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Preface

Shape understanding remains one of the most intriguing problems in computer
vision and human perception. This book is a collection of chapters on shape
analysis, by experts in the field, highlighting several viewpoints, including modeling
and algorithms, in both discrete and continuous domains. It is a summary of research
presentations and discussions on these topics at a Dagstuhl workshop in April 2011.

The content is grouped into three main areas:

Part I – Discrete Shape Analysis
Part II – Partial Differential Equations for Shape Analysis
Part III – Optimization Methods for Shape Analysis

The chapters contain both new results and tutorial sections that survey various areas
of research.

It was a pleasure for us to have had the opportunity to collaborate and exchange
scientific ideas with our colleagues who participated in the Dagstuhl Workshop on
Shape Analysis and subsequently contributed to this collection. We hope that this
book will promote new research and further collaborations.

Cottbus, Haifa and Athens Michael Breuß
Alfred Bruckstein

Petros Maragos
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Joviša Žunić Computer Science, University of Exeter, Exeter, UK

Mathematical Institute Serbian Academy of Sciences and Arts, Belgrade, Serbia



Part I
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Chapter 1
Modeling Three-Dimensional Morse
and Morse-Smale Complexes

Lidija Čomić, Leila De Floriani, and Federico Iuricich

Abstract Morse and Morse-Smale complexes have been recognized as a suitable
tool for modeling the topology of a manifold M through a decomposition of M
induced by a scalar field f defined over M . We consider here the problem of
representing, constructing and simplifying Morse and Morse-Smale complexes in
3D. We first describe and compare two data structures for encoding 3D Morse
and Morse-Smale complexes. We describe, analyze and compare algorithms for
computing such complexes. Finally, we consider the simplification of Morse and
Morse-Smale complexes by applying coarsening operators on them, and we discuss
and compare the coarsening operators on Morse and Morse-Smale complexes
described in the literature.

1.1 Introduction

Topological analysis of discrete scalar fields is an active research field in
computational topology. The available data sets defining the fields are increasing in
size and in complexity. Thus, the definition of compact topological representations
for scalar fields is a first step in building analysis tools capable of analyzing
effectively large data sets. In the continuous case, Morse and Morse-Smale
complexes have been recognized as convenient and theoretically well founded
representations for modeling both the topology of the manifold domainM , and the
behavior of a scalar field f overM . They segment the domainM of f into regions
associated with critical points of f , which encode the features of both M and f .
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Morse and Morse-Smale complexes have been introduced in computer graphics
for the analysis of 2D scalar fields [5, 20], and specifically for terrain modeling
and analysis, where the domain is a region in the plane, and the scalar field is the
elevation function [14,39]. Recently, Morse and Morse-Smale complexes have been
considered as a tool to analyze also 3D functions [21,24]. They are used in scientific
visualization, where data are obtained through measurements of scalar field values
over a volumetric domain, or through simulation, such as the analysis of mixing
fluids [8]. With an appropriate selection of the scalar function, Morse and Morse-
Smale complexes are also used for segmenting molecular models to detect cavities
and protrusions, which influence interactions between proteins [9, 35]. Morse
complexes of the distance function have been used in shape matching and retrieval.

Scientific data, obtained either through measurements or simulation, is usually
represented as a discrete set of vertices in a 2D or 3D domain M , together with
function values given at those vertices. Algorithms for extracting an approximation
of Morse and Morse-Smale complexes from a sampling of a (continuous) scalar field
on the vertices of a simplicial complex ˙ triangulating M have been extensively
studied in 2D [1,6,9,13,20,37,39]. Recently, some algorithms have been proposed
for dealing with scalar data in higher dimensions [11, 19, 21, 26, 27].

Although Morse and Morse-Smale complexes represent the topology of M and
the behavior of f in a much more compact way than the initial data set at full
resolution, simplification of these complexes is a necessary step for the analysis of
noisy data sets. Simplification is achieved by applying the cancellation operator
on f [33], and on the corresponding Morse and Morse-Smale complexes. In
2D [6, 20, 24, 39, 43], a cancellation eliminates critical points of f , reduces the
incidence relation on the Morse complexes, and eliminates cells from the Morse-
Smale complexes. In higher dimensions, surprisingly, a cancellation may introduce
cells in the Morse-Smale complex, and may increase the mutual incidences among
cells in the Morse complex.

Simplification operators, together with their inverse refinement ones, form a
basis for the definition of a multi-resolution representation of Morse and Morse-
Smale complexes, crucial for the analysis of the present-day large data sets. Several
approaches for building such multi-resolution representations in 2D have been
proposed [6,7,15]. In higher dimensions, such hierarchies are based on a progressive
simplification of the initial full-resolution model.

Here, we briefly review the well known work on extraction, simplification, and
multi-resolution representation of Morse and Morse-Smale complexes in 2D. Then,
we review in greater detail and compare the extension of this work to three and
higher dimensions. Specifically, we compare the data structure introduced in [25]
for encoding 3D Morse-Smale complexes with a 3D instance of the dimension-
independent data structure proposed in [11] for encoding Morse complexes. We
review the existing algorithms for the extraction of an approximation of Morse and
Morse-Smale complexes in three and higher dimensions. Finally, we review and
compare the two existing approaches in the literature to the simplification of the
topological representation given by Morse and Morse-Smale complexes, without
changing the topology of M . The first approach [24] implements a cancellation
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operator defined for Morse functions [33] on the corresponding Morse-Smale
complexes. The second approach [10] implements only a well-behaved subset
of cancellation operators, which still forms a basis for the set of operators that
modify Morse and Morse-Smale complexes on M in a topologically consistent
manner. These operators also form a basis for the definition of a multi-resolution
representation of Morse and Morse-Smale complexes.

1.2 Background Notions

We review background notions on Morse theory and Morse complexes for C2

functions, and some approaches to discrete representations for Morse and Morse-
Smale complexes.

Morse theory captures the relationships between the topology of a manifold M
and the critical points of a scalar (real-valued) function f defined on M [33, 34].
An n-manifold M without boundary is a topological space in which each point
p has a neighborhood homeomorphic to Rn. In an n-manifold with boundary,
each point p has a neighborhood homeomorphic to Rn or to a half-space RnC D
f.x1; x2; : : : ; xn/ 2 Rn W xn ! 0g [30].

Let f be a C2 real-valued function (scalar field) defined over a manifold M .
A pointp 2 M is a critical point of f if and only if the gradientrfD. @f

@x1
; : : : ; @f

@xn
/

(in some local coordinate system around p) of f vanishes at p. Function f is said
to be a Morse function if all its critical points are non-degenerate (the Hessian
matrix Hesspf of the second derivatives of f at p is non-singular). For a Morse
function f , there is a neighborhood of each critical point p D .p1; p2; : : : ; pn/ of
f , in which f .x1; x2; : : : ; xn/ D f .p1; p2; : : : ; pn/"x21": : :"x2i Cx2iC1C: : :Cx2n
[34]. The number i is equal to the number of negative eigenvalues of Hesspf , and
is called the index of critical point p. The corresponding eigenvectors point in the
directions in which f is decreasing. If the index of p is i , 0 # i # n, p is called
an i -saddle. A 0-saddle is called a minimum, and an n-saddle is called a maximum.
Figure 1.1 illustrates a neighborhood of a critical point in three dimensions.

An integral line of a function f is a maximal path that is everywhere tangent
to the gradient rf of f . It follows the direction in which the function has the
maximum increasing growth. Two integral lines are either disjoint, or they are the
same. Each integral line starts at a critical point of f , called its origin, and ends at
another critical point, called its destination. Integral lines that converge to a critical
point p of index i cover an i -cell called the stable (descending) cell of p. Dually,
integral lines that originate at p cover an (n" i )-cell called the unstable (ascending)
cell of p. The descending cells (or manifolds) are pairwise disjoint, they cover M ,
and the boundary of every cell is a union of lower-dimensional cells. Descending
cells decompose M into a cell complex !d , called the descending Morse complex
of f on M . Dually, the ascending cells form the ascending Morse complex !a of
f on M . Figures 1.2a, b and 1.3a, b show an example of a descending and dual
ascending Morse complex in 2D and 3D, respectively.
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Fig. 1.1 Classification of non-degenerate critical points in the 3D case. Arrowed lines represent
integral lines, green regions contain points with the lower function value. (a) A regular point, (b)
a local maximum, (c) a local minimum, (d) a 1-saddle and (e) a 2-saddle

Fig. 1.2 A portion of (a) a descending Morse complex; (b) the dual ascending Morse complex;
(c) the Morse-Smale complex; (d) the 1-skeleton of the Morse-Smale complex in 2D

A Morse function f is called a Morse-Smale function if and only if each
non-empty intersection of a descending and an ascending cell is transversal. This
means that each connected component of the intersection (if it exists) of the
descending i -cell of a critical point p of index i , and the ascending .n " j /-cell
of a critical point q of index j , i ! j , is an .i " j /-cell. The connected components
of the intersection of descending and ascending cells of a Morse-Smale function
f decompose M into a Morse-Smale complex. If f is a Morse-Smale function,
then there is no integral line connecting two different critical points of f of the
same index. Each 1-saddle is connected to exactly two (not necessarily distinct)
minima, and each .n " 1/-saddle is connected to exactly two (not necessarily
distinct) maxima. The 1-skeleton of the Morse-Smale complex is the subcomplex
composed of 0-cells and 1-cells. It plays an important role in the applications, as
it is often used as a graph-based representation of the Morse and Morse-Smale
complexes. Figure 1.2c in 2D and Fig. 1.3c in 3D illustrate the Morse-Smale
complex corresponding to the ascending and descending Morse complexes of
Figs. 1.2a, b and 1.3a, b, respectively. Figure 1.2d shows the 1-skeleton of the
Morse-Smale complex in Fig. 1.2c.

The first approaches to develop a discrete version of Morse theory aimed at a
generalization of the notion of critical points (maxima, minima, saddles) to the case
of a scalar field f defined on the vertices of a simplicial complex ˙ triangulating
a 2D manifold (surface) M . This generalization was first done in [2] in 2D, and
has been used in many algorithms [20, 36, 39]. The classification of critical points
is done based on the f value at a vertex p, and the vertices in the link Lk.p/ of p.
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Fig. 1.3 A portion of (a) a descending and (b) ascending 3D Morse complex, and (c) the
corresponding Morse-Smale complex, defined by a function f .x; y; z/D sin x C siny C sin z

Fig. 1.4 The classification of a vertex based on the function values of the vertices in its link
(minimum, regular point, simple saddle, maximum, 2-fold saddle). The lower link Lk! is marked
in blue, the upper link is red

The link Lk.p/ of each vertex p of ˙ can be decomposed into three sets, LkC.p/,
Lk".p/, and Lk˙.p/. The upper link LkC.p/ consists of the vertices q 2 Lk.p/
with higher f value than f .p/, and of edges connecting such vertices. The lower
link Lk".p/ consists of the vertices with lower f value than f .p/, and of edges
connecting such vertices. The set Lk˙.p/ consists of mixed edges in Lk.p/, each
connecting a vertex with higher f value than f .p/ to a vertex with lower f value
than f .p/. If the lower linkLk".p/ is empty, then p is a minimum. If the upper link
LkC.p/ is empty, then p is a maximum. If the cardinality of Lk˙.p/ is 2C2m.p/,
then p is a saddle with multiplicity m.p/ ! 1. Otherwise, p is a regular point. The
classification of a vertex based on these rules is illustrated in Fig. 1.4.

There have been basically two approaches in the literature to extend the results
of Morse theory and represent Morse and Morse-Smale complexes in the discrete
case. One approach, called Forman theory [22], considers a discrete Morse function
(Forman function) defined on all cells of a cell complex. The other approach,
introduced in [20] in 2D, and in [21] in 3D, provides a combinatorial description,
called a quasi-Morse-Smale complex, of the Morse-Smale complex of a scalar field
f defined at the vertices of a simplicial complex.

The main purpose of Forman theory is to develop a discrete setting in which
almost all the main results from smooth Morse theory are valid. This goal is achieved
by considering a function F defined on all cells, and not only on the vertices, of
a cell complex ! . Function F is a Forman function if for any i -cell " , all the
.i " 1/-cells on the boundary of " have a lower F value than F."/, and all the
.iC1/-cells in the co-boundary of " have a higher F value than F."/, with at most
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Fig. 1.5 (a) Forman function F defined on a 2D simplicial complex, and (b) the corresponding
discrete gradient vector field. Each simplex is labelled by its F value

one exception. If there is such an exception, it defines a pairing of cells of ! , called
a discrete (or Forman) gradient vector field V . Otherwise, i -cell " is a critical cell of
index i . Similar to the smooth Morse theory, critical cells of a Forman function can
be cancelled in pairs. In the example in Fig. 1.5a, a Forman function F defined on a
2D simplicial complex is illustrated. Each simplex is labelled by its function value.
Figure 1.5b shows the Forman gradient vector field defined by Forman function F
in Fig. 1.5a. Vertex labelled 0 and edge labelled 6 are critical simplexes of F .

Forman theory finds important applications in computational topology, computer
graphics, scientific visualization, molecular shape analysis, and geometric model-
ing. In [32], Forman theory is used to compute the homology of a simplicial complex
with manifold domain, while in [9], it is used for segmentation of molecular
surfaces. Forman theory can be used to compute Morse and Morse-Smale complexes
of a scalar field f defined on the vertices of a simplicial or cell complex, by
extending scalar field f to a Forman function F defined on all cells of the complex
[12, 27, 31, 38].

The notion of a quasi-Morse-Smale complex in 2D and 3D has been introduced
in [20, 21] with the aim of capturing the combinatorial structure of a Morse-Smale
complex of a Morse-Smale function f defined over a manifold M . In 2D, a quasi-
Morse-Smale complex is defined as a complex whose 1-skeleton is a tripartite graph,
since the set of its vertices is partitioned into subsets corresponding to critical points
(minima, maxima, and saddles). A vertex corresponding to a saddle has four incident
edges, two of which connect it to vertices corresponding to minima, and the other
two connect it to maxima. Each region (2-cell of the complex) is a quadrangle whose
vertices are a saddle, a minimum, a saddle, and a maximum. In 3D, vertices of a
quasi-Morse-Smale complex are partitioned into four sets corresponding to critical
points. Each vertex corresponding to a 1-saddle is the extremum vertex of two edges
connecting it to two vertices corresponding to minima, and dually for 2-saddles and
maxima. Each 2-cell is a quadrangle, and there are exactly four 2-cells incident in
each edge connecting a vertex corresponding to a 1-saddle to a vertex corresponding
to a 2-saddle.
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1.3 Related Work

In this section, we review related work on topological representations of 2D scalar
fields based on Morse or Morse-Smale complexes. We concentrate on three topics
relevant to the work presented here, namely: computation, simplification and multi-
resolution representation of Morse and Morse-Smale complexes.

Several algorithms have been proposed in the literature for decomposing the
domain of a 2D scalar field f into an approximation of a Morse or a Morse-Smale
complex. For a review of the work in this area see [4]. Algorithms for decomposing
the domain M of field f into an approximation of a Morse, or of a Morse-Smale,
complex can be classified as boundary-based [1, 6, 20, 37, 39], or region-based
[9, 13]. Boundary-based algorithms trace the integral lines of f , which start at
saddle points and converge to minima and maxima of f . Region-based methods
grow the 2D cells corresponding to minima and maxima of f , starting from those
critical points.

One of the major issues that arise when computing a representation of a scalar
field as a Morse, or as a Morse-Smale, complex is the over-segmentation due to
the presence of noise in the data sets. Simplification algorithms eliminate less
significant features from these complexes. Simplification is achieved by applying
an operator called cancellation, defined in Morse theory [33]. It transforms a Morse
function f into Morse function g with fewer critical points. Thus, it transforms a
Morse-Smale complex into another, with fewer vertices, and it transforms a Morse
complex into another, with fewer cells. It enables also the creation of a hierarchical
representation. A cancellation in 2D consists of collapsing a maximum-saddle
pair into a maximum, or a minimum-saddle pair into a minimum. Cancellation is
performed in the order usually determined by the notion of persistence. Intuitively,
persistence measures the importance of the pair of critical points to be cancelled,
and is equal to the absolute difference in function values between the paired critical
points [20]. In 2D Morse-Smale complexes, the cancellation operator has been
investigated in [6, 20, 39, 43]. In [15], the cancellation operator in 2D has been
extended to functions that may have multiple saddles and macro-saddles (saddles
that are connected to each other).

Due to the large size and complexity of available scientific data sets, a
multi-resolution representation is crucial for their interactive exploration. There
have been several approaches in the literature to multi-resolution representation
of the topology of a scalar field in 2D [6, 7, 15]. The approach in [6] is based
on a hierarchical representation of the 1-skeleton of a Morse-Smale complex,
generated through the cancellation operator. It considers the 1-skeleton at full
resolution and generates a sequence of simplified representations of the complex
by repeatedly applying a cancellation operator. In [7], the inverse anticancellation
operator to the cancellation operator in [6] has been defined. It enables a definition
of a dependency relation between refinement modifications, and a creation of a
multi-resolution model for 2D scalar fields. The method in [15] creates a hierarchy
of graphs (generalized critical nets), obtained as a 1-skeleton of an overlay of
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ascending and descending Morse complexes of a function with multiple saddles and
saddles that are connected to each other. Hierarchical watershed approaches have
been developed to cope with the increase in size of both 2D and 3D images [3].

There have been two attempts in the literature to couple the multi-resolution
topological model provided by Morse-Smale complexes with the multi-resolution
model of the geometry of the underlying simplicial mesh. The approach in [6] first
creates a hierarchy of Morse-Smale complexes by applying cancellation operators
to the full-resolution complex, and then, by Laplacian smoothing, it constructs
the smoothed function corresponding to the simplified topology. The approach
in [16] creates the hierarchy by applying half-edge contraction operator, which
simplifies the geometry of the mesh. When necessary, the topological representation
corresponding to the simplified coarser mesh is also simplified. The data structure
encoding the geometrical hierarchy of the mesh, and the data structure encoding
the topological hierarchy of the critical net are interlinked. The hierarchical critical
net is used as a topological index to query the hierarchical representation of the
geometry of the simplicial mesh.

1.4 Representing Three-Dimensional Morse
and Morse-Smale Complexes

In this section, we describe and compare two data structures for representing the
topology and geometry of a scalar field f defined over the vertices of a simplicial
complex ˙ with manifold domain in 3D. The topology of scalar field f (and of
its domain ˙) is represented in the form of Morse and Morse-Smale complexes.
The two data structures encode the topology of the complexes in essentially the
same way, namely in the form of a graph, usually called an incidence graph. The
difference between the two data structures is in the way they encode the geometry:
the data structure in [11] (its 3D instance) encodes the geometry of the 3-cells of
the descending and ascending complexes; the data structure in [25] encodes the
geometry of the ascending and descending 3-, 2- and 0-cells in the descending and
ascending Morse complexes, and that of the 1-cells in the Morse-Smale complexes.

1.4.1 A Dimension-Independent Compact Representation
for Morse Complexes

The incidence-based representation proposed in [11] is a dual representation for the
ascending and the descending Morse complexes !a and !d . The topology of both
complexes is represented by encoding the immediate boundary and co-boundary
relations of the cells in the two complexes in the form of a Morse Incidence Graph
(MIG). The Morse incidence graph provides also a combinatorial representation of
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Fig. 1.6 (a) Ascending 2D Morse complex of function f .x; y/ D sin x C sin y and (b) the
corresponding Morse incidence graph

the 1-skeleton of a Morse-Smale complex. In the discrete case the Morse incidence
graph is coupled with a representation for the underlying simplicial mesh ˙ . The
two representations (of the topology and of the geometry) are combined into the
incidence-based data structure, which is completely dimension-independent. This
makes it suitable also for encoding Morse complexes in higher dimensions, e.g. 4D
Morse complexes representing time-varying 3D scalar fields.

A Morse Incidence Graph (MIG) is a graph G D .N;A/ in which:

• The set of nodes N is partitioned into nC1 subsets N0, N1,. . . ,Nn, such that there
is a one-to-one correspondence between the nodes in Ni (i-nodes) and the i -cells
of !d , (and thus the .n " i/-cells of !a);

• There is an arc joining an i -node p with an .i C 1/-node q if and only if the
corresponding cells p and q differ in dimension by one, and p is on the boundary
of q in !d , (and thus q is on the boundary of p in !a);

• Each arc connecting an i -node p to an .i C 1/-node q is labelled by the number
of times i -cell p (corresponding to i -node p) in !d is incident to .i C 1/-cell q
(corresponding to .i C 1/-node q) in !d .

In Fig. 1.6, we illustrate a 2D ascending complex, and the corresponding
incidence graph of function f .x; y/ D sin xCsin y. In the ascending complex, cells
labeled p are 2-cells (corresponding to minima), cells labeled r are 1-cells (corre-
sponding to saddles), and cells labeled q are 0-cells (corresponding to maxima).

The data structure for encoding the MIG G D .N;A/ is illustrated in Fig. 1.7.
The nodes and the arcs of G are encoded as two lists. Recall that each node in the
graph corresponds to a critical point p of f and to a vertex in the Morse-Smale
complex. When p is an extremum, the corresponding element in the list of nodes
contains three fields,G0,Gn andA. The geometry of the extremum (its coordinates)
is stored in field G0, and the geometry of the associated n-cell (ascending n-cell of
a minimum, or a descending n-cell of a maximum), which is the list of n-simplexes
forming the corresponding n-cell in the ascending or descending complex, is stored
in field Gn. The list of the pointers to the arcs incident in the extremum is stored in
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Fig. 1.7 Dimension-independent data structure for storing the incidence graph. The nodes
corresponding to i -saddles are stored in lists, as are the arcs. Each element in the list of nodes
stores the geometry of the corresponding critical point, and the list of pointers to arcs incident in
the node. A node corresponding to an extremum stores also a list of pointers to the n-simplexes
in the corresponding n-cell associated with the extremum. Each element in the list of arcs stores
pointers to its endpoints, and a label indicating its multiplicity

field A. If p is a maximum (n-saddle), these arcs connect p to .n" 1/-saddles. If p
is a minimum (0-saddle), they connect p to 1-saddles. When p is not an extremum,
element in the node list contains fields G0, A1 and A2. The geometry of i -saddle
p (its coordinates) is stored in field G0. A list of pointers to the arcs connecting
i -saddle p to .i C 1/-saddles and to .i " 1/-saddles is stored in fields A1 and A2,
respectively.

Each arc in the MIG corresponds to integral lines connecting two critical points
of f , which are the endpoints of the arc. Each element in the list of arcs has three
fields, CP1, CP2 and L. If the arc connects an i -saddle to an .i C 1/-saddle, then
CP1 is a pointer to the i -saddle, and CP2 is a pointer to the .iC1/-saddle. The label
of the arc (its multiplicity) is stored in field L.

The manifold simplicial mesh ˙ discretizing the graph of the scalar field is
encoded in a data structure which generalizes the indexed data structure with
adjacencies, commonly used for triangular and tetrahedral meshes [17]. It stores the
0-simplexes (vertices) and n-simplexes explicitly plus some topological relations,
namely: for every n-simplex " , the nC 1 vertices of " ; for every n-simplex " , the
nC 1 n-simplexes which share an .n" 1/-simplex with " ; for every 0-simplex, one
n-simplex incident in it.

The vertices and n-simplexes are stored in two arrays. In the array of vertices,
for each vertex its Cartesian coordinates are encoded, and the field value associated
with it. In the array of n-simplexes, with each n-simplex " of the underlying mesh˙
the indexes of the minimum and of the maximum node in G are associated such that
" belongs to the corresponding ascending n-cell of the minimum, and descending
n-cell of the maximum.

The resulting data structure is completely dimension-independent, since both
the encoding of the mesh and of the graph are independent of the dimension of
the mesh and of the algorithm used for the extraction of Morse complexes. The
only geometry is the one of the maximal cells in the two Morse complexes, from
which the geometry of all the other cells of the Morse complexes can be extracted.
The geometry of these cells can be computed iteratively, from higher to lower



1 Modeling Three-Dimensional Morse and Morse-Smale Complexes 13

Fig. 1.8 Dimension-specific data structure for storing the incidence graph. Nodes and arcs are
stored in lists. Each element in the list of nodes stores the geometry of the corresponding critical
point, tag indicating the index of the critical point, geometry of the associated 2- or 3-cell in
the Morse complex, and a pointer to one incident arc. Each element in the list of arcs stores the
geometry of the arc, two pointers to its endpoints, and two pointers to the next arcs incident in the
two endpoints

dimensions, by searching for the k-simplexes that are shared by .k C 1/-simplexes
belonging to different .k C 1/-cells.

The incidence-based data structure encodes also the topology of the
Morse-Smale complex. The arcs in the graph (i.e., pairs of nodes connected through
the arc) correspond to 1-cells in the Morse-Smale complex. Similarly, pairs of nodes
connected through a path of length k correspond to k-cells in the Morse-Smale
complex. The geometry of these cells can be computed from the geometry of the
cells in the Morse complex through intersection. For example, the intersection of
ascending n-cells corresponding to minima and descending n-cells corresponding
to maxima defines n-cells in the Morse-Smale complex.

1.4.2 A Dimension-Specific Representation for 3D
Morse-Smale Complexes

In [25] a data structure for 3D Morse-Smale complexes is presented. The topology
of the Morse-Smale complex (actually of its 1-skeleton) is encoded in a data
structure equivalent to the Morse incidence graph. The geometry is referred to
from the elements of the graph, arcs and nodes. We illustrate this data structure in
Fig. 1.8.

The data structure encodes the nodes and arcs of the incidence graph in two
arrays. Each element in the list of nodes has four fields, G0, TAG, G2=G3 and A.
The geometry (coordinates) of the corresponding critical point is stored in field G0.
The index of the critical point is stored in field TAG. A reference to the geometry
of the associated Morse cell (depending on the index of p) is stored in field G2=G3:
a descending 3-cell is associated with a maximum; an ascending 3-cell is associated
with a minimum; a descending 2-cell is associated with a 2-saddle; an ascending
2-cell is associated with a 1-saddle. A pointer to an arc incident in the node (the first
one in the list of such arcs) is stored in field A. Thus, the geometry of 0-, 2-, and
3-cells in the Morse complexes is referenced from the nodes.
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Each element in the list of arc has five fields, G1, CP1, CP2, A1 and A2.
The geometry of the integral line (corresponding to a 1-cell in the Morse-Smale
complex) encoded by the arc is stored in field G1. The pointers to the nodes
connected by the arc are stored in fields CP1 and CP2. Fields A1 and A2 contain
pointers to the next arcs incident in nodes pointed at by CP1 and CP2, respectively.

The data structure in [25] is dimension-specific, because it represents 0-, 2-
and 3-cells of the Morse complexes in the nodes, and 1-cells of the Morse-Smale
complexes in the arcs of the incidence graph. The descending 1-cells in the Morse
complex can be obtained as union of (the geometry associated with) two arcs
incident in a node corresponding to a 1-saddle, and ascending 1-cells can be
obtained as union of two arcs incident in a 2-saddle.

1.4.3 Comparison

The data structure in [25] encodes the combinatorial representation of the 1-skeleton
of the Morse-Smale complex, which is equivalent to the encoding of the Morse
incidence graph in [11].

Let us denote as n the number of nodes, and as a the number of arcs in the
incidence graph. Both data structures encode the nodes and arcs of G in lists.
Thus, the cost of maintaining those lists in both data structures is n C a. In the
incidence-based representation in [11], for each arc there are two pointers pointing
to it (one from each of its endpoints) and there are two pointers from the arc to its
two endpoints. Thus, storing the connectivity information of the Morse incidence
graph requires 4a pointers in [11]. In the data structure in [25], for each node there
is a pointer to one arc incident in it, and for each arc there are four pointers, two
pointing to its endpoints, and two pointing to the next arcs incident in the endpoints.
This gives a total cost of nC 4a pointers for storing the connectivity information of
the graph in [25].

The difference between the two representations is how geometry is encoded.
In the 3D instance of the incidence-based data structure, only the list of tetrahedra
forming the ascending and descending 3-cells are encoded. This leads to a cost of
twice the number of tetrahedra in the simplicial mesh ˙ since each tetrahedron
belongs to exactly one ascending and one descending 3-cell. The data structure in
[25] encodes the geometry of the arcs (i.e., the 1-cells in the Morse-Smale complex),
the geometry of the ascending and descending 3-cells in the Morse complexes,
associated with the nodes encoding the extrema, and the geometry of the ascending
and descending 2-cells in the Morse complexes associated with the nodes encoding
the saddles. We cannot evaluate precisely the storage cost of this latter data structure,
since in [25] it is not specified how the underlying geometry is encoded. However,
the combinatorial part of the two data structures has almost the same cost. Thus,
it is clear that the incidence-based representation is more compact since it encodes
fewer geometric information.
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1.5 Algorithms for Building 3D Morse and Morse-Smale
Complexes

In this section, we describe and compare algorithms for extracting Morse and
Morse-Smale complexes from a scalar field f defined on the vertices of a manifold
simplicial mesh ˙ in 3D. Similarly to the 2D case, extraction and classification
of critical points is a usual preprocessing step. An algorithm performing this task is
proposed in [21]. For each vertex p of˙ , the lower linkLk".p/ of p is considered.
It consists of the vertices q in the linkLk.p/ of p such that f .q/ < f .p/, and of the
simplexes of Lk.p/ defined by these vertices. Vertex p is classified as a minimum
if its lower link is empty. It is classified as a maximum if its lower link is the same as
Lk.p/. Otherwise, p is classified based on the Betti numbers ofLk".p/ as a critical
point composed of multiple 1- and 2-saddles. Intuitively, the Betti numbers ˇ0 and
ˇ1 of Lk".p/ count the number of connected components and holes in Lk".p/,
respectively.

The algorithms presented here can be classified, according to the approach they
use, as region-based [11, 26], boundary-based [19, 21], or based on Forman theory
[27, 31, 38]. Region-based algorithms extract only the minima and maxima of f ,
and do not explicitly extract saddle points. Boundary-based algorithms [19,21] first
extract and classify critical points of f (minima, maxima, and multiple 1- and 2-
saddles) in the preprocessing step (using the method in [21]), and then compute the
ascending and descending 1- and 2-cells associated with saddles. The algorithms in
[27, 31, 38] construct a Forman gradient vector field V and its critical cells starting
from a scalar field f .

The output of the algorithm in [26] is a decomposition of the vertices of˙ into 0-,
1-, 2- and 3-cells of the Morse complexes of f . Algorithms in [19, 21] produce 3-,
2-, 1- and 0-cells of the Morse and Morse-Smale complexes composed of tetrahedra,
triangles, edges and vertices of ˙ , respectively. The output of the algorithms based
on Forman theory [27,31,38] (Forman gradient vector field V ) can be used to obtain
also the decomposition of the underlying mesh K into descending cells associated
with critical cells of V . Each descending cell of a critical i -cell " is composed of
all i -cells of K that are reachable by tracing gradients paths of V starting from
the boundary of " . The algorithms in [11, 27] produce the graph encoding the
connectivity of Morse and Morse-Smale complexes. In [27], an algorithm based
on Forman theory has been developed to obtain the nodes and arcs of the graph. The
algorithm in [11] obtains the graph starting from any segmentation of the tetrahedra
of ˙ in descending and ascending 3-cells of the Morse complexes of f .

1.5.1 A Watershed-Based Approach for Building the Morse
Incidence Graph

In [11], a two-step algorithm is described for the construction of the Morse incidence
graph of a scalar field f , defined on the vertices of a simplicial complex ˙ with
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a manifold carrier. The first step is the decomposition of ˙ in descending and
ascending n-cells of the Morse complexes. In [11], this decomposition is obtained
by extending the well-known watershed algorithm based on simulated immersion
from image processing to n-dimensional manifold simplicial meshes [40]. The
first step of the algorithm is, thus, dimension-independent. The second step of
the algorithm, developed for the 2D and 3D cases, consists of the construction of
the Morse incidence graph.

The watershed algorithm by simulated immersion has been introduced in [40] for
segmenting a 2D image into regions of influence of minima, which correspond to
ascending 2-cells. We describe the extension of this algorithm from images to scalar
fields defined at the vertices of a simplicial mesh in arbitrary dimension. The vertices
of the simplicial mesh ˙ are sorted in increasing order with respect to the values of
the scalar field f , and are processed level by level in increasing order of function
values. For each minimum m, an ascending region A.m/ is iteratively constructed
through a breadth-first traversal of the 1-skeleton of the simplicial mesh ˙ (formed
by its vertices and edges). For each vertex p, its adjacent, and already processed,
vertices in the mesh are examined. If they all belong to the same ascending region
A.m/, or some of them are watershed points, then p is marked as belonging toA.m/.
If they belong to two or more ascending regions, then p is marked as a watershed
point. Vertices that are not connected to any previously processed vertex are new
minima and they start a new ascending region.

Each maximal simplex " (an n-simplex if we consider an n-dimensional simpli-
cial mesh) is assigned to an ascending region based on the labels of its vertices. If all
vertices of " , that are not watershed points, belong to the same region A.m/, then
" is assigned to A.m/. If the vertices belong to different ascending regions A.mi/,
then " is assigned to the region corresponding to the lowest minimum.

Descending regions associated with maxima are computed in a completely
similar fashion.

The algorithm proposed in [11] for the construction of the Morse incidence graph
of f works on a segmentation produced by the watershed algorithm, although
any other segmentation algorithm can be used. In the (dimension-independent)
preprocessing step, for each descending region in !d , a maximum node in the
incidence graph is created, and for each ascending region in !a, a minimum node is
created. The algorithm for the construction of saddle nodes is based on inspecting
the adjacencies between the regions corresponding to maxima and minima, and is
developed for the 2D and the 3D case.

In the 2D case, after the preprocessing step, two steps are performed: (i) creation
of the nodes corresponding to saddles, and (ii) creation of the arcs of the incidence
graph. To create the saddle nodes, 1-cells of the ascending (or of the descending)
complex need to be created. Each 1-cell is a chain of edges of the triangle mesh.
Each edge e of ˙ is inspected, and is classified with respect to such chain of edges
based on the labels of the ascending regions to which the two triangles separated by
e belong. Each connected component of edges separating two ascending regions is
subdivided into topological 1-cells. Thus, if necessary, new saddle nodes are created.
Each saddle node (1-cell) p is connected to the two minima it separates. The arcs
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Fig. 1.9 Connection of the saddle nodes with maxima in 2D: (a) both endpoints of the 1-cell are
maxima; (b) one of the endpoints is not a maximum; (c) there is a maximum in the interior of the
1-cell

Fig. 1.10 Connection of the 1- and 2-saddle nodes in 3D: (a) maxima on the boundary of
ascending 2-cell of 1-saddle s1; (b) 2-saddles s2, s3, s4 and s5 connected to two maxima on the
boundary of the 2-cell; (c) these 2-saddles are connected to 1-saddle s1

between saddle nodes and nodes corresponding to maxima are created by inspecting
the endpoints of the 1-cells. Three cases are distinguished, illustrated in Fig. 1.9:
if the endpoints of 1-cell p are two maxima, the saddle node corresponding to p
is connected to those maxima. If one of the endpoints is not a maximum, a new
maximum is created and connected to the saddle. If there is a maximum inside 1-
cell p, p is split in two 1-cells, each of which with that maximum as endpoint. If
there is some maximum q not connected to any saddle, then that maximum must be
inside some 2-cell in !a. In this case, a 1-saddle is created by looking at the 2-cells
corresponding to q and at its adjacent 2-cells in !d .

The construction of the Morse incidence graph in 3D requires, after the
preprocessing, other three steps, namely, (i) generation of the nodes corresponding
to 1- and 2-saddles, (ii) generation of the arcs between 1-saddles and minima,
and between 2-saddles and maxima, and (iii) generation of the arcs joining 1- and
2-saddles. The first two steps directly generalize the 2D algorithm. The third step
consists of generating the arcs connecting the nodes corresponding to 1-saddles to
those corresponding to 2-saddles. For each 2-cell s1 in !a (which corresponds to a
1-saddle), the setMs of maxima connected to s1 is considered, which correspond to
the vertices of 2-cell s1. For each pair of maxima m1 and m2 in Ms , it is verified if
there exists a 2-cell s2 (i.e., a 2-saddle) in the descending complex!d between the 3-
cells corresponding to m1 and m2. If s2 exists, then the two nodes corresponding to
1-saddle s1 and 2-saddle s2 are connected in the MIG. The third step of the algorithm
is illustrated in Fig. 1.10. A technique for processing 2-cells which are on the bound-
ary of ˙ has been also developed; it is not described here for the sake of brevity.

In summary, the algorithm in [11] is organized in two steps: segmentation of the
simplicial mesh˙ into Morse complexes, and extraction of the incidence graph. The
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first step is dimension-independent. It is based on the extension of a watershed algo-
rithm for intensity images to scalar fields defined on simplicial complexes in arbi-
trary dimension. The second step, developed for the 2D and 3D cases, constructs the
nodes and arcs of the MIG encoding the Morse complexes generated at the first step.

1.5.2 A Boundary-Based Algorithm

The algorithm proposed in [21] builds a quasi-Morse-Smale complex (see Sect. 1.2),
a complex that reflects the combinatorial structure of the Morse-Smale complex, but
in which the arcs and quadrangles (1- and 2-cells) may not be those of maximal
ascent and descent. The quasi-Morse-Smale complex is constructed during two
sweeps over a simplicial complex˙ triangulating a 3-manifoldM . The first sweep
(in the direction of decreasing function value) computes the descending 1- and
2-cells and the second sweep (in the direction of increasing function value) the
ascending 1- and 2-cells of the Morse complexes. The algorithm is boundary-based,
as it computes the 1- and 2-cells which bound the 3-cells in the Morse complexes.
During the first sweep, the descending 1- and 2-cells are computed simultaneously.
A 1-cell is built as follows:

• If a current vertex p in the sweep is a 1-saddle, a descending 1-cell is started.
The two arcs of the corresponding 1-cell are initialized by edges from p to the
lowest vertex in each connected component of the lower link of p, as illustrated
in Fig. 1.11a.

• If there is a descending arc ending at a current vertex p, it is expanded by adding
an edge from p to the lowest vertex in its lower link. If p is a 1-saddle, later
an ascending 2-cell will start at p and each descending arc is extended to the
lowest vertex in the specific connected component of the lower link of p that is
not separated from the arc by the ascending 2-cell.

• If p is a minimum, it becomes a node of the Morse-Smale complex, and the
descending arcs end at p.

A 2-cell is built as follows:

• If a current vertex p in the sweep is a 2-saddle, a descending 2-cell is started.
A cycle of edges in the lower link is constructed, which contains the lowest vertex
in the lower link of p. Triangles determined by p and edges of the cycle form
the initial descending 2-cell of p, as illustrated in Fig. 1.11b. Initially, the entire
boundary of the descending 2-cell is unfrozen.

• A 2-cell is expanded by constructing a shortest-path tree in the lower link of the
current (highest) vertex q on the unfrozen boundary of the 2-cell associated with
2-saddle p, and connecting q to the edges of this tree. If q is a critical point
(a 1-saddle or a minimum), it is declared frozen together with its two incident
edges on the boundary.

• When the complete boundary of a 2-cell is frozen the 2-cell is completed.
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Fig. 1.11 (a) The 1-cell associated with 1-saddle p is initialized by connecting p to the two lowest
vertices s1 and s2 in its lower link in [21]. (b) The 2-cell associated with a 2-saddle p is initialized
by the triangles determined by p and a cycle of edges in the lower link of p in [21]. (c) Expanding
a separating 2-cell at a regular vertex p in [19]

The next step consist of building the intersections between descending and
ascending 2-cells by tracing ascending paths inside a descending 2-cell, starting
from 1-saddles on the boundary of the descending 2-cell and ending at the 2-saddle
that started the descending 2-cell. These intersections are used to guarantee the
structural correctness of the extracted quasi-Morse-Smale complex. Each 2-saddle
starts two arcs of an ascending 1-cell, which must not cross any already established
descending 2-cells. The intersection curves between descending and ascending
2-cells, and the ascending 1-cells decompose each ascending 2-cell into
quadrangles. The ascending cells are built one quadrangle at a time, similarly
to descending 2-cells.

In summary, the algorithm in [20] extracts the boundaries of the 3-cells in
the Morse-Smale complex. The extracted complex has the correct combinatorial
structure described by a quasi-Morse-Smale complex. Each 3-cell in the extracted
complex has quadrangular faces.

1.5.3 A Watershed-Based Labeling Algorithm

In [19], an algorithm is proposed that extracts 3-cells in the descending Morse
complex starting from the values of a scalar field f defined over a triangulation˙ of
a manifoldM . To this aim the algorithm generates two functions on the simplexes of
˙ : the marking function marks the simplexes of˙ that form the boundaries between
descending 3-cells by 1, and the other simplexes of˙ are marked by 0; the labeling
function labels each simplex " of ˙ marked by 0 by the label of the maximum
whose descending 3-cell contains " . The vertices are inspected in decreasing order
of function value. Depending on the type of criticality of a current vertex p, the
lower star of p (defined by p and simplexes in the lower link Lk".p/ of p) is
processed.
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• If p is a maximum, its lower link is equal to its link. Vertex p starts a new
descending 3-cell. All simplexes in the lower star of p are labeled by the label of
this 3-cell.

• If p is a regular point (see Fig. 1.11c), its lower link is a deformation retract of
a disk. If there is a separating 2-cell that reached p, it is extended across p by
creating a spanning tree in the lower link of p. The spanning tree is constructed
so that it contains all vertices that belong to an already marked simplex (i.e., to
a simplex which is part of the boundary between two descending 3-cells). All
triangles and edges connecting p to this spanning tree are marked (extending
a descending 2-cell between two 3-cells). Other non-labeled (and non-marked)
simplexes in the star of p are labeled by copying from the neighbors. Otherwise
(if there is no separating 2-manifold containing p), non-labeled simplexes in the
star of p are labeled by copying from neighbors.

• If p is a 1-saddle, its lower link has two components, each a deformation retract
of a disk. Each component of the lower link of p is processed in the same way as
in the case of a regular point.

• If p is a 2-saddle, its lower link is a deformation retract of an annulus. Vertex p
starts a new separating 2-cell. A cycle that encircles the whole lower link of p
is created. All triangles and edges connecting p to this cycle are marked. They
form the initial separating 2-cell associated with p. Other non-labeled simplexes
in the star of p are labeled by copying from neighbors.

• If p is a minimum, its lower link is empty, and p is marked.

The descending 3-cells of maxima produced by the algorithm in [19] are
topological cells.

1.5.4 A Region-Growing Algorithm

The algorithm proposed in [26] computes the Morse-Smale complex of a function
f defined over the vertices of a simplicial complex˙ triangulating a manifold M .
The ascending cells are computed through region growing, in the order of decreasing
cell dimension. Descending cells are computed inside the ascending 3-cells, using
the same region-growing approach. The ascending and descending cells of all
dimensions are composed of vertices (0-simplexes) of ˙ .

The computation of the ascending 3-cells consists of two steps. First, the set of
minima of f are identified. Each minimum will be the origin for a set of vertices
representing an ascending 3-cell. Then, each vertex p of ˙ is classified as an
internal vertex of an ascending cell, or as a boundary vertex. This depends on the
number of connected components of the set of internal vertices in the lower link of
p which are already classified as interior to some ascending 3-cell (see Fig. 1.12a).
The classification is performed by sweeping ˙ in the order of ascending function
values.
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Fig. 1.12 Classification of the vertices of ˙ as internal or boundary. (a) All the vertices are
classified as internal to a 3-cell (blue) with the exception of vertices on the boundary of two or
more 3-cells, which are classified as boundary. (b) The boundary vertices in (a) are classified
again as internal (green) or boundary for 2-cells. (c) The boundary vertices of the 1-cells in (b) is
classified as maxima (red)

Vertices classified as boundary in the first step of the algorithm are the input
for the algorithm which builds the ascending 2-cells. An ascending 2-cell is created
for each pair of adjacent 3-cells. The vertices of the 2-cells are classified as interior
or boundary, based on local neighborhood information, similarly to the classification
with respect to the 3-cells (see Fig. 1.12b). A 1-cell is created in every place where
ascending 2-cells meet. Each 1-cell is composed of vertices classified as boundary
in the previous step. Finally, each vertex p of an ascending 1-cell is classified
as interior or boundary. Maxima are created at the boundaries between ascending
1-cells (see Fig. 1.12c). They form a small disjoint clusters of vertices.

For each ascending n-cell, the descending cells are computed in their interior.
The region-growing steps are the same. Again here, iteration is performed in the
order of decreasing dimension.

The main characteristics of the algorithm in [26] is that all the cells in the
computed Morse complexes are composed of vertices of the simplicial mesh ˙ .
These cells are computed iteratively in order of decreasing dimension.

1.5.5 An Algorithm Based on Forman Theory

The algorithm proposed in [27] computes the Morse-Smale complex starting from
a regular n-dimensional CW-complex K with scalar field f defined at the vertices
of K . Intuitively, a (finite) CW complex is a finite collection of pairwise disjoint
cells, in which the boundary of each cell is the disjoint union of cells of lower
dimension. Function f is extended to a Forman function F , defined on all cells of
K , such that F."/ is slightly larger than F.#/ for each cell " and each face # of " .
For the defined Forman function F , all cells of K are critical. A discrete gradient
vector field is computed by assigning gradient arrows in a greedy manner in ordered
sweeps over the cells of K according to increasing dimension and increasing F
value. Each current non-paired and non-critical cell in the sweep is paired with its
co-facet with only one facet not marked (as critical or as already paired). If there
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Fig. 1.13 (a) Construction of the Forman gradient vector field, and (b) of the incidence graph

are several of such co-facets the lowest is taken. If there is no such co-facet, a cell
cannot be paired, and it is critical. This pairing defines a discrete gradient vector
field, as illustrated in Fig. 1.13a.

The 1-skeleton of the Morse-Smale complex is computed starting from this
gradient vector field. Critical cells ofF (and not critical points of f ) and the discrete
gradient paths connecting them determine the nodes and arcs in the 1-skeleton of
the Morse-Smale complex (incidence graph), as illustrated in Fig. 1.13b. In [23],
this algorithm has been extended to extract topological 2- and 3-cells from a regular
hexahedral 3D mesh.

The order in which the cells in K are processed by the algorithm is not
completely deterministic, since there could be many different i -cells in K with the
same value of function F . As a consequence, some unnecessary critical cells may
be produced by the algorithm.

1.5.6 A Forman-Based Approach for Cubical Complexes

In [38], a dimension-independent algorithm is proposed for constructing a Forman
gradient vector field on a cubical complex K with scalar field values given at the
vertices, and applications to the 2D and 3D images are presented.

The algorithm processes the lower star of each vertex v in K independently. For
each cell " in the lower star, the value max

p2"
f .p/ D f max."/ is considered. An

ascending order$ is generated based on the values f max."/ and the dimension of
" , such that each cell " comes after its faces in the order. If the lower star of vertex
v is v itself, then v is a local minimum and it is added to the set C of critical cells.
Otherwise, the first edge e in $ is chosen and vertex v is paired with edge e (the
vector field V at v is defined as V.v/ D e).

The star of v is processed using two queues, PQone and PQzero, corresponding
to i -cells with one and zero unpaired faces, respectively. All edges in the star of v
different from e are added to PQzero. All cofaces of e are added to PQone if the
number of unpaired faces is equal to one.
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Fig. 1.14 Processing the lower star of vertex 9 using the algorithm in [38]

If queue PQone is not empty, the first cell ˛ is removed from the queue. If the
number of unpaired faces of ˛ has become zero, ˛ is added to PQzero. Otherwise,
the vector field at the unique unpaired face pair.˛/ of ˛ is defined as V.pair.˛// D
˛, pair.˛/ is removed from PQzero and all the co-faces of either ˛ or pair.˛/ and
with number of unpaired faces equal to one are added to PQone.

If PQone is empty and PQzero is not empty, one cell ˇ is taken from PQzero.
Cell ˇ is added to the set C of critical points and all the co-faces of ˇ with number
of unpaired faces equal to one are added to PQone.

If both PQzero and PQone are empty, then the next vertex is processed. Result of
the algorithm is the set C of critical cells and the pairing of non-critical cells, which
define the Forman gradient vector field V .

In Fig. 1.14 we show the main steps of the algorithm in [38] when processing
the lower star of vertex 9 (see Fig. 1.14a). Each vertex is labeled by its scalar field
value. Other cells are labeled by the lexicographic order $. The lower star of 9 is
not 9 itself, and thus 9 is not a minimum. The lowest edge starting from 9 (edge
92), is chosen to be paired with 9. All the other edges are inserted in PQzero and
the cofaces of 92 with a single unpaired face (faces 9432 and 9852) are inserted
in PQone (Fig. 1.14b). The first face is taken from PQone (face 9432) and coupled
with its single unpaired face (edge 94). The face 9741, which is a coface of 94
with exactly one unpaired face, is inserted in PQone and edge 94 is removed from
PQzero (Fig. 1.14c). Face 9741 is taken from PQone and paired with edge 97, which
is removed from PQzero. Face 9765 is inserted in PQone and successively removed
to be paired with edge 95 (Fig. 1.14d, e). Face 9852 is removed from PQone and
declared critical, as it has no unpaired faces (Fig. 1.14f).
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In the 3D case, the algorithm in [38] does not create spurious critical cells.
The extracted critical cells are in a one-to-one correspondence with the changes
in topology in the lower level cuts of cubical complexK .

1.5.7 A Forman-Based Approach for Simplicial Complexes

The algorithm proposed in [31] takes as input a scalar field f defined over the
vertices of a 3D simplicial complex ˙ and a persistence value p ! 0. It computes
a Forman gradient vector field V by subdividing the simplexes of˙ into three lists,
denoted as A, B and C , such that lists A and B are of the same length, and for each
i -simplex "j 2 A, V."j / D #j , #j is the .i C 1/-simplex in B , and C is the set of
critical simplexes.

The algorithm builds the Forman gradient vector field in the lower link Lk".v/
of each vertex v in ˙ , and extends this field to the cone v $ Lk".v/. Lists A, B
and C are initialized as empty. For each vertex v in ˙ , if L.v/ is empty, then v is
a minimum and it is added to C . Otherwise, v is added to A and the algorithm is
recursively called on the lower link L".v/, producing lists A0, B 0, C 0 that define the
Forman gradient vector field V 0 on Lk".v/. The lowest critical vertex w is chosen
from C 0 and edge Œv;w% is added to B . Thus, V.v/ D Œv;w%. For each i -simplex "
(different from w) in C 0 the .i C 1/-simplex (cone) v $ " is added to C . For each
i -simplex " in A0 the .i C 1/-simplex v $ " is added to A and the .i C 2/-simplex
v $ V 0."/ is added to B . Thus, V.v $ "/ D v $ V 0."/.

Once all the lower links of vertices in ˙ have been processed, a persistence
canceling step is performed in increasing order of dimension i . For each critical
i -simplex " , all the gradient paths to critical .i " 1/-simplexes are found. A critical
i -simplex " can be cancelled with critical .i " 1/-simplex & if and only if there
is only one gradient path from " to & . The effect of a cancellation is to reverse
the gradient path connecting " and & . Cancellations are applied in the order of
increasing persistence. The function that extends the scalar field f to the simplexes
of ˙ , and whose values are considered in the definition of persistence, is given by
fmax."/ D max

p2"
f .p/.

We illustrate the algorithm in [31] in Fig. 1.15. The star of vertex 9 is shown in
Fig. 1.15a. The application of the algorithm to the lower link Lk".9/ of vertex 9
produces the following lists:

A0D 3; 4;6; 7; 8
B0D [3,2]; [4,1]; [6,5]; [7,1]; [8,2]
C0D 1; 2; [4,3]; 5; [7,6]; [8,5]

The corresponding Forman gradient vector field V 0 on Lk".9/, and V 0 after the
cancellation of vertex 2 and edge [3,4], and cancellation of vertex 5 and edge [6,7],
are shown in Fig. 1.15b, c, respectively. The extension of V 0 to the cone 9 $Lk".9/
(the lower star of vertex 9) is shown in Fig. 1.15d. Descending and ascending regions
of critical cells of Forman vector field V constructed in [31] are computed in [29].
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Fig. 1.15 (a) The lower star of vertex 9. The Forman gradient vector field V 0 on the link of 9 (b)
before and (c) after the cancellation of critical edge [4,3] and vertex 2, and edge [7,6] and vertex
5. The critical vertices are blue, and the critical edges are green. (d) The Forman gradient vector
field V in the lower star of vertex 9

Table 1.1 Reviewed algorithms classified according to the type of the input complex (simplicial
or cell), dimension of the complex, approach used (region-based, boundary-based or based on
Forman theory), type of extracted critical entities (critical points of the given scalar field f or
critical cells of the constructed Forman gradient vector field V ) and type of entities that form the
extracted cells in the Morse complexes (cells or vertices of the input complex)

Algorithm Input Dimension Approach Critical points Morse cells

[11] Simplicial 3D Region Extrema Simplexes of ˙
[21] Simplicial 3D Boundary All Simplexes of ˙
[19] Simplicial 3D Boundary All Simplexes of ˙
[26] Simplicial 3D Region Extrema Vertices of ˙
[27] CW nD Forman Critical cells Cells of K
[38] Cubical nD Forman Critical cells Cells of K
[31] Simplicial 3D Forman Critical cells Cells of ˙

If ˙ is a triangulation of a 3D manifold and the scalar field f defined at the
vertices of ˙ has no multiple saddles, then there is a critical i -cell of the computed
Forman gradient vector field V for each i -saddle of the scalar field f .

1.5.8 Analysis and Comparison

We have described seven algorithms for extracting Morse or Morse-Smale com-
plexes of a scalar field f in the discrete case. We summarize the properties of the
reviewed algorithms in Table 1.1.

We can classify the reviewed algorithms based on different criteria. All algo-
rithms work on a 3D manifold simplicial complex ˙ except the ones in [27,
38], which work on an arbitrary-dimensional CW-complex and cubical complex,
respectively.

With respect to the approach used, some of the algorithms we reviewed [11, 26]
can be classified as region-based, as they extract 3-cells corresponding to extrema.
Others [19, 21] are boundary based, as they extract the boundaries between the
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3-cells corresponding to extrema. The algorithms in [27, 31, 38] compute a Forman
gradient vector field V starting from scalar field f .

The algorithms differ also in the type of critical points they extract before
producing the segmentation of the input mesh: some algorithms [19,21] first classify
all critical points of scalar field f (extrema and saddles); others [11, 26] extract
only extrema of f , and obtain the other nodes in the Morse incidence graph from
the adjacency relation between 3-cells associated with extrema. The algorithms in
[27,31,38] extract the critical cells of a Forman gradient vector field V (and not the
critical points of scalar field f ) defined through f .

Finally, another difference among the algorithms is given by the entities used in
the segmentation process: the algorithms in [11, 19, 21] assign the simplexes of ˙
to cells in the Morse complexes; the algorithm in [26] assigns the vertices of ˙ to
cells in the Morse complexes; the algorithms in [27, 31, 38] assign the cells of the
cell complexK to cells in the descending Morse complex.

The algorithm in [20] computes the segmentation of the 3D simplicial mesh with
the correct combinatorial structure described by the quasi-Morse-Smale complex.
The algorithm in [19] produces 3-cells in the descending Morse complex, which are
topological cells. In the 3D case, the algorithm in [38] computes the critical cells of
the Forman gradient vector field V that are in a one-to-one correspondence with the
changes in topology in the lower level cuts ofK . If˙ is a triangulation of a manifold
M , and scalar field f has no multiple saddles, then the algorithm in [31] produces a
critical i -cell of the Forman gradient vector field for each i -saddle of scalar field f .
There are no formal claims about the critical cells of Forman gradient vector field
computed by the algorithm in [26].

1.6 Simplification of 3D Morse and Morse-Smale Complexes

Although Morse and Morse-Smale complexes encode compactly the behavior of a
scalar field f and the topology of its domain, simplification of these complexes is
an important issue for two major reasons. The first is the over-segmentation (the
presence of a large number of small and insignificant regions) produced by Morse
and Morse-Smale complexes which is due to the presence of noise in the data sets,
both in case they are obtained through measurements or as a result of a simulation
algorithm. Simplification of the complexes through elimination of pairs of critical
points can be used to eliminate noise. Each simplification is performed guided by
persistence, which measures the importance of the pair of eliminated critical points,
and is equal to the absolute difference in function values between them. Usually by
using a threshold on persistence equal to 5–10 % of the maximum persistence value,
a reduction of the storage cost in the representation of the Morse or Morse-Smale
complexes can be obtained which amounts to 10–20 % for 2D data sets, and 5–10 %
for 3D ones.

Even after a simplification which removes insignificant regions considered to
be noise, and leaves regions that correspond to actual features of the scalar field,
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the size of Morse and Morse-Smale complexes can still be large, due to the
huge size and amount of available scientific data. Thus, the second requirement
is to reduce the size of the complexes at different levels of resolution, while
retaining information on important structural features of the field and guaranteeing
the topological correctness of the simplified representations. The size of a Morse
complex is about 0.4–3 % the size of the underlying simplicial mesh in 2D and
about 2–8 % in 3D. For large 3D data sets (which have 15M tetrahedra), the size of
a Morse complex can be up to 50 MBytes.

We describe here two approaches to the simplification of Morse and
Morse-Smale complexes in 3D proposed in the literature. The first approach [24]
applies the cancellation operator of critical points of a Morse function f [33] on
the Morse-Smale complexes of f . The second approach [10] applies a new set
of simplification operators, called removal and contraction, which, together with
their inverse refinement ones, form a minimally complete basis of operators for
performing any topologically consistent simplification on Morse and Morse-Smale
complexes.

Both cancellation and removal/contraction operators eliminate a pair of critical
points of scalar field f , i.e., a pair of cells in the Morse complexes and a
pair of vertices from the Morse-Smale complex. The difference between the two
approaches to simplification is that cancellation often introduces a large number
of cells (of dimension higher than zero) in the Morse-Smale complex, while this
never happens with removal/contraction. Cancellation operator applied on large
data sets can create complexes that exceed practical memory capabilities [28].
Removal/contraction operator, on the other hand, reduces the size of the complexes
at each step of the simplification process.

1.6.1 Cancellation in 3D

In this section, we review the cancellation operator, which simplifies a Morse
function f defined on a manifold M by eliminating its critical points in pairs [33].
Two critical points p and q can be cancelled if

1. p is an i -saddle and q is an .i C 1/-saddle, and
2. p and q are connected through a unique integral line of f .

After the cancellation of p and q, each critical point t of index at least i C 1, which
was connected through integral line of f to i -saddle p becomes connected to each
critical point r of index at most i , which was connected to .iC1/-saddle q before the
cancellation. Equivalently, in a descending (and, symmetrically, ascending) Morse
complex, an i -cell p and an .i C 1/-cell q can be simultaneously cancelled if cell
p appears exactly once on the boundary of cell q. After the cancellation, each cell r
which was on the boundary of .i C 1/-cell q becomes part of the boundary of each
cell t which was in the co-boundary of i -cell p. In the Morse-Smale complex, there
is a new k-cell for each two cells t and r that become incident to each other in the
Morse complexes after the cancellation and that differ in dimension by k.
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Fig. 1.16 (a) Cancellation of a maximum p and saddle q, and (b) cancellation of a minimum p
and a saddle q, on the 2D descending Morse complex illustrated in Fig. 1.2a

Fig. 1.17 Portion of a 3D descending Morse complex before and after (a) a cancellation of
maximum p and 2-saddle q, and (b) a cancellation of a 1-saddle p and 2-saddle q

In 2D, there are two cancellation operators: cancellation of a maximum and a
saddle, and cancellation of a minimum and a saddle. A cancellation of a maximum
p and a saddle q is illustrated in Fig. 1.16a. It is feasible if 1-cell q is shared by
exactly two 2-cells p and p0. After the cancellation, 1-cell q (corresponding to
saddle) is deleted, and 2-cell p (corresponding to maximum) is merged into 2-cell
p0. A cancellation of a minimum p and a saddle q is illustrated in Fig. 1.16b.
It is feasible if 1-cell q is bounded by two different 0-cells p and p0. After the
cancellation, 1-cell q is deleted, and 0-cell p is collapsed onto 0-cell p0.

In 3D, there are two instances of a cancellation: one cancels an extremum and a
saddle (a maximum and a 2-saddle, or a minimum and a 1-saddle), the other cancels
two saddle points. Cancellation of a maximum p and a 2-saddle q is feasible if
2-cell q is shared by exactly two different 3-cells p and p0. In the descending Morse
complex, it removes 2-cell q, thus merging 3-cell p into 3-cell p0, as illustrated in
Fig. 1.17a. Cancellation of a minimum p and a 1-saddle q is feasible if 1-cell q is
bounded by exactly two different 0-cells p and p0. In the descending complex !d ,
it contracts 1-cell q with the effect of collapsing 0-cell p on 0-cell p0.

Cancellations that do not involve an extremum are more complex. The problem
is that the number of cells in the Morse complexes that become incident to each
other (and thus, the number of cells in the Morse-Smale complex) may increase
after a cancellation. Let p and q be a 1-saddle and a 2-saddle, respectively. Let
R D frj ; j D 1; : : : ; jmaxg be the set of 2-saddles connected to p and different
from q, and let T D ftk; k D 1; : : : ; kmaxg be the set of 1-saddles connected to q
different from p. The effect of the cancellation of 1-saddle p and 2-saddle q on a
3D descending Morse complex is illustrated in Fig. 1.17b. One-cell p and two-cell
q are deleted, and the boundary of each 2-cell in R incident in p is extended to
include 1-cells in T on the boundary of 2-cell q. Each 1-cell and each 0-cell that
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was on the boundary of 2-cell q (with the exception of 1-cell p) becomes part of the
boundary of each 2-cell and each 3-cell incident in p (with the exception of 2-cell
q), thus increasing the incidence relation on the descending Morse complex. The
effect of the cancellation on the Morse-Smale complex consists of adding one arc
for each pair .rj ; tk/ of critical points, where rj belongs to R and tk belongs to T ,
and deleting p and q, as well as all the arcs incident in them. Thus, a cancellation
of p and q increases the number of arcs connecting 1- to 2-saddles in the complex
by deleting jRj C jT j C 1 such arcs, but adding jRj % jT j arcs. Similarly, the number
of 2- and 3-cells in the Morse-Smale complex may increase after the cancellation.

In [25], a macro-operator is defined, which consists of a 1-saddle-2-saddle
cancellation, followed by a sequence of cancellation involving extrema. These latter
cancellations eliminate the new incidences in the Morse complexes, the new cells in
the Morse-Smale complex, and the new arcs in the incidence graph.

1.6.2 Removal and Contraction Operators

Motivated by the fact that cancellation operator is not a real simplification operator,
two new basic dimension-independent simplification operators are introduced [10],
called removal and contraction. They are defined by imposing additional constraints
on the feasibility of a cancellation, and can be seen as merging of cells in the Morse
complexes. There are two types of both a removal and contraction operator. For
simplicity, we describe only the 3D instances of the operators of the first type.

A removal rem.p; q; p0/ of index i of the first type of .i C 1/-cell p and i -cell q
is feasible if i -cell q appears once on the boundary of exactly two different .i C 1/-
cells p and p0. Intuitively, a removal rem.p; q; p0/ removes i -cell q and merges
.i C 1/-cell p into .i C 1/-cell p0 in the descending Morse complex !d . In the dual
ascending Morse complex!a, it contracts .n"i/-cell q and collapses .n"i"1/-cell
p onto .n " i " 1/-cell p0.

In 2D, there is one removal operator (of index 1). It is the same as a cancellation
of a maximum and a saddle, illustrated in Fig. 1.16a.

In 3D, there are two removal operators: a removal of index 1 of 1-saddle q and
2-saddle p, and a removal of index 2 of 2-saddle q and maximum p. This latter is
the same as the maximum-2-saddle cancellation illustrated in Fig. 1.17a.

A removal rem.p; q; p0/ of index 1 in 3D is different from a cancellation, since
it requires that 1-cell q bounds exactly two 2-cells p and p0 in the descending
complex. An example of the effect of a removal rem.p; q; p0/ of index 1 on a
3D descending Morse complex is illustrated in Fig. 1.18a. After the removal, in
the simplified descending Morse complex ! 0d , 1-cell q is deleted, and 2-cell p is
merged with the unique 2-cell p0 in the co-boundary of q and different from p.
The boundary of p becomes part of the boundary of p0. Figure 1.18b illustrates the
effect of removal rem.p; q; p0/ on the dual ascending complex !a. In !a, q is a 2-
cell bounded by exactly two different 1-cells p and p0. After the removal, 2-cell q
is contracted, 1-cell p is collapsed onto 1-cell p0. All cells in the co-boundary of p
become part of the co-boundary of p0.
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Fig. 1.18 Portion of a 3D descending (a) and ascending (b) Morse complex before and after a
removal rem.p; q; p0/ of index 1. The boundary of 2-cell p, consisting of 1-cells r1, r2 and r3, is
merged into the boundary of 2-cell p0 in !d . The co-boundary of 1-cell p, consisting of 2-cells r1,
r2 and r3, is merged into the co-boundary of 1-cell p0 in !a

Fig. 1.19 A sequence consisting of a cancellation of 1-saddle p and 2-saddle q, followed by
removals, which eliminate 2- and 3-saddles connected to p, on a 3D descending Morse complex

Contraction operators are dual to removal operators. The effect of a contraction
of index i on a descending complex !d is the same as the effect of a removal of
index .n" i/ on an ascending complex !a. Figure 1.18a, b illustrates the effect of a
contraction con.p; q; p0/ of index 2 on a descending and ascending Morse complex,
respectively, and thus also the duality between removal and contraction operators.

In [10], it has been shown that removal and contraction simplification operators,
together with their inverse ones, form a basis for the set of topologically consistent
operators on Morse and Morse-Smale complexes on a manifoldM . In particular, the
macro-operator defined in [25], illustrated in Fig. 1.19, which cancels 1-cell p and
2-cell q and eliminates the cells created by this cancellation in the Morse-Smale
complex, can be expressed as a sequence of removal and contraction operators,
illustrated in Fig. 1.20. One-cell p is incident to four 2-cells, and 2-cell q is incident
to four 1-cells. To be able to apply one of our operators (e.g. a removal of 1-cell p),
which will eliminate 1-cell p and 2-cell q, we need to have only two 2-cells q
and q0 incident to 1-cell p. We can reduce the complex !d to this situation by
applying two removals of index 2, until all 2-cells incident to 1-cell p, with the
exception of 2-cell q and one other 2-cell q0 are eliminated. Now, we can apply
a removal rem.q; p; q0/, which eliminates 1-cell p and 2-cell q. Such sequence of
removals consists of the same number of operators as a macro-operator consisting
of a sequence of cancellations (macro-1-saddle-2-saddle operator), and it maintains
simpler Morse and Morse-Smale complexes at each step.
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Fig. 1.20 A sequence consisting of removals, which eliminate 2- and 3-saddles connected to p,
followed by a removal of index 1 that eliminates 1-saddle p and 2-saddle q on a 3D descending
Morse complex

Fig. 1.21 (a) Field behavior for the Bucky Ball data set. (b) The incidence graph at full resolution,
and the incidence graph after (c) 200 and (d) 400 simplifications

We have developed a simplification algorithm on the Morse complexes based on
the removal and contraction simplification operators. Simplifications are applied in
increasing order of persistence [20]. Our simplification algorithm can be applied not
only to scalar fields representing the elevation, but to any scalar field, such as for
example a discrete distortion [42], which generalizes the notion of curvature.

In Fig. 1.21, we illustrate the result of our simplification algorithm on a 3D Bucky
Ball data set, depicted in Fig. 1.21a, which represents a carbon molecule having 60
atoms arranged as a truncated icosahedron. The full-resolution graph is shown in
Fig. 1.21b. The incidence graphs after 200 and 400 simplifications are shown in
Fig. 1.21c, d, respectively.

1.7 Concluding Remarks

The problem of modeling and simplifying Morse and Morse-Smale complexes in 2D
has been extensively studied in the literature. Here, we have reviewed some recent
work which extends these results to three and higher dimensions. We have described
and compared data structures for representing Morse and Morse-Smale complexes.
We have described and compared algorithms for extracting these complexes starting
from the values of a scalar field f given at the vertices of a simplicial or a cell
complex triangulating a manifold M . Finally, we have described and compared
existing simplification operators on Morse and Morse-Smale complexes.
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Simplification operators, together with their inverse refinement ones, form a basis
for the definition of a multi-resolution model of Morse and Morse-Smale complexes
[18].

The next challenge is how to extract representations of the geometry of the
field which is compatible with the reduced incidence graph extracted from the
multiresolution model [6, 16, 41].
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11. Čomić, L., De Floriani, L., Iuricich, F.: Building morphological representations for 2D and
3D scalar fields. In: Puppo, E., Brogni, A., De Floriani, L. (eds.) Eurographics Italian Chapter
Conference, Genova, pp. 103–110. Eurographics (2010)
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Chapter 2
Geodesic Regression and Its Application
to Shape Analysis

P. Thomas Fletcher

Abstract In this chapter, I present a regression method for modeling the
relationship between a manifold-valued random variable and a real-valued
independent parameter. The principle is to fit a geodesic curve, parameterized by the
independent parameter, that best fits the data. Error in the model is evaluated as the
sum-of-squared geodesic distances from the model to the data, and this provides an
intrinsic least squares criterion. Geodesic regression is, in some sense, the simplest
parametric model that one could choose, and it provides a direct generalization
of linear regression to the manifold setting. A generalization of the coefficient of
determination and a resulting hypothesis test for determining the significance of the
estimated trend is developed. Also, a diagnostic test for the quality of the fit of the
estimated geodesic is demonstrated. While the method can be generally applied
to data on any manifold, specific examples are given for a set of synthetically
generated rotation data and an application to analyzing shape changes in the corpus
callosum due to age.

2.1 Introduction

Regression analysis is a fundamental statistical tool for determining how a measured
variable is related to one or more potential explanatory variables. The most
widely used regression model is linear regression, due to its simplicity, ease of
interpretation, and ability to model many phenomena. However, if the response
variable takes values on a nonlinear manifold, a linear model is not applicable.
Such manifold-valued measurements arise in many applications, including those
involving directional data, transformations, tensors, and shape. For example, in
biology and medicine it is often critical to understand processes that change
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the shape of anatomy. The difficulty is that shape variability is inherently high-
dimensional and nonlinear. An effective approach to capturing this variability has
been to parameterize shape as a manifold, or shape space.

Statistical analysis of manifold data has been developed by several authors. The
seminal work of Fréchet [10] generalized the concept of expectation from linear
spaces to general metric spaces. This opened up the possibility of computing a
sample mean statistic from a set of data on a manifold using the geodesic distance as
metric. The Fréchet mean of a set of points, y1; : : : ; yN ; in a Riemannian manifold
M is given by

! D arg min
y2M

NX

iD1
d.y; yi /

2;

where d is the geodesic distance between points on M . This equation generalizes
the principle of least squares to the metric space setting. Karcher [12] provided
conditions guaranteeing the existence and uniqueness of the Fréchet mean, which
were later improved by Kendall [14]. Second-order statistics such as generalizations
of principal components analysis [8] and Gaussian covariances [21] have also been
developed and applied in the domain of image analysis. Related work includes
statistical analysis of directional data (e.g., spheres) [16] and analysis on shape
manifolds [5], where statistics are derived from probability distributions on specific
manifolds (for example, the Fisher-von Mises distribution on spheres).

Several works have studied the regression problem on manifolds. Jupp and
Kent [11] propose an unrolling method on shape spaces. Regression analysis on
the group of diffeomorphisms has been proposed as growth models by Miller [18],
nonparametric regression by Davis et al. [2], and second-order splines by Trouvé
and Vialard [23]. Durrleman et al. [6] construct spatiotemporal image atlases from
longitudinal data. Finally, Shi et al. [22] proposed a semiparametric model with
multiple covariates for manifold response data. None of these methods provide a
direct generalization of linear regression to manifolds. The purpose of this work
is to develop such a generalization, called geodesic regression, which models the
relationship between an independent scalar variable with a dependent manifold-
valued random variable as a geodesic curve. Like linear regression, the advantages
of this model are its simplicity and ease of interpretation. As will be shown, the
geodesic regression model also leads to a straightforward generalization of the R2

statistic and a hypothesis test for significance of the estimated geodesic trend. This
chapter is an expanded exposition of the geodesic regression method first introduced
in [7]. Niethammer et al. [20] independently proposed geodesic regression for the
case of diffeomorphic transformations of image time series.

2.2 Multiple Linear Regression

Before formulating geodesic regression on general manifolds, we begin by
reviewing multiple linear regression in Rn. Here we are interested in the relationship
between a non-random independent variable X 2R and a random dependent
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variable Y taking values in Rn. A multiple linear model of this relationship is
given by

Y D ˛ CXˇ C "; (2.1)

where ˛ 2 Rn is an unobservable intercept parameter, ˇ 2 Rn is an unobservable
slope parameter, and " is an Rn-valued, unobservable random variable representing
the error. Geometrically, this is the equation of a one-dimensional line through
Rn (plus noise), parameterized by the scalar variable X . For the purposes of
generalizing to the manifold case, it is useful to think of ˛ as the starting point
of the line and ˇ as a velocity vector.

Given realizations of the above model, i.e., data .xi ; yi / 2 R ! Rn, for i D
1; : : : ; N , the least squares estimates, Ǫ ; Ǒ; for the intercept and slope are computed
by solving the minimization problem

. Ǫ ; Ǒ/ D arg min
.˛;ˇ/

NX

iD1
kyi " ˛ " xiˇk2 : (2.2)

This equation can be solved analytically, yielding

Ǒ D
1
N

P
xi yi " Nx NyP
x2i " Nx2

;

Ǫ D Ny " Nx Ǒ;

where Nx and Ny are the sample means of the xi and yi , respectively. If the errors
in the model are drawn from distributions with zero mean and finite variance,
then these estimators are unbiased and consistent. Furthermore, if the errors are
homoscedastic (equal variance) and uncorrelated, then the Gauss-Markov theorem
states that they will have minimal mean-squared error amongst all unbiased linear
estimators.

2.3 Geodesic Regression

Let y1; : : : ; yN be points on a smooth Riemannian manifold M , with associated
scalar values x1; : : : ; xN 2 R. The goal of geodesic regression is to find a geodesic
curve # onM that best models the relationship between the xi and the yi . Just as in
linear regression, the speed of the geodesic will be proportional to the independent
parameter corresponding to the xi . Estimation will be set up as a least-squares
problem, where we want to minimize the sum-of-squared Riemannian distances
between the model and the data. A schematic of the geodesic regression model is
shown in Fig. 2.1.

Before formulating the model, we review a few basic concepts of Riemannian
geometry. We will write an element of the tangent bundle as the pair .p; v/ 2 TM ,
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Fig. 2.1 Schematic of the
geodesic regression model

where p is a point in M and v 2 TpM is a tangent vector at p. Recall that for any
.p; v/ 2 TM there is a unique geodesic curve # , with initial conditions #.0/ D p
and # 0.0/ D v. This geodesic is only guaranteed to exist locally. When # is defined
over the interval å 0; 1$, the exponential map at p is defined as Expp.v/ D #.1/.
In other words, the exponential map takes a position and velocity as input and
returns the point at time 1 along the geodesic with these initial conditions. The
exponential map is locally diffeomorphic onto a neighborhood of p. Let V.p/
be the largest such neighborhood. Then within V.p/ the exponential map has an
inverse, the Riemannian log map, Logp W V.p/ ! TpM . For any point q 2 V.p/
the Riemannian distance function is given by d.p; q/ D kLogp.q/k. It will be
convenient to include the point p as a parameter in the exponential and log maps,
i.e., define Exp.p; v/ D Expp.v/ and Log.p; q/ D Logp.q/.

Notice that the tangent bundle TM serves as a convenient parameterization of the
set of possible geodesics on M . An element .p; v/ 2 TM provides an intercept p
and a slope v, analogous to the � and � parameters in the multiple linear regression
model (2.1). In fact, � is a vector in the tangent space T� Rn Š Rn, and thus .� ; � / is
an element of the tangent bundle TRn. Now consider anM -valued random variable
Y and a non-random variableX 2R. The generalization of the multiple linear model
to the manifold setting is the geodesic model,

Y D Exp.Exp.p;Xv/; "/; (2.3)

where " is a random variable taking values in the tangent space at Exp.p;Xv/.
Notice that for Euclidean space, the exponential map is simply addition, i.e.,
Exp.p; v/ D p C v. Thus, the geodesic model coincides with (2.1) when M D Rn.

2.3.1 Least Squares Estimation

Consider a realization of the model (2.3): .xi ; yi / 2 R ! M , for i D 1; : : : ; N .
Given this data, we wish to find estimates of the parameters .p; v/ 2 TM . First,
define the sum-of-squared error of the data from the geodesic given by .p; v/ as

E.p; v/ D 1

2

NX

iD1
d.Exp.p; xiv/; yi /2: (2.4)
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dpExp dvExp

Fig. 2.2 Jacobi fields as derivatives of the exponential map

Following the ordinary least squares minimization problem given by (2.2), we
formulate a least squares estimator of the geodesic model as a minimizer of the
above sum-of-squares energy, i.e.,

. Op; Ov/ D arg min
.p;v/

E.p; v/: (2.5)

Again, notice that this problem coincides with the ordinary least squares problem
whenM D Rn.

Unlike the linear setting, the least squares problem in (2.5) for a general manifold
M will typically not yield an analytic solution. Instead we derive a gradient descent
algorithm. Computation of the gradient of (2.4) will require two parts: the derivative
of the Riemannian distance function and the derivative of the exponential map.
Fixing a pointp 2M , the gradient of the squared distance function isrxd.p; x/2 D
"2Logx.p/ for x 2 V.p/.

The derivative of the exponential map Exp.p; v/ can be separated into a derivative
with respect to the initial point p and a derivative with respect to the initial
velocity v. To do this, first consider a variation of geodesics given by c1.s; t/ D
Exp.Exp.p; su1/; tv.s//, where u1 2 TpM defines a variation of the initial point
along the geodesic %.s/ D Exp.p; su1/. Here we have also extended v 2 TpM to a
vector field v.s/ along % via parallel translation. This variation is illustrated on the
left side of Fig. 2.2. Next consider a variation of geodesics c2.s; t/DExp.p; su2 C
tv/, where u2 2 TpM . (Technically, u2 is a tangent to the tangent space, i.e.,
an element of Tv.TpM/, but there is a natural isomorphism Tv.TpM/ Š TpM .)
The variation c2 produces a “fan” of geodesics as seen on the right side of
Fig. 2.2.

Now the derivatives of Exp.p; v/ with respect to p and v are given by

dpExp.p; v/ $ u1 D
d

ds
c1.s; t/

���
sD0
D J1.1/

dvExp.p; v/ $ u2 D
d

ds
c2.s; t/

���
sD0
D J2.1/;
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where Ji .t/ are Jacobi fields along the geodesic #.t/ D Exp.p; tv/. Jacobi fields
are solutions to the second order equation

D2

dt2
J.t/CR.J.t/; # 0.t// # 0.t/ D 0; (2.6)

where R is the Riemannian curvature tensor. For more details on the derivation of
the Jacobi field equation and the curvature tensor, see for instance [3]. The initial
conditions for the two Jacobi fields above are J1.0/ D u1; J 01.0/ D 0 and J2.0/D 0,
J 02.0/ D u2, respectively. If we decompose the Jacobi field into a component
tangential to # and a component orthogonal, i.e., J D J> C J?, the tangential
component is linear: J>.t/ D u>1 C tu>2 . Therefore, the only challenge is to solve
for the orthogonal component.

Finally, the gradient of the sum-of-squares energy in (2.4) is given by

rp E.p; v/ D "
NX

iD1
dpExp.p; xiv/&Log.Exp.p; xiv/; yi /;

rvE.p; v/ D "
NX

iD1
xi dvExp.p; xiv/&Log.Exp.p; xiv/; yi /;

where we have taken the adjoint of the exponential map derivative, e.g., defined
by hdpExp.p; v/u;wi D hu; dpExp.p; v/&wi. As we will see in the next section,
formulas for Jacobi fields and their respective adjoint operators can often be derived
analytically for many useful manifolds.

2.3.2 R2 Statistics and Hypothesis Testing

In regression analysis the most basic question one would like to answer is whether
the relationship between the independent and dependent variables is significant.
A common way to test this is to see if the amount of variance explained by the model
is high. For geodesic regression we will measure the amount of explained variance
using a generalization of the R2 statistic, or coefficient of determination, to the
manifold setting. To do this, we first define predicted values of yi and the errors "i as

Oyi D Exp. Op; xi Ov/;
O"i D Log. Oyi ; yi /;

where . Op; Ov/ are the least squares estimates of the geodesic parameters defined
above. Note that the Oyi are points along the estimated geodesic that are the best
predictions of the yi given only the xi . The O"i are the residuals from the model
predictions to the true data.
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Now to define the total variance of data, y1; : : : ; yN 2 M , we use the Fréchet
variance, intrinsically defined by

var.yi / D min
y2M

1

N

NX

iD1
d.y; yi /

2:

The unexplained variance is the variance of the residuals, var. O"i / D 1
N

P kO"ik2.
From the definition of the residuals, it can be seen that the unexplained variance is
the mean squared distance of the data to the model, i.e., var.O"i / D 1

N

P
d. Oyi ; yi /2.

Using these two variance definitions, the generalization of the R2 statistic is then
given by

R2 D 1 " unexplained variance
total variance

D 1 " var.O"i /
var.yi /

: (2.7)

Fréchet variance coincides with the standard definition of variance when M D Rn.
Therefore, it follows that the definition ofR2 in (2.7) coincides with theR2 for linear
regression when M D Rn. Also, because Fréchet variance is always nonnegative,
we see that R2 % 1, and that R2 D 1 if and only if the residuals to the model
are exactly zero, i.e., the model perfectly fits the data. Finally, it is clear that the
residual variance is always smaller than the total variance, i.e., var.O"i / % var.yi /.
This is because we could always choose Op to be the Fréchet mean and v D 0 to
achieve var.O"i / D var.yi /. Therefore, R2 & 0, and it must lie in the interval Œ0; 1$,
as is the case for linear models.

We now describe a permutation test for testing the significance of the estimated
slope term, Ov. Notice that if we constrain v to be zero in (2.5), then the resulting least
squares estimate of the intercept, Op; will be the Fréchet mean of the yi . The desired
hypothesis test is whether the fraction of unexplained variance is significantly
decreased by also estimating v. The null hypothesis is H0 W R2 D 0, which is the
case if the unexplained variance in the geodesic model is equal to the total variance.
Under the null hypothesis, there is no relationship between the X variable and the
Y variable. Therefore, the xi are exchangeable under the null hypothesis, and a per-
mutation test may randomly reorder the xi data, keeping the yi fixed. Estimating the
geodesic regression parameters for each random permutation of the xi , we can cal-
culate a sequence ofR2 values,R21; : : : ; R

2
m, which approximate the sampling distri-

bution of theR2 statistic under the null hypothesis. Computing the fraction of theR2k
that are greater than the R2 estimated from the unpermuted data gives us a p-value.

2.4 Testing the Geodesic Fit

In any type of regression analysis, a choice is made as to the type of model
that is fit to the data, whether it be linear, polynomial, or perhaps nonparametric.
An important step in the analysis is to verify that the selected model is in fact
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appropriate. In linear regression, for example, one would want to test several
assumptions: (1) that the trend in the data is truly linear, (2) that the error is
homoscedastic, (3) that the model fit is not led astray by outliers, (4) that the errors
are Gaussian distributed, etc. Several graphical and quantitative heuristic tests have
been developed to test these assumptions. For a detailed treatment of these methods,
see [9].

In this section we develop a diagnostic test of the model assumptions for geodesic
regression. We focus on the following question: is a geodesic curve an appropriate
model for the relationship between the independent and dependent variables? A
geodesic curve is, in some sense, the “straightest” path one can take on a manifold.
This begs the question if a more flexible model would do a better job at fitting the
data. This is analogous to the model selection problem for real-valued data when
one is making the choice between a linear model and something more flexible, such
as a higher-order polynomial model. Of course, if a model is made more flexible
there is a danger that the data will be overfit. One way to test if a model is “flexible
enough” is to plot the residuals of the model versus the independent variable. If
the model has captured the relationship between the independent and dependent
variables, then the residuals should show no obvious trend. If they do show a
trend, then a more flexible model is needed to capture the relationship between the
data. However, for regression on manifolds, this is a difficult test to apply because
the residuals are high-dimensional tangent vectors and are thus difficult to plot
versus the independent variable. One solution might be to plot the magnitude of
the residuals instead, but this loses most of the information contained in the residual
vectors.

Instead, we will use nonparametric regression as a comparison model to test
if a geodesic is sufficient to capture the relationships in the data. Nonparametric
regression models, such as the kernel regression method described below, are
highly flexible. Because there is no parametric model assumed for the functional
relationship between the independent and dependent variables, these models can
adapt to highly complex functions given enough data. Given a method to visualize
the results of a manifold-valued regression, the diagnostic test is as follows. First,
compute both a geodesic regression and a nonparametric regression of the data.
Second, visualize the results of both regression methods. If the nonparametric
regression trend is similar to the estimated geodesic, then this provides strong
evidence that the geodesic model is sufficient. If the nonparametric trend deviates
significantly from the estimated geodesic, then this indicates that the geodesic model
is too inflexible to capture the relationship between the two variables.

An example of this procedure is given for synthesized univariate data in Fig. 2.3.
The left figure shows data generated from a noisy linear trend. In this case the linear
model and the nonparametric model give similar answers. The right figure shows
data generated from a noisy nonlinear (sinusoidal) trend. Here the nonparametric
regression adapts to the nonlinearities in the data, and the inadequacy of the
linear trend can be seen as a difference between the two regression models. Of
course, in the univariate case we can easily see that a linear trend is inadequate
just by plotting the data even without comparing it to a nonparametric regression.
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Fig. 2.3 Comparison of linear (black) and nonparametric (red) regressions as a test of fit. When
the data is generated from a linear model (left), the two regression methods produce similar results.
When the data is generated from a nonlinear model (right), the difference in the two models helps
detect that a linear model is insufficient

However, for high-dimensional manifolds this type of plot is not available. This
is where a comparison to a nonparametric trend is highly useful. In the results
below (Sect. 2.6.2) we give an example of how this comparison to nonparametric
regression can be used as a diagnostic of model fit in shape analysis applications.
The nonparametric regression method that we use for comparison is the one given
by Davis et al. [2], which we review now.

2.4.1 Review of Univariate Kernel Regression

Before reviewing the manifold version, we give a quick overview of univariate
kernel regression as developed by Nadaraya [19] and Watson [25]. As in the
linear regression setting, we are interested in finding a relationship between data
x1; : : : ; xN 2 R, coming from an independent variableX , and data y1; : : : ; yN 2 R,
representing a dependent variable Y . The model of their relationship is
given by

Y D f .X/C ";
where f is an arbitrary function, and " is a random variable representing the error.
Contrary to linear regression, the function f is not assumed to have any particular
parametric form.

Instead, the function f is estimated from the data by local weighted averaging.

Ofh.x/ D
PN

iD1 Kh.x " xi /yiPN
iD1 Kh.x " xi /

:

In this equation, K is a function that satisfies
R
K.t/ dt D 1 and Kh.t/ D 1

h
K. t

h
/,

with bandwidth parameter h > 0. This is the estimation procedure shown in Fig. 2.3
(red curves).
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2.4.2 Nonparametric Kernel Regression on Manifolds

The regression method of Davis et al. [2] generalizes the Nadaraya-Watson kernel
regression method to the case where the dependent variable lives on a Riemannian
manifold, i.e., yi 2 M . Here the model is given by

Y D Exp.f .X/; "/;

where f W R ! M defines a curve on M , and " 2 Tf.X/M is an error term. As in
the univariate case, there are no assumptions on the parametric form of the curve f .

Motivated by the definition of the Nadaraya-Watson estimator as a weighted
averaging, the manifold kernel regression estimator is defined using a weighted
Fréchet sample mean as

Ofh.x/ D arg min
y2M

PN
iD1 Kh.x " xi /d.y; yi /2PN

iD1 Kh.x " xi /
:

Notice that when the manifold under study is a Euclidean vector space, equipped
with the standard Euclidean norm, the above minimization results in the Nadaraya-
Watson estimator.

2.4.3 Bandwidth Selection

It is well known within the kernel regression literature that kernel width plays a
crucial role in determining regression results [24]. In particular, it is important to
select a bandwidth that captures relevant population-wide changes without either
oversmoothing and missing relevant changes or undersmoothing and biasing the
results based on individual noisy data points. The ‘Goldie Locks’ method of tuning
the bandwidth until the results are most pleasing is a common subjective method
for bandwidth selection. However, non-subjective methods may be required, for
example, when kernel regression is part of a larger statistical study. A number
of automatic kernel bandwidth selection techniques have been proposed for this
purpose [24].

One classic method for automatic bandwidth selection is based on least squares
cross-validation. This method is easily extended to the manifold regression setting
in the following way. The least squares cross-validation estimate for the optimal
bandwidth h is defined as

OhLSCV D arg min
h2RC

1

N

NX

iD1
d
!
Of .i/
h .xi /; yi

"2
;
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where

Of .i/
h .t/ D arg min

y2M

 PN
jD1;j¤i Kh.x " xj /d.y; yj /2
PN

jD1;j¤i Kh.x " xj /

!

is the manifold kernel regression estimator with the i -th observation left out. This
cross-validation method was used to select the bandwidth for the kernel regression
example in Fig. 2.3.

2.5 Results: Regression of 3D Rotations

2.5.1 Overview of Unit Quaternions

We represent 3D rotations as the unit quaternions, Q1. A quaternion is denoted as
q D .a; v/, where a is the “real” component and v D biCcjCdk. Geodesics in the
rotation group are given simply by constant speed rotations about a fixed axis. Let
e D .1; 0/ be the identity quaternion. The tangent space TeQ1 is the vector space
of quaternions of the form .0; v/. The tangent space at an arbitrary point q 2 Q1

is given by right multiplication of TeQ1 by q. The Riemannian exponential map is
Expq..0; v/ $ q/ D .cos.'=2/; 2v $ sin.'=2/='/ $ q, where ' D 2kvk. The log map is
given by Logq..a; v/ $ q/ D .0; 'v=kvk/ $ q, where ' D arccos.a/.

Being a unit sphere, Q1 has constant sectional curvatureK D 1. In this case the
orthogonal component of the Jacobi field equation (2.6) along a geodesic #.t/ has
the analytic solution

J.t/? D u1.t/ cos .Lt/C u2.t/
sin .Lt/
L

;

where u1; u2 are parallel vector fields along # , with initial conditions u1.0/ D J.0/?
and u2.0/ D J 0.0/?, and L D k# 0k. While the Jacobi field equation gives us
the differential of the exponential map, we really need the adjoint of this operator
for geodesic regression. However, from the above equation it is clear that dpExp
and dvExp are both self-adjoint operators. That is, the above Jacobi field equation
provides us both the differential and its adjoint.

2.5.2 Geodesic Regression of Simulated Rotation Data

To test the geodesic regression least squares estimation on Q1, synthetic rotation
data was simulated according to the geodesic model (2.3). The intercept was the
identity rotation: p D .1; 0; 0; 0/, and the slope was a rotation about the z-axis:
v D .0; 0; 0;(=4/. The xi data were drawn from a uniform distribution on Œ0; 1$.
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Fig. 2.4 Results for simulated rotation data: MSE of the geodesic regression estimates for the
intercept (left) and slope (right) as a function of sample size

The errors in the model were generated from an isotropic Gaussian distribution in
the tangent space, with ) D (=8. The resulting data .xi ; yi / were used to compute
estimates of the parameters . Op; Ov/. This experiment was repeated 1,000 times each
for sample sizes N D 2k , k D 2; 3; : : : ; 8. We would expect that as the sample size
increases, the mean squared error (MSE) in the estimates . Op; Ov/, relative to the true
parameters, would approach zero. The MSE is defined as

MSE. Op/ D 1

M

MX

iD1
d. Opi ; p/2; MSE.Ov/ D 1

M

MX

iD1
kOvi $ . Op!1i p/ " vk2;

whereM D 1,000 is the number of repeated trials, and . Opi ; Ovi / is the estimate from
the i th trial. Notice the multiplication by . Op!1i p/ in the second equation is a right-
translation of Ovi to the tangent space of p. Figure 2.4 shows plots of the resulting
MSE for the slope and intercept estimates. As expected, the MSE approaches zero as
sample size increases, indicating at least empirically that the least squares estimates
are consistent.

2.6 Results: Regression in Shape Spaces

One area of medical image analysis and computer vision that finds the most
widespread use of Riemannian geometry is the analysis of shape. Dating back to
the groundbreaking work of Kendall [13] and Bookstein [1], modern shape analysis
is concerned with the geometry of objects that is invariant to rotation, translation,
and scale. This typically results in representing an object’s shape as a point in a
nonlinear Riemannian manifold, or shape space. Recently, there has been a great
amount of interest in Riemannian shape analysis, and several shape spaces for
2D and 3D objects have been proposed [8, 15, 17, 26]. We choose here to use
Kendall’s shape space, but geodesic regression is applicable to other shape spaces
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as well. It could also be applied to spaces of diffeomorphisms, using the Jacobi
field calculations given by Younes [27]. In fact, Niethammer et al. [20] recently
independently developed geodesic regression for diffeomorphic transformations of
image time series. They solve the gradient descent problem with an elegant control
theory approach, constraining the regression curve to be a geodesic using Lagrange
multipliers. The resulting update to the geodesic’s initial conditions involves a
numerical integration of an adjoint equation backwards along the geodesic with
jump conditions at the data points.

2.6.1 Overview of Kendall’s Shape Space

We begin with derivations of the necessary computations for geodesic regression on
Kendall’s shape space. A configuration of k points in the 2D plane is considered as
a complex k-vector, z 2 Ck . Removing translation, by requiring the centroid to be
zero, projects this point to the linear complex subspace V D fz 2 Ck WP zi D 0g,
which is equivalent to the space Ck!1. Next, points in this subspace are deemed
equivalent if they are a rotation and scaling of each other, which can be represented
as multiplication by a complex number, *ei' , where * is the scaling factor and ' is
the rotation angle. The set of such equivalence classes forms the complex projective
space, CPk!2. As Kendall points out, there is no unique way to identify a shape
with a specific point in complex projective space. However, if we consider that
the geodesic regression problem only requires computation of exponential/log maps
and Jacobi fields, we can formulate these computations without making an explicit
identification of shapes with points in CPk!2.

