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Preface

When developing a new heuristic or complete algorithm for a constraint satisfaction
or constrained optimization problem, we frequently face the problem of choice.
There may be multiple branching heuristics that we can employ, different types of
inference mechanisms, various restart strategies, or a multitude of neighborhoods
from which to choose. Furthermore, the way in which the choices we make affect
one another is not readily perceptible. The task of making these choices is known as
algorithm configuration.

Developers often make many of these algorithmic choices during the prototyping
stage. Based on a few preliminary manual tests, certain algorithmic components
are discarded even before all the remaining components have been implemented.
However, by making the algorithmic choices beforehand developers may unknow-
ingly discard components that are used in the optimal configuration. In addition, the
developer of an algorithm has limited knowledge about the instances that a user will
typically employ the solver for. That is the very reason why solvers have parameters:
to enable users to fine-tune a solver for their specific needs.

Alternatively, manually tuning a parameterized solver can require significant
resources, effort, and expert knowledge. Before even trying the numerous possible
parameter settings, the user must learn about the inner workings of the solver to
understand what each parameter does. Furthermore, it has been shown that manual
tuning often leads to highly inferior performance.

This book shows how to automatically train a multi-scale, multi-task
approach for enhanced performance based on machine learning techniques. In
particular this work presents the methodology of Instance-Specific Algorithm
Configuration (ISAC). ISAC is a general configurator that focuses on tuning
different categories of parameterized solvers according to the instances they will
be applied to. Specifically, this book shows that the instances of many problems
can be decomposed into a representative vector of features. It further shows that
instances with similar features often cause similar behavior in the applied algorithm.
ISAC exploits this observation by automatically detecting the different subtypes of
a problem and then training a solver for each variety. This technique is explored on
a number of problem domains, including set covering, mixed integer, satisfiability,
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and set partitioning. ISAC is then further expanded to demonstrate its application
to traditional algorithm portfolios and adaptive search methodologies. In all cases,
marked improvements are shown over the existing state-of-the-art solvers. These
improvements were particularly evident during the 2011 SAT Competition, where
a solver based on ISAC won seven medals, including a gold in the handcrafted
instance category, and another gold in the randomly generated instance category.
Later, in 2013, solvers based on this research won multiple gold medals in both the
SAT Competition and the MaxSAT Evaluation.

The research behind ISAC is broken down into ten chapters. Chapters 1 and 2,
respectively, introduce the problem domain and the relevant research that has been
done on the topic. Chapter 3 then introduces the ISAC methodology, while Chap. 4
demonstrates its effectiveness in practice. Chapters 5, 6, and 7 demonstrate how
the methodology can be applied to the problem of algorithm selection. Chapter 8
takes an alternate view and shows how ISAC can be used to create a framework
that dynamically switches to the best heuristic to utilize as the problem is being
solved. Chapter 9 introduces the concept that sometimes problems change over
time, and that a portfolio needs a way to effectively retrain to accommodate the
changes. Chapter 10 demonstrates how the ISAC methodology can be transparently
expanded, while Chap. 11 wraps up the topics covered and offers ideas for future
research.

The research presented in this book was carried out as the author’s Ph.D. work
at Brown University and his continuing work at the Cork Constraint Computation
Centre. It would not have been possible without the collaboration with my advisor,
Meinolf Sellmann, and my supervisor, Barry O’Sullivan. I would also like to thank
all of my coauthors, who have helped to make this research possible. In alphabetical
order they are: Tinus Abell, Carlos Ansotegui, Marco Collautti, Barry Hurley, Serdar
Kadioglu, Lars Kotthoff, Christian Kroer, Kevin Leo, Giovanni Di Liberto, Deepak
Mehta, Ashish Sabharwal, Horst Samulowitz, Helmut Simonis, and Kevin Tierney.

This work has also been partially supported by Science Foundation Ireland Grant
No. 10/IN.1/13032 and by the European Union FET grant (ICON) No. 284715.

Cork, Ireland Yuri Malitsky
September 2013
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Chapter 1
Introduction

In computer science it is often the case that programs are designed to repeatedly
solve many instances of the same problem. In the stock market, for example, there
are programs that must continuously evaluate the value of a portfolio, determining
the most opportune time to buy or sell stocks. In container stowage, each time a
container ship comes into port, a program needs to find a way to load and unload
its containers as quickly as possible while not compromising the ship’s integrity
and making sure that at the next port the containers that need to be unloaded
are stacked closer to the top. In database management systems, programs need to
schedule jobs and store information across multiple machines continually so that the
average time to complete an operation is minimized. A robot relying on a camera
needs to process images detailing the state of its current environment continually.
Whenever dealing with uncertainty, as in the case of a hurricane landfall, an
algorithm needs to evaluate numerous scenarios to choose the best evacuation
routes. Furthermore, these applications need not only be online tasks, but can be
offline as well. Scheduling airplane flights and crews for maximum profit needs to
be done every so often to adjust to any changes that might occur due to disruptions,
delays and mechanical issues, but such schedules do not need to be computed within
a certain short allowable time frame.

In all the above-mentioned cases, and many more similar ones, the task of the
program is to solve different instantiations of the same problem continually. In such
applications, it is not enough just to solve the problem,; it is also necessary that this
be done with increasing accuracy and/or efficiency. One possible way to achieve
these improvements is to have developers and researchers design progressively
better algorithms. And there is still a lot of potential that can be gained through better
understanding and utilization of existing techniques. Yet, while this is essential for
continual progress, it is becoming obvious that there is no singular universally best
algorithm. Instead, as will be shown in subsequent chapters, an algorithm that is
improved for average performance must do so by sacrificing performance on some
subset of cases.
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2 1 Introduction

Furthermore, in practice, developers often make decisive choices about the
internal parameters of a solver when creating it. But because a solver can be used to
address many different problems, certain settings or heuristics are beneficial for one
group of instances while different settings could be better for other problems. It is
therefore important to develop configurable solvers, whose internal behavior can be
adjusted to suit the application at hand.

Let us take the very simple example of a simulated annealing (SA) search. This
probabilistic local search strategy was inspired by a phenomenon in metallurgy
where repeated controlled heating and cooling would result in the formation of
larger crystals with fewer defects, a desirable outcome of the process. Analogously,
the search strategy tries to replace its current solution with a randomly selected
neighboring solution. If this neighbor is better than the current solution, it is
accepted as the new current solution. However, if this random solution is worse,
it is selected with some probability depending on the current temperature parameter
and how much worse it is than the current solution. Therefore, the higher the
temperature, the more likely the search is to accept the new solution, thus exploring
more of the search space. Alternatively, as the temperature is continually lowered as
the search proceeds, SA focuses more on improving solutions and thus exploiting a
particular portion of the search space. In practice, SA has been shown to be highly
effective on a multitude of problems, but the key to its success lies in the initial
setting of the temperature parameter and the speed with which it is lowered. Setting
the temperature very high can be equivalent to random sampling but works well in a
very jagged search space with many local optima. Alternatively, a low temperature is
much better for quickly finding a solution in a relatively smooth search area but the
search is unlikely ever to leave a local optima. The developer, however, often does
not know the type of problem the user will be solving, so fixing these parameters
beforehand can be highly counterproductive. Yet in many solvers, constants like the
rate of decay, the frequency of restarts, the learning rate, etc. are all parameters that
are deeply embedded within the solver and manually set by the developer.

Generalizing further from individual parameters, it is clear that even the deter-
ministic choice of the employed algorithms must be left open to change. In
optimization, there are several seminal papers advocating the idea of exploiting
statistics and machine learning technology to increase the efficiency of combi-
natorial solvers. At a high level, these solvers try to find a value assignment to
a collection of variables while adhering to a collection of constraints. A trivial
example would be to find which combination of ten coins are needed to sum up
to two euros, while requiring twice as many 10 cent coins as 20 cent coins. One
feasible solution is obviously to take four 5s, four 10s, two 20s, and two 50s. One
popular way to solve these types of problems is an iterative technique called branch-
and-bound, where one variable is chosen to take a particular value which in turn
causes some assignments to become infeasible. In our example, first choosing to
take two 20 cent coins means that we must also take four 10 cent coins, which in
turn means we can not take any two euro coins. Once all infeasible values are filtered
out, another variable is heuristically assigned a value, and the process is repeated.
If a chain of assignments leads to an infeasible solution, the solver backtracks to a
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previous decision point, and tries an alternate chain of assignments to the variables.
When solving these types of problems, the heuristic choice of the next variable and
value pair to try is crucial, often resulting in the problem being solvable in a few
seconds as being something that can run until the end of the universe. Imagine, for
example, the first decision being to take at least one penny.

Yet, in practice, there is no single heuristic or approach that has been shown
to be best over all scenarios. For example, it has been suggested that we gather
statistics during the solution process of a constraint satisfaction problem on variable
assignments that cause a lot of filtering and to base future branching decisions on
this data. This technique, called impact-based search, is one of the most successful
in constraint programming and has become part of the IBM Ilog CP Solver. The
developer might know about the success of this approach and choose it as the only
available heuristic in the solver. Yet, while the method works really well in most
cases, there are scenarios where just randomly switching between multiple alternate
heuristics performs just as well, if not better.

As a bottom line, while it is possible to develop solvers to improve the
average-case performance, any such gains are made at the expense of decreased
performance on some subset of instances. Therefore, while some solvers excel in
one particular scenario, there is no single solver or algorithm that works best in all
scenarios. Due to this fact, it is necessary to make solvers as accessible as possible,
so users can tailor methodologies to the particular datasets of interest to them.
Meanwhile, developers should make all choices available to the user.

One of the success stories of such an approach from the Boolean satisfiability
domain is SATenstein [62]. Observing the ideas and differences behind some of the
most successful local search SAT solvers, the creators of SATenstein noticed that
all solvers followed the same general structure. The solver selected a variable in the
SAT formula and then assigned it to be either true or false. The differences in the
solvers were mainly due to how the decision was made to select the variable and
what value was assigned to it. Upon this observation, SATenstein was developed
such that all existing solvers could be replicated by simply modifying a few
parameters. This not only created a single base for any existing local search SAT
solver, but also allowed users to easily try new combinations of components to
experiment with previously unknown solvers. It is therefore imperative to make
solvers and algorithms configurable, allowing for them to be used to maximum
effect for the application at hand.

Yet while solvers like SATenstein provide the user with a lot of power to fine-tune
a solver to exact specifications, the problem of choice arises. SATenstein has over
40 parameters that can be defined. A mathematical programming solver like IBM
Cplex [59] has over 100. Without expert knowledge of exactly how these solvers
work internally, setting these parameters becomes a guessing game rather than
research. Things are further complicated if a new version of the solver becomes
available with new parameters or the non-linear relations between some parameters
change. This also makes switching to a new solver a very expensive endeavor,
requiring time and resources to become familiar with the new environment. On top
of the sheer expense of manually tuning parameters, it has been consistently shown
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that even the developers who originally made the solver struggle when setting the
parameters manually.

The research into artificial intelligence algorithms and techniques that can
automate the setting of a solver’s parameters has resulted in a paradigm shift
with advantages beyond improved performance of solvers. For one, research in
this direction can potentially improve the quality of comparisons between existing
solvers. As things are now, when a new solver needs to be compared to the existing
state of the art, it is often the case that the developers find a new dataset and then
carefully tweak their proposed approach. However, when running the competing
solver, much less time is devoted to making sure it is running optimally. There are
many possible reasons for this, but the result is the same. Through automating the
configuration of solvers for the problems at hand, a much more fair comparison can
be achieved. Furthermore, through this approach towards configuration, it will be
possible to claim the benefits of a newly proposed heuristic or method definitively
if it is automatically chosen as best for a particular dataset or, even better, if the
configuration tool can automatically find the types of instances where the new
approach is best.

Through tuning, researchers would also be allowed to better focus their efforts on
the development of new algorithms. When improving the performance of a solver,
it is important to note whether the benefits are coming from small improvements
on many easy instances or a handful of hard ones. It would also be possible to
identify the current bounds on performance, effectively homing in on cases where
a breakthrough can have the most benefit. Furthermore, by studying benchmarks, it
might be possible to discern the structural differences between these hard instances
and the easy ones, which can lead to insights into what makes the problems hard
and how these differences can be exploited advantageously.

Additionally, what if we can automatically identify the hard problems? What if
by studying the structure of hard instances we notice that it can be systematically
perturbed to make the instances easier. What if we can intelligently create hard
instances that have a particular internal structure instead of randomly trying to
achieve interesting benchmarks? What if we can create adaptive solvers that detect
changes in the problem structure and can completely modify their strategy based on
these changes?

This book presents a methodology that is motivated by these issues, discussing a
clear infrastructure that can be readily expanded and applied to a variety of domains.

1.1 OQutline

This book shows how to automatically train a multi-scale, multi-task approach
for enhanced performance based on machine learning techniques.

Although the idea of automatically tuning algorithms is not new, the field of
automatic algorithm configuration has experienced a renaissance in the past decade.
There now exist a number of techniques that are designed to select a parameter set
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automatically that on average works well on all instances in the training set [5, 56].
The research outlined here takes the current approaches a step further by taking into
account the specific problem instances that need to be solved. Instead of assuming
that there is one optimal parameter set that will yield the best performance on
all instances, it assumes that there are multiple types of problems, each yielding
to different strategies. Furthermore, the book assumes that there exists a finite
collection of features for each instance that can be used to correctly identify its
structure, and thus used to identify the subtypes of the problems. Taking advantage
of these two assumptions we present Instance-Specific Algorithm Configuration
(ISAC), an automated procedure to provide instance-specific tuning.

This book proceeds with an outline of related work in the field of training solvers
in Chap. 2. Chapter 3 then explains the approach, ISAC, and how it is different
from prior research. Chapter 4 presents the application of ISAC to set covering,
mixed integer programs, satisfiability, and local search problems. Chapter 5 shows
how the approach can be used to train algorithm portfolios, improving performance
over existing techniques that use regression. Chapter 6 shows how ISAC can be
modified to handle dynamic training, where a unique algorithm is tuned for each
instance. Chapter 7 shows how to tune parallel portfolio algorithms. Chapter 8
shows how ISAC can be used to create an adaptive solver that changes its behavior
based on the current subproblem observed during search. Chapter 9 introduces a
scenario where problems change over time, necessitating an approach that is able
to identify the most opportune moments to retrain the portfolio. In Chapter 10 we
continue to study and confirm some of the assumptions made by ISAC, and then
introduce modifications to refine the utilized clusterings by taking into account the
performances of the solvers in a portfolio. Each of these chapters is supported by
numerical evaluation. The book concludes with a discussion of the strengths and
weaknesses of the ISAC methodology and of potential future work.



Chapter 2
Related Work

Automatic algorithm configuration is a quickly evolving field that aims to over-
come the limitations and difficulties associated with manual parameter tuning.
Many techniques have been attempted to address this problem, including meta-
heuristics, evolutionary computation, local search, etc. Yet despite the variability
in the approaches, this flood of proposed work mainly ranges between four ideas:
algorithm construction, instance-oblivious tuning, instance-specific regression, and
adaptive methods. The four sections of this chapter discuss the major works for each
of these respective ideas and the final section summarizes the chapter.

2.1 Algorithm Construction

Algorithm construction focuses on automatically creating a solver from an assort-
ment of building blocks. These approaches define the structure of the desired solver,
declaring how the available algorithms and decisions need to be made. A machine
learning technique then evaluates different configurations of the solver, trying to
find the one that performs best on a collection of training instances.

The MULTI-TAC system [80] is an example of this approach applied to the
constraint satisfaction problem (CSP). The backtracking solver is defined as a
sequence of rules that determine which branching variable and value selection
heuristics to use under what circumstances, as well as how to perform forward
checking. Using a beam search to find the best set of rules, the system starts
with an empty configuration. The rules or routines are then added one at a time.
A small Lisp program corresponding to these rules is created and run on the
training instances. The solver that properly completes the most instances proceeds
to the next iteration. The strength of this approach is the ability to represent all
existing solvers while automatically finding changes that can lead to improved
performance. The algorithm, however, suffers from the search techniques used to
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find the best configurations. Since the CSP solver is greedily built one rule or
routine at a time, certain solutions can remain unobserved. Furthermore, as the
number of possible routines and rules grows or the underlying schematic becomes
more complicated, the number of possible configurations becomes too large for the
described methodology.

Another approach from this category is the CLASS system, developed by
Fukunaga [35]. This system is based on the observation that many of the existing
local search (LS) algorithms used for SAT are seemingly composed of the same
building blocks with only minor deviations. The Novelty solver [78], for example,
is based on the earlier GWSAT solver [102], except instead of randomly selecting
a variable in a broken clause, it chooses the one with the highest net gain. Minor
changes like these have continuously improved LS solvers for over a decade. The
CLASS system tries to automate this reconfiguration and fine tune the process
by developing a concise language that can express any existing LS solver. A
genetic algorithm then creates solvers that conform to this language. To avoid
overly complex solvers, all cases having more than two nested conditionals are
automatically collapsed by replacing the problematic sub-tree with a random
function of depth 1. The resulting solvers were shown to be competitive with the best
existing solvers. The one issue with this approach, however, is that developing such
a grammar for other algorithms or problem types can be difficult, if not impossible.

As another example, in [86] Oltean proposed constructing a solver that uses a
genetic algorithm (GA) automatically. In this case, the desired solver is modeled as
a sequence of the selection, combination and mutation operations of a GA. For a
given problem type and collection of training instances, the objective is to find the
sequence of these operations that results in the solver requiring the fewest iterations
to train. To find this optimal sequence of operations, Oltean proposes using a linear
genetic program. The resulting algorithms were shown to outperform the standard
implementations of genetic algorithms for a variety of tasks. However, while this
approach can be applied to a variety of problem types, it ultimately suffers from
requiring a long time to train. To evaluate an iteration of the potential solvers, each
GA needs to be run 500 times on all the training instances to determine the best
solver in the population accurately. This is fine for rapidly evaluated instances, but
once each instance requires more than a couple of seconds to evaluate, the approach
becomes too time-consuming.

Algorithm construction has also been applied to create a composite sorting
algorithm used by a compiler [71]. The authors observed that there is no single
sorting strategy that works perfectly on all possible input instances, with different
strategies yielding improved performance on different instances. With this obser-
vation, a tree-based encoding was used for a solver that iteratively partitioned the
elements of an instance until reaching a single element in the leaf node, and then
sorted the elements as the leaves were merged. The primitives defined how the data
is partitioned and under what conditions the sorting algorithm should change its
approach. For example, the partitioning algorithm employed would depend on the
amount of data that needs to be sorted. To make their method instance-specific, the
authors use two features encoded as a six-bit string. For training, all instances are
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split according to the encodings and each encoding is trained separately. To evaluate
the instance, the encoding of the test instance is computed and the algorithm of the
nearest and closest match is used for evaluation. This approach has been shown to
be better than all existing algorithms at the time, providing a factor two speedup.
The issue with the approach, however, is that it only uses two highly disaggregated
features to identify the instance and that during training it tries to split the data into
all possible settings. This becomes intractable as the number of features grows.

2.2 Instance-Oblivious Tuning

Given a collection of sample instances, instance-oblivious tuning attempts to find
the parameters resulting in the best average performance of a solver on all the
training data. There are three types of solver parameters. First, parameters can
be categorical, controlling decisions such as what restart strategy to use or which
branching heuristic to employ. Alternatively, parameters can be ordinal, controlling
decisions about the size of the neighborhood for a local search or the size of the tabu
list. Finally, parameters can be continuous, defining an algorithm’s learning rate or
the probability of making a random decision. Due to these differences, the tuning
algorithms used to set the parameters can vary wildly. For example, the values of a
categorical parameter have little relation to each other, making it impossible to use
regression techniques. Similarly, continuous parameters have much larger domains
than ordinal parameters. Here we discuss a few of the proposed methods for tuning
parameters.

One example of instance-oblivious tuning focuses on setting continuous param-
eters. Coy et al. [29] suggested that by computing a good parameter set for a few
instances, averaging all the parameters will result in parameters that would work
well in the general case. Given a training set, this approach first selects a small
diverse set of problem instances. The diversity of the set is determined by a few
handpicked criteria specific to the problem type being solved. Then analyzing each
of these problems separately, the algorithm tests all possible extreme settings of the
parameters. After computing the performance at these points, a response surface
is fitted, and greedy descent is used to find a locally optimal parameter set for the
current problem instance. The parameter sets computed for each instance are finally
averaged to return a single parameter set expected to work well on all instances. This
technique was empirically shown to improve solvers for set covering and vehicle
routing. The approach, however, suffers when more parameters need to be set or if
these parameters are not continuous.

For a small set of possible parameter configurations, F-Race [20] employs a
racing mechanism. During training, all potential algorithms are raced against each
other, whereby a statistical test eliminates inferior algorithms before the remaining
algorithms are run on the next training instance. But the problem with this is that
F-Race prefers small parameter spaces, as larger ones would require a lot of testing
in the primary runs. Careful attention must also be given to how and when certain
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parameterizations are deemed pruneable, as this greedy selection is likely to end
with a suboptimal configuration.

Alternatively, the CALIBRA system, proposed in [4], starts with a factorial
design of the parameters. Once these initial parameter sets have been run and
evaluated, an intensifying local search routine starts from a promising design,
whereby the range of the parameters is limited according to the results of the initial
factorial design experiments.

For derivative-free optimization of continuous variables, [11] introduced a mesh
adaptive direct search (MADS) algorithm. In this approach, the parameter search
space is partitioned into grids, and the corner points of each grid are evaluated for
the best performance. The grids associated with the current lower bound are then
further divided and the process is repeated until no improvement can be achieved.
One of the additional interesting caveats to the proposed method was to use only
short-running instances in the training set to speed up the tuning. It was observed
that the parameters found for the easy instances tended to generalize to the harder
ones, thus leading to significant improvements over classical configurations.

As another example, a highly parameterized solver like SATenstein [62] was
developed, where all the choices guiding the stochastic local search SAT solver
were left open as parameters. SATenstein can therefore be configured into any of
the existing solvers as well as some completely new configurations. Among the
methods used to tune such a solver is ParamILS.

In 2007, ParamILS [56] was first introduced as a generic parameter tuner,
able to configure arbitrary algorithms with very large numbers of parameters. The
approach conducts focused iterated local search, whereby starting with a random
assignment of all the parameters, a local search with a one-exchange neighborhood
is performed. The local search continues until a local optimum is encountered, at
which point the search is repeated from a new starting point. To avoid randomly
searching the configuration space, at each iteration the local search gathers statistics
on which parameters are important for finding improved settings, and focuses on
assigning them first. This blackbox parameter tuner has been shown to be successful
with a variety of solvers, including Cplex [59], SATenstein [62], and SAPS [57],
but suffers due to not being very robust, and depending on the parameters being
discretized.

As an alternative to ParamILS, in 2009 the gender-based genetic algorithm [5]
(GGA) was introduced. This black box tuner conducts a population-based local
search to find the best parameter configuration. This approach presented a novel
technique of introducing competitive and non-competitive genders to balance
exploitation and exploration of the parameter space. Therefore, at each generation,
half of the population competes on a collection of training instances. The subset
of parameter settings that yield the best overall performance are then mated with
the non-competitive population, with the children removing the worst-performing
individuals from the competitive population. This approach was shown to be
remarkably successful in tuning existing solvers, often outperforming ParamILS.

Recently, a sequential model-based algorithm configuration (SMAC) [55] was
introduced, in 2010. This approach proposes generating a model over the solver’s
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parameters to predict the likely performance. This model can be anything from a
random forest to marginal predictors and is used to identify aspects of the parameter
space, such as what parameters are the most important. Possible configurations are
then generated according to this model and compete against the current incumbent.
The best configuration continues onto the next iteration. While this approach has
been shown to work on some problems, it ultimately depends on the accuracy of the
model used to capture the interrelations of the parameters.

2.3 Instance-Specific Regression

One of the main drawbacks of instance-oblivious tuning is ignoring the specific
instances, striving instead for the best average case performance. However, works
like [82, 112], and many others have observed that not all instances yield to the
same approaches. This observation supports the “no free lunch” theorem [122],
which states that no single algorithm can be expected to perform optimally over
all instances. Instead, in order to gain improvements in performance for one set of
instances, it will have to sacrifice performance on another set. The typical instance-
specific tuning algorithm computes a set of features for the training instances and
uses regression to fit a model that will determine the solver’s strategy.

Algorithm portfolios are a prominent example of this methodology. Given a new
instance, the approach forecasts the runtime of each solver and runs the one with
the best predicted performance. SATzilla [126] is an example of this approach as
applied to SAT. In this case the algorithm uses ridge regression to forecast the log
of the run times. Interestingly, for the instances that timeout during training, the
authors suggest using the predicted times as the observed truth, a technique they
show to be surprisingly effective. In addition, SATzilla uses feedforward selection
over the features it uses to classify a SAT instance. It was found that certain features
are more effective at predicting the runtimes of randomly generated instances as
opposed to industrial instances, and vice-versa. Overall, since its initial introduction
in 2007, SATzilla has won medals at the 2007 and 2009 SAT Competitions [1].

In algorithm selection the solver does not necessarily have to stick to the same
algorithm once it is chosen. For example, [40] proposed running in parallel (or
interleaved on a single processor) multiple stochastic solvers that tackle the same
problem. These “algorithm portfolios” were shown to work much more robustly
than any of the individual stochastic solvers. This insight has since led to the
technique of randomization with restarts, which is commonly used in all state-of-
the-art complete SAT solvers. Algorithm selection can also be done dynamically.
As was shown in [36], instead of choosing the single best solver from a portfolio,
all the solvers are run in parallel. However, rather than allotting equal time to
everything, each solver is biased, depending on how quickly the algorithm thinks
it will complete. Therefore, a larger time share is given to the algorithm that is
assumed to be the first to finish. The advantage of this technique is that it is less
susceptible to an early error in the performance prediction.
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In [88], a self-tuning approach is presented that chooses parameters based on the
input instance for the local search SAT solver WalkSAT. This approach computes
an estimate of the invariant ratio of a provided SAT instance, and uses this value to
set the noise of the WalkSAT solver, or how frequently a random decision is made.
This was shown to be effective on four DIMACS benchmarks, but failed for those
problems where the invariant ratio did not relate to the optimal noise parameter.

In another approach, [53, 54] tackle solvers with continuous and ordinal (but not
categorical) parameters. Here, Bayesian linear regression is used to learn a mapping
from features and parameters into a prediction of runtime. Based on this mapping for
given instance features, a parameter set that minimizes predicted runtime is searched
for. The approach in [53] led to a twofold speedup for the local search SAT solver
SAPS [57].

An alternative example expands on the ideas introduced in SATzilla by present-
ing Hydra [124]. Instead of using a set of existing solvers, this approach uses a
single highly parameterized solver. Given a collection of training instances, a set of
different configurations is produced to act as the algorithm portfolio. Instances that
are not performing well under the current portfolio are then identified and used as
the training set for a new parameter configuration that is to be added to the portfolio.
Alternatively, if a configuration is found not to be useful any longer, it is removed
from the portfolio. A key ingredient to making this type of system work is the
provided performance metric, which uses a candidate’s actual performance when
it is best and the overall portfolio’s performance otherwise. This way, a candidate
configuration is not penalized for aggressively tuning for a small subset of instances.
Instead, it is rewarded for finding the best configurations and thus improving overall
performance.

An alternative to regression-based approaches for instance-specific tuning,
CPHydra [87] attempts to schedule solvers to maximize the probability of solving
an instance within the allotted time. Given a set of training instances and a set
of available solvers, CPHydra collects information on the performance of every
solver on every instance. When a new instance needs to be solved, its features
are computed and the k nearest neighbors are selected from the training set. The
problem then is set as a constraint program that tries to find the sequence and
duration in which to invoke the solvers so as to yield the highest probability of
solving the instance. The effectiveness of the approach was demonstrated when
CPHydra won the CSP Solver Competition in 2008, but also showed the difficulties
of the approach since the dynamic scheduling program only used three solvers and
a neighborhood of 10 instances.

Most recently, a new version of SATzilla was entered into the 2012 SAT
Competition [127]. Foregoing the original regression-based methodology, this
solver trained a tree classifier for predicting the preferred choice for each pair of
solvers in the portfolio. Therefore when a new instance had to be addressed, the
solver that was chosen most frequently was the one that got evaluated. In practice
this worked very well, with the new version of SATzilla winning gold in each of
the three categories. Yet this approach is also restricted to a very small portfolio of
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solvers, as each addition to the portfolio requires exponentially many new classifiers
to be trained.

2.4 Adaptive Methods

All of the works presented so far were trained offline before being applied to a set
of test instances. Alternative approaches exist that try to adapt to the problem they
are solving in an online fashion. In this scenario, as a solver attempts to solve the
given instance, it learns information about the underlying structure of the problem
space, trying to exploit this information in order to boost performance.

Algorithm selection is closely related to the algorithm configuration scenario
that is tuning one categorical variable. For example, in [73] a sampling technique
selects one of several different branching variable selection heuristics in a branch-
and-bound approach. A similar approach was later presented in [64], but instead of
choosing a single heuristic, this approach tries to learn the best branching heuristic
to use at each node of a complete tree search.

An example of this technique is STAGE [21], an adaptive local search solver.
While searching for a local optima, STAGE learned an evaluation function to predict
the performance of a local search algorithm. At each restart, the solver would
predict which local search algorithm was likely to find an improving solution. This
evaluation function was therefore used to bias the trajectory of the future search.
The technique was empirically shown to improve the performance of local search
solvers on a variety of large optimization problems.

Impact-based search strategies for constraint programming (CP) [96] are another
example of a successful adaptive approach. In this work, the algorithm would keep
track of the domain reduction of each variable after the assignment of a variable.
Assuming that we want to reduce the domains of the variables quickly and thus
shrink the search space, this information about the impact of each variable guides
the variable selection heuristic. The empirical results were so successful that this
technique is now standard for Ilog CP Solver, and used by many other prominent
solvers, like MiniSAT [33].

In 1994, an adaptive technique was proposed for tabu search [13]. By observing
the average size of the encountered cycles, and how often the search returned to a
previous state, this algorithm dynamically modified the size of its tabu list.

