aware of Solomonoff’s work at the
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time, Kolmogorov’s [1965] paper did serve as an inspiration for Rissanen’s
[1978] development of MDL.

Another important inspiration for Rissanen was Akaike’s [1973] AIC
method for model selection, essentially the first model selection method based
on information-theoretic ideas. Even though Rissanen was inspired by AIC,
both the actual method and the underlying philosophy are substantially differ-
ent from MDL.

MDL is much closer related to the Minimum Message Length Principle, de-
veloped by Wallace and his co-workers in a series of papers starting with the
ground-breaking [Wallace & Boulton, 1968]; other milestones are [Wallace &
Boulton, 1975] and [Wallace & Freeman, 1987]. Remarkably, Wallace devel-
oped his ideas without being aware of the notion of Kolmogorov complexity.
Although Rissanen became aware of Wallace’s work before the publication
of [Rissanen, 1978], he developed his ideas mostly independently, being in-
fluenced rather by Akaike and Kolmogorov. Indeed, despite the close resem-
blance of both methods in practice, the underlying philosophy is quite different
[Grünwald, 2005].

The first publications on MDL only mention two-part codes. Important
progress was made by Rissanen [1984] , in which prequential codes are em-
ployed for the first time and [Rissanen, 1987], introducing the Bayesian mix-
ture codes into MDL. This led to the development of the notion of stochastic
complexity as the shortest codelength of the data given a model [Rissanen,
1986; Rissanen, 1987]. However, the connection to Shtarkov’s normalized
maximum likelihood code was not made until 1996, and this prevented the full
development of the notion of ‘parametric complexity’. In the mean time, in his
impressive Ph.D. thesis, Barron [1985] showed how a specific version of the
two-part code criterion has excellent frequentist statistical consistency proper-
ties. This was extended by Barron and Cover [1991] who achieved a break-
through for two-part codes: they gave clear prescriptions on how to design
codes for hypotheses, relating codes with good minimax codelength properties
to rates of convergence in statistical consistency theorems. Some of the ideas
of Rissanen [1987] and Barron and Cover [1991] were, as it were, unified when
Rissanen [1996] introduced a new definition of stochastic complexity based on
the normalized maximum likelihood code. The resulting theory was summa-
rized for the first time by Barron, Rissanen and Yu [1998], and is called ‘refined
MDL’ in the present overview.

12.8 Challenges for MDL: The road ahead
Having presented the history of MDL, we now take a brief look at the
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An asymptotic formula like (12.14) was used and the sample size was
not large enough to justify this [Navarro, 2004].

COMPn(H ) was undefined for the models under consideration, and this
was solved by cutting off the parameter ranges at ad hoc values [De
Rooij & Grünwald, 2005].

In these cases the problem probably lies with the use of invalid approxima-
tions rather than with the MDL idea itself. More research is needed to find
out when the asymptotics and other approximations can be trusted, and what
is the ‘best’ way to deal with undefined COMPn(H ). For the time being, we
suggest to avoid using the asymptotic approximation (12.14) whenever pos-
sible, and to never cut off the parameter ranges at arbitrary values – instead,
if COMPn(H ) becomes infinite, then some of the alternative MDL methods
[Grünwald, 2005, Section 2.7] should be used. Such methods will typically
lead to well-behaved inference methods, comparable in quality to other state-
of-the-art model selection techniques [De Rooij & Grünwald, 2005]; however,
more research is needed (and is currently performed [Liang & Barron, 2005])
to determine exactly what type of method should be used in what context.

MDL and misspecification. Unfortunately, there is a class of problems where
MDL is problematic in a more fundamental sense. Namely, if none of the dis-
tributions under consideration represents the data generating machinery very
well, then both MDL and Bayesian inference may sometimes do a bad job in
finding the ‘best’ approximation within this class of not-so-good hypotheses.
This has been observed in practice [Clarke, 2002; Pednault, 2003]. Grunwald
and Langford [2004] show that MDL can behave quite unreasonably for some
classification problems in which the true distribution is not in H . This is a
bit ironic, since MDL was explicitly designed not to depend on the untenable
assumption that some P∗ ∈ H generates the data. But empirically we find that
while it generally works quite well if some P∗ ∈ H generates the data, it may
sometimes fail if this is not the case. The author’s own current research is
focussed on extending MDL and its underlying principles to better deal with

11We mention [Hansen & Yu, 2000; Hansen & Yu, 2001] reporting excellent behavior of MDL in regression
contexts; and [Allen, Madani & Greiner, 2003; Kontkanen, Myllymäki, Silander & Tirri, 1999; Modha &
Masry, 1998] reporting excellent behavior of predictive (prequential) coding in Bayesian network model
selection and regression. Also, ‘objective Bayesian’ model selection methods are frequently and success-
fully used in practice [Kass & Wasserman, 1996]. Since these are based on non-informative priors such as
Jeffreys’, they often coincide with a version of refined MDL and thus indicate successful performance of
MDL.
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‘misspecification’, and to establish precise conditions on the environment un-
der which MDL can be expected to lead to reasonable inferences.

12.9 Summary, conclusion and further reading
We discussed how regularity is related to data compression, and how MDL

employs this connection by viewing learning in terms of data compression.
One can make this precise in several ways; in idealized MDL one looks for
the shortest program that generates the given data. This approach is not feasi-
ble in practice, and here we concern ourselves with practical MDL. Practical
MDL comes in a crude version based on two-part codes and in a modern, more
refined version based on the concept of universal coding.

MDL methods are mostly applied to model selection but can also be used for
other problems of inductive inference. In contrast to most existing statistical
methodology, they can be given a clear interpretation irrespective of whether or
not there exists some ‘true’ distribution generating data – inductive inference is
seen as a search for regular properties in (interesting statistics of) the data, and
there is no need to assume anything outside the model and the data. In contrast
to what is sometimes thought, there is no implicit belief that ‘simpler models
are more likely to be true’ – MDL does embody a preference for ‘simple’
models, but this is best seen as a strategy for inference that can be useful even
if the environment is not simple at all.

MDL is a versatile method for inductive inference: it can be interpreted
in at least four different ways, all of which indicate that it does something
reasonable. It is typically asymptotically consistent, achieving good rates of
convergence. All this strongly suggests that it is a good method to use in prac-
tice. Practical evidence shows that in many contexts it is, in other contexts
its behavior can be problematic. In the author’s view, the main challenge for
the future is to improve MDL for such cases, by somehow extending and fur-
ther refining MDL procedures in a non ad-hoc manner. I am confident that
this can be done, and that MDL will continue to play an important role in the
development of statistical, and more generally, inductive inference.

Further reading. Grunwald [2005] provides an 80-pages tutorial on MDL
methods. It discusses all the concepts that we mentioned in this chapter in great
conceptual and technical detail. Good other places to start further exploration
of MDL are [Barron, Rissanen & Yu, 1998] and [Hansen & Yu, 2001]. Both
papers provide excellent introductions, but they are geared towards a more spe-
cialized audience of information theorists and statisticians, respectively. Also
worth reading is Rissanen’s [1989] monograph. While outdated as an intro-
duction to MDL methods, this famous ‘little green book’ still serves as a great
introduction to Rissanen’s radical but appealing philosophy, which is described
very eloquently.

Peter D. Grunwald¨
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Chapter 13

SEMANTIC WEB ONTOLOGIES AND
ENTAILMENT: COMPLEXITY ASPECTS

Herman J. ter Horst

Abstract This chapter presents an overview of results relating to computational complex-
ity of reasoning with Semantic Web ontologies. An overview of the complete-
ness results that form the basis for these complexity results is also given. We
prove NP-completeness of two standard entailment relations, simple entailment
and RDFS (RDF Schema) entailment. These two entailment relations are in P
if the target graph is assumed to contain no variables (blank nodes). We show
that these results also apply to two stronger entailment relations, D* entailment
and pD* entailment, which extend RDFS entailment to reasoning with datatypes
and to reasoning with a subset of OWL (the Web Ontology Language), respec-
tively. These results make use of deductive closure graphs that can be computed
in polynomial time. We present new bounds on the size of these closure graphs.

Keywords Ontology, reasoning, computational complexity, RDF, OWL.

13.1 Introduction
The W3C’s Semantic Web vision [Berners-Lee et al., 2001] opens up new

possibilities for intelligent, Web-based algorithms. One of the main objec-
tives is to ‘make reasoning explicit’: statements that enable conclusions to
be drawn are to be represented explicitly on the Web, for machine use. The
W3C has standardized the XML-based Semantic Web languages RDF and
OWL. RDF allows statements to be expressed, in the form of subject-predicate-
object triples [RDF]. OWL makes it possible to express ontologies that give
machine-usable accounts of the meaning of terms used in RDF statements
[OWL]. RDF and OWL knowledge bases allow algorithms to derive entail-
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ments, i.e. to derive conclusions implied by semantic information on the Web.
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This chapter considers the computational complexity of reasoning with RDF
and OWL knowledge bases. Before giving an overview of this chapter, we
describe briefly some of the background relating to RDF and OWL.

13.1.1 RDF
The RDF (Resource Description Framework) language enables content to

be described with metadata [RDF]. The basic entities described are called re-
sources. RDF can be used to record statements, which are triples that describe
the values of properties for resources. For example, an RDF statement could
be that the book Iliad (a resource) has as author (property) Homer (a value).
Using an abbreviated form of the N-Triples syntax for RDF [Grant & Beckett,
2004], this RDF statement can simply be written as

Iliad hasAuthor Homer .

RDF statements consist of a subject (a resource), a predicate (property) and
an object (a resource or a data value such as a string or integer). Properties
therefore essentially stand for binary relations. RDF statements can also in-
clude variables which are, implicitly, existentially quantified; such variables
are called blank nodes. For example, an RDF statement might use a blank
node b to express that a certain movie has a director, without stating the iden-
tity of the director:

b isDirectorOf TheSoundOfMusic .

There is a standard XML syntax for RDF, which is more verbose than the
N-Triples syntax used in the examples. However, the meaning of an RDF
document abstracts from this XML serialization. An (unordered) set of RDF
statements is formalized as an RDF graph: the property of an RDF statement
is viewed as a ‘link’ between the subject and object ‘nodes’ of the statement.

13.1.2 RDFS (RDF Schema)
The RDF Schema (RDFS) language is added to RDF to allow the spec-

ification of simple ontologies for describing the meaning of metadata for a
particular application domain [RDF]. RDFS can be used to specify classes of
resources. Moreover, RDFS enables the definition of domain and range classes
for properties, which can be used to derive information about subjects and ob-
jects of RDF statements. For example, the standard properties rdfs:domain
and rdfs:range can be used to state that the ‘hasAuthor’ property has domain
class ‘Book’ and range class ‘Person’:

hasAuthor rdfs:domain Book .
hasAuthor rdfs:range Person .
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RDFS also allows subclass hierarchies and subproperty hierarchies to be
specified by means of the standard properties rdfs:subClassOf and
rdfs:subPropertyOf.

13.1.3 OWL
Building further on RDF and RDF Schema, the W3C has standardized the

Web Ontology Language, OWL. This is a richer language for specifying on-
tologies on the Web [OWL]. Ontologies define concepts (i.e. classes) and re-
lationships between concepts (i.e. properties). We mention briefly the part of
OWL that will be considered in this chapter. OWL offers the possibility, for
example, to specify that certain properties are functional (i.e. have unique val-
ues), transitive or symmetric, or that one property is the inverse of another.
OWL can also be used to state that a resource denotes an entity that is the same
as or different from the entity denoted by another resource, or that a class is
disjoint with another class. OWL also offers the possibility to define classes
in terms of constraints on properties. Such classes are called restrictions. As
an example, the PersonParentsUK class of persons whose parents are both
British can be defined as an OWL restriction by means of the following two
RDF statements:

PersonParentsUK owl:allValuesFrom PersonUK .
PersonParentsUK owl:onProperty hasParent .

In addition to allValuesFrom restrictions, it is also possible to define some-
ValuesFrom restrictions and hasValue restrictions, in a similar way.

13.1.4 Semantics and entailment
As was already mentioned, information specified by means of RDF or OWL

entails (i.e. implies) other information. For example, the RDF triples given as
examples RDFS-entail the following triples, which express that Iliad is a book
and Homer a person:

Iliad rdf:type Book .
Homer rdf:type Person .

The valid entailments for RDF and OWL knowledge bases are determined
by the formal semantics of these languages [Hayes, 2004] [Patel-Schneider
et al., 2004], which are defined in terms of a model theory. RDF reasoners and
OWL reasoners are based on these formal semantics. For RDF and RDFS, a
proof theory has been developed, leading to completeness results which pro-
vide graph-based characterizations of entailment [Hayes, 2004]. These results
use axiomatic triples and entailment rules to form deductive closures of RDF
graphs. These completeness results are used by all RDF and RDFS reason-
ers. For OWL, two semantics have been defined in standard form: OWL DL

Semantic Web Ontologies and Entailment: Complexity Aspects



218

and OWL Full. OWL Full entailment is known to be undecidable [Horrocks
& Patel-Schneider, 2004]. For OWL DL, restrictions have been imposed on
the use of the language in order to obtain decidability. For example, OWL DL
does not allow the use of classes as instances. OWL DL entailment and OWL
DL reasoners are based on description logics [Baader et al., 2003]. With regard
to computational complexity, OWL DL entailment is NEXPTIME-complete;
a subset of OWL DL has been defined, OWL Lite, for which entailment is
EXPTIME-complete [Horrocks & Patel-Schneider, 2004].

The completeness results of [Hayes, 2004] do not show decidability of
RDFS entailment because the closure graphs used in the proof are infinite for
finite RDF graphs. In [Ter Horst, 2004a] a completeness result for RDFS was
proved that makes use of partial closure graphs that can be taken to be finite for
finite RDF graphs and that can be computed in polynomial time. This result
was used to prove that RDFS entailment is decidable, in NP, and in P if the tar-
get RDF graph is assumed to contain no blank nodes. These results were also
extended to two stronger entailment relations, D* entailment and pD* entail-
ment, which extend RDFS entailment to reasoning with datatypes and to rea-
soning with a subset of OWL, respectively. The pD* entailment relation uses a
weaker semantics than the standard OWL semantics: just like RDFS, the pD*
semantics is largely defined by if conditions, rather than OWL’s if-and-only-if
conditions. The pD* semantics seems to be sufficient for many applications
where an ontology is combined with data relating to instances. Moreover, pD*
entailment does not require restrictions on the use of the language, such as
those imposed by OWL DL, and has improved computational complexity. The
entailment relations considered in [Ter Horst, 2004a] were proved to be NP-
complete in [Ter Horst, 2004b]. In [Ter Horst, 2005a], a revised and extended
version of [Ter Horst, 2004a] is provided, which extends the subset of OWL
considered by the pD* entailment relation, removes an assumption from the
results (the assumption that datatype maps are discriminating) and includes
complete proofs of the results just mentioned. This chapter is a revised and
extended version of [Ter Horst, 2004b], which includes all the extensions to
the pD* semantics made in [Ter Horst, 2005a].

13.1.5 Overview
This chapter gives an overview of complexity results for RDFS, D* and

pD* entailment and includes statements of the completeness results that form
the basis for these complexity results. These completeness results are stated in
complete detail but without proof; we refer to [Ter Horst, 2005a] for the com-
pleteness proofs and for the underlying model theory. This chapter includes
new bounds on the size of partial closures as well as a new proof of the cen-
tral lemma that partial closures can be computed in polynomial time. It also
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includes an informal discussion of why the latter result is true. Moreover, sev-
eral complexity-related corollaries of the completeness results in [Ter Horst,
2005a] are proved here in more detail than in [Ter Horst, 2005a]. The tables
included in this chapter provide sufficient information for development of al-
gorithms for RDFS, D* and pD* entailment. Section 13.2 considers the basic
entailment notion that underlies RDFS, called simple entailment. Section 13.3
proves that RDFS entailment and D* entailment are NP-complete, and in P if
the target graph does not contain blank nodes. In Section 13.4 we prove the
same results for pD* entailment, compare pD* entailment and OWL entail-
ment, and discuss briefly the combination of ontologies with rules. Finally,
Section 13.5 summarizes the conclusions.

13.2 RDF graphs and simple entailment
This section summarizes basic terminology relating to RDF graphs [Klyne

& Carroll, 2004] [Hayes, 2004] and introduces notation. We also consider the
basic notion of entailment for RDF graphs, called simple entailment [Hayes,
2004], and state a graph-based characterization of simple entailment (the inter-
polation lemma). We use this characterization to prove that simple entailment
is NP-complete.

13.2.1 URI references, blank nodes, literals
RDF distinguishes three sets of syntactic entities [Klyne & Carroll, 2004].

Let U denote the set of URI references used to describe resources. URI stands
for Uniform Resource Identifier; URIs include the familiar URLs. Let B denote
the set of blank nodes, i.e. variables. The set B is assumed to be infinite. The
set L of literals is used to describe data values, such as strings and integers; L is
the union of the set Lp of plain literals and the set Lt of typed literals. A typed
literal l consists of a lexical form s and a datatype URI t: we shall write l as
a pair, l = (s, t). Examples of datatype URIs are the XML Schema datatypes
xsd:string and xsd:integer. The sets U , B, Lp and Lt are pairwise disjoint.
A vocabulary is a subset of U ∪ L. RDF has a special datatype URI, called
rdf:XMLLiteral, which is also written as XMLLiteral. An XML literal is a
typed literal of the form (s,XMLLiteral). XML literals enable pieces of XML
content to be used as data values. The phrase RDF term is used to denote either
a URI reference, blank node or literal. The set of RDF terms is denoted by T :
T = U ∪B∪L.
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13.2.2 RDF graphs and generalized RDF graphs
An RDF or OWL knowledge base is formalized as an RDF graph G, defined

to be a subset of the set

U ∪B × U × U ∪B∪L . (13.1)

A generalized RDF graph G is defined to be a subset of the set

U ∪B × U ∪B × U ∪B∪L . (13.2)

The elements (s, p,o) of a (generalized) RDF graph are called (generalized)
RDF statements or (generalized) RDF triples and consist of a subject, a predi-
cate (or property) and an object, respectively. We write triples (s, p,o) simply
as s po. The notation can be viewed as an abbreviation of the N-Triples nota-
tion [Grant & Beckett, 2004] used in the examples in the introduction.1 RDF
graphs require properties to be URI references; generalized RDF graphs, which
allow properties to be blank nodes, were introduced in [Ter Horst, 2005a] to
solve the problem that the standard set of entailment rules for RDFS is incom-
plete if only RDF graphs are used.

We denote the projection mappings on the three factor sets of the product
sets given in (13.1) and (13.2) by π1, π2 and π3. The set of RDF terms of a
generalized RDF graph G is denoted by

T (G) = π1(G)∪π2(G)∪π3(G),

which is a subset of U ∪B∪L. The set of blank nodes of a generalized RDF
graph G is denoted by

bl(G) = T (G)∩B.

The vocabulary of a generalized RDF graph G, which is denoted by V (G), is
the set of URIs or literals that occur as subject, predicate or object of a triple
in G:

V (G) = T (G)∩ (U ∪L).

The set of nodes of a generalized RDF graph G is

nd(G) = π1(G)∪π3(G).

A blank node in an RDF statement is viewed as a variable that is, implicitly,
existentially quantified. A generalized graph is ground if it has no blank nodes.

Given a generalized RDF graph G and a partial function h : B ⇀ T , another
generalized RDF graph is defined, the instance Gh of G, which is obtained by
replacing the blank nodes v that are in both G and the domain of h by h(v).

1As in the expression s po ∈ G, where G is an RDF graph, the context will always make clear what the triple
is.
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Two generalized RDF graphs G and G′ are equivalent if there is a bijection
f : T (G) → T (G′) such that f (bl(G)) ⊆ bl(G′), such that f (v) = v for each
v ∈ V (G), and such that s po ∈ G if and only if f (s) f (p) f (o) ∈ G′. Given a
set S of generalized RDF graphs, a merge of S is a graph that is obtained by
replacing the graphs G in S by equivalent graphs G′ that do not share blank
nodes, and by taking the union of these graphs G′. The merge of a set of
generalized RDF graphs S is uniquely defined up to equivalence. A merge of S
is denoted by M(S).

13.2.3 Simple entailment
An entailment relation for RDF specifies conditions for a set S of RDF

graphs to imply (i.e. to entail) an RDF graph G. In this chapter, we consider
four entailment relations of increasing strength: simple entailment, handling
blank nodes; RDFS entailment, handling the RDF Schema vocabulary; D* en-
tailment, handling datatypes; pD* entailment, handling a subset of OWL (the
Web Ontology Language). These entailment relations are defined in terms of
interpretations in accordance with a general pattern derived from mathemati-
cal logic [Cori & Lascar, 2000]. For example, simple entailment is defined in
terms of simple interpretations in the following way. A set S of generalized
RDF graphs simply entails a generalized RDF graph G if each simple interpre-
tation that satisfies S also satisfies G. In this case we write

S |= G.

In this chapter we do not go into model-theoretic details: see [Hayes, 2004] or
[Ter Horst, 2005a] for the definition of simple interpretation. The intuition be-
hind the simple entailment relation S |= G is that replacements can be found for
the blank nodes of the RDF graph G in a way that is consistent with the given
set of graphs S. This intuition is formalized in the interpolation lemma [Hayes,
2004], which provides a graph-based characterization of simple entailment. In
a form that applies to generalized RDF graphs [Ter Horst, 2005a], this lemma
is formulated as follows.

Lemma 13.1 (Generalized interpolation lemma). If S is a set of generalized
RDF graphs and G a generalized RDF graph, then S simply entails G if and
only if a subset of M(S) is an instance of G.

This lemma shows that the simple entailment relation S |= G between finite
sets S of finite generalized RDF graphs and finite generalized RDF graphs
G is decidable. It also shows that this problem is in NP: guess an instance
function h : bl(G) → T (M(S)) and check that the instance Gh of G defined
by means of this function is a subset of M(S). It is clear that this problem,
the simple entailment relation S |= G between finite sets S of finite generalized

Semantic Web Ontologies and Entailment: Complexity Aspects



222

RDF graphs and finite generalized RDF graphs G, is in P if G is assumed to be
ground, for in this case it needs only to be checked that G is a subset of M(S).

According to [Hayes, 2004], the full simple entailment problem (without
restrictive assumptions) is NP-complete. The proof is outlined in one sentence
[Hayes, 2004]: “This can be shown by encoding the problem of detecting a
subgraph of an arbitrary directed graph as an RDF entailment, using only blank
nodes to represent the graph (observation due to Jeremy Carroll).” Note that
it is not trivial to work out the details of this proof sketch to obtain a com-
plete proof, because the definition of instance (see Section 13.2.2) does not
require the instance functions h to be injective. We give a full proof of the
NP-completeness of simple entailment by reduction from another standard NP-
complete problem [Garey & Johnson, 1979] - the clique problem. Although
the NP-completeness results discussed in this chapter (see the following propo-
sition and Propositions 13.6 and 13.11) are stated for generalized RDF graphs,
they clearly also hold for RDF graphs, as their proofs use only RDF graphs.

Proposition 13.2. The simple entailment relation S |= G between finite sets
S of finite generalized RDF graphs and finite generalized RDF graphs G is
NP-complete.

Proof. As shown above, this problem is in NP. We prove NP-completeness
using a reduction from the clique problem. An instance of the clique problem
consists of a finite undirected graph G = (V,E), where E can be assumed to
contain no loops {v,v}, and a positive integer k ≤ |V |. The clique problem
asks whether G has a clique of size ≥ k, i.e. whether there exists a set of nodes
W ⊆V of size |W | ≥ k, such that each pair of distinct nodes v,w ∈W is linked
by an edge in G: {v,w} ∈ E. An instance G = (V,E),k of the clique problem
is transformed to RDF graphs G′ and H ′. Each of the triples in G′ and H ′ has
the same predicate p, and all nodes of G′ and H ′ are blank nodes. The RDF
graph G′ is formed by converting each pair {v,w} ∈ E into two triples v pw
and w pv. The RDF graph H ′ consists of the triples v pw, where v and w are
distinct elements of an arbitrary set of exactly k blank nodes. It is clear that the
transformation from G,k to G′,H ′ can be done in polynomial time. We need to
prove that the finite undirected graph without loops G has a clique of size ≥ k
if and only if G′ simply entails H ′. In view of the interpolation lemma, it is
sufficient to prove that the finite undirected graph without loops G has a clique
of size ≥ k if and only if there is a function h : bl(H ′) → bl(G′) that satisfies
H ′

h ⊆ G′. The only if direction is clear. Furthermore, if there is such a function
h, then h needs to be injective. Note that H ′ otherwise has distinct blank nodes
v and w such that h(v) = h(w). However, then it would follow that h(v) p h(v)
∈ G′, contradicting the assumption that G does not contain loops. Since h is
injective, G has a clique of size ≥ k.
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Table 13.1. RDF and RDFS URIs [Hayes, 2004].

rdf:type rdf:Seq rdfs:Datatype
rdf:Property rdf:Bag rdfs:Class
rdf:XMLLiteral rdf:Alt rdfs:subClassOf
rdf:nil rdf: 1 rdfs:subPropertyOf
rdf:List rdf: 2 rdfs:member
rdf:Statement . . . rdfs:Container
rdf:subject rdf:value rdfs:ContainerMembershipProperty
rdf:predicate rdfs:domain rdfs:comment
rdf:object rdfs:range rdfs:seeAlso
rdf:first rdfs:Resource rdfs:isDefinedBy
rdf:rest rdfs:Literal rdfs:label

13.3 RDFS entailment and D* entailment
RDFS entailment [Hayes, 2004] provides a more powerful kind of entail-

ment relation between RDF graphs than the simple entailment relation consid-
ered in the preceding section. RDFS entailment provides conclusions in terms
of certain standard URI references for RDF and RDFS. Table 13.1 lists the URI
references considered. This table includes the three container types of RDF,
for handling sequences, bags and alternatives (i.e. rdf:Seq, rdf:Bag and
rdf:Alt, respectively) as well as the container membership properties rdf: i
which can be used to indicate that a certain resource is the i-th element of such
a container. The URI rdfs:ContainerMemberShipProperty stands for the
class of all the properties rdf: i. With the exception of the container mem-
bership properties rdf: i, we often omit the prefixes rdf: and rdfs: from
the URIs in Table 13.1. RDFS entailment includes reasoning with the standard
datatype rdf:XMLLiteral (see Section 13.2.1). The semantic conditions im-
posed by RDFS on this datatype can be extended to other datatypes, such as the
XML Schema datatypes xsd:string and xsd:integer. This leads to a gen-
eralization of RDFS entailment, called D* entailment [Ter Horst, 2004a]. D*
entailment is defined in terms of datatype maps [Hayes, 2004]. There are com-
pleteness results providing graph-based characterizations of RDFS entailment
and D* entailment [Hayes, 2004] [Ter Horst, 2004a] which, unlike the inter-
polation lemma from the preceding section, work by using certain axiomatic
triples and entailment rules to compute a deductive closure of an RDF graph.
In this section we summarize the definitions involved, state a completeness
result for D* entailment and use this result to prove that D* entailment (and
therefore also RDFS entailment) is NP-complete.
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13.3.1 Datatype maps
We first summarize some terminology and introduce some notation relat-

ing to datatype maps [Klyne & Carroll, 2004] [Hayes, 2004]. Intuitively, a
datatype is characterized by certain strings (e.g. 11 ) and corresponding val-
ues (e.g. the natural number 11). Formally, a datatype d is defined by a non-
empty set of strings L(d), the lexical space, a nonempty set of values V (d),
the value space, and a mapping L2V (d) : L(d)→V (d), which is the lexical-to-
value mapping. A datatype map is a partial function D from the set U of URI
references to the class of datatypes; each URI in the datatype map denotes the
corresponding datatype. Each datatype map is required [Hayes, 2004] to con-
tain the pair (X ,x), where X is rdf:XMLLiteral and x is the standard XML
literal datatype [Klyne & Carroll, 2004].