Thus, we think of a centered shape x 2V as representing the complex line Lx D
fz $ x W z 2 Cnf0g g, i.e., Lx consists of all point configurations with the same shape
as x. A tangent vector at Lx 2V is a complex vector, v 2 V , such that hx; vi D 0.
The exponential map is given by rotating (within V ) the complex line Lx by the
initial velocity v, that is,

Expx.v/ D cos ' $ x C kxk sin '
'

$ v; ' D kvk: (2.8)

Likewise, the log map between two shapes x; y 2 V is given by finding the initial
velocity of the rotation between the two complex lines Lx and Ly . Let (x.y/ D
x $ hx; yi=kxk2 denote the projection of the vector y onto x. Then the log map is
given by

Logx.y/ D
' $ .y " (x.y//
ky " (x.y/k

; ' D arccos
jhx; yij
kxkkyk : (2.9)

Notice that we never explicitly project a shape onto CPk!2. This has the effect that
shapes computed via the exponential map (2.8) will have the same orientation and
scale as the base point x. Also, tangent vectors computed via the log map (2.9) are
valid only at the particular representation x (and not at a rotated or scaled version
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of x). This works nicely for our purposes and implies that shapes along the estimated
geodesic will have the same orientation and scale as the intercept shape, Op.

The sectional curvature of CPk!2 can be computed as follows. Let u;w be
orthonormal vectors at a point p 2 CPk!2. These vectors may be thought of as
vectors in Ck!1 Š R2k!2. Writing the vector w as w D .w1; : : : ;w2k!2/, define the
operator

j.w/ D ."wk; : : : ;"w2k!2;w1; : : : ;wk!1/:

(This is just multiplication by i D
p
"1 if we take w as a complex vector with the

k " 1 real coordinates listed first.) Using this operator, the sectional curvature is
given by

K.u;w/ D 1C 3hu; j.w/i2:
When k D 3, CP1 is the space of triangle shapes and is isomorphic to the sphere,
S2, and thus has constant sectional curvature, K D 1. For k > 3, CPk!2 has
sectional curvature in the interval K 2 Œ1; 4$. Furthermore, let u 2 TpCPk!2 be
any unit length vector. If we decompose the tangent space into an orthonormal basis
e1; : : : ; e2k!2, such that e1 D j.u/, then we have K.u; e1/ D 4 and K.u; ei / D 1
for i > 1. This leads to the following procedure for computing the Jacobi field
equation on CPk!2 along a geodesic # . Given initial conditions for J.0/? and
J 0.0/?, decompose J.0/? D u1 C w1, so that u1 is orthogonal to j.# 0/ and w1
is tangential to j.# 0/. Do the same for J 0.0/? D u2 C w2. As before, extend these
vectors to parallel fields, ui .t/;wi .t/, along # . Then the orthogonal component of
the Jacobi field along # is given by

J.t/? D u1.t/ cos .Lt/C u2.t/
sin .Lt/
L

C w1.t/ cos .2Lt/C w2.t/
sin .2Lt/
2L

:

As was the case for rotations, both dpExp and dvExp are self-adjoint operators.

2.6.2 Application to Corpus Callosum Aging

The corpus callosum is the major white matter bundle connecting the two hemi-
spheres of the brain. A midsagittal slice from a magnetic resonance image (MRI)
with segmented corpus callosum is shown in Fig. 2.5. Several studies have shown
that the volume of the corpus callosum decreases with normal aging [4]. However,
less is known about how the shape of the corpus callosum changes with age.
Understanding shape changes may provide a deeper understanding of the anatomical
and biological processes underlying aging. For example, does the corpus callosum
shrink uniformly in size, or do certain regions deteriorate faster than others? This
type of question can be answered by geodesic regression in shape spaces.

To understand age-related changes in the shape of the corpus callosum, geodesic
regression was applied to corpus callosum shape data derived from the OASIS
brain database (www.oasis-brains.org). The data consisted of MRI from 32 subjects
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Fig. 2.5 Corpus callosum segmentation and boundary point model for one subject
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74 77 80 81 83

86 90

Fig. 2.6 The input corpus callosum shape data and corresponding subject ages in years

with ages ranging from 19 to 90 years old. The corpus callosum was segmented
in a midsagittal slice using the ITK SNAP program (www.itksnap.org). These
boundaries of these segmentations were sampled with 128 points using ShapeWorks
(www.sci.utah.edu/software.html). This algorithm generates a sampling of a set of
shape boundaries while enforcing correspondences between different point models
within the population. An example of a segmented corpus callosum and the resulting
boundary point model is shown in Fig. 2.5. The entire collection of input shapes and
their ages is shown in Fig. 2.6 (boundary points have been connected into a boundary
curve for visualization purposes). Each of these preprocessing steps were done
without consideration of the subject age, to avoid any bias in the data generation.

Geodesic regression was applied to the data .xi ; yi /, where xi was the i th
subject’s age, and yi was the i th subject’s corpus callosum, generated as above
and represented as a point in Kendall’s shape space. First, the average age of the
group, Nx, was subtracted from each xi , which was done to make the intercept term
correspond to the shape at the mean age, rather than the shape at age 0, which would
be far outside the data range. Least squares estimates . Op; Ov/ were generated accord-
ing to (2.5), and using the above calculations for CPk!2. The resulting estimated
geodesic is shown in Fig. 2.7 as a sequence of shapes: O#.tk/DExp. Op; .tk" Nx/Ov/, for
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Fig. 2.7 Geodesic regression
of the corpus callosum. The
estimated geodesic is shown
as a sequence of shapes from
age 19 (blue) to age 90 (red)

20 yrs.

66 yrs. 90 yrs.

44 yrs.

Fig. 2.8 Comparison of geodesic regression (solid black) and nonparametric kernel regression
(dashed red) of the corpus callosum shape versus age

tk D 19; 36; 54; 72; 90. The shape trend shows a very clear thinning of the corpus
callosum, with the largest effects in the posterior part of the body and in the genu
(anterior end).

The statistical significance of the estimated trend was tested using the permu-
tation test described in Sect. 2.3.2, using 10,000 permutations. The p-value for
the significance of the slope estimate, Ov, was p D 0:009. The coefficient of
determination (for the unpermuted data) was R2 D 0:12. The low R2 value must be
interpreted carefully. It says that age only describes a small fraction of the shape
variability in the corpus callosum. This is not surprising: we would expect the
intersubject variability in corpus callosum shape to be difficult to fully describe
with a single variable (age). However, this does not mean that the age effects are not
important. In fact, the low p-value says that the estimated age changes are highly
unlikely to have been found by random chance.

Finally, the appropriateness of the resulting geodesic model fit was tested
using a comparison to nonparametric regression, as outlined in Sect. 2.4. First,
a nonparametric kernel regression of the corpus callosum data versus age was
computed using the method developed by Davis et al. [2] and reviewed in Sect. 2.4.2.
The kernel regression was performed on the same Kendall shape space manifold
and the bandwidth was chosen automatically using the cross-validation procedure
described in Sect. 2.4.3. Next, the resulting corpus callosum shape trend generated
by the kernel regression method was compared to the result of the geodesic
regression. This was done by again generating shapes from the geodesic model
O#.tk/ at a sequence of ages, tk , and overlaying the corresponding generated shapes
from the kernel regression model at the same ages. The results are plotted for ages
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tk D 20; 44; 66; and 90 (Fig. 2.8). Both regression methods give strikingly similar
results. The two regression models at other values of ages, not shown, are also
close to identical. This indicates that a geodesic curve does capture the relationship
between age and corpus callosum shape, and that the additional flexibility offered
by the nonparametric regression does not change the estimated trend. However, even
though both methods provide a similar estimate of the trend, the geodesic regression
has the advantage that it is simpler to compute and easier to interpret, from the
standpoint of the R2 statistic and hypothesis test demonstrated above.

2.7 Conclusion

We introduced a geodesic regression analysis method for Riemannian manifolds.
The geodesic regression model is the natural generalization of linear regression and
is parameterized by an intercept and slope term. We also developed a generalization
of the R2 statistic and a permutation test for the significance of the estimated
geodesic trend. There are several avenues for future work. First, the hypothesis
test presented here could be extended to test for group differences, for example,
to test if age-related anatomical changes are different in a disease population
compared to controls. Second, theoretical properties of geodesic regression, such as
unbiasedness and consistency, would be of interest. Finally, regression diagnostics
and model selection procedures need to be developed to assess the appropriateness
of a geodesic model for a particular data set.
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Chapter 3
Segmentation and Skeletonization on Arbitrary
Graphs Using Multiscale Morphology
and Active Contours

Petros Maragos and Kimon Drakopoulos

Abstract In this chapter we focus on formulating and implementing on abstract
domains such as arbitrary graphs popular methods and techniques developed for
image analysis, in particular multiscale morphology and active contours. To this
goal we extend existing work on graph morphology to multiscale dilation and
erosion and implement them recursively using level sets of functions defined on
the graph’s nodes. We propose approximations to the calculation of the gradient and
the divergence of vector functions defined on graphs and use these approximations
to apply the technique of geodesic active contours for object detection on graphs via
segmentation. Finally, using these novel ideas, we propose a method for multiscale
shape skeletonization on arbitrary graphs.

3.1 Introduction

Graph-theoretic approaches have become commonplace in computer vision. Exam-
ples include the graph-cut approaches to segmentation [7,8,16,24] and the statistical
inference on discrete-space visual data with graphical models [42]. In most of
these cases, the image graphs are regular grids that result from uniform sampling
of continuous space. In addition, in nowadays science and technology there exist
both low-level and high-level visual data as well as many other types of data
defined on arbitrary graphs with irregular spacing among their vertices. Examples
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Fig. 3.1 Representing image or more general visual information on graphs. (a) Hand on a graph.
(b) Face on a graph

from the vision area include region-based or part-based object representations,
cluster analysis in pattern recognition, and graph-based deformable models for
representing and recognizing shapes such as faces and gestures [15]. Two such
examples from the last area are shown in Fig. 3.1. Examples from non-vision areas
include network problems modeled with graphs, such as social nets, geographical
information systems, and communications networks.

In this chapter we explore theoretically and algorithmically three topics related to
shape morphology on arbitrary graphs: multiscale morphology on graphs, geodesic
active contours on graphs, and multiscale skeletonization on graphs.

An important part in our work is how to define multiscale morphological
operators on arbitrary graphs. We begin to approach this problem algebraically
by extending the lattice definitions of morphological operators on arbitrary graphs
which have been introduced in [20, 41] with some recent work in [17]. Then we
focus on our major approach which is based on discretizing the PDEs generating
continuous-scale morphological operators [1, 11] and the PDEs moving geodesic
active contours [13] on arbitrary graphs. In this latter direction, a first approach
to approximate morphological operators on graphs through mimicking the corre-
sponding PDEs has been studied in Ta et al. [39]. Our approach is slightly different
in our translation of the continuous gradient operator on arbitrary graph structures
and in our usage of multiscale neighborhoods. (In the general field of approximating
PDE-type problems on weighted graphs, a systematic analysis has been performed
in [4, 14] by introducing discrete gradients and Laplacian and by studying Dirichlet
and Neumann boundary value problems on graphs.) In the rest of our work, we
propose approximations for computing the differential terms required in applying
the technique of geodesic active contours to object detection on graphs. Finally, the
modeling of multiscale morphology on graphs allows us to develop a method for
multiscale skeletonization of shapes on arbitrary graphs.
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3.2 Multiscale Morphology on Graphs

In this section we first review some basic concepts from lattice-based morphology.
Then, we focus our review on (1) multiscale morphological image operators on
a Euclidean domain, either defined algebraically or generated by nonlinear PDEs,
and (2) on defining morphological operators on arbitrary graphs. Finally, we connect
these two areas and define multiscale morphological operators on graphs.

3.2.1 Background on Lattice and Multiscale Morphology

A general formalization [19,37] of morphological operators views them as operators
on complete lattices. A complete lattice is a set L equipped with a partial ordering
! such that .L ;!/ has the algebraic structure of a partially ordered set where
the supremum and infimum of any of its subsets exist in L . For any subset K "
L , its supremum

W
K and infimum

V
K are defined as the lowest (with respect

to !) upper bound and greatest lower bound of K , respectively. The two main
examples of complete lattices used respectively in morphological shape and image
analysis are: (i) the power set P.E/DfX W X " Eg of all binary images or shapes
represented by subsetsX of some domain E where the

W
=
V

lattice operations are
the set union/intersection, and (ii) the space of all graylevel image signals f W E !
T where T is a continuous or quantized sublattice of RDR [ f#1;1g and theW
=
V

lattice operations are the supremum/infimum of sets of real numbers. An
operator  on L is called increasing if f ! g implies  .f / !  .g/. Increasing
operators are of great importance; among them four fundamental examples are:

ı is dilation” ı.
_

i2I
fi / D

_

i2I
ı.fi / (3.1)

" is erosion” ".
^

i2I
fi / D

^

i2I
".fi / (3.2)

˛ is opening” ˛ is increasing, idempotent, and anti-extensive (3.3)

ˇ is closing” ˇ is increasing, idempotent, and extensive (3.4)

where I is an arbitrary index set, idempotence of an operator means that  2D ,
and anti-extensivity and extensivity of operators ˛ and ˇ means that ˛.f / ! f !
ˇ.f / for all f . Operator products mean composition: ! .f /D!. .f //. The
notation  r means r-fold composition.
Dilations and erosions come in pairs .ı; "/ called adjunctions if

ı.f /!g” f !".g/ (3.5)
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Such pairs are useful for constructing openings ˛D ı" and closings ˇD "ı. The
above definitions allow broad classes of signal operators to be studied under the
unifying lattice framework.

In Euclidean morphology, the domain E becomes the d -dimensional Euclidean
space Ed where EDR or EDZ. In this case, the most well-known morphological
operators are the translation-invariant Minkowski dilations˚, erosions$, openings
ı, and closings %, which are simple special cases of their lattice counterparts. If
XCbDfx C b W x 2 Xg denotes the translation of a set/shape X " Ed by b 2 Ed ,
the simple Minkowski set operators areX˚BD S

b2B XCb,X$BD
T
b2B X!b ,

and XıBD .X $B/˚B . The set B usually has a simple shape and small size, in
which case it is called a structuring element. By denoting with rBDfrb W b 2 Bg
the r-scaled homothetic of B , where r & 0, we can define multiscale translation-
invariant morphological set operators on Rd :

ırB.X/,X ˚ rB; "rB.X/,X $ rB; ˛rB.X/,XırB (3.6)

Similarly, if .f ˚ B/.x/D W
b2B f .x # b/, .f $ B/.x/D

V
b2B f .x C b/, and

.f ıB/.x/D .f $ B/ ˚ B are the unit-scale Minkowski translation-invariant flat
(i.e. unweighted) function operators, their multiscale counterparts are

ırB.f /,f ˚ rB; "rB.f /,f $ rB; ˛rB.f /,f ırB (3.7)

If B is convex, then [30]

rB D B ˚ B ˚ ' ' '˚ B„ ƒ‚ …
r times

; r D 0; 1; 2; : : : (3.8)

This endows the above multiscale dilations and erosions with a semigroup property,
which allows them to be generated recursively:

ı.rC1/B D ıBırB; ".rC1/B D "B"rB; r D 0; 1; 2; : : : (3.9)

and create the simplest case of a morphological scale-space [11, 28].
For digital shapes and images, the above translation-invariant morphological

operators can be extended to multiple scales by using two alternative approaches.
The first is an algebraic approach where ifB "Zd is a unit-scale discrete structuring
graph, we define its scaled version rB for integer scales as in (3.8) and use (3.9)
for producing multiscale morphological operators that agree with their continuous
versions in (3.6) and (3.7) if B is convex. The second approach [1, 11] models the
dilation and erosion scale-space functions u.x; t/D f ˚ tB and v.x; t/D f $ tB
as generated by the nonlinear partial differential equations (PDEs)

@tu D krukB; @t v D #krvkB (3.10)
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where for a convex B " R2, k.x1; x2/kB D sup.a1;a2/2B a1x1 C a2x2. These PDEs
can be implemented using the numerical algorithms of [32], as explored in [35].
In case of a shape X , the above PDEs can still be used to generate its multiscale
morphological evolutions by treating u as the level function whose zero level set
contains the evolving shape. Such PDE-based shape evolutions have been studied in
detail by Kimia et al. [23]. Modern numerical algorithms for morphological PDEs
can be found in [9, 10].

3.2.2 Background on Graph Morphology

We consider an undirected graph GD .V;E/ without loops and multiple edges,
where V DV.G/ and EDE.G/ are the sets of its vertices (also called nodes) and
edges, respectively. We denote edges by pairs .v;w/ of vertices; these are symmetric,
i.e. .v;w/D .w; v/, since the graph is undirected. If V 0 " V and E 0 " E, the pair
G0D .V 0; E 0/ is called a subgraph of G. A graph vertex mapping " W V ! V 0 is
called a graph homomorphism fromG to G0 if " is one-to-one and preserves edges,
i.e. .v;w/ 2 E implies .".v/; ".w// 2 E 0. If " is a bijection, then it is called a
graph isomorphism; if in addition G0DG, then it is called a graph automorphism
or symmetry of G. The set of all such symmetries forms under composition the
symmetry group Sym.G/ of a graph. Symmetries play the role of ‘generalized
translations’ on a graph.

ShapesX "V and image functions f WV !T defined on a graphG with values
in a complete lattice T will be denoted by .X jG/ and .f jG/, respectively, and may
be referred to as binary graphs and multilevel graphs. In case of multilevel graphs,
the values of the functions .f jG/ may be discrete, e.g. T Df0; 1; : : : ; m # 1g, or
continuous, e.g. T DR. Similarly a graph operator for shapes or functions will be
denoted by  .'jG/. The argumentG will be omitted if there is no risk of confusion.
A graph operator is called increasing if it is increasing in its first argument (shape
or function), i.e. X " Y implies  .X jG/ "  .Y jG/, and G-increasing if it
increases in G, i.e., G0 " G implies  .f jG0/ !  .f jG/ for all graph functions
.f jG/. A graph operator is called invariant under graph symmetries # 2 Sym.G/
if # D # .

Henceforth and until mentioned otherwise, we shall focus our discussion on
binary graph operators. Given a graph GD .V;E/, the binary graph dilations and
erosions on P.V / can be defined via a graph neighborhood function N W V !
P.V / which assigns at each vertex v a neighborhood N.v/. Taking the union of
all such neighborhoods for the vertices of a shape X " V creates a graph dilation
of X ; then, by using (3.5) we also find its adjunct erosion:

ıN .X jG/,
[

v2X
N.v/; "N .X jG/, fv 2 V W N.v/ " Xg (3.11)
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At each vertex v, the shape of N.v/ may vary according to the local graph structure
and this inherently makes the above morphological graph operators adaptive. At
each v, the reflected neighborhood is defined by

LN.v/, fw 2 V W v 2 N.w/g (3.12)

This is related to operator duality as follows. The dual (or negative) of a binary
graph operator is defined by  ".X jG/D . .X"jG//", where X"DV n X . Then,
the dual graph dilation and erosion w.r.t. a neighborhood function coincide with the
erosion and dilation, respectively, w.r.t. the reflected neighborhood function:

ı"N D " LN ; ""N D ı LN (3.13)

IfN.v/D LN.v/ for each v, we have a symmetric neighborhood function. Such an
example is Vincent’s unit-scale graph neighborhood function [41]

N1.v/, fw 2 V W .v;w/ 2 Eg [ fvg (3.14)

which, when centered at a vertex v, includes this vertex and all others that form an
edge with it. If we use it in (3.11), this leads to the simplest unit-scale graph dilation
ı1.X jG/ and erosion "1.X jG/. Since .ı1; "1/ is an adjunction, the composition
˛1D ı1"1 and ˇ1D "1ı1 is a graph opening and closing, respectively. See Fig. 3.2
for an example. All four of these operators inherit the standard increasing property
from their lattice definition and are invariant under graph symmetries. However, ı1
is G-increasing, "1 is G-decreasing, and ˛1 and ˇ1 are neither of these.

Heijmans et al. [20,21] have generalized the above (symmetric neighborhoodN1)
approach by introducing the concept of a structuring graph (s-graph). This is a
graph A D .VA ; EA / of a relatively small size and has as additional structure two
nonempty and possibly overlapping subsets: the buds BA " VA and the roots
RA " VA . It may not be connected and plays the role of a locally adaptive graph
template, where (compared to Euclidean morphology) the buds correspond to the
points of a structuring graph and the roots correspond to its origin. See Fig. 3.3 for
examples. An s-graph A corresponds to the following neighborhood function

NA .vjG/D
[
f".BA / W " embeds A into G at vg (3.15)

where we say that " embeds A into G at v if " is a group homomorphism of A
into G and v 2 ".RA /. Such an embedding matches the s-graph A with the local
structure of the graph G. The simple neighborhoodN1 of (3.14) corresponds to the
s-graph of Fig. 3.3a, with two vertices which both are buds and one of them is a
root. Replacing (3.15) in (3.11) creates an adjunction of graph dilation and erosion
.ıA ; "A / by structuring graphs. These are symmetry-invariant operators, i.e. they
commute with group symmetries # , because the neighborhood function of their
s-graph is invariant under group symmetries: i.e.,NA .#.v/jG/D #NA .vjG/, where
#X Df#.v/ W v 2 Xg.
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Fig. 3.2 Binary graph operators using a unit-scale symmetric neighborhood function. (a) The
vertex set on which we apply morphological operators. (b) Dilation. (c) Erosion. (d) Closing.
(e) Opening

Fig. 3.3 Examples of structuring graphs. Arrows indicate roots. Large circular nodes denote buds.
(a) The s-graph that corresponds to the simple neighborhood. Specifically, using this s-graph
as a structuring element, the neighborhood of a node is the set of nodes that are adjacent to it.
(b) A structuring graph and its reflection. The reflected s-graph has the same vertices and edges as
the original s-graph but their bud and root sets are interchanged

Finally, the reflection of the neighborhood of an s-graph equals the neighborhood
of another s-graph LA , called the reflection of A :

LNA .vjG/ D N LA .vjG/ (3.16)

The reflected s-graph LA has the same vertices and edges as the original s-graph
A but their bud and root sets are interchanged: B LA DRA and R LA DBA (see
Fig. 3.3). The dual operator of a dilation by an s-graph is the erosion by its reflected
s-graph, and vice-versa, as prescribed by (3.13).
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All the previously defined binary graph operators are increasing and can be
extended to multilevel graphs. Specifically, a multilevel graph .f jG/ can also be
represented by its level sets Xh.f jG/Dfv 2 V W f .v/ & hg, h 2 T :

.f jG/.v/ D supfh 2 T W v 2 Xh.f jG/g (3.17)

By applying an increasing binary graph operator  to all level sets and using
threshold superposition, we can extend  to a flat operator on multilevel graphs:

 .f jG/.v/ D supfh 2 T W v 2  .Xh.f /jG/g (3.18)

For example, if  .X jG/ is a set dilation by the s-graph A , the corresponding
function operator is

ıA .f jG/.v/ D max
w2NA .vjG/

f .w/ (3.19)

Two useful choices for the function values are either discrete with T Df0; 1; : : : ;
m # 1g, or continuous with T DR.

3.2.3 Multiscale Morphology on Graphs

We need to discuss the notion of scale in graph morphology in order to obtain
the graph counterparts of multiscale dilation and erosion defined in Sect. 3.2.1.
Consider a graph GD .V;E/ and a nonempty subset X " V of its vertices. Let
A be an s-graph. One approach could be to define the dilation at scale r D 1; 2; : : :
of a vertex subset X w.r.t. the s-graph A by ırA .X jG/ where rA denotes the
r-fold graph dilation of the s-graph with itself. This approach would encounter
the problem presented in Fig. 3.4. Specifically the scaled versions of the s-graph
have complicated structure and in general, it would be highly unlikely to find an
appropriate embedding in the graph at every node of X to calculate the dilation of
the set.

Thus, we propose the following alternative new definition of the scaled versions
of graph dilation and erosion in order to overcome the issues mentioned. We define
recursively the graph dilation of X at integer scale r D 1; 2; : : : with respect to the
s-graph A by

ırA .X j G/ D ıA .ı
r!1
A .X j G/ j G/ (3.20)

Essentially, we interchange the order with which we apply the dilation operators; in
the classic framework in order to get the r-scale dilation we first find the r-scaling
of the structuring graph and then perform the dilation with the set, whereas in our
definition we dilate the set X with the structuring graph r times. Generalizing this
notion of scale to multilevel dilation of a function f W V ! T we get the following
definition. The dilation of f at integer scales r will be given at each v 2 V by
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Fig. 3.4 Left: a structuring
graph. Right: The scaled by
rD 2 version of the s-graph.
A scaling of a simple s-graph
has increasingly complicated
structure and therefore, for
larger scales it is difficult or
impossible to find an
embedding to an arbitrary
graph at each node. This fact
necessitates an alternative
definition of scale on graphs

!r .v/, ıA .!r!1.f j G/ j G/.v/; !1.v/ D ıA .f j G/.v/ (3.21)

This provides a recursive computation of the multiscale dilations of a function
f W V ! T and leads us to the following Proposition which offers an alternative
recursive computation that involves a simple morphological gradient on a graph.

Proposition 3.1. Given a graph GD .V;E/, the evolution of the multiscale dila-
tion of a function f W V ! T by an s-graph A is described by the following
difference equation at each vertex v 2 V :

!rC1.v/# !r .v/ D max
w2NA .vjG/

f!r .w/ # !r .v/g: (3.22)

Proof. By combining (3.21) with (3.19) we get

!rC1.v/ D ıA .!r .f j G//.v/ D max
w2NA .vjG/

f!r .w/# !r .v/g C !r .v/

ut

3.3 Geodesic Active Contours on Graphs

Kass et al. in [22] introduced the concept of energy minimizing snakes” driven
by forces that pull it towards special features in the image like edges or lines.
Specifically, the goal is to find in an image areas that are naturally distinguished
from their background. The classical approach consists of a gradual deformation
of an original curve towards the edges of those objects through the minimization,
between successive time steps, of energy functionals which depend on the shape of
the curve itself, its distance from the salient image features and finally terms that
stabilize the snakes near local minima.
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The main disadvantage of this initial approach is that the curve dynamics incurred
do not allow changing the topology of the original contour; for example if the
original curve contains two distinct objects the original snake will not be separated
in two independent snakes. Heuristic solutions have been proposed in [31] but a
topology-free approach has been given independently by Caselles et al. [12] and
Malladi et al. [27]. These models are based on the theory of the curve evolution and
geometric flows and the curve is propagating by means of a velocity that contains
two terms, one related to the regularity of the curve and the other shrinks or expands
towards the boundary. Finally, the curve dynamics take the form of a geometric flow
(PDE) and can be implemented conveniently using the level set methods proposed
by Osher and Sethian [32] that can accommodate changes in the topology between
successive curves.

In particular let C.q/ W Œ0; 1$ ! R2 be parameterized planar curve and let
I W Œ0; 1$2 ! RC be the image in which one needs to detect the objects’ boundaries.
Note that we denote the curve by C.'/ when we interpret it as a vector-valued
function and by C when we interpret it as a set of points. The energy functional
associated with C can be written as follows:

E.C / D ˛
Z 1

0

kC0.q/k2 dq # %
Z 1

0

g.krI.C.q//k/ dq a;% & 0 (3.23)

Let g W Œ0;C1/ ! RC be a strictly decreasing function such that g.r/ ! 0
as r ! 1. Caselles et al. in [13] show that the problem of finding the minimum
energy curve as defined in (3.23) is equivalent to finding the minimum length curve
in a Riemannian space induced from image I , whose length is given by

LR D
Z 1

0

g.krI.C.q//k/kC0.q/kdq D
Z L.C/

0

g.krI.C.q//k/ ds; (3.24)

where L.C / is the Euclidean length of the curve C . Furthermore, it is shown that a
curve which is governed from the dynamics

@C.t/
@t
D g.I / ' & ' N# .rg ' N/ ' N (3.25)

where & is the Euclidean curvature and N is the unit inward normal, moves in the
direction of the gradient of the length LR.

Assume now that the curve C.t/ is a level set of a function u W R2 ( RC ! R.
Namely, C.t/ is the set of points x for which u.x; t/ is equal to a constant (for
example uD 0). It is shown that if the function u.x; t/ satisfies

@u
@t
Dg.I /kruk.c C &/Crg.I / ' ru; (3.26)

then the corresponding level set satisfies (3.25).
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Our goal is to approximate all terms in the right hand side of (3.26) on graphs and
finally construct a difference equation which would approximate the active contour
dynamics for edge detection. The next subsection is devoted to the analysis of the
simplest case of curve evolution on graphs, that is the constant velocity motion
introducing useful ideas from graph morphology operators. Observe that this case
corresponds to approximating the first term of the RHS of (3.26). Subsequently, we
will approximate the rest of the terms participating in the curve dynamics to end up
with a geodesic active contour model on graphs.

3.3.1 Constant-Velocity Active Contours on Graphs

We derive the difference equation that describes the evolution of the contour of a
set that expands with constant velocity on a graph. In the continuous case, a contour
undergoing such an evolution corresponds to the boundary of the multiscale dilation
of the set by a unit disk. If this set is given as a level set of a graylevel function
u W R2 (RC ! R, then the evolution of u is described by

@u
@t
D kruk: (3.27)

Consider a subsetX of V . Let A be a structuring graph. Imitating the continuous
case, the constant velocity expansion of X corresponds to its r-scale dilation,
denoted by Xr . If X is given as the level set of an original graylevel function
u0 W X ! R and Xr is the level set of the r-scale graylevel function ur W X ! R,
then the difference equation that governs ur , by using Proposition 3.1, is

urC1.v/# ur .v/ D max
w2NA .vjG/

fur .w/ # ur .v/g: (3.28)

The above expression is a discrete equivalent of the gradient magnitude on
graphs. Similar expressions are being used in the literature, [4, 14, 39]. Our work
extends previous results to more general structuring elements and exploits the
revealed insight to approximate other geometric properties of differential operators
on graphs in the next sections. In order to account for topological inhomogeneities
of the graph one could calculate the gradient as the maximum rate of increase
and its direction as the direction of the edge along which the rate of increase is
larger. Therefore, (3.28) is the graph counterpart of (3.27), which implies the
approximation of kruk at node v by maxw2NA .vjG/fu.w/# u.v/g.

Summarizing, let X be a set of nodes whose contour expands with constant
velocity c. Then, to implement its evolution on a graph we proceed as follows:
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1. Let u0 be the signed distance function from X , defined by

u0.v/ D
(

minw2GnX dE.w; v/ if v 2 X;
#minw2X dE.w; v/ if v … X;

where X is the zero level set of u0, and dE.w; v/ corresponds to the
Euclidean distance between the nodes w and v.

2. Evolve ur according to the following, at scales r D 1; 2; : : :

urC1.v/# ur .v/ D c ' max
w2NA .vjG/

fur .w/ # ur .v/g: (3.29)

3. The set Xr D fv 2 X W ur .v/ & 0g corresponds to the r-scale dilation
of X .

Figure 3.5 illustrates the results for the constant velocity expansion of a circular
contour. Throughout this chapter for all our simulations we are using the simple
structuring graph of Fig. 3.3a that generates the simple neighborhood. Moreover we
embed our shapes on a geometric random graph on the unit square. The geometric
random graph is characterized by two parameters; the number of nodes N and
a radius '. N nodes are being placed uniformly at random on the unit square
independently from one another. If the Euclidean distance between those two nodes
is less than ' then there is an edge between them. Typical values for N is 6,000–
10,000 while ' ranges from 0.015 to 0.04. Given the number of nodes, the parameter
' affects the expected degree of a node and is proportional to the square root of its
value.

3.3.2 Direction of the Gradient on Graphs

Observing Eq. (3.26), in order to obtain a model for active contours on graphs,
we need to define, except from the magnitude of the gradient vector which we have
already done in the previous section, its direction and also a characterization for the
curvature of the corresponding curve.

Beginning from the first, trusting our intuition from real analysis, it would make
sense to choose as the direction of the gradient on graphs the direction of the edge
that corresponds to the maximum difference of the values of the function u. In
other words, let a function u be defined on the set of nodes v 2 V of the graph
GD .V;E/. Then
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Fig. 3.5 Constant velocity evolution of a circular contour on a geometric random graph on the
unit square. The structuring graph is an edge

ru
kruk .v/ D ev Ow; Ow D argmaxw2NA .vjG/fu.w/# u.v/g: (3.30)

where evw is the unit vector in the direction of the edge .v;w/. Although this
approximation looks intuitive it does not work well in practice. In fact, consider
the setting depicted in Fig. 3.6. Such a scenario is fairly usual in a graph structure
due to its discrete nature. In other words choosing an edge out of finitely many can
create asymmetries which vastly influence the result. Specifically, by using the edge
indicated in the figure for our calculations neglects the values of the function for the
rest of the nodes in one’s neighborhood. Note that in the continuous case such an
issue does not occur under the continuity and differentiability assumptions that are
usually made.
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Fig. 3.6 Illustration of the
disadvantages of choosing the
maximum increase direction
as the gradient direction.
Observe that all directions
yield approximately the same
increase but only one edge is
chosen. This happens exactly
because of the discrete nature
of the graph’s structure.
Alternatively, we propose a
weighted average of edge
directions where the weights
are the function differences
along each edge

Taking the above into account we propose to approximate the gradient direction
on graphs through a weighted average of the direction of all edges in a node’s
neighborhood, where weights will be the normalized corresponding differences,
that is

ru
kruk .v/,

P
w2NA .vjG/.u.w/# u.v//evw

kPw2NA .vjG/.u.w/# u.v//evwk
(3.31)

Finally, depending on the application, especially in those instances where there
is evident nonuniformity in the values of the function u within the neighborhood of
a vertex v one may need to control the influence of the edges with large increases.
In those cases we may need to use the following expression as the direction of the
gradient:

ru
kruk .v/,

X

w2NA .vjG/
sign.u.w/ # u.v// evw

.maxs2NA .vjG/fku.s/!u.v/kg!ku.w/!u.v/k/pC(
!!!!!!

X

w2NA .vjG/
sign.u.w/ # u.v// evw

.maxs2NA .vjG/fku.s/!u.v/kg!ku.w/!u.v/k/pC(

!!!!!!

(3.32)

Essentially, under (3.32) the edges along which the change in the value of
the function is closer to the maximum contribute more to the gradient direction.
By changing the parameter p we can adjust how strongly such edges affect the
final outcome. Finally, ( is a small constant that guarantees that the denominators
in (3.32) are well defined. In the special case where (D 0 only the direction of
maximum increase survives. For our simulations we have used the empirical values
pD 0:7 and (D 0:05.
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Having determined a meaning for the gradient of a function on a graph the only
term remaining to be given a meaning on our more abstract graph structure is the
curvature of the contour of each level set of the function u.

3.3.3 Curvature Calculation on Graphs

In the continuous case the curvature of a curve given as the contour of a level set of
a function u can be computed using

& D div
" ru
kruk

#
: (3.33)

On the other hand we have derived expressions for the term ru
kruk on a graph.

Therefore, the remaining step is to propose an expression for the computation of the
divergence of a function on a graph. Consider a vector function F W R2 ! R2. The
divergence of F at a point x is defined as

divF.x/ D lim
S!fxg

H
) .S/ F ' nd`
jS j ; (3.34)

where S is a two dimensional region, ) .S/ its boundary, n the outward unit normal
to that boundary, and jS j its enclosed area.

To study the graph case consider Fig. 3.7. We can conclude that a good
approximation for computing the divergence of F on a graph is the following

divF.v/ D
P

w2NA .vjG/ LwF.w/ ' evw

S.v/
(3.35)

where

• Lw corresponds to the length of the perpendicular to edge evw,
• S.v/ corresponds to the area between the perpendicular to the edges lines,

as illustrated in Fig. 3.7.
At this point we can perform all the necessary calculations to compute the

curvature of the contour of the level set of a graylevel function u on a graph. To
illustrate the behavior of the expression proposed consider a circular shaped contour
as in Fig. 3.8. We would expect the curvature for all points on the circle to be a
positive number, if we were working in the continuous setting. On a graph, the
curvature cannot be expected to be constant but the average value should be positive
and the curvature at each point should oscillate around the average. This behavior is
captured in Fig. 3.8.
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Fig. 3.7 Computing
divergence on a graph: Let
the green vectors denote the
values of function F, the red
vectors be the unit vectors
corresponding to each edge
and let the gray lines be
perpendicular to the
corresponding edge

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a b

Fig. 3.8 The curvature on a circle calculated with the method proposed in Sect. 3.3.3. We omit the
edges for illustration purposes. (a) Circle on geometric graph. (b) The curvature on the circle

3.3.4 Convolution on Graphs

The external image-dependent force is given by the edge-stopping function g.I /.
The main goal of g.I / is actually to stop the evolving curve when it arrives to the
objects boundaries. Among the many choices proposed in the literature, we use the
following taken from [12, 27]:

g.krI*k/ D
1

1C krI*k2
%2

(3.36)

where,
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I* D I )G* ; G* .x; y/ D
1

2+*2
exp

"
#x

2 C y2
2*2

#
: (3.37)

In order to compute the smoothed version I* of I we need to define the
convolution operation on graphs. Let GD .V;E/ denote the underlying graph. Let
dE.v;w/ denote the Euclidean distance between vertices v and w. For each v;w 2 V
define the functionGw

* .v/ as follows:

Gw
* .v/ D

1p
2+*2

exp
"
#dE.v;w/

2

2*2

#
: (3.38)

The smoothed version I* can be computed by mimicking the continuous convolu-
tion operation as follows:

I* .v/ D
X

w2V
I.v/Gw

* .v/: (3.39)

3.3.5 Active Contours on Graphs: The Algorithm

Here we combine all the previous approximations to the PDE for geodesic active
contours and summarize the algorithm for automatic graph segmentation.

Consider a graph GD .V;E/ and let a function I W V ! R assign a real value
to each of the graph nodes.

Algorithm-Active Contour on Graphs

1. Compute the smoothed version I* of I as described in Sect. 3.3.4.
2. Compute the magnitude of rI* as described in Sect. 3.3.1 and then

compute the function g.krI*k/.
3. Initiate the algorithm with a set of nodes that contains the objects to be

found and let !o denote the signed distance function from the contour of
the determined set.

4. For each r 2 N computer!r!1, kr!r!1k and the curvature & at each node
v as described in Sects. 3.3.1 and 3.3.3. Iterate according to the following
difference equation:

!rC1 # !r D g.krI*k/kr!r!1k.c C &/C g.krI*k/ ' r!r!1; c & 0
(3.40)
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Figure 3.9 illustrates the algorithm for the case of finding the boundaries of three
disjoint objects (connected clusters of graph nodes).

3.4 Multiscale Skeletonization on Graphs

Since Blum’s introduction of the skeleton or medial axis transform [5], it has
received voluminous attention and has become one of the main tools for shape anal-
ysis and representation. The main process to find the skeleton is a distance wavefront
propagation. In Euclidean spaces (Rd , d D 2; 3) this can be modeled either using a
continuous distance formulation [5] or via continuous-space morphology [26,36] or
via PDEs that simulate these evolution operations [3, 18, 38, 40]. In the discrete 2D
or 3D space Zd , the above approaches are replaced by discrete distance transforms
and discrete morphology; for surveys and references see [34, 36]. The Chamfer
distance transform is not always equivalent to the discrete morphology approach,
unless the Chamfer ball is used as structuring element. Recent extensions of discrete
distance transforms in 3D for skeletonization can be found in [2, 6]. One main
disadvantage of the skeleton is its sensitivity on perturbations of the boundary. This
can be partially addressed by using multiscale skeletons [29, 33], which provide a
flexible framework of keeping only the skeleton parts that correspond to a smoothing
of the original shape.

In this chapter we focus on the discrete skeleton transform obtained via multi-
scale morphology. For a discrete shape X " Z2 on regular grid, the morphological
algorithm [29] computes the skeleton S.X/ of X , w.r.t. a disk-like unit-scale
symmetric shape B ,

S.X/ D
N[

nD0
Sn.X/; (3.41)

as a union of disjoint skeleton subsets Sn.X/, where

Sn.X/ D .X ˚ nB/ n Œ.X $ nB/ıB$; (3.42)

indexed by the discrete scale nD 0; 1; : : : ; N , with N D maxfn W X $ nB ¤ ;g,
where nB denotes the n-fold dilation of B with itself. Reconstruction of the
original shape or its opening-smoothed versions requires the morphological skeleton
transform .S0; S1; : : : ; SN /, or equivalently the skeleton S.X/ and the quench
function (the restriction of the distance transform onto the skeleton set):

XıkB D
N[

n#k
Sn.X/˚ nB; k D 0; 1; 2; : : : (3.43)

Some generalizations of the above algorithm can be found in [25].
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Fig. 3.9 Illustration of the active contour algorithms on graphs for finding three distinct objects
on a graph. Note the change in the contour’s topology. Time evolves from top left to bottom right

To extend multiscale skeletonization to shapes defined on arbitrary graphs
GD .V;E/, we first provide a lattice formulation of the above discrete skeletoniza-
tion algorithm adjusted for graph shapes. Let the shape be represented by a subset
X of vertices of the graph and let A be a structuring graph. Then the skeleton of X
can be obtained as follows:

S.X jG/,
N[

nD0
Sn.X jG/ (3.44)

where
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Sn.X jG/, "nA .X jG/ n ıA "nC1A .X jG/ (3.45)

Taking the union of all or some of the skeleton subsets after dilating them in
proportion to their scale yields respectively an exact or partial reconstruction of
the graph shape:

˛kA .X jG/ D ıkA "kA .X jG/ D
N[

nDk
ınA ŒSn.X jG/$ (3.46)

Namely, by not using the first k subsets, the above algorithm reconstructs the k-scale
opening of the original graph shape.

Next we explore the application of the difference equation based techniques
that we developed in order to calculate the skeleton of a shape defined on graphs.
Specifically, we propose a calculation of the multiscale graph dilations and erosions
involved using the active contour and level set approximations that we introduced
in Sect. 3.3. The main idea can be summarized in the following:

Algorithm – Skeleton Calculation

Initialization:
u.'/Ddsgn.' j X/ (X is the shape whose skeleton we are computing)
S ! ;
execution:
while maxv2G u.v/ > 0 do

u0.v/D minw2NA .v/ u.w/ (erosion-"nA .X/)
r.v/D minw2NA .v/ u0.w/ (erosion- "nC1A .X/)
o.v/D maxw2NA .v/ r.w/ (dilation- ıA "nC1A .X/)
S  S [ fv W u0.v/ & 0g n fv W o.v/ & 0g (set difference)
u.v/D u0.v/

end while

The results of our graph skeleton algorithm, simulated on a handshape object
represented by a geometric random graph, are presented in Fig. 3.10.

3.5 Conclusions

In this chapter we have proposed an approximation to level set implementation
of morphological operators, skeleton transforms and geodesic active contours on
arbitrary graphs. Our motivation comes from the importance and the success of
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Fig. 3.10 The skeleton of a handshape image calculated using our algorithm. The green squares
correspond to the embedding of the handshape image on the geometric random graph. The red
dots correspond to the skeleton transform. The yellow circles are irrelevant nodes of the underlying
graph. (a) Original handshape image. (b) The signed distance function on the graph. (c) The
calculated skeleton

such concepts and techniques in image analysis as well as the existence of a strong
theoretical background on graph morphology.

In our simulations we have mainly assumed geometric random graphs and simple
structuring graphs. The choice of the simple s-graph is reasonable for any underlying
graph structure with no prior information on the graph’s characteristics. It is of great
interest to other applications to correlate information on the underlying graph with
the choice of the structuring graph.

Moreover, we are proposing approximations to concepts from calculus and
there is space for better heuristics and modifications to this end. Keeping in mind the
original energy minimization approach for geodesic active contours instead of the
analytic solution, by properly defining and calculating an energy that corresponds to
each contour and applying a step by step minimization procedure we obtain another
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approach to geodesic active contours. On the other hand, since the latter involves
a minimization problem at each time step it is computationally less efficient but it
may yield more accurate results.

Finally, regarding the application of the above ideas that we have introduced
to multiscale shape skeletonization on arbitrary graphs, one research direction of
interest is how to analyze or guarantee the connectedness of the resulting skeleton.
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Chapter 4
Refined Homotopic Thinning Algorithms
and Quality Measures for Skeletonisation
Methods

Pascal Peter and Michael Breuß

Abstract Topological skeletons are shape descriptors that have been applied
successfully in practical applications. However, many skeletonisation methods lack
accessibility, mainly due to the need for manual parameter adjustment and the
shortage of tools for comparative analysis.
In this paper we address these problems. We propose two new homotopy-preserving
thinning algorithms: Flux-ordered adaptive thinning (FOAT) extends existing flux-
based thinning methods by a robust automatic parameter adjustment, maximal disc
thinning (MDT) combines maximal disc detection on Euclidean distance maps with
homotopic thinning. Moreover, we propose distinct quality measures that allow to
analyse the properties of skeletonisation algorithms. Tests of the new algorithms
and quality assessment tools are conducted on the widely used shape database
CE-Shape-1.

4.1 Introduction

Shape analysis is a central problem for many applications in image processing and
computer vision, such as object recognition or segmentation, see e.g. [27] for an
overview. While boundary descriptors are a classic instrument for object represen-
tation, specific tasks in shape analysis demand alternative shape representations
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that unite geometrical and topological information. The widely-used medial axis
transform (MAT) is such a shape descriptor. Initially, the MAT was introduced in
1967 by Blum [3] as a mathematical tool for modelling the biological problem of
shape vision. It represents a shape by a thin set of lines or arcs that are centred in
the shape, eliminating superfluous information of local symmetries. Intuitively, the
MAT resembles bone structures, thus motivating the alternative term (topological)
skeleton. Due to its useful properties, including equivalence to the shape boundary,
homotopy to the original shape and invariance under Euclidean transformations,
the MAT has been used for numerous practical applications; examples are object
recognition [22, 28, 32] or medical imaging [31]. However, the results of existing
skeletonisation algorithms largely depend on model parameters that often need to
be manually adjusted. Moreover, the literature is lacking comprehensive quality
analysis tools that allow to quantify important features of skeletonisation algorithms.

In this work, we deal with these problems. We propose here two new thinning
algorithms for MAT computation, we call them FOAT and MDT. Both FOAT and
MDT are robust w.r.t. the choice of parameters. In addition, MDT is particularly
easy to understand and implement, and thus it is especially appealing for users.
Moreover, we present new methods for comparative analysis of MAT algorithms.

Previous work. Algorithms for MAT computation are plentiful and diverse, both
in their methods and their theoretical background. In general, three classes can be
distinguished: Voronoi-based methods [10,18] that exploit the similarity of the MAT
and Voronoi diagrams, approaches related to the distance map [15, 21], thinning
algorithms [19, 33] and morphological approaches [2, 12, 16, 24].

In our paper we focus on combinations of thinning algorithms and distance map
methods with further enhancements by additional pruning steps. In particular, the
Hamilton-Jacobi method by Siddiqi et al. [29] combines thinning and distance map
methods with physical concepts of Hamiltonian mechanics, and it forms the basis
for one of our algorithms. We also propose a new algorithm combining maximal
disc detection using exact Euclidean distance maps with homotopic thinning. The
method of Pudney [20] is similar to ours, but uses a different maximal disc detection
method based on Chamfer distance maps. For mathematical definitions of thinning
and pruning operators see [23].

Despite the large number of publications on MAT computation, systematic
comparisons of existing methods are rare. Comparative studies of MAT algorithms
are usually performed by evaluating them in the context of a particular application,
e.g. for the purpose of object recognition. An example for such a comparison
strategy is the matching approach by Siddiqi et al. [30], see also [1, 6, 9, 14, 32]
for related approaches. One reason for this kind of indirect comparative studies is
the lack of formal quality criteria for skeletonisation algorithms. However, from a
more general point of view it is of interest to measure the qualities of skeletons
independently from a specific application. In order to achieve this goal, we propose
ways to assess in how far discrete algorithms mimic structural properties of the
corresponding continuous-scale MAT. For this purpose, we also aim to quantify
useful properties of the discrete skeletons. An additional problem, especially in the
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context of practical applications, is that many algorithms like the Hamilton-Jacobi
method [29] require manual parameter adjustment for optimal results.

Our contribution. We address the aforementioned issues by proposing refined
thinning algorithms that combine several state-of-the-art methods, and by introduc-
ing quality measures that allow to assess meaningful properties of MAT algorithms:

(i) Flux-Ordered Adaptive Thinning (FOAT) extends the Hamilton-Jacobi method
[29] with a secondary MAT detection (SMD) step. This allows an automatic,
robust adaption of input parameters to individual shapes.

(ii) Maximal Disc Thinning (MDT) is an extension of the maximal disc detection
method of Remy and Thiel [21]. It combines the latter with the homotopy
preserving thinning steps of the Hamilton-Jacobi method [29]. This method
is homotopy preserving as well as largely independent of input parameters.

(iii) Quality Criteria are proposed that quantify useful properties of discrete skele-
tons in a new way, namely exactness of reconstruction, skeleton minimality
and skeleton complexity. These new quality measures allow to distinguish
important properties of MAT schemes.

(iv) Comparative Skeleton Graph Matching is employed as a means to test MAT
algorithms for invariances. Skeletons are transformed into graphs that can be
compared using a graph matching method [26] in a similar way as in object
recognition approaches.

Tests of both the newly proposed algorithms and the quality measures were
conducted on CE-Shape-1, a widely-used image database consisting of 1; 400
shapes, which was specifically designed for testing shape descriptors [13].

Paper organisation. In Sect. 4.2 we present our new skeletonisation algorithms
along with general information about thinning methods. Quality assessment tools
are discussed in Sect. 4.3. Section 4.4 contains the results of experiments conducted
with the new algorithms and quality criteria. The paper is concluded by Sect. 4.5.

4.2 Algorithms

The algorithms described in the following paragraphs operate on a binary image
u W ˝ ! R2 ! f0; 1g. In the image domain ˝ , the points of the shape form the
object domain O D fx 2 ˝ j u.x/ D 0g. The points of the skeleton ˙ ! O are
exactly the centres of inscribed circles, that are tangent to the object boundary in at
least two points. The distance map D of the object boundary @O is defined as

D W ˝ ! RC0 ; D.x/ D min
y2@O
jy " xj (4.1)

Homotopic thinning. Both of the new algorithms are thinning methods that share
the same set of thinning rules. In each thinning step, the smallest point in terms of
the thinning order >thin is deleted from the object domain O , until only the skeleton
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˙ remains. In addition to an appropriate thinning order, a termination criterion is
needed to compute an approximation to the skeleton.

Current thinning methods enforce important MAT properties by applying addi-
tional thinning rules. In our work we use homotopic thinning [20, 29], which
guarantees both homotopy to the original object and thinness of the skeleton.
Homotopy to the original ensures that major topological features of the object
are preserved in its skeleton [11]. In particular, the skeleton has the same number
and configuration of connected components and holes. Thinness means for discrete
skeletons that the maximal width of the medial axis is one pixel.

In practice, the homotopic thinning rules enforce that points are only removed
from the object if they do not disconnect it nor introduce holes, i.e. if they do not
change the discrete topology. Additionally, endpoints of thin lines are preserved.

Hamilton-Jacobi skeletons. The Hamilton-Jacobi method of Siddiqi et al. [29],
also known as Flux-Ordered Thinning (FOT), is the basis for our FOAT algorithm.
Exploiting properties from Hamiltonian mechanics, Siddiqi et al. [29] conclude that
MAT points are exactly the sinks of the precomputed distance map D’s gradient

vector field rD, where r WD
!
@
@x
; @
@y

">
. Sinks of a vector field can be identified as

points with large negative values of the divergence divrDDr # rD of the field.
In order to compute divrD efficiently, the average outward flux F W ˝ ! R

is used, cf. [29] for a detailed discussion. Relating corresponding quantities via the
divergence theorem [8], the average outward flux of a point p 2 ˝ can be computed
as

F .p/ WD
8X

iD1

< rD.ni .p//;N.ni .p// >
8

(4.2)

Thereby, n1.p/; : : : ; n8.p/ are the direct neighbours of p on a discrete lattice, and
N.ni.p// is the outward normal in ni .p/ with respect to the corresponding circles
around p. The resulting flux map F is used to define the thinning order >iflux:

8p; q 2 ˝ W p >iflux q , F .p/ < F .q/ (4.3)

In the thinning process of FOT, weak points with high flux values are removed first.
As a termination criterion, thresholding of the flux map is applied to endpoints of
thin lines resulting from the thinning process. Points with a flux value below the
given threshold ! are marked as skeleton endpoints, other points are removed in
accordance to homotopic thinning.

4.2.1 New Algorithm: Flux-Ordered Adaptive Thinning
(FOAT)

The FOT method uses thresholding of the flux map to identify skeleton endpoints.
Siddiqi et al. [29] propose choosing the threshold ! as a fixed value or as a quantile
of the number of object points.
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Both of these choices imply the need for manual adjustment in order to obtain
good results, because geometric properties of the shapes are not taken into account
for the definition of the threshold. While this is obvious w.r.t. the choice of a global
fixed value for ! , let us note that quantiles guarantee that a chosen percentage of
the image points is removed by applying thresholding to the flux map. However,
quantiles do not take into account different relations of skeleton size to object size
resulting from varying amounts of local symmetry in shapes. Extreme examples for
this relation are a circle and a thin line of equal area. While the circle has exactly
one valid skeleton point, its centre, the thin line is equal to the skeleton.

As a remedy, we propose to employ a secondary MAT detection (SMD) step.
The underlying idea is to use a first approximation to the skeleton for performing
an educated guess for the treshold parameter. The outward flux values of the
preliminary skeleton Ȯ are used to determine the threshold by averaging:

! WD .1 " "/
P

x2 Ȯ F .x/

j Ȯ j
(4.4)

where " is an adjustment parameter that weights the removal of boundary artefacts
against accuracy of reconstruction. While FOAT does not remove parameter
dependence, the construction in (4.4) improves the robustness of the approach as
we will show experimentally. In particular, the parameter " does not need to be
adjusted to the size and geometry of each shape. Instead, it influences the general
balance of competing skeleton features such as size and exactness.

Any skeletonisation algorithm can be used for SMD, however, fast algorithms
with less restrictive demands for skeleton properties like homotopy or thinness
should be preferred in order to lessen the impact on overall performance. We choose
the method of Remy and Thiel (RT) [21] for maximal disc detection which identifies
MAT points as centres of maximal inscribed discs using lookup tables. In addition
we use Meijster’s algorithm [17] for distance map computation, which offers better
performance and exactness than the D-Euclidean method [4, 5] proposed for this
purpose in [29].

4.2.2 New Algorithm: Maximal Disc Thinning (MDT)

MDT is proposed as an extension of the RT maximal disc method [21] and acts as a
largely parameter-independent alternative to FOT and FOAT. While MDT uses the
same homotopic thinning process as FOT and FOAT, it entirely discards the flux
components of the algorithm, thus removing the necessity for several computational
steps, cf. Fig. 4.1.

The central idea of the MDT method is processing object points in order of their
distance to the boundary, mimicking the wave propagation idea of the classical
grass-fire model of Blum [3] and retaining only skeleton endpoints. In this way,
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Fig. 4.1 Flow chart of steps used in the FOT, FOAT and MDT algorithms. Note that the maximal
disc computation in the FOAT scheme can be performed completely in parallel to the gradient and
flux map computation

whole level sets of the boundary’s distance map are fully processed, before the
algorithm moves on to the level set with the next higher distance value. This
behaviour of the thinning process is achieved by defining the thinning order >dist

via the distance map D from (4.1):

8p; q 2 O W p >dist q , D.p/ < D.q/ (4.5)

Object points are removed if they are (i) not identified as skeleton points by the RT
scheme, and (ii) if they do not violate the homotopy. Endpoints of the preliminary
skeleton branches after the RT step are removed, if they are not verified as endpoints
during the thinning process.

In order to minimise the homotopy-induced occurence of large skeleton branches
that connect scattered isolated skeleton points, we perform a pruning on the skeleton
computed via the RT method. Isolated points correspond mainly to small boundary
perturbations, or they are caused by discretisation artefacts. A pruning step is
recommended in the context of skeletonisation methods, cf. [1, 25].

Within our pruning step, we consider the number of points of the preliminary
skeleton that are in a fixed neighbourhood of the pruning candidate. This candidate
is removed from the preliminary skeleton, if the number of such neighbours does
not exceed a predefined number. The latter is in fact the only parameter left in the
MDT algorithm.

4.3 Analysis of MAT Algorithms

The performance of MAT algorithms is difficult to assess: Depending on the specific
application, the desired priority of skeleton properties may vary significantly. For
example, compression methods require skeletons of minimal size that produce
reconstructions of maximal exactness. Other properties like homotopy, thinness or
Euclidean invariances are not crucial for this application, but might be for others
like object recognition or segmentation. Because of these requirements, we propose
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a novel modular approach to the analysis of MAT algorithms. This allows to express
the quality of methods in terms of distinct properties that can be weighted as the
application demands.

4.3.1 Quality Criteria

The aim of the quality criteria that we will introduce is to measure the difference
between MAT algorithms (i.e. approximations of the MAT) and the exact MAT with
respect to important properties of the latter.

Homotopy to the original shape and thinness are two binary criteria, that can
be easily checked automatically. Within this paper, those criteria are not important
for comparisons, since all of the proposed algorithms automatically guarantee both
properties by their construction.

A natural quality criterion for discrete skeletons is the exactness of reconstruction
that is automatically given in the continuous-scale MAT setting. In the discrete
world, comparing the reconstructed shape to the original yields the set E of
erroneous points, including false positives and false negatives. Normalising the
number of errors in order to make the new classification number independent of
the size of shapes yields

Oe.u; ˙/ WD minfjEj; jOjg
jOj (4.6)

As we strive for a value of one (rather than zero) for exactness w.r.t. this property,
we subtract Oe.u; ˙/ from one, yielding finally as a quality measure

e.u; ˙/ WD 1 " minfjEj; jOjg
jOj (exactness of reconstruction) (4.7)

Another central property of the discrete skeleton is its size. The exact MAT should
ideally be the smallest, thin, connected subset of the object domain that yields an
exact reconstruction of the original. Thus, the size of computed skeletons should be
minimal. This defines the quality measure

m.u; ˙/ WD 1 " minfj˙ j; jOjg
jOj (skeleton minimality) (4.8)

Additionally, noise and errors resulting from the discretisation of the boundary must
be taken into account. Skeletons are quite sensitive to boundary perturbation, as
small deviations from the exact boundary can lead to spurious skeleton branches.
Thus, a robust algorithm should give a minimal number of branches, which can be
identified via the set P of end and branching points of the skeleton. Consequently,
the corresponding quality measure can be defined as
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c.u; ˙/ WD 1 " minfjP j; j˙ jg
j˙ j (skeleton complexity) (4.9)

Skeleton complexity is also important for applications that use the branches or their
endpoints as graph nodes. The three quality measures above quantify major features
of the skeleton and should be considered holistically.

4.3.2 Graph Matching for Invariance Validation

Graph matching is a standard tool in the context of using the MAT in object
recognition, cf. [1, 7] for discussions. We investigate this approach in the context
of desired invariances of the discrete skeleton, i.e. invariance under Euclidean trans-
formation and noise. Rotational and translational invariance are natural properties of
the continuous-scale MAT and should be preserved in the discrete setting. Invariance
under noise is an obvious practical criterion while it is not included in a formal
definition of the skeleton.

The quality of an algorithm’s invariance behaviour can be assessed by a
comparison of the transformed shape’s skeleton to the skeleton of the original object.
It is possible to use the quality criteria from the previous section for this task,
although it is advisable to use unnormalised cardinality of the sets instead of the
measures e,m and c, since in general, boundary perturbations change the cardinality
of the object domain.

We propose here to use graph matching as an effective way of assessing quality
w.r.t. invariances. A skeleton graph is composed of nodes that correspond to the
end and branching points of the MAT. The graph’s edges mirror the connections
of the end and branching points in the skeleton, and branch lengths are used as
edge weights. Similar set-ups for graph representations have been used before in
the literature, and also refinements of it have already been proposed, see e.g. [6].
However, to our knowledge they have not been used before in order to investigate
invariances. As for our purposes, we do not consider merge or cut operations on the
skeleton graphs as recommended in [9, 14].

The graph matching method graphdiff by Shasha et al. [26] computes a one-
to-one mapping of nodes of a query graph Q and a database graph D, using a
scoring function that takes node types and edge weights into account. Each possible
mapping has a total score, and the mapping with the highest score is considered as
the best match. See Fig. 4.2 for an illustrative example.

If i; j are nodes in Q that are mapped to i 0 and j 0 in D, respectively, the score
for the matches is determined by the matching edges of the nodes. The edge .i; j;w/
with weight w matches .i 0; j 0;w0/ if i and i 0, as well as j and j 0 are of the same
node type. Then, the score is computed as min.w=w0;w0=w/. These scores can be
used directly as quality measures for invariances.
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Fig. 4.2 Rotational invariances are tested with rotations of shapes from CE-Shape-1, varying from
5ı to 45ı. The image on the right displays the skeleton produced by FOAT and superimposed nodes
of the corresponding skeleton graphs. Square nodes represent endpoints, circles stand for branch
points. Connection lines between nodes mark the one-to-one matching produced by graphdiff [26].
The matching score of this example is 0.74 (perfect score: 1.0), indicating subtle differences in
branch lengths

Table 4.1 Average matching scores for invariance tests using
the CE-Shape-1 database. A score of 1.0 denotes a perfect match

FOT FOAT MDT

Noise 0.60 0.64 0.57
Rotation 0.85 0.88 0.76

4.4 Experiments

The experiments conducted for this work serve two distinct purposes: (i) To
investigate if the newly proposed quality assessment methods give new meaningful
information; (ii) to compare the new algorithms to the FOT method. The general
quality of the skeletonisation results is tested with the MPEG-7 core experiment
database for shape descriptors CE-Shape-1.

Invariance tests are performed with images from CE-Shape-1 with added
boundary noise, translation and rotation. Both the new quality criteria and the graph
matching method are used to assess the invariance behaviour of the MAT algorithms
along with visual observations.

Comparison of algorithms. The invariance tests reveal that the new algorithms
either surpass FOT or yield comparable results. Table 4.1 shows that FOAT has
consistently higher scores than FOT in respect to rotational and noise invariance.

The MDT method is often competitive to FOT, but in some tests a careful choice
of parameters in FOT can give slightly better results. In particular, the behaviour
of FOT/FOAT and MDT concerning rotational and noise invariance is different.
FOT and FOAT tend to produce large spurious branches connecting the location of
boundary perturbations with the exact skeleton, while MDT skeletons vary little in
size, but show subtle structural changes, cf. Fig. 4.3.
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Fig. 4.3 Results of a noise invariance test. The shapes in the upper row contain 15 distinct
boundary perturbations. For all algorithms, the corresponding skeletons show little or none
deviations from the unmodified version. In the lower row, 30 perturbations were added to the
boundary. FOT (lower left) and FOAT (centre) produce spurious branches of significant size, while
for MDT (lower right), skeleton size varies only slightly but structural changes occur

Table 4.2 Quality averages for the CE-Shape-1 database. The
abbreviations e;m; c denote the normalised quality measures as
defined in (4.7)–(4.9). Ideally, scores should be close to 1

RT MDT FOAT FOT

e.u; ˙/ 0.9622 0.9535 0.9532 0.9539
m.u; ˙/ 0.9484 0.9726 0.9719 0.9722
c.u; ˙/ 0.8803 0.9708 0.9715 0.9712

We do not compare against the RT method here, since it does often not result
in connected skeletons. However, the construction of a graph-based representation
useful for graph matching is beyond the scope of this paper.

Turning to the quality averages for the shape database, these reveal that FOAT
produces skeletons that are of slightly simpler structure than the ones of FOT, while
skeleton exactness and absolute size is in average slightly higher. The MDT scheme
confirms its tendency to produce skeletons of minimal length, staying nevertheless
quite accurate but introducing some small structures that result in a slightly higher
complexity as FOT and FOAT, see Table 4.2. Let us note in this context that the
parameters used for the FOT and FOAT results displayed in Table 4.2 are chosen as
to give the best balance in terms of all three quality scores e;m and c, i.e. one could
obtain e.g. better results w.r.t. e at the expense of weaker scores in c andm.

As an additional algorithm for our comparison, we employ here the accurate,
yet not homotopy-preserving RT method which we also used within the SMD
computation. We show these results in order to clarify the benefit of using a
homotopy-based approach w.r.t. skeleton size and complexity.
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Table 4.3 Comparison of methods for the CE-Shape-1 database.
Parameters for FOT and FOAT are chosen as to match the accuracy
e.u; ˙/ D 0:9535 of the MDT method

MDT FOAT FOT

m.u; ˙/ 0.9726 0.9719 0.9723
c.u; ˙/ 0.9708 0.9714 0.9716

Table 4.4 Parameter sensitivity for the CE-Shape-1 database. The
table gives the maximal deviation in the measures e;m; c as by (4.7)–(4.9)
when varying the parameter in an interval of length 0:1. Ideally, scores
should be as small as possible

e.u; ˙/ m.u; ˙/ c.u; ˙/

FOT 0.0095 0.0210 0.0470
FOAT 0.0079 0.0017 0.0010

All of the algorithms work on average with high precision. However, let us also
point out that due to the size of 1,400 shapes in our test database, one may infer
that the first three to four digits after the comma in the error bear significance: As
computational results of the three algorithms are similar for many shapes leading to
about the same error measure contributing in (4.7)–(4.9), deviations from this rule
may be significant but do not show their influence in the first one or two digits.

Making algorithms even more comparable. With our new quality measures we
have the tools at hand to study how the algorithms perform at a common level of
accuracy. To this end, we have performed a systematic parameter search for FOT
and FOAT that gives a uniform exactness score of e.u; ˙/D 0:9535, matching
the exactness of the MDT method (which is parameter-free). The result is given
in Table 4.3. We observe that MDT favors in comparison to the other schemes
skeletons that are of more minimal size but of more complex structure. Moreover,
a bit surprisingly, we observe that at the accuracy of the MDT method – or, more
generally speaking, at a given average accuracy – FOT seems to slightly outperform
FOAT.

Robustness vs. parameter choice. By the results documented in Table 4.3, one
may come to the conclusion that the FOAT method may be not better than the
already existing FOT scheme. However, having at hand the new rigorous measures
for the quality of algorithms, we can now perform a systematic study of the
sensitivity of the FOT and FOAT methods vs. the parameter choice. To this end,
we have sampled a window of length 0:1 around the optimal parameter choice
employed before and studied the deviation in the error measures. As by Table 4.4
we observe that the FOAT method is generally much less sensitive to parameter
variations than the FOT scheme; w.r.t. skeleton minimality and complexity it turns
out that this can be measured to be in the order of a considerable factor of 10 and
40, respectively. Moreover, for FOT deviations appear already in the second digit
after the comma which indicates a considerable difference.
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Fig. 4.4 The lizard shape is an example of skeletons that are similar in size and exactness of
reconstruction, but vary in complexity. FOAT (middle) and MDT (right) feature less branches
in the small details of the lizard such as in its toes. FOT (left) produces additional branches, in
particular for jagged edges that result from the discretisation of the shape boundary, as it strives in
this example for a very exact representation

Fig. 4.5 The skeletons of the elephant shape reveal the improved adaption capabilities of FOAT
(middle) and MDT (right) to individual shapes. Similar to Fig. 4.4, FOT (left) produces spurious
branches at jagged edges (e.g. at the feet of the elephant), but omits branches that would give a
refined reconstruction of the elephant’s head and back

The score differences illustrate the distinctive behaviours of the algorithms.
When attempting to fine tune the threshold parameter ! (see Sect. 4.2) or when
making use of the same value of ! for different shapes, FOT easily produces
more and larger branches at narrow regions of a shape. There, additional skeleton
points increase size and complexity, but yield only slight differences in exactness
of reconstruction, see Fig. 4.4. On some shapes however, FOT also omits large
branches, thus losing boundary information. Both effects can occur simultaneously,
as displayed in Fig. 4.5.

A refined analysis of the new MDT algorithm. We now illustrate that the new
quality measures can be useful to infer information about the properties of an
algorithm if a related method is at hand.

Let us recall that, by construction, the MDT algorithm relies on the RT method.
The latter gives as observable via Table 4.2 in average considerably more accurate
skeletons than the MDT scheme. While the RT method is missing thinness,
homotopy and connectivity, one may wonder why the loss in the accuracy quality
score is relatively large as in the second digit after the comma. The question arises,
if there is a general loss of accuracy for the shapes in our database (which would
indicate a shortcoming of qualities like thinness, homotopy and connectedness), or
if it is due to a few outliers that diminish the average quality score.
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Fig. 4.6 Comparison of skeletonisation results illustrating the MDT algorithm. Top row. The
algorithm of Remy and Thiel without pruning. Second row. The algorithm of Remy and Thiel with
an additional pruning step. Third row. The new MDT scheme including pruning. Note that not
all branches of the pruned RT skeleton are preserved during the MDT thinning phase due to the
thinning order. For these selected shapes the problem appears that important branches are pruned.
Bottom row. Result of modified MDT algorithm which will give a better accuracy for such shapes
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We now investigate this issue. For an illustration of the evolution step introduced
by the MDT algorithm in comparison to the RT method, we present some typical
skeletonisation results, cf. Fig. 4.6. By adding the homotopy-preserving thinning
component, we clearly obtain thin, connected skeletons with no spurious points.
However, in very few cases as in the car or the camel example given here, a
significant branch can be missing because of the general tendency of the MDT
algorithm towards producing skeletons as minimal as possible. In such singular
cases the accuracy is obviously highly diminished; in turn one can infer by the high
average accuracy score in Table 4.2 that these cases are very rare.

As a proof-of-concept that one can easily give a remedy for such rare cases
(that can in principle be identified e.g. by computing individually for each shape
the reconstruction error e, or by a more local procedure) we propose to fine tune the
basic MDT method as follows. In a first step, the modified MDT scheme uses the RT
pilot points to construct a preliminary skeleton that is homotopic, but not necessarily
thin. This skeleton is then thinned according to homotopy preserving thinning rules
that do obey the distance ordering, but do not remove skeleton endpoints, i.e. no
branches are deleted from the preliminary skeleton. Finally, branches of very small
length are removed with a simple graph based pruning algorithm. See the last row
of Fig. 4.6 for typical results of this procedure.

4.5 Conclusions

In this paper we have proposed two new MAT algorithms, FOAT and MDT,
based on homotopic thinning. The FOAT scheme relies on a robustification of the
thresholding step in FOT. The MDT scheme is with the exception of the pruning
step parameter-free. As it is also relatively easy to implement and gives in general
results of good quality, it is in our opinion an attractive algorithm for applications.

Additionally, we have proposed quality assessment techniques that give an
insight into properties of MAT algorithms. Moreover, they allow to perform a
systematic parameter sensitivity analysis, and to analyse construction steps in an
algorithm. The quality measures are easy to evaluate and can be applied with any
MAT method. However, the evaluation of the invariance tests as proposed here is
not straightforward for MAT methods that do not preserve homotopy since it relies
on graph matching.
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Chapter 5
Nested Sphere Statistics of Skeletal Models
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Xiaojie Zhao, Ritwik Chaudhuri, James N. Damon, Stephan Huckemann,
and J.S. Marron

Abstract We seek a form of object model that exactly and completely captures
the interior of most non-branching anatomic objects and simultaneously is well
suited for probabilistic analysis on populations of such objects. We show that certain
nearly medial, skeletal models satisfy these requirements. These models are first
mathematically defined in continuous three-space, and then discrete representations
formed by a tuple of spoke vectors are derived. We describe means of fitting these
skeletal models into manual or automatic segmentations of objects in a way stable
enough to support statistical analysis, and we sketch means of modifying these
fits to provide good correspondences of spoke vectors across a training population
of objects. Understanding will be developed that these discrete skeletal models
live in an abstract space made of a Cartesian product of a Euclidean space and a
collection of spherical spaces. Based on this understanding and the way objects
change under various rigid and nonrigid transformations, a method analogous to
principal component analysis called composite principal nested spheres will be
seen to apply to learning a more efficient collection of modes of object variation
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about a new and more representative mean object than those provided by other
representations and other statistical analysis methods. The methods are illustrated
by application to hippocampi.

5.1 Object Models Suitable for Statistics

The objective of statistics on a population of 3D (or 2D) objects is to produce
such entities as the mean object and a shape space spanned by principal modes of
variation of the object. These statistical descriptors are derived from training cases,
each typically given by a pile of object boundary contours. Statistics on objects
has been applied to quite a variety of types of geometric model derived from the
boundary cases:

1. Boundary point distribution models [4, 8, 17]. This popular form of model has
been analyzed by principal component analysis (PCA), although Kendall [16] has
shown this is not strictly appropriate because such models live in a space formed
by a Cartesian product of a Euclidean space and a quotient of a high-dimensional
sphere modulo the rotation group. However, even the correct analysis ignores the
shape of the object interior and, partially as a result, has difficulty limiting its
shape space to models whose boundaries do not cross themselves.

2. Deformation-of-atlas models, wherein the displacement of each voxel in the atlas
is provided [1, 21] . These models have an enormous dimension, with the result
that the statistical analysis is expensive and unstable with respect to the sampling
into training cases and to noise in those training cases.

3. Implicit models, such as level surfaces of pseudo-signed-distance functions [18,
31] that do not live in Euclidean feature spaces but are often analyzed (by PCA)
as if they did.

4. Skeletal models. While skeletal modeling is common, as summarized in the
book by Siddiqi and Pizer [27], work on statistics of skeletal models has been
the major topic of only one group, namely ours. That work emphasized that
skeletal models, like those in the first two categories, live on abstract manifolds
that are curved. Work on skeletal and other object models that live on abstract
manifolds have been the subject of study of Fletcher [10]. Our previous work on
skeletal model statistics, on which Fletcher was an early contributor, is laid out in
Chaps. 8 and 9 of Siddiqi and Pizer [27]. The strength of skeletal models is that
they richly model the object interior and boundary and that they yield an object-
relative coordinate system for the object interiors. The difficulty with general
skeletal models, and especially the medial models that are their most common
form, is that even for objects that do not intuitively feel like a tree of figures, the
model takes the form of the tree. However, the branching structure of the tree
does not stay the same over the object population. This makes statistical analysis
of these models very difficult. In our previous work we have solved this problem
by using skeletal models whose boundaries are only approximately that of the
training cases but which have no branches.
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Fig. 5.1 An interior-filling skeletal model in 2D. The two sides of the skeletal locus are shown
slightly separated, but in fact they are coincident. In the continuous form there is a spoke vector at
every point on the folded curve forming the skeleton

From the previous discussion one can conclude that no form of model has been
introduced that accurately and richly represents the training data and truly is fully
appropriate for statistical modeling. In this paper, we define a form of skeletal
model that precisely captures most non-branching anatomic objects and a form
of statistical analysis more well suited to these models than ones that have been
previously applied. The result of this statistical analysis, we show by illustration,
produces more appropriate object means, lower-dimensional shape spaces, and more
descriptive modes of variation than PCA-based statistical analysis of other skeletal
or nonskeletal models. While our object modeling approach allows us to capture
branching objects as well, the statistical techniques available to us or others is not
yet capbable of handling structures with variable branching structure. Therefore,
here we do not attempt here to model all object populations.

5.2 Skeletal Models of Non-branching Objects

Skeletal models capture the interior of objects (the egg), and as such they more
stably and richly capture object shape than models that capture only the boundary
of objects (the eggshell). We define a continuous interior-filling skeletal model of an
object as a locus of spoke vectors .p;S/ with tail at p and tip at p C S such that

1. None of the vectors cross each other;
2. The union of the vectors forms the interior of the object and the union of the

spoke tips forms the boundary of the object. The consequence of conditions 1
and 2 is that each point in the object is reached by precisely one spoke.

3. The union of the tails, which we call the “skeletal locus”, forms a fully folded,
multi-sided locus (double-sided for slab-shaped objects). That is, except at the
fold, in slabs each position p appears twice in the set of spokes (see Fig. 5.1).
The reader should not confuse this with the more traditional characterization of
the skeletal locus as an unfolded point set that happens to have two spokes at
every point but the end points.

We call such a representation an interior-filling s-rep, or for this paper just an
s-rep. We will refer to the whole s-rep by the notation m. In this paper we restrict
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Fig. 5.2 Slabular and quasi-tubular s-reps and their parameter spaces. In the slab, u D .u; v/
parametrize by mapping the long (u) and middle (v) dimensions of the object to the respective
dimensions of an ellipsoid collapsed along its short axis, which in turn is mapped to the sphere by
mapping its crest to the equator, its north side to the sphere’s northern hemisphere, and its south
side to the sphere’s southern hemisphere. In the quasi-tube, u D .u; !/ parametrize by mapping
the along-tube dimension (u) to the axis of a cylinder with infinitesimal radius and mapping the
around-tube dimension (!) to the normal directions of the infinitesimal cylinder. In both forms of
s-reps, " parametrizes fractional distance along the spokes, where " D 0 at the skeletal locus and
" D 1 at the object boundary. In both forms .u; "/ parametrize the interior of the object

ourselves to s-reps of 3D objects that have the topology of a sphere (have no interior
cavities or through holes).

We define a non-branching 3D object as a region of space for which there exists
an s-rep with a single cyclic fold curve, i.e., for which the skeleton does not branch.
Examples of such objects are the kidney and the esophagus (into which we swallow).

Medial models, as defined by Blum [2] are a form of skeletal model, but they
cannot exactly capture the entire interior of most non-branching anatomic objects
without an arbitrary number of skeletal branches and variation of the number
of branches and their branching structure. These render the model unsuitable for
probabilistic analysis. Instead we seek a skeletal model [6] that allows overcoming
this branching instability. In particular, our target is that all instances of the object
have the simplest, stable branching pattern, i.e., without branches. In these s-reps
the skeletal locus is smooth except at the fold points.

As illustrated in Fig. 5.2, there are two types of s-reps. In the first type, which
we call slabular, the smooth points form two copies of a smooth sheet, with the
two sheets pasted to each other, and the fold points form themselves into a single
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smooth cyclic curve, called the end curve. In the second type, which we call quasi-
tubular, the smooth points take the form of a bent cylinder of infinitesimal radius,
i.e., a cylinder whose surface is made up of copies of an axis curve with all the copy
curves pasted to each other, and the fold points consist of two discrete points, called
the end points. In both types a continuum of spokes, formed by vectors with tails on
the skeletal locus and tips on the object boundary, cover the interior of the object.

Such s-reps capture all non-branching anatomic objects in the human body. This
includes not only slabular objects such as the kidney, most muscles, the heart, and
the bladder, and quasi-tubular objects, such as the esophagus and the rectum, but
also folded slabular objects such as the cerebral cortex and folded quasi-tubular
objects such as the intestines. These models capture objects with small pimples
and dimples; the main objects not captured are objects with hook-shaped or curvy
protrusions and indentations and those that branch multiple times.

In slabular s-reps the skeletal locus forms a two-sided sheet p.u/ with a cyclic
fold curve. The parametrization u has the topology of a sphere. In this work, for slab-
ular s-reps we will parametrize by the sphere and let the equator of the parametrizing
sphere map onto the fold of skeletal locus. Thus we will refer to the north and south
sides of the sheet. For each u a spoke S.u/ exists with its tail on p.u/ and its tip
on an object boundary point b.u/. u parametrizes the skeletal locus along the object
and across and around the object; it also parametrizes the spokes S.u/, which pass
within the object, as well as the object boundary b.u/. The lengths of the spokes,
jS.u/j, which we will call r.u/, and the directions of the spokes U.u/ D S.u/=r.u/
are also defined. Thus u parametrizes the whole s-rep m.u/ D .p.u/;U.u/; r.u//.

In quasi-tubular s-reps the skeletal locus forms a collapsed (infinitesimal radius)
bent cylinder with hemispherical caps at both ends, such that the axis of the cylinder
is a space curve and the spokes emanating from each axis-orthogonal cut of the
cylinder end in a common plane. Here the parametrization u is typically on the
unit-radius, possibly hemispherically capped right-circular cylinder (Fig. 5.2); it
parametrizes the axis of (forming) the skeletal locus by the along-cylinder scalar
variable u, and it parametrizes the angle around the circular tubular cross sections
by another cyclic scalar variable !. As with the slabular s-rep, u parametrizes the
spokes S.u/, their directions U.u/, their lengths r.u/, and the object boundary
b.u/. Quasi-tubular s-reps are used to model roughly tubular objects such as the
esophagus, but they can also be used to model objects like muscles whose cross-
sections are star-shaped but not roughly tubular.

For both slabular and quasi-tubular s-reps the position along a spoke from its
tip to its tail is parametrized by the proportion-of-spoke-length variable " , so the
union of the interior and the boundary of the object is parametrized by .u; "/. In the
remainder of this paper we restrict ourselves to slabular s-reps.

The mathematical theory of skeletal models is presented in Damon’s Chap. 3 of
the book Medial Representations by Siddiqi and Pizer [27] and more completely in
Damon’s papers: [6, 7]. There the geometry of our class of s-reps is shown to be
neatly divisible into (a) the differential geometry of the two sides and fold of the
skeletal locus p.u/ and (b) a variant of differential geometry, which we call radial
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geometry, of the (tail-less) spokes S.u/ with respect to motions on the tangent plane
of the skeletal locus. The radial geometry of the spoke directions U.u/ is of special
interest; it can be divided into a radial shape operator Srad.u/ applicable at non-
fold medial points and an edge shape operator SE.u/ (for u on the equator of the
parametrizing sphere or the ends of the parametrizing cylinder) applicable at the
fold curve. Each of these operators are represented by a 2 ! 2 matrix. These shape
operators describe U.u/ motion in a way analogous to the way the ordinary shape
operator from differential geometry describes the motion of boundary normals.
There are special matters dealing with the appropriate coordinate system in which
to describe U.u/ motion and the need for projection of that motion onto the tangent
plane to p.u/, but we will not go into those in this paper.

Damon shows that an interior-filling locus .p.u/;U.u/; r.u// has no locally
crossing spokes (is geometrically legal) if and only if for all u the positive eigen-
values of Srad.u/< 1=r.u/ and any positive generalized eigenvalue of .SE.u/; J / <
1=r.u/, where J is the 2 ! 2 matrix all of whose elements are 0 but for the upper
left element, which is 1.

Discrete s-reps sample m.u/ into a network of spoke vectors. In our work with
slabular s-reps the sampling is into a northm! n grid of spokes, a southm! n grid
of spokes, for some m, n, and a cyclic chain of 2m C 2n " 4 edge (crest) spokes
(Fig. 5.2). These are organized into anm!n grid of “skeletal atoms”, each consisting
of two or three spokes with a common tail position. For interior grid points there are
two spokes, one on the north side and one on the south side. For exterior grid points
there are three spokes, one on the north side, one on the south side, and a crest spoke
bisecting the other two.

Interpolation of a continuous s-rep from a discrete s-rep proceeds according
to the method of Han [11], in which p.u/, r.u/, and U.u/ are interpolated in an
intertwined way. The spokes are interpolated using the fact that Srad.u/ or SE.u/
times a small step vector on the tangent plane to the skeletal locus at p.u/ allows
the calculation of the spoke direction swing corresponding to that step. The rSrad.u/
or rSE.u/ matrix is first interpolated and then the implied spoke swing and length
scaling for various small steps is integrated. The skeletal axis positions p.u/ are
interpolated using a Hermite-like interpolation using both the discrete positions and
skeletal sheet normals there, where the normal is computed as the difference of the
two spoke direction vectors with a common skeletal sheet position. This relation for
the normal holds only for Blum medial sheets, but given the “as medial as possible”
criterion for skeletal sheets discussed below, it is sensible to use it for the skeletal
sheet interpolation.

5.3 Obtaining s-Reps Suitable for Probabilistic Analysis

There are three properties necessary for making a population of s-reps suitable for
probabilistic analysis. The first is that the branching topology of all members of the
population should be the same. There is nice, albeit not yet usable, work on statistics
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of trees with variable branching topology [28,30], but this is beyond the scope of this
paper. In this paper we restrict the branching situation further to having no skeletal
branches at all. This requires branching objects such as blood vessels to be treated
by compositing single branch components, but this, too, is beyond the scope of this
paper. This is the reason for the restriction mentioned in Sect. 5.1 to skeletal loci
that are smooth except at the fold curve.

The second property needed to do probabilistic analysis is that small deforma-
tions in the objects yield small deformations in the skeletal model. This can be
made to occur when the process of fitting s-reps into the data describing the object
has certain behaviors. These will be discussed in Sect. 5.3.1.

The third property needed to do probabilistic analysis is that each spoke in
one s-rep in the training population be at a position, orientation, and length that
geometrically corresponds to that of the same spoke in the other training s-reps.
Accomplishing this is discussed in Sect. 5.3.2.

5.3.1 Fitting Unbranched s-Reps to Object Description Data

Typically object data is provided in the form of a tiled object boundary, a pile of
parallel planes each containing a boundary contour, or a binary discrete image. To
fit s-reps to such data, we first transform the data into a signed distance image,
where the distance is negative inside the object and positive outside and where the
zero level curve of distance represents the object boundary. We have methods, using
constrained flow controlled by the Laplacian of curvature, that yield a distance
image representing a smooth boundary staying within a half-voxel of the object
data [22].

Our objective is to study shape variability by statistical means, so the pair of
distance images for many population samples of our object will be provided. For any
object sample there are very many s-reps that can be fitted to this data. In particular,
the skeletal locus could in principle be anywhere across the short dimension of the
object. In the extreme it could be along one side of the object, such that the object
was covered by lines going from one side of the object (e.g., the south side) to the
other side of the object. Since our goal is to do statistical analysis of the fitted s-reps,
we need to fit s-reps that have as little variability over the training cases as possible.

The closer the skeletal locus is to bisecting the top and bottom sides, the wider the
range of pimples and dimples on the boundary that could be accommodated. More
importantly, we can more stably constrain the geometry of the skeletal locus if we
make it bisect the two sides. However, as indicated earlier, the Blum medial locus
will not do, because it generates branches for pimples and dimples. So in brief, we
want a skeletal locus smooth but at the folds that is space filling and, within those
constraints, as medial as possible. The following section gives properties of truly
medial fits that can be used in measuring how medial an s-rep is. The properties
are described in the form of penalties that contribute to a weighted sum that is
minimized in the fitting process.
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5.3.1.1 As Medial as Possible

The following medial properties should be approximate targets for an as-medial-as-
possible s-rep. Each property yields a penalty term in the aforementioned weighted
sum. Some depend on the input signed distance imageD.x/, and some involve the
relation between the north (south) side spoke S.u/ and S.v/, its counterpart on the
other side of the (double-sided) skeletal sheet with the same p.u/ value.

1. Equal r.u/ values for the northside and southside spokes at the same p.u/: in the
fitting of a discrete s-rep we penalize according to jr.u/" r.v/j/.

2. Spokes are boundary normals: in the fitting we penalize according to the devia-
tion from boundary normality, i.e., cos"1.brD.x/ #U.u// at the spoke end, where,
given a vector W, bW is the unit vector in the direction of W.

3. The (interpolated) skeletal locus p.u/ bisects S.u/ and S.v/. Equivalently, the
normal to p.u/ is in the same direction as U.u/ " U.v/: in the fitting, for each
spoke we penalize according to the angle between the normal to p.u/ and
U.u/"U.v/. This penalty has not yet been implemented in our code to fit s-reps
to objects.

4. End curves’ spokes are at crests of the zero level curve of the distance image
that forms the object boundary; this involves three properties, all involving the
principal directions w1 and w2 and the associated principal curvature #1 of the
level surface at the spoke end, where #1 is the lesser (more negative, i.e., more
convex) principal curvature:

(a) The spoke end is at an extremum of #1 along the integral curve of w1, so the
directional derivative of #1 in the w1 direction should be zero. In the fitting
we have attempted to penalize according to the magnitude of that directional
derivative. However, the high order derivative of the distance function that
this involves proved to be unstable, so for now this term is not included in
the penalty list.

(b) The plane of the spoke and its infinitesimally near neighbors along the
principal curve of w1 should be orthogonal to w2. We penalize according
to the angle between w2 and U.u/ ! U.v/, the normal to the plane of the
spokes at that end curve point.

(c) The boundary implied by the s-rep at the spoke end and the level surface of
the distance at the spoke end should agree in the first principal curvature. We
have not yet implemented a penalty for deviating from this condition, but in
a future implementation we plan also to penalize according to the magnitude
of the difference between the two relevant radii of curvature.

This method of forcing spokes into the distance function’s crest is good when
there is a strong crest for the end curve to fit into, but in some objects this crest is
weak or, even worse, the object has more than one crest and we wish the s-rep to
fit between them. This situation is illustrated in Fig. 5.3, where the skeletal sheet
bisects the twin crests on the right side of the object, instead of favoring one crest
over the other.
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Fig. 5.3 A 2D object with
multiple vertices (the 2D
correspondent to a crest in
3D), together with the desired
skeletal sheet

5.3.1.2 Fitting s-Reps to Distance Images

Fitting s-reps to such signed distance images is done in five stages.
In the first stage, to align the training cases, a reference s-rep is translated, rotated,

and possibly uniformly scaled into the space of the distance image via matching of
moments of boundary positions or via minimizing sum of squared distances between
designated s-rep spoke ends and object landmarks provided by the user.

In the second stage we restrict the corresponding northside and southside spokes
to having the same length and move each atom into place while maintaining a
regular array that is geometrically legal. In the third (spoke) stage we adjust the
spoke lengths and angles to match the object boundary quite closely. After the PCA-
like statistical analysis described in Sect. 5.5 on the results of the third stage, the
fourth stage obtains better correspondence among the fits to the various training
cases. It accomplishes that by restricting the fits to the shape space resulting from
the statistical analysis. In the fifth stage we tighten the fit to the distance function by
allowing small deviations from the shape space; in particular, we again adjust the
spoke lengths and angles to match the object boundary quite closely. The following
describes these stages in more detail.

In the second stage, iteratively over the skeletal atoms (each consisting of a spoke
duple or triple with a common hub) we optimize an objective function [19] that
is a sum of two major penalty terms summed over the two or three spokes. Each
major term is a sum of subsidiary terms. The first major term measures how well
the candidate spokes are fit into the distance image; the second of these major terms
measures the geometric fitness of the candidate s-rep. Both terms include penalties
for deviation from being medial.

For the spoke S.u/ the spoke-to-object-mismatch penalty sums terms penalizing
misfit to D.b.u// (the signed distance value at the spoke end) and its derivatives.
The geometric fitness penalty sums terms penalizing general geometric misbehavior
such as lack of adherence to the medial properties.

Spoke-to-object mismatch penalties: All of these penalties are summed over spokes
interpolated from the original discrete set. In our application to hippocampi, each
quad of 4 spokes is subdivided by 4 in each dimension, producing a quad of 25
interpolated spokes. No interpolation is done, at present, around the crest.

1. Zeroth order fit to the distance image: jD.b.u//j.
2. First order fit to the distance image: the angle between S.u/ and rD.b.u//), as

described in Sect. 5.3.1.1, item 2.
3. The crest property penalties described in Sect. 5.3.1.1, item 4.
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Geometric fitness penalties:

1. S-rep irregularity: To achieve roughly uniform coverage of the object interior
and, given the crest-fitting of the end spokes, to provide approximate correspon-
dence of spokes across cases, a penalty for each spoke is applied proportional
to its difference from the average of its neighbors. At present, the average is
calculated in a way consistent with the principal geodesic analysis approach
described in Sect. 5.5.1.1.

2. Illegality of spoke crossings: a penalty is added for Srad or SE values for a spoke
being greater than the reciprocal of their spoke lengths (see Sect. 5.2).

3. Deviation from medial properties, as described in items 1 and 3 of Sect. 5.3.1.1.
4. The distance between S.u/ and the result of the first stage for that spoke. The

distance measure reflects positional deviations at the spoke end.

In the third, i.e., spoke, stage the spoke tail p.u/ is fixed, and the optimization is
only over the spoke direction U.u/ and the spoke length r.u/. The spoke-to-object
mismatch penalties are as above, but the geometric fitness penalty is only on the
magnitude of the difference of both the spoke direction and the spoke length from
the result at the first stage.

In the fourth stage the optimization is over the shape space determined by the sta-
tistical analysis of those third stage fits that are adequately good, and the intialization
is always from the mean s-rep of those fits. In that stage the geometric atypicality
penalty is the negative log prior density (up to a constant multiplier and additive
constant) of being in a population of s-reps, given by the Mahalanobis distance
function also determined from the statistical analysis. In Sects. 5.5.2 and 5.5.3 we
describe how to compute a set of eigenmodes vi of s-reps and associated principal
variances $2i , using the actual abstract space in which an s-rep falls. Any s-rep in
that population is designated by a tuple of scores ˛ of the respective eigenmodes,
and

P
i .˛

2
i =$

2
i / forms the Mahalanobis distance of that s-rep.

The fifth, spoke, stage is just like the third stage, but on and relative to the results
of the fourth stage.

In all of the stages conjugate gradient optimization of the objective function is
applied.

Figure 5.4 shows some sample hippocampus fits by this method, as described in
Sect. 5.6.

5.3.2 Achieving Correspondence of Spoke Vectors

The previous work on achieving correspondence in training populations of anatomic
object models has involved shifting points on object boundaries in point-distribution
models (PDMs) [3, 5, 20]. We find the most attractive method is that of Cates
et al. [3] and Oguz et al. [20], which minimizes a sum of two entropy terms:
H.z/ " ˛

P
i H.xi /. The first term measures the tightness of the probability

distribution on the representation entities, here possibly including not only the
boundary points but also derived values such as curvature. The second term sums
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Fig. 5.4 S-reps fitted to 9 of
the 62 hippocampi used for
the statistical analysis (see
Sect. 5.6)

negatives of entropies over the training cases, with each entropy measuring the
uniformity of the distribution of the points on the respective object boundary. We
are in the process of extending this method to spoke correspondences. In our case
the representation entities are spokes, and the entropy possibly includes not only
skeletal sheet curvatures (eigenvalues of the shape operator at spoke tails) but also
spoke direction curvatures (eigenvalues of the Srad or SE operators of spokes). Also,
the uniformity measurement must be of spokes within the object volume.

However, this method has not been fully implemented at the time this paper
is written. Thus the following statistics are based on fits whose correspondence
come from common shape-based penalties used for fitting the training cases and the
common shape space in which they fall before refinement by the final spoke stage.