Another interesting result for transferring learned information between restarts
was presented in Disco-Novo—GoGo [101]. In this case, the proposed algorithm
uses a value-ordering heuristic while performing a complete tree search with
restarts. Before a restart takes place, the algorithm observes the last tried assignment
and changes the value ordering heuristic to prefer the currently assigned value. In
this way, the search is more likely to explore a new and more promising portion
of the search space after the restart. When applied to constraint programming and
satisfiability problems, orders of magnitude performance gains were observed.
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2.5 Chapter Summary

In this chapter, related work for automatic algorithm configuration was discussed.
The first approach of automatic algorithm construction focused on how solving
strategies and heuristics can be automatically combined to result in a functional
solver by defining the solver’s structure. Alternatively, given that a solver is created
where all the controlling parameters are left open to the user, the instance-oblivious
methodology finds the parameter settings that result in the best average-case
performance. When a solver needs to be created to perform differently depending
on the problem instance, instance-specific regression is often employed to find an
association between the features of the instance and the desired parameter settings.
Finally, to avoid extensive offline training on a set of representative instances,
adaptive methods that adapt to the problem dynamically are also heavily researched.

All these techniques have been shown empirically to provide significant improve-
ments in the quality of the tuned solver. Each approach, however, also has a few
general drawbacks. Algorithm construction depends heavily on the development
of an accurate model of the desired solver; however, for many cases, a single
model that can encompass all possibilities is not available. Instance-oblivious tuning
assumes that all problem instances can be solved optimally by the same algorithm,
an assumption that has been frequently shown impossible in practice. Instance-
specific regression, on the other hand, depends on accurately fitting a model from the
features to a parameter, which is intractable and requires a lot of training data when
the features and parameters have non-linear interactions. Later developments with
trees alleviate the issues presented by regression, but existing approaches don’t tend
to scale well with the size of the portfolio. Adaptive methods require a high overhead
since they need to spend time exploring and learning about the problem instance
while attempting to solve it. The remainder of this book focuses on how instance-
oblivious tuning can be extended to create a modular and configurable framework
that is instance-specific.



Chapter 3
Instance-Specific Algorithm Configuration

Instance-Specific Algorithm Configuration, ISAC, the proposed approach, takes
advantage of the strengths of two existing techniques, instance-oblivious tuning
and instance-specific regression, while mitigating their weaknesses. Specifically,
ISAC combines the two techniques to create a portfolio where each solver is tuned
to tackle a specific type of problem instance in the training set. This is achieved
using the assumption that problem instances can be accurately represented by a
finite number of features. Furthermore, it is assumed that instances that have similar
features can be solved optimally by the same solver. Therefore, given a training
set, the features of each instance are computed and used to cluster the instances into
distinct groups. The ultimate goal of the clustering step is to bring instances together
that prefer to be solved by the same solver. An automatic parameter tuner then finds
the best parameters for the solver of each cluster. Given a new instance, its features
are computed and used to assign it to the appropriate cluster, where it is evaluated
with the solver tuned for that particular cluster.

This three-step approach is versatile and applicable to a number of problem types.
Furthermore, the approach is independent of the precise algorithms employed for
each step. This chapter first presents two clustering approaches that can be used,
highlighting the strengths and weaknesses of each. Additional clustering approaches
will be discussed in Chap. 10. The chapter then presents the two methods of tuning
the solver. Due to its problem-specific nature, the feature computation will be
presented in Chap. 4.
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3.1 Clustering the Instances

There are many clustering techniques available in recent research [14]. This section,
however, first shows how to define the distance metric, which is important regardless
of the clustering method employed. It then presents the two clustering approaches
initially tested for ISAC.

3.1.1 Motivation

One of the underlying assumptions behind ISAC is that there are groups of similar
instances, all of which can be solved efficiently by the same solver. Here we further
postulate that these similarities can be identified automatically. Figure 3.1 highlights
the validity of these assumptions. The figures are based on the standard 48 SAT
features (which will be introduced in detail in Chap. 4) for 3,117 instances from the
2002 to 2012 SAT Competitions [1]. The features were then normalized, and using
PCA, projected onto two dimensions. We ran 29 solvers available in 2012 with a
5,000s timeout and recorded the best possible time for each instance. Figure 3.1
shows the performance of two of these solvers (CCASat [27] and lingering [19]).
In the figure, an instance is marked as a green cross if the runtime of the solver on
this instance was no worse than 25 % more time than the best recorded time for that
instance. All other instances are marked with a black circle unless the solver timed
out, in which case it is a red triangle.

What is interesting to note here is that there is a clear separation between the
instances where the solvers do not timeout. This is likely attributed to the fact that
CCASat was designed to solve randomly generated instances, while lingering is
better at industrial instances. Therefore it is no surprise that in the instances where
one solver does well, the other is likely to timeout. What is also interesting is that
the instances where either of the solvers does not timeout appear to be relatively
well clustered. This complementary and cluster-like behavior is also evident for the
other 27 solvers, and is the motivation behind embracing a cluster-based approach.

3.1.2 Distance Metric

The quality of a clustering algorithm strongly depends on how the distance metric is
defined in the feature space. Features are not necessarily independent. Furthermore,
important features can range between small values while features with larger ranges
could be less important. Finally, some features can be noisy, or worse, completely
useless and misleading. For the current version of ISAC, however, it is assumed that
the features are independent and not noisy. Chapter 10 will show how to handle
situations where this is not the case.
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Fig. 3.1 Performance of CCASat and lingering on 3,117 SAT instances. A feature vector was
computed for each instance and then projected onto 2D using PCA. Green crosses mark good
instances, which perform no worse than 25 % slower than the best solver on that instance. An ok
instance (black circle) is one that is more than 25 % worse than the best solver. An instance that
takes more than 5,000 s is marked as a timeout (red triangle)

A weighted Euclidean distance metric can handle the case where not all features
are equally important to a proper clustering. This metric also handles the case where
the ranges of the features vary wildly. To automatically set the weights for the metric
an iterative approach is needed. Here all the weights can be first set to 1 and the
training instances clustered accordingly. Once the solvers have been tuned for each
cluster, the quality of the clusters is evaluated. To this end, for each pair of clusters
i # j, the difference is computed between the performance on all instances in
cluster i that is achieved by the solver for that cluster and the solver of the other
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cluster. The distance between an instance a in cluster C; and the centers of gravity
of cluster C; is then the maximum of this regret and 0. Using these desired distances,
the feature metric is adjusted and the process continues to iterate until the feature
metric stops changing.

This iterative approach works well when improving a deterministic value like
the solution quality, where it is possible to perfectly assess algorithm performance.
The situation changes when the objective is to minimize runtime. This is because
parameter sets that are not well suited for an instance are likely to run for a very
long time, necessitating the introduction of a timeout. This then implies that the
real performance is not always known, and all that can be used is the lower bound.
This complicates learning a new metric for the feature space. In the experiments,
for example, it was found that most instances from one cluster timed out when run
with the parameters of another. This not only leads to poor feature metrics, but also
costs a lot in terms of processing time. Furthermore, because runtime is often a
noisy measurement, it is possible to encounter a situation where instances oscillate
between two equally good clusters. Finally, this approach is very computationally
expensive, requiring several retuning iterations which can take CPU days or even
weeks for each iteration.

Consequently, for the purpose of tuning the speed of general solvers, this chapter
suggests a different approach. Instead of learning a feature metric over several
iterations, the features are normalized using translation and scaling so that, over the
set of training instances, each feature spans exactly the interval [—1, 1]. That is, for
each feature there exists at least one instance for which this feature has value 1 and
at least one instance where the feature value is —1. For all other instances, the value
lies between these two extremes. By normalizing the features in this manner, it is
found that features with large and small ranges are given equal consideration during
clustering. Furthermore, the assumption that there are no noisy or bad features does
not result in bad clusterings. However, Chap. 10 shows how filtering can be applied
to further improve performance.

3.1.3 k-Means

One of the most straightforward clustering algorithms is Lloyd’s k-means [72].
As can be seen in Algorithm 1, the algorithm first selects k random points in the
feature space. It then alternates between two steps until some termination criterion
is reached. The first step assigns each instance to a cluster according to the shortest
distance to one of the k points that were chosen. The next step then updates the k
points to the centers of the current clusters.

While this clustering approach is very intuitive and easy to implement, the
problem with k-means clustering is that it requires the user to specify the number of
clusters k explicitly. If k is too low, this means that some of the potential is lost for
tuning parameters more precisely for different parts of the instance feature space.
On the other hand, if there are too many clusters, the robustness and generality of
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Algorithm 1: k-means clustering algorithm

LN U R WY

. k-Means(X, k)
: Choose k random points Cy, . .., C; from X.
: while not done do
for i =1,...,kdo
S I -Gl <lx,—allvi=1..
Ci < 57X es X)
end for
: end while
: return (C,S)
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Algorithm 2: g-means clustering algorithm
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: g-Means(X)
k< 1,i <1
1 (C,S) < k-Means(X, k)
: whilei <k do
(C,S) < k-Means(S;,?2)
v< C) —Copw< YV}
Vi < 2vixi/w
if Anderson-Darling-Test(y) failed then
Ci < C, S < §
k<k+1 _
Cr <G, Sk < S,
else
i<i+1
end if
: end while
: return (C, S, k)

the parameter sets that are optimized for these clusters are sacrificed. Furthermore,

for most training sets, it is unreasonable to assume that the value of k is known.

3.1.4 g-Means

In 2003, Hamerly and Elkan proposed an extension to k-means that automatically
determines the number of clusters [44]. This work proposes that a good cluster
exhibits a Gaussian distribution around the cluster center. The algorithm, presented
in Algorithm 2, first considers all inputs as forming one large cluster. In each
iteration, one of the current clusters is picked and is assessed for whether it is
already sufficiently Gaussian. To this end, g-means splits the cluster into two by
running 2-means clustering. All points in the cluster can then be projected onto the
line that runs through the centers of the two sub-clusters, giving a one-dimensional
distribution of points. g-means now checks whether this distribution is normal using
the widely accepted Anderson—Darling statistical test. If the current cluster does not
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pass the test, it is split into the two previously computed clusters, and the process is
continued with the next cluster.

It was found that the g-means algorithm works very well for our purposes, except
sometimes clusters can be very small, containing very few instances. To obtain
robust parameter sets we do not allow clusters that contain fewer than a manually
chosen threshold, a value which depends on the size of the dataset. Beginning with
the smallest cluster, the corresponding instances are redistributed to the nearest
clusters, where proximity is measured by the Euclidean distance of each instance
to the cluster’s center.

3.2 Training Solvers

Once the training instances are separated into clusters, the parameterized solver
must be tuned for each cluster. As shown in existing research, manual tuning is
a complex and laborious process that usually results in subpar performance of the
solver. Chapter 2 shows that there is growing number of methods for tackling this
problem, ParamILS [56] and SMAC [55] being notable examples. The subsequent
chapters, however, will utilize the two algorithms presented here.

3.2.1 Local Search

With automatic parameter tuning being a relatively new field, there are not many
off-the-shelf tuners available. Furthermore, some problems seem to be outside the
scope of existing tuners, requiring the development of problem-specific tuners. One
such scenario is when the parameters of the solvers are a probability distribution;
where the parameters are continuous variables between 0 and 1 and sum up to 1.
For this kind of problem we developed [76], a local search shown in Algorithm 3.

This search strategy is presented with an algorithm A for a combinatorial
problem as well as a set S of training instances. Upon termination, the procedure
returns a probability distribution for the given algorithm and benchmark set.

The problem of computing this favorable probability distribution can be stated
as a continuous optimization problem: Minimize g ZiES Perf(A,distr,i) such that
“distr” is a probability distribution used by A. Each variable of the distribution is
initialized randomly and then normalized so that all variables sum up to 1. In each
iteration, two variables a, b are picked randomly and their joint probability mass
m is redistributed among themselves while keeping the probabilities of all other
advisors the same.

It is expected that the one-dimensional problem which optimizes the percentage
of m assigned to advisor a (the remaining percentage is determined to go to advisor
b) is convex. The search seeks the best percentage using a method for minimizing
one-dimensional convex functions over closed intervals that is based on the golden
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Algorithm 3: Local search for tuning variables that are part of a probability
distribution.
1: LSTuner(Algorithm A, BenchmarkSet S)
. distr <— RandDistr()

. A5=1 2
.k/<—ﬁ+l,k,.(—ﬁ+l

2
3
4: while termination criterion not met do

5: (a, b) <— ChooseRandPair(), m <— distr,+ distr,

6: X <A, Y <A,

7 L <0, R < 1,length < 1

8  px < D ;cs Perf(Adistrla=m X,b=m (1 — X)], 1)
9:  py < Y ies Perf(Adistrfa=m Y ,b=m (1 — Y)], 1)
10:  while length > € do

11: if px < py then

12: Py < Ppx

13: R <« Y, length<- R—L

14: Y < X, X < L+ A length

15: Dx < Y ies Perf(Adistrla=m X,b=m (1 — X)], i)
16: else

17: Px < Py

18: L < X,length<- R—L

19: X < Y,Y < L+ A, length

20: Py < Y ;es Perf(Adistr[a=m Y ,b=m (1 — Y)], i)
21: end if

22: end while

23: distr <— distrfa=m X ,b=m (1 — X)]
24: end while

25: return distr

&
-

|
|
L X Y Iteration 1
L X Y

Iteration 2

Fig. 3.2 Minimizing a one-dimensional convex function by golden section

section (see Fig.3.2): two points X < Y are considered within the interval [0, 1]
and their performance is measured as “px” and “py”. The performance at X is
assessed by running the algorithm A on the given benchmark with distribution “distr
[a=m X ,b=m (1 — X)]”, which denotes the distribution resulting from “distr”” when
assigning probability mass ‘X'm’ to variable a and probability mass ‘(1 — X)m’ to
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variable “b”. Now, if the function is indeed convex, if pxy < py (px > py), then
the minimum of this one-dimensional function lies in the interval [0, Y] ([ X, 1]). The
search continues splitting the remaining interval (which shrinks geometrically fast)
until the interval size “length” falls below a given threshold “e”. By choosing points
X and Y based on the golden section, we need in each iteration only one new point
to be evaluated rather than two. Moreover, the points considered in each iteration
are reasonably far apart from each other to make a comparison meaningful, which
is important for us as our function evaluation may be noisy (due to the randomness
of the algorithm invoked) and points very close to each other will likely produce
very similar results.

3.2.2 GGA

One drawback to developing proprietary tuning algorithms is the difficulty of trans-
ferring the technique across problem types. To test a more general procedure, the
Gender-Based Genetic Algorithm (GGA [5]), a state-of-the-art automatic parameter
tuner, is explored. This tuner uses a genetic algorithm to find the parameters for a
specified solver. Representing the parameters in an and—or tree, the tuner randomly
generates two populations of possible parameter configurations. These two groups
are classified as being competitive or non-competitive. A random subset of the
individuals from the competitive population are selected and run against each
other over a subset of the training instances. This tournament is repeated several
times until all members of the competitive population participated in exactly one
tournament. Each member of the non-competitive competition is mated with one of
the tournament winners. This process is repeated for 100 iterations, when the best
parameter setting is returned as the parameter set to be used by the solver.

In this scenario the parameters of the tuned solver are represented as an and—or
tree (Fig. 3.3). This representation allows the user to specify the relation between the
parameters. For example, parameters that are independent are separated by an and

Fig. 3.3 And-or tree used by
GGA representing the
parameters of the tuned
algorithm
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parent. On the other hand, if a parameter depends on the setting of another parameter
it is defined as a child of that parameter. This representation allows GGA to better
search the parameter space by maintaining certain parameter settings constant as a
group instead of randomly changing different parameters.

Each mating of a couple results in one new individual with a random gender. The
genome of the offspring is determined by traversing the variable tree top-down. A
node can be labelled O (“open”), C (“‘competitive”), or N (“non-competitive”). If
the root is an and node, or if both parents agree on the value of the root-variable,
itis labeled O. Otherwise, the node is labeled randomly as C or N. The algorithm
continues by looking at the children of the root (and so on for each new node). If
the label of the parent node is C (or N) then with high probability P% the child is
also labeled C (N); otherwise the label is switched. By default P is set to 90 %.

Finally, the variable assignment associated with the offspring is given by the
values from the C (V) parent for all nodes labelled C (N). For variable nodes
labelled O, both parents agree on its value, and this value is assigned to the
variable. Note that this procedure effectively combines a uniform crossover for child
variables of open and-nodes in the variable tree (thus exploiting the independence
of different parts of the genome) and a randomized multiple-point crossover for
variables that are more tightly connected.

As a final step to determine the offspring’s genome, each variable is mutated
with low probability M %. By default M is set to 10 %. When mutating a categorical
variable, the new value in the domain is chosen uniformly at random. For continuous
and integer variables, the new value is chosen according to a Gaussian distribution
where the current value marks the expected value and the variance is set as 10 % of
the variable’s domain.

3.3 ISAC

Ultimately the ISAC methodology is summarized in Algorithm 4, where the
application of all three components is displayed, particularly, a parameterized
algorithm A, a list of training instances 7', and their corresponding feature vectors
F . First, the features in the set are normalized and the scaling and translation values
are memorized for each feature (s, 7).

Then, an algorithm is used to cluster the training instances based on the
normalized feature vectors. The final result of the clustering is a number of k clusters
S;, a list of cluster centers C;, and, for each cluster, a distance threshold d; which
determines when a new instance will be considered as close enough to the cluster
center to be solved with the parameters computed for instances in this cluster.

Then, for each cluster of instances S;, favorable parameters P; are computed
using an instance-oblivious tuning algorithm. After this is done, the parameter set R
is computed for all the training instances. This serves as the recourse for all future
instances that are not near any of the clusters.
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Algorithm 4: Instance-Specific Algorithm Configuration

: ISAC-Learn(A4, T, F)

: (F,s,t) < Normalize(F)

: (k,C,S,d) < Cluster (T, F)
cforalli =1,..., k do

P; < Train(A,S;)

: end for

R < Train(A,T)

: return (k, P,C,d,s,t, R)

I T T

: ISAC-Run(4, x,k, P,C,d,s,t,R)
: f < Features(x)
fiei—t)/si Vi
forall j =1,...,kdo

if || f — Ci|| < d; then

return A(x, P;)

end if
end for
: return A(x, R)

RSN AR > e

When running algorithm A on an input instance x, we first compute the features
of the input and normalize them using the previously stored scaling and translation
values for each feature. Then, we determine whether there is a cluster such that the
normalized feature vector of the input is close enough to the cluster center. If so, A
is run on x using the parameters for this cluster. If the input is not near enough to
any of our clusters, the instance-oblivious parameters R are used, which work well
for the entire training set.

3.4 Chapter Summary

This chapter presents the components of the proposed instance-specific automatic
parameter tuner, ISAC. The approach partitions the problem of automatic algorithm
configuration into three distinct pieces. First, the feature values are computed for
each instance. Second, the training instances are clustered into groups of instances
that have similar features. Finally, an automatic parameter tuner is used to find the
best parameters for the solver for each cluster. This chapter shows several basic
configurations of the last two steps of ISAC. Being problem-specific, the features
used for clustering are explained in the numerical section of the subsequent chapters.



Chapter 4
Training Parameterized Solvers

This chapter details the numerical results of applying ISAC on four different types
of combinatorial optimization problems. The first section covers the set covering
problem (SCP), showing that instance-oblivious tuning of the parameters can yield
significant performance improvements and that ISAC can perform better than
an instance-specific regression approach. The second section presents the mixed
integer problem (MIP) and shows that even a state-of-the-art solver like Cplex
can be improved through instance-specific tuning. The third section introduces the
satisfiability problem (SAT) and shows how an algorithm portfolio can be enhanced
by the proposed approach. The fourth example presents a real-world application
from the 2012 Roadef Challenge. The chapter concludes with a brief summary of
the results and benefits of the ISAC approach.

Unless otherwise noted, experiments were run on a dual-processor, dual-core
Intel Xeon 2.8 GHz computer with 8 GB of RAM. SCP solvers Hegel and Nysret
were evaluated on a quad-core dual-processor Intel Xeon 2.53 Ghz processors with
24 GB of RAM.

4.1 Set Covering Problem

The empirical evaluation begins with one of the most studied combinatorial
optimization problems: the set covering problem (SCP). In SCP, given a finite set
S :={1,...,n} of items, a family F := {Sy,..., S, € S} of subsets of S, and
a cost function ¢ : F — Rt the objective is to find a subset C C F such that
S C USieC S; and ZSieC ¢(S;) is minimized. In the unicost SCP, the cost of each
set is set to 1. Plainly put, there are a number of sets that each have a certain variety
of items, like different candy bars in bags handed out at a party. Each set has an
associated cost depending on the items it contains. The objective is to acquire sets,
at a minimal cost, such that there is at least one copy of each item present.
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This problem formulation appears in numerous practical applications such as
crew scheduling [28,48, 50], location of emergency facilities [115], and production
planning in various industries [117].

In accordance with ISAC, the first step deals with the identification of a set of
features that accurately distinguish the problem instances. Following the process
introduced in [76], the features are generated by computing the maxima, minima,
averages, and standard deviations of the following vectors:

* vector of normalized subset costs ¢’ € [1, 100]™,

 vector of subset densities (|S;|/n)i=1..m»

e vector of item costs (Z,“jesi c)j=1.ns

* vector of item coverings (|{i | j € S;}|/m);=1.n,

* vector of costs over density (¢;/|Si|)i=1..m>

* vector of costs over square density (c//|S; [2)i=1.m»
/

 vector of costs over k log k-density (m)i=lmm, and

* vector of root-costs over square density (v/c;/|S; %=1 m.

Computation of these feature values on average takes only 0.01 s per instance.

Due to a sparsity of well-established benchmarks for set covering problems, a
new highly diverse set of instances is generated. Specifically, a large collection of
instances is randomly generated, each comprised of 100 items and 10,000 subsets.
To generate these instances, an SCP problem is considered as a binary matrix where
each column represents an item and each row represents a subset. A 1 in this matrix
corresponds to an item being included in the subset. The instance generator then
randomly makes three decisions. One, to fill the matrix by either row or column.
Two, if the density (ratio of 1s to Os) of the row or column is constant, has a
mean of 4 %, or has a mean of 8 %. Three, whether the cells to be set to 1 are
chosen uniformly at random or with a Gaussian bias centered around some cell. The
cost of each subset is chosen uniformly at random from [1, 1000]. For the unicost
experiments, all the subset costs are reset to 1. The final dataset comprises 200
training instances and 200 test instances.

4.1.1 Solvers

Due to the popularity of SCP, a rich and diverse collection of algorithms was
developed to tackle this problem. To analyze the effectiveness and applicability of
the approach, three orthogonal approaches are focused on that cover the spectrum
of incomplete algorithms. Relying on local search strategies, these algorithms are
not guaranteed to return optimal solutions.

The first algorithm is the greedy randomized set covering solver from [76]. This
approach repeatedly adds subsets one at a time until reaching a feasible solution.
Which subset to add next is determined by one of the following six heuristics,
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chosen randomly during the construction of the cover:

¢ The subset that costs the least (min c).

¢ The subset that covers the most new items (max k).

* The subset that minimizes the ratio of costs to the number of newly covered items
(minc/k).

* The subset that minimizes the ratio of costs to newly covered items times the
logarithm of newly covered items (min m).

* The subset that minimizes the ratio of costs to the square of newly covered items
(min 7).

* The subset that minimizes the ratio of square root of costs to the square of newly
covered items (min }é).

The second solver, “Hegel” [61], uses a specialized type of local search called
dialectic search. Designed to optimally balance exploration and exploitation, dialec-
tic search begins with two greedily obtained feasible solutions called the “thesis”
and “antithesis” respectively. Then a greedy walk traverses from the thesis to the
antithesis, first removing all subsets from the solution of the thesis that are not in
the antithesis and then greedily adding the subsets from the antithesis that minimize
the overall cost. The Hegel approach was shown to outperform the fastest algorithms
on a range of SCP benchmarks.

The third solver, Nysret [83], uses an alternate type of local search algorithm
called tabu search. A greedily obtained feasible solution defines the initial state.
For each consequent step, the neighborhood is composed of all states obtained by
adding or removing one subset from the current solution. The fitness function is then
evaluated as the cumulative cost of all the included subsets plus the number of the
uncovered items. The neighbor with the lowest cost is chosen as the starting state for
the next iteration. During this local search, the subsets that are included or removed
are kept track of in the tabu list for a limited number of iterations. To prevent cycles
in the local search, neighbors that change the status of a subset in the tabu list are
excluded from consideration. In 2006, Nysret was shown empirically to be the best
solver for unicost SCP.

4.1.2 Numerical Results

This section presents three results. First it compares the performance of the instance-
specific tuning approach of multinomial regression to that of an instance-oblivious
parameter tuning. Showing the strength of parameter tuning, two configurations of
ISAC are then presented, and compared to the instance-oblivious tuning approach.
The section concludes by showing that the ISAC approach can be applied out of
the box to two state-of-the-art solvers and results in significant improvements in
performance.
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Table 4.1 Comparison of the default assignment of the greedy randomized solver (GRS) with
parameters found by the instance-specific multinomial regression tuning approach and an instance-
oblivious parameter tuning approach

Optimality gap closed (%)

Approach Train Test

Untuned GRS solver 259 4.2) 40.0 (4.1)
GRS with instance-specific regression 32.8 (3.6) 38.1 (3.7)
GRS with instance-oblivious tuning 40.0 (3.6) 46.1 (3.8)

The table shows the percentage of the optimality gap closed over using a single best heuristic. The
standard deviation is presented in parentheses

Table 4.1 compares the effectiveness of parameter tuning to that of the classical
multinomial regression approach. The experiment is performed on the greedy
randomized solver, where the parameters are defined as the probabilities of each
heuristic being chosen. It was found that using only one heuristic during a greedy
search leaves, on average, a 7.2 % (7.6 %) optimality gap on the training (testing)
data [76]. A default assignment of equal probabilities to all heuristics can close up
to 40 % of this gap on the test instances. For the multinomial regression approach,
the algorithm learns a function for each parameter that converts the instance feature
vector to a single value, called score. These scores are then normalized to sum to 1 to
create a valid probability distribution. However, while this approach leads to some
improvements on the training set, the learned functions are not able to carry over to
the test set, closing only 38.1 % of the optimality gap. Training on all the instances
simultaneously, using a state-of-the-art parameter tuner like GGA leads to superior
performance on both training and test sets. This result emphasizes the effectiveness
of multi-instance parameter tuners over instance-specific regression models.

As stated in the previous chapter, straight application of a parameter tuner
ignores the diversity of instances that might exist in the training and test sets. ISAC
addresses this issue by introducing a cluster-based training approach consisting of
three steps: computation of features, clustering of training instances, and cluster-
based parameter tuning. The first configuration of ISAC [76] uses a weighted
Euclidean distance for the features, k-means for clustering, and a proprietary local
search for parameter tuning. To set the distance metric weights, this configuration
iterated the clustering and tuning steps, trying to minimize the number of training
instances yielding better performance for solvers tuned on another cluster. The next
configuration [60] built off the first attempt, streamlining each part of the ISAC
procedure. As a result, this configuration normalized the features, using g-means
for clustering, and GGA for parameter tuning.

As can be seen in Table 4.2, both configurations of ISAC improve on the
performance of a solver tuned on all instances. This highlights the benefit of
clustering the instances before training. Furthermore, while the numerical results
of both configurations are relatively similar it is important that the second is much
more efficient and more general of the two. The first configuration was designed
specifically to tune the greedy SCP solver and required multiple tuning iterations
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Table 4.2 Comparison of two versions of ISAC to an instance-oblivious parameter tuning
approach

Optimality gap closed (%)

Approach Train Test

GRS with instance-oblivious tuning 40.0 (3.6) 46.1 (3.8)

GRS with ISAC Configuration 1 47.7 2.4) 50.3 3.7)
Configuration 2 44.4 (3.3) 51.3 (3.8)

The table shows the percent of the optimality gap closed over a greedy solver that only uses the
single best heuristic throughout the construction of the solution. The standard deviation is presented
in parentheses

Table 4.3 Comparison of default parameters, instance-oblivious parameters provided by GGA,
and instance-specific parameters provided by ISAC for Hegel and Nysret

Avg. run time Geo. avg. Avg. slow down

Solver Train Test Train Test Train Test
Nysret Default 2.79 3.45 2.36 2.60 1.49 1.79
GGA 2.58 3.40 2.27 2.63 1.35 1.72

ISAC 1.99 2.04 1.96 1.97 1.00 1.00

Hegel Default 3.04 3.15 2.52 2.49 2.20 2.03
GGA 1.58 1.95 1.23 1.33 1.10 1.15

ISAC 1.45 1.92 1.23 1.36 1.00 1.00

The table presents the arithmetic and geometric mean runtimes in seconds, as well as the average
degradation when comparing each solver to ISAC

to achieve the observed result. The second configuration on the other hand uses out
of the box tools that can be easily adapted to any solver. It also only requires one
clustering and tuning iteration, which makes it much faster than the first. Because of
its versatility, unless otherwise stated, all further comparisons to ISAC refer to the
second configuration.

To explore the ISAC approach, we next evaluate it on two state-of-the-art local
search SCP solvers, Hegel and Nysret. For both solvers the time to find a set
covering solution that is within 10 % of optimal is measured. Hegel and Nysret
had a timeout of 10s during training and testing. Table 4.3 compares the default
configuration of the solvers, the instance-oblivious configuration obtained by GGA,
and the instance-specific tuned versions found by ISAC. To provide a more holistic
view of ISAC’s performance, three evaluation metrics are presented: the arithmetic
and geometric means of the runtime in seconds and the average slow down (the
arithmetic mean of the ratios of the performance of the competing solver to that of
ISAC). For these experiments the size of the smallest cluster is set to be at least 30
instances. This setting results in four clusters of roughly equal size.

The first experiments show that the default configuration of both solvers can be
improved significantly by automatic parameter tuning. For the Nysret solver, an
arithmetic mean runtime of 2.18s for ISAC-Nysret, 3.33 s for GGA-Nysret, and
3.44 s for the default version are measured. That is, instance-oblivious parameters
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run 50 % slower than instance-specific parameters. For Hegel, it is found that the
default version runs more than 60 % slower than ISAC-Hegel.