Suppose that a datatype map D is given. The D-vocabulary consists of the
datatype URIs in D: it is the domain dom(D) of D, i.e. the set of URI references
a ∈U such that (a,d) ∈ D for some datatype d. The set of D-literals is the set
of typed literals (s,a)∈ Lt with a∈ dom(D). The set of all well-typed D-literals
is denoted by L+

D :

L+
D = {(s,a) ∈ Lt : a ∈ dom(D),s ∈ L(D(a))}.

We assume that a few basic operations with respect to datatype maps can be
executed in polynomial time. These operations include, in particular, the oper-
ation that determines whether a given D-literal is well typed, the computation
of values of well-typed D-literals, and the operation that determines whether
the values of two well-typed D-literals are equal.

13.3.2 D* entailment
The definition of D* entailment is patterned like the definition of simple

entailment (see Section 13.2.3): the only change is that simple interpretations
are replaced by D* interpretations [Ter Horst, 2004a], which are not described
in detail here. With regard to D* interpretations, we note only that each D*
interpretation is a simple interpretation, so that each simple entailment is also a
D* entailment. RDFS entailment coincides with D* entailment if the datatype
map D is assumed to consist of only the type rdf:XMLLiteral. We use the
notation

S |=s G

for D* entailment (and also for the special case of RDFS entailment). We
proceed with the definitions needed to describe a completeness result that gives
a graph-based characterization of D* entailment.

Definition 13.1 (RDF, RDFS and D-axiomatic triples). See Tables 13.2 and
13.3 for the RDF and RDFS axiomatic triples. If D is a datatype map, then

Herman J. ter Horst
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Table 13.2. RDF axiomatic triples [Hayes, 2004].

type type Property . value type Property .
subject type Property . rdf: 1 type Property .
predicate type Property . rdf: 2 type Property .
object type Property . . . .
first type Property . nil type List .
rest type Property .

Table 13.3. RDFS axiomatic triples [Hayes, 2004].

type domain Resource . first range Resource .
domain domain Property . rest range List .
range domain Property . seeAlso range Resource .
subPropertyOf domain Property . isDefinedBy range Resource .
subClassOf domain Class . comment range Literal .
subject domain Statement . label range Literal .
predicate domain Statement . value range Resource .
object domain Statement . Alt subClassOf Container .
member domain Resource . Bag subClassOf Container .
first domain List . Seq subClassOf Container .
rest domain List . ContainerMembershipProperty
seeAlso domain Resource . subClassOf Property .
isDefinedBy domain Resource . isDefinedBy subPropertyOf seeAlso .
comment domain Resource . XMLLiteral type Datatype .
label domain Resource . XMLLiteral subClassOf Literal .
value domain Resource . Datatype subClassOf Class .
type range Class . rdf: 1 type
domain range Class . ContainerMembershipProperty .
range range Class . rdf: 1 domain Resource .
subPropertyOf range Property . rdf: 1 range Resource .
subClassOf range Class . rdf: 2 type
subject range Resource . ContainerMembershipProperty .
predicate range Resource . rdf: 2 domain Resource .
object range Resource . rdf: 2 range Resource .
member range Resource . . . .

the D-axiomatic triples are the triples a type Datatype and a subClassOf
Literal where a ∈ dom(D).

Definition 13.2 (D* entailment rules). Given a datatype map D, the D*
These rules consist of the 18
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entailment rules are defined in Table 13.4.
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Table 13.4. D* entailment rules [Ter Horst, 2005a].

If G contains where then add to G

lg v pl l ∈ L v pbl
gl v pbl l ∈ L v pl
rdf1 v pw ptypeProperty
rdf2-D v pl l = (s,a) ∈ L+

D bl typea
rdfs1 v pl l ∈ Lp bl typeLiteral
rdfs2 pdomainu

v pw vtypeu
rdfs3 prangeu

v pw w ∈U ∪B wtypeu
rdfs4a v pw vtypeResource
rdfs4b v pw w ∈U ∪B wtypeResource
rdfs5 vsubPropertyOfw

wsubPropertyOfu vsubPropertyOfu
rdfs6 vtypeProperty vsubPropertyOfv
rdfs7x psubPropertyOfq

v pw q ∈U ∪B vqw
rdfs8 vtypeClass vsubClassOfResource
rdfs9 vsubClassOfw

utypev utypew
rdfs10 vtypeClass vsubClassOfv
rdfs11 vsubClassOfw

wsubClassOfu vsubClassOfu
rdfs12 vtypeContainer-

MembershipProperty vsubPropertyOfmember
rdfs13 vtypeDatatype vsubClassOfLiteral

produce generalized RDF triples with blank nodes in predicate position when
applied to ordinary RDF triples; the condition q ∈U is replaced by q ∈U ∪B.

v pl, where l is a literal, then add v pbl to G, where bl is a blank node allo-
cated to l by this rule. Here allocated to means that the blank node bl has been
created by an application of rule lg on the same literal l, or, if there is no such
blank node, bl must be a new node which is not yet in the graph. In rule rdfs1,
bl is a blank node that is allocated by rule lg to the plain literal l ∈ Lp. In rule

l is a blank node that is allocated by rule lg to the well-typed D-literal
l ∈ L+

D .
[Hayes, 2004], which has the same effect only for well-typed XML literals l.
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entailment rules defined in [Hayes, 2004] for RDFS, with two differences that
involve rules rdf 2 and rdfs 7. Rule rdfs7x differs from rule rdfs 7 in that it can

exactly rule rdf 2.

rdf 2-D, b

rdf 2-D. The first rule lg (‘literal generalization’) prescribes that if G contains

Rule rdf 2-D is a direct generalization of entailment rule rdf 2 from

If D contains only the datatype rdf:XMLLiteral, then rule rdf 2-D becomes

In order to deal with datatypes, rule rdf 2 is replaced by the more general rule
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Definition 13.3 (D-clash). The notion of XML clash [Hayes, 2004] is gener-
alized in a straightforward way to any datatype map. Given a datatype map D,
a D-clash is a triple b type Literal, where b is a blank node allocated by rule
lg to an ill-typed D-literal.

Definition 13.4 (partial and full RDFS and D* closures). The entailment
relations considered in this paper are declarative. For example, the entailment
rules of Table 13.4 can be applied in any order (see [Ter Horst, 2005a],
Theorem 4.11). However, in order to prove decidability of entailment, we
consider a special way of applying the entailment rules. Suppose that D
is a datatype map and G an RDF graph. In the definitions that follow, the

type Property, rdf: i type ContainerMembershipProperty,
rdf: i domain Resource and rdf: i range Resource) are treated in a
special way. Suppose that K is a non-empty subset of the positive integers
{1,2, ...} chosen in such a way that for each rdf: i ∈ V (G) we have i ∈ K.
The partial D* closure Gs,K of G is defined in the following way. In the first
step, all RDF and RDFS axiomatic triples and D-axiomatic triples are added to
G, except for the axiomatic triples that include rdf: i such that i /∈ K. In the
next step, rule lg is applied to each triple that contains a literal in such a way
that distinct, well-typed D-literals l with the same value are associated with
the same surrogate blank node bl .
to each triple containing a well-typed D-literal or a plain literal, respectively.
Finally, arbitrary derivations are made using applications of the remaining D*
entailment rules until the graph is unchanged. The steps used in the definition
of partial D* closure are summarized in Figure 13.1. In addition to the partial
D* closure Gs,K defined in this way, the full D* closure Gs of G is defined
by taking Gs = Gs,K , where K is the full set {1,2, ...}. If the datatype map D
consists of only the datatype rdf:XMLLiteral, a partial and a full D* closure
of a generalized RDF graph G are called a partial and a full RDFS closure of
G, respectively.

The following lemma shows that a partial closure can be computed in poly-
nomial time. This lemma plays an important role in the results that follow.
Before giving a formal proof, we discuss in an informal way the reasons ‘why’
partial closures can be computed in polynomial time. The fact that RDF graphs
form a kind of graph seems to play a role here. There is an analogy with the
graph connectivity problem [Homer & Selman, 2001]. Given a directed graph
G = (V,E) and a pair of nodes v,w ∈ V , this problem raises the question of
whether there is a path in G from v to w. The algorithm depicted in Figure 13.2
solves the graph connectivity problem. This algorithm runs in quadratic time:
the repeat step needs to be executed at most |V | times, while the ‘for all’ step
checks |V | nodes.
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axiomatic triples that contain the URI references rdf: i (i.e. the four triples
rdf: i
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input: generalized RDF graph G
add axiomatic triples to G;
apply rule lg;
apply rules rdf2-D and rdfs1;
repeat until graph unchanged:

return graph

Figure 13.1. Algorithm for partial D* closure.

input: directed graph G = (V,E), nodes v,w ∈V
mark v;
repeat until no new nodes are marked:

for all nodes y ∈V
if there is a marked node x ∈V such that (x,y) ∈ E
then mark y;

if w is marked then accept else reject

Figure 13.2. Algorithm for graph connectivity problem [Homer & Selman, 2001].

There is a similarity between this algorithm for the graph connectivity prob-
lem and the algorithm described in Definition 13.4 for computing partial clo-
sures (see Figure 13.1). Marking of nodes corresponds to adding new triples
to the partial closure under construction in the final, recursive step described
in Definition 13.4. In this final step the entailment rules do not introduce new
terms. In other words, ‘marking’ (adding RDF triples by applying entailment
rules) is done within a fixed, finite RDF graph that is a superset of the given
RDF graph.

Lemma 13.3. Let D be a finite datatype map. If G is a finite generalized RDF
graph, then each partial D* closure Gs,K of G is finite for K finite, and a partial
D* closure of G can be computed in polynomial time. If g = |G|, k = |K −{i :
rdf: i ∈V (G)}| and d = |D|, then |Gs,K | ≤ (4g+ k +d +30)3 and a partial
D* closure Gs,K can be computed in polynomial time.

Proof. The graph obtained from a finite generalized RDF graph G in the first
step of the definition of partial closure is clearly finite if K is finite. Then, rule
lg adds only finitely many new triples, leading to a finite graph G′ containing
G. In the remaining steps, no new URIs, literals or blank nodes are added to
G′, so it follows that there exist finite sets U0 ⊆U , B0 ⊆ B and L0 ⊆ L such that

Gs,K ⊆ U0 ∪B0 × U0 ∪B0 × U0 ∪B0 ∪L0 . (13.3)

Hence, Gs,K is a finite graph.

Herman J. ter Horst

apply each entailment rule except lg, rdf 2-D, rdfs1;
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To prove the polynomial bound on the size of partial D* closures, choose a
finite, nonempty set K ⊆ {1,2, ...} such that i ∈ K for each rdf: i ∈V (G). Let
g = |G|, d = |D| and k = |K −{i : rdf: i ∈V (G)}|. Note that d is a constant.
We first estimate |T (Gs,K)|. We have |T (G)| ≤ 3g. With regard to the first step
of the closure construction process, the RDF, RDFS and D-axiomatic triples
include at most 30 + k + d new terms not in T (G): there are 15 URIs for
RDF, 15 URIs for RDFS (see Table 13.1), k container membership properties
rdf: i, and d datatype URIs. In the next step, rule lg adds at most g new blank
nodes. In the final, recursive step, no new terms are added. It follows that
|T (Gs,K)| ≤ 4g+ k +d +30. Therefore, |Gs,K | ≤ (4g+ k +d +30)3.

There are 4k axiomatic triples that include a container membership property,
8 additional RDF axiomatic triples, 40 additional RDFS axiomatic triples (see
Tables 13.2 and 13.3) and 2d D-axiomatic triples (see Definition 13.1). There-
fore, the first step of the closure construction process adds at most 48+4k+2d
axiomatic triples. In the next steps, rule lg adds at most g new triples, while
rules rdf2-D and rdfs1 also add at most g new triples. Therefore, the total num-
ber of triples added in these steps to G is at most 2g+4k +2d +48. The com-
putations needed for the applications of rule lg, which relate to the allocation of
surrogate blank nodes, can be done in polynomial time, since it was assumed
that the basic operations involved that are connected to datatype maps can be
done in polynomial time, in particular the operation to determine whether two
well-typed D-literals have the same value (see Section 13.3.1). Since K is re-
quired to be non-empty, k = |K −{i : rdf: i ∈ V (G)}| can be taken to be 1.
It follows that the preliminary part of the computation of a partial D* closure
Gs,K (i.e. the part before the final, recursive step) can be done in polynomial
time.

Since |Gs,K | ≤ (4g+ k +d +30)3, it follows that in the final, recursive step
at most (4g+ k +d +30)3 rule applications can add a new triple to the partial
closure graph under construction. For each of the entailment rules used it can
be determined whether a successful rule application exists in at most linear or

cient, while linear time is sufficient for rule rdf1. It follows that the final, recur-
sive part of the computation of Gs,K can be done in time O((4g+k+d +30)5).
This shows that a partial D* closure Gs,K can be computed in polynomial time.

The following completeness result provides a graph-based characterization
of D* entailment. It is a generalization of the RDFS entailment lemma [Hayes,
2004] to D* entailment and generalized RDF graphs. The RDFS entailment
lemma is proved in [Hayes, 2004] in terms of full RDFS closures, which are
infinite graphs. The following result (see [Ter Horst, 2005a], Theorem 4.12) is
stated and proved in terms of partial closures, which can be taken to be finite
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quadratic time as a function of the size of the partial closure graph under
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for finite RDF graphs, thus allowing the proof of decidability of D* entailment
and thereby also of RDFS entailment.

Theorem 13.4 (D* entailment lemma). Let D be a datatype map, S a set of
generalized RDF graphs and G a generalized RDF graph. Let H be a partial
D* closure M(S)s,K of M(S) and suppose that i ∈ K for each rdf: i ∈V (G).
Then, S |=s G if and only if either H contains an instance of G as a subset or
H contains a D-clash.

Corollary 13.5. Let D be a finite datatype map. The D* entailment relation
S |=s G between finite sets S of finite generalized RDF graphs and finite gen-
eralized RDF graphs G is decidable. This problem is in NP, and in P if G is
ground.

Proof of corollary. If D is a finite datatype map, then the D* entailment
relation S |=s G between finite sets S of finite generalized RDF graphs and
finite generalized RDF graphs G can be decided by first computing a partial
D* closure H = M(S)s,K , such that i ∈ K for each rdf: i ∈ V (G), following
the steps described in Definition 13.4. Theorem 13.4 shows that it is sufficient
to then check if H has an instance of G as a subset or if H contains a D-clash.
A non-deterministic guess is used of an instance function h : bl(G) → T (H)
that satisfies Gh ⊆ H. If G is ground, then a non-deterministic guess is not
necessary. The proof of Lemma 13.3 shows that the preliminary part of the
computation of H adds at most 2s + 4k + 2d + 48 new triples to G and can
be done in polynomial time in s and k, while the final, recursive part of the
computation of H can be done in time O((4s+k+d +30)5), where s = |M(S)|
and g = |G|, and where d = |D| is a constant. Since K is required to be non-
empty and since K is required to contain the values of i that satisfy rdf: i ∈ G,
it follows that k = |K −{i : rdf: i ∈ V (M(S))}| can be taken to be 3g + 1. It
can be checked in polynomial time whether a generalized RDF graph contains
a D-clash (see Definition 13.3), because we have assumed that it is possible
to determine in polynomial time whether a D-literal is well typed (see Section
13.3.1). It follows that the entire computation can be done in non-deterministic
polynomial time, and in polynomial time if G is ground.

Proposition 13.6. Let D be a finite datatype map. The D* entailment rela-
tion S |=s G between finite sets S of finite generalized RDF graphs and finite
generalized RDF graphs G is NP-complete.

Proof. Membership of NP has already been shown above. As in the proof of
Proposition 13.2, we prove NP-completeness using a reduction from the clique
problem. An instance G = (V,E),k of the clique problem (see the proof of
Proposition 13.2) is transformed to RDF graphs G′ and H ′. The RDF graph
H ′ consists, again, of the triples v pw, where p is a fixed property and where
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v and w are distinct elements of an arbitrary set of exactly k blank nodes. It
is now also assumed that the URI reference p is not in the RDF and RDFS
vocabulary or in the D-vocabulary. The RDF graph G′ is formed in two steps.
In the first step, each pair {v,w} ∈ E is converted into two triples v pw and
w pv, where v and w are viewed as blank nodes. This leads to an RDF graph
G′′. In the second step, the graph G′ is taken to be a partial D* closure of G′′.
In view of Lemma 13.3, it is clear that the transformation from G = (V,E),k
to G′,H ′ can be done in polynomial time. We need to prove that G has a clique
of size ≥ k if and only if G′ |=s H ′. It follows in the same way as in the proof
of Proposition 13.2 that G has a clique of size ≥ k if and only if there is a
function h : bl(H ′) → bl(G′′) that satisfies H ′

h ⊆ G′′. We still have to prove
that there is a function h : bl(H ′) → bl(G′′) that satisfies H ′

h ⊆ G′′ if and only
if G′ |=s H ′. If there is a function h : bl(H ′) → bl(G′′) that satisfies H ′

h ⊆ G′′,
then the interpolation lemma (see Lemma 13.1) shows that G′′ |= H ′, so that
by G′′ ⊆ G′ we get G′ |=s H ′. To prove the converse implication, suppose that
G′ |=s H ′. It is clear that G′ itself is a partial D* closure of G′, so the D*
entailment lemma (Theorem 13.4) shows that there is a function h : bl(H ′) →
nd(G′) that satisfies H ′

h ⊆ G′. The proof can be concluded by showing that
none of the triples in G′ −G′′ has p as predicate, for then it follows that H ′

h ⊆
G′′. The graph G′′ has a simple structure: each of the triples in G′′ has the
same predicate p, which is not in the RDF and RDFS vocabulary or in the D-
vocabulary, and all nodes in G′′ are blank nodes. By considering the axiomatic
triples and entailment rules, it is not difficult to see that G′ contains only three
further triples containing p: rules rdf1, rdfs4a and rdfs6 produce the triples p
type Property, p type Resource and p subPropertyOf p, respectively.
Therefore, none of the triples in G′ −G′′ has p as predicate.

Given a fixed generalized RDF graph G, it is natural to choose a cutoff num-
ber k > 1 and to compute the partial closure Gs,k := Gs,{1,...,k} of G. Theorem
13.4 shows that this partial closure Gs,k can be used to decide if G D* entails
any other RDF graph H that satisfies i ≤ k for each rdf: i ∈V (H).

A generalized RDF graph is inconsistent with respect to the D* semantics
if it is not satisfied by any D* interpretation (see [Ter Horst, 2005a] for the
precise definition). The following result characterizes consistency with respect
to the D* semantics and shows that D* consistency is in P.

Theorem 13.7. Let D be a datatype map, S a set of generalized RDF graphs
and H a partial D* closure of M(S). Then, S is D* consistent if and only
if H does not contain a D-clash. If D is a finite datatype map, the problem to
determine whether a finite set of finite generalized RDF graphs is D* consistent
is in P.

Proof. See [Ter Horst, 2005a], Theorem 4.15, for the proof of the first
statement. The proof of the last statement is similar to and simpler than the
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proof of Corollary 13.5. If D is a finite datatype map, then the problem of
determining whether a finite set S of finite generalized RDF graphs is D* con-
sistent can be decided by first computing a partial D* closure H = M(S)s,K ,
following the steps described in Definition 13.4. The first part of the theo-
rem shows that it is sufficient to determine next whether H contains a D-clash.
The proof of Lemma 13.3 shows that the final, recursive part of the compu-
tation of H can be done in time O((4s + k + d + 30)5), where s = |M(S)| and
g = |G|, while d = |D| is a constant. Since K is required to be non-empty,
k = |K−{i : rdf: i ∈V (M(S))}| can be taken to be 1. Since it can be checked
in polynomial time whether a generalized RDF graph contains a D-clash, it
follows that the entire computation can be done in polynomial time.

13.3.3 Datatyped reasoning
In [Hayes, 2004], the notion of D-entailment is defined for extending RDFS

with datatyped reasoning. Unlike D* entailment, for D-entailment no com-
pleteness or decidability result is known. The D* entailment relation consid-
ered in this section also extends RDFS with datatyped reasoning, but is weaker
than D-entailment. Consider, for example, a datatype map D that contains
the XML Schema datatypes string and integer. Theorem 13.7 shows that the
following two triples, where b is a blank node, are D* consistent:

b rdf:type xsd:string .
b rdf:type xsd:int .

On the other hand, these two triples are inconsistent under the D-semantics
[Hayes, 2004], since the value spaces of the two datatypes string and inte-
ger are disjoint. To give another example, with regard to the XML Schema
datatype xsd:boolean, the three triples a p true, a p false and b type
boolean D-entail the triple a p b. However, this is not a D* entailment, as can
be seen with Theorem 13.4. It is possible to use meta-modeling to strengthen
the datatyped reasoning capabilities obtained with D* entailment, without in-
creasing the computational complexity of entailment and consistency. The first
example discussed above can be handled with a meta-modeling triple that uses
the OWL vocabulary:

xsd:string owl:disjointWith xsd:int .

The two triples of the first example, b type string and b type int, together
with this meta-modeling triple, are pD* inconsistent, as can be seen with The-
orem 13.12: the three triples form a P-clash (see Definition 13.6). The second
example discussed above can be handled by using rules [Ter Horst, 2005b] to
model finite datatypes (cf. 13.4.5).
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13.4 pD* entailment
In this section, we extend the above results on RDFS entailment and D*

entailment to a subset of OWL. See Table 13.5 for the URI references from
the OWL vocabulary considered. In [Ter Horst, 2004a] [Ter Horst, 2005a] a
semantics was defined for this subset of OWL. The induced entailment relation
is called pD* entailment. The pD* semantics is weaker than the standard OWL
semantics, but seems to be sufficient for many applications of this subset of
OWL and leads to improved computational complexity of entailment.

13.4.1 pD* entailment and OWL: ‘if-semantics’ versus
‘iff-semantics’

The definition of the standard OWL semantics uses many if-and-only-if con-
ditions, while the RDFS, D* and pD* semantics are defined by means of if
conditions. For example, the pD* semantics assumes, like RDFS, that if c
is a subclass of d, then each instance of c is an instance of d, but does not
assume, as OWL does, that the converse condition also holds. This means
that fewer entailments are supported that relate to entire classes or proper-
ties. For example, an iff-semantics may lead to entailments that are not sup-
ported under an if-semantics, stating that a class is a subclass of another class.
We briefly compare these types of reasoning for RDFS. See Sections 4.2 and
7.3.1 of [Hayes, 2004] for a description of a (non-standard) iff-semantics for
RDFS. With respect to the iff-semantics for RDFS, the two triples p domain
v and v subClassOf w entail the triple p domain w. As can be seen from
Theorem 13.4, this entailment is not an RDFS entailment. However, triples
entailed when the iff-entailed triple is added are already entailed under the
standard RDFS semantics when only the original two triples are given; for
example, with or without the triple p domain w, the three triples p domain
v, v subClassOf w and a pb RDFS-entail the triple a type w. This can be
shown using the entailment rules (see Table 13.4). It turns out that entailment
rules for the stronger iff-semantics become more complex; no complete set of
entailment rules has been described. The standard RDFS semantics is “deliber-
ately chosen to be the weakest ‘reasonable’ interpretation of the RDFS vocab-
ulary” [Hayes, 2004]. The pD* semantics is designed along similar lines. We
continue the comparison of pD* entailment and OWL entailment in Sections
13.4.3 and 13.4.4.

13.4.2 pD* entailment
In the treatment of pD* entailment in this section we follow the same pattern

as in the preceding section for D* entailment.
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Table 13.5. OWL URIs used in the pD* semantics.

owl:FunctionalProperty owl:Restriction
owl:InverseFunctionalProperty owl:onProperty
owl:SymmetricProperty owl:hasValue
owl:TransitiveProperty owl:someValuesFrom
owl:sameAs owl:allValuesFrom
owl:inverseOf owl:differentFrom
owl:equivalentClass owl:disjointWith
owl:equivalentProperty

Table 13.6. P-axiomatic triples [Ter Horst, 2005a].

FunctionalProperty subClassOf Property .
InverseFunctionalProperty subClassOf Property .
SymmetricProperty subClassOf Property .
TransitiveProperty subClassOf Property .
sameAs type Property .
inverseOf type Property .
inverseOf domain Property .
inverseOf range Property .
equivalentClass type Property .
equivalentProperty type Property .
equivalentClass domain Class .
equivalentClass range Class .
equivalentProperty domain Property .
equivalentProperty range Property .
Restriction subClassOf Class .
onProperty domain Restriction .
onProperty range Property .
hasValue domain Restriction .
someValuesFrom domain Restriction .
someValuesFrom range Class .
allValuesFrom domain Restriction .
allValuesFrom range Class .
differentFrom type Property .
disjointWith domain Class .
disjointWith range Class .

Definition 13.5 (P-axiomatic triples, P-entailment rules). See Table 13.6
for the P-axiomatic triples. See Table 13.7 for the P-entailment rules.
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Table 13.7. P-entailment rules [Ter Horst, 2005a].

If G contains where then add to G

rdfp1 ptypeFunctionalProperty
u pv
u pw v ∈U ∪B vsameAsw

rdfp2 ptypeInverse-
FunctionalProperty
u pw
v pw usameAsv

rdfp3 ptypeSymmetricProperty
v pw w ∈U ∪B w pv

rdfp4 ptypeTransitiveProperty
u pv
v pw u pw

rdfp5a v pw vsameAsv
rdfp5b v pw w ∈U ∪B wsameAsw
rdfp6 vsameAsw w ∈U ∪B wsameAsv
rdfp7 usameAsv

vsameAsw usameAsw
rdfp8ax pinverseOfq

v pw w,q ∈U ∪B wqv
rdfp8bx pinverseOfq

vqw w ∈U ∪B w pv
rdfp9 vtypeClass

vsameAsw vsubClassOfw
rdfp10 ptypeProperty

psameAsq psubPropertyOfq
rdfp11 u pv

usameAsu′
vsameAsv′ u′ ∈U ∪B u′ pv′

rdfp12a vequivalentClassw vsubClassOfw
rdfp12b vequivalentClassw w ∈U ∪B wsubClassOfv
rdfp12c vsubClassOfw

wsubClassOfv vequivalentClassw
rdfp13a vequivalentPropertyw vsubPropertyOfw
rdfp13b vequivalentPropertyw w ∈U ∪B wsubPropertyOfv
rdfp13c vsubPropertyOfw

wsubPropertyOfv vequivalentPropertyw
rdfp14a vhasValuew

vonProperty p
u pw utypev

rdfp14bx vhasValuew
vonProperty p
utypev p ∈U ∪B u pw

rdfp15 vsomeValuesFromw
vonProperty p
u px
xtypew utypev

rdfp16 vallValuesFromw
vonProperty p
utypev
u px x ∈U ∪B xtypew

Semantic Web Ontologies and Entailment: Complexity Aspects
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Definition 13.6 (P-clash). In addition to D-clashes (see Definition 13.3), the
pD* semantics also leads to possible inconsistencies in connection with
distinctFrom and disjointWith. A P-clash is either a combination of
two triples of the form v differentFrom w, v sameAs w, or a combination of
three triples of the form v disjointWith w, u type v, u type w.