5.4 The Abstract Space of s-Reps and Common
Configurations of s-Rep Families in that Space

5.4.1 The Abstract Space of s-Reps

Let each s-rep mk in a training population consist of n spoke vectors f.p
i
; ri ;Ui /j

i D 1; 2; : : : ; ng that correspond across the population. The set fp
i
g of points on

each training discrete s-rep’s skeletal locus form a PDM (point distribution model)
that can be centered so that its center of gravity is the origin. Also, the result can
be scaled by a factor making the sum of the squared distances of the points to
the origins equal to unity. Thereby each PDM is describable by a scaling term
represented by the log of its scale factor % and a tuple of scaled, centered spoke
tail points that abstractly live on the unit 3n " 4 dimensional sphere S3n"4.



104 S.M. Pizer et al.

Each spoke direction Ui abstractly lives on the unit two-sphere. Each log ri value,
as well as log % , abstractly live in Euclidean space. Thus a discrete s-rep lives in
RnC1 !S3n"4 ! .S2/n, i.e., the Cartesian product of nC 2 manifolds, one of which
is Euclidean and all of the rest of which are spheres. If the number of training cases
N is less than 3n"4, the space of the scaled, centered spoke tails is restricted to the
intersection of S3n"4 with the Euclidean space of dimensionN " 1 passing through
the center of S3n"4, i.e., in SN"1. Also in that case, the n radii live in RN"1. In the
experiment on hippocampi reported in Sect. 5.5, N D 62 and n D 66. Thus each
hippocampus s-rep is a point in the composite space R62 ! S61 ! .S2/66.

5.4.2 Families of s-Rep Components on Their Spheres

The statistical analysis method we will describe in Sect. 5.5 involves includes
analysis on each of the here, 67 component spherical spaces, then compositing
the analyzed information with one another and with the Euclidean space data, and
analyzing the composited data. Therefore, it is of interest to consider how the s-rep
data points distribute themselves on each sphere.

Certain basic transformations of the objects can be expected: global rigid rota-
tions, rotational folding about an axis, and twisting about an axis. We have shown
[24] the following behaviors of the spoke-direction points on S2 under these trans-
formations. For each transformation each spoke moves on a small circle on S2 about
the rotational axis of the transformation; different spokes move on different small
circles, but all the circles share the same axis. In rotational folding and twisting
different spoke-direction points rotate in opposite directions as the fold or twist
progresses.

Also, for rigid rotation the points on S3n"4 or SN"1 (here S61), each describing
the tuple of skeletal points for a separate training s-rep, move on a small circle
(1-sphere).

We have experimentally confirmed (see Fig. 5.5) the relevance of these ideas, by
observing that real data s-rep spokes tend to arrange themselves near small circles.

We will now examine methods for statistically analyzing such data on a
d -dimensional sphere in a PCA-like fashion, to describe the data by a suitable
notion of mean and a shape space formed from a limited number of eigenmodes
of variation.

5.5 Training Probability Distributions in Populations
of Discrete s-Reps

5.5.1 Previous Methods for Analyzing Data on a Sphere

To understand the methods we will describe, it is useful to describe two approaches
to PCA in a d -dimensional Euclidean space. The two approaches are called
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Fig. 5.5 Data points for an s-rep spoke in 62 hippocampi (see Sect. 5.6)

“forward” and “backward” according to the order in which the dimensions are
analyzed. In a Euclidean space the two approaches are equivalent, but on spheres
(and indeed any curved space) they can give far from the same results.

In the forward approach, the mean is computed as the 0-dimensional space
(point) best fitting the d -dimensional data. Then the first principal component is
computed as the 1-dimensional space (line) best fitting the d -dimensional data. Then
the second principal component is computed by first finding the 2-dimensional space
(plane) best fitting the d -dimensional data and then taking the direction in that plane
orthogonal to the first component. And so on. The analysis proceeds from dimension
0 to 1 to 2 to . . . to d " 1. At each step the fit is to the d -dimensional data.

The backward approach begins by fitting the best hyperplane of dimension d " 1
to the d -dimensional data. Then the data is geodesically (orthogonally) projected
onto this hyperplane. Next the fit of a hyperplane of dimension d " 2 is made to
this projected data. And then the data from the hyperplane of dimension d " 1 is
projected onto this hyperplane of dimension d " 2. And so on, until we have a line
fitted to the data that has been projected on a plane and we project the data from
the plane onto the line. Finally, the mean is the 0-dimensional best fit to the data on
the line. In this method the fit at the kth step is to the data projected onto a space of
dimension d " k C 1.

In PCA each training point can be expressed as the mean plus a weighted sum of
the d eigenmodes. The weights are called scores. The score of eigenmode d"kC1,
k D 1; 2; : : : ; d for that training point is the signed projection distance of that data
point from the space of dimension d " k C 1 to the space of dimension d " k.
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Fig. 5.6 Data clustered on a sphere

5.5.1.1 Principal Geodesic Analysis

The method we had previously used to analyze m-reps (s-reps with equal-length
spokes at common spoke tails) was the Principal Geodesic Analysis (PGA) method
of Fletcher [9]. This method is a forward approach. It begins with computing the
intrinsic forward Fréchet mean on each component, spherical and Euclidean, in the
composite space. The mean on a sphere is the point on the sphere whose sum of
squared geodesic distances to the data points is minimum. The intrinsic Fréchet
mean is a forward mean because the best zero-dimensional approximation to the
data, the mean, is computed relative to the full d -dimensional sphere.

Given this mean, the form of PGA that we use moves the data from its manifold
onto a tangent hyperplane at the mean with a Euclidean metric determined by
keeping directions and the condition that every point on the sphere has the same
Euclidean distance to the mean on the tangent hyperplane as its geodesic spherical
distance to the mean on the sphere. On the data on this tangent plane the method
carries out PCA, and its eigenvectors are mapped back to the original sphere,
yielding geodesics through the mean. Strictly speaking, the method is applied to
the composite space, not sphere by sphere, but it could be applied sphere by sphere.

This method works very well when the data cluster on each of the composite
spheres (and the Euclidean space in the composite) because then data projected on
the tangent plane represents the original data well (Fig. 5.6). However, in our case
the data frequently live on small circles that are far from the pole, whereas the mean
may be found at the pole. It is then not surprising that PGA will not be optimal.

5.5.1.2 GPCA: Geodesics with the Mean on the First Geodesic

Huckemann et al. [12, 13] proposed a method called geodesic principal component
analysis (GPCA) which inspired our final method by having an important backward
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component. They realized that the Fréchet mean may be far from the best fitting
great circle. Hence, if the data lives on or near a circle on a sphere, the mean should
be computed on that circle after projection of the data onto it. Their method found
the best fitting geodesic (great) circle on the sphere, projected the data onto that,
and found the Fréchet mean on that great circle of the projected points. This is a
backward mean, since it computed after projection from the original d -space onto a
1-dimensional subspace.

The method of Huckemann et al. on a d -sphere then went on to compute principal
geodesic circles through the mean in a forward fashion, in a way quite similar to
PCA, albeit on a sphere. Its weakness for our data comes from two problems. First,
it fits great circles, whereas our data live near small circles. Second, it is backward
only at the first step, whereas the fully backward method of Jung [15] described next
appears superior.

5.5.1.3 Composite Principal Nested Spheres

A method better recognizing the loci along which the s-reps tend naturally to vary
is the Composite Principal Nested Spheres (CPNS) method of Jung et al. [15]. It
consists of (1) component by component estimation of principal modes of each
of the spherical manifolds separately, each producing scores that are suitable for
Euclidean analysis; then (2) compositing those analyses with one another and the
Euclidean data, followed by PCA on the result.

5.5.2 Training Probability Distributions on s-Rep Components
Living on Spheres: Principal Nested Spheres

We begin by describing the principal nested spheres (PNS) approach that is applied
to the data on each sphere separately. This method has already been described
in [15]. As suggested, the approach is backwards analysis, and at each step the
best fitting subsphere of one dimension lower is fit, irrespective of whether that
subsphere is a great or small subsphere.

The approach begins with the data on the d -dimensional sphere. The best
subsphere of d " 1 dimensions is fit by an analytical computation. As illustrated
in Fig. 5.7, the result is formed by (and recorded as) the pole (axis) position w1

of the subsphere on the d -sphere and its latitude (angle from the pole)  1. Then
it projects the data onto the subsphere of dimension d " 1. The process begins
anew, finding the .d " 2/-dimensional subsphere best fitting the data that has been
projected onto the .d " 1/-dimensional sphere. The process repeats itself until a
1-sphere (a not necessarily great circle) with points on it has been arrived at. The
final step is to find the mean (best-fitting 0-sphere) as the best fitting point to
(geodesic mean of) the data points that have been projected onto the circle.
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Fig. 5.7 Computation of subsphere, projection, and scores in principal nested spheres

The mean is successively projected forward through the dimensions 2; 3; : : : ; d
using the subsphere-to-sphere transformations that have been recorded. The result-
ing point on the d-sphere gives the place in the data space which is the backwards
mean of the shape component that was analyzed on this sphere.

As with PCA, we record the score of the j th data point relative to the projection
of the subsphere of dimension d " k C 1, k D 1; 2; : : : ; d , to the subsphere
of dimension d " k as the signed projection distance zd"kC1;j of that data point
between those two spheres (see Fig. 5.7). The random variable zd"kC1;! is a 0-mean
variable that can be understood as being in Euclidean space. Thus, the d!N arrayZ
with elements k; j being zd"kC1;j represents the Euclideanized, 0-mean distribution
of the respective shape component of the data on the d -sphere.

5.5.3 Compositing Component Distributions into an Overall
Probability Distribution

In our method of analysis of CPNS the distribution of the 62-case s-rep data on
each of the component spheres is analyzed by PNS. The compositing approach has
already been described in [14]; here we detail it for analysis of s-reps. In that case,
with 67 spheres, this yields 67 Z arrays. One of them (for the spoke tail points)
is 61 ! 62 and the other 66 (for the spoke directions) are 2 ! 62. We must now
account for the correlations between the various s-rep components, including both
those that live on spheres and those that live in a Euclidean space. To prepare for
that, for each s-rep the Euclidean components,kD 1; 2; : : : ; 67, each of the form log
length or log scale factor, must each have their mean computed (in the ordinary way
of summing the entries across the data items and dividing by the number of entries,
62) and then subtracting that mean from each data item’s corresponding component.
(Strictly speaking, that data lives in a 62-dimensional space, but the SVD analysis
to follow is insensitive to using the original 67 dimensions.) Call the result of this
the 67 ! 62 array ZEuclidean.
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Fig. 5.8 Left: the composite array Zcomp before row scaling for N s-reps. * indicates that the
variable’s row mean has been subtracted. Right: the row scale factors

Next eachZ array row must be made commensurate; we give each entry the units
of the object boundary offset produced by any row entry. This is accomplished by

1. Multiplying the two rows giving z entries for each of the 66 spoke directions by
the average of the length of that spoke over the training cases;

2. Multiplying the n (66) rows giving entries giving a mean-subtracted log spoke
length by the average of the length of that spoke over the training cases;

3. Multiplying the N " 1 (61) rows giving z entries for the scaled and centered
medial point tuple, as well as the row giving the log of the scale factor, by the
geometric mean of the point tuple scale factors over the training cases.

We produce a 0-mean Euclidean representation of our data by piling all of these
scaled Z arrays (67 from spherical analysis and 1 from Euclidean analysis) on top
of one another, producing the 260 ! 62 array Zcomp (Fig. 5.8), to which the same
analysis as is done in conventional PCA can be applied. By this analysis, SVD
(singular value decomposition) on Zcomp yields a list of eigenvectors (principal
directions) vi and eigenvalues (principal variances) $2i . Together with the backward
means for each of the spheres and the mean of the Euclidean variables, this is the
PCA-like result reflecting our understanding that s-reps live on the Cartesian product
of 67 spheres and a Euclidean space.

The CPNS mean is formed by compositing the backward means from each of the
component spheres and the Euclidean mean. Each component mean is a point on its
respective sphere or Euclidean space. The mean s-rep is achieved by compositing
these points into spoke directions, spoke tail points, and spoke lengths. Unlike the
Euclidean mean or the forward intrinsic mean, the spherical components of the
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CPNS mean live not only on their spheres but on all the best fitting subspheres. It
therefore can be expected that the CPNS mean is more representative of the training
shapes than any of the forward means.

From the CPNS analysis, we can choose a number of eigenmodes that captures a
desired fraction of the total variance. This forms a shape space for s-reps as implied
by the training cases. Every s-rep in the shape space is given by a tuple ˛ of scores of
the eigenmodes, with associated Mahalanobis distance˙i.˛

2
i =$

2
i /. Given ˛, one can

form the vector˙i˛ivi and then apply the row scale factors computed in preparing
for the SVD. The entries in the resulting column vector can be divided into the
tuples corresponding to each s-rep component, just as the columns in the arrayZcomp

were divided. Each component will have its value unscaled by the row scale factors
previously discussed. The Euclidean components are then ready for adding their
mean. Each group of components from a spherical space is ready for projection
into its successive spherical spaces represented by the latitude angles  i and polar
directions wi , beginning with the backwards mean for that sphere. Compositing the
results on each of the 68 spaces into spoke directions, spoke tails, and spoke lengths
yields an s-rep that can be displayed or used to provide s-rep-relative coordinates
for the points in the image space in which an s-rep was originally fit.

The results of a CPNS analysis on hippocampi, some of which were illustrated
in Fig. 5.4, are described in the following section.

5.6 Analyses of Populations of Training Objects

We analyze 62 left hippocampi segmented from MR images. These are from control
(normal) individuals in a study of schizophrenia [26]. Each had an initial model that
had been fit years ago using an earlier version of the first three stages of the s-rep
fitting program; these fits were neither tight with the object boundary nor did they
satisfy the spoke-to-boundary orthogonality and crest fitting objectives. These initial
models were each translationally, rotationally, and scale aligned to their distance
functions, and the resulting models were fit using the geometric (atom-by-atom and
spoke) stages described as the second and third stages in Sect. 5.3.1.2. Our objective
was to compare fitting using CPNS followed by statistical analysis via CPNS with
fitting using PGA followed by statistical analysis via PGA.

Fifty of the third-stage fits were chosen as satisfactory, and this set was dealt
with in both ways. Fifteen eigennmodes were chosen from each set as the dominant
eigenmodes. The result was two shape spaces, one with a mean and eigenmodes
based on PGA on the 50 fits and one with a mean and eigenmodes based on CPNS of
the same 50 fits. Following this analysis, two applications, one PGA-based and one
CPNS-based, of the fourth (shape space) and fifth (spoke) stages (see Sect. 5.3.1.2)
were applied to produce the two sets of fitted s-reps that we wished to compare. In
each application, each of the 62 hippocampi was initialized by the mean appropriate
for that set, and it was first translated, rotated, and scaled into the hippocampus
distance image to be fit. That result was taken as the initialization of an optimization
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Fig. 5.9 Eigenvalues (bars) and cumulative eigenvalue (curve) plots as percentage of total
variance for CPNS (left, requiring seven modes for 90 % of variance) and for PGA (right, requiring
14 modes for 90 % of variance) after removal of the first mode

over the corresponding shape space; the spoke optimization of the fifth stage was
applied to the result. These fits seemed generally satisfactory for all 62 hippocampi.
Let us refer to the results as the PGA-based fits and the CPNS-based fits.

CPNS analysis was applied to the CPNS-based fits, and PGA was applied to the
PGA-based fits. In the following we compare the eigenvalue plots, the means, and
the eigenmodes between these two analyses.

In both analyses the first mode of variation dominated, and it was largely uniform
scaling. It formed 70 % of the total variance in the CPNS analysis and 90 % of the
total variance in the PGA analysis. This is consistent with a longstanding approach
in neuroimage analysis of focusing on hippocampus volume as a discriminative
parameter. Removing this source of variation from both the eigenvalue list and the
total variance in the corresponding analysis yielded the eigenvalue and cumulative
eigenvalue plots shown in Fig. 5.9. There is an obvious compression to the left of the
eigenvalues in the CPNS plot relative to those in the PGA plot. This is quantified by
looking at how many eigenmodes were necessary to achieve 90 % of the remaining
variance. The CPNS-based fitting and analysis requires only seven additional modes
to achieve 90 % (thus 97 % of the total variance when the first mode is included),
whereas the PGA-based fitting and analysis requires 14 additional modes to achieve
90 %. We also notice that, whereas the fitting after the first three stages, i.e., the
geometry-based stages, produced analyses by either PGA or CPNS that required 20
modes each to reach 90 % of the variance in modes 1 on, the amount of fitting-based
noise produced by the stage optimizing over the statistical shape space followed by
spoke stage refinement is so lessened that only eight modes (the first, scaling mode
and seven more) are now necessary to reach 97 % of the variance in modes 1 on.

Now we compare the CPNS-based backward mean s-rep to the PGA-based
forward mean s-rep. Both means look like a hippocampus, but as seen in Fig. 5.10,
the CPNS mean is longer, related to the fact that the PGA-based fits were noisier
near the tail and head of the hippocampus.
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Fig. 5.10 Implied
boundaries of CPNS (cyan)
and PGA (yellow) means of
the 62 left hippocampi of
normal individuals

Finally, we compare the two analyses in terms of the shape changes shown by
their eigenmodes. Because the contrast is too complex to show here, we summarize
what we have observed. Beyond the first, largely scaling, eigenmode, none of the
following four eigenmodes from the PGA set qualitatively match any of the follow-
ing four eigenmodes from the CPNS set, and vice versa. Roughly, the CPNS eigen-
modes seem to capture more in the way of bendings and twistings, and the PGA
eigenmodes seem to capture more in the way of rotations and small variations in
eccentricity. We suggest that the reason is that CPNS by its design is more sensitive
to changes in local directions (e.g., of spokes), so, relative to PGA, its preliminary
shape space enables more efficient modeling of variations of that type. Moreover,
its use in the final statistical analysis senses those variations more efficiently.

5.7 Extensions and Discussion

The method of composite principal nested spheres applies to any data that are best
analyzed as a composite of components lying on spheres and possibly including
Euclidean components. The analyses of such data done so far have suggested that
CPNS can provide more efficient analysis (fewer eigenmodes), stabler s-rep fitting,
and possibly more information about twisting and bending changes than PGA and
other forward methods. We have seen that fitting a geometric model, here an s-rep,
to object segmentations is significantly improved by the use of a shape space based
on CPNS-based analysis on preliminary fittings; the improvement is both in terms
of quality of fit and in terms of making a second statistical analysis on the models
informative.

Shape analysis via CPNS extends beyond s-reps to essentially every other repre-
sentation of shape. Shape inherently involves directions and curvatures (derivatives
on directions). As a result, it can be expected that CPNS will provide similar
advantages when applied to other representations of shape. The following list some
candidate representations suitable for CPNS analysis.
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• Point distribution models (PDMs), made of a large tuple of boundary (and
possibly other) points. On ten lung PDMs for ten phases of a patient’s respiration,
CPNS required only required one to two eigenmodes vs. three for PCA. As with
s-reps, CPNS required fewer modes than the forward method, here PCA.

• Point and normal distribution models: i.e., boundary point PDMs with a boundary
normal supplied with each point

• Quasi-tube s-reps
• Branching objects
• Multi-object complexes
• Warps, i.e., displacement vector images or time-indexed velocity vector images

representing diffeomorphisms or other invertible deformations.
• Fiber conglomerates, such as those studied by Savadjiev et al. [23].
• Tensor images
• Covariance matrices

The method of s-rep fitting followed by correspondence improvement and
CPNS analysis requires a variety of improvements, listed in the following, together
with testing on many more shape populations. Once verified, it seems suitable
for applications in segmentation by posterior optimization [27, Chap. 9], hypothesis
testing [29], and classification [25].

Improvements in s-rep fitting needed include spoke interpolations at the crest
using the Srad and SE matrices [11], fittings into multi-crest distance images, and
generalization of entropy-based correspondence optimization [3] to spokes.
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help with the references.
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Chapter 6
3D Curve Skeleton Computation and Use
for Discrete Shape Analysis

Gabriella Sanniti di Baja, Luca Serino, and Carlo Arcelli

Abstract A discrete 3D curve skeletonization algorithm is described, based on
iterated voxel removal guided by the distance transform of the object and on anchor
point selection. The criterion suggested for anchor point selection guarantees that
the obtained curve skeleton reflects object’s shape quite well since it consists of
curves symmetrically placed within the regions intuitively perceived as composing
the object. Then, the use of the curve skeleton for object decomposition in the frame-
work of the structural approach to shape analysis is discussed. A suitable partition
of the skeleton is presented that originates object decomposition in accordance with
human intuition.

6.1 Introduction

The skeleton of an object is a subset of the object with lower dimensionality,
symmetrically placed within the object, characterized by the same topology as
the object, and reflecting the geometrical features of the object itself. In the case
of 3D objects, two different kinds of skeleton can be considered, namely the
surface skeleton, consisting of the union of surfaces and curves aligned along
the principal symmetry planes and axes of the object, and the curve skeleton,
exclusively consisting of curves aligned along the principal symmetry axes of the
object. Obviously, the curve skeleton can be computed only for objects rid of
cavities. In fact, to guarantee that the skeleton and the object have the same topology,
a closed surface surrounding any cavity of the object should be present in the
skeleton, which therefore would not be characterized by linear structure. Moreover,
the curve skeleton should be used only to represent objects with the main symmetry
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axes lying in the objects themselves. In fact, when the main symmetry axes are
outside the object, the curve skeleton consists of curves that do not adequately
represent the input object. For example, for a tubular object like a hollow cylinder,
the curve skeleton is the ring placed in the middle of the cylindrical surface.

A wide literature exists presenting both continuous and discrete approaches to
the computation of the skeleton of 2D and 3D objects [1–14] as well as to the use of
the skeleton in a number of applications [15–22]. We follow the discrete approach
and in this paper we deal with the computation of the curve skeleton of 3D objects
in voxel images and with object decomposition via skeleton partition.

Skeletonization can be accomplished by means of iterated topology preserving
removal. Each iteration of the process consists of two sub-iterations. During the first
sub-iteration, the voxels constituting the current border of the object are identified;
then, during the second sub-iteration, border voxels are sequentially checked for
removal and are actually removed if their maintenance is not necessary for topology
preservation or to account for relevant object’s shape information. The process
terminates when all object voxels are border voxels and these are all necessary for
topology preservation or to account for shape properties.

One of the drawbacks affecting skeletonization via iterated removal is its
computational cost, since the number of iterations, and hence the number of times
the image has to be scanned, is proportional to object’s thickness. This drawback can
be solved by using methods where at each iteration only the neighbors of the points
that have been modified during the previous iteration are inspected (see e.g., [23]).

Another crucial issue is the difficulty of finding a reliable and simple criterion to
preserve from removal elements accounting for shape information. These elements,
generally called end points, are often detected by setting a threshold on the
maximum number of object’s neighbors that a border voxel can have to be preserved
from removal when inspected. Such a criterion does not guarantee an isotropic
behavior since the neighborhood configurations of voxels, placed in object parts
with the same structure but different orientation, depend on the order in which these
voxels are visited. This drawback can be alleviated by identifying suitable anchor
points, i.e., voxels whose removal is inhibited, before starting the removal process.
For example, border voxels whose distance from the interior of the object overcome
an a priori fixed threshold can be regarded as anchor points since they belong to
significant protrusions (see, e.g. [24, 25]).

An alternative approach to skeletonization is based on the research done by Blum
on the medial axis transform, MAT [26]. To define the MAT, initially for 2D objects
and successively for objects in higher dimensions, the notion of symmetry points
and a growth process were introduced. In the continuous space, for a 2D (3D)
object, a symmetry point is a point that is center of a circle (sphere), bitangent
two distinct sections of the boundary of the object and entirely contained in the
object. A symmetry point can be associated with the radius of the corresponding
circle (sphere). In turn, the circle (sphere) can be built via a growing process that,
starting from the symmetry point, incorporates all object’s points whose distance
from the symmetry point does not overcome the radius associated to the symmetry
point itself. The envelope of the circles (spheres) coincides with the object and the
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MAT is the locus of the centers, associated with the corresponding radii. Blum also
studied the geometric properties of the MAT and showed the usefulness of the MAT
for shape analysis [27].

MAT computation is rather heavy, especially in 3D, so that it is of interest a
skeletonization method based on the computation of a reasonably good approxima-
tion of the MAT. A possible solution in the discrete space is to resort to the use
of the distance transform of the object X , DT.X/, and to the selection of the set
of centers of maximal balls, CMB.X/. In fact, DT.X/ is a multi-valued replica of
the object, where each voxel of the object is assigned the value of its distance from
the boundary. Thus, each object voxel in DT.X/ can be interpreted as the center
of a ball with radius equal to the distance value of the voxel itself and touching
the object boundary. As the name suggests, a voxel of CMB.X/ is a voxel whose
associated ball is maximal, i.e., is not included by any other single ball, touches the
object boundary in at least two different parts, and is obviously totally included in
the object. Moreover, the union of all the maximal balls coincides with the object.
This indicates that CMB.X/ consists of symmetry points and constitutes a discrete
approximation of the MAT.

As we will see in more detail in the following sections, the set CMB.X/ does
not satisfy all the properties expected for the skeleton. We note that, except for
the case of 3D objects having tubular shape, voxels of CMB.X/ do concentrate
along symmetry planes rather than along symmetry axes, so that not all voxels
of CMB.X/ are of interest for curve skeletonization. Moreover, CMB.X/ is not
necessarily characterized by the same topology as the represented object. Thus, on
one side skeletonization needs to accept as skeleton elements other voxels besides
those of CMB.X/ in order to obtain a topologically correct result. On the other side,
skeletonization should not accept all voxels of CMB.X/ as skeleton voxels so as to
originate a skeleton with a linear structure easy to manage and still able to represent
the object sufficiently well. Of course, accepting only a subset of CMB.X/ in the
skeleton also means that the union of the balls associated with the voxels of the
skeleton does not coincide with the object itself.

Actually, the voxels of CMB.X/ are generally not all equally important. For
example, a number of voxels of CMB.X/ do not carry shape information, since
they are due only to the discrete nature of the digital space. In this respect, let
us consider a cylinder with its main axis oriented along one of the three axes in
a Cartesian coordinate system. In the continuous space, sections of the cylinder
perpendicular to such an axis are circles and, for sections sufficiently far apart from
the bases of the cylinder, the distance transform appears as consisting of concentric
circular wave-fronts, each including points with the same distance value. For each
of these sections only one center of maximal ball exists, which is the symmetry
point placed along the main symmetry axis of the cylinder. In the digital space,
the circular sections of the cylinder are unavoidably transformed into polygonal
shapes and the distance transform appears as due to the propagation of a polygonal
wave-front. Since voxels of CMB.X/ are located where the wave-front folds upon
itself, besides the centers of maximal balls along the main axis, also other centers
of maximal balls are detected. These are due to the existence of weak convexities
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in correspondence with the vertices of the polygonal wave-front. This fact causes
folding of the wave-front upon itself.

More in general, voxels of CMB.X/ can be found in correspondence of object
parts characterized by different properties, not all equally important for the specific
task. Thus, it is profitable to devise criteria to select an appropriate subset of
CMB.X/, depending on the object properties of interest for the task at hand [28].
Once suitable criteria to filter out irrelevant centers of maximal balls are used, then
the surviving voxels of CMB.X/ can be taken as anchor points and skeletonization
can be accomplished by using iterated voxel removal to guarantee a topologically
correct result.

In this paper, we describe a skeletonization method based on the selection of
anchor points in the distance transform and on iterated voxel removal. Besides using
the distance transform to identify the subset of CMB.X/ whose voxels are taken as
anchor points, we also exploit it to strongly reduce the computational cost of iterated
voxel removal. In fact, we avoid repeated inspections of the image by directly
accessing in increasing distance value order the voxels that undergo removal. The
curve skeleton CS of an object X is computed in two phases.

During the first phase, the Pseudo Surface Skeleton PSS is detected by following
the strategy suggested in [14]. The set PSS is a subset of X and is used as input
to the second phase. To obtain PSS, the distance transform of X is computed and
suitable centers of maximal balls are taken as anchor points. Topology preserving
removal operations are then applied to object voxels that are not anchor points to
get an at most two-voxel thick set. Final thinning is performed to gain unit thickness
and pruning of peripheral lines is done for trimming out negligible details.

During the second phase, a classification of the voxels of PSS into curve, internal,
junction, extended junction, branching and edge voxels is done. The distance
transform of PSS is then computed. Voxels that are classified as branching or
junction voxels, and centers of maximal balls of PSS are taken as anchor points.
Topology preserving removal operations are then applied to reduce PSS to an at
most two-voxel thick set of curves. Final thinning and pruning complete the second
curve skeletonization phase.

Though the union of the balls associated with the voxels of the curve skeleton
generally provides only a rough version of the input object, the curve skeleton is of
interest in the framework of the structural approach to object analysis to reduce the
complexity of the recognition task. In particular, the skeleton can be used for object
decomposition (see e.g., [29–32]).

As discussed in [33–36], the human visual system is likely to represent objects
with complex shape in terms of simpler parts, by decomposing the objects into parts
and by organizing object representation in terms of the parts and of their spatial
relationships. Such a structured representation is characterized by a significantly
greater robustness under changes in viewing conditions.

Decomposition guided by skeleton partition has been followed particularly for
objects than can be perceived as articulated in parts with tubular shape, where a one-
to-one correspondence exists between the individual curves composing the skeleton
and the individual parts of the object. In this case, the object can be interpreted as
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consisting of a number of parts, called geons. The underlying theory is that human
object understanding is based on recognition-by-component. Each individual curve
of the skeleton can be used to analyze the part of the object it represents, and the
spatial relations among the curves of the skeleton can be used to derive information
on the organization of the parts constituting the object.

When the object also consists of parts that cannot be interpreted as geons,
individual skeleton curves do not necessarily correspond to perceptually significant
object parts. Thus, skeleton curves have to be suitably grouped to generate a skeleton
partition where each partition component corresponds to a perceptually meaningful
object part.

In this paper, we present an object decomposition method based on curve skele-
ton partition. We use the notion of zone of influence, i.e., the region union of the
balls associated with a given subset of the skeleton. In particular, we consider
the zones of influence associated with the branch points, i.e., the voxels where
different curves of the skeleton meet. By using these zones of influence, the skeleton
is partitioned into three different kinds of subsets. Then, the skeleton partition
components are used to build the object’s parts. Since pairs of adjacent parts may be
separated by non-planar surfaces, voxels in each pair of adjacent parts are possibly
redistributed between the two parts in such a way to obtain an almost planar
separation. Finally, a merging process is accomplished to obtain a decomposition
of the object into a smaller number of perceptually significant parts.

We have applied our algorithms for curve skeletonization and for object decom-
position to a variety of images, taken from publicly available shape repositories
[37, 38]. A few examples are shown in the paper.

6.2 Notions and Definitions

We consider a binary voxel image in a cubic grid, where the objectX is the set of 1s
and the background B is the set of 0s. To avoid topological paradoxes, we use the
26-connectedness and the 6-connectedness for X and B , respectively.

The 3 ! 3 ! 3 neighborhood N.p/ of a voxel p is the set including the 26
neighbors of p. These are the 6 face-, the 12 edge- and the 8 vertex-neighbors of
p, respectively denoted by nf , ne , nv. We also consider the set N ".p/ that includes
only 18 neighbors of p. These are the 6 face- and the 12 edge-neighbors of p. In the
following, the term neighbor or the notation ni are used when a generic neighbor of
p is considered.

We assume that the set B consists of a single six-connected component. This
presupposition is necessary since we aim at the computation of the curve skeleton.
This computation is not possible for an object including cavities, each of which
should be surrounded by a closed surface in the resulting skeleton in order to have
a topologically correct skeleton.

An object voxel p is a simple point if the two objects with and without p have the
same topology. Voxel simplicity can be stated by checking that topology is locally
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preserved. Thus, if we denote by cp the number of 26-connected object components
in N.p/, and by c"p the number of six-connected background components having p
as face-neighbor and computed inN ".p/, a voxel p is simple if cp D 1 and c"p D 1
[39, 40].

A path linking two voxels p and q is a sequence of unit moves from p to q
through voxels that are face-, edge- or vertex-neighbors of each other. To give a
reasonably good approximation of the Euclidean length of the path, the unit moves
towards face- edge- and vertex-neighbors encountered along the path should be
measured by different weights, suitably taking into account the different Euclidean
lengths of these moves. The integer weights wf D 3, weD 4 and wvD 5 are adequate
to provide a good approximation of the length of the path [41].

Though efficient algorithms exist to compute the Euclidean distance between two
voxels p and q (e.g., see [42]), when following discrete approaches, the distance
between p and q is preferably defined as the length of a shortest path linking p
to q [43]. In this work, we resort to the use of the h3; 4; 5i weighted distance that
combines the simplicity of path-based distances with a reasonable approximation
to the Euclidean distance. The main reason for preferring a path-based distance to
the true Euclidean distance is that with the former metric strong constraints exist
on the distance values that are possible for neighboring voxels, which will allow us
to devise easily local operations for various tasks, e.g., for center of maximal ball
detection.

The curve skeleton CS of a 3D object X is a set union of curves, symmetrically
placed within X , with the same topology of X and reflecting the main geometrical
features of X . CS may be two-voxel thick at the intersection of curves. A voxel
p of the skeleton is an end point when it has only one neighboring skeleton voxel
in N.p/. A voxel p of the skeleton is a branch point when it has more than two
neighboring skeleton voxels in N.p/.

6.2.1 Distance Transform

The distance transform DT.X/ is a labeled replica of an objectX , where each voxel
p of X is labeled with the length of a shortest path, entirely consisting of voxels of
X , connecting p to the boundary ofX . In the following, we will denote by d.p/ the
distance value of p in DT.X/.

DT.X/ can be interpreted as due to a local propagation process from the
boundary of X towards the innermost part of X . During propagation, each internal
voxel p of X receives distance information from those of its neighbors that are
closer to the boundary than p, and propagates distance information to its object
neighbors that are farther than p from the boundary.

The object boundary is composed by the object voxels delimiting the object itself.
For an object consisting of three-dimensional manifolds, the boundary is a set union
of closed surfaces that in the discrete space includes all and only the object’s voxels
with at least a face-neighbor in the background, while the internal voxels are the
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object’s voxels having no face-neighbors in B . In turn, when X consists of two-
dimensional manifolds, its boundary will be a set union of curves. To identify the
boundary ofX in this latter case, we need to classify the voxels ofX . To this aim, we
use a modified version of the classification scheme introduced in [14] and classify
as follows the voxels of an object X consisting exclusively of intersecting surfaces
and curves:

• An object voxel with at most two disjoint object neighbors is a curve voxel.
• A not yet classified object voxel with a neighboring curve voxel is a branching

voxel.
• A not yet classified voxelp is a branching voxel if cp¤ 1 andp has a neighboring

branching voxel, or if the object neighbors of p are all branching voxels.
• An object voxel p with c"p ¤ 1 is an internal voxel.
• An internal voxel p with more than two 6-connected components of background

voxels in N.p/ face- or edge-adjacent to p, or being any of the eight internal
voxels in a 2 ! 2 ! 2 configuration is re-classified as junction voxel.

• An internal voxel having a face- or an edge-neighbor classified as junction voxel,
is re-classified as extended junction voxel.

• Any other object voxel is an edge voxel.

The boundary of a set X consisting exclusively of intersecting surfaces and
curves, is the set of edge voxels, branching voxels and curve voxels. Branching
voxels and junction voxels are the voxels where curves and surfaces intersect
and will act as barriers to the propagation of distance information. Extended
junction voxels are internal voxels playing also the role of junction voxels in
presence of intersecting surfaces, where voxels of a surface have edge-neighbors in
another surface. Differently from the junction voxels, which will neither receive nor
propagate distance information, the extended junction voxels are allowed to receive,
but are not allowed to propagate, this information to their neighbors. Due to the
presence of barriers, voxels internal in one of the surfaces constitutingX will receive
distance information exclusively from the edge voxels delimiting that surface.

The above classification allows us also to distinguish peripheral and internal
surfaces. The first are surfaces at least partially delimited by edge voxels, the latter
are completely surrounded by junction voxels.

For the computation of DT.X/, boundary voxels are assigned the minimal
distance value, which is equal to 3 when using the h3; 4; 5i weighted distance.
Distance information is then propagated to the internal voxels of X . If X consists
of three-dimensional manifolds, DT.X/ can be computed by means of the standard
two-scan algorithm [41]. When X consists exclusively of surfaces and curves, an
ordered propagation algorithm, e.g., [44], is more convenient due to the presence of
junction voxels and branching voxels acting as barriers to the propagation.

For the sake of clarity, we point out that when X consists exclusively of surfaces
and curves, more than one application of distance transformation may be necessary
to obtain the complete DT.X/. In fact, the internal voxels belonging to internal
surfaces cannot be reached by the distance information propagated from the
boundary, due to the role of barriers played by the junction voxels and by the
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extended junction voxels. To assign distance values also to the internal voxels of
internal surfaces, we change the status of some particular junction voxels into that
of delimiting junction voxels. These particular voxels are the junction voxels having
both neighboring voxels already reached by the propagated distance information,
and neighboring extended junction voxels not yet labeled with distance value. The
delimiting junction voxels are taken as constituting a new set of boundary voxels
from which to compute the distance transform for internal surfaces. The extended
junction voxels that are neighbors of delimiting junction voxels change their status
into that of internal voxels. To guarantee some continuity in distance values, the
delimiting junction voxels are assigned a value related to the maximum distance
value, max, assigned during the previous application of distance transformation.
Namely, delimiting junction voxels are set to maxC wv.

6.2.2 Centers of Maximal Balls and Anchor Points

Any voxel p in the distance transform can be interpreted as the center of a ball with
radius d.p/. The ball associated to p can be constructed by applying to p the reverse
distance transformation [45].

A center of maximal ball is any voxel p whose associated ball is included in the
object, but is not included by any other single ball in the object. The set of centers
of maximal balls, CMB.X/, is computed by comparing the distance value d.p/ of
each p of X , with the distance values of the neighbors of p, by taking into account
the weights wf , we and wv [46]. In detail, p is a center of maximal ball if for each
of its neighbors ni there results

d.ni /" d.p/ < wi (6.1)

We note that the distance value 3 must be replaced by the equivalent value 1 before
detecting the centers of maximal balls. In fact, balls with radii 3 and 1 are identical
and replacement of 3 by 1 is necessary to avoid the erroneous detection as center of
maximal ball of a voxel whose associated ball is not maximal (see [1] Chap. 5, for
details on the equivalent values).

We also note that when X exclusively consists of surfaces and curves, rather
than talking of balls we should more correctly talk of geodesic discs. The geodesic
disc associated with a voxel p of X can be obtained by considering the intersection
between X and the ball associated to p by the reverse distance transformation. If
the intersection consists of more than one connected component, the geodesic disc
associated to p is the component that includes p.

In principle, at least during the first phase of skeletonization, we should take as
anchor points all centers of maximal balls of X since they are symmetry points.
However, we are aware that the curve skeleton ofX could include almost all centers
only when X is composed by parts with tubular shape. Moreover, if all centers
are taken as anchor points, the structure of the set resulting at the end of the first
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Fig. 6.1 From left to right, a 3D object X , the set of centers of maximal balls CMB.X/, and the
set of relevant centers of maximal balls RCMB.X/

phase of skeletonization would be so complex to make the second phase of the
process rather hard and heavy. Thus, we prefer to devise some criteria to filter out
the less important centers of maximal balls. As described below, we use one of the
criteria that we suggested in [28] to characterize the centers of maximal balls and
will include in the curve skeleton only the relevant centers of maximal balls.

We note that even if some neighbors of p have distance values larger than d.p/,
the voxel p can still satisfy the detection rule (6.1). Thus, we can use a stricter
detection rule, where the difference d.ni / " d.p/ is compared with a value smaller
than the appropriate weight. Namely, we call relevant center of maximal ball any
voxel p of X such that for each of its neighbors ni there results

d.ni /" d.p/ < wi " 1 (6.2)

The detection rule (6.2) strongly reduces the number of centers of maximal balls
with respect to those selected by rule (6.1). At the same time, the set obtained
by applying the reverse distance transformation to the set of the relevant centers
of maximal balls, RCMB.X/, does not significantly differ from the input object,
showing that a skeleton based on the selection as anchor points of the relevant
centers of maximal balls still satisfactorily represents the object. In the average,
about 95:25% of the input object X is recovered by applying the reverse distance
transform to RCMB.X/.

A 3D object X , the set CMB.X/, and the set RCMB.X/ are shown in Fig. 6.1.

6.3 The Curve Skeleton

The curve skeleton CS of a 3D objectX is obtained in two phases, the first of which
is devoted to the computation of PSS, which is a subset of X consisting of surfaces
and curves used as input to the second phase.

The first phase of skeletonization includes the following tasks: (1) computation
of the h3; 4; 5i weighted distance transform of the object, DT.X/; (2) detection
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of the set of anchor points, i.e., of the set RCMB.X/ of the relevant centers of
maximal balls; (3) application of topology preserving removal operations, based
on the notion of simple point, to object voxels that are not anchor points. Object
voxels are accessed in increasing distance value order. A currently inspected voxel
p is removed, i.e., its value is set to the background value 0, if it is both cp D 1 and
c"p D 1; (4) final thinning applied to the obtained at most two-voxel thick set PSS
so as to gain unit thickness; (5) pruning of peripheral curves, done for trimming out
negligible details.

During the second phase, the following tasks are done: (1) the voxels of PSS
are classified; (2) the distance transform DT.PSS/ is computed; (3) voxels of PSS
that are classified as branching voxels or junction voxels and the relevant centers of
maximal balls of PSS are taken as anchor points; (4) topology preserving removal
operations are applied to the voxels of PSS that are not anchor points; (5) the two-
voxel thick set CS is transformed into a linear set; (6) pruning of peripheral curves
is finally accomplished.

Details for implementing most of the above tasks have already been provided in
the previous sections. Thus, in the next section we give the details necessary for
accomplishing the remaining tasks.

6.3.1 Final Thinning and Pruning

To perform final thinning and pruning during the first phase of skeletonization, we
resort to the four processes P1–P4, respectively devoted to (1) Reduction of thick-
ening in face-direction; (2) Reduction of thickening in edge-direction; (3) Removal
of scarcely significant peripheral surfaces; (4) Removal of scarcely significant
peripheral curves. The sequence P1, P2 and P3 is applied as far as voxel removal is
possible. Then, P4 is accomplished.

To identify the voxels of PSS that undergo P1, P2 and P3, we partition the voxels
of PSS in two classes: type1 voxels, including all voxels characterized by c"p ¤ 1,
and type2 voxels, including all other voxels of PSS. For sure, type1 voxels are not
simple. Thus, only type2 voxels undergo P1, P2 and P3. Of course, not all type2
voxels can be removed. In fact, not all of them are simple and not all the simple
type2 voxels are really placed where two-voxel thickening of PSS occurs.

To identify the type2 voxels in parts of PSS that are two-voxel thick in face- or
edge-direction, we use directional templates. Each template consists of four voxels,
aligned along one of the 6 face-directions or along one of the 12 edge-directions.
The two central voxels of the template are requested to be type2 voxels, while the
remaining two voxels are requested to be background voxels.

Each application of the process P1 (P2) actually consists in the application of 6
(12) directional processes. Type1 and type2 voxels are identified before each face-
directional (edge-directional) process. Each directional process involves sequential
removal in one of the 6 face-directions (12 edge-directions) and is concerned only
with voxels where thickening in that face-direction (edge-direction) occurs.
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Fig. 6.2 Type1 and type2
voxels are shown in black and
in gray, respectively. The
same directional template is
satisfied for all dotted voxels.
However, sequential removal
of the dotted voxels would
cause undesirable zig-zags
along the boundary of the
object

As for the removal conditions, a voxel p, for which the current template occurs,
is removed if the following three conditions are satisfied in N.p/:

C1. There exists exactly one 26-connected component of object voxels.
C2. There exists exactly one 26-connected component of type2 voxels.
C3. There exists more than one object voxel.

Note that C1 guarantees topology preservation. In fact, the template is satisfied for
p, which means that p is a type2 voxel and, hence, is characterized by c"p D 1. Thus,
once C1 is also satisfied for p, it results cp D 1, i.e., p is simple. In turn, C2 and
C3 are tailored to remove voxels in two-voxel thick parts of PSS, without affecting
the parts of PSS that are already unit-wide. If C1 and C2 are not used, unwanted
zig-zags along the boundary of unit-wide parts of PSS and shortening of curves of
PSS would be created. C2 and C3 respectively prevent zig-zags and shortening. See
Fig. 6.2, as far as the role of C2 is concerned.

Process P3 does not require the use of templates. Each application of P3
sequentially removes type2 voxels satisfying conditions C1 and C3. In this way,
the size of all peripheral surfaces of PSS diminishes without altering topology
and without shortening possibly existing curves, since only boundary voxels of
peripheral surfaces are removed.

The process P4 is commonly known as pruning (e.g., [47, 48]) and is aimed at
removing peripheral skeleton curves with limited significance. Our pruning involves
two steps, during each of which a peripheral curve is either totally removed or
remains untouched. To this aim, each peripheral curve is traced starting from its
end point until a branch point is met. The total number L of voxels of the curve
and the number N of anchor points along the curve are counted. The first pruning
step removes peripheral curves for which L # !1, where !1 is an a priori fixed
threshold (the default value used in this paper is !1 D 4). The second pruning step
removes peripheral curves for which N=L # !2, where !2 is a threshold to be fixed
depending on problem domain (the default value used in this paper is !2 D 0:25).

During the second phase of skeletonization, final thinning and pruning of CS are
accomplished analogously to what has been done during the first phase. Obviously,
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Fig. 6.3 A few objects, top, and their curve skeletons, bottom

P3 is not taken into account, since CS does not include surfaces. Moreover, some
constraints in P1 and P2 can be relaxed: distinction between type1 and type2 voxels
is no longer necessary; the middle voxels in the directional templates are simply
object voxels; only removal conditions C1 and C3 are considered. P4 is done exactly
as during the first phase and the same values are used for the two pruning thresholds
(!1 D 4 and !2 D 0:25).

In Fig. 6.3, a few 3D objects and their curve skeletons are shown.
Actually, we have applied our skeletonization algorithm to a significantly larger

number of 3D objects and have observed that in the average the curve skeleton
consists of about 0:80% of the input object. Thus, the curve skeleton is very
efficient as concerns data reduction. In turn, if the reverse distance transformation is
applied to the curve skeleton, where skeleton voxels are assigned the distance value
pertaining their homologous voxels in the distance transform of the object, we note
that the average object recovery from the curve skeleton is about 69%. The limited
recovery ability of the curve skeleton is clearly due to the fact that only a fraction
of the centers of maximal balls of the object are included in the curve skeleton. This
notwithstanding, the curve skeleton provides a stylized version of the object useful
for a number of tasks, e.g., for object decomposition.

6.4 Object Decomposition

Though the curve skeleton, where skeleton voxels are assigned the distance value
pertaining their homologous voxels in the distance transform of the object, has
limited recovery ability, it can still be used to decompose the 3D object it represents.
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To this aim, we first partition the curve skeleton into three types of subsets, that we
call simple curves, complex sets, and single points. Then, we recover the object parts
associated to the skeleton parts. The recovered object parts are respectively called
simple regions, bumps and kernels. Kernels can be interpreted as a sort of main
bodies of the object, from which simple regions and bumps protrude. Finally, we
perform a merging process, aimed at reducing the number of object regions to the
perceptually most relevant ones.

6.4.1 Skeleton Partition

To partition the curve skeleton, we apply the reverse distance transformation to
the branch points. As a result, we obtain a number of regions, that we call zones
of influence, which is at most equal to the number of branch points. Actually, the
number of zones of influence is generally smaller than the number of branch points.
In fact, the balls associated to branch points that are neighbors of each other or are
closer to each other than the sum of the corresponding radii overlap and merge into
a single connected component.

The simple curves of the partition are constituted by the connected components
of skeletal voxels that are not included in any zone of influence. The single points
of the partition, if any, are constituted by the end points of the skeleton that result
to be included in zones of influence. When single points exist in the partition, the
skeleton branches that can be traced from each of the corresponding end points
until a branch point is encountered are called linking branches. Finally, the complex
sets of the partition are constituted by the connected components of all the skeletal
voxels included in the zones of influence, except for the end points.

Figure 6.4 shows the partition into simple curves, single points and complex sets
for the skeletons of the test objects.

6.4.2 Simple Regions, Bumps and Kernels

The construction of the simple regions, bumps and kernels into which the object can
be seen as decomposed requires four steps.

During the first step, the reverse distance transformation is applied to each
individual skeleton partition component, by taking into account the following issues:
(i) voxels that can be recovered from more than one individual partition component
are assigned to the kernel they are closer to, so as to originate a decomposition into
disjoint regions; (ii) linking branches do not take part in recovery, i.e., the reverse
distance transformation is not applied to the linking branches. In fact, if a linking
branch contributes, together with the other branches in a complex set, to the recovery
of the corresponding kernel, the bump protruding from that kernel is characterized
by a very small volume and the perceptual relevance of the bump is not enhanced.



130 G. Sanniti di Baja et al.

Fig. 6.4 Skeleton partition
into simple curves, black,
single points, red, and
complex sets, light blue

In turn, if the linking branch contributes to recovery of the bump, rather than to
recovery of the kernel, the bump intrudes in the kernel.

Aim of the second step is to improve the planarity of the surface in between
adjacent recovered regions. The desired effect is obtained by means of a local
concavity filling process that assigns to bumps and simple regions the voxels placed
in local concavities of the boundary of bumps and simple regions and belonging
to adjacent kernels. Concavity filling is iterated as far as local concavities can be
detected along the boundary of bumps and simple regions. Since the concavity
filling method that we use, [49], employs 3! 3! 3 operations but derives curvature
information from a 5 ! 5 ! 5 neighborhood, the separating surfaces obtained at the
end of the process reasonably well approximate planar surfaces.

The third step guarantees that a one-to-one correspondence exists between skele-
ton partition components and object decomposition regions. In fact, the assignment
to kernels of voxels at the same distance from more than one partition component
and the re-assignment of boundary voxels during concavity filling may cause
splitting of a region in sub-parts. When a simple region or a kernel results as split
into sub-parts, we preserve the sub-part that includes at least one skeletal voxel,
while assign to the background the other sub-parts. When a bump results to be split
into sub-parts, we take as significant only the sub-part with the largest size and
assign the other parts to the background. In fact, the criterion used for simple regions
and kernels cannot be used also for bumps, since the end points responsible of
recovery of the bumps are definitely not included in the bumps.

The fourth step completes the recovery of bumps, simple regions and kernels. To
this purpose, the voxels of the input object that were not recovered when the reverse
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Fig. 6.5 Object decomposition before merging

distance transformation was applied to the curve skeleton are assigned to the closest
bumps, simple regions and kernels. Object voxels at the same distance from more
than one object part are assigned to the part with which they have the largest number
of neighbors.

In Fig. 6.5, the decompositions into simple regions, bumps and complex regions
corresponding to the simple curves, single points and complex sets found in the
skeletons of the test objects are shown.

6.4.3 Merging

Merging criteria to reduce the number of regions to the perceptually most relevant
ones are of interest. Since we regard kernels as a sort of main bodies, we candidate
the remaining regions, i.e., bumps and simple regions, to be merged to the kernels
from which they protrude.

We distinguish simple regions into peripheral regions, i.e., those adjacent to one
kernel only, and non-peripheral regions, i.e., those delimited by two kernels. Bumps
are obviously all peripheral regions.

LetRi be the region currently considered for merging with the adjacent kernel(s).
The surface of Ri consists of the object voxels of Ri having at least one face-
neighbor either in the background or in the adjacent kernel(s). The total area of
the surface of Ri is given by the number of surface voxels of Ri . The area of the
visible portion of the surface, Av.Ri /, is equal to the number of voxels of Ri that
are face-adjacent to the background, while the area of the non-visible portion of the
surface, Anv.Ri /, is given by the number of voxels of Ri that are face-adjacent to
the kernel(s).

We regard a region Ri as scarcely visible if the ratio Av.Ri /=Anv.Ri / is smaller
than an a priori fixed threshold " . The value of " should be fixed based on the
problem domain. To fix the default value of " , we consider as scarcely visible a
cylinder whose height, h, is smaller than the diameter, 2r .

The first merging step is concerned only with non-peripheral scarcely visible
simple regions. In this case, according to our model, we merge a region Ri for
which it results Av.Ri /=Anv.Ri / D 2#rh=2#r2 < " . Since it is h < 2r , the default
value for the threshold is " D 2.
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Fig. 6.6 Final decompositions

Let Rj be any such a region. The multiplicity degreem.Ki/ of each kernelKi is
computed as the number of non-peripheral scarcely visible simple regions adjacent
to Ki .

If for both kernels Ki and Kh adjacent to Rj the multiplicity degree is equal to
one, Rj is merged into a unique region with Ki and Kh.

If for Rj one of its delimiting kernels, Ki , is characterized by m.Ki/D 1, while
for the other kernel Kh it is m.Kh/>1, Rj is merged with Ki only. Once all
possible merging cases involving kernels with multiplicity degree equal to one
have been treated, merging with kernels with multiplicity degree larger than one is
considered. Merging with a kernelKh characterized by m.Kh/> 1 is done if all the
non-peripheral scarcely visible regions adjacent to Kh have been actually merged
to their other delimiting kernels. Merging involvesKh and the adjacent region with
whichKh shares the largest portion of its surface.

The second merging step regards peripheral regions, which can be bumps or
simple regions. In this case, according to our model, we merge a region Ri for
which it results Av.Ri /=Anv.Ri / D .2#rhC#r2/=#r2 < " . Since it is h < 2r , the
default value for the threshold is " D 5.

To merge a peripheral regionRi to the adjacent kernelKi we require that, besides
being scarcely visible, Ri is such that the ratio between the volume (measured
as number of voxels) of the region union of Ri and Ki , and the volume of Ki

is smaller than an a priori fixed threshold $ (set to 1:2 in this work). Using the
visibility criterion also when dealing with peripheral regions is done to avoid
merging elongated and narrow regions that satisfy the condition on volume.

The final results for the test patterns are shown in Fig. 6.6.

6.5 Discussion and Conclusion

We have applied our skeletonization and decomposition algorithms to a large
number of 3D objects taken from publicly available shape repositories [37, 38]. We
have generally obtained satisfactory results, some of which have been shown in this
paper.

Any curve skeletonization method should be evaluated in terms of the prop-
erties expected for the curve skeleton. The curve skeleton should have lower
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Fig. 6.7 Different poses of the object “horse”, top, the skeletons before pruning, middle, and after
pruning, bottom. For all poses the same threshold values have been used during pruning

dimensionality, should be placed symmetrically within the object, should be
characterized by the same topology as the object, and should reflect the geometrical
features of the object itself.

For our curve skeleton, topology is certainly preserved, since only simple voxels
are sequentially removed. The skeleton is symmetrically placed within the object,
since the selected anchor points are all symmetrically placed within the 3D object.
Dimensionality reduction is also satisfied, since the curve skeleton is a set union
of curves. Object’s geometry is also reflected by the curve skeleton, since a
correspondence exists between skeleton curves and parts intuitively perceived as
composing the object.

Since we have used the h3; 4; 5i weighted distance, which is a good approxima-
tion of the Euclidean distance, our skeletonization algorithm is almost stable under
object rotation. As for the sensitivity to noise, we point out that skeletonization
should be applied to reasonably clean objects. In fact, skeletonization preserves
topology, and the geometrical structure of the skeleton is conditioned by the geom-
etry of the object’s boundary. When noise consists essentially in noisy protrusions
of the object, pruning improves the robustness of skeletonization.

Pruning is particularly important when the curve skeleton is used for image
analysis tasks, e.g., for object decomposition. In fact, whichever skeletonization
algorithm is used, the skeleton of an object in different poses or scales is not
guaranteed to have in all cases exactly the same structure before pruning. Thus,
a different partition of the skeleton and, hence, a different decomposition of the
object could be obtained. As an example, refer to Fig. 6.7 where different poses of
the object “horse” are shown together with the skeletons before and after pruning.
Note that these skeletons have been computed by using the same values for the two
pruning thresholds !1 and !2 for all poses. However, to obtain skeletons having the
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Fig. 6.8 Decomposition for different poses of “horse” before merging, top, and after merging,
bottom

same structure after pruning a value for !1 larger than that suggested in this work as
default value has been used. Namely, for the various poses of “horse” we have used
the thresholds !1 D 6 and !2 D 0:25.

We point out that our partition of the skeleton has a key role in obtaining a
decomposition of the object where the surfaces separating adjacent object parts cut
the object in correspondence with negative minima of curvature along the boundary
of the object. In particular, complex sets are crucial to obtain a perceptually
significant decomposition.

For the different poses of “horse”, the decompositions obtained before and after
merging are shown in Fig. 6.8. The default values have been used for the thresholds
" and $ .

Both curve skeletonization and object decomposition algorithms are easy to
implement, have limited computational cost and produce results in agreement with
human intuition.
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Chapter 7
Orientation and Anisotropy of Multi-component
Shapes

Joviša Žunić and Paul L. Rosin

Abstract There are many situations in which several single objects are better
considered as components of a multi-component shape (e.g. a shoal of fish), but
there are also situations in which a single object is better segmented into natural
components and considered as a multi-component shape (e.g. decomposition of
cellular materials onto the corresponding cells). Interestingly, not much research has
been done on multi-component shapes. Very recently, the orientation and anisotropy
problems were considered and some solutions have been offered. Both problems
have straightforward applications in different areas of research which are based on
a use of image based technologies, from medicine to astrophysics.

The object orientation problem is a recurrent problem in image processing and
computer vision. It is usually an initial step or a part of data pre-processing, implying
that an unsuitable solution could lead to a large cumulative error at the end of the
vision system’s pipeline. An enormous amount of work has been done to develop
different methods for a spectrum of applications. We review the new idea for the
orientation of multi-component shapes, and also its relation to some of the methods
for determining the orientation of single-component shapes. We also show how the
anisotropy measure of multi-component shapes, as a quantity which indicates how
consistently the shape components are oriented, can be obtained as a by-product of
the approach used.
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138 J. Žunić and P.L. Rosin

7.1 Introduction

Shape is one of the object characteristics which enables many numerical character-
izations suitable for computer supported manipulations. Because of that, different
shape concepts are intensively used in object recognition, object identification or
object classification tasks. Many approaches to analyse and characterise shapes have
been developed. Some of them are very generic, like moment invariants or Fourier
descriptors, while others relate to specific object characteristics, e.g. descriptors
like convexity, compactness, etc. Another distinction among these approaches is
based on which points of shapes are used for analysis. Some approaches use all
shape points (area-based ones), other use boundary information only (boundary-
based ones), but there are methods which use only specific shape points (convex
hull vertices or boundary corners) or hybrid methods (shape compactness is often
computed from the relation between shape perimeter and shape area).

In the most research and applications to date, shapes are treated as single objects,
even if very often several objects form a group (vehicles on the road, group of
people, etc.), and thus, it could be beneficial to consider them as multi-component
shapes.

It is not difficult to imagine situations in which it is better to decompose a single
shape into its naturally defined components and then, by treating it as a multi-
component shape, take some advantage over those methods that treat it as a single
shape. There are many more situations where a multi-component shape approach
may be appropriate – e.g., when analysing video sequences, multiple instances of
objects over time can be grouped together and analysed as a multi-component shape.
Several situations where it can be useful to treat objects as multi-component ones
are displayed in Fig. 7.1.

Here we consider the multi-component shape orientation problem. We overview
recently introduced methods (area-based and boundary-based) for the computa-
tion of orientation of multi-component shapes and its relation to the most standard
shape orientation method (based on the computation of the axis of the least second
moment of inertia). As a by-product of the new method for the computation of
orientation of compound shapes, an anisotropy measure of such shapes can be
derived. This is a first shape measure defined for multi-component shapes and it
indicates the consistency of a set of shape component orientations.

All discussions are illustrated with suitably selected experiments. Strict proofs
are omitted and for them the readers are referred to the source references.

7.2 Shape Orientation

Computation of shape orientation is a common problem which appears in a large
number of applications in both 2D and 3D, and also in higher-dimensional spaces.
Due to the variety of shapes as well as to the diversity of applications, there is
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Fig. 7.1 First row: a group of static objects (flowers), a group of moving objects (birds), a group
of different objects (blood cell) make multi-component objects. Second row: the tissue and texture
displayed are sometimes better to be decomposed and analysed as multi-component objects. Third
row: the appearance of a moving object, in a frame sequence, can be considered and analysed as
a multi-component object. Fourth row: different arrangements of a simple object make two multi-
component objects with perceptually different orientations [14]

no single method for the computation of shape orientation which outperforms the
others in all situations. Therefore, many methods have been developed, and different
techniques have been used, including those based on complex moments [20],
Zernike moments [7], Fourier analysis [1], algebraic arguments [10], etc. The
suitability of those methods strongly depends on the particular situation to which
they are applied, as they each have their relative strengths and weaknesses. Due
to new applications and increasing demands for better computational efficiency, in
addition to the previously established methods, there are also many recent examples
[3, 5, 11, 12, 16, 24, 27].

Several methods are defined by using a common approach: Consider a suitably
chosen function F.S; ˛/ which depends on a given shape S and rotation angle ˛,
and define the orientation of S by the angle which optimizes F.S; ˛/; i.e. by the
angle ˛ for which F.S; ˛/ reaches its minimum or maximum. The most standard
method for the computation of the shape orientation is such a method. More
precisely, this method defines the orientation Ost .S/ of a given shape S by the, so
called, axis of the least second moment of inertia, i.e. by the line which minimises
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Fig. 7.2 The standard
method defines the
orientation of a given shape
by the line which minimizes
the integral of squared
distances of the shape points
to the line

the integral of the squared distances of the shape points to the line (see Fig. 7.2).
Simple algebraic manipulation shows that such a line passes through the shape
centroid. Note that the centroid of a given shape S is defined as

.xS ; yS / D
!RR

S xdxdyRR
S dxdy

RR
S ydxdyRR
S dxdy

"
: (7.1)

So, in order to compute the orientation of a given shape S it is sufficient to find the
minimum of the function

Fst .S; ˛/ D
ZZ

S

r.x; y; ˛/2dxdy (7.2)

where r.x; y; ˛/2 is the perpendicular distance of the point .x; y/ to the line which
passes thought the centroid .xS ; yS / of S and has a slope ˛: If we assume that
the centroid of S coincides with the origin, i.e., .xS ; yS / D .0; 0/; r.x; y; ˛/2

becomes .x ! sin ˛ " y ! cos˛/2; and the optimizing function Fst .S; ˛/ in (7.2)
can be expressed as

Fst .S; ˛/ D
ZZ

S

r.x; y; ˛/2dxdy

D !2;0.S/ ! sin2 ˛ C !0;2.S/ ! cos2 ˛ " !1;1.S/ ! sin.2˛/; (7.3)

where !p;q.S/ are the well-known centralised geometric moments [21] defined, for
all p; q 2 f0; 1; 2; : : :g; as

!p;q.S/ D
ZZ

S

.x " xS/p.y " yS/qdxdy: (7.4)

Now, we come to the following definition of the orientation of a given shape.
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Definition 7.1. The orientation of a given shape S is determined by the angle ˛
where the function Fst .S; ˛/ reaches its minimum.

This standard method defines the shape orientation in a natural way – by the
line which minimizes the integral of the squared distances of shape points to this
line. Such a definition matches our perception of what the shape orientation should
be. Also, there is a simple formula for the computation of such orientation. It is easy
to check [21] that the angle which minimizes Fst .S; ˛/ satisfies the equation

tan.2 !O.S// D 2 ! !1;1.S/
!2;0.S/" !0;2.S/

: (7.5)

These are desirable properties, but there are some drawbacks too. The main
problem is that there are many situations where the method fails [23,28] or does not
perform satisfactorily. The situations were the method fails are easy to characterise.
Indeed, considering the first derivative of Fst .S; ˛/ (see (7.3))

dFst .S; ˛/

d˛
D .!2;0.S/" !0;2.S// ! sin.2˛/ " 2!1;1.S/ ! cos.2˛/; (7.6)

and looking for the conditions when dFst .S; ˛/=d˛ vanishes, it is easy to see that
for all shapes S satisfying

!2;0.S/" !0;2.S/ D 0 and !1;1.S/ D 0 (7.7)

the function Fst .S; ˛/ is constant and consequently does not tell which angle
should be selected as the shape’s orientation. N -fold rotationally symmetric shapes
are shapes which satisfy (7.7) but there are many other (irregular) shapes which
satisfy (7.7) and consequently could not be oriented by the standard method given
by Definition 7.1.

In order to overcome such problems, [23] suggested a modification of the
optimizing function Fst .S; ˛/ by increasing the exponent in (7.2). The method
from [23] defines the orientation of a given shape S whose centroid coincides with
the origin, by the angle which minimizes

FN .S; ˛/ D
ZZ

S

r.x; y; ˛/2N dxdy (7.8)

for a certain exponent 2N . In such a way, the class of shapes whose orientation
can be computed is expanded. On the other hand, there is not a closed formula
(analogous to (7.5)) for the computation of the shape orientation by using FN .S; ˛/;
for an arbitraryN .

Notice that difficulties in the computation of the shape orientation can be caused
by the nature of certain shapes. While for many shapes their orientations are
intuitively clear and can be computed relatively easily, the orientation of some other
shapes may be ambiguous or ill defined. Problems related to the estimation of the
degree to which a shape has a distinct orientation are considered in [29].
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7.3 Orientation of Multi-component Shapes

As discussed before, there are many methods for the computation of the orientation
of single-component shapes. On the other hand, as mentioned earlier, in many
situations, several single objects usually appear as a group (e.g. the shoal of fish
in Fig. 7.4, flock of birds in Fig. 7.1, vehicles on the road, etc.). Also, in many
situations, it is suitable to consider a single object as a multi-component one,
consisting of suitably defined components (as cells in embryonic tissue displayed
in Fig. 7.1, or material micro structure elements, etc.). In addition, the appearances
of the same object at different times can be also considered as components of a
multi-component shape. Some examples where treating objects as multi-component
shapes becomes very natural are in Fig. 7.1 and also in the forthcoming experiments.

In this section we consider the method for the computation of the orientation
of multi-component shapes introduced by Žunić and Rosin [26]. Before that, note
that most of the existing methods for the computation of the orientation of single
component shapes do not have a (at least straightforward) extension which can be
used to compute the orientation of compound shapes. The main reason for this is that
most of the existing methods have a 180ı ambiguity about the computed orientation.
That is because they define the shape orientation by a line, not by a vector. Thus,
the orientations of ' degrees and the orientation of ' C 180ı are considered to be
the same. A consequence of such an ambiguity is that natural ideas how to compute
the orientation of a multi-component shape from the orientations assigned to its
components, do not work. For example, if S1, S2; : : : ; Sn are components of a
multi-component shape S; then most of the existing methods would compute their
orientations as '1Ca1 !180ı; '2Ca2 !180ı; : : : ; 'nCan !180ı; where the numbers
a1; a2; : : : ; an are arbitrarily chosen from f0; 1g: Thus if, in the simplest variant, the
orientation of multi-component shape S D S1 [ S2 [ : : : [ Sn is computed as the
average value of the orientations assigned to its components, then the orientation of
S would be computed as

.'1 C a1 ! 180ı/C : : :C .'n C an ! 180ı/
n

D '1 C : : :C 'n
n

C .a1 C : : :C an/ ! 180ı
n

and obviously, for different choices of a1; a2; : : : ; an; the computed orientations are
inconsistent (i.e. they could differ for an arbitrary multiple of the fraction 180ı=n).
This is obviously unacceptable.

Now we consider the method for the computation of multi-component shapes
described in [26]. The authors define the orientation of a multi-component shape by
considering the integrals of the squared length of projections of all edges whose end
points belong to a certain component. Before a formal definition, let us introduce
the necessary denotations (see Fig. 7.3 for an illustration):

– Let "!a D .cos˛; sin ˛/ be the unit vector in the direction ˛I
– Let jpr!!a ŒAB"j denote the length of the projection of the straight line segment
ŒAB" onto a line having the slope ˛.
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Fig. 7.3 The orientation of
multi-component shapes is
defined by the direction �
which minimizes the integral
of squared projections of line
segments whose end points
belong to a certain
component

Definition 7.2. Let S be a multi-component shape which consists of m disjoint
shapes S1; S2; : : : ; Sm: Then the orientation of S is defined by the angle that
maximises the functionGcomp.S; � / defined by

Gcomp.S; � / D
mX

iD1

Z Z

AD.x;y/2Si
BD.u;v/2Si

Z Z
jpr!!a å AB"j2dx dy du dv: (7.9)

The previous definition is naturally motivated, but also enables a closed formula
for the computation of the orientation of multi-component shapes. This is the
statement of the following theorem.

Theorem 7.1. The angle � where the function Gcomp.S; � / reaches its maximum
satisfies the following equation

sin.2� /
cos.2� /

D
2 !

mP
iD1

!1;1.Si / ! !0;0.Si /
mP
iD1
.!2;0.Si / " !0;2.Si // ! !0;0.Si /

: (7.10)

To prove the theorem it is sufficient to enter the following two trivial equalities

jpr!!a å AB"j2 D ..x"u/!cos � C.y"v/!sin � /2; for A D .x; y/; B D .u; v/ (7.11)

and
Z Z

S"S

ZZ
xpyqurvt dx dy du dv D !p;q.S/ ! !r;t .S/ (7.12)
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into the optimizing function Gcomp.S; ˛/: After that, simple calculus applied to the

equation
dGcomp.S; ˛/

d˛
D 0 establishes the proof. For more details we refer to [26].

The orientation of multi-component shapes computed by optimizing the function
Gcomp.S; ˛/ is theoretically well founded and because of that it can be well
understood. Some of properties are a direct consequence of the definition and can
be proved by using basic calculus. We list some of them.

Property 7.1. If the method given by Definition 7.2 is applied to a single compo-
nent shape, then the computed orientation is the same as the orientation computed
by the standard definition, i.e. by the optimizing the function Fst .S; ˛/ (see (7.2)
and (7.5)). Note that the optimizing function G.S; ˛/ D Gcomp.S; ˛/, specified for
single component shapes, and the optimizing function Fst .S; ˛/ are different, but
they are connected with the following, easily provable, equality

G.S; ˛/C 2 ! !0;0.S/ ! Fst .S; ˛/ D 2 ! !0;0.S/ ! .!2;0.S/C !0;2.S//: (7.13)

Since the right-hand side of (7.13) does not depend on ˛ we deduce that the
maximum of G.S; ˛/ and the minimum of Fst .S; ˛/ are reached at the same point.
In other words, the direction ˛ which defines the orientation of S by applying the
standard method is the same as the direction which defines the orientation of S if
the Definition 7.2 is applied to single component shapes.

Property 7.2. As it is expected, there are situations where the method given by
Definition 7.2 fails. Due to the definition of the optimizing function Gcomp.S; ˛/,
a simple characterization of such situations is possible. Indeed, by using (7.11)
we deduce:

Gcomp.S; ˛/ D cos2 ˛ !
mX

iD1
2!0;0.Si /!2;0.Si /C sin2 ˛ !

mX

iD1
2!0;0.Si /!0;2.Si /

C sin.2˛/ !
mX

iD1
2!0;0.Si /!1;1.Si /: (7.14)

The last equality says immediately that the first derivative
dGcomp.S; ˛/

d˛
is iden-

tically equal to zero (i.e. Gcomp.S; ˛/ is constant) if and only if the following two
conditions are satisfied

mX

iD1
!0;0.Si / ! !1;1.Si / D 0 and

mX

iD1
!0;0.Si / ! .!2;0.Si /" !0;2.Si // D 0:

(7.15)

So, under the conditions in (7.15) the optimizing function is constant and no
direction can be selected as the shape orientation.
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The Eq. (7.14) also says that the components Si of a multi-component shape
S D S1 [ : : : [ Sm which satisfy

!1;1.Si / D 0 and !2;0.Si / " !0;2.Si / D 0;

(i.e. the shapes are not orientable by the standard method) do not contribute to
the Gcomp.S; ˛/ and because of that, such components Si , can be omitted when
computing the orientation of S .

Notice that in case of Gcomp.S; ˛/ D constant we can increase the exponent in
(7.9) and define the orientation of S by the direction which maximizes the following
function

Gcomp;N .S; ˛/ D
mX

iD1

Z Z

AD.x;y/2Si
BD.u;v/2Si

Z Z
jpr!!a ŒAB"j2N dx dy du dv:

In this way the class of multi-component shapes whose orientation is well defined
would be extended. A drawback is that there is no closed formula (similar to
(7.10)) which enables easy computation of such a defined multi-component shape
orientation.

The next property seems to be a reasonable requirement for all methods for the
computation of the orientation of multi-component shapes.

Property 7.3. If all components Si of S D S1 [ : : : [ Sm have an identical orien-
tation ˛, then the orientation of S is also ˛:

To prove the above statement it is sufficient to notice that if all components Si
have the same orientation (see Property 7.1), then there would exist an angle ˛0 such
that all summands Z Z

AD.x;y/2Si
BD.u;v/2Si

Z Z
jpr!!a ŒAB"j2dx dy du dv: (7.16)

in (7.9) reach their maximum for the angle ˛D ˛0. An easy consequence is that
˛ D ˛0 optimizes Gcomp.S; ˛/ D

Pm
iD1

RR
AD.x;y/2Si
BD.u;v/2Si

RR
jpr!!a ŒAB"j2dx dy du dv; as

well. This means that the orientation of S coincides with the orientation of its
components Si :

Property 7.4. The method established by Definition 7.2 is very flexible, in that
the influence of the shape component’s size (to the computed orientation) can vary.
In the initial form in Definition 7.2 the moments !1;1.Si /; !2;0.Si / and !0;2.Si /
are multiplied with the size/area of Si ; i.e. by !0;0.Si /. But the method allows
!0;0.Si / to be replaced with !0;0.Si /T for some suitable choice of T . In this way the
influence of the shape components to the computed orientation can be controlled.
The choice T D "2 is of a particular importance. In this case the size/area of the
shape components does not have any influence to the computed orientation. This
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Fig. 7.4 Real images are in the first row. After thresholding, the image components are treated as
components of a multi-component shape and then oriented by the method given by Definition 7.2 –
the orientations computed are presented by short dark arrows. Long grey arrows represent the
orientations computed by the standard method where all components are taken together to build a
single shape

is very suitable since objects, which are of the same size in reality, often appear
in images at varying scales since their size depends on their relative position with
respect to the camera used to capture the image.

7.3.1 Experiments

This subsection includes several experiments which illustrate how the method for
the computation of the orientation of multi-component shapes works in practice.
Since this is the first method for the computation of the orientation of such shapes,
there are no suitable methods for comparison. In the experiments presented, together
with the orientations computed by the new method, the orientations computed by the
standard method, which treats all the multi-component objects as a single object,
are also displayed. However, orientations computed by the standard method are
displayed just for illustrative purposes, not for qualitative comparison against the
new method.

In the first example in Fig. 7.4 three images are displayed. In all three cases
the objects that appear (humans, fish and blood cell components) are treated as
components of a multi-component shape (a group of people, a shoal, a blood
sample) and are then oriented. In the case of the group of people and the fish
shoal the computed orientations (by the new method) are in accordance with our
perception. As expected the computation by the standard method (i.e. treating the
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Fig. 7.5 The orientation computed by the method from Definition 7.2 for halves and the whole
shape illustrate the “Frame independence” property of the new method for the orientation of multi-
component shapes

multi-component shapes as single ones) does not lead to orientations which match
our perception. The same could be said for the third example (blood cell) even
though the our perception of what the orientation should be is not as strong as in
the first two examples.

The next figure illustrates a very nice and useful property of the new method.
It illustrates that for multi-component shapes whose components are relatively
consistently oriented, the computed orientation of a subset of such shapes coincides
with the orientation of the whole shape. Somehow it could be said that the computed
orientations do not depend much on the frame used to capture a portion of the multi-
component shape considered. The humans and fish shoal images (in Fig. 7.5) are
split onto two halves. The halves are treated as multi-component shapes and oriented
by the new method. The computed orientations are shown by the short dark arrows.
As it can be seen such computed orientations are consistent – i.e. the orientations
of the halves coincide with the orientation of the whole multi-component shape.
As expected, the orientations computed by the standard method (long grey arrows)
do not coincide.

The third example in this subsection illustrates a possible application of the
method to the orientation of textures. Wood textures, displayed in the first row
in Fig. 7.6, are not multi-component objects with clearly defined components.
Nevertheless, after suitable thresholding the components become apparent, and the
orientation of such obtained multi-component shapes can be computed. The results
are in the third row and it could be said (in the absence of ground truth) that the
orientations obtained are in accordance with our perception.

The last example in this subsection is somewhat different from the previous ones.
In this case, a gait sequence is taken from NLPR Gait Database [25] and each
appearance of a human silhouette in the sequence of the frames is considered as
a component of the multi-component shape analysed. So, in this case the shape
components are distributed temporally across the sequence (not spatially over
the image, as in the previous examples). After segmentation many errors, which
typically appear, have been removed using standard morphological techniques.
However, several large errors remain and the task was to detect them. Due to
the nature of the shapes it is expected that all components (i.e. silhouettes) are
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Fig. 7.6 Texture images, in the first row, are thresholded and their orientation is then computed
as the orientation of multi-component shapes which correspond to the black-and-white images
in the second row. The images in the third row are re-oriented in accordance with the computed
orientations

Fig. 7.7 The extracted silhouettes from a gait sequence are displayed (the first row) and
underneath is an intensity coding of each silhouette to show its degree of being an outlier (dark
means high likelihood). A magnified view of the most outlying silhouette and its neighbours is in
the third row

fairly consistently oriented if they are extracted properly. Thus, we make the
hypothesis that the silhouettes with orientations inconsistent with the majority of
silhouettes suffer from segmentation errors. The difference in multi-component
shape orientation caused by removing the least consistent component has been used
as a criterion to find possible outliers. In the example given, due to the errors in the
processing chain that produced the sequence of binary images, the person’s leading
leg has been displaced and this silhouette/frame has been detected as an outlier, as
shown in Fig. 7.7.
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7.4 Boundary-Based Orientation

So far we have considered area-based methods only, i.e. the methods which use all
the shape points for the computation of (in this particular case) shape orientation.
But boundary-based methods for the computation of shape orientation are also
considered in the literature. Apart from the fact that some area-based methods for
the computation of the shape orientation have a straightforward extension to their
boundary-based analogues, there are some boundary-based methods which cannot
be derived in such a way – some examples are in [12, 27].

The methods considered in the previous section have an easy extension to
boundary-based methods. For example, an analogue to the standard method for
the computation of shape orientation is the method which orients a given shape
by the line which minimizes the integral of the squared distance of the boundary
points to this line. Since only the boundary points are used for the computation,
this method is considered as a boundary-based one. The line which minimizes the
optimizing integral can be obtained by following the same formalism as in the case
of the standard method, but the appearing area integrals should be replaced by line
integrals.

So, first we have to place S such that its boundary-based centroid coincides with
the origin. The boundary-based centroid .x@S ; y@S / is defined as the average of the
boundary points. This means that

.x@S ; y@S / D
!R

@S x.s/dsR
@S ds

R
@S y.s/dsR
@S ds

"
: (7.17)

where the boundary @S of S is given in an arc-length parametrization: x D x.s/;
y D y.s/; s 2 Œ0; perimeter of S ": Note that such a choice of the boundary
representation is suitable because it preserves rotational invariance – i.e. if the shape
is rotated for a certain angle, then the computed orientation is changed by the same
angle. In the rest of this chapter an arc-length parametrization of the appearing
boundaries/curves will be always assumed, even not mentioned.

Next, in order to compute the boundary-based orientation of a given shape S; we
have to find the minimum of the function

Lbo.@S; ˛/ D
Z

@S

r.x; y; ˛/2ds (7.18)

where r.x; y; ˛/ is, as in (7.2), the orthogonal distance of the point .x; y/ to the line
passing through the origin and having the slope ˛:

The optimizing function Lbo.@S; ˛/ can be expressed as

Lbo.@S; ˛/ D #2;0.@S/ ! sin2 ˛ C #0;2.@S/ ! cos2 ˛ " #1;1.@S/ ! sin.2˛/; (7.19)

where #p;q.@S/ are the normalised line moments [2] defined as

#p;q.@S/ D
Z

@S

.x " x@S /p.y " y@S /qds; (7.20)

for all p; q 2 f0; 1; 2; : : :g.
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Fig. 7.8 On the left: The standard method defines the orientation of the shape by the line which
minimizes the integral of squared distances of the shape boundary points to the line. On the
right: the boundary-based method for computation of the orientation of multi-component shapes
considers the projections of edges whose end points belong to the boundary of a certain component

Finally, the maximum of the optimizing function Lbo.@S; � / is reached for � D
Obo.@S/ which satisfies the following equation:

tan.2 !Obo.@S// D
2 ! #1;1.@S/

#2;0.@S/ " #0;2.@S/
: (7.21)

The equality (7.21) is an obvious analogue for the equality (7.5) related to the
standard area-based method. This is as expected because the same formalism is
used in both area-based and boundary-based cases.

The idea used in Sect. 7.3 to define the orientation of multi-component shapes
also has a boundary-based analogue. The problem is studied in detail in [15].
Following the idea from [26], the authors consider the projections of the edges
whose end points belong to the boundary of a certain component of a given multi-
component shape and define the shape orientation by the line which maximises the
integral of the squared values of the projections of such edges to the line. The formal
definition follows.

Definition 7.3. Let S D S1 [ : : : [ Sm be a multi-component shape and let the
boundary of S be the union of the boundaries @Si of the components of S : @S D
@S1[: : :[@Sm: The orientation of S (Fig. 7.8) is defined by the angle that maximises
the function Lcomp.@S; � / defined as follows

Lcomp.@S; � / D
mX

iD1

Z

s2 å 0;per.Si /"
l2 å 0;per.Si /"

Z
jpr!!a å Ai .s/Bi .l/"j2ds d l: (7.22)

Definition 7.3 enables easy computation of the angle which defines the orienta-
tion of @S; as given by the following theorem.



7 Orientation and Anisotropy of Multi-component Shapes 151

Theorem 7.2. Let S be a multi-component shape whose boundary is @S D @S1
[ : : : [ @Sm. The angle ˛ where the function Lcomp.@S; ˛/ reaches its maximum
satisfies the following equation

tan.2˛/ D
2 !

mP
iD1

#1;1.@Si/ ! #0;0.@Si /
mP
iD1
.#2;0.@Si /" #0;2.@Si // ! !0;0.@Si /

: (7.23)

Being derived in an analogous way as the area-based method for the computation
of the multi-component shapes, the method given by Definition 7.3 also satisfies
the Properties 7.1–7.4 listed in Sect. 7.3, before the experimental section. It is worth
mentioning that the method also enables the control of the influence of the perimeter
of the shape components to the computed orientation. If, for some applications, such
an influence should be ignored then the moments #1;1.@Si /; #2;0.@Si/; and #0;2.@Si /
which appear in (7.23) should be multiplied by .#0;0.@Si//!2.

To close this section, let us mention that (in general) boundary-based approaches
to define the orientation of shapes allow some extra generalizations. One such
generalisation was considered in [12]. Therein the shape orientation is computed
based on the projections of the tangent vectors at the shape boundary points,
weighted by the suitably chosen function of the boundary curvature at the corre-
sponding points. The advantage of such an approach is not only that the boundary
curvature, as an important shape feature, is involved in the computation of the
shape orientation. This also provides an easy approach to overcome situations were
the orientations are not computable. It is sufficient to modify the curvature based
weighting function, and shapes which were not “orientable” by an initial choice of
the weighting function can become orientable with another choice. The computation
of the shape orientation remains possible by a closed form formula whether the
weighting function is changed or not. For more details see [12].

7.4.1 Experiments

In this section we have two examples to illustrate how the boundary-based method
(established by Definition 7.3) works.

First we consider the embryonic tissue displayed in Fig. 7.9. Cell boundaries
are extracted and then the boundary-based method for the computation of the
orientation of multi-component shapes is applied. The orientations are computed for
the whole image and also separately for the upper and lower parts. The computed
orientations are consistent (presented by short dark arrows) which actually implies
that the tissue displayed has an inherent consistent orientation. The orientations
computed by the boundary-based analogue (by optimizing Lbo.@S; ˛/ from (7.18)),
are different (long grey arrows), as it was expected.
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Fig. 7.9 Boundaries of cells of an embryonic tissue (on the left) are extracted, and then split onto
an “upper” and “lower” part (on the right). Orientations computed by optimizing Lcomp.@S; � / all
coincide (short dark arrows). The orientations by the analogue of the standard method are shown
by long grey arrows

Fig. 7.10 Figure: Signatures of subject s048 from Munich and Perona [13]. Signatures in the top
row are re-oriented according to the standard method while the bottom row displays the same
signatures re-oriented according to the multi-component method

In the second example the boundary-based method for multi-component shapes
(Definition 7.3) has been used to compute the orientations of signatures. Better
results were obtained than when the orientations were computed by the standard
boundary-based method. Figure 7.10 displays signatures of subject s048 from
Munich and Perona [13]. In the first row the signatures are oriented by applying the
standard boundary-based method and the problems are obvious. Signatures are not
oriented consistently, which is a problem because the similarity measure used in [13]
was not rotationally invariant. In the second row are the same signatures but oriented
by the boundary-based multi-component method. Prior to the computation of the
orientation, the signatures were segmented at the vertices with small subtended
angles. The obtained orientations are very consistent, as required.

7.5 Anisotropy of Multi-component Shapes

In all the methods presented here, shape orientation is computed by optimizing
a suitably chosen function which depends on the orientation angle and the shape
considered. Depending on the method selected, either the angle which maximizes
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the optimizing function or the angle which defines the minimum of the optimizing
function is selected as the shape orientation. To have a reliable method for orienting
the shape it is important to have distinct minima and maxima of the optimizing
function. This is because in image processing and computer vision tasks we deal
with discrete data and very often in the presence of noise. Thus, if the optima
of the optimizing function are not distinct significant values then the computed
orientations could arise due to noise or digitization errors, rather than from inherent
properties of the shapes. Note that for a fixed shape the difference of maxima and
minima of the optimizing function could dependent strongly on the method applied.
That is why most of the methods only suit certain applications well. The question
of whether a shape possess an inherent orientation or not is considered in [29]. The
authors have introduced a shape orientability measure as a quantity which should
indicate to which degree a shape has a distinct orientation.

The ratio Est .S/ of the maxima and minima of the optimizing functionFst .S; ˛/,
in the case of the standard method, is well studied and widely used in shape based
image analysis. The quantity

Est .S/ D
!2;0.S/C !0;2.S/C

p
4 ! .!1;1.S//2 C .!2;0.S/" !0;2.S//2

!2;0.S/C !0;2.S/"
p
4 ! .!1;1.S//2 C .!2;0.S/" !0;2.S//2

: (7.24)

is well-known as the shape elongation measure. Est .S/ ranges over Œ1;1/ and takes
the value 1 if S is a circle. A problem is that there are many other shapes whose
elongation equals 1. In addition, Est .S/ is invariant with respect to translation,
rotation and scaling transformations and is easily and accurately computable from
the object images [8, 9].

The elongation measure Est .S/ has its boundary-based analogue – the area
moments in (7.24) have to be replaced with the corresponding line integrals along
the shape boundaries. Another elongation measure is suggested by Stojmenović and
Žunić [22].

Another related property is shape anisotropy. It has a natural meaning for single
component shapes. For example, for a shape centred at the origin in both 2D and
3D; it could be inversely related to the degree to which the shape points are equally
distributed in all directions [18, 19]. It has been used as a useful feature in shape
(object) classification tasks but also as a property which highly correlates with some
mechanical characteristics of certain real objects and materials [4, 6]. It is also of
interest when analyzing tracks of different species of animals [17].

The anisotropy measure of multi-component shapes has not been considered
before, but it seems that it should be given different meaning than in the case of
single component shapes. Our understanding is that an anisotropy measure for the
multi-component shapes should indicate how consistently the shape’s components
are oriented. It has turned out that a quantity defined as the ratio between the
maxima and minima of the functionLcomp.@S; ˛/ from Definition 7.3 provides such
a measure. So, we give the following definition.
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Definition 7.4. Let S1; : : : ; Sm be components of a compound shape S . Then the
anisotropy A .S/ of S is defined as

A .S/ D max˛2Œ0;2$/ Lcomp.@S; ˛/

min˛2Œ0;2$/ Lcomp.@S; ˛/
D max˛2Œ0;2$/ Lcomp.@S1 [ : : : [ Sm; ˛/

min˛2Œ0;2$/ Lcomp.@S1 [ : : : [ Sm; ˛/
:

(7.25)

The anisotropy measure A .S/ for multi-component shapes ranges over Œ1;1/
and is invariant with respect to translations, rotations and scaling transformations.
It also enables an explicit formula for its computation. By basic calculus it can be
shown that the maxima and minima of Lcomp.@S; ˛/ are:

max
˛2Œ0;2$/

Lcomp.@S; ˛/ D C C
p
A2 C B2; min

˛2Œ0;2$/
Lcomp.@S; ˛/ D C "

p
A2 C B2

where the quantities A; B; and C are

A D
mP
iD1
.#2;0.@Si /" !0;2.@Si// ! #0;0.@Si /;

B D
mP
iD1

2 ! #1;1.@Si / ! #0;0.@Si /;

C D
mP
iD1
.#2;0.@Si /C #0;2.@Si // ! #0;0.@Si/:

We illustrate how the anisotropy measure A .S/ acts by two examples. Notice
that the anisotropy measure, as defined here, also depends on the elongation of the
shape components, not only on their orientations. This also seems acceptable, e.g.
a stereotype for a multi-component shape with a high anisotropy A .S/ is a shape
whose components have high elongations and the same orientation.

The first example is in Fig. 7.11. The shapes in both rows are treated as a multiple
component object (e.g. a herd of cattle and a group of cars). The anisotropy was first
computed for just the cattle, giving a value of 3:49: The anisotropy of the cattle’s
shadows alone increases to 7:57 since the shadows are more consistently orientated,
and are also slightly more elongated. Merging the cattle and their shadows produces
even more elongated regions, which lead to an increase of the herd’s anisotropy to
12.08. The anisotropy of the cars (in the second row) is 1:38, which is very small.
This is to be expected since the orientations of the individual cars vary strongly.

The second example which indicates how the anisotropy measure A .S/ acts is
in Fig. 7.12, in which anisotropy is used to select appropriate elongated regions to
enable skew correction of the document. The first image (on the left) in the first row
is the original image. Its components are letters whose orientations vary strongly, but
also many of the letters have a low elongation. This results in a very low anisotropy
of this image, as it can be seen from the graph given in the second row.

After blurring is applied to the image the characters start to merge into words,
which are both more consistently oriented and more elongated. This leads to an
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Fig. 7.11 Object boundaries are extracted from the original images and considered as components
of the boundary of a multi-component shape. The highest anisotropy of 12:08 is measured if the
cattle and their shadows are merged and considered as individual components of multi-component
shapes. A low anisotropy measure of 1:38 is computed for the compound shape in the second row
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Fig. 7.12 The image on the
left is blurred and
thresholded, and the resulting
component anisotropy is
plotted. Three of the
thresholded images are shown
demonstrating that maximum
anisotropy is achieved when
many of the words are
merged into lines

increase of the anisotropy (see the second image in the first row). If enough blurring
is applied to merge characters/words into continuous lines the anisotropy increases
dramatically (see the third image in the first row).
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More blurring is counter productive to the task of skew correction, as sections
of adjacent lines merge, and their anisotropy quickly drops (the last image in the
first row).

7.6 Conclusion

Multi-component shapes have not been considered much in literature. This is
somewhat surprising since there are many situations in which objects act as a part
of a very compact group, or where single objects need to be decomposed onto
components for analysis. There are also some less obvious situations were the multi-
component approach can be useful.

We have focused on two problems related to multi-component shapes: computing
orientation and anisotropy. Both problems have only recently been considered
[15, 26] and some solution were offered. These problems do not have analogues
in the existing single-component shape based methods. Thus, new ideas have to be
developed.

The obtained results are promising, and have been justified with a number of
experiments. The extension to the other shape based techniques will be investigated
in the future. Due to the variety of ways that a multi-component shape can be
defined, there are plenty of different demands which have to be satisfied by the
methods developed. Moreover, there are some specific demands which do not exist
when dealing with single-component shapes. To mention just two of them, which
have been discussed in this chapter: the frame independence property and the
tunable influence of the component size to the method performance.
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28. Žunić, J., Kopanja, L., Fieldsend, J.E.: Notes on shape orientation where the standard method

does not work. Pattern Recognit. 39, 856–865 (2006)
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Chapter 8
Stable Semi-local Features for Non-rigid Shapes

Roee Litman, Alexander M. Bronstein, and Michael M. Bronstein

Abstract Feature-based analysis is becoming a very popular approach for geomet-
ric shape analysis. Following the success of this approach in image analysis, there is
a growing interest in finding analogous methods in the 3D world. Maximally stable
component detection is a low computation cost and high repeatability method for
feature detection in images.In this study, a diffusion-geometry based framework for
stable component detection is presented, which can be used for geometric feature
detection in deformable shapes.

The vast majority of studies of deformable 3D shapes models them as the two-
dimensional boundary of the volume of the shape. Recent works have shown that
a volumetric shape model is advantageous in numerous ways as it better captures
the natural behavior of non-rigid deformations. We show that our framework easily
adapts to this volumetric approach, and even demonstrates superior performance.

A quantitative evaluation of our methods on the SHREC’10 and SHREC’11
feature detection benchmarks as well as qualitative tests on the SCAPE dataset
show its potential as a source of high-quality features. Examples demonstrating
the drawbacks of surface stable components and the advantage of their volumetric
counterparts are also presented.
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8.1 Introduction

Following their success in image analysis, many feature-based methods have found
their way into the world of 3D shape analysis. Feature descriptors play a major role
in many applications of shape analysis, such as assembling fractured models [16] in
computational archeology, or finding shape correspondence [36].

Some shape feature-works are inspired by and follow methods in image analysis,
for example the histogram of intrinsic gradients used in [41] is similar in principle
to the scale invariant feature transform (SIFT) [21] which has recently become
extremely popular in image analysis. The concept of “bags of features” [32] was
introduced as a way to construct global shape descriptors that can be efficiently
used for large-scale shape retrieval [27, 37].

Other features were developed natively for 3D, as they rely on properties like the
shape normal field, as in the popular spin image [17]. Another example is a family
of methods based on the heat kernel [4, 35], describing the local heat propagation
properties on a shape. These methods are deformation-invariant due to the fact that
heat diffusion geometry is intrinsic, thus making descriptors based on it applicable
in deformable shape analysis.

8.1.1 Related Work

The focus of this work is on another class of feature detection methods, one that
finds stable components (or regions) in the analyzed image or shape. The origins of
this approach are also in the image processing literature, this time in the form of the
watershed transform [9, 39].