It is worth noting the high variance of runtimes from one instance to another,
which is caused by the diversity of our benchmark. For a better understanding, the
average slow down of each solver compared with that of the corresponding ISAC
version is provided. For this measure we find that, for an average test instance,
default Nysret requires more than 1.70 times the time of ISAC-Nysret, and GGA-
Nysret needs 1.62 times that of ISAC-Nysret. For default Hegel, an average test
instance takes 2.10 times the time of ISAC-Hegel while GGA-Hegel only runs 10 %
slower. This confirms the findings in [61] that Hegel runs robustly over different
instance classes with one set of parameters.

It is concluded that even advanced, state-of-the-art solvers can greatly benefit
from ISAC. Depending on the solver, the proposed method works as well as or
significantly better than instance-oblivious tuning. Note that this is not self-evident
since the instance-specific approach runs the risk of over-tuning by considering
fewer instances per cluster. In these experiments, these problems are not observed.
Instead it is found that the instance-specific algorithm configurator offers the
potential for great performance gains without over-fitting the training data.

4.2 Mixed Integer Programming

For NP-hard problems, mixed integer programming (MIP) involves optimizing
a linear objective function while obeying a collection of linear inequalities and
variable integrality constraints. Mixed integer programming is an area of great
importance in operations research as it can be used to model just about any
discrete optimization problem. It is used especially heavily to solve problems in
transportation and manufacturing: airline crew scheduling, production planning,
vehicle routing, etc.

For the feature computation we use the information about the objective vector,
the right-hand side (RHS) vector, and the constraint matrix to formulate the
feature vector. The following general statistics on the variables in the problem are
computed:

¢ number of variables and number of constraints,

* percentage of binary (integer or continuous) variables,

» percentage of variables (all, integer, or continuous) with non-zero coefficients in
the objective function, and

» percentage of < (> or =) constraints.

Additionally, the mean, min, max, and standard deviation of the following
vectors are also used, where U = Z U R, R = {x; | x; is real valued}, and
Z = {x; | x; is restricted to be integer}. These vectors focus on the actual
coefficient values of each of the variables:
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vector of coefficients of the objective function (of all, integer, or continuous
variables): (¢;|x; € X) where X = UV X =Z Vv X =R,

vector of RHS of the < (> or =) constraints:

(bj|ij o bj) where o = (Z) Vo= (f) Vo= (:),

vector of number of variables (all, integer, or continuous) per constraint

J: (#{A(i’j) | A(,"j) #0,x; € X})where X =UVvX=ZVvX=R,

vector of the coefficients of variables (all, integer, or continuous) per constraint
J: QA plVjxie X)ywhere X =UVv X =ZVv X =R, and

vector of the number of constraints each variable i (all, integer, or continuous)
belongs to: (#{A( ) | A¢jy #0,x; € X} where X =UVX =ZVvX =R.

Computation of these feature values on average took only 0.02 s per instance.
MIPs are used to model a wide variety of problem types. Therefore, in order to

capture the spectrum of possible instances, we assembled a highly diverse bench-
mark dataset composed of problem instances from six different sources. Network
flow instances, capacitated facility location instances, bounded and unbounded
mixed knapsack instances and capacitated lot sizing problems, all taken from [100],
as well as combinatorial auction instances from [68]. In total there are 588 instances
in this set, which was split into 276 training and 312 test instances.

Given some graph, the network flow problem aims to find the maximal flow that
can be routed from node s to node ¢ while adhering to the capacity constraints of
each edge. The interesting characteristic of these problems is that special-purpose
network flow algorithms can be used to solve such problems much faster than
general-purpose solvers.

In the capacity facility problem, a collection of demand points and a distance
function are defined. The task is then to place n supply nodes that minimize
some distance objective function while maintaining that each supply node does
not service too many demand points. Problems of this type are generally solved
using Lagrangian relaxation and matrix column generation methods.

The knapsack problem is a highly popular problem type that frequently appears in
real-world problems. Given a collection of items, each with an associated profit
and weight, the task of a solver is to find a collection of items that results in
the highest profit while remaining below a specified weight capacity constraint.
In the bounded knapsack version, there are multiple copies of each item while
in the unbounded version there is an unlimited number of copies of each item.
Usually these types of problems are solved using a branch-and-bound approach.
The task of the capacitated lot sizing problem is to determine the amount and
timing of production to generate a plan that best satisfies all the customers.
Specifically, at each production step, certain items can be produced using a
specific resource. Switching the available resource incurs a certain price, as does
maintaining items in storage. The problem also specifies the number of copies
of each item that need to be generated and by what time. This is a very complex
problem that in practice usually is defined as a MIP.

In a combinatorial auction, participants place bids on combinations of discrete
items rather just on a single item. These auctions have been traditionally used to
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auction estates, but have recently also been applied to truckload transportation
and bus routes. Another important recent application was the auction of the
radio spectrum for wireless communications. The problem specification is given
a collection of bids to find the most profitable allocation of items to bidders. In
practice, these problems usually are modeled as the set packing problem.

4.2.1 Solver

For these experiments, Cplex 12.1 is used. Since 1999, IBM’s Cplex [59] has
represented the state-of-the-art optimization package. Used by many of the world’s
leading commercial firms and researchers in over 1,000 universities, Cplex has
become a critical part of optimization research. Although the specific techniques and
implementations are kept proprietary, the solver provides flexible, high-performance
optimizers for solving linear programming, mixed integer programming, quadratic
programming, and constraint programming problems. For each of these problem
types, Cplex can handle problems with millions of constraints and variables, often
setting performance records. The solver also has numerous options for tuning
solving strategies for specific problems, which makes it ideal for the purposes of
this example.

4.2.2 Numerical Results

Experiments were carried out with a timeout of 30s for training and 300s for
evaluation on the training and testing sets. The size of the smallest cluster is set
to be 30 instances. This resulted in five clusters, where four consisted of only one
problem type, and one cluster combined network flow and capacitated lot sizing
instances.

Table 4.4 compares instance-specific ISAC with instance-oblivious GGA and the
default Cplex. It is observed again that the default parameters can be significantly
improved by tuning the algorithm for a representative benchmark. For the average

Table 4.4 Comparison of ISAC versus the default and the instance-oblivious parameters provided
by GGA when tuning Cplex

Avg. run time Geo. avg. Avg. slow down

Solver Train Test Train Test Train Test
Cplex Default 6.1 7.3 2.5 2.5 2.0 1.9
GGA 3.6 52 1.7 1.8 1.3 1.2
ISAC 29 34 1.5 1.6 1.0 1.0

The table presents the arithmetic and geometric mean runtimes as well as the average slowdown
per instance
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test instance ISAC-Cplex needs 3.4s, GGA-Cplex needs 5.2s and default Cplex
requires 7.3 s. Instance-obliviously tuned Cplex is 50 % slower, and the default
Cplex even more than 114 % slower than ISAC-Cplex.

The improvements achieved by automatic parameter tuning can be seen when
considering the average per-instance slow-downs. According to this measure, for a
randomly chosen instance in the test set it is expected that GGA-Cplex needs 1.2
times the time required by ISAC-Cplex. Default Cplex needs 1.9 times the time of
ISAC-Cplex.

It is necessary to note that due to license restrictions only a very small training
set of 276 instances could be used, which is very few given the high diversity
of the considered benchmark. Taking this into account and seeing that Cplex is
a highly sophisticated and extremely well-tuned solver, the fact that ISAC boosts
performance so significantly is surprising and shows the great potential of instance-
specific tuning.

4.3 SAT

Our next evaluation of ISAC is on the propositional satisfiability problem (SAT),
the prototypical NP-complete problem that has far-reaching effects in many areas
of computer science. For SAT, given a propositional logic formula F in conjunctive
normal form, the objective is to determine whether there exists a satisfying truth
assignment to the variables of F. Since early 2000, there has been tremendous
progress in solving SAT problems, so that modern SAT solvers can now tackle
instances with hundreds of thousands of variables and over one million clauses.

The well-established features proposed by [126] are used to classify each
problem instance. However, in preliminary experiments it is found that the local
search features mentioned in [126] take a considerable amount of time to compute
and are not imperative to finding a good clustering of instances. Consequently, these
features were excluded, and only the following are used:

* problem size features: number of clauses ¢, number of variables v, and their ratio
c/v,

 variable-clause graph features: degree statistics for variable and clause nodes,

 variable graph features: node degree statistics,

 balance features: ratio of positive to negative literals per clause, ratio of positive
to negative occurrences of each variable, fraction of binary and ternary clauses,

* proximity to Horn clauses: fraction of Horn clauses and statistics on the number
of occurrences in a Horn clause for each variable,

e unit propagations at depths 1, 4, 16, 64, and 256 on a random path in the
DPLL [31] search tree, and

» search space size estimate: mean depth to contradiction and estimate of the log
of the number of nodes.

Computation of these feature values on average took only 0.01 s per instance.
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Table 4.5 Datasets used to

Dataset Train Test Reference
evaluate ISAC on SAT

QCP 1,000 |1,000 |[39]

SWGCP 1,000 |1,000 |[38]

3SAT-random 800 800 | [81]

3SAT-structured | 1,000 | 1,000 |[104]

The collection of SAT instances described in Table 4.5 is considered. The
objective of the quasigroup completion problem (QCP) is to determine if a partially
filled N by N matrix can be filled with numbers {1... N} so that the elements
of each row are different and the elements of each column are different. As a
benchmark we take a collection of QCP instances that have been encoded as a SAT
instance. The graph coloring problem is given a graph G and N possible colors;
the objective is to assign each node in the graph a color such that no adjacent
nodes are assigned the same color. As one type of instance in our benchmarks, a
set of these graph coloring problems (SWGCP) that have been encoded as SAT
instances is used. The third problem type in the benchmark is randomly generated
SAT instances (3SAT-random) using the G2 generator [116]. Finally considered are
randomly generated SAT instances (3SAT-structured) that more closely resemble
industrial SAT instances by our introducing structure into the instances.

4.3.1 Solver

ISAC is tested on the highly parameterized stochastic local search solver SAPS [57].
Unlike most existing SAT solvers, SAPS was originally designed with automatic
tuning in mind and therefore all of the parameters influencing the solver are readily
accessible to users. Furthermore, since it was first released, the default parameters of
the solver have been improved drastically by general-purpose parameter tuners [5,
56].

In addition to tuning a single solver, a portfolio-like solver is created. This solver
is comprised of nine competitive SAT solvers, where the job of ISAC is to identify
not only which solver is best suited for the instance but also the best parameters for
that solver. This is done by making the choice of the solver an additional categorical
parameter to be set by ISAC. The used solvers have all been ranked either in first,
second or third place in a recent SAT competition: clasp 1.3.2, jerusat 1.3, kenfs
2006, march pl, minisat 2.0, mxc 09, rsat 2.01, and zchaf.
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4.3.2 Numerical Results

Experiments were carried out with a timeout of 30s for training and 300s for
evaluation on the training and testing sets. The size of the smallest cluster was
set to be at least 100 instances. This resulted in 18 clusters, each with roughly
210 instances. Here not only were all of the four types of instances correctly
separated into distinct clusters, a further partition of instances from the same class
was provided.

The performance of SAPS was evaluated using the default parameters, GGA, and
ISAC and we present the results in Table 4.6.

Even though the default parameters of SAPS have been tuned heavily in the
past [56], tuning with GGA solves the benchmark over five times faster than default
SAPS. Instance-specific tuning allows us to gain another factor of 2.9 over the
instance-oblivious parameters, resulting in a total performance improvement of over
one order of magnitude. This refutes the conjecture of [54] that SAPS may not be a
good solver for instance-specific parameter tuning.

It is worth noting that over 95 % of instances in this benchmark can be solved
in under 15s. Consequently, some exceptionally hard, long-running instances
greatly dilute the average runtime. The average slow-down per instance is therefore
presented again. For the average SAT instance in our test set, default SAPS runs 274
times slower than ISAC. Even if GGA is used to tune a parameter set specifically for
this benchmark, GGA is still expected to run almost five times slower than ISAC.

Table 4.7 presents the performance of an algorithm portfolio-style solver tuned
using ISAC. The table shows that by creating an algorithm where one of the
parameters identifies the solver to use to evaluate the instance, the resulting solver
can perform three times better than the best overall solver on all the instances.

Table 4.6 Comparison of the SAPS solvers with default, GGA-tuned, and ISAC parameters

Avg. run time Geo. avg. Avg. slow down

Solver Train Test Train Test Train Test
SAPS Default 79.7 77.4 0.9 0.9 292.5 274.1
GGA 14.6 14.6 0.2 0.2 5.5 4.7
ISAC 4.0 5.0 0.1 0.1 1.0 1.0

The arithmetic and geometric mean runtimes in seconds are presented as well as the average slow-
down per instance

Table 4.7 Performance of a portfolio style SAT solver tuned using ISAC compared to perfor-
mance of each of the solvers in the portfolio

clasp |jerusat |kcnfs |march |minisat |mxc |rsat |zchaf |ISAC |Oracle
Train | 15.1 |42.1 98.5 |57.1 22.1 19.2 |438 |643 |59 3.4
Test 16.8 399 95.6 |519 22.7 20.1 |429 |646 |58 29

The table presents the average runtime. Oracle is a portfolio algorithm that always chooses the best
solver for the given instance
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However, it can also be seen that there is still room for improvement. Oracle is
a best-case scenario algorithm portfolio that holistically always chooses the best
solver for the given instance. This best-case scenario still requires half the time of
the algorithm tuned by ISAC.

4.4 Machine Reassignment

Given the growing level of interest from the optimization community in data center
optimization and virtualization, the 2012 Roadef Challenge [41] was focused on
machine reassignment, a common task in virtualization and service configuration
on data centers. Informally, the machine reassignment problem is defined by a
set of machines and a set of processes. Each machine is associated with a set of
available resources, e.g., CPU, RAM, etc., and each process is associated with a set
of required resource values and a currently assigned machine. The task is provided
with an assignment of processes to machines, to find an improving reassignment
within a 5 min timeout.

There are several reasons for reassigning one or more processes from their
current machines to different machines. For example, if the load of the machine
is high, then one might want to move some of the processes from that machine to
other machines. Similarly, if the machine is about to shut down for maintenance
then one might want to move all the processes of the machine. Also, if there exists
a machine in a different location where the electricity price is cheaper, then one
might want to reassign processes to the machines such that the cost of electricity
consumption is reduced. In general, the task is to reassign the processes to machines
while respecting a set of hard constraints in order to improve the usage of the
machines, as defined by a complex cost function.

For the example presented in this section, a collection of 1,245 instances was
generated based on the 10 set B instances from the 2012 Roadef Challenge. For
details on how these instances were generated, we refer the reader to [74]. The
generated dataset was split to contain 745 training instances and 500 test instances.
Table 4.8 then shows the features of the machine reassignment problem and their
limits on the instances of the problem that we are interested in solving.

Table 4.8 Features

Feature Limit
Machines 5,000
Processes 50,000
Resources 20
Services 5,000
Locations 1,000

Neighborhoods 1,000
Dependencies 5,000
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4.4.1 Solver

Due to the size of the problems and the speed with which an improving solution
needs to be found, a large neighborhood search (LNS) approach was employed.
The problem itself was formulated using constraint programming (CP), which is
described in [79]. In this book, details of the CP model and the general solving
methodology are omitted but can be found in [79] and [74] respectively. Here we
will discuss only the general scheme of the solver and the relevant parameters.

LNS combines the power of systematic search with the scaling of local search.
The overall solution method for CP-based LNS is shown in Fig.4.1. The current
assignment is maintained, which is initialized to the initial solution given as input.
At every iteration step, a subset of the processes to be reassigned is selected, and
the domains of the variables of the CP model are updated accordingly. The resulting
CP problem is solved with a threshold on the number of failures, and the best found
solution is kept as the new current assignment.

In the case of the LNS solver, Table 4.9 lists and explains the parameters that can
be controlled. Although there are only six parameters, half of them are continuous
and have large domains. Therefore, it is impractical to try all possible configurations.
Furthermore, the parameters are not independent of each other. This was found
by gathering a small set of 200 problem instances and evaluating them with 400

Initial Assignment 0p ——— Current Assignment gp ¢—————

Select Process/Machine for Subproblem

Improved Solution

Create Subproblem

Re-optimize subproblem using CP }7

Fig. 4.1 Principles of the CP-based LNS approach

Table 4.9 Parameters of LNS for the machine reassignment problem

Notation | Type Range | Description

up Integer [1,50] | Upper bound on the number of processes that can be selected
from one machine for reassignment

tp Integer [1,100] | Upper bound on the total number of processes that can be
selected for reassignment

p Continuous | [0.1, 1] | Ratio between the average number of processes on a machine

tm Integer [2,25] | Upper bound on the number of machines selected for subprob-
lem selection

T'm Continuous | [0.1, 10] | Ratio between the upper bound on the consecutive non-
improving iterations and the average number of processes on
a machine

ty Continuous | [0.1, 10] | Ratio between the threshold on the number of failures and the

total number of processes selected for reassignment
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randomly selected parameter settings. Using the average performance on the dataset
as our evaluation metric and the parameter settings as attributes, feature selection
algorithms from Weka [42] were run. All the attributes were found to be important.
Adding polynomial combinations of the parameter settings further revealed that
some pairs of parameters were more important than others when predicting expected
performance.

4.4.2 Numerical Results

This section compares three parameterizations of the LNS solver. The first approach
is the LNS solver, denoted by Default, which was the runner-up in the challenge.
Here Default stands for a single set of parameters resulting from manual tuning of
LNS solver on the 20 instances provided by the 2012 Roadef Challenge organizers.
The second approach, marked GGA, was tuned in an instance-oblivious manner
using all the training instances. Finally, the third approach, labeled ISAC, was
trained using the methodology proposed in this book. All the experiments were run
on Linux 2.6.25 x64 on a dual quad-core Xeon CPU machine with overall 12 GBs
of RAM and processor speed of 2.66 GHz.

For evaluation of a solver’s performance, the metric utilized for the Roadef
competition was used:

Scores (1) = 100 * (Cost(S) — Cost(B))/Cost(R).

Here, I is the instance, B is the best observed solution using any approach, R is
the original reference solution, and S is the solution using a particular solver. The
benefit of this evaluation function is that it is not influenced by some instances
having a higher cost than others, and instead focuses on a normalized value that
ranks all of the competing approaches. The best observed cost is used because for
most of the instances it is not possible to find the optimal cost. The lower bound
for a given instance was obtained by aggregating the resource requirements over all
processes and (safety) capacities over all machines and then computing the sum of
the load and balance costs.

To streamline the evaluations, the best performance was approximated using
the performance achieved by running the LNS solver with default parameters for
1h. While this caused some of the scores to be negative during training, this
approximation still correctly differentiated the best solver while avoiding placing
more weight on instances with higher costs.

The performances of the learned parameterizations from the Default, GGA, and
ISAC methodologies are compared in Figs. 4.2 and 4.3. The figures plot the average
performance of each method on the instances in each of the 10 discovered clusters.
What we observe is that even though the default parameters perform very close to as
well as they can for clusters 4, 5, 6, and 7, for clusters 2, 8, and 10 the performance
is very poor. Tuning the solver using GGA can improve the average performance
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dramatically. Furthermore, we see that if we focus on each cluster separately, we
can further improve performance, highlighting that different parameters should
be employed for different types of instances. Interestingly, we observe that ISAC
also dramatically improves on the standard deviation of the scores (in Fig.4.3),
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suggesting that the tuned solvers are consistently better than the default and GGA-
tuned parameters.

4.5 Chapter Summary

This chapter presented the possible enhancements that can be achieved by using the
cluster-based training approach ISAC. The experiments were done on four different
optimization problem types and seven different solvers. In all cases solvers trained
using the ISAC approach outperformed their alternatively tuned counterparts. This
chapter began by showing that instance-oblivious parameter tuning is a powerful
technique that can yield better results than an instance-specific regression approach.
It was then shown how, by using the cluster-based approach, ISAC is able to enhance
the instance-oblivious parameter tuning. Subsequent experiments were aimed at
applying ISAC to a variety of solvers, showing improvements for each. Finally,
the experiments on the Roadef Challenge highlighted that this approach is also
beneficial on real-world problems.



Chapter 5
ISAC for Algorithm Selection

The inception of algorithm portfolios [40, 67, 87, 125] has had a dramatic impact
on constraint programming, operations research, and many other fields. Based on
the observation that solvers have complementary strengths and therefore exhibit
incomparable behavior on different problem instances, the ideas of running multiple
solvers in parallel or selecting one solver based on the features of a given instance
were introduced. Appropriately, these approaches have been named algorithm
portfolios. Portfolio research has led to a wealth of different approaches and an
amazing boost in solver performance in the past decade.

One of the biggest success stories is that of SATzilla, which combined existing
Boolean satisfiability (SAT) solvers and dominated various categories of the SAT
Competition for about half a decade [1]. Another example is CP-Hydra [87], a
portfolio of CP solvers which won the CSP 2008 Competition. Instead of choosing
a single solver for an instance, Smith—Miles [103] proposed a Dirichlet Compound
Multinomial distribution to create a schedule of solvers to be run in sequence.
Approaches like [51] dynamically switched between a portfolio of solvers based
on the predicted completion time. Alternatively, ArgoSmart [84] and Hydra [124]
focus not only on choosing the best solver for an instance, but also on the best
parametrization of that solver. For a further overview of the state of the art in
portfolio generation, see the thorough survey in [105].

Ultimately, here we aim to develop algorithm portfolios that are able to deal
effectively with a vast range of input instances from a variety of sources. For
example, in the context of SAT, one would ideally want to design a single portfolio
that manages to determine the most appropriate solver given an instance regardless
of the instance “type” (such as random, crafted, or industrial).

As discussed in previous chapters, ISAC is a generalization of instance-oblivious
configurators such as ParamILS [56] and GGA [5]. Interestingly, through extensive
experimentation, this chapter shows that the ideas behind ISAC can be effectively
applied to algorithm selection, resulting in solvers that significantly outperform
highly efficient SAT solver selectors.

© Springer International Publishing Switzerland 2014 41
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5.1 Using ISAC as Portfolio Generator

This chapter presents how the ISAC methodology can be used to generate a portfolio
of SAT solvers. Three ways, of differing complexity, are considered. Assume we are
given a set of (potentially parameterized) algorithms Ay, ..., 4,, a set of training
inputs T, the set of associated feature vectors F, and a function Features that
returns a feature vector for any given input x.

* Pure Solver Portfolio: Cluster the training instances according to their normal-
ized features. For each cluster, determine the overall best algorithm. At runtime,
determine the closest cluster and tackle the input with the corresponding solver.

* Optimized Solver Portfolio: Proceed as before. For each cluster, instance-
obliviously tune the preferred algorithm for the instances within that cluster.

* Instance-Specific Meta-Solver Configuration: Define a parameterized meta-
algorithm where the first parameter determines which solver is invoked, and the
remaining parameters determine the parameters for the underlying solvers. Use
ISAC to tune this solver.

The difference between the pure solver portfolio and the other two approaches
is that the first is limited to using the solvers with their default parameters. This
means that the performance that can be achieved maximally is limited by that of
the “virtually best solver” (a term used in the SAT competition), which gives the
runtime of the best solver (with default parameters) for each respective instance. The
difference between the optimized solver portfolio and the instance-specific meta-
solver configuration is that the latter may find that a solver that is specifically tuned
for a particular cluster of instances may work better overall than the best default
solver for that cluster, even if the latter is tuned. Therefore, note that the potential
for performance gains strictly increases from stage to stage. For the optimized solver
portfolio as well as the instance-specific meta-solver configuration it is possible to
outperform the virtually best solver.

The remainder of this chapter presents numerical results comparing these three
approaches to the state-of-the art portfolio generators for SAT.

5.2 Algorithm Configuration vs. Algorithm Selection of SAT
Solvers

This section begins the experimental study by comparing ISAC with the 2009
SATzilla_R portfolio. To this end portfolios are generated based on the follow-
ing solvers: Ag2wsat0 [120], Ag2wsat+ [121], gnovelty+ [92], KenfsO4 [32],
March_dl04 [47], Picosat 8.46 [15], and SATenstein [62]. Note that these solvers
are identical to the ones that the SATzilla09_R [123] solver was based on when
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it was entered in the 2009 SAT solver competition.! To make the comparisons as
fair as possible, these experiments use the same feature computation program made
public by the developers of SATzilla to get the 48 core features to characterize a
SAT input instance (see [126] for a detailed list of features).

The training set was comprised of the random instances from the 2002 to 2007
SAT Competitions, where instances that are solved in under a second by all the
solvers in our portfolio are removed. Also removed were instances that cannot
be solved with any of the solvers within a time limit of 1,200s (this is the same
timeout as that used in phase 1 of the SAT Competition). This left 1,582 training
instances. The test set consisted of the 570 instances from the 2009 SAT Solver
Competition [1] where SATzilla_R won gold. SATzilla_R is the version of SATzilla
tuned specifically for random SAT instances. The random instances were chosen
because they belonged to the category where SATzilla showed the most marked
improvements over the competing approaches. The cluster-based approaches were
trained on dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors and
24 GB of DDR-3 memory (1,333 MHz).

Like SATzilla, ISAC utilized the PAR10 score, a penalized average of the
runtimes: for each instance that is solved within 1,200s, the actual runtime in
seconds defines the penalty for that instance; for each instance that is not solved
within the time limit, the penalty is set to 12,000, which is 10 times the original
timeout. Note that for the pure solver portfolio, we require much less time than
SATzilla to generate the portfolio. Clustering takes negligible time compared to
running the instances on the various solvers. However, when determining the best
solver for each cluster, we can race them against each other, which means that the
total CPU time for each cluster is the number of solvers multiplied by the time
taken by the fastest solver (as opposed to the total time of running all solvers on all
instances).

For the optimized solver portfolio generator and the meta-solver configurator,
the instance-oblivious configurator GGA was employed on each cluster of training
instances. In particular, the parameters used for GGA were the following (please
refer to [5] for details): The standard population size was set to 100 genomes,
split evenly between the competitive and noncompetitive groups. Initial tournaments
considered five randomly chosen training instances. The size of this random subset
grows linearly with each iteration until the entire training set is included by iteration
75. GGA then proceeded tuning until the 100th generation or until no further
improvement in performance was observed. These default parameters of GGA were
used because of their performance in prior research.

For the meta-solver, parameters needed to be trained for 16 clusters. These
clusters were built to have at least 50 instances each, which resulted in the average
cluster having 99 instances and the largest cluster having 253 instances. In total,
building the MSC required 260 CPU days of computation time. However, since

'Note that the benchmark for a portfolio generator consists of both the training and test sets of
problem instances as well as the solvers used to build the portfolio!
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each of the clusters could be tuned independently in parallel, only 14 days of tuning
were required.

5.2.1 Pure Solver Portfolio vs. SATzilla

Table 5.1 reports the results of the experiments. As a pure solver, gnovelty+
performs best, solving 51 % of all test instances in time, whereby a number of the
other solvers exhibit similar performance. Even though no individual solver can do
better, when they join forces in a portfolio performance can be significantly boosted,
as the pioneers of this research thread have pointed out [40, 66]. SATzilla_R, for
example, solves 71 % of the test instances within the given captime of 1,200s.
Seeing that the virtually best solver (VBS) sets a hard limit of 80 % of instances
that can be solved in time by these solvers, this performance improvement is very
significant: more than two-thirds of the gap between the best pure solver and the
VBS is closed by the SATzilla portfolio. Here, VBS (virtual best solver) assumes
an oracle-based portfolio approach that always chooses the fastest solver for each
instance.

The table also shows the performance of the various portfolios based on ISAC.
Observe that on the data SATzilla_R was trained on, it performs very well, but on the
actual test data even the simple pure solver portfolio generated by ISAC manages to

Table 5.1 Comparison of SATzilla, the pure solver portfolio (PSP), the instance-specific meta-
solver configuration (MSC), and the virtually best solver (VBS)

Solver gnovelty+ SATzilla_R | PSP Cluster | MSC VBS MSC+pre

Training dataset

PARIO 4,828 685 1,234 1,234 505 58.6 456
o 5,846 2,584 3,504 | 3,504 2,189 156 2,051
Avg 520 153 203 203 129 58.6 128

o 574 301 501 501 267 156 261
Solved | 951 1,504 1,431 1,431 1,527 1,582 1,534
% 60.1 95.1 90.5 90.5 96.5 100 97.0
Testing dataset

PARIO |5,874 3,578 3,569 | 3,482 3,258 2,482 2,480
o 5,963 5,384 5,322 5,307 5,187 |4,742 4,717
Avg 626 452 500 470 452 341 357
o 578 522 501 508 496 474 465
Solved | 293 405 408 411 422 457 458
% 51.4 71.1 71.6 72.1 74.0 80.2 80.4

Also shown is the best possible performance that can be achieved if the same solver must be used
for all instances in the same cluster (Cluster). The last columns show the performance of the meta-
solver configuration with a pre-solver (MSC+pre). For the penalized and regular average of the
time, o, the standard deviation, is also presented
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outperform SATzilla_R. On the test set, the pure solver portfolio has a slightly better
PAR10 score (the measure that SATzilla was trained for), and it solves a few more
instances (408 compared to 405) within the given time limit. That means, in terms
of the average runtime, while SATzilla closes about two-thirds of the gap between
the best individual solver and the VBS, the simple PSP already closes about 60 %
of the remaining gap between SATzilla and the VBS.

It is important to note here that in the 2011 SAT Competition, the difference
between the winning solver in the industrial instance category and the tenth placed
solver was 24 instances. This tenth place solver was also the winner of the 2009
SAT Competition. The improvements observed here with the PSP approach are
significant.

In Table 5.1, given under “Cluster” is the best PAR10 score, the average runtime,
and the number of solved instances when a single solver is committed to each
cluster. It can be observed that the clustering itself incurs some cost in performance
when compared to the VBS.

5.2.2 Meta-Solver Configuration vs. SATzilla

When considering the optimized solver portfolio, where the best solver is tuned
for each cluster, none of the best solvers chosen for each cluster had parameters.
Therefore, the performance of the OSP is identical to that of the PSP. The situation
changes when the meta-solver configuration approach is used.