Definition 13.7 (partial and full pD* closures). Suppose that G is a general-
ized RDF graph and D a datatype map. The partial pD* closure of G with
respect to a set K, denoted by Gp,K , and the full pD* closure of G, denoted
by Gp, are defined in a way similar to the definition of the partial and full D*
closures Gs,K and Gs of G (see Definition 13.4). The only differences are in the
first and last steps. In the first step, the P-axiomatic triples are also added to G.
In the last step, the P-entailment rules are used as well. Just like a partial D*
closure, a partial pD* closure is, in general, a generalized RDF graph, even if
the given graph is an ordinary RDF graph.

Lemma 13.8. Let D be a finite datatype map. If G is a finite generalized RDF
graph, then each partial pD* closure Gp,K of G is finite for K finite, and a
partial pD* closure of G can be computed in polynomial time. If g = |G|,
k = |K −{i : rdf: i ∈ V (G)}| and d = |D|, then |Gp,K | ≤ (4g + k + d + 45)3

and a partial pD* closure Gp,K can be computed in polynomial time.

Proof. This is proved as for partial D* closures (see Lemma 13.3), noting in
addition that 15 URIs and 25 P-axiomatic triples are used for the pD* seman-
tics (see Tables 13.5 and 13.6). For the last part of the proof, note that for rules
rdfp1, rdfp2, rdfp4, rdfp11, rdfp14a and rdfp14bx the existence of a successful
rule application can be detected in time O(n3), where n is the size of the partial
closure graph under construction. Since two triples are required to define a
someValuesFrom or allValuesFrom restriction, the complexity is higher for
rules rdfp15 and rdfp16: these rules can be handled in time O(n4). The other
P-entailment rules can be handled in linear or quadratic time, just like the D*
entailment rules. It follows that the final, recursive part of the computation of
Gp,K can be done in time O((4g+ k +d +45)7) and that a partial pD* closure
Gp,K can be computed in polynomial time.

Theorem 13.9 (pD* entailment lemma). Let D be a datatype map, S a set of
generalized RDF graphs and G a generalized RDF graph. Let H be a partial
pD* closure M(S)p,K of M(S) and suppose that i ∈ K for each rdf: i ∈V (G).
Then, S |=p G if and only if either H contains an instance of G as a subset or
H contains a P-clash or a D-clash.

Corollary 13.10. Let D be a finite datatype map. The pD* entailment relation
S |=p G between finite sets S of finite generalized RDF graphs and finite gen-
eralized RDF graphs G is decidable. This problem is in NP, and in P if G is
ground.

Herman J. ter Horst
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Proof. See [Ter Horst, 2005a], Theorem 5.12, for the proof of Theorem 13.9.
The corollary follows in the same way as in the case of D* entailment (see
Corollary 13.5). If D is a finite datatype map, the pD* entailment relation S |=p
G between finite sets S of finite generalized RDF graphs and finite generalized
RDF graphs G can be decided by first computing a partial pD* closure H =
M(S)p,K , such that i ∈ K for each rdf: i ∈V (G), following the steps described
in Definitions 13.4 and 13.7. Theorem 13.9 shows that it is sufficient to check
next whether H has an instance of G as a subset or whether H contains a P-
clash or a D-clash. A non-deterministic guess is used of an instance function h :
bl(G) → T (H) that satisfies Gh ⊆ H. If G is ground, then a non-deterministic
guess is not necessary. The proof of Lemma 13.8 shows that the final, recursive
step in the computation of H can be done in time O((4s+k+d +45)7), where
s = |M(S)| and g = |G|, while d = |D| is a constant and k = |K −{i : rdf: i ∈
V (M(S))}| can be taken to be 3g + 1. It can be determined in time O(n3)
whether a generalized RDF graph of size n contains a P-clash (see Definition
13.6). It can be checked in polynomial time whether a generalized RDF graph
contains a D-clash (see Definition 13.3), given that we have assumed that it can
be determined in polynomial time whether a D-literal is well typed (see Section
13.3.1). It follows that the entire computation can be done in non-deterministic
polynomial time, and in polynomial time if G is ground.

Proposition 13.11. Let D be a finite datatype map. The pD* entailment rela-
tion S |=p G between finite sets S of finite generalized RDF graphs and finite
generalized RDF graphs G is NP-complete.

Proof. Two additions need to be made to the proof of Proposition 13.6. In
the first part of the proof, it is also assumed, of course, that the property p of
the triples of G′′ and H ′ is not in the P-vocabulary. As to the last part of the
proof, it should be noted that G′ −G′′ contains a fourth triple containing p, and
no further triples containing p: rule rdfp5a produces the triple p sameAs p.
Therefore, it still holds that none of the triples in G′ −G′′ has p as predicate.

Theorem 13.12. Let D be a datatype map, S a set of generalized RDF graphs
and H a partial pD* closure of M(S). Then, S is pD* consistent if and only if
H does not contain a P-clash or a D-clash. If D is a finite datatype map, the
problem to determine whether a finite set of finite generalized RDF graphs is
pD* consistent is in P.

Proof. See [Ter Horst, 2005a], Theorem 5.15, for the proof of the first
statement. The last statement follows in a similar way to that in Theorem
13.7; compare also the proof of Corollary 13.10. If D is a finite datatype
map, then the problem to determine whether a finite set S of finite general-
ized RDF graphs is pD* consistent can be decided by first computing a partial
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pD* closure H = M(S)p,K , following the steps described in Definition 13.4 and
13.7. The first part of the theorem shows that it is sufficient to determine next
whether H contains a P-clash or a D-clash. The proof of Lemmas 13.3 and 13.8
shows that the final, recursive part of the computation of H can be done in time
O((4s + k + d + 45)5), where s = |M(S)| and g = |G|, while d = |D| is a con-
stant. Since K is required to be non-empty, k = |K −{i : rdf: i ∈ V (M(S))}|
can be taken to be 1. Since it can be checked in polynomial time whether
a generalized RDF graph contains a P-clash or a D-clash, it follows that the
entire computation can be done in polynomial time.

13.4.3 Entailment rule rdf-svx for someValuesFrom
Note that entailment rules such as rdfs2, rdfs9, rdfp1 and rdfp16 for domain,

subClassOf, FunctionalProperty, allValuesFrom (see Tables 13.4 and
13.7) share a common pattern, which can be described as follows. If certain
instances satisfy certain conditions involving certain classes and/or properties,
and if there is information about these classes and/or properties phrased in
terms of the RDFS and/or OWL vocabulary, then it can be concluded that
these instances satisfy certain other conditions. Entailment rule rdfp15 for
someValuesFrom is formulated in a way that is different from the other

can be captured by adding a second entailment rule for

Entailment rule rdf-svx is defined as follows: if a generalized RDF graph G
contains the three triples v someValuesFrom w, v onProperty p and u type
v, where p ∈U ∪B, then add to G the two triples u pb and b type w, where b
is a new blank node. Theorem 13.9 has been extended to include this stronger
semantics for someValuesFrom (see [Ter Horst, 2005a], Theorem 6.8). How-
ever, Lemma 13.8 has not been extended to include the use of entailment rule
rdf-svx. The issue is that, unlike the other entailment rules used in the final, re-
cursive step in the computation of partial closures, rule rdf-svx introduces new
blank nodes. Even though applications of rule rdf-svx may be restricted to situ-
ations where there is no x such that the triples u px and x type w are included in
the partial closure graph under construction (see [Ter Horst, 2005a], Section 6),
it has not been proved that these partial closures that make use of rule rdf-svx
are always finite for finite RDF graphs. With regard to someValuesFrom, the
pD* semantics seems to be sufficient in a number of cases, even though entail-
ment rule rdf-svx is not supported by the pD* semantics; applications using
someValuesFrom may introduce new blank nodes in a more controlled way
(cf. [Ter Horst, 2005a], Section 1.8): if a person or an application intends to
add the statement that a certain item u belongs to the someValuesFrom
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item x such that the triples u p x and x type w are available, then, instead of
adding the triple u type v, the two triples u p b and b type w can be added,
where b is a new blank node (this allows entailment rule rdfp15 to derive the
triple u type v).

13.4.4 pD* entailment and OWL
To continue the discussion started in Sections 13.4.1 and 13.4.3, we briefly

compare pD* entailment with the standard OWL entailment relations, OWL
DL and OWL Full [Patel-Schneider et al., 2004]. See [Ter Horst, 2005a], Sec-
tions 1.8 and 5.1, for a more extensive discussion. Just as for RDFS, certain
iff-entailments are missing from the pD* semantics. We give several exam-
ples: with respect to the OWL Full semantics, the triple p inverseOf q en-
tails q inverseOf p; the two triples p type FunctionalProperty and p
inverseOf q entail q type InverseFunctionalProperty; the two triples p
domain u and p inverseOf q entail q range u. These iff-entailments are not
pD* entailments, as can be seen with Theorem 13.9. However, just as for the
corresponding example for RDFS given in Section 13.4.1, if the combination
is made with data relating to instances, the consequences of the entailed triples
are also entailed under the pD* semantics from the triples originally given.
This can be shown with the entailment rules (see Tables 13.4 and 13.7). For
example, the two triples p type FunctionalProperty and p inverseOf q
plus the two triples u q w and v q w pD* entail, with or without the triple q type
InverseFunctionalProperty, the triple u sameAs v. In view of examples
such as these, it seems that pD* entailment is sufficient for many applications
that combine ontologies with data relating to instances.

The pD* semantics does not apply to all of the OWL vocabulary; in partic-
ular, the pD* semantics does not deal with the owl:oneOf class constructor,
which allows enumeration classes to be defined, or with OWL’s possibilities
for defining restriction classes in terms of cardinalities. Although the pD*
semantics does not include OWL’s Boolean class constructors owl:unionOf
and owl:intersectionOf either, part of these constructs is available in an
alternative way, by means of rdfs:subClassOf. It can be expressed that the
union of the classes c1, . . . ,cn is contained in a class c by saying that each class
c j is a subclass of c. Moreover, it can be expressed that a class c is contained
in the intersection of the classes c1, . . . ,cn by saying that c is a subclass of each
class c j.

OWL Full entailment is undecidable, while OWL DL entailment is decid-
able and NEXPTIME-complete [Horrocks & Patel-Schneider, 2004]. OWL
DL imposes certain restrictions on the use of the language to obtain decid-
ability. For example, classes cannot be used as instances, while the use of
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the properties FunctionalProperty and TransitiveProperty is restricted
[Patel-Schneider et al., 2004]. The pD* semantics imposes no restrictions on
the use of the language and supports meta-modeling expressivity. Just as for
RDFS, an if-semantics also leads to computational advantages for OWL: there
is a complete set of simple entailment rules for pD* entailment, while pD*
entailment is in NP, and in P if the target graph does not contain blank nodes.
The result that RDFS entailment and pD* entailment are in P if the target graph
does not have blank nodes is relevant in practice. The target graph G typically
forms a relatively small part of the combined problem data S, G and may con-
tain relatively few blank nodes. The results clearly indicate the computational
cost of using blank nodes in a target graph.

13.4.5 Ontologies and rules
There is much interest in extending the Semantic Web languages RDF and

OWL with facilities for representation of and reasoning with rules. For exam-
ple, OWL cannot express the notion of ‘uncle’ by means of a rule such as the
following:

IF ?a hasParent ?b .
?b hasBrother ?c .

THEN ?a hasUncle ?c .

The IF and THEN sides of such rules consist of ‘rule graphs’ that consist of
‘triple patterns’ which extend RDF triples with the possibility to include ‘rule
variables’ (such as ?a in the example) in subject, predicate and object posi-
tions. If the IF side of such a rule can be matched with certain triples in
an RDF graph, then the rule prescribes that the THEN side can be added to
the RDF graph, with the rule variables being substituted with the matching
terms in the given RDF graph. The entailment rules used in this chapter can
be viewed as arising from such rules. For example, entailment rule rdfp1 for
owl:FunctionalProperty (see Table 13.7) arises from the following rule
which uses rule variables that correspond to the meta-variables p, u, v and w
used in Table 13.7:

IF ?p rdf:type owl:FunctionalProperty .
?u ?p ?v .
?u ?p ?w .

THEN ?v owl:sameAs ?w .

There is not yet a standard Semantic Web language for rules. There is a
proposal to extend OWL DL with rules in the language SWRL [Horrocks et
al., 2005]. SWRL extends OWL DL with a restricted form of Horn rules.
Entailment for SWRL is undecidable [Horrocks et al., 2005].

In [Ter Horst, 2005b] the model theory of RDF is extended to apply to rules.
For an arbitrary set of rules R of the kind just discussed, a general notion of
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R-entailment is defined. R-entailment extends RDFS and its meta-modeling
capabilities. R-entailment also extends pD* entailment. In [Ter Horst, 2005b]
it is shown that the decidability and NP (P) complexity results for RDFS and
pD* entailment extend to include a large class of rules.

13.5 Conclusion
In this chapter we provided an overview of results relating to complexity

of entailment with respect to Semantic Web ontologies. We also included an
overview of the graph-based entailment characterizations that form the basis
for these complexity results. In summary, the complexity results proved in
this chapter are: Simple entailment and entailment for RDF Schema (RDFS)
are NP-complete, and in P if the target graph is assumed to contain no blank
nodes. These results also apply to the D* entailment and pD* entailment rela-
tions, which extend RDFS entailment to reasoning with datatypes and to rea-
soning with a property-related subset of OWL, respectively. We proved new
bounds on the size of the partial closure graphs used in these results. The re-
sults discussed support the conclusion that an if-semantics applied to (a subset
of) the OWL vocabulary leads to computational advantages.
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Chapter 14

BAYESIAN METHODS FOR TRACKING
AND LOCALIZATION

Wojciech Zajdel, Ben J.A. Kröse, and Nikos Vlassis

Abstract This chapter presents a tutorial-type introduction to dynamic Bayesian networks
(DBNs), which provide a computational framework for the analysis of stochastic
dynamic systems. The first part of the chapter provides a short overview of the
work on probabilistic state estimation and system identification. The second part
presents two example applications where the DBNs lead to elegant algorithms:
robot localization and tracking of multiple persons with multiple cameras.

Keywords Time-series analysis, probabilistic inference, dynamic Bayesian networks, robot
localization, multi-object tracking.

14.1 Introduction
Localization and tracking of moving objects are one of the central issues

in research in intelligent environments. Typical examples are service or se-
curity applications, where the environment needs to localize moving persons.
Alternatively, mobile embedded systems have to be localized and tracked, for
example to deliver location dependent services. In all of these situations there
is a need for sensors to give location information.

In typical problems, one can distinguish between two configurations: the
sensors can either be mounted on the moving system and observe the environ-
ment, or the sensors may be fixed to the environment and observe the moving
system. An instance of the first configuration is the GPS (global positioning
system), which uses the position of satellites as reference points to calculate
the position of the moving system. Other examples are systems which use ra-
dio beacons. If the environment is not artificially landmarked, natural features
have to be used to localize the system. These features have to be derived from
the sensory signal, for example from images of a camera mounted on a moving
platform. However, in many cases the objects to be tracked are not equipped
with sensors. In the second configuration, it is the environment that observes
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the moving objects. Because in this case the sensors are not associated one-
to-one with objects, the environment will not only have to localize the moving
objects but also have to identify them. In the subsequent discussion we will
assume color video cameras as sensing systems.

Irrespective of the sensor configuration, localization and tracking methods
need to estimate the state of a dynamic system (i.e. object’s identity and/or
position) from observations. The estimation algorithm has to account for two
problems. Firstly, the observations are affected by noise, which is typically
caused by camera jitter, variations in illumination or viewing angle, occlusions,
and shadows. Secondly, cameras provide often high-dimensional observations,
and modeling dynamics in a high-dimensional space is not trivial. To address
these issues we consider a probabilistic framework to deal with the noise and
furthermore use the fact that the underlying system generating the observations
has only a few degrees of freedom.

This chapter offers a tutorial on dynamic Bayesian networks and their ap-
plications to localization and tracking. Section 14.2 outlines basics forms
of DBNs and presents suitable Bayesian inference algorithms. Section 14.3
presents a method for localizing a mobile robot from sensory information, and
Section 14.4 — a method for tracking multiple people with multiple cameras.

14.2 Bayesian networks for dynamic systems analysis
Throughout this tutorial we discuss stochastic discrete-time dynamic sys-

tems. We denote the subsequent time steps with k = 1,2, . . ., and the state of
the system at the kth step with sk, and a time-sequence of states sn,sn+1, . . . ,sm
as sn:m. Our key assumption is that the state of the system in question cannot
be directly observed. Instead, at every step we have access to a noisy measure-
ment or observation yk provided by the sensor(s).

The Bayesian framework [Gelman et al., 1995; Murphy, 2002; Jor-
dan, 1998] embeds the relation between states and observations into a
probability distribution p(s1:k,y1:k). Further, the distribution p(s1:k,y1:k) =
p(s1:k)p(y1:k|s1:k) is decoupled into conceptually simpler parts: a model of sys-
tem internal dynamics p(s1:k) and a sensor noise model p(y1:k|s1:k). Given the
measurements we can compute (often only approximately) posterior distribu-
tions, in the form p(sk|y1:k), which convey useful information about the system
states. Such a framework places the designer’s emphasis on accurate modeling
of system dynamics and sensor noise, while computing posterior state densities
is left to Bayesian numerical inference methods.

14.2.1 Representations
Practical representation of time-series models, like p(s1:k,y1:k), relies on

the notion of causal dependency [Jensen, 2001]. Given a series of variables
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x1:n, causal dependency states that some variable xi is assumed to be generated
from – or caused by – a limited subset Pa(xi) of variables from x1:n. We refer to
variables in Pa(xi) as the causes or parents for xi. One can intuitively represent
causal dependencies as directed graphs, where nodes correspond to variables,
and directed edges lead from causes to the resulting variables. For time-series
models such graphs are called dynamic Bayesian networks (DBNs). In DBNs
the edges usually point forward in time reflecting a natural assumption that
variables future in time are caused by (a subset of) past variables. Formally, a
DBN defines a distribution as a product

p(x1:n) = ∏
i

p(xi|Pa(xi)),

where i enumerates the nodes, and p(xi|Pa(xi)) are generally simple probability
density functions. One usually refers to distributions defined by this framework
as directed graphical or generative models [Murphy, 2002].

Below we briefly review and motivate the most common structures of graph-
ical models for dynamic systems with noisy measurements. Our outline in-
cludes only a limited selection of models; more comprehensive surveys can be
found in [Murphy, 2002; Jordan, 1998].

System dynamics. A simple design for system dynamics follows from the
Markov assumption, which says that the state sk is generated exclusively by
sk−1. Typically, the causal dependency p(sk|sk−1) is time-invariant (i.e., the
same for all time-steps). This leads to the following model

p(s1:k) = p(s1)
k

∏
τ=2

p(sτ|sτ−1), (14.1)

where p(s1) is the prior state distribution. The most common instances of such
a design are hidden Markov models (HMMs) [Rabiner, 1990] or Kalman filter
models (KFMs) [Rowies & Ghahramani, 1999].

Sometimes however one may need so called non-Markovian models, where
the causal dependency p(sk|s1:k−1) incorporates all (or a subset) of past
states [Neal, 2000]. An interesting class of systems takes p(sk|s1:k−1) as a
weighted sum of simpler functions, each depending on a single past state

p(s1:k) = p(s1)
k

∏
τ=2

p(sτ|s1:τ−1) with p(sτ|s1:τ−1) =
τ−1

∑
κ=1

π(τ−κ)p(sτ|sτ−κ),

(14.2)

where π is a vector of weights. The right panel of Figure 14.1 shows the cor-
responding graphical structure. Examples of such systems include Dirichlet
processes [Neal, 2000] or its variations, like the model for multi-object track-
ing, as described in Section 14.4.

Bayesian Methods for Tracking and Localization
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s1 s2 s3

y1 y2 y3

s1 s2 s3

y1 y2 y3

s1 s2 s3

y1 y2 y3

Figure 14.1. Dynamic Bayesian networks representing standard dynamic systems. (Left) Sys-
tem with Markovian dynamics. (Middle) Mixed memory Markov model, where yk depends on
{y1:k−1,sk} and states are independent from each other. (Right) System with non-Markovian
dynamics, where sk depends on s1:k−1, and yk depends on sk.

Sensor models. In the simplest setup, sensor models assume that the obser-
vation yk is generated exclusively from the underlying state sk. Therefore

p(y1:k|s1:k) =
k

∏
τ=1

p(yτ|sτ).

Another class of models assumes that the current observation yk depends on
sk and also on the past observations y1:k−1. An example is a mixed memory
Markov model [Saul & Jordan, 1999], where y1:k−1 become a “memory”, and
sk is a “switch” that selects a single memory item that generates yk:

p(y1:k|s1:k) =
k

∏
τ=1

p(yτ|y1:τ−1,sτ) with p(yτ|y1:τ−1,sτ) = p(yτ|y f (sτ)),

where 1 < f (sτ) < τ is an index function. From the inference perspective, the
models p(yk|sk) and p(yk|y1:k−1,sk) do not differ substantially, since in both
cases sk is the only hidden variable at every time-step ( the variables y1:k−1 are
fixed). Therefore, without loss of generality, we will discuss the case p(yk|sk).

Example. A popular probabilistic time-series models are linear dynam-
ical systems, also known as Kalman filter models [Rowies & Ghahramani,
1999]. These models assume a Normal prior p(s1) = (s1|m0,V0), and lin-
ear state transitions with additive Gaussian noise p(sk|sk−1) = (sk|Ask−1,Q).
The observation yk is a linear projection of sk with additive Gaussian noise;
p(yk|sk) = (yk|Csk,R). Here, A is the transition matrix, C the observation
or generative matrix, and R, Q are noise covariances, and (s|m,V) denotes
a Gaussian (Normal) probability distribution on variable s with mean m and
covariance V.

14.2.2 Inference
Bayesian inference refers to a collection of techniques for reasoning about

hidden states on the basis of available data and the assumed model that ties the
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hidden and the observed quantities. In the Bayesian framework, any informa-
tion about the state(s) follows from posterior state distribution(s) conditioned
on the data. Given such a distribution — or a belief for short — one can com-
pute quantities like the expected or the most likely state or confidence intervals.

In particular for DBNs, the following inference problems are the most im-
portant. The first involves computing argmaxs1:k p(s1:k|y1:k) to find out the most
likely sequence of states. The other type of problems involve computing mar-
ginal posterior distributions in the form p(sk|y1:k+τ), which provide informa-
tion about individual states from a sequence of measurements. When τ < 0
such distributions are referred to as predictive distributions, when τ = 0 — as
filtering distributions, and when τ > 0 — as smoothing distributions. Below we
focus on computing filtering distributions. More details on various exact and
approximate methods for solving the above problems are discussed in [Jordan,
1998; Murphy, 2002; Lerner & Parr, 2001].

Filtering. In on-line problems, including tracking and robot localization, one
wishes to estimate the current state of the system sk given the data available so
far y1:k, therefore the filtering distribution p(sk|y1:k) is of particular interest.

For systems with Markovian dynamics (see (14.1)), the filtering distribution
can be computed recursively using the distribution from previous time step,
denoted as p(sk−1|y1:k−1). First, we find the predictive distribution

p(sk|y1:k−1) =
∫

p(sk|sk−1)p(sk−1|y1:k−1)dsk−1. (14.3)

The predictive distribution summarizes our knowledge about state sk given the
past data. When the observation yk arrives we incorporate it to the filtering
distribution, using Bayes’ theorem

p(sk|y1:k) =
1
Lk

p(yk|sk)p(sk|y1:k−1), (14.4)

where Lk = p(yk|y1:k−1) is a normalization constant. At k = 1 we set the predic-
tive distribution equal to the prior p(s1). The procedure (14.3)–(14.4) is usually
called Bayesian filtering [Murphy, 2002; Rowies & Ghahramani, 1999].

For systems with non-Markovian dynamics (see (14.2)) the procedure is
more complicated. Although, one is still interested in estimation of the cur-
rent state, the recursive scheme now requires propagation of the complicated
density p(s1:k|y1:k), because the current state depends on all past states. Theo-
retically, we can follow a similar derivation as for Markovian systems

p(s1:k|y1:k−1) = p(sk|s1:k−1)p(s1:k−1|y1:k−1) (14.5)

p(s1:k|y1:k) =
1
Lk

p(yk|sk)p(s1:k|y1:k−1), (14.6)

Bayesian Methods for Tracking and Localization
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In either type of systems, feasibility of Bayesian filtering relies on compact
representation of the filtering distribution. Ideally, this distribution falls into
some parametric family p(sk|y1:k) = f (sk,λk), where λk is a fixed-size set of
parameters. In this case, filtering simply recomputes parameters λk from λk−1
and yk. The most common examples of such systems are HMMs and KFMs.
For HMMs, sk is a discrete variable, λk is a vector representing a discrete dis-
tribution. For KFMs, sk is a continuous variable, and f (sk,λk) = N (sk|mk,Vk)
is a Normal density function, where mk is the mean vector, Vk is covariance
matrix; and λk = {mk,Vk}.

Unfortunately, for many problems the filtering distribution cannot be com-
pactly represented [Murphy, 2002]. In some cases, the integral (14.3) does not
have a closed-form solution. In some other cases, including non-Markovian
systems, the size of parameter vector λk grows linearly, or even exponentially
with time, rendering filtering intractable. In the rest of this section, we present
two popular techniques for efficient approximating the filtering distribution.

Particle filtering. The particle filter is a simulation-based technique for ap-

The idea is to represent the continuous density
p(sk|y1:k) at each time step k by a random sample of I particles si

k with corre-
sponding probability masses (weights) πi

k. The filtering density at step k−1 is
approximated by

p(sk−1|y1:k−1) ≈
I

∑
i=1

πi
k−1 δ(sk−1 − si

k−1), (14.7)

where δ(sk−1 − si
k−1) is a delta function centered on the particle si

k−1. Us-
ing (14.7), the integration for computing the predictive density in (14.3) is now
replaced by the much easier summation

p(sk|y1:k−1) =
I

∑
i=1

πi
k−1 p(sk|si

k−1) (14.8)

The filtered distribution evaluates to

p(sk|y1:k) ≈ 1
Lk

p(yk|sk)
I

∑
i=1

πi
k−1 p(sk|si

k−1). (14.9)

Since all integrals are replaced by sums and the continuous densities by dis-
crete ones, the normalization term Lk of the filtered distribution is trivial,
namely, the sum of the weights.

tegral (14.3) is complicated.

proximating intractable filtering distributions in Markovian models [Doucet
et al., 2001]. It is particularly useful for continuous-state systems, where the in-
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Assuming a set of particles that approximate the posterior density
p(sk−1|y1:k−1) sufficiently well, the problem is how to project the new pos-
terior (14.9) to the form required by (14.7). In other words, how to sample
a set of particles from the new posterior p(sk|y1:k). Efficient sampling from
the posterior is the central theme of most methods in the particle filters litera-
ture [Doucet et al., 2001].

Assumed-density filtering. Unlike a particle filter, assumed-density filtering
(ADF) is a deterministic technique [Boyen & Koller, 1998; Murphy, 2002].
It approximates the filtering distribution with a parametric analytical family
p(sk|y1:k) ≈ q(sk,λk). Importantly, ADF is applicable to both Markovian and
non-Markovian systems.

Below, we show how ADF applies to non-Markovian systems, where
p(s1:k|y1:k) can be compactly represented as a product of simpler density func-
tions. Assume at step k−1

p(s1:k−1|y1:k−1) ≈ q(s1:k−1,λk−1) =
k−1

∏
τ=1

f (sτ|λk−1,τ).