Matas et al. [22] introduced the stable component detection concept to the
computer vision and image analysis community in the form of the maximally stable
extremal regions (MSER) algorithm. This approach represents intensity level sets
as a component tree and attempts to find level sets with the smallest area variation
across intensity. The use of area ratio as the stability criterion makes this approach
affine-invariant, which is an important property in image analysis, as it approximates
viewpoint transformations. This algorithm can be made very efficient [25] in certain
settings, and was shown to have superior performance in a benchmark done by
Mikolajczyk et al. [24]. A deeper inspection of the notion of region stability was
done by Kimmel et al. [18], also proposing an alternative stability criteria. The
MSER algorithm was also expanded to gray-scale volumetric images in [12], though
this approach was tested only in a qualitative way, and not evaluated as a feature
detector.

Methods similar to MSER have been explored in the works on topological
persistence [13]. Persistence-based clustering [7] was used by Skraba et al. [33]
to perform shape segmentation. More recently, Dey et al. [10] researched the
persistence of the Heat Kernel Signature [35] for detecting features from partial
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shape data. In Digne et al. [11], extended the notion of vertex-weighted component
trees to meshes and proposed to detect MSER regions using the mean curvature.
The approach was tested only in a qualitative way, and not evaluated as a feature
detector.

A part of this study was published in the proceedings of the Shape Modeling
International (SMI’11) conference [20].

8.1.2 Main Contribution

The contributions of our framework are three-fold:
First, in Sect. 8.3 we introduce a generic framework for stable component detec-

tion, which unifies vertex- and edge-weighted graph representations (as opposed to
vertex-weighting used in image and shape maximally stable component detectors
[11, 12, 22]). Our results (see Sect. 8.6) show that the edge-weighted formulation is
more versatile and outperforms its vertex-weighted counterpart in terms of feature
repeatability.

Second, in Sect. 8.2 we introduce diffusion geometric weighting functions
suitable for both vertex- and edge-weighted component trees. We show that such
functions are invariant under a large class of transformations, in particular, non-
rigid inelastic deformations, making them especially attractive in non-rigid shape
analysis. We also show several ways of constructing scale-invariant weighting
functions. In addition, following Raviv et al. [29], we show that the suggested
framework performs better on volumetric data removing the (sometimes) unwanted
insensitivity to volume-changing transformations inherent to the surface model (see
Fig. 8.8 for an illustration).

Third, in Sect. 8.6 we show a comprehensive evaluation of different settings
of our method on a standard feature detection benchmark comprising shapes
undergoing a variety of transformations. We also present a qualitative evaluation
on the SCAPE dataset of scanned human bodies and demonstrate that our meth-
ods are capable of matching features across distinct data such as synthetic and
scanned shapes.

8.2 Diffusion Geometry

Diffusion geometry is an umbrella term referring to geometric analysis of diffusion
or random walk processes [8]. Let us consider the shape of a 3D physical object,
modeled as a connected and compact region X ! R3. The boundary of the region
@X is a closed connected two-dimensional Riemannian manifold. In many applica-
tion in graphics, geometry processing, and pattern recognition, one seeks geometric
quantities that are invariant to inelastic deformations of the object X [19, 30, 35].
Traditionally in the computer graphics community, 3D shapes are modeled by
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considering their 2D boundary surface @X , and deformations as isometries of @X
preserving its Riemannian metric structure. In the following, we refer to such
deformations as boundary isometries, as opposed to a smaller class of volume
isometries preserving the metric structure inside the volume X (volume isometries
are necessarily boundary isometries, but not vice versa – see Fig. 8.8 for an
illustration). Raviv et al. [29] argued that the latter are more suitable for modeling
realistic shape deformations that boundary isometries, which preserve the area of
@X , but not necessarily the volume of X .

8.2.1 Diffusion on Surfaces

Recent line of works [4, 8, 19, 26, 30, 31, 35] studied intrinsic description of shapes
by analyzing heat diffusion processes on @X , governed by the heat equation

!
@

@t
C!@X

"
u.t; x/ D 0; (8.1)

where u.t; x/ W Œ0;1/ " @X ! Œ0;1" is the heat value at a point x in time t ,
and !@X is the positive-semidefinite Laplace-Beltrami operator associated with the
Riemannian metric of @X . The solution of (8.1) is derived from

u.x; t/ D
Z

@X

ht .x; y/u0.y/da.y/ (8.2)

and is unique given the initial condition u.0; x/ D u0.x/, and a boundary condition
if the manifold @X has a boundary. The Green‘s function ht .x; y/ is called the heat
kernel and represents the amount of heat transferred on @X from x to y in time t due
to the diffusion process. The heat kernel is the non-shift-invariant impulse response
of (8.1), i.e ht.x; x0/ it is the solution to a point initial condition u.0; x/ D ı.x; x0/.
A probabilistic interpretation of the heat kernel ht .x; y/ is the transition probability
density of a random walk of length t from the point x to the point y. In particular,
the diagonal of the heat kernel or the auto-diffusivity function ht .x; x/ describes the
amount of heat remaining at point x after time t . Its value is related to the Gaussian
curvatureK.x/ through

ht .x; x/ #
1

4# t

!
1C 1

6
K.x/t C O.t2/

"
: (8.3)

which describes the well-known fact that heat tends to diffuse slower at points with
positive curvature, and faster at points with negative curvature. Due to this relation,
the auto-diffusivity function was used by Sun et al. [35] as a local surface descriptor
referred to as heat kernel signature (HKS). Being intrinsic, the HKS is invariant to
boundary isometries of @X .
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The heat kernel is easily computed using the spectral decomposition of the
Laplace-Beltrami operator [19],

ht .x; y/ D
X

i"0
e#$i t%i .x/%i .y/; (8.4)

where %0 D const;%1;%2; : : : and $0 D 0 $ $1 $ $2 : : : denote, respectively, the
eigenfunctions and eigenvalues of !@X operator satisfying !@X%i D $i%i .

The parameter t can be given the meaning of scale, and the family fht gt of heat
kernels can be thought of as a scale-space of functions on @X . By integrating over
all scales, a scale-invariant version of (8.4) is obtained,

c.x; y/ D
Z 1

0

ht .x; y/dt D
X

i"0

!Z 1

0

e#$i tdt
"
%i .x/%i .y/ (8.5)

D
X

i"1

1

$i
%i .x/%i .y/

This kernel is referred to as the commute-time kernel and can be interpreted as the
transition probability density of a random walk of any length. Similarly, c.x; x/
express the probability density of remaining at a point x after any time

It is worthwhile noting that both the heat kernel and the commute time kernels
constitute a family of low pass filters. In Aubry et al. [2], argued that for some
shape analysis tasks kernels acting as band-pass filters might be advantageous. The
proposed “wave kernel signature” is related to the physical model of a quantum
particle on a manifold described by the Schrödinger equation. The study of this
alternative model is beyond the scope of this paper.

8.2.2 Volumetric Diffusion

Instead of considering diffusion processes on the boundary surface @X , Raviv
et al. [29] considered diffusion inside the volume X , arising from the Euclidean
volumetric heat equation with Neumann boundary conditions,

!
@

@t
C!

"
U.t; x/ D 0 x 2 int.X/I

hrU.t; x/; n.x/i D 0 x 2 @X: (8.6)

Here, U.t; x/ W Œ0;1/ " R3 ! Œ0;1" is the volumetric heat distribution, ! is the
Euclidean positive-semidefinite Laplacian, and n.x/ is the normal to the surface @X
at point x. The heat kernel of the volumetric heat equation (8.6) is given, similarly
to (8.4) by
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Ht.x; y/ D
X

i"0
e#&i t˚i .x/˚i .y/; (8.7)

where ˚i and &i are the eigenfunctions and eigenvalues of ! satisfying !˚i D
&i%i and the boundary conditions hr˚i.x/; n.x/i D 0. A volumetric version of
the commute-time kernel can be created in a similar manner by integration over all
values of t , yielding C.x; y/ D P

i"1&
#3=2
i ˚i .x/˚i .y/. The diagonal of the heat

kernel Ht.x; x/ gives rise to the volumetric HKS (vHKS) descriptor [29], which is
invariant to volume isometries of X .

8.2.3 Computational Aspects

Both the boundary of an object discretized as a mesh and the volume enclosed
by it discretized on a regular Cartesian grid can be represented in the form of an
undirected graph. In the former case, the vertices of the mesh form the vertex set
V while the edges of the triangles constitute the edge set E. In the latter case, the
vertices are the grid point belonging to the solid, and the edge set is constructed
using the standard 6- or 26-neighbor connectivity of the grid (for points belonging to
the boundary, some of the neighbors do not exist). With some abuse of notation, we
will denote the graph by X D .V;E/ treating, whenever possible, both cases in the
same way. Due to the possibility to express all the diffusion-geometric constructions
in the spectral domain, their practical computation boils down to the ability to
discretize the Laplacian.

8.2.3.1 Surface Laplace-Beltrami Operator

In the case of 2D surfaces, the discretization of the Laplace-Beltrami operator of
the surface @X and can be written in the generic matrix-vector form as !@X f D
A#1Wf, where f D .f .vi // is a vector of values of a scalar function f W @X ! R
sampled on V D fv1; : : : ; vN g ! @X , W D diag

#P
l¤i wi l

$
% .wij / is a zero-mean

N " N matrix of weights, and A D diag.ai / is a diagonal matrix of normalization
coefficients [14, 40]. Very popular in computer graphics is the cotangent weight
scheme [23, 28], where

wij D
%
.cot˛ij C cotˇij /=2 .vi ; vj / 2 EI

0 else;
(8.8)

where ˛ij and ˇij are the two angles opposite to the edge between vertices vi and
vj in the two triangles sharing the edge, and ai are the discrete area elements.
The eigenfunctions and eigenvalues of !@X are found by solving the generalized
eigendecomposition problem W%i D A%i$i [19]. Heat kernels are approximated
by taking a finite number of eigenpairs in the spectral expansion.
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8.2.3.2 Volumetric Laplacian

In the 3D case, we used a ray shooting method to create rasterized volumetric
shapes, i.e. every shape is represented as arrays of voxels on a regular Cartesian grid,
allowing us to use the standard Euclidean Laplacian. The Laplacian was discretized
using a 6-neighborhood stencil. We use the finite difference scheme to evaluate the
second derivative in each direction in the volume, and enforced boundary conditions
by zeroing the derivative outside the shape.

The construction of the Laplacian matrix under these conditions boils down to
this element-wise formula (up to multiplicative factor):

.!/ij D
(
%1 if i ¤ j and .vi ; vj / 2 E
%Pk¤j .!/kj if i D j

8.3 Maximally Stable Components

Let us now we go over some preliminary graph-theory terms, needed to cover the
topic of the component-tree. As mentioned, we treat the discretization of a shape as
an undirected graphX D .V;E/ with the vertex set V and edge set E. Two vertices
v1 and v2 are said to be adjacent if .v1; v2/ 2 E. A path is an ordered sequence of
vertices # D fv1; : : : ; vkg such that for any i D 1; : : : ; k % 1, vi is adjacent to viC1.
In this case, every pair of vertices on # are linked in X . If every pair of vertices
in X is linked, the graph is said to be connected. A subgraph of X is every graph
for which Y D .V 0 & V;E 0 & E/, and will be denoted by Y & X . Such Y will
be a (connected) component of X if it is a maximal connected subgraph of X (i.e.
for any connected subgraph Z, Y & Z & X implies Y D Z). A subset of the
graph edges E 0 & E, induces the graph Y D .V 0; E 0/ where V 0 D fv 2 V W 9v0 2
V; .v; v0/ 2 E 0g, i.e. V 0 is a vertex set is made of all vertices belonging to an edge
in E 0.

A component tree can be built only on a weighted graph. A graph is called vertex-
weighted if it is equipped with a scalar function f W V ! R. Similarly, an edge-
weighted graph is one that is equipped with a function d W E ! R defined on the
edge set. In what follows, we will assume both types of weights to be non-negative.

In order to define the MSER algorithm on images, some regular connectivity
(e.g., four-neighbor) was used. Gray-scale images may be represented as vertex-
weighted graphs where the intensity of the pixels is used as weights. Using a
function measuring dissimilarity of pairs of adjacent pixels one can obtain edge
weights, as done by Forssen in [15]. Edge weighting is more general than vertex
weighting, which is limited to scalar (gray-scale) images.
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8.3.1 Component Trees

The `-cross-section of a graph X is the sub-graph created by using only weights
smaller or equal to ` (assuming ` ' 0). If the graph has a vertex-weightf W V ! R,
its `-cross-section is the graph induced by E` D f.v1; v2/ 2 E W f .v1/; f .v2/ $ `g.
Similarly, for a graph with an edge-weightd W E ! R the `-cross-section is induced
by the edge subset E` D fe 2 E W d.e/ $ `g. A connected component of the
`-cross-section is called the `-level-set of the weighted graph.

The altitude of a componentC , denoted by `.C /, is defined as the minimal ` for
which C is a component of the `-cross-section. Altitudes establish a partial order
relation on the connected components of X as any component C is contained in a
component with higher altitude.

The set of all such pairs .`.C /; C / therefore forms a tree called the component
tree. The component tree is a data structure containing the nesting hierarchy the
level-sets of a weighted graph. Note that the above definitions are valid for both
vertex- and edge-weighted graphs.

8.3.2 Maximally Stable Components

Since we represent a discretized smooth manifold (or a compact volume) by an
undirected graph, a measure of area (or volume) can associate with every subset of
the vertex set, and therefore also with every component. Even though we are dealing
with both surface and volume, w.l.o.g we will refer henceforth only to surface area
as a measure of a component C , which will be denoted by A.C /. When dealing
with regular sampling, like in the case images, the area of C can be thought of as
its cardinality (i.e. the number of pixels in it). In the case of non-regular sampling
a better discretization is needed, and a discrete area element da.v/ is associated
with each vertex v in the graph. The area of a component in this case is defined as
A.C / DPv2C da.v/.

The process of detection is done on a sequence of nested components f.`; C`/g
forming a branch in the component tree. We define the stability of C` as a derivative
along the latter branch:

s.`/ D Change in altitude
% Change in area

D A.C`/
d
d`
A.C`/

: (8.9)

In other words, the less the area of a component changes with the change of `, the
more stable it is. A componentC`! is called maximally stable if the stability function
has a local maximum at `$. As mentioned before, maximally stable components are
widely known in the computer vision literature under the name of maximally stable
extremal regions or MSERs for short [22], with s.`$/ usually referred to as the region
score.
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Pay attention that while in their original definition, both MSERs and their
volumetric counterpart [12] were defined on a component tree of a vertex-weighted
graph, while the latter definition allows for edge-weighted graphs as well and
therefore more general. The importance of such an extension will become evident
in the sequel. Also, the original MSER algorithm [22] assumes the vertex weights
to be quantized, while our formulation is suitable for scalar fields whose dynamic
range is unknown a priori (this has some disadvantages, as will be seen up next).

8.3.3 Computational Aspects

Najman et al. [25] introduced quasi-linear time algorithm for the construction of
vertex-weighted component trees, and its adaptation to the edge-weighted case is
quite straightforward. The algorithm is based on the observation that the vertex
set V can be partitioned into disjoint sets which are merged together as one goes
up in the tree. Maintaining and updating such a partition can be performed very
efficiently using the union-find algorithm and related data structures. The resulting
tree construction complexity is O.N log logN/. However, since the weights must
be sorted prior to construction, the latter complexity is true only if the weights are
quantized over a known range (which is not the case in weights we used), otherwise
the complexity becomesO.N logN/.

The stability function (8.9) contains a derivative along a branch of the compo-
nent tree. Given a branch of the tree is a sequence of nested components C`1 &
C`2 & ( ( ( & C`K , the derivative was approximated using finite differences scheme:

s.`k/ #
A.C`k /

A.C`kC1
/% A.C`k"1 /

.`kC1 % `k#1/: (8.10)

Starting from the leaf nodes, a single pass over every branch of the component tree
is in order to evaluate the function and detected its local maxima. Next, we filter
out maxima with too low values of s (more details about this in the detector result
section). Finally, we keep only the bigger of two nested maximally stable regions if
they are overlapping by more that a predefined threshold.

8.4 Weighting Functions

Unlike images where pixel intensities are a natural vertex weight, 3D shapes
generally do not have any such field. This could be a possible reason why MSER
was shown to be extremely successful as a feature detector in images, but equivalent
techniques for 3D shapes are quite rare. This method was recently proposed in
[11], but due to the fact it uses mean curvature it is not deformation invariant and
therefore not suitable for the analysis deformable shape. The diffusion geometric
framework used in [33] is more appropriate for this task, as it allows a robust way
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to analyze deformable shapes. We follow this approach and show that it allows the
construction both vertex and edge weights suitable for the definition of maximally
stable components with many useful properties.

Note that even though all of the following weighting functions are defined on
the surface of the shape (usually by using ht .x; y/), they are easily adapted to the
volumetric model (usually by using Ht.x; y/ instead).

The discrete auto-diffusivity function is a trivial vertex-weight when using
diffusion geometry, and can be directly used given its value on a vertex v:

f .v/ D ht .v; v/: (8.11)

As will be with all diffusion geometric weights, the latter weights are intrinsic.
Therefore, maximally stable components defined this way are invariant to non-rigid
bending. In images, weighting functions are based on intensity values and therefore
contain all the data needed abut the image. The above weighting function, however,
does not capture the complete intrinsic geometry of the shape, and depends on the
scale parameter t .

Every scalar field may also be used as an edge-weight simply by using
d.v1; v2/ D jf .v1/ % f .v2/j. As mentioned, edge weights are a more flexible and
allow us more freedom in selecting how to incorporate the geometric information.
For example, a vector-valued field defined on the vertices of the graph can be used
to define an edge weighting scheme by weighting an edge by the distance between
its vertices’ values, as done in [15].

There are ways to define edge weights without the usage of vector field defined
on the vertices. Lets take the discrete heat kernel ht .v1; v2/ as an example. Taking
a weight function inversely proportional to its value is metric-like in essence, since
it represents random-walk probability between v1 and v2. The resulting edge weight
will be

d.v1; v2/ D
1

ht .v1; v2/
: (8.12)

This function also contains fuller information about the shape’s intrinsic geometry,
for small values of t .

8.4.1 Scale Invariance

All of the three latter weighting functions are based on the heat kernel, and therefore
are not scale invariant. If we globally scale the shape by a factor a > 0, both the time
parameter and the kernel itself will be scaled by a2, i.e. the scaled heat kernel will
be a2ha2t .v1; v2/. The volumetric heat kernel Ht.v1; v2/ will be scaled differently
and will become a3Ha2t .v1; v2/ (this is why C.v1; v2/ is constructed using the
eigenvalues with a power of %3=2).

The commute time kernel is scale invariant, and could be used as a replacement
to the heat kernel. However, the numerical computation of the commute time kernel
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is more difficult as its coefficients decay polynomially (8.5), very slow compared to
ht .v1; v2/ whose coefficients decay exponentially (8.4). The slower decay translates
to the need of many more eigenfunctions of the Laplacian for c.v1; v2/ to achieve
the same accuracy as ht .v1; v2/.

Let us point out that there is some invariance to scale, originating in the way
the detector operates over the component tree (this is also notable in the detector
result section). As noted by Matas et al. [22], the MSER detector is invariant to any
monotonic transformation on the weights (originally pixel-intensities), a fact that
can be harnessed to gain scale invariance in our detector. In practice, it is sufficient
for us to limit the effect scaling on the weights to a monotonous transformation
instead of completely undoing its effect. Such a weighting function will not be scale
invariant by itself, nor the stability function (8.9) computed on such a component
tree. However, the local maxima of (8.9), namely the stable components, will remain
unaffected. An alternative to this approach would be designing a more sophisticated
scale-invariant stability function. We intend to explore both of these options in
follow up studies.

8.5 Descriptors

Usually, when using a feature-based approach, feature detection is followed by
attaching a descriptor to each of the features. Once descriptors are manifested,
we can measure similarity between a pair of features, which in turn, enables us to
perform tasks like matching and retrieval. Since our detected feature are components
of the shape, we first create a point-wise descriptor of the form ˛ W V ! Rq and
then aggregate al the point-descriptors into a single region descriptor.

8.5.1 Point Descriptors

We consider a descriptor suitable for non-rigid shapes proposed in [35] – the
heat kernel signature (HKS) HKS is computed by sampling the values of
the discrete auto-diffusivity function at vertex v at multiple times, ˛.v/ D
.ht1.v; v/; : : : ; htq .v; v//, where t1; : : : ; tq are some fixed time values. The resulting
descriptor is a vector of dimensionality q at each vertex. Since the heat kernel is an
intrinsic quantity, the HKS is invariant to isometric transformations of the shape.

8.5.1.1 Scale-Invariant Heat Kernel Signature

The fact that HKS is based on ht .v; v/, means it also inherits the drawback of its
dependence on the scaling of the shape. As mentioned, scaling the shape globally
by a factor a > 0 will result in the scaled heat kernel a2ha2t .v1; v2/. A way of ren-
dering ht .v; v/ scale invariant was introduced in [4], by performing a sequence of
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transformations on it. First, we sample the heat kernel with logarithmical spacing
in time. Then, we take the logarithm of the samples and preform a numerical
derivative (with respect to time of the heat kernel) to undo the multiplicative
constant. Finally, we perform the discrete Fourier transform followed by taking
the absolute value, to undo the scaling of the time variable. Note that the latter
sequence of transformations will also work on Ht.v; v/, as the effect of scaling
differs only in the power of the multiplicative constant.

This yields the modified heat kernel of the form

Oh!.v; v/ D
ˇ̌
ˇ̌F

%
@ loght .v; v/
@ log t

&
.!/

ˇ̌
ˇ̌ (8.13)

where! denotes the frequency variable of the Fourier transform. The scale-invariant
version of the HKS descriptor (SI-HKS) is obtained by replacing ht with Oh! , yield-
ing ˛.v/ D . Oh!1.v; v/; : : : ; Oh!q .v; v//, where !1; : : : ; !q are some fixed frequency
values.

8.5.1.2 Vocabulary Based Descriptors

Another method for the descriptor construction is following the bag of features
paradigm [32]. Ovsjanikov et al. [27] used this approach to create a global
shape descriptor using point-wise descriptors. In the bag of features approach we
perform off-line clustering of the descriptor space, resulting in a fixed “geometric
vocabulary” ˛1; : : : ; ˛p . We then take any point descriptor ˛.v/, and represent it
using the vocabulary by means of vector quantization. This results in a new point-
wise p-dimensional vector '.v/, where each of its elements follow a distribution
of the form Œ'.v/"l / e#k˛.v/#˛lk

2=2(2 . The vector is then normalized in such a
way that the elements '.v/ sum to one. Setting ( D 0 is a special case named
“hard vector quantization” where the descriptor boils down to a query result for the
nearest neighbor of ˛.v/ in the vocabulary. In other words, we will get Œ'.v/"l D 1
for ˛l being the closest vocabulary element to ˛.v/ in the descriptor space, and zero
elsewhere.

8.5.2 Region Descriptors

After creating a descriptor ˛.v/ at each vertex v 2 V , we need to gather the infor-
mation from a subset of vertices, i.e. componentC ! V . This will result in a region
descriptor. The simplest way to do this is by computing the average of ˛ in C ,
weighted by the discrete area elements:

ˇ.C / D
X

v2C
˛.v/da.v/: (8.14)
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The resulting region descriptor ˇ.C / is a vector of the same dimensionality q as the
point descriptor ˛.

Other methods to create region descriptors from point descriptors such as the
region covariance descriptors [38], are beyond the scope of this text. The latter
method may provide higher discriminativity due to the incorporation of spatial
contexts.

8.6 Results

8.6.1 Datasets

The proposed approaches were tested both qualitatively and quantitatively. All
datasets mentioned below were given as triangular meshes, i.e. as 2D manifolds. In
the following experiments, meshes were down-sampled to at most 10; 000 vertices.
For the computation of the volumetric regions, meshes were rasterized in a cube
with variable number of voxels per dimension (usually around 100–130) in order
for the resulting shapes to contain approximately 45,000 voxels.

8.6.1.1 Data for Quantitative Tests

While almost every data set can be used for a qualitative evaluation, only datasets
with additional ground-truth data can be used to quantify the performance of the
algorithm. We chose two such data sets: the SHREC’10 [6] and SHREC’11 [3]
feature detection and description benchmarks.

SHREC’10[6] was used for evaluation only of the 2D version of the algorithm.
The dataset consisted of three shape classes (human, dog, and horse), with simulated
transformations applied to them. Shapes are represented as triangular meshes with
approximately 10,000–50,000 vertices.

Each shape class is given in a so-called “native” form, coined null, and also
in nine categories of transformations: isometry (non-rigid almost inelastic defor-
mations), topology (welding of shape vertices resulting in different triangulation),
micro holes and big holes simulating missing data and occlusions, global and local
scaling, additive Gaussian noise, shot noise, and downsampling (less than 20 %
of the original points). All mentioned transformations appeared in five different
strengths, and are combined with isometric deformations. The total number of
transformations per shape class is 45C 1 null shape, i.e. 138 shapes in total.

Vertex-wise correspondence between the transformed and the null shapes was
given and used as the ground-truth in the evaluation of region detection repeatability.
Since all shapes exhibit intrinsic bilateral symmetry, best results over the ground-
truth correspondence and its symmetric counterpart were used.
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SHREC’11 [3] was used for the comparison between the surface and volumetric
approaches, due to the fact that results of both methods were too similar on
SHREC’10. Having a wider and more challenging range and strength of transfor-
mations present in the SHREC’11 corpus was needed to emphasize the difference.
The SHREC’11 dataset was constructed along the guidelines of its predecessor,
SHREC’10. It contains one class of shapes (human) given in a null form, and also
in 11 categories of transformations, in transformation appeared in five different
strengths combined with isometric deformations. The strength of transformation
is more challenging, in comparison to SHREC’10. The total number of shapes is
55C 1 null shape.

Most of the transformations appear also in SHREC’10: isometry, micro holes
and big holes, global, additive Gaussian noise, shot noise, and downsampling.
Two transformations were discarded (topology and local scaling) and some new
ones were introduced: affine transformation, partial (missing parts), rasterization
(simulating non-pointwise topological artifacts due to occlusions in 3D geometry
acquisition), and view (simulating missing parts due to 3D acquisition artifacts).
Some of the mentioned transformations are not compatible with our volumetric
rasterization method. We did not include in our experiments the following trans-
formations: big holes, partial and view.

Vertex-wise correspondence were given like in SHREC’10, including bilateral
symmetry. Volumetric ground-truth had to be synthesized, however. For that
purpose, the surface voxels of two shapes were first matched using the groundtruth
correspondences; then, the interior voxels were matched using an onion-peel
procedure.

8.6.1.2 Data for Qualitative Tests

In addition to the already mentioned sets, three more datasets without groundtruth
correspondence were used to demonstrate the performance of the proposed method
visually:

TOSCA [5] The dataset contains 80 high-resolution nonrigid shapes in a variety
of poses, including cat, dog, wolves, horse, 6 centaur, gorilla, female figures, and
two different male figures. Shapes have a varying number vertices, usually about
50,000. This dataset gives a good example of the potential of the detected features
to be used for partial-matching of shapes (see Figs. 8.1–8.3).

SCAPE[1] The dataset contains watertight scanned human figures, containing
around 12.5 K vertices, in various poses. This dataset gives a hint on performance
of the detector on real life (not synthetic) data. Figure 8.7 shows that the detected
components are consistent and remain invariant under pose variations.

Deformation Transfer for Triangle Meshes dataset by Sumner et al.[34]
contains a few shapes, out of which we chose two animated sequences of a
horse shape represented as a triangular mesh with approximately 8.5 K vertices.
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Fig. 8.1 Maximally stable regions detected on different shapes from the TOSCA dataset. Note
the invariance of the regions to strong non-rigid deformations. Also observe the similarity of the
regions detected on the female shape and the upper half of the centaur (compare to the male shape
from Fig. 8.2). Regions were detected using ht .v; v/ as vertex weight function, with t D2,048

Fig. 8.2 Maximally stable regions detected on shapes from the SHREC’10 dataset using the vertex
weight ht .v; v/ with t D2,048. First row: different approximate isometries of the human shape.
Second row: different transformations (left-to-right): holes, localscale, noise, shotnoise and scale

One sequence includes a series of boundary and volume isometries (gallop), while
the other includes series of non-volume-preserving boundary isometries (collaps-
ing). Figure 8.8 shows that while the surface MSERs are invariant to both types
of transformations, the proposed volumetric MSERs remain invariant only under
volume isometries, changing quite dramatically if the volume is not preserved –
a behavior consistent with the physical intuition.
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Fig. 8.3 A toy example showing the potential of the proposed method for partial shape matching.
Shown are four maximally stable regions detected on the surface of three shapes from the TOSCA
dataset using the edge weight 1=ht .v1; v2/ with t D2,048. The top two regions are the torso and
the front legs of a centaur (marked with � 1 and � 2 respectively), and on the bottom are the torso of
a human and the front legs of a horse (marked with � 3 and � 4 respectively). Each of the regions is
equipped with a SI-HKS descriptor, and L2 distance is shown between every pair

8.6.2 Detector Repeatability

8.6.2.1 Evaluation Methodology

We follow the spirit of Mikolajczyk et al. [24] in the evaluation of the proposed
feature detector (and also of the descriptor, later on). The performance of a feature
detector is measured mainly by its repeatability, defined as the percentage of regions
that have corresponding counterpart in a transformed version of the shape. In order
to measure this quantity we need a rule to decide if two regions are “corresponding”.
Every comparison is done between a transformed shape and its original null shape,
coined Y and X respectively. We will denote the regions detected in X and Y as
X1; : : : ; Xm and Y1; : : : ; Yn. In order to perform a comparison, we use the ground-
truth correspondence to project a region Yj onto X , and will denote it’s projected
version as X 0j . We define the overlap of two regions Xi and Yj as the following
area ratio:

O.Xi ;X
0
j / D

A.Xi \ X 0j /
A.Xi [ X 0j /

D
A.Xi \ X 0j /

A.Xi /C A.X 0j /% A.Xi \X 0j /
(8.15)
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Fig. 8.4 Maximally stable regions detected on shapes from the SHREC’10 dataset using the edge
weight 1=ht .v1; v2/ with t D2,048. Region coloring is arbitrary

The repeatability at overlap o is defined as the percentage of regions in Y that
have corresponding counterparts in X with overlap greater than o. An ideal detector
has the repeatability of 100 % even for o ! 1. Note that comparison was defined
single-sidedly due to the fact that some of the transformed shapes had missing data
compared to the null shape. Therefore, unmatched regions of the null shape did not
decrease the repeatability score, while regions in the transformed shape that had no
corresponding regions in the null counterpart incurred a penalty on the score.

8.6.2.2 Surface Detector

Two vertex weight functions were compared: discrete heat kernel (8.11) with
t D 2,048 and the commute time kernel. These two scalar fields were also used
to construct edge weights according to d.v1; v2/ D jf .v1/ % f .v2/j. In addition,
we used the fact that these kernels are functions of a pair of vertices to define edge
weights according to (8.12). Unless mentioned otherwise, t D 2,048 was used for
the heat kernel, as this setting turned out to give best performance on the SHREC’10
dataset.

We start by presenting a qualitative evaluation on the SHREC’10 and the TOSCA
datasets. Regions detected using the vertex weight ht .v; v/with t D 2,048 are shown
for TOSCA in Fig. 8.1 and for SHREC’10 in Fig. 8.2. Figure 8.4 depicts the max-
imally stable components detected with the edge weighting function 1=ht.v1; v2/
on several shapes from the SHREC’10 dataset. These results show robustness and
repeatability of the detected regions under transformation. Surprisingly, many of
these regions have a clear semantic interpretation, like limbs or head. In Addition,
the potential of the proposed feature detector for partial shape matching can be seen
by the similarly looking regions that are detected on the male and female shapes,
and the upper half of the centaur (see a toy example in Fig. 8.3).

Ideally, we would like a detector to have perfect repeatability, i.e. to produce
a large quantity of regions with a corresponding counterpart in the original shape.
This is unfeasible, and all detectors will produce some poorly repeatable regions.
However, if the repeatability of the detected regions is highly correlated with their
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Fig. 8.5 Repeatability of maximally stable components with the vertex weight ht .v; v/ (first row)
and edge weight 1=ht .v1; v2/ (second row), t D2,048

stability scores, a poor detector can still be deemed good by selecting a cutoff
threshold on the stability score. In other words, set a minimum region stability value
that is accepted by the detector, such that the rejected regions are likely not to be
repeatable. This cutoff value is estimated based on the empirical 2D distributions
of detected regions as a function of the stability score and the overlap with the
corresponding ground-truth regions. Of course, this can only be done given ground-
truth correspondences. In some of the tested detectors, a threshold was selected for
stability score to minimize the detection of low-overlap regions, in order to give an
estimate for the theoretical limits on the performance of the weighting functions.

We now show the performance of the best four weighting functions in Figs. 8.5
and 8.6. These figures depict the repeatability and the number of correctly matching
regions as the function of the overlap. One can infer that scale-dependent weighting
generally outperform their scale-invariant counterparts in terms of repeatability.
This could be explained by the fact that we have selected the best time value for
our dataset’s common scale, whereas scale-invariant methods suffer from its larger
degree of freedom. The scalar fields corresponding to the auto-diffusivity functions
perform well both when used as vertex and edge weights. Best repeatability is
achieved by the edge weighting function 1=ht.v1; v2/. Best scale invariant weighting
by far is the edge weight 1=c.v1; v2/.
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Fig. 8.6 Repeatability of maximally stable components with the edge weight jht .v1; v1/ #
ht .v2; v2/j (first row) and edge weight 1=c.v1; v2/ (second row), t D2,048

8.6.2.3 Volume Detector

In order to asses the differences between the 2D and the 3D of the approach,
we performed two experiments comparing between 3D MSER and 2D MSER:
comparison of invariance of the two methods to boundary and volume isometric
deformations, and a quantitative comparison evaluating the sensitivity of two
methods to shape transformations and artifacts on the SHREC’11 benchmark.
In addition, we performed one evaluation of volumetric (3D) MSER invariance on
scanned human figures.

As mentioned before, all the datasets used in our experiments were originally
represented as triangular meshes and were rasterized and represented as arrays of
voxels on a regular Cartesian grid.

In the first experiment, we applied the proposed approach to the SCAPE
dataset [1], containing a scanned human figure in various poses. Figure 8.7 shows
that the detected components are consistent and remain invariant under pose
variations. In the second experiment, we used the data from Sumner et al. [34].
The dataset contained an animated sequence of a horse shape and includes a series
of boundary and volume isometries (gallop) and series of non-volume-preserving



180 R. Litman et al.

Fig. 8.7 Stable volumetric regions detected on the SCAPE data [1]. Shown are volumetric regions
(first and third columns) and their projections onto the boundary surface (second and fourth
columns). Corresponding regions are denoted with like colors. The detected components are
invariant to isometric deformations of the volume

Fig. 8.8 Maximally stable components detected on two approximate volume isometries (second
and third columns) and two volume-changing approximate boundary surface isometries (two right-
most columns) of the horse shape (left column). Stable regions detected on the boundary surface
(2D MSER, first row) remain invariant to all deformations, while the proposed volumetric stable
regions (3D MSER, second row) maintain invariance to the volume-preserving deformations only.
This better captures natural properties of physical objects. Corresponding regions are denoted with
like colors. For easiness of comparison, volumetric regions are projected onto the boundary surface

boundary isometries (collapsing). Figure 8.8 shows that while the surface MSERs
are invariant to both types of transformations, the proposed volumetric MSERs
remain invariant only under volume isometries, changing quite dramatically if the
volume is not preserved – a behavior consistent with the physical intuition.
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Fig. 8.9 Repeatability of region detectors on the SHREC’11 dataset. Upper left: 2D MSER using
the edge weight 1=ht .v1; v2/, t D2,048. Upper right: 3D MSER using the commute-time vertex-
weight. Lower left: 3D MSER using the edge weight 1=Ht .v1; v2/, t D2,048. Lower right: 3D
MSER using the vertex-weight Ht.v; v/, t D2,048

In the third experiment, we used the SHREC’11 feature detection and description
benchmark [3] to evaluate the performance of the 2D and 3D region detectors
and descriptors under synthetic transformations of different type and strength.1

As mentioned, some of the transformations in SHREC’11 are not compatible with
our volumetric rasterization method, so we did not include in our experiments the
big-holes, partial, and view transformations.

Figure 8.9 shows the repeatability of the 3D and 2D MSERs. We conclude
that volumetric regions exhibit similar or slightly superior repeatability compared
to boundary regions, especially for large overlaps (above 80 %). We attribute
the slightly lower repeatability in the presence of articulation transformations
(“isometry”) to the fact that these transformations are almost exact isometries of the

1In this evaluation we used SHREC11, rather than SHREC10 that was used previously in 2D. this
is due to the fact that results of the 3D and 2D versions were too similar on SHREC10, and dataset
with a wider, and more challenging range and strength of transformations was needed to emphasize
the difference.
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boundary, while being only approximate isometries of the volume. Another reason
for the latter degradation may be local topology changes that were manifested in
the rasterization of the shapes in certain isometries. These topology changes appear
only in the volumetric detector, and they affected the quality of detected regions
in their vicinity. Although the construction of the MSER feature detector is not
affine-invariant, excellent repeatability under affine transformation is observed. We
believe that this and other invariance properties are related to the properties of the
component trees (which are stronger than those of the weighting functions) and
intend to investigate this phenomenon in future studies.

8.6.3 Descriptor Informativity

8.6.3.1 Evaluation Methodology

In these experiments, we aim to evaluate the informativity of region descriptors.
This is done by measuring the relation between the overlap of two regions and their
distance in the descriptor space.

Keeping the notation from the previous section, we set a minimum overlap ) D
0:75 deeming two regions Yi and Xj matched, i.e. if oij D O.X 0i ; Xj / ' ) (X 0i is
the projection of Yi on the null shape X ). This threshold is needed to constitute the
matching ground-truth.

Given a region descriptor ˇ on each of the regions, we set a threshold * on the
distance between the descriptors of Yi andXj in order to classify them as positives,
i.e. if dij D kˇ.Yi/ % ˇ.Xj /k $ * . For simplicity we assume the distance between
the descriptors to be the standard Euclidean distance. We define the true positive
rate (TPR) and false positive rate (FPR) as the ratios

TPR D jfdij $ *gjjfoij ' )gj
I FPR D jfdij > *gjjfoij < )gj

The receiver operator characteristic (ROC) curve is obtained a set of pairs
.FPR;TPR/, created by varying the threshold * . The false negative rate defined
as FNR D 1 % TPR. The equal error rate (EER) is the point on the ROC curve for
which the false positive and false negative rates coincide. EER is used as a scalar
measure for the descriptor informativity, where ideal descriptors have EER D 0.

Another descriptor performance criterion is created by finding for each Xi its
nearest neighbor in the descriptor space Yj!.i/, namely j $.i/ D arg minj dij . We
then define the matching score, as the ratio of correct first matches for a given
overlap ), and m, the total number of regions in X :

score.)/ D jfoij
!.i/ ' )gj
m

: (8.16)
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Table 8.1 Equal error rate (EER) performance of different maximally stable component detectors
and descriptors (t D 2,048 was used in all cases). p denotes the vocabulary size in the bag of
features region descriptors

Weighting HKS HKS HKS SI-HKS SI-HKS SI-HKS
function avgerage BoF(pD 10) BoF(pD 12) avgerage BoF(pD 10) BoF(pD 12)

ht .v; v/ 0.311 0.273 0.278 0.093 0.091 0.086
1=ht .v1; v2/ 0.304 0.275 0.281 0.104 0.093 0.090
jht .v1; v1/# ht .v2; v2/j 0.213 0.212 0.222 0.085 0.091 0.094
1=c.v1; v2/ 0.260 0.284 0.294 0.147 0.157 0.148

8.6.3.2 Surface Descriptor

Given the maximally stable components detected by a detector, region descriptors
were calculated. We used two types of point descriptors: the heat kernel signature
(HKS), and its scale invariant version SI-HKS. Each of these two point descriptors
was also used as a basis to create vocabulary based descriptors. Region descriptors
were created from every point descriptor using averaging (8.14). In the following
experiments, the HKS was created based on the heat kernel signature ht .v; v/, sam-
pled at six time values t D 16; 22:6; 32; 45:2; 64; 90:5; 128. The SI-HKS was cre-
ated by sampling the heat kernel time values t D 21; 21C1=16; : : : ; 225 and taking the
first six discrete frequencies of the Fourier transform, repeating the settings of [4].
Bags of features were tested on the two descriptors with vocabulary sizes p D 10
and 12, trained based on the SHREC’10 and TOSCA datasets. This sums up to a
total of 6 descriptors – two in the “raw” form and four vocabulary based descriptors.

The four best weighting functions (shown in Figs. 8.5 and 8.6) were also selected
to test region detectors. The performance in terms of EER of all the combinations
of latter weighting functions and the six region descriptors is shown in Table 8.1.

Figures 8.10 and 8.11 show the number of correct first matches and the matching
score as a function of the overlap for the two “raw” descriptors and the two best
weighting functions: the vertex weight ht .v; v/ and the edge weight 1=ht.v1; v2/.
Figure 8.12 depicts the ROC curves of all of the descriptors based on maximally
stable components of the same two weighting functions.

We conclude that the SI-HKS descriptor consistently exhibits higher perfor-
mance in both the “raw” form and when using vocabulary, though the latter perform
slightly worse. On the other hand, the bag of feature setting seems to improve the
HKS descriptor in comparison to its “raw” form, though never reaching the scores of
SI-HKS. Surprisingly, SI-HKS consistently performs better, even in transformations
not including scaling, as can be seen from Figs. 8.10–8.11.
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Fig. 8.10 Performance of region descriptors with regions detected using the vertex weight ht .v; v/,
t D2,048. Shown are the HKS descriptor (first row) and SI-HKS descriptor (second row)

8.6.3.3 Volume Descriptor

Scale invariant volume HKS descriptor (SI-vHKS) were calculated for every volu-
metric stable region detected in the previous section. When testing the volumetric
setting we used only the SI-vHKS descriptor due to its superior performance in 2D.

As with the surface descriptors, the matching score was measured for each of
the volumetric regions and is shown in Fig. 8.13. For comparison, we used the
SI-HKS descriptors on the boundary for the detected 2D regions. The combination
of volumetric regions with volumetric descriptors exhibited highest performance
over the entire range of deformations.

A region matching experiment was performed on the volumetric regions, seeking
the nearest neighbors of a selected query region. The query region was taken from
the SCAPE dataset, and the nearest neighbors were taken from the TOSCA dataset
which differs considerably from the former (SCAPE shapes are 3D scans of human
figures, while TOSCA contains synthetic shapes). Despite the mentioned difference,
correct matches were found consistently, as can be seen in Fig. 8.14
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Fig. 8.11 Performance of region descriptors with regions detected using the edge weight
1=ht .v1; v2/, t D2,048. Shown are the HKS descriptor (first row) and SI-HKS descriptor
(second row)
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Fig. 8.12 ROC curves of different regions descriptors (“vs” stands for vocabulary size). The
following detectors were used: vertex weight ht .v; v/ (left), and edge weight 1=ht .v1; v2/ (right).
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Fig. 8.13 Matching score of descriptors based on the 2D and 3D regions detected with the
detectors shown in Fig. 8.9. Shown are the 2D SI-HKS (upper left) 3D SI-vHKS (upper right
and two bottom plots) descriptors

Fig. 8.14 Examples of closest matches found for different query regions from the SCAPE dataset
on the TOSCA dataset. Shown from left to right are: query, 1st, 2nd, 4th, 10th, and 15th matches.
Edge-weight 1=Ht .v1; v2/ was used as the detector; average SI-vHKS was used as the descriptor
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8.7 Conclusions

A generic framework for the detection of stable non-local features in deformable
shapes is presented. This approach is based on a popular image analysis tool called
MSER, where we maximize a stability criterion in a component tree representation
of the shape. The framework is designed to unify the vertex or edge weights, unlike
most of its predecessors. The use of diffusion geometry as the base of the weighting
scheme make to detector invariant to non-rigid bending, global scaling and other
shape transformations, a fact that makes this approach applicable in the challenging
setting of deformable shape analysis.

The approach was shown to work with volumetric diffusion geometric analysis.
In all experiments, our volumetric features exhibited higher robustness to defor-
mation compared to similar features computed on the two-dimensional boundary
of the shape. We also argue and exemplify that unlike features constructed from
the boundary surface of the shape, our volumetric features are not invariant to
volume-changing deformations of the solid object. We believe that this is the
desired behavior in many applications, as volume isometries better model natural
deformations of objects than boundary isometries.

We showed experimentally the high repeatability of the proposed features, which
makes them a good candidate for a wide range of shape representation and retrieval
tasks.
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Chapter 9
A Brief Survey on Semi-Lagrangian Schemes
for Image Processing

Elisabetta Carlini, Maurizio Falcone, and Adriano Festa

Abstract In this survey we present some semi-Lagrangian schemes for the approx-
imation of weak solutions of first and second order differential problems related
to image processing and computer vision. The general framework is given by the
theory of viscosity solutions and, in some cases, of calculus of variations. The
schemes proposed here have interesting stability properties for evolutive problems
since they allow for large time steps, can deal with degenerate problems and are
more accurate if compared to standard finite difference/element methods of the same
order. Several examples on classical problems will illustrate these properties.

9.1 Introduction

Nonlinear Partial Differential Equations (PDEs) appear in many classical image
processing problems and there is a need for accurate and efficient numerical
methods to solve them. Usually we have to deal with several difficulties, including
the fact that in most cases these are degenerate problems with non smooth solutions.
Classical methods (Finite Elements, Finite Differences) must be modified and often
stabilized to solve this kind of problems (the interested reader will find in the books
by Strikwerda [46] and Brenner and Scott [6] a comprehensive introduction to these
classical techniques and well as some recent results). The goal of this paper is to
present semi-Lagrangian (SL in the sequel) approximation techniques and illustrate
their properties through the solution of some classical image processing problems.

SL methods were introduced long time ago for linear advection problems. As far
as we know the first example is the Courant-Isaacson and Rees scheme [19] which
dates back to the 1960s. However, their application to nonlinear problems is more
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recent as well as the analysis of their mathematical properties in terms of consis-
tency, stability, convergence and convergence rates. A comprehensive introduction
to this class of schemes can be found in the book by Falcone and Ferretti [32].

Let us just recall here some of the motivations which make semi-Lagrangian
schemes an interesting alternative to more classical finite differences and finite
elements techniques. The first and perhaps more interesting point is that, due to
the fact that they mimic the method of characteristics, they allow for large time
steps in evolutive problems. This property is particularly useful when one looks
for the limiting behavior for t going to infinity in order to recover the solution
of the corresponding stationary problem. The second important property is that
they introduce only a small numerical viscosity so that their smoothing effect on
the solution is very limited. The third property to be mentioned is that they have
a natural interpretation in terms of the representation formula for some nonlinear
problems. One example is the solution of the eikonal equation where the Hopf-Lax
formula applies (see the next section for details). Roughly speaking they can be
interpreted as a discrete Hopf-Lax formula and this means that their accuracy can be
increased to high-order. Finally, they can work on structured and unstructured grids.
Although the latter are not very popular among the image processing community
they are a natural choice in other fields of applications like fluid dynamics,
meteorology, geophysics. The details regarding the analytical properties of the
schemes will not be illustrated here since this survey is mainly intended to present
the schemes and their potential via the solution of some test problems.

In the next section we will briefly describe how the schemes are derived for
some first and second order problems which come from image processing. We
will consider some simplified models in order to introduce the main ideas of SL
approximation and to explain how the methods are constructed. The following
sections are devoted to some classical problems in image processing: Shape from
Shading, nonlinear filtering, segmentation and optical flow. For each of them we will
introduce the model which we are going to approximate, present the corresponding
SL scheme and illustrate some numerical experiments.

9.2 An Introduction to Semi-Lagrangian Schemes
for Nonlinear PDEs

We will consider three classical examples to show the main features and properties
of the SL approximation: Shape from Shading (SfS in the sequel), segmentation
via the level set (LS) method and nonlinear filtering via Mean Curvature Motion
(MCM). It is worth to note that they all lead to nonlinear (and possibly degenerate)
partial differential models.

Let us start with the Shape from Shading problem. This is an inverse problem
where we want to compute the surface corresponding to a single image. A simple
model for this problem can be derived (see the next section for more details)
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assuming that the light source is at infinity in the direction !, the surface is
Lambertian, and that we can neglect perspective deformations. We consider then
the equation which appears in most of the papers and corresponds to frontal light
source at infinity, i.e. ! D .0; 0; 1/ and

jru.x/j D f .x/ for x 2 ˝; (9.1)

where I W ˝ ! R2 ! Œ0; 1! represents the brightness function of the image and

f .x/ D
s

1

I.x/2
" 1: (9.2)

This is an eikonal equation, a first order stationary nonlinear pde. In order to
solve (9.1) we must provide some boundary conditions on @˝ and/or add some
informations to select a unique solution. In fact, the equation just depends on the
gradient so that if u is a solution also uC constant is a solution and we need to fix
the height of the surface at least at the boundary to select a solution. For an image
containing an “occluding boundary”, it is usual to consider this boundary as @˝
and the domain of reconstruction will be the region ˝ enclosed by the occluding
boundary.

Another classical problem is the segmentation problem, where we want to detect
the boundaries of objects represented in a picture. A very popular method for
segmentation is based on the level set method, this application is often called “active
contour” since the segmentation is obtained following the evolution of a simple
curve (a circle for example) in its normal direction. Starting from a circle inside an
object we follow its evolution until the curve touches the borders of the object. It
is important to know that the LS method has had a great success for the analysis
of front propagation problems for its capability to handle many different physical
phenomena within the same theoretical framework. Moreover, LS methods allow
to develop the analysis of interface propagation also after the onset of singularities
(as for example, when there is a topological change in the front). See the books by
Sethian [45] and Osher and Fedkiw [42].

In the LS methods the unknown is a “representation” function u WR2 # Œ0; T !!R
of the interface, the position of the interface "t at time t is given by the 0-level set
of u.:; t/, i.e.

"t WD fx W u.x; t/ D 0g:
The model equation corresponding to the LS method (see e.g.[43] for details) is

!
ut C c.x; t/jruj D 0 .x; t/ 2 R2 # Œ0; T !
u.x/ D u0.x/ x 2 R2 (9.3)

where u0 must be a representation function for the initial front @˝0, where ˝0 is a
given open bounded subset of R2, this means
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8
<

:

u0.x/ > 0 for x 2 R2 n˝0

u0.x/ D 0 for x 2 @˝0 WD "0
u0.x/ < 0 for x 2 ˝0:

(9.4)

Note that usually the scalar velocity c W R2#Œ0; T !! R is given and it represents the
velocity of the front in its normal direction #.x; t/ WD ru.x;t/

jru.x;t/j . However, the same
approach applies to other scalar velocities. For example one can use it to describe
isotropic and anisotropic front propagation, Mean Curvature Motion (MCM) and
other situations when the velocity depends on some geometrical properties of the
front. In summary, this corresponds to the following choices:

c.x; t/ isotropic growth with time varying velocity (9.5)

c.x; t; #/ anisotropic growth, i.e. dependent on the normal direction (9.6)

c.x; t; k/ Mean Curvature Motion (9.7)

where k D k.x; t/ is the mean curvature to the front at time t . There are even
models where the velocity is obtained by convolution (nonlocal velocity).

Since the borders of objects inside a given image I are characterized by the fact
that there is a rapid change in the values of I , in the segmentation problem one can
take the gradient of I as an indicator of the edges. If jrI j is large this means that
we are at an edge. For this reason, a popular choice of the velocity when we apply
LS methods to the segmentation problem is

c.x/ WD .1C jrI.x/jp/"1 where p $ 1:

With this choice, the velocity is 1 inside the region where the gray level is constant
and rapidly decreases to 0 when x is close to an edge (which corresponds to a jump
in the I derivative).

Another problem we will consider is nonlinear filtering. A classical model to
treat this problem is to consider (9.3) with the velocity given by Mean Curvature
c.x; t/ D k.x; t/, see [34]. In this case one gets

8
<

:
ut .x; t/ D div

" ru.x; t/
jru.x; t/j

#
jru.x; t/j .x; t/ 2 R2 # Œ0; T !

u.x; 0/ D I0.x/
(9.8)

where I0 is a starting noisy image. This equation, in the level set formalism,
represents the Mean Curvature Motion of curves, since each level set of u moves
in normal direction with a speed proportional to their mean curvature. The goal is
to recover a new image reducing the noise. Note that the evolutive equation is not
well defined at all points where the gradient vanishes so it is a singular parabolic
equation. This implies that classical finite difference and finite element methods
must be adapted in order to deal with the singularities (see [43] for a finite difference
scheme and [15, 41] for two convergence results).
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Let us now turn our attention to the construction of the semi-Lagrangian schemes
for the above model equations. For readers’ convenience, we will start from the
linear advection equation:

ut C b.x; t/ % ru D f .x; t/ .x; t/ 2 R2 # .0; T /: (9.9)

Here, b W R2 # .0; T / ! R2 is a vectorfield (the drift) and f W R2 # .0; T / ! R
is the source term. We look for the unique solution u W R2 # .0; T / ! R of (9.9)
satisfying the initial condition

u.x; 0/ D u0.x/ x 2 R2: (9.10)

A simple case corresponds to f .x; t/ & 0 and b.x; t/ & c (constant). Then, the
solution u is given by the representation formula

u.x; t/ D u0.x " c t/ .x; t/ 2 R2 # Œ0; T / (9.11)

which can be easily obtained by the method of characteristics. The representation
formula (9.11) contains an important information: the solution at the point x at
time t only depends on the initial value at the point x " ct which is called the
foot of the characteristic passing through .x; t/ (more details on the method of
characteristics can be found on many classical books presenting the basic theory
of partial differential equations, e.g. [28]). A typical choice is to build a space grid
with constant step $x

G$x WD fxj W xj D .j1$x; j2$x/ for j1 2 Z; j2 2 Zg: (9.12)

This grid is called lattice. In order to build an approximation scheme for (9.9) and
more in general for evolutive problems, we need to consider a space-time grid

G$x;$t WD f.xj ; tn/ W xj D .j1$x; j2$x/; tn D n$t; for j1 2 Z; j2 2 Z; n 2 Ng
(9.13)

where in the simplest case $t is a constant time step. Naturally for numerical
purposes the number of nodes of our grids has to be finite and we will consider
the intersections of our grids with the computational domain˝ .

The basic idea behind all finite difference approximations is to replace every
derivative by an incremental ratio. Thus, one obtains a finite dimensional problem
whose unknown are the values of the numerical solution at all the nodes of the
lattice, so that the value unj associated to the node .xj ; tn/ should be regarded as an
approximation of u.xj ; tn/. For the time derivative it is natural to choose the forward
incremental ratio

ut .x; t/ '
u.x; t C$t/ " u.x; t/

$t
: (9.14)
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For finite difference, it is well known that dealing with advection problems we need
to consider the incremental ratio in the up-wind direction, so that we must take
the first node on the left (right) if the velocity is positive (negative). This choice
guarantees the stability of the approximation scheme as well as a good fit with
the physics behind the model. When b.xj ; tn/ is positive, this corresponds to the
following up-wind scheme for the left hand side of the advection equation

ut .xj ; tn/C b.xj ; tn/ % ru.xj ; tn/ '
u.xj ; tn C$t / " u.xj ; tn/

$t
C

"b1.xj ; tn/
u.xj1!1;j2 ; tn/" u.xj1;j2 ; tn/

$x
" b2.xj ; tn/

u.xj1;j2!1; tn/" u.xj1;j2 ; tn/
$x

:

(9.15)

Adopting the standard notation unj D u.xj ; tn/, we write the scheme in the standard
explicit time marching form

unC1j D unj C
$t

$x
b.xj ; tn/ % .unj1"1;j2 " unj ; u

n
j1;j2"1 " unj /: (9.16)

Semi-Lagrangian schemes are based on a different way to construct the approx-
imation of (9.9), in particular this affects the discretization of the advection term
b.x; t/ % ru. Since this is a directional derivative, we can write

b.xj ; tn/ % ru.xj ; tn/ ' "
un.xj " ıb.xj ; tn// " unj

ı
; (9.17)

where ı is a “small” positive parameter, and un denotes an extension of the
numerical solution (at time tn) to be computed outside of the grid. Coupling the
forward finite difference in time with this approximation we get

unC1j " unj
$t

"
un.xj " ıb.xj ; tn// " unj

ı
D 0; (9.18)

and finally, choosing ı D $t , we obtain the scheme

unC1j D un.xj "$tb.xj ; tn//: (9.19)

This is the semi-Lagrangian scheme for (9.9) for f .x; t/ D 0. Note that, for
b.x; t/ & c (9.18) can be easily interpreted as a discrete version of the representa-
tion formula (9.11). Even in this simple case, the value at the point xj " $tc does
not belong to the grid G$x and must be obtained by interpolation on the values at the
grid nodes. We will denote by ˘Œw! the interpolation operator which reconstructs
locally the values of a function w only known on G$x. There are many possible
choices for ˘ , e.g. linear, bilinear or cubic interpolation (see also [32] for more
general choices). A very popular choice is the piecewise linear interpolation which
produces a monotone first order scheme.
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Now let turn our attention to the nonlinear case and consider the eikonal equation.
First note that

jru.x/j D max
a2B.0;1/

a % ru.x/: (9.20)

where B.0; 1/ denotes the unit ball centered at the origin. In fact, the maximum in
(9.20) is attained at a# D ru.x/=jru.x/j and this shows that the right-hand side
coincides with jru.x/j. Using now (9.20) to rewrite Eq. (9.3), we get

ut C max
a2B.0;1/

Œc.x; t/a % ru.x/! D 0: (9.21)

Since the term inside the square brackets is linear, we can apply the semi-Lagrangian
scheme for the advection equation obtaining the following scheme

unC1j D min
a2B.0;1/

Œun.xj "$tc.xj ; tn/a/!: (9.22)

Note that again un is computed at a point which in general is not a node of the
grid, this will require a local reconstruction via the interpolation operator ˘ . We
can write (9.22) in a more explicit way as

unC1j D min
a2B.0;1/

Œ˘Œun!.xj "$tc.xj ; tn/a/!: (9.23)

The meaning of the right-hand side is: to recover the correct solution of the nonlinear
stationary equation one needs to solve a family of advection problems corresponding
to a vector field pointing in every direction and then has to take the minimum
value among all possible ones. This step clearly requires a constrained optimization
method to be solved. In practice, for low order accuracy it suffices to compare a
finite number of values corresponding to a uniform discretization of the unit ball.

It is important to note that the SL scheme is up-wind by construction and this
explains its strong stability properties which allow to use large time steps with
respect to other methods.

The derivation of an efficient discretization scheme for the MCM equation is
more complicated. One can think to simply substitute cnj D knj where knj D k.xj ; tn/
is the curvature at the point xj at time tn. This can be done using a discrete version
of the curvature for the level set of the solution as in [43]. However, via a stochastic
interpretation of the equation, one can derive a semi-Lagrangian approximation
where the role of characteristics is taken by the solution of an appropriate stochastic
differential equation associated to the equation. More information on this approach
for the MCM can be found in [14] and are too technical to be presented here.
However, we will present the resulting SL scheme in Sect. 9.4.1.

In conclusion, the construction of SL-schemes is based on three essential
building blocks: an integration backward along the characteristics (or the gen-
eralized characteristics in the second order problem), an interpolation to get the
values at the foot of the characteristics and an optimization method to recover the
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minimum among all the values. The first step relies on standard techniques for
ordinary differential equation, the interpolation can be obtained either by standard
polynomial techniques or via more sophisticated techniques, for example ENO
(Essentially Non Oscillatory) or WENO (Weighted ENO) methods as in [13].
Finally, for the optimization step, one can simply discretize the unit ball or use a
minimization method without derivatives such as Brent algorithm [7]. An extensive
presentation of those building blocks and an analysis of SL schemes can be found
in [32].

9.3 Shape from Shading

As we said, we want to reconstruct a surface u.x/ from a single image.
This means that given an image I we are looking for the surface u.x/ corre-

sponding to the object represented in it. The irradiance function I is the datum
in the model since it is measured at each pixel x WD .x1; x2/ of the image, for
example in terms of a grey level (from 0 to 255). To construct a continuous model,
we will assume that I takes real values in the interval Œ0; 1!. The height function u
which is the unknown of the problem has to be reconstructed on the “reconstruction
domain” ˝ . The characterization of the surface via a partial differential equation
relies on several assumptions. Assume that there is a unique light source at infinity
whose direction is indicated by the unit vector ! D .!1; !2; !3/ 2 R3. Also assume
for simplicity that ! is given. For a Lambertian surface of uniform albedo equal
to 1, the reflectance function giving the brightness at a point on the surface is
R.#.x// WD ! % #.x/, where #.x/ is the unit normal to the surface at .x1; x2; u.x//.
This equation is called the irradiance equation. Recalling that the normal is given
by #.x/ D ."ux1 ;"ux2 ; 1/ we obtain the following equation

I.x/ D .!1; !2/ % ru.x/ " !3p
1C jru.x/j2

for x 2 ˝; (9.24)

which is a first order nonlinear partial differential equation of Hamilton-Jacobi type.
We have seen that in the vertical light source case (i.e. ! D .0; 0; 1/) this reduces to
the eikonal equation (9.1).

As we said, this equation must be complemented with boundary conditions.
A natural choice is to consider homogeneous Dirichlet type boundary conditions
corresponding to flat background i.e., setting

u.x/ D 0 for x 2 @˝: (9.25)

However, one can also choose a more general Dirichlet boundary condition

u.x/ D g.x/ for x 2 @˝: (9.26)
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Fig. 9.1 The image and its corresponding surface (approximation)

Fig. 9.2 (a) The original surface, (b) its brightness function in the plane, (c) the approximate
surface

The solution of the above Dirichlet problems (9.24) and (9.25) or (9.24) and (9.26)
will give the surface corresponding to grey level I.x/measured in˝ . To set u.x/ D
g.x/ at least on a part of the boundary we must know something about the surface.
This is the case for surfaces obtained by revolution around an axis (as for our vase
in Fig. 9.1).

In order to illustrate one of the features of the SL scheme, let us consider a virtual
image corresponding to the surface

u.x1; x2/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

2.1" jx1j/ x1 2 Œ"1; 1!; x2 2
$
"1;"1

2
jx1j "

1

2

%

2.1" jx2j/ x1 2 Œ"1; 1!; x2 2
$
1

2
jx1j C

1

2
; 1

%

1 " jx1j otherwise:

The surface looks like a “ridge tent” (see Fig. 9.2), so it is non regular but the
boundary conditions are very simple: 0 on each side of the rectangle. We apply our
SL scheme for the eikonal equation (9.22). Looking at the right picture of Fig. 9.2,
we can see that the algorithm is accurate around the kinks and that there are no
spurious oscillations where the gradient is discontinuous. Similar results have been
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obtained for other virtual and real images. A detailed presentation of these results as
well as a comparison with other numerical methods can be found in the survey [27].

Let us also mention that the same problem can be solved by applying optimiza-
tion methods based on the variational approach. The interested reader can find in
Horn and Brooks’ book [35] several results and references relating to the variational
approach. In this class of methods two basic ingredients must be chosen: the
functional which has to be optimized (in fact, minimized) and the minimization
method. The first difficulty encountered in the SfS problem is the choice of
unknowns. The natural unknown is of course height u as we have done before.
However, this is not the only choice since u appears in the image irradiance equation
only through its first derivatives p D @u=@x1 and q D @u=@x2, which are two non-
independent functions. In fact, for u 2 C2 we know that

@p=@x2 D @q=@x1: (9.27)

The only technical difficulty with these unknowns is that p or q becomes infinite
at each point x belonging to an occluding boundary. This is not a real trouble if no
point x in the reconstruction domain ˝ is such that I.x/ D 0. As equation (9.27)
is a hard constraint on p and q, the most natural functional associated with the
irradiance equation and (9.27) is

F1 .p; q;%/ D
Z

˝

Œr.p.x/; q.x// " I.x/!2 dxC
Z

˝

%.x/

$
@p

@x2
.x/ " @q

@x1
.x/

%
dx

(9.28)

where % is a Lagrange multiplier and the function r is such that r.p.x/; q.x// D
R.n.x//. Note that F1 is defined on the unknowns p, q and %. However Horn
and Brooks have shown that the three Euler equations associated with F1 can be
reduced, for u 2 C2, to the Euler equation associated with the following functional:

F2 .p; q/ D
Z

˝

Œr .p; q/ " I.x/!2 dx: (9.29)

The choice of p and q as unknown is due to the fact that the algorithms dealing
directly with u are very slow, this choice implies that at the end we will need also
another procedure to get back to u. Typically this is done integrating along paths.

As we said, in the previous model we have neglected the perspective deforma-
tions. New models have been studied to deal with this problem, which is usually
called in the literature Perspective Shape from Shading (PSfS in short) problem. Let
us define our model problem adopting the same notation used in [20] (a different
model with an attenuation term has been studied in [44]). The point .X0; Y0/ is
the principal point of the image, i.e. the intersection between the optical axis
of the camera and the perspective plane ˘ (the film). The parameters d and d 0

are respectively the distance of the optical lens from the perspective plane and
the distance of the optical lens from the (flat) background, l and l 0 D d 0

d
l are
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Fig. 9.3 Diagram of the optical lens and of the perspective transformation

respectively the length of a segment in the perspective plane (i.e. in the image)
and the length of the real segment corresponding to it (see Fig. 9.3 for more details).
The representation of the surface defined by points with coordinates .x; y; z/ in
terms of the .X; Y / coordinates of the points in the perspective plane is given by
three parametric equations

x D r.X; Y /; y D s.X; Y /; z D t.X; Y / (9.30)

where (see [20])
8
ˆ̂<

ˆ̂:

r.X; Y / D X " X0
d

t.X; Y /

s.X; Y / D Y " Y0
d

t.X; Y /:

(9.31)

The problem is then reduced to compute the third component t . Writing the classical
irradiance equation, taking into account the new variables for the perspective
deformation and introducing the new variable

t .X; Y / WD t.X; Y /C .X "X0; Y " Y0/ % rt.X; Y /; (9.32)

we can get the following eikonal type equation

$
d

t.X; Y /

%2
jrt.X; Y /j2 D I 2max

I 0.X; Y /2
" 1 in ˝ (9.33)



202 E. Carlini et al.

where

I 0.X; Y / WD I.X; Y /

cos4˛.X; Y /
; (9.34)

Imax is a constant depending on the parameters of the problem (typically is the
maximum value of I measured on the image) and the ˛ is the angle between the
optical axis and the the ray starting at a point of the scene and passing through
the optical center. Note that ˛ varies with the point. Moreover, the coefficient

cos4.˛.X; Y // D d4

..X "X0/2 C .Y " Y0/2 C d2/2
; (9.35)

is used to decrease the brightness of the points corresponding to a large ˛. Note that
˝ is the internal region bounded by the silhouette of the object (@˝ will denote its
boundary) which is embedded in a rectangular domain Q, so that the set Q n ˝ is
the background.

Defining

f .X; Y / WD 1

d2

"
I 2max

I 0.X; Y /2
" 1

#
(9.36)

we can write (9.33) in short as

jrt.X; Y /j D
p
f .X; Y /

ˇ̌
ˇt .X; Y /

ˇ̌
ˇ: (9.37)

We want to write (9.37) in a fixed point form and construct an approximation scheme
for this equation. To this end it is important to note that Nt has a sign. In fact, the
normal to the original surface in the point P is given by

bn.P / D N.P /=jN.P /j (9.38)

where

N.P / &
"
@t

@X
.X; Y /;

@t

@Y
.X; Y /;"Nt.X; Y /

#
(9.39)

and since "Nt must be positive (according to the orientation of the z axis in Fig. 9.3),
Nt must be negative. This implies that (9.37) is in fact

jrt.X; Y /j C
p
f .X; Y /.t.X; Y /C .X "X0; Y " Y0/ % rt.X; Y // D 0

which can be written in short as

H..X; Y /; t;rt/ D 0; in ˝ (9.40)
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Fig. 9.4 A real photograph of one page, 128 $ 128 pixels (left) and reconstructed surface with
Dirichlet boundary conditions (right)

where the HamiltonianH represents the left-hand side of (9.40). It should be noted
that, with respect to the classical SfS problem without perspective, we have an
additional term which is linear in rt .

Let us consider equation (9.40) complemented with the Dirichlet boundary
condition

t D g.X; Y / on @˝; where " d 0 ( g ( 0 (9.41)

The arguments presented in Sect. 9.2 for the approximation of the directional
derivative lead to the standard semi-Lagrangian scheme for (9.40) which we write
in a fixed point form as

t.X; Y / D F Œt !.X; Y /; in ˝ (9.42)

where the operator F is defined as

F Œt !.X; Y / WD 1

1C ı inf
a2B.0;1/

(
t

 
.X; Y /C ı

 
"a
p
f
" .X; Y /

!!)
; on ˝:

(9.43)

and B.0; 1/ is the unit ball in R2. Introducing a space discretization, and defining
xj D .Xj1 ; Yj2/, we can write for every node xj 2 ˝ \ G$x Eq. (9.42)

t.xj / D F Œt !.xj / WD
1

1C ı inf
a2B.0;1/

(
˘Œt !

 
xj C ı

 
"a

p
f .xj /

" xj
!!)

(9.44)

which gives the fully discrete semi-Lagrangian scheme for the PSfS problem.
Naturally, this equation must be complemented with the boundary conditions (9.41).

In the following test we start from a real photograph where the effect of
perspective is visible. The surface is a sheet of paper with the shape of a roof tile.
For this image the parameter values are: l D 6:91mm, d D 5:8mm, l 0D 200mm,
d 0D l 0

l
d D 167:87mm, $xD 0:05mm. We note that we performed a light cor-

rection in the preprocessing step, so we can assume ImaxD 1 during computation.
Figure 9.4 shows the photograph (128 # 128 pixels) and the surface reconstructed
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using Dirichlet boundary conditions (t D 0 on the left and right sides of the boundary
and t D g on the top and the bottom). We can see that the solution is quite good
considering the fact that light source (flash camera) is not far from the object and
that direction of light source is not perfectly vertical as the mathematical model
would have required.

9.4 Nonlinear Filtering via MCM

The aim of this section is to present two classical methods based on Mean Curvature
Motion for image restoration. These models can be written in the following general
form:

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

ut .x; t/ D div
" ru.x; t/
jru.x; t/j

#ˇ
jru.x; t/j .x; t/ 2 ˝ # .0; T !

u.x; 0/ D I0.x/ x 2 ˝
@u.x; t/
@#

D 0 .x; t/ 2 @˝ # .0; T !

(9.45)

where #.x/ is the normal direction at the point x. We will consider the case ˇ D 1
corresponding to classical Mean Curvature Motion (MCM) and the case ˇ D 1=3
corresponding to Affine Morphological Scale Space (AMSS). Here fu.x; t/gt%0
represents a family of successive restored versions of the initial noisy image I0.
The variable t is called the scale variable and, as t increases, we expect u.x; t/
be a smoothed image, in which the noise has been removed. The model is able
to preserve significant features, like edges and corners, which are typically lost
when using linear PDE-methods based on the heat equation where the smoothing
effect is isotropic. In curvature-related diffusion, the smoothing effect is anisotropic,
i.e. the diffusion depends on the image and is not constant in all directions. The
model with ˇD 1 corresponds to “pure” anisotropic diffusion and it was introduced
for image processing by Alvarez et al. in [1]. The term div

&
ru.x;t/
jru.x;t/j

'
jru.x; t/j

represents a degenerate diffusion term, which diffuses in the direction orthogonal
to the gradient ru and does not diffuse in the direction of ru. In fact, denoting by

&.ru/ D
&
ru
jruj

'?
the unit vector orthogonal to ru, a formulation of the previous

equation with respect to &.ru/ would be:

ut D &.ru/>D2u&.ru/;

where D2u is the Hessian matrix with respect to x. This equation admits a unique
continuous viscosity solution, if u.x; 0/ is bounded uniformly continuous, see
[18, 29].

In the paper [2] by Alvarez et al., a connection between scale space analysis
and PDEs is proved, the authors also show that the MCM operator satisfies mostly
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Fig. 9.5 Shrinking of an ellipse by MCM (left) and AMSS (right)

all the relevant properties in multi-scale analysis as monotonicity, invariance under
grey scale change, translation invariance. Moreover, they prove that the only
operator satisfying all these properties together with affine invariance is the model
represented by (9.45) with ˇ D 1=3. Affine invariance requires the solution of the
equation to be invariant with respect any affine transformation: let fTtgt%0 represents
a family of operators which applied to the original image yields a sequence of
images u.x; t/ D Tt.u/, solution of (9.45), then the affine invariance is stated as
follows:

Tt.u ı '/ D Tt !jJ' ju ı '
for any affine map ', where J' represents the Jacobian of ', which is an
invertible matrix. Such property guarantees that shapes are better maintained during
smoothing, a classical example is the evolution of an ellipse. It is well known that
under MCM any convex curve will propagate to a circle and then collapse to point,
instead by the AMSS model the ellipse will collapse to a point preserving the
shape, we show the evolution of an ellipse by MCM and AMSS in Fig. 9.5. This
property makes the AMSS model particularly attractive for image analysis. In next
section, we will show a semi-Lagrangian approximation of both equations with an
application to image denoising.

9.4.1 SL Approximation for the Nonlinear Filtering Problem
via MCM

We present a semi-Lagrangian (SL) scheme to approximate equation (9.45) for
MCM, case ˇ D 1, and AMSS, case ˇ D 1=3. For the first equation, we use the
scheme described in [14], where a fully explicit scheme is obtained. We denote
by unj the numerical approximation of u.x; t/ at the node .xj ; tn/ 2 G$x;$t , by
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Fig. 9.6 Original, noisy (( D 12) and filtered image by MCM (C D 0:02, s D 1, $x D 1,
$t D 0:25, N D 5)

Dn
j the central finite difference approximation of the space gradient, by D.j / D
f.j1 C 1; j2/; .j1 " 1; j2/; .j1; j2 C 1/; .j1; j2 " 1/g and we define &nj D &.Dn

j /.
Now, we can write the SL scheme for MCM:

unC1j &

8
ˆ̂̂
<

ˆ̂̂
:

1

2

&
˘Œun!.xj C &nj

p
$t/C˘Œun!.xj " &nj

p
$t/

'
if jDn

j j > C$xs

1

4

X

i2D.j /

uni if jDn
j j ( C$xs:

(9.46)

Here, C and s are positive constant. Let us notice that the vector &nj D &.Dn
j / is

defined only where the discrete gradient Dn
j is not vanishing. When the gradient is

zero the MCM is consistent with the heat equation, see [14, 22]. Then, in the case
jDn

j j ( C$xs , the numerical solution is obtained as an average of the neighboring
values, so that on these points the scheme results to be consistent with the following
heat equation

ut D
$x2

4$t
$u:

We show an application of the scheme to filter noisy image. The noisy image is
obtained adding Gaussian white noise of mean 0 and variance .(=255/2 to a given
clean image, Iex (note that the noise parameter has been denoted by ( to avoid
confusions). In all the tests we have chosen a cubic interpolation, and in order to
deal with non-smooth data we have regularized the gradient usingG )ru, whereG
is a smoothing kernel. Moreover we have used the following approximation .G)ru/
.xj ; tn/ ' 1

4

P
i2D.j / D

n
i . The errors are measured by a relative L1 discrete norm

k % k1;r , defined as follows:

kIex.%/" uN! k1;r WD
P

xj2G$x jIex.xj /" uNj jP
xj2G$x jIex.xj /j

:

In Figs. 9.6 and 9.7 we show the clean image, the noisy image and the restored
image.
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Fig. 9.7 Original, noisy ((D 25) and filtered image by MCM (C D 0:02, sD 1, $xD 1,
$tD 0:25, N D 5)

Fig. 9.8 L1 errors (y"axis) and time iteration (x"axis) for MCM model applied to a noisy images
with ( D 12 (left) and ( D 25 (right)

In Fig. 9.8 we show the relativeL1 discrete errors evolution with respect to t . We
see that in few iterations we reached the minimization of the L1 errors.

To describe the SL scheme for the AMSS model, we first need to remind that the
equation (9.45) in this case can be rewritten as following:

ut D
(
b&.ru/>D2ub&.ru/

)1=3
;

whereb&.ru/ D .ru/?, see for instance [34]. Then we introduce an extra parameter
), we defineb&nj WD b&.Dn

j / and we take a directional second finite difference:

b&.ru/>D2ub&.ru/.xj ; tn/ '
u.xj C )b&nj ; tn/C u.xj " )b&nj ; tn/" 2unj

)2
: (9.47)

Finally, the SL scheme is written as

unC1j &

8
ˆ̂<

ˆ̂:

wnC1j if jDn
j j > C$x

1

4

X

i2D.j /

wnC1i if jDn
j j ( C$x
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Fig. 9.9 Original, noisy (( D 12) and filtered image by AMSS (C D 0:02, s D 1, $x D 1,
$t D 0:2, ) D .$t /1=6, N D 10/

Fig. 9.10 Original, noisy (( D 25) and filtered image by AMSS (C D 0:02, s D 1, $x D 1,
$t D 0:25, ) D .$t /1=6, N D 10)

where

wnC1
i &

8
<̂

:̂

uni C$t
"
˘Œun!.xi C )b&ni /C˘Œun!.xi " )b&ni / " 2uni

2)2

#1=3
if jDn

i j>C$x

uni if jDn
i j(C$x:

Such scheme as been proposed in [12], where a convergence result for its monotonic
version is proved.

Let us notice that in this case the vector b& is always defined, anyhow we need
to consider differently the case b& D 0. In fact, if we would use the approximation
(9.47) on the points where b& D 0, no diffusion would happen. On these points,
we extend the solution by continuity: we take an average of the numerical solution,
computed at the previous step when b& is small, computed using (9.47) when b& is
big.

As for the previous model, we have chosen a cubic interpolation and regularized
the gradient.

In Fig. 9.9 and in Fig. 9.10, we show respectively the clean image, the noisy
image and the restored image. In Fig. 9.11 we show the relative L1 discrete errors
evolution with respect to t . We see that in few iterations the minimum error is
reached.
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Fig. 9.11 Errors for MCM model for noisy images (left ( D 1, right ( D 25)

9.5 Segmentation via the LS Method

The segmentation problem in computer vision, as formulated by Mumford and Shah
[40], can be defined in the following way: given an observed image I0 W ˝ ! Œ0; 1!,
find a decomposition of disjoint open sets ˝ D S

i ˝i and C D S
i @˝i , such

that I0 varies smoothly within each ˝i and rapidly or discontinuously across the
boundaries of ˝i . We denote by jC j the length of curves which belong to C .

A classical way to solve this problem is solving the following minimization
problem:

inf
I;C
FMS.I; C / (9.48)

where

FMS.I; C / D *
Z

˝

.I " I0/2dxC (
Z

˝nC
jrI j2dxC %jC j (9.49)

and %; ( are fixed parameters of weight for the different terms of the functional.
For a minimum .I#; C #/, I# is an optimal piecewise smooth approximation of the
initial image I0, and C # approximates the edges of I0. I# will be smooth on˝ nC
and will have its discontinuities on C #.

Theoretical results of existence of minimizers for this problem can be found in
Mumford and Shah [40], Morel and Solimini [38] and De Giorgi et al. [26].

A reduced case can be obtained by restricting the segmentation image I to
piecewise constant functions, i.e. for ci D mean.I0/ in ˝i then I & ci inside
each ˝i . In this event, for the special case i D f0; 1g (that is the classical case of
segmenting one object from the background image) the problem (9.48) becomes
minimizing

EMS.c0; c1; C / D *
Z

˝0

.I0 " c0/2dxC *
Z

˝1

.I0 " c1/2dxC %jC j: (9.50)
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We want now to use LS methods to solve this problem. LS methods are a very useful
tool for computing evolving contours since they accommodate topological changes
and allow to compute on a simple structured grid. For LS methods the curve C
is defined as the zero-level set of a sufficiently regular function ' called level set
function, i.e. '.x/ < 0 for x 2 ˝0 and '.x/ > 0 for x 2 ˝1.

In this formulation, denoting by H.'/ the usual Heaviside function, (9.50)
becomes (see [17])

EVC .c0; c1;'/ D *

Z

˝

.I0 " c0/2H.'/dxC *
Z

˝

.I0 " c1/2.1 "H.'//dx

C%
Z

˝

jrH.'/jdx: (9.51)

ConsideringH+ and ı+ two C1 regular approximations of the Heaviside functionH
and of the delta function so thatH 0+ D ı+, we can write the Euler-Lagrange equation
corresponding to the energyEVC obtaining

@'

@t
D ı+.'/

$
%div

" r'
jr'j

#
" *.I0 " c0/2 C *.I0 " c1/2

%

where c0 D
R
˝ I.x/H.'/dxR
˝ H.'/dx

; c1 D
R
˝ I.x/.1 "H.'//dxR

˝.1 "H.'//dx
: (9.52)

This is a time dependent equation converging to a steady solution witch is a
minimizer of the functional (9.50).

A standard rescaling can be made, as in Zhao et al. [49], by replacing ı.'/ by
jr'j. This time rescaling does not affect the steady state solution, but helps remov-
ing stiffness near the zero level sets of '. Finally, we get the following nonlinear
evolution equation:

@'

@t
D jr'j

$
% div

" r'
jr'j

#
" *.I0 " c0/2 C *.I0 " c1/2

%
(9.53)

which is solved for t tending to C1, yielding the solution of the segmentation
problem.

9.5.1 SL Scheme for Segmentation via the LS Method

In this section, we describe a SL approximation for Eq. (9.53). This equation has
a first-order and a second-order term, which we approximate using SL schemes
introduced in previous sections. We call c.x/ the speed of propagation of the first-
order term,

c.x/ D "*.I0 " c0/2 C *.I0 " c1/2; (9.54)
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and using (9.20) we obtain

@'

@t
D % div

" r'
jr'j

#
jr'j C c.x/ max

a2B.0;1/
fa % r'g : (9.55)

As in every SL approximation, we want to build first an approximation of the
directional derivative. This implies that the velocity c.x/ will appear directly inside
the argument of the unknown function '. For this particular problem, we have to
take care of the change of sign of the velocity since will produce a sign change also
in our scheme. We can rewrite (9.55) as

@'

@t
D

8
ˆ̂<

ˆ̂:

% div
" r'
jr'j

#
jr'j C max

a2B.0;1/
fc.x/a % r'g ; where c.x/ $ 0

% div
" r'
jr'j

#
jr'j " max

a2B.0;1/
f"c.x/a % r'g ; where c.x/ < 0:

(9.56)

Next, we define 'nj D '.xj ; tn/ where .xj ; tn/ 2 G$x;$t .
Using, the schemes (9.46) for the second order term, and (9.22) for the first order

term, and explicit Euler finite differences for the temporal derivative, Eq. (9.56)
becomes

'nC1j " 'nj
$t

D %

!
1

2
˘ Œ'n! .xj C &nj

p
$t/C 1

2
˘ Œ'n! .xj " &nj

p
$t/

*
" 'nj

$t

" sign
(
c.xj /

)
min

a2B.0;1/

˘Œ'n!.xj C ac.xj /$t/ " 'nj
"$t ; (9.57)

where we have used the fact that "max."p/ D min.p/ and mina2B.0;1/.a % f / D
mina2B.0;1/."a % f / to simplify the notations.

Then, we get the fully discrete SL scheme:

'nC1j D 'nj C %
!
1

2
˘ Œ'n! .xj C &nj

p
$t/C 1

2
˘ Œ'n! .xj " &nj

p
$t /" 'nj

*

Csign
(
c.xj /

) !
min

a2B.0;1/
˚
˘Œ'n!.xj C ac.xj /$t/

+
" 'nj

*
; (9.58)

and coherently with (9.46) in the case of discrete space gradient jDn
j j ( C$xs .

We used this scheme to segment a variety of images, the results are shown in
Figs. 9.12–9.14.

The most interesting feature of this approach is that the method is very rapid.
While in classical finite difference schemes the information runs just one pixel for
iteration, in this case we take information from a larger set. In particular to compute
the value on the grid point xj we use all the values on the grid nodes that are
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Fig. 9.12 Segmentation:
% D 0:1, * D 104,
two iterations

Fig. 9.13 Segmentation:
% D 1, * D 0:3 # 104 ,
two iterations

Fig. 9.14 Segmentation:
% D 1, * D 0:3 # 104 ,
two iterations

contained in a ball centered in xj with radius c.xj /. This is the reason of the rapid
convergence of the scheme. In our tests we found the correct segmentation of the
image always after 3 or less iterations. However, this is an experimental observation,
a detailed treatment of SL scheme performances on this problem is still missing.

9.6 The Motion Segmentation Problem

Optical flow is the motion field in an image sequence; this problem belongs to the
more general problem of motion estimation. Motion estimation and segmentation
are strongly related topics that can increase the performances from each other. In
particular segmentation can help us to solve the classical ambiguity near motion
boundaries.
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Both topics are traditional in computer vision. Various approaches to optical flow
computation have been suggested in [5], especially variational techniques based on
modifications of the method of Horn and Schunck [36] have yielded very convincing
results.

Also in segmentation, variational techniques perform well. As we showed in the
previous section, segmentation can be obtained minimizing the functional (9.48). In
recent years the functional optimization is computed using LS methods [43].

In [3] and in [10], the authors propose to compute optical flow coupling
estimators for optical flow and segmentation problem in a Mumford and Shah-
like functional. Due to the presence of unspecified discontinuities in the integration
domain, the minimization of this kind of functionals is difficult and we are going to
solve it using level set techniques.

We will use the studied semi-Lagrangian schemes for the Mean Curvature
Motion in this situation, to compute the front propagation of a level set function.
Later, we compare the results for this application, in terms of accuracy and speed.
The variational model which we use, is based on the optical flow functional
used in various works (for a short summary the dedicated section in [9]) and the
segmentation model presented in [16].

Given two images I0.x/; I1.x/ W˝!R, we have to find, at each point x 2˝ the
optical flow vector w.x/ W R2!R2 that describes the shift of the pixel at x in the
image I0 to the new location x C w in the image I1. Let us assume the following
classical constraints: I0.x C w/D I1.x/ this is grey level constancy. It means that
a pixel does not change its brightness from an image to the next. The second
important principle is gradient constancy, an assumption that makes the model
robust with respect to global additive illumination changes in the scene. So, our
term of consistency with the data is

fof .w/ D kjI0.x C w/" I1.x/j2 C , jrI0.x C w/" rI1.x/j2: (9.59)

The minimization of an optical flow functional with only the image constancy
assumptions is ill-posed, to overcome this problem, a smoothness term regularizing
the flow field is considered. The typical smoothness term as in [36] is

sof .w/ D jrwj2: (9.60)

Using this term, nevertheless, we introduce regularization of the field and the known
ambiguities along the discontinuities. For this reason, we place the smoothness term
in a Mumford-Shah-like functional that provide to add regularization only in the
regions of regularity of the solution.

Finally, calling " the discontinuity set of the optical flow, and j" j the length of
the curve, we want to minimize the following functional

E.w;" / D
Z

˝

kjI0.x C w/ " I1.x/j2 C , jrI0.x C w/ " rI1.x/j2dx

C%
Z

˝n"
jrwj2dxC (j" j: (9.61)
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This energy functional follows the principle of motion competition proposed for
example in [23] and in [3], that was inspired by the work on segmentation by Vese
and Chan [48]. This energy drives the interface of discontinuity and, simultaneously,
makes an estimation of the optical flow in the different regions of smoothness.

In the optimization problem related to (9.61), if at the same time the optical
flow, the number or regions separated by " and the position of the curve " are
all unknown, then minimization can be hard. For this reason, in the next section
we will consider the following simpler case. The motion field has an interface of
discontinuity that divides the domain ˝ in only two regions; inside these regions
the motion field is constant. This choice is made for simplicity, and because, in this
section, our aim is to present an easly understandable case. However, more general
situations can be considered, e.g. in [10].

9.6.1 SL Scheme for the Motion Segmentation Problem

We want to deal with the functional (9.61) in a similar way as in segmentation,
so we define a level set function ' such that the interface of discontinuity of the
motion field " is the 0-level set of '. Then, using the Euler-Lagrange equation and
considering a time dependent equation converging to a steady solution which is a
minimizer of the energy functional (9.61), we get the following evolutive equation:

@'

@t
D jr'j

$
( div

" r'
jr'j

#
C Œfof .wC/ " fof .w"/! " %

,
sof .wC/" sof .w"/

-%

(9.62)

where, wC and w" are the constant values of w inside and outside " : we discretize
this equation with the same technique as in (9.58). We obtain the following
numerical scheme:

'nC1j D 'nj C (
!
1

2
˘ Œ'n! .xj C &nj

p
$t/C 1

2
˘ Œ'n! .xj " &nj

p
$t /" 'nj

*

Csign.c.xj //
!

min
a2B.0;1/

˚
˘Œ'n!.xj C ac.xj /$t/

+
" 'nj

*
; (9.63)

where the first-order velocity term c.xj / is

c.xj / D
h
fof .wCj / " fof .w"j /

i
" %

h
sof .wCj / " sof .w"j /

i
: (9.64)

We used this scheme for two simple tests obtaining the results shown in Fig. 9.15
and 9.16. The first is a synthetic sequence where a ball is moving on a background,
the second one is a small box taken from a more complicated real sequence
(available on the site [47]). In these tests we have small displacements so we do
not need a coarse-to-fine framework to capture larger ones.
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Fig. 9.15 Motion
segmentation: % D 0:4,
k D 0:5 # 105 , ( D 2,
, D 0:2, convergence
in five iterations

Fig. 9.16 Motion
segmentation: % D 0:4,
- D 0:5 # 105, ( D 2,
, D 0:2, convergence
in four iterations

9.7 Conclusions

As we have seen in the previous sections, the approximation schemes based on
the semi-Lagrangian approximation of first and second order partial differential
equations can be successfully applied to the solution of classical image processing
problems. The main features of SL schemes are the following:

– They mimic the method of characteristics and give even in their simplest
version a more accurate approximation with respect to first order finite difference
schemes;

– High-order approximation schemes can be obtained coupling high-order methods
for integrating back along the characteristics (e.g. Heun, Runge-Kutta) with
high-order interpolation techniques (e.g. polynomial, essentially non-oscillatory
(ENO), weighted ENO);

– They can be applied to structured and unstructured grids, so they are well suited
also to problems where there is a need to use triangular grids as, for example, in
computer vision;

– SL approximation allows to obtain accurate schemes even for second order
nonlinear degenerate equations. Such approximations are fully explicit (i.e. with
moderate computing cost) and allow for large time steps. It is important to note
that the last property is crucial when we look to the asymptotic behavior for t
tending toC1. Since this implies a time integration over a large interval. a large
time step guarantees a fast convergence to the steady state;
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– SL schemes have shown to be rather robust when applied to non smooth data, as
noisy images. Moreover, in the time marching evolution there is less need for a
re-initialization in order to keep the level sets and acceleration techniques (such
as Fast Marching methods, [24, 45]) can be implemented.

A detailed analysis of these methods for first order model problems can be found
in the book [32] and some of the results for second order problems can be found in
[12,14]. We conclude observing that there are still many open problems in the theory
of SL schemes, e.g. in the construction and analysis of high-order approximations
and acceleration methods (fast sweeping, fast marching). We are confident that these
methods will be also useful for new challenging applications in image processing.

References

1. Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by
nonlinear diffusion. SIAM J. Numer. Anal. 29, 845–866 (1992)

2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of
image processing. Arch. Ration. Mech. 123, 199–257 (1993)

3. Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. Comput. Vis.
68(2), 111–124 (2006)
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Chapter 10
Shape Reconstruction of Symmetric Surfaces
Using Photometric Stereo

Roberto Mecca and Silvia Tozza

Abstract The reconstruction of a 3D surface through one gray scale digital image
does not admit a unique solution in the orthographic Shape from Shading (SfS)
framework. With the aim to make this type of problem well-posed it is possible to
use the Photometric Stereo (PS) technique. It allows to add information about the
surface introducing other images of the object taken from the same point of view
but modifying, for each photo, the direction of the light source. The methods that
use the PS technique with the orthographic model of SfS need of, at least, three
images. However, even if three images are used, there is the possibility that the
SfS-PS problem continues to be ill-posed. This is the case when the three images
are taken using three coplanar light vectors. This work analyses this kind of ill-
posedness in order to understand how it is possible to establish a connection among
the images that do not guarantee uniqueness. A further result in this paper is given
by a geometrical characterization of the surfaces for which it is possible to solve the
classic SfS problem.

10.1 Introduction to the Shape from Shading: Photometric
Stereo Model and Symmetric Surfaces

The Shape from Shading (SfS) problem consists on the 3D reconstruction of an
object starting from only one gray scale photo. In the framework of the shape recon-
struction the classical orthographic SfS problem fails its aims using only one digital
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image for the reconstruction of the corresponding surface. Our contribution is given
by the SfS model where we are considering the following hypotheses:

1. The light sources are at infinity;
2. The surface is Lambertian;
3. The optical point is sufficiently far from the surface so that perspective deforma-

tions can be neglected.

In this case the SfS model is given by the following irradiance equation:

!.x; y/.n.x; y/ ! !/ D I.x; y/ (10.1)

where !.x; y/ is the albedo (supposed constant and equal to one), n.x; y/ D
.n1.x; y/; n2.x; y/; n3.x; y// is the unit outgoing normal to the unknown surface
z D u.x; y/, ! D .!1; !2; !3/ D .e!;!3/ is the direction of the light source and
I W ˝ ! Œ0; 1" is the image function.

Under the previous assumptions this inverse problem is ill-posed due to the
concave/convex ambiguity. Many papers show the impossibility to have a unique
solution for this SfS model (see [2, 5]). In order to avoid this ambiguity we can add
information of the surface considering other data of the same type.

The Shape from Shading problem with the Photometric-Stereo techniques (SfS-
PS) uses more than one image of the same surface taken from the same point of
view, but using a different light source for each image, that is:

n.x; y/ ! !i D Ii .x; y/: (10.2)

Let us clarify by now the meaning of coplanar light sources: since we consider
each light source as a unit vector in R3, we will talk about coplanar light sources
with the same meaning of coplanar unit vectors. That is, we will say that three or
more light sources are coplanar if the representing vectors are coplanar.

There are many possible approaches to model the SfS-PS problem (e.g. [11, 12,
15]). The main two ways that allow to reconstruct the surface are the normal vector
field approach [6] and the differential approach [13] which we briefly describe later.