As Table 5.1 shows, the MSC provides a significant additional boost in test
performance. This portfolio manages to solve 74 % of all instances within the time
limit, 17 instances more than SATzilla. This improvement over the VBS is due to the
introduction of two new configurations of SATenstein that MSC tuned and assigned
to two clusters.

In SATzilla, the portfolio is not actually a pure algorithm selector. In the
first minute, SATzilla employs both the mxc-srO8 [24] SAT solver and a specific
parameterization of SATenstein. That is, SATzilla runs a schedule of three different
solvers for each instance. In Table 5.1, MSC+pre is a version of an ISAC-tuned
portfolio that uses the first minute of allotted time to run these same two solvers.
The resulting portfolio outperformed the VBS. This was possible because the MSC
added new parameterizations of SATenstein, and also because mxc-sr08 is not one
of our pure solvers. As a result, the new portfolio solved 80 % of all competition
instances, 9 % more than SATzilla. At the same time, runtime variance was also
greatly reduced: not only did the portfolio run more efficiently, it also worked
more robustly. Seeing that ISAC was originally not developed with the intent to
craft solver portfolios, this performance improvement over a portfolio approach that
had dominated SAT competitions for half a decade was significant. Based on these
results, the 3S Solver Portfolio was entered in the 2011 SAT Competition. 3S is just
one portfolio (no sub-versions _R or _I) for all different categories, which comprises
36 different SAT solvers. 3S was the first sequential portfolio that won gold in more
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than one main category (SAT+UNSAT instances). The specifics of this solver are
presented in Chap. 6.

Although not explicitly shown, all the results are significant as per the Wilcoxon
signed rank test with continuity correction. MSC is faster than SATzilla_R with
p <0.1%.

5.2.3 Improved Algorithm Selection

When compared with PSP, MSC replaced some of the default solvers for some
clusters with other default solvers and, while lowering the training performance,
this resulted in an improved test performance. To explain this effect it is important
to understand how GGA tunes this meta-solver. As discussed in previous chapters,
GGA is a genetic algorithm with a specific mating scheme. Namely, some individu-
als need to compete against each other to gain the right of mating. This competition
is executed by racing several individual parameter settings against one another on
a random subset of training instances. That means that GGA will likely favor the
solver for a cluster that has the greatest chance of winning the tournament on a
random subset of instances.

Note that this is different from choosing the solver that achieves the best score on
the entire cluster, as was done for the pure solver portfolio (PSP). What is observed
here is that the PSP over-fits the training data. GGA implicitly performs a type of
bagging [25], which results in solver assignments that generalize better.

Motivated by this insight, two more methods were tested for the generation of
a pure solver portfolio. The two alternative methods for generating cluster-based
portfolios are:

e Most Preferred Instances Portfolio (PSP-Pref): Here, for each cluster, the
fastest solving algorithm is determined for each instance in that cluster. The
cluster is then associated with the solver that most instances prefer.

* Bagged Portfolio (PSP-Bag): For each cluster: a random subset of our training
instances in that cluster is chosen and the fastest (in terms of PAR10 score) solver
is determined (note that each solver is only run once for each instance). This
solver is the winner of this “tournament.” The process is repeated 100 times and
the solver that wins the most tournaments is associated with this cluster.

In Table 5.2, these three cluster-based algorithm selectors are compared with
SATzilla_R (whereby these portfolios are again augmented by running SATenstein
and mxc-sr08 for the first minute, which is indicate by adding “+pre” to the portfolio
name). Observe that PSP-Pref+pre is clearly not resulting in good performance.
This is likely because it is important to note not only which solver is best, but also
how much better it is than its contenders. PSP+pre works much better, but it does
not generalize as well on the test set as PSP-Bag+pre. Therefore, when the base
solvers of a portfolio have no parameters, the PSP-Bag approach to develop a high-
performance algorithm selector is recommended.
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Table 5.2 Comparison of alternate strategies for selecting a solver for each cluster

Solver SATzilla PSP+pre PSP-Pref+pre PSP-Bag+pre
Training dataset

PAR10 685 476 2,324 531

o 2,584 2,070 4,666 2,226
Avg 153 141 289 142
o 301 489 465 280
Solved 1,504 1,533 1,284 1,525
% 95.1 97.0 81.2 96.4
Testing dataset

PARI10 3,578 2,955 5,032 2,827
o 5,384 5,024 5,865 4,946
Avg 452 416 560 402
o 522 489 562 484
Solved 405 436 334 442
% 71.1 76.5 58.6 71.5

5.2.4 Latent-Class Model-Based Algorithm Selection

In [103], an alternative model-based portfolio approach was presented. The paper
addressed the problem of computing the prediction of a solver’s performance on
a given instance using natural generative models of solver behavior. Specifically,
the authors used a Dirichlet Compound Multinomial (DCM) distribution to create a
schedule of solvers; that is, instead of choosing just one solver, they gave each solver
a reduced time limit and ran this schedule until the instance was solved or the time
limit was reached. For their experiments, the authors used the 570 instances from
the 2009 SAT Competition in the Random category, along with the 40 additional
random instances from the same competition originally used for a tie-breaking
round. This data set of 610 instances was then used to train a latent-class model
using random sub-sampling.

The authors found that this portfolio led to a slight improvement over
SATzilla_R. However, they also mentioned that the comparison was not fully
adequate because the latent-class model scheduler used newer solvers than SATzilla
and also the 610 instances were used for both training and testing.

The experiments used the same data used in the original research of DCM.?
These times were run on an Intel quad-core Xeon X5355 (2.66 GHz) processor with
32 GB of RAM. As competitors, we trained our algorithm selection portfolios based

2Qur thanks go to Bryan Silverthorn, who provided the 610 instances used in the experiments
in [103], as well as the runtime of the constituent solvers on his hardware, and also the final
schedule of solvers that the latent class model found (see [103] for details).
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Table 5.3 Comparison with the DCM Portfolio developed by Silverthorn and Miikkulainen [103]
(results presented here were reproduced by Silverthorn and sent to us in personal communication)

Solver SATzilla DCM PSP PSP-Bag
PAR10 12,794 12,265 7,092 7,129
o 182 314 180 293
Avg 1,588 1,546 1,242 1,250
o 16.6 21.7 14.8 19.5
Solved 458 465 531 530
o 2.38 4.03 2.36 3.83
Yo 75.1 76.2 87.0 86.9
o 0.39 0.66 0.39 0.63
Solved (median) 458 464 531 531
% (median) 75.1 76.0 87.0 87.1

The table presents mean run-times and median number of solved instances for 10 independent
experiments

on the previously mentioned 1,582 instances from the Random category of the 2002
to 2007 SAT Competitions.

Table 5.3 shows the performance of SATzilla_R, DCM, and our PSP and PSP-
Bag (without the “-pre” option!) using a 5,000 s timeout. To account for the random
nature of the underlying solvers, the evaluation of the DCM schedule and our
portfolios was repeated ten times. The table shows mean and median statistics. Even
though, as mentioned earlier, the comparison with SATzilla_R is problematic, it
is included here to make sure that our comparison is consistent with the finding
in [103] that DCM works slightly better than SATzilla. The results in the table
confirm this. However, the PSP and PSP-Bag portfolios can do much better and
boost the performance from 76 % of all instances solved by the DCM to 87 % solved
by PSP-Bag. Keeping in mind the simplicity of clustering and solver assignment,
this improvement in performance is noteworthy.

5.3 Comparison with Other Algorithm Configurators

As shown in the previous section, when the employed solvers have parameters,
ISAC and the meta-solver configuration approach offer more potential than the pure
solver portfolios PSP and PSP-Bag, which serve merely as algorithm selectors. In
this section, ISAC is compared with two other approaches that train the parameters
of their solvers, ArgoSmart [84] and Hydra [124].
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5.3.1 ISAC vs. ArgoSmart

An alternate version of the idea that parameterized solvers can be used in a portfolio
is also in considered in ArgoSmart [84]. Using a supervised clustering approach,
the authors build groups of instances based on the directory structure in which
the SAT Competition placed these instances. The authors enumerate all possible
parameterizations of ArgoSAT (60 in total) and find the best parameterization
for each family. For a test instance, ArgoSmart then computes 33 of the 48 core
SATzilla features that do not involve runtime measurements [126] and then assigns
the instance to one of the instance families based on majority k nearest neighbor
classification, based on a non-Euclidean distance metric. The best parameterization
for that family is then used to tackle the given instance.

ISAC is more widely applicable, as it clusters instances in an unsupervised
fashion. Moreover, ISAC employs GGA to find the solver parameters instead of
enumerating all possible configurations. Therefore, if the parameter space were
much bigger, the ArgoSmart approach would need to be augmented with an
instance-oblivious parameter tuner to find parameters for each of the instance
families that it inferred from the directory structure. Despite these current limitations
of the ArgoSmart methodology, we compared our assignment of test instances to
clusters based on the Euclidean distance to the nearest cluster center with more
elaborate machine learning techniques.

To make this assessment, a PSP and a PSP-Bag were generated based on
the time of each of ArgoSAT’s parameterizations on each instance.> These times
were computed on Intel Xeon 2 GHz processors with 2GB RAM. In Table 5.4,
ArgoSmart is compared with two versions of PSP and PSP-Bag, respectively. Both
use the same 33 features of ArgoSmart to classify a given test instance. In one
version, unsupervised clustering of the training instances is used. The other version
uses the supervised clustering gained from the directory structure of the training
instances which ArgoSmart used as part of its input. For both variants the best
possible cluster-based performance is given. Observe that the supervised clustering
offers more potential. Moreover, when PSP-Bag has access to this clustering, despite
its simple classification approach, it performs as well as the machine learning
approach from [84]. However, even when no supervised clustering is available as
part of the input, ISAC can still tune ArgoSAT effectively.

Note that the times of ArgoSmart are different from those reported in [84]
because the authors only had the times for all parameterizations for the 2002 SAT
data, and not the 2007 SAT data they originally used for evaluation. The authors
generously retuned their solver for a new partitioning of the 2002 dataset, to give
the presented results.

3Information that was generously provided by Mladen Nikolic
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Table 5.4 Comparison with ArgoSmart [84] (results presented here were reproduced by Nikolic
and sent to us in personal communication)

Unsupervised clustering | Supervised clustering
Solver | ArgoSat | ArgoSmart | PSP | PSP-Bag | Cluster | PSP | PSP-Bag | Cluster | VBS
Training dataset

PARI10 | 2,704 - 2,515 | 2,527 2,515 2,464 | 2,473 2,464 2,343
o 2,961 - 2,935 | 2,967 2935 2,927 | 2,959 2,927 12,906
Avg 294 - 276 | 276 276 270 | 271 270 255
o 285 - 283 | 284 283 283 283 283 283
Solved | 736 - 778 | 775 778 789 | 787 789 815
%o 55.4 - 58.5 | 583 58.5 59.4 159.2 59.4 61.3
Testing dataset

PAR10 | 2,840 2,650 2,714 | 2,705 2,650 |2,650 | 2,650 2,628 |2,506
o 2,975 2,959 2,968 | 2,967 2,959 12,959 | 2,959 2,959 2,941
Avg 306 286 291 | 290 286 286 | 286 281 269
o 286 286 287 | 287 286 286 | 286 287 286
Solved | 337 357 350 | 351 357 357 | 357 359 372
% 53.1 56.2 55.1 |553 56.2 56.2 |56.2 56.5 58.6

5.3.2 ISACvs. Hydra

The methodology behind our final competitor, Hydra [124], enjoys the same
generality as ISAC. Hydra consists of a portfolio of various configurations of the
highly parameterized local search SAT solver SATenstein. In Hydra, a SATzilla-
like approach is used to determine whether a new configuration of SATenstein has
the potential of improving a portfolio of parameterizations of SATenstein, and a
ParamILS-inspired procedure is used to iteratively propose new instantiations of
SATenstein. In other words Hydra creates and adds solvers to its portfolio one at a
time, even removing those same solvers when they are deemed to no longer help the
overall performance of the portfolio.

To cover the breadth of possibilities, three different approaches are considered
for building a portfolio of local search SAT solvers and are compared with Hydra*
in Tables 5.5 and 5.6. The respective benchmarks BM and INDU were introduced
in [124]. Both instance sets appear particularly hard for algorithm configuration:
in [124], Hydra was not able to outperform an algorithm selection portfolio with
17 constituent solvers. The BM and INDU benchmarks consist of 1,500 training and
1,500 test instances, and 500 training and 500 test instances, respectively. The INDU
dataset is comprised of only satisfiable industrial instances, while BM is composed
of a mix of satisfiable crafted and industrial instances. These experiments used dual

4We are grateful to Lin Xu, who provided the Hydra-tuned SATensteins as well as the mapping of
test instances to solvers.
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Table 5.5 Comparison of local-search SAT solvers and portfolios thereof on BM data

Solver |Saps |Stein (FACT) |Hydra | MSC-stein | PSP-Bag 11 | PSP-Bag 17 | MSC-12
Training dataset

PARI10 |102 26.8 - 1.78 18.03 1.41 1.41
o 197 109 - 13.6 87.9 4.09 4.16
Avg 13.5 |4.25 - 1.48 3.63 1.11 1.41
o 19.6 |11.3 - 4.41 10.4 3.05 4.16
Solved | 1,206 | 1,425 - 1,499 1,452 1,499 1,500
% 80.4 |95.0 - 99.9 96.8 99.9 100
Testing dataset

PAR10 | 861 220 1.43 1.27 73.5 1.21 1.21
o 2,086 | 1,118 5.27 3.73 635 4.42 3.27
Avg 97.8 26.0 1.43 1.27 12.3 1.20 1.21
o 210 114 5.27 3.73 69.0 4.42 3.27
Solved | 1,288 | 1,446 1,500 | 1,500 1,483 1,500 1,500
% 859 |96.4 100 100 98.9 100 100

Table 5.6 Comparison of local-search SAT solvers and portfolios thereof on INDU data
Solves | Saps | Stein (CMBC) |Hydra | MSC-stein | PSP-Bag 11 | PSP-Bag 17 | MSC-12

Training dataset

PARI10 |54.6 |6.40 - 2.99 51.7 3.97 3.00
o 147 235 - 3.94 143 22.6 4.47
Avg 10.5 |5.50 - 2.99 10.3 3.07 3.00
o 155 |8.07 - 3.94 15.3 6.54 4.47
Solved | 451 499 - 500 454 499 500
% 90.2 199.8 - 100 90.8 99.8 100
Testing dataset

PAR10 208 |5.35 5.11 2.97 209 3.34 2.84
o 1,055 | 8.54 9.41 |4.08 1,055 7.05 4.07
Avg 357 |5.35 5.11 2.97 36.4 3.34 2.84
o 116 | 8.54 941 |4.08 116 7.05 4.07
Solved | 484 |500 500 500 484 500 500
% 96.8 | 100 100 100 96.8 100 100

Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors and 24 GB of DDR-3
memory (1,333 GHz) to compute the runtimes.

The training of the portfolios was conducted using a 50 s timeout; for testing a
600 s timeout was used. It is important to point out that, despite using a tenfold
longer training timeout than [124], the total training time for each portfolio was
about 72 CPU days, which is comparable with the 70 CPU days reported in [124]
(note also that significantly slower machines for tuning were used). The reason is
that GGA was used instead of ParamILS to train the solvers on each cluster. GGA
is population-based and races parameter sets against each other, which means that
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runs can be interrupted prematurely when a better parameter set has already won
the race. It is an inherent strength of ISAC that it can handle longer timeouts than
Hydra. Compared in the presented results are the two approaches, assuming they
are given the same number of CPU days during which to tune.

The portfolio closest to Hydra is denoted MSC-stein. Here, like Hydra, only
SATenstein is tuned. As usual, this approach clusters our training instances, and
for each cluster SATenstein is tuned using GGA. For evaluation, as for the original
Hydra experiments, each solver is run three times and the median time is presented.
Observe again that the clustering approach to portfolio generation offers advantages.
While Hydra uses a SATzilla-type algorithm selector to decide which tuned version
of SATenstein an instance should be assigned to, ISAC employs clusters for this
task. As a result, ISAC has a 12 % reduction in runtime over Hydra on the BM
dataset and more than 40 % reduction on INDU. There is also a significant reduction
in runtime variance over Hydra: again, not only does the new portfolio work faster,
it also works more robustly across various instances.

Next, the ISAC methodology is used further to build portfolios with more
constituent solvers. Following the same setting as in [124], an algorithm selector was
built using 11 local search solvers (PSP-Bag 11): paws [113], rsaps [58], saps [114],
agwsat0 [120], agwsat+ [121], agwsatp [119], gnovelty+ [92], g2wsat [69],
ranov [91], vw [94], and anov(09 [49]. In this setting, saps’ performance is the
best. The number of constituent solvers is further augmented through the addition
of six fixed parameterizations of SATenstein, resulting in a total of 17 constituent
solvers. The respective portfolio is denoted PSP-Bag 17. Finally, MSC-12 is built
based on the (unparameterized) 11 original solvers plus the (highly parameterized)
SATenstein.

Consistent with [124] are the following:

* Except on the INDU dataset, where the portfolio of 11 solvers cannot improve
the performance of the best constituent solver, the portfolios boost significantly
the performance compared to the best constituent solver (saps for the 11 solvers
on both benchmarks and, for the 17 solvers, SATenstein-FACT on the BM dataset
and SATenstein-CMBC on the INDU dataset).

* The portfolio of 17 solvers dramatically improves performance over the portfolio
of 11 solvers. Obviously the variants of SATenstein work very well and, on the
INDU benchmark, also provide some much needed variance so that the portfolio
is now able to outperform the best solver.

In [124] it was found that Hydra, based on only the SATenstein solver, can match
the performance of the portfolio of 17 solvers on both benchmarks. While this may
be true when the portfolios are built using the SATzilla methodology, it is not true
when using our algorithm selector PSP-Bag 17. On BM, PSP-Bag 17 works more
than 15 % faster than Hydra and on the INDU benchmark set it runs more than 33 %
faster.

The full potential of the ISAC approach is of course only realized when a
portfolio is built using parameterized and unparameterized solvers. The result is
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MSC-12, which clearly outperforms all others, working on average almost 18 %
faster than Hydra on BM and more than 45 % faster than Hydra on INDU.

5.4 Chapter Summary

This chapter presented the idea of using instance-specific algorithm configuration
(ISAC) for the construction of SAT solver portfolios. The approach works by
clustering training instances according to normalized feature vectors. Then, for each
cluster, it determines the best solver or computes a high-performance parameteriza-
tion for a solver. At runtime, the nearest cluster is identified for each instance and the
corresponding solver/parameterization is invoked. In all experiments, to compare
competing approaches, every precaution was taken to make sure that the conditions
under which they were developed were as close as possible. This included using
the same solvers in the portfolio, the same tuning times, and the same training and
testing sets.

The chapter showed that this very simple approach results in portfolios that
clearly outperform the SAT portfolio generator SATzilla [126], a recent SAT solver
scheduler based on a latent-class model, and the algorithm configuration method
Hydra [124]. At the same time, ISAC is widely applicable and works completely
unsupervised.

This study shows that instance-specific algorithm tuning by means of clustering
instances and tuning parameters for the individual clusters is highly efficient even
as an algorithm portfolio generator. The fact that, when tuning instance-specifically,
ISAC considers portfolios of a potentially infinite number of solvers does not
mean that it is necessary to revert to sub-standard portfolio selection. On the
contrary: unsupervised clustering, which originally was a mere concession to tuning
portfolios with extremely large numbers of solvers, has resulted in a new state of the
art in portfolio generation.



Chapter 6
Dynamic Training

ISAC is a powerful tool for training solvers for the instances they will be applied
on. One of ISAC’s strengths lies in its configurability. Composed of three steps
(computing features, clustering, and training), this methodology is not restricted
to any single approach for any of them. For example, so far we have shown
how a local search, GGA, and selecting the single best solver in a portfolio are
all possibilities for training a solver for a cluster. In this chapter we show how
by changing the clustering portion of the methodology, it is possible to train
the portfolio dynamically for each new test instance. Using SAT as the testbed,
the chapter demonstrates through extensive numerical experiments that this new
technique is able to handle even highly diverse benchmarks, in particular a mix of
Random, Crafted, and Industrial instances, even when the training set is not fully
representative of the test set that needs to be solved.

6.1 Instance-Specific Clustering

The previous chapters used g-means [44] to analyze the training data and find a
stable set of clusters. Although this has been shown to work very well in practice,
improved performance is possible for the instances that are far from the found
cluster centers. For example, in our version of g-means, a minimum cluster size
is imposed to ensure that there are enough instances in each cluster to train a solver
accurately. This means that instances in clusters that are smaller than this threshold
are reassigned to the nearest neighboring cluster. This reassignment can potentially
bias the training of the solver. To help prevent this scenario, a possible solution is to
use the k nearest neighbor approach to create the clusters dynamically for each new
test instance.

© Springer International Publishing Switzerland 2014 55
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6.1.1 Nearest Neighbor-Based Solver Selection

Nearest neighbor classification (k-NN) is a classical machine learning approach.
In essence, the decision for a new example is based on prior experience in the k
most similar cases. In our context, this means that we first identify which k training
instances are the most “similar” to the one given at runtime, and then choose the
solver that worked the “best” on these k training instances. As before, we use
Euclidean distance on 48 normalized! core features of SAT instances that SATzilla
is based on [126] as the similarity measure, and the PAR10 score of a solver on these
k instances as the performance measure.

When k = 1, it is assumed that each training example is unique, and therefore
that there are no errors on the training set as each instance is its own nearest
neighbor. However, it is well known in machine learning that 1-NN often does not
generalize well to formerly unseen examples, as it tends to over-fit the training data.
A very large value of k also obviously defeats the purpose of considering local
neighborhoods. To address the challenge of finding the “right” value of k, another
classical strategy in machine learning is employed, namely random subsampling
cross validation. The idea is to utilize only a subset of the training data and to assess
how well a learning technique performs when trained on this subset and evaluated
on the remaining training instances. A split ratio of 67/33 is used to partition the
training data and perform random subsampling 100 times to obtain a fairly good
understanding of how well the technique generalizes to instances on which it was not
trained. Finally, the k yielding the best average performance on the 100 validation
sets is chosen.

Algorithm 5 gives a more formal description of the entire algorithm, in terms
of its usage as a portfolio solver (i.e., algorithm selection given a new instance, as
described above) and of the random subsampling-based training phase performed
to compute the best value for k to use. The training phase starts out by computing
the runtimes of all solvers on all training instances, as well as the features of these
instances. It then removes all instances that cannot be solved by any solver in the
portfolio within the time limit, or that are solved by every solver in the portfolio
within marginal time (e.g., one second for reasonably challenging benchmarks);
learning to distinguish between solvers based on data from such instances is
pointless. Along with the estimated best &, the training phase passes this reduced set
of training instances, their runtimes for each solver, and their features to the main
solver selection phase. Note that the training phase does not learn any sophisticated
model (e.g., a runtime prediction model); rather, it simply memorizes the training
performances of all solvers and only actually “learns” the value of k.

Despite the simplicity of this approach—compared, for example, with
the description of SATzilla in [126]—it is highly efficient and outperforms

IWe associate each feature with a linear normalization function, ensuring that the feature’s
minimum and maximum values across the set of training instances are 0 and 1, respectively.
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Algorithm 5: Algorithm selection using nearest neighbor classification

k-NN-Algorithm-Selection Phase;

Input : aproblem instance F

Params: nearest neighborhood size k, candidate solvers S, training instances Fi,i, along

with feature vectors and solver runtimes

Output : sat or unsat

begin
compute normalized features of F';
F < set of k instances from F.;, that are closest to F;
S <— solver in S with the best PAR10 score on F;
return S(F);

end

Training Phase;
Input : candidate solvers S, training instances Fiyin, time limit i,
Params: nearest neighborhood range [kmin, Kmax], perform random subsampling m times and
split ratio mj /m,, (default 70/30)
Output : best performing k, reduced Fi, along with feature and runtimes
begin
run each solver S € S for time Ty, on each F' € Fiin; record runtimes;
remove from Fy,;, instances solved by no solver, or by all within 1s;
compute feature vectors for each F € Fyuin for k € [Kpin, kinax] do
score[k] < 0;
for i € [1..m] do
(Fbase Fralidation) <— & random m,, /m,, split of F;
score[k] <— score[k]+ performance of k-NN portfolio on Fyajigation USing;
training instances JFy, and solver selection based on PAR10 score;
end
end
kpest <— argminy score[k];
return (Kyes, Fuain, f€ature vectors, runtimes);

end

SATzilla2009_R, the gold-medal winning solver in the random category of SAT
Competition 2009. In Table 6.1 the k-NN algorithm selection is compared with
SATzilla_R, using the 2,247 random category instances from SAT Competitions
2002 to 2007 as the training set and the 570 such instances from SAT Competition
2009 as the test set. As in the previous chapter, both portfolios are based on the
following local search solvers: Ag2wsatO [120], Ag2wsat+ [121], gnovelty+ [92],
Kcenfs04 [32], March_dl104 [47], Picosat 8.46 [15], and SATenstein [62], all in the
versions that are identical with the ones that were used when SATzillaO9_R [123]
entered in the 2009 SAT solver competition. To make the comparison as fair as
possible, k-NN uses only the 48 core instance features that SATzilla is based on
(see [126] for a detailed list of features), and is trained for the PAR10 score. For both
training and testing, the time limit is set to 1,200s. Table 6.1 shows that SATzilla
boosts performance of individual solvers dramatically. The pure k-NN approach
pushes the performance level substantially further. It solves 22 more instances than
SATzilla and closes about one third of the gap between SATzilla and the virtual best
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Table 6.1 Comparison of baseline solvers, portfolio, and virtual best solver performances:
PARI10, average runtime in seconds, and number of instances solved (timeout 1,200 s)

Pure solvers Portfolios

agw- |agw- | gnov- | SAT- pico- SAT-

sat0 |sat+ |elty+ |enstein | march | sat kenfs | zilla | k-NN | VBS
PAR10 5,940 6,017 | 5,874 |5.892 |8,072 |10,305 | 6,846 |3,578 | 3151 |2482
o 5,952 5,935 |5951 |5921 |5944 |5828 5,891 |5,684 |5,488 |5,280
Avg time | 634 636 626 625 872 1,078 | 783 452 442 341
o 574 576 573 570 574 574 580 542 538 527
#solved | 290 286 293 292 190 83 250 405 427 457

% solved | 509 |50.2 |51.4 |51.2 33.3 14.6 439 711 |749 |80.2

solver (VBS),? which solves 457 instances. Given the utter simplicity of the k-NN
approach, this performance is quite remarkable.

6.1.2 Improving Nearest Neighbor-Based Solver Selection

This section discusses two techniques to improve the performance of the algorithm
selector further. First, inspired by [87], training instances that are closer to the
test instance are given more weight. Second, the neighborhood size k is adapted
depending on the properties of the test instance to be solved.

6.1.2.1 Distance-Based Weighting

A natural extension of k-NN is to scale the scores of the k neighbors of an instance
based on the Euclidean distance to it. Intuitively, larger weights are assigned
to instances that are closer to the test instance, assuming that closer instances
more accurately reflect the properties of the instance at hand. Hence, Line 17 in
Algorithm 5 is updated to:

dist
score[k] < score[k] + PARIO x (1 — L) ,
totalDist

where dist is the distance between the neighboring training instance and the current
instance, and totalDist corresponds to the sum of all such distances. We proceed
analogously in Line 5 when computing the best solver for a given test instance.

2VBS refers to the “oracle” selector that always selects the solver that is the fastest on the given
test instance. Its performance is the best one can hope to achieve with algorithm selection.
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6.1.2.2 Adaptive Neighborhood Size

Another idea is to learn not a single value for k, but to adapt the size of the
neighborhood based on the given test instance. It is possible to partition the
instance feature space by pre-clustering the training instances (we use g-means
clustering [44] for this purpose). Then, a given instance belongs to a cluster when it
is nearest to that cluster, whereby ties can be broken arbitrarily. This way, during
training, rather than only one k that is supposed to work uniformly well being
learned, a different k is learned for each cluster.

Algorithm 5 can be adapted easily to determine such cluster-based ks. Given a
test instance, first the cluster to which it belongs is identified and then the value
of k that was associated with this cluster during training is used. Observe that this
clustering is not used to limit the neighborhood of a test instance. This means that
neighboring instances from other clusters can still be used to determine the best
solver for a given instance. The clusters are only used to determine the size of the
neighborhood.

6.1.2.3 Experimental Evaluation

Observe that the two techniques, weighting and adaptive neighborhoods, are orthog-
onal to each other and can be combined. In the following, weighting, clustering, and
their combination are compared with the pure k-NN portfolio.

Benchmark Solvers

In order to illustrate the improvements achieved by the extensions of k-NN, a
new benchmark setting is introduced that mixes incomplete and complete solvers
as well as industrial, crafted, and random instances. The following 21 state-
of-the-art complete and incomplete SAT solvers are considered: Clasp [37],
CryptoMiniSat [106], Glucose [10], LySat i/c [43], March-hi [45], March-
nn [46], MXC [23], MiniSAT 2.2.0 [108], Lineling [17], PrecoSAT [16],
Adaptg2wsat2009 [70], Adaptg2wsat2009++ [70], Gnovelty+2 [93], Gnovelty+2-
H [93], HybridGM3 [12], Kenfs04SATO07 [32], Picosat [15], Saps [58], TNM [118],
and six parametrizations of SATenstein [62]. In addition, all industrial and crafted
instances are preprocessed with SatElite (version 1.0, with default option “+pre”),
where the following solvers were run on both the original and the preprocessed
version of each instance: Clasp, CryptoMiniSat, Glucose, Lineling, LySat c, LySat
i, March-hi, March-nn, MiniSat, MXC, and Precosat. That way, the portfolio was
composed of 37 solvers.
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Benchmark Instances

As before the set of benchmark instances was comprised of 5,464 instances selected
from all SAT Competitions and Races during 2002 and 2010 [1], filtered for all
instances that cannot be solved by any of the aforementioned solvers within the
competition time limit of 5,000s (i.e., the VBS can solve 100 % of all instances).
These instances were partitioned randomly multiple times into disjoint sets of
training and testing instances, as well as into more challenging groups. The complex
partition was based on omitting certain sets of instances from the training set, but
on including them all in the test set. To assess which instances were related, it was
assumed that instances starting with the same three characters belong to the same
benchmark family. To this end, at random, a fraction of about 5 % of benchmark
families were selected from among all families. This usually resulted in roughly
15 % of all instances being in the test partition. Aiming for a balance of 70 % training
instances and 30 % test instances, the second step randomly chose instances until
30 % of all instances had been assigned to the test partition. Unless stated otherwise,
all of the following experiments are conducted on this set of solvers and instances.