If states are discrete, than f has to be a multinomial (discrete) distribution.
When states are continuous, we are free to choose any function f with parame-
ters λk,τ that will represent the density. After executing (14.5) and (14.6), the
next-step filtering density becomes

p(s1:k|y1:k) ≈ q̃(s1:k) =
1
Lk

p(yk|sk)p(sk|s1:k)
k−1

∏
τ=1

f (sτ,λk−1,τ) (14.10)

The expression q̃(s1:k) generally does not belong to the assumed factorial fam-
ily q(s1:k). We will approximate it with such a function form the family that
minimizes the Kullback-Leibler (KL) divergence. KL divergence measures the
distance between two distributions q̃(x) and q(x)

KL(q̃(x)||q(x)) =
∫

q̃(x) log
(

q̃(x)
q(x)

)
dx.

According to a standard result [Cover & Thomas, 1991], the closest factorial
distribution to any q̃(s1:k) is a product of its marginals ∏k

τ q̃(sτ). If the states
are discrete, the marginals will already be multinomials and f (sτ,λk,τ) = q̃(sτ).
For continuous states, the marginals q̃(sτ) need to be further approximated by
the KL-closest density function f (sτ,λk,τ). The parameters of this function
follow from

λk,τ = argminλKL(q̃(sτ)|| f (sτ,λ)) .

Bayesian Methods for Tracking and Localization
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Efficiency of ADF methods crucially depends on the feasibility of this min-
imization problem. Examples and extensions of this technique are provided
in [Murphy, 2002].

14.3 Localization of a mobile platform
A problem that can be addressed using the above techniques is robot local-

ization. The term refers to the ability of a mobile robot to predict and maintain
at any time step its state (position and orientation) within its environment. As
in object tracking, robot localization can be regarded as an on-line filtering
problem: estimate the current state of the robot given an initial state estimate
and a sequence of observations.

Formally, we assume that at time step k the state of the robot is a ran-
dom variable sk ∈ R

3 that involves the position (x,y) and orientation (θ) of
the robot. Moreover, we assume a given stochastic transition (motion) model
p(sk+1|sk,uk) for a robot action uk that is issued at time step k, and which
changes the state of the robot stochastically from sk to sk+1. The transition
model is assumed Gaussian, with mean computed from the issued action of
the robot (translation-rotation), and standard deviation given by the odometry
noise characteristics (which are known for the particular robot or have been
computed in advance from a training set).1 We also assume that in each time
step k the robot observes a high-dimensional sensor vector yk ∈ R

d , which is
related to the robot state through a stochastic observation model p(yk|sk). The
observations {yk} are assumed conditionally independent given the states {sk}.
Robot localization amounts to estimating in each time step k a posterior den-
sity p(sk|y1:k) over the state space, that characterizes the belief of the robot
about its current state at time k given its initial belief p(s0) and the sequence
of observations y1, . . . ,yk up to time step k.

Many techniques have been developed for robot localization in the last cou-
ple of years, most of which rely on the use of a Kalman filter: this estimates
the state of the robot by means of a Gaussian distribution with a certain mean
and covariance matrix. Such an approach essentially relies on the assumption
that the state vector is always Gaussian distributed, which can be a restrictive
assumption in case the environment exhibits perceptual aliasing: two percep-
tually distinct locations may look identical to the sensor of the robot.

To deal with perceptually aliased environments, an alternative representa-
tion involves the use of a particle filter. As explained above, a particle filter
represents the distribution of the robot state using a set of ‘particles’ scattered
over the state space. Each particle can be viewed as a hypothesis about the true
location of the robot at any time step, and the complete set of particles defines

1In the following, we assume the existence of an action uk in the transition model and write p(sk|sk−1).
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the set of all possible hypotheses where the robot could be. Such an (approx-
imate) filter has been employed in several mobile robot applications recently,
with reported success [Thrun et al., 2001].

14.3.1 Particle filter implementation
In this section we provide more details about the use of a particle filter in

robot localization. As explained above, a particle filter represents the filtering
density at time step k by a weighted set of I particles scattered over the robot’s
state space, given by (14.7). Consequently, the predictive density (14.8) is a
mixture of I components (transition kernels), one for each particle si

k−1. A
way to sample a new set of particles for the next step filtering density, referred
to in the literature as Sampling/Importance Resampling (SIR) [Gordon et al.,
1993; Isard & Blake, 1998; Delaert et al., 1999], involves first sampling from
the above predictive density: select the i-th mixture component p(sk|si

k−1) with
probability πi

k−1, and then draw a sample from it (which is trivial if the tran-
sition model is Gaussian). Each sampled particle s j

k is then assigned weight
π j

k proportional to the likelihood p(yk|s j
k). Finally a resampling step is taking

place in order to make all particle weights equal.
A problem with the SIR filter is that it requires very many particles to con-

verge when the likelihood function p(y|s) is too peaked or is situated in one
of the prior’s tails [Pitt & Shephard, 1999]. The latter is much more severe
in case of outliers, model-implausible observations that occur when there is
image occlusion or other unexpected effects in the environment. An alterna-
tive sampling method has been proposed in [Pitt & Shephard, 1999] under the
name auxiliary particle filter. The main idea is to sample from the posterior
in (14.9) after inserting the likelihood inside the mixture:

p(sk|y1:k) ∝
I

∑
i=1

πi
k−1 p(yk|sk)p(sk|si

k−1) (14.11)

and treat the products πi
k−1 p(yk|sk) as component probabilities in order to sam-

ple from the respective mixture. Because the likelihood p(yk|sk) in the above
product involves the unobserved state vector sk, an approximation of the mix-
ture (14.11) can be used as

p̃(sk|y1:k) ∝
I

∑
i=1

πi
k−1 p(yk|µi

k)p(sk|si
k−1) (14.12)

where µi
k is any value associated with the i-th component transition density

p(sk|si
k−1), for example its mean. After a set of j = 1, . . . , I particles have
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been sampled2 from the mixture (14.12), with locations s j
k, their weights are

set proportional to

π j
k ∝

p(yk|s j
k)

p(yk|µi j
k )

(14.13)

where µi j
k is the associated value of the mixture component p(sk|si j

k−1)
in (14.12) from which the particle j was sampled. Setting the weights as
in (14.13) has the additional benefit of creating particles with much less vari-
able weights than for the original SIR method, which has advantages in case
of outliers.

The auxiliary particle filter can be regarded as a one-step look-ahead proce-
dure, where a particle si

k−1 is propagated to µi
k in the next time step in order

to assist the sampling from the posterior. The resulting method is particularly
efficient since it requires only the ability to sample from the transition model
and evaluate the likelihood function p(yk|sk). This makes it very attractive
compared to alternative methods that require specialized data structures for
sampling from the posterior.

14.3.2 The sensor model
Since the sensor observations yk are typically high-dimensional (e.g., cam-

era images), computing a good observation model p(yk|sk) is a computation-
ally expensive problem, and one has to resort to simpler, lower-dimensional
models. A solution we have adopted in our system is to linearly project (using
principal component analysis (PCA) or some other linear projection method) a
raw observation yk to a low-dimensional feature vector zk, and define an obser-
vation model for the low-dimensional features zk. The sensor model p(zk|sk) in
the reduced space is computed non-parametrically from a training set of state-
feature pairs {s∗n,z∗n} (with the z∗n computed by projecting from corresponding
y∗n) using nearest neighbor density estimation:3

p(yk|sk) = p(zk|sk) = α
J

∑
j=1

λ j(zk)φ(sk|s∗j), (14.14)

hence, it is a mixture of J components φ(s|s∗j), each weighted by λ j(z), which
is computed as follows: We first find the J nearest neighbors z∗j of z among the
{z∗n} training data. This can be done efficiently, with average cost O(J logK),

2This involves a multinomial sampling on the weights, and there is an O(I) procedure for doing this [Pitt &
Shephard, 1999].
3Note that this is much easier than modeling the density p(y|s) directly in the y space because the dimen-
sionality of the state s is low (three).
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using methods from computational geometry (e.g., kd-trees). We then sort
these neighbors z∗j by increasing distance to z, and for each nearest neighbor z∗j
we extract from the training set the corresponding state s∗j . Each s∗j defines a re-
spective component φ(s|s∗j) in the mixture (14.14), where φ(s|s∗j) is a Gaussian
kernel centered on s∗j with bandwidth equal to half the bin size of the grid of
the {s∗n} points. Finally, the mixing weights λ j(z) are positive and sum to one,
and decrease linearly with j:

λ j(z) =
2(J− j +1)

J(J +1)
.

Our sensor model also detects outliers (e.g., occlusions in the image), by using
a simple threshold test of the distance of an observation z to its first nearest
neighbor z j=1. If occlusion is detected, the auxiliary particle filter sampling is
not used and the filter just propagates the particles from the previous time step
according to the transition model. Further details and experiments are provided
in [Vlassis et al., 2002].

14.4 Tracking with distributed cameras
In this section we demonstrate how inference in an appropriately defined

DBN leads to a multi-camera multi-object tracking algorithm. The fundamen-
tal problem in multi-object tracking is association of incoming observations
with trajectories. Typical cameras cannot directly observe the identity of an
object. Therefore, we design a probabilistic model that explicitly identifies ob-
jects with hidden labels, and provides a set of probabilistic dependencies that
couple the readings from the cameras with the labels. Under such a frame-
work, we resolve association ambiguities by finding the most likely label for
each observation according to the filtering density.

14.4.1 Problem formulation
We consider tracking people in wide areas, such as airports, where the cam-

eras observe relatively small, disjoint regions from the global area of inter-
est [Pasula et al., 1999]. Moreover, we assume that every camera locally tracks
a person within its field-of-view (FOV). When the person leaves the FOV, a
camera reports a single observation yk that summarizes the local trajectory of
the person. In such a setup, we aim to (re-)identify people when they move
between FOVs by association of the observations yk with global trajectories.

We process observations from all cameras centrally, and treat k = 1,2, . . .,
as a central index that preserves time-order of observations. It is also assumed,
that each observation yk = {ok,dk} includes color features ok, and spatio-
temporal features dk = {lk, te

k , t
q
k ,be

k,b
q
k}, where lk is the camera location, te

k ,b
e
k

(tq
k ,bq

k) are the time and frame border of entering (quitting) the FOV.
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Appearance features. Typically, the color features ok are noisy observations
of some constant intrinsic properties of a person. When observed noiseless,
these properties provide the key cues for distinguishing people from each other.
The noise arises from camera jitter and variations in illumination or pose. To
suppress the illumination-originated artifacts we will use channel-normalized
color space [Zajdel et al., 2004]. Explicit compensation for the other noise
sources requires complicated analysis. Instead, we assume that these sources
introduce stochastic, Gaussian noise. For every observed r-vector ok we intro-
duce parameters xk = {mk,Vk} of a Normal density function that generated ok.
The r×1 mean vector m describes the person-specific features. The r× r co-
variance matrix V models person-specific sensitivity to the jitter and changing
pose. For instance, the appearance of somebody dressed uniformly is relatively
independent of pose, so his/her covariance V has small eigenvalues. In con-
trast, the appearance of a person wearing non-uniform colors, is very sensitive
to pose changes. This is modeled with a ’broad’ density, i.e., V with large
eigenvalues.

As we have seen, x = {m,V} describes object-specific properties. These
properties are not directly observed, therefore we treat x as a latent state of a
person. The state is a hidden random variable with a prior distribution

π(x) = φ(x|θ0), (14.15)

where φ(x|θi) is appropriate parametric density for mean and covariances and
θi = {ai,κi,ηi,Ci} are parameters [Gelman et al., 1995]. We will set θ0 to
define relatively vague prior distribution.

Spatio-temporal features. To understand the role of the spatio-temporal
features dk (time, location, etc.) consider a sequence {d(n)

1 ,d(n)
2 , . . .} attributed

to the nth person (denoted by the superscript). This sequence defines the path
of the person in the global area of interest. Depending on the layout of cam-
era locations, certain paths will be more likely than the other. We will define
path probabilities using a simple, first-order Markov chain. This model as-
sumes that a path starts by sampling d(n)

1 from an initial distribution pδ0(d
(n)
1 ),

and is extended by sampling d(n)
i+1 from a transition distribution pδ(d

(n)
i+1|d(n)

i )
that depends only on the last element in the path. Appropriately selected pδ
and pδ0 will exclude physically impossible paths (e.g. with zero or negative
travel times) and put high likelihood to the paths commonly followed in the
considered area.

14.4.2 Graphical model
So far we have described our basic probabilistic assumptions about the

process that yields observations of a single person. To make our model handle
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observations of multiple persons, we introduce additional hidden variables –
association variables. Since the observations arrive from cameras one-by-one,
our model will be organized into slices, each corresponding to a single yk.

Association variables. For every yk, the model maintains a discrete label �k
that denotes the person represented by yk. For convenience, at every slice k,
the model maintains also a set of auxiliary variables: a counter ck, and pointers
z(1)

k , . . . ,z(k)
k . The counter, c indicates the number of objects present in the

data y1:k. The nth pointer, z(n)
k , denotes the slice when the nth person was

last observed before slice k. Value z(n)
k = 0 indicates that person n has not

yet been observed. At slice k there can be up to k persons, so we need z(n)
k

for n = 1, . . . ,k. We will jointly denote association-related variables as hk ≡
{�k,ck,z

(1)
k , . . . ,z(k)

k }.

One-slice generation.

to reconstruct the process that generates observations.
We begin by initializing the counter, c0 = 0, and generate the observations

one-by-one. Generation of yk starts by setting the label �k. We assume that
people enter FOVs irregularly, so we choose uniformly between one of the
known ck−1 persons or a new person who will receive the next available label
(symbol “∼” reads “distributed as”);

�k ∼ Uniform(1, . . . ,ck−1,ck−1 +1). (14.16)

Given the label we deterministically update the counter

ck = ck−1 +[�k > ck−1] (14.17)

where [ f ] is an indicator function; [ f ]≡ 1(0) iff the binary proposition f is true
(false). If the label indicates a new person, �k = ck−1 +1, then the counter in-
creases, as in (14.17). A similar update rule can defined for the pointers which
depend on past pointers values and the past label [Zajdel et al., 2004].Next,
we generate the state xk of the person indicated by �k. By our assumption the
person’s state does not change, so we set xk = x j, where j = z(�k)

k points to the
slice when the person was previously observed. If the person has not been yet
observed, then we sample the state from prior;

xk = x j[ j > 0]+ xnew[ j = 0] xnew ∼ π(x), (14.18)

Given the state xk ={ mk,Vk} (i.e. parameters of a Normal density) and the
pointer to the last observation of the current person j = z(�k)

k
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h1 · · · hk−1 hk .

x1 · · · xk−1 xk

y1 · · · yk−1 yk

.

Figure 14.2. Graphical representation of the model for multi-camera multi-object tracking.

k = {ok,dk};

ok ∼ N (mk,Vk) dk ∼ pδ(dk|d j), (14.19)

Graphical representation. Figure 14.2 depicts the structure of proba-
bilistic dependencies between the variables of our model. The state of our
dynamic system sk = {xk,hk} includes the state of the current person and
association variables (including the label of the current person). The sen-
sor model p(yk|xk,hk,y1:k−1) is defined by (14.19). The transition model
p(hk,xk|x1:k−1,hk−1) follows from (14.16)–(14.18). Depending on hk, the state
xk may be a copy of any past state x j, j < k, therefore the node xk connects to all
past nodes x1:k−1. This shows that our model is a non-Markovian time-series
model.

14.4.3 Assumed-density filtering
In the classical tracking scenario, one aims to associate an incoming ob-

servation yk on-line, that is, on the basis of the currently available data y1:k.
Under our model, this objective corresponds to inference on label �k from y1:k.
However, due to the coupling with the states and other hidden variables, the
filtering distribution for our model is p(x1:k,hk|y1:k). It is updated recursively:

p(x1:k,hk|y1:k) =
1
Lk

p(yk|xk,hk,y1:k−1)p(x1:k,hk|y1:k−1) (14.20)

p(x1:k,hk|y1:k−1) = ∑
hk−1

p(hk,xk|x1:k−1,hk−1)p(x1:k−1,hk−1|y1:k−1). (14.21)

Unfortunately, the continuous states depend on a joint label sequence �1:k that
has O(k!) possible instantiations. Thus, repeated summations over label �k−1
in (14.21) result in a function that cannot be represented in a closed-form, ren-
dering our model an intractable hybrid model [Lerner & Parr, 2001]. Note,
that the intractability of multi-object tracking is a general problem. A popu-
lar heuristic method to sidestep this problem is multiple hypothesis tracking,

y
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257

Bayesian framework allows to apply approximations with a stronger theo-
retical basis. Here, we follow the assumed-density filtering approach with the
following approximating family

p(x1:k,hk|y1:k) ≈ qk(�k,ck)
k

∏
i=1

φ(xi|θi,k)qk(z
(i)
k ), (14.22)

where qk represents a probability table for appropriate discrete variable, and
φ(xi|θi,k) is a probability density function as defined in (14.15). At slice k−1
our algorithm maintains an approximation to the filtered distribution in the as-
sumed factorial family (14.22). After one-slice update, the expression (14.20)
will not admit the factorial representation. The nearest in the KL-sense fac-
torial distribution is the product of marginals [Cover & Thomas, 1991], so
ADF recovers the assumed family by computing the marginals of (14.20). The
marginals on discrete variables immediately take the requested form. Each
marginal on the continuous state evaluates to a mixture. This mixture has to
be projected to the closest (in the KL-sense) assumed density function (14.15).
For details and experiments see [Zajdel et al., 2004].

14.5 Conclusions and remaining issues
We have presented a probabilistic framework for solving complex problems

that involve recovering meaningful low-dimensional state information from a
series of noisy high-dimensional observations. The presented framework lays
down a general pattern for the design of algorithms dealing with noisy data. It
is based on establishing a generative – or – causal relation between the state of
a latent, low-dimensional dynamic system and the observations. Given obser-
vations, this relation can be “inverted

“

using Bayesian inference techniques.
The discussion in this tutorial focused on on-line inference techniques

(Bayesian filtering). However, the Bayesian framework provides also a class
of methods for off-line improvement of state estimates using future obser-
vations. These techniques include Variational methods [Jordan, 1998], Ex-
pectation Propagation (EP) [Minka, 2001] and Markov Chain Monte Carlo
(MCMC) sampling [Murphy, 2002].

Another aspect closely related to the presented methodology is learning of
probabilistic models from data [Jordan, 1998]. In some problems, we have a set
of supervised training examples, that includes observations and the underlying
states. In some other, we want the learn the probabilistic model, despite the
fact that the states are not available. This can be achieved with the powerful
Expectation Maximization (EM) algorithm [Murphy, 2002].

Bayesian Methods for Tracking and Localization
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Chapter 15

PRIVATE PROFILE MATCHING

Berry Schoenmakers and Pim Tuyls

Abstract In this chapter we present protocols for privately and securely matching two
profiles (modelled as bit vectors), where a match means that the Hamming dis-
tance between the profiles is sufficiently small. The protocol does not reveal any
information other than the fact whether the two profiles match.

We use the framework of secure computation based on threshold homomor-
phic cryptosystems, as put forth by Cramer, Damgård, and Nielsen at Euro-
crypt’01. More in particular, we use the extension introduced by Schoenmakers
and Tuyls at Asiacrypt’04, which replaces the general multiplication gate by a
restricted multiplication gate, called the conditional gate. The advantage of the
conditional gate is that threshold homomorphic ElGamal suffices as the underly-
ing cryptosystem, which allows for efficient discrete log based implementations,
whereas a general multiplication gate requires the use of more involved RSA-
like cryptosystems, such as Paillier’s cryptosystem.

The computational complexity of the protocol is dominated by the number
of conditional gates needed. For profiles of length m, our protocol requires only
O(m) conditional gates, where the hidden constant is small.

Keywords Profile matching, secure computation, homomorphic encryption, threshold de-
cryption, ElGamal cryptosystem.

15.1 Introduction
An increasing amount of information (address information, medical data,

financial data, biometric identifiers, preference data, ...) about human beings is
stored in electronic form. Originally these data were mainly passively used as
reference information (e.g., to give people access to certain services or build-
ings, for looking up information about people, etc.). Nowadays these data are
more and more also actively used by companies, service providers, and persons
themselves. Recommender systems, for instance, send their clients targeted ad-
vertisements for items corresponding to their profiles. Dating services on the
internet use personal data to find a partner for their clients. Currently there is a
growing concern about the way personal data are handled by service providers
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and companies. Clearly, active use of personal data makes them more vul-
nerable to leakage of sensitive information. In order to guarantee privacy a
well-defined security system using privacy preserving protocols is needed.

In this chapter, we consider a simple case of the above sketched privacy
problem called private profile matching. A profile is a list describing certain
properties of a human being. As an example one can think of a file containing
the preference list of a user rating a list of songs, restaurants, etc. according
to his taste. A second example of a profile is a reference biometric identifier
(fingerprint, iris scan, ...) of a user that is used for biometric authentication.
Profile matching is defined as the process where two entities want to find out
whether their profiles match; i.e., whether their profiles are similar with respect
to some predefined similarity measure. Private profile matching is the problem
of matching two profiles without revealing any other information about the
entities’ individual profiles than whether they match or not. We present two
motivating examples. The first one gives a privacy problem in a case where
data are actively used, while the second example provides an example for the
passive case (access control).

Our first example concerns shared interests, where two users want to find
out whether they have some shared music interest, for instance. In this case
the profiles consist of a list of songs together with a rating expressing how
much they like the song. The problem addressed here is that the two people
do not want to reveal any information about their preferences unless the other
person has a similar music interest. Therefore, they need a protocol to find
out (in a secure way) whether they have a common music interest or not. In
case they find a large similarity between their profiles, they only know that
their interests are close but do not obtain any more details about each others
profiles. Similarly, a low similarity between their profiles reveals only that
their tastes are different.

As a second example we consider the setting of private biometrics. Biomet-
ric authentication is a special case of private profile matching in the follow-
ing sense. During biometric authentication the biometric identifier of a user
measured during the authentication phase has to be matched with her refer-
ence biometric identifier that was stored during the enrollment phase in some
reference database. The comparison of these two biometric identifiers with
respect to some similarity measure can be seen as a profile matching proto-
col. Since biometric identifiers contain sensitive information about people and
can be used to track their behavior, there is a privacy problem with biometric
authentication [Tuyls & Goseling, 2004]. This problem was studied in sev-
eral papers [Linnartz & Tuyls, 2003; Dodis, Reyzin & Smith, 2004; Tuyls &
Goseling, 2004], where solutions to this problem are presented in an informa-
tion theoretic setting. It was however shown [Linnartz & Tuyls, 2003] that
from an information theoretic point of view full privacy cannot be achieved.
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The private profile matching protocol developed in this chapter can be used to
implement biometric authentication without leaking any information (under a
computational assumption) on the biometric identifier of the person involved.

We investigate the private profile matching problem within the setting of
secure multi-party computation. More in particular we use the framework
of [Cramer, Damgård & Nielsen, 2001] and its extension presented in [Schoen-
makers & Tuyls, 2004]. The protocols that we present guarantee two properties
to the users:

The protocol does not reveal any other information on the inputs of the
users than what leaks through the output of the protocol.

The protocol guarantees that the two users performed their computations
correctly. If one of the users (deliberately or not) does not follow the pro-
tocol, this is detected and the protocol is aborted. Moreover no additional
information can be obtained by an adversary using such a strategy.

In this chapter we restrict ourselves to the case where the entries of the profiles
are binary values. In the case of a preference list they indicate whether a user
likes a certain item or not. We refer to [Freedman, Nissim & Pinkas, 2004] for
a recent, more extensive overview of secure matching problems.

This chapter is organized as follows. In Section 15.2 we present a brief
introduction to threshold homomorphic cryptosystems and their application
in secure multi-party computation. First, we explain the basics of threshold
homomorphic ElGamal encryption. Secondly, we give an overview of basic
primitives that we need such as threshold ElGamal decryption and Σ-protocols.
Finally, we describe two secure multiplication protocols (the private multiplier
gate and the conditional gate) and explain how these can be used to evaluate
any function consisting of multiplication and addition gates only in a secure
way. The secure approximate matching problem is treated in Section 15.3.
This computation is best described in terms of a secure adder and a secure
comparison circuit which are presented in detail in this section. Finally, we
present some variants to the posed problem.

15.2 Preliminaries
In this section we summarize the techniques used in our protocol for private

matching of Section 15.3. We mainly recapitulate the results of [Schoenmakers
& Tuyls, 2004].

15.2.1 Secure computation based on threshold
homomorphic cryptosystems

Private Profile Matching

tosystems with the distinguishing features that (i) key generation is a protocol
Threshold homomorphic cryptosystems are a special type of public key cryp-
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party gets a share of the corresponding private key (but the private key is never
known to a single party), (ii) encryption is a (probabilistic) algorithm behaving,
for a fixed public key, as a group homomorphism mapping plaintexts to cipher-
texts, and (iii) decryption is a protocol between sufficiently many of the parties
holding shares of the private key, such that they are able to jointly recover the
plaintext for a given ciphertext (again, without ever recovering the private key
itself. The threshold homomorphic ElGamal cryptosystem, described below, is
a primary example of such a cryptosytem.

Threshold homomorphic cryptosystems provide a basis for secure multi-
party computation in the cryptographic model [Franklin & Haber, 1996; Juels
& Jakobsson, 2000; Cramer, Damgård & Nielsen, 2001; Damgård & Nielsen,
2003; Schoenmakers & Tuyls, 2004]. For a given n-ary function f , one com-
poses a circuit C of elementary gates that given encryptions of x1, . . . ,xn on its
input wires, produces an encryption of f (x1, . . . ,xn) on its output wire. The
elementary gates operate in the same fashion. The wires of the entire circuit
C are all encrypted under the same public key; the corresponding private key
is shared among a group of parties. It is customary to distinguish addition
gates and multiplication gates. Addition gates can be evaluated without having
to decrypt any value, taking full advantage of the homomorphic property of
the cryptosystem. Multiplication gates, however, require at least one thresh-
old decryption to succeed even for an honest-but-curious (passive) adversary.
To deal with a malicious (active) adversary, multiplication gates additionally
require the use of zero-knowledge proofs.

A major advantage of secure computation based on threshold homomor-
phic cryptosystems is the fact that it results in particularly efficient solu-
tions, even for active adversaries. The communication complexity, which is
the dominating complexity measure, is O(nk|C|) bits for [Juels & Jakobsson,
2000; Cramer, Damgård & Nielsen, 2001; Damgård & Nielsen, 2003; Schoen-
makers & Tuyls, 2004], where n is the number of parties, k is a security para-
meter, and |C| is the number of gates of circuit C.

We apply the approach of [Schoenmakers & Tuyls, 2004], which allows for
threshold homomorphic ElGamal to be used as the underlying cryptosystem.
See [Schoenmakers & Tuyls, 2004] for a comparison with the approaches of
[Juels & Jakobsson, 2000] and [Cramer, Damgård & Nielsen, 2001; Damgård
& Nielsen, 2003].

15.2.2 Threshold homomorphic ElGamal
Discrete log setting. Let G = 〈g〉 be a finite cyclic (multiplicative) group of
prime order q, which means that the elements of G can be obtained as pow-
ers of the generator g: 1,g,g2, . . . ,gq−1 ∈ G and gq = 1. As usual, we assume
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that the Decision Diffie-Hellman (DDH) problem is infeasible for G, which is
the problem of distinguishing between the distribution {(gα,gβ,gγ) | α,β,γ ∈R
Zq} consisting of uniformly distributed random triples and the distribution
{(gα,gβ,gαβ | α,β ∈R Zq} consisting of uniformly distributed Diffie-Hellman
triples. This assumption implies that the Diffie-Hellman (DH) problem, which
is to compute gαβ given gα,gβ ∈R G, is infeasible as well. In turn, this implies
that the Discrete Log (DL) problem, which is to compute α = logg h given
h = gα ∈R G, is infeasible.

Needless to say, we need to assume that multiplication in G is easy, so that
exponentiation in G is easy as well. Using repeated squaring, one computes
gα, for any given integer α, 0 ≤ α < q, using O(logq) multiplications in G.