The main difference between these approaches is that the first one is a local
approach that works pixel by pixel in order to find the normal vector field of the
unknown surface and then it reconstructs the surface z D u.x; y/ all over the domain
using the gradient field [6]. The second approach instead works globally: it is based
on a differential problem that, using only two images, can recognize the shape of the
object but, as we will see, this differential problem is well-posed only if the Dirichlet
boundary condition (i.e. the height of the surface on the boundary) is known. In
order to use it we need to approximate the boundary condition and another image
must be added making the problem well-posed with three images.

We emphasize one more time that both approaches need three image functions
and our goal is to characterize this kind of functions with the aim to reduce the
number of images needed considering the symmetry of the surface. There are several
previous studies [3, 7] where this geometric constraint is used together with the
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photometric features. In particular there are works that focus on this field detecting
the symmetries in the images [8, 14]. Other papers in which a single image of
a symmetric object can be regarded as two images of another object taken from
two different points of view and two different illumination directions [20] or other
similar approaches as [9, 10].

In Sect. 10.2 we recall the local and the differential approach. We explain the
impossibility to solve the SfS-PS problem with both approaches using three images
obtained with three coplanar light source vectors. In this section we give a definition
of linear dependent images used in all the subsequent sections. In Sect. 10.3 we
introduce an algorithm for the “artificial” reconstruction of linear dependent images.
Finally in Sect. 10.4 we study how it is possible to reduce the number of necessary
images for the shape reconstruction of a symmetric surface. The main result in this
section is the theorem that explains how to solve the SfS problem (with only one
image) through the SfS-PS formulation when the surface under observation has at
least four axes of symmetry. In the last section we present some numerical tests
related to the algorithms presented.

10.2 Condition of Linear Independent Images for the SfS-PS
Reconstruction

We recall briefly the mathematical formulation of the approaches introduced in the
previous section.

10.2.1 Normal Vector Approach

As we have anticipated, the local approach solves the problem finding the outgoing
normal vector to the surface locally, that is pixel by pixel [4, 6]. This means that,
once we discretize the image domain ˝ with an uniform lattice ˝d D ˝d [ @˝d ,
the following system is solved for every .xi ; yj / 2 ˝d :

8
ˆ̂<

ˆ̂:

!01n1.xi ; yj /C !02n2.xi ; yj /C !03n3.xi ; yj / D I1.xi ; yj /
!001 n1.xi ; yj /C !002 n2.xi ; yj /C !003 n3.xi ; yj / D I2.xi ; yj /
!0001 n1.xi ; yj /C !0002 n2.xi ; yj /C !0003 n3.xi ; yj / D I3.xi ; yj /:

(10.3)

As explained before, next step for this method is to approximate the values of the
height of the surface starting from the knowledge of its gradient field (i.e. knowing
ru.xi ; yj /8.xi ; yj / 2 ˝d ) [6]. In fact, using the definition of the outgoing normal
vector:

n.x; y/ D ."ru.x; y/; 1/
p
1C jjru.x; y/jj2

D

!
" @u

@x
.x; y/;" @u

@y
.x; y/; 1

"

p
1C jjru.x; y/jj2

; (10.4)
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Fig. 10.1 Schematic representation of the Earth lighted up in three different times by the Sun

it follows:

ru.xi ; yj / D
 
" n1.xi ; yj /
n3.xi ; yj /

;"n2.xi ; yj /
n3.xi ; yj /

!
: (10.5)

In the local method it is very easy to see that the uniqueness of the normal field
can be reached using the non-singularity of the matrix with respect to the linear
system (10.3), namely:

A D

0

@
!01 !02 !03
!001 !002 !003
!0001 !0002 !0003

1

A ; (10.6)

that is supposing the non-coplanarity of the three light sources.
An important example that explains why the case of coplanar light sources is

not trivial, is represented by the natural phenomenon of the sun illumination of the
solar system planets (like Earth). In fact, since these planets are moving on a elliptic
trajectory around the sun, we can see the sun as a light source moving on a plane
(see Fig. 10.1).

10.2.2 PDE Approach

The differential approach is based on a global method to solve the problem given by
the following non-linear PDEs system of the Hamilton-Jacobi type:

8
ˆ̂<

ˆ̂:

"ru.x; y/ !e!0 C !03p
1C jjru.x; y/jj2

D I1.x; y/; 8.x; y/ 2 ˝
"ru.x; y/ !e!00 C !003p
1C jjru.x; y/jj2

D I2.x; y/; 8.x; y/ 2 ˝
(10.7)

with the Dirichlet boundary condition u.x; y/ D g.x; y/ known for all .x; y/ 2 @˝ .



10 Shape Reconstruction of Symmetric Surfaces Using Photometric Stereo 223

This system can also be studied eliminating the non-linearity [13]. We can then
consider the following hyperbolic problem:

(
b.x; y/ ! ru.x; y/ D f .x; y/; a.e. .x; y/ 2 ˝

u.x; y/ D g.x; y/; 8.x; y/ 2 @˝
(10.8)

where

b.x; y/ D .I2.x; y/!01 " I1.x; y/!001 ; I2.x; y/!02 " I1.x; y/!002 / (10.9)

and
f .x; y/ D I2.x; y/!03 " I1.x; y/!003 : (10.10)

For the differential method some other passages have to be done in order to
see the necessity to have non-coplanar light sources. It is clear that only taking
pictures is not possible to get the height of the surface on the boundary points (i.e.
the boundary condition g.x; y/).

This supplementary information is necessary to make (10.8) well-posed and
that is why we need to compute it. In fact the approximation of the Dirichlet
boundary condition g.x; y/ binds us to use another image (we call it I3, as in
the previous approach). This step allows us to start solving the problem with the
same starting data set (i.e. !0, !00, !000 and the respective images I1, I2, I3) for both
approaches.

It is clear that we can approximate the boundary condition g.x; y/ using the
previous local method that is using (10.3) for all pixels .xi ; yj / 2 @˝d . With
the aim to emphasize that also using the differential approach the condition of
non-coplanarity is required, we use the combinations of the three images in the
hyperbolic model in order to approximate the boundary condition.

We consider the following system of hyperbolic equations:

8
<

:

b.1;2/.x; y/ ! ru.x; y/ D f .1;2/.x; y/; a.e. .x; y/ 2 ˝
b.1;3/.x; y/ ! ru.x; y/ D f .1;3/.x; y/; a.e. .x; y/ 2 ˝
b.2;3/.x; y/ ! ru.x; y/ D f .2;3/.x; y/; a.e. .x; y/ 2 ˝

(10.11)

where

b.h;k/.x; y/ D .Ik.x; y/!h1 " Ih.x; y/!k1 ; Ik.x; y/!h2 " Ik.x; y/!k2 /

and
f .x; y/.h;k/ D Ik.x; y/!h3 " Ih.x; y/!k3

where .h; k/ is the combination of two of the first three natural integer without
repetition. In other words .h; k/ contains the indices (and the respective light
sources) of the images we are using. Then, using these equations, a way to
approximate the boundary condition is to choose two of the previous three equations
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and to consider them in a generic boundary point .xi ; yj / 2 @˝d obtaining the
following linear system:

8
ˆ̂<

ˆ̂:

b
.1;2/
1 .xi ; yj /

@u
@x
.xi ; yj /C b.1;2/2 .xi ; yj /

@u
@y
.xi ; yj / D f .1;2/.xi ; yj /

b
.1;3/
1 .xi ; yj /

@u
@x
.xi ; yj /C b.1;3/2 .xi ; yj /

@u
@y
.xi ; yj / D f .1;3/.xi ; yj /:

(10.12)

It permits to compute the gradient field of u on the boundary points and then we
can approximate the value of the height of u using some well know algorithm [4,6].

Considering the coefficient matrix of the latter linear system it is possible to find
a relation between the non-singularity of the matrix A (from (10.6)) and the matrix
of the linear system (10.12) proving the following proposition:

Proposition 10.1. Let

L.xi ; yj / D
 
b
.1;2/
1 .xi ; yj / b

.1;2/
2 .xi ; yj /

b
.1;3/
1 .xi ; yj / b

.1;3/
2 .xi ; yj /

!
: (10.13)

Then det.L.xi ; yj // D 0 8.xi ; yj / 2 ˝d if and only if !0, !00, !000 are coplanar.

Proof. ()) Let us prove that: det.L.xi ; yj // D 0 implies !0, !00, !000 coplanar.
We generalize the proof by simplifying the notation instead of considering the

dependence on a specific point .xi ; yj /. We explicit the functions that appear in the
matrix L in terms of the images and of the light sources and we obtain:

det.L/ D !01!02I2I3 " !01!0002 I1I2 " !001 !02I1I3 C !001 !0002 .I1/2"

" Œ!01!02I2I3 " !0001 !02I1I2 " !01!002 I1I3 C !0001 !002 .I1/2"
D I1Œ"!01!0002 I2 " !001 !02I3 C !001 !0002 I1 C !0001 !02I2 C !01!002 I3 " !0001 !002 I1"
D I1Œ."!01!0002 C!0001 !02/I2C ."!001 !02C!01!002 /I3C ."!0001 !002 C!001 !0002 /I1":

(10.14)

Let us consider the case where the three images I1, I2 and I3 are defined by the
surface u and the respective light sources as follows:

I1.x; y/ D
"!01 @u

@x
.x; y/ " !02 @u

@y
.x; y/C !03p

1C jjru.x; y/jj2
;

I2.x; y/ D
"!001 @u

@x
.x; y/ " !002 @u

@y
.x; y/C !003p

1C jjru.x; y/jj2
;

I3.x; y/ D
"!0001 @u

@x
.x; y/ " !0002 @u

@y
.x; y/C !0003p

1C jjru.x; y/jj2
:

(10.15)
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Replacing the previous equalities in (10.14) we have:

det.L/ D

I1

#
1

p
1Cjjru.x; y/jj2

$#
@u
@x
.!01!

00
1 !
000
2 "!02!001 !0001 /C

@u
@y
.!01!

00
2 !
000
2 " !02!002 !0001 /"

!01!
00
3 !
000
2 C !02!003 !0001 C

@u
@x
.!02!

00
1 !
000
1 " !01!002 !0001 /C

@u
@y
.!02!

00
1 !
000
2 " !01!002 !0002 /"

!02!
00
1 !
000
3 C !01!002 !0003 C

@u
@x
.!01!

00
2 !
000
1 " !01!001 !0002 /C

@u
@y
.!02!

00
2 !
000
1 " !02!001 !0002 /"

!03!
00
2 !
000
1 C !03!001 !0002

$
: (10.16)

Since the common denominator (1Cjjru.x; y/jj2) is always different from zero, we
can continue the computation considering only the numerator of (10.16). Explicit I1
using (10.15) we can write as follows:

@u
@x

#
" !01

%
" !01!003 !0002 C !02!003 !0001 " !02!001 !0003

C !01!002 !0003 " !03!002 !0001 C !03!001 !0002
&$

C @u
@y

#
" !02

%
" !01!003 !0002 C !02!003 !0001 " !02!001 !0003

C !01!002 !0003 " !03!002 !0001 C !03!001 !0002
&$

C !03
%
" !01!003 !0002 C !02!003 !0001 " !02!001 !0003 C !01!002 !0003 " !03!002 !0001 C !03!001 !0002

&
:

(10.17)

With the aim to prove the coplanarity of !000 with respect to !0 and !00, we define
the direction parameters of the plane generated by these last two vectors:

s D !02!003 " !03!002 ;
l D !03!001 " !01!003 ;
m D !01!002 " !02!001 :

(10.18)

The direction parameters .s; l; m/ of a plane represent a vector orthogonal to it,
therefore, orthogonal to every vector v D .v1; v2; v3/ belonging to the plane. This
means that:

sv1 C lv2 Cmv3 D 0: (10.19)
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Now, considering det.L/.x; y/ (without denominator) as a polynomial in the
variables # D @u

@x
.x; y/ and $ D @u

@y
.x; y/, we have:

det.L/.#; $/ D

#

#
" !01

!
!0001
%
!02!

00
3 " !03!002

&
C !0002

%
!03!

00
1 " !01!003

&
C !0003

%
!01!

00
2 " !02!001

&"$
C

$

#
" !02

!
!0001
%
!02!

00
3 " !03!002

&
C !0002

%
!03!

00
1 " !01!003

&
C !0003

%
!01!

00
2 " !02!001

&"$
C

!03
!
!0001
%
!02!

00
3 " !03!002

&
C !0002

%
!03!

00
1 " !01!003

&
C !0003

%
!01!

00
2 " !02!001

&"
:

(10.20)

Since det.L/ D 0 8.#; $/ then this means that all the coefficients are zero:

!0001
%
!02!

00
3 " !03!002

&
C !0002

%
!03!

00
1 " !01!003

&
C !0003

%
!01!

00
2 " !02!001

&
D 0 (10.21)

which implies the coplanarity.
(() Let us prove now that: !0, !00, !000 coplanar implies det.L/ D 0.
We start seeing how, considering two images I1 and I2 obtained by the light

vectors !0 and !00, it is possible to get all the images obtainable with a light vector
that is coplanar to the first two (i.e. considering the vectorial equality !000 D ˛!0 C
ˇ!00), that is I3 D ˛I1 C ˇI2 as ˛ and ˇ change. Considering the image definition
of the orthographic SfS model we can write:

I3 D
" @u
@x
!0001 " @u

@y
!0002 C !0003p

1C jjrujj2

D
" @u
@x
.˛!01 C ˇ!001 / " @u

@y
.˛!02 C ˇ!002 /C .˛!03 C ˇ!003 /p
1C jjrujj2

D ˛
" @u
@x
!01 " @u

@y
!02 C !03p

1C jjrujj2
C ˇ
" @u
@x
!001 " @u

@y
!002 C !003p

1C jjrujj2

D ˛I1 C ˇI2: (10.22)

We continue replacing in (10.14) the coplanarity equality !000 D ˛!0Cˇ!00 and,
in consequence, I3 with ˛I1 C ˇI2. We obtain:

det.L/ D

" !01.˛!02 C ˇ!002 /I1I2 " !001 !02I1.˛I1 C ˇI2/C !001 .˛!02 C ˇ!002 /.I1/2C

.˛!01 C ˇ!001 /!02I1I2 C !01!002 I1.˛I1 C ˇI2/" .˛!01 C ˇ!001 /!002 .I1/2 D
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" ˛!01!02I1I2 " ˇ!01!002 I1I2 " ˛!001 !02.I1/2 " ˇ!001 !02I1I2C

˛!001 !
0
2.I1/

2 C ˇ!001 !002 .I1/2 C ˛!01!02I1I2 C ˇ!001 !02I1I2C

˛!01!
00
2 .I1/

2 C ˇ!01!002 I1I2 " ˛!01!002 .I1/2 " ˇ!001 !002 .I1/2 D 0:
ut

Now we want to remark why, from the point of view of the image data, this is
a required condition in order to solve this PS formulation of the SfS problem. In
particular we proved that, if we consider a third image I3 which is obtained by a
light source !000 coplanar with !0 and !00 (that we use to obtain the first two images)
we do not add any information. Rather, we will see that it is possible to compute
such I3 “artificially”.

Remark 10.1. The modelization of the orthographic SfS problem allows us to define
the linear dependence of the images through their associated light vectors. In fact
the way we consider the vector !000 coplanar with the other two allows us to define,
in the same way, the concept of linearly dependent image functions.

In order to give a better explanation of the linearly independent images and
their importance for the resolution of the problem, we start giving the following
definition:

Definition 10.1. Three image functions I1, I2 and I3, obtained from the ortho-
graphic SfS model, are linearly independent if they are generated by three non
coplanar light vectors.

The idea behind this kind of definition uses the orthographic SfS model in order
to compare the linear dependence/independence of vectors in R3 with respect to the
image functions.

10.3 Linear Dependent Image Reconstruction

An interesting application regarding the orthographic SfS model is related to the
possibility of generating the images of an object by varying the light source between
two points !0 and !00 for which we already have the respective images. We suppose
to have two images I1 and I2 obtained with two light sources!0 and !00 respectively,
it is possible to deduce all the linearly dependent images. In the geometrical
sense, if we consider these two light vectors like points of the upper hemisphere
B..0; 0; 0/; 1/, then it is possible to calculate all the obtainable images with a light
source in the geodesic identified by !0 and !00 (Fig. 10.2).

The main idea is related to the approximation of the points of a geodesic defined
between the two light source vectors on the unit sphere. The method that we use
to calculate the vector defined from the geodesic is based on the Remark 10.1. In
fact, once we fix the extremal points, we discretize the geodesic through an affine
transformation that allows us to see this curve as an arc of a circumference on the
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Fig. 10.2 Examples of geodesics (in blue) on the unit sphere between !0 and !00

Fig. 10.3 Examples of affine transformations T between the area defined by the arc of the
circumference (in green) and the one relates to the geodesic (in blue)

xy plane. Let us start by observing that the angle between the two unit light vectors
O% is computable using the dot product between them. In fact:

O% D arccos.!0 ! !00/ (10.23)

Now, we determine the affine transformation which allows the use of one angular
parameter for the discretization of all the curve. For this purpose, we specify the
linear mapping T like a matrix in R3x3. In order to compute the coefficients of this
matrix (i.e. the degree of freedom) we fix the following three conditions (Fig. 10.3):

T .1; 0; 0/T D !0

T .cos O% ; sin O% ; 0/T D !00

T .0; 0; 1/T D q:

(10.24)

We denote q as the unit vector (opportunely oriented) orthogonal to the plane
where the vectors !0 and !00 lie (such that they are outgoing from the plane, i.e.
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q3 > 0). We consider the plane, generated by the vectors !0 and !00, to have the
following direction parameters:

s D !02!003 " !03!002
l D !03!001 " !01!003
m D !01!002 " !02!001 :

(10.25)

We consider the normalization of the vector .s; l; m/ like a possible vector q
depending on the sign of m. If m < 0 we take the opposite direction to the
normalization.

Let us make explicit the condition imposed by (10.24) writing the coefficients of
the matrix that represents the transformation:

T D

0

BBB@

!01
!00
1 "!0

1 cos O%
sin O% q1

!02
!00
2 "!0

2 cos O%
sin O% q2

!03
!00
3 "!0

3 cos O%
sin O% q3

1

CCCA
: (10.26)

If we consider an angle % such that 0 < % < O% , we obtain a third light source N!
using just the previous application:

T .cos %; sin %; 0/T D N!: (10.27)

Now, if we have built N! coplanar to the previous two light vectors, then we have
N! D ˛!0 C ˇ!00. The next step is to determine the coefficients ˛; ˇ 2 R. We write
the previous equality and we obtain the following overdetermined linear system:

8
ˆ̂<

ˆ̂:

N!1 D ˛!01 C ˇ!001
N!2 D ˛!02 C ˇ!002
N!3 D ˛!03 C ˇ!003

(10.28)

With the aim to calculate the coefficients that determine the third light source, we
solve the following linear system of two equations in two unknowns:

C

'
˛

ˇ

(
D b (10.29)

where C 2 R2#2 and clearly b 2 R2.
Selecting two of the three equations of (10.28) in order to avoid singularity, the

matrix C depends on the first two light vectors that we can express in spherical
coordinates as follows:

!0 D .cos %1 sin '1; sin %1 sin '1; cos'1/
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and
!00 D .cos %2 sin '2; sin %2 sin'2; cos'2/

(with %1; %2 2 Œ0; 2&" and '1; '2 2 Œ0; &2 /). Our aim is to solve this overdetermined
linear system considering only two of the three equations in order to avoid that one
of the first two equations has all coefficients close or equal to zero (for example it
can happen if we have %1 D %2 D 0 with respect to the first equation or if we have
%1 D %2 D &

2
with respect to the second equation). Then, in order to avoid a bad

conditioned linear system, if we consider the following set:

NA D
#
0;
&

4

$
[
#
3&

4
;
5&

4

$
[
#
7&

4
; 2&

$
(10.30)

we take '
!02 !

00
2

!03 !
00
3

('
˛

ˇ

(
D
'
N!2
N!3

(
if %1; %2 2 NA (10.31)

while '
!01 !

00
1

!03 !
00
3

('
˛

ˇ

(
D
'
N!1
N!3

(
otherwise. (10.32)

Once we determine the coefficients ˛ and ˇ, we can compute the linear dependent
image as follows:

NI D ˛I1 C ˇI2: (10.33)

It is important to note that there is no approximation when we compute the linear
dependent image NI . In fact, the only computation that can introduce an error in the
computation of the third image is related to the approximation of the linear system
(10.29) for which we consider two different formulations ((10.31) and (10.32)) in
order to make unimportant the error committed.

10.4 Reduction of the Number of the Images Using
Symmetries

Supposing that we are able to determine univocally the surface u.x; y/ of the SfS-
PS problem using three images obtained with three non coplanar light sources, now
we want to consider some classes of particular surfaces for which it is possible to
resolve the SfS-PS problem using less than three images.

10.4.1 Symmetric Surfaces

We will prove a theorem that gives us the possibility to produce an image (of a
particular surface) by using another image of the same surface, obtained from a
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Fig. 10.4 Orthogonal view
of the plane .x; y/: example
of a positioning of the points
.x0; y0/ and .x1; y1/ with
respect to the symmetry
straight line rs

light source appropriately chosen. Let us start to define the type of surface we can
use in order to apply that.

Definition 10.2. Let z D u.x; y/ be a function defined in 
 # R2. Let &s
(symmetry plane) be a plane passing through the z axis and let rs (symmetry straight
line) be its intersection with the xy plane. We say that u is symmetric with respect
to the plane &s if, for every point .x0; y0/ 2 
 , it results:

u.x0; y0/ D u.x1; y1/ (10.34)

where .x1; y1/ 2 
 is the symmetric point of .x0; y0/ with respect to the straight
line rs (Fig. 10.4).

With regard to the orthographic SfS problem, since the model has not a direct
dependence on the value of the function u in a point, but only on its gradient, it is
essential to determine a symmetry relation with respect to the partial derivatives of
the surface u. We identify rs like a particular straight line passing through the origin
of the reference system xyz, that is

x sin � D y cos � ; with � 2 å 0;&": (10.35)

We consider this straight line like a subspace generated by the vector .cos � ; sin � /.
It is possible to identify the orthogonal straight line to rs from its base vector.
Then, let

v D
!

cos
!
� C &

2

"
; sin

!
� C &

2

""
D ." sin � ; cos � / (10.36)

be this orthogonal straight line. The main relation about the symmetry that we use
in the SfS model is the following:

v ! ru.x0; y0/ D "v ! ru.x1; y1/: (10.37)
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10.4.2 Uniqueness Theorem for the Symmetric Surfaces

We aim at obtaining further information relative to the symmetric surfaces by
deducing the grey scale values of an image corresponding to a particular light
source whose position depends on the symmetry straight line rs . These information,
together with a third image, allow us to resolve the SfS-PS problem using three
images linearly independent.

Theorem 10.1. Let u.x; y/ be a symmetric surface with respect to any straight line
rs such that .0; 0/ 2 rs . Let !0 and !00ded be two light vectors such that:

1. e! 0 is orthogonal with respect to the symmetry straight line rs;
2. e! 00ded D "e! 0 (that is !00ded D ."e! 0; !03/ since the light vectors are constrained to

be taken in the upper hemisphere).

Then it is possible to deduce the image associated to the light source !00ded only by
I1 as follows:

I ded
2 .x0; y0/ D I1.x1; y1/: (10.38)

Proof. Considering the image definition of the SfS problem, we have:

I ded
2 .x0; y0/ D

"e! 00ded ! ru.x0; y0/C !00ded 3p
1C jjru.x0; y0/jj2

$$D e!0 ! ru.x0; y0/C !03p
1C jjru.x0; y0/jj2

$D

D "e!
0 ! ru.x1; y1/C !03p
1C jjru.x0; y0/jj2

D "e!
0 ! ru.x1; y1/C !03p
1C jjru.x1; y1/jj2

D I1.x1; y1/ (10.39)

where in $$ we use the assumption 2 of the theorem, whereas in $, as the surface is
symmetric, we exploit (10.37). In the last equality we consider furthermore that the
normal vector in the point .x0; y0/ has the same norm as in .x1; y1/. ut

Let us explain with an example the previous theorem considering the symmetric
surface of Fig. 10.5 that we will use again in the numerical test section.

It is clear that its symmetry straight line rs drown in Fig. 10.5b defined by the
angle ˛ D 3&

4
, permits us to apply the previous theorem starting with a first light

source !0 having its projection on the xy planee! 0 orthogonal to rs . For example we
can choose %1 D &

4
and, with the only aim to avoid shadows, we choose '1 D 0:1

obtaining the image I1 shown in Fig. 10.6 (on the left). Theorem 10.1 says that we
can deduce (and not approximate) a second image I ded

2 shown in Fig. 10.6 (on the
right) associated to the light source !00ded D ."!0; !03/. In this example the angles
that define the polar coordinates of !00ded are %ded

2 D %1 C & D 5&
4

and 'ded
2 D '1.

As we will remark the deduced image will help to have the sufficient information
(about the three linear independent images) in order to solve the SfS-PS problem
using less than three images.
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Fig. 10.5 On the left the 3D shape of the symmetric surface taken into account. On the right the
orthographic view of the surface is shown in order to make clear the symmetry (the red line). The
color is proportional to surface height, starting from the cold color (for the lowest values) to the
hotter color

Fig. 10.6 On the left the starting image obtained by the light source !0 and on the right the
deduced image computed using the light source !00

ded

Once we choose .x0; y0/ 2 
 , the problem consists in determining the coordi-
nates of the symmetric point .x1; y1/with respect to rs . The point .x1; y1/ belongs to
the straight line r?s , orthogonal to rs and passing through the point .x0; y0/, whose
equation is

.x " x0/ cos � D ".y " y0/ sin � : (10.40)

Finally, observing that the symmetric straight line rs passes through the origin, it
results necessarily that the distances with respect to .0; 0/ of both points are the
same.
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Fig. 10.7 In this schematic
example is shown the
circumference containing the
two symmetric points .x0; y0/
and .x1; y1/ with respect to
the straight line rs

That is, both points belong to the same circumference centered in the origin of the
axis as shown in Fig. 10.7. This formulation of the problem allows that the following
non-linear system (

.x " x0/ cos � D ".y " y0/ sin �

x2 C y2 D x20 C y20
(10.41)

admits only two solutions, that is .x0; y0/ and .x1; y1/.
The procedure we use to solve the system (10.41) is related to an algorithm that

takes into account the numerical instability. To this purpose, some particularities
appear.

For first in the computation of the solutions of (10.41) we have to take into
account the angle � . In order to avoid numerical instability, we consider two possible
sets to which this angle could belong:

A D
#
0;
&

4

$
[
#
3&

4
;&

$
and B D

'
&

4
;
3&

4

(
: (10.42)

Let us suppose that � 2 A; we use the first equation of (10.41), and we write the
first coordinate of the point (since the division by cos � does not involve numerical
instability). We have then:

x D .y0 " y/
sin �
cos �

C x0

which, replaced in the second equation of (10.41), gives a second order equation (in
the general case written as ay2 C by C c D 0) where the coefficients are:

a D 1C .tan � /2

b D "2.y0.tan � /2 C x0 tan � /

c D y20.tan � /2 C 2y0x0 tan � " y20 :

(10.43)
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The two solutions of this equation are y0 and y1. It is possible to determine the exact
solution since y0 is known.

In the same way, if ˛ 2 B it is possible to divide by sin ˛. We write then the
second coordinate of the point:

y D .x0 " x/
cos˛
sin ˛

C y0

and, by substitution, we solve the second order equation in the variable x with the
following coefficients:

a D 1C .cot˛/2

b D "2.x0.cot˛/2 C y0 cot˛/

c D x20.cot˛/2 C 2x0y0 cot˛ " x20 :

(10.44)

The choice of the right solution can be done exactly as explained before, that is
excluding the value x0 already known.

In the end, if we consider an image I1 obtained with a light source that respects
the hypotheses of the Theorem 10.1, it is possible to deduce another image I2 in the
way we explained before.

Corollary 10.1. Let u.x; y/ be a symmetric surface with respect to a straight line
rs passing through the point .0; 0/.

1. Let I1 be an image obtained with a light vector !0 D .e! 0; !03/ such that e!0 is
orthogonal to the symmetry straight line of u.x; y/,

2. Let I3 be an image obtained with a light source !000 D .e! 000; !0003 / such that
e! 0 !e!000 ¤ ˙jje!0jjjje!000jj (that is e!0 and e!000 have not the same direction).

Then it is possible to univocally determine the surface u.x; y/ using the SfS-PS
model.

The use of the image I2 defined in the Theorem 10.1 is necessary to the
application of the reconstruction technique using three images obtained with non
coplanar light vectors.

Other simplifications in the calculus of the point .x1; y1/ are possible when the
surface u.x; y/ has a particular kind of symmetry. As a first particular case we
consider now a symmetry with respect to the orthogonal straight line: let r 0s and
r 00s be two symmetry straight lines of u orthogonal between them. Thus we have the
following relation:

ru.x0; y0/ D "ru."x0;"y0/ (10.45)

for which we note the facility of calculus in the point previously called .x1; y1/ D
."x0;"y0/.
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10.4.3 Surfaces with Four Symmetry Straight Lines

A very interesting particular case is related to the surfaces with four symmetry
straight lines. In relation to these surfaces, in fact, it is possible to solve the classical
SfS problem considering only one image generated from any light source. For this
case the constraint concerning the light sources direction vanishes. As before, we
follow the procedure of reconstructing the missing information (that is the three
linear independent images). Now, because of the particular surface geometry, we are
able to obtain the necessary three images only from one. That is we can reconstruct
the two missing images (generated with non coplanar light vectors) starting from
only one image of the surface lighted up by any light source.

Let us consider the image I1 and let !0 be its relative light source. The other two
images can be calculated in the following way:

I2.x; y/ D I1."x;"y/ with !00 D ."e! 0; !03/
I3.x; y/ D I1."y; x/ with !000 D .!02;"!01; !03/:

(10.46)

Relating to the third image, we use .v1; v2/ !ru.x; y/ D ".v2;"v1/ !ru."y; x/,
where .v1; v2/ is any vector of the plane .x; y/. The choice of the light placing,
together with the way of determining the images, is not unique. The aim of this
construction is to obtain linearly independent reconstructed images for which the
uniqueness of solution for the SfS problem stands.

We can adapt to this particular situation based on symmetries the uniqueness
theorem in [13] that proves the uniqueness of a Lipschitz solution (i.e. a solution in
the Sobolev space W 1;1.˝/) relatively to the differential approach:

Theorem 10.2. Let I.x; y/ be an image of the surface u.x; y/ 2 W 1;1.˝/, with
four straight lines of symmetry obtained by the SfS model such that 0 < I.x; y/ $
1 8.x; y/ 2 ˝ with the light source !. Then it is possible to determine this surface
univocally solving the SfS classic problem.

The procedure followed until now is a constructive proof of the previous theorem
and allows to solve, for a particular class of surfaces, the classical SfS problem
passing through the SfS-PS one. Furthermore, our analysis of the problem allows
us to give also a numerical method for the approximation of this unique weak
solution.

Remark 10.2. Following this procedure it is possible to prove the uniqueness
of a weak solution of the classic SfS problem even the surface is radial by
symmetries.

Remark 10.3. For both cases (one or four axes) the construction of the other images
can be done only if the light source of the first image is not vertical. This means
that in this case, even using this image deduction technique, the concave/convex
ambiguity cannot be solved.
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Fig. 10.8 From left to right: the 3D shape of the surface and the starting images with the respective
light sources

Fig. 10.9 Between I1 and I2 there are three reconstructed images with the intermediate light
sources taken equidistant in the geodesic

10.5 Numerical Tests

This section is divided in two parts. The first one is related to the computation of
the linear dependent images explained in Sect. 10.3. In the second part we present
some shape recovery tests relative to the local and differential method for the SfS-
PS using symmetric surfaces in order to compute the error of both methods using
less than three images.

10.5.1 Numerical Computation of Linear Dependent Images

The tests on the linear independent images concept is carried out on synthetic and
real surfaces.

For the synthetic case we start using the surface (with the respective initial
images) shown in Fig. 10.8. In Fig. 10.9 it is possible to see the images of the same
surface for which the light sources are equidistant in the geodesic defined by !0

and !00.
For the real case we start from the images shown in Fig. 10.10, namely I real1 and

I real2 . In Fig. 10.11 it is possible to see three linear dependent images obtained with
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Fig. 10.10 Real starting data

Fig. 10.11 The results of the computation using our algorithm. The three images on the middle
are lighted up from equidistant light sources in the geodesic defined by the starting images

the algorithm explained in the previous section. Also in this case we are considering
three light sources equidistant in the geodesic defined by !0real and !00real .

10.5.2 Shape Reconstruction for Symmetric Surfaces

Let us start the numerical tests by studying several surfaces. Every single one is of
a typology that allows us to apply each variant of the previous results explained.
These surfaces have symmetries that allows us to apply all the previous techniques
that solve the SfS-PS problem.

The different typologies of the three surfaces represented in Fig. 10.12 are such
that their geometrical characteristics differentiate the number of necessary images
for their tridimensional reconstruction. In fact:

• vsymm.x; y/, used also in the previous numerical test, is a surface with one
symmetry axis (the straight line y C x D 0) for which we need two images;

• vlip.x; y/ is a Lipschitz surface with four axis of symmetry (that is y D ˙x,
y D 0, x D 0). For its reconstruction we need only one image;

• vrad.x; y/ is a particular case of the previous type of surfaces. In this radial case
the curves where it is not differentiable are concentric circles.
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Fig. 10.12 Set of surfaces used for the numerical tests

ω ′ : 1 = 0.1, 1 = π
4 → (I1) ω ′′ : 2 = 0.1, 2 = 3

4 π → (I2)

ω ′ : 1 = 0.1, 1 = π
4 → (I1) ω ′ : 1 = 0.1, 1 = π

4 → (I1)

j

j

j

j

q

q

q

q

Fig. 10.13 Set of images used with the respective light sources described by their spherical
coordinates. For each surface it is possible to see the straight line of symmetry (in red) and the
curve where the surface is not differentiable (in blue). In the first line we have the only two images
used to compute the shape of vsym . On the second line we have the only image needed to compute
the surfaces vlip and vrad (respectively from left to right)
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Table 10.1 Error in L1.˝d / norm and order of convergence for vsym with angles: %1 D &
4

and
%2 D 3

4
& ; '1 D '2 D 0:1

SL forward SL forward SL backward SL backward
' error order error order Local normal

0:02 5:254# 10!2

1.0055 6:856 # 10!2

1.0021 1:63 # 10!2

0:01 2:618# 10!2

1.0033
3:428 # 10!2

1.0008
1:74 # 10!2

0:005 1:307# 10!2

1.0011 1:713 # 10!2

0.9992 6:75 # 10!2

0:0025 6:530# 10!3 8:570 # 10!3 1:289 # 10!1

For these starting data, summarized in Fig. 10.13, we make different tests
modifying the size of the grid', uniform for all the domain˝ .

In order to solve the differential problem (10.8), once boundary condition
g.xi ; yj / D u.xi ; yj / 8.xi ; yj / 2 @˝d is computed, we use the two following
semi-lagrangian fix point schemes [13]:

unC1i;j D un.xi " h(1.xi ; yj /; yj " h(2.xi ; yj //C
fi;j

jjbi;j jj
h; 8.xi ; yj / 2 ˝d

(10.47)
and

unC1i;j D un.xi C h(1.xi ; yj /; yj C h(2.xi ; yj // "
fi;j

jjbi;j jj
h; 8.xi ; yj / 2 ˝d

(10.48)
where (.x; y/ D .(1.x; y/; (2.x; y// D b.x;y/

jjb.x;y/jj , fi;j is the discrete version of
(10.10) and h is a small parameter that discretizes the directional derivative. Using
a bilinear interpolation with respect to the points of the lattice ˝d at point .xi ˙
h(1.xi ; yj /; yj ˙ h(2.xi ; yj // … ˝d , we can reach the first order of consistency
choosing h D '. The previous two semi-lagrangian numerical schemes will be
respectively called in the sequel as forward (10.47) and backward (10.48). For these
iterative schemes we use the same initial guess, that is u0i;j D 0 in˝d and u0i;j D gi;j
in @˝d .

The numerical approximation is carried out with both semi-lagrangian schemes
and we calculate the errors in L1.˝d / norm by varying the uniform discretization
step'. In particular we consider a domain˝d D Œ"1; 1"2 using synthetic images of
size starting from 100 % 100 pixels (' D 0:02) to 800 % 800 pixels (' D 0:0025).
In all the following tables we compute also the convergence order with the aim
to verify the convergence of the methods. In the last column we show the error
committed using the approximation by the local normal approach [6] always in the
same L1.˝d / norm (Tables 10.1–10.3).

In all the tables it is possible to see how both the numerical schemes work well for
all the cases considered. In particular it is possible to see how the semi-lagrangian
iterative schemes have an order of about one for all the tests. This means that the
approximation of the symmetric surfaces can be done without loss of precision
considering less than three images.
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Table 10.2 Error in L1.˝d / norm and order of convergence for vlip with angles: %1 D &
4

and
'1 D 0:1

SL forward SL forward SL backward error SL backward
' error order error order Local normal

0:02 2:731# 10!2

0.8975 2:731 # 10!2

0.8975 1:01# 10!2

0:01 1:466 # 10!2

0.8630 1:466 # 10!2

0.8630 5:1# 10!3

0:005 8:060 # 10!3

0.9165
8:060 # 10!3

0.9165
3:0# 10!3

0:0025 4:270# 10!3 4:270 # 10!3 4:32# 10!2

Table 10.3 Error in L1.˝d / norm and order of convergence for vrad with angles: %1 D &
4

and
'1 D 0:1

SL forward SL forward SL backward SL backward
' error order error order Local normal

0:02 2:5491 # 10!1

1.0313 3:7057 # 10!1

1.0423 1:136 # 10!1

0:01 1:2472 # 10!1

1
1:7993 # 10!1

0.9833
4:53# 10!2

0:005 6:2360 # 10!2

0.9963 9:1010 # 10!2

0.9878 2:0# 10!2

0:0025 3:1280 # 10!2 4:5890 # 10!2 8:3# 10!3

10.6 Conclusion and Perspectives

We have seen how it is possible to resolve the orthographic SfS problem with
the PS technique uniquely, getting over the concave/convex ambiguity. We have
shown how the linear independence of images is fundamental to obtain a unique
reconstruction of the surface. Also an interesting application is explained: the
possibility to generate linear dependent images of an object changing the light
source between two points !0 and !00 for which we already have the relative images.
The numerical tests give good results for both the two approaches: normal vector
field approach and differential one.

The main perspective is to apply these two results to a weaker model that take
into account a less number of assumptions. For example, the well-know perspective
SfS model [17–19], represented by the following equation

f .e! ! ru.x// " !3.x ! ru.x/C u.x//
p
f 2jru.x/j2 C .x ! ru.x/C u.x//2

D I.x/

(where f is the focal distance), contains some degree of ill-posedness. A further
step forward can be done solving the perspective problem with the same technique
explained before instead of the orthographic projection assumption.

With the aim to eliminate the Lambertian surface assumption the specular model
can be considered (see [1, 16, 21–23]).
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Chapter 11
Remeshing by Curvature Driven Diffusion

Serena Morigi and Marco Rucci

Abstract We present a method to regularize an arbitrary topology mesh M , which
defines a piecewise linear approximation of a surface M , with the purpose of having
an accurate representation of M : the density of the nodes should correlate with the
regularity of M . We use the mean curvature as an intrinsic measure of regularity.
Unlike sophisticated parameterization-dependent techniques, our parameterization-
free method directly redistributes the vertices on the surface mesh to obtain a
good quality sampling with edges on element stars approximately of the same size,
and areas proportional to the curvature surface features. First, an appropriate area
distribution function is computed by solving a partial differential equation (PDE)
model on the surface mesh, using discrete differential geometry operators suitably
weighted to preserve surface curvatures. Then, an iterative relaxation scheme
incrementally redistributes the vertices according to the computed area distribution,
to adapt the size of the elements to the underlying surface features, while obtaining
a good mesh quality. Several examples demonstrate that the proposed approach
is simple, efficient and gives very desirable results especially for curved surface
models with sharp creases and corners.

11.1 Introduction

The 3D geometry commonly used for shape representation in geometric modeling,
physical simulation and scientific visualization is mainly based on meshes. The 3D
scanning devices, medical equipments and computer vision systems often perform
a uniform acquisition without any a priori knowledge of the surface properties.
This may lead to raw meshes with a sampling quality usually far away from
the desired sampling distribution needed for subsequent processing. Algorithms

S. Morigi (!) !M. Rucci
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for mesh simplification, denoising (fairing), decimation and remeshing represent
fundamental preliminary steps in mesh processing.

In particular, remeshing refers to the improvement process of the mesh quality in
terms of redistribution of the sampling, connectivity of the geometry, and triangle
quality, in order to satisfy mesh property requirements while maintaining surface
features. The reader is referred to [1] and the references therein for a survey on
remeshing techniques.

Some remeshing techniques are parameterization-dependent, i.e. they associate
the mesh with a planar parameterization, and apply the algorithms on this plane. For
arbitrary genus objects, this involves also the creation of an atlas of parametrization,
a well known complex process that inevitably introduces some metric distortion and
may lead to the loss of important feature information [2, 4, 9].

In contrast, parameterization-free methods avoid these problems by working
directly on the surface mesh and performing local modifications on the mesh. A
parameterization-free method has been proposed in [5] for direct remeshing using
area-equalizing weights in multiresolution modeling, and in [11], several tangential
velocity strategies are introduced to regularize geometric surface flows.

Isotropic remeshing methods based on Centroidal Voronoi Tessellation (CVT)
require to repeatedly compute a geodesic Voronoi diagram which is a complex and
time-consuming step in this approach [4]. Several interesting proposals have been
presented for this type of methods, both parameterization-based strategies [3], which
compute the CVT on the 2D parametric domain, and parameterization-free methods,
based on the intersection between a 3D Voronoi diagram and an input mesh surface,
see [18].

In [1] the remeshing methods are classified by their end goal rather than by
the algorithmic strategy they employ. The techniques are classified into five cate-
gories: structured, compatible, high quality, feature and error-driven remeshing. The
structured and compatible remeshing methods aim to obtain a given connectivity
structure, the main goals for the high quality remeshing methods are the shape of the
elements as well as the vertex distribution, while the end goal of feature remeshing
is to preserve sharp features when producing the resulting meshes.

The proposed remeshing strategy is an adaptive, parameterization-free technique
designed to produce a good compromise of high quality and feature remeshing
techniques. High quality remeshing amounts to generating a mesh with well-shaped
elements, uniform or isotropic sampling and smooth gradation sampling. Good
quality elements mainly lead to minimizing numerical instabilities in subsequent
computations. However, we relaxed the uniform sampling property in order to adapt
the size of the elements to the underlying surface features.

The proposed remeshing algorithm alternates equalization of edge lengths and
vertex valence, which generate a new connectivity, with mesh regularization, which
modifies the distribution of the vertices on the surface to satisfy given mesh quality
requirements. While the techniques that explicitly modify the connectivity, such as
e.g. edge split, collapse, and flip, are widely used, the potential of the regularization
step is still not much investigated.
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We present a new method to regularize an unstructured triangle mesh M , which
defines a piecewise linear approximation of a curved surface M , with the purpose of
having an accurate representation of M : the density of the vertices should correlate
with the regularity of M . We cannot rely on parameterization to quantify regularity
of M because this concept would not be invariant under reparameterization and
furthermore we do not assume any parameterization is given. Therefore, we used
the mean curvature as a measure of regularity. To improve the regularization of
the mesh M , the points X.t/ on the surface M are geometrically evolved using a
tangential flow

@X

@t
D !!!T ; (11.1)

where ! is the velocity in the tangent direction
!!
T . The new resulting sampling

adapts itself to the sharper features of the surface. This motivates us to name the
proposed method Adaptive Remeshing (AR).

In order to satisfy high quality remeshing we investigate the design of tangential
velocities that aim to keep all edges on element stars approximatively of the same
size and all areas proportional to the surface features. To achieve this aim, we
use a two-step approach. First, we compute an area distribution function driven
by a mean curvature map of the surface mesh. Then the mesh vertices are moved
on the tangential plane to satisfy edge equalization and area distribution quality
requirements. The process is iterated until a significant improvement in triangle
shape is obtained.

The organization of this chapter is as follows. The adaptive mesh regularization
is described in Sect. 11.2, and the proposed adaptive remeshing algorithm together
with its numerical aspects is discussed in Sect. 11.3. Numerical examples and
comments are provided in Sect. 11.4, and the paper is concluded in Sect. 11.5.

11.2 Adaptive Mesh Regularization

The AR method alternates equalization of edge lengths and vertex valence, which
generate a new connectivity, with adaptive mesh regularization, which modifies the
distribution of the vertices on the surface.

The mesh connectivity regularization is based on classical tools for meshes and it
will be briefly discussed in Sect. 11.3, while, in the following, we will focus on the
proposed adaptive mesh regularization method, which consists of a two-step PDE
model.

In the first step, the vertex area distribution function A.X/ defined on the mesh
M with vertex setX D fXignv

iD1, is diffused over the mesh, constrained by the mean
curvature map. In the second step, the vertex position is tangentially relocated to
obtain edges on element stars approximatively of the same size, and all the vertex
areas proportional to the surface features.
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Let A0 be the initial vertex area distribution function computed as the Voronoi
area at each vertex on the mesh M , with vertex set X0. Then in STEP 1, the vertex
area distribution function A.X/ is diffused on M by solving

@A

@t
D 4wH

M A.X/; A.0/ D A0: (11.2)

In (11.2) the operator 4wH
M is the weighted Laplace-Beltrami operator discretized

on the mesh M . The space discretization on M of the Laplace-Beltrami"M is the
connectivity matrix L 2 R.nv"nv/ with elements

Lij D 1P
j2N.i/ wij

8
<

:

!Pj2N.i/ wij i D j
Cwij i ¤ j; j 2 N.i/
0 otherwise

(11.3)

where N.i/ is the set of one-ring neighbor vertices of vertex Xi . The weights wij
are positive numbers defined as in [14]

wij D .cot˛ij C cotˇij /; (11.4)

where ˛ij and ˇij are the two angles opposite to the edge in the two triangles sharing
the edge .Xj ;Xi/, see Fig. 11.1.

In order to solve (11.2), the weighted Laplace-Beltrami operator 4wH
M is dis-

cretized by the matrix LwH with elements

LijwH D
1P

j2N.i/ wij

8
<

:

!Pj2N.i/ wijWij i D j
CwijWij i ¤ j; j 2 N.i/
0 otherwise:

(11.5)

The weight Wij depends on a similarity measure between the i th and the j th
vertex, and it is defined in terms of mean curvature values H on the mesh M as
follows

Wij D 1P
j2N.i/ Wij

e#D.Xi ;Xj /=# ;

D.Xi ; Xj / D kH.Xi/ !H.Xj /k22; j 2 N.i/;
(11.6)

where # is a filtering parameter which controls the decay of the exponential function
and therefore the decay of the weights as function of the Euclidean distance between
mean curvature values. Since H.X/ is normalized to one, we can fix the value for
# in order to identify a significant change in the curvature between vertices Xi and
Xj . For example, for # D 0:1 we identify as a curvature change when the mean
curvature values in the two vertices differ more than 10%. The use of smaller #
leads to detect more sharper features.

More details on the weights defined in (11.6) are provided in [12], where the
authors apply a weighted Laplace-Beltrami operator in the context of surface fairing.
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Fig. 11.1 Stencil of the first
ring neighborhood of the
vertex Xi . The triangle Tj is
defined by the vertices
Xi ,Xj , and X`

The mean curvature H.X/ in (11.6) is defined as the sum of the two principal
curvatures, see [10], and we compute it as described in Sect. 11.3.1. The mean cur-
vature attribute tends to be dominated by the maximum curvature and consequently
it is visually similar to it. We chose the mean curvature attribute to determine
the characteristics of the underlying surface, rather than the Gaussian curvature
attribute, since many shapes cannot be differentiated by Gaussian curvature alone.

The weights (11.6) used in (11.2) prevents the area diffusion in high curvature
regions. The method tends to adapt the areas to the object features: high curvature
regions will be covered by small area elements, while flat regions will be covered
by faces with larger areas. Figure 11.2 shows the benefit of the weights in STEP 1.
The result of applying a few time steps of (11.2) without the help of the weights
(11.6) on the irregular initial mesh shown in Fig. 11.2a, is illustrated in Fig. 11.2b,
while the contribution in (11.2) of the weights (11.6) is shown in Fig. 11.2c. The
area diffusion function is represented by false colors, red colors for big areas, blue
color for small areas. Increasing the number of time steps, the diffusion of (11.2)
without weights converges to a constant area all over the entire mesh.

In STEP 2 the vertex position X is updated, taking into account the resulting
A.X/ area distribution obtained in STEP 1, by solving the following constrained
curvature diffusion equation

@X

@t
D rwA

M " .g.jH.X/j/r
wA
MX/; X.0/ D X0; (11.7)

where the function g."/, referred to as the diffusivity, is defined as

g.s/ WD 1

.1C s� / ; (11.8)

where � > 0 is a small positive constant value. The geometric evolution driven by
(11.7) constrains the movement of vertices with high mean curvature values, that is,
belonging to sharp creases and corners.

At each vertex Xi , linearizing (11.7) by evaluating g.jH.Xi/j/ with Xi from the
previous time-step, the right-hand side of (11.7) is rewritten as
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Fig. 11.2 Area diffusion in AR STEP 1: (a) the flat shaded mesh; (b) vertex area distribution
function without weights (11.6); (c) vertex area distribution function with weights (11.6)

g.jH.Xold
i /j/4wA

MXnew
i : (11.9)

We denote by LwA the discretization of the weighted Laplace Beltrami operator
4wA

M at vertex Xi defined as in (11.5) with wij given in (11.4) and the equalization
weights W A

ij defined by the sigmoid function

W A
ij D 1P

j2N.i/ W A
ij

1

1Ce!f .Xi ;Xj /=# (11.10)

f .Xi ; Xj / D $1
"A.Xj /#"A.Xi /

A
C $2.Eij#EiE

/; (11.11)

where "A.X/ D A.X/ ! Ad.X/ is the offset between the vertex area A.X/ and
the ideal vertex area Ad.X/ resulting from STEP 1, A is the mean of the mesh
vertex areas, Ei is the local average edge length, and E is the mean of the mesh
edge lengths. The coefficients $i > 0, i D 1; 2, sum up to 1 and determine
how much respectively the area gap and the local edge length difference influence
the movement of vertex Xi toward the neighborhood vertex Xj . In other words,
considering only the area gap influence (i.e. $1 D 1), the vertex Xi is attracted by
Xj when the area of Xi needs to grow more than the area of Xj . On the other hand,
the vertexXi does not move towardsXj when the area of both vertices do not need
either to shrink or to grow or when they both need to shrink or grow by the same
amount.

Finally, the displacement of the vertex Xi is in the tangent plane if we replace
(11.7) with

@Xi

@t
D .I !!!N i

!!
N T
i /g.jH.Xi/j/4wA

MXi; X.0/ D X0; (11.12)

where
!!
N is the unit normal to the surface.
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11.3 Adaptive Remeshing (AR) Algorithm

The AR algorithm iterates on the two stages of mesh connectivity regularization
and adaptive mesh regularization approaching to a mesh with a smooth gradation of
vertex density depending on mean curvature values and represented by well-shaped
triangles.

We terminate the process and accept X.i/ as the resulting mesh as soon as the
difference of area variance between consecutive iterations is sufficiently small;
specifically, we acceptX.i/ when for the first time

"Var.A/ WD jVar.A.X.i/// ! Var.A.X.i#1///j < 1 " 10#6:

The regularization of mesh connectivity (named STEP 0) aims to perform an
adjustment of edge lengths and vertex valences, and is implemented by applying the
following basic tools:

1. Specify target edge length L 2 ŒLmin; Lmax %
2. Split all edges longer than Lmax
3. Collapse all edges shorter than Lmin

4. Flip edges to promote valence 6 (or 4 on boundaries).

These are commonly used tools to obtain mesh connectivity regularization, and we
refer the reader to [5] for more details.

The adaptive mesh regularization stage is a two-step process which implements
the PDEs (11.2) and (11.12), named in the sequel STEP 1 and STEP 2, to relax the
vertex position according to a computed area distribution.

The following algorithm summarizes the computations required by our method.

Adaptive Remeshing Algorithm
Given an initial position vector X0,
Compute LwH .X0/; A.X0/; set X.0/ D X0, i=1
While "Var.A/ < 1 " 10#6
STEP 0: MESH CONNECTIVITY REGULARIZATION
STEP 1: AREA REGULARIZATION:
Set A.0/ D A.X.i#1//
.I ! dtLwH /A

.nC1/ D A.n/
Compute LwA.X

.i#1//, g.jH.i#1/j/
STEP 2: VERTEX TANGENTIAL UPDATE:
Set X.0/ D X.i#1/

For n D 1; " " " ; nMAX

X.nC1/ D .I C dt.I !!!N!!N T /g.jH.i#1/j/LwA/X
.n/

end for
i=i+1

end while
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Considering a uniform discretization of the time interval Œ0; T %; T > 0, with a
temporal time step dt , then (11.2) and (11.12) can be fully discretized using the
forward Euler scheme which yields a first order scheme in time. We applied an
implicit time scheme to (11.2), and an explicit time scheme to (11.12) with initial
condition A.0/ determined from X0. From our experimental work we tuned up the
maximum number of time iterations to be nMAX # 10.

The tangential smoothing approach used in several remeshing works is a simple
Laplacian smoothing discretized as in (11.3) applied to the three vertex coordinates
components X D .x; y; z/ and then projected back into the tangent plane, see [13,
17]. Thus the tangential movement !

!!
T in (11.1) at the surface vertexXi is given by

.I ! !!N i
!!
N T
i /L.Xi /. In [5] the authors proposed an improvement, considering the

tangential movement !
!!
T in (11.1) at the surface vertex Xi as

.I !!!N i
!!
N T
i /Lw.Xi/ (11.13)

with

Lw.Xi / D
1P

j2N.i/ A.Xj /

X

j2N.i/
.A.Xj /Xj !A.Xi /Xi/; (11.14)

and A.Xj / represents the Voronoi area of vertex Xj . Vertices with large Voronoi
area have a higher weight (‘gravity’) and attract other vertices, thereby reducing
their own area. We call this method the Laplacian Flow (LF) scheme and we
compare LF with our proposal in Sect. 11.4.

The LF scheme presented in [5] is integrated into an iterative remeshing proce-
dure similar to the AR algorithm which alternates mesh connectivity regularization
(like the STEP 0 in AR method) with the LF mesh regularization given in (11.14)
(which is replaced by STEP 1 and STEP 2 in AR method).

Both the LF scheme and the STEP 2 of the AR algorithm are discretized in time
using explicit integration schemes. If we let dt satisfy the stability criterion for the
diffusion PDE in (11.12), then dt # min.jEj/2

2
, that is, it depends on the square of

the smallest edge length, which is a very restrictive criterion involving an enormous
number of integration steps [7].

We instead propose a “geometric” criterion on dt , which is defined by the
formula

dt D 0:1 E

maxi .kLwAXik2/
:

In this way each vertex will never be moved by a distance greater than 10% of the
average edge length E. Even if the time step computed by the geometric criterion is
slightly larger than the dt obtained by stability requirements, in our computational
experiments we always converged to an acceptable solution.
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The implicit integration scheme used in the discretization of STEP 1 of the AR
algorithm does not suffer from numerical instability problems, anyway to avoid
triangle flips dt is chosen such that:

dt D 10 A

maxi .kLwH A.Xi/k2/
:

This choice makes the remeshing procedure independent on the mesh area distri-
bution. The solution of STEP 1 is obtained by performing one implicit integration
step, that is by solving a linear system of equations, with a very sparse matrix of
coefficients. Therefore, an efficient iterative method can be applied, such as gmres
method for sparse matrices, see [15].

11.3.1 Calculating Gradient and Divergence Operators

Let M $ R3 be a surface, we can naturally consider the three coordinate functions
.x; y; z/ WM ! R3 as three scalar functions on the surface M .

We use a discretization of the differential operators rM and divM for the space
discretization of M given by the mesh M in a matrix form similar to the Laplace-
Beltrami discretization in [10].

The intrinsic gradient and divergence operator of a function f W M ! R, f 2
C1.M / and a vector field V 2 TM in local coordinates V D v1 @

@&1
C v2 @

@&2
are

defined as

rMf D
2X

i;jD1
gij

@f

@&j

@

@&i
; divMV D 1

p
det.G/

2X

iD1

@

@&i
.
p

det.G/vi /; (11.15)

where gij D @
@&i
" @
@&j

(" indicates the inner product) are the coefficients of the metric

matrix G and .gij /i;jD1;2 are the elements of the inverse matrix G#1. We consider
a weighted average in the first ring neighbors of a vertex Xi in terms of the triangle
area, which naturally leads to the following discretization

rMf .Xi / D
1P

j2N.i/ Aj

X

j2N.i/
AjrTj f .Xi / (11.16)

divMV.Xi/ D
1P

j2N.i/ Aj

X

j2N.i/
Aj divTj V .Xi /; (11.17)

with Aj area of the triangle j th in the first ring neighbor of vertexXi . For a triangle
T of verticesXi ;Xj ;X`; with j 2 N.i/; ` 2 N.i/ we define
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rTj f .Xi / D
P

k2i;j;`$Tj
!!! Xk

Tj
f .Xk/; (11.18)

where k varies in the set of the vertices of Tj , and

!!! Xj
T D g11.Xj !Xi/C g12.X` !Xi/;!!! X`
T D g21.Xj !Xi/C g22.X` !Xi/;
!!! Xi

T D !.!!!
Xj
T C !!!

X`
T /:

(11.19)

The mean curvature vector field, used in the similarity weights (11.6), is
approximated on a vertex Xi of the mesh, by H.Xi/ D divM .rM .Xi//. The
discretization of the Laplace, gradient and divergence operators at the vertex Xi
depends on the elements of its first ring neighborhood. The measure of mean
curvature at the vertex Xi depends on its two-ring neighbors. Therefore, this
measure of mean curvature is more reliable than the mean curvature computed by
discretizing the relation"M .X/ D !2H.X/!!N .X/, mostly because it is computed
on a wider stencil which allows to better identify the features of the mesh, thus
improving the efficacy of the weights in (11.6) and the quality of the diffusivity
function in (11.7).

Moreover, instead of the linearization defined in (11.9), we can compute a more
accurate approximation of the non-linear diffusion equation (11.7) by applying the
discretization of the gradient and divergence operators on the mesh proposed in
(11.16) and (11.17), respectively.

11.4 Remeshing Results

To our knowledge, there are no standard measures for evaluating and comparing the
efficacy of remeshing techniques. Instead, comparison is often based on a qualitative
evaluation of the final results and it is strictly related to the specific end goal the
remeshing is used for. In [16] the authors measure the quality of a remeshed model
by measuring the geometric properties of the resulting triangles, but this approach
slightly limits the global overview on the benefits of the remeshing algorithm.

In our work, to assess the quality of the mesh generated by the proposed AR
algorithm, we introduce the following measures:

Area Variance,

Var.A.X// WD
nvX

iD1
.A.Xi /! A/2; (11.20)

where A is the average vertex area for a mesh with nv vertices.
Mean curvature variation,
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"H D kH !H0k2=kH0k2; (11.21)

where H and H0 are the mean curvature maps of the remeshed and the original
meshes, respectively. For each vertex Xi on the original mesh, the difference
H.Xj / ! H0.Xi/ is computed with respect to the nearest vertex Xj on the
remeshed mesh.

Variation of local edge length variance,

"Var.E/ D kVar.E/ ! Var.E0/k2=kVar.E0/k2; (11.22)

where the local edge length variance of the vertex Xi is computed as
Var.E/i D 1

di

P
j2N.i/.Eij !Ei/

2.

Hausdorff distance,

dH.X0;X/ D maxf sup
x2X0

inf
y2X

d.x; y/; sup
y2X

inf
x2X0

d.x; y/ g; (11.23)

is a measure of distance between the remeshed and the original meshes, see [6].

The goal of our remeshing strategy is to minimize the area variance (Var.A.X//),
while preserving the mean curvature values and the shape of the original mesh, that
is minimizing ("H ) and the average one-sided Hausdorff distance dh. Moreover,
the variation of mean curvature variance ("Var.H/) is a value that should be
preserved, and the variation of area variance ("Var.A/) and the variation of edge
variance ("Var.E/) provide a measure of the quality of the resulting mesh.

The parameters ˛ in the diffusion function g."/ in (11.8), and # in (11.6) are
chosen to be 0:05, while the parameter # in (11.10) is 0:1. All experiments were
performed on Intel Core i7-720QM Quad-Core 1.6 GHz machine, with 4 GB/RAM
and Nvidia G335M graphics card in a linux environment. The visualization is based
on OpenGL library and the application is written using C language. Numerical
computations are performed using the “meschach” matrix library.

We compare the AR algorithm with the LF method defined in [5], when applied
to the meshes shown in Figs. 11.3a–11.7a. In the reported experiments we omit
the mesh connectivity regularization stage integrated in both AR (STEP 0) and LF
methods in order to effectively point out the performances of the mesh regularization
stage in the AR algorithm. Moreover, we noticed that the features of the mesh get
easily compromised if the operations involved in the mesh connectivity stage are
not performed adaptively, as we do in STEP 0 of the AR algorithm. In particular,
in STEP 0 of the AR method the flip tool is applied only when the deviation in
curvature normals is acceptable. This improves further on the results obtained by
the AR method, but it makes more difficult to distinguish the benefit of the mesh
regularization stage inside the entire iterative process.

A qualitative comparison is illustrated in Figs. 11.3–11.7. In Figs. 11.3–11.6 the
area distribution function A is visualized using false colors superimposed onto
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Fig. 11.3 (a) and (b) The original mesh and a zoomed detail; (c) and (d) the result of LF and
a zoomed detail; (e) and (f) the result of AR and a zoomed detail from the rightmost part of
fandisk mesh
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Fig. 11.4 (a) The original mesh with area distribution function superimposed using false color;
(b) LF remeshing (c) AR remeshing

Fig. 11.5 (a) The original mesh with area distribution function superimposed in false color;
(b) LF remeshing and (c) AR remeshing

the meshes. In Fig. 11.7 the curvature map is superimposed on the gargoyle
mesh using false colors where red colors represent high curvatures and blue colors
low curvature values. Figures 11.3 and 11.7 show two examples of applying our
AR method to meshes with sharp features to highlight the weaknesses of the LF
remeshing when applied to regions with high curvature values and high triangle
density.

The fandisk mesh, illustrated in Fig. 11.3a, presents a medium quality vertex
area distribution, sharp edges and corners which allow us to demonstrate the
capacity of our AR algorithm to adaptively distribute the vertex areas in zones of
high curvature, preserving the sharp features of the mesh. The superiority of the AR
approach w.r.t. the LF method can be visually appreciated in Fig. 11.3 comparing the
resulting mesh by 20 remeshing iterations of LF algorithm (Fig. 11.3c) and the mesh
obtained by 20 remeshing iterations of AR (Fig. 11.3e). A detail of the rightmost
part (see the dashed rectangular box in Fig. 11.3a) is shown to enhance the area
equalization and preservation of features obtained by the AR method.

In the gargoyle model of Fig. 11.7 the wings of the gargoyle are completely
ruined by the LF method (see Fig. 11.7b) while they are well preserved by the AR
method (Fig. 11.7c).
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Fig. 11.6 First column: area distribution function superimposed on the original mesh (a), the LF
(b) and AR (c) remeshing respectively. Second column: the mean curvature map on the same
meshes

The irregular models illustrated in Figs. 11.4–11.6 are characterized by a vertex
area distribution particularly corrupted and many badly shaped triangles. In all the
examples AR performs better than LF in both the task of area distribution and mean
curvature preservation.

Table 11.1 summarizes the quality measurements obtained by the illustrated
experiments. In Table 11.1 for each mesh (first column) the applied algorithm is
shown in the second column and the corresponding number of remeshing iterations
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Fig. 11.7 (a) The original
mesh, (b) LF remeshing and
(c) AR remeshing. Red
represents high curvature,
blue represents low curvature
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Table 11.1 Quality measurements for the remeshing tests

Mesh Method # its Var.A/ "H % "Var.E/% "Var.A/% "Var.H/% dh

Hand AR 5 0.0000077 17:8 77.2 61.2 5.9 0.002
Hand LF 5 0.0000096 40:3 78.4 51.6 47.1 0.003
Gargoyle AR 10 0.0015316 26:4 63.7 47.5 14.3 0.007
Gargoyle LF 10 0.0015180 69:0 81.6 48.0 59.7 0.016
Fandisk AR 20 0.0002583 4:7 51.7 55.2 0.8 0.005
fandisk LF 20 0.0003982 30:3 74.4 31.0 5.9 0.013
Igea AR 20 0.0001252 12:9 57.3 41.4 5.2 0.004
Igea LF 20 0.0001248 27:5 64.9 41.5 34.3 0.005
Foot AR 10 0.0007397 13:1 92.8 65.4 3.7 0.007
Foot LF 10 0.0007995 28:2 93.0 62.7 22.5 0.008

Fig. 11.8 The area variance Var.A/ (left) and the mean curvature changing"H (right) as function
of the remeshing iterations

(its) is in the third column. The results reported in Table 11.1 show that the AR
method successfully produces well-shaped triangles while preserving the mean
curvature map of the original mesh better than the LF method.

The plots in Fig. 11.8 (left and right) show the area variance Var.A/ and the
mean curvature variation "H as functions of the number of remeshing iterations
when the LF method and the AR method are applied to the fandisk mesh. When
the AR algorithm is applied, the area variance Var.A/ rapidly decreases, while the
mean curvature of the mesh is preserved. The comparison with the LF method
highlights a strong effect on the mean curvature of the resulting mesh and a non-
convergent behavior in the minimization of the area variance. This aspect requires
further theoretical investigation.

11.5 Conclusions

We presented a new adaptive remeshing scheme based on the idea of improving
mesh quality by a series of local modifications of the mesh geometry and con-
nectivity. The fundamental quality criteria we pursued are: faces of good quality,
and adaptive mesh resolution to preserve the surface structural characteristics.
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To satisfy the last requirement the size of the faces is adapted to the local mean
curvature (big enough for smoothed parts and smaller for sharp features). The
proposed AR algorithm iterates a connectivity regularization, which is merely
based on elementary mesh operations such as edge collapse, flip, and split, with
a mesh regularization method. Our contribution to the family of parameterization-
free remeshing techniques is a curvature-based mesh regularization technique which
allows the control of both triangle quality and vertex sampling over the mesh, as a
function of the surface mesh curvature. The first step approaches to an appropriate
area distribution function computed by solving an evolutive PDE diffusion model
using discrete differential geometry operators suitably weighted to preserve surface
curvatures. The area distribution is then applied in the second step of the AR
algorithm to redistribute the vertices.

Future work will include operations on the mesh in order to produce a mesh that
has a semi-regular structure, namely, with subdivision connectivity. This operations
will be integrated in STEP 0 of the AR algorithm.

Acknowledgements This work is supported by MIUR-Prin Grant 20083KLJEZ and by ex 60 %
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Chapter 12
Group-Valued Regularization for Motion
Segmentation of Articulated Shapes

Guy Rosman, Michael M. Bronstein,
Alexander M. Bronstein, Alon Wolf, and Ron Kimmel

Abstract Motion-based segmentation is an important tool for the analysis of
articulated shapes. As such, it plays an important role in mechanical engineering,
computer graphics, and computer vision. In this chapter, we study motion-based
segmentation of 3D articulated shapes. We formulate motion-based surface seg-
mentation as a piecewise-smooth regularization problem for the transformations
between several poses. Using Lie-group representation for the transformation at
each surface point, we obtain a simple regularized fitting problem. An Ambrosio-
Tortorelli scheme of a generalized Mumford-Shah model gives us the segmentation
functional without assuming prior knowledge on the number of parts or even the
articulated nature of the object. Experiments on several standard datasets compare
the results of the proposed method to state-of-the-art algorithms.
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12.1 Introduction

Articulated objects segmentation is a key problem in biomechanics [1], mechanical
engineering, computer vision [8,30,38,41,54], and computer graphics [6,35,37,39,
59, 64, 65]. Related problems of deformation analysis [4, 63] and motion segmen-
tation [5, 22] have also been studied extensively in these disciplines. Algorithms
solving these problems try to infer the articulated motion of an object, given several
instances of the object in different poses. Simultaneously, the segmentation of
the object into rigid parts takes place along with motion estimation between the
corresponding parts in the various poses.

Most motion analysis techniques make some assumptions on the object to be
segmented. These usually concern the number or location of rigid parts in the
articulated object. This can be in the form of a skeleton describing the topology
of the shape, or some other prior on the object structure. Such priors are usually
formulated in an ad hoc manner, but not based on the kinematic model commonly
assumed for near-rigid objects [1,4]. In cases where such a prior is not available for
the objects in question, or where assumptions about the data are only approximate,
this can lead to errors in the segmentation and motion estimation.

Another common assumption, especially in graphics applications, is that of
known correspondences. In computer graphics, the problem is usually referred to
as dynamic mesh segmentation. While a matching technique between poses can be
combined with existing motion segmentation tools, a more complete formulation
for motion segmentation should handle the correspondence problem implicitly.

Clearly, the above assumptions are often too limiting in real-world applications,
and should be avoided as part of the basic problem formulation. We would like
instead to apply the intuition often used when studying real-life near-rigid objects,
about the existence of a representative rigid motion existing for each body part. We
wish, however, to avoid detecting the articulated parts in advance. Furthermore, in
some object, a clear partition into rigid parts may not exist for all of the surface.
We wish to obtain reasonable results in such a case. In other words, we would
like to obtain a “soft” segmentation of the surface, without knowing the number or
location of regions in advance, an explicit analysis of the surface features, or having
additional priors on the various object parts. Also, we strive towards a formulation
of motion segmentation that incorporates an implicit handling of the correspondence
problem, given a reasonable initialization.

12.1.1 Main Contribution

In this chapter we try to remedy the shortcoming of existing approaches to
articulated motion estimation by combining the two tasks of motion estimation
and segmentation into a single functional. This scheme has been described in a
recent conference paper [50] and we now slightly expand upon it. Unlike existing
methods, we propose a principled variational approach, attempting to find a rigid
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transformation at each surface point, between the instance surfaces, such that the
overall transformation is described by a relatively sparse set of such transformations,
each matching a rigid part of the object. The functional we propose regularizes the
motion between the surfaces, and is guided by the fact that the parameters of the
motion transformations

(i) Should describe the motion at each point with sufficient accuracy.
(ii) Should vary smoothly within the (unknown) rigid parts.

(iii) Can vary abruptly between rigid parts.

We see our main contribution in these:

A new framework: First, we propose an axiomatic variational framework for
articulated motion segmentation. While focusing on the segmentation problem in
this chapter, our framework is more general and the proposed functionals can be
easily incorporated into other applications such as motion estimation, tracking,
and surface denoising.
Variational segmentation: We claim that using the right parameterization, taken
from the specific domain of rigid motion analysis, we can formulate the
articulated motion segmentation problem as a generalization of classical tools
in variational computer vision. This allows for an elegant and simple solution
within the proposed framework, obtaining results competitive with domain-
specific state-of-the-art tools.
A novel visualization algorithm: Third, we suggest a spatially-coherent algorithm
for spatial visualization of group valued data on manifolds, which draws from the
same variational principles.

12.1.2 Relation to Prior Work

Several previous works have attempted motion based segmentation of surfaces.
We mention but a few of these. Kompatsiaris et al. [38] use an estimation of the
rigid motion at each segment in order to segment the visible surface in a coarse-
to-fine manner. Arcila et al. [6] iteratively refine the segmentation for segments
whose transformation error is too large. Wuhrer and Brunton [64] use a dual tree
representation of the surface with weights between triangles set according to the
dihedral angles. Lee et al. [39] use a similar graph-based formulation, looking at
deformation matrices around each triangle.

The scheme we propose involves diffusing the transformations between poses
along the surface, in the spirit of the Ambrosio-Tortorelli scheme [2] for Mumford-
Shah segmentation [43]. The diffusion component of our scheme is a diffusion
process of Lie-group elements, which has recently attracted significant attention
in other applications [25, 28, 56]. In diffusing transformations on the surface, our
work is similar to that of Litke et al. [40], although the parameterization of the
motion and of the surface is different. In addition, we do not make an assumption
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on the surface topology; to that end, the proposed method diffuses transformations
along the surface, rather than representing the surface in an evenly sampled 2D
parametrization plane. When dealing with real-life deformable objects that seldom
admit regular global parametrization, such an assumption could be too restrictive.

The idea of combining soft segmentation and motion estimation has been
attempted before in the case of optical flow computation (see, e.g., [3,18]). In optical
flow fields, however, the motion field is merely expected to be piecewise smooth.
For truly articulated objects one would expect piecewise-constant flow fields, when
expressed in the correct parametrization.

Finally, the functional can be extended with priors from general mesh segmen-
tation techniques. These are usually based on the geometry of the surface itself,
and obtain remarkable results for a variety of objects. We point the reader to
[9,21,36,55], and references therein, for additional examples of mesh segmentation
algorithms. We do not, however, use an additional prior as such an addition will
prevent the isolated examination of the principles shown in this chapter.

12.2 Problem Formulation

We now proceed to define the problem we try to solve and the proposed model.

12.2.1 Articulation Model

We denote byX a two-manifold representing a three-dimensional shape. We assume
X to have several embeddings into R3. Each of these embedding constitutes a pose
of the surface. In the following, we will denote by x W X ! R3 the embedding of
X into R3, and use synonymously the notation x and x referring to a point on the
manifold and its Euclidean embedding coordinates, for a specific pose.

In the setting of rigid motion segmentation, we assume that X represents an
articulated shape, i.e., it can be decomposed into rigid parts S1; : : : ; Sp. These are
transformed between different poses of the objects by a rigid transformation. This
transformation, a rotation and a translation, is an isometry of R3. The rigid parts
are connected by nonrigid joints J1; : : : ; Jq , such that X D Sp

iD1 Si [
Sq
kD1 Jk .

An articulation Y D AX is obtained by applying rigid motions Ti 2 Iso.R3/
to the rigid parts, and non-rigid deformations Qk to the joints, such that AX DSp
iD1 Ti Si [

Sq
kD1 QkJk .

12.2.2 Motion Segmentation

The problem of motion-based segmentation can be described as follows: given two
articulations of the shape, X and Y , extract its rigid parts. An extension to the case
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of multiple shape poses is straightforward. We therefore consider in the following
only a pair of shapes for the sake of simplicity and without loss of generality.
A strongly related question attempts to determine, given these articulations, the
motion parameters linking the poses of the object.

Assuming that the correspondence between the two poses X and Y is known,
given a point x 2 X and its correspondent point y.x/ 2 Y , we can find a motion g 2
G such that gx D y, where G is some representation of coordinate transformations
in R3. This motion g may change, in the setting described above, for each surface
point. We therefore consider g to be a function g W X ! G. We will simultaneously
use gx 2 R3 to denote the action of g.x/ on the coordinates of the point x, as well
as consider the mapping given by g W X ! G and its properties.

We note that typical representations of motion in R3 contain more than three
degrees of freedom. In this sense, they are over-parameterized [45], and thus some
measure of regularity is required in order to avoid ambiguity as well as favor a
meaningful solution. On the other hand, we note that since the articulated parts
of the shape move rigidly, if we choose an appropriate motion representation (as
detailed below), two points x; x0 2 Si will undergo the same transformation, from
which it follows that g.x/jx2Si D const. One possibility is to adopt a constrained
minimization approach, forcing g.X/ D Y , where g.X/ is a notation for the set
g.x/x.x/ for all x 2 X . This approach, however, needs to somehow handle the set
of joints, for which such a constraint may be meaningless. In general, restricting the
feasible set of solutions by such constraints or even constraints involving an error in
the data may be harmful for the overall result. In order to avoid this, another possible
approach is to take an unconstrained, yet regularized, variational formulation,

min
gWX!G

!ED.g/C ".g/; (12.1)

where " denotes a smoothness term operating on the motion parameters field. This
term is expected to be small for fields g which are piecewise constant on the
manifoldX . While an appropriate parameterization of motion g, and regularization
term ".g/ are crucial, we also require a data term that will encourage consistency
of the transformation field g with the known surface poses. Specifically, we wish to
favor a transformation field where the point x is taken by its transformation g.x/ to a
point on the other surface.ED.g/ is our fitting term which measures this consistency
with the data.

ED.g/ D
Z

X

kg.x/x ! y.x/k2da; (12.2)

where y.x/ 2 R3 denotes the coordinate of the point y.x/ 2 Y corresponding to
x, g.x/ is the transformation at x, and da is a measure on X . We have assumed in
the discussion so far that the correspondence between X and Y is known, which is
usually not true. We can solve for the correspondence as part of the optimization
in an efficient manner. We will mention this issue in Sect. 12.4.1. We use the
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term corresponding point y.x/ since, as in the case of iterative closest point (ICP)
algorithms [13,67], several approaches for pruning erroneous or ineffective matches
exist [53].

Minimizing the functional with respect to g; y.x/ from a reasonable initial
solution allows recovery of the articulated parts by clustering g into regions of equal
value. Yet another choice of a data term is a semi-local fitting term, is a semi-local
one,

ED;SL.g/ D
Z

X

Z

y2N .x/

kg.x/x0 ! y.x0/k2da0da; (12.3)

where N .x/ denotes a small neighborhood around the point x (we took N .x/ to be
the 12 nearest neighbors). This fitting term, by itself, formulates a local ICP process.
The functional (12.1) equipped with the semi-local data term can be considered
as the geometrical fitting equivalent of the combined global-local approach for optic
flow estimation [17].

The simplest representation of motion is a linear motion model, affectively
setting G to be the group of translation, or G D R3. This results in the motion
model gx D xC t D y for some t 2 R3. However, such a simplistic model fails to
capture the piecewise constancy of the motion field in most cases. Instead of turning
to a higher order approximation model such as the affine over-parameterized model
[46], or to more elaborate smoothness priors [60], we look for a relatively simple
model that will capture natural motions with a simple smoothness prior. Thus we
turn to a slightly different motion model, naturally occurring in motion research.

12.2.3 Lie-Groups

One parametrization often used in computer vision and robotics [28, 37, 42, 61] is
the representation of rigid motions by the Lie-group SE.3/ and the corresponding
Lie-algebra se.3/, respectively. In general, given two coordinate frame, an element
in SE.3/ describes the transformation between them. Works by Brockett [14], Park
et al. [47] and Zefran et al. [69, 70] strongly relate Lie-groups, both in their global
and differential description, to robotics and articulated motions. We give a very brief
introduction to the subject and refer the reader to standard literature on the subject
(e.g., [29, 44]) for more information.

Lie-groups are topological groups with a smooth manifold structure such that the
group action G "G 7! G and the group inverse are differentiable maps.

For every Lie-group, we can canonically associate a Lie-algebra g. A Lie-algebra
is as a vector space endowed with a Lie brackets operator Œ#; ## W G"G!G,
describing the local structure of the group. The Lie-algebra associated with a
Lie-group can be mapped diffeomorphically via the exponential map onto a
neighborhood of the identity operator and its tangent space.



12 Group-Valued Regularization for Motion Segmentation of Articulated Shapes 269

This property will allow us express neighboring elements in the Lie-group in a
vector space, and thereby define derivatives, regularity, and diffusion operators on
the group valued data.

In this chapter, we are specifically interested in the special orthogonal (rotation)
matrix group SO.3/ and the Euclidean group SE.3/ to represent rigid motions. These
can be represented in matrix forms, where SO.3/ is given as

SO.3/ D
˚
R 2 R3"3;RTR D I

!
; (12.4)

and SE.3/ is given by

SE.3/ D
"#

R
0 1

$
;R 2 SO.3/; t 2 R3

%
: (12.5)

The Lie-algebra of SO.3/, so.3/ consists of skew-symmetric matrices,

so.3/ D
˚
A 2 R3"3;AT D !A

!
; (12.6)

whereas the Lie-algebra of SE.3/ can be identified with the group of 4 " 4 matrices
of the form

se.3/ D
"#

A
0 0

$
;A 2 so.3/; t 2 R3

%
; (12.7)

where so.3/ is the set of 3 " 3 skew-symmetric matrices.
In order to obtain piecewise constant description over the surface for the

relatively simple case of articulated object, we would like the points at each object
part to have the same representative. Under the assumption of G D SE.3/, this
desired property holds. We note, however, that the standard parameterization of
small rigid motions has six degrees of freedom, while the number of degrees
of freedom required to describe the motion of point is mere three. Thus, this
parameterization clearly constitutes an over-parameterized motion field [46] for
articulated surfaces.

We now turn to the regularization term, ".g/, and note that the formulation
given in Eq. (12.1) bears much resemblance to total variation (TV) regularization
common in signal and image processing [51]. Total variation regularization does
not, however, favor distinct discontinuity sets. This property of TV regularization
is related to the staircasing effect. Furthermore, in the scalar case, discontinuity
sets form closed curves, which may not be the case in some surfaces with large
joint areas. Instead, a model that better suits our segmentation problem is the
Mumford-Shah segmentation model [43]. This model can be implemented using
an Ambrosio-Tortorelli scheme [2], which can be easily generalized for the case of
maps between general manifolds such as maps from surfaces into motion manifolds.
We further describe the regularization chosen in Sect. 12.3.
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We also note that due to the non-Euclidean structure of the group, special care
should be taken when parameterizing such a representation [28, 37, 42, 56], as
discussed in Sect. 12.4.2.

12.3 Regularization of Group-Valued Functions on Surfaces

Ideally, we would like the transformation field defined on the articulated surface to
be piecewise smooth, if not piecewise constant. Therefore, a suitable regularization
of the transformation parameters is required. Since the Lie-groupG as a Riemannian
manifold, it is only natural to turn to regularization functionals defined on maps
between manifolds of the form g W X ! G.

A classical functional defined over such maps is the well-known Dirichlet energy
[26],

"DIR.g/ D
1

2

Z

X

hrg;rgig.x/da D 1

2

Z

X

tr
&
g#1rg

'2
da; (12.8)

where rg denotes the intrinsic gradient of g on X , h#; #ig.x/ is the Riemannian
metric on G at a point g.x/, and da is the area element of X . This functional is the
more general form of the Tikhonov regularization (for Euclidean spaces X and G),
and its properties are well defined for general manifolds, as studied by Eells [26].

Minimizers of the Dirichlet energy are called harmonic maps. These result from
a diffusion process, and are often used for surface matching [62, 68].

12.3.1 Ambrosio-Tortorelli Scheme

Unfortunately, the Dirichlet energy favors smooth maps defined on X , whereas
our desired solution has discontinuities at the boundaries of rigid parts. We would,
intuitively, want to prevent diffusion across these discontinuity curves. This can be
obtained by adding a diffusivity function v W X ! Œ0; 1# to the Dirichlet functional,
leading to the generalized Ambrosio-Tortorelli scheme [2] for Mumford-Shah
regularization [43].

"AT.g/ D
Z

X

 
1

2
v2hrg;rgig C $hrv;rvi C .1 ! v/2

4$

!
da; (12.9)

where $ is a small positive constant. This allows us to extend our outlook in
several ways. The Mumford-Shah functional replaces the notion of a set of regions
with closed simple boundary curves with general discontinuity sets. It furthermore
generalizes our notion of constant value regions with that of favored smoothness
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inside the areas defined by these discontinuity curves. This is in order to handle
objects which deviate from articulated motion, for example in flexible regions or
joints.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly
reason about places in the flow where the nonlinear nature of the data manifold
manifests itself. Suppose we have a solution .g$; v$/ satisfying our piecewise-
constancy assumptions of g, and a diffusivity function with 0 at region boundaries
and 1 elsewhere. At such a solution, we expect two neighboring points which
belong to different regions to have a very small diffusivity value v connecting them,
effectively nullifying the interaction between far-away group elements which is
dependent on the mapping used for the logarithm map at each point, and hence
can be inaccurate [32, 42]. While such a solution .g$; v$/ may not be a minimizer
of the functional, it serves well to explain the intuition motivating the choice of the
functional.

12.3.2 Diffusion of Lie-Group Elements

In order to efficiently compute the Euler-Lagrange equation corresponding to the
generalized Ambrosio-Tortorelli functional (12.9), we transform the neighborhood
of each point into the corresponding Lie-algebra elements before applying the
diffusion operator. Using Lie-algebra representation of differential operators for
rigid motion has been used before in computer vision [56], numerical PDE
computations [32], path planning and optimal control theory [37, 42].

The Euler-Lagrange equation for the generalized Dirichlet energy measuring the
map between two manifolds is given as [26]

%Xg
˛ C & ˛

ˇ'

˝
rgˇ;rg'

˛
g.x/
D 0; (12.10)

where ˛; ˇ ' enumerate the local coordinates of our group manifold, se.3/, and we
use Einstein’s notation according to which corresponding indices are summed over.
& ˛
ˇ' are the Christoffel symbols of SE.3/, which express the Riemannian metric’s

local derivatives. We refer the reader to [24] for an introduction to Riemannian
geometry. Finally,%X denotes the Laplace-Beltrami operator on the surface X .

In order to avoid computation of the Christoffel symbols, we transform the
point and its neighbors using the logarithm map at that point in SE.3/. The
diffusion operation is now affected only by the structure of the surface X . After
applying the diffusion operator, we use the exponential map in order to return to
the usual representation of the transformation. While this approach may suffer at
discontinuities, where the logarithm and exponential maps are less accurate, it is
at these continuities that we expect the diffusivity function v to be very small,
preventing numerical instability. In practice, as we will demonstrate, this did not
pose a significant problem.
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Algorithm 1 Articulated surface segmentation and matching
1: Given an initial correspondence.
2: for k D 1; 2; : : : ; until convergence do
3: Update gkC1=2; vkC1 w.r.t. the diffusion term, according to Eq. (12.12).
4: Obtain gkC1 according to the data term, using Eq. (12.15).
5: Update ykC1.x/, the current estimated correspondence of the deformed surface.
6: end for

12.4 Numerical Considerations

We now describe the algorithm for articulated motion estimation based on the
minimization of the functional

E.g; v/ D !EDATA.g/C "AT .g; v/; (12.11)

where EDATA.g/ is the matching term defined by Eq. (12.2), and "AT .g; v/ is
defined in Eq. (12.9). The main steps of the algorithm are outlined as Algorithm 1.
Throughout the algorithm we parameterize g.x/ based on the first surface, given as
a triangulated mesh, with vertices fxi gNiD1, and an element from SE.3/ defined at
each vertex. The triangulation is used merely to obtain a more consistent numerical
diffusion operator, and can be avoided, for example by point-cloud based Laplacian
approximations [10]. Special care is made in the choice of coordinates during the
optimization as explained in Sect. 12.4.2.

12.4.1 Initial Correspondence Estimation

As in other motion segmentation and registration algorithms, some initialization of
the matching between the surfaces must be used. One approach [6] is to use nonrigid
surface matching for initialization. Another possibility, in the case of high framerate
range scanners [65], is to exploit temporal consistency by 3D tracking. Yet another
possible source for initial matches incorporates motion capture marker systems.
Such sparse initial correspondence lends itself to interpolation of the motion field,
in order to initialize a local ICP algorithm, and match the patch around each source
point to the target mesh. In Fig. 12.4, we use 30 matched points for initialization.
This number of points is within the scope of current motion capture marker systems,
or of algorithms for global nonrigid surface matching such as spectral methods
[34,41,49,52], or the generalized multidimensional scaling (GMDS) algorithm [15].

We expect that a better initial registration, as can be obtained e.g. using a
smoothness assumption, or by pruning unsuitable candidates [53], will reduce the
number of markers needed.



12 Group-Valued Regularization for Motion Segmentation of Articulated Shapes 273

12.4.2 Diffusion of Lie-Group Elements

Rewriting the optimization over the functional in Eq. (12.11) in a fractional step
approach [66], we update the parameters w.r.t. each term of the functional in a
suitable representation. The treatment of regularized data fitting in a fractional
step approach with respect to different forces has been used before for rigid body
motion [20], and is also similar to the approach taken by Thirion’s demons algorithm
[48, 58] for registration.

Using the transformation described in Sect. 12.3, the update step with respect to
the regularization now becomes

gkC1=2 D gkexp
#
!dt ı"AT

ı Qg

$
; vkC1 D vk ! dt ı"AT

ıv
(12.12)

where exp.A/ D I C AC A2=2ŠC A3=3ŠC : : : denotes the matrix exponential, Qg
denotes the logarithm transform of g, and dt denotes the time step. ı"AT

ı Qg denotes the
variation of the regularization term "AT .g/w.r.t. the Lie-algebra local representation
of the solution, describing the Euler-Lagrange descent direction. g.x/ and the
neighboring transformations are parameterized by a basis for matrices in se.3/, after
applying the logarithm map at g.x/. The descent directions are given by

ı"AT

ı Qgi
D v2%X. Qgi /C v hrv;r Qgi i (12.13)

ı"AT

ıv
D hrg;rgig.x/vC 2$%X.v/C

.v ! 1/
2$

;

where Qgi denote the components of the logarithmic representation of g. The
discretization we use for %X is a cotangent one suggested by [23], which has been
shown to be convergent for relatively smooth and well-parameterized surfaces. It is
expressed as

%X .u/ $
3

Ai

X

j2N1.i/

cot˛ij C cotˇij
2

(
uj ! ui

)
; (12.14)

for a given function u on the surface X , where N1.i/ denotes the mesh neighbors
of point i , and ˛ij ; ˇij are the angles opposing the edge ij in its neighboring faces.
Ai denotes the area of the one-ring around i in the mesh. After a gradient descent
step w.r.t. the diffusion term, we take a step w.r.t. the data term.

gkC1 D PSE.3/
#
gkC1=2 ! dt ıEDATA

ıg

$
; (12.15)



274 G. Rosman et al.

where PSE.3/.#/ denotes a projection onto the group SE.3/ obtained by correcting
the singular values of the rotation matrix [12]. We compute the gradient w.r.t. a
basis for small rotation and translation matrices comprised of the regular basis
for translation and the skew-matrix approximation of small rotations. We then
reproject the update onto the manifold. This keeps the inaccuracies associated with
the projecting manifold-constrained data [19, 28, 32, 42] at a reasonable level, and
leads to a first-order accuracy method. As noted by Belta and Kumar [11] in the
context of trajectory planning and ODEs over Lie-groups, this method is reasonably
accurate. In practice the time-step is limited in our case by the data-fitting ICP term
and the explicit diffusion scheme. We expect improved handling of these terms to
allow faster implementation of the proposed method.

Finally, we note that we may not know in advance the points y.x/ which match
X in Y . The correspondence can be updated based on the current transformations in
an efficient manner similarly to the ICP algorithm. In our implementation we used
the ANN library [7] for approximate nearest-neighbor search queries. We did not
incorporate, however, any selective pruning of the matching candidates. These are
often used in order to robustify such the ICP algorithm against ill-suited matches
but are beyond the scope of this chapter.

12.4.3 Visualizing Lie-Group Clustering on Surfaces

Finally, we need to mention the approach taken to visualize the transformations
as the latter belong to a six-dimensional non-Euclidean manifold. Motivated
by the widespread use of vector quantization in such visualizations, we use a
clustering algorithm with spatial regularization. Instead of minimizing the Lloyd-
Max quantization [33] cost function, we minimize the function

EVIS.gi ; Ri/ D
X

i

Z

Ri

kg ! gik2daC
Z

@Ri

v2.s/ds; (12.16)

where @Ri denotes the set of boundaries between partition regions fRigNiD1, gi are
the group representatives for each region, and v2.s/ denotes the diffusivity term
along the region boundary. The representation of members in SE.3/ is done via
its embedding into R12, with some weight given to spatial location, by looking
at the product space R3 " SE.3/ % R15. Several (about 50) initializations are
performed, as is often customary in clustering, with the lowest cost hypothesis kept.
The visualization is detailed as Algorithm 2

While this visualization algorithm coupled with a good initialization at each point
can be considered as a segmentation algorithm in its own right, it is less general as it
assumes a strict separation between the parts. One possible question that can be raise
concerned the meaning behind vector quantization of points belonging to a manifold
through its embedding into Euclidean space. In our case, since we are dealing with
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Algorithm 2 Spatially-consistent clustering algorithm
1: for j D 1; 2; : : : ; for a certain number of attempts do
2: Use k-means on the spatial-feature space embedding, R3 " SE.3/ % R15, to get an initial

clustering.
3: Use the clusters in order to optimize a spatially-regularized vector quantization measure,

C D min
gi ;@Ri

Z

X
kg # gik2daC

Z

@Ri

v2.s/ds;

where @Ri denotes the set of boundaries between clustered regions, gi are the transforma-
tion representatives for each region, and v2.s/ denotes the diffusivity term along the region
boundary.

4: If C is lower than the lowest C found so far, keep the hypothesis.
5: end for
6: return current best hypothesis.

relatively well-clustered points (most of the points in a part move according to a
single transformation in SE.3/), the distances on the manifold are not large and
are therefore well-approximated by Euclidean ones. We further note, however, that
the diffusion process lowered the score obtained in Eq. (12.16) in the experiments
we conducted, indicating a consistency between the two algorithms in objects with
well-defined rigid parts.

12.5 Results

We now show the results of our method, in terms of the obtained transformations
clusters and the Ambrosio-Tortorelli diffusivity function. In Fig. 12.1 we show
the segmentation obtained by matching two human body poses taken from the
TOSCA dataset [16]. We visualize the transformations obtained using the clustering
algorithm described in Sect. 12.4.3. We initialized the transformations on the surface
by matching the neighborhood of each surface point to the other poses using the
true initial correspondence. The results of our method seem plausible, except for
the missing identification of the right leg, which is due to the fact that its motion is
limited between the two poses.

Figure 12.1 also demonstrates the results of comparing four poses of the same
surface, this time with the patch-based data term described by (12.3). In our
experiments the patch-based term gave a cleaner estimation of the motion, as
is observed in the diffusivity function. We therefore demonstrate the results of
minimizing the functional incorporating this data term. We also show the diffusivity
function, which hints at the location of boundaries between parts, and thus justifies
the assumption underlying Algorithm 2.