Results

Table 6.2 shows a comparison of the basic k-NN approach with the extensions of
using weighting, clustering, and the combination of the two on this benchmark.
Shown is the average performance in terms of number of instances solved/not
solved, average runtime, and PAR10 score achieved across the 10 test sets men-
tioned in the previous paragraph. Note that a perfect oracle can solve all instances
as instances that could not be solved by any solver within the given time limit of
5,000 s were discarded.

According to all of these measures, both weighting and clustering are able
to improve the performance of the basic k-NN approach. This improvement is
amplified when both methods are used simultaneously. The combined approach
consistently outperforms basic k-NN on all our splits, solving about 0.5 % more
instances.

Table 6.2 Average performance comparison of basic k-NN, weighting, clustering, and the
combination of both using the k-NN portfolio

Basic k-NN Weighting Clustering Weight.+Clust.
# solved 1,609 1,611 1,615 1,617
# unsolved 114 112 108 106
% solved 93.5 93.6 93.8 93.9
Avg runtime 588 584 584 577

PAR10 score 3,518 3,459 3,368 3,314
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For completeness, note that these results also translate to the SATzilla_R bench-
mark discussed earlier in Table 6.1. In this setting, the combination of weighting
and clustering is able to solve seven more instances than the basic k-NN approach
and 29 more than SATzilla_R. Here, the gap to the virtual best solver in terms of
instances solved is narrowed down further to only 5 %, compared to the 6.6 % and
11.4 % lost by basic k-NN and SATzilla_R, respectively.

6.2 Building Solver Schedules

While the previous section shows that the k-NN tuned algorithm portfolio is able to
significantly outperform not only the single best solver but also the highly successful
SATzilla portfolio, there is still room for improvement with regard to the virtual
best solver. To increase the robustness of the approach further, an alternate training
methodology is considered. It is no longer feasible to tune solvers offline using the
nearest neighbor clustering. As an alternative it is possible to compute a schedule
that defines the sequence of solvers, along with individual time limits, given a
new test instance. This sequence of solvers is then used to solve the instance. This
approach is well justified by the different runtime distributions of constraint solvers.
While one solver may fail to solve a given instance even in a very long time, another
solver may well be able to solve the instance very quickly.

The general idea of scheduling for algorithm portfolios was previously intro-
duced by Streeter [110] and in CP-Hydra [87]. In fact, Streeter [110] uses the idea
of scheduling to generate algorithm portfolios. While he suggested using schedules
that can suspend solvers and let them continue later on in exactly the same state they
were suspended in, this section will focus on solver schedules without preemption,
i.e., each solver will appear in the schedule at most once. This setting was also
used in CP-Hydra, which computes a schedule of CP solvers based on k nearest
neighbors. Specifically, a schedule is devised that determines which solver is run
for how much time in order to attempt to solve the given instance.

It is important to first note that the optimal performance cannot be improved
by a schedule of solvers, simply because using the fastest solver and sticking to
it is the best we can hope for. Consequently, a solver schedule is still limited by
the optimal performance of the VBS. In fact, the best performance possible for a
schedule of solvers is limited by the VBS with a reduced captime of the longest
running solver in the schedule. Therefore, trivial schedules that split the available
time evenly between all solvers have inherently limited performance.

Nevertheless, the reason to be interested in solver schedules is to hedge our bets:
it is often observed that instances that cannot be solved by one solver even in a very
long time can in fact be solved by another very quickly. Consequently, by allocating
a reasonably small amount of time to other solvers, it is possible to provide a safety
net in case the solver selection happens to be unfortunate.
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6.2.1 Static Schedules

The simplest approach is to compute a static schedule of solvers. For example, one
could compute a schedule that solves the most training instances within the allowed
time (cf. [87]). This section does slightly more, namely computing a schedule that,
first, solves most training instances and that, second, requires the least amount of
time all schedules that are able to solve the same number of training instances.

This problem can be formulated as an integer program (IP), more precisely as a
resource constrained set covering problem (RCSCP):

Solver Scheduling IP:
min - (C+ DY yi+ Y sy 6.1)
i St
st oyt Y. xsi=1 \Zi (6.2)
(S,t)|ieVs,

D s, <C (6.3)
St
i xss €{0,1} Vi, St (6.4)

The constraints (6.2) in this model enforce that all training instances are covered;
the additional resource constraint (6.3) ensures that the overall captime C is not
exceeded. Binary variables xgs, in (6.4) correspond to sets of instances that can be
solved by solver S within time 7. These sets have cost ¢ and a resource consumption
coefficient . Finally, to make it possible that all training instances can be covered,
additional binary variables y; are introduced. These correspond to the set that
contains only item i ; they have cost C 41 and time resource consumption coefficient
0. The objective is obviously to minimize the total cost. Due to the high costs for
variables y; (which will be 1 if and only if instance i cannot be solved by the
schedule), the schedules which solve most instances are favored, and among those
the fastest schedule (cost of xg; is #) is chosen.

6.2.2 A Column Generation Approach

The main problem with the above formulation is the sheer number of variables. For
the benchmark with 37 solvers and more than 5,000 training instances, solving the
above problem is impractical, even when the timeouts ¢ are chosen smartly such that
from timeout 71 to the next timeout 72 at least one more instance can be solved by
the respective solver (Vs,1 & Vss2). In our experiments we found that the actual

time to solve these IPs may at times still be tolerable, but the memory consumption
was in many cases so high that we could not solve the instances.
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The above stated problem can be resolved by means of column generation.
Column generation (aka Dantzig-Wolfe decomposition) [30, 38] is a well-known
technique for handling linear programs (LPs) with a lot of variables:

minc’x, st Ax>h, x> 0. (6.5)

Due to its size it is often not practical to solve the large system (6.5) directly. The
core observation underlying column generation is that only a few variables will be
non-zero in any optimal LP solution (at most as many as there are constraints).
Therefore, if we know which variables are important, we can consider a much
smaller system A’ x’ = b, where A’ contains only a few columns of A. When
we choose only some columns in the beginning, LP duality theory tells us which
columns that we have left out so far are of interest for the optimization of the global
LP. Namely, only columns with negative reduced costs (which are defined based on
the optimal duals of the system A’ x’ = b) can be candidates for variables that can
help the objective to decrease further.

Column generation proceeds by considering, in turn, a master problem (the
reduced system A’ x’ = b) and a subproblem where we select a new column to
be added to the master based on its current optimal dual solution. This process
is iterated until there are no more columns with a negative reduced cost. At this
point, we know that an optimal solution to (6.5) has been found—even though most
columns have never been added to the master problem!

When using standard LP solvers to solve the master problem and obtain its
optimal duals, all that is left is solving the subproblem. To develop a subproblem
generator, we need to understand how exactly the reduced costs are computed.
Assume we have a dual value A; > 0 for each constraint in A’. Then, the reduced
cost of a column « := (¢, ... ,ocz)T is defined as ¢, = ¢, — Zi A;;, where ¢ is
the cost of column «.

Equipped with this knowledge we compute a new column for A’ that has minimal
reduced costs. The process is begun by adding all columns to A’ that correspond to
variables y. Therefore, when we want to add a new column to the model it will
regard a variable x5, which corresponds to the solver-runtime pair (S, ¢). The goal
of the subproblem at each step is to suggest a solver-runtime pair that is likely to
increase the objective value of the (continuous) master problem the most.

To find this solver-runtime pair, first, for all solvers S, we compute a permutation
7 of the instances such that the time that S needs to solve instance g (7) is less than
or equal to the time that the solver needs to solve instance 75 (i 4+ 1) (for appropriate
i). Obviously, we only need to do this once for each solver and not each time we
want to generate a new column.

Now, let us denote with A; > 0 the optimal dual value for the restriction to
cover instance i (6.2). Moreover, denote with ;< 0 the dual value of the resource
constraint (6.3) (since that constraint enforces a lower-or-equal restriction, u is
guaranteed to be non-positive).

Now, for each solver S we iterate over i and compute the term 7' < >, _; Aro(k)
(which in each iteration we can obviously derive from the previous value for T'). Let
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Algorithm 6: Subproblem: Column generation

begin

minRedCosts <— 00;

forall the Solvers S do

T < 0;

forall the i do

J < m@);

t <= Time(S, j);

redCosts <—t(1 —pu) — T

if redCosts < minRedCosts then
Solver < S;
timeout <— 7;
minRedCosts <— redCost;

end

end

end

if minRedCosts < 0 then return Xsover imeouts
else return None;

end

t denote the time that solver S needs to solve instance 7 (7). Then, the reduced costs
of the column that corresponds to variable xg ; are t —tju — T . We choose the column
with the most negative reduced costs and add it to the master problem. If there is no
more column with negative reduced costs, we stop.

It is important to note two things. First, that what we have actually done is pretend
that all columns were present in the matrix and computed the reduced costs for
all of them. This is not usually the case in column generation approaches, where
most columns are usually found to have larger reduced costs implicitly rather than
explicitly. Second, note that the solution returned from this process will in general
not be integeral but contain fractional values. Therefore, the solution obtained
cannot be interpreted as a solver schedule directly.

This situation can be overcome in two ways. The first is to start branching and to
generate more columns—which may still be needed by the optimal integer solution
even though they were superfluous for the optimal fractional solution. This process
is known in the literature as branch-and-price.

Alternatively, what we do, and what is in fact the reason we solved the original
problem by means of column generation in the first place, is stick to the columns
that were added during the column generation process and solve the remaining
system as an IP. Obviously, this is just a heuristic that may return suboptimal
schedules for the training set. However, we found that this process is very fast
and nevertheless provides high-quality solutions (see empirical results below). Even
when the performance on the training set is at times slightly worse than optimal, the
performance on the test set often turns out to be as good or sometimes even better
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than that of the optimal training schedule—the cases when the optimal schedule
overfits the training data.

The last case to address is the one where the final schedule does not utilize the
entire available time. Recall that we even deliberately minimize the time needed
to solve as many instances as possible. Obviously, at runtime it would be a waste
of resources not to utilize the entire time that is at our disposal. In this case, we
scale each solver’s time in the schedule equally so that the total time of the resulting
schedule will be exactly the captime C.

6.2.3 Dynamic Schedules

As mentioned earlier, CP-Hydra [87] is based on the idea of solver schedules. In
their paper, the authors found that static schedules work only moderately well.
Therefore, they introduced the idea of computing dynamic schedules: at runtime, for
a given instance, CP-Hydra considers the ten nearest neighbors (in case of ties, up
to 50 nearest instances) and computes a schedule that solves most of these instances
in the given time limit. That is, rather than consider all training instances, it limits
the constraints in the solver scheduling IP to the instances in the neighborhood.

In [87], the authors use a brute-force approach to compute dynamic schedules
and observe that this works due to the small neighborhood size and the fact that CP-
Hydra only has three constituent solvers (note that the time to produce a dynamic
schedule takes away time for solving the actual problem instance!). Our column gen-
eration approach, yielding potentially suboptimal but usually high-quality solutions,
works fast enough to handle even 37 solvers and 5,000 instances within seconds.
This allows us to embed the idea of dynamic schedules in the previously developed
nearest neighbor approach, which selects optimal neighborhood sizes by random
subsampling cross-validation—which requires us to solve hundreds of thousands of
these IPs.

Note that the idea of adaptive neighborhoods is orthogonal to dynamic solver
scheduling: we can select the size of the neighborhood based on the distance to the
nearest training cluster, independently of whether we use that neighborhood size for
solver selection or solver scheduling. Moreover, the idea of giving more weight to
instances closer to the test instance can also be incorporated in solver scheduling.
This is an idea that CP-Hydra also exploits, albeit in a slightly different fashion
than shown here. Here we adapt the objective function in the solver scheduling IP
by multiplying the costs for the variables y; (recall that originally these costs were
C + 1) with 2 — told;fgist. This favors schedules that solve more training instances
that are closer to the one that is to be solved.

Table 6.3 compares the four resulting dynamic schedules with our best algorithm
selector from Sect. 6.1.2. In addition, we also used a setting inspired by the CP-
Hydra approach. Here, we use a fixed-size neighborhood of ten instances to build
a dynamic schedule by means of column generation. Moreover, for this approach
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Table 6.3 Average performance of dynamic schedules

No sched. | Dynamic schedules
Wtg+Clu | Basic k-NN | Weighting | Clustering | Wtg+Clu | SAT-Hydra

# solved 1,617 1,621 1,621 1,619 1,618 1,621
# unsolved 106 102 102 104 105 102
% solved 93.9 94.2 94.2 94.0 94.0 94.2
Avg runtime | 577 637 629 629 631 626
PAR10 score | 3,314 3,257 3,246 3,310 3,324 3,249

Additional comparison: SAT-Hydra
Table 6.4 Average performance of semi-static schedules compared with no schedules and with
static schedules based only on the available solvers

No sched. | Static sched. | Semi-static schedules
Witg+Clu | Wtg+Clu Basic k-NN | Weighting | Clustering | Wtg+Clu

# solved 1,617 1,572 1,628 1,635 1,633 1,636
# unsolved 106 151 94.6 87.5 90.2 87.2
% solved 93.9 91.2 94.6 94.9 94.8 95.0
Avg runtime | 577 562 448 451 446 449
PAR10 score | 3,314 4,522 2,896 2,728 2,789 2,716

we use the weighting scheme introduced in [87]. We refer to this approach as
SAT-Hydra.

Observe that these dynamic schedules all achieve roughly the same performance.
Weighting and clustering do not appear to have any significant impact on perfor-
mance. Moreover, all dynamic portfolios consistently outperform even our best
algorithm selector, albeit only slightly: the dynamic schedule increases the number
of instances solved by roughly one quarter percent.

6.2.4 Semi-static Solver Schedules

Clearly, dynamic schedules do not result in the improvements that we had hoped for.
Here, we therefore consider another way of creating a solver schedule. Observe that
the algorithm selection portfolios that we developed in Sect.6.1.1 can themselves
be considered solvers. This means that we can add the portfolio itself to our set of
constituent solvers and compute a “static” schedule for this augmented collection of
solvers. We put “static” in quotes here because the resulting schedule is of course
still instance-specific. After all, the algorithm selector portfolio chooses one of the
constituent solvers based on the test instance’s features. We refer to the result of this
process as semi-static solver schedules.

Depending on the portfolios from Sect.6.1.1 used, we obtain four semi-static
schedules. We show the performance of these portfolios in Table 6.4. While
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Table 6.5 Comparison of column generation and the solution to the optimal IP

Schedule by #solved |#unsolved |% solved | Avgruntime (s) |PARIO score
Optimal IP 1635.8 87.1 95.0 442.5 2708.4
Column generation | 1635.7 87.2 95.0 448.9 2716.2

weighting and clustering do not lead to performance improvements for dynamic
schedules, we observe that the relative differences in performance between basic
k-NN and its extensions shown in Sect. 6.1.2 translate to the setting with scheduling
as well.

Moreover, semi-static scheduling significantly improves the overall performance
(compare with the first column in the table for the best results without scheduling).
In terms of instances solved, all semi-static schedules solve at least 20 more
instances within the time limit. Again, the combination of weighting and clustering
achieves the best performance and it narrows the gap in percentage of instances
solved to nearly 5%. For further comparison, the second column shows the
performance of a static schedule that was trained on the entire training set and
that is the same for all test instances. This confirms the finding in [87] that static
solver schedules are indeed inferior to dynamic schedules, and finds that they are
considerably outperformed by semi-static solver schedules.

6.2.4.1 Quality of Results Generated by Column Generation

Table 6.5 illustrates the performance of the column generation approach. The table
shows a comparison of the resulting performance achieved by the optimal schedule.
In order to compute the optimal solution to the IP, we used Cplex on a machine
with sufficient memory and a 15s resolution to fit the problem into the available
memory. As can be observed, the column generation is able to determine a high-
quality schedule that results in a performance that nearly matches the one of the
optimal schedule according to displayed measures.

6.2.5 Fixed-Split Selection Schedules

Based on this success, we consider a parametrized way of computing solver
schedules. As discussed earlier, the motivation for using solver schedules is to
increase robustness and hedge against an unfortunate selection of a long-running
solver. At the same time, the best achievable performance of a portfolio is that of
the VBS with a captime of the longest individual run. In both dynamic and semi-
static schedules, the runtime of the longest running solver(s) was determined by the
column generation approach working solely on training instances. This procedure
inherently runs the risk of overfitting the training set.
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Table 6.6 Average performance comparison of basic k-NN, weighting, clustering, and the
combination of both using the k-NN portfolio with a static schedule for 10 % of the total available
runtime and the portfolio on the remaining runtime

Semi-static Fixed-split schedules

schedules

Wig+Clu Basic k-NN Weighting Clustering Witg+Clu
# solved 1,636 1,637 1,641 1,638 1,642
# unsolved 87.2 94.6 87.5 90.2 87.2
% solved 95.0 95.0 95.3 95.1 95.3
Avg runtime 449 455 447 452 445
PAR10 score 2,716 2,686 2,570 2,652 2,554

Consequently, we now consider splitting the time between an algorithm selection
portfolio and the constituent solvers based on a parameter. For example, we could
allocate 90 % of the available time for the solver selected by the portfolio. For the
remaining 10 % of the time, we could run a static solver schedule. We refer to these
schedules as 90/10-selection schedules. Note that choosing a fixed amount of time
for the schedule of constituent solvers is likely to be suboptimal for the training set
but offers the possibility of improving test performance.

Table 6.6 captures the corresponding results. We observe clearly that by using
this restricted application of scheduling we are able to outperform our best approach
so far (semi-static scheduling, shown again in the first column). We are able to
solve nearly 1,642 instances on average, which is six more than we were able to
solve before. The gap to the virtual best solver is narrowed down to a mere 4.69 %
! Recall that we consider a highly diverse set of benchmark instances from the
Random, Crafted, and Industrial categories. Moreover, we do not work with plain
random splits, but splits where complete families of instances in the test set are not
represented in the training set at all. In this setting, an accuracy above 95 % of the
VBS is truly remarkable. Moreover, compared to the plain £-NN approach that we
started with, the fixed-split selection schedules close roughly one third of the gap to
the VBS.

6.3 Chapter Summary

This chapter showed how the ISAC methodology could be adopted to dynamically
create clusters in a more refined instance-specific manner. Specifically, this chapter
considered the problem of algorithm selection and scheduling so as to maximize
performance when given a hard time limit within which a solution needs to be
provided. Two improvements were considered for the simple nearest neighbor solver
selection, weighting and adaptive neighborhood sizes based on clustering.
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Table 6.7 Comparison of major portfolios for the SAT-Rand benchmark (570 test instances,
timeout 1,200 s)

SATzilla_R SAT-Hydra k-NN 90-10 VBS
# solved 405 419 427 435 457
# unsolved 165 151 143 135 113
% solved 71.5 73.5 74.9 76.3 80.2
Avg runtime 452 313 441.9 400 341
PAR10 score 3578 1211 3151 2958 2482

Furthermore, this chapter showed how the training of the solvers could be done
dynamically by developing a lightweight optimization algorithm to compute near-
optimal schedules for a given set of training instances. This allows us to provide an
extensive comparison of pure algorithm selection, static solver schedules, dynamic
solver schedules, and semi-static solver schedules, which are essentially static
schedules combined with an algorithm selector.

It was shown that the semi-static schedules work the best from among these
options. Finally, two alternatives were compared: using the optimization component
or using a fixed percentage of the allotted time when deciding how much time to
allocate to the solver suggested by the algorithm selector. In either case, a static
schedule was used for the remaining time. This latter parametrization allowed us to
avoid overfitting the training data and resulted in the best performance overall.

The discussed approach was tested on a highly diverse benchmark set with
Random, Crafted, and Industrial SAT instances where we even deliberately removed
entire families of instances from the training set. Semi-static selection schedules
demonstrated an astounding performance and solved, on average, over 95 % of the
instances that the virtual best solver is able to solve.

As a final remark, Table 6.7 closes the loop and considers again the first bench-
mark set from Sect. 6.1.1, which compared portfolios for the SAT Competition’s
random category benchmark set based on the same solvers as those of the gold-
medal winning SATzilla_R. Overall, we go up from 405 (or 88.6 % of the VBS)
instances solved for SATzilla_R to 435 (or 95.1 % of the VBS) instances solved for
our fixed-split semi-static solver schedules. In other words, the fixed-split selection
schedule closes over 50 % of the performance gap between SATzilla_R and the
VBS.



Chapter 7
Training Parallel Solvers

In the last decade, solver portfolios have boosted the capability to solve hard
combinatorial problems. Portfolios of existing solution algorithms have excelled
in competitions in satisfiability (SAT), constraint programming (CP), and quantified
Boolean formulae (QBF) [87, 109, 126].

Since around 2010, a new trend has emerged, namely the development of parallel
solver portfolios. The gold-winning ManySAT solver [43] is, when features like
clause sharing are ignored, a static parallel portfolio of the MiniSAT solver [108]
with different parameterizations. At the 2011 SAT Competition, an extremely
simple static parallel portfolio, ppfolio [98], dominated the wall-clock categories for
random and crafted SAT instances and came very close to winning the applications
category as well. In [90], another method was introduced to compute static
parallel schedules that are optimal with respect to the training instances, based on
formulating the problem as a non-linear optimization problem and considering only
sequential constituent solvers.

The obvious next step is to therefore consider dynamic parallel portfolios, i.e.,
portfolios that are composed based on the features of the given problem instance.
Traditionally, sequential portfolios simply select one of the constituent solvers that
appears best suited for the given problem instance. And, as seen in Chap. 6, at least
since the invention of CP-Hydra [87] and SatPlan [111], sequential portfolios also
schedule solvers. That is, they may select more than just one constituent solver and
assign each one a portion of the time available for solving the given instance.

The solver presented at the end of Chap.6 dominated the sequential portfolio
solvers at the 2011 SAT Competition, where it won gold medals in the CPU-time
category for random and crafted instances. In this chapter, the 3S methodology is
augmented to devise dynamic parallel SAT solver portfolios.
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7.1 Parallel Solver Portfolios

The objective of this chapter is to show how to generalize the ISAC technology
for the development of parallel SAT solver portfolios. Recall that at the core of 3S
lie two optimization problems. The first is the selection of the long running solver
primarily based on the maximum number of instances solved. The second is the
solver scheduling problem.

Consider the first problem when there are p > 1 processors available. The
objective is to select p solvers that, as a set, will solve the most number of instances.
Note that this problem can no longer be solved by simply choosing the one solver
that solves the most instances in time. Moreover, it is now necessary to decide
how to integrate the newly chosen solvers with the ones from the static schedule.
The second problem is the solver scheduling problem discussed before, with the
additional problem that solvers need to be assigned to processors so that the total
makespan is within the allowed time limit.

A major obstacle in solving these problems efficiently is the symmetry induced
by the identical processors to which each solver can be assigned. Symmetries
can hinder optimization very dramatically as equivalent (partial) schedules (which
can be transformed into one another by permuting processor indices) will be
considered again and again by a systematic solver. For example, when there are
eight processors, for each schedule over 40,000 (8 factorial) equivalent versions
exist. An optimization that used to take about half a second may now easily take
6h.

Another consideration is the fact that a parallel solver portfolio may obviously
include parallel solvers as well. Assuming there are eight processors and a parallel
solver employs four of them, there are 70 different ways to allocate processors
for this solver. The developed portfolio will have 37 sequential and two four-core
parallel solvers. The solver scheduling IP that needs to be solved for this case has
over 1.5 million variables.

7.1.1 Parallel Solver Scheduling

Both optimization problems are addressed at the same time by considering the
following IP. Let zg > 0 denote the minimum time that solver S must run in the
schedule, let M = {S;|;ts > 0} be the set of solvers that have a minimal runtime,
let p be the number of processors, and let ns < p denote the number of processors
that solver S requires.
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Parallel Solver Scheduling IP: CPU time

min (rC+1 Zyi + Z MsXs s p
i

S.t.P
S.t. Vi —+ Z xS,l.P 2 1 Vl
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> txsip <C Vgell,....p)
S, PC{l,...pyU{g}.|Pl=ns
Z Xsip =1 vSeM
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Variables y; are exactly what they were before. There are now variables x5, p
for all solvers S, time limits 7, and subsets of processors P < {l,..., p} with
|P| =ns.xs, p is 1 if and only if solver S is run for time ¢ on the processors in P
in the schedule.

The first constraint is again to solve all instances with the schedule or count them
as not covered. There is now a time limit constraint for each processor. The third set
of constraints ensures that all solvers that have a minimal solver time are included
in the schedule with an appropriate time limit. The last constraint finally places a
limit on the number of solvers that can be included in the schedule.

The objective is again to minimize the number of uncovered instances. The
secondary criterion is to minimize the total CPU time of the schedule.

Note that this problem needs to be solved both offline to determine the static
solver schedule (for this problem, M = @ and the solver limit is infinite) and
during the execution phase (when M and the solver limit are determined by the
static schedule computed offline). Therefore, it is absolutely necessary to solve this
problem quickly, despite its huge size and its inherent symmetry caused by the
multiple processors.

Note also that the parallel solver scheduling IP does not directly result in an
executable solver schedule. Namely, the IP does not specify the actual start times
of solvers. In the sequential case this does not matter as solvers can be sequenced
in any way without affecting the total schedule time or the number of instances
solved. In the parallel case, however, it is necessary to ensure that the parallel
processes are in fact run in parallel. This aspect is omitted from the IP above to
avoid further complicating the optimization. Instead, after solving the parallel solver
IP, the solvers are heuristically scheduled in a best-effort approach, whereby solvers
may be preempted and the runtime of the solvers may eventually be lowered to
obtain a legal schedule. In the experiments presented later in the chapter it is shown
that in practice the latter is never necessary. Hence, the quality of the schedule is
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never diminished by the necessity to schedule processes that belong to the same
parallel solver at the same time.

7.1.2  Solving the Parallel Solver Scheduling IP

We cannot afford to solve the parallel solver scheduling IP exactly during the
execution phase. Each second spent on solving this problem is 1 s less for solving the
actual SAT instance. Hence, like 3S, we revert to solving the problem heuristically
by not considering variables that were never introduced during column generation.

While 3S could afford to price all columns in the IP during each iteration,
fortunately it is not actually necessary to do this here. Consider the reduced costs
of a variable. Denote with u; < 0 the dual prices for the instance-cover constraints,
with r; < 0 the dual prices for the processor time limits, with vg > 0 the dual prices
for the minimum time solver constraints, and with o < 0 the dual price for the limit
on the number of solvers. Finally, let s = vg when S € M and 0 otherwise. Then:

Csyp =nst — Z i —Ztnq — Vg —oO.

i€Vs, qeP

The are two important things to note here. First, the fact that only variables
introduced during the column generation process are considered means that the
processor symmetry is reduced in the final IP. While it is not impossible, it is
unlikely that the variables that would form a symmetric solution to a schedule that
can already be formed from the variables already introduced would have negative
reduced costs.

Second, to find a new variable that has the most negative reduced costs, it is
not necessary to iterate through all P € {1,..., p} for all solver/time pairs (S, ).
Instead, the processors can be ordered by their decreasing dual prices. The next
variable introduced will use the first n g processors in this order as all other selections
of processors would result in higher reduced costs.

7.1.3 Minimizing Makespan and Post-processing the Schedule

Everything is now in place to develop the parallel SAT solver portfolio. In the
training phase, a static solver schedule is computed based on all training instances
for 10 % of the available time. This schedule is used to determine a set M of solvers
that must be run for at least the static scheduler time at runtime. During the execution
phase, given a new SAT instance, its features are computed, the k closest training
instances are determined, and a parallel schedule is computed that will solve as
many of these k instances in the shortest amount of CPU time possible.
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In these experiments a second variant of the parallel solver scheduling IP is
considered where the secondary criterion is to minimize not the CPU time but the
makespan of the schedule. The corresponding IP is given below, where variable m
measures the minimum idle time for all processors. The reduced cost computation
changes accordingly.

Parallel Solver Scheduling IP: Makespan

min (C~|—1)Zy,-—m
i
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Regardless of whether the CPU time or makespan is minimized, as remarked
earlier, the result is post-processed by assigning actual start times to solvers
heuristically. The resulting solver times are also scaled to use as much of the
available time as possible. For low values of k, schedules are often computed
that solve all k instances in a short amount of time without utilizing all available
processors. In this case, new solvers are assigned to the unused processors in the
order of their ability to solve the highest number of the k neighboring instances.

7.2 Experimental Results

Using the methodology above, two parallel portfolios are built. The first is based on
the 37 constituent solvers of 3S. This portfolio is referred to as p3S-37. The second
portfolio built includes two additional solvers, “Cryptominisat (2.9.0)” [107] and
“Plingeling (276)” [18], both executed on four cores. This portfolio is referred to
as p3S-39. It is important to emphasize again that all solvers that are part of our
portfolio were available before the 2011 SAT Competition. In the experiments, these
parallel portfolios will be compared with the parallel solver portfolio “ppfolio” [98]
as well as “Plingeling (587f)” [19], both executed on eight cores. Note that
these competing solvers are new solvers that were introduced for the 2011 SAT
Competition.
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The benchmark set of SAT instances is the same as that in prior sections com-
posed of the 5,464 instances from all SAT Competitions and Races between 2002
and 2010 [1]; the 1,200 (300 application, 300 crafted, 600 random) instances from
the 2011 SAT Competition have also been added. Based on this large set of SAT
instances, a number of benchmarks are created. Based on all SAT instances that can
be solved by at least one of the solvers considered in p3S-39 within 5,000, 10 equal
partitions are created. These partitions are used to conduct a tenfold cross-validation,
whereby in each fold nine partitions are used as the training set (for building the
respective p3S-37 and p3S-39 portfolios), and the performance is evaluated on the
partition that was left out before. For this benchmark, average performance over all
ten splits is reported. On top of this cross-validation benchmark, the split induced
by the 2011 SAT Competition is also considered. Here, all instances prior to the
competition are used as the training set, and the SAT Competition instances are used
as the test set. Lastly, a competition split is created based on application instances
only.

