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Preface

The fast Fourier transform (FFT) algorithm, together with its many successful applica-
tions, represents one of the most important advancements in scientific and engineering
computing in this century. The wide usage of computers has been instrumental in
driving the study of the FFT, and a very large number of articles have been written
about the algorithm over the past thirty years. Some of these articles describe modi-
fications of the basic algorithm to make it more efficient or more applicable in various
circumstances. Other work has focused on implementation issues, in particular, the de-
velopment of parallel computers has spawned numerous articles about implementation
of the FFT on multiprocessors. However, to many computing and engineering profes-
sionals, the large collection of serial and parallel algorithms remain hidden inside the
FFT black box because: (1) coverage of the FFT in computing and engineering text-
books is usually brief, typically only a few pages are spent on the algorithmic aspects
of the FFT; (2) cryptic and highly variable mathematical and algorithmic notation; (3)
limited length of journal articles; and (4) important ideas and techniques in designing
efficient algorithms are sometimes buried in software or hardware-implemented FFT
programs, and not published in the open literature.

This book is intended to help rectify this situation. Our objective is to bring these
numerous and varied ideas together in a common notational framework, and make the
study of FFT an inviting and relatively painless task. In particular, the book employs
a unified and systematic approach in developing the multitude of ideas and computing
techniques employed by the FFT, and in so doing, it closes the gap between the often
brief introduction in textbooks and the equally often intimidating treatments in the
FFT literature. The unified notation and approach also facilitates the development of
new parallel FFT algorithms in the book.

This book is self-contained at several levels. First, because the fast Fourier trans-
form (FFT) is a fast “algorithm” for computing the discrete Fourier transform (DFT),
an “algorithmic approach” is adopted throughout the book. To make the material fully
accessible to readers who are not familiar with the design and analysis of computer al-
gorithms, two appendices are given to provide necessary background. Second, with the
help of examples and diagrams, the algorithms are explained in full. By exercising the
appropriate notation in a consistent manner, the algorithms are explicitly connected
to the mathematics underlying the FFT—this is often the “missing link” in the liter-
ature. The algorithms are presented in pseudo-code and a complexity analysis of each
is provided.



Features of the book

• The book is written to bridge the gap between textbooks and literature. We believe
this book is unique in this respect. The majority of textbooks largely focus on the
underlying mathematical transform (DFT) and its applications, and only a small part
is devoted to the FFT, which is a fast algorithm for computing the DFT.

• The book teaches up-to-date computational techniques relevant to the FFT. The
book systematically and thoroughly reviews, explains, and unifies FFT ideas from
journals across the disciplines of engineering, mathematics, and computer science from
1960 to 1999. In addition, the book contains several parallel FFT algorithms that are
believed to be new.

• Only background found in standard undergraduate mathematical science, computer
science, or engineering curricula is required. The notations used in the book are fully
explained and demonstrated by examples. As a consequence, this book should make
FFT literature accessible to senior undergraduates, graduate students, and computing
professionals. The book should serve as a self-teaching guide for learning about the
FFT. Also, many of the ideas discussed are of general importance in algorithm design
and analysis, efficient numerical computation, and scientific programming for both
serial or parallel computers.

Use of the book

It is expected that this book will be of interest and of use to senior undergraduate
students, graduate students, computer scientists, numerical analysts, engineering pro-
fessionals, specialists in parallel and distributed computing, and researchers working in
computational mathematics in general.

The book also has potential as a supplementary text for undergraduate and graduate
courses offered in mathematical science, computer science, and engineering programs.
Specifically, it could be used for courses in scientific computation, numerical analysis,
digital signal processing, the design and analysis of computer algorithms, parallel algo-
rithms and architectures, parallel and distributed computing, and engineering courses
treating the discrete Fourier transform and its applications.

Scope of the book

The book is organized into 24 chapters and 2 appendices. It contains 97 figures and 38
tables, as well as 25 algorithms presented in pseudo-code, along with numerous code
segments. The bibliography contains more than 100 references dated from 1960 to
1999. The chapters are organized into three parts.

I. Preliminaries Part I presents a brief introduction to the discrete Fourier trans-
form through a simple example involving trigonometric interpolation. This part is
included to make the book self-contained. Some details about floating point arithmetic
as it relates to FFT computation is also included in Part I.

II. Sequential FFT Algorithms This part contains fourteen relatively short
chapters (3 through 16). Although the FFT, like binary search and quicksort, is com-
monly used in textbooks to illustrate the divide and conquer paradigm and recursive
algorithms, the FFT has a unique feature: the application of the basic FFT algorithm



to “naturally ordered” input, if performed “in place,” yields output in “bit-reversed”
order. While this feature may be taken for granted by FFT insiders, it is often not
addressed in detail in textbooks. Again, partly because of the lack of notation linking
the underlying mathematics to the algorithm, and because it is understood by FFT
professionals, this aspect of the FFT is either left unexplained or explained very briefly
in the literature. This phenomenon, its consequences, and how to deal with it, is one
of the topics of Part II.

Similarly, the basic FFT algorithm is generally introduced as most efficient when
applied to vectors whose length N is a power of two, although it can be made even
more efficient if N is a power of four, and even more so if it is a power of eight, and so
on. These situations, as well as the case when N is arbitrary, are considered in Part
II. Other special situations, such as when the input is real rather than complex, and
various programming “tricks,” are also considered in Part II, which concludes with a
chapter on selected applications of FFT algorithms.

III. Parallel FFT Algorithms The last part deals with the many and varied
issues that arise in implementing FFT algorithms on multiprocessor computers. Part
III begins with a chapter that discusses the mapping of data to processors, because the
designs of the parallel FFTs are mainly driven by data distribution, rather than by the
way the processors are physically connected (through shared memory or by way of a
communication network.) This is a feature not shared by parallel numerical algorithms
in general.

Distributed-memory multiprocessors are discussed next, because implementing the
algorithms on shared-memory architecture is straightforward. The hypercube multi-
processor architecture is particularly considered because it is so naturally compatible
with the FFT algorithm. However, the material discussed later does not specifically
depend on the hypercube architecture.

Following that, a series of chapters contains a large collection of parallel algorithms,
including some that are believed to be new. All of the algorithms are described using
a common notation that has been derived from one introduced in the literature. As in
part II, dealing with the bit-reversal phenomenon is considered, along with balancing
the computational load and avoiding communication congestion. The last two chapters
deal with two-dimensional FFTs and the task of distributing the “twiddle factors”
among the individual processors.

Appendix A contains basic information about efficient computation, together with
some fundamentals on complexity notions and notation. Appendix B contains tech-
niques that are helpful in solving recurrence equations. Since FFT algorithms are
recursive, analysis of their complexity leads naturally to such equations.
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Part I

Preliminaries



Chapter 1

An Elementary Introduction

to the Discrete Fourier

Transform

This chapter is intended to provide a brief introduction to the discrete Fourier transform
(DFT). It is not intended to be comprehensive; instead, through a simple example, it
provides an illustration of how the computation that is the subject of this book arises,
and how its results can be used. The DFT arises in a multitude of other contexts
as well, and a dozen more DFT-related applications, together with information on a
number of excellent references, are presented in Chapter 16 in Part II of this book.
Readers familiar with the DFT may safely skip this chapter.

A major application of Fourier transforms is the analysis of a series of observations:
x�, � = 0, . . . , N−1. Typically, N will be quite large: 10000 would not be unusual. The
sources of such observations are many: ocean tidal records over many years, commu-
nication signals over many microseconds, stock prices over a few months, sonar signals
over a few minutes, and so on. The assumption is that there are repeating patterns
in the data that form part of the x�. However, usually there will be other phenomena
which may not repeat, or repeat in a way that is not discernably cyclic. This is called
“noise.” The DFT helps to identify and quantify the cyclic phenomena. If a pattern
repeats itself m times in the N observations, it is said to have Fourier frequency m.

To make this more specific, suppose one measures a signal from time t = 0 to
t = 680 in steps of 2.5 seconds, giving 273 observations. The measurements might
appear as shown in Figure 1.1. How does one make any sense out of it? As shown
later, the DFT can help.

1.1 Complex Numbers

Effective computation of the DFT relies heavily on the use of complex numbers, so it is
useful to review their basic properties. This material is elementary and probably well-
known to most readers of this book, but it is included for completeness. Historically,
complex numbers were introduced to deal with polynomial equations, such as x2 +1 =



Figure 1.1 Example of a noisy signal.
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0, which have no real solutions. Informally, they can be defined as the set C of all
“numbers” of the form a + jb where a and b are real numbers and j2 = −1.

Addition, subtraction, and multiplication are performed among complex numbers
by treating them as binomials in the unknown j and using j2 = −1 to simplify the
result. Thus

(a + jb) + (c + jd) = (a + c) + j(b + d)

and
(a + jb) × (c + jd) = (ac− bd) + j(ad + bc).

For the complex number z = a+jb, a is the real part of z and b is the imaginary part of
z. The zero element of C is 0 + 0i, and the additive inverse of z = a+ jb is −a+ i(−b).
The multiplicative inverse z−1 is

z−1 =
a− jb

a2 + b2
.

The complex conjugate of z = a + jb is denoted by z̄ and is equal to a − jb. The
modulus of z, denoted by |z |, is

√
zz̄ =

√
a2 + b2.

Some additional facts that will be used later are

ez = e(a+jb) = eaejb and ejb = cos b + j sin b.

Thus, Re(ez) = ea cos b and Im(z) = ea sin b.



Just as a real number can be pictured as a point lying on a line, a complex number
can be pictured as a point lying in a plane. With each complex number a+ jb one can
associate a vector beginning at the origin and terminating at the point (a, b). These
notions are depicted in Figure 1.2.

Figure 1.2 Visualizing complex numbers.

Instead of the pair (a, b), one can use the “length” (modulus) together with the
angle the number makes with the real axis. Thus, a+jb can be represented as r cos θ+
jr sin θ = rejθ, where r =|z |=

√
a2 + b2 and θ = arctan(b/a). This representation of a

complex number is depicted in Figure 1.3.

Figure 1.3 Polar representation of a complex number.

Multiplication of complex numbers in polar form is straightforward: if z1 = a+jb =
r1e

jθ1 and z2 = c + jd = r2e
jθ2 , then

z1z2 = r1r2e
j(θ1+θ2).

The moduli are multiplied together, and the angles are added. Note that if z = ejθ,
then |z |= 1 for all values of θ.

1.2 Trigonometric Interpolation

Suppose a function f(θ) is defined on the interval (0, 2π), with f assumed to be periodic
on the interval; thus, f(θ) = f(θ ± 2π).



Now consider constructing a trigonometric polynomial p(θ) to interpolate f(θ) of
the form

p(θ) = a0 +
n∑
k=1

ak cos kθ + bk sin kθ.(1.1)

This function has 2n+1 coefficients, so it should be possible to interpolate f at 2n+1
points. In the applications considered in this book, the points at which to interpolate
are always equally spaced on the interval:

θ� =
2�π

2n + 1
, � = 0, 1, . . . , 2n.(1.2)

Let x� = f(θ�), and consider an example with n = 2. Then the interpolation conditions
are x� = p(θ�), or

x� = a0 + a1 cos θ� + b1 sin θ� + a2 cos 2θ� + b2 sin 2θ�, � = 0, 1, . . . , 4.

This leads to the system of equations
1 cos θ0 sin θ0 cos 2θ0 sin 2θ0

1 cos θ1 sin θ1 cos 2θ1 sin 2θ1

1 cos θ2 sin θ2 cos 2θ2 sin 2θ2

1 cos θ3 sin θ3 cos 2θ3 sin 2θ3

1 cos θ4 sin θ4 cos 2θ4 sin 2θ4




a0

a1

b1
a2

b2

 =


x0

x1

x2

x3

x4

 .

Recall that ejθ = cos θ + j sin θ, which implies that

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j
.

Using these in (1.1) with n = 2 yields

p(θ) = a0 +
(a1

2

)
ejθ +

(a1

2

)
e−jθ +

(
b1
2j

)
ejθ −

(
b1
2j

)
e−jθ

+
(a2

2

)
e2jθ +

(a2

2

)
e−2jθ +

(
b2
2j

)
e2jθ −

(
b2
2j

)
e−2jθ

=
(
a2 + j b2

2

)
e−2jθ +

(
a1 + j b1

2

)
e−jθ

+a0 +
(
a1 − j b1

2

)
ejθ +

(
a2 − j b2

2

)
e2jθ.

Giving the coefficients names corresponding to the powers of ejθ yields

p(θ) = X−2e
−2jθ + X−1e

−jθ + X0 + X1e
jθ + X2e

2jθ.(1.3)

Note that the coefficients appear in complex conjugate pairs. When the x� are real, it
is straightforward to show that this is true in general. (See the next section.)

Recall (see (1.2)) that the points at which interpolation occurs are evenly spaced;
that is, θ� = �θ1. Let ω = ejθ1 = e

2jπ
2n+1 . Then all ejθ� can be expressed in terms of ω:

ejθ� = ej�θ1 = ω�, � = 0, 1, . . . , 2n.



Also, note that ω� = ω�±(2n+1) and ω−� = ω−�±(2n+1). For the example with n = 2,
ω = e

2jπ
5 , and the interpolation condition at θ� in (1.3) is

f(θ�) = x� = p(θ�) = X−2ω
−2� + X−1ω

−� + X0ω
0 + X1ω

� + X2ω
2�.

Using the fact that ω−� = ω(2n+1−�), and renaming the coefficients similarly (X−� →
X2n+1−�), the interpolation condition at x� becomes

x� = X0 + X1ω
� + X2ω

2� + X3ω
3� + X4ω

4�,

which has to be satisfied for � = 0, 1, . . . , 4 :
1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 ω9 ω12

1 ω4 ω8 ω12 ω16




X0

X1

X2

X3

X4

 =


x0

x1

x2

x3

x4

 .(1.4)

This can be written as a matrix equation

MX = x.

It will be useful to have some additional properties of ω. First note that

1 + ω + ω2 + . . . + ω2n = 0.

This can be established by observing that the expression on the left side is a geometric
sum equal to

1 − ω2n+1

1 − ω
,

and this quantity is zero because ω2n+1 = 1. For integers r and s one can show in a
similar way that

2n∑
k=0

ω(kr−ks) =
{

0 if r �= s

2n + 1 if r = s.
(1.5)

These simple results make solving MX = x easy. To begin, let

M =


1 1 1 1 1
1 ω̄ ω̄2 ω̄3 ω̄4

1 ω̄2 ω̄4 ω̄6 ω̄8

1 ω̄3 ω̄6 ω̄9 ω̄12

1 ω̄4 ω̄8 ω̄12 ω̄16

 .

Then using (1.5) above, together with the fact that ω̄� = ω−�, shows that MM is
5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

 .



Thus, M−1 = 1
5M, and

X0

X1

X2

X3

X4

 =
1
5


1 1 1 1 1
1 ω−1 ω−2 ω−3 ω−4

1 ω−2 ω−4 ω−6 ω−8

1 ω−3 ω−6 ω−9 ω−12

1 ω−4 ω−8 ω−12 ω−16




x0

x1

x2

x3

x4

 .(1.6)

It is a simple exercise to carry out this development for general n, yielding the following
formula for the DFT:

Xr =
1

2n + 1

2n∑
�=0

x�ω
−r�, r = 0, 1, . . . , 2n.(1.7)

Similarly, the inverse DFT (IDFT) has the form

x� =
2n∑
r=0

Xrω
r�, � = 0, 1, . . . , 2n.(1.8)

1.3 Analyzing the Series

What information can the Xr provide? As noted earlier for the example with n = 2,
when the given data x are real, the Xr appear in complex conjugate pairs. To establish
this, note that

X2n+1−r =
1

2n + 1

2n∑
�=0

x�ω
−(2n+1−r)� =

1
2n + 1

2n∑
�=0

x�ω
r� =

1
2n + 1

2n∑
�=0

x̄�ω̄
−r� = X̄r.

(1.9)

Writing (1.8) as

x� = X0 +
n∑
r=1

(
Xrω

r� + X2n+1−rω
�(2n+1−r)

)
and using the fact that ω�(2n+1−r) = ω−r� = ω̄r� and X2n+1−r = X̄r, x� can be
expressed as

x� = X0 +
n∑
r=1

(
Xrω

r� + X̄rω̄
r�

)
.(1.10)

Recall that if a and b are complex numbers, then

a + ā = 2Re(a), ab =|a ||b | ej(θa+θb) and Re(ab) =|a ||b | cos(θa + θb).

Using these, (1.10) can be written as

x� = X0 + 2
n∑
r=1

Re(Xrωr�) = X0 + 2
n∑
r=1

|Xr | cos
(

2r�π
2n + 1

+ φr

)
,



where 2r�π
2n+1 is the phase angle of ωr� and φr is the phase angle of Xr. Thus, after com-

puting the coefficients Xr, r = 0, 1, . . . , 2n, the interpolating function can be evaluated
at any point in the interval [0, 2π] using the formula

p(θ) = X0 + 2
n∑
r=1

|Xr | cos(rθ + φr).

In many applications, it is the amplitudes (the size of 2 |Xr |) that are of interest. They
indicate the strength of each frequency in the signal.

To make this discussion concrete, consider the signal shown in Figure 1.1, where
the 273 measurements are plotted. Using Matlab,1 one can compute and plot |X |, as
shown on the left in Figure 1.4. Note that apart from the left endpoint (corresponding

Figure 1.4 Plot of |X | for the example in Figure 1.1.
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to |X0 |), the plot of the entire |X | is symmetric, as expected; as shown above, the
Xr occur in complex conjugate pairs, with Xr = X̄2n+1−r. The plot on the right in
Figure 1.4 contains the first 30 components of |X | so that more detail can be seen. It
suggests that the signal has two dominant Fourier frequencies: 10 and 30.

1.4 Fourier Frequency Versus Time Frequency

As θ goes from 0 to 2π, cos(rθ + φr) makes r cycles. Suppose the x� are collected over
an interval of T seconds. As θ goes from 0 to 2π, t goes from 0 to T . Thus, cos(rθ+φr)
oscillates at r/T cycles per second. Making a change of variable yields

p(t) = X0 + 2
n∑
r=1

|Xr | cos
(
2π

( r

T

)
t + φr

)
.(1.11)

The usual practice is to express the phase shift φr in terms of a negative shift in time
t. Thus, (1.11) is often written in the form

p(t) = X0 + 2
n∑
r=1

|Xr | cos
(
2π

( r

T

)
(t− tr)

)
(1.12)

1Matlab is a proprietary commercial product of The MathWorks, Inc., Natick, MA. Web URL:

http://www.mathworks.com



where

tr =
−φr

2π
(
r
T

) .
Returning to the signal shown in Figure 1.1, recall that the 273 data elements were
collected at intervals of 2.5 seconds over a period of T = 680 seconds. Thus, since
the dominant Fourier frequencies in the signal appear to be 10 and 30, the dominant
frequencies in cycles per second would be 0.014706 and 0.04418 cycles per second.
Figure 1.5 contains a plot of the first 40 amplitudes (2 |Xr |) against cycles per second.

Figure 1.5 Plot of amplitudes against cycles per second for the example in Figure 1.1.
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1.5 Filtering a Signal

Suppose | Xd | is much larger than the other coefficients. If one assumes the other
frequencies are the result of noise, one can “clean up” the signal by setting all but Xd
to zero. Thus, (1.11) might be replaced by the filtered signal

pclean(t) = X0 + 2 |Xd | cos
(

2π
(
d

T

)
t + φd

)
.

Of course there may be several apparently dominant frequencies, in which case more
than one of the elements of X would be retained. As an illustration, again consider
the example of Figure 1.1. The dominant signals appear to be Fourier frequency 10
and 30. Discarding all elements of X for which | Xr |< 0.6 yields a “cleaned up”
signal. Evaluating (1.12) from t = 0 to t = 250 yields the signal shown on the right in
Figure 1.6. The plot on the left is the corresponding part of the original signal shown
in Figure 1.1.

There is vast literature on digital filtering, and the strategy described here is in-
tended only to illustrate the basic idea. For a comprehensive introduction to the topic,
see Terrell [103].



Figure 1.6 Plot of part of the original and clean signals for the example in Figure 1.1.

1.6 How Often Does One Sample?

In performing the analysis of a time series, one has the values of a certain (unknown)
function f(t) at equally spaced intervals of time. Let δT be the time interval between
successive observations in seconds. Then 1/δT is called the sampling rate. This is
the number of observations taken each second. If the sampling rate is 1/δT , what
frequencies can the Fourier transform reliably detect?

An intuitive argument is as follows. Consider a pure cosine signal with frequency
1, sampled over T = 3 seconds as shown in Figure 1.7. In the representation

Figure 1.7 A pure cosine signal.
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p(t) = X0 + 2
n∑
r=1

|Xr | cos
(
2π

( r

T

)
t + φr

)
,

it is evident that in order to be able to represent this signal, the cos(2π
(

3
T

)
t + φ3)

term must be present. This implies that one needs n ≥ 3 or 2n + 1 ≥ 7. That is, more
than 2 samples per second, or at least 7 sample points.

Another way to look at it is as follows. One needs to sample often enough to detect
all the oscillations if the true signal is to be detected. In order to detect oscillations
up to s cycles per second, one must sample at a rate at least 2s times per second. In
most practical situations, there is a range of frequencies of interest, and the sampling
rate is chosen accordingly.



1.7 Notes and References

The trigonometric polynomial

p(θ) = a0 +
n∑
k=1

ak cos kθ + bk sin kθ

was used in Section 1.2 to interpolate a periodic function f(θ). This polynomial has
2n + 1 coefficients, and by interpolating f(θ) at the 2n + 1 primitive roots of unity, a
DFT of length N = 2n + 1 results.

DFTs of length N = 2s are the most convenient and most efficient to compute.
Such a DFT can be obtained by using a a trigonometric polynomial having a slightly
different form than the one above, namely

p(θ) =
a0

2
+

an+1

2
cos (n + 1)θ +

n∑
k=1

ak cos kθ + bk sin kθ.(1.13)

This polynomial has 2n+ 2 coefficients; thus, n can be chosen so that N = 2n+ 2 is a
power of two. The derivation of the DFT using (1.13) is similar to the derivation done
for the case where N is odd, and is left as an exercise.



Chapter 2

Some Mathematical and

Computational Preliminaries

The development in Chapter 1 showed that the computation of the DFT involves the
multiplication of a matrix M by a vector x, where the matrix has very special structure.
In particular, it is symmetric, and each of its elements is a power of a single number
ω, where ω depends on the order N = 2n+1 of the matrix1. These numbers are called
the twiddle factors. Moreover, since ω−� = ω−�±N , only N of the N2 entries in the
matrix are actually different. Finally, since ω depends on N , in many contexts it will
be necessary to distinguish ω’s corresponding to different values of N ; to do this, the
notation ω�N will be used.

For example, the matrix M in (1.6) satisfies
1 1 1 1 1
1 ω−1 ω−2 ω−3 ω−4

1 ω−2 ω−4 ω−6 ω−8

1 ω−3 ω−6 ω−9 ω−12

1 ω−4 ω−8 ω−12 ω−16

 =


1 1 1 1 1
1 ω−1 ω−2 ω−3 ω−4

1 ω−2 ω−4 ω−1 ω−3

1 ω−3 ω−1 ω−4 ω−2

1 ω−4 ω−3 ω−2 ω−1

 .

Given these features, it is not surprising that when N is a power of two, the structure of
the matrix can be exploited to reduce the cost2 of computing X from Θ

(
N2

)
resulting

from a straightforward matrix times vector computation to Θ (N log2 N). Indeed,
exploring the numerous variants of the fast Fourier transform (FFT) algorithm which
exploit this structure is a main topic of this book. However, the price of this reduction
is the use of complex arithmetic. This chapter deals with various aspects of complex
arithmetic, together with the efficient computation of the twiddle factors. Usually the
twiddle factors are computed in advance of the rest of the computation, although in
some contexts they may be computed “on the fly.” This issue is explored more fully
in Chapter 4 for implementing sequential FFTs and in Chapter 24 for implementing
parallel FFTs.

1In the remainder of this book, the order of the matrices M and M will be denoted by N . Moreover,

as will be apparent in the development in the next chapter, N will often be a power of 2.
2The Θ-notation defined in Appendix A is used to denote the arithmetic cost of each algorithm.



2.1 Computing the Twiddle Factors

Let N be a power of 2, and recall that

ωrN = ejrθ = cos(rθ) + j sin(rθ), θ =
2π
N

, j =
√
−1 .

Since the ωrN ’s are the complex roots of unity, they are symmetric and equally spaced
on the unit circle. Thus, if a+ jb is a twiddle factor, then so are ±a± jb and ±b± ja.
By exploiting this property, one needs only to compute the first N/8−1 values, namely
ωrN for r = 1, . . . , N/8 − 1. (Note that ωrN = 1 for r = 0.)

The most straightforward approach is to use the standard trigonometric function
library procedures for each of the N/8− 1 values of cos(rθ) and sin(rθ). The cost will
be N/4−2 trigonometric function calls, and each call will require several floating-point
arithmetic operations.

To avoid the relatively expensive trigonometric function calls, one can use the follow-
ing algorithm proposed by Singleton [83]. It makes use of the trigonometric identities.

cos(a + b) = cos a cos b− sin a sin b

cos a = cos
(
2 × a

2

)
= 1 − 2 sin2

(a

2

)
sin(a + b) = sin a cos b + sin b cos a

Letting θ = 2π/N as above, cos((r + 1)θ) can be computed in terms of cos(rθ) and
sin(rθ) according to the formula derived below.

cos((r + 1)θ) = cos(rθ + θ)

= cos(rθ) cos(θ) − sin(rθ) sin(θ)

= cos(rθ)
(
1 − 2 sin2(θ/2)

)
− sin(rθ) sin(θ)

= C × cos(rθ) − S × sin(rθ) ,

where the constants C and S are

C = 1 − 2 sin2(θ/2) and S = sin(θ).

When r = 0, the initial values are cos(0) = 1 and sin(0) = 0. Using these same
constants C and S, sin((r + 1)θ) can be computed in terms of cos(rθ) and sin(rθ) in a
similar way:

sin((r + 1)θ) = sin(rθ + θ)

= sin(rθ) cos(θ) + cos(rθ) sin(θ)

= sin(rθ)
(
1 − 2 sin2(θ/2)

)
+ cos(rθ) sin(θ)

= S × cos(rθ) + C × sin(rθ) .

A pseudo-code program for computing the N/2 twiddle factors is given as Algo-
rithm 2.1 below. Note that the array wcos stores the real part of the twiddle factors
and the array wsin stores the imaginary part of the twiddle factors.



Algorithm 2.1 Singleton’s method for computing the N/2 twiddle factors.

begin
θ := 2π/N
S := sin(θ); C := 1 − 2 ∗ sin2(θ/2) Call library function sin to compute S and C

wcos[0] := 1; wsin[0] := 0 Initialize ω0
N = cos(0) + j sin(0)

for K := 0 to N/8 − 2 do Compute the first N/8 factors
wcos[K + 1] := C ∗ wcos[K] − S ∗ wsin[K]
wsin[K + 1] := S ∗ wcos[K] + C ∗ wsin[K]

end for
L := N/8 Store the next N/8 factors
wcos[L] :=

√
2/2; wsin[L] :=

√
2/2 ωN/8

N = cos(π/4) + j sin(π/4)
for K := 1 to N/8 − 1 do

wcos[L + K] := wsin[L−K]
wsin[L + K] := wcos[L−K]

end for
L := N/4 Store the next N/4 factors
wcos[L] := 0; wsin[L] := 1 ωN/4

N = cos(π/2) + j sin(π/2)
for K := 1 to N/4 − 1 do

wcos[L + K] := −wcos[L−K]
wsin[L + K] := wsin[L−K]

end for
end

2.2 Multiplying Two Complex Numbers

Recall from Chapter 1 that given complex numbers z1 = a + jb and z2 = c + jd,

z1 + z2 = (a + jb) + (c + jd) = (a + c) + j(b + d) ,(2.1)

z1 × z2 = (a + jb) × (c + jd) = (a× c− b× d) + j(a× d + b× c) .(2.2)

Note that the relation j2 = −1 has been used in obtaining (2.2).

2.2.1 Real floating-point operation (FLOP) count

Since real floating-point binary operations are usually the only ones implemented by
the computer hardware, the operation count of a computer algorithm is almost univer-
sally expressed in terms of “flops”; that is, real floating-point operations. According
to rule (2.1), adding two complex numbers requires two real additions; according to
rule (2.2), multiplying two complex numbers requires four real multiplications and two
real additions/subtractions.

It is well-known that multiplying two complex numbers can also be done using three
multiplications and five additions. Letting λ = z1 × z2 = (a + jb) × (c + jd), the real
part of λ, denoted by Re(λ), and the imaginary part of λ, denoted by Im(λ), can be



obtained as shown in (2.3) below.

m1 = (a + b) × c

m2 = (d + c) × b

m3 = (d− c) × a

Re(λ) = m1 −m2

Im(λ) = m1 + m3

(2.3)

Compared to directly evaluating the right-hand side of (2.2), the method described
in (2.3) saves one real multiplication at the expense of three additional real addi-
tions/subtractions. Consequently, this method is more economical only when a multi-
plication takes significantly longer than an addition/subtraction, which may have been
true for some ancient computers, but is almost certainly not true today. Indeed, such
operations usually take equal time. Note also that the total flop count is increased
from six in (2.2) to eight in (2.3).

2.2.2 Special considerations in computing the FFT

Since a pre-computed twiddle factor is always one of the two operands involved in each
complex multiplication in the FFT, any intermediate results involving only the real
and imaginary parts of a twiddle factor can be pre-computed and stored for later use.
For example, if ω�

N = c + jd, one may pre-compute and store δ = d + c and γ = d− c,
which are the intermediate results used by (2.3). With δ, γ, and the real part c stored,
each complex multiplication in the FFT involving x� = a + jb and ω�

N = c + jd can
be computed using three real multiplications and three real additions/subtractions
following (2.4) below.

m1 = (a + b) × c

m2 = δ × b

m3 = γ × a

Re(λ) = m1 −m2

Im(λ) = m1 + m3

(2.4)

Compared to using formula (2.2), the total flop count in (2.4) remains six, but one
multiplication has been exchanged for one addition/subtraction. This will result in
lower execution time only if an addition/subtraction costs less than one multiplication.
As noted earlier, this is usually not the case on modern computers. The disadvantage is
that 50% more space is needed to store the pre-computed intermediate results involving
the twiddle factors; c, γ and δ must be stored, rather than c and d.

The paragraph above, together with (2.4), explains the common practice by re-
searchers to count a total of six flops for each complex multiplication in evaluating the
various FFT algorithms. Following this practice, all complexity results provided in this
book are obtained using six flops as the cost of a complex multiplication.



2.3 Expressing Complex Multiply-Adds in Terms of

Real Multiply-Adds

As noted earlier, most high-performance workstations can perform multiplications as
fast as additions. Moreover, many of them can do a multiplication and an addition
simultaneously. The latter is accomplished on some machines by a single multiply-add
instruction. Naturally, one would like to exploit this capability [48]. To make use of
such a multiply-add instruction, the computation of complex z = z1 + ω × z2 may be
formulated as shown below, where z1 = a + jb, ω = c + js, and z2 = d + je.

δ = s/c

m1 = d− δ × e

m2 = e + δ × d

Re(z) = a + c×m1

Im(z) = b + c×m2.

(2.5)

Thus, in total, one division and four multiply-adds are required to compute z. For-
mula (2.5) is derived below.

z = z1 + ω × z2

= (a + jb) + (c + js) × (d + je)

= (a + jb) + (c× d− s× e) + j(s× d + c× e)

= a + (c× d− s× e) + j (b + (c× e + s× d))

= a + c×
(
d−

(s

c

)
× e

)
+ j

(
b + c×

(
e +

(s

c

)
× d

))
= a + c× (d− δ × e) + j(b + c× (e + δ × d))

= a + c×m1 + j(b + c×m2).

As will be apparent in the following chapters, the FFT computation is dominated
by complex multiply-adds. In [48], the idea of pairing up multiplications and additions
is exploited fully in the implementation of the radix 2, 3, 4, and 5 FFT kernels. How-
ever, the success of this strategy depends on whether a compiler can generate efficient
machine code for the new FFT kernels as well as on other idiosyncrasies of different
machines. The actual execution time may not be improved. See [48] for details on
timing and accuracy issues associated with this strategy.

2.4 Solving Recurrences to Determine an Unknown

Function

In various parts of subsequent chapters, it will be necessary to determine the com-
putational cost of various algorithms. These algorithms are recursive; the solution of
a problem of size N is the result of (recursively) solving two problems of size N/2,
together with combining their solutions to obtain the solution to the original problem



of size N . Thus, the task of determining the arithmetic cost of such algorithms is to
determine a function T (N), where

T (N) =

{
2T

(
N
2

)
+ βN if N = 2k > 1,

γ if N = 1.
(2.6)

Here βN is the cost of combining the solutions to the two half-size problems. The
solution to this problem,

T (N) = βN log2 N + Θ(N),(2.7)

is derived in Appendix B; the Θ-notation is defined in Appendix A. A slightly more
complicated recurrence arises in the analysis of some generalized FFT algorithms that
are considered in subsequent chapters. For example, some algorithms provide a solution
to the original problem of size N by (recursively) solving α problems of size N/α and
then combining their solutions to obtain the solution to the original problem of size N .
The appropriate recurrence is shown below, where now βN is the cost of combining
the solutions to the α problems of size N/α.

T (N) =

{
αT

(
N
α

)
+ βN if N = αk > 1,

γ if N = 1.
(2.8)

The solution to this problem is

T (N) = βN logαN + Θ(N).(2.9)

These results, their derivation, together with a number of generalizations, can be found
in Appendix B. Some basic information about efficient computation together with some
fundamentals on complexity notions and notation, such as the “big-Oh” notation, the
“big-Omega” notation, and the Θ-notation, are contained in Appendix A.



Part II

Sequential FFT Algorithms



Chapter 3

The Divide-and-Conquer

Paradigm and Two Basic FFT

Algorithms

As noted earlier, the computation of the DFT involves the multiplication of a matrix
M by a vector x, where the matrix has very special structure. FFT algorithms exploit
that structure by employing a a divide-and-conquer paradigm. Developments over the
past 30 years have led to a host of variations of the basic algorithm; these are the topics
of subsequent chapters. In addition, the development of multiprocessor computers has
spurred the development of FFT algorithms specifically tailored to run well on such
machines. These too are considered in subsequent chapters of this book.

The purpose of this chapter is to introduce the main ideas of FFT algorithms. This
will serve as a basis and motivation for the material presented in subsequent chapters,
where numerous issues related to its efficient implementation are considered.

The three major steps of the divide-and-conquer paradigm are

Step 1. Divide the problem into two or more subproblems of smaller size.

Step 2. Solve each subproblem recursively by the same algorithm. Apply the bound-
ary condition to terminate the recursion when the sizes of the subproblems are
small enough.

Step 3. Obtain the solution for the original problem by combining the solutions to
the subproblems.

The radix-2 FFT is a recursive algorithm obtained from dividing the given problem
(and each subproblem) into two subproblems of half the size. Within this framework,
there are two commonly-used FFT variants which differ in the way the two half-size
subproblems are defined. They are referred to as the DIT (decimation in time) FFT
and the DIF (decimation in frequency) FFT, and are derived below.

It is intuitively apparent that a divide-and-conquer strategy will work best when N

is a power of two, since subdivision of the problems into successively smaller ones can
proceed until their size is one. Of course, there are many circumstances when it is not



possible to arrange that N is a power of two, and so the algorithms must be modified
accordingly. Such modifications are dealt with in detail in later chapters. However,
in this chapter it is assumed that N = 2n. Also, since the algorithm involves solving
problems of different sizes, it is necessary to distinguish among their respective ω’s; ωq
will refer to the ω corresponding to a problem of size q.

In addition, to simplify the presentation in the remainder of the book, and to avoid
notational clutter, two adjustments have been made in the notation in the sequel. First,
the factor 1

N has been omitted from consideration in the computations. This obviously
does not materially change the computation. Second, ω has been implicitly redefined
as ω̄, so the negative superscript in (1.7) can be omitted. Again, this does not change
things in any material way, but does make the presentation somewhat cleaner. Thus,
the equation actually studied in the remainder of this book is

Xr =
N−1∑
�=0

x�ω
r�, r = 0, 1, . . . , N − 1.(3.1)

The following identities involving the twiddle factors are used repeatedly in what fol-
lows.

(ωN)
N
2 = −1, ωN

2
= ω2

N , ωN

N = 1.(3.2)

3.1 Radix-2 Decimation-In-Time (DIT) FFT

The radix-2 DIT FFT is derived by first rewriting equation (3.1) as

Xr =

N
2 −1∑
k=0

x2kω
r(2k)
N + ωrN

N
2 −1∑
k=0

x2k+1ω
r(2k)
N , r = 0, 1, . . . , N − 1.(3.3)

Using the identity ωN
2

= ω2
N from (3.2), (3.3) can be written as

Xr =

N
2 −1∑
k=0

x2kω
rk
N
2

+ ωrN

N
2 −1∑
k=0

x2k+1ω
rk
N
2
, r = 0, 1, . . . , N − 1.(3.4)

Since ωrkN
2

= ω
(r+N

2 )k
N
2

, it is necessary to compute only the sums for r = 0, 1, . . . , N2 − 1.
Thus, each summation in (3.4) can be interpreted as a DFT of size N/2, the first
involving the even-indexed set {x2k|k = 0, . . . , N/2 − 1}, and the second involving the
odd-indexed set {x2k+1|k = 0, . . . , N/2− 1}. (Hence the use of the term decimation in
time.) Defining yk = x2k and zk = x2k+1 in (3.4) yields the two subproblems below,
each having a form identical to (3.1) with N replaced by N/2:

Yr =

N
2 −1∑
k=0

ykω
rk
N
2
, r = 0, 1, . . . , N/2 − 1,(3.5)

and

Zr =

N
2 −1∑
k=0

zkω
rk
N
2
, r = 0, 1, . . . , N/2 − 1.(3.6)



After these two subproblems are each (recursively) solved, the solution to the original
problem of size N is obtained using (3.4). The first N/2 terms are given by

Xr = Yr + ωrNZr, r = 0, 1, . . . , N/2 − 1,(3.7)

and using the fact that ω
N
2 +r

N = −ωrN and ω
N
2
N
2

= 1, the remaining terms are given by

Xr+N
2

=

N
2 −1∑
k=0

ykω
(r+N

2 )k
N
2

+ ω
r+N

2
N

N
2 −1∑
k=0

zkω
(r+N

2 )k
N
2

=

N
2 −1∑
k=0

ykω
rk
N
2
− ωrN

N
2 −1∑
k=0

zkω
rk
N
2

= Yr − ωrNZr, r = 0, 1, . . . , N/2 − 1.

(3.8)

Note that equations (3.7) and (3.8) can be applied to any problem of even size. There-
fore, while they appear to represent only the last (combination) step, it is understood
that when the problem size is a power of 2, the two subproblems defined by equations
(3.5) and (3.6) (as well the subsequent subproblems of size ≥ 2) would have each been
solved in exactly the same manner.

The computation represented by equations (3.7) and (3.8) is commonly referred
to as a Cooley-Tukey butterfly in the literature, and is depicted by the annotated
butterfly symbol in Figure 3.1 below.

Figure 3.1 The Cooley-Tukey butterfly.

3.1.1 Analyzing the arithmetic cost

Let T (N) be the arithmetic cost of computing the radix-2 DIT FFT of size N , which
implies that computing a half-size transform using the same algorithm costs T

(
N
2

)
. In

order to set up the recurrence equation, one needs to relate T (N) to T
(
N
2

)
. According

to (3.7) and (3.8), N complex additions and N
2 complex multiplications are needed

to complete the transform, assuming that the twiddle factors are pre-computed as
suggested in Section 2.1.

Recall that that one complex addition incurs two real additions according to (2.1),
and one complex multiplication (with pre-computed intermediate results involving the
real and imaginary parts of a twiddle factor) incurs three real multiplications and three
real additions according to (2.4).

Therefore, counting a floating-point addition or multiplication as one flop, 2N flops
are incurred by the N complex additions, and 3N flops are incurred by the N2 complex
multiplications. In total, 5N flops are needed to complete the transform after the two



half-size subproblems are each solved at the cost of T
(
N
2

)
. Accordingly, the arithmetic

cost T (N) is represented by the following recurrence.

T (N) =

{
2T

(
N
2

)
+ 5N if N = 2n ≥ 2 ,

0 if N = 1.
(3.9)

Comparing (3.9) with (2.6) and using (2.7) leads to the following expression for the
arithmetic cost:

T (N) = 5N log2 N .(3.10)

3.2 Radix-2 Decimation-In-Frequency (DIF) FFT

As its name implies, the radix-2 DIF FFT algorithm is obtained by decimating the
output frequency series into an even-indexed set {X2k |k = 0, . . . , N/2 − 1} and an
odd-indexed set {X2k+1|k = 0, . . . , N/2 − 1}. To define the two half-size subproblems,
equation (3.1) is rewritten as

Xr =

N
2 −1∑
�=0

x�ω
r�
N +

N−1∑
�=N

2

x�ω
r�
N =

N
2 −1∑
�=0

x�ω
r�
N +

N
2 −1∑
�=0

x�+N
2
ω
r(�+N

2 )
N

=

N
2 −1∑
�=0

(
x� + x�+N

2
ω
rN

2
N

)
ωr�N , r = 0, 1, . . . , N − 1.

(3.11)

For r even, using (3.2) in (3.11) yields

X2k =

N
2 −1∑
�=0

(
x� + x�+N

2
ωkNN

)
ω2k�

N

=

N
2 −1∑
�=0

(
x� + x�+N

2

)
ωk�N

2
, k = 0, 1, . . . , N/2 − 1.

(3.12)

Defining Yk = X2k and y� = x� + x�+N
2

yields the half-size subproblem

Yk =

N
2 −1∑
�=0

y�ω
k�
N
2
, k = 0, 1, . . . , N/2 − 1.(3.13)

Similarly, for r odd, using (3.2) in (3.11) yields

X2k+1 =

N
2 −1∑
�=0

(
x� + x�+N

2
ω

(2k+1)N
2

N

)
ω

(2k+1)�
N

=

N
2 −1∑
�=0

((
x� − x�+N

2

)
ω�N

)
ωk�N

2
, k = 0, 1, . . . , N/2 − 1.

(3.14)

Defining Zk = X2k+1 and z� =
(
x� − x�+N

2

)
ω�N yields the second half-size problem

Zk =

N
2 −1∑
�=0

z�ω
k�
N
2
, k = 0, 1, . . . , N/2 − 1.(3.15)



Note that because X2k = Yk in (3.13) and X2k+1 = Zk in (3.15), no more computation
is needed to obtain the solution for the original problems after the two subproblems
are solved. Therefore, in the implementation of the DIF FFT, the bulk of the work
is done during the subdivision step, i.e., the set-up of appropriate subproblems, and
there is no combination step. Consequently, the computation of y� = x� + x�+N

2
and

z� = (x� − x�+N
2
)ω�N completes the first (subdivision) step.

The computation of y� and z� in the subdivision step as defined above is referred to
as the Gentleman-Sande butterfly in the literature, and is depicted by the annotated
butterfly symbol in Figure 3.2.

Figure 3.2 The Gentleman-Sande butterfly.

3.2.1 Analyzing the arithmetic cost

Observe that the computation of y� and z� in the subdivision step requires N com-
plex additions and N

2 complex multiplications, which amount to the same cost as the
combination step in the radix-2 DIT FFT algorithm discussed earlier, and they are
the only cost in addition to solving the two half-size subproblems at the cost of T

(
N
2

)
each. Accordingly, the total arithmetic cost of the radix-2 DIF FFT is also represented
by the recurrence equation (3.9), and T (N) = 5N log2 N from (3.10).

3.3 Notes and References

The basic form of the DIT (decimation in time) FFT presented in Section 3.1 was used
by Cooley and Tukey [33]; the basic form of the DIF (decimation in frequency) FFT
presented in Section 3.2 was found independently by Gentleman and Sande [47], and
Cooley and Stockham according to [30].

An interesting account of the history of the fast Fourier transform may be found in
the article by Cooley, Lewis, and Welch [32]. An account of Gauss and the history of
the FFT is contained in a more recent article by Heideman, Johnson, and Burrus [52].
A bibliography of more than 3500 titles on the fast Fourier transform and convolution
algorithms was published in 1995 [85].
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Sequential FFT Algorithms



Chapter 4

Deciphering the Scrambled

Output from In-Place FFT

Computation

In practice, FFT computations are normally performed in place in a one-dimensional
array, with new values overwriting old values as implied by the butterflies introduced
in the previous chapter. For example, Figure 4.2 implies that y� overwrites x� and z�
overwrites x�+N

2
. A consequence of this, although the details may not yet be clear,

is that the output is “scrambled”; the order of the elements of the vector X in the
array will not generally correspond to that of the input x. For example, applying the
DIF FFT to the data x stored in the array a will result in X “scrambled” in a when
the computation is complete, as shown in Figure 4.1. One of the main objectives of
this chapter is to develop machinery to facilitate a clear understanding of how this
scrambling occurs. Some notation that will be useful in the remainder of the book will
also be introduced. The DIF FFT algorithm will be used as the vehicle with which to
carry out these developments.

Figure 4.1 The input x in array a is overwritten by scrambled output X.

Consider the first subdivision step of the radix-2 DIF FFT, which is depicted by
the Gentleman-Sande butterfly in Figure 4.2. Recall that by defining y� = x� + x�+N

2



Figure 4.2 The Gentleman-Sande butterfly.

and z� =
(
x� − x�+N

2

)
ω�N the two half-size subproblems to be solved are

Yk = X2k =

N
2 −1∑
�=0

y�ω
k�
N
2
, k = 0, 1, . . . , N/2 − 1,(4.1)

and

Zk = X2k+1 =

N
2 −1∑
�=0

z�ω
k�
N
2
, k = 0, 1, . . . , N/2 − 1.(4.2)

Definition 4.1 The input data x0, x1, · · · , xN−1 are said to be in “natural order” if
xi and xi+1 are stored in consecutive locations in a for all 0 ≤ i ≤ N − 2. Similarly,
the output data X0, X1, · · · , XN−1 are said to be in natural order if Xi and Xi+1 are
stored in consecutive locations in a for all 0 ≤ i ≤ N − 2.

For example, the eight input elements x0, x1, . . . , x7 in Figure 4.1 are in natural order
but the output elements X0, X1, . . . , X7 are not. Throughout this chapter it is assumed
that the input data xi, 0 ≤ i < N are stored in the one-dimensional array a in natural
order.

Since the FFT computations are performed in place repeatedly on subproblems of
various sizes, determining the location of Xr in the array at the end of the compu-
tation is not immediately obvious. The butterfly notation does not explicitly relate
the locations of the input data to the locations of the output data – as noted earlier,
the Gentleman-Sande butterfly in Figure 4.2 displays only the first subdivision step
of the recursive DIF FFT algorithm. Thus, there is a gap between the elegant (but
somewhat implicit) butterfly notation and the detailed specification of the positions of
the outputs Xr contained in the repeatedly modified array.

The purpose of the following sections is to close this gap by developing an iterative
form of the radix-2 DIF FFT algorithm and using a simple notation to assist in its
specification. The notation adopted will also facilitate the adaptation of these FFT
algorithms to parallel processing, which is the focus of Part III of this book.

4.1 Iterative Form of the Radix-2 DIF FFT

Recall that each subdivision step is defined recursively by the Gentleman-Sande but-
terfly. Since there is no combination step, it is straightforward to derive an iterative



algorithm by simply subdividing each resulting subproblem iteratively until the prob-
lem size is one. This iterative subdividing process is presented in Algorithm 4.1.

Algorithm 4.1 The skeleton of an iterative radix-2 DIF FFT algorithm.

begin
NumOfProblems := 1 Initially: One problem of size N
ProblemSize := N

while ProblemSize > 1 do Halve each problem
for K := 1 to NumOfProblems do

Compute the Gentleman-Sande butterfly to divide

the Kth problem into two halves.

end for
NumOfProblems := NumOfProblems ∗ 2
ProblemSize := ProblemSize/2

end while
end

As discussed in Section 2.1, the twiddle factors are assumed to have been pre-
computed and stored in an array w, with w[�] = ω�N , 0 ≤ � < N/2. To halve the
Kth subproblem, the pseudo-code shown in Figure 4.3 can now be inserted inside the
for-loop in Algorithm 4.1 The result is Algorithm 4.2.

Figure 4.3 The pseudo-code implementing the Gentleman-Sande butterfly.



Algorithm 4.2 The iterative radix-2 DIF FFT algorithm in pseudo-code.

begin
NumOfProblems := 1 Initially: One problem of size N
ProblemSize := N

while ProblemSize > 1 do Halve each problem
HalfSize := ProblemSize/2
for K := 0 to NumOfProblems − 1 do

JFirst := K ∗ ProblemSize

JLast := JFirst + HalfSize − 1
Jtwiddle := 0
for J := JFirst to JLast do

W := w[Jtwiddle] Access pre-stored w[�] = ω�N
Temp := a[J ]
a[J ] := Temp + a[J + HalfSize]
a[J + HalfSize] := W ∗ (Temp − a[J + HalfSize])
Jtwiddle := Jtwiddle + NumOfProblems

end for
end for
NumOfProblems := 2 ∗ NumOfProblems

ProblemSize := HalfSize

end while
end

4.2 Applying the Iterative DIF FFT to a N = 32

Example.

To have a concrete example for use throughout this book, the iterative DIF FFT
Algorithm 4.2 is applied to an input sequence of size N = 32 = 25. Figure 4.4 displays
the initial contents of a, the five stages of butterfly computation, and the resulting
scrambled sequence (which will be deciphered in Section 4.4.)

To help identify the pairs of subproblems resulting from every stage of butterfly
computation, the subproblems involving a[0], which initially contains the input element
x0, are highlighted in Figure 4.4.

Note that, in general, for an input sequence of N = 2n elements, there are exactly
N/2 butterflies in each of the log2 N stages of butterfly computations.



Figure 4.4 The DIF FFT with naturally ordered input and bit-reversed output.

Adapted from E. Chu and A. George [28], Linear Algebra and its Applications, 284:95–124, 1998.

With permission.



4.3 Storing and Accessing Pre-computed Twiddle Fac-

tors

The actual performance of an algorithm often depends on whether the algorithm ac-
cesses data in the computer memory efficiently. This is particularly true on today’s
high-performance machines, where the floating-point arithmetic is so much faster than
the time required to transfer data in and out of memory. Using the example in Fig-
ure 4.4, it is a simple task to verify that after the first stage of Algorithm 4.2 is com-
pleted, only a subset of the N/2 pre-computed ω�N elements are accessed in each of the
subsequent stages. This subset becomes smaller and smaller as depicted in Figure 4.5
below for N/2 = 16.

Figure 4.5 Accessing the short w vector by the DIF FFT.

Figure 4.5 shows that the individual factors are accessed in array locations apart
by a stride equal to a power of two. This causes the so-called “power-of-2” problem on
machines with a hierarchy of memory banks. To avoid this problem, it is common to
store the individual twiddle factors required in each stage in consecutive locations of a
long w vector of size N − 1 as shown in Figure 4.6. It is a simple task to modify the
pseudo-code program of the FFT Algorithm 4.2 to employ the long w vector, and it is
left as an exercise.



Figure 4.6 Accessing the long w vector by the DIF FFT.



4.4 A Binary Address Based Notation and the Bit-

Reversed Output

To provide background, and to make this section self-contained, a brief review of the
binary number system is presented.

4.4.1 Binary representation of positive decimal integers

Definition 4.2 The n-bit sequence in−1 · · · i1i0, where ik = 0 or 1 for 0 ≤ k ≤ n− 1,
represents positive integer value L in the range 0 to 2n − 1, where

L = in−1 × 2n−1 + · · · + i1 × 21 + i0 × 20.

Given below is an example for 0 ≤ L ≤ 2n − 1 = 7.

Table 4.1 Binary representation of integers 0 ≤ L ≤ 2n − 1 = 7.

Decimal L Binary i2i1i0 Verification: i2 × 22 + i1 × 21 + i0 × 20 = L

0 000 0× 22 + 0× 21 + 0× 20 = 0

1 001 0× 22 + 0× 21 + 1× 20 = 1

2 010 0× 22 + 1× 21 + 0× 20 = 2

3 011 0× 22 + 1× 21 + 1× 20 = 3

4 100 1× 22 + 0× 21 + 0× 20 = 4

5 101 1× 22 + 0× 21 + 1× 20 = 5

6 110 1× 22 + 1× 21 + 0× 20 = 6

7 111 1× 22 + 1× 21 + 1× 20 = 7

Consider N = 2n and 0 ≤ L ≤ N−1. Given below are some useful properties of L’s
n-bit binary representation in−1 · · · i1i0. These properties follow from Definition 4.2
immediately, and they can be easily verified using the example in Table 4.1.

� Property 1. L is an even number if and only if the right-most i0 bit is 0.

� Property 2. L is an odd number if and only if the right-most i0 bit is 1.

� Property 3. L < N/2 if and only if the left-most in−1 bit is 0.

� Property 4. L ≥ N/2 if and only if the left-most in−1 bit is 1.

� Property 5. For 0 ≤ L < M ≤ N − 1, L and M differ in the binary ik bit if and
only if M − L = 2k.

4.4.2 Deciphering the scrambled output

By making use of the binary number properties, the scrambled FFT output can now
be easily deciphered if a simple binary address based notation is used to assist in the
specification of Algorithm 4.2. That is, instead of referring to the decimal value of J



in a[J ], one uses the binary representation of J and does all the “thinking” in terms of
binary numbers.

Observe that in Algorithm 4.2, the initial ProblemSize = N = 2n, and the variable
HalfSize takes on the values 2n−1, 2n−2, · · · , 2, 1. Since the distance between a[J ] and
a[J +HalfSize] is a power of 2, the binary number property 5 applies here. That is, the
addresses a[J ] and a[J + HalfSize], denoted as binary numbers in−1 · · · i1i0, differ only
in bit ik when HalfSize = 2k and the algorithm can be expressed in terms of binary
addresses as shown below.

Algorithm 4.3 The radix-2 DIF FFT algorithm in terms of binary addresses:

begin
k := n− 1 Initial problem size N = 2n

while k ≥ 0 do Halve each problem
Apply Gentleman-Sande butterfly computation

to all pairs of array elements whose

binary addresses differ in bit ik
k := k − 1

end while
end

For N = 8 = 23, the DIF FFT algorithm as described above consists of three stages
involving the sequence k = 2, 1, 0, with butterflies being applied to all pairs of array
elements whose binary addresses differ in bit ik. In Table 4.2, the binary addresses of
all four pairs of a[J ] and a[J + HalfSize] are given for all three stages of the butterfly
computation.

Table 4.2 Decimal and binary addresses of a[J ] and a[J + HalfSize] for N = 8, k =
2, 1, 0.

Butterfly Current Decimal Binary Decimal Binary

Computation HalfSize a[J ] J a[J + HalfSize] J + HalfSize

Stage 1 N/2 = 22 = 4 a[0] 000 a[4] 100

(k = 2) a[1] 001 a[5] 101

a[2] 010 a[6] 110

a[3] 011 a[7] 111

Stage 2 N/22 = 21 = 2 a[0] 000 a[2] 010

(k = 1) a[1] 001 a[3] 011

N/22 = 21 = 2 a[4] 100 a[6] 110

a[5] 101 a[7] 111

Stage 3 N/23 = 20 = 1 a[0] 000 a[1] 001

(k = 0) N/23 = 20 = 1 a[2] 010 a[3] 011

N/23 = 20 = 1 a[4] 100 a[5] 101

N/23 = 20 = 1 a[6] 110 a[7] 111

Since the algorithm can be expressed in terms of binary addresses, it is convenient
to adopt binary notation for the indices of a and the subscripts of x. Thus, in what



follows the notation xi2i1i0 will mean xr, where i2i1i0 is the binary representation of
r. Similarly, a[i2i1i0] refers to the element a[m], where the binary representation of m
is i2i1i0.