Homomorphic ElGamal encryption. For public key h ∈ G, a message
m ∈ Zq is encrypted as a pair (a,b) = (gr,gmhr), with r ∈R Zq. Encryp-
tion is additively homomorphic: given encryptions (a,b),(a′,b′) of messages
m,m′, respectively, an encryption of m + m′ is obtained as (a,b) � (a′,b′) =
(aa′,bb′) = (gr+r ′

,gm+m′
hr+r ′

).
Given the private key α = logg h, decryption of (a,b) = (gr,gmhr) is per-

formed by first calculating b/aα = gm, and then solving for m ∈Zq. In general,
this is exactly the DL problem, which we assume to be infeasible. The way out
is to require that message m is constrained to a sufficiently small set M ⊆ Zq.1

In our case, the cardinality of M will be very small, often |M| = 2.
Homomorphic ElGamal encryption is semantically secure assuming the in-

feasibility of the DDH problem. Throughout this chapter we use [[m]] to denote
the set of all q possible ElGamal encryptions of m under some understood pub-
lic key h, and, frequently, we also use [[m]] to denote one of its elements. More
formally, using that [[0]] is a subgroup of G×G, [[m]] is the coset of [[0]] in G×G
containing encryption (1,gm). Hence, encryptions (a,b) and (a′,b′) belong to
the same coset if and only if logg(a/a′) = logh(b/b′). Lifting the operations on
the direct product group G×G to the cosets, we thus have, for x,y ∈ Zq, that
[[x]]� [[y]] = [[x+y]], and [[x]]y = [[xy]], where (a,b)c = (ac,bc) for c∈Zq. Hence,
[[x]]� [[y]]−1 = [[x− y]]. Addition and subtraction over Zq and multiplication by
a publicly known value in Zq can thus be performed easily on encrypted val-
ues. These operations are deterministic. Another useful consequence is that
any encryption in [[x]] can be transformed into a statistically independent en-
cryption in [[x]] by multiplying it with a uniformly selected encryption in [[0]];
this is often referred to as “random re-encryption.”

1For intervals M, the Pollard-λ (“kangaroo”) method runs in O(
√|M|) time using O(1) storage.
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Σ-protocols. We need some well-known instances of Σ-protocols, which each
take only a small, constant number of exponentiations in G for the prover and
the verifier. The simplest case is Schnorr’s protocol for proving knowledge of
a discrete log α, on common input a = gα [Schnorr, 1991], and Okamoto’s
variant for proving knowledge of α,β, on common input a = gαhβ [Okamoto,
1993] . Another basic case is Chaum-Pedersen’s protocol for proving knowl-
edge of α, on common input (a,b) = (gα,hα), which is a way to prove that
(a,b) ∈ [[0]] without revealing any information on α [Chaum & Pedersen,
1993]. Applying OR-composition [Cramer, Damgård & Schoenmakers, 1994],
these basic protocols can be combined into, for instance, a Σ-protocol for prov-
ing that (a,b) ∈ [[0]]∪ [[1]], where the common input is an ElGamal encryption
(a,b). The latter protocol thus proves that the message encrypted (which is an
element of Zq) actually is a “bit”, without divulging any further information
on the message.

In general, a Σ-protocol for a relation R = {(v,w)} is a three-move protocol
between a prover and a verifier, where the prover does the first move. Both
parties get a value v as common input, and the prover gets a “witness” w as
private input, (v,w) ∈ R. A Σ-protocol is required to be a proof of knowledge
for relation R satisfying special soundness and special honest-verifier zero-
knowledge. See [Cramer, Damgård & Schoenmakers, 1994] for details.

For simplicity, we will only use the non-interactive versions of these Σ-
protocols, which are obtained via the Fiat-Shamir heuristic, that is, by comput-
ing the challenge as a hash of the first message (and possibly other inputs).

Threshold ElGamal decryption. We use a (t + 1,n)-threshold ElGamal
cryptosystem, 0 ≤ t < n, in which encryptions are computed using a common
public key h (as above) while decryptions are done using a joint protocol be-
tween n parties P1, . . . ,Pn. Each party Pi holds a share αi ∈Zq of the private key
α = logg h, where the corresponding value hi = gαi is public. As long as more
than t parties take part, decryption will succeed, whereas t or fewer parties are
not able to decrypt successfully.

The parties initially obtain their shares αi by running a secure distributed
key generation protocol; see [Pedersen, 1991; Gennaro et al., 1999] for details.
We note that these protocols are very practical (the communication complexity
is O(n2k) bits for security parameter k, where the hidden constant is small).

For decryption of (a,b), party Pi, i = 1, . . . ,n, produces a decryption share
di = aαi along with a proof that loga di = logg hi. Assuming w.l.o.g. that parties
P1, . . . ,Pt+1 produce correct decryption shares, the message can be recovered
from gm = b/aα, where aα is obtained from d1, . . . ,dt+1 by Lagrange interpo-
lation. Assuming homomorphic ElGamal, m ∈ M will hold for some small set
M; if such m cannot be found decryption fails. Also, if fewer than t +1 parties
provide a correct decryption share, decryption fails.

Berry Schoenmakers and Pim Tuyls
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15.2.3 Special multiplication protocols
The results of the previous section imply that a function f can be evaluated

securely in a multiparty setting if f can be represented as a circuit over Zq con-
sisting only of addition gates and simple multiplication gates. Here, an addition
gate takes encryptions [[x]] and [[y]] as input and produces [[x]] � [[y]] = [[x + y]]
as output, and a simple multiplication gate takes [[x]] as input and produces
[[x]]c = [[cx]] as output, for a publicly known value c ∈ Zq. To be able to handle
any function f , however, we need more general multiplication gates for which
both inputs are encrypted.

In this section, we consider two special multiplication gates. If no restric-
tions are put on x or y, a multiplication gate, taking [[x]] and [[y]] as input and
producing [[xy]] as output efficiently, cannot exist assuming that the DH prob-
lem is infeasible.2 Therefore, two special multiplication gates were introduced
in [Schoenmakers & Tuyls, 2004], putting some restrictions on the multiplier
x. The first gate, referred to as the private-multiplier gate, requires that the
multiplier x is private, which means that it is known by a single party. The
second gate, referred to as the conditional gate, requires that the multiplier x is
from a two-valued domain.

Private-multiplier gate. We describe a multiplication protocol where the
multiplier x is a private input rather than a shared input. That is, the value
of x is known by a single party P. No restriction is put on the multiplicand y.
Multiplication with a private multiplier occurs as a sub-protocol in the protocol
for the conditional gate and is of use in other protocols as well.

Given encryptions [[x]] = (a,b) = (gr,gxhr) and [[y]] = (c,d), where party
P knows r and x, party P computes on its own a randomized encryption
[[xy]] = (e, f ) = (gs,hs) � [[y]]x, with s ∈R Zq, using the homomorphic prop-
erties. Party P then broadcasts [[xy]] along with a proof showing that this is the
correct output, which means that it proves knowledge of witnesses r,s,x ∈ Zq
satisfying a = gr, b = gxhr, e = gscx, f = hsdx.

Below, we will also use a variation of the above protocol, where the private
multiplier x is multiplied with several multiplicands yi at the same time.

Conditional gate. Next, we describe a multiplication gate for which the
multiplier x is from a two-valued domain, whereas the multiplicand y is un-
restricted, called the conditional gate, and show how to implement it by an

2Given gx,gy we form encryptions [[x]], [[y]] and feed these into the multiplication gate. The gate would
return an encryption [[xy]], which would give gxy upon decryption.
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efficient protocol, using just homomorphic threshold ElGamal. We will for-
mulate the conditional gate for the domain {−1,1}.3

Let [[x]], [[y]] denote encryptions, with x ∈ {−1,1} ⊆ Zq and y ∈ Zq. The
following protocol enables parties P1, . . . ,Pn, n ≥ 2, to compute an encryp-
tion [[xy]] securely. For simplicity, we assume that these parties also share the
private key of the (t + 1,n)-threshold scheme [[·]], where t < n. The protocol
consists of two phases.

1. Let x0 = x and y0 = y. For i = 1, . . . ,n, party Pi in turn takes [[xi−1]] and
[[yi−1]] as input, and broadcasts an encryption [[si]], with si ∈R {−1,1}.
Then Pi applies the private-multiplier multiplication protocol to multi-
plier [[si]] and multiplicands [[xi−1]] and [[yi−1]], yielding encryptions [[xi]]
and [[yi]], where xi = sixi−1 and yi = siyi−1.

2. The parties jointly decrypt [[xn]] to obtain xn, and check that xn ∈ {−1,1}.
Given xn and [[yn]], an encryption [[xnyn]] is computed publicly.

The output of the protocol is [[xnyn]]. Clearly, if all parties are honest, xnyn =
(∏n

i=1 si)2xy = xy.
The protocol requires a single threshold decryption only. Since xn ∈ {−1,1}

is required to hold, decryption is feasible for the homomorphic ElGamal en-
cryption scheme.

Note that we do not need to require that each si is in {−1,1} in phase 1..
For instance, parties P1 and P2 may cheat by setting s1 = 2 and s2 = 1/2.
Since s1s2 = 1, this type of “cheating” will go unnoticed in phase 2. if all other
parties are honest. However, the security of the protocol is not affected by such
“cheating.”

The fact that the conditional gate leaks no information on the inputs x and
y follows from the fact that the encryption scheme is semantically secure and
that the decrypted value xn is a random element in {−1,1} which is statistically
independent from x. For a more formal proof of this statement, we refer the
reader to [Schoenmakers & Tuyls, 2004].

15.2.4 Circuit evaluation
In this section, we briefly describe a protocol for evaluating a given circuit

composed of elementary gates, following [Cramer, Damgård & Nielsen, 2001].
Recall that our elementary gates operate over Zq, except that the first input of
a conditional gate is required to belong to a two-valued domain. It is clear that

3Domain {0,1} or any other domain {a,b}, a �= b, can be used instead, as these domains can be transformed
into each other by linear transformations: x �→ a′ +(b′ −a′)(x−a)/(b−a) maps {a,b} to {a′,b′}. These
transformations can be applied directly to homomorphic encryptions, transforming [[x]] with x ∈ {a,b} into
[[x ′]] with x ′ ∈ {a′,b′}.
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these elementary gates suffice to emulate any Boolean circuit. Specifically,
any operator on two bits x,y ∈ {0,1} ⊆ Zq can be expressed uniquely as a
polynomial of the form a0 + a1x + a2y + a3xy with coefficients in Zq. Hence,
any binary operator can be expressed using at most one conditional gate.

For convenience, we assume that parties P1, . . . ,Pn evaluating the circuit are
exactly the same as the parties for which the (t +1,n)-threshold homomorphic
cryptosystem has been set-up, where t < n. A circuit is evaluated in three
phases:

1. The parties encrypt their inputs using the threshold homomorphic cryp-
tosystem [[·]], and the parties are required to provide a proof of knowl-
edge for their inputs, and possibly that the inputs belong to a two-valued
domain.

2. The parties then jointly evaluate the circuit gate-by-gate. Conditional
gates at the same depth of the circuit are evaluated in parallel.

3. Finally, the parties jointly decrypt the outputs of the circuit.

Intuitively, this protocol is secure because the only values that are ever re-
vealed by it are (i) the values decrypted during the evaluation of the conditional
gates in phase 2 (but these values are statistically independent of the input val-
ues, assuming that at least one of the parties is honest) and (ii) the values de-
crypted in phase 3 (but these values are supposed to be revealed anyway). This
intuition has been confirmed by a rigorous security proof given in [Cramer,
Damgård & Nielsen, 2001], and in [Schoenmakers & Tuyls, 2004] we have
shown that security is maintained if the general multiplication gate of [Cramer,
Damgård & Nielsen, 2001] is replaced by our conditional gate.

When dealing with large circuits, it’s common to divide up phase 2 in the
evaluation of several sub-circuits. Each sub-circuit has a set of input wires
and a set of output wires. At the start of the evaluation of a sub-circuit, an
encrypted value is given for each input wire. Then the gates of the sub-circuit
are evaluated until each of the output wires is assigned an encrypted value.

Thus, it makes sense to distinguish two basic cases of secure computations.
In the first case, the inputs are private, i.e., each of the inputs is known by one
of the parties. In the second case, the inputs are shared, meaning that the inputs
are given as encrypted values, and no single party knows these values. It turns
out that in the first case one may take advantage of the fact that (some of) the
inputs are private.

15.3 Secure approximate matching w.r.t. Hamming distance
Using the tools presented in the previous section, we will now construct

a protocol for privately matching two bit vectors. Two bit vectors (of equal
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length) are said to match approximately if the number of positions in which
they differ does not exceed a certain threshold value.

15.3.1 Introduction
Let X = (X1, . . . ,Xm) and Y = (Y1, . . . ,Ym) be bit vectors, m ≥ 1, and

let dH(X ,Y ) denote the Hamming distance between X and Y , defined by
dH(X ,Y ) = ∑m

i=1 Xi⊕Yi. Let T be a threshold value, 0≤ T ≤m. The problem of
securely matching bit vectors X and Y is to compute the value [dH(X ,Y ) ≤ T ]
securely, where [B] denotes the characteristic function for a condition B (if B
holds, then [B] = 1, and otherwise [B] = 0). We will at first assume that the
value of the threshold T must remain hidden too, and later show how to opti-
mize the protocol if T is a public value.

Thus, the problem is to compute the encrypted value [[[dH(X ,Y ) ≤ T ]]],
given encrypted bit vectors ([[X1]], ..., [[Xm]]) and ([[Y1]], ..., [[Ym]]), and given
encrypted bits ([[Ts−1]], . . . , [[T0]]) representing threshold value T = ∑s−1

j=0 Tj2 j,
where s = �log2(m + 2)�. We show how to solve this problem using a circuit
with 4m conditional gates only, following the approach presented in [Schoen-
makers & Tuyls, 2004].

As a first step, we note that dH(X ,Y ) = ∑m
i=1(Xi−Yi)2 = ∑m

i=1 Xi +Yi−2XiYi,
which shows that [[dH(X ,Y )]] can easily be computed using m conditional gates
and O(m) addition/subtraction gates. However, in order to compare the value
of dH(X ,Y ) securely with the value of T , we need to compute the binary rep-
resentation of dH(X ,Y ) rather than as an integer between 0 and m.

The outline of our secure computation of [dH(X ,Y ) ≤ T ] is now as follows,
see also Figure 15.1.

1. On input of X = (X1, . . . ,Xm) and Y = (Y1, . . . ,Ym), compute the vector
(H1, . . . ,Hm), where Hi = Xi +Yi −2XiYi.

2. Using an s-layer binary tree of adders, compute the sum S = ∑m
i=1 Hi,

representing the values at the successive layers of the tree as bit vec-
tors of increasing length. The value S is represented as a bit vector
(Ss−1, . . . ,S0), S = ∑s−1

j=0 S j2 j.

3. Given bit vectors (Ss−1, . . . ,S0) and (Ts−1, . . . ,T0) representing S and T
respectively, compute [S ≤ T ] using a comparator circuit.

15.3.2 Secure adder
Given bit vectors (xr−1, . . . ,x0) and (yr−1, . . . ,y0) representing nonnegative

integers x and y, respectively, we need to compute the bit vector (zr, . . . ,z0)
representing the integer z = x + y. This is a well-known problem, e.g. from
electrical engineering. The common approach is based on the use of half-
adders and full-adders, resulting in a circuit of about 5r non-trivial Boolean

Berry Schoenmakers and Pim Tuyls
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X1 Y1 X2 Y2

H1 H2

X3 Y3 X4 Y4

H3 H4

X5 Y5 X6 Y6

H5 H6

X7 Y7 X8 Y8

H7 H8

T

Figure 15.1. Secure matcher circuit, case m = 8.

gates (such as AND, OR, NAND, NOR, and XOR gates), leading to a secure
computation using about 5r conditional gates.

The advantage of the conditional gate, however, is that one of its inputs
is not restricted to be binary. Therefore, we get a much better solution by
considering circuits defined over the integers, with the restriction that for each
multiplication at least one of the inputs is binary. This way we are able to limit
the number of conditional gates to about 2r.

We propose the following circuit for the computation of x + y. The output
of the circuit consists of the bits (cr−1,zr−1, . . . ,z0), where

zi = xi + yi + ci−1 −2ci,
c−1 = 0, ci = xiyi + xici−1 + yici−1 −2xiyici−1.

By writing ci = xi(yi + ci−1 −2yici−1)+ yici−1 it follows that each ci, 1 ≤ i <
r, can be computed securely using two conditional gates only: first compute
wi = yici−1 and then compute ci = xi(yi + ci−1 − 2wi)+ wi. As c0 = x0y0 can
be evaluated using just one conditional gate, a total of 2r−1 conditional gates
suffices to compute x + y securely. We conjecture that 2r − 1 is actually the
minimal number of conditional gates required, as one needs to compute in any
case the terms xiyici−1, each of which requiring two multiplications.

Private Profile Matching
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15.3.3 Secure comparator
Given bit vectors (xr−1, . . . ,x0) and (yr−1, . . . ,y0) representing nonnegative

integers x and y, respectively, we need to compute [x≤ y]. For this we apply the
circuit for computing [x > y] of [Schoenmakers & Tuyls, 2004, Section 5.2],
and we simply ‘invert’ the output of this circuit.

So, the output is given by 1− tr−1, where

t0 = x0(1− y0), ti = (1− (xi − yi)2)ti−1 + xi(1− yi).

Note that this circuit inspects the bits of x and y, starting with the least sig-
nificant bits—intuitively, one would start to compare the most significant bits
first, but for an efficient circuit it actually seems better to start with the least
significant ones (see [Schoenmakers & Tuyls, 2004, Section 5.1], where a cir-
cuit traversing the bits starting at the least significant one is given using about
3r conditional gates).

A secure computation based on this circuit requiring 2r−1 conditional gates
is obtained by computing vi = yiti−1 and ti = ti−1 − vi − xi(ti−1 + yi −2vi −1),
for i = 1, . . . ,r−1. Again, we conjecture 2r−1 to be the minimum number of
conditional gates required to compute x > y.

15.3.4 Secure approximate matcher
As outlined above, we are now ready to present a secure computation for

matching two bit vectors with respect to Hamming distance. We simply put
together the circuits for the adders and the comparator, and we count the total
number of conditional gates needed. Let m denote the length of the inputs X
and Y and let s denote the bit length of m+1, s = �log2(m+2)�.

1. We need m conditional gates to compute the terms Hi = Xi +Yi −2XiYi,
1 ≤ i ≤ m. All of these conditional gates can be evaluated in parallel.

2. Next, we need a total of m−1 adders, each adder taking inputs of length
at most s, to compute the bit vector (Ss−1, . . . ,S0). Assuming that m = 2k,
we note that the total number of conditional gates is bounded above by

m
2
·1+

m
4
·3+ · · ·+ m

2k · (2k−1) = 3m−2k−3 = 3m−2s−1.

3. The secure computation of [S≤ T ] requires 2s−1 conditional gates only.

Thus, the total number of conditional gates is bounded above by 4m−2, if m
is a power of two.

The round complexity is as follows, assuming that each conditional gate
takes n rounds. Our circuits for secure addition and secure comparison take
O(nr) rounds each for inputs of length r. The total number of rounds is there-
fore O(n log2 m). We note that the round complexity can be improved at the
expense of a larger number of conditional gates.

Berry Schoenmakers and Pim Tuyls
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15.3.5 Variants

In the first variant, we assume that at least one of the input bit vectors is
private. Let’s say input X is private, whereas input Y is either private or shared.
We may exploit this by replacing the conditional gates used for the evaluation
of Xi ⊕Yi by private-multiplier gates. This reduces the total number of condi-
tional gates by m. The total number of conditional gates is then bounded by
3m−2.

For a second variant, we assume that the value of the threshold T is not
required to be hidden. As a consequence, the input y = (y0, . . . ,yr−1) to the
secure comparator becomes public, and the computation of the intermediary
values wi = yiti can be done publicly. The total number of conditional gates for
[S ≤ T ] then drops from 2s−1 to s−1, hence it is reduced by about log2 m.

Of course, both of these variants can be combined into a third variant that
requires about 3m− log2 m conditional gates.

Finally, as a variant of a different nature, we mention that one may of course
replace the ElGamal cryptosystem by any suitable threshold homomorphic
cryptosystem to obtain solutions relying on different computational assump-
tions. For instance, Paillier’s cryptosystem may be used instead, which allows
one to replace the conditional gates in our circuits by the general multiplication
gates of [Cramer, Damgård & Nielsen, 2001]. This will reduce the round com-
plexity, since a conditional gate requires O(n) rounds, whereas multiplication
is done in O(1) rounds in [Cramer, Damgård & Nielsen, 2001]. However, the
computational cost of the multiplication gates will increase substantially, as
computing with Paillier encryptions is much more expensive than computing
with ElGamal encryptions, especially when elliptic curves are used to imple-
ment the latter.

15.4 Conclusion
In this chapter, we have shown how to securely match two profiles, given

as bit vectors. A similar approach can be applied to related problems. For
example, instead of bit vectors, one may consider vectors over {0, . . . ,2� −1}
for some given �, in which case the Hamming distance may be replaced by
the Euclidean distance defined as dE(X ,Y ) = ∑m

i=1(Xi −Yi)2, for vectors X ,Y
of length m. Assuming that the elements of vectors X and Y are given by
their encrypted bit representations, one may compute encryptions of the terms
(Xi −Yi)2, also bitwise, and then add these values bitwise, in order to compare
the sum with a given threshold.

Private Profile Matching

We describe briefly several variants of the above protocol for secure matching.
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Chapter 16

AIR FAIR SCHEDULING
FOR MULTIMEDIA TRANSMISSION
OVER MULTI-RATE WIRELESS LANS

Sai Shankar N., Richard Y. Chen, Ruediger Schmitt, Chun-Ting Chou,

Abstract As wireless local area networks (WLANs) are becoming ubiquitous, there is
an increasing demand for their application in multimedia transmission for both
professional and personal uses. Multimedia applications are delay-sensitive and
require specific Quality of Service (QoS) support. Scheduling is very crucial
to support multimedia transmissions with performance guarantees in the IEEE
802.11e WLAN. Most of the work on scheduling are based on bandwidth shar-
ing techniques which are not suitable for wireless systems where the physical
transmission rate varies as a function of distance or signal to noise ratio as in
IEEE 802.11/GPRS/3G networks. In such a network, we show that the widely-
adopted concept of throughput fairness forces low-transmission rate stations to
overuse air time, thus causing significant unfairness in air time usage among
the different stations. In this chapter, we first present a scheme called Air Fair
Scheduling (AFS), which (1) always guarantees fairness in terms of received air
time, regardless of the underlying stations’ transmission rates; (2) keeps service
for individual stations unaffected by other stations’ transmission rate fluctuations
or transmission errors; and (3) also achieves a higher overall system throughput
than generalized processor sharing (GPS). We provide an algorithm for AFS
implementation in IEEE 802.11a/e system and show how the performance is
enhanced through analysis and experiments.

Keywords IEEE 802.11 wireless LANs, air fair scheduling, time fairness, HCCA, per flow
QoS.

16.1 Introduction
Wireless local area networks (WLANs) have gained a prevailing position,

as they provide simple and low-cost wireless connectivity and data delivery.
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Together with the wide deployment of WLANs both in professional and
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applications such as voice-telephony, video-on-demand, and wireless audio
streaming. WLANs are also being considered as low-cost replacement for 3G
broadband services in public hot-spots. However, the lack of QoS support in
legacy WLAN has prevented multimedia applications from taking off rapidly.
The emerging 802.11e standard provides mechanisms for QoS to support a va-
riety of multimedia applications and to provide Diffserv/Intserv-like QoS at the
data link or MAC layer. However, the challenge remains in designing an effi-
cient algorithm for scheduling that is simple to implement and more efficient
in achieving the goal of satisfying the multimedia QoS. Fair scheduling of data
transmissions in wired networks has long been studied as a means of resource
allocation to contending traffic. In general, the objective of fair scheduling is
to allocate contending traffic flows the system resource proportional to their
weights, which are translated functions of the applications QoS requirements.
Fair scheduling prevents greedy or misbehaving users from starving others,
thus achieving fairness among the users. It can also be used to allocate more
resources to preferred users for achieving service differentiation. Fair schedul-
ing is primarily based on Generalized Processor Sharing (GPS) [Parekh &

proximate its performance [Parekh & Gallager, 1992; Golestani, 1994; Bennett
& Cheng, 1996]. These scheduling algorithms, originally designed for wired
networks, are adapted to deal with the rapid growth of wireless communica-
tion services and applications. However, there are several challenges unseen
in wired networks that need to be resolved in order to achieve fairness in wire-
less/mobile networks.

16.1.1 Distributed environment
As an example, let us consider the IEEE 802.11e wireless LAN shown in

Figure 16.1. A station may have several concurrent traffic flows to schedule for
transmission, and may also contend with other stations for access to the shared
radio/channel. Even though a wireless station can schedule its local traffic
flows as a wired node does to achieve the fairness among them, the absence
of coordination between stations makes system-wide fairness very difficult, if
not impossible. To solve this problem, the QoS Access Point1 (QAP) usu-
ally takes charge of scheduling the frame transmissions from/to all stations.
Since the QAP does not have fine information about traffic flows of individual
stations (when a frame exactly arrived in the station’s queue), these stations
need to provide their queue/traffic status information to the QAP such that the
scheduler at the QAP can function properly. For example, the scheduler at

1The term QAP is used in IEEE 802.11e instead of just AP

residential markets, there is increasing demand for QoS support for multimedia
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Gallager, 1992], and numerous scheduling algorithms have been proposed to ap-
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least needs to know whether or not a station has packets2 to send; most fair
scheduling algorithms require more detailed information than that, such as the
arrival time of individual packets, for correct computation of transmission or-
der [Golestani, 1994; Bennett & Cheng, 1996]. The self-clocked fair queueing
(SCFQ) [Golestani, 1994] originally designed for wired networks is modified
for use in wireless networks such that it can work in a distributed environment
[Kautz & Garcia, 1997]. However, the information required for SCFQ, such as
the service tag (or the arrival time) of each packet and a ‘system-wide’ virtual
clock, is still necessary and could incur extra scheduling overhead. Moreover,
the delay in relaying this status information could make the information obso-
lete when it is to be used by the QAP scheduler. More frequent transmission of
this information could alleviate the problem but it will incur substantial control
overhead. Thus, a better and more robust way to achieve system-wide fairness
is to use a distributed or a centralized scheduling algorithm that does not rely
on fine information about traffic or channel.

Figure 16.1. A generic wireless/mobile network.

16.1.2 Location-dependent errors
Another well-known property in wireless networks is the high probability

of transmission errors and its intrinsic location-dependency. Each wireless
station, due to multi-path fading or electromagnetic interference, may expe-
rience different probabilities of transmission errors. For example, flow 1 of
station 0 in Figure 16.1 may suffer from high transmission errors while flow
2 is error-free. Thus, a higher error-rate flow may end up with receiving a

2Although the terms ‘packet’ and ‘frame’ are used interchangeably here, one should note that a packet is
usually referred to as the transmission unit at the IP layer.