In Figs. 12.3 and 12.2 we show the results of our algorithm on a set of six poses
of a horse and camel surfaces taken from [57]. In this figure we compare our results
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Fig. 12.1 Segmenting a human figure. Top row: the set of poses used. Bottom row, left to right:
the transformations obtained from the two left most poses, the transformations obtained from all
four poses using Eq. (12.3) as a data term, and the Ambrosio-Tortorelli diffusivity function based
on four poses

Fig. 12.2 Segmenting a camel dynamic surface motion based on six different poses. Top row: the
poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained
by our method and the diffusivity function v

to those of Wuhrer and Brunton [64], obtained on a similar set of poses with ten
frames. The results of our method seem to be quite comparable to those obtained
by Wuhrer and Brunton, despite the fact that we use only six poses. We also note
that both the diffusion scheme and the visualization algorithm gave a meaningful
result for the tail part, which is not rigid and does not have a piecewise-rigid motion
model.

In Fig. 12.4 we demonstrate our algorithm, with an initialization of 30 simulated
motion capture marker points, where the displacement is known. The relatively
monotonous motion range available in the dynamic mesh sequence leads to a less
complete, but still quite meaningful, segmentation of the horse, except for its head.

We also note the relatively low number of poses required for segmentation – in
both Figs. 12.3 and 12.4 we obtain good results despite the fact that we use only a
few poses, six and eight respectively.
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Fig. 12.3 Segmenting a horse dynamic surface motion based on six different poses. Top row: the
poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained
by our method, and the segmentation results obtained by [64], and the diffusivity function v

Fig. 12.4 Segmenting a horse dynamic surface motion with a given sparse initial correspondences.
Top row: the eight random poses used. Bottom row, left to right: the set of points used for
initializing the transformations, and a visualization of the transformations obtained, and the
diffusivity function v

Finally, in Fig. 12.4 we demonstrate initialization of our method based on a sparse
point set, with 30 known correspondence points. The points are arbitrarily placed
using farthest point sampling [27,31]. This demonstrates a possibility of initializing
the algorithm using motion capture markers, coupled with a 3D reconstruction
pipeline, for object part analysis. While the examples shown in this chapter are
synthetic, this example shows that the algorithm can be initialized with data obtained
in a realistic setup.

12.6 Conclusion

In this chapter we present a new method for motion-based segmentation of
articulated objects, in a variational framework. The method is based on minimizing a
generalized Ambrosio-Tortorelli functional regularizing a map from the surface onto
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the Lie-group SE.3/. The results shown demonstrate the method’s effectiveness,
and compare it with state-of-the-art articulated motion segmentation algorithms.
The functional we suggest can be easily tailored to specific problems where it can
be contrasted and combined with domain-specific algorithms for articulated object
analysis. In future work we intend to adapt the proposed algorithm to real data
from range scanners, and explore initialization methods as well as use the proposed
framework in other applications such as articulated surfaces tracking and denoising.
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69. Žefran, M., Kumar, V., Croke, C.: On the generation of smooth three-dimensional rigid body
motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1998)
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Chapter 13
Point Cloud Segmentation and Denoising
via Constrained Nonlinear Least Squares
Normal Estimates

Edward Castillo, Jian Liang, and Hongkai Zhao

Abstract We first introduce a surface normal estimation procedure for point clouds
capable of handling geometric singularities in the data, such as edges and corners.
Our formulation is based on recasting the popular Principal Component Analysis
(PCA) method as a constrained nonlinear least squares (NLSQ) problem. In contrast
to traditional PCA, the new formulation assigns appropriate weights to neighboring
points automatically during the optimization process in order to minimize the
contributions of points located across singularities. We extend this strategy to point
cloud denoising by combining normal estimation, point projection, and declustering
into one NLSQ formulation. Finally, we propose a point cloud segmentation
technique based on surface normal estimates and local point connectivity. In
addition to producing consistently oriented surface normals, the process segments
the point cloud into disconnected components that can each be segmented further
into piecewise smooth components as needed.

13.1 Introduction

Two key processing tools for unstructured point cloud data are surface normal
estimation and segmentation. Surface normal estimation is utilized by several
applications such as reconstruction [5, 6, 20], local feature size estimation [10, 26],
computer aided design [24], and inside-outside queries, while segmentation is
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useful for efficient point cloud representation and classification [15, 30]. However,
depending on the method, segmentation often requires surface normal estimates as
a prerequisite.

As described in [11], surface normal estimation methods can be classified
algorithmically as either numerical or combinatorial. Combinatorial methods are
based on the information obtained from a Delaunay triangulation procedure applied
to the point cloud. Consequently, combinatorial methods such as the algorithm
proposed in [2], are known to be sensitive to noise. Though noise robustness has
been incorporated into the combinatorial methodology [9], the approach in general
becomes infeasible for large data sets due to the computational cost required by the
Delaunay triangulation [11]. On the other hand, numerical methods are based on
the optimization of a fitting model defined on a subset of point contained in a local
neighborhood.

The most common approach employed by numerical methods is to first determine
a subset of data points representing the local neighbors of a given point p. As
described in [13], the estimated surface normal for the point p is then the normal
to the plane that best fits the neighboring data points in the least squares sense.
The least squares fitting plane is determined using Principal Component Analysis
(PCA). As such, the entire procedure is often referred to as PCA. Since the method
is based on a least squares formulation, PCA is known to be stable in the presence
of noise. However, near geometric singularities such as corners or edges, where
the normal is discontinuous, the PCA fails to produce sharp normal estimates
since neighboring points are used nondistinctively to compute the planar fit. The
effect is rounded or smoothed normal estimates along edges. Adjustments to the
basic PCA procedure, such as distance weighting [1, 27], varying neighborhood
sizes [23, 26], and higher-order fitting [18, 24, 32], have been suggested to improve
the accuracy near geometric discontinuities. However, such approaches fail to
address the fundamental problem of determining which points contained in a given
neighborhood should contribute to the normal computation.

In this work, we first introduce a surface normal approximation method based
on recasting the popular PCA formulation as a constrained nonlinear least squares
(NLSQ) problem that is designed to produce accurate surface normal estimates near
geometric singularities. Our constrained NLSQ method incorporates the weight
of each point contribution into the normal estimate problem formulation as an
unknown quantity. In another word, our formulation can be viewed as a robust
statistic strategy, i.e., points belonging to a different smooth patch across a geometric
singularity can be seen as outliers in the sense of robust statistics [17]. By
simultaneously optimizing the weights and the normal, essentially only neighbor-
ing points from the same smooth piece contribute to the normal estimate. This
constrained NLSQ formulation has the benefit of being simpler than neighborhood
reorganization methods such as [6] and can be implemented with almost the same
efficiency as the standard PCA. In addition, we extend the constrained NLSQ
methodology to address point cloud denoising by combining normal estimation,
point projection, and declustering together into one formulation.

Next we introduce a point cloud segmentation scheme that utilizes the esti-
mated surface normals computed by our constrained NLSQ approach. Point cloud
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segmentation methods are typically categorized as either a region growing method
or border-based method. Region growing methods, such as those described in
[4,28,30,31], are based on growing segmented regions from preselected seed point
locations according to a given consistency or continuity rule. Though known to be
robust to noise, the main difficulties associated with region growing are the seed
point selection criteria and the monitoring of the growing process. Border-based
methods on the other hand [7, 8, 15, 19], rely on identifying the points located
along edges. The full segmentation is then computed from the detected edges by
applying a filling process or meshing. However, due to noise or spatially uneven
point distributions, such methods often detect disconnected edges that make it
difficult for a filling procedure to identify closed segments.

Our segmentation procedure is based on first constructing an adjacency matrix
representing the point connectivity of the full data set from unoriented surface
normal estimates according to an angular continuity measure. The connected
components present in the adjacency matrix constitute the initial segmentation. As
a result, the method does not require a filling process or region growing procedure.
Additionally, the point connectivity information represented by the adjacency
matrix provides a means for consistently orienting the surface normal estimates,
even for data sets representing multiple closed surfaces. A finer segmentation can
then be obtained from the initial connected components by classifying the oriented
surface normals according to both their direction and the local geometry information
contained in the adjacency matrix.

Here is the outline. First, we reformulate the standard PCA as a constrained least
squares problem in Sect. 13.2. Then, we derive our constrained NLSQ formulation
for normal estimation in Sect. 13.3. This formulation is extended to point cloud
denoising in Sects. 13.4–13.6. Our point cloud segmentation algorithm based on
surface normal estimates and point connectivity is described in Sect. 13.7.

13.2 PCA as Constrained Linear Least Squares

PCA is a popular method for computing surface normal approximations from point
cloud data [13]. Given a point cloud data set D D fxi gniD1, the PCA surface normal
approximation for the point p 2 D is typically computed by first determining the
K-nearest neighbors, xk 2 D, of p. Given the K-neighbors, the approximate surface
normal is then the eigenvector associated with the smallest eigenvalue of the
symmetric positive semi-definite matrix:

P D
KX

kD1
.xk ! Np/T .xk ! Np/; (13.1)

where Np is the local data centroid, Np D . 1
K
/
PK

kD1 xk .
The PCA normal approximation, also referred to as total least squares [23],

is accurate when the underlying surface is smooth, but tends to smear across
singularities, such as corners or edges as illustrated in Fig. 13.1. The smearing is
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Fig. 13.1 PCA normal estimation for a cube and a fan disk. Notice the smeared normals along the
edges of the cube

caused by the contribution of neighboring data points from across the singularity
to the PCA covariance matrix P . Hence, the standard PCA normal estimate can be
improved if one can automatically detect singularities and choose an appropriate
set of neighboring points from the same smooth piece. However, Eq. (13.1) alone
does not provide much insight into determining which data point contributions
should be included or excluded. However, the PCA normal approximation can be
described equivalently as the solution to the following equality constrained least
squares problem:

arg min
!

1

2
kV!k22 (13.2)

s.t.k!k22 D 1;

where the rows of the matrix V 2 RK"3 are the difference vectors vk D xk ! Np and
! represents the unknown normal vector. The single equality constraint is necessary
to ensure a nontrivial solution.

Examination of the by the first order Karush-Kuhn-Tucker (KKT) conditions for
problem 13.2:

V T V! ! "! D 0; (13.3)

reveals that the stationary points for problem (13.2) are the eigenpairs ofP D V T V ,
where the matrix P is exactly the PCA covariance matrix in (13.1) and " is the
Lagrange multiplier corresponding to the equality constraint. The global minimum
is achieved at the smallest eigenvalue and therefore the solution to problem (13.2)
is equivalent to the PCA approximation. However, in contrast to the standard PCA
formulation, formulation (13.2) provides insight into how to improve the normal
estimation near singularities.

Problem (13.2), and consequently the PCA method, describe the normal approx-
imation as the vector that is most orthogonal to the collection of difference vectors
vk . In the simplest case where all vk live in the same plane, the value of the objective
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function V T ! at the solution !# is zero, and !# is orthogonal to the plane. From this
perspective, it is not necessary to compute the local centroid, since utilizing the
difference vectors ak D xk ! p, as opposed to the vectors vk D xk ! Np, yields
the same result. Moreover, the magnitude of the inner product between !# and each
difference vector quantifies the “planar deviation” of each local neighbor. Thus,
monitoring this quantity provides a means for determining which data points, if any,
are contributing from across a discontinuity.

13.3 Normal Estimation via Constrained Nonlinear
Least Squares

The PCA method produces poor normal approximations near surface discontinuities
because the method equally weights the erroneous contributions of points positioned
across the singularity into the normal calculation. However, utilizing the PCA
equivalent, constrained least squares formulation (13.2), such contributions can be
detected by examining the magnitude of the orthogonality mismatch, jaTk !j, where
ak D xk ! p. In the language of robust statistics, points with large orthogonality
mismatch are considered outliers.

Assuming noise free data, large orthogonality mismatches correspond to neigh-
boring points that highly deviate from the local least squares fitted plane. Conse-
quently, large orthogonality mismatches indicate that the corresponding neighbors
are potentially positioned across a discontinuity. Thus, we propose a dynamic
weighting scheme that adaptively determines the weight of each point contribution
as a function of the orthogonality mismatch. Incorporating this strategy into
formulation (13.2) results in the following constrained nonlinear least squares
formulation:

arg min
!

1

2

KX

kD1
e$#.a

T
k !/

2 !
aTk !

"2
(13.4)

s.t. k!k2 D 1:

While traditional weighting schemes place emphasis on proximity [1, 27], the
weighting term e$#.a

T
k !/

2
adaptively deflates the contribution of terms with high

orthogonality mismatch at a rate defined by the parameter #. In this way, formu-
lation (13.4) is designed to compute the surface normal estimate using only the
neighboring points positioned on the same smooth surface component. Naturally,
setting # to zero results in the original PCA linear least squares problem (13.2),
with the exception that the difference vectors are taken from the data point p and
not the centroid Np.

At first glance, formulation (13.4) appears to be substantially more difficult
to solve than the small eigenvalue problem associated with the PCA approach.
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However, the equality constraint is easily absorbed into the objective function by
representing the unknown surface normal ! in spherical coordinates with magnitude
set to unity:

!.$; %/ D

2

4
cos.$/ cos.%/
cos.$/ sin.%/

sin.$/

3

5 :

Substituting the spherical coordinate representation of the unknown surface normal
into formulation (13.4) results in the following unconstrained nonlinear least squares
problem for only two variables:

min
$;%

1

2

KX

kD1
e$#.a

T
k !.$;%//

2 #
aTk !.$; %/

$2
: (13.5)

Applying formulation (13.4) to the examples shown in Fig. 13.1 results in significant
improvement in the surface normal estimates at singularities, as illustrated by
Fig. 13.2. Moreover, the computational cost is comparable to that of standard PCA.

In general, computing the k-nearest neighbors represents the main computational
cost associated with normal estimation. For the city example containing 1.99 million
points and illustrated in Fig. 13.8, the nearest neighbor calculation (tree based
sorting method with O.n log n/ complexity) required 66 s on a Dell Precision
M6400 laptop. The normal calculations utilizing our nonlinear least squares method
required 39 s whereas the PCA normal calculation required 24 s.

13.4 Incorporating Point Cloud Denoising into the NLSQ
Normal Estimate

Point cloud denoising is naturally an important task in many applications. The
noise associated with a data point can be viewed as a perturbation of the point’s
true location. Hence, for a given noise polluted point Qp, the task of denoising can
be viewed as finding the projection of the point Qp onto the underlying surface.
However, the underlying surface is unknown and has to be inferred from the
noisy point cloud itself. Developing methods for projecting points onto curves and
surfaces is an active area of research with applications in computer graphics and
vision (see [14]). Work has also been done for the problem of projecting points onto
point cloud represented surfaces [3, 22], based on first determining a “projection
direction”. The goal here is to couple point cloud denoising with the surface normal
estimation together. The motivation for this approach is the idea that a denoised
point cloud improves surface normal estimation, which in turn provides a better
projection direction for point cloud denoising.
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Fig. 13.2 Nonlinear least squares normal estimation for a cube and a fan disk. Notice the
improvement in the normal estimation along the edges of the cube compared to standard PCA
(Fig. 13.1)

Given a surface normal estimate ! at Qp, we wish to determine a projection along !
that minimizes the orthogonality mismatch energy (formulation (13.5) with # D 0):

arg min
t

1

2

KX

kD1

#
.xk ! . Qp C t!//T !

$2
: (13.6)

Rearranging terms and taking advantage of the fact that k!k D 1, the problem
reduces to a simple least squares problem for the scalar value t :

arg min
t

1

2
kA! ! tk22; (13.7)

where the rows of A are the difference vectors ak D xk ! Qp, and the denoised
location is given by the solution t# as p# D Qp C .t#/!.

As is the case for most denoising procedures, naively applying (13.7) to clean
data will result in over smoothing and the loss of sharp surface features. However,
given a bound T for the distance between Qp and the underlying surface, data
fidelity can easily be incorporated into the formulation by way of linear inequality
constraints. Specifically,

arg min
t

1

2
kA! ! tk22; (13.8)

s.t. jt j < T:

Single variable calculus dictates that the solution to problem (13.8) is achieved at
either the unconstrained minimum tunc D . 1

K
/
PK

kD1 a
T
k !, or at one of the bounds

!T or T .
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Fig. 13.3 Constrained
nonlinear least squares
normal estimation for a noisy
cube. Three percent (in term
of cube size) random
perturbation was added to the
original data. The estimated
normals are still quite
accurate even at edges

For the typical case where ! is not known, the noise in the data can lead to
inaccurate PCA or NLSQ surface normal approximations. However, both noise
robustness and robustness to surface discontinuities can be incorporated into one
NLSQ framework by coupling the denoising formulation (13.8) with the NLSQ
formulation (13.5) (Fig. 13.3):

arg min
$;%;t

1

2

KX

kD1
e$#.a

T
k !.$;%/$t /2

#
aTk !.$; %/ ! t

$2
(13.9)

s.t. jt j " T:

Our numerical approach for solving Problem (13.9) is based on reformulating
the two linear constraints as a pair of log-barrier functions:

L1.t/ D ! ln
%
T ! t
T

&
;

L2.t/ D ! ln
%
T C t
T

&
;

designed so that L1.0/ D L2.0/ D 0 and L1.T / D L2.!T / D 1. Problem (13.9)
with the inequality constraints replaced by the log-barrier functions, comprise a
standard, unconstrained, and nonlinear least squares problem. Our current imple-
mentation utilizes the MINPACK software package, which employs the Levenberg-
Marquardt Quasi-Newton trust region algorithm, using exact values for the gradient
of the objective function. The initial guess used for the optimization routine is
computed by solving problems (13.5) and (13.8) for #, h D 0, respectively. It is
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however possible to extend formulation (13.9) into a more general point cloud
denoising scheme.

13.5 Generalized Point Cloud Denoising and NLSQ
Normal Estimation

In formulation (13.6), we make the rather restrictive assumption that the point Qp
can only move along the normal direction !. We relax this constraint to allow the
point to move to a new position p# for the following two reasons: (1) perturbation
in the point location could be in both tangential and normal direction, and
(2) it is also desirable that points are evenly distributed after denoising. Substituting
aTk !.$; %/ ! t for .xk ! p#/T !.$; %/ within the basic NLSQ adaptive weighting
formulation (13.5) results in the following:

arg min
$;%;p!

1

2

KX

kD1
e$#..xk$p

!/T !/2 #.xk ! p#/T !
$2
;

where # # 0; ! D !.$; %/. The simplicity of the denoising NLSQ formula-
tion (13.9) allowed for the utilization of linear inequality constraints to maintain
data fidelity. However, in this case, applying the same strategy results in a single
nonlinear constraint: jj Qp ! p#jj2 < T . Rather than employ the nonlinear constraint,
we instead simplify the overall formulation by introducing an exponential distance
penalty term to maintain data fidelity. In addition, a standard proximity weighting
term, such as those applied in [1, 27], is incorporated to ensure that points xk
contained in the K-neighbors that lie further away from Qp do not contribute as
heavily to the minimization energy. The resulting formulation is then:

arg min
$;%;p!

1

2
e˛jj Qp$p

! jj22
KX

kD1
e$ˇjjxk$ Qpjj

2
2 e$#..xk$p

!/T !/2 #.xk ! p#/T !
$2

(13.10)

where ˛ > 0; ˇ > 0;# # 0; ! D !.$; %/. Although formulation (13.10) bears some
resemblance to the bilateral filtering method introduced in [12], the key difference is
that the bilateral filtering method computes the normal direction at point Qp a priori
using PCA.

A drawback of the combined surface normal estimation and point cloud denois-
ing formulation (13.10) is the potential for producing poor spatial point distri-
butions. For example, a clustering effect can occur near high curvature locations
when the points move predominately along the normal directions. To avoid this, we
introduce the idea of electrostatic repulsion into the denoising model.
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13.6 Combined Point Cloud Declustering, Denoising,
and NLSQ Normal Estimation

The main concept behind electrostatic repulsion is that each point xk in the
K-neighbors emits a repulsion force that is defined at any location x as the inverse
ratio of the squared distance between xk and x. Repulsion has previously been
shown to have utility in image processing [29], and is commonly employed in
different forms by point cloud consolidation methods such as those in [16, 21, 25].
Incorporating electrostatic repulsion into formulation (13.10) yields:

arg min
$;%;p!

1

2
e˛jj Qp$p

! jj22
KX

kD1
Ek C

"

2

KX

kD1

1

jjxk ! p#jj22
(13.11)

where Ek D e$ˇjjxk$ Qpjj
2
2 e$#..xk$p

!/T !/2 #.xk ! p#/T !
$2
; ˛ > 0; ˇ > 0;# # 0; ! D

!.$; %/;" # 0. Equation (13.11) is designed to produce both the surface normal
estimate and the denoised position by balancing the following three factors: fidelity,
smoothness, and even distribution. In comparison to the motion restricted NLSQ
formulation (13.9), formulation (13.11) introduces two more degrees of freedom
but is unconstrained. As such, formulation (13.11) is easy to implement and can
be solved via any standard nonlinear least squares solver package. Our current
implementation again utilizes the MINPACK library.

Two examples are illustrated in Figs. 13.4 and 13.5. In both examples, Gaussian
noise with mean 0 and a variance of 1% of the length of the diagonal of the box
bounding the data is added. A comparison of the results produced by applying
formulation (13.10) and the bilateral filtering method (introduced in [12]) to the test
data reveals that both methods denoise the point clouds well. However, in contrast
to the bilateral filtering method, formulation (13.11) produces a much more evenly
distributed set of denoised points.

13.7 Segmentation Based on Point Connectivity

The overall segmentation strategy is two-fold. First, an initial segmentation is
obtained from an adjacency matrix, constructed from unoriented surface normal
estimates, describing the point connectivity for the entire data set. The final and finer
segmentation is determined from the initial segmentation, the point connectivity
information contained in the adjacency matrix, and the oriented surface normal
estimates.

Our strategy for the initial segmentation is built upon the assumption that one can
obtain a reasonable approximation to the underlying unoriented surface normals
(presumably by applying the methodology described in Sect. 13.3, but this is not
necessary) at each point in the cloud. Based on the approximated normals and the



13 Point Cloud Segmentation and Denoising 293

Fig. 13.4 Nonlinear least squares denoising for a noisy sphere. (Upper left) is the noisy data,
(upper middle) is the denoised result using bilateral filter, (upper right) is the zoom in front part
of (upper middle), (lower left) is the denoised result using formulation (13.10), (lower middle) is
the denoised result using formulation (13.11) and (lower right) is the zoom in front part of (lower
middle)

Fig. 13.5 Nonlinear least squares denoising for a noisy torus. (Upper left) is the noisy data, (upper
middle) is the denoised result using bilateral filter, (upper right) is the zoom in upper right quarter
of (upper middle), (lower left) is the denoised result using formulation (13.10), (lower middle) is
the denoised result using formulation (13.11) and (lower right) is the zoom in upper right quarter
of (lower middle)

K-nearest neighbor information, a symmetric adjacency matrix A is built such that
Ai;j D 1 if the data points i; j are “connected”, or in terms of graph theory, there
exist an edge between the two points. Ai;j D 0 otherwise. The initial segmentation
then is given by the connected components of the undirected graph represented byA.
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* θ

Fig. 13.6 Two dimensional
representation of a data point
and its tangent plane

Fig. 13.7 The black point
and blue point are connected
to one another. The red point
is not connected to either
point

Of course, the nature of “connected component segmentation” is dictated by the
criteria governing the placement of edges between points. Specifically, given points
xi and xj , the corresponding adjacency matrix entryAi;j D 1 if both are a k-nearest
neighbor of each other, and if the line xj ! xi lies within a user defined angle %
(see Fig. 13.6) of the tangent plane associated with the unoriented surface normal
approximation for xi , and vice versa (see Fig. 13.7). In this way, point proximity, as
well as local geometry are taken into account when determining point connectivity.
Or put another way, neighboring points are connected if the local geometry estimate,
represented by the associated surface normal approximations, are compatible with
the location of xi and xj in R3.

Based on this criteria, the process of segmenting the point cloud according to the
connected components of A can be considered an edge detection scheme. However,
a serendipitous characteristic of this methodology is its innate ability to account for
the possibility of multiple closed surfaces, or disconnected components, within a
given data set. For a smoothly varying surface, such as a sphere, the corresponding
adjacency matrix is comprised of one connected component. However, for the cylin-
der or city data depicted in Figs. 13.8 and 13.9, this is not the case. Consequently, the
associated adjacency matrices contain several connected components (point cloud
segments) and the resulting segmentations break the data sets into piecewise smooth
components.

A finer segmentation can be obtained from the connected component segmen-
tation by first traversing the connectivity information contained in A to orient the
approximated surface normals in the same manner as the minimum spanning tree
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Fig. 13.8 Point cloud representation of a city (right) and its connected component segmentation
(left) represented by different colors

Fig. 13.9 Point cloud
representation of a cylinder
with computed normals
(right) and its piecewise
smooth segmentation (left)
represented by different
colors

method described in [13]. However, the benefit of employing the graph represented
byA is the ability to orient data sets containing more than one body. The orientation
procedure is carried out on one individual connected component segment at a time.
The orientation within a body is kept consistent by identifying points with nearest
neighbors belonging to two connected component segments, and then propagating
the information from one connected component to another.

Given the oriented surface normal approximations, the data set is further
segmented by classifying points with similar surface normals. Specifically, given
a set of N classification vectors, each data point is categorized into one of N groups
according to the similarity between the surface normal and the classification vectors.
Consider the example of a sphere with the classification vectors chosen to be the
six outward normals corresponding to the faces of a cube. Since the sphere is a
smoothly varying surface, there is only one connected component present in the
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Fig. 13.10 Segmentation results for a sphere using the six outward normals for the faces of a cube
as classification vector

Fig. 13.11 Piecewise smooth
segmentation for a
mechanical part. (Left) The
original point cloud. (Right)
Segmentation result: different
colors correspond to different
segments

data set (see Fig. 13.10). Assuming properly oriented surface normals, each point is
categorized according to their closeness (in terms of angular difference) to one of the
six classification vectors and then grouped together based on the point connectivity.
The full algorithm is as follows (Fig. 13.11):

Algorithm

1. Find the K-nearest neighbors of each data point.
2. Calculate the surface normal approximations.
3. Construct the adjacency matrix A by determining the edges between

points.
(continued)
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(continued)
4. Determine the initial segmentation by finding the connected components

of A.
5. Orient the surface normal approximations.
6. (Optional) Refine the segmentation according to N classification vectors.

13.8 Conclusions

A robust surface normal approximation strategy for point clouds using a constrained
nonlinear least squares (NLSQ) formulation is developed. The formulation is
designed to improve normal estimation near geometric singularities, such as edges
and corners, by employing a nonlinear adaptive weighting scheme. The weighting
scheme is designed to incorporate only neighboring points positioned on the same
smooth surface component into the surface normal computation. This approach
generalizes to the broader problem of outlier detection. More specifically, the NLSQ
formulation finds neighboring points that are the most consistent with one another
in terms of the orthogonality mismatch. A byproduct of this procedure is then the
determination of the inconsistent points, which can be considered as outlier data.

Using the NLSQ surface normal formulation as a foundation, we also derive
a new point cloud processing strategy that combines denoising, declustering, and
surface normal estimation into one formulation.

The point cloud segmentation procedure introduced in this paper is based on
a simple point connectivity criteria and the connected components present in the
representative adjacency matrix. This approach allows for surface normal orienta-
tion even when the data set contains more than one closed surface. Furthermore, a
finer segmentation that splits the point cloud into piecewise smooth regions can be
achieved.
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Chapter 14
Distance Images and the Enclosure Field:
Applications in Intermediate-Level Computer
and Biological Vision

Steven W. Zucker

Abstract Early computer vision is dominated by image patches or features derived
from them; high-level vision is dominated by shape representation and recognition.
However there is almost no work between these two levels, which creates a problem
when trying to recognize complex categories such as “airports” for which natural
feature clusters are ineffective. In contrast, the neurobiology of vision indicates a
very rich interaction between low- and high-level constructs, because there is a rich
system of feedback connections. Based on this, we argue that an intermediate-level
representation is necessary for computer vision and that it should incorporate certain
high-level notions of distance and geometric arrangement into a form derivable
from images. We propose an algorithm based on a reaction-diffusion equation that
meets these criteria; we prove that it reveals (global) aspects of the distance map
locally; and illustrate its performance on airport and other imagery, including visual
illusions. Finally, we conjecture that these ideas also can inform the neurobiology
of vision, by providing a novel basis for neural computation.

14.1 Introduction

Consider the problem of finding complex man-made structures, such as airports
or medical or industrial complexes, within urban, suburban, and even rural envi-
ronments from satellite imagery. Such problems are different from the object
recognition tasks normally addressed in computer vision. Even though there is
significant variation among people or chairs, this variation seems small in com-
parison with the variation among the complex structures listed above. People have
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arms and legs and heads; airports have runways and buildings and access roads.
Arms and legs have bilateral symmetry; airports do not. In fact, the wide scope
for arrangement variation is what makes airports so much more complex than
faces, say, as a category. Humans, however, can readily detect airports as well
as faces, which suggests that there is a level (or several levels) of structure to be
found at which objects such as airports can be described. We discuss, in this paper,
one such structure: distance measures derived from arrangement information about
edge elements. It captures the notion that airports consist of elongated structures
that are separated from other, possibly more dense structure. For computer vision
applications we realize this structure as a distance image.

Another motivation for considering these distance images derives from visual
psychophysics and physiology. Gestalt psychologists [21] identified the concepts
of figure and ground, and it is now common in computer vision to seek image
“segmentations” that delimit such figures. Typically in computer vision a boundary
completely encloses the figure, so these boundaries are defined by closed curves.

Gestalt psychologists have refined this notion in two subtle but important ways.
First, they showed that a key property of the figure is that it “owns” the boundary.
Secondly, they showed that the boundary need not be closed, continuous, or even
connected; this suggests more of a field of points, an enclosure field, than the rigid
characteristic function defining inside/outside sought in computer vision.

To unify these two ideas – distance images in computer vision and enclosure
fields in visual psychophysics – we first develop the concept of border-ownership, a
Gestalt notion of how the border belongs to the figure and not to the background. To
compute it there is an “information at a distance” problem: how do distant edges
“inform” whether a given edge is part of the figure or part of the background?
Computer vision seeks to solve this with a global segmentation; we take a different
tack, by deriving a partial differential equation that summarizes aspects of the
distance property inherent in border ownership. Several of its relevant properties
are sketched, and its usefulness is demonstrated on the airport problem.

14.1.1 Figure, Ground, and Border Ownership

Rubin, in a seminal 1915 publication [32], introduced the notions of figure and
ground; see Fig. 14.1a. Note: as the figure shifts from the vase to the faces, the
border appears to shift as well; it “belongs” to the figure.

It is now known that such border-ownership effects exist in neurobiology. While
many in computer vision are aware of the existence of neurons early in the cortical
visual system that are selective for “edges” and their orientation, it is not widely
known that, for many such cells, the response can be modulated depending on
the border-ownership sense. To explain this, recall that so-called “edge detecting
neurons” were first identified using stimuli of light and dark regions as they would
arise from ideal, step edges [19]. Now, consider a neuron that responds vigorously
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Fig. 14.1 Illustration of border ownership. (a) The classical Rubin vase, in which a closed figure
alternates with a pair of “faces.” The border separating the dark region from the light region belongs
to the figure. (b,c) Border ownership is signalled by the response of certain neurons. The stimuli
consist of a pair of images, the first of which shows a dark square on a white background (b), and
the second (c) a white square on a dark background. Recordings were made from a neuron whose
receptive field is shown as the small ellipse, and the stimuli were aligned so that the receptive field
was optimally situated. Notice that, in both cases the neuron “sees” a dark (left)/bright (right) edge
pattern. However, for some neurons, the response is more vigorous to pattern (b) than to (c); for
others it might be the reverse; and for still others it might respond equally to both configurations.
The interpretation is that this neuron prefers e.g. “light” figures against a dark background, as in
(c), and is signaling not only the boundary but also the fact that it is part of a light figure. (Individual
responses not shown.) Note that the light-dark pattern within the receptive field does not change,
only the global arrangement of which it is a part (Figure after [42])

to a particular bright/dark configuration about, say, 1ı of visual angle in diameter.
This small, local configuration could indicate a border which belongs to two classes
of figures: a dark one on a light background, or a bright one on a dark background.
Border ownership would distinguish these two possibilities.

In a remarkable series of experiments, R. von der Heydt and colleagues [42]
discovered that there are neural responses that distinguish these two cases: some
cells respond to the pattern in Fig. 14.1a but not to Fig. 14.1b; while others respond
in the reverse fashion. This is interpreted as a border ownership response, in the
sense that the cell is signalling both that it is detecting an edge and that this edge
belongs to the figure (and not the background).

Not all cells show a border-ownership response. Many in the first cortical visual
area, V1, do not; they respond mainly to the edge brightness configuration. However
the fraction of border-ownership responding cells increases significantly in the next
higher visual areas (V2 and V4); it is for this reason that intermediate-level effects
are implicated.

The challenge is to explain those circuits responsible for computing the border
ownership signal, which involves integrating information about boundaries from
a good distance away. It is tempting to assert that the border ownership signal
propagates along closed borders, as in computer vision segmentation algorithms,
but visual psychophysics suggests that this is not the case, as we review next.
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14.1.2 Soft Closure in Visual Psychophysics

Visual search tasks, in which the subject seeks to find that figure which differs from
an array of background distractors, provides another, “softer” view of closure; see
Fig. 14.2.

While closure makes the search easy – closed figures often pop out from the
others [37] – the effect persists even if the boundary is broken (Fig. 14.2b). Even
a small amount of contour “pointing” toward it’s continuation helps to support the
perceptual organization of closure.

In effect there is a local/global stress implicit in computing closure and border-
ownership. Global figural effects influence local border ownership, but figure
implies borders are known. Models have recently been developed that reflect this
stress, in which an approximate skeleton of the (global) shape influences the local
calculation of border ownership. To relax the need for exact boundaries to reveal the
skeleton, a Bayesian approach has been attempted [17], although how this might be
realized biologically remains unclear.

The concept of closure needs to be relaxed to reflect that perceptual closure only
hints at mathematical closure. And this holds in both directions: while one might
predict that mathematical closure implies perceptual closure, this is not necessarily
the case. Closed contours exist that are too complex [12] to assess without tracing
along [38]. Moreover, border ownership can shift along a contour [17]. More than
topology is required.

14.1.3 Intermediate-Level Computer Vision

Border ownership computations have not been a focus in computer vision. Rather
the emphasis has been on object recognition systems and, e.g., the tradeoff between
within-class or category variation relative to between-class/category variation.
While scale-invariant features (e.g. [24]) and interest detectors can limit some of the
within-class variation, an important trend is revealing that edge and shape features
working together can improve performance; see e.g. [14,15]. These may involve not
only organizing edge fragments into object boundary parts, but also their relative
arrangement as captured by the centroid [27,28]. Such techniques follow a “bottom
up” strategy, by which increasingly more context is involved in the recognition [39].

Centroids suggest involving higher-level shape features directly, and it is this
observation that reveals a connection to border ownership. Skeleton points are
extrema of the distance map and the centroid is related to shock-based formulations
[35]. Computing such skeletons requires a (relatively) closed boundary, which is
barely plausible for shape categories such as cups and airplanes given photometric
variation, and relates back to Bayesian perceptual models [17]. But man-made
structures, such as airports and sports complexes are much less structured: although
runways are straight, there are huge variations in the buildings, parking facilities
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Fig. 14.2 The visual search task. Subjects are shown an example figure to find among a field
of distractors. The time taken to find the distractor is a measure of difficulty. (a) Examples of
two displays with a figure embedded among distractors. Notice how much easier the task is for
the closed rather than the open figures. This suggests the power of closure. (b) Data showing that
nearly closed figures are effectively the same as closed figures, and that the arrangement of contour
fragments is key to the effect ( Figures after [13])

and supply roads that flank them. How can a boundary be computed, bottom-up,
around an airport? Within-class variation among airports exceeds the between-
class variation with highways. Attempts to build templates for them failed, and
researchers resorted early to rule-based systems [25]. But the variation among
such complex features precludes such systems: the rules for defining airports in
urban areas are quite similar to the rules for defining freeway exchanges; and the
rules for defining airports in developing countries are significantly different. Similar
problem plague recognition of other socially-developed structures, such as medical
complexes and sports arenas, and organically developing biological compounds.

We explore the position that the airport recognition problem and the border
ownership problem are not unrelated, and are examples that expose the need for
new intermediate-level visual structures.

Mathematically the isoperimetric inequality, (perimeter)2/area, has something of
the flavor we seek, because it integrates a boundary property with a shape property.
Although this can be a useful feature, operationally defining the perimeter and the
area can be difficult. The problem is illustrated in Fig. 14.3; to summarize: edge
maps are too local, too broken, and too rigid. High-level features, such as the
skeleton, are too global, too susceptible to boundary detail, and too sensitive to
closure and interior features. We seek something in between, that extends naturally
the unification of top-down shape with bottom-up features [4], and that is reflective
of the better parts of both.

14.2 Global Distance Information Signaled Locally

The key idea behind this paper is to represent locally certain aspects of the
distance map; that is,certain global aspects of shape, so that they can be used
in an intermediate-level manner. This provides a middle-ground between abstract



306 S.W. Zucker

a b c d

Fig. 14.3 The quest for intermediate-level vision is to find useful representational structures
between edges (a), reflecting local, bottom-up processing, and global shape features such as
the medial axis (b). While informative, edges are incomplete; ideally, skeletons need complete
boundaries. We recall that each medial axis, or skeleton point, is the center of a maximal inscribed
disc and also a singularity of the distance map. Both of these properties will be exploited by
different approaches to border ownership. We seek a representation that captures aspects of both
boundaries and their arrangement. For organically-and industrially-developed structures, such as
airports (c, d), the relevant structure is captured by an abstract combination of edge and distance
effects, rather than only local image properties

high-level representations such as skeletons and templates and the lower-levels of
layered images. The representation is derived from a partial differential equation,
and leads to a non-linear scale space for distances, estimated over increasingly larger
domains. We note that there are many applications of pde’s in scale space analysis
(e.g., [16]) but none, to our knowledge, that relate the solutions to properties of the
distance map.

As a warm-up, we note that there are many problems in developmental biology
that involve signalling of distant events, and we borrow heavily from a plant
example: A young leaf in a developing plant consists of a network of veins that
form cycles surrounding domains of cells. A problem arises when the domain of
cells enlarges to exceed the nutrient delivery capability of the existing vasculature:
how do the “starving” cells in the center of the domain signal the need to form new
veins? What is the nature of the signal, how is it generated, and what is the value that
can be “read out” as a new vein instruction. The local task (a particular cell must
transform from a ground cell to a vascular one) requires global information (distance
to the nearest vein). To make this even more complicated, the signal must be read
by those cells adjacent to existing veins, so that the network remains connected.

A theoretical solution to this problem has been developed in [8–10], and we take
their model as a starting point for this paper; the intuition is shown in Fig. 14.4.
The key idea is that cells in the developing leaf all produce a hormone called auxin
at the same rate. This hormone then diffuses from cell to cell and is cleared away
at the existing veins. The result is a differential equation (stated in the next section),
the equilibria of which carry information about the distance from the veins to the
furthest cell. Two properties are salient: the concentration of the hormone peaks at
the furthest cells; and the magnitude of the gradient peaks at the existing vasculature.
It is this gradient peak that provides the signal for plant development.

We interpret the hormone concentration function in [8–10] as a kind of distance
image; that is, an image whose value at certain points corresponds to properties of
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Fig. 14.4 How do young plants determine where the next vein shoot should go? Consider a
rectangular portion of a leaf, surrounded by existing veins. If each cell (or pixel in the rectangle)
produces a hormone at a constant rate, the hormone diffuses to neighboring cells and is cleared
away by the existing vasculature (boundary condition D 0), the equilibrium distribution shown in
(a) results. Taking a cross section through it, the peak in hormone concentration is at the center
(b) and the peak in the gradient of concentration at equilibrium is at the existing veins (boundary);
this last peak informs the developing leaf about where to start a new vein fragment and in which
direction. (c) Concentration and (d and e) gradient of concentration in a real portion of a developing
leaf (Figure after [8])

the distance map (distance to nearest vein). But in this form it is not at all clear how
to apply it to vision problems.

A clue comes from another famous psychological display. Although in computer
vision we take edge and line locations to be calibrated projections of certain
positions in space, the human visual system is not so veridical. Arrangements of
edge elements can effect apparent global shape properties, as in the Muller-Lyer
illusion (Fig. 14.5). It is known that optical blur, as first hypothesized by Helmholtz,
do not explain all of the illusion [40], nor do cognitive effects [18].

We interpret the Muller-Lyer illusion by observing that the “wings” at the ends
of the horizontal lines effectively define an area context, and this area context is
larger when the wings point out than when they point in; it is within this context
that the lines appear to be of different lengths. So we conclude that line and
edge arrangements can effect certain aspects of global shape, such as distance,
at least perceptually. Returning to the airport example, we notice an analogy: the
arrangement of boundaries, and the spaces between them, are the common thread
through the different attempts to define them. Runways are straight and not too close
to the buildings around them.

Our goal is to combine edge representations with information about their arrange-
ment, resulting in an enhanced edge map called the distance image. Dimensionality-
reduction techniques distill out some major components from these distance images



308 S.W. Zucker

Fig. 14.5 (Left) The Muller-Lyer Illusion: are the horizontal lines of equal length? Notice how the
outward “wings” provide a context in which the line appears longer than for the inward “wings,”
even though they are equal in length. (middle) The area enclosed by the wings, here shown in black,
is enlarged by the outward “wings.” (right) The Muller-Lyer illusion is predicted by Theorem 14.2;
the gradient of concentration values are as shown

and a curious property of airport definitions emerges: that the distribution in
orientation, arrangement, and density of edge elements can be key to defining
classifiers. Finally, we relate distance images to modern notions in neurobiology.

14.3 Mathematical Formulation

We begin with the formalization of the model for plants, even though it is unrealistic
for images, to introduce the type of result we seek. For concreteness, consider
the example of the Muller-Lyer illusion in Fig. 14.5. Imagine that there exists a
substance to report distance information, and that it is produced by all of the black
pixels at the constant rate K . The set of black pixels, ˝ , is a shape and c W ˝ ! <
denotes the concentration of the distance substance. Since it diffuses from pixel to
pixel, it obeys:

ct D Dr2c CK (14.1)

where ct is the derivative of concentration, D is the diffusion constant, and K is
the constant production. The Euclidean distance function on ˝ , denoted E˝ , is
E˝.P / D infQ2@˝ jjP !Qjj2. The boundary support of P , denoted bsupp.P I˝/,
is bsupp.P I˝/ D fQ 2 @˝ W jjP !Qjj D E˝.P /g:

At equilibrium we have:

Theorem 14.1. Let ˝ be a shape and c W ˝ ! < the unique function satisfying
c.x; y/ D 0 on .x; y/ 2 @˝ and r2c D !K

D
:

Suppose P 2 ˝ is such that E˝.P / D L D sup˝ E˝ and Q 2 bsupp.P I @˝/.
Suppose the smallest concave curvature radius is pL with p > 0. Then,

(a) c.P / 2 !.L2/,
(b) K

2D
L " jrcj " K

D
L2pC1

p
,

(c) sup@˝ jrcj D sup˝!@˝ jrcj
That is, (a) the peak in concentration at P is proportional to the distance squared
between the closest boundary point Q and P ; (b) the gradient of the concentration
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reports the (approximate) length between P and Q; and (c) the largest gradient
value is on the boundary. In other words, properties of the global distance map are
represented locally by the concentration of the hormone.

Uniqueness follows from classical results, and the proof is based on two
functions that sandwich c, one from above and one from below, and that take on the
same values at the boundary. Shapes can be thought of as bounded by two contours,
an “inner edge” and an “outer edge.” The results hold even when the initializing
function is non-smooth, a point that is important below, although the gradient of
the concentration and sandwiching functions are shown to remain perpendicular to
the boundary. Not all first derivatives exist (consider medial axis points) although
divergence conditions can be defined. The full proof of Theorem 14.1 is in [9].
Discretization and numerical issues are also important: c is defined on a continuous
domain although cells are discrete; see [9, 10].

One more conceptual point from the plant model is important. From a math-
ematical perspective we typically think of the boundary (vein cells) as fixing the
concentration c D 0: However for plants we can think of the vein cells as having a
larger diffusion coefficient between them than between the ground cells, so that in
effect the concentration remains at 0 because the hormone diffuses away so fast that
its concentrations is effectively 0. Such non-isotropic diffusions are also developed
in [9, 10].

14.4 Edge Producing Model

We are now ready to develop the model for computer vision applications, and we do
this in two steps, the first with plants and the second with images

In the first step we imagine a dual model to the one above for plants: instead of
having all of the ground cells produce the hormone and the veins clear it away,
now imagine that only the veins produce the hormone and that it diffuses into
the interior tissue. (This is relevant in the development of the root.) To ensure a
finite equilibrium concentration, suppose the substance is destroyed (metabolized)
everywhere proportional to concentration.

This results in a reaction diffusion equation (writing the continuous version),
ct D Dr2c C " ! ˛c, with three terms: the change in concentration at a pixel
depends on the amount that enters by diffusion, with the amount produced there
(" W ˝ ! < is the production rate) and with the amount destroyed there (˛ > 0 is
the destruction constant).

It is shown in [9, 10] that this dual model enjoys all of the properties from
Theorem 14.1, and this is the model that we develop for computational vision.

We proceed as follows (step 2). Imagine that cells are pixels, and the vein cells
are pixels at which edges have been detected. Thus the network of veins is replaced
by a network of edges, and it is these edge pixels that each produce a unit of the
substance per unit of time; non-edge pixels produce no substance. It is important to
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realize that this “substance” is not a simple measure of distance; it is an abstraction
of a function that integrates distance and arrangement information from the edge
pixels. Nevertheless, we will picture the equilibrium of this substance as a “distance
image.”

Proposition 14.1. Consider the dynamical system

@c

@t
D Dr2c C "˝ ! ˛c: (14.2)

Suppose that it acts over a domain ˝ which is a shape as in Theorem 14.1 and on
which we impose a zero-flux boundary condition (Neumann). Let "˝ W ˝ ! <. In
this version the diffusion is constant between regular and edge pixels, although the
production term is not. Then the following holds.

(a) If ˛ > 0, then limt!1 c D c˛ for a unique steady-state c˛ .
(b) Let ˛ D 0 and R D

R
"˝d˝=

R
d˝ be the average production. Then

limt!1 ct D R and c converges to c˛ C cst: whenever R D 0. Further, rc˛ is
unique even when R ¤ 0.

(c) If A;B 2 <, then the transformation "˝ 7! A"˝C˛B induces a unique trans-
formation of the steady state c˛ 7! Ac˛ C B and vice versa. It follows that the
gradient of c˛ is only affected if A ¤ 1: rc˛ 7! Arc˛ .

Remarks. (i) There is a variational form which may be related to the Ambrosio-
Tortorelli functional [1, 36]. (ii) In part (c), if the destruction term is not linear, e.g.
˛c C ˇc2, then the gradient might be affected by B as well.

Proof. Parts (a) and (b). To show existence we prove that the dynamical system
achieves ct D 0 as t ! 1. Consider the dynamical system ct t D Dr2ct ! ˛ct .
The boundary conditions are inherited: since no flux goes through the boundary,
there must be no change of concentration in time, i.e. rct # n D 0 on @˝ . The
unique solution of this system is ct D 0.

To prove uniqueness, suppose u1 and u2 both satisfy the equation given the
boundary conditions and ct D 0. ThusDr2u1 C "˝ ! ˛u1 D Dr2u2 C "˝ ! ˛u2
which gives rise to Dr2v ! ˛v D 0 where v D u1 ! u2 and rv # n D 0 where n
is the normal to the boundary. Since v is elliptic and ˛ > 0, v vanishes everywhere
and uniqueness follows (see [6, pp. 329 and 321]). The same reference shows that if
˛ D 0, then this uniqueness is up to an additive constant u D u1 C cst; that is, only
ru is unique.

Now to show the convergence in (b) whenever R D 0, note that ct t D Dr2ct
assuming ˛ D 0. This has a steady-state s.t. ct D cst: everywhere. Also,

R
ct DR

"˝d˝ which shows that ct D R.
Part (c). Let c˛ satisfy Eq. (14.2) for ct D 0 and a production function ".˛/˝ . Then,

Dr2c˛ ! ˛c˛ D !".˛/˝ . Suppose c D Ac˛ C B satisfies the equation for some "˝ .
Since this c is unique, the following verification proves the claim.
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Dr2c ! ˛c D !"˝ D Dr2.Ac˛ C B/ ! ˛.Ac˛ C B/
) ADr2c˛ ! A˛c˛ ! ˛B D !"˝
) A.!".˛/˝ / D !"˝ C ˛B
) "˝ D A.".˛/˝ /C ˛B

The other direction is derived similarly and the result follows. ut
We now generalize from a single, constant diffusion constant D to one defined

on edge pixels and the another on non-edge pixels. Note that the Laplacian operator
now is sub-Riemannian; i.e., it is non-homogeneous in the diffusion constants.

Proposition 14.2. Let ˝ be a shape with two components˝ D ˝0 [˝1 such that
˝0 \ ˝1 D @˝0. Let D0 and D1 be the diffusion coefficients inside ˝0 and ˝1

respectively. If
R
˝0
"˝dvC

R
˝1
"˝dv D 0 and "˝.˝0/ D K

R
˝0

dv > 0, then

lim
D0=D1!0

c˛ D cK

where cK satisfies Theorem 14.1 for the shape ˝0 by setting cK.@˝0/ D 0.

Proof. The convergence of the system derives from Proposition 14.1(b). As
D0=D1 ! 0 the relative speed of diffusion in ˝1 increases to infinity. Thus, the
concentration over ˝1 will tend to a constant and, consequently, so will c.@˝0/ D
c.˝0 \ ˝1/. The conditions of Theorem 14.1 are therefore satisfied and the claim
follows. ut
Theorem 14.2. Suppose that ˝ is a region in an image and that "˝ takes a value
of 1 at edge pixels and 0 everywhere else. Let the perimeterP be the number of edge
pixels and the area A be the total number of pixels in˝ , i.e.

R
˝ d˝ D A. Denote by

c1 D lim˛!0 c˛ and assume that the diffusion coefficient between non-edge pixels
D D 1 and that the diffusion coefficient between edge pixels is much larger thanD.
Then, for each pixelQ that is not an edge pixel

jrc1.Q/j D
P

A
L and jr2c1.Q/j D

P

A

Proof. The derivatives of c1 are well defined and unique as Proposition 14.1
shows. They are approximated by c˛ to any precision provided that a sufficiently
small ˛ is chosen. Thus, given an arbitrary but fixed precision, suppose that ˛
satisfies that requirement. According to Proposition 14.1(c), we may transform
the production function by writing: "new D !"˝ C ˛B where ˛B D P

A
. Thus,R

˝ "newd˝D !
R
˝ "˝ d˝ C

R
˝
P
A

d˝ D !P C P D 0: Hence, according to
Proposition 14.2, this transformed setup is equivalent to cK where K D P

A
and

the claims are true for cK due to Theorem 14.1. The result for c1 follows from
Proposition 14.1(c) by observing that rc1 D !rcK . ut
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The gradient of concentration that emerges in this last result, and that scales with
L, is precisely what was shown in Fig. 14.5.

14.4.1 Density Scale Space

Displaying the concentration function c.x; y/ reveals our “distance image”. By
varying the destruction constant, ˛, a scale space is created; notice how these capture
several aspects of edge density (Fig. 14.6). Although this bears some resemblance
to image scale spaces [20], there are fundamental differences. In particular, the
interpretation of the gradient and the Laplacian of concentration in isoperimetric
terms is completely novel.

To demonstrate that the Laplacian of concentration across scale can be useful
for classification, we build a vector of four values of ˛ as input to a standard linear
classifier. The result for this toy experiment is in Fig. 14.7. Although experiments
remain to be done on recognition of standard object databases, we believe these will
demonstrate a role for distance images. The advantage of using the centroid already
points in this direction. For computer vision applications it is more interesting to
demonstrate that distance images are relevant for airport and other complex feature
recognition.

14.5 Distance Images Support Airport Recognition

We now demonstrate our first application of distance images by applying them
to airport recognition. Following a standard approach in machine learning, we
use Laplacian eigenmaps [2] to reveal structure in a dataset of distance images
from airports. (To remain focused on distance images, we ignore other sources of
information which could also be useful.)

Laplacian eigenmaps are applied as follows. Let a data point be a vectorized
patch of regular or distance images at three scales. The edge map was obtained with
the Matlab Canny operator, and the scales were (˛D 1:0; 0:01; 0:0033; the large
˛D 1:0 is essentially the original edge map); patch sizeD .17 $ 17/. Formally, let
X Dfx1; x2; : : : ; xN g be the set of data points (typically ND 10,000), with each
xi 2 <nD867. We seek to find a projection of these data into much lower dimension,
under the assumption that they are not randomly distributed throughout <n but
rather that they lie on (or near) a lower-dimensional manifold embedded in <n.

The structure of the data are revealed via a symmetric, positivity-preserving,
and positive semi-definite kernel k.x; y/, which provides a measure of similarity
between data points. (We use a Gaussian kernel, the value for which can be truncated
to 0 for all but very similar points.) The intuition is that the natural structure
among these “distance images” can be revealed by examining their low-dimensional
embedding in significant eigenfunction coordinates. Then nearby points can be
clustered to reveal airport structure.
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Fig. 14.6 (Top) A concentration scale space for edge density, computed according to Eq. (14.3).
Note how decreasing ˛ permits the “substance” to live longer and hence allow integration of
information over a larger area. When ˛ is large, in the limit the result is formally the edge map
convolved against a small Gaussian. (bottom) The gradient of concentration. Notice how this
concentrates “signals” about edge density very close to the edge locations

The diffusion map is obtained by the following Algorithm 1:

Algorithm 1 Given a set of n input image vectors xi 2 <d

• Step 1: K0.i; j / e! kxi!xj k2
#2 ;

• Step 2: p.i/ Pn
jD1 K0.i; j / approximates the density at xi ;

• Step 3:eK.i; j / K0.i;j /
p.i/p.j /

;

• Step 4: d.i/ Pn
jD1

eK.i; j /;
• Step 5: K.i; j / eK.i;j /p

d.i/
p
d.j /

;

• Step 6: USV T D K (by SVD of K);

Steps 2 and 3 normalize for the density of sampling from the manifold, whereas
Steps 4 and 5 perform the graph Laplacian normalization; see [5].
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Target selection Best Rectangle Best Rectangle Best Rectangle

Target selection Best Rectangle Best Rectangle Best Rectangle

Target selection Best Rectangle Best Rectangle Best Rectangle

Target selection Best Rectangle Best Rectangle Best Rectangle

Fig. 14.7 Classification of the truck image with pose, orientation, and scale differences using the
P/A measure, which is related to the Laplacian of concentration

The result of applying Algorithm 1 to the distance map images is illustrated
in Fig. 14.8. Notice how a boomerang-shaped “manifold” is revealed, the basic
coordinates of which are edge density (going along it) and edge orientation (going
around it). These two dimensions codify our intuition that airports are defined by a
certain collection of oriented edges (runways, etc.) arranged in a particular fashion
relative to surrounding context.

To test the usefulness of the distance-images, we collected a set of 20 airport
images from Google images by randomly spinning the globe, half of which were for
training and half for testing. Our goal is to compare distance images against standard
image patches for airport detection to demonstrate “proof of concept.” Since normal
image blur also collects information from a neighborhood around a point, our three-
scale distance image patches were compared against the original image patch plus
two blurred versions (comparable scales).

We interactively placed a rough outline around airports in the ten training
images; patches from within this outline are the red points in Fig. 14.8 for the
distance images. (The traditional blurred images are not shown.) To use this training
information operationally, we built a characteristic function in embedded patch
coordinates that defined “airport.”
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DISTANCE mean 0.60 ± .48 0.62 ± .39 0.60 ± .34 0.55 ± .31

DISTANCE median 1.00 0.80 0.70 0.59

IMAGE mean 0.30 ± .48 0.32 ± .47 0.34 ± .46 0.48 ± .42

IMAGE median 0.00 0.00 0.01 0.16

Fig. 14.8 Structure of data patches after projection into diffusion coordinates (top) and classifi-
cation results (bottom). (left) Eigenvalue spectrum shows that the first few eigenfunctions capture
most of the structure. (right) Data patches plotted in top three eigenfunction coordinates; note
“manifold” from which they are drawn. The primary coordinate captures edge density; the next
dimensions information about orientation. Red points are patches from airport training images; they
cluster around the sparse end of the “manifold” which defines a function on the embedded patch
data that defines “airport.” Nystrom extensions of new patches onto these coordinates determine
if they fall in the (red) airport cluster. (bottom) Table showing performance (mean and median of
classification for DISTANCE image patches vs IMAGE blur patches). Columns are the number of
patches tested and entries show the airport fraction correctly classified

To test the quality of these patches for finding airports in test images, we used
ten new images. The airport characteristic function was then Nystrom extended
onto the embedding of the new patch and scored according to whether or not it
was in the airport lobe. The results over all patches (5,000 patches/image; training
set D 10,000 patches) are shown in the table (Fig. 14.8 (bottom)). Counting the
mean and the median number of patches that were correctly scored as airport shows
that the distance images significantly outperformed the intensity information on this
task; some sample results for both cases are shown in Fig. 14.9. Although the results
need to be repeated with larger datasets, in this experiment the blurred image scale
space was totally ineffective.

14.6 The Enclosure Field Conjecture

In the early sections of this paper we reviewed the neurobiological notion of border
ownership and the (associated) psychophysical notion of closure. Both involved a
kind of “feedback” of global shape information onto the computation of local border
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Results: Diffusion Image Patches

Results: Blurred Intensity Patches
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Fig. 14.9 Results of airport classification experiment. Patches are shown as boxes superimposed
on the original images. Results are illustrated with two images: the first 5 patches on the left and
the next 20 on the right, for each example. (top) DISTANCE image results for four example airport
images. (middle) Blurred INTENSITY image results for two airport images, also shown as pairs.
(bottom) Enlargements for viewing: (m) is a zoom on (f) and (n) is a zoom on (l). Note how the
DISTANCE image boxes fall on/near the airports, but the INTENSITY image boxes do not
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inferences. With the background we have now developed, it becomes possible to
assert that there may be a relationship between the equilibrium solution of the
distance pde and neural computation. This is our second application of the distance
image idea. To develop it, we first briefly describe a traditional view, which serves
as a basis for the more elaborate conjecture.

14.6.1 Inferring Coherent Borders

As shown in Fig. 14.1, visual cortex contains neurons selective for local edge
orientation. These cells are arranged in networks that could implement a geometric
notion of border coherence. Since the large number of neurons that are sensitive to
boundary segments cover all (discretely sampled) positions and orientations, these
can be arranged as columns of cells selective for all orientations at a point; then
interactions between the cells in these columns could excite those cells that form
smooth boundaries and inhibit others. Since borders of objects are mostly smooth,
locally defined orientations can be interpreted as contour tangents. Fitting tangents
together requires a notion of curvature: how much does the tangent rotate as it is
transported from one position along a curve to a nearby one. One model [3] for such
curvature-mediated connections is outlined in Fig. 14.10, where the circuits running
between columns reinforce one another to provide the “flow” of tangents along the
curve.

Such models of neural computation provide consistent local edge elements, but
do not yet incorporate the more global inferences involved in glueing them together
to form shapes. Nevertheless, there is substantial evidence that border ownership
and other shape related signals are available as early as V2 and, in some cases, V1
[22, 23, 29, 43].

To establish the shape context feedback, there are two possibilities. First, one
can assert that the same class of long-range horizontal connections incorporated for
border consistency above provide the signals, as in [34,41], but the timing of border
ownership signals argues strongly against this class of model; see [7]. Instead they
(and others, e.g. [33]) argue that higher-level vision areas are involved. Cells in the
superficial layers of V1, for example, project to V2, and V2 projects to V4 (among
other areas). Finally V4 projects to inferotemporal (IT) cortex, where much of visual
shape analysis is believed to reside. Most importantly, there is a back projection for
each of these forward projections; see Fig. 14.11a. We now turn to a description of
such feedback.

14.6.2 Feedback Projections via Specialized Interneurons

Feedback projections could provide the more global information, and these are
shown in Fig. 14.11 as arriving in layer I and forming synapses with apical dendrites
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Fig. 14.10 The relationship between individual orientationally-selective neurons and coherent
responses along a boundary can be developed geometrically. (a) The superficial (upper) layers
of visual cortex, V1, can be abstracted via orientation columns. These consist of groups of
neurons (a column) selective for every possible orientation at each position in the visual array.
These columns are denoted by the vertical lines, indicating that at each (x,y)-position there are all
($ )-orientations. Long range horizontal connections define circuits among these neurons (there are
also many more local circuits) so that consistent firing among those neurons in such excitatory
circuits specifies the activity along a putative contour. (b) Differential geometry specifies how
orientations align. Interpreting the orientationally-selective cell’s response as signaling the tangent
to a curve, this tangent can be transported along an approximation to the curve (indicated as the
osculating circle) to a nearby position. Compatible tangents are those that agree with sufficient
accuracy in position and orientation following transport. (c) The transport operation can be
embedded in long range connections. Here this is shown as the “lift” of an arc of (osculating) circle
in the .x,y/-plane into a length of helix in .x; y; $/ coordinates. Many models of border ownership
are based on similar ideas, although it is the topological orientation (toward inside or outside of the
figure) that is communicated via the long-range horizontal projections (Figure after [3])

of other neurons. To incorporate such signals, however, specialized interneurons
must be postulated to accomplish the various “shape” functions. Von der Heydt’s
group, for example, postulates a kind of skeleton neuron [7] that integrates boundary
information from far away, but there are no data supporting the existence of such
cells. In effect these so-called “grouping cells” implement a receptive field that
integrates boundary information within an annular distance; different cells are tuned
to different distances. This specialized circuitry implements a portion of the skeleton
computation by measuring a value for the distance map in a quantized fashion.
However, the specificity of these grouping cells makes this approach difficult to
organize for arbitrary, general figures.

A second way to organize the feedback is via surface computations, and this
approach is developed in [33]. While there is little doubt that various surface
properties are inferred in the higher-level areas, and while these must be integrated
with stereo and border ownership [31], this amounts to a much bigger solution than
is required for establishing border ownership. As we show next, by extending the
class of neural codes it becomes possible to integrate our theory of the distance
image for this purpose.
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a b

c d

Fig. 14.11 Traditional and elaborated views of neural coding that could underlie neural computa-
tion. Neurons are shown as small triangles, with both lateral and apical dendrites taking inputs from
other neurons. Axons are shown forming both local circuits, and as projecting up to higher visual
areas and projecting back from these areas. We concentrate on neural circuits in the superficial
layers (II-III), and note these project to layer IV in higher areas and receive backprojections in
layers I and II-III from those areas. (a) Networks of neurons in visual area Vi could infer consistent
boundary signals, and these could project to higher visual areas (Vj ), shown as a rectangle, in which
shape (or other higher-level) properties are inferred. The result then projects back to the lower area
(via layer I) to influence the earlier computation. This is also the way that neural circuits are
being developed for border ownership, except that now different classes of neurons, in addition to
the orientationally-selective ones, are postulated. (b) An elaborated view in which the local field
potential surrounding each neuron is taken into account. This field potential could correspond to
the “distance” signal in the paper. (c) An even more elaborated view of the anatomy, in which glial
cells (shown as small circles) participate in establishing the lfp. (d) Illustration that the firing rate
of neurons is modulated by local field potentials. The lfp is cartooned as a sinusoid (blue curves),
indicating that it fluctuates in time. Action potentials are shown as black lines. The upper trace
shows a neuron that tends to fire when the lfp is high, and the lower trace shows a neuron that
tends to fire when it is low

14.6.3 Local Field Potentials Carry the Enclosure Field

The model of distance images suggests a different tack. It builds on the idea of
signals propagating, but through the physical tissue as well as through the neural
connections. And it incorporates a new type of neural code as well. Basically the
backward projection is regularized by the diffusion term, which takes care of broken
boundaries and blurs the requirement that different shapes must be considered
individually.
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Fig. 14.12 Examples of the enclosure field computation (distance images) for the development of
a circle. The panels along each row contain an increasing fraction of the boundary of a circle,
showing the build up of concentration on the “inside” of the circle, even for short segments.
Concentration here is taken as a proxy for local field potential. (a) Plot of concentration for
a complete set of “producing” pixels defining the circle fragment. (b) The gradient of the
concentration; this provides explicit information about the density and (rough) arrangement of
boundary activity some distance away. (c) Concentration field for 20 % of the pixels in (a);
(d) gradient of concentration for 20 % of the pixels. The similarity between (a) and (c), and
(b) and (d) illustrates how the lfp regularizes differences in edge arrangement as required for
border ownership. Standard “heat” color scale

Neurons are not situated in isolation; rather, they are located in tissue that
provides a conductive substrate. Simplifying enormously (see e.g. [30]), current
passes into both synapses and the physical substrate giving rise to an extra-cellular
potential; these potentials can be recorded with extracellular electrodes. When low-
pass filtered to remove the (high frequency) action potential component, the result is
called a local field potential, and it reflects both processing in the local network and
input fluctuations; Fig. 14.11b. Most importantly for us, there are neurons whose
activity is more robust at certain points on the lfp; such phase of firing codes are
reviewed in [26]; see Fig. 14.11d.

Our conjecture can now be stated: the arrangement of (boundary-based) neural
activity gives rise to a component of the local field potential that modulates border-
ownership neurons. This activity could arise from feedback projections as well as
local neurons.
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We stress that this is a novel view of neural computation, in which the lfp signal
carries different information (coding distant activity about shape) from the spiking
network signal (about local edges); the resulting system requires both.

The connection between this idea and distance maps is that the concentration
equation derives from neurons embedded in a linear resistive medium:

ct D "„ƒ‚…
charge=ion injection

C Dr2c„ƒ‚…
diffusion

! ˛c„ƒ‚…resistive loss
(14.3)

Clearly neural tissue is non-linear so that more biophysically plausible models
will be necessary, but this is sufficient to at least illustrate the principles; see
Fig. 14.12. Finally, we note that the glial cells, which richly surround the pyramidal
neurons and outnumber them by perhaps an order of magnitude, are now known
to have channels that allow them to participate in regulating the lfp. This further
suggests an important computational role for it. See [44].

14.7 Summary and Conclusions

We developed a structural coupling between local edge information and more global
arrangement information by postulating a pde whose equilibria provided local
signals about global properties of the distance map. A computer vision application
of these ideas to locating airports demonstrated that these properties are useful, and
a biological interpretation suggested a richer view of neural computation involving
the local field potential for border ownership.

Much more remains to be done with both the recognition of complex structures
and understanding border ownership. Nevertheless, by considering these two prob-
lems together we emphasize how ideas from biology can influence computer vision,
and vice versa.
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Chapter 15
Non-rigid Shape Correspondence Using
Pointwise Surface Descriptors and Metric
Structures

Anastasia Dubrovina, Dan Raviv, and Ron Kimmel

Abstract Finding a correspondence between two non-rigid shapes is one of the
cornerstone problems in the field of three-dimensional shape processing. We
describe a framework for marker-less non-rigid shape correspondence, based on
matching intrinsic invariant surface descriptors, and the metric structures of the
shapes. The matching task is formulated as a quadratic optimization problem
that can be used with any type of descriptors and metric. We minimize it using
a hierarchical matching algorithm, to obtain a set of accurate correspondences.
Further, we present the correspondence ambiguity problem arising when matching
intrinsically symmetric shapes using only intrinsic surface properties. We show that
when using isometry invariant surface descriptors based on eigendecomposition
of the Laplace-Beltrami operator, it is possible to construct distinctive sets of
surface descriptors for different possible correspondences. When used in a proper
minimization problem, those descriptors allow us to explore a number of possible
correspondences between two given shapes.

15.1 Introduction

Three-dimensional shape processing became increasingly popular in the last decade.
One of its corner-stone tasks is detecting a correspondence between two given
shapes. It is essential for shape comparison, retrieval, shape morphing and defor-
mation, or shape calculus [5], etc. The most interesting yet complex task is
automatic non-rigid shape matching. In this work we address the problem of
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matching non-rigid approximately isometric shapes. We perform the matching using
certain surface properties that remain invariant under isometric transformations. In
particular, we use two types of such properties – pointwise surface descriptors, and
distances measured between pairs of points on the surface. We show how these
two properties can be incorporated into a measure of dissimilarity between the
shapes, which can be written as a quadratic function of the correspondence. We
then minimize this dissimilarity measure in order to find the minimal dissimilarity
correspondence.

Another important issue we address here is the correspondence ambiguity present
when matching intrinsically symmetric shapes. In this case, there may exist several
correspondences minimizing the proposed dissimilarity measure. We show that this
ambiguity can be resolved by constructing distinct sets of symmetry-aware surface
descriptors. By employing them within the proposed framework it is possible to find
several matchings between the shapes.

The rest of the paper is organized as follows: in the next section we review the
related work on matching non-rigid shapes. In Sect. 15.3 we describe the proposed
problem formulation. In Sect. 15.4 we describe the possible choices of metric and
descriptors. In Sect. 15.5 we describe the correspondence ambiguity problem and
the construction of the symmetry-aware surface descriptors. In Sect. 15.6 we present
the matching results obtained with the proposed framework combined with different
descriptors and distances measures. We summarize the paper and discuss future
research directions in Sect. 15.7.

15.2 Related Work

Zigelman et al. [43] and Elad and Kimmel [9] suggested a method for matching
isometric shapes by embedding them into a Euclidian space using multidimensional
scaling (MDS), thus obtaining isometry invariant representations, followed by rigid
shape matching in that space. Since it is generally impossible to embed a non-flat
2D manifold into a flat Euclidean domain without introducing some errors, the
inherited embedding error affects the matching accuracy of all methods of this
type. For that end, Jain et al. [13], Mateus et al. [19] and Sharma and Horaud
[34] suggested alternative isometry-invariant shape representations, obtained by
using eigendecomposition of discrete Laplace operators. The Global Point Signature
(GPS) suggested by Rustamov [33] for shape comparison employs the discrete
Laplace-Beltrami operator, which, at least theoretically, captures the shape’s geome-
try more faithfully. The Laplace-Beltrami operator was later employed by Sun et al.
[35], and Ovsjanikov et al. [25], to construct their Heat Kernel Signature (HKS)
and Heat Kernel Maps, respectively. Zaharescu et al. [41] suggested an extension of
2D descriptors for surfaces, and used them to perform the matching. While linear
methods, such as [25, 41] produce good results, once distortions start to appear,
ambiguity increases, and alternative formulations should be thought of. Adding
the proposed approach as a first step in one of the above linear dense matching
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algorithms can improve the final results. Hu and Hua [12] used the Laplace-Beltrami
operator for matching using prominent features, and Dubrovina and Kimmel
[8] suggested employing surface descriptors based on its eigendecomposition,
combined with geodesic distances, in a quadratic optimization formulation of the
matching problem. The above methods, incorporating pairwise constraints, tend
to be slow due to high computational complexity. Wang et al. [40] used a similar
problem formulation, casted as a graph labeling problem, and experimented with
different surface descriptors and metrics.

Memoli and Sapiro [22], Bronstein et al. [4], and Memoli [20, 21] compared
shapes using different approximations of the Gromov-Hausdorff distance [10].
Bronstein et al. [6] used the approach suggested in [4] with diffusion geometry,
in order to match shapes with topological noise, and Thorstensen and Keriven [37]
extended it to handle surfaces with textures. The methods in [20–22] were intended
for surface comparison rather than matching, and as such they do not produce
correspondence between shapes. At the other end, the GMDS algorithm [6] results
in a non-convex optimization problem, therefore it requires good initializations in
order to obtain meaningful solutions, and can be used as a refinement step for most
other shape matching algorithms. Other algorithms employing geodesic distances to
perform the matching were suggested by Anguelov et al. [1], who optimized a joint
probabilistic model over the set of all possible correspondences to obtain a sparse
set of corresponding points, and by Tevs et al. [36] who proposed a randomized
algorithm for matching feature points based on geodesic distances between them.
Zhang et al. [42] performed the matching using extremal curvature feature points
and a combinatorial tree traversal algorithm, but its high complexity allowed them
to match only a small number of points. Lipman and Funkhouser [18] used the
fact that isometric transformation between two shapes is equivalent to a Möbius
transformation between their conformal mappings, and obtained this transformation
by comparing the respective conformal factors. However, there is no guarantee that
this result minimizes the difference between pairwise geodesic distances of matched
points.

Self-similarity and symmetry detection are particular cases of the correspon-
dence detection problem. Instead of detecting the non-rigid mapping between two
shapes, [14, 17, 24, 28] search for a mapping from the shape to itself, and thus are
able to detect intrinsic symmetries.

15.3 Matching Problem Formulation

The suggested problem formulation is based on comparison of shape properties
that remain approximately invariant under non-rigid !-isometric transformations,
specifically – distances between the points on the shape, and pointwise surface
descriptors defined at every point of the shape. We assume to be given shapes repre-
sented by sampled surfaces, which is one of the common 3D shape representations.
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In this work shapes were represented by triangular meshes, but the following
discussion is not limited to some specific sampled surface representation.

Given a shape X , we assume that is endowed with a distance measure dX W
X ! X ! RC [ f0g, and a set of pointwise d -dimensional surface descriptors
fX W X ! Rd . Given two shapes X and Y , we define a correspondence between
them by a mapping P W X ! Y ! f0; 1g, such that

P.x; y/ D
!
1; x 2 X corresponds to y 2 Y ;
0; otherwise

(15.1)

We can measure the dissimilarity introduced by the mapping P into the surface
descriptors and the metric structures by

dis.P / D
X

x2X
y2Y

kfX.x/ " fY .y/kF P.x; y/C ˛ #
X

x;Qx2X
y; Qy2Y

jdX.x; Qx/ " dY .y; Qy//jP.x; y/P. Qx; Qy/; (15.2)

where k#kF is a norm in the descriptor space. The first term of the dissimilarity
measure is a linear function of the mapping P , and it expresses the pointwise
surface descriptor dissimilarity. This term provides a The second term of dis.P /
is a quadratic function of the mapping P , and it expresses the metric structure
dissimilarity. The parameter ˛ $ 0 determines the relative weight of the second
term in the total dissimilarity measure.

Note that by setting ˛D 0 we obtain the linear matching method used by
[25, 41]. When the descriptors of different points on the shape are not unique
or sufficiently distinct, say due to numerical inaccuracies, the correspondences
obtained by minimizing only the linear part of the dissimilarity measure may not
be consistent in terms of pairwise relationships between f the matched points. By
adding the quadratic term in Eq. (15.2) we ensure that the optimal correspondence
preserves also these pairwise relationships. On the other hand, by choosing ˛ % 1
we obtain a problem similar to the one addressed in [4, 20, 22], and, since the
problem is non-convex, a good initialization is required in order to obtain a close-
to-global minimizer. This is achieved by adding the linear term as in Eq. (15.2).

The optimal matching, which we denote by P ", is obtained by minimizing the
dissimilarity

P " D argminP WX#Y!f0;1g fdis.P /g : (15.3)

In order to avoid a trivial solution P " & 0, we constrain P to the space of valid
correspondences. Note that the above problem formulation allows us to consider
different types of possible correspondences between the two shapes. For example,
when a bijective mapping from X to Y is required, the constraints on P are

X

x2X
P.x; y/ D 1;8y 2 Y;

X

y2Y
P.x; y/ D 1;8x 2 X: (15.4)
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For a surjective mapping we relax the constraints to be

X

x2X
P.x; y/ D 1;8y 2 Y: (15.5)

Thus, the resulting optimization problem is

P " D argminP WX#Y!f0;1g fdis.P /g s:t: suitable constrains on P. (15.6)

15.3.1 Quadratic Programming Formulation

When the two shapes X and Y are represented by a finite number of points N , the
mapping P is a binary matrix of size N2. In order to convert the problem into a
more convenient quadratic programming form we reshape the matrix P by taking
its columns and concatenating them, thus obtaining a vector p of dimension N2,
referred to as a correspondence vector. Thus, k-th entry of the vector p corresponds
to some entry .i; j / in the matrix P – we will denote these corresponding indices
by .ik; jk/. The vector entry pk encodes the correspondence between the points xik
and yjk .

Similarly, we introduce the following notations for the metric and the descriptor
dissimilarity

bk D
""fX.xik /" fY .yjk /

""
F

; Qkl D
""dX.xik ; xmk /" dY .yjl ; ynl //

"" :

(15.7)

The vector b 2 RN2
represents the pointwise descriptor dissimilarity, and the matrix

Q 2 RN2#N2
represents the metric structure dissimilarity.

Lastly, we re-write optimization problem (15.6) in the quadratic programming
form

p" D argmin
p2f0;1gN2

˚
bT p C " # pTQp

#
s.t. Sp D 1; (15.8)

where Sp D 1 is the matrix form of the constraints in Eqs. (15.4) or (15.5).

15.3.2 Hierarchical Matching

The optimization problem in Eq. (15.8) belongs to the class of NP -hard Integer
Quadratic Programming (IQP) problems. There exist different techniques for
approximating its solution, [2, 38] among them, which are able to solve only
moderate size IQPs. The implication on the matching problem is that the algorithm
will be able to find only small number of correspondences – up to several tens
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Fig. 15.1 In the first step (left) we construct a quadratic correspondence matrix from all points
in X into all points in Y . In each iteration (right) we search for possible matches between points
in X from the previous iteration (blue circle) and new sampled points in X (green Xs) and their
corresponding neighborhoods (black circles) in Y

of points. In addition, prior to the matching the algorithm has to choose the initial
set of N candidate points on each one of the shapes X and Y . The simplest way to
choose these points is by using the Farthest Point Sampling technique [11], and the
sampling density will determine the accuracy of the matching.

In order to overcome these limitations we use the hierarchical matching tech-
nique introduced in [29]. It exploits the shapes’ geometric structures to reduce the
number of potential correspondences, and thus is able to find a denser matching,
with improved accuracy. Since the problem is not strictly combinatorial by nature,
but rather derived from a smooth geometric measure. At the first step we follow
[8] and solve (15.6) using a branch-and-bound procedure [2]. Each point x 2 X
is now matched to a point p.x/ 2 Y by the mapping P . We denote yDp.x/
if P.x; y/D 1. In each iteration we search for the best correspondence between
x and p.x/ neighborhood, instead of all points y 2 Y , in a manner similar to
[39]. Between iterations we add points x 2 X and y 2 Y using the two-optimal
Farthest Point Sampling (FPS) strategy [11], evaluate the neighborhood in Y of
the new points, reevaluate the neighborhood of the old points, and continue until
convergence. In Fig. 15.1 we show a diagram of the process.

We solve the relaxed version of (15.6), using quazi-Newton optimization, and
project the solution to integers between iterations. Convergence is guaranteed, but
only to a local minimum, as for all QAP problems.

A different approach for approximating the solution of the IQP in Eq. (15.8) can
be, for instance, using the relaxation technique of Bronstein et al. [4] and solving
the problem on a continuous domain. The optimization problem can also be solved
using the approach for graph matching by Torresani et al. [38]. Both can reduce the
complexity of the solution. We will explore these directions in the future research.

15.4 On the Choice of Metric and Descriptors

The above formulation of the matching problem can be used with any type of
surface descriptors or distance measure. Below we describe different descriptors
and metrics that can be employed in the proposed framework.We start with a brief
review of the Laplace-Beltrami operator, and later use concepts related to it for both
metric and descriptor definition. Note that both metric definitions and some of the
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descriptor definitions are given in terms of continuous surface representation (or 2D
Riemannian manifolds). For each one of them we state the discrete approximation
we used for numerical evaluation.

15.4.1 Laplace-Beltrami Operator

The Laplace-Beltrami operator is a generalization of the Laplacian operator from
flat domain to compact Riemannian manifolds. Given a manifold M , its Laplace-
Beltrami operator#M is given by

#Xf D "divX .rXf / ; f W X ! R: (15.9)

The divergence and the gradient operators, divX and rX respectively, are defined by
the intrinsic geometry of the manifold X . Explicitly, the Laplace-Beltrami operator
of a function f W X ! R defined on the manifold X equipped with a Riemannian
metric g is given by

#Xf D "
1

p
det g

X

j;k

@

@xj

$
gjk

p
det g

@f

@xk

%
: (15.10)

In the above equation, det g D det.gij / and the gjk are the elements of g$1. For
more details see [30].

Consider the Laplace-Beltrami operator eigenvalue problem given by

#X$i D "i$i : (15.11)

f$i g are the eigenfunctions of #X , corresponding to the eigenvalues f"i g. The
spectrum of the Laplace-Beltrami operator consists of positive eigenvalues (see, for
example, [30]). When X is a connected manifold without boundary, then #X has
additional eigenvalue equal to zero, with corresponding constant eigenfunction. We
can order the eigenvalues as follows

0 D "0 < "1 ' "2 ' "3 ' : : : (15.12)

The set of corresponding eigenfunctions given by

f$1;$2;$3; : : :g (15.13)

forms an orthonormal basis defined on X with inner product induced by the
metric g.

There exist various approximations for the Laplace-Beltrami operator. In this
work we used the cotangent weight scheme [23, 26].
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15.4.2 Choice of Metric

Geodesic distance: The simplest intrinsic metric defined on a surface X is the
geodesic metric. It measures the lengths of the shortest paths on the surface X

dX.x; x
0/ D inf

%2& .x;x0/
`.%/: (15.14)

& .x; x0/ is the set of all admissible paths between the points x and x0 on the surface
X , with a length of a path % given by `.%/. In order to calculate the geodesic
distances we used the fast marching method [15], which simulates a wavefront
propagation on a triangular mesh, and associates the front arrival time with the
distance traveled by it.

Diffusion geometry: The diffusion of heat on surface X is governed by the heat
equation, $

#X C
@

@t

%
u.x; t/ D 0; (15.15)

where a scalar field u W X ! Œ0;1/! R is the heat profile at location x and time t ,
and#X is the Laplace-Beltrami operator.

The heat kernel ht .x; z/ describes the amount of heat transferred from a point
heat source located at x to another point z at time t , and can be written as

ht .x; z/ D
1X

iD0
e$"i t$i .x/$i .z/: (15.16)

The diffusion distance can then be defined as a cross-talk between two heat
kernels [3, 7]

d2X;t .x; y/ D kht .x; #/ " ht .y; #/k2L2.X/

D
Z

X

jht.x; z/ " ht .y; z/j2d z

D
1X

iD0
e$2"i t .$i .x/ " $i .y//2 : (15.17)

Since the heat flow on the surface is governed entirely by its intrinsic geometry,
the diffusion distance defined above is an intrinsic property of the surface, and,
according to [3, 7], also fulfills the metric axioms.

We approximate the diffusion distances using a finite number of the eigenvalues
and the eigenvectors of the discretized Laplace-Beltrami operator. Specifically, we
used several hundred eigenvalues with the smallest magnitude and their correspond-
ing eigenvectors.
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15.4.3 Choice of Descriptors

Distance histograms: Given a shape X and the corresponding distance dX , the
distance histogram descriptor [27, 28, 32] is constructed as follows

fX.x/ D hist fdX.x; Qx/ j dX.x; Qx/ ' dmax; Qx 2 Xg ; (15.18)

where dmax controls the local support of the descriptor. If two shapes are represented
by differently sampled surfaces, the descriptors can be normalized to have L1-norm
equal to one. The descriptor comparison can be performed using either an Lp-norm,
or some measure of distances between histograms, such as the earth moving
distances (EMD) [31].

Heat kernel signatures and heat kernel maps: Local descriptors based on the heat
equation were presented by Sun et al. in [35] and Ovsjanikov et al. in [25]. The
heat kernel signature (HKS) is constructed using the diagonal of the heat kernel
ht .x; x/ (15.16) at multiple times t

fX.x/ D
&
ht1.x; x/; ht2 .x; x/; : : : ; htd .x; x/

'
: (15.19)

The heat kernel map (HKM) is constructed using the heat kernel values with a pre-
specified heat source x0

fX.x/ D
&
ht1.x0; x/; ht2 .x0; x/; : : : ; htd .x0; x/

'
: (15.20)

For the latter descriptors, the heat sources chosen for the two shapes we want to
match must be in correspondence in order to produce consistent descriptors. One
can choose the heat source x0 either as proposed by the authors of [25], or by
some different method. Both HKS and HKM remains invariant under isometric
deformations of X , and are insensitive to topological noise at small scales.

To compute HKS and HKM we used eigenvalues and eigenfunction of the
discretized Laplace-Beltrami operator, similar to the diffusion distance calculation.

15.5 Matching Ambiguity Problem

The matching ambiguity problem arises when matching intrinsically symmetric
shapes [24,27,28]. Given a shapeX , we say that it is intrinsically symmetric if there
exists a mapping S W X ! X that preserves all the geodesic distances between the
corresponding points

dX .x; Qx/ D dX .S.x/; S. Qx// ; 8x; Qx 2 X: (15.21)
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If the shape X is intrinsically symmetric, and S W X ! X is its intrinsic
symmetry, then the surface descriptors mentioned in the previous section are also
symmetric functions with respect to S . That is, for each of their components f .i/

X

the following holds

f
.i/
X .x/ D f .i/

X .S.x// : (15.22)

From the Eq. (15.21) and the above property of the descriptors it follows that if
P ".x; y/ D argmin fdis.P /g, then P ".S.x/; y/ also minimizes the dissimilarity
dis.P /, with the same minimal value. Thus, when matching intrinsically symmetric
shapes, the optimization problem (15.8) has multiple solutions, and by minimizing
dis.P / we can obtain only one of them.

In order to overcome the above problem, a technique for construction of
symmetry-aware surface descriptors was suggested in [8]. These descriptors are
based on the eigendecomposition of the Laplace-Beltrami operator, and exploit the
important property of the eigenfunctions of #X , described by Ovsjanikov et al.
in [24]. As stated in Theorem 3.1. of [24], eigenfunctions corresponding to non-
repeating eigenvalues of the Laplace-Beltrami operator of an intrinsically symmetric
shape exhibit reflection symmetry, with respect to the shape’s intrinsic symmetry.
That is, such an eigenfunction $ can be either symmetric of anti-symmetric with
respect to S

$.x/ D $.S.x// or $.x/ D "$.S.x//: (15.23)

As described in [8], the symmetry-aware surface descriptors are constructed as
follows

fX.x/ D Œ$X1 .x/;$X2 .x/; : : : ;$Xd .x/'; (15.24)

and

fY .y/ D Œs1$Y1 .y/; s2$Y2 .y/; : : : ; s3$Yd .y/': (15.25)

In the above,
˚
$Xi
#d
iD1 and

n
$Yj

od
jD1

are the eigenfunctions corresponding to the first

d non-repeating eigenvalues of the Laplace-Beltrami operators of the two shapes,

respectively. The values of
n
$Yj

od
jD1

are then multiplied by the sign sequence
˚
sj
#d
jD1, to obtain consistent descriptors for X and Y .

Figure 15.2 shows an example of two human shapes colored according to the
values of the first three eigenfunctions of their corresponding Laplace-Beltrami
operators. It is easy to see that the eigenfunctions of the lower shape have to be
multiplied by a sequence ŒC;";C', in order to be equal to the eigenfunctions of
the upper shape in the corresponding points. But it is also possible to multiply them
by a sequence ŒC;C;"', and thus obtain eigenfunctions reflectionally symmetric
to the eigenfunctions of the upper shape. In general, the number of different sign
sequences, and thus different sets of descriptors for the shape Y , is determined by
the number of intrinsic symmetries of the shape. Using these sets of descriptors in
the optimization problem (15.6) allows us to find several different correspondences
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Fig. 15.2 Two articulations of a human shape, colored according to the values of the first three
eigenfunctions of their Laplace-Beltrami operators, from left to right. The two possible sign
sequence relating the two groups of the eigenfunctions are ŒC;$;C' and ŒC;C;$'

between the two shapes. The exact algorithm for the sign sequence detection and its
limitations are presented in details in [8].

15.6 Results

In this section we provide several matching results obtained with the proposed
framework. All the shapes we used in our tests were represented by triangulated
meshes with several thousand vertices. We further sub-sampled the shapes using
the Farthest Points Sampling algorithm [11], to obtain sets of matching candidate
points. In each one of our tests, we performed the matching using ten points at the
coarse scale, and 30–64 points at the finest scale. Note that the later sub-sampling
affects the accuracy of the matching, and the denser the sub-sampling is the more
accurate the obtained correspondences are.

Figures 15.3 and 15.4 present the results of matching !-isometric shapes using
the proposed framework combined with different distance measured and descriptors,
at several hierarchies, where the correspondences are shown by Voronoi cells of
the matched points, corresponding patches having the same color. The matches in
Fig. 15.3a–c are the symmetrical ones, which is one of the possible matchings in
this case, as explained in Sect. 15.5. Some matching inaccuracies, e.g. inaccurate
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Fig. 15.3 Matching results obtained with the proposed framework combined with different
descriptors and metrics, at several hierarchies. (a) and (b) Geodesic distance and geodesic
distance-based histogram descriptor; (c) diffusion distance and diffusion distance-based histogram
descriptor; (d) Diffusion distance and Heat Kernel Signatures

correspondences between the cats’ ears in Fig. 15.4a, appear when the algorithm
converges to local minima.

In order to find dense correspondence between all the points on the shapes, the
above matching results can be used as a input for algorithms such as described in
[25] or [16].
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Fig. 15.4 Matching results obtained with the proposed framework combined with geodesic
distance metric and the Laplace-Beltrami operator-based descriptors; upper row – same orientation
correspondence, lower row – the reflected one

15.7 Conclusions

In this paper we have presented a method for automatic correspondence of non-
rigid !-isometric shapes, based on comparison of surface descriptors and distance
structures, and tested it with different choices of the latter. In addition, we have
formulated the matching ambiguity problem arising when matching intrinsically
symmetric shapes, and showed that the proposed framework combined with certain



340 A. Dubrovina et al.

descriptors allows us to detect multiple possible correspondences. In future work
we intend to adapt the proposed framework for partial shape matching and extend it
to shapes that are not necessarily !-isometric.
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Chapter 16
A Review of Geometry Recovery from a Single
Image Focusing on Curved Object
Reconstruction

Martin R. Oswald, Eno Töppe, Claudia Nieuwenhuis, and Daniel Cremers

Abstract Single view reconstruction approaches infer the structure of 3D objects
or scenes from 2D images. This is an inherently ill-posed problem. An abundance
of reconstruction approaches has been proposed in the literature, which can be
characterized by the additional assumptions they impose to make the reconstruction
feasible. These assumptions are either formulated by restrictions on the recon-
structable object domain, by geometric or learned shape priors or by requiring
user input. In this chapter, we examine a representative set of state-of-the-art
reconstruction approaches, which are applicable to real-world images. We classify
the approaches according to their reconstruction objective and compare them based
on a variety of important criteria. Finally, we show experimental comparisons for
five curved object reconstruction approaches.

16.1 Introduction

Estimating 3D geometry from images has been a core research topic in Computer
Vision for several decades. For the case of multiple input images a large variety of
methods has been developed which are able to deliver high quality reconstruction
results. For the special case that only a single still image is available the problem
gets considerably more difficult. For specific assumptions imposed on the image a
variety of methods to estimate 3D geometry exist in literature. However, a thorough
comparison has not been carried out so far.

The reason for this lies partly in the significant diversity of existing approaches
which in turn is due to the inherent ill-posedness of the underlying problem: during
image formation, depth is irrecoverably lost. In their effort to make the problem
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tractable, single view methods have come up with an abundance of very different
assumptions, methods and priors to infer the geometry of a depicted scene or object.
The reconstruction precision of such approaches exceeds that of plausible estimates
only in very few cases. Consequently, the reconstruction objectives are of very
different nature, which makes a comparison difficult.

In this chapter we give a brief survey on the subject of single view reconstruction.
We provide an introduction to the field and examine basic image information and
assumptions that are used in order to compensate for ill-posedness. We then review,
categorize and compare existing state-of-the-art approaches. Finally, we give a
detailed theoretical and experimental comparison of five single view reconstruction
methods for curved surfaces.

16.2 Single View Reconstruction

Single view reconstruction has the objective of recovering geometric information
from a single photograph or synthetic image. The geometric information that is to
be retrieved can be of very different manifestation reaching from purely relational
information, sparse metrics or dense depth information to a complete 3D model of
a single object or even a scene. This circumstance in combination with the inherent
ill-posedness of the problem is the main reason for the strong diversity that is
witnessed among the works in single view reconstruction and it is by no means
a straightforward task to develop a taxonomy let alone a comparison.

A first approach will therefore be on the one hand to give an overview on
the different types of image information (‘image cues’) used in the different
reconstruction processes. On the other hand we will review the priors that are
assumed in order to overcome the ill-posedness. This will also serve as a brief
survey on existing works. Later in Sect. 16.3, we will classify a number of high-
level approaches and compare them in Sect. 16.4. We will then narrow down further
consideration to a subclass of methods that concentrates on reconstructing curved
objects which will form the basis for our comparison in Sect. 16.5.

16.2.1 Image Cues

Approaches to single view reconstruction extract specific higher or lower level
information contained in the input image either automatically or with the help of
user input. This information then is interpreted to infer geometric relations of the
depicted object or scene. In the following we list the most important categories and
give prominent references.

Shading The problem of Shape from Shading (SfS) is to infer a surface (height
field) from a single gray level image by using the gradual variation of shading that
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is induced by the surface interaction of light. Some approaches also co-estimate
lighting conditions and reflection properties. In general, the goal is to find a solution
to the following image formation model

R.n.x// D I.x/ ; (16.1)

where I is the image, n is the normal field of the surface and R is the reflectance
function which is dependent on the object. In most SfS approaches a Lambertian
reflectance model is assumed. There are, however, other models which also include
the specular case (e.g. Wang et al. [56]). SfS is an ill-posed problem, although
there has been progress on deriving conditions for unique solutions by Prados and
Faugeras [42].

As shown by Durou et al. [12] and Zhang et al. [62] reconstruction from
real world images is limited in the sense that each approach exhibits special and
sometimes unrealistic requirements on lighting conditions or reflection properties.
Especially the presence of texture is an issue. Work has been done, however, to
incorporate interreflection [39], shadowing and perspective projection [7] just to
name a few. One of the first minimization approaches to SfS is by Ikeuchi and
Horn [24]. For a current survey see Durou et al. [12].

Shadow The shadow that is thrown by objects conveys geometric information
relative to the viewpoint of the light source. This information can be used to narrow
down possible reconstruction results. Often point light sources have to be assumed
as soft shadows do not provide enough information. Furthermore, shadow is not
always thrown on known geometry, which makes the problem even more complex.
Apart from reconstruction ambiguities, it is not straightforward to extract shadow
borders from images. References include works by Daum and Dudek [9], Kender
and Smith [29], Yu and Chang [60], and Hatzitheodorou [16].