Then, the entire Table 4.2 can be replaced by a one-line shorthand notation, which
describes the three-stage DIF FFT process being applied to a[m] as the sequence

�
i2i1i0 τ2

�
i1i0 τ2τ1

�
i0

where
�
ik indicates that the butterfly computation involving the pairs in a different in

bit ik is being performed in the current stage, and τk indicates that the correspond-
ing butterfly operations were performed in a previous stage. The transformation is
completed when butterflies in all stages have been performed.

Which element of output X will be found in a[i2i1i0]? If equations (4.1) and (4.2)
are interpreted as implied by the butterfly in Figure 4.2, the first half of a will contain
the even numbered X’s after all stages are completed, and the second half will contain
the odd-numbered X’s. This in turn means that after the first butterfly step identified

by operation
�
i2i1i0 is completed, it is known that a[0i1i0] will ultimately contain output

Xr, where r must be even, so the right-most bit of r is i2 = 0. Similarly, it is also
known that a[1i1i0] will ultimately contain output Xr, where r must be odd, so the
right-most bit of r is i2 = 1. That is, the right-most bit of r for each Xr in array
location a[i2i1i0] is now known to be i2.

To continue, observe that the updated data in a[0i1i0] define one subproblem to be
further subdivided, and the updated data in a[1i1i0] define the other subproblem to be
further subdivided. By exactly the same argument applied to the binary addresses i1i0,
one can conclude that the second from the right-most bit of r for each Xr in a[i2i1i0]
will be i1.

Repeating the same argument one more time on successively halved portions of the
array a yields the conclusion that a[i2i1i0] will finally contain Xi0i1i2 . In other words,
Xi0i1i2 will occupy the position originally occupied by xi2i1i0 . That is, the output X

is in bit-reversed order with respect to the subscript of the input element which it
overwrites. For example, as shown in Figure 4.7, x001 is overwritten by X100, x110

is overwritten by X011, and so on. It is easy to verify that the bit-reversed output
in Figure 4.7 represents indeed the scrambled output {X0, X4, X2, X6, X1, X5, X3, X7}
previously shown in Figure 4.1.

Figure 4.7 The input x in array a is overwritten by bit-reversed output X.

The conclusion can now be immediately extended to the example for N = 32. The
entire Figure 4.4 can be replaced by the sequence



�
i4i3i2i1i0 τ4

�
i3i2i1i0 τ4τ3

�
i2i1i0 τ4τ3τ2

�
i1i0 τ4τ3τ2τ1

�
i0

with the understanding that on input, a[i4i3i2i1i0] contains xi4i3i2i1i0 , and on output,
a[i4i3i2i1i0] contains the bit-reversed Xi0i1i2i3i4 . Refer to Figure 4.4 for the decimal
subscripts of all 32 bit-reversed output elements Xi0i1i2i3i4 .

4.5 Shorthand Notation for the Twiddle Factors

The twiddle factors corresponding to the three-stage DIF FFT may be specified by the
binary representation of the address Jtwiddle in Algorithm 4.2 as shown in Table 4.3.

Observe that during the
�
i2i1i0 stage, the twiddle factor w[i1i0] = ωi1i0N is used to

update a[1i1i0] and during the τ2
�
i1i0 stage that follows, the updating of a[τ21i0] involves

w[i00] = ωi00N . Finally, the updating of a[τ2τ11] during the last τ2τ1
�
i0 stage all involves

w[00] = ω0
N = 1.

For N = 32, the twiddle factors corresponding to the five stages of butterfly com-

putations are

ωi3i2i1i0
N , ωi2i1i00

N , ωi1i000
N , ωi0000

N , ω0
N = 1.

Table 4.3 Shorthand notations for twiddle factors ( N  = 8). 
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Chapter 5

Bit-Reversed Input to the

Radix-2 DIF FFT

Technically speaking, the correctness of Algorithm 4.2 depends on the fact that xm is
initially contained in a[m]. For easy reference, the contents of a[J ] and a[J +HalfSize]
have been added to Table 4.2 to obtain Table 5.1. The notation x

(�)
m is used to denote

xm’s derivative, which overwrites xm after an in-place butterfly computation in Stage
�. Accordingly, after Stage 3 is completed, x(3)

i2i1i0
= Xi0i1i2 as explained in Chapter 4.

Table 5.1 The contents of a[J ] and a[J + HalfSize] in Algorithm 4.2.

Butterfly Current Decimal Binary Decimal Binary

Computation HalfSize a[J ] J a[J + HalfSize] J + HalfSize

Stage 1 N/2 = 22 = 4 a[0] = x0 000 a[4] = x4 100

a[1] = x1 001 a[5] = x5 101

a[2] = x2 010 a[6] = x6 110

a[3] = x3 011 a[7] = x7 111

Stage 2 N/22 = 21 = 2 a[0] = x
(1)
0 000 a[2] = x

(1)
2 010

a[1] = x
(1)
1 001 a[3] = x

(1)
3 011

N/22 = 21 = 2 a[4] = x
(1)
4 100 a[6] = x

(1)
6 110

a[5] = x
(1)
5 101 a[7] = x

(1)
7 111

Stage 3 N/23 = 20 = 1 a[0] = x
(2)
0 000 a[1] = x

(2)
1 001

N/23 = 20 = 1 a[2] = x
(2)
2 010 a[3] = x

(2)
3 011

N/23 = 20 = 1 a[4] = x
(2)
4 100 a[5] = x

(2)
5 101

N/23 = 20 = 1 a[6] = x
(2)
6 110 a[7] = x

(2)
7 111

However, the following program is correct, regardless of where xi2i1i0 , x
(1)
i2i1i0

, x(2)
i2i1i0

,
and x

(3)
i2i1i0

are found in a.



Algorithm 5.1 The iterative DIF FFT algorithm applied to the x elements.

begin
k := n− 1 Initial problem size N = 2n

while k ≥ 0 do Halve each problem
Apply Gentleman-Sande butterfly computation

to all pairs of elements of x whose

(binary) subscripts differ in bit ik
k := k − 1

end while
end

Thus, the input data could be permuted arbitrarily; if the butterflies are applied
correctly to the data, the correct answers would be obtained. Moreover, the element
of a that initially contained xi2i1i0 would contain x

(3)
i2i1i0

= Xi0i1i2 at the end of the
computation.

5.1 The Effect of Bit-Reversed Input

Suppose the objective is to find an initial ordering of the input so that the resulting
output is in natural order. The observation above implies that initially, a[i0i1i2] should
contain xi2i1i0 , since at the end of the computation one wants a[i0i1i2] to contain
x

(3)
i2i1i0

= Xi0i1i2 . That is, the input should be placed in bit-reversed order before the
computation begins as shown in Figure 5.1.

Figure 5.1 Bit-reversed input to the FFT and the naturally ordered output.

A separate program is needed to handle the bit-reversed input data. Algorithm 5.2
contains the pseudo-code. The twiddle factors are assumed to have been pre-computed
and stored in array w in bit-reversed order as shown in Figure 5.2. This allows one
to relate the binary addresses in w to the shorthand notations for the twiddle factors
using w[i0i1] = ωi1i0N , w[0i0] = ωi00N , and w[00] = ω0

N = 1.



Figure 5.2 Store the N/2 = 4 pre-computed twiddle factors in bit-reversed order.

Algorithm 5.2 The radix-2 DIF FFT algorithm for bit-reversed input.

begin
NumOfProblems := 1 Initially: One problem of size N
ProblemSize := N HalfSize = ProblemSize/2
Distance := 1
while ProblemSize > 1 do Halve each problem

for JFirst := 0 to NumOfProblems − 1 do
J := JFirst; Jtwiddle := 0
while J < N − 1 do

W := w[Jtwiddle] Assume w[m] = ω�N , m bit-reversed �

Temp := a[J ]
a[J ] := Temp + a[J + Distance]
a[J + Distance] := (Temp − a[J + Distance]) ∗W
Jtwiddle := Jtwiddle + 1 Access consecutive w[m]
J := J + 2 ∗ NumOfProblems

end while
end for
NumOfProblems := NumOfProblems ∗ 2
ProblemSize := ProblemSize/2
Distance := Distance ∗ 2

end while
end



Applying Algorithm 5.2 to the bit-reversed data in the example with N = 8 in
Figure 5.1, all pairs of a[J ] and a[J + Distance] are identified in Table 5.2 and they
show that each x

(�)
m is paired up with the same partner as previously shown in Table 5.1.

5.2 A Taxonomy for Radix-2 FFT Algorithms

In this and the previous chapter, two similar but not identical DIF FFT algorithms were
developed. The first accepts its input in natural order, and produces its output in bit-
reversed order, while the second accepts its input in bit-reversed order, and produces
its output in natural order. In later chapters, similar variations will be developed for
the DIT FFT algorithm. In addition, versions of both DIT and DIF FFT algorithms
will be developed that accept naturally ordered input and produce naturally ordered
output. In order to be able to refer to these six variations in a succinct and suggestive
way, a two-letter convention will be used in the sequel: NR will mean “naturally
ordered input and bit-reversed output,” with RN and NN denoting the obvious other
possibilities mentioned above. Thus, the DITRN algorithm would refer to the version
of the DIT FFT algorithm that accepts its input in bit-reversed order and produces
its output in natural order. If it makes no difference whether the DITNR or DIFNR

algorithms are intended, the term “an NR algorithm” will be used. It is common in
the literature to refer to NN algorithms as “ordered FFTs.”

5.3 Shorthand Notation for the DIFRN Algorithm

For the case N = 8, a shorthand notation describing the three-stage process, together
with the initial permutation to bit-reversed order, is the sequence

T a b l e  5 . 2  T h e  c o n t e n t s  o f  u [ J l  a n d  u [ J  +  D i s t m z ~ e l  i n  

B u t t e r f l y  

C o m p u t a t i o n  

S t a g e  1  

S t a g e  2  

S t a g e  3  

C u r r e n t  L X 8 t a t a c e  

& k  H a l f S i z e  

D i s t a n c e  =  1  

( H a l f & e  =  4 )  

D i s t a n c e  =  2  

( H a l f S i z e  =  2 )  

D i s t a n c e  =  4  

( H a l f S i z e  =  1 )  

D e c i m a l  B i n - y  

a [ J  +  D i s t a n c e ]  J  +  D i s t a n c e  

a [ l ]  =  x 4  0 0 1  

a [ 3 ]  =  z 6  0 1 1  

a [ 5 1  =  x 5  1 0 1  

Algorithm 5.2



i2i1i0 i0i1
�
i2 i0

�
i1τ2

�
i0τ1τ2

Here the sequence begins with i2i1i0, which is intended to imply that xi2i1i0 is assumed

to be in a[i2i1i0] as before; the notation i0i1
�
i2 is intended to imply that xi2i1i0 has been

permuted to a[i0i1i2] before the first butterfly computation is performed. That is, i2i1i0
always represents the binary representation of the subscripts of x; the order in which
the bits appear, or are permuted during the computation, refer to movements that
xi2i1i0 or its derivatives undergo in a during the computation.

For N = 32, the sequence describing the five-stage process, together with the initial
permutation to bit-reversed order, is shown below.

i4i3i2i1i0 i0i1i2i3
�
i4 i0i1i2

�
i3τ4 i0i1

�
i2τ3τ4 i0

�
i1τ2τ3τ4

�
i0τ1τ2τ3τ4

5.3.1 Shorthand notation for the twiddle factors

To express the twiddle factors corresponding to the n-stage sequence shown in Sec-
tion 5.3, one only needs to recall that a[i0i1i2i3i4] contains xi4i3i2i1i0 or its derivative.

For example, when the content of a[i0i1i2i31] is modified during stage i0i1i2i3
�
i4, the

element being updated is x1i3i2i1i0 ; when the content of a[i0i1i21τ4] is modified during

stage i0i1i2
�
i3τ4, the element being updated is the derivative x

(1)
τ41i2i1i0

, and so on.

Therefore, the shorthand notation for the twiddle factors is exactly the same as

those derived in Chapter 4 for xi4i3i2i1i0 and its derivatives, namely,

ωi3i2i1i0
N , ωi2i1i00

N , ωi1i000
N , ωi0000

N , ω0
N = 1 .

5.3.2 Applying algorithm 5.2 to a N = 32 example.

The complete process of applying Algorithm 5.2 to a N = 32 example is depicted
in Figure 5.3. It is important to recognize that the five-stage sequence shown in Sec-
tion 5.3, together with the twiddle factors shown above, capture all of the details shown
in Figure 5.3.

For easy comparison with Figure 4.4, the pairs of subproblems resulting from every
stage of butterfly computation are again identified by highlighting a particular pair
which involves a[0] = x0 in Figure 5.3—the two subproblems forming the pair are
shaded in different grey tones so one can be easily distinguished from the other.

Comparing Figure 5.3 with Figure 4.4, one sees that “the same pair of subproblems”
are located in different parts of the data array due to different initial and intermedi-
ate orderings. Thus, the computations performed DIFNR and DIFRN algorithms are
essentially identical, although they must access the data arrays in different manners.



Figure 5.3 Butterflies for the DIFRN FFT algorithm.



5.4 Using Scrambled Output for Input to the Inverse

FFT

As demonstrated in Chapter 1, the DFT and the IDFT (inverse discrete Fourier trans-
form) are essentially the same computation, apart from a scale factor and conjugation
of the twiddle factors. Thus, algorithms essentially identical to the DIT and DIF meth-
ods already introduced, including their “data scrambling” characteristics, can be used
to implement the IDFT as well. One may combine forward DIFNR with inverse FFT
using IDIFRN, and the latter will automatically transform the bit-reversed frequency
output back into naturally ordered time series. This process is depicted for a N = 8
example in Figure 5.4.

Figure 5.4 Using DIFNR and DIFRN in computing forward and inverse FFT.

On the other hand, if the input data to the forward FFT are given in bit-reversed
order, one has the flexibility of of using an RN algorithm in the forward FFT and a
complementary NR algorithm for the inverse FFT. Again, the final time series will be
in the same (bit-reversed) order as the given input.

In any case, by appropriate combination of RN and NR algorithms for the forward
and inverse FFT, the user may be completely shielded from the complications caused
by the different ordering of data in the middle of the computation. Thus, it is useful
to have the two different implementations.

5.5 Notes and References

Many “bit-reversal algorithms” that reorder data corresponding to reversing the order
of bits in the array index have been proposed in the FFT literature. In [60], Karp
reviewed, tested, and compared 30 methods he had recoded in a uniform style on com-
puters with different memory systems. Two new algorithms that perform substantially
better than the others were also proposed in [60].



Chapter 6

Performing Bit-Reversal by

Repeated Permutation of

Intermediate Results

It has been shown in the previous chapter that if the input data are first permuted
into bit-reversed order, then the radix-2 DIFRN FFT can be used to obtain naturally
ordered output. This process is depicted for a N = 8 example in Figure 6.1. When
the static permutation step is not performed in place, the bit-reversed input data are
available in array b after the reordering.

Figure 6.1 Bit-reversing the input before performing in-place DIFRN FFT.



Of course, the same result can be accomplished by bit-reversing the output from
an NR FFT algorithm as depicted in Figure 6.2 for the same example.

Figure 6.2 Bit-reversing the output after performing in-place DIFNR FFT.

6.1 Combining Permutation with Butterfly Compu-

tation

The cost of extra memory accesses in a separate bit-reversing phase can be completely
eliminated if data permutation is combined with the butterfly computation at each
step. Such an alternative is presented in this section.

6.1.1 The ordered radix-2 DIFNN FFT

When input x and output X are both in natural order, the algorithm is referred to
as an “ordered” FFT in the literature. The ordered radix-2 DIF FFT procedure was
originally proposed by Stockham [30, 89]. The key to understanding what is required
is to view each butterfly computation as consisting of one permutation step followed
by one in-place computation step. These permutation steps reorder the initial input as
well as the input to each subsequent subproblem, and the notation introduced in the
previous chapters can be used to describe this process in a natural way.

Again using the N = 8 example above, with the input in the natural order, i.e.,

a[i2i1i0] = xi2i1i0 , the first in-place butterfly is denoted by
�
i2i1i0. If this butterfly

operation is preceded by permuting the data in a[i2i1i0] to b[i1i0i2], it is natural to use



i2i1i0 i1i0i2
a b

to denote the permutation, which is followed by in-place butterfly computation denoted
by

i1i0i2 i1i0
�
i2

To show the combined effect, the two sequences above are condensed into

i2i1i0 i1i0
�
i2

a b

If the next step involves permuting the derivative x
(1)
i2i1i0

in b[i1i0i2] to a[i0i1i2], then
the derivatives x

(2)
i2i1i0

and x
(3)
i2i1i0

can both be computed in-place in a[i0i1i2]. Since
x

(3)
i2i1i0

= Xi0i1i2 is contained in a[i0i1i2], the output frequencies Xm’s are naturally
ordered in array a as desired.

However, the easiest way to “understand” an algorithm may not be the most effi-
cient way to “implement” an algorithm. For example, two implementations of a single
butterfly computation step involving naturally ordered input elements a[2] = x2 and
a[6] = x6 are depicted in Figures 6.3 and 6.4.

In Figure 6.3, the ordered DIF FFT is implemented as one understands it; i.e.,
a permutation step actually precedes the butterfly computation. As reflected by the
fragment of pseudo-code displayed in Figure 6.3, memory locations b[4] and b[5] are
each modified twice.

In Figure 6.4, the ordered DIF FFT is implemented without first permuting a[2]
to b[4], a[6] to b[5], . . . , etc. Instead, the derivative x

(1)
2 is computed and stored

directly into b[4], and so on. As reflected by the fragment of pseudo-code displayed in
Figure 6.4, memory locations b[4] and b[5] are each modified only once. Since the same
memory accessing pattern applies to all butterflies in every stage, this implementation
eliminates all extra memory accesses in reordering intermediate results, and it is a more
efficient way to implement the ordered DIF FFT algorithm. The complete pseudo-code
program is given as Algorithm 6.1 below.



Figure 6.3 Naive Implementation of the (ordered) DIFNN FFT.



Figure 6.4 Implement the (ordered) DIFNN FFT with no extra memory access.



Algorithm 6.1 The (ordered) radix-2 DIFNN FFT algorithm.

begin
NumOfProblems := 1 Initially: One problems of size N
ProblemSize := N HalfSize = ProblemSize/2
Distance := 1
NotSwitchInput := true

while ProblemSize > 1 do Halve each problem
if NotSwitchInput Array a contains input; array b contains output

for JFirst := 0 to NumOfProblems − 1 do
J := JFirst; Jtwiddle := 0
K := JFirst

while J < N − 1 do
W := w[Jtwiddle]
b[J ] := a[K] + a[K + N/2]
b[J + Distance] := (a[K] − a[K+N/2]) ∗W
Jtwiddle := Jtwiddle + NumOfProblems Assume w[�] = ω�N
J := J + 2 ∗ NumOfProblems

K := K + NumOfProblems

end while
end for
NotSwitchInput := false

else Array b contains input; array a contains output
for JFirst := 0 to NumOfProblems − 1 do

J := JFirst; Jtwiddle := 0
K := JFirst

while J < N − 1 do
W := w[Jtwiddle]
a[J ] := b[K] + b[K + N/2]
a[J + Distance] := (b[K] − b[K + N/2]) ∗W
Jtwiddle := Jtwiddle + NumOfProblems Assume w[�] = ω�N
J := J + 2 ∗ NumOfProblems

K := K + NumOfProblems

end while
end for
NotSwitchInput := true

end if
NumOfProblems := NumOfProblems ∗ 2
ProblemSize := ProblemSize/2
Distance := Distance ∗ 2

end while
end



6.1.2 The shorthand notation

As usual, assuming that x is initially contained in a in the natural order, a second array
b would alternately contain the data. The entire computation process, along with the
use of the two arrays, is depicted below.

i2i1i0 i1i0
�
i2 i0

�
i1τ2

�
i0τ1τ2

a b a b

Note that the corresponding twiddle factors are

ωi1i0
N , ωi00

N , ω0
N = 1 ,

because DIFNR, DIFRN, and DIFNN FFT algorithms all transform the same element
xi2i1i0 , although they refer to the different addresses of xi2i1i0 in expressing the same
algorithm.

Once again, all details of the (ordered) DIFNN FFT can be captured by a shorthand
notation together with the twiddle factors.

6.2 Applying the Ordered DIF FFT to a N = 32

Example

Generalizing the shorthand notation for N = 32, the following sequence represents all
five stages of permutation and computation depicted in Figure 6.5.

i4i3i2i1i0 i3i2i1i0
�
i4 i2i1i0

�
i3τ4 i1i0

�
i2τ3τ4 i0

�
i1τ2τ3τ4

�
i0τ1τ2τ3τ4

a b a b a b

The corresponding twiddle factors are

ωi3i2i1i0
N , ωi2i1i00

N , ωi1i000
N , ωi0000

N , ω0
N = 1 .

By comparing Figure 6.6, where the butterflies associated with a particular pair
of resulting subproblems are shown without the cluttering of others, with the two
unordered DIF FFT in Figures 4.4 and 5.3, one immediately observes that

all three variants of the DIF FFT treat exactly the same pairs of subproblems
during each stage of the computation.

Thus they all implement the same radix-2 DIF FFT algorithm.



Figure 6.5 Butterflies of the (ordered) DIFNN FFT algorithm.



Figure 6.6 Identifying the subproblems paired up by the (ordered) DIFNN FFT.



6.3 In-Place Ordered (or Self-Sorting) Radix-2 FFT

Algorithms.

Another class of “ordered” FFTs performs in-place permutation and consequently does
not need a second array; they are the so-called “self-sorting in-place” algorithms. This
class contains variants of the prime-factor algorithms [20, 81, 99] and a radix-2 FFT [58].
This class has been further extended to include self-sorting in-place radix-3, radix-4,
radix-5, and finally mixed-radix FFTs [101]. The radix-2 algorithm is relevant to the
discussion in this chapter. Using the notation developed earlier, the process of applying
the self-sorting in-place radix-2 DIF FFT to array a, which contains naturally ordered
x, is depicted below for N = 32.

i4i3i2i1i0 i0i3i2i1
�
i4 i0i1i2

�
i3τ4 i0i1

�
i2τ3τ4 i0

�
i1τ2τ3τ4

�
i0τ1τ2τ3τ4

a a a a a a

Observe that the permutation always involves bits in symmetric positions: e.g., in
step 1, the left-most bit i4 switches with the right-most bit i0 and in step 2, bit i3,
the second bit from the left end, switches with bit i1, the second bit from the right
end. Accordingly, the ordering of the bits is “reversed” after only two steps, and
the permutation can be implemented using “pairwise” interchanges. The contents in
a[0i3i2i11] and a[1i3i2i10] are switched in step 1 and the contents in a[i00i21τ4] and
a[i01i20τ4] are switched in step 2. Since each “pairwise” interchange can be done using
a single temporary location, the array b is not needed.



Chapter 7

An In-Place Radix-2 DIT FFT

for Input in Natural Order

The NR, RN, and NN algorithms implementing DIF (decimation-in-frequency) FFT
were presented in Chapters 4, 5, and 6. Corresponding to them, there are also three
variants of the DIT (decimation-in-time) FFT, and they are developed in this and the
following two chapters.

The three DIT FFT algorithms will be presented using the notation developed
in the previous chapters. Accordingly, they are referred to as DITNR, DITRN, and
DITNN FFT algorithms. The DITNR and DITRN algorithms implement in-place DIT
FFT on naturally ordered and bit-reversed input data, whereas the DITNN algorithm
allows repeated permutation of the intermediate results and can thus produce naturally
ordered output from naturally ordered input.

Since both DIF FFT and DIT FFT implement the same Discrete Fourier Transform,
one may argue intuitively that the final result which overwrites an input element xk
must remain unchanged in either implementation, and that the many results obtained
previously in Chapters 4, 5, and 6 for the three DIF FFT algorithms should apply to
the corresponding DIT FFT. However, to make this chapter self-contained, it is useful
to develop these iterative DIT FFT algorithms from its recursive definition, and this
approach is adopted here.

Since the concepts introduced before for the DIF FFT will not be repeated, it is
recommended that Chapters 4, 5, and 6 be studied before Chapter 7.

7.1 Understanding the Recursive DIT FFT and its

In-Place Implementation

Recall that the recursive radix-2 DIT FFT algorithm was derived in Chapter 3, in
which the Cooley-Tukey butterfly in Figure 7.1 represents the last combination step in
computing the transform

Xr =

N
2 −1∑
k=0

x2kω
r(2k)
N + ωrN

N
2 −1∑
k=0

x2k+1ω
r(2k)
N , r = 0, 1, . . . , N − 1.(7.1)



Figure 7.1 The Cooley-Tukey butterfly.

Assuming N = 2n, Y (n−1)
r and Z

(n−1)
r in Figure 7.1 are solutions to the two half-size

subproblems defined by

Y (n−1)
r =

N
2 −1∑
k=0

x2kω
r(2k)
N =

N
2 −1∑
k=0

y
(n−1)
k ωrkN

2
, r = 0, 1, . . . , N/2 − 1(7.2)

and

Z(n−1)
r =

N
2 −1∑
k=0

x2k+1ω
r(2k)
N =

N
2 −1∑
k=0

z
(n−1)
k ωrkN

2
, r = 0, 1, . . . , N/2 − 1.(7.3)

Note that y
(n−1)
k ≡ x2k and z

(n−1)
k ≡ x2k+1, k = 0, 1, . . . , 2n−1 − 1, identify input

elements to the two subproblems of size 2n−1 as depicted in Figure 7.2 for N = 8.
Since each subproblem is to be solved by the same DIT FFT algorithm recursively,

two subproblems of size N = 2n−2 are defined by the even and odd elements from
y
(n−1)
k , namely, y

(n−2)
k ≡ y

(n−1)
2k , and z

(n−2)
k ≡ y

(n−1)
2k+1 as depicted in Figure 7.3; the

other two subproblems of size N = 2n−2 are defined by the even and odd elements
from z

(n−1)
k , namely, y(n−2)

k ≡ z
(n−1)
2k , and z

(n−2)
k ≡ z

(n−1)
2k+1 as depicted in Figure 7.4.

The subdivision steps continue until the subproblem size becomes one, and solution to
each subproblem is simply itself; i.e., Y (0)

0 = y
(0)
0 and Z

(0)
0 = z

(0)
0 .

Therefore, the DIT FFT algorithm begins its computation by combining all pairs
of (properly identified) y

(0)
0 and z

(0)
0 to form solutions to subproblems of size two, and

so on. For N = 8, the three combination steps are depicted in Figures 7.3, 7.4, and
7.5. As expected, the in-place DIT FFT overwrites the naturally ordered input by
bit-reversed output after the last combination step in Figure 7.5.



Figure 7.2 The first division step of in-place DITNR FFT.

Figure 7.4.Figure 7.3.

Figure 7.5.



Figure 7.3 Solve one half-size subproblem by in-place DITNR FFT.



Figure 7.4 Solve the second half-size subproblem by in-place DITNR FFT.



Figure 7.5 Solv e the entire problem by in-place DITNR FFT.

Figure 7.3. Figure 7.4.

7.2 Developing the Iterative In-Place DIT FFT

Since the input data are in natural order, array element a[m] is assumed to contain xm
in the development of the pseudo-code program in this section. For easy comparison
with the DIFNR FFT specified in Table 4.2, the butterfly computation steps depicted
in Figures 7.3 – 7.5 are summarized in Table 7.1, where all butterfly pairs are identified
by the addresses of a[J ] and a[J + Distance].



Table 7.1 Decimal and binary addresses for a[J ] and a[J+Distance] in Figures 7.3–7.5.

Butterfly Current Decimal Binary Decimal Binary

Computation HalfSize a[J ] J a[J + Distance] J + Distance

Stage 1 HalfSize = N/23 = 1 a[0] 000 a[4] 100

(Distance = 22 = 4) a[2] 010 a[6] 110

a[1] 001 a[5] 101

a[3] 011 a[7] 111

Stage 2 HalfSize = N/22 = 2 a[0] 000 a[2] 010

(Distance = 2) a[4] 100 a[6] 110

a[1] 001 a[3] 011

a[5] 101 a[7] 111

Stage 3 HalfSize = N/2 = 4 a[0] 000 a[1] 001

(Distance = 1) a[2] 010 a[3] 011

a[4] 100 a[5] 101

a[6] 110 a[7] 111

Observe that the distance between a[J ] and a[J + Distance] is a power of 2, so
the binary number property 5 (page 34) applies here as before. That is, the addresses
a[J ] and a[J + Distance], denoted as binary numbers in−1 · · · i1i0, differ only in bit ik
when Distance = 2k and the algorithm can be expressed in terms of binary addresses
as shown below.

Algorithm 7.1 The radix-2 DIT FFT algorithm in terms of binary addresses:

begin
k := n− 1 Assume problem size N = 2n

while k ≥ 0 do Combine two subproblems
Apply Cooley-Tukey butterfly computation

to “combine” all pairs of array elements whose

binary addresses differ in bit ik
k := k − 1

end while
end

Accordingly, the shorthand notation developed for the DIFNR FFT applies here.
That is, for N = 8, the three DIT butterfly computation steps are also represented by
the sequence

�
i2i1i0 τ2

�
i1i0 τ2τ1

�
i0

However, the corresponding twiddle factors are now different, and they are identified
in the next section.



Table 7.2 Relating twiddle factors to binary addresses of the pair a[J ] and a[J +
Distance] (N = 8).

Cooley-Tukey Actual Modification Butterfly A Binary Address

Butterfly of a[J ] & a[J + Distance] Groups Based Notation

Stage
�
i2i1i0 a[0] = a[0] + ω0

Na[4] Group 0 a[0i1i0] = a[0i1i0] + ω0
Na[1i1i0]

(Distance = 4) a[4] = a[0]− ω0
Na[4] (4 Pairs) a[1i1i0] = a[0i1i0]− ω0

Na[1i1i0]

a[1] = a[1] + ω0
Na[5]

a[5] = a[1]− ω0
Na[5]

a[2] = a[2] + ω0
Na[6]

a[6] = a[2]− ω0
Na[6]

a[3] = a[3] + ω0
Na[7]

a[7] = a[3]− ω0
Na[7]

Stage τ2
�
i1i0 a[0] = a[0] + ω0

Na[2] Group 0 a[i20i0] = a[i20i0] + ωi20
N a[i21i0]

(Distance = 2) a[2] = a[0]− ω0
Na[2] (2 pairs) a[i21i0] = a[i20i0]− ωi20

N a[i21i0]

a[1] = a[1] + ω0
Na[3]

a[3] = a[1]− ω0
Na[3]

a[4] = a[4] + ω2
Na[6] Group 1

a[6] = a[4]− ω2
Na[6] (2 pairs)

a[5] = a[5] + ω2
Na[7]

a[7] = a[5]− ω2
Na[7]

Stage τ2τ1
�
i0 a[0] = a[0] + ω0

Na[1] Group 0 a[i2i10] = a[i2i10] + ωi1i2
N a[i2i11]

(Distance = 1) a[1] = a[0]− ω0
Na[1] (1 pair) a[i2i11] = a[i2i10]− ωi1i2

N a[i2i11]

a[2] = a[2] + ω2
Na[3] Group 1

a[3] = a[2]− ω2
Na[3] (1 pair)

a[4] = a[4] + ω1
Na[5] Group 2

a[5] = a[4]− ω1
Na[5] (1 pair)

a[6] = a[6] + ω3
Na[7] Group 3

a[7] = a[6]− ω3
Na[7] (1 pair)

7.2.1 Identifying the twiddle factors in the DIT FFT

Observe that in Table 7.1, each butterfly step combines pairs of subproblems of HalfSize
beginning with HalfSize = 1 and twiddle factor ±ω0

N = ±1. Following the definition of
the Cooley-Tukey butterfly in Figure 7.1, the second butterfly step combines pairs of
subproblems of HalfSize = 2, and the corresponding twiddle factors are ±ω0

4 = ±ω0
N =

±1, and ±ω1
4 = ±ω

N/4
N , and so on. For N = 8, the twiddle factors corresponding to all

combination steps are identified in Table 7.2.



For easy comparison with Table 4.3 for the DIFNR FFT, the corresponding twiddle
factors and their shorthand notation are summarized in Table 7.3. In order not to
invoke a bit-reversing subroutine in the program, it is assumed that the pre-computed
twiddle factors are stored in bit-reversed order although the input data are in natural
order. Therefore, w[i2i1] = ωi1i2N is used in Table 7.3.

7.2.2 The pseudo-code program for the DITNR FFT algorithm

In contrast to the DIF FFT pseudo-code program given by Algorithm 4.2, the complete
DIT FFT version is given below as Algorithm 7.2. For simplicity, the twiddle factors
are assumed to have been stored in the array w in bit-reversed order. For example,
for N = 8, the N/2 = 4 pre-computed twiddle factors are stored as w[i2i1] = ωi1i2N ;
for N = 32, the N/2 = 16 pre-computed twiddle factors are stored as w[i4i3i2i1] =
ωi1i2i3i4N .

7.3 Shorthand Notation and a N = 32 Example

As derived in the previous section, the butterfly computation steps in Figures 7.3–7.5
(for N = 8) are fully specified by the sequence

�
i2i1i0 τ2

�
i1i0 τ2τ1

�
i0

together with the corresponding twiddle factors

±ω0
N = ±1, ±ωi20

N , ±ωi1i2
N .

For N = 32, the entire Figure 7.6 can be replaced by the sequence

�
i4i3i2i1i0 τ4

�
i3i2i1i0 τ4τ3

�
i2i1i0 τ4τ3τ2

�
i1i0 τ4τ3τ2τ1

�
i0

Decimal 

fw[J tw idd le ]  

*w[O] = *w; 

f w [ O ]  = *w;  

fw[O] = *w; 

* w [ l ]  = fw: 

f w [ 3 ]  = fw$ 

f w [ l ]  = *w& 

*w[2] = * w h  

Stage r z r 1 i o  Halfsize = 4 ,-I- 

Binary 

Jtwiddle w.r.t 

modified zi2il in 

00 

oiz = 00 

O i z  = 01 

i 2 i l  = 00 

i*il = 01 
i z i l  = 10 
i Z i l  = 11 

~ Shorthand 

Notation w.r.t. 

modified z i l i l i o  

*w; = fl 

Butterfly 

Computation 

Stage i z i l i o  
T 

T 
Stage r z i l i o  

Current 

Halfsize 

Halfsize = 1 

HalfSize = 2 



Algorithm 7.2 The iterative radix-2 DIT FFT algorithm in pseudo-code.

begin
PairsInGroup := N/2 Begin with N/2 butterflies in one group
NumOfGroups := 1 Same twiddle factor is employed in a group
Distance := N/2
while NumOfGroups < N do

for K := 0 to NumOfGroups − 1 do Combine pairs in each group
JFirst := 2 ∗K ∗ PairsInGroup

JLast := JFirst + PairsInGroup − 1
Jtwiddle := K Access consecutive w[m]
W := w[Jtwiddle] Assume w[m] = ω�N , m bit-reverses �

for J := JFirst to JLast do
Temp := W ∗ a[J + Distance]
a[J + Distance] := a[J ] − Temp

a[J ] := a[J ] + Temp

end for
end for
PairsInGroup := PairsInGroup/2
NumOfGroups := NumOfGroups ∗ 2
Distance := Distance/2

end while
end

with the understanding that on input, a[i4i3i2i1i0] contains xi4i3i2i1i0 , and on output,
a[i4i3i2i1i0] contains the bit-reversed Xi0i1i2i3i4 . Refer to Figure 7.6 for the decimal
subscripts of all 32 bit-reversed output elements Xi0i1i2i3i4 .

The corresponding twiddle factors are

±ω0
N = ±1, ±ωi4000

N , ±ωi3i400
N , ±ωi2i3i40

N , ±ωi1i2i3i4
N .

As identified in Table 7.3 and assumed in Algorithm 7.2, these twiddle factors are
pre-computed and stored in w in bit-reversed order. Hence, for N = 32, w[i4i3i2i1] =
ωi1i2i3i4N , which implies w[0] = ω0

N , w[000i4] = ωi4000N , w[00i4i3] = ωi3i400N , and w[0i4i3i2]
= ωi2i3i40N .



Figure 7.6 Butterflies of the in-place DITNR FFT algorithm.



Chapter 8

An In-Place Radix-2 DIT FFT

for Input in Bit-Reversed

Order

This chapter is a sequel of Chapter 7, so readers are assumed to be familiar with
applying the in-place DIT FFT to naturally ordered input as shown in Figures 7.2–7.5.

Recall that xin−1···i1i0 was assumed to be contained in a[in−1 · · · i1i0] when the in-
place DIT FFT algorithm was expressed in terms of the binary addresses of array a

in Chapter 7. Accordingly, the following algorithm is correct regardless of where xk is
located.

Algorithm 8.1 The radix-2 DIT FFT algorithm in terms of binary subscripts.

begin
k := n− 1 Assume problem size N = 2n

while k ≥ 0 do Combine two subproblems
Apply Cooley-Tukey butterfly computation

to “combine” all pairs of elements of x whose

binary subscripts differ in bit ik
k := k − 1

end while
end

Now, if the input data are in bit-reversed order, the same computation must be
performed on the same elements although they are stored in bit-reversed array loca-
tions. The application of the in-place DITRN FFT to bit-reversed input of size N = 8
is depicted in Figures 8.1–8.4. As expected, the bit-reversed input is overwritten by
naturally ordered output.



Figure 8.1 The first division step of the DITRN FFT.

Figure 8.2. Figure 8.3.

Figure 8.4.



Figure 8.2 Solve one half-size subproblem by in-place DITRN FFT.



Figure 8.3 Solve one half-size subproblem by in-place DITRN FFT.



Figure 8.4 Solve the entire problem by in-place DITRN FFT.

Figure 8.2. Figure 8.3.



8.1 Developing the Iterative In-Place DITRN FFT

To facilitate the development of an iterative algorithm, the butterfly computation steps
depicted in Figures 8.2–8.4 are summarized in Table 8.1, where all butterfly pairs are
identified by the addresses of a[J ] and a[J + Distance].

Comparing Table 8.1 to Table 7.1, it is clear that because xi2i1i0 is contained in
a[i0i1i2], elements x0i1i0 and x1i1i0 , which form pairs during the first stage of butterfly
computation, are found in a[i0i10] and a[i0i11], and so on. Consequently, the value of
Distance starts from 1, and it doubles in each of the following stages. This observa-
tion immediately leads to the following algorithm in terms of the binary addresses of
elements in array a.

Algorithm 8.2 The in-place DITRN FFT algorithm in terms of binary addresses:

begin
� := 0 Assume problem size N = 2n

while � ≤ n− 1 do Combine two subproblems
Apply Cooley-Tukey butterfly computation

to “combine” all pairs of array elements whose

binary addresses differ in the �th bit from the right

� := � + 1
end while

end

Accordingly, the shorthand notation developed for the DIFRN FFT, which trans-
forms bit-reversed input, applies here. That is, for N = 8, the three DIT butterfly
computation steps are also represented by the sequence

i2i1i0 i0i1
�
i2 i0

�
i1τ2

�
i0τ1τ2

Table 8.1 Decimal and binary addresses for a [ J ]  and a 

Butterfly 

Computation 

Stage 1 

Current 

HulfSize 
HalfSize = N/23 = 1 

(Distance = 1) 

Decimal 

aIJ + Distance1 

~~ 

Binary 

J + Distance 

a[O] 000 

a[2] 010 
011 

Stage 2 

Stage 3 

HalfSize = N/22 = 2 

(Distance = 2) 

HalfSize = N/2 = 4 
(Distance = 22 = 4) 

d51 I 101 

4 2 1  

431 
461 

471 

4 4 1  

4 5 1  

461 
471 

d71 I 111 
010 
011 
110 
111 
100 
101 
110 
111 



Once again, the bit-reversed ordering of the input is reflected by beginning the sequence
with permuting xi2i1i0 from the assumed location a[i2i1i0] to a[i0i1i2].

However, the corresponding twiddle factors are different from the DIFRN FFT, as
explained in the next section.

8.1.1 Identifying the twiddle factors in the DITRN FFT

Observe that in Table 8.1, each butterfly step combines pairs of subproblems of HalfSize
beginning with HalfSize = 1 and twiddle factor ±ω0

N = ±1. Following the definition of
the Cooley-Tukey butterfly in Figure 7.1, the second butterfly step combines pairs of
subproblems of HalfSize = 2, and the corresponding twiddle factors are ±ω0

4 = ±ω0
N =

±1, and ±ω1
4 = ±ω

N/4
N , and so on. For N = 8, the twiddle factors corresponding to all

combination steps are identified in Table 8.2.

Table 8.2 Relating twiddle factors to binary addresses of the pair of a[J ] and a[J +
Distance]. 

Cooley-Tukey 

Butterfly 

Stage i o i l i z  
(Distance = 1) 

T 

T 
Stage iOi172 

(Distance = 2) 

T 
Stage io 71 7 2  

(Distance = 4) 

Actual Modification 

of a[J] & a[J + Distance] 

a[o] = a [ ~ ]  + w;a[l] 

a[l] = a[o] - w;a[l] 

a[2] = a[2] + w;a[3] 

a[3] = a[2] - w;a[3] 

a[4] = a[4] + w;a[5] 

a[5] = a[4] - wO,a[5] 

a[6] = a[6] + w;a[7] 

a[7] = a[6] - w$a[7] 

a [ ~ ]  = a[o] + wO,a[~] 

a [ ~ ]  = U[O] - wO,a[2] 

a[4] = a[4] + w;a[6] 

a[6] = a[4] - w;a[6] 

a[3] = a[3] - w$a[3] 

a[5] = a[5] + wga[7] 

a[7] = a[5] - w$a[7] 

a[o] = a [ ~ ]  + wO,a[4] 

a[4] = a[O] - w;a[4] 

a[1] = a[l] + wta[5] 

a[5] = a[1] - wha[5] 

a[2] = a[2] + w$a[6] 

a[6] = a[4] - &a[6] 

a[3] = a[3] + &a[7] 

a[7] = a[3] - w$a[7] 

a[l] = a[l] + w&[l] 

Butterfly 

Groups 

Group 0 

(4 Pairs) 

Group 0 

(2 Pairs) 

Group 1 

(2 pairs) 

Group 0 

(1 Pair) 

(1 Pair) 

(1 Pair) 

(1 P 4  

Group 1 

Group 2 

Group 3 

A Binary Address 

Based Notation 



For easy comparison with Table 7.3 for the DITNR FFT the corresponding twid-
dle factors and its shorthand notations are summarized in Table 8.3. Note that al-
though the input data are in bit-reversed order, it is assumed that the pre-computed
twiddle factors are stored in natural order in the array w. That is, w[�] = ω�N ,
� = 0, 1, . . . , N/2 − 1. Therefore, w[i1i2] = ωi1i2N is used in Table 8.3.

Fable 8.3 Iden 

Butterfly 
Computation 

T 
Stage io 7 1  72 

ifying twiddle 

Current 
HalfSize 

Halfsize = 1 

HalfSize = 2 

HalfSize = 4 

xtors (N = 8) 

Decimal 
f w [  Jtwiddle] 

fw[O] = *w: 

fw[O] = *w: 

fw[2 ]  = fw& 

f w [ O ]  = *w; 

f w [ l ]  = *u; 
fw[2]  = f # L  
f w [ 3 ]  = f w k  

lr DITRN FFT. 

Binary 
Jtwiddle w.r.t 

modified x i 2 ; ,  jn 

00 

is0 = 00 

is0 = 10 

i l i 2  = 00 
i l i 2  = 01 

i l i 2  = 10 

i l i 2  = 11 

Shorthand 
Notation w.r.t. 

I 



8.1.2 The pseudo-code program for the DITRN FFT

In contrast to the DIFRN FFT pseudo-code program given by Algorithm 4.2, the com-
plete DITRN version is given below as Algorithm 8.3. As mentioned in the last section,
the twiddle factors are stored in natural order, i.e., w[�] = ω�N , � = 0, 1, . . . , N/2 − 1.

Algorithm 8.3 The iterative radix-2 DITRN FFT algorithm in pseudo-code.

begin
PairsInGroup := N/2 Begin with N/2 butterflies in one group
NumOfGroups := 1 Same twiddle factor is employed in a group
Distance := 1
while NumOfGroups < N do

GapToNextPair := 2 ∗ NumOfGroups

GapToLastPair := GapToNextPair ∗ (PairsInGroup − 1)
for K := 0 to NumOfGroups − 1 do Modify one group at a time

J := K Address of the first pair
JLast := K + GapToLastPair Address of the last pair
Jtwiddle := K ∗ PairsInGroup

W := w[Jtwiddle] Assume w[�] = ω�N
while J ≤ JLast do Modify all pairs in the same group

Temp := W ∗ a[J + Distance]
a[J + Distance] := a[J ] − Temp

a[J ] := a[J ] + Temp

J := J + GapToNextPair Process next pair in the group
end while

end for
PairsInGroup := PairsInGroup/2
NumOfGroups := NumOfGroups ∗ 2
Distance := Distance ∗ 2

end while
end



8.2 Shorthand Notation and a N = 32 Example

As derived in the previous section, the butterfly computation steps in Figures 8.2–8.4
(for N = 8) are fully specified by the sequence

i2i1i0 i0i1
�
i2 i0

�
i1τ2

�
i0τ1τ2

together with the corresponding twiddle factors

±ω0
N = ±1, ±ωi20

N , ±ωi1i2
N .

For N = 32, the entire Figure 8.5 can be replaced by the sequence

i4i3i2i1i0 i0i1i2i3
�
i4 i0i1i2

�
i3τ4 i0i1

�
i2τ3τ4 i0

�
i1τ2τ3τ4

with the understanding that on input, a[i0i1i2i3i4] contains the bit-reversed xi4i3i2i1i0 ,
and on output, a[i0i1i2i3i4] contains Xi0i1i2i3i4 . Refer to Figure 8.5 for the decimal
subscripts of all 32 bit-reversed input elements in a[i0i1i2i3i4].

The corresponding twiddle factors are

±ω0
N = ±1, ±ωi4000

N , ±ωi3i400
N , ±ωi2i3i40

N , ±ωi1i2i3i4
N ,

and w[i1i2i3i4] = ωi1i2i3i4N is assumed in Algorithm 8.3.



Figure 8.5 Butterflies of the in-place DITRN FFT algorithm.



Chapter 9

An Ordered Radix-2 DIT FFT

This chapter presents the sixth variant of the FFT algorithm, which applies decimation-
in-time FFT to transform naturally ordered input time series to naturally ordered
output frequencies. As expected, this ordered DITNN FFT corresponds to the ordered
DIFNN FFT presented in Chapter 6. Readers of this chapter are thus assumed to
be familiar with the concept of combining permutation with butterfly computation in
the ordered DIF FFT, which allows the implementation of repeated permutation of
intermediate results without extra accesses to memory. Since it would be helpful to
look at the same from a different angle, this chapter begins with the following generic
description of the DIT FFT algorithm, which is correct regardless of where the input
element xm, m = 0, 1, . . . , N − 1, and its derivatives are stored in array a.

Algorithm 9.1 The radix-2 DIT FFT algorithm in terms of binary subscripts.

begin
k := n− 1 Assume problem size N = 2n

while k ≥ 0 do Combine two subproblems
Apply Cooley-Tukey butterfly computation

to “combine” all pairs of elements of x whose

binary subscripts differ in bit ik
k := k − 1

end while
end

Accordingly, the two in-place DIT FFT algorithms presented in Chapters 7 and 8
and the ordered DITNN FFT algorithm presented in this chapter must all implement
exactly the same computation, and they each can be understood by relating the loca-
tions where xm and its derivatives are stored in the input and the working arrays as
shown in Table 9.1 for the familiar N = 8 example.



Recall that x
(3)
i2i1i0

= Xi0i1i2 . Therefore, the result b[i0i1i2] = x
(3)
i2i1i0

from the
DITNN algorithm ensures that the output is in natural order. Based on Table 9.1, the
ordered DITNN FFT can immediately be described in full for the N = 8 example in
Table 9.2, which can be compared with Table 7.2 for the DITNR FFT and Table 8.2
for the DITRN FFT.

The effect of combining butterfly computation with permutation from array a to b,
or vice versa, is reflected by the shorthand notation

i2i1i0
�
i2i1i0

�
i1τ2i0

�
i0τ1τ2

a b a b
.

Observe that the twiddle factors remain the same for all three DIT FFT algorithms,

i.e., they are

±ω0
N = ±1, ±ωi20

N , ±ωi1i2
N .

Table 9.1 Relating the NR, RN, and NN variants of the DIT FFT. 



Table 0.2 The NN DIT FFT applied to a N = 8 example. 

Cooley-Tukey 

)utterfly Combine 

with Permutation 

Stage 1: i z i l io  
t 

t 
Stage 2: i 1 7 2 i o  

1 
Stage 3: i 0 7 1 7 2  

Actual Modification & 

Permutation from a to b 

or Vice Versa 

b[O] = a[O] + wO,a[4] 

b[ l ]  = u[1] + w5a[5] 

b[4] = u[O] - w ; u [ ~ ]  

b[5] = ~ [ l ]  - w;a[5] 

b[2] = u[2] + w;a[6] 

b[6] = a[2] - w;a[6] 

b[3] = u[3] + w$a[7] 

b[7] = a[3] - w;a[7] 

u[O] = b[O] + wLb[2] 

a[4] = b[O] - &b[2] 

u[1] = b[ l ]  + w;b[3] 

~ [ 5 ]  = b[ l ]  - &b[3] 

a[2] = b[4] + w%b[6] 

~ [ 6 ]  = b[4] - w;b[6] 

a[3] = b[5] + wgb[7] 

a[7] = b[5] - w$b[7] 

b[O] = a[O] + w;a[l] 

b [ l ]  = 421  + w:a[3] 

b[2] = a[4] + w:u[5] 

b[4] = a[O] - w;o[l] 

b[5] = a[2] - w t a [ 3 ]  

b[6] = ~ [ 4 ]  - w ; u [ ~ ]  

b[3] = u[6] + wLo[7] 

b[7] = a[6] - wLa[7] 

Butted] 

Groups 

Group 0 

( 4  Pairs) 

Group 0 

( 2  Pair4 

k Binary Address Based Notation 

to Show the Combined Effect 

a[Oiaio] = b[iZOiO] + w$Ob[iz l i o ]  

o[lizio] = b[i20io] - w y b [ i 2 1 i o ]  



9.1 Deriving the (Ordered) DITNN FFT From Its

Recursive Definition

For completeness, the derivation of the ordered DIT FFT from its recursive definition
is also depicted for the N = 8 example in Figures 9.1–9.4.

Figure 9.1 The first division step of the (ordered) DITNN FFT.

Figure 9.2. Figure 9.3.

Figure 9.4.



Figure 9.2 Solve one half-size subproblem by (ordered) DITNN FFT.



Figure 9.3 Solve one half-size subproblem by (ordered) DITNN FFT.



Figure 9.4 Solve the entire problem by (ordered) DITNN FFT.

9.2 The Pseudo-code Program for the DITNN FFT

In contrast to the DIFNN FFT pseudo-code program given by Algorithm 6.1, the DITNN

version is given below as Algorithm 9.2. Note that the twiddle factors are assumed to
be stored in natural order, i.e., w[�] = ω�N , � = 0, 1, . . . , N/2 − 1.

Figure 9.2. Figure 9.3.



Algorithm 9.2 The (ordered) radix-2 DITNN FFT algorithm.

begin
PairsInGroup := N/2 Initially: N/2 pairs in one group
NumOfGroups := 1
Distance := N/2
NotSwitchInput := true

while NumOfGroups < N do Combine pairs in each group
if NotSwitchInput Array a contains input; array b contains output

L := 0
for K := 0 to NumOfGroups − 1 do

JFirst := 2 ∗K ∗ PairsInGroup

JLast := JFirst + PairsInGroup − 1
Jtwiddle := K ∗ PairsInGroup Assume w[�] = ω�N
W := w[Jtwiddle] Same twiddle factor in each group
for J := JFirst to JLast do

Temp := W ∗ a[J + Distance]
b[L] := a[J ] + Temp

b[L + N/2] := a[J ] − Temp

L := L + 1
end for

end for
NotSwitchInput := false

else Array b contains input; array a contains output
L := 0
for K := 0 to NumOfGroups − 1 do

JFirst := 2 ∗K ∗ PairsInGroup

JLast := JFirst + PairsInGroup − 1
Jtwiddle := K ∗ PairsInGroup Assume w[�] = ω�N
W := w[Jtwiddle] Same twiddle factor in each group
for J := JFirst to JLast do

Temp := W ∗ a[J + Distance]
a[L] := b[J ] + Temp

a[L + N/2] := b[J ] − Temp

L := L + 1
end for

end for
NotSwitchInput := true

end if
PairsInGroup := PairsInGroup/2
NumOfGroups := NumOfGroups ∗ 2
Distance := Distance/2

end while
end



9.3 Applying the (Ordered) DITNN FFT to a

N = 32 Example

Generalizing the shorthand notation for N = 32, the following sequence represents all
five stages of permutation and computation depicted in Figure 9.5.

i4i3i2i1i0
�
i4i3i2i1i0

�
i3τ4i2i1i0

�
i2τ3τ4i1i0

�
i1τ2τ3τ4i0

�
i0τ1τ2τ3τ4

a b a b a b
.

The corresponding twiddle factors are

±ω0
N = ±1, ±ωi4000

N , ±ωi3i400
N , ±ωi2i3i40

N , ±ωi1i2i3i4
N ;

and w[i1i2i3i4] = ωi1i2i3i4N is assumed in Algorithm 9.2.
By comparing Figure 9.6, where the butterflies associated with a particular pair

of resulting subproblems are shown without the cluttering of others, with the two
unordered DIT FFT in Figures 7.6 and 8.5, one once again observes that

all three DIT algorithms treat exactly the same pairs of subproblems during
each stage of the computation.

Thus, they all implement the same radix-2 DIT FFT algorithm.



Figure 9.5 Butterflies of the (ordered) DITNN FFT algorithm.



Figure 9.6 Identifying the subproblem pairs in the (ordered) DITNN FFT.



Chapter 10

Ordering Algorithms and

Computer Implementation of

Radix-2 FFTs

This chapter examines the different roles that ordering algorithms may play in the
computer implementation of the fast Fourier transforms. For example, a bit-reversal
algorithm may be used to reorder input or output data, and a perfect shuffle algo-
rithm and its variants may be used in a parallel processor to maintain data adjacency
throughout the computation.

10.1 Bit-Reversal and Ordered FFTs

The six radix-2 FFT variants have each been discussed in detail in the preceding
six chapters. Although it appears that only two specific algorithms are suitable for
performing “ordered” transforms at the cost of doubling the primary storage, the other
four variants can be used to perform ordered FFT if one is willing to apply a bit-reversal
algorithm to either the naturally ordered input sequence (for use with the DIFRN or
DITRN algorithm) or the bit-reversed output sequence (from the DIFNR or DITNR

algorithm). The four possible combinations are shown in Figure 10.1. In any case, the
following remarks should be noted at the outset.