Air Fair Scheduling over Multi-Rate Wireless LANs
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smaller share of effective system throughput than an error-free flow, simply
because many of its transmissions get corrupted. If strict throughput fair-
ness is mandatory, the flows with higher error rates will use more airtime to
compensate for their losses of throughput caused by transmission errors. This
overuse of radio resource by the error-prone flows, in turn, reduces the total
system throughput. The most common solution to these problems is to defer
the transmission of error-prone flows and compensate them after the channel
condition gets better. Wireless packet scheduling (WPS) [Lu, Bharghavan &
Srikant; Lu, Nandagopal & Bharghavan, 1998], channel condition independent
packet fair queueing (CIF-Q) [Ng, Stoica & Zhang, 1998] and channel state de-
pendent packet scheduling (CSDPS) [Fragouli, Sivaraman & Srivastava, 1998]
are examples of this approach. A long-term fairness server is proposed such
that the impact of a compensation mechanism on error-free flows can be re-
duced [Ramanathan & Agarwal, 1998]. The concept of adaptive weights is
also used such that the scheduler can dynamically adjust the weights of error-
prone flows to compensate for their throughput loss. The power factor of Eck-
hardt & Steenkiste [2000] and the compensation index of Jeong, Morikawa &
Aoyama [2001] are the main control parameters to adjust the weights such that
compensation can be made without degrading error-free flows too much.

16.1.3 Location-dependent transmission rate
Many existing/emerging wireless networks, such as the general packet ra-

dio service (GPRS), third generation (3G) mobile communication, wideband
code division multiple access (W-CDMA) and IEEE 802.11 WLAN standard,
support more than one physical transmission rate. Consider the IEEE 802.11a
standard as an example. It can support 8 different rates, namely, 54, 48, 36,
24, 18, 12, 9, and 6 Mbps and IEEE 802.11b can support 4 different rates,
namely, 11, 5.5, 2 and 1 Mbps. Depending on the channel conditions, es-
pecially their distance from the QAP, wireless stations may choose different
transmission rates (i.e., so-called “link adaptation” [Qiao & Sunghyun, 2001])
in order to increase the probability of successful transmission. As also shown
in Figure 16.1, for example, station n may choose 2 Mbps to transmit/receive
data frames to/from the QAP while station 1 chooses 11 Mbps. It is very tricky
to define a ‘fair share of resource’ among the stations in such a network, be-
cause serving an equal amount of traffic from individual stations with different
transmission rates requires allocation of different amounts of airtime. That is,
a fair share of system throughput is no longer synonymous with a fair share
of airtime in a system that supports multi-transmission rates. Since no such
location-dependent transmission rates exist in wired networks, applying the
existing scheduling algorithms without considering this property may result in
a station’s misuse of radio resource.

Sai Shankar N. et al.
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In this chapter, we first investigate some potential disadvantages of using
throughput fairness in a multi-rate wireless LAN. We then give a formal de-
finition of airtime fairness, and discuss its advantage over throughput

tunistic Auto Rate (OAR) protocol to increase the system throughput in the
presence of multi-transmission rates while still maintaining the same temporal
fairness as in an unirate IEEE 802.11 wireless LAN. Our work is different from
OAR [Sadeghi, Kanodia, Sabharwal & Knightly, 2002] in that (1) we want to
achieve the weighted airtime fairness in order to support service differentia-
tion/prioritization, but OAR manages to improve the system throughput while
still maintaining the same (egalitarian) temporal fairness achievable by the uni-
rate wireless LAN. Some weighted temporal fairness schemes were proposed
for cellular wireless networks [Liu, Chong & Shroff, 2001]. Moreover, their
scheme requires estimation of stations’ channel conditions in order to choose
the ‘best’ station to transmit. In our scheme, the only information needed
— the physical transmission rates of individual stations, can be found in the
preamble of the IEEE 802.11a/e frame header. It will not incur any control
overhead or introduce errors. It should be noted that the unfairness caused by
location-dependent errors (LDEs) can be solved by the above-cited proposals
and thus is omitted. In fact, these schemes can be combined with our scheme
to achieve the system-wide airtime fairness in the presence of LDEs.

16.2 Fairness in wireless/mobile networks
Fairness is defined as meeting all of the agreed quality of service (QoS)

requirements by controlling the order of service for all active connections. This
could be allocation of bandwidth, buffer space, network time, etc., proportional
to a connection’s requirements. The objective of fair scheduling is to provide
different flows3 with different amounts of ‘work’ proportional to their assigned
weights. Usually, ‘work’ is measured by the amount of data transmitted (either
in number of bytes or packets/frames) during a certain period of time. Let
Si(t1, t2) be the amount of flow i’s traffic served in a time interval (t1, t2), and
φi be the weight assigned to flow i. φi represents the weight proportionality
factor of the network resources that a particular flow i would require in order
to satisfy its QoS requirements. Then, an ideal fair scheduler (i.e., the GPS
server in [Parekh & Gallager, 1992]) with N flows must satisfy

Si(t1, t2)
S j(t1, t2)

≥ φi

φ j
, j = 1,2 · · · ,N, (16.1)

3In this chapter, a flow can be a traffic flow or an aggregation of traffic flows from a station.

Air Fair Scheduling over Multi-Rate Wireless LANs
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for any flow i that is continuously backlogged during (t1, t2). A flow i is said
to be continuously backlogged if it has packets to transmit in the time period
(t1, t2) of observation. If the flow j is also continuously backlogged, then the
above equation would be equal. On the other hand if the flow j was not contin-
uously backlogged, the resources used by flow j is given to flow i. Whenever
the flow j has packets to transmit, the fair scheduler would assign its rightful
proportion, φ j, of the network resource. If all flows’ data are transmitted at a
fixed rate, we can obtain from Eq. (16.1)

Si(t1, t2)
t2 − t1

≥ φi

∑ j φ j
C, (16.2)

where C is the physical transmission rate or the channel capacity. Thus, flow i
is guaranteed to have the throughput given by Eq. (16.2) regardless of the states
of the queues and frame arrivals of the other flows. However, the advantages of
using GPS, such as the guaranteed throughput and independent service, can-
not be preserved if the flows are given different processing/transmission rates,
which is the case in an IEEE 802.11b wireless LAN. Let us consider two sta-
tions, WSTA1 and WSTA2, in such a wireless LAN. Each station may trans-
mit/receive frames to/from the QAP at any of the 4 rates mentioned above, and
may dynamically adapt the transmission rate to its location. For simplicity, we
assume both stations have an equal weight (i.e., φ1 = φ2). We further assume
that both WSTA1 and WSTA2 transmit at 11 Mbps before t = 4. After t = 4,
WSTA2 moves away from the QAP and adapts its transmission rate to 1 Mbps
at the new location. This is shown in Figure 16.2(a)-(1). From Figure 16.2(a)-
(1), the amount of traffic served in (0, t) for WSTA1 and WSTA2 are always
the same as required by the GPS, and so are their throughput as shown in Fig-
ure 16.2(a)-(3). However, the QAP has to allocate more transmission time
to WSTA2 after t ≥ 4 as shown in Figure 16.2(a)-(2) in order to compensate
WSTA2 for its change of transmission rate. That is, Eq. (16.1) can only be
achieved at the expense of degrading the throughput of both the system and
the high-transmission rate flow WSTA1. Multimedia applications suffer most
from airtime unfairness due to the fact that most multimedia content is encoded
at a certain quality, which rules out congestion control that will result in dra-
matic quality reduction. For instance, assume that both WSTAs are running
broadcast-quality standard-definition video streaming sessions. WSTA2 has
dropped its PHY rate to 1 Mbps due to moving away from the QAP. As a result
WSTA2 cannot sustain its video streaming application anymore. However, the
bandwidth fairness causes the throughput of WSTA1 to drop to the same rate
as WSTA2 even though nothing has changed for WSTA1 including location
and link quality. It is absolutely unfair to WSTA1 in terms of resource usage
and it destroys both videos instead of one video. This observation has led us to
the use of AFS in which each flow may use a different transmission rate.

Sai Shankar N. et al.
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Figure 16.2. Throughput fairness vs. airtime fairness.

16.2.1 Air fair scheduling
As shown in Figures 16.2(a)-(1) and 16.2(a)-(2), there exists some incon-

sistency between fair sharing of system throughput and that of transmission
time if stations have varying transmission rates (for t ≥ 4). In a conventional
wired network, such an inconsistency does not exist, but this inconsistency in
wireless networks implies the misallocation (in the sense of fairness) of scarce
radio resource. We argue that fairness in a wireless network supporting multi-
ple transmission rates, should be measured by the transmission times used by
individual stations, not their resultant throughput. Specifically, we propose Air
Fair Scheduling (AFS) for such networks. Let Ti(t1, t2) be the amount of time
flow i receives to transmit its traffic during (t1, t2) and φi be its assigned weight.
Then, a AFS server is defined as

Ti(t1, t2)
Tj(t1, t2)

≥ φi

φ j
, j = 1,2 · · · ,N, (16.3)

for flow i that is continuously backlogged in the interval (t1, t2). We consider
the transmission time allocated to each flow, not the amount of traffic served
during that interval, as we want to eliminate the effect of different transmission
rates (i.e., the potential unfairness it may cause). From Eq. (16.3), we can
obtain

Ti(t1, t2) ≥ φi

∑ j φ j
(t2 − t1). (16.4)
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That is, a continuously-backlogged flow is guaranteed to receive a certain por-
tion of transmission time within any arbitrary interval of time, instead of a guar-
anteed throughput given by Eq. (16.2). Now, let us revisit the previous example
but use the proposed AFS instead. The results are shown in Figure 16.2(b). For
t < 4, using Eq. (16.1) or Eq. (16.3) does not make any difference with respect
to all performance metrics. That is, AFS is the same as GPS if all of the flows
use the same transmission rate; otherwise, using AFS is more advantageous as
follows.

1. Under GPS, the amount of traffic transmitted by WSTA1 varies with
the transmission rate of WSTA2, and so does WSTA1’s throughput.
However, under AFS, as shown in Figure 16.2(b)-(1), the amount of
WSTA2’s transmitted data will remain unaffected. That is, the service
for individual flows can still be kept independent of each other under
AFS.

2. As shown in Figure 16.2(b)-(2), the fair usage of radio resource by sta-
tions can always be guaranteed under AFS regardless of their transmis-
sion rates. In stark contrast, low-transmission-rate stations may abuse
the radio resource under GPS.

3. Because of (1) and (2) above, the overall system throughput will be
much higher under AFS (6 Mbps) than under GPS (1.83 Mbps). (See
Figure 16.2.)

One can interpret the conventional GPS-based fairness as ‘strict fairness’ be-
cause each station is guaranteed with an share of system throughput without
considering the corresponding transmission time required, and hence may re-
sult in degradation of the overall throughput in certain conditions. However,
our fairness tries to maintain a higher system throughput while still providing
fairness in terms of the transmission time received by the stations.

It should be noted that under AFS, it is the low-rate station, WSTA2, in-
stead of both WSTA1 and WSTA2, that absorbs the throughput reduction. At
a first glance, AFS may appear unsuitable for those applications (either origi-
nated from, or destined for, the low transmission-rate station) with strict band-
width requirements. However, this problem can be solved in two ways: (1) the
scheduler of that WSTA2 may adjust the weights of its applications such that
the reduction of its throughput will not affect the applications with strict band-
width requirements but affect only best-effort traffic [Eckhardt & Steenkiste,
2000]; (2) graceful degradation can be applied to these applications such that
the resultant quality is still within their acceptable range [Chou & Shin, 2002].

Sai Shankar N. et al.
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16.2.2 Packetized AFS
As PGPS is used in packet networks to approximate GPS, we also need

a packetized version of AFS to implement AFS. Time-Division-Multiplexing
(TDM) may appear to be a good realization of AFS. Even though TDM
does approximate Eq.(16.3), the ‘time slots’ allocated to the non-backlogged
flows in TDM are simply wasted (i.e., non-work-conserving). In fact, we
can generate a work-conserving, packetized AFS (P-AFS) just like PGPS for
GPS [Parekh & Gallager, 1992]. The P-AFS server will pick the packet that
would complete service first in the AFS simulation if no additional packets
were to arrive thereafter. The difference between the service times of a flow
received under AFS and P-AFS is bounded by

Ti(0, t)−T p
i (0, t) ≤ Tmax, (16.5)

where Ti(0, t) and T p
i (0, t) are the service times that flow i receives during (0, t)

under AFS and P-AFS, respectively, and Tmax is the maximum amount of time
a server may need to transmit a single packet. The proof of this bound follows
the derivation in [Parekh & Gallager, 1992], and thus, we only present the
modification needed for P-AFS.

Lemma 1: Let p and p′ be packets in a AFS system at time t. Suppose
packet p completes its service before p′ if there were no packet arrivals after
time t. Then, p will also complete its service before p′ even if there are packet
arrivals after time t.

Proof : The flows to which packets p and p′ belong are both backlogged
from t until packet p or p′ completes its transmission. By Eq. (16.3), the ratio
between the service times received by these backlogged flows is independent
of future arrivals. Thus, the lemma follows4.

Next, we need to prove the difference between packet finish times under
AFS and P-AFS is bounded. Let Li

max be the maximum packet length of flow
i, ri the transmission rate of flow i, and Tp(T ′

p) the packet p’s finish time under
AFS (P-AFS). Then, for any packet p

T ′
p −Tp ≤ Tmax, (16.6)

where Tmax = maxi(Li
max/ri). Eq. (16.6) can be proven in the same way as

in [Parekh & Gallager, 1992] by using Lemma 1 and replacing the fixed
processing rate r with the flow-dependent processing rate ri. So, the details
of the proof are omitted here. Now, we can prove Eq. (16.5) as follows.

Proof : The slope of T p
i (0, t) alternates between 1 if the packet of flow i

is being transmitted, and 0 otherwise. Since the slope of Ti(0, t) is between

4Here we assume a flow can not change its transmission rate during the transmission of a frame.
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φi/∑ j φ j and 1, the difference, Ti(0, t)− T p
i (0, t), attains its maximum when

flow i is transmitted under P-AFS. Let τp be the time when this difference
attains its maximum, and Tt be the packet-transmission time. Then, the packet
completes its transmission at τp + Tt under P-AFS. Let τ be the time at which
the given packet completes its transmission under AFS. Then,

Ti(0,τ) = T p
i (0,τp +Tt) = T p

i (0,τp)+Tt . (16.7)

The first equality holds because the packets of flow i are transmitted in the
same order under AFS and P-AFS, and the second equality holds because the
slope of T p

i in (τp,τp + Tt) is 1. From Eq. (16.6), we have τp + Tt −Tmax ≤ τ.
So,

Ti(0,τp +Tt −Tmax) ≤ Ti(0,τ). (16.8)

Since Tt −Tmax ≤ 0 and the slope of Ti is always less than, or equal to 1, we get

Ti(0,τp)+Tt −Tmax ≤ Ti(0,τp +Tt −Tmax). (16.9)

By Eqs. (16.7)–(16.9), we get

Ti(0,τp) ≤ T p
i (0,τp)+Tmax, (16.10)

and thus, Eq. (16.5) follows. Various algorithms exist to implement
PGPS [Golestani, 1994; Bennett & Cheng, 1996] and their adaptation to P-
AFS requires little modification. As we discussed in the Introduction, the only
problem is that these algorithms require a scheduler to compute the transmis-
sion order based on all flows’s traffic and queue status (e.g., packet length,
packet arrival time). This information is very difficult for a scheduler to acquire
in a distributed environment (e.g., a wireless network), or will at least incur a
considerable amount of overhead to collect it. Thus, we will only try to achieve
the proposed PAFS based on a coarser time granularity (i.e., t2 − t1 � Tmax).

16.3 AFS in an IEEE 802.11e wireless LAN
The centrally controlled access mechanism of the IEEE 802.11e medium

access control (MAC) [IEEE 802.11e, 2002], called the HCF5 controlled chan-
nel access (HCCA), adopts a poll and response protocol to control the access
to the wireless medium and eliminate contention among wireless STAs. It
makes use of the PCF6 Inter frame Space (PIFS), which is the shortest arbi-
tration inter frame space (AIFS) value, to seize and maintain control of the
medium. Once the hybrid coordinator (HC) has control of the medium, it
starts to deliver parameterized downlink traffic to stations (STAs) or issue QoS

5

6
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contention-free polls (QoS CF-Polls) frames to those STAs that have requested
uplink or sidelink parameterized services. The QoS CF-Poll frames include the
TXOP duration granted to the STA. If the STA being polled has traffic to send,
it may transmit several frames for each QoS CF-Poll received, respecting the
TXOP limit specified in the poll frame. Besides, in order to utilize the medium
more efficiently, the STAs/APs are allowed to piggyback both the contention
free acknowledgment (CF-ACK) and the CF-Poll onto data frames. Differ-
ently from the PCF of the IEEE 802.11-99 Std. [IEEE 802.11b, 1999], HCCA
operates during both the contention free period (CFP) and contention period
(CP). During the CFP, the STAs cannot contend for the medium since their
Network Allocation Vector (NAV), also known as virtual carrier sensing, is
set, and therefore the HC enjoys free access to the medium. During the CP, the
HC can also use free access to the medium once it becomes idle, in order to
deliver downlink parameterized traffic or issue QoS CF-Polls. This is achieved
by using the highest EDCA priority, i.e., AIFS = PIFS and CWmin =CWmax = 0.
Note that the minimum time for any access category (AC) to access the medium
is DIFS, which is longer than PIFS. For details the reader is referred to [IEEE
802.11e, 2002].

16.3.1 How does the HC allocate TXOP?
An STA can request parameterized services using the Traffic Specification

(TSPEC) element [IEEE 802.11e, 2002]. The TSPEC element contains the set
of parameters that characterize the traffic stream that the STA wishes to estab-
lish with the HC. Once the TSPEC request is received by the HC, it analyzes
the TSPEC parameters and decides whether to admit the stream into the net-
work. This is also known as the admission control process. If the stream is
admitted, the HC schedules the delivery of downlink traffic and/or QoS CF-
Polls (for uplink/sidelink traffic) in order to satisfy the QoS requirements of
the stream as specified in the TSPEC. Several scheduling disciplines can be
used in the HC. The performance of the HCCA is dependent on the choice of
the admission control and the scheduling algorithm. Admission control algo-
rithm is out of scope in this chapter. We assume that there exists an admission
control algorithm and the bandwidth allocated by the admission control algo-
rithm determines the weight each flow gets the overall system. The fields of a
TSPEC element are shown in the Figure 16.3. These fields are used by the ad-
mission control algorithm to admit the flows and the scheduler translates it into
TXOP per flow as well as per station. We need to note that all the parameters
in the TSPEC element are negotiable between the QAP and wireless station
(WSTA). Of the many parameters in TSPEC we consider the minimum phys-
ical transmission rate that is relevant for further understanding of this chapter.
The minimum PHY rate indicates the minimum physical transmission rate that

Air Fair Scheduling over Multi-Rate Wireless LANs



284

Element ID 
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44 4 444444

Figure 16.3. TSPEC element as defined in IEEE 802.11e standard.

is required for providing QoS guarantees. Once the T XOP and the service
interval (SI) are calculated, the schedule element is transmitted by the HC to
a non-AP QSTA7 to announce the schedule that the HC/QAP follows for ad-
mitted streams originating from or destined to that non-AP QSTA in future.
The information in this element may be used by the non-AP QSTA for power
management, internal scheduling or for any other purpose. The structure of
the schedule element is shown in Figure 16.4. We consider two fields, namely,

Element ID 
Service
Interval

Service Start 
Time

Schedule Info Length
Specification

Interval
Max. Service 

Duration

2Octets 1 1 2244

Aggreg

ation
ReservedDirectionTSID

B5-B6B0 B1-B4 B7-B8

Figure 16.4. Structure of schedule element.

service interval and maximum service duration. The Service Interval field rep-
resents the measured time from the start of one service period to the start of the
next service period. The Maximum Service Duration specifies the maximum
transmission opportunities (TXOP) allocated to this flow. These fields along
with the minimum PHY rate will be used by the air fair scheduling (AFS)
scheduler.

16.3.2 Operation of the air fair scheduler
One of the most important problems in any wireless LAN systems is dis-

tributed nature of the location of non-AP QSTAs and absence of information
at the QAP of the status of different queues at the non-AP QSTAs. Additionally
each non-AP QSTA may have more than one streams originating from it. This

7
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forces for a design of a two-stage scheduler. They are station scheduler (imple-
mented at the QAP only) and the flow scheduler (implemented at the non-AP
QSTA’s and QAP). The scheduler architecture is shown in Figure 16.5. In this
approach, the station scheduler at the QAP serves each non-AP QSTA (hav-
ing upstreams and/or sidestreams) and the QAP itself (having downstreams)
based on the relative weights. For this scheduler, residing at the QAP, the QAP
also appears as a non-AP QSTA requiring channel time that is proportional
to weight. In the second stage, called flow scheduler or local scheduler, the
scheduler decides which packet among competing parameterized streams need
to be selected at a single non-AP QSTA/QAP.

16.4 Station scheduler
This station scheduler is co-located with the HC. The purpose of this sched-

uler is to select a particular QSTA including the QAP. For this scheduler the
QAP is also a QSTA requesting TXOP. The proposed scheduling scheme in
Section 16.3 and the local scheduler (LS) form a two-stage fair scheduling
system as shown in Figure 16.5. If there are several flows destined to the same

Figure 16.5. Two-stage scheduling.

station from QAP, the weights of those flows are aggregated and treated as one
virtual flow to that particular station by the station scheduler. Since the flows
within the QAP, which are destined for the same wireless station, will use the
same transmission rate and experience the same transmission errors, they are
aggregated as if they are a “virtual” stream (VS) for the purpose of schedul-
ing. Suppose, for example, if flows 1 to 3 in the QAP are destined for wireless
station 1, these flows are said to belong to virtual stream 1. Similarly if there
are several flows originating from one QSTA to other QSTAs (side-link) or to
QAP (uplink), they can be aggregated to form one virtual stream as the sta-
tion scheduler can allocate T XOP to this QSTA as if there is only one flow.
In general, let V Si be the virtual stream associated with the flows destined for

Air Fair Scheduling over Multi-Rate Wireless LANs
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the same wireless station i. At Stage I, the per-station fairness is achieved by
Eq. (16.11) if the wireless LAN operates in the HCCA mode. The weight of
each station will be the sum of all its flows’ weights for that particular station:

Wi =
V Sn

∑
j=V S1

φi j (16.11)

where φi j is the weight of station i’s j-th flow. Since the virtual streams are
aggregates of several streams, the station scheduler in the QAP will schedule
transmissions for these virtual streams by treating them as a single stream.
Indirectly this will select the station and use a QoS CF Poll to provide TXOP
or if it is the opportunity of the QAP itself, it will use PIFS access to send
downstreams. Thus Wi will determine the fraction of time a station or QAP
will get.

By doing so, we can only guarantee fairness among stations in a wireless
LAN, not among the individual flows in a station. Therefore, at Stage II, station
i’s LS allocates and schedules the transmission time acquired at Stage I to all
its local traffic as shown in Figure 16.5 such that per-flow fairness can also be
achieved.

As explained in section 16.3.1, each stream is quantified by two variables,
(T XOPi, j, Di, j), where T XOPi, j and Di, j are the requested T XOP and the delay
bound of the flow j belonging to QSTA i. i takes the values from 1 to total
number of QSTAs and j takes the values of total number of streams admitted.
Now the following equation holds:

n

∑
i=1

mi

∑
j=1

T XOPi, j

Di, j
≤ 1 (16.12)

Now the scheduler residing at the HC should decide the value of SI. Since
the tuple (T XOPi, j, Di, j) represent the air time requirement and delay require-
ment (or distance constraint of the scheduler), we can infer that SI is given
by

SI =
1
2

min{Di, j | i = 0, . . . ,n ∧ j = 0, . . . ,mi} (16.13)

This value of SI is necessary to satisfy the QoS requirements on delay for
each stream. This SI also satisfies any order of schedule for all streams within
SI and is optimal. Once the SI is computed, we need to compute the new
T XOP

′
i, j. This is given by

T XOP
′
i, j =

T XOPi, j

Di, j
SI. (16.14)
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T XOPi =
mi

∑
j=1

T XOP
′
i, j (16.15)

Based on the above equation the station scheduler will poll any of the sta-
tions in any order since the distance constraint is satisfied such that the delay
requirements of all the flows are satisfied by properly choosing SI.

16.5 Local scheduler (LS)
Once the T XOP is granted to a QSTA or to the QAP itself by the station

scheduler, it is objective of the local scheduler (LS) to schedule a particular
frame among competing flows originating from this QSTA or QAP. Any fair
scheduling algorithm can be implemented so that the QoS constraints are sat-
isfied for the particular flow. However we have two problems for the local
scheduler. They are, (1) Location dependent errors and (2) Location depen-
dent transmission rates. We will look into each of them.

16.5.1 Location dependent errors
So far, we have not considered any transmission error on the radio resource.

However, this ‘over-the-air’ transmission error may cause unfairness as we
mentioned in section 16.1. Blindly scheduling the transmissions without con-
sidering the location-dependent errors may not only reduce the overall system
throughput, but also compromise fairness in terms of the radio resource usage.
Various strategies have been proposed to alleviate these problems. The under-
lying principle is simple — The transmission opportunities scheduled to the
flows that experience temporarily high errors should be reclaimed by the error-
free flows, in order to increase the system throughput. After the channel con-
dition is restored, the transmission opportunities relinquished by the high-error
flows should be reimbursed to them, such that the fairness can be redeemed.
Depending on their implementation, some use swapping of transmission op-
portunities between leading/laging flows [Lu, Bharghavan & Srikant; Ng, Sto-
ica & Zhang, 1998], while in [Ramanathan & Agarwal, 1998], a certain portion
of bandwidth is reserved such that the error-free flows will not be affected by
the compensation mechanism.

An effort-limited fair scheduling is also proposed to limit the transmission
attempts of flows that experiences high error rate (by a so-called ‘power fac-
tor’) such that the scheduler will not waste too much bandwidth on those in-
valid attempts [Eckhardt & Steenkiste, 2000]. In an IEEE 802.11 wireless
LAN, the aforementioned problems may occur in a different way, due mainly
to its MAC-layer retransmission mechanism. The purpose of retransmission
at the MAC layer is to hide transmission errors from higher layers by means

Air Fair Scheduling over Multi-Rate Wireless LANs
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Table 16.1. Guarantee of soft fairness.

scheduling order

time 1 3 7 8 9 12 13
S1 v v 1 2 v( 1) v(0) v 1 v(0) v

time 2 4 5 6 10 11 14
S2 v x x v x v v

For example, consider two traffic flows, S1 and S2, in the QAP with dif-
ferent destinations. Assume that both flows have the same weight and trans-
mission rate, but the probability of transmission errors of S1 is 0 and that of
S2 is 0.5. If S2 is scheduled to transmit, statistically it takes two MAC-layer
transmission attempts to successfully transmit a frame while it takes only one
for S1. Therefore, if these two flows are scheduled without taking into account
the MAC-layer retransmissions, the AFS-based fairness cannot be achieved
since S2 will acquire twice the transmission time of S1. The extra transmis-
sion time S2 acquires via the MAC-layer retransmission should be regarded as
an overuse of resource as far as the air time is concerned. This could not only
happen to the downlink flows (i.e., from the QAP to different wireless stations)
but also to the uplink and side-link flows.

In order to solve this unfairness problem the LS considers the retransmission
attempts of all its traffic. Since the LS only schedules the local traffic, any fair
scheduling algorithm in the wired network can be applied directly. However,
depending on the outcome of each frame transmission attempt, the LS should
apply the algorithm shown in Figure 16.6, where the f air schedule() can be
any weighted fair scheduling algorithm. Consider round-robin scheduling as
an example. As shown in Table 16.1, the first attempt of transmitting flow S2’s
second frame fails at t = 4. It is retransmitted by the MAC-layer retransmission
mechanism, (not the LS) and succeeds by the second retransmission (t = 6).
During this period, S1 should receive the same amount of transmission time
as S2. Therefore, the LS will “reimburse” S1 at t = 7 and t = 8 for S2’s
overuse. This process repeats from t = 9 to t = 12 for another S2’s unsuccessful
transmission attempt, and then the LS returns to the normal scheduling at t =
13. This way the scheduler can offer two traffic flows with an equal share of
transmission time, which is the desired soft fairness.