Contour Edges Contour edges are salient structures in the image that are induced
by surface discontinuities, occlusion, object boundaries or reflectance changes. They
give evidence for geometry and relative pose/position of objects. Junction points or
corners, where multiple contour edges meet or end, are also of importance for single
view reconstruction.

Subclasses of contour edge-based methods are contour-based and silhouette-
based reconstruction methods. Shape from Contour approaches try to infer geometry
given the object contours alone. However, reconstructions are in most cases ambigu-
ous. Especially, smooth surfaces often do not exhibit sufficient contour lines in the
image. Shape from Contour approaches based on closed contour drawings include
Horaud et al. [19], Ulupinar et al. [53], and Li et al. [33]. Karpenko et al. [27, 28]
interpret user line drawings. Other single view reconstruction approaches that use
contour edges for reconstruction include [10, 14, 17, 30, 47, 48].

Silhouette Closely related to Shape from Contour are approaches that infer
geometry given the object silhouette. The silhouette is the image of the contour
generator and the contour generator is the set of visible points on a surface, whose
image rays are tangent to the surface.
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The goal of silhouette based approaches is to find a geometric reconstruction,
whose projection into the image plane agrees with the silhouette. As there are always
infinitely many objects that are silhouette consistent this cue suffers from inherent
ambiguity if used alone.

There are several silhouette based single view reconstruction algorithms that we
will consider in more detail later. These include works by Prasad et al. [44, 45],
Oswald et al. [41], and Töppe et al. [52]. Related to these approaches are a class of
sketch based modeling tools e.g. by Igarashi et al. [23], Karpenko et al. [27], and
Nealen et al. [40].

Texture Besides geometry, the appearance of real world objects is also determined
by texture. Although a complete distinction from shading is not possible, texture is
considered as an inherent property of an object rather than a result of an interaction
of light and geometry.

If one assumes objects to have a regular and known texture it is possible to infer
their geometry from the way the texture is deformed after image projection. These
Shape from Texture approaches, obviously, impose strong constraints on the recon-
structable objects. An example constitutes the work of Malik and Rosenholtz [37].

Further single view reconstruction algorithms that use texture cues include Super
et al. [50], Hassner and Basri [15], and Vetter et al. [55]. Approaches that combine
texture and contour edges for reconstruction by considering so-called ‘superpixels’
are Hoiem et al. [17] and Saxena et al. [48].

Defocus Due to physical aspects of image formation, the sharpness of a depicted
object correlates with its distance to the camera. This fact can be used to infer a
dense depth map from an image. However, the accuracy of such methods is limited
and camera calibration is necessary. References include works from Levin [32] and
Bae and Durand [1].

Location The location of objects in the image can infer semantic knowledge of
the objects. For example, ground, floor or sky can be identified more easily from
their location in the image. This information can be helpful for 3D reconstructions.
Hoiem et al. [17] reconstruct vertical objects by distinguishing them from the ground
and the sky. Delage et al. [10] use a Bayesian network to identify floor pixels.

16.2.2 Priors

Priors are of utter importance in single view reconstruction in order to compensate
for the problem of ill-posedness. Depending on the ultimate reconstruction goal
and the target group of objects, different priors or a combination of them can be
applied. Priors can either be chosen in fixed form, or they can be gained by learning.
Furthermore, there are low-level and high-level priors. In the following we will list
priors that are most frequently assumed in single view reconstruction.
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Smoothness Smoothness can be defined as the small spatial change of some
property. In single view reconstruction we are often not able to infer a dense recon-
struction. It is therefore good practice to choose among the possible reconstruction
surfaces those which tend to be smooth. Smoothness naturally plays a significant
role in the reconstruction of curved surfaces as in [41, 45, 52, 63].

Smoothness in a wider sense can also be learned as the consistency of object
surfaces. Hoiem et al. [17] use a machine learning approach to find image features
indicating the assignment of neighboring superpixels to the same object. Saxena
et al. [48] use image cues and geometric relations to learn the relative depth of
neighboring superpixels.

Geometric Relations Basic geometric relations are often encountered specifically
in man-made environments. As a prior they can help to dissolve ambiguities in
the reconstruction process. As part of those basic geometric relations we consider
e.g. coplanarity, collinearity, perpendicularity and symmetry. An early work which
makes use of such simple rules is the one of Lowe [36]. By assuming planes to
be parallel or perpendicular one can also derive camera parameters (see Criminisi
et al. [8]). This is even more important, as perspective projection is not angle-
preserving and the image of parallel lines will not necessarily be parallel. We can
often assume objects to stand vertically on the ground plane [10, 14, 17].

Symmetric objects exhibit identical sections, which are projected to different
locations in the input image. Knowing that these parts possess similar geometric
and reflectance properties one can interpret their respective projections as views
of the same object part from different observation points. This can be seen as a
weak multiview scenario providing more information for reconstruction [18]. Also,
occluded geometry can be inferred from this prior [14].

Volume/Area With smoothness as a prior on its own, solutions tend to be trivial
or flat depending on the reconstruction approach. Adding a volume prior to the
reconstruction process will ensure an inflation of the object surface and will still
result in a certain compactness of the solution due to the smoothness assumption.
Volume priors can be found in Li et al. [33] and Töppe et al. [52].

Semantic Relations Semantic relations infer high-level knowledge on the relative
position and inner structure of different objects and their depth values. Han and
Zhu [14], for example, infer occluded points based on semantic human knowledge,
e.g. that leaves are connected to the plant. Koutsourakis et al. [30] introduce
semantic knowledge to ensure the consistency of different floors. Finally, knowledge
on the location of the ground and the sky represents an important cue for 3D
reconstruction. The ground is often used as starting point for the reconstruction as
objects, especially walls, are usually perpendicular to this plane [10, 14, 17].

Shape Priors Shape priors impose high-level knowledge on the objects to be
reconstructed. Among commonly used priors, full shape priors usually impose the
strongest restrictions. On the one hand, this leads to a rather limited applicability of
the approach. On the other hand, the reconstructions are usually of high quality and
work automatically without user input.
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Shape priors can be defined or learned. In [30], Koutsourakis et al. define a
full shape grammar for the reconstruction of facades. This limits the approach
to the reconstruction of buildings in urban environments. In contrast, Rother and
Sapiro [46] and Chen and Cipolla [4] shape priors are learned from a database
of sample objects. Hence, they are not a-priori limited to a specific object class.
However, their choice of samples intrinsically limits their approach to the object
classes represented in the database.

The representation of shape priors ranges from specified sets of grammar rules
over parametric models to probabilistic priors. In [4], Chen and Cipolla learn depth
maps of human bodies by means of principal component analysis. This model
imposes strong assumptions on the 3D object, but the dimension of the state space
is reduced and only valid 3D reconstructions are obtained. In contrast, Rother and
Sapiro [46] impose less strong assumptions on the learned model. For each object
class a shape prior is learned as the relative occupancy frequency of each voxel in
the object.

16.3 Classification of High-Level Approaches

In this section we will examine selected works in the field of single view recon-
struction. Due to the abundance and diversity of approaches we selected algorithms
with respect to the following criteria: the chosen approaches are applicable to real
world images that are not taken under special or unrealistic material or lighting
conditions. We rather concentrate on approaches inferring objects from ordinary
photographs where reconstruction plausibility is more important than precision. The
selection, furthermore, focuses on works that are representative and state-of-the-art.
We provide a classification and examine differences and similarities.

For classification we found several categories ranging from application domain
over image cues and shape priors to user input and 3D representation (see below).
However, these categories are not suitable to partition the set of approaches due
to strong overlap. Instead, we think that the most important information for each
single view reconstruction approach is its application domain, i.e. the set of objects
and scenes, which can be reconstructed. We introduce the literature sorted by the
following reconstruction categories:

• Curved Objects
• Piecewise Planar Objects
• Learning Specific Objects
• 3D Impression from Scenes

More categories will follow in the next subsection. We distinguish between objects
and scenes. Reconstructions of scenes aim at producing 3D impressions or depth
maps from the whole scene contained in the image. In contrast, object reconstruction
approaches concentrate on single objects within the scene. Approaches that recon-
struct curved objects principally aim at producing arbitrary, mostly smooth objects.
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Often, minimal surface approaches are used, which try to minimize the surface
of the object given a fixed area or volume. The second class consists of methods
that concentrate on piecewise planar objects such as buildings and man-made
environments. Furthermore, we distinguish arbitrary curved and planar objects from
learning specific objects. Approaches in this class cannot reconstruct arbitrary
objects, but are inherently limited to specific object classes by shape information
learned from sample databases. Finally, we discuss methods that do not aim to
reconstruct exact or plausible 3D geometry but rather provide a pleasing 3D
Impression from Scenes. In the following, we will present and classify related work
on single view reconstruction.

16.3.1 Curved Objects

16.3.1.1 Zhang et al.

Zhang et al. [63] proposed a method for interactive depth map editing based on an
input image. The depth map reconstruction is the result of minimizing a thin plate
energy [11], which favors smooth surfaces and penalizes bending. User input comes
as a variety of constraints on the thin plate energy that can be placed interactively
into the depth map. These comprise of position constraints, surface normals, surface
or normal discontinuities, planar region constraints or curves on which curvature or
torsion is minimized.

From a mathematical point of view the thin plate energy for a continuous function
f on a two dimensional rectangular domain Œ0; 1!2 is defined as:
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where functions ˛; ˇ; " W Œ0; 1!2 7! f0; 1g extend the thin plate model with
weighting functions which can be used to define local surface discontinuities. Zhang
et al. [63] discretize this minimization problem by introducing a function gi;j that
samples values of the depth map function f W Œ0; 1!2 7! IR on a discrete rectangular
grid, that is, gi;j D f .id; jd/, with d being the distance between neighboring grid
points. For efficiency and accuracy the grid resolution can be locally refined by the
user. By stacking all values gi;j into a single vector g and by discretizing the partial
derivatives of g, the energy in Eq. (16.2) can be written in matrix form as

gTCg subject to Ag D b ; (16.3)

where the condition Ag D b may contain any constraints on the surface that can
be expressed in linear form. For a detailed description on how the constraints are
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incorporated into this quadratic optimization problem we refer to [63]. A description
of these constraints from the user’s point of view is given later together with the
experimental comparison (Sect. 16.5.2).

16.3.1.2 Prasad et al.

The works [45] and [44] of Prasad et al. introduce a framework for single view
reconstruction of curved surfaces. The method is related to the one by Zhang
et al. [63] but aims at reconstructing closed surfaces.

The main idea involves computing a parametric minimal surface by globally
minimizing the same thin plate energy (Eq. (16.2)) as Zhang et al. [63] the difference
being, however, that they minimize with respect to a parametrized 3D surface f W
Œ0; 1!2 7! IR3 instead of a depth map. As a result, function domain and image
domain are no longer equivalent. For implementation purposes, the discretization
of the optimization problem with constraints is done similar to Zhang et al. (see
Eq. (16.3)).

The choice of constraints is mostly different from Zhang et al. [63]. The main
source of reconstruction information is the silhouette: Prasad et al. [45] use the fact
that normals along the contour generator c.t/ can be inferred from the 2D silhouette
as by definition they are parallel to the viewing plane for a smooth surface. This
leads to the constraints

#.f .u.t/; v.t/// D c.t/ (16.4)

n.c.t//f .u.t/; v.t// D 0 8t 2 Œ0; 1! ; (16.5)

where n.c.t// is the normal at the point c.t/ in IR3 and # the orthographic projection
function. The user has to determine the coordinates .u.t/; v.t// of the contour
generator in parameter space. This is done by placing lines within the grid of the
parameter space and setting them in correspondence with the parts of the contour
generator. Similar to Zhang et al. [63] the user can employ position constraints to
define the object inflation locally. Also, surface discontinuities can be optionally
specified to relax the surface smoothness along curves in the parameter space.

Important to note is that in order to define the topology of the object, the user has
to define which parts of the parameter space boundary are connected. For example,
the connection of the left and right boundary defines a cylindrical shape of the
function domain.

16.3.1.3 Oswald et al.

The variational single view approach by Oswald et al. [41] computes closed curved
minimal surface reconstructions. The input comprises of a side view of an object
and its silhouette which is obtained by interactive segmentation of the input image.
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An object reconstruction is achieved by searching for a smooth minimal surface that
complies with a shape based on the silhouette distance function.

The minimal object surface is represented by indicator function u W V 7! f0; 1g
defining object interior (u D 1) and exterior (u D 0) and is found by minimizing
the following convex energy

E.u/ D
Z

V

g.x/jru.x/j d3x
„ ƒ‚ …

smoothness term

C
Z

V

u.x/
"
$vol.x/C $sil.x/
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„ ƒ‚ …
data term

; (16.6)

where V ! IR3 is the reconstruction domain and the data term promotes volume
inflation via $vol and silhouette consistency via $sil. Function g W V 7! IRC is used
to locally adapt the smoothness of the surface if desired by the user – its default
value is g " 1. Given the input silhouette S ! ˝ ! V as part of the image plane
˝ a height map h W ˝ 7! IR is defined

h.p/ D min
˚
%cutoff ; %offset C %factor # dist.p; @S/k

$
(16.7)

with the help of the silhouette distance function dist.p; @S/ D mins2@S kp $ sk,
which returns the distance of any point p 2 ˝ to the silhouette boundary @S . The
parameters k;%cutoff;%offset;%factor modify the shape of h.

Now, the data term can be expressed in terms of h so that the object locally
has a depth proportional to the silhouette distance. Using an implicit surface
representation the data term can thus be written as

$vol.x/ D
(
$1 if dist.x;˝/ % h.#.x//
C1 otherwise ;

(16.8)

where # W V 7! ˝ is the orthographic projections of 3D points onto ˝ . Silhouette
consistency is brought forward by

$sil.x/ D

8
ˆ̂<

ˆ̂:

$1 if &S .#.x// D 1 and x 2 ˝
C1 if &S .#.x// D 0
0 otherwise ;

(16.9)

where characteristic function &S W ˝ 7! f0; 1g indicates exterior or interior of the
silhouette, respectively. The convex energy in Eq. (16.6) is minimized with the help
of convex relaxation techniques and the global optimum defines the reconstructed
object.

16.3.1.4 Töppe et al.

Very similar to Oswald et al. [41], the variational single view approach by Töppe
et al. [52] also computes closed curved minimal surface reconstructions. It follows
the same work flow and also requires an object silhouette as input.
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The same regularizer as in Oswald et al. [41] makes for the smooth surface,
however, instead of using a heuristic data term for surface inflation, the authors
suggest that the surface volume complies with a user specified volume Vt . This is
achieved by adding a constraint to the minimization of the following convex energy:

E.u/ D
Z

V

g.x/jru.x/j d3x s.t.
Z

V

u.x/ d3x D Vt : (16.10)

Again, the surface is represented implicitly by the indicator function u W V 7! f0; 1g
where V ! IR3 is the reconstruction domain. Similarly, the purpose of function
g W V 7! IRC is to account for optional local smoothness changes (default: g " 1).
Silhouette consistency is enforced by another constraint

u.x/ D
(
0; #.x/ … S
1; x 2 S

; (16.11)

where # W V 7! ˝ is the orthographic projection of 3D points onto the image plane
˝ and S ! ˝ is the input silhouette. Convex relaxation techniques are used to
minimize energy in Eq. (16.10) and a GPU implementation allows for interactive
rates on standard PC hardware.

The benefit of the implicit surface representation used by Oswald et al. [41] and
by Töppe et al. [52] is the topological freedom of the object’s surface. In contrast
to Prasad et al. [45] and Zhang et al. [63] the surface can contain any number of
holes that are induced by the input silhouette. As opposed to [45], however, both
reconstruction approaches by Oswald et al. [41] and Töppe et al. [52] assume the
contour generator to be planar, which again limits the set of possible reconstructions.

16.3.1.5 Colombo et al.

Another approach to 3D reconstruction are surfaces of revolution (SORs) [6,54,59].
They are common in man-made objects and represent a subclass of Straight Homo-
geneous Generalized Cylinders. SOR approaches strongly rely on the assumption of
rotational symmetry of the objects. A surface of revolution is obtained by revolving
a planar curve, referred to as scaling function, around a straight axis, the revolution
axis. SORs can be parametrized in polar coordinates:

S.'; z/ D .(.z/cos.'/; (.z/sin.'/; z/ : (16.12)

Important for reconstruction approaches are cross sections and meridians. Cross
sections are intersections of planes orthogonal to the revolution axis with the
object, which leads to circles. Meridians are intersections of planes containing the
revolution axis with the object. This leads to curves which all have the same shape
and coincide with the SOR scaling function. Reconstruction approaches based on
SORs try to infer the scaling function and the axis of revolution from the image.
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In Colombo et al. [6], the task of 3D reconstruction is formulated as the problem
of determining the meridian curve from the imaged object silhouette and two given
imaged cross sections. Based on the computation of fixed entities such as the
vanishing line or the SOR symmetry axis, camera calibration can be done and
the SOR is inferred. Texture acquisition is obtained by inverse normal cylindrical
projection.

16.3.1.6 Other Approaches

Francois and Medioni [13] present an interactive 3D reconstruction method based
on user labeled edges and curves, which are represented by non-uniform rational
basis splines (NURBS). The reconstructed objects are either modeled as generalized
cylinders or as a set of 3D surfaces. Terzopoulos et al. [51] propose deformable elas-
tic 3D shape models, which evolve around a symmetry axis and whose projection
into the image is attracted by strong image gradients. Cohen and Cohen [5] propose
a generalization of snakes to 3D objects based on a sequence of 2D contour models
for medical images.

16.3.2 Piecewise Planar Objects and Scenes

16.3.2.1 Criminisi et al.

In [8], Criminisi et al. describe how 3D affine measurements can be obtained from
a single perspective view. The authors concentrate on scenes containing planes and
parallel lines which are obtained by perspective projection. The camera is assumed
to be uncalibrated with unknown internal parameters.

The authors assume that a vanishing line of a reference plane as well as a
vanishing point can be computed from the image. Given the vanishing line of
a reference plane, a vanishing point for a direction not parallel to the plane and a
known reference length in the image, the authors derive affine scene structure from
the image. In this context, three different types of measurements are computed from
the image: distances between planes parallel to the reference plane, measurements
on these planes (e.g. length and area ratios) and the camera position. These measure-
ments are obtained from cross-ratios (special numbers associated with an ordered
quadruple of collinear points, which is invariant under specific transformations in
projective geometry) and specific image mappings.

To simplify computations, Criminisi et al. [8] developed an algebraic approach
based on a parametrization of the projection matrix. As the approach relies on
feature detection in the image (e.g. for reference points), the resulting measurements
can only be of limited accuracy, which is assessed by a confidence measure.

The approach is applied among others to 3D reconstruction. Based on given
reference heights (e.g. the true height of a window and a pillar of a house) and a
precomputed vanishing line and point in the image the complete 3D reconstruction
can be obtained. The position of the camera is also estimated.
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16.3.2.2 Delage et al.

Delage et al. [10] describe an approach for the automatic reconstruction of 3D
indoor scenes, which mainly consist of orthogonal planes. The following assump-
tions are made: (1) The image is obtained by perspective projection with known
camera calibration. (2) The objects in the scene are composed of planes and edges
with only three mutually orthogonal orientations (‘Manhattan world assumption’).
(3) The camera’s axis is vertical to the floor with known height.

To distinguish planes from edges with their orientations, the authors devise a
Markov Random Field (MRF) consisting of vertices V and edges E with six labels
yv D fp1; p2; p3; e1; e2; e3g for v 2 V . fp1; p2; p3g encodes plane orientation
and fe1; e2; e3g encodes edge orientation. Let xv and xu;v denote the feature vector
at node v and at node pair .u; v/ respectively. The following joint probability
distribution is defined over all labels yv:
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Here, Z' .x/ stands for the partition function and ' D Œ'1; '2! indicates the model
parameters. The unary term  1.yv; xv; '1/ D 'T1 $.yv; xv/ is a linear combination
of image features $.yv; xv/ such as edge orientation or floor affiliation, whereas the
pairwise term  2.yu; yv; xu;v; '2/ D 'T2 $.yu; yv; xu;v/ encodes features indicating
label consistency or if two pixels were members of the same partition after a
segmentation of the image.

To obtain a 3D reconstruction from the MRF labeling, a constrained iterative
optimization problem is formulated to obtain the location and orientation of planes
and edges in 3D space. The constraints yielding 3D points for each image pixel
can be formulated from the Manhattan world assumption which ensures a unique
solution. To obtain a correct result, occlusion vs. non-occlusion of edges is inferred.
Delage et al. [10] can be viewed as a modification and generalization of Sturm and
Maybank [49].

16.3.2.3 Koutsourakis et al.

In [30], Koutsourakis et al. generate urban 3D reconstructions from images by
estimating the parameters of a 3D shape grammar in a MRF approach, so that the
generated building best matches the image.

A shape grammar describes how basic shapes interact together through a set
of replacement rules to produce complex structured geometries. It contains basic
or atomic shapes, which are modified by operators. The operators either transform
the object by means of translation, rotation or scaling, or they perform structural
operations such as splitting or mirroring. The main advantages of using a shape
grammar are that it always produces well-defined buildings and that the complexity
of the optimization as well as the dimensionality of the problem is strongly reduced.



16 A Review of Single View Reconstruction Methods 355

For optimization the authors formulate a MRF approach. The unary terms ensure
that object boundaries coincide with image boundaries, whereas the pairwise terms
measure the appropriateness of the configuration of atomic shapes and ensure the
consistency between the operator and the image.

16.3.2.4 Other Approaches

Kanade [26] recovers shape from geometric assumptions. The world is modeled
as a collection of plane surfaces, which allows for a qualitative object recovery.
Quantitative recovery is achieved by mapping image regularities into shape con-
straints. Piecewise planar scenes are computed in Liebowitz et al. [35] based on
camera and geometric constraints such as parallelism and orthogonality, e.g. for
the reconstruction of buildings. Apart from symmetry and planarity, two additional
shape constraints are introduced by Li et al. [33] for object reconstruction: max-
imum compactness and minimum surface. Instead of computing vanishing lines,
Kushal et al. [31] perform 3D reconstruction of structured scenes by registering two
user indicated world planes. Hong et al. [18] study the relation between symmetry
of objects and the viewer’s relative pose to the object. An important principle for
the reconstruction of symmetric objects is that one image of a symmetric object
is equivalent to multiple images. Li et al. [34] describe a method for reconstructing
piecewise planar objects by using connectivity and perspective symmetry of objects.

16.3.3 Learning Specific Objects

16.3.3.1 Han and Zhu

Han and Zhu [14] propose a 3D reconstruction approach based on manually defined
shape priors, which can on the one hand be applied to polyhedral objects and on the
other hand to grass and tree-like objects. They argue that learning priors is hard in
practice, because there is not enough real world training data available. Hence, they
revert to manually defined prior models.

The image is represented by two layers, one containing image regions such as sky
or planar objects such as polyhedra, the other containing this curved structures such
as grass or trees. The full 3D scene is represented by two graphs, one consisting of
3D objects, the other representing the relations between the objects in the scene.
The objective of the paper is then to optimally reconstruct the 3D scene given
the layer representation of the image in a Bayesian approach. To this end, the
authors manually introduce prior knowledge. For polyhedral objects they assume
planarity of faces as well as similar angles and edge lengths. For grass and tree-like
objects they assume smooth and evenly spread curves. The relation graph is used
to impose regularity constraints on touching objects, e.g. on angles. Furthermore,



356 M.R. Oswald et al.

hidden information is inferred based on human geometric reasoning on missing
vertices, parallelism, rotational or mirror symmetry and stability assumptions.

Optimization is done by Markov Chain Monte Carlo Methods with reversible
jumps which define rules for altering sub-graph structures.

16.3.3.2 Rother and Sapiro

Rother and Sapiro [46] present a general framework for pose estimation, 2D
segmentation, object recognition and 3D reconstruction from a single image. The
approach is well-suited to reconstruct bounded objects, but not for elaborate scenes.

The 3D object to be reconstructed is represented by voxels having either state full
or empty: V DfVi gMiD1; Vi 2 fempty; fullg. The corresponding segmentation of the
image is given by the pixel states QDfQj gNjD1; Qj 2 fbackground; foregroundg.
It is assumed that the camera matrix is given, which relates 3D voxels to 2D image
pixels.

To obtain the most likely 3D reconstruction from the image, the authors
formulate a graphical model based on two fidelity terms: (1) The object fidelity
P.V jK/, which means its conformity with a learned 3D shape prior for a given
shape class K . The shape prior P.V jK/ is learned for each class separately from
sample images as the relative frequency of the voxel for being part of the object.
(2) The data fidelity, which defines the probability that the given input image is
generated by the occupied voxels under projection onto the image plane. This term
is again composed of two probabilities for each of the N pixels in the image plane:
(a) The color probability given by the user specified foreground and background
color model for each pixel with color Cj , P.Cj jQj /, and (b) the probability of
obtaining a particular pixel state (foreground or background) based on the number
of full voxels projected onto pixel j along its corresponding projection ray R.j /,
P.Qj jVR.j //.

The likelihood for a given hypothesis (shape class and affine transformation or
pose) is then defined as follows:
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To select the best hypothesis for each shape class and pose, their likelihood must
be compared. In order to reduce computational complexity, an efficient branch
and bound algorithm is proposed to discard suboptimal hypotheses and refine only
plausible ones.

16.3.3.3 Chen and Cipolla

Chen and Cipolla [4] propose to infer 3D information directly from learned shape
priors. They assume a number of given training shapes each consisting of the
silhouette and the corresponding depth map. In a first step, the training silhouettes



16 A Review of Single View Reconstruction Methods 357

are registered. To ensure the independence of different data dimensions and to
reduce the complexity of the approach, Principal Component Analysis is applied
to the silhouettes and the depth maps separately in order to find lower-dimensional
subspaces of the training shapes. In this way, the authors obtain 2D lower-
dimensional training feature pairs consisting of position and depth information.
To model the low-dimensional sub-manifold structure underlying the feature pair
space, Gaussian Process Latent Variable Models (GPLVM) are used. They assume
Gaussian processes for the position and depth information as well as for the latent
variables (the PCA coefficients). Then they estimate the underlying parameters in
an optimization problem, which leads to a shape model learned from sample data.

Given an unknown silhouette, 3D information can now be inferred from the
learned shape model. First, the silhouette is registered and projected into the lower-
dimensional PCA subspace yielding a position feature vector. Given this feature
vector and the shape model, we ask for the most likely depth estimate at each point.
Since there is no closed-form solution to this problem, the authors revert to a two-
stage approach: (1) They find the most likely latent variables generating the given
silhouette feature. (2) From these latent variables the most likely depth estimate is
inferred as the mean value of a Gaussian distribution. The final 3D reconstruction at
each point is the sum of the most likely depth value and the linear combination of
the PCA eigenvectors determined by the latent variables.

16.3.3.4 Hassner and Basri

Hassner and Basri [15] aim at depth reconstruction from a single image based on
examples. The samples are given in a database S containing mappings of images to
their corresponding depth maps S D fMigniD1 D f.Ii ;Di /gniD1. For a given image
patch Wp centered on p its depth is inferred from known depth values of the most
similar patches V in the database by maximizing its plausibility: Plaus.DjI; S/ DP

p2I maxSim.Wp; V /. Similarity Sim between patches is measured in the least
squares sense. The image patches overlap leading to several depth estimates for
each pixel. These are combined by averaging. To ensure consistency of neighboring
patches a global optimization procedure is proposed which iteratively refines depth
estimates.

16.3.3.5 Other Approaches

Vetter [55] learned a parametric model for the reconstruction of faces by applying
PCA to a database of registered 3D faces. Then the model parameters can be found,
which best explain the given image of a face. In Nagai et al. [38], objects are
learned from a sample database. A Hidden Markov Model is used to model the
correspondence between intensity and depth.
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16.3.4 3D Impression from Scenes

16.3.4.1 Hoiem et al.

In [17], Hoiem et al. propose a fully automatic approach for creating 3D models
from single photographs, which is similar to the creating of pop-up illustrations in
children’s books. They divide the world into ground, sky and vertical objects, which
they call geometric classes. The appearance of these classes is described by image
cues, which are learned from sample images.

In a first step the image is automatically segmented into superpixels, which are
grouped to constellations. Constellations consist of superpixels, which are likely to
have the same label. This probability is expressed by
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where Nc is the number of constellations, nk the number of superpixels in
constellation k and P.yi D yj j jzi $ zj j/ is the estimated probability that two
superpixels have the same label y given the absolute difference of their feature
vectors z.

The likelihood of a superpixel label given its feature vector x is estimated by
marginalizing over the constellation likelihoods
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where both probabilities are learned from training data. By means of a machine
learning approach the constellations are labeled as ground, sky or vertical objects.
To reconstruct a 3D model from the data, the boundary of the bottom of the vertical
regions is fit with the ground, the sky is removed from the model, and vertical pixels
are assumed to belong to objects sticking out of the ground. Line segments are then
fit to the ground-vertical label boundary and the segments are formed into poly-lines.
The image is finally ‘folded’ along the poly-lines and ‘cut’ upward at the endpoints
of these lines as well as at ground-sky and vertical-sky boundaries. A reasonably
scaled camera model can be obtained by estimating the horizon line and setting the
remaining parameters to constants.

16.3.4.2 Saxena et al.

In [48], Saxena et al. propose another approach for obtaining 3D structure from a
single image of an unstructured environment. The only assumption the authors make
is that the world consists of small planes, whose 3D position and orientation is to
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be estimated. Similar to Hoiem et al. [17], the authors start out from a superpixel
segmentation of the image. In this way, they obtain N superpixels (miniature
planes) each containing Si image pixels. But instead of grouping superpixels into
constellations defining ground, sky and vertical object classes, for each single
superpixel the depth and orientation is inferred. This is done by a Markov Random
Field (MRF) model. Each plane or superpixel is represented by a vector ˛ such
that all plane points q fulfill the equation ˛T q D 1. For a plane pixel lying on a
normalized camera ray vectorR at depth d we thus have ˛T .dR/ D 1. The authors
use a learning approach to obtain parameters ' which identify feature vectors X
with depth estimates Od D XT ' . The authors maximize the following probability in
an MRF approach

P.˛jX; Y;R; '/ D 1

Z

NY

iD1
f' .˛i ; Xi ; Yi ; Ri /

Y

i;j2f1;::;N g
g.˛i ; ˛j ; Yij ; Ri ; Rj / ;

(16.17)

where ˛i is the plane parameter of the superpixel i , Xi its corresponding feature
vector, Yi indicates feature confidence and Ri is the set of rays connecting the
camera viewpoint to the pixels of the superpixel. Then f' relates image features
to estimated depth by
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The pairwise term g can contain different definitions which capture features such as
coplanarity, connectedness and colinearity.

The MRF represents two important aspects of depth estimation: it learns, (1) how
visual cues such as color and texture are associated with depth, and (2) the relative
depth of nearby superpixels based on geometric relations such as connectedness,
coplanarity and collinearity. They also give estimates for occlusions and folds of the
object.

Learning can be done only approximately due to the complexity of the model.
To this end, the graphical model is approximated by a product of several marginal
conditional likelihoods. MAP inference to infer the plane position and orientation
of each superpixel is done by solving a linear program. The result is a polygonal
mesh representation of the 3D model.

16.3.4.3 Other Approaches

In Horry et al. [20], simple 3D scenes are reconstructed based on user input such
as vanishing points and foreground objects. The background of the scene is then
modeled by rectangles, the foreground by hierarchical polygons. Barinova et al. [2]
propose a reconstruction approach for urban scenes yielding visually pleasant
results. The method is based on fitting 3D models containing vertical walls and
ground plane to the scene.
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16.4 General Comparison of High-Level Approaches

In the previous section we have presented important high-level single view
reconstruction approaches. In this section, these approaches will be compared
with respect to several categories, which we find important for their successful
application. Table 16.1 compares the presented approaches with respect to these
categories. It also indicates related image cues and shape priors for each approach,
which were described in the previous section.

Applicability The applicability of a reconstruction approach depends on several
aspects. First, methods are usually limited to some reconstruction domain which
refers to the set of objects or scenes which can be reconstructed “successfully”.
These domains range from architectural such as buildings over man-made objects
and piecewise planar environments to natural scenes. The examined single view
approaches are therefore listed with respect to the categories introduced in Sect. 16.3
(first column of Table 16.1).

The applicability of an approach is also characterized by the assumptions made
by the method. If specific assumptions are not met, the reconstruction process easily
fails. Assumptions for each method are given in column five of Table 16.1. Typical
assumptions are a calibrated camera [10], a simplified scene composition [10, 17],
an object database containing samples for learning shape priors [4, 46], a specific
viewpoint [41, 45, 52] or given geometric properties such as vanishing lines of
reference planes [8].

Another aspect which determines the applicability of an approach to a special
problem is its envisaged reconstruction precision. The precision of a method
describes the consistency of the reconstructed 3D model with the actual real-world
scene. There is a trade-off between precision and reconstruction feasibility. One can
witness a correlation between reconstruction precision and requirements: the higher
the envisaged reconstruction precision, the more assumptions and priors have to be
made on the reconstruction domain.

Reconstructions can be exact, if the computed lengths and orientations of the
inferred 3D objects accurately correspond to the true object. This is usually only
possible from a single image if strong assumptions are made, e.g. piecewise pla-
narity with only three orientations (Manhattan assumption) [10] or known reference
heights and a calibrated camera [8]. Since such strict assumptions strongly limit the
applicability of the approach, most approaches revert to computing the most likely
solution to the ill-posed reconstruction problem without guaranteeing accuracy. The
probability of a solution is usually measured by means of manually defined [14]
or learned shape priors [4, 46]. We call this a plausible precision. Finally, there
are approaches, which do not aim at reconstructing the real object. Instead, they
find solutions which look good to the viewer when animated [17, 20, 48] or can be
used to synthesize approximate new views of a scene. We call these reconstructions
pleasing. The reconstruction precision is indicated in the third column of Table 16.1.
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Table 16.1 Detailed overview of single view methods: for each approach the most important
characteristics are indicated: Precision of the method (exact ’D’, plausible ’'’, pleasing ’"’),
the representation of the 3D object, important assumptions made by the approach, the necessary
user input and image cues as well as priors which are used in the reconstruction process. The ’L’
indicates a prior which is not assumed but learned by the approach. Terms in brackets are optional.
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‘D’ indicates exact precision, ‘'’ plausible precision and ‘&’ a pleasing approach.
Surely there are smooth transitions between these classes.

Representation The form of representation is closely connected to the recon-
struction algorithm. Firstly, only those objects are reconstructable that can be
adequately represented. Seen the other way, the representation has to reflect the
reconstruction domain well. And secondly, the representation model has to conform
to the reconstruction process.

Different representations have been used for single view reconstruction
approaches. We distinguish between parametric and implicit representations. Each
point on a parametric surface can be uniquely described by a coordinate. Finding
a good parametrization for an object is not straightforward and generally does not
allow for arbitrary topology. Implicit surfaces are a remedy to this problem. In this
case, the surface is a level set of a function defined on R3. In contrast to parametric
surfaces, single points on the surface are not easily addressed. Polygonal surface
representations are neither parametric nor implicit and can be described as a planar
graph with nodes, edges and faces. Note that polygonal surfaces often describe
piecewise planar objects but are also used for approximating curved parametric
surfaces. Finally, representations can describe closed and non-closed 3D surfaces.
As a special case we also regard depth maps, which assign a depth to each pixel.

User Input and Runtime Completely automatic reconstruction on a single input
image is often not feasible. Therefore, the user may be required to give cues on
important image features. Most single view approaches aim to keep user input
simple. User input can convey low-level and high-level information. High-level
input is of semantic quality which helps to dissolve ambiguities, e.g. the object
silhouette.

This stands in contrast to tools, where the user models the reconstruction with
the help of low-level operations, e.g. by specifying surface normals or cutting
away object parts. Many of these modeling tools [3, 25, 58] are not image-based
and therefore only remotely related to single view reconstruction. In Sketch-based
modeling tools [23,27,40,61] such modeling operations are driven by user indicated
lines. The Teddy tool will be examined in more detail in Sect. 16.5. A pioneering
work on free-form modeling was done by Welch and Witkin [57].

There is 2D and 3D user input. Most approaches use 2D input which in most
cases is directly applied to the input image [52]. This involves tracing contour edges
such as creases or vanishing lines. 3D input is directly applied to the reconstruction
surface and is often more involved for the user as he needs to navigate in 3D space
(e.g. specifying normals).

For some approaches the user input stage is separate from the reconstruction
stage [4, 8]. Other methods compute a first reconstruction, then the user can add
further input and the process is continued [41, 45, 52, 63]. For approaches of the
latter kind, runtime is obviously an important factor of the reconstruction approach.
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16.5 Comparison of Approaches for Curved Surface
Reconstruction

In this section we concentrate on methods that aim for the reconstruction of
curved surfaces. In particular, we discuss the methods by Zhang et al. [63], Prasad
et al. [45], Oswald et al. [41], Töppe et al. [52], and Igarashi et al. [23]. Although
Igarashi et al. is a pure modeling tool it inflates object contours and is thus related
to silhouette based single view methods. Comparison is done theoretically and
experimentally. The user input is discussed separately.

16.5.1 Theoretical Comparison

In the following we will compare the aforementioned approaches with respect to
four topics which are important in surface reconstruction.

The Inflation Problem A common problem of approaches for curved surface
reconstruction is that reconstructions tend to be flat since – by default – there are
no inflation forces present due to a lack of depth information. A remedy is to let
the user specify the depth of certain constraint points of the reconstruction which
are then interpolated by the minimal surface [41, 45, 63]. This is tedious for the
user. The depth constraints can be estimated fully automatically from the silhouette
only for cylindrical objects as is done in some examples by Prasad et al. [43].
Several heuristics are conceived for more complicated cases. Igarashi et al. [23]
automatically set the depth by a heuristic based on a signed distance function of
the silhouette outline. A similar heuristic is used by Oswald et al. [41] in order
to define a data term for their variational minimal surface approach. However, in
contrast to Igarashi et al. [23] the user is able to adapt the parameters of this data
term and thus the final surface. Töppe et al. [52] use a constraint on the volume of
the reconstruction, which in many cases leads to natural inflation behavior.

Surface Representation and Topology The reconstructability of curved surfaces
with arbitrary topology depends on the surface representation. Implicit representa-
tions [41, 52] are generally better suited for this task than parametric ones [45, 63],
since the parameter space has to reflect the topology. The same holds for mesh-based
approaches such as the one by Igarashi et al. [23]: during modeling operations it can
be tedious to keep the mesh consistent, especially during topology changes.

The parametric representation by Prasad et al. [45] has other implications. Firstly,
uniformly distributed points in the parameter space are not uniformly distributed on
the surface. This property may lead to oscillations, especially in the case of higher
genus. Further, the relation between points in parameter space and points on the
surface is non-trivial for inexperienced users.
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Silhouettes Silhouettes are used by Prasad et al. [45], Oswald et al. [41], and Töppe
et al. [52] for surface inference. Full silhouette consistency of the reconstruction,
however, is only enforced in the latter approaches as Prasad et al. [45] derive merely
local constraints from the silhouette.

View Constraints Finally, view constraints are of practical importance. Oswald
et al. [41] as well as Töppe et al. [52] assume symmetric objects. Reconstructions
work best if symmetry and viewing plane are parallel. This implies that the contour
generator is planar. The approach by Prasad et al. [45] allows for non-planar contour
generators and, thus, in some cases for slightly more general view points than just a
side-view.

16.5.2 Experimental Comparison

In this section we experimentally compare the five methods discussed in the
previous subsection. For all experiments, we used the single view modeling tool by
Zhang et al. [63] and the software called SmoothTeddy which incorporates results
of several works by Igarashi et al. [21–23]. Both of them are publicly available for
download. The reconstruction results by Prasad et al. are taken from the works [43–
45]. For the reconstruction results of the method by Oswald et al. [41] and Töppe
et al. [52] we used our own CCC and CUDA-based implementations.

In Figs. 16.1–16.3 we compare the reconstruction results of all five methods
on ten different examples, covering various issues such as object shape, topology,
viewing angle and image type. Instead of explaining every example, we rather con-
centrate on the examples which demonstrate properties, advantages or drawbacks
discussed in the theoretical comparison as well as issues we identified during the
experiments. Since the necessary amount of user input and thus the simplicity of the
modeling process is of particular interest for practical purposes, we also explain
and compare the user input for each method. The user inputs for each method
is summarized in Table 16.2. Necessary user input is printed in bold. The other
inputs are either optional or the program provides a heuristic to initialize these
values reasonably well.

For each method we discuss the user input separately and illustrate it in
several Figures for the teapot example, which is the most sophisticated one. Since
we identified significant differences in the necessary amount of time a medium
experienced user needs to generate the above examples, we quantitatively compare
the amount of user input by listing the modeling times for every method and each
example in Table 16.3.

The modeling times for Zhang et al. [63] include all user defined constraints for a
medium experienced user. The respective times for Igarashi et al. [23] only contain
the modeling time without model coloring as an automated model texturing could
easily be integrated. The modeling times for Oswald et al. [41] and Töppe et al. [52]
include the user scribbles for the silhouette extraction, which is rather simple
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Banana Fish Dory (Finding Nemo) Vase

input images

Zhang et al. [62]

Igarashi et al. [23]

Prasad et al. [45]

Oswald et al. [41]

Töppe et al. [52]

Fig. 16.1 Experimental comparison of several methods for curved object reconstruction (The
figures for Prasad et al. are taken from [43])
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Squash Orange Ostrich Donut

input images

Zhang et al. [62]

Igarashi et al. [23]

Prasad et al. [45]

Oswald et al. [41]

Töppe et al. [52]

Fig. 16.2 Continuation of Fig. 16.1: experimental comparison of several methods for curved
object reconstruction (The figures for Prasad et al. are taken from [43])
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Jelly Bean Teapot Teapot Geometry

input images

Zhang et al. [62]

Igarashi et al. [23]

Prasad et al. [45]

Oswald et al. [41]

Töppe et al. [52]

Fig. 16.3 Continuation of Fig. 16.2: experimental comparison of several methods for curved
object reconstruction (The figures for Prasad et al. are taken from [43])
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Table 16.2 Necessary (bold) and optional user inputs and modeling steps for several methods in
comparison. Optional user inputs are still required algorithm inputs but they can be predefined by
default values or simple heuristics and later on changed by the user if desired. Note that the variety
of user input shown in this table does not reflect the amount or complexity of the input that is
necessary for a reconstruction

Method User input (optional and required)
Zhang
et al. [63]

• Depth map dimensions
• Normal/position constraints
• Discontinuity lines (position/normal discontinuity)
• Planar region constraint
• Curvature/torsion minimizing fairing curve constraints
• Manual mesh-subdivision

Igarashi
et al. [23]

• Rough contour lines
• Union or cut operations between objects
• Object coloring

Prasad
et al. [45]

• Mesh resolution
• Silhouette extraction
• Define corresponding parameter space boundaries (defines topology)
• Assign parts of the contour to lines in the parameter space
• Choose inflation heuristic (cylindrical, cylindrical by parts, distance transform,

approximation constraints) C further inflation input
• Spillage correction (correct silhouette consistency violated through optimization)
• Surface creases

Oswald
et al. [41]

• Volume dimensions
• Silhouette extraction
• Define data term shape interactively (4 parameters)
• Surface creases

Töppe
et al. [52]

• Volume dimensions
• Silhouette extraction
• Define target volume interactively
• Surface creases

Table 16.3 Approximate modeling times for all five methods and all examples in Figs. 16.1–
16.3 for a medium experienced user. Considering the very similar reconstruction results, this table
reveals significant differences for the time of their modeling

Zhang Igarashi Prasad Oswald Töppe
Example et al. [63] et al. [23] et al. [45] et al. [41] et al. [52]
Banana 20 min <1 min 10 min 5 min <1 min
Fish 15 min <1 min 2 min 8 min 1 min
Dory 40 min <1 min 5 min 7 min 1 min
Vase 20 min <1 min 2 min 13 min 4 min
Squash 12 min <1 min 2 min 2 min 1 min
Orange 14 min <1 min <1 min 3 min <1 min
Ostrich 30 min <1 min 15 min 7 min 2 min
Donut 55 min <1 min 10 min 3 min 1 min
Jelly Bean 15 min <1 min 2 min 4 min 1 min
Teapot 35 min <1 min 20 min 15 min 4 min
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with any graph-cut based method for most of the examples. The reconstructions
by Prasad et al. [45] are taken from their respective publications and the authors
provided modeling times which include the time taken to annotate contours and all
other constraints.

16.5.2.1 Zhang et al.

Evaluation of Experiments This method is more a single view modeling tool
rather than a reconstruction tool. Every detail, every extrusion or inflation has to be
modeled by the user. Due to the depth map approach it is easy to ensure silhouette
consistency when using discontinuity constraints at the silhouette boundary because
points are only allowed to change their elevation. These discontinuity constraints
have been used for all examples in Figs. 16.1–16.3. The modeling process with this
tool can be cumbersome because most constraints only have a local influence on the
surface shape. Usually many constraints are necessary for modeling 3D structures
from a single image. Further, the oblique position of the donut with respect to the
image plane (Fig. 16.2) is difficult to model with local constraints only. The same
difficulties emerged with the banana example in Fig. 16.1. Fine scale structures
can hardly be modeled and elongated structures such as the handle of the teapot
(Fig. 16.3) are often tedious to be modeled properly. The leg of the ostrich (Fig. 16.3)
could not be modeled at all due to the limited mesh resolution.

An advantage of this method is the variety of modeling possibilities. The user
can fully control each part of the mesh and can even disconnect surface parts. For
that reason, the user is able to model details like the round shaped eye of Dory in
Fig. 16.1 or the side fin of Dory which bends away from the fish body. Such details
cannot be modeled with the other four methods in this comparison. However, the
freedom in modeling incurs a larger amount of user input.

User Input Figure 16.4 illustrates the variety of different constraints listed in
Table 16.2 and their general effects on the surface shape. None of these constraints
is required by the method, but for most reconstructions a reasonable amount of
constraints will be necessary. An example input of constraints for the teapot can also
be seen in Fig. 16.4. Yellow crosses depict position constraints and the red curve is
a position discontinuity constraint.

Although we observed a decrease of user input and modeling time with increas-
ing user experience the amount of modeling time remains comparatively high even
for simple reconstructions such as the banana and vase (Fig. 16.1), squash and
orange (Fig. 16.2) and jelly bean (Fig. 16.3). The large amount of user input results
in higher modeling times which are shown in Table 16.3. The difficulty of modeling
a non-side view considerably increased the modeling time for the donut example
(Fig. 16.2).
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general effect of constraints constraints for teapot

Zhang et al. [62]

contour outline

model coloring

Igarashi et al. [23]

a b c

f

ed

Fig. 16.4 User input for the methods of Zhang et al. [63] and Igarashi et al. [23]. The first image
shows general effects of different constraints and is taken from [63]. In particular, the constraints
are: (a) position (blue) and normal (red) constraints, (b) depth discontinuity constraint, (c) crease
constraint, (d) planar region constraint, (e) curvature minimizing fairing curve and (f) torsion
minimizing fairing curve (see [63] for further details)

16.5.2.2 Igarashi et al.

Evaluation of Experiments This method generally over-smoothes the input sil-
houette which can be seen in many examples but especially at the peak of the
bird in the ostrich example in Fig. 16.2. Although part of the input silhouette the
leg of the ostrich is totally missing. Similarly, the grip of teapot lid in Fig. 16.3
is not reconstructed although it is part of the input silhouette which is shown in
Fig. 16.4 (top right). Consequently, the reconstructions resulting from this method
are not silhouette consistent. Further, the mesh generation in this approach is not
straightforward and may lead to mesh inconsistencies which can be observed in the
reconstruction of the ostrich example in the lower neck area (Fig. 16.2).

The main advantage of this approach is the fast and intuitive modeling of
geometrically simple objects. One of the drawbacks is the restricted topology,
the hole in the donut example in Fig. 16.2 cannot be reconstructed. A further
disadvantage is the limited influence of the user during the modeling process. The
fact that surface discontinuities like sharp edges are not allowed largely decreases
the class of reconstructable objects. For instance, the tail fin of Dory in Fig. 16.1
cannot be modeled to end with a sharp edge. The same holds for the top and
bottom parts of the vase example in the same figure and for the bottom part of the
teapot in Fig. 16.3. Only very simple roundish objects like the banana (Fig. 16.1),
squash and orange (Fig. 16.2) or the jelly bean (Fig. 16.3) can be easily and reliably
reconstructed.

User Input None of the user input in Table 16.2 needs much experience or even
expert knowledge: From a given closed contour line the method instantly inflates a
3D mesh. For better user experience the user interface of the tool provides simple
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paint operations to color the model. See Fig. 16.4 for the exemplary user input
of the teapot example. In all experiments this method needed the least user input
(cf. Table 16.3) at the price of producing the least accurate reconstructions with
respect to the given input silhouette (see Figs. 16.1–16.3).

16.5.2.3 Prasad et al.

Evaluation of Experiments The main benefit of this method stems from a few
extensions over the method by Zhang et al. [63] which facilitate the object inflation
and allow the reconstruction of closed surfaces. Apart from the silhouette outline
the user can assign any contour line to a line in the parameter space. For instance,
this has been used to relate a contour edge of the banana (Fig. 16.1) to a crease in
the reconstructed geometry (see [45] for further details).

For closed surfaces a correspondence of parameter space boundaries has to be
defined. One the one hand, this facilitates the reconstruction of objects with a simple
geometry such as the orange example in Fig. 16.2 or the jelly bean in Fig. 16.3.
The orange and the jelly bean get naturally inflated only be defining the silhouette
contour and the correspondence of parameter space boundaries. On the other hand,
the definition of the parametrization can be sophisticated for objects of higher genus
such as in the teapot example (Fig. 16.3) which has genus 2. However, not only the
object topology limits the applicability of this method: it is also difficult to define
a proper parametrization for objects which have many elongated structures such as
legs, arms, tails or spikes. A limiting example may be the ostrich in Fig. 16.2 which
is parametrized as a cylinder starting from the peak, going through the neck down to
the leg. The body of the ostrich is modeled as a ‘bump’ in this cylinder which already
leads to very sparsely sampled regions at the back of the ostrich. A further modeling
of the tail feathers is done with the other methods would need an enormous increase
of the mesh resolution in the tail part of the ostrich in order to have enough quads
that can align to the silhouette. Thus, finding a good parametrization is a demanding
task despite a simple object genus of 0 as for example when modeling a cow with
4 legs and a tail. Moreover, an undesired effect of such a parametrization is the non-
uniform distribution of points in the parameter space on the surface as shown in the
ostrich (Fig. 16.2) and teapot (Fig. 16.3) examples. Together with further constraints
this may lead to non-controllable surface oscillations of the object surface. This can
be observed in the top part of the teapot which is connected to the teapot handle
(Fig. 16.3).

Another disadvantage is the fact that silhouette consistency is only incorporated
with boundary conditions which may get violated during the optimization process.
The user may need to add further constraints to ensure a silhouette consistent recon-
struction. This process is called spillage correction in Table 16.2 and Fig. 16.5f.
Nonetheless, this method generated the most accurate results for the non-side-view
examples (banana and teapot).
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a b c d

e f g h

Fig. 16.5 Necessary and optional steps and user input for Prasad et al. [45]: (a) contour extraction;
(b) lines of the contour have to be related to lines in the parameter space (c); (d) and (e) demonstrate
different inflation heuristics; (f) during the optional spillage correction, the user can account
for silhouette inconsistencies by adding further constraints; (g) and (h) show the final model
and generated interpolation constraints as yellow dots. Note that (b) and (c) show a genus 2
reconstruction, while the other teapot images show a genus 1 reconstruction (All figures are taken
from [43])

User Input Most of the user input listed in Table 16.2 is illustrated in Fig. 16.5.
After the contour extraction (Fig. 16.5a) normal constraints are generated along the
contour shown as red discs with needles in Fig. 16.5d, g, and h. The definition of
corresponding parameter space boundaries and the assignment of contour line parts
to lines in the parameter space is shown in Fig. 16.5b and c.

Figure 16.5d shows generated constraints as red dots for a cylindrical inflation.
Objects with cylindrical shape about a virtual free-form 3D curve or spine can be
inflated by generating interpolation constraints along the spine with a depth value
equal to the minimal distance between the point of the spine and the contour line.
This inflation heuristic is generalized for more complex objects as object parts can
be independently inflated with the same technique. To this end the user defines pairs
of inflation curves (Fig. 16.5e) for which interpolation constraints are generated
along the (virtual) medial spine (Fig. 16.5g and h).

The necessity and complexity of each single user input step depends on the
object to be reconstructed leading to very different modeling times for the presented
experiments (see Table 16.3).

16.5.2.4 Oswald et al.

Evaluation of Experiments Single view modeling with this method is mostly
intuitive and many examples did not need much effort. For instance, the banana,
fish, dory (Fig. 16.1), squash, orange, ostrich and donut examples (Fig. 16.2) or the
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fore-/background scribbles silhouette creases final geometry

Fig. 16.6 Both methods, Oswald et al. [41] and Töppe et al. [52] have a similar workflow: a
silhouette can be estimated with a few user scribbles (redD foreground, blueD background).
Optionally, the user can add creases (green line) to locally change the smoothness properties of
the final surface. The final geometry shows the discontinuity around the lid and is a result of the
method by Töppe et al.

jelly bean (Fig. 16.3) example are easy to accomplish, especially in comparison to
the method by Zhang et al. [63]. The shape of the data term mainly defines the shape
of the final reconstruction and a proper modeling needs a little user experience.
However, the edged shape of the data term which is governed by the silhouette
distance function is sometimes hard to conceal. This can be observed in the squash
(Fig. 16.2) and the teapot (Fig. 16.3) examples in comparison to Töppe et al. [52].
This characteristic shape, however, can also be beneficial as shown in the banana
(Fig. 16.1) and ostrich examples (Fig. 16.2). In contrast to the methods discussed
previously, this one assumes objects to be symmetric to the image plane. That is,
it assumes a side view of the object, which in turn restricts the applicability of
this method to a smaller class of objects that can be reconstructed. This can be
observed in the donut example in Fig. 16.2. The input image is not a side view and
the resulting reconstruction underestimates the size of the hole.

User Input Although the silhouette extraction is the only necessary user input an
adaption of the data term shape by changing parameters k;%offset;%factor;%cutoff from
Eq. (16.7) is necessary in most cases. The effect of optional creases to locally relax
the smoothness regularization and the general workflow of this method is depicted
in Fig. 16.6.

16.5.2.5 Töppe et al.

Evaluation of Experiments Reconstructions with this method are easily obtained
with even less user input in comparison to Oswald et al. [41], that is, by an
adaption of a single parameter: the object volume. Only the teapot (Fig. 16.3)
and vase (Fig. 16.1) examples needed additional user input for surface creases.
Similar to Oswald et al. [41] this method assumes symmetry of objects and requires
a representative silhouette from a side view. Therefore, the hole of the donut
(Fig. 16.2) is underestimated in the same way. For the banana example (Fig. 16.1),
the method still yields good results because the oblique object view did not change
much on the characteristic silhouette properties.
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Table 16.4 Overview of advantages and disadvantages for each method. Note that the number of
advantages and disadvantages is not important in this listing since each point weights differently
depending on the desired application of each method

Method Advantages (C) and disadvantages (#)
Zhang C Large variety of constraints allows for flexible user modeling
et al. [63] C User has full control of every surface detail

# Reconstructions are restricted to a depth map
# Occluded object parts cannot be modeled,

synthesized views from different angles will reveal those areas
# Large amount of user input is often necessary

Igarashi C Very easy to use and fast interactive modeling
et al. [23] # Over-smoothes the input silhouette

# Smoothness properties cannot be changed by the user
# Not silhouette consistent
# Topology is limited to genus 0

Prasad C Objects can also be modeled from oblique view points
et al. [45] C Apart from the silhouette the user can also use contour edges for modeling

# Parametric surface representation limits topology and
object shape (many long elongated structures are difficult to model)
# Higher complexity of user input (requires expert knowledge)
# Silhouette consistency is not guaranteed and may require additional user input

Oswald CModerately fast modeling
et al. [41] C Reconstructions are silhouette consistent

# Objects need to be symmetric, a side view is required

Töppe C Fast modeling
et al. [52] C Very little user input

C Reconstructions are silhouette consistent
# Objects need to be symmetric, a side view is required
# User can barely influence the surface shape
# Limited possibilities to add surface creases

User Input Similar to Oswald et al. [41] the object silhouette is the only necessary
user input (see also Fig. 16.6). Apart from the silhouette the object shape is mainly
defined by the adapting the object volume. Also similar to Oswald et al. [41] surface
creases can be added to create non-smooth surface parts. However, changing the
smoothness locally may behave differently at different locations within the object
silhouette, because there is no data term that governs the object shape in non-smooth
surface areas. In these areas the surface shape is more defined by the distribution of
volume which minimizes the overall surface area for given smoothness properties.

16.5.2.6 Summary

The theoretical and experimental comparison of the five methods for curved object
reconstruction identified several advantages and disadvantages of the presented
approaches which are listed in Table 16.4. In general, the performance of a method
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highly depends on the application. Each method has its strengths and weaknesses
when applied to a specific class of single view reconstruction problems.

The results of our experiments support the hypothesis that generality and
flexibility of a reconstruction method is traded for the amount of user input or
expert knowledge. Expert knowledge refers to the variety or complexity of the user
input. The flexibility of modeling fine details with the method by Zhang et al. [63]
either requires the user to know and understand a variety of modeling constraints
or it needs a large amount of user input. On the other hand, the method by Prasad
et al. [45] needs less user input, but increases its complexity such as the definition
of a suitable surface parametrization. The comparatively simple and small amount
of user input for the methods by Igarashi et al. [23], Oswald et al. [41], and Töppe
et al. [52] comes along with the limited generality and flexibility of these methods.

16.6 Conclusion

Single view reconstruction approaches infer the structure of 3D objects from 2D
images. In this chapter, we discussed a representative set of existing algorithms and
grouped them into four classes: curved objects, piecewise planar objects, learning
specific objects and 3D impression from scenes. These groupings are based on the
different reconstruction objectives of the algorithms. We identified several important
categories for comparing the approaches: the reconstruction precision, the 3D object
representation, the assumptions made by the algorithm, the required user interaction,
as well as image cues and priors used by the algorithms. Moreover, we have
concentrated on five methods aiming for curved object reconstruction and provided
an extensive experimental comparison of established and recent methods.

Acknowledgements We thank Li Zhang and Steve Seitz for sharing their data and providing their
single view modeling tool. Further, we are grateful to Mukta Prasad and co-authors for providing
test data and results of their single view reconstruction method.
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Chapter 17
On Globally Optimal Local Modeling: From
Moving Least Squares to Over-parametrization

Shachar Shem-Tov, Guy Rosman, Gilad Adiv, Ron Kimmel,
and Alfred M. Bruckstein

Abstract This paper discusses a variational methodology, which involves locally
modeling of data from noisy samples, combined with global model parameter
regularization. We show that this methodology encompasses many previously
proposed algorithms, from the celebrated moving least squares methods to the
globally optimal over-parametrization methods recently published for smoothing
and optic flow estimation. However, the unified look at the range of problems and
methods previously considered also suggests a wealth of novel global functionals
and local modeling possibilities. Specifically, we show that a new non-local
variational functional provided by this methodology greatly improves robustness
and accuracy in local model recovery compared to previous methods. The proposed
methodology may be viewed as a basis for a general framework for addressing a
variety of common problem domains in signal and image processing and analysis,
such as denoising, adaptive smoothing, reconstruction and segmentation.

17.1 Introduction

A fundamental problem in both image and signal processing is that of recovering a
function, a curve or a surface (i.e., a signal or an image) from its noisy and distorted
samples. Significant research effort was invested in this problem and the results
obtained so far are quite remarkable. The most important ingredient in the success of
any method that extracts signals from noise is, of course, the set of assumptions that
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summarizes our prior knowledge about the properties of the signal that effectively
differentiates it from the noise. These assumptions range from some vague general
requirements of smoothness on the signals, to quite detailed information on the
structure or functional form of the signals that might be available due to prior
knowledge on their sources.

The prior information on signal/image is often expressed in the form of a
parameterized model. For instance, in speech recognition [25] slowly varying
coefficients of the short-time Fourier transform (STFT) are used to locally describe
and model highly fluctuating spectral characteristics over time. In object recognition
the choice of the correct spatial support for objects i.e., the segmentation, is a
fundamental issue [19], hence, in general scene understanding, support maps are
used to represent segmentation of images into homogeneous chunks, enabling
the representation of objects as disjoint regions with different local modeling
parameters [9]. This concept of spatial support selection for estimation problems
is closely related to layered models of scenes which offer significant benefits for
motion estimation producing state of the art results [33]. In geometric modeling,
B-splines (which are essentially a continuous set of piecewise polynomials), are
used for local curve and surface approximation, interpolation and fitting from
noisy samples [8]. In model-based texture segmentation [13], the selection of an
appropriate support set for the local model, is important to obtain a good local
texture representation, which then serves as a basis for the segmentation process.
In sparse coding [1, 23], the main goal is to model data vectors (signals) as a linear
combination of a few elements (support set) from a known dictionary. Sparse coding
has proven to be very effective for many signal or image processing tasks, as well
as advances in computer vision tasks such as object recognition.

One of the widespread and successful methods for local signal modeling, is
the celebrated moving least squares local fitting method (MLS), which in recent
years has evolved to become an important tool in both image and signal processing
and in computational graphics. In [17], Levin explored the moving least-squares
method and applied it to scattered-data interpolation, smoothing and gradient
approximation. In [2, 4, 18] the moving least squares technique was employed for
modeling surfaces from point-sampled data, and proved to be a powerful approach.
This was followed by the work of Fleishman et al. [2, 11], incorporating robust
statistics mechanisms for outlier removal. Common to these works is the locality of
the fitting procedure and the lack of global assumptions expressing prior knowledge
on the variations of local parameters.

The aim of this paper is to show how one can design variational functionals that
exploit local fitting of models and global smoothness assumptions on the variations
of model parameters, that are natural for various types of signals. A first attempt,
at such a variational methodology, was made by Nir et al. [21, 22]. This work was
subsequently broadened and generalized by Bruckstein in [6], by the realization
that over-parametrization methods naturally follow from combining moving least
squares, or other local fitting methods, with global priors on parameter variations.
The local modeling relates to a wealth of classical methods, such as Haralick’s
and Watson’s facet model for images [14] and extends them in many ways.
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More importantly, the discussion and experimental results reported in this paper
point at a rather general methodology for designing functionals for variational
model estimation and signal reconstruction and focusing on the denoising problem
is merely an illustrative test case.

The importance of the proposed variational framework, lies in the fact that
it allows for directly incorporating knowledge of the problem domain, hence
it is easily extendable to address numerous problem areas, such as denoising,
deconvolution and optical flow in image and signal processing and various other
fields of research. Moreover, due to the structure of the proposed functionals, our
variational framework is able, unlike many common methods, to accurately recover
the underlying model of a signal while addressing its main aim.

17.2 The Local Modeling of Data

For the sake of simplicity, we shall here limit our discussion to one dimensional
signals and address the generic problem of denoising. Let f .x/ be a one dimensional
signal and fnoisy.x/ D f .x/ C n.x/ be it’s noisy counterpart. Also, denote by˚
fj D f .xj /C n.xj /

!
the set of samples of the noisy signal. Suppose that f can

be (locally) described by a parameterized model of the form

f .x/ D
nX

iD1
Ai!i .x/ (17.1)

where A D fAi gniD1 is a set of parameters, and ! D f!i gniD1 is a set of ‘basis’
signals. Local modeling is the process of estimating A D fAi g from the noisy
signal fnoisy or it’s samples

˚
fj
!
, in the neighborhood of a point x. As a simple

example, we can consider the Taylor approximation as a parameterized model with
polynomial basis functions !i D xi"1.

Suppose we would like to use this local modeling for denoising our noisy data
fnoisy.x/ or

˚
fj
!
. Then, around x D x0, we want to estimate Ai.x0/, i.e., the

parameters of the model (17.1), by solving:

arg min
ŒA1;A2;:::;An"

"""""fnoisy.x0/!
nX

iD1
Ai!i .x0/

""""" ; (17.2)

in some local neighborhood of x0 and a distance norm k"k. This minimization gives
us the best local estimate of Of .x0/

Of .x0/ D
nX

iD1
Ai .x0/!i .x0/: (17.3)

Repeating this process for every location x give us the “moving” best estimate of f .
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The choice of the distance or measure of error is of a great importance. One
common choice is the weighted least squares distance, as considered, for example,
by Farnebäck [10], as a generalization to the facet model:

"""""fnoisy.x/!
nX

iD1
Ai .x/!i .x/

"""""
w

D
Z  

fnoisy .y/!
nX

iD1
Ai .x/!i .y/

!2
w .y ! x/ dy:

(17.4)

This is essentially a weighted L2 norm, where w."/ is a weight function which
localizes the estimation of the parameters Ai.x0/ (This error measure can also be
applied to a sampled signal). Both the continuous and the discrete cases, described
above, yield a process to compute the local model parameters Ai.x/ and therefore
for estimating the signal Of .x/, not only at x0 but at all x. This process is the well-
known moving least squares estimation process.

We wish to emphasize that although our proposed methodology, discussed in the
next section, focuses on the L2 norm, this is by no means the only choice of error
measure. The choice of the error measure may be adapted to each particular problem
of interest. Other measures, such as the least sum of absolute values distance [34]
or L1 norm, can readily be substituted into the cost functionals.

17.3 Global Priors on Local Model Parameter Variations

In the previous discussion we did not impose any conditions on the model
parameters Ai , and in the definition of the neighborhood around x0, via the weight
functions, we did not use any idea of adaptation to the data.

Suppose now that we are given some structural knowledge of the signal f .x/. We
would like to use this knowledge to improve the estimation process. For example,
suppose we a priori know that f .x/ is a piecewise polynomial signal over a set of
intervals, i.e., we know that:

f .x/ D
nX

iD1
Ari x

i"1 for x 2 Œxr ; xrC1" (17.5)

but we do not know the sequence of breakpoints fxr g. Using polynomial basis
functions

#
1; x; x2; : : : ; xn"1

$
, we know a priori that a good estimate for f .x/ may

be provided by piecewise constant sets of parameters fAg, over Œxr ; xrC1" segments,
and changes in the parameters occur only at the breakpoints fxrg. Such knowledge
provides us the incentive to impose some global prior on the parameters, such
that the minimum achieved by the optimization process, will indeed favor them
to be piecewise constant. This may be achieved by supplementing the moving least
squares local fitting process with constraints on the variations of the parameters in
the minimization process. Thus, we shall force the estimated parameters not only to
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provide the best weighted local fit to the data, but also to be consistent with the local
fitting over adjacent neighborhoods. This is where we diverge and extend the facet
model, which assigns the basis function’s parameters at each point, using solely a
local least square fit process.

In this paper, the assumed structural knowledge of the signal implies that good
estimates can be achieved by a piecewise constant model i.e., a model whose
parameters are piecewise constant. Therefore the focus of this work will be to design
functionals which also impose global priors on the model parameters. We shall
demonstrate that one can design a functional that does indeed fulfil this requirement.

The mix of local fitting and global regularity is the main idea and power behind
over-parameterized variational methods and is what makes them a versatile problem
solving tool. By adapting the local fitting process and incorporating the global prior
(in a way that will be described in the following sections), this methodology can be
readily applied to address problems in various domains.

17.4 The Over-parameterized Functional

In [21] Nir and Bruckstein presented a first attempt at noise removal based on an
over-parameterized functional. This functional was, similarly to many well known
functionals, a combination of two terms, as follows:

E .f;A/ D ED .f;A/C ˛ES .A/ : (17.6)

Here ˛, is some fixed relative weight parameter, ED is a data or fidelity term, and
ES is a regularization term. The data term ED was chosen to:

ED.f;A/ D
Z  

fnoisy.x/ !
nX

iD1
Ai .x/!i .x/

!2
dx: (17.7)

Note that this functional implies a neighborhood of size 0 in the distance mea-
sure (17.4), which means that this data term only penalizes for point-wise deviations

of the estimated signal via
nP
iD1

Ai.x/!i .x/ from fnoisy.

The smoothness or regularization term,ES , was defined to penalize variations of
the parameters Ai as follows

ES.A/ D
Z
#

 
nX

iD1
A0i .x/

2

!
dx (17.8)

where #
%
s2
&
D
p
s2 C $2.



384 S. Shem-Tov et al.

The resulting functional yields a channel-coupled total variation (TV) regular-
ization process for the estimation of the model parameters. Note that (17.8) is an
approximated L1 type of regularizer (sometimes referred to as the Charbonnier
penalty function). This regularizer causes the functional to be more robust to
outliers, and allows for smaller penalties for high data differences (compared to
a quadratic regularizer), while maintaining convexity and continuity [5, 20]. The
regularization term was designed to impose the global prior on the parameters. It
is channel-coupled to “encourage” the parameters to change simultaneously, thus
preferring a piecewise constant solution as described in Sect. 17.3.

In our experiments (which are discussed in Sect. 17.7), as well as in [21] , this
functional displayed good performance for noise removal compared with Rudin
Osher and Fatemi’s [28] classical total variation noise removal functional. A similar
functional, with data term modifications, was used by Nir et al. in [22] for optical
flow estimation, producing state of the art results.

17.4.1 The Over-parameterized Functional Weaknesses

Despite the good performance displayed by the over-parameterized functional,
it still lacks with regard to the following shortcomings, that were clear in our
experiments:

Discontinuities smearing: As mentioned, the regularization term is an approxi-
mate L1 regularizer. A precise L1 regularizer is indifferent to the way signal
discontinuities appear, i.e. the same penalty is given to a smooth gradual signal
change, and to sharp discontinuities (as long as the total signal difference is
the same). See for example Pock’s Ph.D. work [24] for a detailed example. We
consider this property as a shortcoming, because we expect the reconstructed
parameters to be piecewise constant, where discontinuities appear as relatively
few and sharp changes, hence this regularizer does not convey the intended global
prior on the parameters, and does not prefer a “truly” piecewise constant solution.
In practice the problem is even more severe: first the selection of $ constant, in
the Charbonnier penalty function, proves to be problematic. Choosing a bigger $
value causes the functional to lose the ability to preserve sharp discontinuities
and actually prefers to smooth out discontinuities. On the other hand, choosing
a smaller $ value degenerates the penalty function. In fact, for any choice
of $, this penalty function will tend to smooth sharp discontinuities. Second,
as discussed above the TV-L1 model suffers from the so called staircasing
effect, where smooth regions are recovered as piecewise constant staircases in
the reconstruction. See the work of Savage et al. [29] and references therein, for
a detailed review of such effects.

Origin biasing: The over-parameterized functional’s global minimum may
depend on the selected origin of the model. In the over-parameterized
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methodology we consider basis functions which are defined globally across the
signal domain. This definition requires us to fix an arbitrary origin for the basis
functions. As the true parameters value may vary with a change of the origin
choice, thus the value of the regularization term may also vary. For instance,
consider the value of the constant term in a linear function, which determines
the point at which the line crosses the y-axis. Change of the y-axis location
i.e., the origin location, will incur achange in the value the constant term. This
dependency on the choice of the basis function origin is termed Origin biasing.
A detailed example, regarding the optical flow over-parameterized functional
with affine flow basis functions, is given in the work of Trobin et al. [35].

We also note that the data term presented above only penalizes for point-wise
deviation form the model, hence it imposes only a point-wise constraint on the
functional’s minimum, relying only on the regularization term to impose the global
constraint. A discussion why this is a problematic issue is given in Sect. 17.5.3.

Overall, it is evident, that despite producing good results when applied to various
applications, the over-parameterized functional model is fundamentally flawed
when attempting to accomplish parameter reconstructions. On one hand the over-
parameterized model provides a solution domain wider than the TV model, for the
functional to “choose” from, thus often enabling convergence to excellent denoising
solutions, on the other hand the constraints applied to the solution domain, through
the functional, are not strong enough as to impose convergence to piecewise-
constant-parameters solution, as demonstrated in Sect. 17.7.

17.5 The Non-local Over-parameterized Functional

To overcome the shortcomings described in Sect. 17.4.1, we shall modify the
functional, both in the data term and in the regularization term, as described below

17.5.1 The Modified Data Term: A Non-local Functional
Implementing MLS

In order to overcome the point-wise character of the data term, and to impose a
neighborhood constraint in the spirit of (17.4) in the data term, we extend it to what
is commonly referred to as a non-local functional [6, 12, 16]. This is done simply
by means of defining a weighting function which considers more then point-wise
differences.

Making the data term a non-local functional, requires the parameters to model
the signal well over a neighborhood of each point. We note that the robustness of
the parameters estimate increases with the size of the support set. On the other hand,



386 S. Shem-Tov et al.

increasing the size of the support set too much, may reduce the functional’s ability
to detect discontinuities and to preserve them.

The non-local data term functional is

ED D
Z

x

Z

y

 
fnoisy.y/!

nX

iD1
Ai .x/!i .y/

!2
w .x; y/ dydx (17.9)

and it conforms to the functional form of the weighted least squares fit distance
defined in Sect. 17.2. Note that there is yet no restriction on the size or shape of the
support set around each point that is induced by the weighting function w .x; y/.

For the 1D case, which is thoroughly explored in this work, we defined a simple
yet powerful sliding window weighting function, as described in Sect. 17.5.1.1. The
generalization of the functional to the 2D case may require a more sophisticated
optimal data dependent weighting function, which will be the subject of future
research.

17.5.1.1 Weighting Scheme

The choice of the weighting scheme is of great importance. For each location x0,
the weighting scheme expresses the support set from which the parameters are to be
reconstructed from i.e. the set of samples which are used for the implicit MLS fitting
process calculated in the minimization process. Thus the weighting scheme should
be designed in such a manner which, at points near a discontinuity, will prevent
the combination of samples from different sides of the discontinuity, thus enables
the preservation of signal discontinuities in the reconstruction process. This implies
that a simple box or gaussian window around each location x0 will not suffice, as it
may spread a discontinuity across several samples around the actual location of the
discontinuity (which was evident in various experiments we performed).

In order to avoid this behavior, we defined an adaptive sliding window weighting
function, which is closely related to concepts of ENO schemes used for the
approximation of hyperbolic conservation laws first introduced in the fundamental
work of Harten et al. [15] (a detailed description was presented by Shu in [32]). For
each point x of the signal, we choose a windowW of lengthN such that, x 2 W and
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Specifically, we chose a successive set of points of size N which include x and
also minimizes r .x/. For example, for a window of size 5, there are 5 window
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possibilities as described below: We mark the chosen window by wx , and the
selected weight function will then be:

w.y ! x/ D

8
<

:

1
N

if y 2 wx

0 otherwise
(17.11)

By no means do we claim that this is the best choice of the weighting
function. This is but one possible, adaptive weighting function selection process,
that enhances the data term to impose a non point-wise constraint, while allowing
for the preservation and sharpening of discontinuities in the signal and that was
found to yield good results. Note that the choice of the window is sensitive to
noise, therefore for achieving better results we updated the selected window at each
location throughout the minimization process as described in Sect. 17.6.

17.5.2 The Modified Regularization Term

We extend the over-parameterized regularization term using the Ambrosio-Tortorelli
(AT) scheme [3] in a similar manner as done in [7] for the TV functional, while
retaining the L1 penalty function as proposed by Shah [30, 31], and applied to the
over-parameterization functional by Rosman et al. [26]. This functional transforms
the regularization into an implicit segmentation process, each segment with it’s
own set of parameters. In effect, the AT scheme allows the regularization term to
prefer few parameter discontinuities and to prevent discontinuities from smearing
into neighboring pixels via the diffusion process, thus allowing piecewise smooth
solution. This directly addresses the discontinuities smearing effect described in
Sect. 17.4.1. The choice of L1 regularizer, as opposed to the L2 regularizer in
original AT scheme, is due to the fact that a L1 regularizer better encourages a
piecewise constant solution, which is the intended global prior we wish to impose
on the solution. Exploration of different sub-L1 regularizer functions, is beyond the
scope of this paper.

The chosen AT regularization term is:

ES;AT D
Z
.1 ! vAT /

2 #

 
nX

iD1
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!
C %1.vAT /2 C %2

""v0AT
""2 (17.12)
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where vAT is a diffusivity function, ideally serving as an indicator of the parameters
discontinuities set in the signal model. Suppose we have a piecewise linear signal,
and an ideal solution .A#; v#AT / where A# is piecewise constant, and the diffusivity
function v#AT is 1 at the linear regions boundaries and 0 elsewhere. With such
a solution, we expect two neighboring points, belonging to different regions, to
have a very small, in fact negligible, diffusivity interaction between them. This
is controlled by the value of v#AT at those points, which effectively cancels the
diffusivity interaction between the different sets of linear parameters. Furthermore,
the cost associated with this solution is directly due to the discontinuity set measure
in the signal i.e. to Z

%1.vAT /
2 C %2

""v0AT
""2 (17.13)

hence the penalty no longer depends on the size of the signal difference at
discontinuities. Moreover, the AT regularization addresses the origin biasing effect,
described in Sect. 17.4.1, by making the functional much less sensitive to the
selected origin. This is due to the fact that ideally we consider only piecewise
constant parameters solutions. These solutions nullifies the regularization term
energy at every location except for discontinuities where the energy depends solely
on energy (17.13). Therefore the ideal piecewise constant solution becomes a global
minimizer of the functional.

17.5.3 Effects of the Proposed Functional Modifications

An obvious question arises: why do we need to modify both data and regularization
terms? To answer this, we first notice that using only the non-local data term
improves the local parameter estimates, but cannot prevent the discontinuities
smearing effect. A moving least squares process, with small window, will yield
excellent parameter estimates, but is unable to prevent the diffusion process from
combining data from neighboring segments, thus smoothing and blurring the
estimates at boundaries locations. Therefore we need to add the AT scheme to the
functional, which has the ability to prohibit the diffusion process at discontinuities.

But then one might expect that the AT scheme without the non-local data term
would suffice, by segmenting the regularization into piecewise constant regions,
and relying on the data term and the global regularization to recover the correct
parameters for each segment. In practice this is not the case. Consider the following
illustrative test case: ys a discontinuous signal, depicted in Fig. 17.1, and suppose we
initialize the model parameters to a smoothed version of ys achieved by calculating
the moving least squares fit solution, with a centralized window, on the clean signal.
We will now discuss applying different functionals for reconstructing the model
parameters from clean signal ys and the initialized smooth parameters.

Figures 17.2 and 17.3, depict snapshots of the reconstructed signal, parameters,
and the resulting AT indicator function vAT at different time steps of the minimiza-
tion process. We used ˛ D 0:05 and ˛ D 10 respectively. These are snapshots of the
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Fig. 17.2 From left to right, snapshots at various times, of the point-wise over-parameterized
functional modified with the AT regularization term (MOP), with relative weight of Es � D 0:05,
%1 D 7:5 and %2 D 5. The top image displays the reconstructed signal and the vAT indicator
function. The bottom image displays the reconstructed parameters
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Fig. 17.3 From left to right, snapshots at various times, of the Mpoint-wise over-parameterized
functional modified with the AT regularization term (MOP), with relative weight of Es � D 10,
%1 D 7:5 and %2 D 5. The top image displays the reconstructed signal and the vAT indicator
function. The bottom image displays the reconstructed parameters

minimization process of the point-wise over-parameterized functional, modified
with the AT regularization term (MOP). Both minimizations were carried out
until convergence. It is evident that the reconstructed parameters are not piecewise
constant, as we would like to have from our prior information on the signal.
Also, it is important to note that in the first series (Fig. 17.2) the signal is
perfectly reconstructed, effectively nullifying the data term, and in the second series
(Fig. 17.3) the signal is smoothed, however the data term energy is still very low.

In contrast, Fig. 17.4 depicts a series of snapshots of the minimization process of
the non-local over-parameterized functional (NLOP). Note that here the parameters
are perfectly reconstructed, the AT indicator function vAT receives a value close
to one only in the vicinity of the discontinuity and also the signal is perfectly
reconstructed.

We wanted to try and understand why did the MOP functional converged to such
a solution, is this solution a local/global minimum of the functional? We addressed
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Fig. 17.4 From left to right, snapshots at various times, of the NLOP functional, with relative
weight of Es � D 0:1, %1 D 0:005 and %2 D 0:0025. The top image displays the reconstructed
signal and the vAT indicator function. The bottom image displays the reconstructed parameters

the question in hand through functional energy consideration. Using the expected
global minimum of both functionals (which was achieved by the minimization
process of the NLOP functional), we calculated using interpolation, hypothetical
steps of a minimization from the solution achieved by the MOP functional to the
global minimum. We then calculated the energy of the MOP functional on each
hypothetical step. It becomes obvious that the energy of the MOP functional is rising
before dropping to the energy level of the expected global minimum, indicating that
indeed the MOP functional converged into a local minimum. Separate calculation
of the energy of the data and the regularization terms achieved in the minimization
of the MOP functional, indicates that most of the functional energy is concentrated
in the regularization term. In the transition between the local and global minimum
solutions, the regularization term energy rises and dictates the total energy change,
while the data term contribution is negligible.
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The solutions to which the MOP functional converges and energy considerations,
lead us to the conclusion that the MOP functional is converging into a local
minimum solution. This “trapping” effect is alleviated in the NLOP functional,
where the presumed local minimum, achieved by the MOP, is no longer a local
minimum. This is due to the fact that it is much more difficult to drive the energy
of the non-local data term close to zero and it contributes significantly to drive the
parameters toward their correct values. Thus, the minimization process does not halt
and continues toward the global minimum.

17.5.4 Euler-Lagrange Equations

Once we designed the functionals to be minimized, by interchangeably fixing
the Ai.x/; i D 1 : : : n and vAT .x/ functions, we readily obtain the Euler-Lagrange
equations which characterize the minimizers of the functional.

17.5.4.1 Minimization with Respect to Aq.x/; q D 1 : : : n
(Parameter Minimization Step)

Fixing vAT .x/, we obtain

8q D 1 : : : n; rAqED !
d
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'
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the variation of the data term with respect to the model parameter functions Aq.x/
is given by
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For the smoothness term, the Euler-Lagrange equations are
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thus, the energy is minimized by solving the following nonlinear system of
equations at each point x, 8q D 1 : : : n
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17.5.4.2 Minimization with Respect to vAT .x/ (AT Minimization Step)

Fixing the functionsAi.x/; i D 1 : : : n, we obtain

! 2˛ .1 ! vAT /Es C 2%1 .vAT /! %2.v00AT / D 0: (17.18)

17.6 Implementation

We used central first and second derivatives and reflecting boundary conditions.
In all the methods, we used various ˛; %1 and %2 constants, depending on the
noise level, as is common in noise reduction methods (this was done for all the
considered algorithms, with the appropriate parameters). In all the examples, we
assumed a sampling interval of dx D 1. For the minimization process we used
gradient descent with 200,000 iterations. This minimization method is a notoriously
slowly converging method, but it is fast enough for our 1D example, and we intend
to pursue a faster implementations in future work.

We performed anAT minimization step every 100 parameter minimization steps,
and updated the weighting function every 1,000 parameter minimization steps. We
used a window size of ten sample points both for the NLOP functional, and for
the weighted least square fit method (used for initialization and reconstruction). We
note that using a bigger window size resulted in significantly superior results on all
tests, but this may not be the case in other signals. Choosing too big a window may
cause an overlap between adjacent discontinuities and prevent the functional from
correctly recovering them.

17.6.1 Initialization

In order to prevent trapping into local minima, we initialize the model param-
eters from the noisy data by means of a robust MLS fitting i.e. we compute
each point’s parameters by choosing the best least square fitting approximation
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via a sliding window least square calculation. This was done in exactly the same
manner as the sliding window weighting function described in Sect. 17.5.1.1. The
parameters chosen are those which generated the minimal reconstruction error.
This computation provided a robust initialization, which already preserves, to some
extent, discontinuities in the signal. This claim is strengthened by experiments we
performed comparing with a regular moving least square fitting initialization. We
found that with the robust initialization, the functional converges to a better solution,
and nicely exposes the true discontinuities in the signal models.

17.7 Experiments and Results

We conducted various experiments in order to verify the performance of the
proposed functional. In this paper we focus mainly on 1D examples leaving 2D
extensions to images for future publications, nevertheless we exhibit some initial
experiments conducted on 2D synthetic images which yield a good idea of the
performance to be expected in the 2D case.

17.7.1 1D Experiments

We begin with the selection of the basis functions. We consider linear basis functions
of the form: )

!1 D 1
!2 D x

(17.19)

This seemingly simple choice of functions, enables us to make comprehensive tests
of the functional performance. Under this choice, the functional is expected to have
the best performance on piecewise linear signals. We note that this is an arbitrary
choice of basis functions, and one should choose other basis functions appropriate
for the signal domain.

To perform the tests we devised a set of synthetic 1D signals, and added white
Gaussian noise with standard deviation ranging from STD D 0:01 up to STD D
0:25. These signals can be separated to two main groups:

• The first group is comprised of noisy piecewise linear signals. This group is
interesting because it enables us to test the parameter reconstruction performance
as well as noise reduction capabilities, under the optimal basis functions. The
piecewise linear signals are depicted in Fig. 17.5.

• The second group is comprised of noisy nonlinear signals, such as higher degree
polynomials. This group is interesting only with regard to the noise removal
performance, because generating the ground truth parameters for linear basis
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Fig. 17.5 The piecewise Linear test signals and their STD 0.05 noisy counterparts. (a) One jump,
(b) one discontinuity, and (c) many jumps & discontinuities

functions is problematic and we do not expect the linear parameters to be
piecewise constant. Naturally, we could choose appropriate basis functions for
these signals too, but we wanted to demonstrate that our functional preforms
surprisingly well, even when applied with suboptimal basis functions. The
nonlinear signals are depicted in Fig. 17.6.

In order to the check the performance of NLOP functionals, and to test them
against other denoising algorithms, we also implemented the following noise
removal algorithms. The first two are the classic TV functional and the original over-
parameterized functional (OP). We chose these functionals due to their relation to
the NLOP functional, enabling us to show the improvement that the NLOP has
on predecessor functionals. The third and final algorithm, is the state of the art
K-SVD noise removal algorithm, firstly proposed by Aharon et al. [1]. We used
implementation published by Rubinstein et al. [27].

We compared the various algorithms noise reduction performance and, more
importantly, we compared their parameter reconstruction capability. For the latter
comparison, we reconstructed parameters from the K-SVD denoised signal, using
our robust least square fitting method (see Sect. 17.6.1), and compared the results
with both our NLOP functional and the original OP functional.
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Fig. 17.6 The nonlinear test signals and their STD 0.05 noisy counterparts. Left: a polynomials
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17.7.2 1D Results

Noise removal performance testing, was done by comparing the L2 norm of the
residual noise, that is the difference between the cleaned reconstructed signal and
the original signal:

EL2 D
"""""f .x/ !

nX

iD1
Ai.x/!i .x/

"""""
2

: (17.20)

Parameters reconstruction performance testing (which with the linear basis
function, is only relevant on the piecewise linear signals), was done by calculating
theL2 norm of the difference between the reconstructed parameters and the original
parameters, with whom we generated the signal. Figure 17.7 depicts an example
of the recovered parameters and the vAT indicator function obtained for the “Many
jumps & discontinuities” signal.

Figure 17.8, displays graphs comparing performance of the various algorithms
on piecewise linear signals. The left graphs display the noise removal error norms,
while the right graphs display parameters reconstruction error norms.

On various noise removal performance graphs we can see the excellent perfor-
mance of both OP and NLOP functionals, reinforcing the claims of outstanding
noise removal performance obtained by the OP functional and maintained by our
new functional. Also, we can see that when the signal contains a discontinuity, such
as in the “One discontinuity” signal (as apposed to a continuous signal with only
parameters discontinuity such as the “One jump” signal), the NLOP functional has
greater ability to cope with the discontinuity, thus generating better results than
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the OP functional. In Fig. 17.9 we display comparison of the residual noise of all
the algorithms on the “One discontinuity” and the “Many jumps & discontinuities”
signals.

When considering parameters reconstruction performance, we see a totally
different picture. We see that on most cases, particularly in signals which contains
signal discontinuity, the NLOP functional and the K-SVD algorithms both outper-
form the OP functional. This result demonstrates our claim, in Sect. 17.4.1, that the
OP functional lacks the possibility to well enforce a global prior on the reconstructed
parameters. Figure 17.10 compares the reconstruction results of NLOP functional,
OP functional and the reconstruction from the denoised K-SVD signal, on the “One
discontinuity” signal. Note the reconstruction of NLOP functional is close to a
piecewise constant solution, while the OP reconstruction is seemingly a smoothly
changing function. In the K-SVD reconstruction, where at each point a set of
parameters is chosen regardless of the choice made for it’s adjacent neighbors, the
lack of influence of enforcement of a global constraint is evident.

In Fig. 17.11, we compare the noise removal performance on the nonlinear
signals. We can see that the NLOP functional still exhibits the best performance
but it is not unchallenged by the OP functional. This is due to the strong constraints
the NLOP functional has in trying to enforce the linear basis functions, i.e. trying to
find a piecewise linear solution suitable for the given signal.

Indeed, in order to see that our functional performance is not restricted by the
basis function, and to verify that indeed better performance is achieved if we choose
a better set of basis functions to model the signal domain, we performed several
tests with higher degree polynomials. We display in Fig. 17.12, results achieved by
denoising the polynomial signal displayed in Fig. 17.6, while changing the NLOP
functional basis functions to a second degree polynomial. In general we expect
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Fig. 17.8 Signal noise removal and parameters reconstruction comparison for the various piece-
wise Linear signals. On the left column depicted are graphs compering the L2 norm of the residual
noise of the various algorithms. On the right column depicted are graphs compering the L2 norm
of the various algorithms reconstructed parameters compared to the expected parameters

a polynomial signal to be best recovered by polynomial basis functions of the same
degree. This is clearly depicted in the graph displayed in Fig. 17.12, where we see
better performance by NLOP with polynomial basis function compared to NLOP
with linear basis functions.

Another test we performed with polynomial basis functions, was on a C1
continuous second degree polynomial displayed in Fig. 17.13. This is an interesting
case, as both this signal and it’s first derivative are continuous, and only the
second derivative is discontinuous. We found that this signal proved challenging
for the MLS initialization method, causing it to misplace the point of discontinuity
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Fig. 17.9 Residual noise comparison of noise removal. (a) One discontinuity signal with noise
STD D 0:0375. (b) “Many jumps & discontinuities” signal with noise STD D 0:05

by several points. This initialization error was not detected by the NLOP functional,
which maintained it throughout the minimization process, as displayed for example
in Fig. 17.13. The location of the discontinuity point depends on the random noise.
We wish to emphasize that the reconstructed solutions achieved by the minimization
of the NLOP functional have piecewise constant reconstructed parameters, which
generate a piecewise smooth polynomial solution. This reconstructed signal may as
well be the signal from which the noisy signal was generated. Also, the solution
achieved by the NLOP functional outperformed the K-SVD method, as displayed in
the graphs in Fig. 17.14.
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Fig. 17.11 Signal noise removal comparison of the nonlinear signals. (a) Polynomial signal
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Fig. 17.12 Comparison of noise removal performance on the polynomial signal. In this figure we
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OP), and NLOP functional with polynomial basis functions (marked by non-local OP poly)
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Fig. 17.14 Signal noise removal and parameters reconstruction comparison for the C1 continuous
second degree polynomial. (a) Signal and (b) parameters

17.7.3 2D Example

We also ran initial tests on a 2D example. The non-local over-parameterized method
extends naturally to higher dimensions. We implemented the 2D case in a similar
manner to the 1D case, and chose a linear basis functions of the form
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Fig. 17.15 A 2D noise removal example of the 2D NLOP functional. (a) Original image, (b) noisy
image, (c) denoised image, and (d) residual noise

8
<

:

!1 D 1
!2 D x
!3 D y

(17.21)

In Fig. 17.15, we show the 2D example, the NLOP functional noise removal
result. In Fig. 17.16, we display the parameters which were reconstructed in the
minimization process and the generated vAT indicator function. We can see that the
vAT indicator function managed to segment the signal in a good manner, although
still delineated some ghost segments especially near the image edges. Note that the
recovered parameters are almost piecewise constant as expected.

A more thorough discussion of the 2D case is out of the scope of this paper. We
intend to explore it extensively in the near future.
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Fig. 17.16 Example of the reconstructed parameters from the noisy image and vAT AT scheme
indicator function. (a) Parameter 1, (b) parameter 2, (c) parameter 3, and (d) vAT

17.8 Conclusion

A general over-parameterized variational framework for signal and image analysis
was presented. This framework can be applied to various image processing and
vision problems, such as noise removal, segmentation and optical flow computation.
This framework is closely related to the powerful moving least squares method,
enhancing it by globally constraining the parameter variations in space based on
knowledge available on the problem domain. This knowledge enables a model based
reconstruction of the considered signal, by effectively recovering parameters of an
a priori, assumed to be known, set of “basis” or “dictionary functions”.

The new variational framework relies on the successful over-parameterized
functional, and significantly improves it by making it non-local and giving it the
power not only to generate excellent results for the problem domain (such as noise
removal), but also to reconstruct the underling model parameters that might capture
prior information on the problem.
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This paper may be viewed as the basis of extensive future research on the
subject of over-parametrization. In future work we intend to thoroughly explore
the extension of the non-local over-parametrization denoising functional into 2D
settings, where the choice of the support set, expressed by the weighting function,
becomes a challenging matter. Also we intend to explore a variety of different basis
functions, such has higher degree polynomials and non-polynomial basis functions,
which may be relevent for other applications. Finally we would like to extend the
proposed framework and to apply it to various other problem domains in computer
vision.
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Chapter 18
Incremental Level Set Tracking

Shay Dekel, Nir Sochen, and Shai Avidan

Abstract We consider the problem of contour tracking in the level set framework.
Level set methods rely on low level image features, and very mild assumptions
on the shape of the object to be tracked. To improve their robustness to noise and
occlusion, one might consider adding shape priors that give additional weight to
contours that are more likely than others. This works well in practice, but assumes
that the class of object to be tracked is known in advance so that the proper shape
prior is learned. In this work we propose to learn the shape priors on the fly. That
is, during tracking we learn an eigenspace of the shape contour and use it to detect
and handle occlusions and noise. Experiments on a number of sequences reveal the
advantages of our method.