Since the bit-reversal algorithm is often not performed in-place [60], the primary
storage of the FFT is doubled in the reordering phase. In addition, the pre-processing
of input data or the post-processing of output data incurs arithmetic and memory-
accessing cost. Such extra cost could account for a significant part of the total execution
time if the ordered FFT must be obtained via one of the four unordered variants.
(Recall that the additional memory accessing cost can be avoided using the DIFNN or
the DITNN FFT.)

As reported by Karp in his review article [60], there had been a surprisingly large
number of papers on the subject of bit-reversal in the literature. He collected and tested
30 different methods for bit reversing an array on several uniprocessor machines, each
with a different memory system. He also proposed two new bit-reversal algorithms to



make better use of the interleaved memory machines and the hierarchical memories
on modern high-performance uniprocessors. Clearly, the design and implementation of
bit-reversal algorithms is interesting and important in its own right.

Figure 10.1 Combining bit reversal and unordered DIF and DIT FFTs.

10.2 Perfect Shuffle and In-Place FFTs

The perfect shuffle was originally proposed by Stone [90] in 1971 as an interconnection
scheme for a parallel processor. The thesis of Stone’s paper was that the perfect
shuffle was not only a “good” pattern for particular parallel algorithms but had a wide
variety of applications. Parallelizing the FFT with the perfect shuffle was among the
series of examples described in [90]. Other interesting applications include polynomial
evaluation, sorting, and matrix transposition.

The “effect” of a perfect shuffle can be most intuitively understood by applying it
to a deck of cards—the cards in the first half of the deck will be interlaced with cards
in the second half of the deck as a result.

Viewing the scheme as a computer algorithm, a perfect shuffle of an N element
vector simply permutes the elements according to an interlacing pattern identical to
the shuffled deck of cards. Following the binary address based notations introduced in



Chapter 4, if element xi2i1i0 is in a[i2i1i0] before the perfect shuffle, it will be relocated
to b[i1i0i2], and such a permutation is represented by the sequence

i2i1i0 i1i0i2
a b

Keep in mind that the shorthand notations are always formed by the addresses of
element xi2i1i0 and its derivatives.

Just like any other computer algorithm, the perfect shuffle can be implemented
either by software or by hardware as originally proposed.

10.2.1 Combining a software implementation with the FFT

Recall that the unordered DIFNR algorithm and DITNR algorithm perform in-place
butterfly computations on an array of N = 2n complex numbers, and the series of
butterflies involve pairing up elements located 2k places apart for k values decreasing
from n − 1 to 0. Using the shorthand notations developed in Chapters 4 and 7, the
DIFNR and DITNR FFTs are depicted side by side for N = 8 in Table 10.1. Clearly,
the two variants differ only in the application of twiddle factors.

Now if a perfect shuffle precedes each stage of in-place butterfly computation, either
DIFNR or DITNR FFT in Table 10.1 can be represented by the addresses of relocated
xi2i1i0 and its derivatives as shown in the following sequence:

i2i1i0 i1i0
�
i2 i0τ2

�
i1 τ2τ1

�
i0

a b a b

Therefore, such a software implementation could provide another sequential itera-
tive program for the recursively-defined FFT algorithm, although the primary storage
must be doubled to accommodate the perfect shuffle. Observe that because b[i2i1i0] =
x

(3)
i2i1i0

= Xi0i1i2 on output, there is no change to the bit-reversed output ordering. In
fact, there does not appear to be any advantage in combining the perfect shuffle with
the FFT in a software implementation.

Table 10.1 In-place DIFNR and DITNR FFTs with twiddle factors for N = 8.  

DIFNR FFT Algorithm 

i z i l i o  T Z T ~ ~ O  

Twiddle Factors: 

T T T 

DITNR FFT Algorithm 

i z i l i o  ~ z i l i o  T Z T ~ ~ O  
T T T 

Twiddle Factors: 



10.2.2 Data adjacency afforded by a hardware implementation

The combination of the perfect shuffle with the in-place NR algorithms as discussed
above leads to the following observation:

The addresses of the two elements involved in each butterfly computation
always differ in their right-most bit; they are thus located in consecutive
positions in the array.

This suggests that the same set of butterfly computing modules, with each module
pairing up and modifying data in two neighboring locations, can be connected to the
output of the perfect shuffle for multiple stages of butterfly computation. After that,
the updated data output from the butterfly modules can be transferred back into the
same perfect shuffle to produce data for the next stage of butterfly computation.

A hardware implementation allowing all N/2 butterflies to be performed simulta-
neously by N/2 butterfly modules will thus result in a dedicated parallel processor for
the FFT. Such a parallel processor with four butterfly modules is shown in Figure 10.2.

Figure 10.2 A parallel processor with perfect shuffle and four butterfly modules.

Early FFT hardware implementations were discussed in the overview and survey ar-
ticles by Bergland [6, 7]. More recent development in digital signal processors and
dedicated VLSI implementation was addressed in [41, 103].



10.3 Reverse Perfect Shuffle and In-Place FFTs

As its name implies, the reverse perfect shuffle is expected to “undo” the perfect shuffle
when it is applied to a shuffled deck of cards. That is, the data in the even-numbered
locations of an N element vector are permuted to the top half of the vector, and the
data in the odd-numbered locations are permuted to the bottom half of the vector.

Since it has already been established in the previous section that the perfect shuffle
moves data to new locations which are obtained by cyclic-rotating the current binary
address of the data one bit to the left (with the left-most bit moved to the vacated
right-most position), the reverse perfect shuffle can be readily obtained by cyclically
rotating the binary address one bit to the right (with the right-most bit moved to the
now vacated left-most position).

Recall that algorithms DIFRN and DITRN both implement unordered FFT on a
bit-reversed N = 2n element vector as shown in Table 10.2 below.

One can immediately see that by reverse perfect shuffling the butterfly output at
the end of every stage, one can again be sure that all butterflies will involve only
neighboring elements. The combined effect from a software implementation can be
depicted by the following sequence:

i2i1i0 i0i1
�
i2 τ2i0

�
i1 τ1τ2

�
i0 τ0τ1τ2

b a b a b

A parallel processor combining N/2 butterfly modules with the reverse perfect shuf-
fle network will allow simultaneous computation of all butterflies during each stage. A
parallel processor suitable for computing the DIFRN or DITRN algorithm with four
butterfly modules is shown in Figure 10.3.

10.4 Fictitious Block Perfect Shuffle and Ordered

FFTs

It is interesting to “interpret” the permutation and butterflies in the two NN algorithms
under the perfect shuffle framework, although it was concluded in Chapters 6 and 9
that an efficient implementation of the ordered DIFNN or DITNN FFTs should not
have a separate permutation step. For purposes of exposition, the discussion below
discusses permutations and computation as separate operations. However, as noted

Table 10.2 In-place DIFRN and DITm FFTs with twiddle factors for N = 8. 



Figure 10.3 A parallel processor with reverse perfect shuffle and four butterfly mod-
ules.

in Chapters 6 and 9, the two operations are usually combined to achieve efficiency by
avoiding unnecessary memory accesses.

10.4.1 Interpreting the ordered DIFNN FFT algorithm

Recall from Chapter 6 that the following sequence represents the five stages of permu-
tation and computation depicted in Figure 6.5 for a N = 32 example.

i4i3i2i1i0 i3i2i1i0
�
i4 i2i1i0

�
i3τ4 i1i0

�
i2τ3τ4 i0

�
i1τ2τ3τ4

�
i0τ1τ2τ3τ4

a b a b a b

Each step can be viewed as consisting of a separate permutation step followed by an
in-place butterfly computation. Clearly, the permutation preceding the first butterfly
involves a perfect shuffle.

i4i3i2i1i0 i3i2i1i0i4
a b

After the in-place butterfly computation involving adjacent elements in array b, the
derivative x

(1)
i4i3i2i1i0

is located in b[i3i2i1i0τ4]. Now, if array b is partitioned into blocks
of size 2, then the leftmost four bits, namely i3i2i1i0, in the address field may be
used to address the blocks. That is, an array of N elements is now viewed as an
array containing N/2 blocks. If each block is treated as a unit, then the following
permutation is a perfect shuffle of the N/2 blocks.



i3i2i1i0 i2i1i0i3
b a

Since the block is permuted as a whole, an individual element is permuted from
b[i3i2i1i0τ4] to a[i2i1i0i3τ4]. As expected, only the address of the block is changed
after the block perfect shuffle. Observe that the in-place butterfly computation now
involves elements in “adjacent” blocks, and the next derivative x

(2)
i4i3i2i1i0

is therefore
contained in a[i2i1i0τ3τ4].

To continue the analysis, imagine that array a is partitioned into blocks of size 4.
Then the leftmost three bits, namely i2i1i0, in the address may be used to address the
blocks. Note that an array of N elements is now viewed as an array of N/4 blocks,
with each block containing four consecutive elements. Each block is again treated as a
unit, and the following permutation is a perfect shuffle of the N/4 blocks.

i2i1i0 i1i0i2
a b

Since the block is permuted as whole, only the address of the block is changed after the
perfect shuffle, and the individual element in a[i2i1i0τ3τ4] is relocated to b[i1i0i2τ3τ4].
Observe again that the in-place butterfly computation may be viewed as pairing up
elements in “adjacent” blocks.

It is now obvious that the perfect shuffle in each stage that follow will permute
blocks which double the size until the blocksize reaches N/2.

10.4.2 Interpreting the ordered DITNN FFT algorithm

Recall from Chapter 9 that the following sequence represents the five stages of com-
putation and permutation depicted in Figure 9.5 for transforming a naturally ordered
input series of length N = 32.

�
i4i3i2i1i0 τ4

�
i3i2i1i0 τ3τ4

�
i2i1i0 τ2τ3τ4

�
i1i0 τ1τ2τ3τ4

�
i0 τ0τ1τ2τ3τ4

a b a b a b

As expected, the analysis of the ordered DITNN FFT mirrors that of the DIFNN in
the previous section. That is, each stage is viewed as consisting of an in-place butterfly
computation involving elements in “adjacent” blocks, which is followed by a reverse
block perfect shuffle. In contrast to the DIFNN FFT, the first DITNN butterfly pairs
up elements in two adjacent blocks of size N/2, which is followed by a reverse block
perfect shuffle which happens to effect no change when there are only two blocks.

τ4 τ4
a b

The next reverse perfect shuffle permutes four blocks of size N/4.



τ4τ3 τ3τ4
b a

Eight blocks of size N/8 are shuffled in the step below, and so on.

τ3τ4τ2 τ2τ3τ4
a b

The reverse block perfect shuffle is repeated at the end of every stage of the in-place
butterfly computation. Note that the blocksize is halved each time, and the last shuffle
involves blocks of size one.



Chapter 11

The Radix-4 and the Class of

Radix-2s FFTs

The divide-and-conquer paradigm introduced in Chapter 3 is not restricted to dividing
a problem into two subproblems. In fact, as explained in Section 2.4 and Appendix B,
the recurrence equation

T (N) =

{
αT

(
N
α

)
+ bN if N = αk > 1 ,

γ if N = 1,

represents the arithmetic cost of an algorithm which solves the original problem of size
N by combining the results from (recursively) solving α problems of size N/α. In this
chapter, the cases for α = 4 as well as α = 2s are considered.

11.1 The Radix-4 DIT FFTs

The DFT of a time series consisting of N = 4n discrete samples is considered in this
section. Since N = 4n = 22n, any version of the radix-2 FFTs introduced in Sections 3.1
and 3.2 can certainly be used to compute the transform. The reason it is worthwhile
to develop a radix-4 implementation instead of simply using the radix-2 FFTs is that
the arithmetic cost can be further reduced, and this advantage is carried over to the
design of parallel FFTs. In fact, both radix-2 and radix-4 FFTs are special cases in
the class of radix-2s FFTs.

The radix-4 DIT FFT [5, 70, 84] is derived from equation (3.1), which defines the
discrete Fourier transform of a complex time series. With the help of the identities
ω

N
4

N = −j and ω4
N = ωN

4
, equation (3.1) can be rewritten in terms of four partial sums;



that is,

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1

=

N
4 −1∑
k=0

x4kω
r(4k)
N +

N
4 −1∑
k=0

x4k+1ω
r(4k+1)
N +

N
4 −1∑
k=0

x4k+2ω
r(4k+2)
N +

N
4 −1∑
k=0

x4k+3ω
r(4k+3)
N

=

N
4 −1∑
k=0

x4kω
r(4k)
N +ωrN

N
4 −1∑
k=0

x4k+1ω
r(4k)
N +ω2r

N

N
4 −1∑
k=0

x4k+2ω
r(4k)
N +ω3r

N

N
4 −1∑
k=0

x4k+3ω
r(4k)
N .

(11.1)

By decimating the time series into four sets, namely the set {yk |yk = x4k, 0 ≤ k ≤
N/4 − 1}, the set {zk |zk = x4k+1, 0 ≤ k ≤ N/4 − 1}, the set {gk |gk = x4k+2, 0 ≤
k ≤ N/4 − 1}, and the set {hk|hk = x4k+3, 0 ≤ k ≤ N/4 − 1}, the four subproblems
with period of N/4 can be defined after the appropriate twiddle factor ωN

4
= ω4

N is
identified. The four subproblems are

Yr =

N
4 −1∑
k=0

x4kω
r(4k)
N =

N
4 −1∑
k=0

x4k

(
ω4

N

)rk
=

N
4 −1∑
k=0

ykω
rk
N
4
, r = 0, 1, . . . , N/4 − 1.

(11.2)

Zr =

N
2 −1∑
k=0

x4k+1ω
r(4k)
N =

N
4 −1∑
k=0

x4k+1

(
ω4

N

)rk
=

N
4 −1∑
k=0

zkω
rk
N
4
, r = 0, 1, . . . , N/4 − 1.

(11.3)

Gr =

N
2 −1∑
k=0

x4k+2ω
r(4k)
N =

N
4 −1∑
k=0

x4k+2

(
ω4

N

)rk
=

N
4 −1∑
k=0

gkω
rk
N
4
, r = 0, 1, . . . , N/4 − 1.

(11.4)

Hr =

N
2 −1∑
k=0

h4k+3ω
r(4k)
N =

N
4 −1∑
k=0

x4k+3

(
ω4

N

)rk
=

N
4 −1∑
k=0

hkω
rk
N
4
, r = 0, 1, . . . , N/4 − 1.

(11.5)

The size of each subproblem is thus N/4, which is equal to the number of input data
points or the number of computed output data points in one period. After these four
subproblems are each (recursively) solved, the solution to the original problem of size
N can be obtained according to (11.1) for r = 0, 1, . . . , N − 1. Since the series Yr has
a period of N/4, Yr = Yr+N

4
= Yr+N

2
= Yr+ 3N

4
, and the same applies to the series

Zr, Gr, and Hr. The output Xr may be expressed in terms of Yr, Zr, Gr, and Hr for



r = 0, 1, . . . , N/4 − 1 as shown below.

Xr = Yr + ωrNZr + ω2r
N Gr + ω3r

N Hr .(11.6)

Xr+N
4

= Yr + ω
r+N

4
N Zr + ω

2(r+N
4 )

N Gr + ω
3(r+N

4 )
N Hr .(11.7)

Xr+N
2

= Yr + ω
r+N

2
N Zr + ω

2(r+N
2 )

N Gr + ω
3(r+N

2 )
N Hr .(11.8)

Xr+ 3N
4

= Yr + ω
r+ 3N

4
N Zr + ω

2(r+ 3N
4 )

N Gr + ω
3(r+ 3N

4 )
N Hr .(11.9)

By noting that the twiddle factors ω
N
4

N = ω4 = e−j
2π
4 = −j, ω

N
2

N = (−j)2 = −1, and

ω
3N
4

N = (−j)3 = j, the four equations above can be simplified to

Xr = Yr + ωrNZr + ω2r
N Gr + ω3r

N Hr ,(11.10)

Xr+N
4

= Yr − jωrNZr − ω2r
N Gr + jω3r

N Hr ,(11.11)

Xr+N
2

= Yr − ωrNZr + ω2r
N Gr − ω3r

N Hr ,(11.12)

Xr+ 3N
4

= Yr + jωrNZr − ω2r
N Gr − jω3r

N Hr ,(11.13)

where r = 0, 1, . . . , N/4 − 1.
If the radix-4 algorithm is implemented based on equations (11.10), (11.11), (11.12),

and (11.13), one step of the radix-4 algorithm will require more arithmetic operations
than two steps of the radix-2 algorithm, because some partial results were computed
more than once. However, if such partial results can be identified and computed only
once, one step of the radix-4 algorithm can require fewer arithmetic operations than
two steps of the radix-2 algorithm, and the total cost of the radix-4 algorithm can be
lower than the radix-2 algorithm. The four recurrent partial results are shown below
inside each pair of parentheses.

Xr =
(
Yr + ω2r

N Gr
)

+
(
ωrNZr + ω3r

N Hr
)
,(11.14)

Xr+N
4

=
(
Yr − ω2r

N Gr
)
− j

(
ωrNZr − ω3r

N Hr
)
,(11.15)

Xr+N
2

= −
(
ωrNZr + ω3r

N Hr
)

+
(
Yr + ω2r

N Gr
)
,(11.16)

Xr+ 3N
4

= j
(
ωrNZr − ω3r

N Hr
)

+
(
Yr − ω2r

N Gr
)
,(11.17)

where r = 0, 1, . . . , N/4− 1. The computation represented by (11.14), (11.15), (11.16),
and (11.17) can now be represented by the two stages of butterfly computation in
Figure 11.1.

11.1.1 Analyzing the arithmetic cost

To determine the arithmetic cost of the radix-4 FFT algorithm, observe that ω2r
N Gr,

ωrNZr and ω3r
N Hr need to be computed before the four partial sums can be obtained.

Since the size of each subproblem is N/4, 3N/4 complex multiplications and N complex
additions are performed during the first stage of butterfly computation. The second
stage of butterfly computation involves no multiplication by the twiddle factors, so
only N complex additions are needed. Thus, 3N/4 complex multiplications and 2N
complex additions are required to implement the butterfly computation in Figure 11.1.



Figure 11.1 The radix-4 DIT FFT butterflies.

Recall again that the arithmetic cost of computer algorithms is measured by the
number of real arithmetic operations, and that one complex addition incurs two real
additions according to (2.1), and one complex multiplication (with pre-computed inter-
mediate results involving the real and imaginary parts of a twiddle factor) incurs three
real multiplications and three real additions according to (2.4). Accordingly, 9N/4 real
multiplications and 25N/4 real additions are required per step of radix-4 DIT FFT.
Thus, one step of the radix-4 DIT FFT algorithm requires 17N/2 flops in total.

Since the objective of developing the radix-4 algorithm is to minimize the essential
real operations, a careful analysis of the cost should exclude the trivial multiplication
by ω0

N = 1 and ω�4 = (−j)� = ±1 or ±j, since they will certainly not be done in an
efficient implementation. Furthermore, note that the cost of multiplication by a twiddle
factor which is an odd power of ω8 = (1 − j)/

√
2 is less than the cost of a complex

multiplication because

ω2�+1
8 = ω�4 × ω8 = (−j)�

(
1 − j√

2

)
= ±

(
1 − j√

2

)
or ±

(
1 + j√

2

)
.(11.18)

These special factors are identified from the computation of ω2r
N Gr, ωrNZr, and ω3r

N Hr
for r = 0, 1, . . . , N4 − 1 below.

Thus, there are eight special cases: the four cases involving multiplication by 1 and
−j are trivial, and the other four cases involving the multiplication by an odd power
of ω8 are to be treated specially. The total nontrivial complex multiplications thus is
reduced to 3

4N − 8. Since only 4 flops are needed to compute each of ω8Gr, ω3
8Gr,

Table 11.1 Special cases of twiddle-factor multiplication in the radix-4 algorithm. Table 11.1 Special cases of twiddle-factor multiplication in the radix-4 algorithm. 

W=G N P- 1 x G,. = Gr wdGr = -jGr W-L w;G 
WLZP 1 x zp = ZP W8Zr - 

W3rH N r 1 x H, = H, Will, - - 



ω8Zr, ω3
8Hr, the total flop count becomes

(3 + 3) ×
(

3
4
N − 8

)
+ 4 × 4 + 2 × (2N) =

17
2
N − 32 .(11.19)

Because these special factors also occur in every subsequent step, the savings
can be incorporated in setting up the recurrence equation. For completeness, as-
suming that the problem size is N = 4n, these special factors are identified for
r = 0, 1, . . . , N/

(
4i+1

)
in the ith step for i = 0, 1, . . . , n− 2 in Table 11.2.

To set up the recurrence equation, the boundary condition for N = 4 is needed.
Recall that when N = 4, the twiddle factors are the four primitive roots of unity,
namely 1, −1, j and −j, so the first stage of butterfly computation involves no nontrivial
complex multiplications. Therefore, when N = 4, only 2 × N = 8 complex additions
or 4 ×N = 16 real arithmetic operations are required.

The cost of the radix-4 FFT algorithm can now be represented by the following
recurrence:

T (N) =

{
4T

(
N
4

)
+ 17

2 N − 32 if N = 4n > 4 ,

16 if N = 4 .
(11.20)

Solving (11.20) (see Appendix B), one obtains

T (N) = 4
1
4
N log2 N − 43

6
N +

32
3

.(11.21)

The derivation above confirms similar results given in [70, 1981] and [46, 1996].
Therefore, compared to the arithmetic cost of T (N) = 5N log2 N of the radix-2

algorithm in (3.10), the saving by the radix-4 algorithm is 15 percent. It will be shown
in Chapter 12 that the split-radix algorithm can further reduce the arithmetic cost to
T (N) = 4N log2 N + Θ(N), which represents a saving of 25 percent compared to the
radix-2 algorithm.

11.2 The Radix-4 DIF FFTs

A radix-4 DIF FFT algorithm can be derived from recursively decimating the frequency
series into four subsets, i.e., the set denoted by Yk = X4k for 0 ≤ k ≤ N/4 − 1, the
set denoted by Zk = X4k+1 for 0 ≤ k ≤ N/4 − 1, the set denoted by Gk = X4k+2 for

Table 11.2 The recurrent special twiddle-factor multiplications in the radix-4 algo- 
rithm. 

o<r<+&-1 r=O r= f  -& ( 14 
r= a -g 

( L 
r= g -& 

( ).A 
Ir .G 

wN/4’ ’ 1 x G, = G, w4Gr = -jG, waGr w%G 

w;;,4i 2, lx& = 2, W8.G 

W$,4i H, 1 x HP = H, l&f, 



0 ≤ k ≤ N/4 − 1, and the set denoted by Hk = X4k+3 for 0 ≤ k ≤ N/4 − 1 as shown
below. The derivation again begins with the DFT definition from (3.1).
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(11.22)

The four subproblems can thus be constructed by substituting r = 4k, r = 4k + 1,
r = 4k + 2, and r = 4k + 3 into the equation above.

Yk = X4k =

N
4 −1∑
�=0

(
x� + x�+N

4
ω4k

4 + x�+N
2
ω2×4k

4 + x�+ 3N
4
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4
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ω4k�

N

=

N
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4
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2
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4
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ωk�N
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=
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2
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+
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4
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ωk�N

4

=
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y� ω
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4
, k = 0, 1, . . . , N/4 − 1.

(11.23)

Zk = X4k+1 =
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4
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(11.24)



Gk = X4k+2 =
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�=0
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(11.25)

Hk = X4k+3 =

N
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4
ω4k+3
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4
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(11.26)

To form these four subproblems using two stages of butterfly computation, the partial
sums identified above are first rearranged to facilitate the butterfly computation as
shown below.

y� =
(
x� + x�+N

2

)
+

(
x�+N

4
+ x�+ 3N

4

)
, 0 ≤ � ≤ N

4
− 1.(11.27)

z� =
((

x� − x�+N
2

)
− j

(
x�+N

4
− x�+ 3N

4

))
ω�N , 0 ≤ � ≤ N

4
− 1.(11.28)

g� =
(
−

(
x�+N

4
+ x�+ 3N

4

)
+

(
x� + x�+N

2

))
ω2�

N , 0 ≤ � ≤ N

4
− 1.(11.29)

h� =
(
j
(
x�+N

4
− x�+ 3N

4

)
+

(
x� − x�+N

2

))
ω3�

N , 0 ≤ � ≤ N

4
− 1.(11.30)

The computation represented by (11.27), (11.28), (11.29), and (11.30) can now be
represented by the two stages of butterfly computation in Figure 11.2.

Figure 11.2 The radix-4 DIF FFT butterflies.



11.3 The Class of Radix-2s DIT and DIF FFTs

The techniques used to develop the radix-2 and the radix-4 FFT algorithms can be
generalized to develop the entire class of radix-2s FFTs. Setting q = 2s, a radix-q DIT
FFT algorithm may be developed from decomposing (3.1) into q partial sums:

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1 ,

=
q−1∑
u=0

N
q −1∑
k=0

xqk+uω
r(qk+u)
N

=
q−1∑
u=0

ωurN

N
q −1∑
k=0

xqk+uω
r(qk)
N

=
q−1∑
u=0

ωN
ur

N
q −1∑
k=0

xqk+u (ωqN)rk

=
q−1∑
u=0

ωurN

N
q −1∑
k=0

xqk+uω
rk
N
q

 .

(11.31)

Observe that (3.3) and (11.1) are special cases of the equation above when q = 2 and
q = 4. According to (11.31), the time series can be decimated into q = 2s sets so that

each of the q partial sums represented by
∑N

q −1

k=0 xqk+uω
rk
N
q

for u = 0, 1, . . . , q − 1, can

be recursively computed independent of each other. Each partial sum represents the
DFT of a subproblem of size N/q.

The output frequencies are computed as q separate segments, and each segment de-
noted by X�+λN

q
has N/q consecutive elements indexed by �, where 0 ≤ � ≤ N/q−1 and

0 ≤ λ ≤ q − 1. By substituting r = � + λNq in (11.31), one obtains the equation for
computing the output frequencies in each of the q segments. The equation for the λth

segment is shown below, where 0 ≤ λ ≤ q − 1.

X�+λN
q

=
q−1∑
u=0

ωu�N

(
ω

N
q

N

)uλN
q −1∑
k=0

xqk+uω
k(�+λN

q )
N
q


=
q−1∑
u=0

ωu�N ωuλq

N
q −1∑
k=0

xqk+uω
k�
N
q

 , � = 0, 1, . . . , N/q − 1.

(11.32)

Of course, to minimize the arithmetic cost, the computation of the q frequency segments
should be reorganized to avoid redundant computation as demonstrated earlier in the
derivation of the radix-4 DIT FFT algorithm. Observe also that by substituting q =
2, λ = 0, 1 in (11.32), one obtains (3.7) and (3.8) for computing the two frequency
segments in the radix-2 DIT FFT algorithm; on the other hand, by substituting q = 4,
λ = 0, 1, 2, 3 in (11.32), one obtains the four equations (11.6), (11.7), (11.8), and (11.9)
for computing the four frequency segments in the radix-4 DIT FFT algorithm.

To develop a radix-q DIF FFT algorithm, one would simply decimate the frequency
series Xr into q sets with each set containing {Yk(u)|Yk(u) = Xqk+u, 0 ≤ k ≤ N/q− 1}



for u = 0, 1, . . . , q − 1. Each of the q subproblems is thus of size N/q, and is defined
by substituting r = qk + u in (11.33) as shown for q = 2 and q = 4 in developing the
radix-2 and radix-4 DIF FFT algorithms in Sections 3.2 and 11.2. For completeness,
a brief derivation, which illuminates the generalization from the radix-2 and radix-4
algorithms, is provided below.

Xr =
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=
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q
N ωr�N
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x�+λN
q
ωλrq

)
ωr�N .

(11.33)

The q subproblems can thus be constructed by substituting r = qk + u in (11.33) for
u = 0, 1, . . . , q − 1.

Yk
(u) = Xqk+u =

N
q −1∑
�=0

(
q−1∑
λ=0

x�+λN
q
ωλ(qk+u)q
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q
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q
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=

N
q −1∑
�=0

y�
(u)ωk�N

q
, k = 0, 1, . . . , N/q − 1 .

(11.34)

Note that the N/q input data points to each subproblems are labelled by y
(u)
� for

u = 0, 1, . . . , q − 1. To show that the radix-2 and radix-4 DIF FFT are special cases
when q = 2 and q = 4, the generalized formulae for forming each of the q = 2s ≥ 2
subproblems are explicitly identified from (11.34) and it is displayed once again below.
Observe that when q = 2, y� in (3.13) and z� in (3.15) correspond to y

(0)
� and y

(1)
� in

the generalized formula; when q = 4, y�, z�, g� and h� in equations (11.23) to (11.26)
correspond to y

(0)
� , y(1)

� , y(2)
� and y

(3)
� in this generalized formula.

y�
(u) =

(
q−1∑
λ=0

x�+λN
q
ωλ(qk+u)q

)
ωu�N , � = 0, 1, . . . , N/q − 1 .(11.35)

Since it is known that a radix-q FFT for q = 2s > 4 is less efficient than the prob-
ably optimal split-radix algorithm which recursively applies both radix-2 and radix-4
algorithms to solve each subproblem [86], further details on higher radix algorithms are
omitted here, and readers are referred to [5, 84] for details about the popular radix-8
and radix-16 FFT algorithms.



Chapter 12

The Mixed-Radix and

Split-Radix FFTs

12.1 The Mixed-Radix FFTs

There are two kinds of mixed-radix FFT algorithms. The first kind refers to a situation
arising naturally when a radix-q algorithm, where q = 2m > 2, is applied to an input
series consisting of N = 2k × qs equally spaced points, where 1 ≤ k < m. In this case,
out of necessity, k steps of radix-2 algorithm are applied either at the beginning or at
the end of the transform, while the rest of the transform is carried out by s steps of the
radix-q algorithm. For example, if N = 22m+1 = 2 × 4m, the mixed-radix algorithm
combines one step of the radix-2 algorithm and m steps of the radix-4 algorithm.1

The second kind of mixed-radix algorithms in the literature refers to those spe-
cialized for a composite N = N0 × N1 × · · · × Nk. Different algorithms may be used
depending on whether the factors satisfy certain restrictions. The FFT algorithms for
composite N will be treated in Chapter 15.

12.2 The Split-Radix DIT FFTs

After one has studied the radix-2 and radix-4 FFT algorithms in Chapters 3 and 11,
it is interesting to see that the computing cost of the FFT algorithm can be further
reduced by combining the two in a split-radix algorithm. The split-radix approach was
first proposed by Duhamel and Hollmann in 1984 [39]. There are again DIT versions
and DIF versions of the algorithm, depending on whether the input time series or the
output frequency series is decimated.

The split-radix DIT algorithm is derived from (3.1), which defines the discrete

1It is of historical interest to note that a program for N = 22m+1 was written by Gentleman and

Sande [47] in 1966, where they claimed a doubling of efficiency by this approach. However, Singleton

observed in [83] that when computing with all the data stored in memory, a good radix-2 program

was nearly as efficient as a radix-4 plus one step of radix-2 program and was simpler.



Fourier transform of a complex time series:

Xr =
N−1∑
�=0

x�ω
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=

N
2 −1∑
k=0

x2kω
r(2k)
N +

N
4 −1∑
k=0

x4k+1ω
r(4k+1)
N +

N
4 −1∑
k=0

x4k+3ω
r(4k+3)
N

=

N
2 −1∑
k=0

x2kω
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(12.1)

By decimating the time series into three sets, namely the set {yk |yk = x2k, 0 ≤ k ≤
N/2 − 1}, the set {zk|zk = x4k+1, 0 ≤ k ≤ N/4 − 1}, and the set {hk|hk = x4k+3, 0 ≤
k ≤ N/4− 1}, the three subproblems are defined after the appropriate twiddle factors
ωN

2
= ω2

N and ωN
4

= ω4
N are identified.
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(12.2)
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x4k+1ω
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(12.3)

Hr =
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x4k+3ω
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hkω
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(12.4)

After these three subproblems are each (recursively) solved by the split-radix algorithm,
the solution to the original problem of size N can be obtained according to (12.1) for
r = 0, 1, . . . , N − 1. Because Yr+kN

2
= Yr for 0 ≤ r ≤ N/2 − 1, Zr+kN

4
= Zr for

0 ≤ r ≤ N/4 − 1, and Hr+kN
4

= Hr for 0 ≤ r ≤ N/4 − 1, equation (12.1) can be



rewritten in terms of Yr, Yr+N
4
, Zr, and Hr for 0 ≤ r ≤ N/4 − 1 as shown below.

Xr = Yr + ωrNZr + ω3r
N Hr

= Yr +
(
ωrNZr + ω3r

N Hr
)
, 0 ≤ r ≤ N

4
− 1,

(12.5)

Xr+N
4
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4

+ ω
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4
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3(r+N
4 )

N Hr

= Yr+N
4
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N Hr
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, 0 ≤ r ≤ N

4
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(12.6)

Xr+N
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= Yr + ω
r+N

2
N Zr + ω

3(r+N
2 )

N Hr

= Yr −
(
ωrNZr + ω3r

N Hr
)
, 0 ≤ r ≤ N

4
− 1,

(12.7)

Xr+ 3N
4

= Yr+N
4

+ ω
r+ 3N

4
N Zr + ω

3(r+ 3N
4 )

N Hr

= Yr+N
4

+ j
(
ωrNZr − ω3r

N Hr
)
, 0 ≤ r ≤ N

4
− 1.

(12.8)

The computation represented by (12.5), (12.6), (12.7), and (12.8) is referred to as an
unsymmetric DIT butterfly computation in the literature as shown in Figure 12.1.

Figure 12.1 The split-radix DIT FFT butterflies.

12.2.1 Analyzing the arithmetic cost

To determine the arithmetic cost of the split-radix DIT FFT algorithm, observe that
ωrNZr and ω3r

N Hr must be computed before the two partial sums can be formed. Since
these two subproblems are each of size N/4, N/2 complex multiplications and N/2 com-
plex additions are required in order to obtain the partial sums. Among the N/2 complex
multiplications, there are four special cases which were already identified in the earlier
discussion of the radix-4 algorithm: they are two cases of multiplication by 1 and two
cases of multiplication by an odd power of ω8. Recall that the former two cases are triv-
ial, and only four real operations rather than six would be used in the latter two cases.
Thus, (3+3)×(N/2 − 4)+4×2+2×(N/2) = 4N−16 nontrivial real operations are per-
formed in the first stage of butterfly computation. In the second stage of the butterfly
computation, only N complex additions or 2N real operations are required. The total
cost for a single split-radix step thus involves 6N−16 nontrivial real operations (flops).



To set up the recurrence equation, the boundary conditions for both N = 4 and
N = 2 are needed; when the size of a subproblem is reduced to 8, the three subsequent
subproblems are of sizes 4, 2 and 2. As noted earlier, T (4) = 16 flops, and T (2) = 4
flops. The cost of the split-radix FFT algorithm (in terms of nontrivial flops) can be
represented by the following recurrence:

T (N) =


T

(
N
2

)
+ 2T

(
N
4

)
+ 6N − 16 if N = 4n > 4 ,

16 if N = 4 ,

4 if N = 2 .

(12.9)

Solving (12.9) (see Appendix B), one obtains the solution

T (N) = 4N log2 N − 6N + 8 .(12.10)

12.3 The Split-Radix DIF FFTs

A split-radix DIF FFT algorithm can be derived by recursively applying both radix-2
and radix-4 DIF FFT algorithm to solve each subproblem resulting from decimating the
output frequency series in a similar fashion. That is, the frequency series is recursively
decimated into three subsets, i.e., the set denoted by Yk = X2k for 0 ≤ k ≤ N/2−1, the
set denoted by Zk = X4k+1 for 0 ≤ k ≤ N/4 − 1, and the set denoted by Hk = X4k+3

for 0 ≤ k ≤ N/4 − 1 as shown below. The derivation begins with the discrete Fourier
transform defined by (3.1). Using the results developed earlier for the radix-2 DIF
algorithm in (3.11), one obtains
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N
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=
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(12.11)

By letting Yk = X2k, y� = x� + x�+N
2
, one subproblem of half the size is defined by

Yk = X2k =
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(12.12)

To construct the other two subproblems of size N/4, begin with the DFT definition
in (3.1) and use the results developed earlier for the DIF radix-4 algorithm in (11.22).
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(12.13)



By substituting r = 4k + 1 and r = 4k + 3, one again obtains
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(12.15)

To form these three subproblems using two stages of unsymmetric butterfly computa-
tion, the computation of the partial sums is again rearranged to facilitate the butterfly
computation.

y� =
(
x� + x�+N

2

)
, 0 ≤ � ≤ N

4
− 1 .(12.16)

y�+N
4
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4
+ x�+ 3N
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4
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x� − x�+N
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− 1 .(12.18)

h� =
(
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4
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4

)
+

(
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2

))
ω3�

N , 0 ≤ � ≤ N

4
− 1 .(12.19)

The computation represented by (12.16), (12.17), (12.18), and (12.19) again yields an
unsymmetric DIF butterfly computation as depicted in Figure 12.2.



Figure 12.2 The split-radix DIF FFT butterflies.

12.4 Notes and References

The split-radix FFT was originally developed by Duhamel and Hollmann [39] in 1984,
and it was subsequently extended and implemented for complex, real and real-symmetric
data by Duhamel in [38]. In 1986, Sorensen, Heideman, and Burrus presented an index-
ing scheme which efficiently implemented the Duhamel-Hollmann split-radix FFT [86].
Both DIF and DIT Fortran programs were presented in [86]. The history of the ideas
on the fast Fourier transforms from Gauss to the split-radix algorithm is presented
in [41].



Chapter 13

FFTs for Arbitrary N

For some applications, one can always choose N = 2n and employ the radix-2 algo-
rithm. For example, if one is sampling N discrete date points from an (essentially)
infinite set, one can certainly choose N = 2n points. This is the normal situation
in the practice of signal processing. As one more example, it is well-known that the
FFT and its inverse transformation can be used to effect polynomial evaluation and
interpolation very efficiently. Indeed, one can multiply two (degree N −1) polynomials
in Θ (N log2 N) time. Since the degree of the polynomial can be increased by adding
higher-order terms with zero coefficients, one can always choose N = 2n and use the
radix-2 algorithm [63].

Consequently, the concern here is what to do when it is necessary to compute the
DFT of a given time series consisting of equally spaced N �= 2n points: {x0, x1, ..., xN−1},
assuming that the less efficient Θ

(
N2

)
DFT algorithm is not acceptable. Note that

one cannot simply add zeros to the data set to make N reach the next power of two.
That is, the strategy of padding the input array by extra zero entries is not valid. If
N can be chosen to be composite, one may either employ Bergland’s algorithm [3] for
composite N = q0 × q1 ×· · ·× qk, where each qi is a small prime, or employ Bluestein’s
algorithm [10, 11, 96] which works for arbitrary N (including large primes.) While the
former is faster than the latter if N is composite, Bluestein’s algorithm is more general
because there is no restriction on N .

While many variants of Bergland’s mixed-radix algorithm is in wide use on shared-
memory multiprocessor computers [94], Bluestein’s algorithm was recently shown to
incur the least amount of communication on distributed-memory hypercube multipro-
cessors [96]. Since the FFTs for composite N will be presented in Chapter 15, only
Bluestein’s algorithm is studied in this chapter, and the material is largely adapted
from [96] with added details. To highlight that this algorithm is recommended only
when N �= 2n, the example for N = 4 in [96] is replaced by a new example for N = 6,
and some notations used in [96] are modified to be consistent with the rest of the text.

13.1 The Main Ideas Behind Bluestein’s FFT

Bluestein’s FFT is a good example to demonstrate that a sophisticated algorithm can
be built from “a few elegant ideas.” The main ideas employed in the Bluestein’s FFT



are the following.

• Express the DFT defined by (3.1) as a Toeplitz matrix-vector product.

• Embed the Toeplitz matrix-vector product in a circulant matrix-vector
product of order M = 2s.

• Diagonalize a circulant matrix by a DFT matrix.

• Evaluate the diagonally scaled DFT using a radix-2 FFT.

• Perform a radix-2 inverse FFT to undo the diagonalization.

Each idea is explored further below.

13.1.1 DFT and the symmetric Toeplitz matrix-vector product

Definition 13.1 A N ×N matrix T is Toeplitz if, for all i and j, ti,j = hi−j for the
given 2N − 1 scalars h−N+1, . . . , h0, . . . , hN−1.

Observe that a N ×N matrix has exactly 2N − 1 diagonals. Since all ti,j entries along
a diagonal have the same i − j value, they are assigned the same constant hi−j in a
Toeplitz matrix.

Example 13.1 Given below is a 6 × 6 Toeplitz Matrix.

T =



t0,0 t0,1 t0,2 t0,3 t0,4 t0,5
t1,0 t1,1 t1,2 t1,3 t1,4 t1,5
t2,0 t2,1 t2,2 t2,3 t2,4 t2,5
t3,0 t3,1 t3,2 t3,3 t3,4 t3,5
t4,0 t4,1 t4,2 t4,3 t4,4 t4,5
t5,0 t5,1 t5,2 t5,3 t5,4 t5,5


=



h0 h−1 h−2 h−3 h−4 h−5

h1 h0 h−1 h−2 h−3 h−4

h2 h1 h0 h−1 h−2 h−3

h3 h2 h1 h0 h−1 h−2

h4 h3 h2 h1 h0 h−1

h5 h4 h3 h2 h1 h0


Example 13.2 A Toeplitz matrix is symmetric if hi−j = hj−i as shown below.

T =



t0,0 t0,1 t0,2 t0,3 t0,4 t0,5
t1,0 t1,1 t1,2 t1,3 t1,4 t1,5
t2,0 t2,1 t2,2 t2,3 t2,4 t2,5
t3,0 t3,1 t3,2 t3,3 t3,4 t3,5
t4,0 t4,1 t4,2 t4,3 t4,4 t4,5
t5,0 t5,1 t5,2 t5,3 t5,4 t5,5


=



h0 h1 h2 h3 h4 h5

h1 h0 h1 h2 h3 h4

h2 h1 h0 h1 h2 h3

h3 h2 h1 h0 h1 h2

h4 h3 h2 h1 h0 h1

h5 h4 h3 h2 h1 h0


Bluestein’s idea was to express the DFT matrix-vector product as a symmetric Toeplitz
matrix-vector product using the identity

r� =
1
2

(
r2 + �2 − (r − �)2

)
.(13.1)

Replacing r� in (3.1) by the right side of (13.1) yields



Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1,

=
N−1∑
�=0

x�ω
1
2 (r2+�2−(r−�)2)
N

= ω
1
2 r

2

N

N−1∑
�=0

x�ω
1
2 �

2

N ω
− 1

2 (r−�)2
N .

(13.2)

To keep only the matrix-vector product on the right-hand side, multiply (13.2) by

ω
− 1

2 r
2

N on both sides, yielding

ω
− 1

2 r
2

N Xr =
N−1∑
�=0

(
x�ω

1
2 �

2

N

)
ω
− 1

2 (r−�)2
N , r = 0, . . . , N − 1 .(13.3)

To further simplify (13.3), define

Zr = ω
− 1

2 r
2

N Xr , y� = x�ω
1
2 �

2

N , hr−� = ω
− 1

2 (r−�)2
N ,(13.4)

and rewrite (13.3) as

Zr =
N−1∑
�=0

y�hr−� , r = 0, 1, . . . , N − 1 .(13.5)

For N = 6, the corresponding equations expressed as a matrix-vector product are

Z0

Z1

Z2

Z3

Z4

Z5


=



h0 h−1 h−2 h−3 h−4 h−5

h1 h0 h−1 h−2 h−3 h−4

h2 h1 h0 h−1 h−2 h−3

h3 h2 h1 h0 h−1 h−2

h4 h3 h2 h1 h0 h−1

h5 h4 h3 h2 h1 h0





y0

y1

y2

y3

y4

y5


.(13.6)

According to Definition 13.1, equation (13.6) represents a Toeplitz matrix-vector prod-
uct. Furthermore, because (r − �)2 = (�− r)2, which implies

hr−� = ω
− 1

2 (r−�)2
N = ω

− 1
2 (�−r)2

N = h�−r

according to (13.4). Thus, the six equations can be expressed as a symmetric Toeplitz
matrix-vector product as shown in (13.7).

Z0

Z1

Z2

Z3

Z4

Z5


=



h0 h1 h2 h3 h4 h5

h1 h0 h1 h2 h3 h4

h2 h1 h0 h1 h2 h3

h3 h2 h1 h0 h1 h2

h4 h3 h2 h1 h0 h1

h5 h4 h3 h2 h1 h0





y0

y1

y2

y3

y4

y5


.(13.7)

In summary, instead of computing Xr directly from (3.1) using the Θ
(
N2

)
Algo-

rithm, the steps in the alternative Algorithm 13.1 may be performed.



Algorithm 13.1 Computing DFT as a symmetric Toeplitz matrix-vector product.

begin
for � := 0 to N − 1 do Preprocessing phase

y� := x� ∗ ω
1
2 �

2

N ; h� := ω
− 1

2 �
2

N

end for
for r := 0 to N − 1 do

Zr := 0.0 Initialize Zr
for � := 0 to N − 1 do

m := abs(r − �) m = | r − � |
Zr := Zr + y� ∗ hm

end for
end for
for r := 0 to N − 1 do Recover phase

Xr := Zr ∗ ω
1
2 r

2

N

end for

However, nothing is gained. Indeed, the Θ
(
N2

)
Toeplitz DFT algorithm 13.1 takes

even longer to compute due to the extra work in the preprocessing phase and the
recovery phase. The challenge is to compute the Toeplitz matrix-vector product in
Θ (N log2 N) time when N is not a power of two.

Bluestein’s second idea is to enlarge the N × N Toeplitz matrix to a circulant
matrix of dimension 2N − 2. If 2N − 2 = 2s, then the matrix-vector product involving
this enlarged circulant matrix can be computed next. If 2N − 2 �= 2s, the circulant
matrix will be enlarged further to dimension M = 2s. For example, if N = 5, then
2N − 2 = 8 = 23, and the matrix-vector product involving the 8 × 8 circulant matrix
is computed next. However, if N = 6, then 2N − 2 = 10 �= 2s, the circulant matrix
will be further enlarged to dimension M = 24 = 16, and the matrix-vector product
computed next involves the 16 × 16 circulant matrix. These two separate embedding
processes are examined in the next two sections.

13.1.2 Enlarging the Toeplitz matrix to a circulant matrix

Bluestein’s “embedding” idea can be best demonstrated by enlarging a Toeplitz matrix
resulting from a DFT of length N = 6. The 6 × 6 symmetric Toeplitz matrix H is
enlarged to a circulant matrix H(1) of dimension 2N − 2 = 10 below. The process
involves extending the existent diagonals as well as adding new ones to fill the two
vacant corners. The added diagonals are formed by the same hi’s excluding hN−1 and
h0, and they are properly ordered so that the result is a circulant matrix, which is a
symmetric Toeplitz matrix with the additional property: the elements of each row are
cyclic shifted from the elements in the preceding row.



Example 13.3

(13.8) H(1) =



h0 h1 h2 h3 h4 h5

h1 h0 h1 h2 h3 h4

h2 h1 h0 h1 h2 h3

h3 h2 h1 h0 h1 h2

h4 h3 h2 h1 h0 h1

h5 h4 h3 h2 h1 h0



+



h5

h4 h5

h3 h4 h5

h2 h3 h4 h5

h1 h2 h3 h4

h5 h4 h3 h2 h1 h0 h1 h2 h3

h5 h4 h3 h2 h1 h0 h1 h2

h5 h4 h3 h2 h1 h0 h1

h5 h4 h3 h2 h1 h0



+



h4 h3 h2 h1

h4 h3 h2

h4 h3

h4

h4

h3 h4

h2 h3 h4

h1 h2 h3 h4


.

The result is a circulant matrix:

H(1) =



h0 h1 h2 h3 h4 h5 h4 h3 h2 h1

h1 h0 h1 h2 h3 h4 h5 h4 h3 h2

h2 h1 h0 h1 h2 h3 h4 h5 h4 h3

h3 h2 h1 h0 h1 h2 h3 h4 h5 h4

h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4

h4 h5 h4 h3 h2 h1 h0 h1 h2 h3

h3 h4 h5 h4 h3 h2 h1 h0 h1 h2

h2 h3 h4 h5 h4 h3 h2 h1 h0 h1

h1 h2 h3 h4 h5 h4 h3 h2 h1 h0


.(13.9)



Formally, the circulant H(1) is a symmetric Toeplitz matrix consisting of M = 2N − 2
constant diagonals defined by the set of scalars {h(1)

0 , h
(1)
1 , h

(1)
2 , . . . , h

(1)
M−1}, which is

extended from the hi’s defining H (in a circular fashion) according to the rules given
below.

H(1)[ r, � ] ≡ h
(1)
| r−� | , 0 ≤ r, � ≤ M − 1 ,where

h
(1)
λ ≡

{
hλ if 0 ≤ λ ≤ N − 1,

hM−λ if N ≤ λ ≤ M − 1, and M = 2N − 2.

(13.10)

Accordingly, H(1) is circulant if and only if h(1)
λ = h

(1)
M−λ for 0 ≤ λ ≤ M − 1.

13.1.3 Enlarging the dimension of a circulant matrix to M = 2s

As explained earlier, when N = 6, because 2N − 2 = 10 is not a power of two, the
10 × 10 circulant matrix H(1) in (13.9) needs to be further enlarged to dimension
M = 2s = 16. Continuing with the matrix H(1) from the previous section, the second
embedding process is depicted below. The result is a 16× 16 circulant matrix H(2). It
can be clearly seen that the “embedding” is done by moving the two previously added
corners further away to the corners of this larger matrix, followed by extending the
existent diagonals. The unfilled diagonals remain zeros.

Example 13.4

The embedded matrix H(1) is



h0 h1 h2 h3 h4 h5 h4 h3 h2 h1

h1 h0 h1 h2 h3 h4 h5 h4 h3 h2

h2 h1 h0 h1 h2 h3 h4 h5 h4 h3

h3 h2 h1 h0 h1 h2 h3 h4 h5 h4

h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4

h5 h4 h3 h2 h1 h0 h1 h2 h3

h5 h4 h3 h2 h1 h0 h1 h2

h5 h4 h3 h2 h1 h0 h1

h5 h4 h3 h2 h1 h0

h4

h3 h4

h2 h3 h4

h1 h2 h3 h4



.



The extended circulant matrix H(2) is



h0 h1 h2 h3 h4 h5 h4 h3 h2 h1

h1 h0 h1 h2 h3 h4 h5 h4 h3 h2

h2 h1 h0 h1 h2 h3 h4 h5 h4 h3

h3 h2 h1 h0 h1 h2 h3 h4 h5 h4

h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4 h5

h5 h4 h3 h2 h1 h0 h1 h2 h3 h4

h4 h5 h4 h3 h2 h1 h0 h1 h2 h3

h3 h4 h5 h4 h3 h2 h1 h0 h1 h2

h2 h3 h4 h5 h4 h3 h2 h1 h0 h1

h1 h2 h3 h4 h5 h4 h3 h2 h1 h0



.

Formally, the circulant H(2) is a symmetric Toeplitz matrix consisting of M constant
diagonals defined by the set of scalars {h(2)

0 , h
(2)
1 , h

(2)
2 , . . . , h

(2)
M−1}, which is extended

from the hi’s in H (in a circular fashion) according to the rules given below.

H(2)[ r, � ] ≡ h
(2)
| r−� | , 0 ≤ r, � ≤ M − 1 ,where

h
(2)
λ ≡


hλ , if 0 ≤ λ ≤ N − 1,

0 , if N ≤ λ ≤ M −N + 1,

hM−λ , if M −N + 2 ≤ λ ≤ M − 1.

(13.11)

Observe again that H(2) is circulant if and only if h(2)
λ = h

(2)
M−λ for 0 ≤ λ ≤ M − 1.

13.1.4 Forming the M ×M circulant matrix-vector product

Recall that depending on whether M = 2N − 2 is a power of two, the Toeplitz matrix-
vector product z = Hy is to be embedded in either z(1) = H(1)y(1) or z(2) = H(2)y(2).
To continue, y(1) and y(2) must now be determined.

Since H is kept intact as an N × N submatrix in the upper left corner of either
H(1) or H(2), an appropriate y(1) or y(2) can be obtained by simply padding y with
M − N more zeros, where 2N − 2 ≤ M = 2s < 4N . As depicted below for N = 6,
the elements of the vector z, namely, Z0, Z1, . . . , ZN−1, can then be retrieved from the
top N positions in either z(1) or z(2). Note that the numerical values of the remaining
entries are irrelevant, and they are marked by “×” symbols for simplicity.



Example 13.5 Depicting the embedded z = Hy in z(1) = H(1)y(1) or z(2) = H(2)y(2)

for N = 6. 

Z0

Z1

Z2

Z3

Z4

Z5

×
...
×


=



h0 h1 h2 h3 h4 h5 × . . . ×
h1 h0 h1 h2 h3 h4 × . . . ×
h2 h1 h0 h1 h2 h3 × . . . ×
h3 h2 h1 h0 h1 h2 × . . . ×
h4 h3 h2 h1 h0 h1 × . . . ×
h5 h4 h3 h2 h1 h0 × . . . ×
× × × × × × × . . . ×
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

× × × × × × × . . . ×





y0

y1

y2

y3

y4

y5

0
...
0


13.1.5 Diagonalizing a circulant matrix by a DFT matrix

The next step involves the diagonalization of the circulant H(1) or H(2) by a DFT
matrix. The objective is to obtain a matrix-vector product which represents a DFT of
length M so that it can be computed by a radix-2 FFT in Θ (M log2 M) time. In this
section, the diagonalization of H(2) is considered without loss of generality, because
H(2) is reduced to H(1) when M = 2N − 2 = 2s.

Recall that a DFT of length M defined by (3.1) can also be written as a matrix-
vector product involving an M×M DFT matrix Ω formed by the twiddle factors, with
ωr�M contained in Ω[ r, � ] as shown below.

Y0

Y1

Y2

...
YM−1

 =


1 1 1 . . . 1
1 ω1

M ω2
M . . . ωM−1

M

1 ω2
M ω4

N . . . ω
2(M−1)
M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 ωM−1
M ω

2(M−1)
M . . . ω

(M−1)2

M




y0

y1

y2

...
yM−1

 .(13.12)

Bluestein’s next strategy employs the identity ΩH(2) = DΩ, where D is a diagonal
matrix. The diagonal of D defines a DFT (of length M) of the h

(2)
� ’s. This identity is

proved in Lemma 13.2.

Lemma 13.2 If H(2) is the circulant matrix of dimension M defined in (13.11), and
Ω is the DFT matrix of dimension M defined in (13.12), then ΩH(2) = DΩ, where

D =


ĥ

(2)
0

ĥ
(2)
1

. . .

ĥ
(2)
M

(13.13)

and

D[r, r] = ĥ(2)
r =

M−1∑
λ=0

h
(2)
λ ωrλM , r = 0, 1, 2, . . . ,M − 1.



Proof: Define A ≡ ΩH(2) and B ≡ DΩ. In what follows A[r, �] = B[r, �] is proved
for 0 ≤ r, � ≤ M − 1. For any such r and �,

B[r, �] =
M−1∑
k=0

D[r, k] ×Ω[k, �] = D[r, r] ×Ω[r, �] ,(13.14)

and

A[r, �] =
M−1∑
k=0

Ω[r, k] ×H(2)[k, �]

=
M−1∑
k=0

ωrkM h
(2)
| k−� |

=
�−1∑
k=0

ωrkM h
(2)
�−k +

M−1∑
k=�

ωrkM h
(2)
k−�

= S2 + S1 .

(13.15)

To simplify the summation S1, define λ ≡ k− �, which implies k = λ+ �. Furthermore,
when k = �, λ = 0; when k = M − 1, λ = M − 1− �. By using these identities, λ may
be substituted into S1 to obtain what follows.