Note that the purpose of LS is to provide the AFS-based fairness at the
MAC-layer.
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v: transmission succeeds, x: transmission fails

It dynamically adjusts the transmission order of traffic flows
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/* Sbacklog in: Set of backlogged flows
/* soveri: service overuse of flow i
/* Reset to −T XOPi at the beginning of each SI
/* T XOPremain: Remaining TXOP in SI after all flows have been allocated
/* retry limit: retry limit in an IEEE 802.11 wireless station

/* local scheduler: schedule all backlogged flows*/
local scheduler(Sbacklog in, retry limit)
{

while (|Sbacklog| > 0) {
/* flow i is scheduled based on any fair scheduling algorithm*/
i=fair schedule(Sbacklog);
sbacklog = sbacklog in;
/* if flow i overuses the radio, */
/* scheduler should skip flow i */
if (soveri > 0 && T XOPremain > 0) {

if (i is only flow in overusing resource) {
soveri = soveri −T XOPremain;
T XOPremain == 0; }

else {
soveri = soveri − φi

∑ j φ j
T XOPremain;

T XOPremain− = φi
∑ j φ j

T XOPremain } }
if (soveri > 0 & T XOPremain = 0) {

Sbacklog = Sbacklog −{i}; }
/* else, transmit the frame of flow i, and continue */
/* the scheduling for all backlogged flows */
else {

soveri=soveri+transmit(i, retry limit); }
}

}

/* transmit: transmit a frame with flow ID=SID */
/* Return the time used for transmitting one frame. */
/* get time() returns current real time */
int transmit(SID, retry limit)
{

retry count=0;
time=get time();
/* send(): MAC-layer system call for sending a frame
and will return -1 if transmission fails */
status=send(SID);
while (retry count≤ retry limit & status< 0) {

status=send(SID) ;
retry count=retry count+1;

}
return(get time()-time);

}

Figure 16.6. Pseudo code describing the implementation of the local scheduler (LS).
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or prediction of an error burst, we provide fairness reactively. Its advantages
are: (1) estimation of error probability or the start of an error burst can be elim-
inated because any inaccurate estimation itself may introduce unfairness (e.g.,
over-compensation or over-penalty), (2) probing the channel to search for the
end of an error burst is unnecessary as we do not defer any flow’s transmis-
sion for the error burst, (3) because of (2) and the fact that readjusting the
transmission order is done at the end of every transmission,8 the service lag
of error-free flows is bounded since the number of MAC-layer transmission
retries is limited. However, it should be noted that because of (2), the total sys-
tem throughput under LS may be lower than that under the proactive schemes.
But if we consider the potential inaccuracy of channel esimation/prediction
and the resultant extra control overhead, this loss of throughput should be an
acceptable compromise.

16.5.2 Location dependent transmission rates
As already mentioned, WSTA can operate in any one of the eight available

rates in IEEE 802.11a/g WLAN. When the WSTA starts moving away from the
QAP (in case of uplink) or moves away from another WSTA (in case of side-
link) it might have to do link adaptation by dropping its physical transmission
rate or increasing its physical transmission rate. Increasing poses no problems
as all frames will be transmitted in short time. On the contrary if the physical
transmission rate was lowered because the WSTA moved away from its desti-
nation, then we might have overuse of airtime. The T XOP

′
i, j of a flow is based

on a negotiated minimum physical transmission rate, Rmin
i . The LS first looks

at flows whose current physical transmission rates Ri < Rmin
i . These flows are

pooled together as lagging flows. The other flows are pooled together as nor-
mal flows. We implement a simple scheduling philosophy wherein the lagging
flows are allocated their T XOP and the MAC fragments frames or sends fewer
frames than it would normally send if they had their Ri ≥ Rmin

i . This provides
fairness in terms of airtime usage as the lagging flows get their share of airtime
proportional to their weights.

We can get a simple upper bound on delay for the normal flows whose Ri ≥
Rmin

i . For the flow j belonging to station i, having a weight of φi j, we have the
maximum delay between two T XOP allocations as:

dmax ≤ 2SI − L j

φi jRmin
i j

(16.16)

Here L j is the frame size of the flow j.

8Here, it refers to the end of a successful transmission, or the end of retry limit consecutive unsuccessful
transmission attempts for a frame.
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16.6 Numerical and simulation results
16.6.1 Per-flow AFS-based fairness by LS

We consider the per-flow fairness provided by the proposed LS. In order to
focus on the operation of LS, we assume that the QAP is the only station having
MAC-frames to transmit. The destinations of its traffic flows are different, so
different traffic flows have different transmission-error probabilities (i.e., the
location-dependent error (LDE)). We compare the performance of the QAP’s
traffic flows with and without LS. Two performance metrics, the received trans-
mission time (i.e., the air time) and scheduling delay, are considered for each
traffic flow. The scheduling delay is defined as the difference between the time
a given frame is transmitted in an error-free channel condition and that in the
presence of location-dependent errors.

We consider 4 concurrent flows in the QAP with weights 4, 2, 1 and 1, re-
spectively. All flows use IEEE 802.11b PHY of 11 Mbps transmission rate
such that the computation of Ti in Figure 16.6 can be simplified. We also as-
sume that the length of each frame is 1500 bytes, and thus, the transmission
time of a single frame will be about 1.4 ms. Two different types of error pat-
terns, sporadic and bursty, are considered. If it is sporadic, each transmission
gets corrupted with a fixed probability, p. If it is bursty, transmission always
succeeds during an ON-period (i.e, error-free period) but gets corrupted with
probability 1 during an OFF-period (i.e., an error burst). The distribution of
each ON/OFF duration is assumed to be i.i.d. Pareto distribution with different
means. The parameters used for both error patterns are listed in Table 16.2.
Note that we choose the parameters such that the average error probabilities
under these two scenarios are equal.

Table 16.2. Parameters used for simulation in case of LDE.

flow 1 flow 2 flow 3 flow 4
sporadic: p 0.25 0 0.2 0.1

bursty off-period b = 800† NA b = 300 b = 400
aba/xa+1 on-period b = 2400 NA b = 1200 b = 3600

† a = 1.5, mean = 3b msecs, NA: not applicable

Since we use a Pareto distribution in the bursty-error case, we run that sim-
ulation for 1000 secs, instead of 100 secs in the case of sporadic error for the
simulation accuracy. Table 16.3 shows the number of successful/unsuccessful
transmissions for each flow. Under both error patterns, the error-free flow, flow
2, suffers a loss of its share of system transmission time due to the other sta-
tions’ transmission errors. Even though the average error probability is small
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Table 16.3. Successful/unsuccessful transmissions for each flow.

error pattern flow 1 flow 2 flow 3 flow 4

without LS 41244/13700 20622/0 10311/2655 10311/1157
sporadic

with LS 37567/12426 25667/0 9550/2388 11144/1168

actual ratio with LS 50.08% 25.66% 11.94% 12.32%

without LS 313649/225530 170898/0 73649/94730 80307/41237
bursty

with LS 365918/134080 249997/0 96381/28622 112466/12525

actual ratio with LS 49.99% 24.99% 12.50% 12.49%

assigned ratio 50% 25% 12.5% 12.5%

(0.16), flow 2’s loss can be up to 30% in case of bursty errors. Thanks to
LS, however, each flow’s received transmission time is consistent with its as-
signed ratio. For most of the existing scheduling algorithms used in wire-
less networks, it is difficult to maintain such fairness because it is almost im-
possible to predict/estimate the channel condition in case of sporadic errors
(thus, transmission swapping/compensation will not work). In terms of sta-
tion’s throughput, the LS does not do much better in case of sporadic error be-
cause each transmission error is independent and the average error probability
is relatively small. However, the LS can increase the station’s throughput by
Succ. Trans. with LS−Succ. Trans. without LS

Succ. Trans. without LS = 824762−638503
638503 = 29% in case of bursty

errors. The improvement mainly comes from the error-prone flows. Take flow
3 as an example. If a frame gets corrupted during an error burst, it will very
likely be retransmitted for retry limit consecutive times before being dropped.
Thus, at the end of these retransmissions, the LS will re-adjust the transmis-
sion order such that the other flows can ‘catch up’ with flow 3. This implicitly
prevents flow 3 from transmitting frames too quickly within an error burst and
helps reduce the number of its invalid transmissions dramatically (from 94730
to 28622).

Finally, we consider the scheduling delays. Since the scheduling delays
of error-prone flows are cumulative due to transmission error and MAC-layer
retransmission mechanism, we are only interested in the scheduling delay of
an error-free flow. Figure 16.7 plots the scheduling delays of flow 2’s frames
under bursty errors. The results under sporadic errors are similar and hence
omitted here. Without LS, the error-prone flows will overuse the transmission
time continuously, so flow 2 will be affected such that the scheduling delays
of its frames keep increasing. In contrast, the LS will control the overuse of
error-prone flows at the end of every ‘round’ of retransmissions. Thus, the
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Figure 16.7. Scheduling delays of flow 2’s frames in case of bursty errors.

scheduling delays of flow 2 frames will be bounded. This complies with the
results shown in Figure 16.7. We can draw a quick conclusion from this simu-
lation: the LS can always help maintain the AFS-based fairness among traffic
flows within a station and bound the scheduling delay of error-free flows, re-
gardless of the underlying error pattern. Moreover, it can improve the station’s
throughput in case of bursty errors.

16.7 Experimental setup and results
In order to evaluate the performance of the scheduler, we use a simple net-

work topology as shown in Figure 16.8 to conduct the experiments. Due to

Figure 16.8. Experimental setup to verify AFS against WFQ.
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only evaluate the performance of local scheduler with downstreams only us-
ing legacy 802.11a radio at the QAP with modified parameters of DCF chan-
nel access. The CWmin and CWmax was set to 0 so as to emulate the perfor-
mance of HCCA. As seen in Figure 16.8, video server 1 and 2 are connected
to a QAP through wired Ethernet connection and both are sending 4 Mbps
standard-definition (720 480) video9 to their wireless video client 1 and 2 re-
spectively via the access point. Here the 4 Mbps throughput refers to video
throughput measured just above the IP layer. Real Time Protocol (RTP) is
used as the transport protocol to carry video from the source to destination.
In wired network segment, 100 Mbps Ethernet was used to minimize queuing
effect in wired network segment. In the wireless network segment, 18 Mpbs
PHY rate is used with the maximum number of retransmissions10 set to a de-
fault value . The reason for choosing 18 Mbps was to load the system when
there are channel errors. If we were to set the physical transmission rate at 54
Mbps, we would need 7 to 8 streams to load the system. This would mandate
lots of client displays and complicate the setup. Hence we fix the physical
transmission rate as 18 Mbps.

Various local schedulers11 are loaded on to the QAP at various sessions to
benchmark the performance. We run the 2 experiments. In the first experi-
ment, WFQ scheduler was loaded as the reference scheduler. In the second
experiment the AFS was loaded to compare against WFQ. At the beginning of
each session, both video players are located symmetrically with respect to the
access point. 10 seconds later, video player 1 is moved away from the QAP,
which results in more retransmissions. Another 10 seconds layer, video player
1 lowered its PHY rate to 6 Mbps in an attempt to achieve more robust trans-
mission. The traces of throughput and loss for each session are captured in
Table 16.4. We do not capture delay trace for synthetic data.

Each run in the experiment generates different statistics as each run sees
different channel conditions. So the Table 16.4 gives a snapshot of the perfor-
mance for that run. One can notice from the Table 16.4, that the air fair local
scheduler: 1) achieved air fairness as expected; 2) keeps the flows throughput
of S2 to be unaffected by S1’s transmission rate or transmission errors in terms
of both the throughput and delay; 3) achieved higher overall system throughput
than WFQ.

9The video file name is Spacejam. Statistics for MPEG-4 video track 5 (computed from hint track 6): Mean
Data Rate = 4.07616 Mbps, Peak Data Rate = 14.583 Mbps, Low Data Rate = 0.992256 Mbps, Maximum
Burst Size = 193396 bytes, Average RTP packet size = 1003 bytes, Maximum RTP packet size = 1040 bytes,
Minimum RTP packet size = 48 bytes, RTP packet size variance = 15953 bytes.
1010 on D-link DWL-AB650 airpro cardbus adaptor
11The local scheduler was implemented in Linux kernel and wireless device driver to take advantage of the
Linux Traffic Control framework including packet classifier, queuing discipline, configuration utility and
API.
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Table 16.4. Comparison of the throughput and loss characteristics for AFS and WFQ by using
a real video trace as well as generating synthetic data. Here R1 and R2 represents the physical
transmission rates used by streams S1 and S2 Respectively. Both are down link flows. (NA: Not
Available).

synthetic data R1 = R2 = 18Mbps R1 = R2 = 18Mbps R1 = 6Mbps
R1 has errors R2 = 18Mbps

scheme AFS WFQ AFS WFQ AFS WFQ

throughput 4.169 4.15 2.157 3.1 2.61 NA
(Mbps) of S1
throughput 4.169 4.10 4.169 3.0 4.19 NA
(Mbps) of S2

packet loss of S1 0/4997 0/4997 2220/4997 858/4997 1869/4997 NA
(no. lost/total sent)
packet loss of S2 0/4996 0/4996 0/4996 1293/4996 0/4996 NA
(no. lost/total sent)

real video R1 = R2 = 18Mbps R1 = R2 = 18Mbps R1 = 6Mbps,
R1 has errors R2 = 18Mbps

scheme AFS WFQ AFS WFQ AFS WFQ

throughput 4.32 4.37 2.13 2.69 2.06 0.875
(Mbps) of S1
throughput 4.31 4.3 4.3 2.7 4.3 0.83
(Mbps) of S2

packet loss of S1 0/4966 0/4966 2396/4966 1881/4966 1558/4966 3987/4966
(no. lost/total sent)
packet loss of S2 0/5026 0/5026 0/5026 1455/5026 0/5026 4121/5026
(no. lost/total sent)

delay (ms) of S1 NA NA 718.61 330.41 543.08 1532.3
delay (ms) of S2 NA NA 30.39 340.13 42.34 1525.9

Consider the flow S2. This flow does not experience a bad channel con-
dition. Under AFS, this flow is guaranteed its required throughput as well as
error rate. The maximum tolerable delay was fixed at 200 milliseconds taking
into account the buffer at the encoder and decoder side. On the contrary, us-
ing WFQ, one sees the major degradation in the video quality because of loss
of frames when there are links with errors. In our case, we fixed the physi-
cal transmission rate and moved the antenna of station 1 such that the signal
to interference noise ratio (SINR) was lowered resulting in frame loss. This
resulted in lots of retransmissions for flow S1. As the retry limit is reached
or when the frames have exceeded the delay bounds, they are dropped. Each
frame of S1 reaching the retry limit or exceeding the delay bound propagates
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its channel condition to S2 which also degrades. Looking at the Table 16.4, we
find that the errors are localized to flow S1 in case of AFS and are distributed to
flow S2 since lots of frames of S2 have to wait for a long time because of flow
S1’s error condition. For the synthetic traffic we find that the number of frames
lost were 2220 and 0 for flows S1 and S2 respectively in case of AFS and was
shared between S1 and S2 as 858 and 1293 respectively in case of WFQ. The
sum of total frames lost is 2151(=858+1293). In the case of real video the
errors are more in case of WFQ compared to AFS that localizes errors to S1
alone. We did not plot the delay as the delay bound was fixed to around 1 sec-
ond and if the channel conditions were normal, both WFQ and AFS satisfied
the delay QoS. Looking at the last column for throughput in case of real video
data, it is inferred that differing link speeds as well as errors reduce the overall
system throughput in case WFQ but not in case of AFS. This clearly shows
that AFS achieves higher throughput than WFQ.

16.8 Conclusions
In this chapter, we proposed a new concept of fairness, Air Fairness and pro-

pose a scheduling scheme called AFS and showed its application to an IEEE
802.11e wireless LAN. To implement it in IEEE 802.11e WLAN we propose a
2 stage structure of scheduler with the stage 1 called the station scheduler and
the second stage called the local scheduler. We present pseudo code for the
local scheduler and show how it can achieve air fairness in case of downlink
traffics through simulation and experiments. In order to provide different traf-
fic flows a fair share of a station’s transmission time, the LS may reschedule
their transmissions based on the results of the MAC-layer retransmission in
the IEEE 802.11e standard. Thus, it need not estimate or predict the channel
condition, and the AFS-based per-flow fairness can be achieved easily. Based
on AFS and our two-stage scheduling architecture, service for an individual
station/flow will not be affected by the other stations/flows even in the pres-
ence of location-dependent transmission rates and location-dependent errors,
and thus, the fairness can always be guaranteed. Moreover, AFS can always
provide a higher system throughput than GPS.
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Chapter 17

HIGH THROUGHPUT AND LOW POWER REED
SOLOMON DECODER FOR ULTRA WIDE BAND

Akash Kumar and Sergei Sawitzki

Abstract Reed Solomon (RS) codes are widely used in a variety of communication sys-
tems. Continual demand for ever higher data rates makes it necessary to devise
very high-speed implementations of RS decoders. In this chapter, a uniform
comparison is drawn for various algorithms and architectures proposed in the
literature, which help in selecting the appropriate architecture for the intended
application. Dual-line architecture of modified Berlekamp Massey algorithm is
chosen for Ultra Wide Band (UWB). Using 0.12 µm technology the area of the
design is 0.22 mm2 and throughput is 1.6 Gbps. The design dissipates only 14
mW of power in the worst case, including memory, when operating at 1.0 Gbps
data rate.

Keywords Reed Solomon Decoder, low power, high throughput, ultra-wide band, dual-line
Berlekamp Massey.

17.1 Motivation
Reed Solomon (RS) codes are widely used in a variety of communication

systems such as space communication link, digital subscriber loops and wire-
less systems, as well as in networking communications and magnetic and data
storage systems. Continual demand for ever higher data rates and storage ca-
pacity makes it necessary to devise very high-speed implementations of RS
decoders. Newer and faster implementations of the decoder are being devel-
oped and implemented. A number of algorithms are available and this often
makes it difficult to determine the best choice due to the number of variables
and trade-offs available. Therefore, before making a good choice for the appli-
cation a thorough research is needed into the options available.

For IEEE 802.15-03 standard proposal (commonly known as UWB) in par-
ticular, very high data rates for transmission are needed. According to the
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current standard, the data rate for UWB will be as high as 480 Mbps. Since
the standard is also meant for portable devices, power consumption is of prime
concern, and at the same time the silicon area should be kept as low as possible.
As such, a low power and high throughput codec is needed for UWB standard.
Reed Solomon is seen as a promising codec for such a standard. It should be
mentioned here that shortened code RS(23, 17) derived from RS(255, 249) is
used in the Release 1.0 of the standard proposal and this is only used for the
header, not for payload. This work looks ahead towards 1.0 Gbps throughput,
where payload probably will be encoded as well and shortened code will not
be good enough anymore.

17.2 Introduction to Reed Solomon
Reed Solomon codes are perhaps the most commonly used in all forms of

transmission and data storage for forward error correction (FEC). The basic
idea of FEC is to add redundancy at the end of the messages systematically
so as to enable the retrieval of messages correctly despite errors in the re-
ceived sequences. This eliminates the need of retransmission of messages
over a noisy channel. RS codes are a subset of Bose-Chaudhuri-Hocquenghem
(BCH) codes and are linear block codes. [Wicker & Bhargava, 1994] is one of
the best references for RS Codes.

An RS(n,k) code implies that the encoder takes in k symbols and adds n−k
parity symbols to make it an n-symbol code word. Each symbol is at least
of m bits, where 2m > n. Conversely, the longest length of code word for
a given bit-size m, is 2m − 1. For example, RS(255,239) code takes in 239
symbols and adds 16 parity symbols to make 255 symbols overall of 8 bits
each. Figure 17.1 shows an example of a systematic RS code word. It is called
systematic code word as the input symbols are left unchanged and the parity
symbols are appended to it.

data parity

k

n

2t

Figure 17.1. A typical RS code word.

Reed Solomon codes are best for burst errors. If the code is not meant for
erasures, the code can correct errors in up to t symbols where 2t = n− k. A
symbol has an error if at least one bit is wrong. Thus, RS(255,239) can correct
errors in up to 8 symbols or 50 continuous bit errors. It is also interesting to
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see, that the hardware required is proportional to the error correction capability
of the system and not the actual code word length as such.

When a code word is received at the receiver, it is often not the same as the
one transmitted, since noise in the channel introduces errors in the system. Let
us say if r(x) is the received code word, we have

r(x) = c(x)+ e(x) (17.1)

where c(x) is the original codeword and e(x) is the error introduced in the
system. The aim of the decoder is to find the vector e(x) and then subtract it
from r(x) to recover original code word transmitted. It should be added that
there are two aspects of decoding - error detection and error correction. As
mentioned before, the error can only be corrected if there are fewer than or
equal to t errors. However, the Reed Solomon algorithm still allows one to
detect if there are more than t errors. In such cases, the code word is declared
as uncorrectable.

The basic decoder structure is shown in Figure 17.2. A detailed explanation
on Reed Solomon decoders can be found in [Wicker & Bhargava, 1994] and
[Blahut, 1983]. Decoder essentially consists of four modules. The first mod-
ule computes the syndrome polynomial from the received sequence. This is
used to solve a key equation in the second block, which generates two poly-
nomials for determining the location and value of these errors in the received
code word. The next block of Chien search uses the Error Locator Polynomial
obtained from the second block to compute the error location, while the fourth
block employs Forney algorithm to determine the value of error occurred. The
correction block merely adds the values obtained from the output of the Forney
block and the FIFO block.

syndrome
computation

key equation
solver

Chien
search

Forney
algorithm

correction
block

FIFO

data in data out

Figure 17.2. Decoder flow.

17.3 Channel model
Before we proceed to the actual decoder implementation, it is important to

look at the channel model itself. Since UWB (Ultra Wide Band) is not very
well explored yet, it is important to analyse how the channel would behave at
the frequency and the data rate under consideration. One of the most com-
mon models used for modelling transmission over land mobile channels is the
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Gilbert-Elliott model. In this model a channel can be either in a good state or
a bad state depending on the signal-to-noise ratio (SNR) at the receiver. For
different states, the probability of error is different. In [Ahlin, 1985], Ahlin
presented a way to match the parameters of the GE model to the land mobile
channel, an approach that was generalized in [Wang & Moayeri, 1995] to a
Markov model with more than two states.

b

G B

g

1 − b 1 − g

Figure 17.3. The Gilbert-Elliott channel model.

Figure 17.3 shows the GE Channel Model. Two states are shown repre-
sented by G and B indicating the good and the bad state respectively. Further,
the transition probability from the good state to the bad state is shown as b and
from the bad to the good state as g. The probability for error in state G and B
is denoted by P(G) and P(B) respectively. What follows is a concise explana-
tion of the model. A more detailed analysis can be found in [Wilhemsson &
Milstein, 1999] and [Sharma et al., 1996].

To obtain the relation between the physical quantities and the parameters of
the model, Rayleigh fading was considered. The amplitude α of the received
signal is therefore

f (α) =
2α
γ

e−α2/γ, α ≥ 0 (17.2)

and the SNR is exponentially distributed, given by

f (γ) =
1
γ

e−γ/γ, γ ≥ 0 (17.3)

where γ is the average SNR of the received signal. Since, we have two states in
the GE Channel, let γt be the threshold for the SNR, where the channel changes
the state. The stationary probabilities for the two states are given by

Pstat(B) = 1− e−ρ2
(17.4)

Pstat(G) = e−ρ2
(17.5)

where ρ2 = −γt/γ. From these we arrive at the channel transition probabilities
given by the following equations,

g =
ρ fDTs

√
2π

eρ2 −1
(17.6)
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b = ρ fDTs 2π (17.7)

where fD = ν fc
c . Here ν is the relative speed of the objects communicating, fc

is the frequency of the carrier and c is the velocity of light. Ts is the symbol du-
ration. fD indicates the Doppler frequency, while fDTs signifies the normalized
Doppler frequency. The error probabilities in different states can be computed
as follows:

Pe(B) =
1

Pstat(B)

∫ γt

0
f (γ)Pe(γ)dγ (17.8)

and
Pe(G) =

1
Pstat(G)

∫ ∞

γt

f (γ)Pe(γ)dγ (17.9)

where Pe(γ) is the symbol error probability given the value of γ and f (γ) is as
defined above. Pe(γ) depends on the type of modulation used, but for BPSK
(Binary Phase Shift Keying) one of the common modulation schemes, we
have Pe(γ) = Q(

√
r2γ), where [Proakis, 2001]

Q(x) =
1√
2π

∫ ∞

x
e−t2/2dt. (17.10)

17.3.1 Simulation
Following were the parameters set for the simulation of the Ultra Wide Band

channel:

carrier frequency = 4.0 GHz,

information rate = 480 Mbps.

Two sets of simulation were run for different threshold reading. The threshold
here signifies the SNR level at which the channel changes states. The first set
was with the threshold set to 5 dB lower than the average SNR and the other
with 10 dB less than the average. Due to the very high data bit rate involved
the transition probability is very small. Therefore, channel transition become
very rare events, and simulations determined the error probabilities for code
words beginning in a certain state. These were then weighted by the steady
state probability of the corresponding state and added together to obtain the
overall probability rate. Two measures, the bit error rate and the symbol error
rate are computed and plotted. The simulation was run for 10,000 code words
to get a good estimate for each state. Mathematica software was used to solve
the complex mathematical equations and obtain the channel model parameters
for the physical quantities under consideration.

–
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Figure 17.4. The symbol error rate and bit error rates for different thresholds.

17.3.2 Simulation results
As can be seen from the Figure 17.4, the error probabilities decrease with

increase in SNR as expected. The figure shows the symbol and the bit error
probabilities observed. As expected the error rates follow a linear relationship
with the increasing SNR on the logarithmic scale. We notice that around 20
dB average SNR for both the thresholds, the symbol error rate is about 0.02,
which corresponds to an average of 5 symbol errors in a code word of 255
symbols. From the results, an error correction capability of 8 is seen as a good
choice, as when the SNR is above 20 dB, the likelihood of more than 8 errors
in a codeword of 255 is very low.

17.4 Architecture design options
Having decided on the codeword, investigation was carried out to determine

appropriate algorithm and architecture. Figure 17.5 shows the various architec-
tures available. Table 17.1 shows the hardware requirements of computational
elements used in various architectures. Estimates have been made from the
figures drawn in the papers when actual counts could not be obtained for any
architecture. It should be noted that this is only the estimate of computational
elements and, therefore, additional hardware will be needed for control.
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Table 17.1. Summary of hardware utilization of various architectures.

Architecture Blocks Adders Multipliers Muxes Latches Latency Critical path delay

Syndrome Computation [Lee, 2003a] 2t 1 1 1 2
Total 2t 2t 2t 4t n Mul + Add
Look ahead architecture (x units) 2t x x 1 2
Total 2xt 2xt 2t 4t n/x Mul + Add

Original Euclidean [Lee et al., 2000]
Divider Block 2t 1 1 3 2
Multiply Block t 2 1 3 3
Total (Estimates) 4t 3t 9t 7t
Actual [Lee, 2003b] 4t + 1 3t + 1 11t + 4 14t + 6 4t - 3 ROM+2×Mul+Add+2×Mux

Modified Euclidean [Lee et al., 2000]
Degree Computation Block 2t 2 0 7 7
Polynomial Arithmetic Block 2t 2 4 8 19
Total (Estimates) 8t 8t 30t 52t
Actual [Lee, 2003b] 8t 8t 40t + 2 78t + 4 10t + 8 Mul + Add + Mux
Decomposed inversion-less [Chang & Lee, 2001] 1 3 1 3t + 1 2t×(t+1) Mul + Add + Mux

Modified BerleKamp Massey
Serial 1 3 4 3t + 2 2t×(2t+2) Mul + Add + Mux
Decomposed inversion-less [Chang et al., 1998] 2 3 2 5 2t×(t+1) Mul + Add + Mux
Parallel t 3t + 2 t 3t + 1 2t 2×Mul + 2×Add + Mux
Dual-line [Kang & Park, 2002] 2t 4t + 1 2t 4t + 1 3t + 1 Mul + Add
Reformulated inversion-less [Sarwate et al., 2001] 3t + 1 6t + 2 3t + 1 6t + 2 2t Mul + Add

Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4 max(Mul + Add, ROM)
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17.4.1 Design decisions
In order to choose a good architecture for the application, various factors

have to be considered.