As performance measures the number of instances solved, average runtime and
the PAR10 score are considered. The PAR10 is a penalized average runtime where
instances that time out are penalized with 10 times the timeout. Experiments were
run on dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors with 24 GB
of DDR-3 memory.

7.2.1 Impact of the IP Formulation and Neighborhood Size

Tables 7.1 and 7.2 show the average cross-validation performance of p3S-39 when
using different neighborhood sizes k and the two different IP formulations (tie

Table 7.1 Average performance comparison of parallel portfolios when optimizing CPU time and
varying neighborhood size k based on tenfold cross-validation

CPU time 10 25 50 100 200
Average (0) 320 (45) 322 (43.7) 329 (42.2) 338 (43.9) 344 (49.9)
Par 10 (o) 776 (241) 680 (212) 694 (150) 697 (156) 711 (221)

# solved (o) 634 (2.62) 636 (2.22) 636 (1.35) 636 (1.84) 636 (2.37)
% solved (o) 99.0 (0.47) 99.2 (0.39) 99.2 (0.27) 99.2 (0.28) 99.2 (0.41)

Table 7.2 Average performance comparison of parallel portfolios when optimizing makespan and
varying neighborhood size k based on tenfold cross-validation

Makespan 10 25 50 100 200
Average (0) 376.1 (40.8) 369.2 (42.9) 374 (40.7) 371 (40.8) 366 (36.9)
Par 10 (o) 917 (200) 777 (192) 782 (221) 750 (153) 661 (164)

# solved (o) 633 (2.16) 635 (2.28) 634.9 (2.92) 635 (1.89) 637 (2.01)
% solved (o) 98.8 (0.39) 99.1 (0.39) 99.1 (0.46) 99.2 (0.32) 99.3 (0.34)
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breaking by minimum CPU time and minimizing schedule makespan). As can
be seen, the size of the neighborhood k affects the most important performance
measure, the number of instances solved, only very little. There is a slight trend
towards larger ks working a little bit better. Moreover, there is also not a great
difference between the two IP formulations, but on average it is found that the
version that breaks ties by minimizing the makespan solves about one instance more
per split. Based on these results, p3S in the future refers to the portfolio learned
on the respective training benchmark using k& = 200 and the IP formulation that
minimizes the makespan.

7.2.2 Impact of Parallel Solvers and the Number of Processors

Next, the impact of employing parallel solvers in the portfolio is demonstrated.
Tables 7.3 and 7.4 compare the performance of p3S-37 (without parallel solvers)
and p3S-39 (which employs two four-core parallel solvers) on the cross-validation
and on the competition split. A small difference is observed in the number of solved
instances in the cross-validation, and a significant gap is observed in the competition
split.

Two issues are noteworthy about that competition split. First, since this was the
latest competition, the instances in the test set of this split are probably significantly
harder than the instances from earlier years. The relatively low percentage of
instances solved even by the best solvers at the 2011 SAT Competition is another
indication of this. Second, in some instances of families in this test set are
completely missing in the training partition. That is, for a good number of instances

Table 7.3 Performance of tenfold cross-validation on all data

Cross p3S-37 p3S-39

Validation 4 core 8 core 4 core 8 core
Average (0) 420 (22.1) 355 (31.3) 435 (48.5) 366 (36.9)
Par 10 (o) 991 (306) 679 (176) 1116 (256) 661 (164)
Solved (o) 630 (4.12) 633 (2.38) 631 (2.75) 637 (2.01)
% solved (o) 98.3 (0.63) 98.8 (0.35) 98.5 (0.49) 99.3 (0.34)

Results are averages over the tenfolds

Table 7.4 Performance of the solvers on all 2011 SAT competition data

p3S-37 p3S-39
Competition 4 cores 8 cores 4 cores 8 cores VBS
Average 1907 1791 1787 1640 1317
Par 10 12,782 12,666 11,124 10,977 10,580
Solved 843 865 853 892 953

% solved 70.3 72.1 71.1 74.3 79.4
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in the test set there may be no training instance that is very similar. These features
of any competition-induced split (which is the realistic split scenario!) explain
why the average cross-validation performance is often significantly better than the
competition performance. Moreover, they explain why p3S-39 has a significant
advantage over p3S-37: when a lot of the instances are out of reach of the sequential
solvers within the competition timeout, the portfolio must necessarily include
parallel solvers to perform well.

As a side remark, the presence of parallel portfolios is what makes the computa-
tion challenging in the first place. In the extreme case, we could otherwise have as
many processors as parallel processors, and then a trivial portfolio would achieve the
performance of the virtual best solver, that is to say; the more processors one has, the
easier sequential solver selection becomes. To show what would happen when the
selection is made harder than it actually is under the competition setting and reduced
the number of available processors to four. For both p3S-37 and p3S-39, the cross-
validation performance decreases only moderately while, under the competition
split, performance decays significantly. At the same time, the advantages of p3S-39
over p3S-37 shrink a lot. As one would expect, the advantage of employing parallel
solvers decays with a shrinking number of processors.

7.2.3 Parallel Solver Selection and Scheduling vs. the State
of the Art

The dominating parallel portfolio to date is ppfolio [98]. In the parallel track at the
2011 SAT Competition, it won gold in the crafted and random categories and came
in just shy of winning the application category as well, where it was beaten by just
one instance. In the application category, the winning solver was “Plingeling (587f)”
run on eight cores. Both competing approaches are compared in Figs. 7.1 and 7.2.

The top plot in Fig.7.1 shows the scaling behavior in the form of a “cactus
plot” for eight-core runs of ppfolio, p3S-37, and p3S-39,' for the competition
split containing all 1,200 instances used in the 2011 SAT Competition. This plot
shows that p3S-39 (whose curve stays the lowest as it moves to the right) can solve
significantly more instances than the other two approaches for any given time limit
larger than around 800s. It is also seen that p3S-37, based solely on sequential
constituent solvers, performs similarly to ppfolio for time limits up to 3,000s, and
begins to outperform it for larger time limits.

The bottom plot in Fig.7.1 shows the per-instance performance of p3S-39 vs.
ppfolio, with runtimes in log-scale on both axes. More points being below the
diagonal red line signifies that p3S-39 is faster than ppfolio on a large majority

I'The plots shown here are for the CPU time optimization variant of p3S-37 and p3S-39. The ones
for makespan optimization were very similar.
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Parallel portfolios on 8 cores: 2011 Comp., all categories
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Fig. 7.1 Comparison on all 1,200 instances used in the 2011 SAT competition, across all cate-
gories. Top Cactus plot depicting the scaling behavior of solvers. Bottom Per-instance comparison
between ppfolio and p3S-39

of the instances. ppfolio also times out on many instances that p3S-39 can solve, as
evidenced by the large number of points on the right margin of the plot.

Overall, p3S-39 was able to solve 892 instances, 47 more than ppfolio. p3S-37
was somewhere in-between, solving 20 more than ppfolio. In fact, even with only
four cores, p3S-37 and p3S-39 solved 846 and 850 instances, respectively, more
than the 845 ppfolio solved on eight cores.

Figure 7.2 shows similar comparisons, but on the competition split restricted to
the application category, and with Plingeling as one of the competing solvers. The
cactus plot on top still shows a significantly better scaling behavior of p3S-39 than
both Plingeling and ppfolio. The scatter plot shows that Plingeling, not surprisingly,
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Parallel portfolios on 8 cores: 2011 Application track
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Fig. 7.2 Comparison on the 300 application category instances used in the 2011 SAT competition.
Top Cactus plot depicting the scaling behavior of solvers. Bottom Per-instance comparison between
Plingeling and p3S-39

is able to solve several easy instances within just a few seconds (as evidenced by the
points on the bottom part of the left edge of the plot), but begins to take more time
than p3S-39 on challenging instances and also times out on many more instances
(shown as points on the right edge of the plot).

Overall, with eight cores, p3S-39 solved 248 application category instances, 23
more than ppfolio and 22 more than Plingeling. Moreover, p3S-37, based only on
sequential constituent solvers, was only two instances shy of matching Plingeling’s
performance.
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7.3 Chapter Summary

The chapter expanded the previously introduced 3S solver by presenting a method-
ology for devising dynamic parallel solver portfolios. Core methods from machine
learning (nearest neighbor classification) and from optimization (integer program-
ming and column generation) were combined to select parallel solver schedules.
Different formulations of the underlying optimization problems were compared and
it was found that minimizing makespan as a tie breaking rule works slightly better
than minimizing CPU time. The resulting portfolio, p3S-39, was compared with
the current state-of-the-art parallel solvers on instances from all SAT categories and
from the application category only. It was found that p3S-39 marks a significant
improvement in the ability to solve SAT instances.



Chapter 8
Dynamic Approach for Switching Heuristics

Search is an integral part of solution approaches for NP-hard combinatorial
optimization and decision problems. Once the ability to reason deterministically
is exhausted, state-of-the-art solvers try out alternatives that may lead to an
improved (in case of optimization) or feasible (in case of satisfaction) solution. This
consideration of alternatives may take place highly opportunistically, as in local
search approaches, or systematically, as in backtracking-based methods.

Regardless of the scenario, efficiency could be much improved if one could
effectively favor alternatives that lead to optimal or feasible solutions and a
search space partition that allows short proofs of optimality or infeasibility. After
all, the existence of an “oracle” is what distinguishes a non-deterministic from
a deterministic Turing machine. This of course means that perfect choices are
impossible to guarantee. The important insight is to realize that this is a worst-case
statement. In practice, one may still hope to be able to make very good choices on
average.

The view outlined above has motivated research on statistical methods to guide
the search. The idea of using survey propagation in SAT [22] has led to a remarkable
performance improvement of systematic solvers for random SAT instances. In
stochastic offline programming [76], biased randomized search decisions are based
on an offline training of the solver. A precursor of ISAC, offline training is used to
associate certain features of the problem instance with specific parameter settings
for the solver, whereby the latter may include the choice of branching heuristic to
be used. In [99], branching heuristics for quantified Boolean formulae (QBF) were
selected based on the features of the current subproblem, which led to more robust
performance and solutions to formerly unsolved instances.

In this chapter, the idea of instance-specific algorithm configuration is combined
with the idea of a dynamic branching scheme that bases branching decisions on the
features of the current subproblem to be solved. This methodology is referred to as
DASH: Dynamic Approach for Switching Heuristics.

© Springer International Publishing Switzerland 2014 83
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In short, the chapter follows up on the idea of choosing a branching heuristic
dynamically based on certain features of the current subproblem. This idea, to adapt
the search to the instance or subproblem to be solved, is by no means new. The
dynamic search engine [34], for example, adapts the search heuristics based on
the current state of the search. In [65], value selection heuristics for the knapsack
problem were studied and it was found that accuracy of search guidance may depend
heavily on the effect that decisions higher in the search tree have on the distribution
of subproblems that are encountered deeper in the tree. This obviously creates a
serious chicken-and-egg problem for statistical learning approaches: the distribution
of instances that require search guidance affects the choice of heuristic but the latter
then affects the distribution of subproblems that are encountered deeper in the tree.
In [99], a method for adaptive search guidance for QBF solvers was based on logistic
regression. Here, the issue of subproblem distributions was addressed by adding
subproblems to the training set that were encountered during previous runs.

Inspired by the success of the approach in [99], DASH aims to boost the Cplex
MIP solver. This is demonstrated on a collection of MIP problems. To this end, the
branching heuristics were modified based on the features of the current subproblem
to be solved. The objective of this chapter is to show that such a system can be
effectively trained to improve the performance of a generalized solver for a specific
application. As in previous chapters, training instances are clustered according to
their features and an assignment of branching heuristics to clusters is determined
that results in the best performance when the branching heuristic is dynamically
chosen based on the current subproblem’s nearest cluster. The approach is then
examined and evaluated on the MIP solver Cplex version 12.5. These experiments
show that this approach can effectively boost search performance even when trained
on a rather small set of instances.

8.1 Learning Dynamic Search Heuristics

ISAC is adapted by modifying the systematic solver used to tackle the combinatorial
problem in question. The following approach, highlighted in Algorithm 7, is
employed.

DASH is provided with the current subproblem, the heuristic employed by the
parent node, the centers of the known clusters, and the list of available heuristics.
Because determining the feature can be computationally expensive and because
switching heuristics at lower depths of the search tree has a smaller impact on the
quality of the search, DASH chooses to switch the guiding heuristic only up to a
certain depth and only at predetermined intervals, choosing the parent’s heuristic in
all other cases. When a decision does need to be made, the approach computes the
features of the provided subproblem and determines the nearest cluster based on the
Euclidean distance. In theory, any distance metric can be used here, but in practice
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Algorithm 7: DASH: Branch callback

1: branchCallback(subproblem, parent, centers, heuristics)
2: if depth < maxDepthanddepth%interval == 0 then
3 x <— featuresComputation(subproblem)

4 for all center c in cs do

5: distance; <— euclideanDistance(x, centers)

6:  end for

7 cluster <— argmin(distance)

8: heuristic <— heuristics .jyger

9: else

10: heuristic <— parent.heuristic

11: end if

12: ExecuteBranching (subproblem, heuristic)

we found that Euclidean distance works well in the general case. In the end, DASH
employs the heuristic that has been determined to be best for that cluster.

In this way, the problem has been reduced to finding a good assignment of
heuristics to clusters. At this point, the problem is stated in such a way that a
standard instance-oblivious algorithm configuration system can be used to find such
an assignment. And as before, GGA is employed for tuning.

Note how this approach circumvents the chicken-and-egg problem mentioned
in the beginning that results from the tight correlation of the distribution of sub-
problems encountered during search and the way branching constraints are selected.
Namely, by associating heuristics and clusters simultaneously, it is implicitly taken
into account that changes in the branching strategy result in different subproblem
distributions, and that the best branching decision at a search node depends heavily
on the way branching constraints will be selected further down in the tree.

That being said, the clusters themselves should reflect not only the root-node
problems but also the subproblems that may be encountered during search. To this
end, the training set is expanded with subproblems encountered during the runs of
individual branching heuristics on the training instances to the clusters. This changes
the shape of the clusters and may also create new ones. However, note that these
subproblems are not used to learn a good assignment of heuristics to clusters, which
is purely based on the original training instances. This ensures that the assignment
of heuristics to clusters is not based on subproblems that will not be encountered.

8.2 Boosting Branching in Cplex for MIP

The methodology established above will now be applied to improve branching in
the state-of-the-art MIP solver Cplex version 12.5 when solving MIP problems.
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Maximize : ¢ x

subjectto: Ax <b
I <x<u

x;j integer Vj € D, where D C {l..n}

Here, the objective is the maximization of an objective function while main-
taining the specified linear inequalities and restricting some variables to only take
integer values while others are allowed to take on any real value.

To apply ISAC, instance features need to be defined for MIP problems, and
various branching heuristics that our solver can choose from need to be devised.

8.2.1 MIP Features

The features have to capture as many aspects of the problems as possible without
becoming too expensive to compute. To do this, we gather statistics about the
problem definition of the remaining subproblem. Specifically, we compute the:

» percentage of variables in the subproblem;

» percentage of variables in the objective function of the subproblem;

* percentage of equality and inequality constraints;

* statistics (min, max, avg, std) of how many variables are in each constraint;
¢ statistics of the number of constraints in which each variable is used;
 depth of the branch-and-bound tree.

Wherever a feature has to do with the problem variables, we separately compute
the same feature for each type of variable type, e.g., continuous, integer, and binary.
Therefore, the resulting set is composed of 40 features.

8.2.2 Branching Heuristics

It is also necessary to provide a portfolio of different branching selection heuristics.
The following are compared, all of which are implemented using Cplex’s built-in
branching methods.

8.2.2.1 Most Fractional Rounding (MF)

One of the simplest MIP branching techniques is to select the variable that has a
relaxed LP solution whose fractional part is the most fractional and to round it first.
The reason behind this is to make decisions on variables that deterministic analysis
is least certain about. Therefore, this heuristic strives to find infeasible solutions as
quickly as possible.
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8.2.2.2 Less Fractional Rounding (LF)

Alternatively to MF, this technique selects the variable that has a relaxed LP solution
whose fractional part is closest to an integer value and rounds it first. This is done to
gently nudge the deterministic reasoning in whatever direction it is currently going,
with the smallest chance of making a mistake.

8.2.2.3 Less Fractional and Highest Objective Rounding (LFHO)

This heuristic is based on the same motivation as that behind Less Fractional
Branching. For each subproblem we branch on the variable for which the pair p=(f,
obj) is minimized (where fr is the fractionality and obj is the objective value).
This means that, if we branch on a variable k in [1,n], the following property is
guaranteed:

Vi € [1,n], fry <fr; or obji > obj;.

8.2.2.4 Most Fractional and Highest Objective Rounding (MFHO)

We use a modification of the previous approach, but this time we focus on the most
fractional variables. For each subproblem we branch on the variable for which the
pair p=(fr, obj) is maximized. In this case, the guaranteed property is:

Vi € [1,n], fry, > fr; or obji > obj;.

8.2.2.5 Pseudocost Branching Weighted Score (PW)

This heuristic is based on the pseudocosts, numerical values that estimate the
variation in objective value for rounding up or rounding down, called respectively
up-pseudocost and down-pseudocost. The pseudocosts of a variable can be com-
bined in a score function (8.2.2) that returns a numerical value. This result is used
to guide the branching, for which we choose the variable that maximizes the score.
Further details can be found in [3].

score(q™,q") = (1 — ) x min(q™,q™) + () * max(¢~.q*), p=1/6.

8.2.2.6 Pseudocost Branching Product Score (P)

This approach is based on the same idea as PW. The difference lies in the score
function that is now the product of the two pseudocosts.
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Table 8.1 Instance distribution (percentage) in the clusterization at the root node

1 2 3 4 5 6 7 8 9 10 11 12

Cluster 1 20 - - 25 - 25 - 30 - - - -
Cluster 2 - 45 - - - 14 41 - - - - _
Cluster 3 - - - - 1 5 - - 18 62 14 -
Cluster 4 - - 49 - - 7 - - - - _ 44
Cluster 5 - - - - 98 2 - - _ - _ _

The problem types are: 1: airland, 2: fc, 3: GenAssignment, 4: LotSizing, 5: mik, 6: miplib2010,
7: nexp, 8: pmedcap, 9: region100, 10: region200, 11: scp, 12: SSCFLP

8.2.3 Dataset

In order to obtain a solver that works well for a generic MIP problem, instances
are collected from many different datasets: miplib2010 [63], fc [7], lotSizing [9],
mik [8], nexp [6], region [68], and pmedcapv, airland, genAssignment, scp, and
SSCFLP [100]. From an initial dataset of about 900 instances, those for which all
our solvers timed out in 1,800s are filtered. Also removed are the easy instances,
solved entirely during the Cplex presolving or in less than 1 s by each heuristic. The
final dataset is composed of 341 instances with the desired properties. From this
dataset 180 are randomly selected for the training set and 161 for the testing set.

If the training data is clustered, the distribution of instances per cluster can be
seen in Table 8.1. Each row is normalized to sum to 100 %. Thus, for Cluster 1, 25 %
of the instances are from the airland dataset. From this table one can observe that
there are not enough clusters to perfectly separate the different datasets into unique
clusters. This, however, is not the objective. This is because we are interested in
capturing similarities between instances, not in splitting benchmarks. Observe that
the regionl00 and region200 instances are grouped together. Cluster 4, meanwhile,
logically groups the LotSizing and the SSCFLP instances together. Finally, instances
from the miplib, which are supposed to be an overview of all problem types, are
spread across all clusters.

This clustering therefore demonstrates both that this is a diverse set of instances
and that the features are representative enough to automatically notice interesting
groupings.

8.3 Numerical Results

The above heuristics are embedded in the state-of-the-art MIP solver Cplex
version 12.5. Note that only the branching strategy is modified through the
implementation of a branch callback function. When compared with default Cplex
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Table 8.2 Solving times on Solver Avg | Parl0 | % solved
the testing set
BSS 315 1321 93.8
RAND 1 590 | 4414 77.0
RAND 2 609 | 5137 72.7
VBS 225 326 99.4
VBS_Rand | 217 217 100

an empty branch callback is used to ensure the comparability of the approaches.'
The empty branch callback causes Cplex to compute the branching constraint using
its internal default heuristic. None of the other Cplex behavior is changed; the
system uses all the standard features such as pre-solving, cutting planes, etc. Also,
the search strategy, i.e., which open node to consider next, is left to Cplex. Note,
however, that when Cplex dives in the tree, it considers first the first node returned
by the branch callback so it does make a difference whether a variable is rounded
up or down first.

With the described methodology, the main question that needs to be addressed
is whether switching heuristics can indeed be beneficial to the performance of the
solver. To test this, for each of the instances in the test set each of the implemented
heuristics is evaluated without allowing any switching. Following this, two versions
of a solver that switched between heuristics uniformly at random are also evaluated.
The first solver switched between all heuristics, while the second switched only
among the top four best heuristics. The results are summarized in Table 8.2.

What can be observed is that neither of the random switching heuristics performs
very well by itself. However, based on the performance of the virtual best solver’
that employs these new solvers, the performance can be further improved beyond
what is possible when always sticking to the same heuristic. The question therefore
now, becomes if it is possible to improve performance just by switching between
heuristics randomly, can we do even better by doing so intelligently?

To answer this question, it is first necessary to set a few parameters of the solver.
Particularly, to what depth should the solver be allowed to switch heuristics, and
at what interval? For this, the extended dataset is clustered. This dataset includes
both the original training instances and the possible observed subproblems. There
are a total of 10 clusters formed. The result of projecting the feature space into two
dimensions using Principal Component Analysis (PCA) [2] is presented in Fig. 8.1.
Here, the cluster boundaries are represented by the solid lines, and the best heuristic
for each cluster is represented by a unique symbol at its center. Also shown in these
figures is the typical way in which features change as the problem is solved with a

"Note that Cplex switches off certain heuristics as soon as branch callbacks, even empty ones, are
used, so that the entire search behavior is different.

2VBS is an oracle solver that for every instance always uses the strategy that results in the shortest
runtime.
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Table 8.3 Solving times on

; Solver Avg | Parl0 | % solved
the testing set
BSS 315 1321 93.8
ISAC 302 | 1107 95.0
ISAC_filt 289 892 96.3
DASH 251 956 95.7
DASH+ 255 858 96.3
DASH+ilt 241 643 98.1
VBS 225 326 99.4
VBS_DASH | 185 286 99.4

particular heuristic. The nodes are colored based on the depth of the tree, with (a)
showing all the observed subproblems and (b) a single branch.

What this figure shows is that the features change gradually. This means that there
is no need to check the features at every decision node. The subproblem features are
therefore checked at every third node. Similarly, the figure and those like it show
that using a depth of 10 is reasonable, as in most cases the nodes don’t span across
more than two clusters.

GGA is used to tune the parameters of DASH, computing the best heuristic for
each cluster. The results are presented in Table 8.3, which compares the approach to
a vanilla ISAC approach that for a given instance chooses the single best heuristic
and then does not allow any switching. What can be observed is that DASH is able
to perform much better than its more rigid counterpart. However, it is also necessary
to allow for the possibility that switching heuristics might not be the best strategy
for every instance. To cover this case, DASH+ is introduced, which first clusters the
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original instances using ISAC and then allows each cluster to independently decide
if it wants to use dynamic heuristic switching.

Additionally, information gain is used as a filtering technique, a method based on
the calculation of entropy of the data as a whole and for each class. When applied
to ISAC and DASH+ the resulting solvers are referred to respectively as ISAC_filt
and DASH-filt, resulting in improvement in both cases. In particular, the resulting
solver DASH-+filt performs considerably better than everything else.

Table 8.3 finally shows the performance of a virtual best solver if allowed to use
DASH. Observe that even though the current implementation cannot overtake VBS,
future refinements to the portfolio techniques will be able to achieve performances
much better than techniques that rely purely on sticking to a single heuristic.

8.4 Chapter Summary

This chapter introduced the idea of using an offline algorithm tuning tool for
learning an assignment of branching heuristics to clusters of training data. During
search these are used dynamically to determine a preferable branching heuristic for
each encountered subproblem. This approach, named DASH, was evaluated on a set
of highly diverse MIP instances. We found that the approach clearly outperforms the
Cplex default and also the best pure branching heuristic considered here. While not
limited by it, DASH comes very close to choosing the performance of an oracle that
magically tells us which pure branching heuristic to use for each individual instance.

The chapter concluded that mixing branching heuristics can be very beneficial,
yet care must be taken when learning on when to choose which heuristics, as early
branching decisions determine the distribution of instances that must be dealt with
deeper in the tree. This problem was solved by using the offline algorithm tuning
tool GGA to determine a favorable synchronous assignment of heuristics to clusters
so that instances can be solved most efficiently.



Chapter 9
Evolving Instance-Specific Algorithm
Configuration

One of the main underlying themes of the previous chapters has been to demonstrate
that there is no single solver that performs best across a broad set of problem
types and domains. It is therefore necessary to develop algorithm portfolios, where,
when confronted with a new instance, the solver selects the approach best suited
for satisfying the desired objective. This process can then be further refined
to intelligently create portfolios of diverse solvers through the use of instance-
oblivious parameter tuners. However, all of the approaches described thus far take a
static view of the learning process.

Yet there exists a class of problems where it is not appropriate to tune or train
a single portfolio and then rely on it indefinitely in the future. Businesses grow,
problems change, and objectives shift. Therefore, as time goes on, the problems that
were used for training may no longer be representative of the types of problems
being encountered. One example of such a scenario could be a business whose
task it is to route a small fleet of delivery vehicles. When the business starts off,
there may be only a small number of vehicles and customers, which means that
the optimization problems are very small. As the business becomes increasingly
successful, more customers arrive and the increased revenue allows for the purchase
of more vehicles, which in turn means that a larger area can be covered. It is unlikely
that a solver that has been configured to solve the original optimization problem will
still be efficient at solving the new more complex problems.

This chapter, therefore, focuses on a preliminary approach that demonstrates that
it is necessary to retrain a portfolio as new instances become available. This is
done by identifying when the incoming instances become sufficiently different from
everything observed before, thus requiring a retraining step. The chapter shows how
to identify this moment and how by doing so efficiently we can create an improved
portfolio over the train-once methodology.
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9.1 Evolving ISAC

Like other existing portfolio approaches, ISAC is a one-shot learning approach.
Once the training data has been clustered and a solver is selected for each cluster, no
new learning is performed. This means that even as the learned portfolio interacts
with and is repeatedly used to solve new instances, the influx of new information is
ultimately ignored. It also means that if the structure of the problems changes over
time, the solvers that have been trained may no longer be suitable. Moreover, as
time progresses, new features may be discovered that can have a dramatic impact on
the quality of the clustering methods. Furthermore, the set of available solvers can
change over time, which can also have a drastic impact on the current portfolio.

Of course, one solution is to re-launch ISAC from scratch after each such change.
In practice, however, this can be very computationally expensive. For example, a
50 timeout for 1,000 instances can take 72 CPU days to train a portfolio [77]. In
the case of a portfolio approach, every solver would need to be run on every instance
in the training set. Alternatively, for the case with a single parameterized solver,
new parameterizations would need to be tuned, a process that can take days or even
weeks depending on the number of training instances, parameters, and the timeout.
The Evolving ISAC (EISAC) approach is aimed at tackling this by continuously
evaluating the current portfolio and providing ways to continuously improve it by
taking advantage of a growing set of available instances, an enriched feature set, and
more up-to-date set of available solvers.

Let Z;, F;, and S; denote the set of instances, the feature set, and the set of
solvers known at time ¢ and let C; denote the clustering of instances at time 7. We
assume that each time period is associated with one or more changes in at least one
of these sets. Following this notation Zy, Fo, and Sy denote the initial sets of training
instances, features, and solvers, respectively.

EISAC is divided into two phases: initial phase and evolving phase. Given an
initial set of instances, Zy, and an initial set of features, Fo, EISAC finds an initial
set of clusters Cyp and determines the best solver from set Sy for each cluster. This
process is summarized in Fig.9.1.

In the evolving phase, EISAC is tasked to solve an influx of new instances.
As these instances come in, they are assigned to a cluster and solved by the
appropriately assigned solver. This is illustrated in Fig.9.2. Once the instance
is solved, EISAC compares the original clustering with the one obtained by re-
clustering all the instances. If the clusterings are sufficiently different, we accept
the new clustering and retrain our portfolio approach. If the two clusterings are

compute
clusters
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relatively identical, then we stick to the portfolio we have used up to now. This
process is summarized in Fig.9.3.

We therefore see that if our original training set was representative of all the new
instances we observed, then the new instances would fall neatly into the clusters
we found during the first stage. In such a case, we would never need to retrain our
portfolio. If, on the other hand, the instances changed over time, this approach aims
to automatically identify the best time to retrain the portfolio. Depending on the
time we have to retrain a portfolio or how accurate we want to be, we can modify
the threshold at which we consider two clusterings to be similar enough. For the
experiments presented in this chapter, we use the adjusted Rand index to make this
assessment.

As presented, there are a number of decisions that govern how EISAC behaves.
These include answering questions like, how many new instances need to be solved
before we consider re-clustering? How do we handle the introduction of new solvers
in our portfolio, or solvers no longer being available? If we have an infinite influx
of new instances, we cannot keep information about all of them in memory as our
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training set, so how many instances should we keep track of for re-clustering? We
explain and discuss some of these issues below.

9.1.1 Updating Clusters

Updating the clusters of ISAC can potentially be very expensive if we need to train
or select a new solver for each cluster. It is therefore imperative to minimize the
number of times this operation is performed while still maintaining good expected
performance. There are two scenarios for which we might wish to consider a new
clustering:

¢ A new instance is made available and added to the current set of instances, and
a number of instances are removed if the total number of instances exceeds the
maximum number of instances that can be maintained at any time.

* A new feature is added to the current set of features or if an existing feature is
removed.

In each of these cases one would like to determine whether the existing clustering
is still appropriate or whether it should be modified.

Let § be the time difference between the last time EISAC was activated and
the current time. Given a value §, EISAC recomputes the partition of the instances
and compares it with the current partition. The following describes one way of
comparing the similarity between two partitions.