S1 =
M−1∑
k=�

ωrkM h
(2)
k−�

=
M−1−�∑
λ=0

ω
r(λ+�)
M h

(2)
λ

= ωr�M

M−1−�∑
λ=0

ωrλM h
(2)
λ .

(13.16)

To simplify the summation S2, define λ ≡ k + M − �, which implies � − k = M − λ,
and k = λ−M + �. Furthermore, when k = 0, λ = M − �; when k = �− 1, λ = M − 1.
By using these identities, λ may be substituted into S2 to obtain

S2 =
�−1∑
k=0

ωrkM h
(2)
�−k

=
M−1∑
λ=M−�

ω
r(λ−M+�)
M h

(2)
M−λ

= ω−rM
M ωr�M

M−1∑
λ=M−�

ωrλM h
(2)
M−λ.

(13.17)

To simplify S2 further, observe that ωM
M ≡ 1 and h

(2)
M−λ = h

(2)
λ because H(2) is circulant.

Accordingly,

S2 = ωr�M

M−1∑
λ=M−�

ωrλM h
(2)
λ(13.18)



and

A[r, �] = S1 + S2

= ωr�M

(M−1−�∑
λ=0

ωrλM h
(2)
λ +

M−1∑
λ=M−�

ωrλM h
(2)
λ

)

=
(M−1∑
λ=0

ωrλM h
(2)
λ

)
ωr�M

=
(
D[r, r]

)
ωr�M

= D[r, r] ×Ω[r, �]

= B[r, �] , 0 ≤ r, � ≤ M − 1.

(13.19)

Hence ΩH(2) = DΩ follows. �
Note that the diagonal of D can be computed by a radix-2 FFT in Θ (M log2 M)

time. Using Lemma 13.2, one may now multiply the product z(2) = H(2)y(2) by the
DFT matrix Ω on both sides to obtain

ẑ = Ωz(2) = ΩH(2)y(2) = D
(
Ωy(2)

)
.(13.20)

Observe that the right-hand side is a diagonally-scaled DFT matrix-product of dimen-
sion M = 2s, and can be evaluated by a radix-2 FFT in Θ (M log2 M) time to obtain
ẑ.

In the next step, observe that

z(2) = Ω−1ẑ , where Ω−1 =
1
M

Ω.(13.21)

Since Ω is a DFT matrix of dimension M , z(2) is the inverse DFT of ẑ, and it can be
obtained by applying a radix-2 inverse FFT to ẑ in Θ (M log2 M) time.

In the final step, the N desired Xr’s are recovered from the Zr’s found in the top N

positions in z(2) using equation (13.4). This completes the DFT for arbitrary N �= 2n.

13.2 Bluestein’s Algorithm for Arbitrary N

As seen above, assuming that the diagonal D is computed in a preprocessing phase,
Bluestein’s algorithm computes a DFT of arbitrary N by performing one forward and
one inverse FFTs for the smallest M = 2s ≥ 2N − 2. That is, instead of using the
Θ

(
N2

)
DFT algorithm, a transform for N �= 2n is accomplished by two radix-2 FFTs

of length M = 2s using Θ(M log2 M) arithmetic operations. Since 2N − 2 ≤ M ≤ 4N ,
the complexity of Bluestein’s algorithm remains Θ (N log2 N) for arbitrary N .

The complete Bluestein’s algorithm is summarized below, which is adapted from
the description in [96]. Observe that the preprocessing in steps A, B, and C do not
have to be repeated if N remains unchanged.

Bluestein’s Algorithm for computing the discrete Fourier transform

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1, N �= 2n.



A. (Preprocessing) Compute the symmetric Toeplitz H: for given N , compute the
scalar constants

h� = ω
− 1

2 �
2

N , � = 0, 1, . . . , N − 1.(13.22)

B. (Preprocessing) Embed H in the circulant H(2): define M as the smallest power
of two that is greater than or equal to 2N − 2, and compute the vector h(2) of
length M defined by

h
(2)
� = h� , � = 0, 1, . . . , N − 1,(13.23)

h
(2)
� = hM−� , � = M −N + 2, . . . ,M − 1,(13.24)

and if M > 2N − 2,

h
(2)
� = 0, � = N, . . . ,M −N + 1.(13.25)

Observe that if M = 2N − 2 = 2s, the computation in (13.25) will not be
performed, and H(2) is reduced to H(1) in (13.10).

C. (Preprocessing) Compute the diagonal D in Lemma 13.2: use the radix-2 FFT
to compute the DFT matrix-vector product defined by

ĥr =
M−1∑
�=0

h
(2)
� ωr�M , r = 0, 1, . . . ,M − 1.(13.26)

D. Given x�, define the extended vector y(2) of length M as

y
(2)
� = x�ω

1
2 �

2

N , � = 0, 1, . . . , N − 1,(13.27)

y
(2)
� = 0, � = N, . . . ,M − 1.(13.28)

E. Compute Ωy(2): use the radix-2 FFT to compute the DFT matrix-vector product
defined by

Yr =
M−1∑
�=0

y
(2)
� ωr�M , r = 0, 1, . . . ,M − 1.(13.29)

F. Compute ẑ = D
(
Ωy(2)

)
: scale Yr by ĥr = D[r, r]; i.e.,

Ẑr = ĥrYr , r = 0, 1, . . . ,M − 1.(13.30)

G. Compute z(2) = Ω−1ẑ : use the radix-2 inverse FFT to compute the inverse DFT
matrix-vector product defined by

Zr =
1
M

M−1∑
�=0

Ẑ�ω
−r�
M , r = 0, 1, . . . ,M − 1.(13.31)

H. Extract the Xr’s from the top N elements in z(2) by

Xr = Zrω
1
2 r

2

N , r = 0, . . . , N − 1.(13.32)



Chapter 14

FFTs for Real Input

In Chapter 3, the discrete Fourier transform on N discrete samples from a complex
time series is defined by formula (3.1):

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1,

=
N−1∑
�=0

(
Re (x�) + j Im (x�)

)
ωr�N .

(14.1)

When the samples come from a real time series, they can be treated as complex numbers
with zero-valued imaginary part, i.e., Im(x�) = 0 for 0 ≤ � ≤ N−1. In other words, real
data represent a special case when approximately one half of the arithmetic operations
are redundantly performed on zeros. Since many FFTs are performed on real-valued
time series, it is worthwhile to handle real input more efficiently. Two such algorithms
are described below. The first algorithm allows one to compute two real FFTs of size
N by computing one complex FFT of size N ; and the second algorithm allows one to
compute a real FFT of size N by computing a complex FFT of size N/2.

14.1 Computing Two Real FFTs Simultaneously

In this section, a method which computes two real FFTs of size N by computing one
complex FFT of size N is introduced. The two sets of real numbers are denoted by f�
and g� for 0 ≤ � ≤ N − 1. By setting Re(x�) = f�, and Im(x�) = g�, one obtains a set
of N complex numbers x� = f� + jg� for 0 ≤ � ≤ N − 1.

The definition of the DFT implies that

Fr =
N−1∑
�=0

f�ω
r�
N and Gr =

N−1∑
�=0

g�ω
r�
N , 0 ≤ r ≤ N − 1,(14.2)



and

Xr =
N−1∑
�=0

x�ω
r�
N

=
N−1∑
�=0

(f� + jg�)ωr�N

=
N−1∑
�=0

f�ω
r�
N + j

N−1∑
�=0

g�ω
r�
N

= Fr + jGr .

(14.3)

Thus, one complex FFT on the x�’s can be computed to obtain Xr’s, and almost half
of the arithmetic operations can be saved if the Fr’s and the Gr’s can be recovered effi-
ciently from the computed Xr’s. This can be done by using the symmetry property for
the DFT of a real-valued series, which was established in Chapter 1. For convenience,
the result is rederived here.

The symmetry property ensures that the complex conjugate of FN−r is equal to
Fr. This property is derived using the DFT definition and the fact that the complex
conjugate of a real-valued f� is equal to itself, ωN

N = 1, and the complex conjugate of
ω−r�

N is equal to ωr�N .

FN−r =
N−1∑
�=0

f̄� (ω̄N�

N ) ω̄−r�
N =

N−1∑
�=0

f�ω
r�
N = Fr .(14.4)

Since the g�’s are also real, GN−r = Gr. Now the complex conjugate of XN−r can
be expressed in terms of Fr and Gr as shown below.

XN−r = FN−r − jGN−r = Fr − jGr .(14.5)

Combining (14.3) and (14.5), one immediately obtains

Fr =
1
2

(
Xr + XN−r

)
, Gr =

j

2
(
XN−r −Xr

)
.(14.6)

Therefore, only 2N extra complex additions/subtractions are required to recover
the two real FFTs after one complex FFT is performed, which requires Θ (N log2 N)
arithmetic operations as usual.

14.2 Computing a Real FFT

To apply the results in the previous section to transform a single series, the latter is
first split into two real series of half the size. The derivation is similar to the work in



deriving the DIT FFT algorithm in Section 3.1, namely,

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1,

=

N
2 −1∑
�=0

x2�ω
r(2�)
N + ωr

N

N
2 −1∑
�=0

x2�+1ω
r(2�)
N

=

N
2 −1∑
�=0

x2�ω
r�
N
2

+ ωr
N

N
2 −1∑
�=0

x2�+1ω
r�
N
2
.

(14.7)

By setting f� = x2�, g� = x2�+1 for 0 ≤ 
 ≤ N/2 − 1, the DFT of two real series and a
DFT of N/2 complex numbers y� = f� + jg� are defined below.

Fr =

N
2 −1∑
�=0

f�ω
r�
N
2
, Gr =

N
2 −1∑
�=0

g�ω
r�
N
2
,(14.8)

and

Yr =

N
2 −1∑
�=0

y�ω
r�
N
2

=

N
2 −1∑
�=0

(f� + jg�)ωr�
N
2

=

N
2 −1∑
�=0

f�ω
r�
N
2

+ j

N
2 −1∑
�=0

g�ω
r�
N
2

= Fr + jGr .(14.9)

Using the results from the previous section, one complex FFT on the y�’s can be
computed to obtain the Yr’s, and the Fr’s and Gr’s ( for 0 ≤ r ≤ N/2 − 1) can be
recovered using the following equations.

Fr =
1
2

(
Yr + Y N

2 −r

)
, Gr =

j

2

(
Y N

2 −r − Yr

)
.(14.10)

However, it is no longer sufficient to have successfully recovered the Fr’s and Gr’s,
because the goal is to compute the Xr’s defined by equation (14.7), which can now be
obtained from the available Fr’s and Gr’s as shown below.

Xr =

N
2 −1∑
�=0

x2�ω
r�
N
2

+ ωr
N

N
2 −1∑
�=0

x2�+1ω
r�
N
2

=

N
2 −1∑
�=0

f�ω
r�
N
2

+ ωr
N

N
2 −1∑
�=0

g�ω
r�
N
2

= Fr + ωr
NGr , r = 0, 1, 2, . . . , N/2 − 1.

(14.11)

Since the x�’s are real, the Xr’s have the symmetry property derived in (14.4); thus,
XN

2 +1, XN
2 +2, . . . , XN−1 can be obtained by taking the complex conjugate of the

previously computed Xr’s.

XN−r = Xr , r = 1, 2, . . . , N/2 − 1 .(14.12)

Using equations (14.11) and (14.12), all the Xr’s can be obtained except for XN
2
. To

compute Xr+N
2

= Fr+N
2

+ ω
r+N

2
N Gr+N

2
, recall that Fr+N

2
= Fr, Gr+N

2
= Gr, and



ω
r+N

2
N = −ωrN . Using these properties with r = 0, Xr+N

2
= XN

2
can now be computed

by

XN
2

= F0 −G0 .(14.13)

In total, N extra complex additions/subtractions are needed to recover the Fr’s and
Gr’s after one complex FFT is performed on N/2 complex numbers, and an additional
N/2 complex multiplications and N/2+1 complex additions/subtractions are needed to
compute the Xr’s using equations (14.11), (14.12), and (14.13). Therefore, for large N ,
almost half of the arithmetic operations can be saved by performing the FFT on N/2
complex numbers instead of treating the real-valued series as consisting of N complex
numbers.

14.3 Notes and References

According to Bergland [4], there are two basic approaches to the evaluation of real-
valued time series. The approach which makes use of the conventional complex FFT
algorithm and depends on forming an artificial N/2-term complex record from each
N -term real record was due to Cooley, Lewis, and Welch [31]; an alternative approach
was proposed in [4]. The former approach was used by Brigham [17] and Walker [106].
The algorithms developed in this chapter are based on Walker’s approach [106]. Other
algorithms for computing real-valued series may be found in [4, 8, 88]. Implementation
of split-radix FFT algorithms for real and real-symmetric data is described in [38].



Chapter 15

FFTs for Composite N

In order to compute the DFT of a time series of length N = 2n = (2s)k, one has the
choice of using various radix-2s FFT algorithms, which require Θ (N log2 N) arithmetic
operations. Specific algorithms covered in previous chapters include radix-2, radix-4,
and split-radix FFTs. If N �= 2n, Bluestein’s algorithm, described in Chapter 13, can
be used. This algorithm requires Θ (M log2 M) arithmetic operations, where 2N − 2 ≤
M ≤ 4N .

In this chapter, other methods for computing the DFT when N �= 2n are pre-
sented, i.e., when N is a product of arbitrary integers. It will be shown that for
N = F1 × F2 × · · · × Fm, the arithmetic operations required are (proportional to)
A = N × (F1 + F2 + · · · + Fm). Accordingly, N = 2m is simply a special case when all
m factors of N are equal to 2.

It is of historical interest to note that this approach was suggested by Cooley and
Tukey in 1965. In their initial article [33], they derived the decimation-in-time FFT for
N = P ×Q, and stated that a fast Fourier transform with arbitrary m factors could be
obtained by successive applications of the two-factor algorithm. However, because the
only m-factor formula derived in [33] was for N = 2m, and the manipulation required to
extend the formula to many factors is not intuitively obvious, the potential generality
of Cooley and Tukey’s initial algorithm was often overlooked. In 1980, de Boor [34]
provided the full treatment of the FFT for a general N by deriving it in terms of nested
multiplication. The derivation in this chapter closely follows his work.

The derivation and efficient implementation of the FFTs for composite N require
several important mathematical tools. These are reviewed in Sections 15.1, 15.2, and
15.3 before the two-factor FFT is derived in Section 15.4; more algorithmic tools are
provided in Sections 15.5 and 15.6 before the many-factor FFT for general N is derived
in Section 15.7.



15.1 Nested-Multiplication as a Computational Tool

15.1.1 Evaluating a polynomial by nested-multiplication

Consider a degree-3 polynomial defined by

P (z) =
�=3∑
�=0

a�z
� = a3z

3 + a2z
2 + a1z + a0,

where z is a complex variable, and the ai’s, 0 ≤ i ≤ 3, are complex coefficients. To
evaluate P (z) at z = β, one may compute P (β) by Horner’s nested-multiplication rule
as shown below.

Horner’s rule:

P (β) = ((a3β + a2)β + a1)β + a0

Observe that each multiplication is accompanied by an addition. To this point, arith-
metic complexity has been measured in flops—the number of real multiplicative and ad-
ditive operations. Since computations often consist of (mainly) sequences of multiply-
add pairs, it is also common in the literature to report the number of real or complex
“multiply-add” pairs as the arithmetic cost of a computation. At the risk of incon-
sistency with the rest of the book, arithmetic cost is measured in this chapter by the
number of “multiply-add” pairs.

In general, a polynomial of degree K is defined by

PK(z) =
�=K∑
�=0

a�z
�.

To evaluate PK(z) at z = β, the following implementation of Horner’s rule can be
executed, where the coefficients are assumed to be available in the array a. Observe
that the while loop is executed K+1 times; thus, exactly K+1 complex multiply-add
operations are required to evaluate a degree-K polynomial using this scheme.

Algorithm 15.1 Horner’s rule in pseudo-code for computing PK(z) at z = β.

begin
z := β

� := K Compute PolyResult = PK(z) at z = β

PolyResult := 0
while � ≥ 0 do

PolyResult := PolyResult ∗ z + a[�]
� := �− 1

end while
end



15.1.2 Computing a DFT by nested-multiplication

Recall from Chapter 3 that given a complex series x�, 0 ≤ � ≤ N − 1, the discrete
Fourier transform (DFT) of x is defined by

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1,

where ωN is the N th primitive root of unity, i.e., ωN ≡ e−j2π/N with j ≡
√
−1.

To express the DFT as the evaluation of a polynomial at the N primitive roots,
define P (z) of degree N − 1 as

PN−1(z) =
N−1∑
�=0

x�z
�.

One immediately obtains

Xr =
N−1∑
�=0

x� (ωrN)� = PN−1 (ωrN) , r = 0, 1, . . . , N − 1.

Therefore, each Xr can be computed by evaluating PN−1(z) at z = ωrN . The following
algorithm computes the DFT by Horner’s rule, where a[�] = x� on input, and b[r] = Xr
on output. Note also that this algorithm incorporates the computation of z = ωrN ,
0 ≤ r ≤ N − 1.

Algorithm 15.2 Computing a DFT of length N by Horner’s rule.

begin
θ := 2π/N ; W := exp(−jθ) Compute W = ωN

z := 1 z = ω0
N = 1

for r := 0 to N − 1 do
� := N − 1 Compute Xr = PolyResult = PN−1(z)
PolyResult := 0
while � ≥ 0 do

PolyResult := PolyResult ∗ z + a[�] z = ωrN
� := �− 1

end while
b[r] := PolyResult b[r] = Xr on output
z := z ∗W Update z = ωr+1

N

end

Since N multiply-add operations are required to compute each Xr for 0 ≤ r ≤ N−1,
the total cost for computing the DFT amounts to N2 multiply-add operations. (The
N multiplications required to update ωrN to ωr+1

N are commonly ignored in reporting
the cost, because it is negligible compared to the N2 term for large N .) Thus, on
the surface, this approach does not appear to have any advantage over the naive ma-
trix multiplication, and is vastly inferior to the fast algorithms discussed in previous
chapters.

However, given that much more efficient algorithms do exist for computing the
DFT, it appears likely that Horner’s scheme can be manipulated in such a way to



reduce the complexity for these specially selected evaluation points. This is indeed the
case, but before proceeding with the development, some additional mathematical tools
are needed. These are provided in Sections 15.2, 15.3 and 15.5. Sections 15.4 and 15.7
describe how nested multiplication and these tools are used together to develop FFTs
for composite N .

15.2 A 2D Array as a Basic Programming Tool

It is a common practice to store a vector in a one-dimensional array, and store a matrix
in a two-dimensional array. For example, to process a 2 × 3 matrix

A =
[

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

]
,

it is natural to store the matrix in a 2D array A of the same row and column dimensions
so that array location A[ρ, q] contains aρ,q, 0 ≤ ρ ≤ 1, and 0 ≤ q ≤ 2.

Individual elements in A can be accessed randomly given the values of ρ and q. How-
ever, if the algorithm can be organized so that memory access proceeds consecutively
through its addresses, efficient use of memory on most modern computers is achieved.
In order to do this, it is necessary to know whether the programming language used
stores arrays row-by-row or column-by-column in physical memory. For example, the C
language uses the row-major format, and the Fortran language uses the column-major
format. The two formats are depicted in Figure 15.1 for A[Pdim,Qdim], Pdim = 2,
and Qdim = 3. Note from Figure 15.1 that A[0, 0] and A[1, 0] are adjacent in memory

Figure 15.1 Row-major and column-major storage formats for A of dimensions 2×3.

if A is stored column by column, but they are Qdim = 3 locations apart if A is stored
row by row. In general, given ρ and q, the memory address � satisfying mem[�] = A[ρ, q]
is computed according to the formula depicted in Figure 15.2 below. Note that the
row-major scheme dictates that

mem[�] = A[ρ, q] iff � = L0 + (ρ×Qdim + q),



and the column-major scheme dictates that

mem[�] = A[ρ, q] iff � = L0 + (q × Pdim + ρ).

Figure 15.2 Memory address translation for the two storage schemes.

15.2.1 Row-oriented and column-oriented code templates

If the 2D array A[Pdim,Qdim] is stored in row-major format, the following code tem-
plates all access A’s elements in consecutive order. Recall that A[ρ, q] = mem[�], where
� = L0 + (ρ×Qdim + q).

for ρ := 0 to Pdim − 1 do
for q := 0 to Qdim − 1 do

access A[ρ, q]
end for

end for

� := L0

for ρ := 0 to Pdim − 1 do
for q := 0 to Qdim − 1 do

access mem[�]
� := � + 1

end for
end for

Ldim := Pdim ∗ Qdim

for � := L0 to Ldim − 1
access mem[�]

end for

If the 2D array A[Pdim,Qdim] is stored in column-major format, the follow-
ing code templates all access the array elements in consecutive order. Recall that
A[ρ, q] = mem[�], where � = L0 + (q × Pdim + ρ).



for q := 0 to Qdim − 1 do
for ρ := 0 to Pdim − 1 do

access A[ρ, q]
end for

end for

� := L0

for q := 0 to Qdim − 1 do
for ρ := 0 to Pdim − 1 do

access mem[�]
� := � + 1

end for
end for

Ldim := Pdim ∗ Qdim

for � := L0 to Ldim − 1
access mem[�]

end for

15.3 A 2D Array as an Algorithmic Tool

15.3.1 Storing a vector in a 2D array

With the previous section in mind, it is obvious that one can proceed in the other
direction. That is, the code templates can be used to store a one-dimensional array x

of size N = Pdim×Qdim in a two-dimensional array A[Pdim,Qdim] either “row by
row” or “column by column” by adapting the code template introduced in the previous
subsection. The utility of this idea will emerge in subsequent sections.

L0 := 0; � := L0

for ρ := 0 to Pdim − 1 do
for q := 0 to Qdim − 1 do

A[ρ, q] := x�
� := � + 1

end for
end for

The previous results on address translation for the row-major storage scheme can thus
be applied with L0 = 0, and one obtains

A[ρ, q] = x� iff � = ρ×Qdim + q.

In a similar fashion, x can be stored in A[Pdim,Qdim] “column by column” as shown
below.

L0 := 0; � := L0

for q := 0 to Qdim − 1 do
for ρ := 0 to Pdim − 1 do

A[ρ, q] := x�
� := � + 1

end for
end for



With L0 = 0, one obtains

A[ρ, q] = x� iff � = q × Pdim + ρ.

15.3.2 Use of 2D arrays in computing the DFT

If the vector x of length N = P × Q is stored in a two-dimensional array A[P,Q] by
columns, then x� = A[ρ, q] when � = q × P + ρ. Then the DFT of the vector x can be
written as

Xr = PN−1(z) =
N−1∑
�=0

x� z
� =

P−1∑
ρ=0

Q−1∑
q=0

A[ρ, q] z(q×P+ρ),(15.1)

where z = ωrN , for r = 0, 1, . . . , N − 1.

Recall that the while loop of Algorithm 15.2 computes Xr = PN−1(z) using the
numerical value of z = ωrN and the coefficients a[�] = x�, 0 ≤ � ≤ N − 1. Given below
is a preliminary form of the same DFT of x in terms of A[ρ, q] = x�.

begin
θ := 2π/N ; W := exp(−jθ)
z := 1
for r := 0 to N − 1 do

Xr :=
∑P−1
ρ=0

∑Q−1
q=0 A[ρ, q] ∗ z(q∗P+ρ)

z := z ∗W
end for

end

The next step is to simplify the term z(q×P+ρ). Since N = P ×Q, ωPN = ωN/P = ωQ,
one has

zP = (ωrN)P =
(
ωPN

)r
= ωrQ.

Equation (15.1) may then be written as

Xr =
P−1∑
ρ=0

Q−1∑
q=0

A[ρ, q] z(q×P+ρ), r = 0, 1, . . . , N − 1,

=
P−1∑
ρ=0

(
Q−1∑
q=0

A[ρ, q]
(
zP

)q)
zρ

=
P−1∑
ρ=0

(
Q−1∑
q=0

A[ρ, q]
(
ωrQ

)q) (ωrN)ρ ,

(15.2)

and the corresponding DFT algorithm takes the following form, which is not in final
efficient form yet. It is still an Θ

(
N2

)
algorithm; further changes are required to make

it efficient.



Algorithm 15.3 Use of 2D arrays in computing the DFT.

begin
θ := 2π/N ; θy := 2π/Q
WN := exp(−jθ); WQ := exp (−jθy) Compute WN= ωN , WQ= ωQ

z := 1; y := 1 Initialize z = ω0
N = 1, y = ω0

Q = 1
for r := 0 to N − 1 do

for ρ := 0 to P − 1 do
Compute Yρ :=

∑Q−1
q=0 A[ρ, q] ∗ yq by Horner’ s rule y = ωrQ

end for
Compute Xr :=

∑P−1
ρ=0 Yρ ∗ zρ by Horner’s rule z = ωrN

z := z ∗ WN ; y := y ∗ WQ Update z = ωr+1
N , y = ωr+1

Q

end for
end

Algorithm 15.3 requires Q multiply-adds to compute each Yρ and P multiply-adds
to compute each Xr after Y0, Y1, . . . YP−1 are available. Thus, a total of N(P×Q+P ) =
N2 +P ×N multiply-adds are required to compute all Xr’s, r = 0, 1, . . . , N − 1. As in
the previous section, the 2N multiplications for updating z and y are ignored.

Since the 1D array implementation of the DFT in Algorithm 15.2 incurs N2 multiply-
adds, the more complicated implementation of the DFT in Algorithm 15.3 costs more,
and as presented so far, has no apparent advantages. In the next section, further modi-
fications are presented which turn this algorithm into an efficient fast Fourier transform
(FFT) algorithm.

15.4 An Efficient FFT for N = P ×Q

The keys to turning the inefficient DFT Algorithm 15.3 into an efficient fast Fourier
transform (FFT) algorithm may be viewed as the consequence of storing the output
vector X of length N = P ×Q in a two-dimensional array B[Q,P ] column by column.
The relevant identities are listed below.

Xr = B[q̂, ρ̂](15.3)

if and only if

r = ρ̂×Q + q̂, ωQQ = 1, and ωrQ = ωρ̂×Q+q̂
Q = ωq̂Q.

The reason for storing X in a Q×P array requires some explanation. Observe that
the key identity is r = ρ̂×Q+ q̂, because Q is the period of ωQ. To be able to express
r = ρ̂ × Q + q̂, X must be stored column by column in B[Q,P ] or stored row by row
in C[P,Q]. Since the input x is stored column by column in A[P,Q], it is consistent to
store X in the same manner in B[Q,P ] for now.



Substituting r = ρ̂×Q + q̂ and ωrQ = ωq̂Q into equation (15.2), one obtains

Xρ̂×Q+q̂ = Xr, r = 0, 1, . . . , N − 1,

=
P−1∑
ρ=0

(
Q−1∑
q=0

A[ρ, q]
(
ωrQ

)q) (ωrN)ρ ,

=
P−1∑
ρ=0

(
Q−1∑
q=0

A[ρ, q]
(
ωq̂Q

)q)(
ωρ̂×Q+q̂

N

)ρ
,

(15.4)

where 0 ≤ q̂ ≤ Q− 1, and 0 ≤ ρ̂ ≤ P − 1. Observe that the inner sum varies with the
indices q̂ and ρ, but it is independent of the index ρ̂. Therefore, to save operations,
the inner sum should be pre-computed for all 0 ≤ ρ ≤ P − 1, and 0 ≤ q̂ ≤ Q − 1.
At this point, consider that, in general, the resulting P × Q values may be stored in
either Y [P,Q] or its transpose, Z[Q,P ], and both options are listed side by side below.
Note that Y is computed column by column, array Z is computed row by row, and
y = 1, ωQ, ω

2
Q, . . . , ω

Q−1
Q are updated in order for efficiency.

y := 1 y = ω0
Q = 1

for q̂ := 0 to Q− 1
for ρ := 0 to P − 1

Y [ρ, q̂] :=
∑Q−1
q=0 A[ρ, q] ∗ yq

end for
y := y ∗ WQ update y = ωq̂+1

Q

end for

y := 1 y = ω0
Q = 1

for q̂ := 0 to Q− 1
for ρ := 0 to P − 1

Z[q̂, ρ] :=
∑Q−1
q=0 A[ρ, q] ∗ yq

end for
y := y ∗ WQ update y = ωq̂+1

Q

end for

Assuming that Y [P,Q] stores the intermediate results, a corresponding FFT algorithm
is given below.

Algorithm 15.4 Efficient FFT for N = P ×Q—a column-oriented approach.

begin
θ := 2π/N ; θy := 2π/Q
WN := exp(−jθ); WQ := exp (−jθy) Compute WN= ωN , WQ= ωQ

z := 1; y := 1 Initialize z = ω0
N = 1, y = ω0

Q = 1
for q̂ := 0 to Q− 1

for ρ := 0 to P − 1
Compute Y [ρ, q̂] =

∑Q−1
q=0 A[ρ, q] ∗ yq by Horner’s rule y = ωq̂Q

end for
y := y ∗ WQ Update y = ωq̂+1

Q

end for
for ρ̂ := 0 to P − 1 do

for q̂ := 0 to Q− 1 do
Compute B[q̂, ρ̂] = Xρ̂×Q+q̂ =

∑P−1
ρ=0 Y [ρ, q̂] ∗ zρ by Horner’s rule z = ωrN

z := z ∗ WN Update z = ωr+1
N

end for
end for

end



Note that because z = 1, ωN , ω
2
N , . . . , ω

N−1
N are updated and used in the polynomial

evaluation in that order, the code in Algorithm 15.4 must also compute X0, X1, . . . , XN−1

in that order. If the Xr’s are assumed to be stored in array B[Q,P ] in a column-major
format, then the array B must be computed column by column. Here is a summary of
all 2D arrays constructed and accessed in this FFT algorithm for N = P ×Q.

• Input x�’s are stored in A[P,Q] column by column.

• Array A[P,Q] is accessed row by row in the computation of Y [P,Q]. (Note that
how A is accessed is dictated by the polynomial evaluation in the inner loop.)

• Array Y [P,Q] is computed column by column.

• Array Y [P,Q] is then accessed column by column in the computation of array
B[Q,P ].

• Array B[Q,P ] is computed column by column.

• Output Xr’s are stored in B[Q,P ] column by column.

Thus, this version of the FFT algorithm for N = P ×Q is suitable for implementation
when the programming language supports column-major storage scheme for 2D arrays.

If one needs to use a programming language which supports row-major storage
scheme, it is now a simple exercise to convert Algorithm 15.4 into using row-oriented
computation as much as possible.

To determine the arithmetic cost, observe that Q multiply-adds are required to
compute each Y [ρ, q̂], and P multiply-adds are required to compute each B[q̂, ρ̂]. The
total cost is thus N(P + Q) complex multiply-add operations.

15.5 Multi-Dimensional Array as an Algorithmic Tool

15.5.1 Storing a 1D array into a multi-dimensional array

To store a one-dimensional array x of length N = N0 × N1 × · · · × Nν−1 in a
ν-dimensional array A[N0, N1, . . . , Nν−1], one may extend the row-oriented 2D code
template from Section 15.3 as shown below.

L0 := 0; � := L0

for n0 := 0 to N0 − 1 do
for n1 := 0 to N1 − 1 do

...
for nν−1 := 0 to Nν−1 − 1 do

A[n0, n1, . . . , nν−1] := x�
� := � + 1

end for nν−1

...
end for n1

end for n0



Thus, the following identity holds using the row-major storage scheme:

A[n0, n1, . . . , nν−1] = x�(15.5)

if and only if

� = n0

ν−1∏
k=1

Nk + n1

ν−1∏
k=2

Nk + · · · + nν−2Nν−1 + nν−1.

Note that when ν = 2, the identity above is reduced to A[n0, n1] = x� iff � = n0×N1 +
n1, which is exactly the result expected from storing x in a 2D array A[N0, N1] row by
row.

Similarly, one can also extend the column-oriented 2D code template from Sec-
tion 15.3 as shown below.

L0 := 0; � := L0

for nν−1 := 0 to Nν−1 − 1 do
...

for n1 := 0 to N1 − 1 do
for n0 := 0 to N0 − 1 do

A[n0, n1, . . . , nν−1] := x�
� := � + 1

end for n0

end for n1

...
end for nν−1

The following identity holds using the column-major storage scheme:

A[n0, n1, . . . , nν−1] = x�(15.6)

if and only if

� = nν−1

ν−2∏
k=0

Nk + nν−2

ν−3∏
k=0

Nk + · · · + n1N0 + n0.

When ν = 2, the identity above is reduced to A[n0, n1] = x� iff � = n1×N0 +n0, which
is as expected from storing x in a 2D array A[N0, N1] column by column.

15.5.2 Row-oriented interpretation of ν-D arrays as 2D arrays

If one defines Pj = N0 × N1 × · · · × Nj−1, Qj = Nj × Nj+1 × · · ·Nν−1, then the
ν-dimensional array A[N0, N1, . . . , Nν−1] may be interpreted as a 2D array B[Pj , Qj ].
That is, A[n0, . . . , nj−1, nj , . . . , nν−1] = B[ρ, q], where 0 ≤ ρ ≤ Pj − 1, and 0 ≤ q ≤
Qj − 1.

To determine the value of ρ, apply identity (15.5) to Pj = N0 × N1 × · · · × Nj−1

instead of N = N0 × N1 × · · · × Nν−1. To determine the value of q, apply identity



(15.5) to Qj = Nj × Nj+1 × · · · × Nν−1 instead of N = N0 × N1 × · · · × Nν−1. The
following identity results.

A[n0, . . . , nj−1, nj , . . . , nν−1] = B[ρ, q](15.7)

if and only if

ρ = n0

j−1∏
k=1

Nk + n1

j−1∏
k=2

Nk + · · · + nj−2Nj−1 + nj−1,

and q = nj

ν−1∏
k=j+1

Nk + nj+1

ν−1∏
k=j+2

Nk + · · · + nν−2Nν−1 + nν−1.

With � defined in identity (15.5), together with ρ, q, Pj and Qj defined above, it can
be verified that

x� = B[ρ, q] = A[n0, . . . , nj−1, nj , . . . , nν−1] iff � = ρ×Qj + q.(15.8)

15.5.3 Column-oriented interpretation of ν-D arrays as 2D ar-

rays

Instead of using identity (15.5), identity (15.6) is now applied to Pj and Qj separately,
and one obtains the following result if the column-major storage scheme is used for
storing A and B.

A[n0, . . . , nj−1, nj , . . . , nν−1] = B[ρ, q](15.9)

if and only if

ρ = nj−1

j−2∏
k=0

Nk + nj−2

j−3∏
k=0

Nk + · · · + n1N0 + n0,

and q = nν−1

ν−2∏
k=j

Nk + nν−2

ν−3∏
k=j

Nk + · · · + nj+1Nj + nj .

With � defined in identity (15.6), together with ρ, q, Pj and Qj defined above, it can
be shown that

x� = B[ρ, q] = A[n0, . . . , nn−1, nj , . . . , nν−1] iff � = q × Pj + ρ.(15.10)

15.5.4 Row-oriented interpretation of ν-D arrays as 3D arrays

To interpret a ν-D array A[N0, N1, . . . , Nν−1] as a 3D array C[Bj , Qj , Fj ], define, for
example, Bj = N0 × N1 × · · ·Nj−1, Qj = Nj , and Fj = Nj+1 × Nj+2 × · · ·Nν−1.
The following identity results if both arrays A and C are stored in row-major format.
Observe that in determining the values of b, q and f , identity (15.5) is applied to the
three dimensions Bj , Qj , and Fj separately.

A[n0, . . . , nj−1, nj , nj+1 . . . , nν−1] = C[b, q, f ](15.11)



if and only if

b = n0

j−1∏
k=1

Nk + n1

j−1∏
k=2

Nk + · · · + nj−2Nj−1 + nj−1,

q = nj , and f = nj+1

ν−1∏
k=j+2

Nk + · · · + nν−2Nν−1 + nν−1.

Furthermore, it can be verified that

x� = C[b, q, f ] = A[n0, n1, . . . , nν−1] iff � = b (Qj × Fj) + q × Fj + f.(15.12)

15.5.5 Column-oriented interpretation of ν-D arrays as 3D ar-

rays

The following identity holds if both arrays A and C are stored in column-major format.
Observe that, instead of identity (15.5), identity (15.6) is now applied to dimensions
Bj , Qj , and Fj separately to determine the values of b, q, and f .

A[n0, . . . , nj−1, nj , nj+1 . . . , nν−1] = C[b, q, f ](15.13)

if and only if

b = nj−1

j−2∏
k=0

Nk + nj−2

j−3∏
k=2

Nk + · · · + n1N0 + n0,

q = nj , and f = nν−1

ν−2∏
k=j+1

Nk + · · · + nj+2Nj+1 + nj+1.

Furthermore, it can be shown that

x� = C[b, q, f ] = A[n0, n1, . . . , nν−1] iff � = f (Bj ×Qj) + q ×Bj + b.(15.14)

15.6 Programming Different ν-D Arrays From a Sin-

gle Array

It has been assumed, either implicitly or explicitly, in previous sections (and in gen-
eral) that when a ν-D array is suitable for developing and implementing an algorithm,
the value of ν is fixed and a ν-D array with desired dimensions is declared and used
throughout the program.

For example, the expression A[Pdim, Qdim] is used to declare a two-dimensional
array with Pdim rows and Qdim columns. For a problem with N = P ×Q = 11× 21,
after initializing Pdim := P = 11 and Qdim := Q = 21, A[Pdim, Qdim] declares a
11-by-21 2D array, and A is used as a 11-by-21 array throughout the program. If one
also needs a 33-by-11 array in at some point during program execution, a second 2D
array B with 33 rows and 11 columns will normally be declared in the program. If, in
addition to the two 2D arrays A and B, a 3D array with dimensions N0 = 11, N1 = 3,



and N2 = 7 is needed at some point during program execution, then a third array
C[N0, N1, N2] can be declared for use in the program.

There are several potentially undesirable consequences from using the standard
approach described above. First, to interpret (and access) a 1D array as a ν-D array,
one may be required to copy the data from the 1D array to the ν-D array, which incurs
extra time and storage.

Second, the 3D array C[11, 3, 7] cannot overwrite the 2D array A[11, 21] even though
the data in A may be no longer needed when C is constructed. It is thus possible that
storage is wasted when a large number of data arrays cannot be re-used in the program.

Third, if the problem size N is composite, and if the number of arrays with different
dimensions to be used in the program depends in some way on the number of factors
in N , then the number of arrays declared changes from problem to problem. When
this happens, one can no longer use static storage allocation, but instead must resort
to dynamic storage allocation.

Fortunately, these unwelcome possibilities can be avoided if different ν-D arrays
with different dimensions can be allocated and accessed from a single one-dimensional
array by passing the latter through subroutines.

15.6.1 Support from the FORTRAN programming language

In FORTRAN, if a 1D array A of size N =
∏ν−1
k=0 Nk is declared in the main program,

the same 1D array A may be “passed” and actually used as an m-D array of dimensions
P0 × P1 × · · · × Pm−1 inside a subroutine, where N =

∏m−1
k=0 Pk, and the Pk’s are the

formal parameters of the subroutine. Note that Pk is not necessarily equal to Nk, and
Pk may be the product of several Nk’s.

Since A[P0, P1, . . . , Pm−1] are declared as so inside a subroutine with Pk’s being the
formal parameters, the parameter Pk may take on different actual values each time the
subroutine is called (as long as N =

∏m−1
k=0 Pk is satisfied.)

If A[�] = x�, 0 ≤ � ≤ N − 1, in the main program, regardless of the value of m and
the values of the Pk’s, the column-major storage scheme will guarantee that the x�’s
can be accessed in consecutive order if the m-D array A[P0, P1, . . . , Pm−1] is accessed
column-by-column inside the subroutine.

For example, suppose A[Ndim] with Ndim= 11×21 = 231 is declared and initialized
in the main program. The following subroutines can be called to use A as a 2D array
with different dimensions during program execution if one so desires.

Subroutine UseAs2D(A,Pdim,Qdim, . . . )
Complex A[Pdim,Qdim]

...

Note that the subroutine above may be invoked with Pdim= 11 and Qdim= 21 at
one point, and it may be invoked with Pdim= 3 and Qdim= 77 at another point during
program execution. Therefore, it affords great flexibility in developing the algorithm
and programming it efficiently.

The next subroutine declaration allows the use of arrays A and C as two different
3D arrays inside the subroutine. Again the three dimensions can take on different
actual values each time the subroutine is invoked. Furthermore, the roles of arrays



A and C may be easily switched by exchanging their positions in the list of actual
parameters.

Subroutine Use3dA3dC(A,C,Pdim,Qdim,Fdim, . . . )
Complex A[Pdim,Qdim,Fdim], C[Pdim,Fdim,Qdim]

...

15.6.2 Further adaptation

This programming technique can be further adapted as follows. Suppose N =
∏ν−1
k=0 Nk,

the main program can form different Pdim, Qdim, and Fdim from the Nk’s to invoke
Subroutine Use3dA3dC during each iteration as shown in the skeleton program below.

begin main program begins
...
Complex A[N ], C[N ] declare A and C in main program
...
P := 1; F := Nν−1; Q := N/F N = P ×Q× F =

∏ν−1
k=0 Nk

InputA := true

for j := ν − 1 downto 0 do
if InputA array A contains input data

Call Use3dA3dC(A,C, P,Q, F, . . . )
InputA := false

else array C contains input data
Call Use3dA3dC(C,A, P,Q, F, . . . )
InputA := true

end if
P := P ∗ F P = Nν−1 × · · · ×Nj for next iteration
nextF := j − 1
if nextF ≥ 0

F := NnextF F = Nj−1 for next iteration
Q := Q/F maintain N = P ×Q× F

end if
end for
...

end main program ends

For example, if N =
∏3
k=0 Nk = 3 × 5 × 11 × 17, input A[N ] and output C[N ] are

to be used as A[1, 3× 5× 11, 17] and C[1, 17, 3× 5× 11] in the first call to Subroutine
Use3dA3dC. In the second call, the roles of C and A are switched: the new content in
C[1× 17, 3× 5, 11] represents the input, and A[1× 17, 11, 3× 5] is to be overwritten by
the output. In the third call, the roles of A and C are again switched and they are used
as input A[17 × 11, 3, 5] and output C[17 × 11, 5, 3]. Lastly, C[17 × 11 × 5, 1, 3] serves
as the input array, and A[17× 11× 5, 3, 1] contains the final output as you will see in a
concrete example in the next section. This turns out to be a very useful technique in
developing and programming efficient FFTs for composite N = N0 ×N1 × · · · ×Nν−1.



15.7 An Efficient FFT for N = N0 ×N1 × · · · ×Nν−1

If the vector x of length N =
∏ν−1
k=0 Nk is stored in a ν-D array A[N0, N1, . . . , Nν−1] in

column-major format, the DFT of x in terms of A[n0, n1, . . . , nν−1] = x�, with � defined
by identity (15.6), can be interpreted using ν-D, 3-D and 2-D arrays. To begin, express
N = B ×Q × F with B = 1, Q =

∏ν−2
k=0 Nk, and F = Nν−1, and apply the identities

from previous sections in an obvious way. (Note that it is not an oversight that A is
accessed by rows in the formulation. It turns out that if A is stored in a row-major
format, then it would need to be accessed by columns in the FFT formulation. The
penalty is the same either way.)

Xr = PN−1(z) =
N−1∑
�=0

x�z
�, where z = ωrN , r = 0, 1, . . . , N − 1,

=
N0−1∑
n0=0

N1−1∑
n1=0

· · ·
Nν−1−1∑
nν−1=0

A[n0, n1, . . . , nν−1] × znν−1
∏ν−2

k=0 Nk+···+n1N0+n0

=
Q−1∑
q=0

F−1∑
f=0

C[0, q, f ] zf×Q+q, (Note: B = 1, B − 1 = 0),

=
Q−1∑
q=0

F−1∑
f=0

C[0, q, f ] ×
(
zQ

)f zq,

=
Q−1∑
q=0

F−1∑
f=0

C[0, q, f ] ×
(
ωrB×F

)f zq, ωQN = ωN/Q = ωB×F .

(15.15)

Observe that ωB×F
B×F = 1. To take advantage of the periodic property of ωB×F , store

output X in Z[B,F,Q] (although dimension B = 1 for now, 3D-format is used because
B > 1 after the initial step) using column-major format so that r =

(
q̂ × F + f̂

)
B+ b̂

according to identity (15.14). Thus,

ωrB×F = ω
(q̂×F+f̂)B+b̂
B×F = ωf̂×B+b̂

B×F ,(15.16)

and equation (15.15) can be rewritten as

Xr = X(q̂×F+f̂)B+b̂ =
Q−1∑
q=0

F−1∑
f=0

C[b̂, q, f ] ×
(
ωf̂×B+b̂

B×F

)f zq,(15.17)

where b̂ = b = 0, and z = ωrN .

Therefore, the bracketed inner sum only needs to be computed for 0 ≤ f̂ ≤ F − 1,
0 ≤ b̂ ≤ B − 1, and 0 ≤ q ≤ Q− 1. The corresponding pseudo-code segment is shown
below.



B := 1; F := Nν−1; Q := N/(B ∗ F ) Initial dimensions for Step 1
θ := 2π/(B ∗ F ); WBF := exp(−jθ) Compute WBF = ωB×F

z := 1 z = ω0
B×F = 1

for f̂ := 0 to F − 1
for b̂ := 0 to B − 1 B − 1 = 0

for q := 0 to Q− 1

C ′′[b̂, f̂ , q] :=
∑F−1
f=0 C[b̂, q, f ] ∗ zf z = ωf̂×B+b̂

B×F

end for

z := z ∗ WBF Update z = ωf̂×B+b̂+1
B×F

end for
end for

Note that F×B×Q×F = N×Nν−1 multiply-adds are incurred. After C ′′[B,F,Q]
is available, equation (15.17) is simplified to

Xr = X(q̂×F+f̂)B+b̂ = Z[b̂, f̂ , q̂] =
Q−1∑
q=0

C ′′[b̂, f̂ , q] zq,(15.18)

where b̂ = 0, Q =
ν−2∏
k=0

Nk, z = ωrN , for r = 0, 1, . . . , N − 1.

If efficiency is not a concern for composite Q, one immediately obtains the complete
algorithm as shown below. (The computation of C ′′ is repeated for easy reference.)

B := 1; F := Nν−1; Q := N/(B ∗ F ) Initial dimensions for Step 1
θ := 2π/(B ∗ F ); WBF := exp(−jθ) Compute WBF = ωB×F

z := 1 z = ω0
B×F = 1

for f̂ := 0 to F − 1
for b̂ := 0 to B − 1 B − 1 = 0

for q := 0 to Q− 1

C ′′[b̂, f̂ , q] :=
∑F−1
f=0 C[b̂, q, f ] ∗ zf z = ωf̂×B+b̂

B×F

end for

z := z ∗ WBF Update z = ωf̂×B+b̂+1
B×F

end for
end for

Final part: an inefficient way to compute Xr’s for composite Q

θ := 2π/N ; WN := exp(−jθ) Compute WN = ωN

z := 1 z = ω0
N = 1

for q̂ := 0 to Q− 1 do
for f̂ := 0 to F − 1 do

for b̂ := 0 to B − 1 do B − 1 = 0
Z[b̂, f̂ , q̂] :=

∑Q−1
q=0 C ′′[b̂, f̂ , q] ∗ zq z = ωrN

z := z ∗ WN Update z = ωr+1
N

end for
end for

end for



On output, consecutive Xr’s are stored in Z[B,F,Q] in column-major format. This
version of the algorithm is inefficient, because it requires, in total, N × (F + Q) =
N2/Nν−1+O(N) complex multiply-adds. (Of course, since B = 1 and N = B×Q×F =
Q × F , the code above simply expresses the two-factor FFT algorithm presented in
Section 15.4 for N = Q× F in a pseudo 3-D format.)

Obviously, in order to improve efficiency in the computation of Xr’s, one should
make use of the fact that Q is the product of the remaining ν − 1 prime factors.

Now, suppose one interprets and actually uses the computed C ′′[B,F,Q] as
C[B′, Q′, F ′] (as suggested in Section 15.6), with B′ = B × F , F ′ = Nν−2, and
Q′ = Q/F ′. Thus Q = Q′ × F ′, q = f ′ × Q′ + q′ (in column-major format), and
one may rewrite the equation (15.18) as

Xr = X(q̂′×F ′+f̂ ′)B′+b̂′

= Z[b̂′, f̂ ′, q̂′]

=
Q′−1∑
q′=0

F ′−1∑
f ′=0

C[b̂′, q′, f ′] zf
′×Q′+q′ , z = ωrN , r = 0, 1, . . . , N − 1.

=
Q′−1∑
q′=0

F ′−1∑
f ′=0

C[b̂′, q′, f ′] ×
(
zQ

′
)f ′ zq

′
,

=
Q′−1∑
q′=0

F ′−1∑
f ′=0

C[b̂′, q′, f ′] ×
(
ωrB′×F ′

)f ′ zq
′
,

=
Q′−1∑
q′=0

F ′−1∑
f ′=0

C[b̂′, q′, f ′] ×
(
ωf̂

′×B′+b̂′

B′×F ′

)f ′ zq
′
.

(15.19)

Some useful identities are summarized below.

• N = B ×Q× F = 1 ×
(∏ν−2

k=0 Nk

)
×Nν−1.

• B′ = B × F = 1 ×Nν−1 = Nν−1.

• F ′ = Nν−2.

• Q′ = Q/F ′ =
∏ν−3
k=0 Nk.

• N = B′ ×Q′ × F ′, and Q′ × F ′ = Q.

• 0 ≤ r = (q̂′ × F ′ + f̂ ′)B′ + b̂′ ≤ N − 1.

• ωB′×F ′
B′×F ′ = 1.

Now, rename the dimensions B := B′, Q := Q′, F := F ′ in equation (15.19) and
obtain

Xr = X(q̂×F+f̂)B+b̂

= Z[b̂, f̂ , q̂]

=
Q−1∑
q=0

F−1∑
f=0

C[b̂, q, f ] ×
(
ωf̂×B+b̂

B×F

)f zq, z = ωrN .

(15.20)



Since equation (15.20) is identical to equation (15.17), the bracketed inner sum
can now be computed using exactly the same code from the initial step with updated
B = Nν−1, F = Nν−2, and Q =

∏ν−3
k=0 Nk. The code-segment is repeated below.

B := Nν−1; F := Nν−2; Q := N/(B ∗ F ) Updated dimensions for Step 2
θ := 2π/(B ∗ F ); WBF := exp(−jθ) Compute WBF = ωB×F

z := 1 z = ω0
B×F = 1

for f̂ := 0 to F − 1 F = Nν−2

for b̂ := 0 to B − 1 B = Nν−1

for q := 0 to Q− 1

C ′′[b̂, f̂ , q] :=
∑F−1
f=0 C[b̂, q, f ] ∗ zf z = ωf̂×B+b̂

B×F

end for

z := z ∗ WBF Update z = ωf̂×B+b̂+1
B×F

end for
end for

The remaining computation can again be expressed as

Xr = X(q̂×F+f̂)B+b̂ = Z[b̂, f̂ , q̂] =
Q−1∑
q=0

C ′′[b̂, f̂ , q] zq,(15.21)

where z = ωrN , for r = 0, 1, . . . , N − 1.

Since equation (15.21) is identical to equation (15.18) except for the new values
taken by the dimensions, the process for deriving the second step can be repeated
using B′ := B × F = Nν−1 ×Nν−2, F ′ := Nν−3, and Q′ := Q/F .

Finally, the νth step repeats the same process using B := B′ = Nν−1 × Nν−2 ×
· · · × N1, Q := Q′ = 1, and F := F ′ = N0, and the values of Xr’s are available in
C ′′[B,F,Q] because one now has

Xr = X(q̂×F+f̂)B+b̂ =
Q−1∑
q=0

C ′′[b̂, f̂ , q] zq = C ′′[b̂, f̂ , q̂],(15.22)

for Q− 1 = 0, q = 0, and zq = 1 .

Therefore, consecutive Xr’s are available in a column-major format in array C ′′[B,F,Q],
which can be interpreted as C ′′[Nν−1, . . . , N1, N0, 1]. Observe that Q = 1 is a dummy
dimension, so the output array C ′′ can also be interpreted as the transpose of the
ν-dimensional input array A[N0, N1, . . . , Nν−1].

Since N =
∏ν−1
k=0 Nk and N ×Nk multiply-adds are needed in each of the ν steps,

the total cost amounts to N × (N0 + N1 + · · · + Nν−1) multiply-adds in this ν-factor
FFT algorithm.



15.8 Notes and References

Since a non-prime factor is composite, it is logical to assume that N is expressed as the
product of prime factors when applying the Cooley-Tukey FFT algorithm to general
N . Note, however, that the Cooley-Tukey algorithm does not impose any restriction on
the factors, and it should not be confused with the so-called “Prime Factor” Algorithm
(PFA), which is only applicable to a very restricted set of N values. For the PFA
to work, the factors of N are required to be “coprime”, or, in other words, pairwise
prime. For example, if N = N0 × N1 × N2 = 5 × 7 × 16, then any two factors of N
are relatively prime, and one can apply the PFA. However, if the same N is expressed
as N = N0 × N1 × N2 × N3 = 5 × 7 × 2 × 8, then because factor N2 = 2 and factor
N3 = 8 are not relatively prime, one cannot apply the PFA. When N contains only
coprime factors, the PFA provides an alternative which achieves lower operation count
than the Cooley-Tukey algorithm.

The PFA was initially proposed by Good [50] in 1960, and its theory was first
presented by Kolba and Parks [62] in 1977. A PFA variant with further reduced
operation count was developed by Winograd [109] in 1978. An excellent reference for
the PFA, Winograd’s algorithm (WPFA), and other PFA variants is Nussbaumer’s
monograph [70, Chapter 5], which also contains the short DFT algorithms that are
most frequently used with the PFA or WPFA for factors Nk = 2, 3, 4, 5, 7, 8, 9, and
16 [70, pages 144–150]. Johnson and Burrus [57] developed large DFT modules: 11,
13, 17, 19, and 25. More recently, the PFA was adapted for vector-processing and
generalized further by Temperton [100, 101, 102].

A modified in-place and in-order form of the PFA was implemented in FORTRAN
by Burrus and Eschenbacher [20] in 1981. The program allows coprime factors chosen
from the set of 2, 3, 4, 5, 7, 8, 9, and 16. Observe that the maximum number of
relatively prime factors is four, and the maximum length is N = 5× 7× 9× 16 = 5040.
Unfortunately, as pointed out by Burrus and Eschenbacher, the required modification
is different for different N , so the program must either be complicated by added control
statements or recompiled for a new N . Burrus’ in-place, in-order, fixed size transform
was modified by Rothweiler [81] in 1982 to produce a general-purpose, in-place, and
in-order PFA for variable transform size. The class of in-order (also called self-sorting)
in-place algorithms has recently been extended to include radix-2, radix-3, radix-4,
radix-5, and mixed-radix FFTs [58, 101, 102].

For N = 3m and N = 2p3q5r, specialized radix-3 and mixed radix FFTs exist [37,
102]. An FFT algorithm of radix 3, 6, and 12 was proposed in [92]. Split-radix
algorithms for length pm DFTs were proposed in [105].



Chapter 16

Selected FFT Applications

Chapter 1 contains a development showing how the discrete Fourier transform (DFT)
arises naturally in trigonometric interpolation. The FFT algorithms presented in the
preceding chapters provide fast implementations of the DFT. Since the DFT arises
in a wide variety of applications, it is appropriate to select a few more examples to
demonstrate the practical usefulness of the various FFT algorithms.