Gate count. This determines the silicon area to be used for development.
It is a one-time production cost, but can be critical if it is too high.

Latency. Latency is defined as the delay between the received code word
and the corresponding decoded code word. The lower the latency, the
smaller is the FIFO buffer size required and therefore, it also determines
the silicon area to a large extent.

Critical path delay. This determines the minimum clock period, i.e.
maximum frequency that the system can be operated at.

Table 17.1 shows a summary of all the above mentioned parameters. For
our intended UWB application, speed is of prime concern as it has to be able
to support data rates as high as 1.0 Gbps. At the same time, power has to be
kept low, as it is to be used in portable devices as well. This implies that the
active hardware at any time should be kept low. Also, the overall latency and
gate count of computational elements should be low since that would determine
the total silicon area of the design.

Key equation solver. Reformulated inversion-less and dual line implemen-
tation of the modified Berlekamp Massey have the smallest critical path delay
among all the alternatives of the Key Equation Solver. Inversion-less and dual-
line architectures are explained in [Chang et al., 1998] and [Kang & Park,
2002] respectively. When comparing inversion-less and dual-line implementa-
tions, dual line is a good compromise in latency and computational elements
needed. The latency is one of the lowest and it has the least critical path de-
lay of all the architectures summarized. Thus, dual-line implementation of the
BM algorithm is chosen for the key-equation solver. Another benefit of this
architecture is that the design is very regular and hence easy to implement.

RS code. As we can see from Table 17.1, the hardware requirement for the
entire block is a function of t, the error correction capability, and the latency is
a function of both n and t. Thus, while we want to have a code with high error
correction capability, we can not have a very high value of t as the hardware
needed is proportional to it. The value of n determines the bit-width of the
symbol and therefore the hardware needed, but only logarithmically. However,
one would want to have a value of n = 2m −1, to derive maximum benefit out
of the hardware. The value of t is often chosen to be a power of 2 in order
to maximize the hardware utilized in design. Taking into account the results
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of Channel Model Simulation, RS(255,239) is chosen, since it has an error
correction capability of 8.

17.4.2 Highlights
Table 17.2 shows the various parameters for choosing dual line architecture

with n = 255, k = 239, and t = 8. The overall critical path delay is hence Mul
+ Add.

Table 17.2. Summary of hardware utilization for dual-line architecture.

Architecture Adders Multipliers Muxes Latches Latency

Syndrome Computation 2t 2t 2t 4t n
Dual-line 2t 4t + 1 2t 4t + 1 3t + 1
Chien/Forney 2t 2t + 2 2t + 2 2t + 10 4

Total 6t 8t + 3 6t + 2 10t + 11 3t + n + 5
For RS(255, 239) 48 67 50 91 284

17.5 Design flow
The first step was to develop a C-model for the decoder. ‘Gcc’ compiler was

used to compile the code and to check if the code worked correctly. Output of
each intermediate stage was compared with the expected output according to
the algorithm with the aid of an example.

Once the algorithm was fully developed and tested in C, VHDL-code was
developed. The VHDL code was structured such that it could be easily synthe-
sized. A wrapper class was written around it, in order to test it. This VHDL
code was compiled and tested using Cadence tools. ‘Ncsim’ was used to sim-
ulate the system and generate the output stream for the same input tests as
were used for testing C code. The output stream from VHDL and C were then
compared.

When this output was found to be matched for various input test cases, syn-
thesis experiments were started. Ambit from Cadence was used to analyse the
hardware usage and frequency of operation after various optimisation settings.

The design flow needed for verification of synthesized design and power
estimation has been explained in Figure 17.6. As shown in the figure the core
VHDL modules were optimised and synthesized using ambit. The synthesized
model was written out into a verilog netlist using ambit itself. Once the netlist
was obtained, it was compiled using ncvlog into the work library together with
the technology library. The library used was for the same technology as the
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Figure 17.6. Design flow for design verification and estimation of power.

one used for synthesis. As can be seen, the wrapper modules were actually
written in VHDL, while the compiled core was from the verilog. Thus, to allow
interaction between the two, the top interface of the work library, was extracted
into a VHDL file and then compiled into the work library. This was done using
ncshell and ncvhdl respectively. This being done, the wrapper modules were
compiled into the work library.

From this point onwards, two approaches were used. Ncelab and ncsim were
used purely for simulating the synthesized design, and dncelab and dncsim
were used to obtain power estimate, which were essentially the same tools,
but included the DIESEL routines for estimating the power dissipated in the
design. Diesel is an internal tool developed within Philips which estimates the
power for the simulated design, and hence the accuracy of the results depends
on the input provided.

17.6 Results
This section covers the results of various synthesis experiments conducted.

Resource utilization, timing analysis and the power consumption were used as
benchmarking parameters.

17.6.1 Area analysis
Ambit was run for 0.12 µm and 0.18 µm CMOS technology. The silicon area

required was analysed for various timing constraints. A comparison for area
of the decoder is shown in Table 17.3. This table shows the area requirement
when the constraint was set to 5 ns, which can support 200 MHz frequency, i.e.
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1.6 Gbps. The total number of design cells used, including the memory, were
12,768 and 12,613 for 0.12 µm and 0.18 µm respectively.

Table 17.3. Resource utilization for the decoder.

Module Area (µm2)
Module CMOS12 CMOS18

Chien 7,663 15,675
FIFO 83,183 148,684
Forney 21,608 52,936
Gen elp eep 89,602 186,404
Gen syndromes 17,828 34,754

top view 219,913 438,472

17.6.2 Power analysis
The power estimates provided in this section are for design operation at 125

MHz, which translates to data rate of 1Gbps.

Variation with number of errors. Figure 17.7 shows the variation of power
with the number of errors found in the codeword for 0.12 µm technology. As
can be seen from the graph obtained, the power dissipated for the FIFO and
syndrome computation block is independent of the number of errors as ex-
pected. For the block that computes the Error Locator Polynomial (ELP) and
Error Evaluator Polynomial (EEP), it is clearly seen that the power dissipated
increases linearly with the number of errors. The Chien search block also
shows a linear increase in the power dissipated.

The behaviour of Forney evaluator is a bit different from the other modules.
We see that the power dissipated for the codeword with an even number of
errors is not significantly larger to the one with the previous number of errors.
The reason lies in the fact that the degree of EEP for codeword with one error
is often the same as the one with two errors, and so on and so forth. However,
as a general rule, there is still an increase in the power dissipation, because of
some computation that is done for each error found.

Distribution of power in different modules. Figure 17.8 shows a distribution
of power when there are maximum number of errors correctable in the received
code word, while Figure 17.9 shows the distribution when the code word is
received intact. As can be seen, in the case of no errors, bulk of the power is
consumed in computing syndromes, apart from the memory. In the event of
maximum errors detected, the Forney block consumes the maximum power.
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Figure 17.7. Graph showing variation of power dissipated with number of errors for different
modules.

The total power consumption varies from 14 mW to 17 mW with the former
corresponding to no-error case, while the latter corresponding to maximum
errors.

Figure 17.8. Power consumed by various
blocks when 8 errors are found.

Figure 17.9. Power consumed by various
blocks when no errors are found.
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17.7 Benchmarking
Please note that for all the designs RS(255,239) code has been used for

benchmarking. The design using modified Euclidean Algorithm is very hard-
ware intensive. The design proposed in [Lee, 2003a] uses roughly 115K gates
for 0.12 µm CMOS technology operating at 6.0 Gbps excluding memory. The
proposed design only uses 12K cells including memory in both 0.12 µm and
0.18 µm technology. The results are better even when they are normalised for
throughput and technology. The latency of the design is only 284 cycles when
compared to 355 cycles in [Lee, 2003a].

In terms of power, a design was proposed in [Chang et al., 2002] for low
power. In that design, 62 mW of power is used in the best case, including
memory, using 0.25 µm CMOS technology, and 100 mW are consumed in the
worst case. In our design, only 17 mW of power is used in the worst case using
0.12 µm technology. The area of the chip proposed in [Chang et al., 2002]
using 0.25 µm CMOS technology is 5 mm2, while the area of the proposed
design is 0.22 mm2 with 0.12 µm technology.

17.8 Optimisations to design
From the results, it was observed that the FIFO and the Forney block con-

sumed most of the power. These blocks were investigated further and re-
designed to improve the performance. The original design of FIFO involved
a serial arrangement of shift-registers. This design was the most compact in
terms of area but consumed more power since at every cycle all the elements
were shifted by one. The design was hence, modified to have only one read
and write every clock cycle. This increased the design area, but significantly
reduced the power. Area of the new design of FIFO is now 109,000 µm2 (with
0.12 µm technology), while the power consumed is only 970 µW, 60% lower
than the earlier design. This results in power savings even in the case when no
errors are found.

For the Forney block, design was optimised by combining two table lookups
into one for computing the inverse of elements. This led to a better circuit in
terms of area and also decreased the power significantly. The optimised design
for Forney now occupies an area of 13,400 µm2, about 38% lower than original
design. The power consumption is lower by at least 1.5 mW for all cases. Table
17.4 shows the new area distribution of the decoder.

Power analysis was repeated for the optimised design. Figure 17.10 shows
the power distribution in various modules when there are 8 errors in the re-
ceived codeword, while Figure 17.11 shows the distribution when the code-
word is received intact. As we can see, the FIFO now takes less than half the
power in no-error case, as compared to two-thirds in the original design. In the
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Table 17.4. Resource utilization for the decoder in CMOS12 in optimised design.

Module Module Area (µm2)

Chien 7,655
FIFO 108,906
Forney 13,408
Key Equation 89,587
Syndromes 17,719

Top View 237,414

case of 8-errors, the power consumption of Forney has now reduced to about a
quarter as compared to one-third in the original design.

Figure 17.10. Figure 17.11. Power consumed when no

Figure 17.12 shows the variation of power with the number of errors. The
trend in the power consumption of Forney is the same as before the optimisa-
tion. The total power consumption of the design now lies between 12 mW to
14 mW depending upon the no-error case to when maximum errors are found.
It should be noted that 9.5 mW of power is consumed in driving the input.
Thus, only about 2.5 mW to 4.5 mW is actually consumed in the transitions
in the design. Voltage scaling measures can also be applied on the design to
further lower the power consumption.
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Figure 17.12. Variation of power dissipated with number of errors for different modules with
modifications in the design.

17.8.1 Embedded memory for FIFO
The option of using embedded memory for FIFO was also explored, since in

the final design embedded memory shall be used. Table 17.5 shows an estimate
of the area and power consumption for various libraries. In the table, x refers
to the number of words in a row, y to the number of rows per block and z to the
number of blocks. The total number of words in memory is x× y× z. As can
be seen AMDC C12ESRAM is the only one that provides a lower power than
our simulated design. However, all of them seem to have a better area than the
synthesized design. When AMDC C12ESRAM is used for the final design, the
area would be reduced by 0.08 mm2, that is 80% lower than the synthesized
design. The power consumption, however, remains the same.

17.9 Conclusions
A uniform comparison was drawn for various algorithms that have been

proposed in literature. This helped in selecting the appropriate architecture for
the intended application. The modified Berlekamp Massey algorithm is chosen
for the VHDL implementation. Dual line architecture is used, which is as fast
as serial and has low latency as that of a parallel approach.
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Table 17.5. Memory Estimates for various libraries and designs.

Library Size Words Area Power
(bits) x y z (mm2) (µW/MHz) at 125 MHz

AMDC C12XSRAM 2.2K 36 8 0.02 13.03 1628.75
LTG C12FSRAM 2.2K 72 4 0.03 11.32 1415
LTG C12FSRAM 2.2K 36 8 0.02 11.57 1446.25
AMDC C12ESRAM 2.2K 72 2 2 0.02 7.2 900
LTG C12FDSRAM 2.2K 72 4 0.06 11.86 1482.5
LTG C12FDSRAM 2.2K 36 8 0.05 12.88 1610
AMDC C12EDSRAM 2.2K 72 4 0.04 10.7 1337.5
LTG C12FTSRAM 2.2K 72 4 0.03 13.9 1737.5

The decoder implemented is capable of running at 200 MHz in ASIC im-
plementation, which translates to 1.6 Gbps and requires only about 12K design
cells and an area of 0.22 mm2 with CMOS12 technology. The system has a la-
tency of only 284 cycles for RS(255, 239) code. The power dissipated in the
worst case is 14 mW including the memory block when operating at 1.0 Gbps
data rate.

References
Ahlin, L. [1985]. Coding methods for the mobile radio channel. In Nordic Seminar on Digital

Land Mobile Communications.
Blahut, R.E. [1983]. Theory and Practice of Error Control Codes. Addison-Wesley.
Chang, H.C., and C.B. Shung [1998]. A (208,192;8) Reed-Solomon decoder for DVD applica-

tion. In IEEE International Conference on Communications.
Chang, H.C., and C.Y. Lee [2001]. An area-efficient architecture for Reed-Solomon decoder

using the inversion less decomposed Euclidean algorithm. In IEEE International Symposium
on Circuits and Systems.

Chang, H.C., C.C. Lin, and C.Y. Lee [2002]. A low-power Reed-Solomon decoder for STM-16
optical communications. In IEEE Asia-Pacific Conference on ASIC.

Kang, H.J., and I.C. Park [2002]. A high-speed and low-latency Reed-Solomon decoder based
on a dual-line structure. In IEEE International Conference on Acoustics, Speech, and Signal
Processing.

Lee, H., M.L. Yu, and L. Song [2000]. VLSI design of Reed-Solomon decoder architectures. In
IEEE International Symposium on Circuits and Systems.

Lee, H. [2003a]. High-speed VLSI architecture for parallel Reed-Solomon decoder. In IEEE
transactions on VLSI Systems.

Lee, H. [2003b]. An area-efficient Euclidean algorithm block for Reed-Solomon decoder. In
IEEE Computer Society Annual Symposium on VLSI.

Proakis, J.G. [2001]. Digital Communications. New York: Mc Graw Hill.
Sarwate, D.V., and N.R. Shanbhag [2001]. High-speed architectures for Reed-Solomon de-

coders. In IEEE transactions on VLSI Systems.
Sharma, G., A. Dholakia, and A. Hassan [1996]. Simulation of error trapping decoders on a

fading channel. In IEEE Transaction on Vehicular Technology.

High Throughput and Low Power Reed Solomon Decoder



316

Wang, H.S., and N. Moayeri [1995]. Finite-state Markov channel A useful model for radio
communication channels. In IEEE Transaction on Vehicular Technology.

Wicker, S.B., and V.K. Bhargava [1994]. Reed Solomon Codes and Their Applications. Piscat-
away, NJ: IEEE Press.

Wilhemsson, L., and L.B. Milstein [1999]. On the effect of imperfect interleaving for the
Gilbert-Elliott channel. In IEEE Transactions on Communications.

–

Akash Kumar and Sergei Sawitzki



Index

A

actin, 11
filament, 12

agent-based swarm technique, 9
air fair scheduling, 279
anti-body, 26
appearance feature, 254
approximate matching, 139
aqueous computing, 24
artery system, 47
artificial intelligence, 58
assumed-density filtering, 249
audio classification, 103
audio feature, 107

primary, 111
secondary, 111

B

backlog, 281
Bayesian inference, 188, 246
Bayesian network, 244
beat mixing, 119
Bhattacharyya distance, 110
biocircuit design, 32
biological consciousness, 59
biometrics, 260
bioscience computing, 3
blinding, 177
bootstrap, 110

C

cell membrane, 11
cellular automaton, 9
chroma, 121

spectrum, 123
chromosome, 44
classification, 96, 103

clique problem, 222, 230
cloning, 49
closure, 227
code word, 300
collaborative filtering, 170

memory-based, 170–171
item-based, 171, 175
user-based, 171–172

model-based, 170
completeness, 218
computational complexity, 216, 218
computational theory of mind, 60
concept hierarchy, 135
conditional gate, 265
conjunctive normal form, 139
consciousness, 58

biological, 59
machine, 60
phenomenal, 60

contextualization, 136
counting measure, 173
critical path delay, 307
cytoplasm, 9
cytoskeleton, 8

D

D* entailment, 224
data cell, 39–40
data compression, 189
database management, 39
decidability, 218
decision Diffie-Hellman problem, 263
delay, 294
description method, 189
diatom colony behaviour, 16
disjunctive normal form, 139
distance measure, 172
DNA computing, 22, 39

317



318 Index

dominated state, 79
dynamic programming, 78

E

electronic program guide, 73
ElGamal cryptosystem, 262
emergent behaviour, 7
emergent machine consciousness, 65
emitter, 39, 41
emotive computing, 58
encryption, 170, 176, 261
entailment, 216–217

simple, 219, 221
environment-phenotype map, 9
error correction, 300
error rate, 304
EXPTIME-complete, 218
extraction, 153

F

fair queueing, 275
fairness, 277
feature extraction, 95, 103, 105
filtering, 153
Fisher information matrix, 200
fluid memory, 24
FokI enzyme, 29
friendly key, 122

G

gate count, 307
generalized interpolation lemma, 221
generalized processor sharing, 274
global workspace theory, 61
Google, 153

H

Hamiltonian path problem, 22
Hamming distance, 267
harmonic mixing, 120
harmonic series, 123
hibernation, 50
hidden Markov model, 245
high throughput, 299
homomorphic encryption, 177, 261
hybridization, 23, 29
hypothesis, 194

I

in-silico experiment, 4
inductive inference, 191
information extraction, 149–150
information theory, 187
information utility, 38
integer linear programming, 96
invariance theorem, 191

K

Kalman filter model, 245
knowledge domain, 149
knowledge-explicit approach, 91
Kolmogorov complexity, 191
Kraft inequality, 196

L

latency, 307
learning, 189
linguistic interpretation, 136
local scheduler, 287
localization, 243
low power, 299

M

MAC layer, 274, 287
machine consciousness, 60
machine learning approach, 91
Markov chain, 195
Markov model, 302

mixed memory, 246
maximum key-profile correlation, 126
maximum likelihood, 124, 188

normalized, 199
maximum total similarity, 174
mechanistic model, 5
medical computer, 30
membrane, 48
mental phenomenon, 59
metadata schema, 133
minimum description length principle, 187
mixed memory Markov model, 246
model, 194

selection, 187, 192
modified Berlekamp Massey algorithm, 307
molecular computing, 22
monotonal composition, 122
music genre, 115, 133, 138



Index 319

musical key, 119, 122
musical pitch, 121

N

neuron, 48
neuroscience, 58
NEXPTIME-complete, 218
normalization, 153
NP-complete, 76, 222

O

Occam’s razor, 187, 205
octave, 121
one-part code, 199
ontology, 133, 149, 215

completion problem, 152
partial, 152
population, 150
reference, 151

organic database system, 39
overfitting, 188, 192
OWL, 217

DL entailment, 218
full entailment, 218

P

packet loss, 294
packetized AFS, 281
Paillier cryptosystem, 176
parametric complexity, 199
parity symbol, 300
partial ontology, 152
particle filtering, 248
Pearson correlation, 172
percussiveness, 104
personalization, 99, 169
phenomenal consciousness, 60
phenomenological model, 5
pitch class, 121
polymerase chain reaction, 24
polyphonic music, 107, 114
precision, 152
prediction, 173
preselection, 153
preview composition, 97
principal component analysis, 252
privacy, 169, 260
private key, 176, 262
private-multiplier gate, 265

profile matching, 260
propositional logic, 139
protein behaviour, 11
pruning, 79
public key, 176, 262

encryption, 176, 261

Q

QoS, 274
quantum computing, 39

R

randomized encryption, 176
rating, 171
RDF, 216

graph, 219
equivalence, 221

schema, 216
triple, 220

RDFS entailment, 223
recall, 152
receptor, 39, 41
recommender system, 74, 150, 170, 259
Reed Solomon code, 299
reference ontology, 151
resource description framework, 216
robot localization, 250

S

satisfiability problem, 24
scheduling, 77
secure adder, 268
secure approximate matcher, 270
secure comparator, 270
secure computation, 261
secure multi-party computation, 261
segment, 91

selection, 96
segmentation, 96
self-awareness, 67
semantic comparison, 136
semantic matching, 133
semantics, 217, 233
semantic web, 215
signal envelope, 105
signal-to-noise ratio, 302
similar instances problem, 153
similar statements problem, 153
similarity measure, 172



320 Index

simple entailment, 219, 221
sloppiness, 135
spatio-temporal feature, 254
spectral content, 123
station scheduler, 285
statistical consistency, 198
stochastic complexity, 199
subset sum problem, 76
subsumption relation, 135
swarm technique

agent-based, 9
syndrome polynomial, 301
synthetic biology, 31
systems biology, 4

T

threshold cryptosystem, 177, 261
throughput, 294

fairness, 276
timbre, 104
time complexity, 174, 181
time granularity, 80
time-shifted show selection problem, 75
tracking, 243, 253

traffic flow, 274
transduction pathway, 9
transmission error, 275
transmission rate, 276
Turing machine, 28

DNA implementation, 28
two-part code, 201

U

ultra-wide band, 299

V

VHDL, 308
video highlight, 90
video skim, 90
video summarization, 89

W

wakeup, 50
web ontology language, 217
weighted sum, 174
wireless local area network, 273

Z

zero-knowledge proof, 262



Philips Research Book Series

1. H.J. Bergveld, W.S. Kruijt and P.H.L. Notten: Battery Management Systems.
2002 ISBN 1-4020-0832-5

2. W. Verhaegh, E. Aarts and J. Korst (eds.): Algorithms in Ambient Intelligence.
2004 ISBN 1-4020-1757-X

3. P. van der Stok (ed.): Dynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices. 2005 ISBN 1-4020-3453-9

4. E. Meinders, A.V. Mijritskii, L. van Pieterson and M. Wuttig: Phase-Change
Optical Recording Media. 2006 ISBN 1-4020-4216-7

5. S. Mukherjee, E. Aarts, R. Roovers, F. Widdershoven and M. Ouwerkerk (eds.):
AmIware. Hardware Technology Drivers of Ambient Intelligence. 2006

ISBN 1-4020-4197-7
6. G. Spekowius and T. Wendler (eds.): Advances in Healthcare Technology. Shap-

ing the Future of Medical Care. 2006 ISBN 1-4020-4383-X

springer.com

7. W.F. J. Verhaegh, E. Aarts and J. Korst (eds.): Intelligent Algorithms in Ambient
and Biomedical Computing. 2006 ISBN 1-4020-4953-8


	Contents
	Contributing Authors
	Preface
	Acknowledgments
	Part I: Healthcare
	1. Bioscience Computing and the Role of Computational Simulation in Biology
	1.1. Introduction to bioscience computing
	1.2. Simulating adaptive behaviour
	1.3. Impact and future directions for bioscience computing
	1.4. Summary and conclusions
	References

	2. The Many Strands of DNA Computing
	2.1. Introduction
	2.2. DNA computing
	2.3. Synthetic biology
	2.4. Conclusion and future directions
	References

	3. Bio-Inspired Data Management
	3.1. Introduction
	3.2. Data cell overview
	3.3. The communication infrastructure
	3.4. The life cycle
	3.5. Application challenges
	3.6. Conclusion
	References

	4. An Introduction to Machine Consciousness
	4.1. Introduction
	4.2. Biological consciousness
	4.3. Machine consciousness
	4.4. Is it relevant?
	4.5. Applications
	4.6. Conclusion
	References


	Part II: Lifestyle
	5. Optimal Selection of TV Shows for Watching and Recording
	5.1. Introduction
	5.2. Problem definition
	5.3. Computational complexity
	5.4. Scheduling shows for watching
	5.5. A dynamic programming approach
	5.6. Run time improvements
	5.7. Experiments
	5.8. Conclusion
	References

	6. Movie-in-a-Minute: Automatically Generated Video Previews
	6.1. Introduction
	6.2. Related work
	6.3. Requirements
	6.4. Formal model
	6.5. Implementation and results
	6.6. Need for personalization
	6.7. Conclusions
	References

	7. Features for Audio Classification: Percussiveness of Sounds
	7.1. Introduction
	7.2. Feature extraction algorithm
	7.3. Experiments
	7.4. Summary
	References

	8. Extracting the Key from Music
	8.1. Introduction
	8.2. Musical pitch and key
	8.3. Method
	8.4. Evaluation
	8.5. Conclusion
	References

	9. Approximate Semantic Matching of Music Classes on the Internet
	9.1. Introduction
	9.2. Semantic coordination
	9.3. Internet music schemas
	9.4. Approximate matching
	9.5. Experiment with approximate matching
	9.6. Future work
	9.7. Conclusion
	References

	10. Ontology-Based Information Extraction from the World Wide Web
	10.1. Introduction
	10.2. Problem definition
	10.3. Solution approach
	10.4. Case study: Finding famous people on the Web
	10.5. Concluding remarks
	References

	11. Privacy Protection in Collaborative Filtering by Encrypted Computation
	11.1. Introduction
	11.2. Memory-based collaborative filtering
	11.3. Encryption
	11.4. Encrypted user-based algorithm
	11.5. Encrypted item-based algorithm
	11.6. Conclusion
	References


	Part III: Technology
	12. A First Look at the Minimum Description Length Principle
	12.1. Introduction and overview
	12.2. The fundamental idea: Learning as data compression
	12.3. MDL and model selection
	12.4. Crude and refined MDL
	12.5. The MDL philosophy
	12.6. MDL and Occam's razor
	12.7. History
	12.8. Challenges for MDL: The road ahead
	12.9. Summary, conclusion and further reading
	References

	13. Semantic Web Ontologies and Entailment: Complexity Aspects
	13.1. Introduction
	13.2. RDF graphs and simple entailment
	13.3 RDFS entailment and D* entailment
	13.4. pD* entailment
	13.5. Conclusion
	References

	14. Bayesian Methods for Tracking and Localization
	14.1 Introduction
	14.2. Bayesian networks for dynamic systems analysis
	14.3. Localization of a mobile platform
	14.4. Tracking with distributed cameras
	14.5. Conclusions and remaining issues
	References

	15. Private Profile Matching
	15.1. Introduction
	15.2. Preliminaries
	15.3. Secure approximate matching w.r.t. Hamming distance
	15.4. Conclusion
	References

	16. Air Fair Scheduling for Multimedia Transmission over Multi-Rate Wireless LANs
	16.1. Introduction
	16.2. Fairness in wireless/mobile networks
	16.3. AFS in an IEEE 802.11e wireless LAN
	16.4. Station scheduler
	16.5. Local scheduler (LS)
	16.6. Numerical and simulation results
	16.7. Experimental setup and results
	16.8. Conclusions
	References

	17. High Throughput and Low Power Reed Solomon Decoder for Ultra Wide Band
	17.1. Motivation
	17.2. Introduction to Reed Solomon
	17.3. Channel model
	17.4. Architecture design options
	17.5. Design flow
	17.6. Results
	17.7. Benchmarking
	17.8. Optimisations to design
	17.9. Conclusions
	References


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z