The Rand index [52,95] or Rand measure (named after William M. Rand) is a
measure of the similarity between two data clusterings. Given a set of instances Z;
and two partitions of Z; to compare, X = {Xi,..., Xi}, a partition of Z; into k
subsets, and Y = {Y1,..., Y}, a partition of Z; into s subsets, the Rand index is
defined as follows:

e Let Ny; denote the number of pairs of instances in Z; that are in the same set in
X and in the same setin Y.

* Let Ny denote the number of pairs of instances in Z; that are in different sets in
X and in different sets in Y.

* Let Ny denote the number of pairs of instances in Z; that are in the same set in
X and in different sets in Y.

* Let Ny, denote the number of pairs of instances in Z; that are in different sets in
X and in the same setin Y.

The Rand index, denoted by R, is defined as follows:

_ N1 + Noo _ 2(N11 + Noo)
Ni1 + Noo + Nio + Noi nx(m—1) "

Intuitively, Ni; + Ny can be considered as the number of agreements between X
and Y and Njo + Ny as the number of disagreements between X and Y.
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To correct for chance, the adjusted Rand index (ARI) then normalizes the Rand
index to be between —1 and 1 by:

R — ExpectedIndex

ART = .
MaxIndex — ExpectedIndex

If X is the current partition and Y is the new partition and if the adjusted Rand
index is less than some chosen threshold, denoted by A, then we replace the current
partition of the instances with the new partition. If the current partition is replaced by
the new partition, then we may need to update the solvers for one or more clusters of
the new partition. The experimental section will demonstrate results with a variety
of thresholds.

9.1.2 Updating Solver Selection for a Cluster

For EISAC, the optimization problem is solved by the methods described below for
finding the best solver for each cluster.

Let x; be a Boolean variable that determines if solver j € &; is chosen for
instance i of some cluster C. Let Tj; denote the time required for solving instance i
using solver j € S;. Let y; be a Boolean that denotes whether solver j is selected
for the cluster C. For each instance i € C, exactly one solver is selected:

Viec: Y xj=1. 9.1)

JES
The solver j is selected if it is chosen for any instance i:
ViecVjes, : Xj = yj. (9.2)

The number of selected solvers should be equal to 1:

dyi=1 9.3)

JES:

The objective is to minimize the time required to solve all the instances of the
cluster, i.e.,

ieC jes,

Given the set of solvers S; at time ¢, a cluster C € (;, and the matrix T,
computeBestSolvers(C,S;, T) denotes the best solver obtained by solving
the MIP problem composed of constraints (9.1)—(9.3) and the objective function
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(9.4). In the following we describe four cases when EISAC might update the best
solver for a cluster.

9.1.2.1 Removing Solvers

It may be that an existing solver is no longer available now, which could happen
when a solver is no longer supported by the developers, or when a new release is
made; then, one would like to discard the previous version and update it with the
new version. If the removed solver is used by any cluster, then one can re-solve the
above optimization problem for finding the current solvers.

9.1.2.2 Adding Solvers

When a new solver s is added to the set of solvers S; at time ¢, it can have an
impact on the current portfolio. One way is to reconstruct the portfolio by running
the solver s for all the instances in Z;, which could be time-consuming. Therefore,
EISAC selects a sample from each cluster and runs the solver s for only those
samples. If adding the new solver to S; improves the total execution time for solving
the sample instances, then EISAC computes the runtime of solver s for all the
instances of the corresponding cluster. Otherwise, it avoids running the solver s
for the remaining instances of the cluster. In EISAC, the sample size for a cluster
C is setto (|Zo|/|Z]) * |C|. This allows EISAC to maintain the runtimes of all the
solvers in S; for at least |Zy| number of instances.

9.1.2.3 Removing Instances

If the clustering changes because of our removing instances or because of change
in the feature set, EISAC updates the current set of best solvers for each cluster by
re-solving the above optimization problem.

9.1.2.4 Adding Instances

If the current clustering is replaced with the new clustering because of our adding
new instances, then EISAC recomputes the best solver for one or more clusters of
the new clustering. In order to do so, one approach is to compute the run-times
of all the solvers for all the new instances and then recompute the best solver for
each cluster. However, it is more desirable for the best solver for a cluster to be
computed without our computing the run-times of all the solvers for all the newly
added instances. For this, a lazy approach can be used. The idea is to predict the
expected best run-time of each solver for one or more instances whose run-times
are unknown and use them to compute the best solver for a cluster. If the newly
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Algorithm 8: updateBestSolvers(C)
1: loop

20 A < Hili €, ASul = IS}
3: VieA Ty < ... = Tiys,
Ti
4 Vp<|Slie, < |,41\_,| Yiea Tir‘i,l;
5: C, < C—1,
6: forall i € C, do
7: p <18 =18l + 1
8: b < argmin;es, (Ty)
9: Vje&—8i: Tj<e,xTy

10: end for
11: N¢ < computeBestSolvers(C,S;, T)
12:  if Nc = B¢ then

13: return B¢

14: end if

15: forall i € C, A j € Nc — S, do
16: T;j < computeRuntime(i, j)
17: Si < S U {]}

18: end for

19: Bc < N¢

20: end loop

computed best solver is the same as the previously known best solver for a cluster,
then the task of solving new instances using many solvers is avoided. Otherwise, the
current best solver is updated and the actual run-times, which are unknown for some
of the instances, are computed using the newly computed best solver. This step is
repeated until the newly computed best solvers are the same as the previously known
best solver.

Algorithm 8 presents pseudocode for computing the best solver for a cluster C
lazily. Let S; be the set of solvers at time ¢ for which the run-times are known
for solving an instance i. Assume that S is initialized to a some solver which is
used in the online phase to solve an instance i. Let A, be the set of instances for
which the run-times of all the solvers are known at time ¢ (Line 2). Let r;, denote
the pth best solver for instance i € .4, based on run-times (Line 3). Let e, denote
the average ratio between the runtimes of the best solver and the pth best solver for
each instance i € A, (Line 4). Let C,, C C be the set of instances for which the run-
times of one or more solvers in the set S, are unknown (Line 5). The expected best
run-time for a solver j € §; — S;; for an instance i € C, is computed as described
below (Lines 6-9). If it is assumed that S;; is the set of the |S;;| worst solvers for
instance i € C,, then the runtime of the best solver, b, of S; would have the pth best
runtime of all the solvers, where p = |S;|—|Sy| + 1, and the expected best run-time
of asolverin j € S; —S; would be Tj, - e,,. Notice that different assumptions on
the value of p would result in different performances of EISAC.

Let Nc¢ be the newly computed best solvers using expected best run-times
(Line 10). Let B¢ be the previously known best solver for the cluster C. If N¢ is the
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same as B¢, then the previously known solver is still the best solver for cluster C
even when the known run-times are assumed to be the worst, and the computation of
the run-times of S, — S;; solvers are avoided for each instance i € C, (Lines 11-12).
If N¢ is different from B¢, then the actual run-time of each solver j € N¢ — S;; is
computed for each instance i € C,, denoted by computeRuntime(i, j), and the
best solver for cluster C is updated to N¢ (Lines 13-16).

9.2 Empirical Results

In this section we demonstrate the effectiveness of using EISAC on SAT as well as
MaxSAT instances.

9.2.1 SAT

For the first line of experiments we use the SAT portfolio data made available by
the SATzilla team after the 2011 SAT Competition [1]. This dataset provides the
runtimes of 31 top-tier SAT solvers with a 1,200 s timeout on over 3,000 instances
spread across the Random, Crafted and Industrial categories. After filtering out the
instances where every solver times out, we are left with 2,524 instances. For each
of these instances the dataset also provides all of the known SAT features, but this
chapter focuses on the 52 standard features [85] that do not rely on local search
probing.

We use this dataset to simulate the scenario where instances are made available
one at a time. Specifically, we start with a set of 7, instances for which we know the
performance of every solver. Based on this initial set, we generate our initial clusters
and select the solver that minimizes the PAR10 score of each cluster, PAR10 being
the standard penalized average measurement in SAT where when a solver times
out it is penalized as having taken 10 times the timeout to complete. We then add §
instances to our dataset, evaluate them with the current portfolio, and then determine
whether we should retrain. Two thresholds for the adjusted Rand index are used, 0.5
and 0.95. Simulating the scenario where one can only keep a certain number of
instances for the retraining, once we add the § new instances, we also remove the
oldest § instances.

First, we consider the scenario where all the instances are shuffled and come
randomly. We then also consider an ordering on the data, where first we iterate
through the industrial instances, followed by the crafted, and finally the instances
that were randomly generated. This last experiment is meant to simulate the case
where instances change over time. This is also the case where traditional portfolio
approaches would fail because eventually they are tasked to solve instances they
have never observed during training.
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Table 9.1 Comparison of performance of ISAC and EISAC on shuffled and ordered datasets using
200 or 500 training instances

ISAC | EISAC | EISAC ISAC | EISAC EISAC

Shuffled | BS ¢50 | c50-10.5|¢50-10.95 | c100 | c100-A0.5 | c100-10.95 | VBS

200 Solved | 1760|1776 | 1753 1759 1776 | 1752 1752 2324
% solved | 75.7 |76.0 |75.4 75.7 76.0 |75.4 75.4 100
PAR10 |3001 | 2923 | 3037 3006 2923 3038 3038 75.2
# train 1 1 275 329 1 166 166 -

500 Solved | 1532|1548 | 1548 1539 1548 | 1548 1544 2024
% solved | 75.7 | 76.4 | 76.4 76.0 76.4 764 76.3 100
PAR10 |3004 | 2912 | 2912 2962 2912 2912 2935 74.82
# train 1 1 1 674 1 1 104 -

ISAC | EISAC | EISAC ISAC | EISAC EISAC

Ordered | BS ¢50 | c50-10.5|¢50-10.95 | c100 | c100-A0.5 | c100-10.95 | VBS

200 Solved | 1078|1078 | 1725 1793 1078 | 1741 1741 2324
% solved | 46.3 | 46.3 | 74.2 77.2 46.3 |74.9 74.9 100
PARIO | 6484 | 6484 | 3160 2821 6484 | 3084 3084 70.42
# train 1 1 49 160 1 9 9 -

500 Solved | 791 |795 |1261 1606 817 | 817 1373 2024
% solved | 39.1 |39.3 | 62.3 79.3 404 404 67.8 100
PARIO | 7357|7334 | 4578 2556 7205 | 7205 3910 70.79
# train 1 1 4 611 1 1 97 -

We set the minimum cluster size to be either 50 or 100 and the adjusted Rand index to either 0.5
or 0.95

Table 9.1 presents the first test case, where instances come from a shuffled
dataset. This is the typical case observed in competitions, where a representative
set of the test data is available for training. The table presents the performance of a
portfolio which has been given 200 or 500 training instances. The single best solver
(BS) chooses a single solver during training and then always uses it during the test
phase. Alternatively, the virtual best solver (VBS) is an oracle portfolio that for
every instance always runs the best solver. The VBS represents the limit of what
can be achieved by a portfolio. We also evaluate ISAC-c50 and ISAC-c100, trained
with a minimum respectively of 50 and 100 instances in each cluster. Note that in
this setting ISAC is performing better than BS. It is also important to note here that
in the 2012 SAT Competition, the difference between the winning and second placed
single engine solver was three instances and was only eight instances between
the top four solvers. Therefore the improvement of 16 instances when training on
500 instances is significant. When compared to ISAC on this shuffled data, we
see that EISAC performs comparably to ISAC, although it requires significantly
more training sessions. For each version of EISAC in the table we present the
minimum cluster size and the adjusted Rand index threshold. So EISAC-c100-10.95
has clusters with at least 100 instances and retrains as soon as the adjusted Rand
index drops below 0.95.



102 9 Evolving Instance-Specific Algorithm Configuration

This comparable performance on shuffled data is to be expected. As the data is
coming randomly, the initial training data is representative enough to capture the
diversity. And even if the clusters change a little over time, the basic assignment
of solvers to instances doesn’t really change. Note that the slight degradation
between the higher threshold in EISAC-c100 for 500 training instances can likely
be attributed to overtuning (or overfitting) in the numerous re-training steps. Also
note that the lower performance for 500 training instances is misleading, since by
adding 300 instances to our training set, we are removing 300 instances from the
test set.

The story becomes significantly different if the data is not shuffled, as is the case
at the bottom of Table 9.1. Here we see that the clusters and solvers chosen by ISAC
initially are ill equipped to solve the future instances. EISAC, on the other hand, is
able to adapt to the changes and outperform ISAC by almost a factor of 2 in terms
of the instances solved. What is also interesting is that for the case of 500 training
instances and small clusters, this performance is achieved with only four re-training
steps.

Table 9.2 examines the effectiveness of this training technique. Instead of
computing the time of every solver on every training instance during re-tuning, we
lazily fill in this data until we converge on the expected best solver for a cluster.
We call this approach EISAC+. For simplicity, here we only present a comparison
on the ordered dataset and for algorithms tuned with a minimum cluster size of 50.
What we observe is that while performance is maintained with this lazy selection,
we cut down the number of evaluations we need to 80 % and occasionally to as low
as 50 %. This means that we can potentially speed up each training stage by a factor
of 2 while still maintaining nearly identical performance.

Finally, Table 9.3 examines the effectiveness of EISAC and EISAC+ on a dataset
where instances become progressively harder. Specifically, we order the 2,524
instances at our disposal according to the average runtime of all solvers. The first
200 (500) are used for training, and each instance is on average harder than the last.
From the table we see that the regular version of ISAC struggles with this dataset,
performing worse than the best single solver. This suggests that the structure of
the easier instances is different from that of the harder instances. If we allow our

Table 9.2 COmpa.riSOn of ISAC | EISAC EISAC+
performance on ordered

dataset using an BS ¢50 ¢50-10.5 | c50-10.5 | VBS
approximation learning 200 |Solved | 1078 |1078 | 1725 1671 2324
technique PARI0 | 6484 | 6484 |3160 3440 70.42
# train 1 1 49 44 -
% eval 100 100 100 59.5 -
500 | Solved | 791 795 | 1261 1264 2024
PAR10 | 7357 | 7334 | 4578 4561 70.79
# train 1 1 4 3 -

% eval 100 100 100 83.8 -
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Table 9.3 SAT: Comparison of performance of ISAC, EISAC, and EISAC+ on data where
instances become progressively harder

Easy ISAC | EISAC EISAC EISAC+ | EISAC+
to hard BS c50 ¢50-10.5 | c50-10.95 |c50-10.5 |c50-10.95 | VBS
200 Solved 1060 | 1035 | 1690 1823 1698 1741 2324
% solved |45.6 445 |72.7 78.4 73.1 74.9 100
PAR10 6621 | 6746 | 3383 2710 3343 3122 82.51
# train 1 1 58 155 57 185 -
% eval 100 100 100 100 83.8 83.3 —
500 Solved 1410 | 1057 | 1485 1526 1400 1532 2024
% solved | 69.7 522 |73.4 75.4 69.2 75.7 100
PAR10 3753 | 5850 | 3322 3075 3811 3041 94.4
# train 1 1 4 611 3 663 -
% eval 100 100 100 100 87.8 83.1 -

Training set is composed of either 200 or 500 instances, the minimum cluster size is set to be 50,
and the adjusted Rand index is set to either 0.5 or 0.95

portfolio to adapt to the changes, it is able to perform significantly better than the
best single solver. Furthermore, EISAC+ is able to perform comparably to its regular
counterpart but with fewer evaluations at each training stage.

9.2.2 MaxSAT

Additionally, we present how the Evolving ISAC approach behaves on the MaxSAT
dataset, employing the instances from the 2012 MaxSAT Competition. This com-
petition had four major categories: MaxSAT, Partial MaxSAT, Weighted MaxSAT,
and Partial Weighted MaxSAT. Combining these results in 2,681 instances. What
differentiates this merged dataset from the one we had for SAT, is that the solvers
used for each of the different types of instances are different. So while a solver can
perform very well on one category, it might completely fail to read in instances of
another type. In the case presented here, whenever a solver is not able to solve an
instance, it is marked as if it timed out.

For the solvers we employ 14 top-tier MaxSAT solvers with a 2,100s timeout.
Meanwhile the features used are based on the original base SAT features plus five
features examining the weights of the soft clauses, namely the percentage of soft
clauses, and the mean, standard deviation, minimum and maximum of the weights
of these soft clauses.

The experiments explore three scenarios. First, we take a look at the standard
competition, train-once, the situation where the training set is representative of the
data to be seen in the test set. We can see under the rows labeled “Shuffled” in
Table 9.4 that the adaptive approach, while better than the best single solver, is not
better than the plain vanilla version of ISAC. This, however, quickly changes if
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Table 9.4 MaxSAT: Comparison of performance of ISAC, EISAC, and EISAC+ on shuffled data
(shuffled), ordered by category (ordered), and ordered by difficulty (easy to hard) datasets using
200 or 500 training instances

ISAC | EISAC EISAC EISAC+ | EISAC+
Shuffled BS c50 ¢50-10.5 | c50-10.95 | c50-10.5 | c50-10.95 | VBS
200 Solved 1472 | 1802 | 1540 1544 1502 1479 2260
% solved | 59.3 72.6 62.1 62.2 60.5 59.6 91.1
PAR10 8187 | 5675 | 7640 7609 7949 8132 1831
# train 1 1 908 1266 872 1259 -
% eval 100 100 100 100 95.2 93.4 -
500 Solved 1298 | 1724 | 1564 1555 1474 1475 1986
% solved | 59.5 79.0 71.7 71.3 67.6 67.6 91.1
PAR10 8149 4252 |5722 5800 6541 6532 1836
# train 1 1 495 1811 512 1843 -
% eval 100 100 100 100 93.2 83.8 -
Ordered by ISAC |EISAC |EISAC  |EISAC+ |EISAC+
category BS ¢50 ¢50-10.5 | c50-10.95 | c50-10.5 | c50-10.95 | VBS
200 Solved | 1466 |1087 |1830 1958 1741 1796 2268
% solved |59.1 438 |73.8 78.9 70.2 72.4 91.4
PARIO | 8236 | 11275 |5325 4287 6033 5584 1764
# train 1 1 266 557 255 529 -
% eval 100 100 100 100 50.4 48.9 —
500 Solved |1247 |1131 |1314 1555 1261 1422 2049
% solved | 57.1 51.9 60.2 71.3 57.8 65.2 93.9
PAR10 8607 | 9656 | 7990 5789 8480 7006 1245
# train 1 1 145 871 155 866 -
% eval 100 100 100 100 58.3 56.9 -
Easy ISAC |EISAC |EISAC | EISAC+ |EISAC+
to hard BS 50 | ¢50-A0.5 | ¢50-10.95 | ¢50-A0.5 | c50-10.95 | VBS
200 Solved |837 [875 |1520 1604 1509 1544 2241
% solved | 337 352 612 64.6 60.8 62.2 90.3
PAR10 13297 | 12987 | 7812 7137 7902 7539 1988
# train 1 1 266 557 263 532 -
% eval 100 100 100 100 83.6 82.5 -
500 Solved 539 687 1401 1403 1260 1352 1941
% solved | 24.7 31.5 64.2 64.3 57.8 62.0 89.0
PAR10 15103 | 12742 | 7226 7207 8519 7674 2262
# train 1 1 145 871 123 854 -
% eval 100 100 100 100 88.0 88.4 -

We set the minimum cluster size to be 50 and the adjusted Rand index to either 0.5 or 0.95



9.3 Chapter Summary 105

the data is introduced first from the MaxSAT (MS) category, followed by Partial
MaxSAT (PMS), then Weighted MaxSAT (WMS), and finally Partial Weighted
MaxSAT (PWMS). These results are presented in the rows under “Ordered by
Category” in Table 9.4.

These experiments exemplify why it is necessary to continuously refine one’s
portfolio approach. The regular ISAC approach performs worse than the single best
solver, since it is unable to generalize the portfolio it has learned to instances that it
has never seen before. The EISAC approach, however, can cope with the changes. It
is also important to note that EISAC+ is able to achieve nearly the same performance
as EISAC, with half the number of evaluations during the tuning stage.

The third set of rows in Table 9.4, labeled “Easy to Hard,” refers to a dataset
where the instances arrive in order of difficulty, from easy to hard. Here we define
“easy” as an instance whose average runtime over all solvers in our portfolio is the
smallest. We again see that the regular version of ISAC struggles to find a portfolio
that generalizes to the harder instances. EISAC, on the other hand, can double the
number of instances solved.

9.3 Chapter Summary

This chapter presented the importance of an evolving portfolio approach when
handling datasets that can change over time. Specifically, it presented EISAC, a
portfolio approach that solves twice as many instances as its unmodified counterpart
ISAC. Further shown was how a lazy training method can help to significantly
reduce the number of solver/instance combinations that need to be evaluated before
the best solver for a cluster is selected.



Chapter 10
Improving Cluster-Based Algorithm Selection

There are a number of benefits to the ISAC methodology which have been touched
upon in the previous chapters. In addition to those, it is also a transparent approach.
Each cluster can be identified and analyzed for what makes it different from all
the others. What are the features that are most different for a cluster that help
differentiate it from its neighbors? Such analysis can then motivate understanding
of why a particular solver performs well on one group of instances and not another.
Identifying clusters where all solvers perform poorly can help direct research to
developing novel solvers with a specific target benchmark. Clusters can also help
identify what regions of the problem space have not yet been properly investigated.

There is of course an ever increasing number of new instance-specific algorithm
portfolios being introduced that continuously outperform the previous generations.
The 3S solver presented in Chap. 6 and the parallel solver from Chap.7 are two
examples addressed in this book. SATzilla 2012 [127] and CSHC [75] are solvers
that did very well in the 2012 and 2013 SAT Competitions. Yet as these portfolios
become better and better at predicting the best solver for an instance they also
become increasingly more complex. The 2012 version of SATzilla requires multiple
trees that are trained to distinguish between every pair of solvers. But such a
representation makes it hard to see similarities between instances. CSHC uses trees
to split instances so that each child has a better agreement on the preferred solver
than its parent. This strategy can be highly informative in practice, yet in order to
boost its performance, CSHC relies on a forest of such trees.

This chapter focuses on presenting how the ISAC methodology can be improved
without sacrificing its transparency. Specifically, the chapter will review some of the
assumptions that have been made in the previous chapters and show whether they
have been justified. It will then show how taking into account the performances of
the solvers in a portfolio can help guide the clustering process.
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10.1 Benchmark

This chapter, like many that came before it, will rely on the SAT domain for its
benchmark. As before, this choice is made due to the abundance of diverse solvers
and instances in the field, as well as a highly polished set of features.

10.1.1 Dataset and Features

In this chapter we take all instances from the 2002 to 2012 competitions, inclusive,
which results in 2,140 in the Random categories, 735 in the Crafted categories, and
1,098 in the Industrial categories. Additionally, we add a dataset that includes all
the 4,243 instances.

As mentioned in the previous chapter, algorithm selection utilizes a set of features
in order to distinguish between instances. In this chapter, we use an expanded feature
set that was developed by the UBC Group [126] in 2008 and now consists of the 113
continuous values listed below.

Problem Size Features:

1-2 Number of variables and clauses in
original formula: denoted by v and
¢, respectively

3-4 Number of variables and clauses
after simplification with SATElite:
denoted by v’ and c’, respectively

5-6 Reduction of variables and clauses
by simplification: (v-v’)/v’ and (c-
c)/c’

7 Ratio of variables to clauses: v’/c’

Variable-Clause Graph Features:

8-12 Variable node degree statistics:
mean, variation coefficient, min,
max, and entropy

13-17 Clause node degree statistics:
mean, variation coefficient, min,
max, and entropy

Variable Graph Features:

18-21 Node degree statistics: mean,
variation coefficient, min, and max

22-26 Clustering Coefficient: mean,
variation coefficient, min, max, and
entropy

Clause Graph Features:

27-31 Node degree statistics: mean,
variation coefficient, min, max, and
entropy

32-36 Clustering Coefficient: mean,
variation coefficient, min, max, and
entropy

Balance Features:

37-41 Ratio of positive to negative lit-
erals in each clause: mean, variation
coefficient, min, max, and entropy

42-46 Ratio of positive to negative
occurrences of each variable: mean,
variation coefficient, min, max, and
entropy

47-49 Fraction of unary, binary and
ternary clauses

Proximity to Horn Formula:

50 Fraction of Horn clauses

51-55 Number of occurrences in a
Horn clause for each variable:
mean, variation coefficient, min,
max, and entropy

Local Search Probing Features, based

on 2s of running each of SAPS and

GSAT:

56-65 Number of steps to the best local
minimum in a run: mean, median,
variation coefficient, and 10th and
90th percentiles

66-69 Average improvement to best in
a run: mean and coefficient of varia-
tion of improvement per step to best
solution

70-73 Fraction of improvement due to
first local minimum: mean and vari-
ation coefficient
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74-77 Coefficient of variation of the 96-104 Confidence of survey propa-
number of unsatisfied clauses in gation: For each variable, compute
each local minimum: mean and vari- the higher of P(true)/P(false) and
ation coefficient P(false)/P(true). Then compute

Clause Learning Features (based on 2s statistics across variables: mean, vari-

of running Zchaff rand): ation coefficient, min, max, and 10,

78-86 Number of learned clauses: 25, 50, 75, and 90 % quantiles
mean, variation coefficient, min, 105-113 Unconstrained variables:
max, and 10, 25, 50, 75, and 90 % For each variable, compute
quantiles P(unconstrained). Then compute

87-95 Length of learned clauses: mean, statistics across variables: mean,
variation coefficient, min, max, and variation coefficient, min, max, and
10, 25, 50, 75, and 90 % quantiles 10, 25, 50, 75, and 90 % quantiles

Survey Propagation Features:

These features can be broken into two categories: deterministic structural and
stochastic probing. The deterministic features are those labeled 1 through 55, and
focus on the facts that can be computed from the problem definition alone. This
includes looking at the number of variables and clauses, the statistics about how
often variables are negated, and the statistics about how many variables are in a
clause. Here, the variable clause graph refers to a graph where each variable and
each clause is represented as a node, with an edge signifying that a variable belongs
to a particular clause. In the variable graph, the nodes represent variables, with an
unweighted edge existing if two variables appear in the same clause. Similarly,
a clause graph has an edge between two nodes if two clauses have the same
variable.

While the deterministic features provide good information and are typically very
quick to compute, the probing features are designed to give insight into how solvers
might behave when tackling an instance. These features are therefore computed
by running existing solvers for a short execution and gathering statistics upon
completion.

Finally, the runtimes of 29 of the most current SAT solvers have been recorded;
many of them have individually shown good performance in past competitions.

¢ clasp-2.1.1_jumpy * cryptominisat 2011 * sattimep

¢ clasp-2.1.1 trendy * eagleup * sparrow

¢ ebminisat * gnoveltyp?2 * tnm

¢ glueminisat * march rw * cryptominisat295
¢ lingeling ¢ mphaseSAT * minisatPSM

e lrglshr * mphaseSATm e sattime2011

* picosat * precosat * ccasat

* restartsat * qutersat * glucose_21

e circminisat * sapperlot * glucose_ 21

¢ claspl * sat4j-2.3.2 modified.
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Each of the solvers was run on every instance with a 5,000 s timeout. Instances
that could not be solved by any solver in the allotted time were removed. Further
removed were the easy instances, where at least 10 solvers could finish within 15s.
This filtering was done because, if no solver could finish, then the instance could
provide no useful information, while the easy instances are trivial regardless of what
is done. This way, the evaluation focused on only those instances where the decision
of one solver over another had visible consequences. This meant that the final dataset
comprised of 1,949 random, 363 crafted, and 805 industrial instances, i.e., 3,117
instances in total.

10.2 Motivation for Clustering

One of the underlying assumptions behind any algorithm selection approach has
been that there is no single solver that can provide the best performance on every
instance. Implicitly, this has been shown in the previous chapters, but Table 10.1
aims to further corroborate this point. The table shows the frequency with which a
solver is deemed best over the dataset. Specifically, it utilizes the SAT datasets that
were described in the previous section: RAND, HAND, INDU, and ALL. In this
table, BSS is the best single solver, or the solver that provides the best performance
on average. Meanwhile, VBS is the performance of an oracle approach that for every
instance selects the best algorithm.

Table 10.1 clearly shows that the solver deemed best is rarely the best solver
for any particular instance. This is especially evident when looking at the ALL
dataset, where mPhaseSAT is never the best solver. The necessity for algorithm
selection is even more pronounced when looking at the difference in the number of
solved instances. For the ALL dataset, mPhaseSAT is able to solve 2,697 instances.
This is not bad considering that the runner up is an alternate parameterization,
mPhaseSATm, which solves 2,605 instances, and CCASat, ranked third best,
can only solve 1,861 instances. However, the VBS for this dataset solves 3,676
instances. This means that without any modifications to existing solvers, it is
possible to improve performance by over 20 % just by choosing the correct solver
for the instance at hand.
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10.3 Alternate Clustering Techniques

Clustering is a typical example of unsupervised learning. Provided with a collection
of instances, the task is to group the data into subsets (clusters) in a way that
instances in the same subset present some kind of similarity. So far we have
been predominantly focusing on g-means as the goto clustering approach and the
Euclidean distance as a metric. This chapter presents two common alternatives but
it will ultimately show that g-means is by far the most robust approach.

10.3.1 X-Means

One of the most used clustering methods is Lloyd’s k-means [72]. The idea behind
the proposed methodology (presented in Algorithm 1) is to start from k random
points in the feature space. These points represent the centers of the k clusters. The
algorithm alternates between two phases. First, it assigns each instance to the nearest
of the k points. Second, it updates the k centers to shift to the geometric centers of
the instances in each cluster.

k-means is one of the most used clustering techniques for its simplicity and ease
of implementation. Unfortunately, a drawback is its need to pre-specify the expected
number of clusters, a value not often known in practice. Therefore, to address this
issue, X-means has been introduced in [89]. The idea is to run k-means on the input
data with an increasing k (up to a chosen upper bound), and choose the best value
of k based on a Bayesian Information Criterion (BIC). Intuitively, the BIC statistic
used by X-means has been formulated to maximize the likelihood for spherically
distributed data. Thus, in general, it overestimates the number of true clusters in
non-spherical data.