16.1 Fast Polynomial Multiplication

Consider two polynomials of degree N defined by

AN(z) =
N∑
�=0

a�z
� = aNz

N + · · · + a1z + a0(16.1)

and

BN(z) =
N∑
�=0

b�z
� = bNz

N + · · · + b1z + b0,(16.2)

where, in general, z is a complex variable, and a� and b�, 0 ≤ � ≤ N , are complex
coefficients. The product of polynomials AN(z) and BN(z) is a polynomial of degree
2N defined by

C2N(z) = AN(z)BN(z) =
2N∑
�=0

c�z
� = c2Nz

2N + · · · + c1z + c0.(16.3)

Defining ak = bk = 0 for N < k ≤ 2N , the coefficients c� are given by

c� =
�∑
k=0

akb�−k, � = 0, 1, . . . , 2N.(16.4)

The arithmetic cost of computing the c� is measured by the Θ
(
N2

)
complex multipli-

cations needed to compute all of the ak×b�−k terms in equation (16.4). Given below
is an example showing the product of two polynomials of degree 3 with real coefficients.



Example 16.1

C6(z) = A3(z)B3(z)

=
(
5z3 + 2z2 + 3z + 7

) (
4z3 + 9z2 + 5z + 2

)
= 20z6 + 53z5 + 55z4 + 75z3 + 82z2 + 41z + 14

Note that by adding zero coefficients, equation (16.4) also defines the product of two
polynomials of different degrees. Given below is such an example.

Example 16.2

P4(z) = B3(z)D1(z)

=
(
5z3 + 2z2 + 3z + 7

)
(5z + 2)

=
(
5z3 + 2z2 + 3z + 7

) (
0 × z3 + 0 × z2 + 5z + 2

)
= 0 × z6 + 0 × z5 + 25z4 + 20z3 + 19z2 + 41z + 14

= 25z4 + 20z3 + 19z2 + 41z + 14

This seemingly unnecessary act of adding zero coefficients turns out to serve a useful
purpose in deriving a fast Θ (N log2 N) polynomial multiplication algorithm based on
FFT computation. The algorithm for computing C2N(z) = AN(z)BN(z) consists of the
following steps.

Step 1. (Preprocessing) Add N leading zero coefficients to the polynomial AN(z)
of degree N to obtain Ã2N(z), for which a� = 0, N < � ≤ 2N .

Step 2. (Preprocessing) Add N leading zero coefficients to the polynomial BN(z)
of degree N to obtain B̃2N(z), for which b� = 0, N < � ≤ 2N .

Step 3. (Fast polynomial evaluation) Evaluate Ã2N(z) at the 2N+1 primitive roots
of unity: 1, ωM , ω2

M , . . . , ω2N
M , where M = 2N + 1. That is, one computes

Ar = AN (ωrM) = Ã2N (ωrM) =
M−1∑
�=0

a�ω
r�
M , r = 0, 1, . . . ,M − 1.(16.5)

Equation (16.5) above defines a DFT of length M .

Step 4. (Fast polynomial evaluation) Evaluate B̃2N(z) at the 2N+1 primitive roots
of unity: 1, ωM , ω2

M , . . . , ω2N
M , where M = 2N + 1. That is, one computes

Br = BN (ωrM) = B̃2N (ωrM) =
M−1∑
�=0

b�ω
r�
M , r = 0, 1, . . . ,M − 1.(16.6)

Equation (16.6) above defines a DFT of length M .

Step 5. Compute Cr = ArBr, for r = 0, . . . , M − 1. This provides the values of
the polynomial C2N(z) = AN(z)BN(z) at M = 2N + 1 distinct points, uniquely
defining C2N(z). The next step provides the coefficients of the polynomial from
these values.



Step 6. (Fast polynomial interpolation) Compute the coefficients c�, 0 ≤ � ≤
2N , by interpolating at the M = 2N + 1 distinct values of Cr = C2N (ωrM)
computed in Step 5. That is, one needs to solve the following linear system of
equations to obtain the coefficients c0, c1, . . . , c2N .

Cr =
M−1∑
�=0

c�ω
r�
M , r = 0, 1, . . . ,M − 1.(16.7)

Since equation (16.7) represents the DFT of the unknown c�, it can be rewritten
as the inverse DFT of the known Cr as shown in Chapter 1, i.e.,

c� =
1
M

M−1∑
r=0

Crω
−r�
M , � = 0, 1, . . . ,M − 1.(16.8)

To obtain the c�, one computes an inverse DFT of length M defined by equation
(16.8).

The DFT of length M in Steps 3 and 4, and the inverse DFT (IDFT) in Step 6
may each be computed by Bluestein’s FFT and inverse FFT (IFFT) for arbitrary M

in Θ
(
M̃ log2 M̃

)
time, where 2M − 2 ≤ M̃ < 4M as shown in Chapter 13. Since

M = 2N + 1, 4N ≤ M̃ < 8N + 4, the arithmetic cost of computing the product of
two polynomials of degree N has been reduced from Θ

(
N2

)
using equation (16.4) to

Θ (N log2 N) as desired.
Alternatively, one may add zero coefficients and use the M̃ = 2k primitive roots of

unity: 1, ωM̃ , ω2
M̃
, . . . , ωM̃−1

M̃
, to increase the length of the DFT and IDFT in Steps 3,

4, and 6 from M to the nearest M̃ = 2k. Then one can apply a radix-2 FFT and IFFT
to compute the respective DFT and IDFT. The arithmetic cost remains Θ (N log2 N)
as desired.

16.2 Fast Convolution and Deconvolution

The convolution of two vectors a and b, denoted by a⊗b, is mathematically equivalent
to polynomial multiplication if the contents of the vectors a and b are interpreted as
the coefficients of two polynomials as shown below.

Definition 16.1 Consider two complex vectors a = [ a0, a1, . . . , aN ] and
b = [ b0, b1, . . . , bN ]. Then the convolution of a and b is defined by

c = a⊗ b

= [ a0, a1, . . . , aN ] ⊗ [ b0, b1, . . . , bN ]
= [ c0, c1, c2, . . . , c2N , c2N+1 ]

where ak = bk = 0, N < k ≤ 2N , c2N+1 = 0, and

c� =
�∑
k=0

akb�−k, � = 0, 1, . . . , 2N.(16.9)

Given below is an example showing the convolution of two real vectors a and b.



Example 16.3

c = [ a0, a1, a2, a3 ] ⊗ [ b0, b1, b2, b3 ]

= [ 7, 3, 2, 5 ] ⊗ [ 2, 5, 9, 4 ]

= [ 14, 41, 82, 75, 55, 53, 20, 0 ]

= [ c0, c1, c2, c3, c4, c5, c6, c7 ≡ 0 ]

Note that by adding zero components, the same definition applies to compute the con-
volution of two vectors of different dimensions. Given below is such an example.

Example 16.4

c = [ a0, a1, a2, a3 ] ⊗ [ b0, b1 ]

= [ 7, 3, 2, 5 ] ⊗ [ 2, 5, 0, 0 ]

= [ 14, 41, 19, 20, 25, 0, 0, 0 ]

= [ 14, 41, 19, 20, 25, 0 ]

= [ c0, c1, c2, c3, c4, c5 ≡ 0 ]

Therefore, except for adding c2N+1 = 0 (which must be present to preserve the symme-
try), equation (16.9) in the definition of convolution is essentially identical to equation
(16.4) which defines the product of two polynomials. Accordingly, the fast Θ (N log2 N)
FFT-based polynomial multiplication algorithm developed in the last section may be
used to compute the convolution of two vectors of length N+1. In addition, the polyno-
mial multiplication algorithm provides a constructive proof of the following convolution
theorem.

Theorem 16.2 Let â = [ a0, a1, . . . , aN , 0, . . . , 0 ] and b̂ = [ b0, b1, . . . , bN , 0, . . . , 0 ] be
vectors of length 2N+1 (after a and b are each padded with N zeros). Let DFT(â) =
[ A0, A1, . . . , A2N ] and DFT(b̂) = [ B0, B1, . . . , B2N ] be the results of applying discrete
Fourier transforms to the two sequences of complex numbers. Then the convolution
of the vector a of length N+1 and the vector b of length N+1 is a vector c of length
2N+2 as given below. (Note that the last element c2N+1 = 0 need not be computed,
and it is added afterwards to preserve symmetry.)

a⊗ b = [ c0, c1, . . . , c2N , 0 ]

where

[ c0, c1, . . . , c2N ] = IDFT ( [ A0B0, A1B1, ..., A2NB2N ] ) .

For very large N , it may be beneficial to avoid padding a and b with N more zeros.
When such a need arises, one may compute c = a ⊗ b through one positive and
one negative “wrapped” convolutions as suggested in [1]. Each wrapped convolution
involves computing two DFTs and one IDFT of length N+1 (instead of 2N+1 in
the unwrapped convolution). Because two wrapped convolutions are required, the
arithmetic cost of computing c = a ⊗ b will not be reduced, although the storage for



additional zeros can be saved. Interested readers are referred to [1] for further reading
on wrapped convolutions.

“Deconvolution” is introduced in [77] as “the process of undoing the smearing in
a data set (represented by the vector a) that has occurred under the influence of a
known response function (with its discrete values represented by the vector b), for
example, because of the known effect of a less-than-perfect measuring apparatus.”
Mathematically, the objective is to recover the unknown original vector a, assuming
that the contents of vectors b and c = a ⊗ b are given. It is a simple exercise to
reverse the convolution process. Assuming that the vector b̂ contains the vector b

of length N+1 and an additional N zeros as before, recall that in deriving the fast
polynomial multiplication algorithm it was shown that the vector C = DFT(c) is the
component-wise product of the vector A = DFT(â) and the vector B = DFT(b̂), so the
currently unknown DFT(â) = [ C0/B0, C1/B1, . . . , C2N/B2N ], assuming that Bk �= 0,
0 ≤ k ≤ 2N . This immediately leads to

â = IDFT ( [ C0/B0, C1/B1, . . . , C2N/B2N ] ) ,(16.10)

where c and b are given, C = DFT(c), and B = DFT(b̂). The “deconvoluted” vector a

can now be recovered from the first N+1 elements in â. The two DFTs and one IDFT
of length 2N+1 can again be computed using FFT algorithms. Clearly, the arithmetic
cost of deconvolution is the same as that of convolution.

16.3 Computing a Toeplitz Matrix-Vector Product

Readers are assumed to be familiar with the definition and the properties of Toeplitz
matrices covered in Chapter 13. Numerical computations involving Toeplitz matrices
arise frequently in signal processing [55]. The explicit relationship between a convolu-
tion and the product of a Toeplitz matrix and a vector was pointed out in [55]. In short,
the convolution of vectors a of length 2N+1 and b of length N+1 can be written as
the product of a (3N+1)×(N+1) matrix A and the vector b. Since the square (N+1)
×(N+1) Toeplitz matrix T formed by the 2N+1 elements from a corresponds to N+1
rows in A, the product Tb is a subvector of ĉ = Ab. An example is given below to
demonstrate how to form a Toeplitz matrix-vector product by convoluting two vectors.

Example 16.5 The convolution of a vector a of length 2N+1=7 and a vector b of
length N+1=4 defined by

c = [ a0, a1, a2, a3, a4, a5, a6 ] ⊗ [ b0, b1, b2, b3 ]

= [ 7, 3, 2, 5, 1, 1, 1 ] ⊗ [ 2, 5, 9, 4 ]

= [ 14, 41, 82, 75, 57, 60, 36, 18, 13, 4, 0 ]

= [ c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 ≡ 0 ]



can be written as the product of a 10×4 Toeplitz matrix and a vector of length 4 as
shown below.

ĉ =



ĉ9
ĉ8
ĉ7
ĉ6
ĉ5
ĉ4
ĉ3
ĉ2
ĉ1
ĉ0


=



a6

a5 a6

a4 a5 a6

a3 a4 a5 a6

a2 a3 a4 a5

a1 a2 a3 a4

a0 a1 a2 a3

a0 a1 a2

a0 a1

a0




b3
b2
b1
b0

 =



1
1 1
1 1 1
5 1 1 1
2 5 1 1
3 2 5 1
7 3 2 5

7 3 2
7 3

7




4
9
5
2

 =



4
13
18
36
60
57
75
82
41
14


= c.

Observe that each diagonal of the matrix A is formed entirely by one element from the
vector a. The result ĉ� = c�, 0 ≤ � ≤ 3N , is expected as it can be easily verified from
the matrix equation ĉ = Ab that ĉ� = c� =

∑�
k=0 akb�−k, � = 0, 1, . . . , 3N, where ak =

0 for 2N < k ≤ 3N and bk = 0 for N < k ≤ 3N .
Since an (N+1)×(N+1) Toeplitz matrix T formed by elements a0, a1, . . . , a2N con-

sists of N+1 rows from the matrix A, the result of Tb is contained in ĉ = Ab as shown
below.

ĉ6
ĉ5
ĉ4
ĉ3

=


a3 a4 a5 a6

a2 a3 a4 a5

a1 a2 a3 a4

a0 a1 a2 a3




b3
b2
b1
b0

=


5 1 1 1
2 5 1 1
3 2 5 1
7 3 2 3




4
9
5
2

=


36
60
57
75

=


c6
c5
c4
c3

 .

Therefore, the product of an (N+1)×(N+1) Toeplitz matrix T (with its diagonals
formed by a0, a1, . . . , a2N) and the vector b may be recovered from the convolution
of a = [ a0, a1, . . . , a2N ] and b = [ b0, b1, . . . , bN ] using the fast FFT-based algorithm
introduced in the previous section.

Since a Hankel matrix is obtained from reversing the rows of a Toeplitz matrix,
the product of a Hankel matrix and a vector can also be computed by convolution.
These FFT-based fast algorithms for matrix-vector multiplication may then be used to
obtain the fast implementation of several Toeplitz (or Hankel)-based iterative solvers
for linear systems and least squares problems [9, 71, 73].

16.4 Computing a Circulant Matrix-Vector Product

Since the multiplication of a circulant matrix and a vector is one step in Bluesteins’s
FFT for arbitrary N (explained in Chapter 13), readers are referred to Section 13.1.5
for the definition of circulant matrices, as well as the details of a fast algorithm which
diagonalizes a circulant coefficient matrix by a DFT matrix.

As shown in Section 13.1.4, a symmetric Toeplitz matrix may be embedded in an
enlarged circulant matrix, so the fast algorithm in Section 13.1.5 also computes the
product of a symmetric Toeplitz matrix and a vector.

Since circulant preconditioners may be constructed for Toeplitz least squares prob-
lems [67], the FFT-based fast algorithm in Section 13.1.5 can be used to yield a fast



implementation of certain special preconditioned conjugate gradient (PCGLS) meth-
ods [9, 67].

16.5 Solving a Large Circulant Linear System

It was shown in Section 13.1.5 that the circulant coefficient matrix H in a matrix-vector
product z = Hy can be diagonalized by a DFT matrix Ω so that

Ωz = Ω(Hy) = (ΩH)y = (DΩ)y = D(Ωy),(16.11)

where D is diagonal with its elements computed by a radix-2 FFT, and Ω is a radix-2
DFT matrix. That is, the fast algorithm in Section 13.1.5 computes

z = Ω−1(D(Ωy)).(16.12)

If, instead of computing the matrix-vector product, one is required to solve for the
unknown y when the circulant matrix H and the (right-hand side) vector z are given,
one may diagonalize H so that ΩH = DΩ as before, and rewrite (16.11) as

y = Ω−1
(
D−1(Ωz)

)
,(16.13)

which is in exactly the same form as (16.12). Therefore, the same fast algorithm for
computing the circulant matrix-vector product may be used to solve a circulant system
of equations.

16.6 Fast Discrete Sine Transforms

Since the various fast algorithms for computing discrete trigonometric transforms
(DTT’s) make use of the fast Fourier transforms, the FFT also plays an important
role in the wide ranging applications of trigonometric transforms, although its con-
tribution may not always be visible to the end user. The DFT-related transforms
considered in this and the following sections include the discrete sine transform (DST)
defined by

Sr =
N−1∑
�=1

x� sin
(
πr�

N

)
, r = 1, 2, . . . , N − 1,(16.14)

and the discrete cosine transform (DCT) defined by

Cr =
x0 + (−1)rxN

2
+
N−1∑
�=1

x� cos
(
πr�

N

)
, r = 0, 1, . . . , N.(16.15)

These two trigonometric transforms (of real data) are mathematically related to the
discrete Fourier transform (DFT) because each can be derived from a real (symmetric
odd or even) DFT as shown below.

One can “embed” the discrete sine transform (DST) of length N−1 defined by
equation (16.14) in a DFT, as outlined below.



Step 1. Define a real (symmetric odd) DFT of length 2N using the given N−1 real-
valued data set x = [ x1, x2, . . . , xN−1 ], i.e.,

Xr =
2N−1∑
�=0

x�ω
r�
2N , r = 0, 1, . . . , 2N − 1,(16.16)

where ω2N = e−
2jπ
2N = cos

(
π
N

)
− j sin

(
π
N

)
, x0 ≡ xN ≡ 0 and the added xN+1,

xN+2, . . . , x2N−1 are chosen to be symmetric odd about xN , i.e.,

x2N−� ≡ −x�, � = 1, . . . , N.(16.17)

Step 2. Derive the DST of length N−1 embedded inside the DFT of length 2N in
(16.16) as shown below. Observe that X = DFT(x) contains only pure imaginary
numbers if the data sequence in x is real-valued and symmetric odd, with X0 =
XN = 0.

Xr =
2N−1∑
�=0

x�ω
r�
2N , r = 0, 1, . . . , 2N − 1,

=
N−1∑
�=0

x�ω
r�
2N +

2N−1∑
�=N

x�ω
r�
2N

=
N−1∑
�=0

x�ω
r�
2N +

N∑
�=1

x2N−�ω
r(2N−�)
2N

=
N−1∑
�=0

x�ω
r�
2N + ω

r(2N)
2N

N∑
�=1

(−x�)ω−r�
2N

(∵ x2N−� = −x�)

=
N−1∑
�=0

x�ω
r�
2N −

N−1∑
�=1

x�ω
−r�
2N

(∵ ω2N
2N = 1, and xN ≡ 0 was removed)

=
N−1∑
�=1

x�ω
r�
2N −

N−1∑
�=1

x�ω
−r�
2N

(∵ x0 ≡ 0 was removed)

=
N−1∑
�=1

x�
(
ωr�2N − ω−r�

2N

)
= −2j

N−1∑
�=1

x� sin
(
πr�

N

)
(∵ sin(0) = sin(�π) = 0, ∴ X0 = XN = 0)

= −2j × Sr. (∵ Sr is real-valued, ∴ Xr is pure imaginary)

(16.18)

Following (16.18), if [ S1, S2, ..., SN−1 ] = DST ( [ x1, x2, ..., xN−1 ] ) denotes the desired
results of a discrete sine transform, and [ X0, X1, ..., X2N−1 ] = DFT ( [ x0, x1, ..., x2N−1 ] )
denotes the results of the discrete Fourier transform defined in Step 1, then

[ S1, S2, . . . , SN−1 ] =
j

2
[ X1, X2, . . . , XN−1 ]

=
j

2
[ jIm (X1) , jIm (X2) , . . . , jIm (XN−1) ]

= −1
2

[ Im (X1) , Im (X2) , . . . , Im (XN−1) ] .

(16.19)



Note that because X is pure imaginary, the real-valued S is obtained by dividing
Im(X) by −2 in the actual computation. Hence, S is immediately available after X is
computed using a fast algorithm to implement the real symmetric odd DFT defined in
Step 1.

To summarize, the task of computing a DST of N−1 real-valued data items can be
accomplished by computing a “real” DFT of length 2N , which can be implemented by
the FFT algorithm specifically tailored to real-valued data described in Chapter 14.

Finally, the same fast algorithm also computes the inverse discrete sine transform
(IDST), because the sine transform is its own inverse. The precise relationship

x = IDST(S) = 2
NDST(S) if and only if S = DST(x)

can be easily derived through applying the inverse discrete Fourier transform (IDFT) to
X = −2jS, and noting that XN−r = X∗

r (see Chapter 14) implies that X is pure imag-
inary and XN−r = −Xr. (In other words, Im(X) is a real symmetric odd sequence.)
This is shown below.

x� =
1

2N

2N−1∑
r=0

Xrω
−r�
2N

, � = 0, 1, . . . , 2N − 1,

=
1

2N

(
N−1∑
r=0

Xrω
−r�
2N

+
2N−1∑
r=N

Xrω
−r�
2N

)

=
1

2N

(
N−1∑
r=0

Xrω
−r�
2N

+
N∑
r=1

X2N−rω
−�(2N−r)
2N

)

=
1

2N

(
N−1∑
r=0

Xrω
−r�
2N

+ ω
−�(2N)
2N

N∑
r=1

(−Xr)ωr�2N

)
(∵ X2N−r = −Xr)

=
1

2N

(
N−1∑
r=0

Xrω
−r�
2N

−
N−1∑
r=1

Xrω
r�
2N

)
( ∵ ω2N

2N = 1, and XN = 0 was removed)

=
j

N

N−1∑
r=1

Sr
(
ωr�2N − ω−r�

2N

)
(∵ X0 = 0 was removed, and Xr = −2jSr)

=
2
N

N−1∑
r=1

Sr sin
(
πr�

N

)
(∵ Sr’s are real-valued, ∴ x� is real.)

(16.20)

Thus x = 2
NDST(S) if and only if S = DST(x) as desired. The definition of the DST

in (16.14) may also be viewed as multiplying the data sequence x = [ x1, x2, . . . , xN−1 ]
by an (N−1)×(N−1) DST coefficient matrix Msin, as shown below for N = 5.

Msinx =


sin θ sin 2θ sin 3θ sin 4θ
sin 2θ sin 4θ sin 6θ sin 8θ
sin 3θ sin 6θ sin 9θ sin 12θ
sin 4θ sin 8θ sin 12θ sin 16θ




x1

x2

x3

x4

 =


S1

S2

S3

S4

 , θ ≡ π

N
=

π

5
.

Therefore, the result DST(S) = N
2 x also establishes the orthogonality of the columns



of Msin as shown below.

MsinS = Msin (Msinx)

= (MsinMsin)x

=
N

2
x,

(16.21)

which implies that

MsinMsin =
N

2
I,(16.22)

where Msin is the (N−1)×(N−1) DST coefficient matrix, and I is the (N−1)×(N−1)
identity matrix.

16.7 Fast Discrete Cosine Transform

One can also “embed” the discrete cosine transform (DCT) of length N+1 defined by
(16.15) in a DFT.

Step 1. Define a real (symmetric even) DFT of length 2N using the given N+1 real-
valued data items in x = [ x0, x1, . . . , xN ], i.e.,

Xr =
2N−1∑
�=0

x�ω
r�
2N , r = 0, 1, . . . , 2N − 1,(16.23)

where ω2N = e−
2jπ
2N = cos

(
π
N

)
− j sin

(
π
N

)
, and the added xN+1, xN+2, . . . , x2N−1

are chosen to be symmetric even about xN , i.e.,

x2N−� ≡ x�, � = 1, . . . , N.(16.24)

Step 2. Derive the DCT of length N+1 embedded inside the DFT of length 2N in
(16.23) as shown below. Observe also that X = DFT(x) is shown to be real-



valued if the data sequence in x is real-valued and symmetric even.

Xr =
2N−1∑
�=0

x�ω
r�
2N , r = 0, 1, . . . , 2N − 1,

=
N−1∑
�=0

x�ω
r�
2N +

2N−1∑
�=N

x�ω
r�
2N

=
N−1∑
�=0

x�ω
r�
2N +

N∑
�=1

x2N−�ω
r(2N−�)
2N

=
N−1∑
�=0

x�ω
r�
2N + ω

r(2N)
2N

N∑
�=1

x�ω
−r�
2N

(∵ x2N−� = x�)

=
N−1∑
�=0

x�ω
r�
2N +

N∑
�=1

x�ω
−r�
2N

(∵ ω2N
2N = 1.)

= x0 +

(
N−1∑
�=1

x�ω
r�
2N +

N−1∑
�=1

x�ω
−r�
2N

)
+ xNω

−rN
2N

= x0 + (−1)rxN +
N−1∑
�=1

x�
(
ωr�2N + ω−r�

2N

)
(∵ ωN2N = −1)

= 2

(
x0 + (−1)rxN

2
+
N−1∑
�=1

x� cos
(
πr�

N

))
= 2Cr. (Note: Cr and Xr are real-valued.)

(16.25)

Following (16.25), if [ C0, C1, . . . , CN ] = DCT ( [ x0, x1, . . . , xN ] ) denotes the desired
results of a discrete cosine transform, and [ X0, X1, . . . , X2N−1 ] = DFT ( [ x0, x1, . . . ,

x2N−1 ] ) denotes the results of the discrete Fourier transform defined in Step 1, then

[ C0, C1, . . . , CN ] =
1
2

[ X0, X1, . . . , XN ] .(16.26)

Similar to the computation of the DST, the task of computing a DCT of N+1 data
items can be accomplished by computing a real DFT of length 2N , which can be imple-
mented by the Θ (N log2 N) FFT algorithm specifically tailored to real data described
in Chapter 14.

Since the Xr and XN−r are complex conjugate pairs and X is real, Xr = XN−r
and one can conclude that X contains a real symmetric even sequence. Similar to
the derivation of the IDST, one can apply an IDFT to X = 2C to derive the inverse
discrete cosine transform (IDCT), which satisfies the relationship

x = IDCT(C) = 2
NDCT(C) if and only if C = DCT(x) .

Therefore, the same fast algorithm may be used to compute the IDCT because a DCT is
also its own inverse. Again, the definition of the DCT in (16.15) may also be viewed as
multiplying the data sequence x = [x0, x1, . . . , xN ] by a (N+1)×(N+1) DCT coefficient



matrix Mcos, as shown below for N = 5.

C0

C1

C2

C3

C4

C5


=



1/2 1 1 1 1 1/2
1/2 cos θ cos 2θ cos 3θ cos 4θ −1/2
1/2 cos 2θ cos 4θ cos 6θ cos 8θ 1/2
1/2 cos 3θ cos 6θ cos 9θ cos 12θ −1/2
1/2 cos 4θ cos 8θ cos 12θ cos 16θ 1/2
1/2 −1 1 −1 1 −1/2





x0

x1

x2

x3

x4

x5


, θ ≡ π

N
=

π

5
.

Therefore, the result DCT(C) = N
2 x also establishes the orthogonality of the columns

of Mcos, i.e.,

McosMcos =
N

2
I,(16.27)

where Mcos is the (N+1)×(N+1) DCT coefficient matrix, and I is the (N+1)×(N+1)
identity matrix.

The columns of the matrix Mcos are also called the basis vectors of the standard
discrete cosine transform of Type I (DCT-I) in [78, 91, 108]. An alternative and in-
sightful way to prove their orthogonality is to show them to be the eigenvectors of a
symmetric second-difference matrix [91]. By varying the boundary conditions of the
difference equations, Strang shows in [91] that the complete set of DCT-Types I to VIII
(discovered by Wang and Hunt in 1985 in [108]) can be derived from the eigenvectors
of eight second-difference matrices. Readers are referred to [78, 91, 108] for further
discussion on deriving other types of DCTs and their application in image processing.

16.8 Fast Discrete Hartley Transform

The real-valued discrete Hartley transform (DHT) and its inverse (IDHT) are defined
for N real-valued data items x = [ x0, x1, . . . , xN−1 ] as

Hr =
N−1∑
�=0

x� cas
(

2πr�
N

)
, r = 0, 1, . . . , N − 1,(16.28)

and

x� =
1
N

N−1∑
r=0

Hr cas
(

2πr�
N

)
, � = 0, 1, . . . , N − 1,(16.29)

where cas
(

2πr�
N

)
≡ cos

(
2πr�
N

)
+ sin

(
2πr�
N

)
. The real-valued Hartley transform is its

own inverse as highlighted below, and the same fast algorithm may be used to compute
either the forward or the inverse Hartley transforms. Since the IDHT can be easily
derived through the use of IDFT once the relationship between the DHT and the DFT
is established, the former task is left as an exercise for the reader.

x = IDHT(H) = 1
NDHT(H) if and only if H = DHT(x) .

In exactly the same manner as the forward and inverse DST (or DCT) are related to
the orthogonality of the columns of DST (or DCT) coefficient matrices, the columns
of MDHT from (16.28) can be shown to be orthogonal, and satisfy

MDHTMDHT = NI,(16.30)



where MDHT is the N×N DHT coefficient matrix, and I is the N×N identity matrix.

Comparing the Hr from equation (16.28) to the Xr obtained from transforming the
same real-valued data set by the DFT shown below,

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1,

=
N−1∑
�=0

x�

(
cos

(
2πr

N

)
− j sin

(
2πr

N

))

=
N−1∑
�=0

x� cos
(

2πr

N

)
− j

N−1∑
�=0

x� sin
(

2πr

N

)

= Re (Xr) + jIm (Xr) ,

(16.31)

one obtains the following identity which relates the real-valued Hr to the complex-
valued Xr:

Hr = Re (Xr) − Im (Xr) , r = 0, 1, . . . , N − 1.(16.32)

Using (16.32), H is easily obtained by post-processing X, which can be computed using
the FFT algorithm introduced in Chapter 14 for real-valued data of length N .

Since the DHT is a real-valued transform, it is desirable that complex arithmetic
be avoided. To this end, specialized fast Hartley transform (FHT) algorithms have
been developed that use only real arithmetic. Note that the roles played by the DFT
and the DHT on transforming real-valued data are reversible. That is, if the real-
valued H = DHT(x) has been computed using a specialized FHT, the complex-valued
X = DFT(x) can be obtained using the identities X0 = H0, XN

2
= HN

2
,

Re (Xr) =
1
2

(HN−r + Hr) , r = 1, 2, . . . , N/2 − 1,(16.33)

and

Im (Xr) =
1
2

(HN−r −Hr) ,(16.34)

which are easily derived using the symmetric property of X.
Recall from Chapter 14 that if X = DFT(x) for real-valued x = [x0, x1, . . . , xN−1],

then XN−r and Xr are complex conjugates, i.e.,

XN−r = X∗
r , r = 1, 2, . . . , N/2 − 1.(16.35)

It follows that

Re (XN−r) = Re (Xr) and Im (XN−r) = −Im (Xr) .(16.36)

Replacing r by N − r in (16.32), and applying the symmetric relationship from (16.36)
to the real and imaginary parts of XN−r yields

HN−r = Re (XN−r) − Im (XN−r) , r = 1, 2, . . . , N/2 − 1,

= Re (Xr) + Im (Xr) .
(16.37)



Combining the Hr in (16.32) and the HN−r in (16.37) for 1 ≤ r ≤ N/2−1, one obtains
the expression for Re (Xr) and Im (Xr) given in (16.33). Next, one obtains the relations
X0 = H0 and XN

2
= HN

2
by substituting r = 0 and r = N/2 in the definition of Xr

and Hr, and the remaining XN
2 +1, XN

2 +2, . . . , XN−1 can be obtained by applying the
symmetric property in (16.36) to the available X1, X2, . . . , XN

2 −1.
Additional information about the Hartley transform (continuous or discrete) and its

applications in digital filtering can be found in the text by Bracewell [13] and in articles
by Bracewell [14], Buneman [19], Sorensen et al. [87], and Duhamel and Vetterli [40].
The use of the Hartley transform in geophysical applications is described in [82].

16.9 Fast Chebyshev Approximation

The fast Fourier transform algorithm is useful in finding the best uniform approxima-
tion to a continuous function by Chebyshev polynomials. This is not surprising because
the discrete Chebyshev transform is closely related to the discrete cosine transform,
and the latter has been shown to be related to the DFT. A brief review of Chebyshev
polynomials follows.

The family of Chebyshev polynomials is defined by

TN (x) = cosNθ, where θ = arccos(x), i.e., x = cos θ, N = 0, 1, . . . .

By noting that cosNθ = Re
(
(cos θ + j sin θ)N

)
and that

(cos θ + j sin θ)N =
(
cos θ + j

√
1 − cos2 θ

)N

, assuming sin θ ≥ 0,

=
(
x + j

√
1 − x2

)N

, 0 ≤ x2 = cos2 θ ≤ 1,
(16.38)

one may obtain the Chebyshev polynomial of degree N in x from the binomial expansion
of the right-hand side of (16.38), i.e.,

TN (x) = cosN(arccosx)

= Re
((

x + j
√

1 − x2
)N

)

= xN +
(
N

2

)
xN−2

(
x2 − 1

)
+

(
N

4

)
xN−4

(
x2 − 1

)2
+ . . .

(16.39)

To generate the Chebyshev polynomials in increasing degrees, it is convenient to com-
bine the trigonometric identities

TN+1(x) = cos(N + 1)θ = cosNθ cos θ − sinNθ sin θ = xTN (x) − sinNθ sin θ

and

TN−1(x) = cos(N − 1)θ = cosNθ cos θ + sinNθ sin θ = xTN (x) + sinNθ sin θ

to obtain the following three-term recurrence.

TN+1(x) = 2xTN (x) − TN−1(x), N = 1, 2, . . . .(16.40)



Given below are sample Chebyshev polynomials of degrees 0, 1, 2, . . . , N . While they
all satisfy (16.39), the TN (x)’s are shown to be generated using (16.40) when N ≥ 2.
For −1 ≤ x ≤ 1,

T0(x) = cos 0 = 1

T1(x) = cos θ = x

T2(x) = 2xT1(x) − T0(x) = 2x2 − 1

T3(x) = 2xT2(x) − T1(x) = 4x3 − 3x

T4(x) = 2xT3(x) − T2(x) = 8x4 − 8x2 + 1
...

TN (x) = 2N−1xN + terms of lower degrees, N ≥ 2.

Chebyshev polynomials are an important family of orthogonal polynomials, and they
possess numerous interesting properties. A thorough discussion is beyond the scope of
this book; the objective here is simply to connect the DFT to the usage of Chebyshev
polynomials in approximating continuous functions.

Chebyshev abscissae The Chebyshev polynomial TN (x) = 0 has N distinct roots at

xk = cos θk = cos
(2k + 1)π

2N
, k = 0, 1, . . . , N − 1.

It is a simple task to verify that TN (xk) = cosNθk = 0, and 0 ≤ θk < 2π. They
are commonly referred to as the “Chebyshev abscissae.”

Chebyshev extrema Since TN (x) = cosN(arccosx), it has the property that −1 ≤
TN (x) ≤ 1. Furthermore, TN (x) reaches its N+1 extrema, i.e., TN (xr) = ±1, at

xr = cos θr = cos
rπ

N
, r = 0, 1, . . . , N,

because TN (xr) = cosNθr = cos rπ = ±1.

The connection between Chebyshev approximation and the DFT can now be devel-
oped. Since the Chebyshev polynomials TN (x) are defined for x ∈ [−1, 1], in order to
approximate a continuous function f(x) for x ∈ [a, b], a pre-processing step is needed
to change f(x) to g(y) by substituting

x =
b + a

2
+

b− a

2
y

so that x ∈ [a, b] implies y ∈ [−1, 1], and f(xk) = g(yk) when xk and yk satisfy the
relationship above. Instead of approximating f(x), one now approximates the contin-
uous function g(y) for y ∈ [−1, 1] by a linear combination of Chebyshev polynomials.
For a given N ,

g(y) ≈
N∑
�=0

c�T�(y) =
N∑
�=0

c� cos �θ, θ = arccos y,

where the coefficients c� are the unknowns to be determined.



One may solve for the N+1 unknown coefficients by setting up a linear systems of
N+1 equations. Evaluating Yr = g(yr) at yr = cos(rπ/N), for r = 0, 1, . . . , N , one
obtains the discrete cosine transform (DCS) as shown below.

Yr = g (yr) , r = 0, 1, . . . , N

= g
(
cos

rπ

N

)
=

N∑
�=0

c� cos �
(rπ

N

)

=
ĉ0 + (−1)r ĉN

2
+
N−1∑
�=1

c� cos
πr�

N
,

where ĉ0 = 2c0, and ĉN = 2cN . Hence, ĉ0, c1, c2, . . . , cN−1, ĉN can be obtained by
applying the inverse discrete cosine transform (IDCS) to the Yr = g (yr). Recall that
a forward or an inverse DCS of length N+1 may be embedded in a DFT of length 2N
and computed by the FFT algorithm.

16.10 Solving Difference Equations

The use of the DST, DCT, and DFT algorithms in solving difference equations in the
form of initial value problems or boundary value problems is another application area.
A survey of difference equations, some specific applications in which boundary value
problems arise, and the connections between certain difference equations and the DFT
can be found in [15]. Readers are assumed to have some familiarity with difference
equations.

Consider a boundary value problem specified by the following nonhomogeneous
second-order difference equation with real constant coefficients from [15]:

aur+1 = −bur − aur−1 + fr , r = 1, . . . , N − 1.(16.41)

The boundary condition is assumed to be Dirichlet with u0 = uN = 0.
For N = 5 the unknowns are u1, u2, u3, and u4 in (16.41). By rewriting (16.41) as

aur−1 + bur + aur+1 = fr , r = 1, . . . , N − 1,(16.42)

the four equations defined by (16.42), together with u0 = u5 = 0, form the symmetric
tridiagonal system as shown below.

b a

a b a

a b a

a b




u1

u2

u3

u4

 =


f1

f2

f3

f4

 .(16.43)

The unknown vector u may be obtained using a direct method such as Gaussian elim-
ination with partial pivoting; alternatively, one may use the Cholesky method if the
coefficient matrix is symmetric positive definite. Since the cost of solving a tridiagonal
system of N equations is Θ(N) using a direct method, whereas the cost of using a



FFT-based method introduced below is Θ (N log2 N), it makes no sense to use this
FFT-based method for one-dimensional problems.

However, the FFT-based method is useful for solving multidimensional boundary
value problems. For example, block tridiagonal systems of the form

T −I

−I T −I
. . . . . . . . .

−I T −I

−I T




u1

u2

...
uN−1

uN

 =


f1
f2
...

fN−1

fN

 ,(16.44)

where T is an N×N symmetric tridiagonal matrix (which has the same structure as
that of T in the 1D example), I is an N×N identity matrix, and each vector ur and fr
is of length N , result from finite difference approximation to a two-dimensional Poisson
equation with Dirichlet boundary conditions on an N×N square grid. The evolution of
fast (non-iterative) Poisson solvers has a long history which began with the odd-even
reduction method and the Fourier analysis method proposed by Hockney in 1965 [16,
21, 35, 53, 93, 97]. Instead of solving (16.44) using the block LU factorization [54] at
the cost of Θ

(
N4

)
, one may use the Buneman variant of the cyclic odd-even reduction

algorithm [18, 21] or the FFT-based matrix decomposition method [21] at a significantly
reduced cost of Θ

(
N2 log2 N

)
. Both algorithms have been generalized for arbitrary

N [11, 17, 97].
To help explain how the FFT-based method may be used to solve the block tridi-

agonal system (16.44), the simple tridiagonal system (16.43) is considered first.

Example 16.6 Explaining the FFT-based method by a simple example. The
connection between the 1D difference equation (16.41) and the DST was noted and an
FFT-based algorithm was developed in [15]. This algorithm is described below.

A trial solution vector u is assumed to be a linear combination of the N−1 DST
basis vectors, i.e.,

u =
N−1∑
�=1

x�u
(�), where u(�)

r = sin
(
πr�

N

)
.

Observe that u0 = uN = 0 because u
(�)
0 = sin 0 = 0, and u

(�)
N = sinπ� = 0 are satisfied

for 1 ≤ � ≤ N −1. If this trial solution is substituted into the difference equation, then
the x� are the unknown coefficients to be determined. For N = 5, the trial solution
vector is 

u1

u2

u3

u4

 =
N−1=4∑
�=1

x�


u

(�)
1

u
(�)
2

u
(�)
3

u
(�)
4

 =
N−1=4∑
�=1

x�


sin �θ

sin 2�θ
sin 3�θ
sin 4�θ

 ,

where θ = π
N = π

5 , and u0 = 0, u5 = 0. The equation above, written out in full, is
u1

u2

u3

u4

 =


sin θ sin 2θ sin 3θ sin 4θ
sin 2θ sin 4θ sin 6θ sin 8θ
sin 3θ sin 6θ sin 9θ sin 12θ
sin 4θ sin 8θ sin 12θ sin 16θ




x1

x2

x3

x4

 ,



and the trial solution vector u is related to the vector x by u = Msinx.
The derivation above suggests that one may obtain u by applying the DST to x.

Replacing u by Msinx in the tridiagonal system (16.43), one obtains the following
system of equations in x.

T (Msinx) = f,(16.45)

where

T =


b a

a b a

a b a

a b

 , and Msinx =


∑4
�=1 x� sin �θ∑4
�=1 x� sin 2�θ∑4
�=1 x� sin 3�θ∑4
�=1 x� sin 4�θ

 .

Substituting the trial solutions

ur−1 =
N−1∑
�=1

x�u
(�)
r−1 =

N−1∑
�=1

x� sin(r − 1)�θ, θ =
π

N
,

ur =
N−1∑
�=1

x�u
(�)
r =

N−1∑
�=1

x� sin r�θ,

ur+1 =
N−1∑
�=1

x�u
(�)
r+1 =

N−1∑
�=1

x� sin(r + 1)�θ,

into the rth difference equation in (16.42) gives

a

N−1∑
�=1

x� sin(r − 1)�θ + b

N−1∑
�=1

x� sin r�θ + a

N−1∑
�=1

x� sin(r + 1)�θ = fr, 1 ≤ r ≤ N − 1.

Collecting the terms with the same coefficients yields

a

N−1∑
�=1

x� (sin(r − 1)�θ + sin(r + 1)�θ) + b

N−1∑
�=1

x� sin r�θ = fr, 1 ≤ r ≤ N − 1.

The expression sin(r − 1)�θ + sin(r + 1)�θ can be simplified to 2 sin r�θ cos �θ by using
the identity sin(α± β) = sinα cosβ ± sinβ cosα, which yields

N−1∑
�=1

(2a cos �θ + b)x� sin r�θ = fr, 1 ≤ r ≤ N − 1,(16.46)

which is the rth equation of the following system of four equations.

Msin


(2a cos θ + b)x1

(2a cos 2θ + b)x2

(2a cos 3θ + b)x3

(2a cos 4θ + b)x4

 = MsinΛx =


f1

f2

f3

f4

 , where



Λ ≡


2a cos θ + b

2a cos 2θ + b

2a cos 3θ + b

2a cos 4θ + b

 .(16.47)

Next, multiply both sides by M−1
sin , yielding

Λxr = M−1
sinfr.

Therefore, after the right-hand side X = M−1
sinf is computed by applying an inverse

sine transform to f, one obtains x by solving the diagonal system Λx = X to obtain

x� =
X�

2a cos �θ + b
, 1 ≤ � ≤ N − 1.(16.48)

To summarize, the Θ (N log2 N) algorithm for solving the difference equation (16.41)
consists of the following three steps:

Step 1. Compute X = IDST(f) = 2
NDST(f) using an FFT algorithm.

Step 2. Compute

x� =
X�

2a cos �θ + b
, θ =

π

N
, 1 ≤ � ≤ N − 1.

Note that 2a cos �θ+b must be nonzero, which implies that T needs to be nonsin-
gular. Generally the source of the problem will ensure this, or some even stronger
condition such as positive definiteness or diagonal dominance.

Step 3. Compute u = DST(x) using an FFT algorithm.

Of course the various systems of equations need not be explicitly set up in the
actual solution process; they were used as tools to explain the derivation of the fast
algorithm. In particular, the symmetric tridiagonal system of N−1 equations

Tu = f

was first converted to the system

TMsinx = f,

and multiplying both sides by M−1
sin yields

M−1
sinTMsinx = M−1

sinf.

The relation TMsinx = MsinΛx derived above implies that T is diagonalized by the
similarity transformation

M−1
sinTMsin = Λ,(16.49)

or equivalently,

TMsin = MsinΛ.(16.50)

Thus, the columns of Msin and the diagonal elements of Λ are eigenvectors and corre-
sponding eigenvalues of the finite difference matrix T.



Example 16.7 A fast FFT-based method for solving a 2D Poisson equation
on a square. The algorithm is developed to solve the block tridiagonal system (16.44).
Guided by the development in the first example, each symmetric tridiagonal block T

can be diagonalized by the DST matrix as shown above in (16.49), i.e., M−1
sinTMsin = Λ,

where Λ was defined in (16.47).
The block tridiagonal system (16.44) contains N subsystems of N equations each,

namely,

Tu1 − u2 = f1,

−ur−1+Tur − ur+1 = fr, r = 2, . . . , N − 1,

− uN−1 + TuN = fN .

(16.51)

Substituting T = MsinΛM−1
sin into the rth subsystem, one obtains

−ur−1 + MsinΛM−1
sinur − ur+1 = fr.

Next, multiply both sides by M−1
sin , yielding

−M−1
sinur−1 + ΛM−1

sinur −M−1
sinur+1 = M−1

sinfr.

By defining xr = M−1
sinur and Xr = M−1

sinfr for r = 1, 2, . . . , N , equation (16.44)
becomes

Λx1 − x2 = X1,

−xr−1+Λxr − xr+1 = Xr, r = 2, 3, . . . , N − 1,

− xN−1 + ΛxN = XN ,

(16.52)

where Λ =




d1

d2

. . .
dN


 , xr =




x1r

x2r

...
xNr


 , and Xr =




X1r

X2r

...
XNr


 .

These equations can be rearranged to yield a tridiagonal system of N2 equations,
as demonstrated below, and can be solved in Θ

(
N2

)
time. For N=3 equation (16.52)

is




d1 −1
d2 −1

d3 −1
−1 d1 −1

−1 d2 −1
−1 d3 −1

−1 d1

−1 d2

−1 d3







x11

x21

x31

x12

x22

x32

x13

x23

x33




=




X11

X21

X31

X12

X22

X32

X13

X23

X33




,(16.53)



from which one obtains the following tridiagonal system by rearranging the unknowns
and the equations.




d1 −1
−1 d1 −1

−1 d1

d2 −1
−1 d2 −1

−1 d2

d3 −1
−1 d3 −1

−1 d3







x11

x12

x13

x21

x22

x23

x31

x32

x33




=




X11

X12

X13

X21

X22

X23

X31

X32

X33




.(16.54)

To summarize, the algorithm consists of the following three steps.

Step 1. Compute Xr = M−1
sinfr, r = 1, 2, . . . , N , by applying an inverse sine transform

(IDST) to each fr. The total cost is Θ
(
N2 log2 N

)
.

Step 2. Solve a tridiagonal system of N2 equations to obtain xr, r = 1, 2, . . . , N . The
total cost is Θ

(
N2

)
using Gaussian elimination or Cholesky factorization.

Step 3. Compute ur = Msinxr, r = 1, 2, . . . , N , by applying a sine transform (DST)
to each xr obtained in step 2. The total cost is Θ

(
N2 log2 N

)
.

Details of the algorithm vary with different boundary conditions; details about us-
ing DFT and other DFT-related transforms to solve difference equation BVPs with
other types of boundary conditions can be found in Pickering [76] and Briggs and Hen-
son [15]. The cyclic reduction method [18, 21], which is an alternative for solving block
tridiagonal systems, is described in Golub and Van Loan [49]; a version generalized
for arbitrary N is described in [97]. In [93], Swarztrauber combined the FFT-based
Fourier Analysis (FA) method and the Cyclic Reduction (CR) method to obtain a
Θ

(
N2 log2 log2 N

)
hybrid FACR algorithm for solving discrete 2D Poisson equations

on a square grid.



Part III

Parallel FFT Algorithms



Chapter 17

Parallelizing the FFTs:

Preliminaries on Data

Mapping

The discussion in Chapters 4 to 9 has focused on providing a unified algorithmic treat-
ment of the NR, RN and NN variants for implementing the sequential radix-2 FFTs.
These variations give the options of providing the input time series, and receiving the
output frequencies, in either the “natural ordering” or the “bit-reversed ordering.” Re-
gardless of which of the three choices is made, one can choose to use either the “DIF”
FFT algorithm or the “DIT” FFT algorithm.

The block diagram in Figure 17.1 depicts these various options.

Figure 17.1 Top level design chart for implementing the sequential FFT.



A key step in parallelizing the FFT on multiprocessor computers concerns the map-
ping of array addresses to processors. Figure 17.2 depicts such a process. Recall from
the previous chapters that each of the NR, RN, and NN algorithms can be completely
specified using the n-bit binary address of a representative element. In this chapter,
this binary address notation will be used to facilitate the mapping of array locations
to multiple processors, to aid in the description and classification of the many known
parallel FFT algorithms, and to help in the development of new ones.

Figure 17.2 Top level design chart for implementing the parallel FFT.

17.1 Mapping Data to Processors

Multiprocessors fall into two general categories: shared-memory multiprocessors and
local-memory (or distributed-memory) multiprocessors. As their names imply, they
are distinguished by whether each processor can directly access the entire memory
available, or whether the memory is partitioned into portions which are private to each
processor.

For shared-memory architectures, the main challenge in parallelizing a sequential
algorithm is to subdivide the computation among the processor in such a way that the
load is balanced, and memory conflicts are kept low. For FFT algorithms, this is a
relatively simple task.

In terms of the design of algorithms, local-memory machines impose the additional
burden of requiring that the data, as well as the computation, be partitioned. In addi-
tion to identifying parallelism in the computation, and assigning computational tasks
to individual processors, the data associated with the computation must be distributed
among the processors, and communicated among them as necessary. The challenge is



to do this in such a way that each processor has the data it needs in its local memory
at the time that it needs it, and the amount of communication required among the
processors during the computation is kept acceptably low.

A useful way to define different partitionings is to associate each processor with a
data item as follows. Since each location in a N = 2n element array has a n-bit binary
address, and P = 2d processors can each be identified by a unique d-bit binary ID
number, a class of partitionings can be specified by designating d consecutive bits from
the n-bit address as the processor ID number as shown in Figure 17.3 for an example
with N = 32 and P = 4.

This class of mappings is referred to as the generalized “Cyclic Block Mapping”
with blocksize = 2i for i = 0, 1, · · · , n − d. The n − d + 1 cyclic block mappings for
n = 5 and d = 2 are illustrated in Figure 17.4, where the array locations mapped to
processor P0 are shaded to highlight the “cyclic” nature with various block sizes.

Figure 17.3 Mapping array locations to processors.

17.2 Properties of Cyclic Block Mappings

The important properties of the class of cyclic block mappings are listed below. It is
assumed that N = 2n, P = 2d, and element xm is stored in a[m], where 0 ≤ m ≤ N−1



Figure 17.4 The n− d + 1 cyclic block mappings for N = 2n = 32 and P = 2d = 4.

From E. Chu and A. George [28], Linear Algebra and its Applications, 284:95–124, 1998. With

permission.



and the binary representation of m = in−1in−2 · · · i0. The initial n-bit global array
address used in the mapping is thus in−1in−2 · · · i0. Although a natural ordering is
assumed in this chapter so that the concept of data mapping can be introduced in a
straightforward manner, the notations are readily adapted to other initial orderings,
and those cases will be dealt with when they arise in the following chapters.

� Property 1. Each cyclic block mapping is defined by designating ikik−1 · · · ik−d+1

as processor ID number, where k = n − 1, n − 2, · · · , d − 1. There are thus
n− d + 1 different mappings.

� Property 2. The block size is 2k−d+1 for each k defined in property 1. Each
mapping in this class can thus be uniquely identified by its block size.

� Property 3. When the left-most d bits are taken as the processor ID number, the
block size is equal to N

P , and one has the standard block mapping, which is also
known as consecutive data mapping.

� Property 4. When the right-most d bits are taken as the processor ID number,
the block size is equal to one, and one has the standard cyclic mapping.

� Property 5. Each processor is always assigned N
P locations in total, i.e., this class

of mappings ensures even data distribution.

� Property 6. In parallelizing any one of the four unordered in-place FFTs, each
processor can always compute the butterflies involving the N

P local data points
independently, because these data correspond to array locations corresponding
to the n− d address bits specified by the braces below:

︷ ︸︸ ︷
in−1 · · · ik+1| designated d-bit for Processor ID |

︷ ︸︸ ︷
ik−d · · · i0.

� Property 7. To compute the butterflies involving the address bits used to define
the processor ID number, data can always be exchanged between two processors
with ID numbers different in exactly one bit, although these exchanges can
involve either NP or 1

2

(
N
P

)
data points and they may or may not be pipelined.

These design issues will be addressed in the subsequent chapters.
In view of properties 5, 6, and 7, it is not surprising that many mappings used in

the literature for parallelizing the in-place FFTs belong to the class of Cyclic Block
Mappings (CBMs). This class of mappings was also used in parallelizing the ordered
FFTs, although in a less straightforward manner.

17.3 Examples of CBM Mappings and Parallel FFTs

CBM mappings have received considerable study in the literature dealing with paral-
lelizing FFTs [23, 36, 46, 56, 59, 90, 95, 104, 107]. These works vary in the choice of the
blocksize, whether DIF or DIT transforms are used, and whether the input and/or out-
put is in unordered (reverse-binary) or in natural order, and so on. All these treatments
will be brought into a common framework in subsequent chapters.

To give an overview, some examples are cited in Table 17.1. Observe that each CBM



mapping is identified by its unique blocksize. The perfect shuffle scheme [90] was al-
ready discussed in Section 10.2.2, the other parallel FFT algorithms cited in Table 17.1
are reviewed in the specified sections in Chapter 21, and the underlying techniques can
be found in the specified sections in Chapters 19 and 20.

Table 17.1 Examples of cyclic block mappings (CBMs) and parallel FFTs. 
Examples of Parallel FFTs using P = 2' Proceesore 

Stone [90], 1971 

(Sec. 10.2.2) 

9'1 radix-2 DITNR Perfect Shuffle 

(with P = N) 
Jamiulon, Mueller 

k Siegel [56], 1986 

(Sec. 20.1.2 k 21.2.2) 

2' for k = 0 radix-2 DIFNR SIMD System with 

(cyclic) P =  $ for 1s k slog,  N 

Walton [107],1986 

(Sec. 20.2 k 21.2.1) 

Swarztrauber 

[95], 1987 

(Sec. 20.1.2 k 21.2.4) 

Chamberlain 

[23], 1988 

(Sec. 19.2.1 k 21.1.1) 

Tong k Swarztrauber 

[104], 1991 

(Sec. 20.1.2 k 21.2.4) 

Johnsson kKrawitz 

g = 2"-d radix-2 DITRN 32-node Ametek 

(consecutive) Hypercube 

radix-2 DIFNR Hypercube 

(consecutive) plus intermediate (not implemented) 

E P = 2"-d radix-2 DIFNR 64-node Intel iPSC 

N -2"-d 
P 
- -  

reordering dcycla 

(consecutive) k Its Inverse Hypercube k Linear Array (v i  

Reflected-Binary Gray-Codes) 

CM-2 Hypercube 2' for k = n - d 
(consecutive) and plus intermediate (16K 1-bit proceseors) 

$ = 2"-d radix-2 DIFw 2048-processor CM-200 

radix-2 DIFNR 

k = 0 (cyclic) reordering Ccycles 

[59], 1992 

[Sec. 19.2.3 k 21.1.4) 

Dubey, Zubair k 

(consecutive) and DITNR (with Boolean Cube Network) 

2' for k = 0, 1, radix-2 DIFNR 64-node Intel iPSC/860 

Grosch [36], 1994 

[Sec. 20.1.2 k 21.2.3) 

Fabbretti et. al. 

[461,1996 
'Sec. 19.2.3 k 21.1.31 

- - - ,  n - d. plus an ad-hoc Hypercube 

g = 2"-d - - 4' radix-4 DITNR 128-node nCUBE2 

rearrangement phase 

(consecutive) plus local split-radix Hypercube 



Chapter 18

Computing and

Communications on

Distributed-Memory

Multiprocessors

The development of efficient parallel FFT algorithms is the focus of Part III of this
book. As revealed by our discussion on mapping data to processors in Chapter 17, the
designs of parallel FFT algorithms are mainly driven by data distribution, not by the
way the processors are physically connected (through shared memory or by way of a
communication network.) This is a feature not shared by parallel numerical algorithms
in general.

In general, shared-memory architectures are relatively easy to program, since only
the computation and not the data needs to distributed among the processors. In many
applications, including the FFTs, implementing software to utilize multiple processors
on these architectures is a simple task. However, the drawback for these shared-memory
machines is that most are bus-based; each processor communicates with the single
shared memory via a shared bus, and such architectures do not scale up well.

On the other hand, regardless of the interconnection topology, implementing soft-
ware on distributed-memory machines is generally a more challenging task; the compu-
tation must be suitably distributed over the processors in a manner that balances the
load and keep the processors gainfully employed for as large a fraction of the overall
execution time as possible, and the data must be distributed and conveyed among the
processors so that they are available in the processors when needed. It is fair to say
that programming in this mode requires a relatively high level of sophistication.

There is large body of literature on algorithms specifically designed to exploit
distributed-memory computers having a hypercube interconnection network topol-
ogy. Indeed, for a considerable period of time, this was the primary architecture for
distributed-memory multiprocessors. More recently, distributed-memory multiproces-
sor machines have adopted a mesh topology. Apparently, the hypercube multiprocessor
was used by many FFT researchers for the following reasons: (1) for all data mappings



introduced, any two processors who are required to share data are directly connected
on the hypercube—this perfect match is inherent in the FFT computation, not by
design; and this match permits all communications to occur on disjoint paths and
eliminates traffic congestion; and (2) the hypercube is not a single topology—many
other topologies may be embedded in it: a ring embedded in a hypercube is a ring, a
mesh embedded in a hypercube is a mesh, etc. Therefore, it accommodates the FFT
on a ring and FFT on a mesh, if they are so desired, without compromise.

Recently, equipment vendors, recognizing the desirability of presenting a shared-
memory programming environment to their users, but at the same time wishing to
provide scalable architectures, have developed hybrid architectures, with numerous
shared-memory modules all connected via a hypercube network. The memory in each
of the modules in the aggregate form a uniform address space. Each processor can
address the full address space, but some of the addresses are in its local memory,
and some are in the local memory of some other processor(s). (Hence the name “non-
uniform memory architecture” (NUMA) machines.) The programmer is presented with
a single uniform address space, and the underlying hardware and software automatically
retrieve and/or migrate data to a processor when it addresses data outside its local
memory. Thus, one would expect that algorithms, such as the FFT algorithms in this
book, which map naturally onto a hypercube architecture, would perform will on these
hybrid machines. Most of the data accesses would be local, and those that involved
data in other modules would naturally involve machines that are (topologically) close.

18.1 Distributed-Memory Message-Passing Multipro-

cessors

Distributed-memory message-passing multiprocessors can have a substantial number of
processors, often ranging into several hundred or even a few thousand. Each processor
has its own private memory, and can execute its own program and operate on its own
data. There is neither globally shared memory nor connection between one processor
to another processor’s memory modules. Instead, the processors are connected by a
network of communication channels, and the processors share data and/or synchronize
with each other by sending and receiving messages over the network.

Builders of such machines must make a tradeoff between the cost of equipment and
the richness of the connection topology. Networks of various types and topologies are
used. They can be of fixed topology, such as a ring or a mesh, or can be packet-switched
or circuit-switched networks. For example, the 512 processors of Intel’s DELTA Mesh
are connected as a 16-by-32 mesh, whereas the 128 processors of Intel’s iPSC/860
Hypercube are connected by a hypercube network.

While the hypercube is a fixed topology, it is highly flexible in the sense that it
is rich enough to support a variety of other topologies within it. For example, rings,
meshes, trees, a torus, etc. can be embedded in a hypercube, so algorithms which are
most efficient on any of these topologies can also be developed, evaluated and used on
the hypercube.

The hypercube multiprocessor architecture is the subject of Section 18.2. The
embedding of a ring by reflected-binary Gray-code was used in some FFT applications,
and it is the subject of Section 18.3.



18.2 The d-Dimensional Hypercube Multiprocessors

There are 2d identical node processors in a hypercube of dimension d. Each processor
is uniquely identified by an integer in {0, 1, 2, . . . , 2d − 1}. If each processor ID in the
set {0, 1, 2, . . . , 2d − 1} is represented by a d-bit binary string, bd−1bd−2 . . . b0, then
the hypercube network is constructed by physically connecting each pair of processors
whose IDs differ in one single bit bk, 0 ≤ k ≤ d− 1. Figure 18.1 illustrates the binary
hypercube topologies of dimension d = 0, 1, 2, and 3. Each solid line in Figure 18.1
represents a communication channel.

Figure 18.1 Binary hypercubes of dimension 0, 1, 2, and 3.

Additional properties of a d-dimensional hypercube are summarized below.

• Each of the p = 2d processors has exactly d neighbors.

• A d-dimensional hypercube has p× (d/2) = d× 2d−1 communication channels.

• Two processors are said to be h hops apart if they are connected by a path
consisting of h communication channels. Note that 1 ≤ h ≤ d on a hypercube of
dimension d.

• A (d+1)-dimensional hypercube is constructed by “pairwise” connections between
the processors of two d-dimensional hypercubes.

• A hypercube may be shared by multiple users, i.e., disjoint subcubes may be
allocated to run different application programs.

• The processor ID is used to specify the receiver of the message and distinguish
different actions (in the form of code segments) for different processors.



• A non-blocking send and a blocking receive are message-passing primitives
normally provided by the hypercube operating system; messages that arrive at
the destination processor before the execution of the receive are placed in a
queue until needed.

• Circuit-switched networks are normally used by hypercubes. If a specified receiver
is not a neighbor of the sender, a header packet is sent to reserve all of the
channels required to build a path. After this “circuit” is established, the message
is transmitted, and an end-of-message indicator releases the channels. Overlapped
paths cause network congestion.

18.2.1 The subcube-doubling communication algorithm

The hypercube topology provides connectivity that supports a highly efficient subcube-
doubling communication algorithm. Below, the algorithm is explained in the context
of a fictitious application, where each message exchange is followed by local compu-
tation. (For a concrete example of parallel FFT computation on four processors, see
Figures 19.1, 19.2, 19.3, and 19.4 in Chapter 19.) Recall that the hypercube network
is constructed by connecting each pair of processors whose IDs differ in one single bit,
and it should be understood that the application program is executed concurrently by
each processor on a hypercube of dimension d.

Algorithm 18.1 Casting subcube-doubling communication in a fictitious application.

MyID := System ID of this processor

d := dimension of the hypercube used for this run

k := d− 1 Data exchange begins
while k ≥ 0 do e.g., See Figures 19.1, 19.2, 19.3, & 19.4.

Compose (my message) according to the

application algorithm

send (my message) to the processor with ID

different from MyID in bit bk
receive a message As an exchange for my message
Perform possible local computation e.g., One stage of FFT

according to the application algorithm butterfly computation
k := k − 1

end while
Perform remaining local computation e.g., Continue and complete FFT

according to the application algorithm computation on each
processor’s local data

Using a hypercube of dimension d = 3, the d communication steps in the basic
subcube-doubling algorithm are illustrated in Figure 18.2. To accomplish the d ex-
changes, each processor pairs with another processor whose ID is different in bit bk,
k = d − 1, d − 2, . . . , 0. For example, processor P0 in Figure 18.2 accomplishes the
d = 3 exchanges by communicating with processors P4, P2, and P1 sequentially. The
binary IDs of the latter three processors are 100, 010, and 001, respectively.



Figure 18.2 The d communication steps in the subcube-doubling algorithm (d = 3).

A benefit of using the subcube-doubling communication algorithm is that at each
stage of the algorithm, the 2d−1 pairs of processors exchange data concurrently on
2d−1 disjoint channels, so there is no traffic congestion. The communication time is no
different from that incurred by exchanging a message (of the same length) on a single
channel between two processors, and the distance each message travels is always one.
These communication advantages are fully exploited by the parallel FFT algorithms
developed for hypercubes.

18.2.2 Modeling the arithmetic and communication cost

The following rules are commonly observed in modeling a hypercube system:

1. All processors are assumed to be running at the same speed, and be operational
throughout the entire computation.

2. All processors execute the same program concurrently, and they coordinate their
asynchronous activities by sending and receiving messages to and from other
processors.

3. Each floating-point operation, namely multiply, divide, subtract, or add, is as-
sumed to take τ units of time.

4. A non-blocking send and a blocking receive are the only message-passing prim-
itives assumed.

5. The communication time is assumed to be a linear function of the message length
(in bytes) and the distance (in hops) defined by

tcomm(N,h) = α + βN + (h− 1)γ,

where α is the startup time, β is the time required to one byte across a single
communication channel, and γ is the per-hop delay.

6. All communication channels are assumed to be full-duplex, hence the bidirectional
data (exchange) rates are the same or close to the unidirectional data rates.



7. When all pairs of processors exchange L complex numbers by concurrently execut-
ing one step of the subcube-doubling algorithm, the bidirectional communication
time is modeled by unidirectional one-hop communication time of

tcomm(N, 1) = tcomm(16 × L, 1) = α + 16βL.

Note that N = 16 × L bytes because the real and imaginary parts of a complex
number are each an 8-byte double-precision floating-point number.

8. The time for data exchanges is not overlapped by computation. Thus, the total
elapsed time on a processor is the sum of the arithmetic time and the communi-
cation time.

9. If the message length remains a constant, which is the case in the parallel FFT
algorithms, then the total communication time incurred by the subcube-doubling
algorithm is modeled by

TFFT
comm = d× tcomm(16 × L, 1) = d× (α + 16βL).

10. The transmission rate λ per 8-byte (64-bit) floating-point number is derived from
the time taken to transmit the entire message:

λ ≈ (α + 16βL)/(2 × L).

Note that λ includes the contribution from the startup time.

A linear least-squares fit can be used to estimate the startup time α, the per-byte cost
β, and the per-hop penalty γ from experimental data of message-passing times versus
message length. The actual values used for the parameters τ , α, β, γ, and λ in the
model are hardware dependent, and they are appraised on a variety of systems in the
next section.

18.2.3 Hardware characteristics and implications on algorithm

design

The configurations of three hypercubes and the DELTA mesh, along with their hard-
ware characteristics, as reported by Dunigan [42, 44], are cited in Table 18.1. The
various benchmark tests which were performed to collect these data are described in
the notes and references section.

Note that while the floating-point arithmetic time τ decreases from 41.5 – 43 µsec
on the iPSC/1 to 0.1 µsec on the iPSC/860, the speed of communication hardware
improves at a much slower pace. The consequence is that the ratio of the 8-byte
transmission time λ to τ , which is the Comm./Comp. ratio in Table 1, becomes
very large and remains so to this date: λ/τ = 26, 59, 1000, 775 on iPSC/1, iPSC/2,
iPSC/860, and the DELTA, respectively.

Since the “Comm./Comp.” ratio has increased 40 fold within a decade, the impor-
tance of reducing the communication requirement in the parallel algorithms is crucial,
regardless of whether the communication time is negligible or not on a particular ma-
chine or on a particular generation of machines. Therefore, one should always make



Table 18.1 Hardware characteristics of three iPSC hypercubes and the DELTA mesh.

Machine Configurations

Machine DELTA Mesh iPSC/860 iPSC/2 iPSC/1

Node CPU i860 i860 80386/80387 80286/80287

Clock rate 40 Mhz 40 Mhz 16 Mhz 8 Mhz

Memory/node 16 MB 8 MB 4 MB 512 KB

Physical network 2D-Mesh Hypercube Hypercube Hypercube

Peak data rate 22 MB/s 2.8 MB/s 2.8 MB/s 1.25 MB/s

Node OS NX v3.3 NX v3.2 NX v2.2 v3.0

C compiler PGI Rel 3.0 GH v1.8.5 C-386 1.8.3.A Xenix 3.4

Arithmetic Times from Tests in C

Machine DELTA Mesh iPSC/860 iPSC/2 iPSC/1

INTEGER*4 + 0.1 µs 0.1 µs 0.6 µs 5.0 µs

INTEGER*4 ∗ 0.3 µs 0.3 µs 1.5 µs 36.5 µs

REAL*8 + 0.1 µs 0.1 µs 6.6 µs 41.5 µs

(Double precision +) (10 Mflops) (10 Mflops) (0.15 Mflops) (0.024 Mflops)

REAL*8 ∗ 0.1 µs 0.1 µs 7.0 µs 43.0 µs

(Double precision ∗) (10 Mflops) (10 Mflops) (0.14 Mflops) (0.023 Mflops)

Coefficients of Communication

Machine DELTA Mesh iPSC/860 iPSC/2 iPSC/1

Startup (α) 72 µs 136(75) µs 697(390) µs 862.2 µs

Byte transfer (β) 0.08 µs 0.4 µs 0.4 µs 1.8 µs

Hop penalty (γ) 0.05 µs 33(11) µs 30(10) µs [12] –

Figures of Merit

Machine DELTA Mesh iPSC/860 iPSC/2 iPSC/1

8192-byte transfer speed 11.9 MB/s 2.6 MB/s 2.3 MB/s 0.5 MB/s

REAL*8 ∗ + ∗ + ∗ 18 Mflops 18 Mflops 0.29 Mflops 0.04 Mflops

8-byte transfer time (λ) 62 µs 80 µs 390 µs 1120 µs

8-byte multiply time (τ) 0.08 µs 0.08 µs 6.6 µs 43.0 µs

Comm./Comp. ratio (λ/τ) 775 1000 59 26

Data, unless noted otherwise, are cited from Oak Ridge National Laboratory Technical Reports by

T. H. Dunigan [42, 44], with permission. Table is reproduced from E. Chu [25], The International

Journal of High Performance Computing Applications, 13(2):124–145, 1999, with permission.



an effort to reduce the number of messages, the length of each message, the distance
each message travels, and avoid or minimize traffic congestion when designing parallel
algorithms.

Note also from Table 18.1 that the message start-up time α remains very high
relative to the byte-transfer time β throughout generations of machines. (The α values
inside the brackets are for messages shorter than 100 bytes.) When the start-up time
is so large, sending a single long message can be much more economical than sending
multiple short messages. Therefore, pipelining a large number of short messages is not
a viable communicating strategy on these multiprocessors. (Note that when fine-grain
pipelined communication is used, the assumption is α ≈ 0, which was the case on some
special-purpose hypercubes.)

Another parameter which stands out in Table 1 is the integer add time, which is no
longer negligible compared to τ , the floating-point arithmetic time, on newer machines.
As reported in Table 1, an integer add takes 0.1 µsec on iPSC/860, which is the same
as τ = 0.1 µsec on iPSC/860. Since integer add is used to compute the addresses of
array elements during program execution, they could account for a significant part of
the actual execution time. One should keep this in mind in designing data structures
for implementing sequential or parallel algorithms—excessive indirect indexing should
be avoided.

18.3 Embedding a Ring by Reflected-Binary Gray-

Code

Topology embedding is simply mapping a subset of the hypercube communication
channels to a different topology. As illustrated in Figure 18.3 below, a ring consisting
of p = 2d processors can be formed by traversing a set of p = 2d channels selected from
the d

(
2d−1

)
channels in a hypercube network. Observe that the three drawings of the

embedded 8-processor ring show the same ring, although one figure may be easier to
visualize than other forms.

To program a communication algorithm on the embedded ring, each processor needs
to “know” the system IDs of processors in consecutive ring positions and store them in
a convenient way, such as in a linear array Ring, as depicted for p = 8 in Figure 18.4
below.

Note that the binary representations of any two processor IDs in Ring [�] and
Ring [� + 1], 0 ≤ � ≤ p − 2, differ in exactly one bit, as do the two IDs in Ring [0]
and Ring [p − 1]. Therefore, the task of embedding a ring in a hypercube amounts to
constructing an array Ring to contain the reflected-binary Gray-code, defined recur-
sively as follows.

If the k-bit Gray-code of length L = 2k is stored in the array

Ring[0 : L− 1] = {G0, G1, . . . , GL−1},

then the (k + 1)-bit Gray-code of length 2 × L is given by

Ring[0 : 2 × L− 1] = {0G0, 0G1, . . . , 0GL−1, 1GL−1 . . . , 1G1, 1G0}.

Note that the recurrence begins with k = 1 and L = 2. In Figure 18.5, the reflected-
binary Gray-code of length L = 8 is constructed step by step.



Figure 18.3 Traversing an embedded ring in hypercubes of dimension 0, 1, 2, and 3.

Figure 18.4 Storing the embedded 8-processor ring in array Ring [0:7].

Figure 18.5 Generating reflect-binary Gray-code in Ring [0:7].



If one views the Gray-codes as binary representations of numbers, then G� and 0G�
represent the same value, and the value of 1G� is obtained by adding L = 2k to G� if
the current length is L, beginning with L = 2. The following pseudo-code algorithm
constructs the reflected-binary Gray-code. Note that an auxiliary array PosInRing
records the ring position for each processor, and the identity PosInRing [Ring [�]] = �

holds.

Algorithm 18.2 Constructing a reflected-binary Gray-code.

MyID := System ID of this processor

d := dimension of the hypercube used for this run

Nproc := 2 ∗ ∗d length of Gray-code to be computed
Ring [0] := 0; Ring [1] := 1; L := 2 initialize Gray-code of length L = 2
PosInRing [0] := 0; PosInRing [1] := 1
while L < Nproc do reflect the Gray code d− 1 times

Last := 2 ∗ L− 1
for � := 0 to L− 1 reflect Gray code of length L

ID := Ring [�] + L

Ring [Last] := ID

PosInRing [ID] := Last

Last := Last − 1
end for
L := 2 ∗ L double length L after reflection

end while
MyRingPos := PosInRing [MyID]

18.4 A Further Twist—Performing Subcube-Doubling

Communications on a Ring Embedded in a Hy-

percube

Consider the simple application which used the subcube-doubling communication al-
gorithm as described in Section 18.2.1. How would that task be accomplished if only
the embedded ring is employed? In this case, the same program will work correctly if
every reference to P� is directed to Ring [�] at run time. The only effect is that messages
are now exchanged between processors whose positions in the embedded ring differ in
one single bit. The modified algorithm is given below.

The three subcube-doubling communication steps performed on an embedded 8-
processor ring are illustrated in Figure 18.6 below. Observe that the distance between
sender and receiver of each message becomes two in the first and the second step, and
the distance becomes one in the last step. This is the direct result of the following
theorem, which is proved in [23].

Theorem 18.1 If array Ring [0 : L − 1] = {G0, G1, . . . , GL−1} contains the reflected-
binary Gray-code of length L = 2d for d ≥ 2, then Ring [�] = G� and Ring [m] = Gm
differ in exactly two bits if � and m differ only in bit bk for 0 < k < d.



Algorithm 18.3 Imposing subcube-doubling communication on an embedded ring.

MyID := System ID of this processor

MyRingPos := PosInRing [MyID]
d := dimension of the hypercube used for this run

k := d− 1 Data exchange begins
while k ≥ 0 do

Compose (my message) according to the

application algorithm

send (my message) to the processor with its RingPos

different from MyRingPos in bit bk
receive a message As an exchange for my message
Perform possible local computation e.g., One stage of FFT

according to the application algorithm butterfly computation
k := k − 1

end while
Perform remaining local computation e.g., Continue and complete FFT

according to the application algorithm computation on each
processor’s local data

Figure 18.6 Subcube-doubling communications on an embedded ring.



18.5 Notes and References

The hardware characteristics presented in Table 18.1 are the results of the following
benchmark tests.

18.5.1 Arithmetic time benchmarks

The Caltech test suite [61] was selected to benchmark the integer and floating point
operations on DELTA, iPSC/860, iPSC/2 and iPSC/1 in [42, 44]. The times illustrate
differences in both CPU speed and compiler. The test program measures the time for
performing a binary arithmetic operation and an assignment in a loop. For example,
the following loops (expressed in C) were timed (on Intel iPSC and Caltech/JPL Mark
II hypercubes) in [61]:

Test 1. Loop overhead : for (i=0; i < NumTimes; ++i){ ;}

Test 2. Integer op = +, ∗ : for (i=0; i < NumTimes; ++i){j = k op l ;}

Test 3. Floating point op = +, ∗ : for (i=0; i < NumTimes; ++i){a = b op d ;}

Note that to derive the actual time per operation, the loop overhead measured in
Test 1 is subtracted from the time measured in Test 2 or Test 3. For integer parameters,
the C data types are short and long ; for real numbers, the C data types are float
and double. The corresponding Fortran data types are INTEGER*2, INTEGER*4,
REAL*4, REAL*8. Although Fortran types are used in Table 18.1 for clarity following
the presentation in [42, 44], all tests in [42, 44, 61] were run in C.

Note also that arithmetic performance, namely time-per-operation, improves if a
more complex expression is used in the test because intermediate results can be kept
in internal registers. Given below is the loop implementing a five-operation expression
which was also timed in [42, 44, 61]

Test 4. Five-operation ∗+∗+∗ : for (i=0; i < NumTimes; ++i){a=b∗c+b∗e+d∗c;}

Since the Mflops (Million floating-point operations per second) rate is inversely
proportional to the arithmetic time per operation, the resulting Mflops rate can be
significant higher from benchmarking a compound expression. For the DELTA and
iPSC/860, while 10 Mflops rate results from benchmarking Test 3, an 18 Mflops rate
results from benchmarking Test 4 [44].

18.5.2 Unidirectional times on circuit-switched networks

When applying the benchmark coefficients in Table 18.1 to model unidirectional com-
munication times, the following should be noted.

1. All of the communication data rates in Table 18.1 have been measured on idle
machines [43]. Therefore, additional latency should be accounted for if the com-
munication algorithm employed causes channel contention on a particular net-
work.



2. The DELTA, iPSC/860, and iPSC/2 all use circuit-switching to manage the
communication channels. For all three machines, the communication time (in
microseconds) for sending an N -byte message h hops away on an idle network is
modeled by

tcomm(N,h) = α + Nβ + (h− 1)γ ,(18.1)

where α, β, and γ represent the startup time, byte transfer rate, and hop
penalty as noted in Table 18.1. When the message is sent to a nearest neigh-
bor, tcomm(N, 1) = α + Nβ is commonly referred to as the (one hop) “message
passing” time. Note that for the iPSC/2 and iPSC/860, two values of α and
two values of γ are given, because such overhead is smaller for short messages of
length less than 100 bytes [12, 42].

18.5.3 Bidirectional times on full-duplex channels

Since the subcube-doubling communication incurs message exchanges between all pairs
of processors throughout, one needs to address how the measured bidirectional data
rates compare with the more widely reported unidirectional data rates. Data rates for
“message exchange” between two nearest neighbors on an iPSC/2 were examined by
Bomans and Roose in [12]. They show that the “full-duplex” nature of the communi-
cation channels can be effectively exploited when both nodes first (and concurrently)
send their information and then receive the incoming message. The three exchange
methods tested in [12] are described in Table 18.2. Their results show that for mes-

Table 18.2 Exchange methods tested by Bomans et al. in [12].

Exchange Method Node 0 Node 1
(Concurrent) blocking csend/crecv csend/crecv
(Concurrent) non-blocking irecv/csend/msgwait irecv/csend/msgwait
(Sequential) send/reply csend/crecv crecv/csend

sages shorter than 100 bytes, the (concurrent) blocking method is the fastest; however,
for messages of size N with 100 ≤ N ≤ 384 bytes, the time for the blocking communi-
cation increases faster than the time for the non-blocking method; for longer messages,
both concurrent methods show an equal increase in time per byte. Therefore, after
the 384-byte threshold is passed, the proportional benefit of the non-blocking method
decreases as messages get longer, and it is about 11% for a message of 1 Mbyte [12].

Bomans and Roose further compare the fastest concurrent method (either the
blocking or the non-blocking one depending on the message size) with the sequen-
tial send/reply method on the iPSC/2. Note that when two messages of the same
length are exchanged, the sequential send/reply takes as long as a round-trip echo test:
namely a test node sends a message to an echo node; the echo node receives the message
and sends it back to the test node. The results presented in [12] show that for mes-
sages with length ranging from 0 to 1024 bytes, the concurrent exchange time is 62%
to 59% of the sequential send/reply time; and for messages with length of 16 Kbytes
to 1 Mbytes, the concurrent exchange time is reduced to 52% to 50% of the send/reply
time (or the more familiar round-trip echo time.) Since the unidirectional data rates



for “message passing” from Node 0 to Node 1 is measured by 50% of the round-trip
echo time, these results show that for messages longer than 16 Kbytes, there is virtu-
ally no penalty in conducting a concurrent bidirectional message exchange compared
to passing a unidirectional message from one node to a nearest neighbor.



Chapter 19

Parallel FFTs without

Inter-Processor Permutations

This chapter treats a simple class of parallel FFTs, namely those algorithms which
involve no inter-processor data permutations. That is, no part of a processor’s initial
complement of data migrates to another processor.

For purposes of this chapter, it is assumed that the multiprocessor available has
P = 2d processors, and each processor has its own local memory. That is, the machine
in question is a distributed-memory multiprocessor, where each processor is connected
to the others via a communication network with a prescribed topology. A common
topology is a hypercube, but others such as a regular grid or a ring are also commonly
used.

19.1 A Useful Equivalent Notation: | PID |Local M

As discussed in Chapter 17, a key step in parallelizing the FFT on such multiprocessor
computers is the mapping of the elements of x to the processors. Assuming that
the x elements are stored in the global array a in natural order, i.e., a[m] = xm,
m = in−1in−2 · · · i0, the array address based notation

in−1 · · · ik+1|ik · · · ik−d+1|ik−d · · · i0

has been used to denote that bits ik · · · ik−d+1 are chosen to specify the data-to-
processor allocation.

In general, since any d bits can be used to form the processor ID number, it is
easier to recognize the generic communication pattern if one concatenates the bits
representing the ID into one group denoted by “PID,” and refers to the remaining
n− d bits, which are concatenated to form the local array address, as “Local M .”

For the class of cyclic block mappings (CBMs) introduced in Chapter 17, one can
use the following equivalent notation, where the leading d bits are always used to
identify the processor ID number.

|PID |Local M = |ik · · · ik−d+1|
︷ ︸︸ ︷
in−1 · · · ik+2ik+1

︷ ︸︸ ︷
ik−d · · · i1i0 .



In either notation, the d consecutive bits are marked by the symbol “ | ” at both ends.
The two notations are equivalent and both are used in the text.

To fully demonstrate the usage of the “ |PID|Local M” notation, Tables 19.1, 19.2,
19.3, and 19.4 below show the local data of each processor after a naturally ordered
input series of N = 32 elements is divided among P = 4 processors using all possible
cyclic block mappings.

For each mapping, the content of each local array element A[M ] is identified by
a[m] in the adjacent column. Observe that m = i4i3i2i1i0 can be easily reconstructed
for each A[M ] in each processor, because the given |PID|Local M specifies exactly
which bits can be recovered from the processor ID and which bits can be recovered
from the local M .

Table 1 9 . 1  Identifying Po,~‘s different local data sets for all cyclic block mappings. 
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Table 1 9 . 3  I d e n t i f y i n g  & o ’ s  d i f f e r e n t  l o c a l  d a t a  s e t s  f o r  a l l  c y c l i c  b l o c k  m a p p i n g s .  

B l o c k s i z e =  

? I D i LM  

[ i * i & i

~ i 4 i ~ ~ O O O  

~ i 4 i ~

l i d i 3 / 0

l i , i ~ j O l l  

I i , & \ 1

[ i & [ l O l  

[ i 4 i s [ l l O  

I i & ~ 1 1 1  

L o c ad a t a  o f  p r o c e s s o r  P ~ , J  e x p r e s s e d  i n  t e r m s  o f  

g l o ba r r a y  e l e m e n t  o [ m ] ,  m  =  & i & i 1  i o ,  

f o r  a I I  p o sc y c I i c  b l o c k  m a p p i n g s  ( C B M s )  

B l o c k s i z e =  

? I D l L o c a l  M  

i i 3 i 2 l i 4 i l i 0  

I i &  1 0 0 0  

[ i s i 2  1 0 0 1  

l i s i 2 [ 0 1 0  

I i s i ~ j O l l  

j i 3 i 2 / 1 0 0  

l i s i 2 [ 1 0 1  

l i s i 2 [ 1 1 0  

I i & i l l 1  

B l o c k s i z e  = 2  

F ’ I D l L o c a l  M  

l i 2 i l l i 4 i 3 i o  

i i 2 i l  I O 0 0  

l i z1 0 0 1  

l & i *  1 0 1 0  

I i &  I O 1 1  

[ G i l  1 1 0 0  

~ i * i ~ j l O l  

l i 2 i l [ l l O  

l i 2 i l [ l l l  

B l o c k s i z e =  1  

P I D ] L o c a I  M  

l i l i 0 i i 4 i 3 i 2  

I i ,  i Q ] O O O  

[ i l i 0 / 0 0 1  

I i *  i 0 [ 0 1 0  

l i * i 0 [ 0 1 1  

l i * i 0 1 1 0 0  

l i l i 0 j l O l  

[ i l i 0 / 1 1 0  

[ i l i 0 [ 1 1 1  

Table 19.2 Identifying F’ol’s different local data sets for all cyclic block mappings. 

Local data of processor Pal expressed in terms of 

global array element a[m], m = idisizilio, 

for all possible cyclic block mappings (CBMs) 

Blocksize= Pi4i3 Blocksize= PiSiz Blocksize ~2 PiziI Blocksize=l Pilio 

ND[Local M = Pm [PID[Local M = POI iPID[Local M = PO1 iPID[Local M = PO1 

li,i$&io aLm1 li&li~i~iO a[m] li~i~~i~i~i~ aimI li~i+isi~ aLm1 

Ii&l000 431 Ii& 1000 a141 Ii& 1000 a[21 Ii, io~OO0 a[11 
Ii~i~lOOl aP1 Ii~i~lOOl a[51 [i& 1001 a[31 ~i~iO~OO1 a[51 

~i&~OlO a[101 p&lo10 aPI lizi1 1010 a[101 ~iIiO~Ol0 aP1 

Ii&l011 aP1 Ii&l011 a[71 Ii~iIlOll a[111 li~iO[Oll a1131 
Ii&$00 aP21 Ii&p00 a1201 Ii&p00 a1131 [ili0llOO a[171 

p&p01 aP31 Ii&p01 a1211 Ii&p01 aP1 lili0llOl a1211 
l&i&l0 a[141 Ii&p10 a[221 Ii&p10 a1261 ~i~ioplo a[251 

li~i~llll a1151 li~i~llll a[231 Ii&p11 a1271 IiIiopll a1291 



19.1.1 Representing data mappings for different orderings

When the input x elements are stored in a in bit-reversed order, i.e., a[r] = xm, where
m = in−1in−2 · · · i0, and r = i0 · · · in−2in−1, a cyclic block mapping should be denoted
by

i0 · · · ik−d|ik−d+1 · · · ik|ik+1 · · · in−1 ,

or the equivalent

|PID |Local M = |ik−d+1 · · · ik|
︷ ︸︸ ︷
i0 · · · ik−d

︷ ︸︸ ︷
ik+1 · · · in−1

instead. For example, suppose N = 32 and the mapping is denoted by |i0i1 |i2i3i4.
To locate xm = x26, one writes down m = 2610 = 110102 = i4i3i2i1i0, from which one
knows that x26 is stored in a[r], r = i0i1i2i3i4 = 010112 = 1110, and that a[11] = x26

is located in processor Pi0i1 = P01.

It is useful to keep in mind that the bit sequence in−1in−2 · · · i0 is always the
binary representation of the subscript m of data element xm or its derivative
x

(k)
m , and the order in which these bits appear in the array address r, when

a[r] = xm or a[r] = x
(k)
m , refers to permutations that xm or its derivatives

undergo in a initially or during the computation.

This convention is strictly adhered to throughout this text.
To make this absolutely explicit, the mappings demonstrated in Tables 19.1, 19.2,

19.3, 19.4 are repeated for bit-reversed input in Tables 19.5, 19.6, 19.7, and 19.8.
Note that the actual distribution of array elements appears unaltered from that in

Table 10.4 Identifying PII’s different local data sets for all cyclic block mappings. 

Local data of processor Z’I~ expressed in terms of 

global array element a[m], m = id iziz il io , 

for all possible cyclic block mappings (CBMs) 

Block&e=8 

PIDiLocal M 

[iii3ii+* i0 
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iidi3[001 

li*&lOlO 

[iai31011 
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Blocksize= 
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li2il[lOO 
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li2il[llO 

Ii&[111 

Blocksize=1

|PID| Local M



the corresponding table for naturally ordered input, because each cyclic block map
determines how to distribute a[r] based on the value of the address r independent of
the content of a[r].

The reason one must have some way to indicate that a[r] = xm for bit-reversed
input is that the FFT arithmetic operations are performed on the “content” of a[r],
and its content matters in specifying how an array element is used and updated in both
sequential and parallel FFT algorithms. Recall that a different sequential algorithm
must be used for differently ordered input.

Observe that both r = i0i1i2i3i4 and m = i4i3i2i1i0 can be easily reconstructed
for each A[M ] in each processor, because, as noted before, the given |PID|Local M
specifies exactly which bits can be recovered from the processor ID and which bits can
be recovered from the local M .

Table lg.5 Identifying Pm’s (bit-reversed) local data sets for all cyclic block mappings. 

Blo&size=S 

PIDiLocal M 

~i&~i&i~ 

ii& 1000 

l&i1 1001 

li0il[OlO 

Ii&l011 

Ii&l100 

]i&llOl 

~i&~llO 

l&&j111 

Local data of processor POO expressed in terms of 

global array element a[r] = z~, I = i&i&id, and m = i~i~i~i~io 

for all possible cyclic block mappings (CBMs) 

Block&e=4 P. . ~1~2 Blocksize =2 

?IDlLocal M = PO0 PID[Local M 
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Table 19.7 Identifying &o’s (bit-reversed) local data sets for all cyclic block mappings. 

Lo& data of processor I’10 expressed in terms of 

global array element a[r] = z~, I = i&izisid, and m = idisi&is 

for all possible cyclic block mappings (CBMs) 
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Table 10.6 Identifying Pal’s (bit-reversed) local data sets for all cyclic block mappings 

L-ocal data of processor J’s, expressed in terms of 

global m~ay element o[r] = z~, I = isi~i&id, and m = iaisi+lio 

for all possible cyclic block mappings (CBMs) 
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19.2 Parallelizing In-Place FFTs Without Inter-

Processor Permutations

Computing the butterflies involving the address bits used to define the processor ID
number will involve exchange of data between processors whose ID numbers differ in
exactly one bit. Of course these processors may or may not be physically adjacent,
depending on the network topology.

For example, if the p processors form a hypercube network, data communication
between such a pair is always between neighboring processors. If the p processors form
a linear array or a two-dimensional grid, such a pair of processors can be physically
many hops apart, and the simultaneous data exchange between all pairs can cause
traffic congestion in the network.

In general, in the parallel context, if permutations are allowed, it may turn out
that part of a processor’s complement of data may migrate to another processor. This
chapter deals with the case where no permutations are performed.

19.2.1 Parallel DIFNR and DITNR algorithms

Consider first the sequential FFTs for naturally ordered input data. To parallelize the
DIFNR algorithm from Chapter 4, one may use any one of the cyclic block mappings
from Chapter 17. For N = 32, the computation using the block (or consecutive data)
mapping is depicted below.

Table 19.8 Identifying PII’s (bit-reversed) local data sets for all cyclic block mappings. 

Local data of processor PII expressed in terms of 

global anay element o[r] = z,,,, r = i&iziaid, and m = idisi&io 

for all possible cyclic block mappings (CBMz) 
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|i4i3|i2i1i0 |
�
i4
�
i3|i2i1i0 |τ4

�
i3
�
|i2i1i0 |τ4τ3|

�
i2i1i0 |τ4τ3|τ2

�
i1i0 |τ4τ3|τ2τ1

�
i0

(Initial Map) ⇐==⇒ ⇐==⇒

The shorthand notation previously used for sequential FFT is augmented above by two
additional symbols. The double-headed arrow ⇐==⇒ indicates that NP data elements
must be exchanged between processors in advance of the butterfly computation. The
symbol ik

�
identifies two things:

• First, it indicates that the incoming data from another processor are the elements
whose addresses differ from a processor’s own data in bit ik.

• Second, it indicates that all pairs of processors whose binary ID number differ in
bit ik send each other a copy of their own data.

The required data communications before the first stage of butterfly computation are
explicitly depicted in Figures 19.1 and 19.2; the required data communications before
the second stage of butterfly computation are depicted in Figures 19.3 and 19.4.

Of course, the other three possible cyclic block mappings may be used, and the
corresponding parallel algorithms can be similarly expressed in the shorthand notations
below.

i4|i3i2|i1i0
�
i4|i3i2|i1i0 τ4|

�
i3
�
i2|i1i0 τ4|τ3

�
i2
�
|i1i0 τ4|τ3τ2|

�
i1i0 τ4|τ3τ2|τ1

�
i0

(Initial Map) ⇐==⇒ ⇐==⇒

i4i3|i2i1|i0
�
i4i3|i2i1|i0 τ4

�
i3|i2i1|i0 τ4τ3|

�
i2
�
i1|i0 τ4τ3|τ2

�
i1
�
|i0 τ4τ3|τ2τ1|

�
i0

(Initial Map) ⇐==⇒ ⇐==⇒

i4i3i2|i1i0|
�
i4i3i2|i1i0| τ4

�
i3i2|i1i0| τ4τ3

�
i2|i1i0| τ4τ3τ2|

�
i1
�
i0| τ4τ3τ2|τ1

�
i0
�
|

(Initial Map) ⇐==⇒ ⇐==⇒

Since the input sequence is in natural order, after in-place butterfly computation,
the output is known to be in bit-reversed order. Therefore, the processor initially
allocated xi4i3i2i1i0 will finally have Xi0i1i2i3i4 if inter-processor permutation is not
allowed. In fact, Xi0i1i2i3i4 is the last derivative which overwrites xi4i3i2i1i0 in the same
location.

Since the DITNR algorithm differs from the DIFNR only in the application of twiddle
factors, the shorthand notations given above also represent the DITNR algorithm.



Figure 19.1 Data sent and received by processors P0 and P2.



Figure 19.2 Data sent and received by processors P1 and P3.



Figure 19.3 Data sent and received by processors P0 and P1.



Figure 19.4 Data sent and received by processors P2 and P3.



19.2.2 Interpreting the data mapping for bit-reversed output

As a concrete example, suppose the initial mapping is “|i4i3|i2i1i0.” Then processor
P0 initially contains a[0] = x0, a[1] = x1, a[2] = x2, · · · , a[7] = x7 in their natural
order as depicted in Figure 19.1. When the parallel FFT ends, processor P0 contains
a[0] = X0, a[1] = X16, a[2] = X8, a[3] = X24, a[4] = X4, a[5] = X20, a[6] = X12, a[7] =
X28, which are the first eight elements in the output array in Figure 4.4. In this case,
x and X are said to be comparably mapped to the processors [64, page 160].

Note that |i4i3| is a subsequence from the subscript of xm when m = i4i3i2i1i0, but
|i4i3| is obviously not a subsequence of the subscript of Xr when r = i0i1i2i3i4. Thus
when the data mapping is a CBM of naturally ordered input x, it is not a CBM with
respect to the subscript of the bit-reversed output data element Xr.

19.2.3 Parallel DIFRN and DITRN algorithms

The remaining two in-place sequential FFT variants deal with bit-reversed input data,
and they are the DIFRN algorithm from Chapter 5 and the DITRN algorithm from
Chapter 8. For the same example of length N = 32, the parallel algorithms corre-
sponding to the four possible cyclic block mappings are represented below.

|i0i1|i2i3i4 |i0i1|i2i3
�
i4 |i0i1|i2

�
i3τ4 |i0i1|

�
i2τ3τ4 |i0

�
i1
�
|τ2τ3τ4 |

�
i0
�
τ1|τ2τ3τ4

(Initial Map) ⇐==⇒ ⇐==⇒
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�
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�
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�
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�
i1
�
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�
i0|τ1τ2|τ3τ4

(Initial Map) ⇐==⇒ ⇐==⇒

i0i1|i2i3|i4 i0i1|i2i3|
�
i4 i0i1|i2

�
i3
�
|τ4 i0i1|

�
i2
�
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�
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�
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(Initial Map) ⇐==⇒ ⇐==⇒

i0i1i2|i3i4| i0i1i2|i3
�
i4
�
| i0i1i2|

�
i3
�
τ4| i0i1

�
i2|τ3τ4| i0

�
i1τ2|τ3τ4|

�
i0τ1τ2|τ3τ4|

(Initial Map) ⇐==⇒ ⇐==⇒

19.2.4 Interpreting the data mapping for bit-reversed input

Observe that the mapping | i0i1 | i2i3i4 maps xi4i3i2i1i0 to processor Pi0i1 . That is,
processor P0 will be allocated a[0] = x0, a[1] = x16, a[2] = x8, a[3] = x24, a[4] = x4,
a[5] = x20, a[6] = x12, a[7] = x28.

Thus, while the initial mapping is a cyclic block mapping with respect to the array
address r = i0i1i2i3i4, it is obviously not a CBM mapping with respect to the subscript
of the bit-reversed input data element xm.

However, since a[r] = Xr on output and r = i0i1i2i3i4, the mapping will be a CBM
mapping with respect to the subscript of naturally ordered output data element Xr.



19.3 Analysis of Communication Cost

As noted above, butterfly computations will cause communication between processors
if the two input elements are stored in different processors. Since both input elements
are needed to update each of them, the two processors involved must exchange the N

P

data elements for each other to update their local data.
The butterflies in any one of the parallel FFTs introduced in the previous section

require data to be exchanged in exactly d = log2 P = 2 stages, regardless of the
blocksize used in the mapping. Algorithms of this type are described in [23, 46, 59].
This is also version 1 of the distributed-memory FFTs in [64, pages 156–162].

19.4 Uneven Distribution of Arithmetic Workload

A possible consequence of this class of schemes is that one half of the processors update
their local data according to a formula not involving the twiddle factor. For example,
in the parallel DIFNR algorithm, one half of the processors each update N

P elements
according to

y� = (x� + x�+N/2) ,

while the other half of the processors update their local data according to a formula
involving the multiplication of a pre-computed twiddle factor, i.e., they each update NP
elements according to

z� = (x� − x�+N/2)ω�N .

Thus, the arithmetic workload is not evenly divided among all processors unless each
processor computes both y� and z�. This problem is addressed in the next chapter.



Chapter 20

Parallel FFTs with

Inter-Processor Permutations

This chapter treats the class of parallel FFTs which employ inter-processor data per-
mutations. That is, part of a processor’s initial complement of data may migrate to
another processor to accomplish one or all of the following goals:

• To balance arithmetic workload among the processors.

• To reduce communication cost.

• To have the output data elements arranged in a desired ordering.

This chapter contains a description of a collection of algorithms similar to those
in the previous chapter which evenly distribute all butterfly computations among the
processors, and also reduce the message lengths from N

P elements to 1
2
N
P in each of

the log2 P + 1 concurrent message exchanges. The key to achieving this involves data
exchanges among processors to effect permutations as well as simply to convey data
for purposes of computing butterflies.

20.1 Improved Parallel DIFNR and DITNR Algorithms

It was shown in Chapter 19 that when no inter-processor permutation was allowed in
the parallel DIFNR FFT, the computation of each butterfly was unevenly split between
two processors. To avoid this difficulty, an alternative which allows each processor
to replace one half of its own data with the incoming data is described below. The
discussion that follows will focus on the DIFNR FFT; as will be apparent by the end
of the section, the substance of the discussion is the same for the DITNR FFT.

20.1.1 The idea and a modified shorthand notation

The idea can be explained using a familiar example: suppose that N = 32, and a
consecutive data map denoted by “|i4i3 |i2i1i0” is used to distribute data among the
four processors. Figures 20.1 and 20.2 show how the data are permuted within each
pair of processors in advance of the first stage of butterfly computation, and how each



processor can then compute exactly the same number of “whole” butterflies—which,
of course, implies equal division of arithmetic work.

A shorthand notation must now reflect both the permutation and the computation
accomplished in Figures 20.1 and 20.2. A notation which serves these purposes is
obtained by modifying the notation for the corresponding parallel FFT (without data
permutation between processors) from Chapter 19.

The modified notation begins with the initial map and the first stage of butterfly
computation represented by

|i4i3|i2i1i0 |i2
�
i3|

�
i4
�
i1i0

(Initial Map) ←−−→

The symbol ←−−→ denotes one concurrent message exchange of 1
2
N
P data elements

within all pairs of processors, which occurs in the butterfly stages involving bits which
form the processor ID number.

Observe that after data are distributed to individual processors according to the
initial mapping | i4i3 | i2i1i0, the element xi4i3i2i1i0 in a[i4i3i2i1i0] can be found in
A[i2i1i0] in processor Pi4i3 . For example, a[19] = x19 is shown to be initially in A[3] in
P2 in Figure 20.1, a[14] = x14 is shown to be initially in A[6] in P1 in Figure 20.2, and
so on.

When bit i4 in the PID and bit i2 in the local M switch their positions in the
shorthand notation, the mapping is changed to “|i2i3 |i4i1i0”, which means that the
data in a[i4i3i2i1i0] can now be found in A[i4i1i0] in Pi2i3 . For example, a[19] = x19

is relocated to A[7] in P0 after the inter-processor permutation shown in Figure 20.1,
a[14] = x14 is relocated to A[2] in P3 after the inter-processor permutation shown in
Figure 20.2, and so on.

To identify the one half of the data each processor must send out, the symbol �
is used to label two different bits: the bit ik

�
, which has just been permuted from PID

into Local M , and the bit i�
�

, which has just been permuted from Local M to the PID.

In the example above, i4
�

and i2
�

have switched their respective positions in the PID

and the Local M .
Because ik was in PID before the switch, ik = 1 in one processor, and ik = 0 in the

other processor. On the other hand, because i� was in Local M before the switch, i� = 0
for half of the data, and i� = 1 for another half of the data. Consequently, the value
of ik, the PID bit, is equal to i�, the local M bit, for half of the data elements in each
processor, and the notation which represents the switch of these two bits identifies both
the PID of the other processor as well as the data to be sent out or received. To depict
exactly what happens, the data exchange between two processors and the butterfly
computation represented by

|i2
�
i3|

�
i4
�
i2i1i0

is shown in its entirety in Figures 20.1 and 20.2.



Figure 20.1 DIFNR butterfly computation (1st stage) with data migration between
P0 and P2.

From E. Chu and A. George [28], Linear Algebra and its Applications, 284:95–124, 1998. With

permission.



Figure 20.2 DIFNR butterfly computation (1st stage) with data migration between
P1 and P3.



20.1.2 The complete algorithm and output interpretation

Using the shorthand notation developed in the previous section, the complete parallel
algorithm corresponding to DIFNR FFT is represented below for the N = 32 example.

|i4i3|i2i1i0 |i2
�
i3|

�
i4
�
i1i0 |i2τ4

�
|
�
i3
�
i1i0 |τ3

�
τ4|

�
i2
�
i1i0 |τ3τ4|τ2

�
i1i0 |τ3τ4|τ2τ1

�
i0

(Initial Map) ←−−→ ←−−→ ←−−→

To provide complete information for this example, the second stage of butterfly
computations with inter-processor permutation is depicted in Figures 20.3 and 20.4; the
third stage of butterfly computations with inter-processor permutation, together with
the remaining two stages of local butterfly computations, are depicted in Figures 20.5
and 20.6.

To determine the data mapping for the output elements, observe the following.

• The in-place butterfly computation in the DIFNR FFT algorithm ensures that

a[i4i3i2i1i0] = x
(5)
i4i3i2i1i0

= Xi0i1i2i3i4 .

• The final mapping |τ3τ4 |τ2τ1τ0 indicates that the final content in a[i4i3i2i1i0]
is now located in A[i2i1i0] in processor Pi3i4 (instead of the initially assigned
processor Pi4i3).

Accordingly, the output data element Xi0i1i2i3i4 , which overwrites the data in a[i4i3i2i1i0],
is finally contained in A[i2i1i0] in Pi3i4 .



Figure 20.3 DIFNR butterfly computation (2nd stage) with data migration between
P0 and P1.



Figure 20.4 DIFNR butterfly computation (2nd stage) with data migration between
P2 and P3.



Figure 20.5 DIFNR butterfly computation (3rd stage) with data migration between
P0 and P2.



Figure 20.6 DIFNR butterfly computation (3rd stage) with data migration between
P1 and P3.



20.1.3 The use of other initial mappings

The parallel algorithms using other initial mappings may be completely specified using
the same notations. Given below are the three parallel DIF FFT algorithms corre-
sponding to the three other cyclic block mappings.

|i3i2|i4i1i0 |i3i2|
�
i4i1i0 |τ4

�
i2|

�
i3
�
i1i0 |τ4τ3

�
|
�
i2
�
i1i0 |τ4τ3|τ2

�
i1i0 |τ4τ3|τ2τ1

�
i0 |τ2

�
τ3|τ4

�
τ1τ0

Initial ←−−→ ←−−→ ←−−→
|PID|Local M (Optional)

|i2i1|i4i3i0 |i2i1|
�
i4i3i0 |i2i1|τ4

�
i3i0 |τ4

�
i1|

�
i2
�
τ3i0 |τ4τ2

�
|
�
i1
�
τ3i0 |τ4τ2|τ1τ3

�
i0 |τ1

�
τ2|τ4

�
τ3τ0

Initial ←−−→ ←−−→ ←−−→
|PID|Local M (Optional)

|i1i0|i4i3i2 |i1i0|
�
i4i3i2 |i1i0|τ4

�
i3i2 |i1i0|τ4τ3

�
i2 |τ4

�
i0|

�
i1
�
τ3τ2 |τ4τ1

�
|
�
i0
�
τ3τ2 |τ0

�
τ1|τ4

�
τ3τ2

Initial ←−−→ ←−−→ ←−−→
|PID|Local M (Optional)

Observe that the last permutation is optional because the actual mapping of the
output elements can be determined given any mapping, although one mapping may be
more convenient than the other if the output data elements are used to continue with
a subsequent phase of computation.

It is worth noting that in the examples above, if the optional permutation step
is performed, then the array elements which were mapped to one processor will stay
together (at the same local address) in a different processor.

Further discussion regarding the optional permutation step and the final mapping
is deferred to Section 20.3.

As noted at the beginning of this section, the sequential DITNR FFT differs from
the DIFNR FFT only in the application of twiddle factors. Therefore, the specifications
of the various DITNR versions of the parallel algorithm remain the same as those of
the DIFNR versions given above.

20.2 Improved Parallel DIFRN and DITRN Algorithms

With the explicit understanding that a[i0i1i2i3i4] = xi4i3i2i1i0 when input data ele-
ments are in bit-reversed order, the parallel FFT (with inter-processor permutation)
corresponding to the DIFRN FFT or DITRN FFT can be specified for the four possible
CBM mappings as given below. Note that the final mapping is always specified for
a[i0i1i2i3i4], whose initial content of xi4i3i2i1i0 is overwritten by the output element
Xi0i1i2i3i4 after the five stages of in-place butterfly computation.

|i0i1|i2i3i4 |i0i1|i2i3
�
i4 |i0i1|i2

�
i3τ4 |i0i1|

�
i2τ3τ4 |i0τ2

�
|
�
i1
�
τ3τ4 |τ1

�
τ2|

�
i0
�
τ3τ4 |τ1τ0

�
|τ2
�
τ3τ4

Initial ←−−→ ←−−→ ←−−→
|PID|Local M (Optional)



|i1i2|i0i3i4 |i1i2|i0i3
�
i4 |i1i2|i0

�
i3τ4 |i1τ3

�
|i0

�
i2
�
τ4 |τ2

�
τ3|i0

�
i1
�
τ4 |τ2τ3|

�
i0τ1τ4 |τ2τ1

�
|τ0τ3

�
τ4

Initial ←−−→ ←−−→ ←−−→
|PID|Local M (Optional)

|i2i3|i0i1i4 |i2i3|i0i1
�
i4 |i2τ4

�
|i0i1

�
i3
�
|τ3
�
τ4|i0i1

�
i2
�
|τ3τ4|i0

�
i1τ2 |τ3τ4|

�
i0τ1τ2 |τ3τ2

�
|τ0τ1τ4

�
Initial ←−−→ ←−−→ ←−−→

|PID|Local M (Optional)

|i3i4|i0i1i2 |i3i0
�
|
�
i4
�
i1i2 |τ4

�
i0|

�
i3
�
i1i2 |τ4i0|τ3i1

�
i2 |τ4i0|τ3

�
i1τ2 |τ4τ3

�
|
�
i0
�
τ1τ2

Initial ←−−→ ←−−→ ←−−→
|PID|Local M

As noted earlier, in addition to evenly distributing all butterfly computations among
the processors, the message length is reduced from N

P elements to 1
2
N
P in each of the

log2 P + 1 concurrent message exchanges.

20.3 Further Technical Details and a Generalization

Note that in most examples given in this chapter, the PID bit in question is always
exchanged with the leftmost bit in the Local M , which is often referred to as the
“pivot” [95, 104]. In these cases, as shown in Figures 20.1, 20.2, 20.3, 20.4, 20.5, and
20.6, the data migrated between processors are consecutively stored in either the top
half or the bottom half of each processor’s local array A.

However, in one example in Section 20.2, the PID bit in question is always exchanged
with the second bit from the right in the Local M ; in another example in Section 20.2,
the PID bit is always exchanged with the rightmost bit in the Local M . Thus, the
pivot could be arbitrarily chosen, if one so desires, from the bits of the Local M .

Since the ID number is formed by consecutive bits when a cyclic block mapping is
used, whenever a PID bit is permuted into the local pivot position, it will be exchanged
with the next PID bit and occupy the latter’s position back in the PID field. After d

exchanges, one has the following scenario: the rightmost PID bit is in the Local M , and
the pivot iρ or τρ from Local M is still in the leftmost position in PID. The example in
Section 20.1.2 demonstrates the case involving the iρ bit from Local M , and the three
examples in Section 20.1.3 demonstrate the case involving the τρ bit from Local M .

Therefore, one more permutation involving these two bits will get iρ or τρ back into
its original position in the Local M , and the rightmost PID bit would be cyclic-shifted
into the leftmost position in the PID as shown below.

|τk−d+1
�

τk · · · τk−d+2|
︷ ︸︸ ︷

τn−1 · · · τk+2τk+1

︷ ︸︸ ︷

ik−d · · · iρ+1iρ
�
iρ−1 · · · i1i0

or

|τk−d+1
�

τk · · · τk−d+2|
︷ ︸︸ ︷

τn−1 · · · τρ+1τρ
�
τρ−1 · · · τk+2τk+1

︷ ︸︸ ︷

ik−d · · · i1i0



Observe that as long as the PID is not formed by the leftmost d bits, there would
be at least one τρ bit available when the butterfly computation reaches any PID bit.
One thus has the option of using a τρ bit (instead of iρ bit) as the pivot. In this case,
the τρ bit may stay as the leftmost bit in the PID if the local data is not required to
remain together in one processor, and one concurrent message exchange can be saved
(by not performing the so-called optional permutation for examples in Section 20.1.3),
with the final mapping determined by

|τρτk · · · τk−d+2|
︷ ︸︸ ︷
τn−1 · · · τρ+1τk−d+1τρ−1 · · · τk+2τk+1

︷ ︸︸ ︷
ik−d · · · i1i0 .