10.3.2 Hierarchical Clustering

Hierarchical Clustering is an iterative approach that constructs the clusters by recur-
sively partitioning the instances in either a top-down or a bottom-up fashion [97].
This means that there are two versions:

» Agglomerative: Each instance, at the beginning, represents its own cluster. Then
clusters are merged until the desired cluster structure is reached;

» Divisive: Each instance initially belongs to one cluster. Then the cluster is divided
into sub-clusters, which are successively divided into their own sub-clusters. The
process continues until the desired cluster structure is reached.
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The decision of which cluster to combine or split is based on a measure of
dissimilarity between sets of instances, which in our case this is the Euclidean
distance metric.

Regardless of the flavoring, this approach produces a dendogram' representing
the nested grouping of the instances. A clustering of the data is obtained by
cutting the dendogram at a specified level. One main drawback, however, is the
computational cost as the distance between every pair of instances in the dataset
needs to be repeatedly computed.

10.4 Feature Filtering

In order to succeed, ISAC relies strongly on the quality of the available features.
Too few features are likely to not adequately differentiate between instances but
too many features are likely to cause over fitting or even erroneous clustering due
to noisy features. This section therefore presents a number of possible filtering
techniques that can be used to effectively reduce the number of required features:
chi squared, information gain, gain ratio, and symmetrical uncertainty.

Here, we refer to feature filtering as a function that returns a relevance index
J(S|D) that estimates, given the data D, how relevant a given feature subset S
is for the classification task Y. Specifically, each training instance is classified by
the best performing solver on that instance. Therefore, the ranking of any feature
should correlate to its ability to separate instances that prefer one solver from those
that prefer another. The presented experiments will focus on selecting the set of
features whose ranking is statistically higher than that of the remainder.

10.4.1 Chi-Squared

The Chi-Squared filtering approach aims to measure the dependence between each
feature and its classification. More specifically, it can be defined as:

B N(AD — CB)?
" (A+C)(B+D)A+ B)C +D)

x(t.¢)

A is the number of times feature ¢ and category ¢ co-occur. Conversely, B is the
number of times ¢ occurs without ¢ and C is the number of times ¢ occurs without
t. D is the number of times neither ¢ nor ¢ occurs, with N being the total number of

I'A tree diagram where the leaves are the instances and the internal nodes are the clusters to which
they belong.
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instances. In practice, the feature values are discretized in order to work on numeric
data.

10.4.2 Information Theory-Based Methods

Utilization of information theory indices is the most frequently used approach
for feature evaluation. In particular, these methods are based on the concept of
information, which is the negation of entropy:

K
H(Y) ==Y P(y)log, P(y)

i=1

where P(y;) = m;/m is the fraction of samples x from class y;,i = 1...K.
Information contained in the joint distribution of classes and features, summed
over all classes, gives an estimation of the importance of the feature, where the
information contained in the joint distribution is defined as:

K
H(Y,X) ==Y P(y;.xi)log, P(y;, x).

i j=1

In case of continuous features, it is again necessary to utilize discretization. The
remaining three feature filtering techniques can therefore be defined as:
e information gam HY)+ HX)— H(,X)

H(Y)+H(X)—H(.X)

* gain ratio: ————pEs———"=
* symmetrical uncertainty: 2 - W

It is commonly believed that the gain ratio is a stable evaluation and the
symmetrical uncertainty has a low bias for multivalued features.

10.5 Numerical Results

Utilizing the SAT data presented in Sect.10.1 we first perform a preliminary
analysis evaluating the performances of the various feature filtering approaches
and the clustering methodologies. These results are summarized in Fig. 10.1, which
clearly shows that in most scenarios g-means is the preferred clustering method.
In particular, since this is the best method for the dataset that is comprised of all
instances from the other three, g-means seems to be the best choice for clustering.
Fixing the choice of clustering methodology, Table 10.2 demonstrates the effec-
tiveness of instance-specific algorithm selection. Here, we compare the techniques
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Finering Fitering

Fig. 10.1 Performances of ISAC on SAT considering different feature filtering and clustering
techniques. (a) RAND dataset. (b) HAND dataset. (¢) INDU dataset. (d) ALL dataset

using the usual three criteria: average runtime, PAR10, and the percentage of
instances unsolved. To validate the performances, each approach was evaluated
using tenfold cross-validation. The standard deviations in the table provide the
changes over the 10 runs.

As a baseline, Table 10.2 presents the performance of the single best solver
(BSS) over each dataset, as well as the oracle virtual best solver (VBS), which
for each instance selects the best running solver. ISAC is the vanilla cluster-based
algorithm selection approach employing no feature filtering. Conversely, “chi-
squared,” “information gain,” “symmetrical uncertainty,” and “gain ratio” specify
ISAC using the appropriate feature selection methodology.
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Table 10.2 Results on the SAT benchmark, comparing the virtual best solver (VBS), the best
single solver (BSS), instance-specific algorithm selection (ISAC) and ISAC with different feature

filtering techniques: “chi.squared,” “information.gain,

RAND

BSS

ISAC

chi.squared
information.gain
symmetrical.uncertainty
gain.ratio

VBS

HAND

BSS

ISAC

chi.squared
information.gain
symmetrical.uncertainty
gain.ratio

VBS

INDU

BSS

ISAC

chi.squared
information.gain
symmetrical.uncertainty
gain.ratio

VBS

ALL

BSS

ISAC

chi.squared
information.gain
symmetrical.uncertainty
gain.ratio

VBS

Runtime - avg (std)
1,551 (0)
826.1(6.6)
1,081(42.23)

851.5 (32.33)
840.2 (13.15)
830.3 (21.3)

358 (0)

Runtime - avg (std)
2,080 (0)

1,743 (34.4)

1,544 (37.8)

1,641 (38.9)

1,686 (27.3)

1,588 (43.7)

400 (0)

Runtime - avg (std)
871 (0)

763.4 (4.7)

708.1 (25.3)

712.6 (7.24)

716.4 (16.76)
705.4 (19.9)

319 (0)

Runtime - avg (std)
2,015 (0)

1,015 (10.3)

1,078 (29.7)

1,157 (18.9)

1,195 (28.7)

1,111 (17.4)

353 (0)

2

Par 10 - avg (std)
13,154 (0)

4,584 (40.9)
7,318 (492.7)
5,161 (390)
4,908 (189.5)
4,780 (210)

358 (0)

Par 10 - avg (std)
15,987 (0)
13,994 (290.6)
11,771 (435)
12,991 (443)
13,041 (336)
12,092 (545)
400 (0)

Par 10 - avg (std)
4,727 (0)

3,166 (155.6)
3,252 (218)
2,578 (120)
2,737 (150)
2,697 (284)

319 (0)

Par 10 - avg (std)
4,726 (0)

6,447 (92.4)
7,051 (414)
7,950 (208)
8,067 (341)
6,678 (225)

353 (0)

symmetrical.uncertainty,” and “gain.ratio”

% not solved - avg (std)
25.28 (0)
8.1(0.2)

14 (1)

8.7 (0.8)
8.76 (0.4)
9(0.4)

0(0)

% not solved - avg (std)
30.3 (0)

26.5 (0.9)
23.5(0.9)
24.3 (0.9)
25.7 (0.7)
22.4 (1)
0(0)

% not solved - avg (std)
8.4 (0)
5.2(0.7)
5.8(0.4)
4.3(0.3)
4.4(0.3)

4.1 (0.6)
00

% not solved
30.9 (0)

11.8 (0.2)
11.79 (0.8)
15 (0.4)

15.6 (0.7)
13.39 (0.5)
0(0)

From this data it is once more clear that using the presented methodology
can provide significant improvements over using only a single solver to solve all
instances. Surprisingly, however, it appears that while chi-squared filtering can often
improve performance, the performance gains are not very pronounced. Yet for all
these clustering approaches, we reduce the feature vector from 115 to only 15.
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10.6 Extending the Feature Space

While the original version of ISAC employs Euclidean distance for clustering, there
is no reason to believe that this is the best distance function. As an alternative one
might learn a weighted distance metric, where the weights are tuned to match the
desired similarity between two instances. For example, if two instances have the
same best solver, then the distance between these two instances should be small.
Alternatively, when a solver performs very well on one instance, but poorly on
another, it might be desirable for these instances to be separated by a large distance.

Initial experiments trained a distance function that attempts to capture this
desired behavior. Yet the resulting performance often was worse than that of the
standard Euclidean distance. There are a number of reasons for this. First, while we
know that some instances should be closer to or farther from each other, the ideal
magnitude of the distance cannot be readily determined. Second, the effectiveness of
the distance function depends on near-perfect accuracy since any mistake can distort
the distance space. Third, the exact form of the distance function is not known. It
is, for example, possible that even though two instances share the same best solver,
they should nevertheless be allowed to be in opposite corners of the distance space.
We do not necessarily want every instance preferring the same solver to be placed
in the same cluster, but want to avoid contradictory preferences within the same
cluster.

Due to these complications, here we present an alternate methodology for
refining the feature vector. Specifically, we add the normalized performance of
all solvers as a part of the features. In this setting, for each instance, the best
performing solver is assigned a value of —1, while the worst performing is assigned
1. Everything in between is scaled accordingly. The clustering is then done on the
set of both the normal features and the new ones. During testing, however, we do not
know the performance of any of the solvers beforehand, so we set all those features
to 0.

We see in Table 10.3 that the performance of this approach (called NormTimes
ISAC) was really poor, never comparable with the running times of the normal
ISAC. The main reason was that we were taking into consideration too many solvers
during the computation of the new features.

As an alternative, one can consider that matching the performance of all solvers
is too constraining. Implicitly ISAC assumes that a good cluster is one where
the instances all prefer the same solver. For this reason one can choose to take
into account only the performance of the best two solvers per instance. This is
accomplished by extending the normal set of features with a vector of new features
(one per solver), and assigning a value of 1 to the components corresponding to
the best two solvers and O to all the others. In the testing set, since we again do
not know which are the best two solvers beforehand, all the new features are set to
the constant value of 0. As can be seen in Table 10.3, depending on which of the
four datasets was used, we got different results (this approach is called bestTwoSolv
ISAC): we observed a small improvement in the crafted and industrial datasets,
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Table 10.3 Results on the SAT benchmark, comparing the best single solver (BSS), the virtual
best solver (VBS), the original ISAC approach (ISAC), the ISAC approach with extra features
coming from the running times: “NormTimes ISAC” has the normalized running times while

“BestTwoSolv ISAC” takes into consideration just the best two solvers per each instance

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 1,551 (0) 13,154 (0) 25.28 (0)

ISAC 826.1 (6.6) 4,584 (40.9) 8.1(0.2)

NormTimes ISAC 1,940 (-) 15,710 (-) 30 (-)

BestTwoSolv ISAC 825.6 (5.7) 4,561 (87.8) 8.1(0.2)

VBS 358 (0) 358 (0) 0(0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 2,080 (0) 15,987 (0) 30.3 (0)

ISAC 1,743 (34.4) 13,994 (290.6) 26.5 (0.9)

NormTimes ISAC 1,853 (-) 14,842 (-) 28.3 (-)

BestTwoSolv ISAC 1,725 (29.2) 13,884 (124.4) 26.5 (0.8)

VBS 400 (0) 400 (0) 0(0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 871 (0) 4,727 (0) 8.4 (0)

ISAC 763.4 (4.7) 3,166 (155.6) 5.2(0.7)

NormTimes ISAC 934.3 (-) 5,891 (-) 10.8 (-)

BestTwoSolv ISAC 750.5 (2.4) 2,917 (157.3) 4.7 (0.4)

VBS 319 (0) 319 (0) 0(0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 2,015 (0) 14,727 (0) 30.9 (0)

ISAC 1,015 (10.3) 6,447 (92.4) 11.8 (0.2)

NormTimes ISAC 1,151 () 6,923 (-) 12.5 (-)

BestTwoSolv ISAC 1,019 (11.5) 6,484 (172.3) 11.9 (0.3)

VBS 353 (0) 353(0) 0(0)

while for the other two datasets the results were almost the same as that of the pure
ISAC methodology.

The drawbacks of directly extending the feature vector with the performance
of solvers are twofold. First, the performance of the solvers is not available prior
to solving a previously unseen test instance. Secondly, even if the new features
are helpful in determining a better clustering, there is usually a large number of
original features that might be resisting the desired clustering. Yet even though these
extensions to the feature vector did not provide a compelling case for being used
instead of the vanilla ISAC approach, they nonetheless support the assumption that
by considering solver performances on the training data it is possible to improve
the quality of the overall clustering. This therefore leads to a solver-based nearest
neighbor approach which we describe in the next section.
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10.7 SNNAP

There are two main takeaway messages from extending the feature vector with
solver performances. First, the addition of solver performances can be helpful, but
the inclusion of the original features can be disruptive for finding the desired cluster.
Second, it is not necessary to find instances where the relation of every solver is
similar to the current instance. It is enough to just know the best two or three solvers
for an instance. Using these two ideas this section presents SNNAP, which appears
as Algorithm 9.

During the training phase the algorithm is provided with a list of training
instances T, their corresponding feature vectors F, and the running times R of
every solver in our portfolio. We then train a single model PM for every solver
to predict the expected runtime on a given instance. We have claimed previously
that such models are difficult to train properly since any misclassification can
result in the selection of the wrong solver. In fact, this was partly why the original
version of ISAC outperformed these types of regression-based portfolios. Clusters
provide better stability of the resulting prediction of which solver to choose. We are,
however, not interested in using the trained model to predict the single best solver
to be used on the instance. Instead, we just want to know which solvers are going to
behave well on a particular instance.

For training the model, we scale the running times of the solvers on one instance
so that the scaled vector will have a mean of 0 and unitary standard deviation. This
kind of scaling is crucial in helping the following phase of prediction. Thus we
are not training to predict runtime. We are learning to predict when a solver will
perform much better than usual. When doing so, for every instance, every solver
that behaves better than one standard deviation from the mean will receive a score
less than —1, the solvers which behave worse than one standard deviation from the

Algorithm 9: Solver-based nearest neighbor for algorithm portfolios.
: SNNAP-Train(7, F, R)

: for all instances i in 7 do

R; < Scaled(R;)

: end for

: for all solver j in the portfolio do

PM; <« PredictionModel(T, F, R)

: end for

: return PM

© QU ALY~

: SNNAP-Run(x, PM, T, R, R, A, k)

: PR < Predict(PM, x)

dist <— CalculateDistance(PR, T, 1§)

: neighbors <— FindClosestInstances(dist, k)
Jj < FindBestSolver(neighbors, R)

: return 4 (x)

DU AW
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mean will receive a score greater than 1, and the other solvers will lie in between.
Here, random forests [26] were used as the prediction model.

In the prediction phase, the procedure is presented with a previously unseen
instance x, the prediction models PM (one per solver), the training instances 7, their
running times R (and the scaled version R), the portfolio of solvers A, and the size of
the desired neighborhood k. The procedure first uses the prediction models to infer
the performances PR of the solvers on the instance x, using its originally known
features. SNNAP then continues to use these performances to compute a distance
between the new instance and every training instance, selecting the k nearest ones
among them. The distance calculation takes into account only the scaled running
time of the instances of the training set and the predicted performances PR of the
different solvers on the instance x. At the end the instance x will be solved using the
solver that behaves best (measured as the average running time) on the k neighbors
previously chosen.

It is worth highlighting again that we are not trying to predict the running times
of the solvers on the instances but, after scaling, to predict a ranking amongst the
solvers on a particular instance: which will be the best, the second best, and so
on. Moreover, as shown in the next section, we are interested in learning a ranking
among not all the solvers, but just a small subset of them, specifically for each
instance which will be the best n solvers.

10.7.1 Choosing the Distance Metric

The k-nearest-neighbors approach is usually used in conjunction with the weighted
Euclidean distance; unfortunately the Euclidean distance does not take into account
the performances of the solvers in a way that is helpful to us. What is needed is
a distance metric that takes into account the performances of the solvers and that
allows the possibility of making some mistakes in the prediction phase without too
much prejudice on the performances. Thus the metric should be trained with the
goal that the k nearest neighbors always prefer to be solved by the same solver
while instances that prefer different solvers are separated by a large margin.

Given two instances a and b and the running times of the m algorithms in the
portfolio A on both of them, R,,,... Ry, and Ry, ,... Ry, , we identify the best
n solvers on each (A,,,...As,) and (A4;,,... Ap,) and define their distance as a
Jaccard distance:

lintersection((Aqa,, ... Aa,), (Ab,s .. Ap,))|
|union((Aq,, - . . Aa,), (Ap,, - - . Ap,))]

Using this definition, two instances that will prefer the exact same n solvers will
have a distance of 0, while instances which prefer completely different solvers will
have a distance of 1. Moreover, using this kind of distance metric we are no longer
concerned with making small mistakes in the prediction phase: even if we switch the
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ranking between the best n solvers, the distance between two instances will remain
the same. In the presented experiments, we focus on setting n = 3, as with higher
values the performances degrades.

10.7.2 Numerical Results

In SNNAP, with the Jaccard distance metric, for each instance we are interested
in knowing the n best solvers. In the prediction phase, we used random forests,
which achieved high levels of accuracy: as stated in Table 10.4 we correctly made
91, 89, 91, and 91 % (respectively for RAND, HAND, INDU and ALL datasets) of
the predictions. We compute these percentages in the following manner. There are
29 predictions made (one per solver) for each instance, giving us a total of 5,626,
1,044, and 2,320 predictions per category. We define accuracy as the percentage of
matches between the predicted best n solvers and the true best n.

Having tried different parameters we use here the performance of just then = 3
best solvers in the calculation of the distance metric and a neighborhood size of 60.
Choosing a larger number of solvers degrades the results. This is most likely due to
scenarios where one instance is solved well by a limited number of solvers, while
all the others time out.

As can be seen in Table 10.5, the best improvement, as compared to the standard
ISAC, is achieved in the crafted dataset. Not only are the performances improved
by 60 %, but also the number of unsolved instances is halved; this also has a great
impact on the PAR10 evaluation. It is interesting to note that the crafted dataset is
the one that proves to be most difficult in terms of solving time, while being the
setting in which we achieved the most improvement.

We also achieve a significant improvement, although lower than that with the
crafted dataset, on the industrial and ALL (~ 25 %) datasets. Here the number
of unsolved instances was also halved. In the random dataset we achieved the
lowest improvement but we were able to overtake significantly the standard ISAC
approach.

We have also applied feature filtering to SNNAP and the results are shown in
Table 10.5. Feature filtering is again proved beneficial, significantly improving the
results for all our datasets and giving us a clue that not all 115 features are essential.
Results in the table have been reported only for the more successful ranking function

Table 10.4 Statistics of the four datasets used: Instances generated at random “RAND,” crafted
instances “HAND,” industrial instances “INDU,” and the union of them “ALL”

RAND HAND INDU ALL
Number of instances considered 1,949 363 805 3,117
Number of predictions 5,626 1,044 2,320 9,019

Accuracy in the prediction phase (%) 91 89 91 91
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Table 10.5 Results on the SAT benchmark, comparing the best single solver (BSS), the original
ISAC approach (ISAC), our SNNAP approach (SNNAP) (also with feature filtering), and the
virtual best solver (VBS)

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 1,551 (0) 13,154 (0) 25.28 (0)

ISAC 826.1 (6.6) 4,584 (40.9) 8.1(0.2)

SNNAP 791.4 (15.7) 4,119 (207) 7.3(0.2)

SNNAP + Filtering 723 (9.27) 3,138 (76.9) 5.28 (0.1)

VBS 358 (0) 358 (0) 0(0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 2,080 (0) 15,987 (0) 30.3 (0)

ISAC 1,743 (34.4) 13,994 (290.6) 26.5(0.9)

SNNAP 1,063 (33.86) 6,741 (405.5) 12.4 (0.4)

SNNAP + Filtering 995.5 (18.23) 6,036 (449) 10.5 (0.4)

VBS 400 (0) 400 (0) 0(0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 871 (0) 4,727 (0) 8.4 (0)

ISAC 763.4 (4.7) 3,166 (155.6) 5.2(0.7)

SNNAP 577.6 (21.5) 1,776 (220.8) 2.6 (0.4)

SNNAP + Filtering 540 (15.52) 1,630 (149) 2.4 (0.4)

VBS 319 (0) 319 (0) 0(0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)
BSS 2,015 (0) 14,727 (0) 30.9 (0)

ISAC 1,015 (10.3) 6,447 (92.4) 11.8 (0.2)

SNNAP 744.2 (14) 3,428 (141.2) 5.8(0.2)

SNNAP + Filtering 692.9 (7.2) 2,741 (211.9) 4.5 (0.1)

VBS 353 (0) 353 (0) 0(0)

(gain ratio for the random dataset, chi-squared for the crafted, industrial, and ALL

datasets).

It is clear that the dramatic decrease in the number of unsolved instances is

highly important, as they are key to lowering the average and the PAR10 scores.
This result can also be observed in Table 10.6, where we can see the percentage
of instances solved/not solved by each approach. In particular, the most significant
result is achieved, again, in the HAND dataset, where the number of instances not
solved by ISAC but solved by our approach is 17.4 % of the overall instances,
while the number of instances not solved by our approach but solved by ISAC is
only 3.3%. As we can see, this difference is also considerable in the other three
datasets. Deliberately, we chose to show this matrix only for the version of ISAC
and SNNAP without feature filtering as it offers an unbiased comparison between
the two approaches, as we have shown that ISAC does not improve after feature
filtering.
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Table 10.6 Matrix for comparing instances solved and not solved using SNNAP and ISAC for the
four datasets: RAND, HAND, INDU, and ALL

RAND HAND

SNNAP\ISAC Solved Not solved ~ SNNAP \ISAC Solved Not solved
Solved 89.4 33 Solved 70.2 17.4

Not solved 2.5 4.8 Not solved 33 9.1

INDU ALL

SNNAP\ISAC Solved Not solved ~ SNNAP \ISAC Solved Not solved
Solved 93.9 3.5 Solved 85.8 8.4

Not solved 0.9 1.7 Not solved 2.4 34

Values are in percentages

10.8 Chapter Summary

Instance-Specific Algorithm Configuration (ISAC) is a successful approach to
tuning a wide range of solvers for SAT, MIP, set covering, and others. Yet, as
has been described in previous chapters, this approach assumes that the features
describing an instance are enough to group instances so that all instances in
the cluster prefer the same solver. Yet there is no fundamental reason why this
hypothesis should hold. This chapter shows that the assumptions that ISAC makes
can be strengthened. Shown is the fact that not all employed features are useful
and that it is possible to achieve similar performance with only a fraction of the
features that are available. Further shown is the fact that it is possible to extend
the feature vector to include the past performances of solvers to help guide the
clustering process. Finally, an alternative view of ISAC is presented which uses the
existing features to predict the best three solvers for a particular instance. Using the
k nearest neighbors, the approach then scans the training data to find other instances
that preferred the same solvers, and uses them as a dynamically formed training set
to select the best solver to use. This methodology is referred to as Solver-based
Nearest Neighbors for Algorithm Portfolios (SNNAP).



Chapter 11
Conclusion

This book introduces the new methodology of instance-specific algorithm con-
figuration or ISAC. Although there has recently been a surge of research in the
area of automatic algorithm configuration, ISAC enhances the existing work by
merging the strengths of two powerful techniques: instance-oblivious tuning and
instance-specific regression. When used in isolation, these two methodologies have
major drawbacks. Existing instance-oblivious parameter tuners assume that there
is a single parameter set that will provide optimal performance over all instances,
an assumption that is not provably true for NP-hard problems. Instance-specific
regression, on the other hand, depends on accurately fitting a model to map from
features to a parameter, which is a challenging task requiring a lot of training data
when the features and parameters have non-linear interactions. ISAC resolves these
issues by relying on machine learning techniques.

This approach has been shown to be beneficial on a variety of problem types
and solvers. This book has presented a number of possible configurations and
consistently expanded the possible applications of ISAC. The main idea behind
this methodology is the assumption that although solvers have varied performance
on different instances, instances that are similar in structure result in similar
performance for a particular solver. The objective then becomes to identify these
clusters of similar instances and then tune a solver for each cluster. To find such
clusters, ISAC identifies each instance as a vector of descriptive features. When
a new instance needs to be solved, its computed features are used to assign it
to a cluster, which in turn determines the parameterization of the solver used to
solve it. Based on this methodology, the book began by using a parameterized
solver, a normalized vector of all the supplied instance features, g-means [44] for
clustering, and GGA [5] for training. This was shown to be highly effective for set
covering problems, mixed integer problems, satisfiability problems, and machine
reassignment.

The approach was then extended to be applicable to portfolios of solvers by
changing the training methodology. There are oftentimes many solvers that can be
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tuned, so instead of choosing and relying on only tuning a single parameterized
solver, we saw how to create a meta solver whose parameters could determine
not only which solver should be employed but also the best parameters for
that solver. When applied to satisfiability problems, this portfolio-based approach
was empirically shown to outperform the existing state-of-the-art regression-based
algorithm portfolio solvers like SATzilla [126] and Hydra [124].

The book then showed how ISAC can be trained dynamically for each new test
instance by changing the clustering methodology to k nearest neighbor and further
improved by training sequential schedules of solvers in a portfolio. Although similar
to the previously existing constraint satisfaction solver CPHydra [87], this book
showed how to use particular integer programming and column generation to create
a more efficient scheduling algorithm which was able to efficiently handle over 60
solvers and hundreds of instances in an online setting. This last implementation was
the basis of a 3S SAT solver that won seven medals in the 2011 SAT Competition.

ISAC was then further expanded in three orthogonal ways. First, the book showed
how to expand the methodology behind 3S to create a parallel schedule of solvers
dynamically. The book compared the resulting portfolio with the current state-
of-the-art parallel solvers on instances from all SAT categories and showed that
creating these parallel schedules marks a very significant improvement in the ability
to solve SAT instances. The new portfolio generator was then used to generate a
parallel portfolio for application instances based on the latest parallel and sequential
SAT solvers available. This portfolio performed well in the 2012 SAT Challenge.

Next, this book showed how the ISAC methodology can be used to create an
adaptive tree search-based solver that dynamically chooses the branching heuristic
that is most appropriate for the current sub-problem it observes. Here, the book
showed that in many cases in optimization when performing a complete search, each
subtree is still a problem of the same type as the original but with a slightly different
structure. By identifying how this structure changes during search, the solver can
dynamically change its guiding heuristics to best accommodate the new sub-tree.
Tested on the general MIP problem, this adaptive technique was shown to be highly
effective.

The book also touched on scenarios where a train-once methodology was
not appropriate. Scenarios were discussed where new instances come over time
and gradually become different than those used to initially train the portfolio.
The corresponding chapter discussed how to identify moments when the current
portfolio was no longer applicable and needed to be updated. The chapter then
further showed how this retuning could be done efficiently.

Finally, the book discussed the assumptions that have been made by ISAC to
that point and demonstrated their validity. Further discussed were ways how these
assumptions could be strengthened and refined to make an increasingly accurate
portfolio.

In its entirety, the book showed that ISAC is a highly configurable and effective
methodology, demonstrating that it is possible to train a solver or algorithm
automatically for enhanced performance while requiring minimal expertise and
involvement on the part of the user.
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Having laid out the groundwork, there are a number of future directions that can
be pursued to push the state-of-the-art further. One such direction involves a deeper
analysis of the base assumption that instances with similar features tend to yield to
the same algorithm. One way to do this is by creating instances that have a specific
feature vector. This way, arbitrarily tight clusters can be generated and trained on
automatically. An additional benefit to this line of research will be the ability to
expand the small existing benchmarks. As was noted in this book, certain problem
types have limited numbers of instances that cannot be used for training effectively.
This is the case for the set partitioning problems, the standard MIP benchmark, and
the industrial SAT instances.

Furthermore, by being able to generate instances with a specific feature vector
automatically, the entirety of the problem space can be explored. Such an overview
of the search space can give insight into how smooth the transitions are between
two clusters, how wide the clusters are, and how numerous the hard or easy clusters
are. Additionally, solvers won’t need to be created for the general case, but instead
research can be focused on each separate cluster where state-of-the-art solvers will
be struggling.

Exploring the entire problem space has an added bonus of identifying clusters
of easier and harder instances. Such knowledge can then be exploited by studying
instance perturbation techniques. In such a scenario, when an instance is identified
as belonging to a hard cluster, it might be possible to apply some efficient
modifications to the instance, changing its features and thereby shifting it into an
easier cluster. Observing these areas of easier and harder instances in the problem
space would also allow for a better understanding of the type of structure that leads
to difficult problems.

Alternatively, it would be interesting to explore the relations between problem
types. It is well known that any NP-complete problem can be reduced to another
NP-complete problem in polynomial time. This fact could be used to avoid coming
up with new features for each new problem type. Instead it might be enough
to convert the instance to SAT and use the 48 well-established features. Some
preliminary testing with cryptography instances suggests that regardless of the
conversion technique used to get the SAT instance, the resulting clusters are usually
very similar. Additionally for CP problems, a domain where a vector of features has
already been proposed, converting the problems to SAT results in similar clusters
regardless of whether the CP or the SAT features are employed.

Transitions to SAT are always for NP-complete problems but not always easy
or straightforward, so additional research needs to be done in automating the
feature generation. This can be done by converting the problem into black box
optimization (BBO). These problems arise in numerous applications, especially
in scientific and engineering contexts in problems that are too incomplete for
developing effective problem-specific heuristics. So the feature computation can be
done through sampling of the instance’s solution space to get a sense of the search
terrain. The question that will need to be answered is how much critical information
is needed when converting a problem like SAT into a BBO in order to compute its
features.
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Further research should also be done for the instance-oblivious tuning. In the
experiments presented in this book, GGA performed well, but in all of the tuned
experiments had a short cutoff time: under 20 min. Tuning problems where each
instance can take more time or that have more instances becomes computationally
infeasible. For example, simulations are frequently relied on for disaster recovery,
sustainability research, etc., and tuning these simulation algorithms to work quickly
and efficiently would be of immense immediate benefit. These simulations, however,
tend to run for extended periods of time in order for us to get accurate results.
It is therefore important to investigate new techniques that can find useable
parameterizations within a reasonable timeframe.

In summary, this book lays out the groundwork for a highly configurable
and effective instance-specific algorithm configuration methodology, and hopefully
further research will enhance and expand its applicability.
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