The PID in such a final mapping is no longer formed by consecutive bits. For N = 25,
such a final “|PID|Local M” is a permutation of the n = 5 bits, which still uniquely
determines the data mapping of a[i4i3i2i1i0] = Xi0i1i2i3i4 .

In certain contexts, it is important to have the output elements X mapped to the
processors in a specific way to facilitate subsequent computations. For example, the
final distribution of X (with respect to its bit-reversed subscript) is required to be
identical to the initial one for x (with respect to its naturally-ordered subscript) in the
solution. This has motivated the development of a number of algorithms which are
reviewed in the next chapter.



Chapter 21

A Potpourri of Variations on

Parallel FFTs

In this chapter, readers are introduced to a number of parallel FFTs, each of which uses
a special “wrinkle” to achieve some objective. To describe these in a single framework,
the following conventions and interpretations from previous chapters are adopted, and
are exploited in a consistent manner. They are also employed in developing some
additional variations that appear to be new.

� 1. (Cyclic Block Maps and Ordered Input) An initial mapping denoted by

|PID |Local M = |ik · · · ik−d+1|
︷ ︸︸ ︷
in−1 · · · ik+2ik+1

︷ ︸︸ ︷
ik−d · · · i1i0

indicates a cyclic block map (CBM) of array elements a[m], with the understand-
ing that a[m] = xm, and m = in−1 · · · i1i0.
Since a[m] = xm, the mapping may be conveniently interpreted either with re-
spect to the array address m or with respect to the subscript of naturally ordered
xm.

� 2. (Cyclic Block Maps and Ordered Output) An initial mapping denoted by

|PID |Local M = |ik−d+1 · · · ik|
︷ ︸︸ ︷
i0 · · · ik−d

︷ ︸︸ ︷
ik+1 · · · in−1

indicates a CBM map of array elements a[r], with the understanding that a[r] =
xm, r = i0i1 · · · in−1, and m = in−1 · · · i1i0.
If the final mapping remains the same, then because Xr overwrites xm in a[r]
using a RN algorithm, the mapping may be determined either with respect to the
array address r or with respect to the subscript of the naturally ordered output
element Xr.

� 3. (Equivalent Cyclic Block Maps) If inter-processor permutations (or local re-
arrangements of data) are allowed in carrying out the parallel FFT, the final
“|PID|Local M” may not be a CBM map of array elements a[�], and furthermore,
it is possible that a[�] �= x�, and a[�] �= X�.



For example, the method in Chapter 20 yielded a final mapping of

|PID |Local M = |τ1τ0|τ2τ3τ4

where a[i1i0i2i3i4] = x
(5)
i4i3i2i1i0

= Xi0i1i2i3i4 ; thus a[�] �= x
(5)
� , and a[�] �= X�. In

such cases, one can determine the mapping directly with respect to the subscript
of the output data element Xr, r = i0i1i2i3i4.

For the example above, the final map |τ1τ0|τ2τ3τ4 dictates that elements X0 to
X7 are stored in natural order in P0, elements X8 to X15 are stored in natural
order in P2 (instead of P1 from a consecutive data map of Xr), elements X16 to
X24 are stored in natural order in P1 (instead of P2 from a consecutive data map
of Xr), and elements X25 to X31 are stored in natural order in P3.

Since processors P1 and P2 are indistinguishable from each other (except for their
ID numbers), this mapping may be viewed as (and is indeed) an “equivalent”
consecutive data map of naturally ordered Xr.

Of course the same definition may be used in describing the mapping for input
data.

In general, given a cyclic block map, an equivalent cyclic block map may be ob-
tained by permuting the bits within the PID field.

� 4. (Unordered Output) If the final “|PID|Local M” is neither a CBM nor an
equivalent CBM with respect to the subscript of naturally ordered output element
Xr, then the output is considered “unordered.” (Again, the same may be said
about input data under similar circumstances.)

21.1 Parallel FFTs without Inter-Processor Permu-

tations

The basic parallel FFTs from Chapter 19 that do not employ inter-processor permu-
tation form the basis for the work found in [23, 46, 59, 110]. The important ideas in
those articles are described in the subsections that follow.

21.1.1 The PID in Gray code

The variant in [23] can be characterized as replacing the PID in a consecutive block
map with its Gray code (see Section 18.3 for a discussion of Gray codes). For N = 32
and P = 4, one uses p[i4i3] to replace i4i3 in the PID field if p[i4i3] contains the Gray-
code. Using the reflected-binary Gray-code, p[i4i3] = p[0] = 0, p[i4i3] = p[1] = 1,
p[i4i3] = p[2] = 3, and p[i4i3] = p[3] = 2 are obtained. Note that a Gray code cannot
be obtained by reordering the PID bits into i3i4.

In general, an initial mapping denoted by

|PID |Local M = |p[ik · · · ik−d+1]|
︷ ︸︸ ︷
in−1 · · · ik+2ik+1

︷ ︸︸ ︷
ik−d · · · i1i0

is an “equivalent” cyclic block map (CBM) of naturally ordered input x. Of course, the
content of p[ik · · · ik−d+1] is not limited to Gray code, nor is it limited to permutations
of the sequence ik · · · ik−d+1.



With the understanding that p[i4i3] contains the Gray code, the parallel algorithm
in [23] can be completely specified for N = 32 and P = 4 as shown below.

|p[i4i3]|i2i1i0 |p[
�
i4
�
i3]|i2i1i0 |p[τ4

�
i3
�

]|i2i1i0 |p[τ4τ3]|
�
i2i1i0 |p[τ4τ3]|τ2

�
i1i0 |p[τ4τ3]|τ2τ1

�
i0

(Initial Map) ⇐==⇒ ⇐==⇒

Observe that processor PPID is now identified by Pp[i4i3] (instead of Pi4i3). For
example, before the first stage of butterfly computation, Pα and Pβ send each other
a copy of their own data, where α = p[0i3] and β = p[1i3]. Accordingly, for i3 = 0,
because α = p[0] = 0 and β = p[2] = 3, data exchange occurs between P0 and P3—
note that the binary representations of α and β differ in both bits; for i3 = 1, because
α = p[1] = 1 and β = p[3] = 2, data exchange occurs between P1 and P2—note again
that the binary representations of α and β differ in both bits.

According to Theorem 18.1 in Chapter 18, if P = 2d, and p[k] contains the Gray
code of k for 0 ≤ k ≤ P − 1, then p[i] = α and p[j] = β differ in at most two bits if i
and j differ in exactly one bit.

The implications are:

• The total communication cost of this algorithm is still d concurrent exchanges
of NP elements, but the communicating processors are not always neighbors on a
hypercube.

• The two communicating processors are at most two hops away on a hypercube.

While evidentially not as efficient as some other parallel FFT algorithms, this pro-
vides the flexibility needed when such a mapping is imposed on the FFT computation.
This scenario occurs when a Gray code mapping must be used to implement other
parallel algorithms which precede (or follow) the FFT computation.

21.1.2 Using an ordered FFT on local data

The algorithm described in [110] begins with a cyclic map of naturally ordered input,
and results in reversely-ordered bits in the Local M in the final mapping. This is ac-
complished by having each processor apply an ordered (sequential) DIFNN (or DITNN)
FFT to its local data. The algorithm in [110] is specified for N = 32 and P = 4 below.

|i1i0|i4i3i2 |i1i0|i3i2
�
i4 |i1i0|i2

�
i3τ4 |i1i0|

�
i2τ3τ4 |

�
i1
�
i0|τ2τ3τ4 |τ1

�
i0
�
|τ2τ3τ4

(Initial Map) ⇐==⇒ ⇐==⇒

Since the initial mapping is cyclic with naturally ordered x, the resulting mapping is,
in general, given by

| d PID bits |
︷ ︸︸ ︷
idid+1 · · · in−2in−1,

where the PID preserves its initial arrangement: id−1id−2 · · · i1i0.
Since the Local M is formed by the rightmost n − d bits of Xr’s subscript

r = i0 · · · id−1idid+1 · · · in−2in−1, the mapping is equivalent to a consecutive block map



with respect to the subscript of naturally ordered X, and the term “block-equivalent”
is used when referring to this mapping.

To use this method, one simply distributes naturally ordered x before the compu-
tation using a cyclic map. Application of the algorithm yields consecutively ordered
Xr’s within each processor.

Note that the input data must be distributed among the processors one way or the
other, and the communication cost for data distribution is the same regardless of the
initial mapping. Therefore, the cyclic initial map used by this method does not cause
extra communication, and this is one way to obtain the block-equivalent mapping of
naturally ordered X.

It will be shown in Chapter 22 that the communication cost can be halved in an
improved algorithm which achieves equivalent results.

21.1.3 Using radix-4 and split-radix FFTs

Sequential radix-4 FFTs were introduced in Chapter 11, and split-radix FFTs were
introduced in Chapter 12. A quick review of these two chapters reveals that either one
of these two algorithms pairs up the same elements as required in the corresponding
radix-2 FFT, and that they each differ from the radix-2 FFT only in how the arithmetic
operations are performed on the elements.

The algorithm proposed by Fabbretti [46] begins with a consecutive data map of
naturally ordered input. For N = 2n and P = 2d, each processor performs radix-4
computation after each data exchange in the first d stages of butterfly computations,
and each processor performs sequential split-radix FFT on its local data in each of the
remaining n− d stages of butterfly computations.

For N = 32 and P = 4, the parallel algorithm in [46] can thus be specified as shown
below.

|i4i3|i2i1i0 |
�
i4
�
i3|i2i1i0 |τ4

�
i3
�
|i2i1i0 |τ4τ3|

�
i2i1i0 |τ4τ3|τ2

�
i1i0 |τ4τ3|τ2τ1

�
i0

(Initial Map) ⇐==⇒
radix-4

⇐==⇒
radix-4 split-radix split-radix split-radix

The communication cost of this algorithm remains d concurrent exchanges of N
P

elements.

21.1.4 FFTs for Connection Machines

Parallel FFTs on the Connection Machine (CM) are considered by Johnsson and
Krawitz in [59]. Since the CM processors are connected by a hypercube network which
allows concurrent communications on all channels, it is proposed in [59] that data
elements exchanged between processors (via different channels) be pipelined across
butterfly stages as explained below. (Note that one cannot pipeline data exchanges
without pipelining butterfly computations.)

With regard to data mapping, the algorithms in [59] feature a consecutive data
map, because all CM compilers use this scheme to distribute input data.

To reduce both arithmetic operations and the need for memory bandwidth, radix-4
or radix-8 FFTs are also recommended in [59] for computing local butterflies.



By using the symbol ⇐==⇒
pipelined

to indicate that both data exchanges and butterfly

computations are “pipelined” element by element on the CM, the parallel algorithm
in [59] can be described for N = 32 and P = 2d = 8 as shown below.

|i4i3i2|i1i0 |
�
i4
�
i3i2|i1i0 |τ4

�
i3
�
i2|i1i0 |τ4τ3

�
i2
�
|i1i0 |τ4τ3τ2|

�
i1i0 |τ4τ3τ2|τ1

�
i0

(Initial Map) ⇐==⇒
pipelined

⇐==⇒
pipelined

⇐==⇒
pipelined

radix-2 radix-2 radix-2 radix-4 radix-4

Note that both communications and butterfly computations are pipelined element
by element. For the example above, P0 will begin such fine-grain pipelined communica-
tions by exchanging its first element with that of P4; after this element is updated, P0

will exchange this updated first element with that of P2 (along a different channel) at
exactly the same time as P0 exchanges its second element with that of P4; after these
two elements are updated, P0 can exchange each of its first three elements with the
respective element in P1, P2, and P4 concurrently via three different channels. From
this point on, P0 can continue to concurrently exchange three consecutive elements
(beginning with its second element, then its third element, and so on) each with the
respective element in P1, P2, and P4 until its last element has been exchanged with that
in P1. At this point, every element of P0 has been exchanged with its corresponding
element in P4, P2, and P1, and every element has been updated three times in the
desired order.

By symmetry, every other processor pipelines its data exchanges and butterfly com-
putations element by element along all its d = 3 channels in a symmetric manner.

In total, there are K concurrent exchanges of a single element along all channels,
where K = (d− 1) + N

P . The communication cost is thus

K × (α + β̂) ≈
(
d +

N

P

)
α +

(
d +

N

P

)
β̂,

where α is the start-up time per message, and β̂ is the transfer time per complex
number. Note that α is negligible on the Connection Machine.

On the other hand, the cost of d (non-pipelined) concurrent exchanges of NP elements
is measured by

d×
(
α +

N

P
β̂

)
= dα +

(
d× N

P

)
β̂.

Thus, a fine-grain pipelined method is a good choice when α is negligible, and that is
why the pipelined method is used for CM FFT algorithms. In that case, the pipelined
communication time is approximately 1/d of the non-pipelined time.

However, the non-pipelined scheme becomes more efficient when α � β̂, which
is the case on Intel’s iPSC hypercubes and other distributed-memory multiprocessors
such as the Delta and Paragon meshes, so the non-pipelined concurrent exchanges are
commonly used on these multiprocessors.



21.2 Parallel FFTs with Inter-Processor Permuta-

tions

The FFT algorithms in [36, 56, 95, 104, 107] all employ interprocessor-permutations
which, as introduced in Chapter 20, may be viewed as switching a PID bit with an
address bit, the pivot. These algorithms are described in the subsections that follow.

21.2.1 Restoring the initial map at every stage

The parallel algorithm in [107] restores its initial map at the end of every stage by hav-
ing each processor return the other processor’s updated data. The message exchanges
are thus doubled as shown below for an example with N=32 and P=2d= 4.

|i4i3|i2i1i0 |i2
�
i3|

�
i4
�
i1i0 |τ4

�
i3|i2

�
i1i0 |τ4i2

�
|
�
i3
�
i1i0 |τ4τ3

�
|i2
�
i1i0

(Initial Map) ←−−→ restore←−−→
map

←−−→ restore←−−→
map

|τ4τ3|
�
i2i1i0 |τ3τ4|τ2

�
i1i0 |τ3τ4|τ2τ1

�
i0

The communication cost of this variant is 2d concurrent message exchanges of 1
2
N
P

elements. Since the initial map is fully restored, the inter-processor permutations are
not reflected in the final mapping at all.

21.2.2 Pivoting on the right-most bit in local M

The first example in [56] begins with a cyclic map of naturally ordered input assuming
that NP = 2. The algorithm is described below for N = 32 and P = 2d = 16.

|i3i2i1i0|i4 |i3i2i1i0|
�
i4 |τ4

�
i2i1i0|

�
i3
�

|τ4τ3
�
i1i0|

�
i2
�

|τ4τ3τ2
�
i0|

�
i1
�

|τ4τ3τ2τ1
�
|
�
i0
�

Initial ←−−→ ←−−→ ←−−→ ←−−→
|PID|Local M

(cyclic) (unordered)

To ensure that the stride for data in butterfly operations is always one (for good
locality) when N

P > 2, it was proposed in [56] that inter-processor or local permutations
should be employed so that the right-most bit in the local M is always the pivot.

For example, if N = 32 and P = 4, the parallel algorithm in [56] begins with an
initial map of “|i1i0|i3i2i4.” Compared with a cyclic map denoted by “|i1i0|i4i3i2,” the
bits in the local M has been cyclic shifted one bit to the left, which ensures that the
first local butterfly involves only neighboring elements.

|i1i0|i3i2i4 |i1i0|i3i2
�
i4 |i1i0|i2τ4

�
i3 |i1i0|τ4τ3

�
i2 |τ2

�
i0|τ4τ3

�
i1
�

|τ2τ1
�
|τ4τ3

�
i0
�

Initial ←−−→ ←−−→
|PID|Local M

(cyclic-variant) (unordered)



Since the initial map is cyclic or its variant (with bits shifted in the local M),
the pivot permuted into the PID is always a τρ bit instead of an iρ bit, and the
communication cost is always d concurrent exchanges of 1

2
N
P elements.

However, the final mapping is neither a CBM nor its equivalent with respect to
the subscript of the output element Xr, where r = i0i1i2i3i4. The output is thus
“unordered.”

21.2.3 All-to-all inter-processor communications

The work by Dubey et al. [36] deals with all possible initial CBM mappings for given
N and P on a hypercube. The initial CBM for x and the final CBM for X are required
to be identical. Under this condition, the authors show that in addition to d + 1 (or
d) concurrent exchanges between all pairs of processors with IDs different in one bit,
their generalized subroutine could, in the worst case, require each processor to send
data to all the other processors. This requirement may cause severe data contention,
depending on the network topology.

The algorithms in [36] can be described by adding the all-to-all communication
step as shown below. Using a consecutive block map to distribute naturally ordered
input elements xm, m = i4i3i2i1i0, the parallel algorithm for N = 32 and P = 4 is
represented by

|i4i3|i2i1i0 |i2
�
i3|

�
i4
�
i1i0 |i2τ4

�
|
�
i3
�
i1i0 |τ3

�
τ4|

�
i2
�
i1i0 |τ3τ4|τ2

�
i1i0 |τ3τ4|τ2τ1

�
i0 |τ0τ1|τ2τ3τ4

(Initial Map) ←−−→ ←−−→ ←−−→
possibly
→ · · · →
all-to-all

Note that the final map “|i0i1|i2i3i4” is a consecutive block map of naturally ordered Xr,
r = i0i1i2i3i4, and that the last communication step must redistribute the computed
output so that a[i3i4i2i1i0] = Xi0i1i2i3i4 is relocated from A[i2i1i0] in processor Pi3i4
to A[i2i3i4] in processor Pi0i1 .

Since bits i1 and i0 come from the Local M in Pi3i4 , the sequence i0i1 takes on
all values of 0, 1, 2, and 3. Therefore, when the sequence i0i1 is used to identify the
destination processors, all processors are named. That is, each Pi3i4 must send data to
all other processors. This is obviously the worst case.

When other CBM mappings are used, each processor may need to send data to only
a subset of all other processors. Hence the name of “possibly all-to-all” is used to label
this communication step.

It was proposed in [36] that each processor collect all data with the same destination
and send them as one message. Since each processor will receive data from several or
all other processors, it will need to arrange its final share of data in appropriate order
in the local array.

The parallel algorithms resulting from using the other possible CBM mappings are
given below for N = 2n = 32 and P = 2d = 4.



|i3i2|i4i1i0 |i3i2|
�
i4i1i0 |τ4

�
i2|

�
i3
�
i1i0 |τ4τ3

�
|
�
i2
�
i1i0 |τ4τ3|τ2

�
i1i0 |τ4τ3|τ2τ1

�
i0 |τ1τ2|τ0τ3τ4

Initial ←−−→ ←−−→
possibly
→ · · · →
all-to-all

|PID|Local M

|i2i1|i4i3i0 |i2i1|
�
i4i3i0 |i2i1|τ4

�
i3i0 |τ4

�
i1|

�
i2
�
τ3i0 |τ4τ2

�
|
�
i1
�
τ3i0 |τ4τ2|τ1τ3

�
i0 |τ2τ3|τ0τ1τ4

Initial ←−−→ ←−−→
possibly
→ · · · →
all-to-all

|PID|Local M

|i1i0|i4i3i2 |i1i0|
�
i4i3i2 |i1i0|τ4

�
i3i2 |i1i0|τ4τ3

�
i2 |τ4

�
i0|

�
i1
�
τ3τ2 |τ4τ1

�
|
�
i0
�
τ3τ2 |τ3τ4|τ0τ1τ2

Initial ←−−→ ←−−→
possibly
→ · · · →
all-to-all

|PID|Local M

Observe that in the second last case, each Pi4i2 is required to send data to des-
tinations identified by Pi2i3 . Since bit i2 in the PID of the receiver is also part of
the sender’s PID, its value is fixed to be either 0 or 1 by each sender. Accordingly,
for i2 = 0, each Pi40 will need to send data to the two processors identified by P0i3 ,
i.e., P00 and P01. Similarly, for i2 = 1, each Pi41 will need to send data to the two
processors identified by P1i3 , i.e., P10 and P11. Therefore, the communication is not
all-to-all in this case.

In general, the communication algorithm for output rearrangement varies from map-
ping to mapping as well as from problem to problem, as is its cost.

A new general algorithm will be presented in the next chapter, which requires only
1.5d more “concurrent exchanges” in the worst case. Thus the algorithm proposed in
Chapter 22 appears to deal with the question in [36] concerning the communication re-
quirement for solving the data rearrangement problems arising in FFT or other similar
algorithms.

21.2.4 Maintaining specific maps for input and output

The work in [95, 104] concerns two specific CBM mappings; in each case the initial
mapping for input xi4i3i2i1i0 is required to be maintained for output Xi0i1i2i3i4 . These
two parallel algorithms are depicted in Table 21.1 using given N and P values. For
the ordered parallel FFT in [95], the communication cost of 2d + 1 = 5 exchanges for
N = 2n = 32 and P = 2d = 4 are marked by five occurrences of ←−−→ in the first
column. The algorithm differs depending on whether d = n/2, d < n/2, d = n− 1, or
n/2 < d < n− 1. Consequently, the communication costs range from 1.5d+2 to 2d+1
concurrent exchanges as indicated by the following theorem.

Theorem [95] An ordered FFT of length N = 2n can be implemented on a hy-
percube of dimension d with n/2 + d + 1 parallel transmissions if n/2 < d and n is
even. If n is odd and (n + 1)/2 < d, then (n + 1)/2 + d + 1 parallel transmissions
are required . For the remaining cases the ordered FFT can be implemented with 2d+1
parallel transmissions.



Note that a hypercube of dimension d has P = 2d processors, and that the condition
n/2 < d is equivalent to N

P < P , and (n + 1)/2 < d is equivalent to N
P < P

2 , so they
represent fine-grain cases. Consequently, for more common medium-grain and large-
grain cases, 2d + 1 parallel exchanges will be required.

The cyclic-order parallel FFT in [104] refers to an FFT with naturally ordered input
x and output X both CBM mapped to the processors using one element per block. That
is, the initial cyclic mapping of x is maintained for X. The case NP < P was considered
in [104] for the massively parallel Connection Machine (CM). The communication cost
was derived in proving the following lemma.

Lemma [104] A cyclic-order FFT of length N = 2n can be implemented on a
hypercube of dimension d (where n/2 < d) with 2d− n/2 parallel transmissions if n is
even and 2d− (n− 1)/2 parallel transmissions if n is odd .

Since the condition n/2 < d is equivalent to N
P < P , this lemma again applies to

the fine-grain cases, and the number of parallel message exchanges is 2d− n/2 > d (if
n is even) or 2d − (n − 1)/2 > d (if n is odd). In the finest-grain case, NP = 1 if n is
even, i.e., n = d, and the number of parallel transmissions is given by 2d−n/2 = 1.5d.
In the example cited in Table 21.1, the condition n/2 < d is satisfied, and there
are 2d − n/2 = 6 concurrent exchanges as identified by six occurrences of ←−−→ in
column 2.

In both algorithms, the pivot is always the current leftmost bit in the Local M ,
but reordering of the address bits in Local M is also performed by exchanging the
pivot with another bit in the Local M . This implies that other bits from Local M can
effectively serve as the pivot bit, although they must first be permuted into the fixed
pivot location.

In [95, 104], the permutation of any other bit with the fixed pivot bit is defined
as a single i-cycle. The algorithms were developed by first decomposing the required
permutation (or final mapping) into disjoint cycles, and each disjoint cycle can then be
implemented by a sequence of i-cycles. Some of the i-cycles are followed by butterfly
computations, and other i-cycles are used only for the purpose of rearranging local
data or permuting data between processors.

The pseudo-code (similar to CM Fortran) FFT algorithm given in [104] uses an
i-cycle subroutine assuming that N

P̃
= 2, where P̃ could represent the number of

virtual processors when N
P > 2. In the latter case, P̃ > P , and the cost of 1.5d̃

concurrent exchanges, where d̃ = log2 P̃ , includes the communication between virtual
processors. In the next chapter alternative ways are proposed having the same or lower
communication cost and without the restriction to fixed-pivot i-cycles. In addition, the
“NP ” ratio is not restricted to a specific value.



Table 21.1 Some ordered parallel FFTs.

Swarztrauber [95] Tong & Swarztrauber [104]

Example: N = 2n = 32, Example: N = 2n = 256,

P = 2d = 4
(
N
P
≥ P

)
P = 2d = 32

(
N
P

< P
)

|i4i3|i2i1i0 |i4i3i2i1i0|
�
i7i6i5

(block map of x) (cyclic map of x)

|i4i3|i1
�
i2
�
i0 |i4i3i2i1i0|

�
i6
�
τ7
�
i5

|i1
�
i3|

�
i4
�
i2i0 |i4i3i2i1i0|

�
i5
�
τ7τ6

�

←−−→
|i1i3|i0

�
i2τ4

�
|τ5
�
i3i2i1i0|

�
i4
�
τ7τ6

←−−→
|i1i0

�
|
�
i3
�
i2τ4 |τ5τ4

�
i2i1i0|

�
i3
�
τ7τ6

←−−→ ←−−→
|i1i0|

�
i2
�
τ3
�
τ4 |τ3

�
τ4i2i1i0|τ5

�
τ7τ6

←−−→
|τ2
�
i0|

�
i1
�
τ3τ4 |τ3τ4τ5

�
i1i0|

�
i2
�
τ7τ6

←−−→ ←−−→
|τ2τ1

�
|
�
i0
�
τ3τ4 |τ3τ4τ5i1i0|τ6

�
τ7τ2

�

←−−→
|τ0
�
τ1|τ2

�
τ3τ4 |τ3τ4τ5τ6

�
i0|

�
i1
�
τ7τ2

←−−→ ←−−→
(block map of X)

|τ3τ4τ5τ6i0|τ7
�
τ1
�
τ2

|τ3τ4τ5τ6τ7
�
|
�
i0
�
τ1τ2

←−−→
(cyclic map of X)

From E. Chu and A. George [28], Linear Algebra and its Applications, 284:95–124, 1998. With

permission.



21.3 A Summary Table

The initial map, the final map, and the communication cost of all algorithms discussed
in this chapter are summarized in Table 21.2 for N = 32 on P = 2d = 4, 8, or 16
processors.

21.4 Notes and References

The idea of parallelizing FFTs with inter-processor permutations can be traced back
to Singleton’s work [83] in 1967. He developed a method for computing the FFT with
auxiliary memory and limited high-speed storage. Instead of using data from the local
memories of two processors, Singleton’s method in its simplest form processes data from
two input tapes. Thus it is not surprising that Singleton correctly predicted in [83]
that

“This method of computing the fast Fourier transform offers interesting
possibilities for parallel computation.”

Singleton was not alone in his observation; he acknowledged in [83] that

“M. Pease of the Stanford Research Institute independently noted the par-
allel computation possibilities of this arrangement of the fast Fourier trans-
form, and is exploring the idea further.”

Readers are referred to [74, 75] for Pease’s further contributions.



Table 21.2 Parallel FFTs in the literature.
Some One-Dimensional (1-D) Parallel FFTs 

using P = 2d = 4, 8, or 16 Processors 

References for 
the examples 

Walton [107],1986 

Jamieson, Mueller 
& Siege1 [56], 1986 

S warz t raub er 
[95], 1987 

Chamberlain 
[23], 1988 

l'ong & Swarztrauber 
11041, 1991 

Johnsson & Krawitz 
[59], 1992 

Dubey, Zubair & 
Groscli [36],  1994 

Yang [110], 1996 

Fabbretti et. al. [46] 

(radix-4 and local 
spli t-radix), 1996 

,ta: N = 2" = 
Final Mapping 
ofX.  . . . . 

174 73 172 7 1  T o  

(unordered) 
174 73 72 71 170 

(unordered) 
173 7 2  71 174 To 

(unordered) 

1011*2*514  

# Concurrent 
Exchanges 

2d 

d 

d 

2 d + 1 ( $ >  P )  
1.5d+2 ($ = 1) 

d 

From d to 1.5d 

d - l + g  
(on all channels) 

d exchanges 
plus all to all in 
the worst case. 

(: < P) 

d 

d 

Message 
Length 

I N  
Z P  
- _  

1 N  
TY 

1 N  
2 P  
-- 

1 N  
2 P  
_ _  

N 
P 
- 

I N  
Z P  
-- 

1 

ford & 
varied lengths 
for all to all. 

N 
P 
- 

N 
P 
- 
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Chapter 22

Further Improvement and a

Generalization of Parallel

FFTs

The algorithms developed in this chapter improve and/or generalize those presented in
Chapters 20 and 21. Thus, readers should be familiar with the various data mapping
techniques and algorithms discussed in the preceding two chapters.

22.1 Algorithms with Specific Mappings for Ordered

Output

The two algorithms specified in Table 22.1 are developed in this section. They each
require the ordered output to be mapped to processors according to specified mappings.

Comparing to the parallel algorithms which achieve the same or equivalent final
mappings in Chapter 21, these two algorithms have lower communication cost either
because the message length is halved or because the number of concurrent exchanges
is reduced.

22.1.1 Algorithm I

The main idea of this algorithm is as follows. Consider a general case, in which the
initial cyclic map of naturally ordered xin−1···i1i0 is transformed to the final map of
Xi0i1···in−1 given by

| d PID bits |
︷ ︸︸ ︷
idid+1 · · · in−2in−1,

where PID = i0id−1id−2 · · · i2i1, i.e., all bits in the initial PID are cyclic-shifted to the
right by one position. Since the rightmost n − d bits of Xr’s subscript form the local
M , the final mapping is equivalent to a consecutive block map of naturally ordered X.

Using what has been developed earlier in connection with ordered sequential FFTs
and inter-processor permutations, an algorithm achieving these objectives can be con-
structed in a straightforward manner. The entire algorithm is depicted below for



Table 22.1 New distributed-memory parallel FFTs.

N = 32 and P = 2d = 8. As explained in Chapter 20, the communication cost is
d + 1 concurrent exchanges of 1

2
N
P elements.

|i2i1i0|i4i3 |i2i1i0|i3
�
i4 |i2i1i0|

�
i3τ4 |τ3

�
i1i0|

�
i2
�
τ4 |τ3τ2

�
i0|

�
i1
�
τ4 |τ3τ2τ1

�
|
�
i0
�
τ4 |τ0

�
τ2τ1|τ3

�
τ4

Initial ←−−→ ←−−→ ←−−→ ←−−→
|PID|Local M ( block-

(cyclic) (ordered local FFT) equivalent)

Observe that Algorithm I combines a specific initial mapping (from Chapter 17) with
inter-processor permutations (from Chapter 20) and an ordered local FFT (from Chap-
ters 6 or 9). By symmetry, if so desired, the same algorithm can also transform block
mapped x to cyclic-equivalent mapped X, and vice versa.

22.1.2 Algorithm II

In Table 22.1, the objectives achieved by Algorithm II are shown to be the following:

• If N
P ≥ P , the initial cyclic map is maintained for naturally ordered output.

• If N
P < P , the final map is cyclic-equivalent because its PID bits are arranged in

reverse order compared to those in a cyclic map.

Note that for N = 2n and P = 2d, the condition N
P ≥ P implies n− d ≥ d, or n ≥ 2d;

the condition N
P < P implies n− d < d, or n < 2d.

To provide an example in each case, the initial map of input element xm, m =
i7i6i5i4i3i2i1i0, and the final map of output element Xr, r = i0i1i2i3i4i5i6i7, are given
in Table 22.1. Observe that in both cases, the initial PID is formed by the rightmost
d bits of m, and the final PID is formed by rearranging the leftmost d bits of m.

For simplicity, assume n ≥ 2d so that the rightmost d bits do not overlap the
leftmost d bits; the case n < 2d will be considered later.

New 

Algorithms 

Algorithm I Algorithm 11 

From E. Chu and A. George [28], Linear Algebra and i t s  Applications, 284:95-124, 1998. 
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The main ideas which guide the development of Algorithm II are identified by �
when they are introduced. The algorithm begins with the idea of combining unordered
and ordered sequential FFT in local computation.

� Assuming n ≥ 2d, the algorithm is designed to perform the first d stages
of local computation without reordering the local data, followed by n− 2d
more stages of local computation using an ordered sequential FFT.

The initial cyclic map would thus be changed to

| Initial rightmost d bits |
︷ ︸︸ ︷
Initial leftmost d bits

︷ ︸︸ ︷
Reversed n− 2d bits

= |id−1id−2 · · · i1i0|
︷ ︸︸ ︷
τn−1τn−2 · · · τn−d+1τn−d

︷ ︸︸ ︷
τdτd+1 · · · τn−d−1 .

To continue, inter-processor permutations must be used in performing the next d stages
of butterfly computation so that a final cyclic map given by

|τn−dτn−d+1 · · · τn−2τn−1|
︷ ︸︸ ︷
τ0τ1 · · · τd−2τd−1

︷ ︸︸ ︷
τdτd+1 · · · τn−d−1

can be obtained. To minimize the communication cost, the following idea is employed.

� Instead of using a fixed pivot from Local M , a PID bit is switched with
a different pivot before each stage of butterfly computation begins, and the
pivots are chosen in the order they appear in the final PID.

Accordingly, when butterfly computation ends, id−1 would have been switched with
τn−d, id−2 with τn−d+1, · · · , i1 with τn−2, and i0 with τn−1 as desired. Observe that
all d potential pivot bits are τρ instead of iρ, and that they are all permuted into their
respective final positions in the PID after d concurrent exchanges of 1

2
N
P elements.

For the case n < 2d, it turns out that one may achieve the following cyclic-equivalent
final map of Xi0i1···in−1 at the same communication cost.

|τn−1τn−2 · · · τd+1τdτd−1 · · · τn−d|
︷ ︸︸ ︷
τ0τ1 · · · τn−d−1 .

Note that the final PID bit-reverses the rightmost d bits of X’s subscript. In order to
describe how Algorithm II is generalized to include this case, the condition n− d < d

is reflected in the initial map by expressing it as

| Initial rightmost d bits |
︷ ︸︸ ︷
n− d < d bits

= |id−1id−2 · · · in−din−d−1 · · · i1i0|
︷ ︸︸ ︷
in−1 · · · id+1id .

After the first n−d stages of local computations (without reordering of the local data),
the mapping becomes

|id−1id−2 · · · in−din−d−1 · · · i1i0|
︷ ︸︸ ︷
τn−1 · · · τd+1τd .

� The next d − (n − d) = 2d − n inter-processor permutations switch the
leftmost 2d− n bits in PID with the bits in the Local M in the order from
left to right; if it reaches the end of Local M , begin from the leftmost bit
in Local M until all 2d− n bits in PID are processed.



The following map results:

|τn−1τn−2 · · · τk+1τk︸ ︷︷ ︸ in−d−1 · · · i1i0|
︷ ︸︸ ︷
τm−1τm−2 · · · τn−d

︷ ︸︸ ︷
τk−1τk−2 · · · τm .

Now the local reordering can be applied to rearrange the bits in Local M to obtain

|τn−1τn−2 · · · τk+1τk︸ ︷︷ ︸ in−d−1 · · · i1i0|
︷ ︸︸ ︷
τn−d · · · τm−2τm−1

︷ ︸︸ ︷
τm · · · τk−2τk−1 .

(Note that the bits braced from τm−1 to τn−d are reversed, and the bits braced from
τk−1 to τm are reversed. Since the bit-reversing operations can be incorporated into
the computation, the internal reordering does not necessarily increase processing time
in an efficient implementation.)

The final n−d inter-processor permutations in Algorithm II switches the remaining
n− d bits in PID into the Local M , resulting in the final mapping

|τn−1τn−2 · · · τk+1τk τk−1τk−2 · · · τmτm−1τm−2 · · · τn−d︸ ︷︷ ︸|︷ ︸︸ ︷
τ0τ1 · · · τn−d−1 .

This is a cyclic-equivalent mapping for Xi0i1i2···in−1 because the Local M is formed
by the leftmost n − d bits of Xr’s subscript. Note that the rightmost d bits of Xr’s
subscript can be obtained by reversing the PID bits, and vice versa.

22.2 A General Algorithm and Communication Com-

plexity Results

This algorithm allows the choice of any initial CBM for naturally ordered input x and
any final CBM for naturally ordered output X.

For N = 128 and P = 32, the four possible initial CBMs of x are shown in the
first four entries in column 1 in Table 22.2; in each case, the initial CBM is required
to be maintained for X as shown in column 2. In column 3, both actual and the
maximum (worst-case) communication complexities are presented for N = 2n and
P = 2d, assuming only that NP ≥ 2. That is, the specific relationships between n and
d in different cases are not exploited in the algorithm.

The last three entries in Table 22.2 contain same information for cases when the
final map is different from the initial map.

The construction of this algorithm and the derivation of its communication cost is
presented next.

22.2.1 Phase I of the general algorithm

For any given initial mapping, the corresponding parallel algorithm with inter-processor
permutations from Chapter 20 is used in phase I of this general algorithm. This process
is depicted below once again for a familiar example using N = 32 and P = 2d = 8.

|i2i1i0|i4i3 |i2i1i0|
�
i4i3 |i2i1i0|τ4

�
i3 |τ4

�
i1i0|

�
i2
�
τ3 |τ4τ2

�
i0|

�
i1
�
τ3 |τ4τ2τ1

�
|
�
i0
�
τ3 |τ0

�
τ2τ1|τ4

�
τ3

Initial ←−−→ ←−−→ ←−−→ ←−−→
|PID|Local M

(cyclic) (unordered)



Table 22.2 General communication results for CBM mappings.

A General Algorithm for 

Arbitrary Initial and Final CBM Mappings 
AssumDtion: N = 2". P = 2d,  and $ 2 2 

# Concurrent 
Exchanges 

2 d + 1 5 2 . 5 d + 1  

2d + 2 5 2.5d + 1 

2 d + 2 5 2 . 5 d + 1  

2d + 1 5 2.5d+ 1 

2d 5 2.5d+ 1 

2d + 2 5 2.5d + 1 

2d 5 2.5d+ 1 

Message 
Length 
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Note that Phase I is completed after d + 1 concurrent exchanges of 1
2
N
P elements.

At this point, all arithmetic work has been done, the initial PID bits have been cyclic-
shifted to the right by one position, and the mapping of the output is “unordered.”

To achieve any specific CBM map for ordered X, the currently unordered output
is to be re-distributed and reordered in Phase II of this algorithm.

22.2.2 Phase II of the general algorithm

To change the mapping of computed output, apparently more inter-processor permuta-
tions may be added in Phase II to switch the desired τρ bits into the PID and arrange
them in final order, and that can be followed by local reordering so that the bits in the
Local M are also arranged as desired.

To construct the algorithm and determine the maximum communication cost, con-
sider the two possibilities:

Case (i) If the initial PID does not overlap the final PID, then exactly d more inter-
processor permutations are needed to switch in the final PID bits. In total, 2d+1
concurrent exchanges are needed.

This simple reordering process is depicted below for an example which satisfies
the criterion.

|τ0τ2τ1|τ7τ6τ5τ4τ3 |τ5
�
τ2τ1|τ7τ6τ0

�
τ4τ3 |τ5τ6

�
τ1|τ7τ2

�
τ0τ4τ3 |τ5τ6τ7

�
|τ1
�
τ2τ0τ4τ3

Map at the ←−−→ ←−−→ ←−−→
end of Phase I

(unordered)

|τ5τ6τ7|τ0τ1τ2τ3τ4
Local reordering

to get desired

final map (cyclic)

Case (ii) If the initial PID overlaps the final PID, then one may first switch in the λ τρ
bits currently in Local M so that these λ PID bits are put in their final positions.
Repeat this process until no desired PID bits exist in the local M . These steps
are depicted below for an example which exhibits such characteristics.

In the example, bits τ3 and τ4 are first brought into their final positions in the
PID. The process is then repeated for bit τ2. Observe that even τ2 was in the
PID at the beginning of phase II, it was switched out because it occupies bit τ3’s
final position in the PID.

For this example, all PID bits are now in their final positions. Therefore, only
local reordering is needed to achieve the desired output distribution.

|τ0τ2τ1|τ5τ4τ3 |τ0τ3
�
τ1|τ5τ4τ2

�
|τ0τ3τ4

�
|τ5τ1

�
τ2 |τ2

�
τ3τ4|τ5τ1τ0

�
|τ2τ3τ4|τ0τ1τ5

Map at the ←−−→ ←−−→ ←−−→ Local reordering to

end of Phase I get desired final

(unordered) CBM (blocksize=2)

Example 1: Phase II



However, depending on the problem, it may not be true that all PID bits are in
their final positions at this point. In order to show how this could happen as
well as the steps possibly required, the initial map used in the next example is
assumed to be

i6|i5i4i3i2|i1i0 or |i5i4i3i2|i6i1i0

The initial map assumed

in Example 2.

And it is assumed that the same map is maintained for the output as specified
below.

τ0|τ1τ2τ3τ4|τ5τ6 or |τ1τ2τ3τ4|τ0τ5τ6

The final map assumed

in Example 2.

The steps described above are now performed on Example 2 as depicted below.
Observe that bit τ1 in the local M is permuted into its final position in the PID
first. Next, bit τ2, which occupies bit τ1’s final position and is thus switched out
earlier, is permuted with τ5. Now, all PID bits are in, but they are not in the
right order!

|τ2τ5τ4τ3|τ6τ1τ0 |τ1
�
τ5τ4τ3|τ6τ2

�
τ0 |τ1τ2

�
τ4τ3|τ6τ5

�
τ0 |τ1τ2τ4τ3|τ0τ5τ6

Map at the ←−−→ ←−−→ Local

end of Phase I reordering

(unordered) (unordered PID)

Example 2.: Phase II in progress

To describe the remaining steps in Phase II, suppose k (in total) τρ bits have
been permuted into the PID so far. (Note that λ = 2, k = 3 in Example 1, and
λ = 1, k = 2 in Example 2.) The remaining task now involves reordering the
v = d− k potentially out-of-order bits in the PID.

To rearrange the PID bits through inter-processor permutations, observe that
one need only consider a fixed (arbitrary) pivot from Local M , because every bit
in the current Local M is a non-PID bit in the final map.

How many inter-processor permutations are needed to reorder v PID bits via a
single pivot? Observe that in the worst case, the non-PID pivot bit is permuted
back in Local M after two PID bits happen to switch their positions, i.e., three
permutations could be required for placing every two bits. This is indeed the
case when τ4 and τ3 are switched in Example 2 as show below.



|τ1τ2τ4τ3|τ0τ5τ6 |τ1τ2τ0
�
τ3|τ4

�
τ5τ6 |τ1τ2τ0τ4

�
|τ3
�
τ5τ6 |τ1τ2τ3

�
τ4|τ0

�
τ5τ6

←−−→ ←−−→ ←−−→
(unordered PID) Map desired

Example 2.: Reorder PID bits to complete Phase II.

Therefore, at most, 1.5v inter-processor permutations are required to reorder the
v PID bits. Since v can be as large as d, in total 2.5d + 1 concurrent exchanges
are needed.

Although the two cases above were considered separately to help explain the algo-
rithm, note that case (ii) reduces to case (i) if λ = d.

Note that by performing only the permutation steps symbolically, the actual com-
munication costs for given N and P can be predicted for the entire class of CBM
mappings as shown in Table 22.2.

Since the reordering phase requires only 1.5d more concurrent exchanges in the
worst case, this algorithm appears to have addressed the question in [36] concerning
the communication requirement for solving the data rearrangement problems arising
in FFT or other similar algorithms.

In addition, since the reordering phase is independent of the computation phase,
the algorithm and the communication complexity results are applicable even if the
initial and final CBM maps are different. The last three entries in Table 22.2 are such
examples. Thus, the proposed algorithm deals with cases that do not appear to be
handled by the algorithm proposed in [36].



Chapter 23

Parallelizing Two-dimensional

FFTs

23.1 The Computation of Multiple 1D FFTs

The need to compute a set of 1D FFTs arises naturally in many applications. If the
FFTs have the same length and properties (e.g., all real or complex), an appropriate
sequential FFT algorithm may be applied to them one after the other, or it may be
applied to them all at once stage by stage. Since the same set of twiddle factors
are applied, it is inefficient in this context to compute them on the fly. Instead, the
twiddle factors should be pre-computed (once), stored, and reused for each FFT in the
set. Using the latter approach, the storage for the twiddle factors is the same as that
required for a single FFT. It is thus straightforward to adapt FFT software to compute
multiple 1D FFTs on a uniprocessor machine,

The simplest parallel algorithm to compute multiple 1D FFTs is “embarrassingly
parallel”; the set of M 1D FFTs (of length N each) can simply be evenly divided among
the p processors, and each processor simply applies an appropriate sequential algorithm
to compute its share of �M/p� 1D FFTs. In this case, there is no communication, but
the twiddle factors need to be pre-computed and stored in each processor. This was
referred to as the “independent processors” approach in [46].

If the computation associated with each single FFT is divided among several pro-
cessors in some way, additional inter-processor communication is required. This “co-
operative processors” approach was also explored in [46], and two algorithms using
this approach were compared with the “independent processors” idea on an nCUBE 2
hypercube consisting of 128 processors. As expected, the timing results reported in [46]
confirmed efficiency values of 99 to 99.9% for the “independent processors” approach,
which was in contrast to efficiency values of 29 to 49% for the two implementations of
the cooperating processors.

Although the computation of a two-dimensional FFT may be viewed as computing
multiple 1D FFTs in each direction (as shown in the next section), the parallelization
of a two-dimensional FFT presents another challenge because the highly efficient “in-
dependent processors” approach cannot be used on both directions without incurring
inter-processor data communications, and it is no longer the clear winner. The 2D
FFTs are the focus of the remainder of this chapter.



23.2 The Sequential 2D FFT Algorithm

In this section a fast serial algorithm for computing the DFT on a two-dimensional
image consisting of N1 ×N2 signals is reviewed. The signals are stored in an N1 ×N2

matrix x. An entry in the signal matrix is denoted by x�1,�2 . The 2D-DFT of x is
defined by the following equation [70, 72]:

Xr1,r2 =
N1−1∑
�1=0

N2−1∑
�2=0

x�1,�2ωN1
r1�1ωN2

r2�2 ,

for r1 = 0, 1, · · · , N1 − 1, and r2 = 0, 1, · · · , N2 − 1.

(23.1)

If the equation above is used in a straightforward (naive) way, Θ (N1N2) arithmetic
operations are required to compute each Xr1,r2 , yielding a total cost of Θ

(
N2

1N
2
2

)
,

or Θ
(
N4

)
if N1 = N2 = N . Fortunately, this may be reduced very significantly by

separating the 2D-DFT into a series of 1D-DFTs, which can each be implemented using
a fast 1D-FFT algorithm. This process is shown below.

Xr1,r2 =
N1−1∑
�1=0

N2−1∑
�2=0

x�1,�2ωN1
r1�1ωN2

r2�2

=
N1−1∑
�1=0

ωN1
r1�1

(
N2−1∑
�2=0

x�1,�2ωN2
r2�2

)

=
N1−1∑
�1=0

ωN1
r1�1

(
X̃�1,r2

)

=
N1−1∑
�1=0

(
X̃�1,r2

)
ωN1

r1�1 , r1 = 0, 1, · · · , N1 − 1, r2 = 0, 1, · · · , N2 − 1.

(23.2)

Thus, by effecting a series of (ordered) 1D-FFTs on the N1 rows (of length N2

each) of x, the data in row �1 are transformed to X̃�1,r2 for 0 ≤ r2 ≤ N2 − 1. The total
cost of this row-transform phase is Θ (N1N2 log2 N2). This is followed by a series of
(ordered) 1D-FFTs on the N2 columns (of length N1 each) of X̃, and column r2 of X̃
is transformed to Xr1,r2 for 0 ≤ r1 ≤ N1 − 1. The cost of the column-transform phase
is Θ (N2N1 log2 N1). The efficiency of the discrete Fourier transform of a digital image
consisting of N1×N2 signals is thus improved from Θ

(
N2

1N
2
2

)
to Θ (N1N2 log2 (N1N2)).

When N1 = N2 = N , the computing cost is reduced from Θ
(
N4

)
to Θ

(
N2 log2 N

)
.

Therefore, the computational efficiency of the 2D-FFTs is even greater than that of
the 1D-FFTs.

Note that if an in-place unordered FFT is used in both row-transform phase and
column-transform phase, then the entry x�1,�2 would be finally overwritten by Xm1,m2 ,
where the binary representation of m1 bit-reverses that of �1, and m2 is related to �2
in the same way.

For obvious reasons, the approach based on equation (23.2) is called the “row-
column” method [41, 70] or the “separable” method [46] in the literature.



23.2.1 Programming considerations

As noted by Duhamel and Vetterli [41], the matrix which contains the data of a 2D
transform grows quickly. For example, if N1 = N2 = 1024, there are more than one
million complex numbers in the 1024 × 1024 matrix. Depending on the programming
language used, this large matrix is stored either column-by-column or row-by-row in
computer memory. In order to minimize the number of memory accesses, an efficient
method must be used to access blocks of consecutive rows or blocks of consecutive
columns in a manner compatible with the storage scheme. To achieve this, the row-
column FFT is often performed by including a matrix transposition between the FFTs
on the columns and the FFTs on the rows in order to allow access to the data by
blocks [41]. A fast method for matrix transposing was proposed by Eklundh in [45]. The
two possible implementations of the row-column method are depicted in Figure 23.1.

Figure 23.1 Sequential row-column 2D FFT algorithm—two implementations.

23.2.2 Computing a single 1D FFT stored in a 2D matrix

If the data of a single 1D FFT of length N = 2n is stored in a 2D matrix of dimension
N1 × N2, where N = N1 × N2, N1 = 2n1 , and N2 = 2n2 , it can also be computed
by independent 1D FFTs on the rows and columns of the matrix. However, note that
in this context the twiddle factors used are derivatives of ω�N rather than derivatives
of ω�N1

and ω�N2
. For example, a 2D matrix was used in [51] to store a 1D FFT for

distribution to processors that are connected by a hypercube or a 2D mesh network.

Consequently, except for using different twiddle factors, one can use the 2D FFT
algorithm to compute a single 1D FFT if the latter is stored in a 2D matrix. It follows
that parallel 2D FFT algorithms can be used to compute a single 1D FFT as well.



23.2.3 Sequential algorithms for matrix transposition

The standard method depicted in Figure 23.2 applies to any block partitioned matrix.
Since each Aij block could be of dimensions 1× 1, k × k, or m× �, the matrix A may
be square or rectangular of any size.

Figure 23.2 Transpose a matrix A by the standard method.

The divide-and-conquer method depicted in Figure 23.3 is recursive by nature. A
square or rectangular matrix may be divided into four submatrices at each level.

Figure 23.3 Transpose a matrix A by the recursive method.

The method depicted in Figure 23.4 was originally proposed by Eklundh [45] to
facilitate the out-of-core (when core memory was still in use and the memory size is
very limited) matrix transposition. The idea is that two rows are read in each time,
the appropriate elements are permuted, the modified two rows are then written out to
the disk. The example in Figure 23.4 shows that the first permutation step involves



row 1 and row 2, the second step involves row 3 and row 4, the third step involves row
1 and row 3, and the fourth step involves row 2 and row 4. (Each row can be a single
row as originally proposed, or it can be a block row if each Aij is a submatrix instead
of a single element.)

Note that unlike the other two algorithms, some blocks will be moved multiple times
in Eklundh’s method. For example, block A14 was moved twice in Figure 23.4.

Note that this more complicated permutation scheme can be easily described using
the binary representation of the row and column indices of block Aij , which is denoted
as A[i, j] below. Suppose i = b2b1b0, and j = u2u1u0; then three pairwise exchanges
may switch A[b2b1b0, u2u1u0] with A[b2b1u0, u2u1b0], followed by A[b2u1u0, u2b1b0], and
finally with A[u2u1u0, b2b1b0].

Although this method requires that the number of (block) rows and (block) columns
be the same, since i and j must have the same number of bits to effect pair-wise
exchange throughout, there is no restriction on the dimension of each block itself.
That is, A[i, j] could again be a single element, a square, or a rectangular matrix.

Figure 23.4 Transpose a matrix A by Eklundh’s method [45].



23.3 Three Parallel 2D FFT Algorithms for Hyper-

cubes

Readers are assumed to be familiar with the hypercube multiprocessors introduced in
Chapter 18 and the large number of parallel 1D FFTs described in previous chapters.
As one would expect, different parallel algorithms are available to handle the column-
oriented mapping scheme, row-oriented mapping scheme, and the 2D-block mapping
scheme. Three sample algorithms are used to introduce some basic ideas in the following
sections.

23.3.1 The transpose split (TS) method

The transpose split (TS) method used in [22, 24] parallelizes the row-column 2D FFT
algorithm. In the example shown in Figure 23.5, the four processors P0, P1, P2, and
P3, are each allocated a block of consecutive columns or rows. Clearly, only the ma-
trix transposition phase(s) will incur inter-processor communication, and an efficient
parallel algorithm for matrix transposition is all that is needed.

Figure 23.5 The TS (transpose split) method with column or row data allocation.



23.3.2 The local distributed (LD) method

The local distributed (LD) method in [22, 24, 46] does not have a matrix transposition
phase. For the example above, each processor first independently computes multiple
1D FFTs on allocated columns (or rows). In the next phase, since each individual row
(or column) of the updated signal matrix is shared by all four processors as depicted
in Figure 23.6, an appropriate “parallel” 1D FFT algorithm from previous chapters is
used to transform the multiple rows (or columns) all at once. (Note that only one set
of twiddle factors is needed.) An implementation proposed in [46] used the sequential
“split-radix” algorithm to the rows, and the parallel “radix-4” to the columns.

Figure 23.6 The LD (local distributed) method with column or row wise data alloca-
tion.

Since a processor may apply each stage of the FFT transformation to all 1D FFTs
at once, the same communication algorithm for a single parallel 1D FFT may be
easily modified to include the data needed for all 1D FFTs in each message, i.e., the
message size is increased, but the number of messages remains identical to that incurred
by parallelizing a single 1D FFT. Therefore, on machines with large communication
bandwidth, the communication cost is expected to impact the performance of 2D FFT
less significantly.



23.3.3 The 2D block distributed method

The basic idea of the 2D block distributed method [22] is depicted by a simple example
on a 2-by-2 processor grid in Figure 23.7 below.

Figure 23.7 The 2D block distributed method on a 2 × 2 processor grid.

Even if one wishes to do so, it is not always possible to configure the available p

processors as a
√
p × √

p grid. For example, if p = 2d and d is an odd number, the
p processors cannot be arranged as a square grid. In what follows, assume p = 2d =
2d1+d2 = 2d1 ×2d2 . A desirable objective is that the 2D block distributed method work
for all possible values of d1 and d2. To achieve this, it is apparent that the dimensions
of the rectangular processor grid should be input parameters to the program.

When the p processors form a hypercube, the processors on each row and each
column of the grid form a subcube, hence the name subcube-grid [26, 27, 29]. One
may then choose any convenient dimensions, because the performance of the 2D block
distributed method is not affected by the dimensions of the subcube-grid. The reasons
for this are that the following observations hold, regardless of how the subcube-grid is
configured.

• each processor has (N1 ×N2) /p data elements,

• each message is either of length (N1 ×N1) /p or one half of it (depending on the
chosen parallel 1D FFT algorithm),

• all subcube-doubling message exchanges involve only neighboring processors,

• the total number of messages is d1 + d2 = d always,

• the subcube-doubling communication algorithm does not cause traffic congestion.

Note that the generalized 2D block method includes the LD method as a special
case corresponding to a 1 × p or p× 1 subcube-grid.

23.3.4 Transforming a rectangular signal matrix on hypercubes

Although a square signal matrix was shown in all examples in the previous sections, in
reality the signal matrix may not be square. A little reflection leads to the conclusion
that all three algorithms work without significant modification when the matrix is not
square. The only proviso is that the TS (transpose split) method requires that its
parallel matrix transposition algorithm handle rectangular matrices of any dimension.



23.4 The Generalized 2D Block Distributed (GBLK)

Method for Subcube-grids and Meshes

Recall that the signal data for a 2D FFT are stored naturally in an N1 ×N2 matrix,
and that by viewing the hypercube as various 2D subcube-grids, the generalized 2D
block distributed (GBLK) method may be regarded as partitioning the matrix on a
corresponding subcube-grid. Furthermore, the performance of the GBLK method is
not affected by the aspect ratio of the subcube-grid for reasons discussed in the last
section. In other words, given a hypercube consisting of p = 2d = 2d1+d2 processors,
the N1 ×N2 data matrix may be mapped to any subcube-grid of dimensions γ1 × γ2,
where γ1 = 2d1 , and γ2 = 2d2 . Given below are the four possible subcube-grids for
p = 8, together with the corresponding data mappings.

Figure 23.8 The four GBLK data mappings on 8-node subcube-grids.



23.4.1 Running hypercube (subcube-grid) programs on meshes

The 512 computing nodes on the Intel Touchstone DELTA computer [44] are connected
as a 16-by-32 two-dimensional mesh, and disjoint sub-meshes of dimensions (row, col),
with row ≤ 16 and col ≤ 32, can be allocated to individual users [44]. For example,
Figure 23.9 shows three 8-processor physical sub-meshes allocated from a 4-by-8 mesh.

Figure 23.9 Three 8-node physical sub-meshes allocated from a 4-by-8 mesh.

From E. Chu [25], The International Journal of High Performance Computing Applications,

13(2):124–145, 1999. With permission.

A mesh has fewer communication channels than a hypercube, and it is not pos-
sible to have the allocated processors in Figure 23.9 form a subcube-grid. However,
since a mesh is a connected network, there is a path between any two processors, a
hypercube program implementing the subcube-doubling communication algorithm will
run correctly on a mesh as shown by the 8-node examples in Figure 23.10. Regard-
less of whether a subcube-grid or a mesh is used, the matrix elements can always be
distributed to processors using the same mapping scheme, and the communication al-
gorithm can still be understood as passing the same sequences of messages between the
same designated pairs of processors, and the length of each message remains unchanged.

Thus a different physical network topology will not affect the “correctness” of the
algorithm or the software. However, a different physical network topology can

(i) increase the “physical distance” (measured by the number of hardware channels or
hops) between communicating processors, and

(ii) cause “contention of communication channels” when logically-disjoint message
paths overlap badly on the physical network

and hence compromise the effectiveness of the logical topology in achieving its objective.

If the hop (distance) penalty is low, the first problem will not affect the performance
much. However, the contention of communication channels may be a serious problem



because it can cause severe traffic congestion. In the next section, the extent of traffic
congestion is directly related to the physical distance a message travels when using
the subcube-doubling technique on a mesh, and the question of how to reduce traffic
congestion by using an optimal aspect ratio to configure the physical mesh (at runtime)
is addressed.

Figure 23.10 The four GBLK data mappings on four 8-node meshes.

23.5 Configuring an Optimal Physical Mesh for Run-

ning Hypercube (Subcube-grid) Programs

The objective in configuring an optimal physical mesh is to minimize communication
overhead due to the multi-hop (distance) penalty and traffic congestion. Since circuit-
switching is used by the DELTA mesh and other currently available message-passing
multiprocessors to manage the network, the contention of communication channels is
resolved in a particular manner. It is, therefore, useful to show directly in Section 23.5.3
that the effect of channel contention on a circuit-switching physical mesh is also mini-
mized by the optimal aspect ratio derived in Theorem 23.1 in Section 23.5.1.

23.5.1 Minimizing multi-hop penalty

To support the subcube-doubling communication algorithm on an arbitrary γ1-by-γ2

subcube-grid using a µ1-by-µ2 physical mesh, consider first how to minimize the total
physical distance the messages travel. In the following analysis it is assumed that
γ1 = 2d1 , γ2 = 2d2 , µ1 = 2δ1 , µ2 = 2δ2 , and p = γ1 × γ2 = µ1 × µ2 = 2d, where d1, d2,



δ1 and δ2 are non-negative integers. It is also assumed without loss of generality that
the p processors are numbered consecutively row by row in both the subcube-grid and
the mesh: e.g., processors P0, · · · , Pγ2−1 form the first row of the subcube-grid, and
processors P0, · · · , Pµ2−1 form the first row of the mesh.

When the subcube-doubling algorithm is used for concurrent message exchanges
among all pairs of processors, the communication requirement is the same for every
processor (see Figures 23.8 and 23.10). It is thus sufficient to examine the requirement
of processor P0 in what follows.

Figures 23.8 and 23.10 demonstrate that regardless of the aspect ratio of the
subcube-grid or the mesh, P0 communicates with Pi, i = 2�, 0 ≤ � ≤ d− 1. However,
the physical distance between P0 and each such Pi varies with the physical meshes used
to run the program. For example, according to Figure 23.10, using a 2-by-4 mesh, P0

is one hop away from either P1 or P4, and two hops away from P2; using a linear array,
P0 is one hop away from P1, two hops away from P2, and four hops away from P4.

Theorem 23.1 is next stated and proved, which shows that the total physical distance
between P0 and all designated Pi’s is a function of d and δ1.

Theorem 23.1 Assume that the p processors denoted by P0, · · · , Pp−1 are arranged
row by row on a µ1 × µ2 physical mesh, where µ1 = 2δ1 , and µ2 = 2δ2 . If processor
P0 communicates with the d = δ1 + δ2 processors required by the subcube-doubling
technique, then the total physical distance is given in hops by Hmesh(d, δ1) = 2δ1 +
2d−δ1 − 2, and is minimized when δ1 = d/2, i.e., µ1 = µ2 =

√
p, assuming that d is an

even number.

Proof: Since each row of the physical mesh is a linear array, the physical distance
between P0 and Pj , j = 2�2 , 0 ≤ �2 ≤ δ2 − 1, is exactly 2�2 hops. Since each column
of the physical mesh is also a linear array, the physical distance between P0 and Pi,
i = 2δ2+�1 , 0 ≤ �1 ≤ δ1 − 1, is exactly 2�1 hops. Therefore, the total distance between
the d pairs of communicating processors can be computed by

Hmesh(d, δ1) =
δ2−1∑
�2=0

2�2 +
δ1−1∑
�1=0

2�1

= 2d−δ1 + 2δ1 − 2 .

(23.3)

Minimizing Hmesh (d, δ1) with respect to δ1 yields δ1 = d/2. Hence µ1 = µ2 = 2d/2 =√
p. �

23.5.2 Minimizing traffic congestion

To quantify the traffic congestion caused by the subcube-doubling communication on
the physical mesh, a traffic weight w(k)

i,j is associated with each communication channel

Ci,j which physically connects processors Pi and Pj on the mesh, and w
(k)
i,j is defined

to be the number of overlapped communication paths on that channel during the
kth communication step. Since the subcube-doubling communication is performed
independently within each row and within each column of the mesh, it is sufficient to
examine the extent of traffic congestion within one row and one column, which are
linear arrays of sizes µ2 and µ1 on a µ1-by-µ2 mesh. Figure 23.11 shows the overlapped



communication paths caused by each subcube-doubling communication step on a linear
array consisting of processors P0, P1, · · · , P7. The values of w

(k)
i,i+1 defined for each

channel connecting the neighboring processors Pi and Pi+1 on the linear array are given
in Table 23.1, where 0 ≤ i ≤ 6 and 1 ≤ k ≤ 3. The extent of traffic congestion can be
quantified by the total weight

∑3
k=1

∑6
i=0 w

(k)
i,i+1 = 28 for this example.

Figure 23.11 The overlapped communication paths incurred by the subcube-doubling
algorithm (p = 8).

From E. Chu [25], The International Journal of High Performance Computing Applications,

13(2):124–145, 1999. With permission.

Table 23.1 Traffic weights for communication channels Ci,i+1 in Figure 1.

Step (k) w
(k)
0,1 w

(k)
1,2 w

(k)
2,3 w

(k)
3,4 w

(k)
4,5 w

(k)
5,6 w

(k)
6,7

∑6
i=0 w

(k)
i,i+1

k = 1 1 0 1 0 1 0 1 4

k = 2 1 2 1 0 1 2 1 8

k = 3 1 2 3 4 3 2 1 16∑3
k=1

∑6
i=0 w

(k)
i,i+1 28

From E. Chu [25], The International Journal of High Performance Computing Applications,

13(2):124–145, 1999. With permission.

Now consider the total traffic weight caused by the subcube-doubling algorithm on
a linear array consisting of µ = 2δ processors in Lemma 23.2 below.

Lemma 23.2 The total traffic weight imposed by the subcube-doubling communica-
tion on a linear array of size u = 2δ is given by W (δ)=

∑δ
k=1

∑µ−2
i=0 w

(k)
i,i+1=22δ−1−2δ−1.

Proof: Observe that during the kth subcube-doubling communication step, each pair
of communicating processors is m = 2k−1 hops apart. Since the traffic weights on the
m channels connecting processors P0, P1, · · · , Pm is summed up by

∑m
�=1 �, and the

traffic weights on the m − 1 channels connecting processors Pm, Pm+1, · · · , P2m−1 is
summed up by

∑m−1
�=1 �, the total weight on channels connecting each disjoint group of



2m = 2k processors, can be computed by

m∑
�=1

� +
m−1∑
�=1

� = m2 = 22k−2 .(23.4)

Since there are 2δ−k groups of 2k processors performing the kth subcube-doubling
communication step independently, the total weight from all k communication steps
on the entire linear array can be computed by

W (δ) =
δ∑
k=1

µ−2∑
i=0

w
(k)
i,i+1 =

δ∑
k=1

2δ−k

2k−1∑
�=1

� +
2k−1−1∑
�=1

�

 = 22δ−1 − 2δ−1 .(23.5)

�

Theorem 23.3 The total traffic weight imposed by the subcube-doubling communi-
cation on a µ1-by-µ2 mesh, where µ1 = 2δ1 , µ2 = 2δ2 , and p = 2δ1+δ2 = 2d, is given by
Wmesh (d, δ1) = 2d−1

(
2δ1 + 2d−δ1 − 2

)
, and is minimized when δ1 = d/2, i.e., µ1 =

µ2 =
√
p, assuming that d is an even number.

Proof: As noted earlier, the subcube-doubling communication is performed indepen-
dently within each row and each column of the µ1-by-µ2 mesh. Lemma 23.2 implies

Wrow (δ2) = 22δ2−1 − 2δ2−1(23.6)

and

Wcolumn (δ1) = 22δ1−1 − 2δ1−1 .(23.7)

Since there are µ1 = 2δ1 rows and µ2 = 2δ2 columns, the total traffic weight on the
µ1-by-µ2 mesh is given by

Wmesh (d, δ1) = 2δ2 ×Wcolumn (δ1) + 2δ1 ×Wrow (δ2)

= 2d−1
(
2δ1 + 2d−δ1 − 2

)
= 2d−1 ×Hmesh (d, δ1) .

(23.8)

Therefore, the value δ1 = d/2 that minimizes Hmesh (d, δ1) in Theorem 23.1 also mini-
mizes Wmesh (d, δ1). �

Corollary 23.4 follows immediately from Theorems 23.1 and 23.3.

Corollary 23.4 If the given physical mesh consists of p = 2d processors, where d

is an odd number, then Hmesh (d, �d/2�) = Hmesh (d, �d/2�), and Wmesh (d, �d/2�) =
Wmesh (d, �d/2�).

The results above are depicted in Figure 23.12 for the 8-processor example, i.e.,
either a 2-by-4 mesh or a 4-by-2 mesh should be used to run the hypercube program
regardless of how the matrix is partitioned among the processors.



Figure 23.12 Optimal 8-node meshes for running hypercube programs.



23.5.3 Minimizing channel contention on a circuit-switched net-

work

When a message is to be sent from one processor to another on a circuit-switched
network, a header packet is sent to reserve all of the channels required to build its path.
After this “circuit” is established, the message is transmitted, and an end-of-message
indicator releases the channels [44]. Therefore, when the paths of several concurrent
messages overlap, the establishment of each corresponding circuit must wait for the
shared channel(s) to be released from one previously built route. Such wait time can
be eliminated if there is no overlapped concurrent communication paths. From the
analysis of subcube-doubling communication on a mesh in the previous section, it is
clear that there are exactly “m” m-hop paths overlapping each other when a processor
sends a message to a destination m hops away within each row or each column of
the physical mesh; i.e., the number of overlapped paths is the same as the physical
distance a message travels (see Figure 23.11 for an example). Consequently, the physical
mesh chosen to minimize the total physical distance a processor’s messages travel in
Theorem 23.1 also minimizes the total number of overlapped communication paths,
and hence the effect of channel contention on a circuit-switched network.

Thus, Theorems 23.1, 23.3, and Corollary 23.4 imply that when a hypercube pro-
gram is run (or emulated) on a mesh,

for best performance, a closest-to-square physical mesh should be used.

The user still has the flexibility of choosing a particular data mapping to facilitate
memory access, and/or to simplify data structures, and/or for programming conve-
nience.

23.6 Pipelining Subcube-doubling Communications

on All Hypercube Channels

The idea of pipelining subcube-doubling communications on all hypercube channels
was used by Calvin in [22] to overlap communication and computation in implementing
parallel 2D FFT algorithms. To help explain this idea, recall from Chapter 18 the d

communication steps in the basic subcube doubling algorithm—they are depicted again
in Figure 23.13 (d = 3 in the example). Note that while there are d

(
2d−1

)
channels in

a hypercube of dimension d, only 2d−1 channels are used per communication step.
To make use of all available channels simultaneously, each processor is required

to pipeline its outgoing messages to all its neighbors. For example, P0 is shown to
pipeline its messages to P1, P2, and P4 using a non-blocking send in each step as shown
in Figure 23.14, so does P1 as well as every other processor.

Since the pipelining technique typically involves sending multiple shorter messages
instead of a single long message, the startup time caused by multiple sends must be
“overlapped” (or “masked”) by arithmetic work to a large extent if the pipelining
method is to be effective. Instead of simply displaying a data mapping which can
accomplish this objective, the computation of N1 1D FFTs of length N2 on p = 2d = 8
processors is used as an example to “construct” and “demonstrate” such a mapping
step by step.



Figure 23.13 The d synchronous exchanges in the subcube-doubling algorithm
(d = 3).

Figure 23.14 Pipelining subcube-doubling “send” on all channels (d = 3).



Referring to Figure 23.15, observe that P0 has been assigned the first block of N2
p

columns (p = 8 in the example). Instead of applying FFT steps to the entire block all
at once and exchanging a single message with one neighbor, the data in P0 are now
partitioned into d = log2 p portions (d = 3 in the example), and P0 interleaves its
local computation on each portion of data with message passing to each neighbor as
described in Algorithm 23.6.

Algorithm 23.1 The actions by P0 in step 1.

begin
d := log2 p d is the hypercube dimension
for k = 1 to d iterate on d portions of data

P0 performs local computation on the kth portion;
P0 sends the updated data from this portion to its kth neighbor;

end for
end

After P0 completes the initial step, ideally the message P0 expects from P4 has
already arrived, and P0 can now use the incoming data to update the first portion of
its data. (If the data is always ready when the processor needs it, the communication
time is said to be fully masked.) Referring to Figure 23.15 again, observe that after P0

updates the first portion of data, P0 immediately sends the newly updated data from
this portion to P1. Since the data in each block row are divided evenly among the p

processors, P0 must rotate its d neighbors each step. By this time, ideally the data P0

needs to update the second portion of data has arrived from P2. After updating the
second portion, P0 immediately sends the necessary data from this portion to P4, and
so on. The actions by P0 in the second step are described in Algorithm 582. With
the understanding that the list of appropriate neighbors is rotated by one position (see
Figure 23.15), the generic description of step 2 may be used to describe step 3. (For
d > 3, the same description may be used for step 2, step 3, . . . , and step d.)

Algorithm 23.2 A generic description of actions by P0 in steps 2, 3,· · · , d.
begin

d := log2 p d is the hypercube dimension
for k = 1 to d iterate on d portions of data

P0 receives data from an appropriate communication cost is masked if
neighbor; data have arrived when needed

P0 updates an appropriate portion of data;
P0 sends the updated data from this portion

to an appropriate neighbor;
end for

end

For a hypercube of dimension d, step d + 1 is the last step.



Algorithm 23.3 A generic description of actions by P0 in step d+1 – the last step.

begin
d := log2 p d is the hypercube dimension
for k = 1 to d iterate on d blocks of data

P0 receives data from an appropriate communication cost is masked if
neighbor; data have arrived when needed

P0 updates an appropriate portion of data;
end for

end

Figure 23.15 Pipelining subcube-doubling “send” from P0 on all channels (p = 8).



Observe from Figure 23.15 that the data mapping has been partially constructed
in the process of developing the algorithm for P0. For p = 8, one only needs to follow
the actions of P7, which mirrors that of P0, and the data mapping is completed in
Figure 23.16.

Figure 23.16 Pipelining subcube-doubling “send” from P7 on all channels (p = 8).



With the entire map constructed in Figure 23.16, one can now visualize the actions
of any processor from the map. Keep in mind that all processors perform the same
actions (pairing up with appropriate neighbors) “concurrently.” As one more example,
the actions by P1 are shown in Figure 23.17.

Figure 23.17 Pipelining subcube-doubling “send” from P1 on all channels (p = 8).

It should be understood that the generic description of the d + 1 steps of the al-
gorithm given in this section is not tailored to P0’s actions at all, but instead reflects
the concurrent actions of all p processors. Note that in order to mask the communi-
cation cost, the matrix must be sufficiently large so that each processor can be kept
busy computing before the message it waits for arrives. An analytical model was used
in [22] to derive the minimum size of such a matrix, which, as expected, is a function
of the number of processors and the hardware parameters of the machine being used.



The method described above for computing multiple 1D FFTs may be viewed as
employing an “all processor-to-all neighbor” communication scheme depicted in Fig-
ure 23.18. Although the simplest problem of computing many 1D FFTs is used in this
section to make various aspects of this communication scheme easily understood, the
method is not designed and should not be used for this simple case—because the “in-
dependent processor” method incurs no communication at all. However, this method
is useful for FFT of higher dimensions, which is revisited in the next section.

Figure 23.18 All processor–to–all neighbor communication scheme (p = 8).



23.7 Changing Data Mappings During Parallel 2D

FFT Computation

The data mappings required in implementing the following four methods for computing
the 2D FFT are depicted in Figures 23.19–23.22.

• The TS (transpose split) method: Two different data mappings are required in
phases I and II (see Figure 23.19). Note that by distributing consecutive rows
to the processors in Phase II, one has effectively transposed the data matrix
as desired. Accordingly, an efficient parallel algorithm for changing the data
mapping is an efficient parallel algorithm for matrix transposition, and such an
algorithm will be presented in the next section.

Figure 23.19 The TS method: Different data mappings used in phases I and II (p = 8).

• The LD (local distributed) method: Identical data mappings are used in phases I
and II (see Figure 23.20).

• The GBLK (generalized block distributed) method: Identical data mappings are
used in phases I and II (see Figure 23.21).

• Calvin’s method [22]: Two different data mappings are required in phases I and
II (see Figure 23.22). This method appears to be called the LD method with
overlap in [22]. It is not clear how the cost for changing the mapping can be
masked from the very brief description in [22].

23.8 Parallel Matrix Transposition By Changing Data

Mapping

As indicated in the previous section, an efficient parallel algorithm for changing the
mappings from distributing the matrix columns to distributing the matrix rows is an



Figure 23.20 The LD method: Identical data mappings used in phases I and II (p = 8).

Figure 23.21 The GBLK method: Identical data mappings used in phases I and II
(p = 8).



Figure 23.22 Calvin’s method: Different data mappings used in phases I and II
(p = 8).

efficient parallel algorithm for matrix transposition. Observe from Figure 23.23 that
a data mapping by columns may be viewed as distributing the N1 × N2 matrix A

on a 1 × p subcube-grid, and a data mapping by rows may be viewed as distributing
the same matrix on a p × 1 subcube-grid, where p = 2d. That is, each row of the
matrix is initially shared by p = 2d processors, and is finally stored in its entirely
in a single processor. This objective can be accomplished by halving the number of
processors on each row of the subcube-grid, and doubling the number of processors
on each column of the subcube-grid in d steps. Observe from Figure 23.23 that each
time the subcube-grid changes its dimensions this way, all that is required is that
every processor exchange one half of its data with a directly connected processor.
Accordingly, the total communication cost for transposing an N1×N2 matrix is exactly
d concurrent exchanges of 1

2
N1×N2
p complex numbers among all pairs of processors. (If

desired, the initial column mapping can be restored by reversing the steps with the
same communication cost.)

Note that the communication cost in Phase II of the LD (local distributed) method
for a 2D FFT (without inter-processor data permutation) requires d concurrent ex-
changes of N1×N2

p complex numbers [98], and the communication cost of this matrix
transposition algorithm is one half of that amount. Therefore, if the initial column
mapping needs not to be restored, the TS (transpose split) method incurs half the
communication cost of the LD method; if the initial column mapping must be re-
stored, the communication cost of the TS method becomes the same as that of the LD
method.

23.9 Notes and References

As noted in Section 23.3.3, the performance of the 2D block distributed method is
not affected by the aspect ratio of the subcube-grid for reasons identified there. How-
ever, this is not the case for many parallel matrix algorithms, i.e., the choice of the



Figure 23.23 Parallel matrix transposition by changing data mapping (p = 8).



aspect ratio for the subcube-grid can severely impact the performance of parallel algo-
rithms, and the subcube-grid is an important and versatile physical network topology.
For example, Chu and George show in [26, 27, 29] that an optimal aspect ratio can be
determined at run time for a class of fundamental numerical algorithms including Gaus-
sian elimination with partial pivoting, QR factorization (with column pivoting [27]),
Gauss-Jordan inversion, and multiple least squares updating algorithms. The signif-
icant net saving in execution time and storage usage gained from using an optimal
subcube-grid was demonstrated by numerical experiments on iPSC/2 and iPSC/860
hypercubes in [26, 27, 29].

Furthermore, the authors reported in [27] the iPSC/2 and iPSC/860 execution times
to demonstrate an efficient data relocation algorithm which dynamically changes the
data mapping between the subcube-grids, and the same algorithm was used in the last
section for changing the aspect ratio from 1 × p to p × 1, which effectively transposes
the distributed matrix among the p processors as desired.

The interplay of optimal physical and logical network topologies in the design and
implementation of parallel matrix algorithms was investigated further by Chu in [25].

Other interesting algorithms for computing the 2D FFTs include the class of vector-
radix algorithms as well as the class of polynomial transform algorithms. The basic
principles underlying these two classes of sequential algorithms were reviewed in [41],
and their parallel implementation on hypercube and mesh machines was recently ex-
amined by Angelopoulos and Pitas in [2]. Readers are referred to [65, 66, 79, 80] for
more details on the vector-radix algorithms, and [69, 70] on the polynomial transforms
originally proposed by Nussbaumer for the computation of 2D cyclic convolutions.



Chapter 24

Computing and Distributing

Twiddle Factors in the

Parallel FFTs

It was assumed in the previous chapters that all ωr�
N values, which are commonly re-

ferred to as twiddle factors, are pre-computed and available to the computer programs
implementing the various transform algorithms. One could argue that this is a rea-
sonable assumption to make, since FFT codes are usually applied sequentially to large
numbers of vectors, and thus pre-computation of the twiddle factors is an efficient
strategy. The argument appears to be valid for single processor machines, and for
shared-memory multiprocessors, since access to the twiddle factors is straightforward.
As pointed out by [23], this is also an efficient strategy for distributed-memory machines
if multiple transforms are performed by each processor all at once, which is certainly
the case in computing multiple 1D FFTs or 2D FFTs as discussed in Chapter 23.

However, for transforming a single large vector on a distributed-memory machine,
the best strategy is not at all obvious. If every processor has a copy of all the twiddle
factors, then they may consume more memory than the data being transformed—
a somewhat incongruous circumstance. If this represents an unacceptable amount of
storage, then the FFT algorithm must arrange that the (pre-computed) twiddle factors
are conveyed among the processors so that they are available when needed. A final
option is to compute the twiddle factors “on the fly” as required, which relieves the
storage and communication burdens at the expense of additional computation.

The choice of strategy depends on a number of factors: the relative speeds of
communication and computation, the amount of memory available compared to the
size of the problem being solved, and the algorithm itself. Some specific strategies were
considered and compared under special circumstances in [23, 51, 98, 104], but they do
not seem to generalize because the distribution of twiddle factors can be drastically
different for different algorithms, as discussed in the following two sections.



24.1 Twiddle Factors for Parallel FFT Without Inter-

Processor Permutations

Since the twiddle factors are completely dictated by the data elements involved in
each butterfly computation, the twiddle factors required by each processor are easily
identified by the data it owns, which are different for different mappings. Assuming
that naturally ordered input data are transformed by DIF FFT without inter-processor
permutations, an example using a consecutive block mapping is given in Figure 24.1,
and another example using a cyclic mapping is given in Figure 24.2.

Observe that in either case, one processor may need to use more twiddle factors
than the other. For comparison, the distribution of the twiddle factors are tabulated
in Table 24.1 for the consecutive block map in Figure 24.1, and in Table 24.2 for the
cyclic map in Figure 24.2. Apparently, in the former case, the twiddle factors are not
evenly distributed among the processors, whereas in the latter case, a more balanced
(but still not fully balanced) distribution results from using the cyclic data map in
parallelizing the DIF FFT algorithm.



Figure 24.1 DIFNR FFT twiddle factors required if a consecutive block map is used.



Table 24.1 DIFNR FFT twiddle factors required by each processor in Figure 24.1.
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Figure 24.2 DIFNR FFT twiddle factors required if a cyclic map is used.



Table 24.2 DIFNR FFT twiddle factors required by each processor in Figure 24.2.
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24.2 Twiddle Factors for Parallel FFT With Inter-

Processor Permutations

Referring to Figures 20.1, 20.2, 20.3, 20.4, 20.5, and 20.6 in Chapter 20 on par-
allel FFTs with inter-processor permutations, one can tabulate the twiddle factors
ωi3i2i1i0
N , ωi2i1i00

N , ωi1i000
N , ωi0000

N , and ω0
N (inferred from global m = i4i3i2i1i0) required

by each processor as shown in Table 24.3 below. (Note that p = 4 and N = 32 in the
example.) Again, it is assumed that a DIFNR FFT is used. Observe that in this case,
each processor needs to compute almost all N/2 twiddle factors either in advance or
on the fly (to save storage).

Table 24.3 DIFNR FFT twiddle factors required by each processor in Figure 24.1,
20.2, 20.3, 20.4, 20.5, and 20.6. (p = 4 and N = 32)
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Part IV

Appendices



Appendix A

Fundamental Concepts of

Efficient Scientific

Computation

In this appendix some fundamental concepts of efficient scientific computation are
introduced and demonstrated through examples relevant to the FFT computation.

A.1 Time and Space Consumed by the DFT and

FFT Algorithms

In Chapters 2 and 3 the arithmetic cost of the DFT and FFT algorithms were shown to
be proportional to N2 (via the naive matrix times vector computation) and N log2 N ,
respectively. The constant of proportionality is not specified there because its value
depends on what kinds of operations are counted in determining the arithmetic cost.
For example, one could count the number of complex multiplications and additions;
alternatively, the number of real multiplications and additions might be counted. Thus,
in comparing algorithms, it is important that the reported costs refer to the same kinds
of operations. Obviously, the constant of proportionality becomes important when one
compares the efficiency of two algorithms having the same order of complexity. For
example, an FFT variant requiring 4N log2 N operations is more efficient than an FFT
variant requiring 5N log2 N operations.

A.1.1 Relating operation counts to execution times

The operation counts of the DFT algorithm and several FFT variants are listed for
sample N values in Table A.1. The reported operation counts represent the total
number of real additions and real multiplications, assuming that the twiddle factors
are pre-computed. The cost of evaluating the twiddle factors is thus excluded in the
operation count. The FFT variants referred to in the table were developed in early
chapters of this book.



Table A.1 Operation counts of the DFT and FFT variants.

To help put things in perspective, it is instructive to see what the differences in
operation counts might imply in terms of expected execution times. In Table A.2, the
expected times are calculated assuming that the additions and multiplications each
require one 1 µsec (10−6 seconds).

Table A.2 Expected execution times of the DFT and FFT variants.

A.1.2 Relating MFLOPS to execution times and operation counts

A common measure of performance is the “megaflop rate”; that is, the rate of exe-
cution measured in MFLOPS (millions of floating-point operations per second). It is
calculated from the total flop (floating-point operation) count and the actual execution
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N = 2 8  
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N = 2 '  
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time (in seconds), i.e.,

MFLOPS Rate ≡ Total Flop Count
Actual Execution Time in Seconds

× 10−6.

Of course the use of the MFLOPS number is sensitive to context. It is useful in deter-
mining how well a particular algorithm has been implemented on a particular machine.
Of course one assumes implicitly that only those operations that are necessary are being
performed! It is also useful in comparing the performance of different machines; imple-
mentations of the same algorithm on different machines may provide useful information
about their relative desirability for certain applications.

A.2 Comparing Algorithms by Orders of Complex-

ity

In this section techniques and notations for determining, expressing, and comparing
complexity results are presented.

A.2.1 An informal introduction via motivating examples

Recall that the naive matrix times vector computation in the DFT algorithm requires
8N2 flops, whereas various FFT algorithms require from 4N log2 N to 5N log2 N flops
to compute the same result. For N ranging from N = 64 to N = 16384, the corre-
sponding flop counts and the estimated execution times are displayed in Tables A.1
and A.2. As N grows, the flop count of the DFT algorithm grows much faster than
that of any FFT algorithm, while the ratio of the flop counts of any two FFT variants
is a constant. The ratio of 8N2 and 4N log2 N is 2N/ log2 N , which goes to infinity
with N . For completeness, L’Hôpital’s rule from the calculus is provided below.

Theorem A.1 (L’Hôpital’s Rule) If f(x) and g(x) are both differentiable with deriva-
tives f ′(x) and g′(x) respectively, and if

lim
x→∞

f(x) = lim
x→∞

g(x) = ∞ ,

then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

.

Note that L’Hôpital’s rule can be applied again to the resulting limit, provided that
the derivative functions satisfy the same conditions. This process is repeated until the
limit can be determined. It is a simple exercise to use L’Hôpital’s rule to show that

lim
N→∞

f(N)
g(N)

= lim
N→∞

8N2

4N log2 N
= ∞.

In general, there are three possible outcomes in applying L’Hôpital’s rule to compare
the complexity of two algorithms.



Case (i)

lim
N→∞

f(N)
g(N)

= c > 0,

where c is a constant. The two algorithms are said to have the same order of
complexity.

Case (ii)

lim
N→∞

f(N)
g(N)

= ∞.

This implies that f(N) grows asymptotically faster than g(N), and the algorithm
costing g(N) is said to have lower complexity. Informally, one denotes g(N) <

f(N).

Case (iii)

lim
N→∞

f(N)
g(N)

= 0,

which is equivalent to

lim
N→∞

g(N)
f(N)

= ∞.

This means that the algorithm costing f(N) has lower complexity. Informally,
one denotes f(N) < g(N).

Complexity functions commonly have more than one term. When there are multiple
terms, the fastest growing term is the dominant term. A few examples are displayed
below.

1. g1(N) = N + log2 N + 5 = N + lower order terms.

2. g2(N) = 5N log2 N + 3N + log2 N + 3 = 5N log2 N + lower order terms.

3. g3(N) = (log2 N)5 +
√
N + 18 =

√
N + lower order terms.

4. g4(N) = 2N + N99 = 2N + lower order terms.

5. g5(N) = log3 N + N0.1 = N0.1 + lower order terms.

To compare the orders of complexity of any two functions listed above, one only
needs to compare their leading terms. For example, g5(N) is more efficient than g1(N)
because N0.1/N → 0 as N → ∞.

A.2.2 Formal notations and terminologies

By applying the techniques introduced in the last section, it is a simple exercise to verify
that f(N) and g(N) given below have the same order, as do g(N) and h(N). It seems
natural to conclude that f(N), g(N), and h(N) have the same order of complexity.

1. f(N) = 3N log3 N .



2. g(N) = 7N log5 N + N − 17.

3. h(N) = N log2 N + 10N − 8.

This explains why each order of complexity is formally defined as a “set” containing
an infinite number of member functions.

Definition A.2 Define Θ(f(N)), which is called the order of f(N), to be the set of
complexity functions g(N) for which there exists some positive real constants c1 and
c2 and some nonnegative integer No such that, for all N ≥ No,

c1 × f(N) ≤ g(N) ≤ c2 × f(N) .

To distinguish two different orders of complexity from each other, the following defini-
tion is used.

Definition A.3 For a given complexity function f(N), o(f(N)), pronounced small-oh
or little-oh of f(N), is the set of all complexity functions g(N) satisfying the following:
For every positive real constant c there exits a nonnegative integer No such that, for

all N ≥ No,

g(N) ≤ c× f(N)

The next theorem from [68] allows the definitions of Θ(f(N)) and o(f(N)) to be tested
by limits.

Theorem A.4

lim
N→∞

f(N)
g(N)

=



c implies f(N) ∈ Θ(g(N)) if c > 0,

0 implies f(N) ∈ o(g(N)),

∞ implies g(N) ∈ o(f(N)).

A.2.3 The big-Oh and big-Omega notations

For completeness, two notations which are commonly used in the literature and text
books are defined and related to the Θ-notation below.

Definition A.5 For a given complexity function f(N), O(f(N)), pronounced big-Oh
of f(N), is the set of complexity functions g(N) for which there exists some positive
real constant c2 and some nonnegative integer No such that for all N ≥ No

g(N) ≤ c2 × f(N) .

Definition A.6 For a given complexity function f(N), Ω(f(N)), pronounced big-
Omega of f(N), is the set of complexity functions g(N) for which there exists some
positive real constant c1 and some nonnegative integer No such that for all N ≥ No

g(N) ≥ c1 × f(N) .



The order Θ(f(N)) in Definition A.2 can then be expressed as the intersection of
the set O(f(N)) and the set Ω(f(N)). This leads to the following alternative definition
of Θ(f(N)).

Definition A.7 For a given complexity function f(N),

Θ(f(N)) = O(f(N)) ∩ Ω(f(N)) .

Note that one cannot know the order of g(N) from a claim that g(N) ∈ O(N5),
because this claim is true for g(N) = log2 N , g(N) = N , g(N) = N2, . . . , g(N) = N5.
On the other hand, g(N) ∈ Θ(f(N)) guarantees that g(N) and f(N) have the same
order. Thus, the Θ-notation provides more specificity about the order of complexity,
which explains why its use is standard in text books on algorithmic analysis.1

A.2.4 Some common uses of the Θ-notation

The examples given at the end of Section A.2.1 are used again to demonstrate some
common uses of the “order” notation.

1. g1(N) = N + log2 N + 5 ∈ Θ(N).

2. g2(N) = 5N log2 N + 3N + log2 N + 3 ∈ Θ (N log2 N).

3. g3(N) = (log2 N)5 +
√
N + 18 ∈ Θ

(√
N

)
.

4. g4(N) = 2N + N99 ∈ Θ
(
2N

)
.

5. g5(N) = log3 N + N0.1 ∈ Θ
(
N0.1

)
.

It is also common to preserve the leading term, and use the “order” notation to repre-
sent the remaining terms.

1. g1(N) = N + log2 N + 5 = N + Θ (log2 N).

2. g2(N) = 5N log2 N + 3N + log2 N + 3 = 5N log2 N + Θ(N).

3. g3(N) = (log2 N)5 +
√
N + 18 =

√
N + Θ

(
log5

2 N
)
.

4. g4(N) = 2N + N99 = 2N + Θ
(
N99

)
.

5. g5(N) = log3 N + N0.1 = N0.1 + Θ (log3 N).

1It is often true that authors use the notion g(N) ∈ O(f(N)) when they really mean g(N) ∈
Θ(f(N)). It most contexts it is trivially obvious that g(N) ∈ Ω(f(N)), so no real ambiguity results.



Appendix B

Solving Recurrence Equations

by Substitution

This appendix is devoted to the solution of recurrence equations. This topic is covered
in depth here because it is a useful analytical tool in the study of various fast Fourier
transform (FFT) algorithms in this book.

B.1 Deriving Recurrences From a Known Function

Consider a function which defines the factorial of a positive integer N . By definition,

N ! ≡
N∏

K=1

K =

(
N−1∏
K=1

K

)
×N = ((N − 1)!) ×N .(B.1)

Defining T (N) = N !, which implies T (N − 1) = (N − 1)!, yields

T (N) =

{
T (N − 1) ×N if N ≥ 2,

1 if N = 1.
(B.2)

Equations (B.2) relate the function values of T (N) and T (N − 1); together with the
boundary condition T (1) = 1, it defines N !. It is called a recurrence equation be-
cause the function T appears on both sides of (B.2). Solving a recurrence equation to
determine the analytical form of an unknown function is the topic of the next section.

B.2 Solving Recurrences to Determine an Unknown

Function

Example B.1 Consider again the example in (B.2), and adopt the view that its so-
lution is not known. The solution method is first demonstrated for N = 5. Observe
that in the following solution process, the right-hand side of the identity T (N) =
T (N − 1)×N is substituted for T (N) when N = 5, 4, 3, 2, and the boundary condition



T (1) = 1 is last substituted to terminate the process when N = 1.

T (5) = (T (4) × 5)

= (T (3) × 4) × 5

= (T (2) × 3) × 4 × 5

= (T (1) × 2) × 3 × 4 × 5

= 1 × 2 × 3 × 4 × 5.

= 5! .

The analytical solution expressed in terms of N is obtained in exactly the same manner
as shown below. The solution is reached when T disappears from the right-hand side.

T (N) = (T (N − 1) ×N)

= (T (N − 2) × (N − 1)) ×N

= (T (N − 3) × (N − 2)) × (N − 1) ×N

...

= (T (1) × 2) × 3 × · · · × (N − 2) × (N − 1) ×N

= 1 × 2 × 3 × · · · × (N − 2) × (N − 1) ×N

= N ! .

This method is called the substitution method.

Example B.2 Given below is another recurrence equation which can be solved by the
same technique to determine the unknown function T (N).

Solving

T (N) =

{
T

(
N
2

)
+ 1 if N = 2n ≥ 2,

1 if N = 1.

(B.3)

The assumption N = 2n ensures that N
2 , N

4 , N
8 , · · · , N

2k (k < n) are always a power
of 2, and it further ensures that the occurrence of T

(
N
2k

)
can always be replaced by

T
(
N
2k × 1

2

)
using (B.3) until T (1) = 1 is finally substituted to make T disappear from



the right-hand side. This process is shown below.

T (N) =
(
T

(
N

2

)
+ 1

)

=
(
T

(
N

22

)
+ 1

)
+ 1

=
(
T

(
N

23

)
+ 1

)
+ 1 + 1

...

=
(
T

(
N

2n

)
+ 1

)
+ (n− 1)

= T (1) + n

= 1 + n

= log2 N + 1 .

Note that the assumption N = 2n implies n = log2 N .

Example B.3 Now consider another example before this solution method is general-
ized further.

Solving

T (N) =

{
2T

(
N
2

)
+ N if N = 2n ≥ 2,

0 if N = 1.

(B.4)

Observe that substituting N by N
2 in (B.4) yields

T

(
N

2

)
= 2T

(
N

4

)
+

N

2
,(∗)

substituting N by N
4 in (B.4) yields

T

(
N

4

)
= 2T

(
N

8

)
+

N

4
,(∗∗)

and so on. These are the identities used in solving (B.4). The process of repetitive
substitutions is shown below. Observe that T

(
N
2

)
is replaced by T

(
N
22

)
using identity

(∗), which is then replaced by T
(
N
23

)
using identity (∗∗), · · · , and eventually T (2) is

replaced by T (1) = 0. When T disappears from the right-hand side, the remaining



terms, expressed in a closed-form, represent the analytical form of function T (N).

T (N) =
(

2T
(
N

2

)
+ N

)

= 2
(

2T
(
N

22

)
+

N

2

)
+ N

= 22T

(
N

22

)
+ N + N

= 22

(
2T

(
N

23

)
+

N

22

)
+ N + N

= 23T

(
N

23

)
+ N + N + N

= 23T

(
N

23

)
+ N × 3

...

= 2nT
(
N

2n

)
+ N × n

= 2nT (1) + N × n

= 0 + N log2 N

= N log2 N .

Thus T (N) = N log2 N is the solution of (B.4).

Comparing the three examples above, it is evident that while the principle of sub-
stitution is straightforward, some skill is needed to detect the pattern in which the
terms in the right-hand side emerge during the substitution process, and to collect and
simplify these terms into a closed-form expression at the end. The closed-form expres-
sions of some mathematical summations encountered in solving generalized recurrence
equations are presented in the next section.

B.3 Mathematical Summation Formulas

The formulas reviewed in this section are useful in finding closed-form expressions of
some commonly encountered summations.

Arithmetic series

N∑
K=1

K = 1 + 2 + · · · + N =
N(N + 1)

2
.(B.5)

N∑
K=1

K2 = 1 + 22 + · · · + N2 =
N(N + 1)(2N + 1)

6
.(B.6)



Geometric series

n−1∑
k=0

xk = 1 + x + x2 + · · · + xn−1(B.7)

=
xn − 1
x− 1

, if x 
= 1 is a real number.

∞∑
k=0

xk = 1 + x + x2 + · · ·(B.8)

=
1

1 − x
, if − 1 < x < 1 .

Harmonic series

N∑
K=1

1
K

= 1 +
1
2

+
1
3

+
1
4

+ · · · + 1
N

(B.9)

= lnN + Θ(1) .

A telescoping sum

N−1∑
K=1

1
K(K + 1)

=
N−1∑
K=1

(
1
K

− 1
K + 1

)
(B.10)

=
(

1 − 1
2

)
+

(
1
2
− 1

3

)
+ · · · +

(
1

N − 1
− 1

N

)

= 1 − 1
N

.

Bounding a finite sum by integrals

∫ B

A−1

F (x)dx ≤
B∑

K=A

F (K) ≤
∫ B+1

A

F (x)dx ,(B.11)

if F (K) is a monotonically increasing function.

∫ B+1

A

F (x)dx ≤
B∑

K=A

F (K) ≤
∫ B

A−1

F (x)dx ,(B.12)

if F (K) is a monotonically decreasing function.



B.4 Solving Generalized Recurrence Equations

Theorem B.1 If the execution time of an algorithm satisfies

T (N) =

{
aT

(
N
c

)
+ bN if N = ck > 1 ,

b if N = 1.
(B.13)

where a ≥ 1, c ≥ 2, b > 0, and c > 0 are given constants, then the order of complexity
of this algorithm is given by

T (N) =




bc
c− aN if a < c ,

bN logc N + Θ(N) if a = c ,
ab

a− cN
logc a if a > c .

(B.14)

Proof: Assuming N = ck > 1 for c ≥ 2,

T (N) = aT

(
N

c

)
+ bN

= a

(
aT

(
N

c2

)
+ b

(
N

c

))
+ bN

= a2T

(
N

c2

)
+ ab

(
N

c

)
+ bN

= a2

(
aT

(
N

c3

)
+ b

(
N

c2

))
+ ab

(
N

c

)
+ bN

= a3T

(
N

c3

)
+ a2b

(
N

c2

)
+ ab

(
N

c

)
+ bN

...

= akT

(
N

ck

)
+ ak−1b

(
N

ck−1

)
+ ak−2b

(
N

ck−2

)
+ · · · + ab

(
N

c

)
+ bN

= akT (1) + ak−1bc + ak−2bc2 + · · · + abck−1 + bck

= akb + akb
( c

a

)
+ akb

( c

a

)2

+ · · · + akb
( c

a

)k−1

+ akb
( c

a

)k

= akb

k∑
i=0

( c

a

)i

.

(B.15)

If a = c, then c
a = 1, and N = ck = ak, which implies k = logc N . Equation (B.15)

becomes

T (N) = akb

k∑
i=0

( c

a

)i

= Nb

k∑
i=0

1 = Nb(k + 1) = bN logc N + bN .(B.16)



If a > c, then c
a < 1 and limi→∞

( c
a
)i = 0. As before, N = ck implies k = logc N .

Equation (B.15) becomes

T (N) = akb

k∑
i=0

( c

a

)i

= akb

(
1 − (c/a)k+1

1 − (c/a)

)

≈ akb

(
a

a− c

)
= alogc N

(
ab

a− c

)

=
ab

a− c
N logc a .

(B.17)

If a < c, then reformulate equation (B.15) to obtain a geometric series in terms of
a
c < 1. From equation (B.15),

T (N) = akb

k∑
i=0

( c

a

)i

= akb + ak−1bc + ak−2bc2 + · · · + abck−1 + bck

= ckb
(a

c

)k

+ ckb
(a

c

)k−1

+ · · · + ckb
(a

c

)
+ ckb

= ckb

k∑
i=0

(a

c

)i

= Nb

(
1 − (a/c)k+1

1 − (a/c)

)

≈ bN

(
c

c− a

)

=
bc

c− a
N .

(B.18)

�

Theorem B.2 If the execution time of an algorithm satisfies

T (N) =

{
aT

(
N
c

)
+ bNr if N = ck > 1 ,

d if N = 1.
(B.19)

where a ≥ 1, c ≥ 2, r ≥ 1, b > 0, and d > 0 are given constants, then the order of
complexity of this algorithm is given by

T (N) =




bcr

cr − a
Nr + Θ

(
N logc a

)
if a < cr ,

bNr logc N + Θ(Nr) if a = cr ,(
ab

a− cr
+ (d− b)

)
N logc a if a > cr .

(B.20)



Proof: Assuming N = ck > 1 for c ≥ 2,

T (N) = aT

(
N

c

)
+ bNr

= a

(
aT

(
N

c2

)
+ b

(
N

c

)r)
+ bNr

= a2T

(
N

c2

)
+ ab

(
N

c

)r

+ bNr

= a2

(
aT

(
N

c3

)
+ b

(
N

c2

)r)
+ ab

(
N

c

)r

+ bNr

= a3T

(
N

c3

)
+ a2b

(
N

c2

)r

+ ab

(
N

c

)r

+ bNr

...

= akT

(
N

ck

)
+ ak−1b

(
N

ck−1

)r

+ ak−2b

(
N

ck−2

)r

+ · · · + ab

(
N

c

)r

+ bNr

= akT (1) + bNr
( a

cr

)k−1

+ bNr
( a

cr

)k−2

+ · · · + bNr
( a

cr

)
+ bNr

= akd + bNr
k−1∑
i=0

( a

cr

)i

.

(B.21)

If a = cr, then a
cr

= 1, and ak = crk =
(
ck

)r = Nr. Equation (B.21) becomes

T (N) = akd + bNr
k−1∑
i=0

( a

cr

)i

= dcrk + bNr
k−1∑
i=0

1

= dNr + bNr(k − 1 + 1) = bNr logc N + dNr .

(B.22)

If a < cr, then a
cr

< 1 and limi→∞
(
a
cr

)i

= 0. As before, N = ck implies k = logc N .
Equation (B.21) becomes

T (N) = akd + bNr
k−1∑
i=0

( a

cr

)i

≈ akd + bNr

(
cr

cr − a

)

= dalogc N + bNr

(
cr

cr − a

)

=
bcr

cr − a
Nr + dN logc a

=
bcr

cr − a
Nr + Θ

(
N logc a

)
.

(B.23)

Note that a < cr implies logc a < logc cr; i.e., logc a < r, and the term N logc a is a
lower order term compared to Nr.



Finally, consider the case a > cr. Because cr
a < 1, it is desirable to reformulate

equation (B.21) to obtain a geometric series in terms of cr
a as shown below.

T (N) = akd + bNr
k−1∑
i=0

( a

cr

)i

= akd + ak−1b

(
N

ck−1

)r

+ ak−2b

(
N

ck−2

)r

+ · · · + ab

(
N

c

)r

+ bNr

= akd + ak−1b

(
ck

ck−1

)r

+ ak−2b

(
ck

ck−2

)r

+ · · · + ab

(
ck

c

)r

+ b
(
ck

)r
= akd + ak−1bcr + ak−2b (cr)2 + · · · + ab (cr)k−1 + b (cr)k

= akd + akb

(
cr

a

)
+ akb

(
cr

a

)2

+ · · · + akb

(
cr

a

)k−1

+ akb

(
cr

a

)k

= akd + akb

k∑
i=1

(
cr

a

)i

= akd + akb

(
−1 +

k∑
i=0

(
cr

a

)i
)

≈ akd− akb + akb

(
a

a− cr

)

= ak
(

(d− b) +
ab

a− cr
)
)
k

=
(

ab

a− cr
+ (d− b)

)
alogc N

=
(

ab

a− cr
+ (d− b)

)
N logc a .

(B.24)
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Theorem B.3

Solving

T (N) =

{∑N
K=1

1
N (T (K − 1) + T (N −K) + N − 1) if N > 1 ,

0 if N = 1.

(B.25)

Solution:

T (N) =
N∑

K=1

1
N

(
T (K − 1) + T (N −K) + N − 1

)

= (N − 1) +
1
N

(
T (0) + T (N − 1) + T (1) + T (N − 2) + · · · + T (N − 1) + T (0)

)

= (N − 1) +
1
N

(
2T (0) + 2T (1) + · · · + 2T (N − 2) + 2T (N − 1)

)

= (N − 1) +
2
N

N∑
K=1

T (K − 1) .

(B.26)



To solve for T (N), it is desirable to simplify (B.26) so that only T (N − 1) appears
in the right-hand side. Before that can be done, the expression of T (N − 1) is first
determined by substituting N by N−1 on both sides of (B.26), and the result is shown
in identity (B.27).

T (N − 1) = (N − 2) +
2

N − 1

N−1∑
K=1

T (K − 1) .(B.27)

Because T (0), T (1), · · · , T (N − 2) appear in the right-hand sides of both identi-
ties (B.26) and (B.27), they can be cancelled out by subtracting one from the other if
their respective coefficients can be made the same. To accomplish this, multiply both
sides of (B.26) by N/(N − 1), and obtain

(
N

N − 1

)
T (N) =

(
N

N − 1

) (
(N − 1) +

2
N

N∑
K=1

T (K − 1)

)

= N +
2

N − 1

N∑
K=1

T (K − 1) .

(B.28)

Subtracting (B.27) from (B.28), one obtains(
N

N − 1

)
T (N) − T (N − 1) = N − (N − 2) +

2
N − 1

T (N − 1)

= 2 +
2

N − 1
T (N − 1) .

(B.29)

By moving T (N − 1) on the left-hand side of (B.29) to the right-hand side, T (N) can
be expressed as

T (N) =
(
N − 1
N

) (
T (N − 1) + 2 +

2
N − 1

T (N − 1)
)

=
(
N − 1
N

) (
2 +

N + 1
N − 1

T (N − 1)
)

=
(
N + 1
N

)
T (N − 1) + 2

(
N − 1
N

)

≤
(
N + 1
N

)
T (N − 1) + 2

= T (N) .

(B.30)

Since T (N) = T (N) for all practical purposes, one may now solve the following recur-
rence involving T (N), which is much simpler than (B.25).

Solving

T (N) =

{
2 +

(
N+1
N

)
T (N − 1) if N > 1 ,

0 if N = 1.

(B.31)

Observe that substituting N by N − 1 on both sides of identity (B.31) yields

T (N − 1) = 2 +
(

N

N − 1

)
T (N − 2) ,(∗̂)



substituting N by N − 2 in (B.31) yields

T (N − 2) = 2 +
(
N − 1
N − 2

)
T (N − 3) ,(∗̂∗̂)

and so on. These are the identities to be used in solving (B.31). The process of
repetitive substitutions is shown below. Observe that T (N−1) is replaced by T (N−2)
using identity (∗̂), which is then replaced by T (N − 3) using identity (∗̂∗̂), · · · , and
eventually T (2) is replaced by T (1) = 0.

T (N) = 2 +
N + 1
N

T (N − 1)

= 2 +
N + 1
N

(
2 +

N

N − 1
T (N − 2)

)

= 2 + 2
(
N + 1
N

)
+

N + 1
N − 1

T (N − 2)

= 2 + 2
(
N + 1
N

)
+

N + 1
N − 1

(
2 +

N − 1
N − 2

T (N − 3)
)

= 2 + 2(N + 1)
(

1
N

+
1

N − 1

)
+

N + 1
N − 2

T (N − 3)

...

= 2 + 2(N + 1)
(

1
N

+
1

N − 1
+ · · · + 1

4

)
+

N + 1
3

T (2)

= 2 + 2(N + 1)
(

1
N

+
1

N − 1
+ · · · + 1

4

)
+

N + 1
3

(
2 +

3
2
T (1)

)

= 2 + 2(N + 1)
(

1
N

+
1

N − 1
+ · · · + 1

4
+

1
3

)

= 2 + 2(N + 1)
(
−1 − 1

2
+

N∑
K=1

1
K

)

= 2 + 2(N + 1)
(
Hn − 1.5

)

= 2 + 2(N + 1)
(

lnN + Θ(1)
)

= 2N lnN + Θ(N)

= 1.386N log2 N + Θ(N)

(B.32)

The closed-form expression T (N) = 1.386 log2 N + Θ(N) is the solution of the recur-
rence (B.31).



B.5 Recurrences and the Fast Fourier Transforms

Since FFT algorithms are recursive, it is natural that their complexity emerges as a
set of recurrence equations. Thus, determining the complexity of an FFT algorithm
involves solving these recurrence equations. Four examples are given below. Their
solutions are left as exercises.

Example B.4 Arithmetic Cost of the Radix-2 FFT Algorithm

Solving T (N) =

{
2T

(
N
2

)
+ 5N if N = 2n ≥ 2 ,

0 if N = 1.

Answer: T (N) = 5N log2 N .

Example B.5 Arithmetic Cost of the Radix-4 FFT Algorithm

Solving T (N) =

{
4T

(
N
4

)
+ 8 1

2N − 32 if N = 4n ≥ 16 ,

16 if N = 4 .

Answer: T (N) = 8
1
2
N log4 N − 43

6
N +

32
3

= 4
1
4
N log2 N − 43

6
N +

32
3

.

Example B.6 Arithmetic Cost of the Split-Radix FFT Algorithm

Solving T (N) =



T

(
N
2

)
+ 2T

(
N
4

)
+ 6N − 16 if N = 4n ≥ 16 ,

16 if N = 4 ,

4 if N = 2 .

Answer: T (N) = 4N log2 N − 6N + 8 .

Example B.7 Arithmetic Cost of the Radix-8 FFT Algorithm

Solving T (N) =

{
8T

(
N
8

)
+ 12 1

4N − c if N = 8n ≥ 64, and c > 0 ,

d if N = 8, and d > 0 .

Answer: T (N) = 12
1
4
N log8 N − Θ(N)

= 4
1
12

N log2 N − Θ(N) .



Example B.8 Arithmetic Cost of the Radix-16 FFT Algorithm

Solving T (N) =

{
16T

(
N
16

)
+ 16 1

8N − c if N = 16n ≥ 256, and c > 0 ,

d if N = 16, and d > 0 .

Answer: T (N) = 16
1
8
N log16 N − Θ(N)

= 4
1
32

N log2 N − Θ(N) .
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