18.1 Introduction

Contour tracking is a task in which the contour of the object(s) of interest has to be
extracted for each frame in a video in a way which is robust to noise and clutter.
This task is different from object tracing in which a bounding box that contains the
object is sought or segmentation in which the contour in a given image is extracted.
The main issues that we address in this paper is the robustness to noise, clutter
and occlusions on one hand and the ability to deal with shape/behavior change.
Accordingly, this paper introduces a way to achieve such a robustness as a matter
of principle without paying too much attention to the quality of segmentation. The
way it is done is via variational and level-set methods.
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Level set methods are a convenient way to parameterize and track object
contours. They work by evolving a contour which tightly encloses the deformable
object to be tracked. However this method cannot handle missing or misleading
information due to noise, clutter or occlusions in the input images. In order to over-
come these problems one can derive a parametric model for implicit representation
of the segmentation curve by applying low dimensional subspace representation,
such as Principle Component Analysis (PCA) to a specific collection of training
set images before the tracking begins. In this case the evolving curve has limited
degrees of freedom since the curve lies on the PCA subspace. This property enables
the segmentation to be robust to noise and partial occlusions. However this model
relies on a fixed training set and assumes that the object class to be tracked is known
in advance.

We present an extension that deals with these shortcomings. Our approach learns,
on line, a shape prior that is then used during tracking. This enables our tracker to
overcome occlusions and, unlike previous algorithms, it does not demand a specific
predefined training set.

We formulate the tracking process as a mixture of two major models: In the
On-line Learning Model, we perform region-based segmentation on each frame
using the Chan-Vese approach [3] together with the edge-based approach which is
based on the Geodesic Active Contour [2]. The segmentation results are then used
to incrementally learn an on-line low dimensional subspace representation of the
objects’ contour, efficiently adapting to changes in the appearance of the target.

In case of occlusion, the eigencoordinates of the segmented shape will differ
considerably from those obtained so far and, in that case, we switch to the
PCA Representation Model that tracks the object using the currently available
PCA space. This PCA eigenbase representation together with the temporal prior
representation allows us to limit the degree of freedom of the evolving contour
which enables it to cope with missing or misleading information due to occlusions,
partial occlusions and noise. Once the object reappears we switch back to the online
learning model and keep updating our representation model. Hence, we can properly
track deformable objects through occlusion and noise.

We provide experimental results that present several properties of our method:
We show that our method can cope with partial or total occlusions, as well as exam-
ples in which the images are severely contaminated with strong Gaussian noise.
In addition, we show that our algorithm can adapt to considerable deformations in
shape.

18.2 Background

Contour tracking via variational methods and level-sets is based on the seminal
works [1, 3, 18] and many more; see [6] for a very nice overview and for further
references on level-set based tracking.
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Several authors combined prior shape information into level-set-based segmenta-
tion. Leventon et al. [11] incorporated a training set information as a prior model to
restrict the flow of the geodesic active contour using Principle Component Analysis
(PCA). Tsai et al. [25] used only the first few eigenmodes by performing optimiza-
tion. Rousson et al. [20, 21] introduced shape information on the variational level.
Chen et al. [4] imposed shape constraints directly on the contour. However these
authors ignored the temporal coherence of the shapes which leads to degredation in
performance when dealing with occlusions.

Cremers [5] proposes to model the embedding functions by a Principle Com-
ponent Analysis (PCA) and to use dynamical shape prior. He learns a specific
set of training shapes before the tracking begins and also exploits the temporal
correlations between consecutive shapes. This enables him to handle occlusions
and large amounts of noise. His method is well-suited for specific tracking missions
where a pre-defined training set can be performed off-line.

Another approach is presented in the work of Fussenegger et al. [7]. In that work
a level-set method is combined with PCA decomposition of shape space. This is
very similar and relevant to this paper. The difference is in the aim and type of video
treated. In Fussengger et al. there are many, mainly rigid, objects to segment such
that each individual shape doesn’t change too much from frame to frame. Our paper
deals with mainly one object with changing shape and the main focus is on the way
to deal with occlusions and changes of shape along the video.

Our work is motivated in part by the power of subspace representation and
exploits the temporal correlations between consecutive shapes following the work
of Cremers [5]. But in contrast to eigentracking algorithms, our algorithm does not
require a specific training set before tracking begins. It learns the eigenbase on-line
during the object tracking process, thus eliminating the need to collect the training
images prior to tracking.

18.2.1 Integrated Active Contours

We start with a generic algorithm for data-based segmentation. The model is
formulated in variational way and we use the Integrated Active Contour model
[19, 22] that combines region-based and edge-based segmentation via the level-set
formulation. In order to perform region-based segmentation in each frame we use
the Chan-Vese algorithm which attempts to partition the image into two regions
according to common image properties. Then we add to the functional an edge-
based term which is based on the Geodesic Active Contour (GAC).

Let It W ˝ ! IR be the image at time t that assigns for each pixel x 2 ˝ ! IR2

a real value grey level. A contour that separates the object (or objects) from the
background is encoded as a zero level-set of a function !t W ˝ ! IR. The contour
at frame t is Ct D f.x; y/j!t .x; y/ D 0g. We denote the region inside the zero-
level set by ˝C D f.x; y/j!t .x; y/ > 0g and similarly the region outside the zero
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level-set ˝" D f.x; y/j!t .x; y/ < 0g . The probability of the contour !t , given the
previous contours and all the measurements ŒI0.x/ : : : It .x/" using the Bayes rule is:

P.!t jI0Wt ;!0Wt"1/ /PC.It j!t /„ ƒ‚ …
Target

"P".It j!t /„ ƒ‚ …
Background

"P.!0Wt"1j!t /„ ƒ‚ …
Shape

" P.!t /„ƒ‚…
Smoothness

(18.1)

Here P˙ are the probability distributions of the grey value intensities inside and
outside of the zero level-set of !t .

While P˙ can be quite involved in real-life applications we choose here to stick
to the simple Gaussian model in order to concentrate on the tracking part. This
choice leads to the Chan-Vese model. In this approach we find a contour, represented
by !.x/, that partitions the image into two regions ˝C and ˝", that describe
an optimal piecewise constant approximation of the image. We also assume that
the intensities of the shape and the background are independent samples from two
Gaussian probabilities, therefore:

P˙.It j!t / D
Y

x2˝˙

1
q
2˘#2˙

exp
" .It!C˙/2

2#2˙ (18.2)

Thereby C˙ and #˙ are the mean and standard deviation of the intensities inside
and outside of the zero level-set of !t .

The region-based energy is defined as

ERB.!t ; CC; C"/ D # logfPC.It j!t / "P".It j!t /g (18.3)

The contour with the highest probability is the one that minimizes the following
region-based energy functional:

ERB.!t ; CC; C"/ D
Z

˝

f 1
2#2C

.It .x/ # CC/2 C
1

2
log.2$#2C/gH.!t .x//dx

C
Z

˝

f 1
2#2"

.It .x/ # C"/2 C
1

2
log.2$#2"/gf1#H.!t .x//gdx (18.4)

whereH.!t .x// is the Heaviside step function:

H.!t .x// D
!
1 if !t .x/ > 0
0 if !t .x/ 0 0

(18.5)

The smoothness prior is taken to be the Geodesic Active Contour (GAC) term [2].
This term defines the object boundaries as a (locally) minimal length weighted by
the local gradients. In other words it is a geodesic over a Riemannian manifold
whose metric is defined via the gradients of the image. It leads to the following
functional:
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EGAC.!t / D
Z

˝

gGAC .jrI j/jrH.!t .x//jdx (18.6)

where gGAC D 1=.1C jrI j2/.
Finally, the Integrated Active Contour functional EIAC is obtained by the

summation of the region-based energy ERB (18.4) and the edge-based geodesic
active contour energyEGAC (18.6) as:

EIAC.!t ; CC; C"/ D ERB.!t ; CC; C"/C %EGAC .!t / (18.7)

with the Euler-Lagrange equation:

ıEIAC

ı!t
D
h
log.

#C
#"
/C 1

2#2C
.It .x/ # CC/2

# 1

2#2"
.It .x/ # C"/2 # %div.gGAC .jrI j/

r!t .x/
jr!t .x/j

/
i
ı.!t .x// (18.8)

18.2.2 Building the PCA Eigenbase

The shape term, as explained earlier, is an on-line learning model that produces
and updates an eigenbase representation during tracking. We work here with
a PCA decomposition, where we first build a PCA eigenbase from the first n
frames of the sequence and then incrementally update it as new m observations
arrive. For efficiency we use an incremental PCA algorithm and only keep the
top k eigenvalues. The corresponding eigenvectors are denoted by  i . This PCA
eigenbase,  i , will help us cope with occlusions in the PCA representation model.
Each shape is represented as:

!i .x/ D N!0.x/C
kX

jD1
˛ij  j (18.9)

where !i .x/ represents the i -th shape from the PCA subspace model, N!0.x/ is the
mean shape and ˛ij is the PCA coefficient of the i -th shape.

18.2.2.1 First PCA Eigenbase

We produce the first PCA eigenbase from the previous n segmentation results of the
On-Line Learning model. Let A D f!1.x/;!2.x/ : : : !n.x/g be the previous n level
set function segmentations. Each data element, !i .x/, is a d $1 vector that contains
the level set function of the i -th shape. We calculate the mean shape !A.x/ as:
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N!A.x/ D
1

n

nX

iD1
!i .x/ (18.10)

Then we apply singular value decomposition (SVD) on the centered n previous level
set functions

UA˙AV
T
A D SVDf!1 # N!A;!2 # N!A; : : : ;!n # N!Ag (18.11)

Here UA and ˙A contain the eigenvectors and the eigenvalues, respectively. Then
the first PCA eigenbase denoted as  A.x/ D U

.1Wk/
A contains the eigenvectors cor-

responding to the k largest eigenvalues, i.e. vectors of UA. These terms  A.x/ and
˙A will serve as initialization to the incremental PCA algorithm.

18.2.2.2 Updating the Eigenspace

Incremental PCA combines the current eigenbase with new observations without re-
calculating the entire SVD. Numerous algorithms have been developed to efficiently
update an eigenbase as more data arrive [8, 9]. However, most methods assume
a fixed mean when updating the eigenbase. We use the Sequential Karhunen-
Loeve (SKL) algorithm of Levy and Lindenbaum [12]. They present an efficient
method that incrementally updates the eigenbase as well as the mean when new
observations arrive. They also add a forgetting factor f 2 Œ0; 1" that down-weights
the contribution of the earlier observations. This property plays an important role
in the on-line learning. As time progresses the observation history can become very
large and the object may change its appearance, and the forgetting factor allows us to
strengthen the contribution of the current data such that the updated PCA eigenbase
will be able to cope with that change. This algorithm allows us to update the PCA
eigenbase online while tracking using the segmentation results during the on-line
learning model.

18.2.2.3 Detection of Occlusion

In the on-line learning model we performed region-based segmentation in each
frame and incrementally updated the PCA eigenbase. We want to know when the
current contour encounters an occlusion in order to switch to the PCA representation
model. Then, after the occlusion ends we switch back to the on-line learning model
to keep updating our representation model.

For this purpose, we rely on the PCA coefficients that represent the current shape
and observe that under occlusions these coefficients are farther away from the mean
PCA coefficients.
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During the on-line learning model we project each contour segmentation !t on
the current PCA subspace & .x/ to obtain its current PCA coefficient ˛t . Then we
measure the Mahalanobis distance between the current PCA coefficient ˛t and the
mean PCA coefficient N̨ :

Dt.˛t / D
p
.˛t # N̨ /T S"1.˛t # N̨ / (18.12)

Here N̨ is the mean PCA coefficient and S is the covariance matrix. These two
terms were obtained by collecting only the good PCA coefficients every frame
during the on-line learning model. From (18.12), if Dt.˛t / > Th our method
switches to the PCA representation model and when Dt.˛t / < Th we return back
to the on-line learning model.

Experimental results show that if the scene is free of occlusions, the Mahalanobis
distance is usually Dt.˛t / < Th. Figure 18.1 shows the Mahalanobis distance in
each frame during the two models. We can see that during the on-line learning model
the contour encounters an occlusion and its appropriate Mahalanobis distance is
above Th (the peaks in the blue bars in the middle), in that moment we switch to the
PCA representation model and see the improvement in the Mahalanobis distances
during the occlusion (the red bars in the middle). Then we switch back to the on-line
learning model when the coefficients are below Th.

18.2.3 Dynamical Statistical Shape Model

Once the algorithm detects an occlusion, it switches to the PCA representation
model with the updated PCA eigenbase. But before we switch to the PCA
representation model, we want to exploit the temporal correlations between the
shapes. As explained in Eq. (18.9) we can represent each shape using the PCA
eigenbase and the mean shape. Therefore the segmentation in the current frame
!t .x/ can be represented by the PCA coefficient vector ˛t . This will lead us
to write the probability of the shape prior from (18.1) as: P.˛t j˛0Wt"1/ instead
of P.!t j!0Wt"1/. In addition during the on-line learning model, we ignored the
correlation between the frames since we assumed that the object wasn’t occluded
and therefore no temporal prior information was needed. In the PCA representation
model, where the deformable object may be occluded, we have to obtain more
powerful prior which relies on the correlation between consecutive frames. For this
reason we can represent each shape by a Markov chain of order q in a manner similar
to Cremers [5]. More formally, the current shape at time t can be represented by the
previous shapes using an Auto Regressive (AR) model as follows:

˛t D # C A1˛t"1 C A2˛t"2 : : :C Aq˛t"q C ' (18.13)
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Fig. 18.1 The Mahalanobis distance between the current PCA coefficient ˛t and the mean PCA
coefficient N̨ in each frame during the two models on-line learning model (blue) and PCA
representation model (red)

Here ' is Gaussian noise with zero mean and covariance matrix (, Ai are the
transition matrices of the AR model. and # is the mean of the process. With this
AR model we can determine the probability P.˛t j˛0Wt"1/ for observing a particular
shape ˛t at time t given the shapes estimated on the previous frames as follows:

P.˛t j˛0Wt"1/ / exp.#1
2
!T("1!/ (18.14)

Where:
! D ˛t # # #A1˛t"1 #A2˛t"2 : : : #Aq˛t"q (18.15)

Various methods have been proposed in the literature to estimate the model
parameters: ', ( and Ai . We applied a Stepwise Least Squares algorithm as pro-
posed in [16]. The order q determines the accuracy of the AR model approximation
and its value depends on the input sequence. In order to estimate its value we use
the Schwarz Bayesian Criterion [23].

18.3 PCA Representation Model

The algorithm switches to that model only if it detects an occlusion. Once detecting
an occlusion, it continually tracks the same target using the PCA eigenbase and the
AR parameters which were obtained in the on-line learning model. As explained
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in Sect. 18.2.2, according to (18.9) the segmentation in the current frame !t .x/ can
be represented by the PCA coefficient vector ˛t . Therefore we actually exchange in
(18.1) each level set function ! by the appropriate shape vector representation ˛:

P.˛t jI0Wt ; ˛0Wt"1/ /PC.It j˛t /„ ƒ‚ …
Target

"P".It j˛t /„ ƒ‚ …
Background

"P.˛t j˛0Wt"1/„ ƒ‚ …
Shape Prior

(18.16)

This will lead us in this model to focus on estimating the shape vector
representation ˛t by minimizing the following energy functional:

EPCA.˛t ; CC; C"/ D #log.P.˛t jI0Wt ; ˛0Wt"1//
D # log PC.It j˛t / "P".It j˛t /„ ƒ‚ …

Data

# log P.˛t j˛0Wt"1/„ ƒ‚ …
Shape Prior

(18.17)

Thereby the probabilities P˙.It j˛t / are similar to the Chan-Vese probabilities
(18.2), except that !t .x/ is determined by ˛t as (18.9).

Applying these probabilities and (18.14)–(18.17) leads to the following energy
functional:

EPCA.˛t ; CC; C!/ D 1

2#2C

Z

˝
.It .x/" CC/2H.!.˛t //dxC

1

2
log.2$#2C/

Z

˝
H.!.˛t //dx

C 1

2#2!

Z

˝
.It .x/" C!/2.1"H.!.˛t ///dxC 1

2
log.2$#2!/

Z

˝
.1"H.!.˛t ///dxC )1

2
!T(!1!

(18.18)

Here ) is an additional parameter that allows relative weighting between data
and prior and !.˛t / is the level set estimation which is determined by ˛t . The
segmentation in each frame requires the estimation of the shape vector ˛t , which
is done by minimizing (18.18) with respect to ˛t using gradient descent strategy.

18.4 Motion Estimation

In each frame we estimate the translation positions .u; v/t and use this to translate
the previous contour !t"1 as initialization to estimate the current contour. In the
On-Line Learning model the segmentations aren’t sensitive to the initial contour
since we assume that the object isn’t occluded. Therefore we use Lucas-Kanade
approach [13] to estimate the translation position .u; v/t by minimizing

ELK.u; v/t D KW % .IxuC IyvC It /2 (18.19)

where KW % ."/ denotes the convolution with an integration window of size W .
Ix; Iy are the x; y derivatives of the image in each axis and It is the derivative
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Fig. 18.2 Comparison between our algorithm (Green) and Chan-Vese (Red) on walking man
sequence (319 frames) with full occlusion. In the on-line learning model (frame 22) and in the
PCA representation model (frames: 153,161,165,176,266). As can be seen, the Chan-Vese model
cannot handle the case of occlusion

between two consecutive frames. In the on-line learning model we also learn the
temporal translations between consecutive frames to build a motion prior. This is
done by collecting all the translations seen so far and build it into a AR model in the
same way as we build the shape prior (18.13)

"
u
v

#

t

D
"
Nu
Nv

#
C B1

"
u
v

#

t"1
C B2

"
u
v

#

t"2
C : : : Bq

"
u
v

#

t"q
C 'pos

Here 'pos is Gaussian noise with zero mean with covariance matrix(pos , Bi are
the transitions of the AR model, and .Nu; Nv/ are the mean values of u and v.

In the PCA representation model, when the object is occluded we use the learned
AR motion parameters Bi , (pos and .Nu; Nv/ to estimate u and v in each frame,
.up; vp/, as a prior and combine this to the LK functional (18.19):

ELK"PRIOR.u; v/t D ELK.u; v/C *..u # up/2 C .v # vp/2/ (18.20)

This addition prevents the estimation of .u; v/ during occlusion from being too
far from their prior estimations.

18.5 Results

We tested our algorithm on different sequences with a deformable shape that are
partially or fully occluded.

In each example the on-line learning model provides the contour based segmen-
tations of the deformable shape and incrementally constructs the PCA eigenbase.
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Fig. 18.3 Results of our algorithm on walking man sequence (200 frames) with partial traffic
occlusions (yellow and silver car). The algorithm automatically switches from on-line learning
(frame 60) to PCA representation as soon as occlusion is detected (frames: 11,66,68,70,77,84)

Fig. 18.4 Results of our algorithm on walking man sequence (173 frames) with full occlusion
(walking woman hides the target). The algorithm automatically switches from on-line learn-
ing (frame 95) to PCA representation as soon as occlusion is detected (frames: 35,100,101,
103,104,109)

When it detects an occlusion, it estimates the AR parameters that capture the
temporal dynamics of the shapes evolution seen so far and switches to the PCA
representation model. The PCA model uses the current PCA eigenbase and the
estimated AR prior parameters to keep segmenting the deformable shape during
occlusion. Finally, when the target reappears it switches back to the on-line learning
model and keeps tracking the target and updating the PCA eigenbase. We can see
that it maintains the appropriate contours when the shape is totally or partially
occluded.
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Fig. 18.5 Results of our algorithm on jumping man sequence (225 frames) with full occlusion
(walking man hides the target). Frames: 103,120,121,122,124,125

Fig. 18.6 Results of our algorithm on running horse sequence (290 frames) with one partially long
period (synthetic) occlusion (20 frames with white label hides partially the target). We showed
that our method was able to remain locked onto the target and illustrate the appropriate contours.
Frames: 10,89,115,119,120,124

First, we compared our method to a stand-alone Chan-Vese algorithm on a
sequence of walking man with one occlusion (left column). As can be seen in
Fig. 18.2, the Chan-Vese model could not handle the occlusion properly, while
our method kept tracking the person through the entire sequence and was able to
illustrate the appropriate shapes when the man was totally occluded by the left
column (Figs. 18.3–18.6).

Finally, in Fig. 18.7 we examined our method on a noisy sequence of a jumping
man with additive Gaussian noise (SNRD15), and, as can be seen, our algorithm is
able to cope with Gaussian noise and occlusion as well.
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Fig. 18.7 Results of our algorithm on jumping man sequence with additive Gassuan noise
(SNRD 15) and full occlusion (walking man hides the target). Frames: 119,120,121,132,134,142

18.6 Conclusions

We have extended level-set tracking to learn an eigenbase on the fly. This was
then used to handle occlusions by switching from a Chan-Vese-based algorithm
to a PCA-based representation that is more robust to noise and occlusions. In
addition, we have shown that the proposed incremental level-set tracking can adjust
to changes in the appearance of the object. This results in a robust tracker that can
handle never-seen-before objects and deal with partial or full occlusions and noise.

References

1. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceeding of IEEE
International Conference on Computer Vision, Boston, USA, pp. 694–699 (1995)

2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1),
61–79 (1997)

3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2),
266–277 (2001)

4. Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W.,
Geiser, E.: Using shape priors in geometric active contours in a variational framework. Int.
J. Comput. Vis. 50(3), 315–328 (2002)

5. Cremers, D.: Dynamical statistical shape priors for level set based tracking. IEEE Trans. Pattern
Anal. Mach. Intell. 28(8), 1262–1273 (2006)

6. Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level Set
Segmentation: Integrating Color, Texture, Motion and Shape, IJCV (2007)

7. Fussenegger, M., Roth, P., Bischof, H., Deriche, R., Pinz, A.: A level set framework using a
new incremental, robust active shape model for object segmentation and tracking. Image Vis.
Comput. 27, 1157–1168 (2009)



420 S. Dekel et al.

8. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press,
Baltimore (1996)

9. Hall, P., Marshall, D., Martin, R.: Incremental eigenanalysis for classification. In: Proceedings
of British Machine Vision Conference, pp. 286–295 (1998)

10. Kichenassamy, S., Kunar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.J.: Gradient flows and
geometric active contour model. In: IEEE International Conference on Computer Vision,
pp. 810–815 (1995)

11. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active
contours. In: CVPR, vol. 1, Hilton Head Island, SC, pp. 316–323 (2000)

12. Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its application to
images. IEEE Trans. Image Process. 9(8), 1371–1374 (2000)

13. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo
vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence,
pp. 674–679 (1981)

14. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set
approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

15. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated
variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

16. Neumaier, A., Schneider, T.: Estimation of parameters and eigenmodes of multivariate
autoregressive models. ACM Trans. Math. Softw. 27(1), 27–57 (2001)

17. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: algorithms based
on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

18. Paragios, N., Derichle, R.: Geodestic active regions and level set methods for supervised texture
segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

19. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation
and tracking. Comput. Vis. Image Underst. 97(3), 259–282 (2005)

20. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A. et al.
(eds.) European Conference on Computer Vision. Volume 2351 of Lecture Notes in Computer
Science, pp. 78–92. Springer, Berlin (2002)

21. Rousson, M., Paragios, N., Deriche, R.: Implicit active shape models for 3d segmentation in
MRI imaging. In: MICCAI, pp. 209–216 (2004)

22. Sagiv, C., Sochen, N., Zeevi, Y.Y.: Integrated active contours for texture segmentation. IEEE
Trans. Image Process. 1(1), 1–19 (2006)

23. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)
24. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., Willsky, A.:

Model-based curve evolution technique for image segmentation. In: Computer Vision and
Pattern Recognition, Kauai, Hawaii, pp. 463–468 (2001)

25. Tsai, A., Yezzi, A.J., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah
functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans.
Image Process. 10(8), 1169–1186 (2001)



Chapter 19
Simultaneous Convex Optimization of Regions
and Region Parameters in Image Segmentation
Models

Egil Bae, Jing Yuan, and Xue-Cheng Tai

Abstract This work develops a convex optimization framework for image segmen-
tation models, where both the unknown regions and parameters describing each
region are part of the optimization process. Convex relaxations and optimization
algorithms are proposed, which produce results that are independent from the
initializations and closely approximate global minima. We focus especially on
problems where the data fitting term depends on the mean or median image intensity
within each region. We also develop a convex relaxation for the piecewise constant
Mumford-Shah model, where additionally the number of regions is unknown. The
approach is based on optimizing a convex energy potential over functions defined
over a space of one higher dimension than the image domain.

19.1 Introduction

Image segmentation is one of the most important problems in image processing
and computer vision. The task is to group the image pixels into several regions
or objects based on their intensity values. Energy minimization has become
an established paradigm to formulate such problem mathematically, where both
data/scene consistency and the regularity of the segmentation regions are encoded in
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an energy potential. A major challenge is to solve the resulting NP-hard optimization
problems numerically.

Variational Models for Image Segmentation

In this work, we focus on image segmentation with Potts regularity [16], which
enforces region boundaries of minimal total length. We wish to partition the image
domain˝ into n regions f˝igniD1. The image domain is usually a rectangular subset
of R2 or R3. For each point x 2 ˝ and each i D 1; : : : ; n, define the data cost
function fi .x/ of assigning x to the region˝i . Image segmentation with Potts prior
and predefined data cost functions can then be formulated as

min
f˝i gniD1

nX

iD1

Z

˝i

fi .x/ dx C ˛

nX

iD1

Z

@˝i

ds (19.1)

s.t. [niD1 ˝i D ˝ ; ˝k \˝l D ; ; 8k ¤ l ; (19.2)

where ˛ is a parameter which controls the impact of the boundary regularization.
The model (19.1) will be referred to as Potts model in this work. When n > 2 the
optimization problem (19.1) in a discrete setting is NP-hard, therefore it is generally
too difficult to find a global optimum. Algorithms exist that can compute good
approximations [3] and in some cases exact solutions for level set representations
of the problem [1]. In a continuous setting, several convex methods have recently
appeared that may often lead to global solutions, or otherwise produce good
approximations of global solutions [2, 4, 10, 14, 22].

An important example of the data costs in (19.1) is

fi .x/ D jI 0.x/ ! !i jˇ; (19.3)

where I 0.x/ is the input image function and !i 2 R, i D 1; : : : ; n are predefined
region parameters and ˇ " 1. An intuitive explanation of !i is the mean of the
image intensity I 0 within region˝i in case ˇ D 2, or the median value within˝i if
ˇ D 1. They are, however, unknown in advance. Therefore, the function fi depends
on the unknown segmentation region ˝i and does not fit into the framework of
(19.1). The most ideal model should not rely on a post-processing step to determine
the parameters, instead the values !i should be part of the optimization process. In
[6] and [13] such an image segmentation model was formulated as follows

min
f˝i gniD1

min
f!i gniD12X

nX

iD1

Z

˝i

jI 0.x/ ! !i jˇdx C ˛

nX

iD1

Z

@˝i

ds (19.4)

subject to (19.2). The set X is typically the set of feasible gray values, which may
be the real line X D R or a discrete quantization X D f`1; : : : ; `Lg. In contrast to



19 Simultaneous Optimization of Regions and Region Parameters in Image . . . 423

(19.1) along with (19.3), the energy is minimized over both f˝igniD1 and the region
parameters f!i gniD1. The model (19.4) is often called the Chan-Vese model. If there
is no regularization, i.e. ˛ D 0, (19.4) can be recognized as the “k-means” model,
which is also an NP-hard problem. To solve (19.4), one possibility is alternating
minimization with respect to ˝i and !i until convergence as follows:
Find initialization f!0i gniD1. For k D 0; : : : until convergence

1: f˝kC1
i gniD1 D arg minf˝igniD1

nX

iD1

Z

˝i

jI 0.x/! !ki jˇdx C ˛

nX

iD1

Z

@˝i

ds subject to (19.2)

(19.5)

2: f!kC1
i gniD1 D arg minf!igniD12X

nX

iD1

Z

˝
kC1
i

jI 0.x/! !i jˇdx C ˛

nX

iD1

Z

@˝
kC1
i

ds (19.6)

Since (19.4) is not jointly convex, such a procedure does not in general produce a
global minimum, but converges to a local optimum depending on the initialization
of !. Furthermore, there is no easy way to measure the quality of the converged
result.

Closely related is the piecewise constant Mumford-Shah model [13], which can
be expressed as a slight variation of (19.4) as (see Sect. 19.2.2)

min
n

min
f˝i gniD1

min
f!i gniD12X

nX

iD1

Z

˝i

jI 0.x/ ! !i jˇdx C ˛

nX

iD1

Z

@˝i

ds (19.7)

subject to (19.2). The energy potential (19.7) is also optimized over the number of
regions n. In spite of the seemingly higher complexity, we show the problem (19.7)
is easier to tackle than (19.4) in the following sections.

The optimization problem (19.4) can also be extended to more general data cost
functions fi ."i ; x/, where "i is some unknown parameter associated with region˝i .

min
f˝i gniD1

min
f"i gniD1

nX

iD1

Z

˝i

f ."i ; x/ dx C ˛

nX

iD1

Z

@˝i

ds (19.8)

s.t. [niD1 ˝i D ˝ ; ˝k \˝l D ; ; 8k ¤ l ;

One example is "i D .!i ; #i /, where !i is the mean and #i is the standard deviation
of intensities in˝i . The data term can then be formulated as the log of the Gaussian
distribution fi .!i ; #i ; x/ D log. 1p

2$#i
exp.! .I 0.x/!!i /2

2#2i
//.

An image segmentation model based on the minimum description rule (MDL)
was proposed [23] which places a direct penalty to the number of appearing regions
of the Potts model (19.1). Recently, various algorithms have been proposed for
computing global or good approximations of global minima [9, 18, 21] of the
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resulting optimization problems. We will also see that there is a close relationship
between such a MDL based segmentation model and (19.4) or (19.8) if fi and the
penalty parameter are chosen in a particular way, as discussed in Sect. 19.4.

Instead of optimizing over the continuous setX D R, the parameters!i in (19.4)
or (19.7) can be optimized over a finite set of real numbersX D f`1; : : : ; `Lg, where
L is the number of elements in X . This is the case for digital images, where the
image intensity is quantized and the set X consists of a finite number of gray
values, for instance 256. When the L1 data fitting term is applied (that is, ˇ D 1
in (19.3)), we show there exists globally optimal f!igniD1 that are also present in
the input image. Therefore, optimizing over the finite set will produce an exact
global optimum. This extends the result of [8] from 2 to any number of regions.
A similar result can also be found in [20] for denoising problems with total variation
regularization.

Contributions and Previous Work

Little work has been devoted to global optimization over the regions and parameters
simultaneously in the image segmentation models (19.4) or (19.7). In order to
optimize (19.4) or (19.7) over the finite set X , one simple, but very slow approach,
is to minimize the energy in the Potts model (19.1) for every combination of
f!i gniD1 2 X , and finally select the combination of f!i gniD1 2 X which yields
the lowest energy. Since there are a total of Ln such combinations when X contains
L elements, a total number of Ln problems of the form (19.1) need to be solved. In
case of two regions, it is known each subproblem can be solved exactly and globally
[7], butL2 subproblems need to be solved which would be rather slow asL becomes
large.

Restricted to two regions and a finite set X , Darbon [8] developed an algorithm
which solved a sequence of two region problems with fixed parameters !1 and !2,
but avoided to check all L2 combinations. The number of two region subproblems
to be solved is still O.L2/. In [5], Brown et al. cast a relaxation of the problem
with two regions and quantized parameters as an optimization problem over a
higher dimensional space. The size of the convex problem is O.j˝jL2/, where
j˝j is the number of pixels, therefore the complexity of their algorithm is also
O.j˝jL2/. An approach based on the branch and bound method was proposed
for two region problems in [12]. In worst case its complexity is O.j˝jL2/, but
the method appears to converge linearly in the number of parameter values in
practice. An algorithm was proposed in [17] for segmentation problems with two
regions, where a sequence ofL total variation regularized problems could be solved,
followed byL simple thresholding operations each step. The complexity is therefore
effectivelyO.j˝jL/.
Contributions: This work presents a jointly convex optimization framework for
minimizing energy potentials of the form (19.4) over the regions and the parameters
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associated with each region (such as mean intensities). We also derive a convex
relaxation of the piecewise constant Mumford-Shah model (19.7), where addition-
ally the number of regions are unknown. The convex relaxation of (19.4) can be
applied for problems with any number of regions, not just n D 2. Furthermore, the
size of the convex relaxed problems grow at most linearly in the number of potential
parameter values L, i.e. as O.j˝jL/.

The problems are first reformulated as minimization problems over binary
functions defined in a space of one higher dimension than the image domain. Convex
relaxations are then derived based on the reformulated problems. The method
is not guaranteed to always produce an exact solution, but some conditions are
identified for when this is possible. We begin by treating the piecewise constant
Mumford Shah model in Sect. 19.2.2. Next, we present convex relaxations for the
problems (19.4) and (19.8), where the number of regions are upper bounded. Fast
algorithms are derived in Sect. 19.4.

19.2 Convex Relaxation Models

In this section the problems (19.4) and (19.7) are first reformulated as optimization
problems in terms of a binary function in a space of one higher dimension than
the image domain. Convex relaxations are then derived based on the reformulated
problems. The new relaxations build on recently proposed convex relaxations for
Potts model (19.1) which are briefly reviewed next.

19.2.1 Convex Relaxation for Potts Model

Several convex relaxations for Potts model (19.1) have recently been proposed
[2, 10, 14, 22]. Any such convex relaxation can be used as building block for the
new relaxations of the more complicated models (19.4) and (19.7) proposed in
this work. However, we focus particularly on a simple relaxation for Potts model
[2, 10, 22], which has demonstrated to work well for practical problems. Let ui .x/
be the characteristic function of the region˝i , defined as

ui .x/ WD
!
1; x 2 ˝i

0; x … ˝i
; i D 1; : : : ; n :

Then, the Potts model (19.1) can be written in terms of ui as:

min
fui gniD12B

nX

iD1

Z

˝

ui .x/fi .x/ dx C ˛

nX

iD1

Z

˝

jrui j dx (19.9)
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subject to
nX

iD1
ui .x/ D 1 ; 8x 2 ˝ (19.10)

where B is the set

B D fu 2 BV.˝/ W u.x/ 2 f0; 1g; 8x 2 ˝g (19.11)

and the total-variation of the characteristic function ui .x/ encodes the length of the
boundary of the region˝i .

A convex relaxation of (19.9), was proposed and studied in [2, 10, 19, 22] by
instead minimizing over the convex set

ui 2 B 0 D fu 2 BV.˝/ W u.x/ 2 Œ0; 1%; 8x 2 ˝g (19.12)

for i D 1; : : : ; n. If the solution of the relaxed problem is binary at all x 2 ˝ ,
it is also a global minimum of (19.1). Otherwise different schemes were proposed
[2, 10, 22] to generate a binary solution Qu, which may either be a global minimum
or close approximation to a global minimum of (19.1). The simplest such rounding
scheme is just:

Qu.x/ D e`.x/; where ` D arg maxiui .x/; (19.13)

where e` is the indicator vector which is 1 at the `-th component and 0 elsewhere.

19.2.2 Convex Relaxation for Piecewise-Constant
Mumford-Shah Model

In this section, we show that the piecewise constant Mumford-Shah model (19.7)
can be expressed as a special case of (19.9). In its most general form, the Mumford-
Shah model seeks an approximation image I and a set of curves & which minimizes

inf
&;I
E'.&; I / D

Z

˝

jI 0.x/ ! I.x/jˇdx C '
Z

˝n&
jrI j2dx C ˛

Z

&

ds: (19.14)

Its piecewise constant variant can be regarded as the limit model as the penalty
parameter ' goes to infinity i.e.

inf
&;I
E1.&; I / (19.15)

Due to infinite weight on the term
R
˝n& jrI j2, (19.15) enforces solutions I.x/

that are constant everywhere except for the discontinuity set & , i.e. the function
I.x/ is piecewise constant. The discontinuity set & therefore splits the domain ˝
into a set of subdomains, say n in number: f˝igniD1. The number n is unknown in
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advance, and is part of the optimization process. The piecewise constant Mumford-
Shah model can therefore equivalently be formulated as (19.7), which is optimized
over the regions˝i for i D 1; : : : ; n, the mean values !i of I.x/ within each region
˝i for i D 1; : : : ; n and the number of regions n.

Alternatively, (19.7) can be formulated in terms of the characteristic functions
ui .x/ as:

min
n

min
fuigniD12B

min
f!igniD12X

E.u;!; n/D
nX

iD1

Z

˝
ui .x/jI 0.x/! !i jˇ dx C ˛

nX

iD1

Z

˝
jrui j dx

(19.16)

subject to
nX

iD1
ui .x/ D 1 ; 8x 2 ˝:

Assume now that the set of feasible values !i is finite, i.e. X D f`1; : : : ; `Lg.
For instance X may consist of the set of quantized gray values: X D f1; : : : ; Lg.
For each element `i 2 X define the corresponding characteristic function ui .x/2B .
We will show the piecewise constant Mumford-Shah model (19.7) can be written
as a minimization problem over such a set fuigLiD1. More specifically, we show
that the following minimization problem is equivalent to the piecewise constant
Mumford-Shah model (19.16) if the feasible intensity values are restricted to X D
f`1; : : : ; `Lg:

min
fui gLiD12B

Eext.fuigLiD1/ D
LX

iD1

Z

˝

ui .x/jI 0.x/ ! `i jˇdx C ˛
LX

iD1

Z

˝

jrui jdx

(19.17)
subject to

LX

iD1
ui .x/ D 1; ui .x/ " 0; 8x 2 ˝; i D 1; : : : ; L: (19.18)

The above energy has the same form as (19.9).

Proposition 19.1. Given an optimum u" of (19.17). Let n" be the number of
indices i for which u"i 6# 0. Define the set of indices fij gn

!
jD1 $ f1; : : : ; Lg where

u"ij 6# 0. Then .f`ij gn
!
jD1; fu"ij gn

!
jD1; n

"/ is a global optimum of the piecewise constant
Mumford-Shah model (19.16) with X D f`1; : : : ; `Lg.

The proof is given in the appendix.
In view of Proposition 19.1, a convex relaxation of the piecewise constant

Mumford-Shah model can be defined as the minimization of (19.17) over B 0 D
fu 2 BV.˝/ W u.x/ 2 Œ0; 1% 8x 2 ˝g. It has the same form as the convex relaxed
Potts model, which has already been studied in [2, 10, 19, 22].
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The piecewise constant Mumford-Shah model (19.16) will naturally result in
a sparse solution, where the number of ‘active’ regions n is relatively low in
comparison to L. The regularization parameter ˛ controls both regularity of the
region boundaries and the number of regions. If ˛ D 0, the solution is just I D I 0

and the pixels are not grouped in any way, instead each pixel is regarded as a distinct
region. Therefore, the Mumford-Shah model may result in more regions than desired
unless ˛ is set sufficiently high.

19.2.3 Jointly Convex Relaxation over Regions and Region
Parameters

In this section we propose a convex relaxation for image segmentation models where
the number of regions are fixed, e.g. (19.4) or (19.8). In many applications, the
number of regions is known in advance, but the region parameters are unknown.
This is for instance the case for segmentation problems with two regions where one
wishes to distinguish foreground and background.

We start by writing out (19.4) in terms of the characteristic functions ui of each
region˝i as follows

min
fui gniD12B

min
f!i gniD12X

nX

iD1

Z

˝

ui .x/jI 0.x/!!i jˇ dxC ˛
nX

iD1

Z

˝

jrui j dx : (19.19)

s.t.
Pn

iD1 ui .x/ D 1 for all x 2 ˝ . In order to optimize (19.4) over the set !i 2
X D f`1; : : : ; `Lg, i D 1; : : : ; n, we start by proposing two equivalent alternative
reformulations of (19.4):

Alternative 1: For each binary-valued function ui , i D 1; : : : ; L, define a binary
variable vi 2 f0; 1g, with the interpretation vi D 1 if ui .x/ ¤ 0 for some x 2 ˝ and
vi D 0 else. Then (19.4) can be formulated as

min
u;v

Eext.fuigLiD1/ D
LX

iD1

Z

˝

ui .x/jI 0.x/ ! `i jˇ C ˛ jrui j dx (19.20)

subject to

LX

iD1
ui .x/ D 1 ; 8x 2 ˝; (19.21)

LX

iD1
vi % n ; (19.22)
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ui .x/ % vi ; 8x 2 ˝; i D 1; : : : ; L (19.23)

ui .x/ 2 f0; 1g ; 8x 2 ˝; i D 1; : : : ; L (19.24)

vi 2 f0; 1g ; i D 1; : : : ; L (19.25)

Alternative 2: The problem can also be formulated without the artificial variable v.
Observe that by definition, supx2˝ ui .x/ % vi , therefore the constraints (19.22)
and (19.23) can be shortened by

PL
iD1 supx2˝ ui .x/ % n, which is also convex.

Therefore the problem can equivalently be formulated as

min
u

Eext.fuigLiD1/ D
LX

iD1

Z

˝

ui .x/jI 0.x/ ! `i jˇ C ˛ jrui j dx (19.26)

subject to

LX

iD1
ui .x/ D 1 ; 8x 2 ˝; (19.27)

LX

iD1
sup
x2˝

ui .x/ % n ; (19.28)

ui .x/ 2 f0; 1g ; 8x 2 ˝; i D 1; : : : ; L (19.29)

The constraint (19.28) forces the solution to satisfy ui # 0 for all but at most
n indices i 2 f1; : : : ; Lg. The next result shows that an optimum of (19.19), or
equivalently of (19.4), can be obtained by finding an optimal solution u" to either of
the two above problems, (19.20) or (19.26), through the following proposition.

Proposition 19.2. Given an optimum u" of (19.20) or (19.26). Let n" be the
number of indices i for which u"i 6# 0. Define the set of indices fij gn

!
jD1 $ f1; : : : ; Lg

such that u"ij 6# 0. Then f`ij gn
!
jD1; fu"ij gn

!
jD1 is a global optimum to (19.19) with

X D f`1; : : : ; `Lg.
Clearly, n" % n, otherwise the constraints (19.28) or (19.23) would be violated. The
rest follows by an identical proof to that of Proposition 19.1.

Both formulations (19.20) and (19.26) are nonconvex due to the binary con-
straints on u and v. Convex relaxations can instead be derived by replacing the binary
constraints (19.24), (19.25) by

ui .x/ 2 Œ0; 1%; 8x 2 ˝; i D 1; : : : ; L (19.30)

vi 2 Œ0; 1%; i D 1; : : : ; L : (19.31)
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The convex relaxations resulting from the two alternatives (19.20) and (19.26) are
equivalent as they share the same set of minimizers u. If the computed solution of
the relaxed problem is binary for all x 2 ˝ , it is also globally optimal to the original
problem. If not, a close approximation can be obtained by the binarization scheme
(19.13).

19.3 Some Optimality Results

In general, the convex relaxations are not guaranteed to produce an exact global
minimum, but will provide close approximations. In this section we derive some
conditions under which an exact solution can be obtained. First, we show that
under L1 data fidelity, the optimal gray values belong to the set of gray values
which are already contained in the image. Second, we show that in case of two
regions (n D 2) a thresholding scheme for producing exact solutions can applied
under some conditions.

19.3.1 L1 Data Fidelity

Consider the models (19.1) and (19.7) with fi , i D 1; : : : ; n, given by (19.3) and
ˇ D 1, i.e. the L1 fidelity term. Assume further the input image I 0.x/ is quantized
and takes values in the set f`1; : : : ; `Lg. The next result shows that there exists opti-
mal parameters !i , i D 1; : : : ; n, that also take values in the same set f`1; : : : ; `Lg.
Hence it suffices to optimize ! over the set X D f`1; : : : ; `Lg. This result has
previously been shown by the two-region problems (n D 2) in [8].

Proposition 19.3. Given I 0 W ˝ 7! f`1; : : : ; `Lg, and consider the data term
(19.3) with ˇ D 1 and X D R. There exists globally optimal .f˝igniD1; f!"i gniD1; n/
to the Mumford-Shah model (19.7) or f˝igniD1; f!"i gniD1 to (19.4), where !"i 2
f`1; : : : ; `Lg for i D 1; : : : ; n.

Proof. The proof is by induction. When restricted to two regions, n D 2, the result
was proved in [8], Theorem 1. Assume the result holds for n D k, then there exists
a globally optimal solution f˝igkC1iD1 ; f!i gkC1iD1 ; k C 1 to the Mumford-Shah model
(19.7), or f˝igkC1iD1 ; f!i gkC1iD1 to (19.4), where f!igkC1iD1;i¤j 2 f1; : : : ; Lg. We will
show the result also holds for n D kC 1. Pick any j 2 f1; : : : ; kC 1g, and consider
the image domain ˝n˝j . Clearly, f˝igkC1iD1;i¤j ; f!i g

kC1
iD1;i¤j ; k is globally optimal

to the Mumford Shah model in the domain ˝n˝j . It remains to show that also
!j 2 f1; : : : ; Lg. Pick any ` ¤ j 2 f1; : : : ; Lg. Then f˝igkC1iD1;i¤`; f!i g

kC1
iD1;i¤`; k is

globally optimal to the Mumford Shah model in the domain˝n˝`. By the induction
hypotheses it is possible that f!i gkC1iD1;i¤` 2 f1; : : : ; Lg, which implies there exists
optimal !j 2 f1; : : : ; Lg.



19 Simultaneous Optimization of Regions and Region Parameters in Image . . . 431

19.3.2 Optimality of Relaxation for n D 2

The relaxations are not in general exact, but will produce solutions that are
optimal or nearly optimal. In case n D 2, exact solutions can be generated under
some conditions. It suffices that for two indices k; j , the boundary uk.x/ D 1 and
uj .y/ D 1 is attained for some x; y 2 ˝ .

Proposition 19.4. Let u" be a solution of (19.26), or alternatively u"; v" a solution
of (19.20) with n D 2, where the binary constraints B are replaced by the convex
constraint B 0. Assume the variable v is binary, or equivalently, assume there exists
k; j 2 f1; : : : ; Lg such that uk.x/ D 1 for some x 2 ˝ and uk.y/ D 1 for some
y 2 ˝ For any threshold level t 2 .0; 1/ define the function Qu such that

Quk.x/ WD

8
<

:

1 ; if u"i .x/ " t

0 ; if u"i .x/ < t
; Quj .x/ WD

8
<

:

1 ; if u"i .x/ > 1 ! t

0 ; if u"i .x/ % 1 ! t
:

and Qui D ui for all i ¤ k; j 2 f1; : : : ; Lg. Then .Qu; v"/ is a binary global optimum
of (19.20) subject to (19.21)–(19.23) and the binary constraints (19.24) and (19.25).

Proof. Since uk.x/ D 1 for some x 2 ˝ and uk.y/ D 1 for some y 2 ˝ , it follows
by constraint (19.28) that ui .x/ D 0 for all i ¤ k; j 2 f1; : : : ; Lg. Define ( D uk ,
then since uk C uj D 1, ( D 1 ! uj . Define

Q(.x/ WD

8
<

:

1 ; (.x/ " t

0 ; (.x/ < t

:

and observe that Q( D Quk and Q( D 1 ! Quj . Then

Eext.u/ D
Z

˝

uk.x/jI 0.x/ ! kjˇ C uj .x/jI 0.x/ ! j jˇ C ˛
Z

˝

jrukj C jruj j dx

D
Z

˝

(.x/jI 0.x/ ! kjˇ C .1 ! (.x//jI 0.x/ ! j jˇ C 2˛
Z

˝

jr(j dx

D
Z

˝

Q(.x/jI 0.x/ ! kjˇ C .1 ! Q(.x//jI 0.x/ ! j jˇ C 2˛
Z

˝

jr Q(j dx

D
Z

˝

Quk.x/jI 0.x/!kjˇC Quj .x/jI 0.x/! j jˇC˛
Z

˝

jr QukjC jr Quj j dx D Eext.Qu/:

The third equality follows by the thresholding theorem of [7] for relaxed binary
segmentation problems.
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19.4 Algorithms

The convex relaxation for the piecewise constant Mumford-Shah model (19.17)
has the form of the convex relaxed Potts model [11, 22], and can be optimized
by established algorithms. In [19] a very efficient algorithm was proposed based
on the dual formulation, which can also be parallelized over each characteristic
function. This algorithm is therefore well suited for optimizing (19.17), which
usually contains a large number of characteristic functions.

The convex relaxation of (19.4) is a little more complicated due the extra
constraints. As stated in Sect. 19.2.3, there are two equivalent formulations of the
relaxation. We will build up an algorithm based on alternative 2, i.e. solve (19.26)
with constraints (19.27), (19.28) and (19.30). We assume the optimal number of
regions n is attained (i.e. equality in (19.28)). If the optimal number of regions is
less than n, exactly the same solution would be produced by the convex relaxation
of the piecewise constant Mumford-Shah model, which is simpler to optimize and
could be checked by a separate calculation. Let ) be a Lagrange multiplier for the
constraint

LX

iD1
sup
x2˝

ui .x/ ! n D 0: (19.32)

The problem can then be stated as the saddle point problem

max
)

min
u

L .u; )/ D
LX

iD1

Z

˝

ui .x/jI 0.x/ ! `i jˇ C ˛ jrui j dx C ).
LX

iD1

max
x2˝

ui .x/ ! n/

(19.33)

s.t.
LX

iD1

ui .x/ D 1; ui .x/ " 0 8x 2 ˝; i D 1; : : : ; L; ) " 0

In order to optimize (19.33), the Lagrangian method can be applied as follows: for
k D 1; : : : until convergence

1. ukC1 D arg minuL .u; )k/; s.t.
PL

iD1 ui .x/ D 1; ui .x/ " 0 8x 2 ˝; i D
1; : : : ; L

2. )kC1 D max.0; )k C c.PL
iD1 maxx˝ ukC1i .x/ ! n//.

Observe that subproblem 1. has the same form as the label cost prior problem studied
in [18, 21]. A fast algorithm for solving such problems was proposed in [21]. In
particular, it was shown 1. could be written as the primal-dual problem

min
u2B 0;

PL
iD1 ui .x/D1; 8x2˝

L .u; )k/ D min
u

max
ps ;pt ;q;r

Z

˝
ps dx C

nX

iD1

Z

˝
ui .divqi ! ps C pi ! ri /

(19.34)

s.t. pi .x/ # jI 0.x/! `i jˇ ; jqi .x/j # ˛;

Z

˝
jri .x/j dx # )k I i D 1 : : : n :
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Fig. 19.1 (a) Input image. (b) and (c) Convex relaxation of (19.4) with n D 2 and ˛ D 0:15: (b)
ˇ D 2, estimated parameters !1 D 0:09;!2 D 0:59 , energy D 1:25 " 103; (c) ˇ D 1 estimated
parameters !1 D 0:06;!2 D 0:62 , energy D 5:39 " 103. (d) Convex relaxation of piecewise
constant Mumford-Shah model (19.7) with ˇ D 1 and ˛ D 0:15, energyD 3:31 " 103

Fig. 19.2 (a) Input image. (b) Convex relaxation of (19.4) with n D 2, ˇ D 1 and ˛ D 0:15:
estimated parameters !1 D 0:23;!2 D 0:93 , energy 9:23"103 . (c) Convex relaxation of piecewise
constant Mumford-Shah model (19.7) with ˇ D 1, energyD 7:13 " 103

where ui works as a Lagrange multiplier. The above energy functional can be
optimized separately for ps; pi ; qi and ri in closed form. Therefore the augmented
Lagrangian method could be applied to efficiently solve the overall problem. In
practice, only a few iterations are necessary before ) is updated.

19.5 Numerical Experiments

In this section we demonstrate numerically the new convex relaxation for optimizing
the energy in the image segmentation model (19.4) jointly over the regions and
regions parameters, and the new convex relaxation of the piecewise constant
Mumford-Shah model (19.7). In Figs. 19.1, 19.2 and 19.4, we have used 100 quan-
tization levels for the unknown parameters, i.e. X D f0:01; 0:02; : : : ; 1:00g and in
Fig. 19.3, 255 levels have been used. In order to visualize results, we depict the
function u.x/ D `i if x 2 ˝i , i D 1; : : : ; n.

Observe that the piecewise constant Mumford-Shah model may result in more
regions than desired, as shown in the last subfigures. This is especially visible
in Figs. 19.1 and 19.2, whereas it leads to more reasonable results in Figs. 19.3
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Fig. 19.3 (a) Input. (b) and (c) Convex relaxation of (19.4): (b) n D 4, (c) n D 2. (d) Convex
relaxation of piecewise constant Mumford-Shah model (19.7)

Fig. 19.4 (a) Input. (b) Ground truth. (c) Convex relaxation of Mumford-Shah functional: energy
212:02. (d)–(f) Convex relaxation of (19.4): (d) n D 4, (e) n D 3, (f) n D 2 energy D 219:78. In
all experiments ˇ D 1

and 19.4. By instead minimizing (19.4), with the number of regions fixed to 2, in
terms of the regions and parameters !1 and !2, one is able to separate foreground
and background in Figs. 19.1 and 19.2. Observe that the piecewise constant
Mumford-Shah model leads to lower energy, since it is optimized over a larger
feasible set.

The convex relaxations generate close approximations to a global minimum. To
verify this, we have used the estimated parameters !1 and !2 from the convex
relaxation as initialization of the alternating minimization algorithm (19.5) and
(19.6). In all cases, the converged values of !1 and !2, after rounding to the nearest
element in X , did not change. This indicates strongly that the globally optimal
values of !1 and !2 within X , had been obtained by the convex relaxation method.
In our experience, the alternating algorithm (19.5) and (19.6) is rather robust to
initialization and converges to the same solution for many initializations of !1
and!2. However, an independent work [5] presented examples where the alternating
algorithm gets stuck in poor local minima for exactly the input images in Figs. 19.1
and 19.2.

19.6 Conclusions and Future Work

We end with some discussions on future work and conclusions.

Extension to continuous label values The convex optimization framework for
(19.4) and requires that the set of feasible parameter values is quantized. The
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relaxations can also be extended to optimization problems where the set of feasible
parameter values is continuous, i.e. X D R. Let `min be the smallest and `max be the
largest value of !i . Define the one-higher dimensional binary variable u.x; `/ for
each .x; `/ 2 ˝ & Œ`min; `max %, i.e. u W ˝ & Œ`min; `max % 7! f0; 1g.

As a continuous generalization of (19.17), we argue the piecewise constant
Mumford-Shah model (19.7) can be formulated in terms of u as

min
u

Z `max

`min

Z

˝

u.x; `/jI 0.x/ ! `jˇ C ˛jrxu.x; `/j dx d` (19.35)

subject to
Z `max

`min

u.x; `/ ' ı.`/ d` D 1; 8x 2 ˝ (19.36)

u.x; `/ 2 f0; 1g; 8.x; `/ 2 ˝ & Œ`min; `max%: (19.37)

where ı.`/ is the delta distribution and the convolution is defined as u.x; `/'ı.`/ DR1
!1 u.x; s/ı.` ! s/ds.

Let u".x; `/ be an optimum of (19.35). We conjecture that w".:/ DR1
!1 `u

".:; `/' ı.`/ d` is a piecewise constant function that is a global minimizer of
the piecewise constant Mumford-Shah model (19.15). We believe the proof can be
constructed as a direct continuous generalization of the proof of Proposition 19.1,
but will be more involved due to measure theoretic aspects. It would be interesting
to investigate how this result relates to a recently proposed convex relaxation of the
piecewise smooth Mumford-Shah model [15]. The model (19.4) with n regions can
similarly be formulated by adding the constraint

Z 1

!1
sup
x2˝

u.x; `/d` % n (19.38)

Extension to Vector-Valued Parameters The results discussed in Sect. 19.2.3
can easily be extended to more general problems of the form (19.8), where " D
."1; : : : ; "N / denote the vector-valued parameter associated with each region. Let
X D f`11; : : : ; `1Lg & : : : & f`N1 ; : : : ; `NL g denote the finite set of all feasible ". For
each i1; i2; : : : ; iN 2 f1; : : : ; Lg define the function ui1;:::;iN W ˝ 7! f0; 1g and
variable vi1;:::;iN 2 f0; 1g. Then the model (19.8) can be written

min
u

LX

i1D1
: : :

LX

iND1

Z

˝

ui1;:::;iN .x/f ."
1
i1
; : : : ; "NiN ; x/ C ˛jrui1;:::;iN j (19.39)

subject to

LX

i1D1
: : :

LX

iND1
ui1;:::;iN .x/ D 1 ; 8x 2 ˝ (19.40)
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LX

i1D1
: : :

LX

iND1
max
x2˝

ui1;:::;iN .x/ % n; (19.41)

ui1;:::;iN .x/ 2 f0; 1g ; 8x 2 ˝; i1; : : : ; iN 2 X : (19.42)

The equivalence between (19.8) and (19.39) follows by a straight forward general-
ization of Proposition 19.2.

19.6.1 Conclusions

Image segmentation problems can successfully be modeled as the minimization of
an energy potential with respect to regions and parameters associated with each
region. In this work, we have reformulated such problems as the optimization of
binary functions in a space of one higher dimension than the image domain. Convex
relaxations and optimization algorithms have been proposed which does not depend
on initializations and produce close approximations to global minima. In contrast
to previous work, the complexity of our algorithm grows at most linearly with the
number of potential parameter values, and can be applied for segmentation problems
with any number of regions.

19.7 Proofs

Proof of Proposition 19.1

Proof. Let .fQuj gQnjD1; f`Qij gQnjD1; Qn/ be any other solution of (19.16). Define the vector
function

Nuj D 0; for j 2 f1; : : : ; LgnfQi1; : : : ; QiQng
NuQij D Quj for j D 1; : : : ; Qn:

Then Nu belongs to the feasible set (19.18) of the problem (19.17).

Eext.Nu/D
LX

iD1

Z

˝
Nui jI 0.x/!`i j2 dxC

LX

iD1

˛

Z

˝
jr Nui jdx D

QnX

jD1

Z

˝
NuQij jI 0.x/!`i j2dxC

QnX

jD1

˛

Z

˝
jr NuQij jdx

D
QnX

iD1

Z

˝
Qui jI 0.x/! `Qij j2 dxC

QnX

iD1

˛

Z

˝
jrQui jdx D E.fQuj gQnjD1; f`Qij gQnjD1; Qn/:

But since u" is a global minimizer of Eext

Eext.u"/ % Eext.Nu/ D E.fQuj gQnjD1; f`Qij g
Qn
jD1; Qn/; (19.43)
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and since

Eext.u"/ D
LX

iD1

Z

˝

u"i jI 0.x/ ! `i j2 dx C
LX

iD1
˛

Z

˝

jru"i j dx

D
nX

jD1

Z

˝

u"ij jI
0.x/ ! `ij j2dx C

nX

jD1
˛

Z

˝

jru"ij jdx D E.fu
"
ij
gnjD1; fij gnjD1; n/:

(19.44)

Combining (19.43) and (19.44) it follows that

E.fu"ij g
n
jD1; fij gnjD1; n/ % E.fQuj gQnjD1; f`Qij g

Qn
jD1; Qn/:

Hence fu"ij gnjD1; fij gnjD1; n must be a solution to (19.16).
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Chapter 20
Fluctuating Distance Fields, Parts, Three-Partite
Skeletons

Sibel Tari

So the nature of a visual experience can not be described in
terms of inches of size and distance.
Rudolf Arnheim

Abstract Shapes are continuous objects, even when they are drawn on digital
media or composed using finite number of elements. As such, they defy analytic
approach; explicitization of their parts, hierarchies, skeletons, or even centroids is
ill-posed. I describe a novel approach to perceptually organize shapes and explicate
their features without being negligent of their continuous nature. The basic construct
is an unusual phase field that can be conceived in a number of varying ways using
varying mathematical machinery, so highlighting the field itself rather than how it is
being computed. Connections among the field, Mumford-Shah and Tari-Shah-Pien
models, and reaction-diffusion equation suggest that the field may bridge low-level
and high-level visual processing.

20.1 Shapes Are Continuous

Shapes are continuous objects, even when they are drawn on digital media or
composed using finite number of elements. In favor of the argument, Gestalt school
produced numerous illustrations, e.g., (1) a finite set of isolated dots placed at a
fixed distance from a fixed location creates a circle percept; (2) a peanut shape
prevailingly reveals two discrete blobs or approaches to a blob, as its neck thins
or thickens; (3) two squares juxtaposed to form an eight-pointed star gives way to
new parts, namely eight triangles and an octagon.
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In a similar vein but surpassing Gestalt, Stiny [50] speaks for ambiguity
(i.e. multiple interpretations) in part perception, convincing the reader to place
part boundaries wherever and whenever desired. Such a liberal view of shape
topology certainly stands in strong contrast to prevalent theories on part perception
exemplified by seminal works of Biederman [9] (imposing regularity on parts) and
Hoffman and Richards [23] (imposing regularity on break points); nevertheless,
contemporary work in neuroscience support the continuity of the process, too [37].

Additionally, shapes live in continua as opposed to standing in isolation. The
basis of this argument is two-fold: (1) perception of a shape is influenced by
nearby shapes (underlying category structures); indeed, several papers, e.g. [17,34],
draw parallels between this contextual effect and experimentally observed non-
metric characteristics (asymmetry and violation of triangle inequality) of pairwise
dissimilarities; (2) shapes naturally deform into other shapes, say, a peanut changes
to a blob-like shape or a pair of disjoint blobs as its neck thickens or thins,
respectively.

To a great extent, it is the continuous nature of shapes that hinders their
comprehension and description using analytic methods; thus, it is only natural that
several chapters from this book present state of the art techniques for situating
shapes in continua by constructing shape dynamics, shape spaces etc.

In pursuit of the goal, the presented approach is an attempt to perceptually
organize shapes and explicate their features in the form of skeletons without
being negligent of their continuous nature. At the core of constructions is an
unusual distance-like, scalar field, !, that implicitly codes interactions among shape
elements, both over the region and along the boundary and both local and non-local.

Overview of the New Distance Field The most distinct feature of the new field
is that it fluctuates, i.e., unlike previous ones [4, 22, 28, 42, 54], the new one is a
non-monotone function of the distance to a set of input points. It is non-monotone
because the value of the field at each point mimics the distance (a diffuse one [54,
55]) from the point to the union of (1) a set of input points and (2) a yet to be
determined curve.

The set of input points specifies the shape boundary either incompletely (in cases
of open contours, illusory contours or outcomes of edge detectors) or completely
as the bounding curve of a connected bounded open set, say ˝ ! R2. In either
case, the shape boundary is indicated by the set of input points, denoted by @˝ and
subjected to homogeneous Dirichlet type boundary condition.

The construction of the! is valid regardless of the form the boundary is specified.
If it is completely specified with a clear distinction between interior and exterior, the
field can be computed only on the interior. If, however, the boundary is incompletely
specified, the field needs to be computed on a wider scope R which is a simply
connected subset of R2 containing the input set. Of course, a suitable boundary
condition is needed on @R.

The new field has interesting emergent features; for example, it attains value zero
not only on the shape boundary (which is due to homogeneous Dirichlet boundary
condition on @˝) but also on a curve bounding a central cut. The latter locus
is an emergent feature and divides the shape into central and peripheral regions.
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Fig. 20.1 The values of the new field fluctuate between positive and negative. The iso-level curves
reflect the minimum distance to the union of the shape boundary and an emergent curve (shown in
green)

Roughly speaking, the central region is the least deformable and coarse structure
of the shape; moreover, the field inside it is a flexible indicator of the topology and
centrality, not necessarily bound to a unique interpretation.

A sample field is depicted in Fig. 20.1. The leftmost figure displays some iso-
level curves of the field and the top right one displays its absolute value. Finally, the
bottom right figure is the plot of the values at the cross-section marked by the red line
in the top right. Observe that the field exhibits interesting features in addition to the
emergent zero-level curve: lower level sets in the peripheral region code appendages,
the level curves neighboring the boundary resemble erosions of the shape, and the
level curves neighboring the zero-level curve resemble erosions and dilations of the
central region. All create a dynamic view of the shape.

What’s more, the geometry of the level curves is intricately related to that of
a well studied diffuse distance field [3, 4, 47, 54, 55] which is the solution of the
screened Poisson PDE and has close connection to the Ambrosio-Tortorelli approx-
imation [1] of the Mumford-Shah functional [35] (more on this in Sect. 20.2.3).

The intricate relation between the two fields facilitates an unorthodox skeleton
abstraction that I call Three-Partite, due to its being composed of three distinct
groups providing a separation into (1) gross structure; (2) limbs and (3) boundary
texture or noise. Two examples are shown in Fig. 20.2 where the three skeleton
groups are respectively shown in red, blue and green. The first group (red) consists
of nested closed curves and abstracts the topology as well as the centrality of the
coarse structure. It has two distinct layers: the inner (dark red) and the outer (light
red). Both layers are coarser forms of the boundary. The outer layer, which is finer
than the inner one, can be considered as the coarsest and least articulable structure
still indicating the appendages. The inner layer is the emergent zero-level curve,
bounding the central region. The second group (blue) consists of disjoint branches
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Fig. 20.2 The three skeleton
groups are respectively shown
in red, blue and green colors

(or loops in case of holes in the periphery) that terminate upon reaching the outer
layer of the first group. Each branch of the second group captures a ribbon-like
section, a limb or protrusion. The third group (green) consists of disjoint branches,
too; but these branches correspond to secondary details.

Incentives for the Three-Partite Skeleton are given in Sect. 20.3 after the new
field is explored in Sect. 20.2.

20.2 Fluctuating Distance Field !

The new field is formulated firstly in a discrete setting, and then re-defined in a
continuous setting to better understand the geometry of its level curves by relating
it to a previously studied one. In both settings, the field is denoted by !.

In the discrete setting, ! is the minimizer of an energy which reflects both local
and global interactions in the shape interior and along the shape boundary.

On one hand, the boundary and the interior are interchangeable indicators for
a shape but each explicates a different set of features. Though it is customary
to classify methods as either boundary or region based [21], complementarities
between the two, as an experimental guess since Gestalt, are exploited in established
mathematical models [33, 35]. Likewise, in the proposed computational model,
boundary and interior terms are kept distinct.

As the complementarity between the region and the boundary, the complemen-
tarity between the local and the global is an experimental guess: On the computer
vision side, several working techniques, e.g. [8,13,32,57,58], utilize local and global
features simultaneously; on the human vision side, theories that differ in details
agree on that the shape perception is guided by both local and global factors [7,14–
16, 36, 49].

I remark that the choice of terms in the proposed model are driven by experimen-
tal guess as well as a bias towards simple linear formulations, since precise physics
of the problem is yet unclear.

20.2.1 Formulation

In the discrete setting, the field ! W ˝ ! R is a real valued function on a discrete
set of sites, ˝ ! Z " Z, equipped with a neighborhood system. The energy E.!/



20 Fluctuating Distance Fields 443

is taken as a linear combination of a region based energy EReg.!/ defined on ˝
and a boundary based energy EBdy.!/ defined on @˝ , both of which is a sum of
pixel-wise terms:

E.!/ D
X

.i;j /2˝
EReg.!i;j / C !

X

.i;j /2@˝
EBdy.!i;j / (20.1)

where ! > 0 is a constant. The additive form is for computational simplicity.

Region Energy The region energy composed of both local and global terms is
expressed as a linear combination, too:

EReg D
X

.i;j /2˝
EG
Reg.!i;j /

„ ƒ‚ …
EGReg : global

C ˇ
X

.i;j /2˝
EL
Reg.!i;j /

„ ƒ‚ …
ELReg : local

(20.2)

where ˇ > 0 is a constant. In the absence of a specific bias towards local or global,
a natural choice may be ˇ D 1.

Global Component Consider the squared average, the simplest quadratic expres-
sion linking all the nodes, as the global energy:

EG
Reg.!i;j / WD

0

@ 1

j˝j
X

.k;l/2˝
!k;l

1

A
2

Differentiating its sum over˝ w.r.t. !i;j :

@

@!i;j
EG
Reg D

@

@!i;j

X

.i;j /2˝

0

@ 1

j˝j
X

.k;l/2˝
!k;l

1

A
2

D 2

j˝j
X

.k;l/2˝
!k;l (20.3)

Notice that the considered energy is minimized by either the zero function or a
fluctuating function of which positive and negative values cancel each other.

Local Component The simplest local interaction model appears to be the sum of
pairwise products of ! value at a site with ! values at the site’s nearest neighbors.
Such a component in the energy imposes regularity by favoring configurations in
which each node agrees with its immediate neighbors. Assuming the usual four-
connectivity, such that f.iC1; j /; .i#1; j /; .i; jC1/; .i; j#1/g defines the nearest
neighbors of site .i; j /, local interaction energy takes the form:

EL
Reg.!i;j / WD #

!
!i;j $ !iC1;j C !i;j $ !i!1;j C !i;j $ !i;jC1 C !i;j $ !i;j!1

"
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Differentiating w.r.t. !i;j :

@ELReg

@ !i;j
D @

@!i;j

X

.i;j /2˝
#
!
!i;j $ !iC1;j C !i;j $ !i!1;j C !i;j $ !i;jC1 C !i;j $ !i;j!1

"

D #2
#
!iC1;j C !i!1;j C !i;jC1 C !i;j!1

$
(20.4a)

D #2
h
L
!
!i;j

"
C 4!i;j

i
(20.4b)

where L denotes the usual five-point discretization of the Laplace operator 4 WD
@2

@x2
C @2

@y2
, using step size one. Notice that (20.4a) is nothing but the sum of the

four neighbors, and (20.4b) is obtained by re-arranging the terms after adding and
subtracting 4 !i;j .

The scope of the regularity induced by the local energy can be extended by
considering pairwise interactions in a larger neighborhood Nij :

EL
Reg.!i;j / WD #

X

.k;l/2Nij

ai;j Ik;l $ !i;j $ !k;l (20.5)

where ai;j Ik;l D ak;lIi;j are suitably chosen positive weights, say, inversely propor-
tional to the squared distances between the pairs as defined by the neighborhood
system. Then the derivative of EL

Reg w.r.t. !i;j is nothing but a weighted sum of the
neighbors:

@EL
Reg

@!i;j
D @

@!i;j

X

.i;j /2˝
#

0

@
X

.k;l/2Nij

ai;j Ik;l $ !i;j $ !k;l

1

A

D #2
X

.k;l/2Nij

ai;j Ik;l $ !k;l (20.6)

As a result, similar to (20.4b), it can be be re-written as

# 2 $
h
LG
!
!i;j

"
C "G !i;j

i
(20.7)

where LG
!
:
"

denotes the graph Laplacian and "G > 0 a constant that depends on
the neighborhood system.

Of course, the scope of the local regularity may be further extended by including
all of the pairwise interactions among the elements in Nij :

X

.k;l/2Nij
.m;n/2Nij

.k;l/¤.m;n/

ak;lIm;n $ !k;l $ !m;n (20.8)
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Fig. 20.3 The distance
between a pair of nodes
joined by a blue arrow is
either 2 (the Manhattan) orp
2 (the Euclidean)

with the weights reflecting the distances (Fig. 20.3). Then the derivative w.r.t. !i;j
is either of the following nine-point weighted averages in a 5 " 5 window centered
at .i; j /:

1

4

2

66664

" " 1 " "
" 2 " 2 "
1 " " " 1
" 2 " 2 "
" " 1 " "

3

77775
1

4

2

66664

" " 1 " "
" 4 " 4 "
1 " " " 1
" 4 " 4 "
" " 1 " "

3

77775

The one the left is obtained if the weights are calculated according to the Manhattan,
the natural metric for the 4-connected grid, and the one on the left according to
the Euclidean. Upon subtracting a suitable multiple of !i;j , both stencils become
a realization of the nine-point discrete Laplacian on a redefined grid. That is, as
long as local interactions are restricted to pairwise products (linear combinations of
(20.5) and (20.8)), the derivative of the local energy w.r.t. !i;j is of the form:

@EL
Reg

@!i;j
D #2"1

h
L#
!
!i;j

"
C "2!i;j

i
(20.9)

where L# is some approximation to the discrete Laplacian.

Adding Local and Global Components Combining (20.9) and (20.3) according to
the additive model (20.2) yields

@EReg

@!i;j
D #2

h
L#
!
!i;j

"
C N"!i;j #

1

O
!
j˝j

"
X

.k;l/2˝
!k;l

i
(20.10)

where O
!
j˝j

"
denotes a positive constant on the order of the domain size and

N" > 0 depends on assumed local connectivities as well as the parameter ˇ in (20.2).
Later on, we will see that the choice of N" has no bearing on the result.

Boundary Energy Formulating interactions along a contour is not as simple as
formulating them over a region. The task gets further complicated in the case of
long-range interactions because critical ones occur among specific pairs of boundary
points, e.g., two opposing indentation points on a neck region.
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Fortunately, the usual distance transform provides a way out. At the outset, it is
a transform that assigns to each point on a domain the minimum distance from the
point to the domain boundary, yet it is at the same time a compact representation
for boundary interactions. Indeed, its construction can be imagined as a dynamic
process, a time-dependent evolution of the shape boundary such that each point on
it moves with a unit speed in the direction of the unit normal; so the distance field
t as a function over the digital plane is defined by setting ti;j D the time when the
evolving curve passes through the point .i; j /. Through the course of the evolution,
singularities form as opposing pairs of boundary points meet and characterize the
shape as its parts and symmetries are revealed [10].

The key point is that once a bridge between boundary interactions and the
distance transform is established, EBdy is easily defined as a quadratic expression
over the region˝:

X

.i;j /2@˝
EBdy.!i;j / WD

X

.i;j /2˝

!
!i;j # ti;j

"2 (20.11)

As a result,

@EBdy

@!i;j
D @

@!i;j

X

.i;j /2@˝
EBdy.!i;j /

D 2
!
!i;j # ti;j

"
(20.12)

That is, ! D t .
Complete Energy Combining (20.12) and (20.10) according to the additive model
(20.1):

@E

@!i;j
D #L#

!
!i;j

"
C 1

O
!
j˝j

"
X

.k;l/2˝
!k;l C .! # N"/ !i;j # !ti;j (20.13)

Then the condition satisfied by the minimizer is obtained by setting the expression
in (20.13) to zero, which is in matrix notation given by

%
#L C 1

O .j˝j/J C .! # N"/ I
&

w D ! t (20.14)

where

• w and t are vector representations for the field ! and the distance transform t ;
• L is the j˝j " j˝j matrix representation for a discrete Dirichlet Laplacian;
• J is the j˝j " j˝j matrix of ones;
• I is the j˝j " j˝j identity matrix.
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Firstly, notice that the uniform scaling of the right hand side term with ! has no
effect on the geometry of !; it only scales the values, leaving the shape of the level
curves intact. As a result, the geometric features of ! depends only on the choice of
.! # N"/. Secondly, notice that

#
#LC 1

O.j˝j/ $ JC .! # N"/ $ I
$

is a positive definite
matrix if .! # N"/ % 0. The difference between the strict positivity and zero, from the
linear algebraic point of view, is that the former one has a better condition number
so strict positivity of .! # N"/ may be preferable. But if .! # N"/ exceeds 1

O.j˝j/ ,
the non-spatial term dominates over the spatial ones. Such intuition suggest that
.! # N"/, the only parameter, should be approximately 1

j˝j . Later on this choice is
supported in the continuous domain model as well.

Implementation Based on the above discussion the parameters N" # ! and ! are
eliminated: Firstly, N" # ! is selected as inversely proportional to the domain size.
Secondly, t is replaced by Nt denoting an arbitrary scaling of the distance transform
because the right hand side scaling by ! does not affect the geometry of the solution.

Using the method of gradient descent, computing ! is cast as computing the
steady state solution of the following differential-difference equation:

d!i;j .#/
d#

D # @E

@!i;j
(20.15)

D L#
!
!i;j

"
# 1

O
!
j˝j

"
X

.k;l/2˝
!k;l #

1

O
!
j˝j

"!i;j C Nti;j

Discretizing # as

!nC1i;j # !ni;j
$#

D
!
!ni;jC1 C !ni;j!1 C !niC1;j C !ni!1j; # 4!ni;j

"
(20.16)

# 1

j˝j
X

.k;l/2˝
!nk;l #

1

j˝j!
nC1
k;l C Nti;j

where n D 0; 1; 2; $ $ $ is the iteration variable yields an iterative scheme once the
terms in (20.16) are re-arranged. Note that L# is simply replaced with the usual five
point discrete Laplacian, and O

!
j˝j

"
with j˝j.

Behavior of ! The solution satisfies three competing criteria:

# having low expected value (20.17a)

# being smooth (20.17b)

# staying close to the usual distance transform (20.17c)

At a first glance, the first criterion seems to favor flatness by forcing the minimizer
to attain values close to zero; yet this criterion is also satisfied when the values of
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! fluctuate between positive and negative. The other two criteria impose additional
regularities so the fluctuations form a certain spatial pattern as opposed to being
random localization of positive and negative values. Firstly, the locations of identical
sign tend to form spatial proximity groups as defined by the graph neighborhood
system. Secondly, the positive clusters tend to occur in the central region. This is
due to the third criterion: Whenever ! is negative at a point .i; j /, a penalty larger
than t2i;j is incurred; therefore, ! has a stronger tendency to be positive at locations
where the value of distance transform is higher in order to minimize the total cost
of deviating from the distance transform. Consequently, ! attains positive values in
central locations where the value of the distance transform is higher and negative
values at peripheral locations where the value of the distance transform is lower.

20.2.2 Illustrative Results

Few illustrative results are depicted in Figs. 20.4–20.6. In color illustrations, !
values are normalized to Œ0; 1% within regions of identical sign for convenience of
visualization and the zero-level is depicted in dark blue.

Central and Peripheral Separation In each case, the zero-level set partitions
the shape domain into upper and lower zero level sets, ˝C and ˝!, denoting
respectively central and peripheral regions.
˝! contains all the detail: limbs, protrusions, and boundary texture or noise.

In contrast, ˝C is coarse blob-like form, which can even be considered as an
interval estimate of the center; most commonly, it is a simply connected set.
Of course, it may also be either disconnected or multiply connected. For instance, it
is disconnected for a dumbbell-like shape (two blobs of comparable radii combined
through a thin neck) whereas it is multiply connected for an annulus formed by two
concentric circles. Indeed, the annulus gets split into three concentric rings. Whereas
the middle ring is the ˝C, the union of the outermost and the innermost rings form
a multiply-connected set corresponding to the ˝!, separated by the ˝C.

For quite a many shapes, however,˝C is a simply connected set. Firstly, shapes
obtained by protruding a blob as well as shapes whose peripheral parts are smaller or
thinner than their main parts always have a simply connected˝C. This is expected:
When the width of a part is small, the highest value of the distance transform t
inside the part is small. That is, the local contribution to .! # t/2 incurring due to
negative values is less significant for such a part as compared to locations with
higher positive values of t . Consequently, ! tends to attain negative values on
narrow or small parts as well as on protrusions. Shapes with holes also have a
simply connected ˝C as long as the holes are far from the center. Secondly, even
a dumbbell-like shape may have a simply connected ˝C. This happens if the join
area, namely the neck, is wide enough, e.g., the top right in Fig. 20.4. Nevertheless,
this does not cause any representational instability: Whereas the ˝C for a blob-
like shape has a unique maximum located roughly at its centroid, the ˝C for a
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Fig. 20.4 Absolute value of !. For ease of color visualization, values of ! are normalized within
regions of identical sign. Dark blue color indicates zero

dumbbell-like shape has two local maxima indicating two bodies. Each body is
captured by a connected component of an upper level set whose bounding curve
passes through a saddle point. At a saddle point p; such that !.p/ D s, the s# level
curve has a double point singularity, i.e. it forms a cross. As a result, the upper level
set

˚
˝s D .x; y/ 2 ˝C W !.x; y/ > s

'
yields two disjoint connected components

capturing the two parts of the central region.
In contrast to ˝C, the peripheral region, ˝!, is multiply connected, even if the

shape is simply connected. Most typically it is a ring-like domain whose holes are
carved by ˝C. It is also possible that ˝! is disconnected. For instance, it is two
concentric rings for an annulus. Additionally,˝! may be disconnected when there
are several elongated limbs organized around a rather small central body, e.g., a
palm tree.˝C, being small, is tolerated to grow and reach to the most concave parts
of the shape boundary creating a split of ˝! by the zero-level curve. The emergent
zero-level curve bounds both˝C and ˝!.

Gap Closure An application in the case of incompletely specified boundaries is
depicted in Fig. 20.5. The small figure on the left is the input, which consists of
twelve isolated dots organized around a center point. The field ! computed in a
rectangular region is depicted in the right. The gray is the central region; it is a circle.
Notice that the level curves in the vicinity of the input points enclose firstly the
individual dots and secondly the pairs of dots. Later the outer level curves enclose
the entire set and the inner level curves become circles.

Restrictions of ! Each restriction of ! to either ˝C or ˝! emulates a diffuse
distance transform applied to the respective domain. The analogy is surely over
the geometry of the level curves rather than actual ! values. More precisely, the
level curves of ! in either domain resemble curvature dependent evolution of the
boundary of the respective domain.
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Fig. 20.5 Gap closure. (left)
The input. (right) The field
computed over a rectangular
region; the central region is
shown in gray

The qualitative resemblance of the level curves of ! to fronts evolving with
curvature dependent speed triggers the observation that the condition satisfied by
the minimizer of the discrete energy coding local/non-local and region/boundary
interactions is indeed a central difference approximation for an integro-differential
equation:

4 !.x; y/ # 1

j˝j

“
!.˛; ˇ/ d˛ dˇ # 1

j˝j !.x; y/ D #
Nt.x; y/ (20.18)

where4 stands for the Laplace operator. Recall that Nt denotes any uniform scaling
of t . Interestingly, when the global component of the energy which is responsible
for˝C/˝! separation is omitted, (20.18) reduces to the screened Poisson PDE:

%
4 # 1

j˝j

&
!.x; y/ D # Nt.x; y/ (20.19)

The screened Poisson PDE with a constant right hand side has been previously
proposed by Tari et al. [54, 55] as the governing equation for a diffuse distance
field, with a motivation to bridge the higher level process of shape abstraction
and the lower level processes of image smoothing and boundary extraction. Tari,
Shah and Pien (TSP) model is closely related to a famous by-product of variational
segmentation models: the Ambrosio-Tortorelli (AT) phase field.

In Sect. 20.2.3, I relate (20.18) to a modification of the previous field which I
call as the AT/TSP field. The connection between the two fields (AT/TSP and !)
improves our understanding of the new one. For example, the restriction of ! to
either the central or peripheral region is geometrically equivalent to the AT/TSP
field constructed for that region. Hence, the visual observation that the level curves
in the vicinities of @˝ and the emergent zero-level curve are mimicking a curvature
dependent motion is substantiated.

The curvature dependent behavior of the level curves, however, deteriorates away
from the boundary; eventually, even initially parallel boundaries form a cross. This
formation of saddle points is a consequence of increased interaction and it has been
discussed previously by Tari et al. [55] (see Fig. 1 in [55]).
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Fig. 20.6 Level curves of !.
For visualization purposes,
the values are normalized
within central and peripheral
regions; the zero level is
depicted in dark blue

Fig. 20.7 Formation of watershed zones in the peripheral region is a consequence of the relation
of the new field to the AT/TSP field

Fortunately, in the new framework, this behavioral deviation provides consider-
able convenience by assuring that the peripheral region is always partitioned, unless
it is a perfect annulus. Figure 20.6 depicts level curves of ! for the octopus. Notice
the formation of eight saddle points separating the arms of the octopus. Indeed the
zones separated by the saddle points are easily extracted as watershed zones [31] of
the peripheral region (Fig. 20.7). Of course, raw watershed partitions are subject to
topologic instabilities. Obtaining topologically stable partitions is a separate issue
which is tackled in a recent work by Tari and Genctav [51] by constructing a
probabilistic part tree; nevertheless, watershed zones surrounding the central region
are perfectly sufficient as rough part estimates.

20.2.3 ! and the AT/TSP Field

In vision applications, the AT (Ambrosio-Tortorelli) phase field appeared first as a
technical device to apply gradient descent to the Mumford-Shah functional [35],
where it served as a continuous indicator for boundary/not-boundary phases at
each domain point [44]. The field is the minimizer of an energy composed of
two competing terms: One term favors configurations that take values close to
either 0 or 1 (separation into boundary/not-boundary phases) and the other term
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encourages local interaction in the domain by penalizing spatial inhomogeneity. A
parameter controls the relative influence of these two terms hence the interaction. As
this “interaction” parameter tends to 0, the separation term is strongly emphasized;
consequently, the field tends to the characteristic function 1#&S of the boundary set
S and the respective energy tends (following the ' convergence framework [11]) to
the boundary length.

Over the years, the AT field has been used in numerous applications addressing
a rich variety of visual problems, cf. Shah and colleagues [39, 44, 45, 48], March
and Dozio [29], Proesman et al. [41], Teboul et al. [56], Bar et al. [6], Droske
and Rumpf [40], Erdem and Tari [18], Patz and Preusser [38], and Jung and
Vese [24]. In all these applications, because the field serves as an auxiliary
variable to facilitate discontinuity-preserving smoothing and boundary detection,
the interaction parameter ( is chosen sufficiently small, i.e., ( ! 0, to localize
boundaries accurately.

Increased Interaction: the AT/TSP Field In the late 1990s, Tari, Shah and
Pien (TSP) re-casted the AT field as a compact representation of the morphology
of regions implied by putative edges [54, 55]. To such end, they weakened
boundary/not-boundary separation by letting the interaction parameter be suffi-
ciently large, in contrast to the prevalent applications of the AT field exemplified by
the above referenced works. Furthermore, they examined the geometry of the level
curves and then devised robust schemes that explicate curvature related criticalities
such as skeletons.

On the technical side, they used standard coupled equations obtained by applying
gradient descent to the AT approximations of available segmentation energies [44,
45]. For example, given an image g.x; y/ defined on a region R ! R2, they
computed a de-noised image u.x; y/ and the AT field v.x; y/ by solving

@u
@#
D r $ .v2ru/# ˇ

˛
.u # g/ (20.20)

@v
@#
D 4v# 2˛jruj2v

(
# .v!1/

(2
(20.21)

subject to homogeneous Neumann conditions on the image boundary:

@u
@n

ˇ̌
ˇ̌
@R

D 0; @v
@n

ˇ̌
ˇ̌
@R

D 0 (20.22)

where @R is the image boundary and n is the outer unit normal vector to @R, while
˛ and ˇ are Mumford-Shah related parameters determining contrast and scale [45,
55], ( is the interaction parameter. The key trick is to choose ( sufficiently large,
typically at the order of the radius of the maximal circle that can be fit inside putative
shapes – regions implied by putative boundaries.

That is, in the TSP approach, boundary localization is traded with shape
abstraction, thus, the role of AT field changed from being a fixed property detector
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(boundary/no-boundary) to being an implicit shape coder. From now on, I refer
to the v function as AT/TSP field if local interactions are emphasized during its
computation.

When the computation of the AT/TSP field is restricted to shape interior
(indicated by ˝ ! R2, a connected bounded open set with a boundary @˝), the
field satisfies on ˝ a screened Poisson PDE with a constant source term:

%
4 # 1

(2

&
v.x; y/ D # 1

(2
(20.23)

subject to homogenous Dirichlet condition. The solution to (20.23) is the unique
minimizer of the AT energy:

“

˝

1

(

h
v.x; y/ # &˝.x; y/

i2

„ ƒ‚ …
boundary/interior

separation

C(
ˇ̌
rv.x; y/

ˇ̌2
„ ƒ‚ …
local interaction

dx dy

with v.x; y/ D 0 for .x; y/ 2 @˝ (20.24)

where &˝.x; y/ is the shape indicator that attains 1 in ˝ and 0 on @˝ .
There are two important practical implications of the AT/TSP model:

1. v is a smooth distance transform of which gradient at a point exponentially
depends on the medialness of the point; this leads to a robust procedure for
extracting curvature based criticalities [53, 55];

2. The level curves of v approximate evolution of the shape boundary such that
each point on it moves with a curvature-dependent speed in the direction of the
unit normal; that is, a nonlinear wave-like phenomena can be modeled using a
linear diffusion operator; as a result, the reaction-diffusion scale space of Kimia
et al. [25] can be easily constructed [54].

The right hand side of (20.23) may be scaled if the interest is purely on the geometry
of the level curves. Then infinite interaction limit (!1 can be considered, giving
the Poisson PDE [22] or approximating the Aslan-Tari model [3, 4]; but then the
exponential dependence on medialness [55] is lost. In the original paper by Tari,
Shah and Pien, there are several experiments illustrating the role of (. In what
follows, ( is assumed to be at least on the order of the radius of the maximal circle
that can be fit inside the shape for the diffusive effect of jr:j2 to influence the entire
shape.

Now I modify (20.24) in a way that its minimizer is geometrically equivalent to
the ! function defined earlier in Sect. 20.2.1 as a balance among different types of
interactions. Take a note that the AT/TSP field which is the solution of the screened
Poisson equation with a constant source term (20.23) is geometrically equivalent to
the solution of a screened Poisson equation for which the source term is a monotonic
function of the distance (20.19); the change of the source term affects the actual
values while leaving the geometry of the level curves almost intact.
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Fluctuating AT/TSP The key idea is to break down the monotone behavior of the
AT/TSP to partition the shape into central and peripheral regions within which the
field remains qualitatively similar to the AT/TSP. This can be achieved by additively
augmenting the energy in (20.24) with a term minimized by a fluctuating function,
e.g. a multiple of

!’
!.x; y/ dx dy

"2, but one has to make sure that locations

of identical sign form meaningful spatial proximity groups. The term
ˇ̌
rv.x; y/

ˇ̌2

prevents wild fluctuations and ensures that nearby locations have similar values, but
it can not influence where these groups form. An obvious way of obtaining central

versus peripheral separation is to increase the residual
h
v.x; y/ # &˝.x; y/

i2
at

central regions to penalize discrepancies more, hence, forcing the function to be
positive in a central area while attaining the opposite sign in remaining locations to

minimize penalty incurring due to the new term
h’

!.x; y/ dx dy
i2

.
There are two possible strategies: Either making the phase separation term

space variant by multiplying it with a medialness dependent coefficient or using a
medialness dependent indicator function. In both cases, medialness dependence can
be modeled via any monotonic function of the distance. Using the second strategy
and letting the distance transform t.x; y/ serve as the weighted indicator yields
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˝
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2
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75 dx dy;

with !.x; y/ D 0 for x; y D .x; y/ 2 @˝:
(20.25)

Similar to the AT/TSP field, the minimizer of (20.25) is a compromise between
inhomogeneity and homogeneity though the inhomogeneity is forced both exter-
nally (by t) and internally (by the third term). Unlike the phases defined by the
AT/TSP field (its level curves), those defined by! do not necessarily mimic erosions
of the shape boundary but they have a richer meaning that facilitates extraction of a
novel skeleton as detailed in the next section.

To find the minimizer of (20.25), let us consider the Gâteaux variation

ıE.!; )/ WD lim
*!0

E.! C *)/# E.!/
*

D @

@*
E.! C *)/

ˇ̌
ˇ̌
*D0

(20.26)

for all test functions ) properly prescribed on the boundary. Setting ıE.!; )/ D 0
yields
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(
)
)
D 0 (20.27)
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where

E
(
f
)
D 1

j˝j

“

˝

f .x; y/dx dy:

The condition is not intrinsic, but it is is satisfied for all test functions if both of the
following holds:

1

j˝j

“
!.˛; ˇ/ d˛ dˇ D 0 (20.28a)

4 !.x; y/ # 1

(2
!.x; y/ D # 1

(2
t.x; y/ (20.28b)

Even though the above pair of equations and (20.18) are not identical mathemati-
cally, they are equivalent conceptually, i.e., constraints induced by the pair (20.28a)
and (20.28b) are equivalent to those in the discrete model:

Firstly, (20.28a) implies that the solution integrates to zero (compare to (20.17a)
in the discrete case). Secondly, (20.28b) implies that the desired solution is a smooth
approximation of the distance transform (compare to the pair (20.17b) and (20.17c)
in the discrete case). Selecting the smoothing radius as consistent with the suggested
practice in the AT/TSP model, i.e., ( D O

#p
j˝j

$
, is in agreement with the choice

of !# N" in the discrete model. (Recall that ( needs to be approximately equal to the
radius of the maximal circle that can be fit inside the shape for the diffusive effect
of jr:j2 to influence the entire shape; see also [3]).

20.3 Three Partite Skeletons

The invention of skeletons is one of the most influential outcomes of the search for
a mathematics of shape:

In the mid 1960s the school of mathematical morphology [43] brilliantly opted
to understand a shape merely by observing how it interacts with template shapes
called structuring elements using two basic processes called erosion and dilation.
Eroded and dilated shapes define a time evolution in which the time is the size of
the structuring element, hence, shapes are equipped with dynamics.

Independent from the school of mathematical morphology, Blum [10] proposed
to code topologic and geometric properties implicitly using the Euclidean distance
field t.x; y/. The relevant link is that successive level sets of the distance transform
correspond to erosions and dilations of the shape with discs of increasing radius
making the Euclidean distance field a compact representation of morphology. The
level curves of the Euclidean distance transform are analogous to a time evolution
of the shape boundary such that each point on it moves with a unit speed in the
direction of the unit normal, so the distance field t as a function over the plane is
defined by setting t.x; y/ D the time when the evolving curve passes through the
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point .x; y/. During the evolution opposing pairs of boundary points meet, each
collapsing to a single point inside the shape. The locus of meeting points is called
the skeleton. Each point on the skeleton is equidistant from at least two boundary
points.

In the following years, several practitioners conceptualized skeletons strictly as
thin versions of shapes with equidistance property; vast literature is dedicated to
thinning and solving consequently arising problems; axioms that are necessitated
by chosen algorithms rather than being induced by theory (e.g. the connectivity
requirement) are introduced; holding back nonconforming variants.

Nevertheless, significant liberation is gained in the 1990s when vision researchers
started to reveal connections among different computational models and algorithms
to visual processing [12, 33, 45, 46]. These works contributed towards a better
understanding of the theory level of visual processing emphasizing what the
computational problem is rather than how it is being solved [30].

In particular, mathematical morphology, skeletons, curve evolution approaches,
diffusion PDEs and variational methods are naturally tied by distance-like
fields [28], reviving the Gestalt school’s potential field theory. The Euclidean
Distance Transform is given by the solution to the Eikonal equation jrt.x; y/j D
c.x; y/ with the shape boundary as the initial front and c.x; y/ D 1 and new
distance fields can be constructed by varying c.x; y/ resulting in weighted distance
transforms or augmenting the initial front with seed points resulting in seeded
distance transforms [28]. Of course a weighted distance transform of which level
sets emulating curvature dependent motion is readily constructed via an elliptic
PDE, namely the Poisson equation, be it screened [55] or not [22].

Indeed the ! function is equivalent to a seeded weighted distance transform:
Consider the shape boundary depicted by the red curve in Fig. 20.8a, and imagine
that the initial front is its augmentation with two seed points. During the course of
the evolution, fronts growing out of each of the two seeds merge forming the blue
curve in (a); then the blue curve propagating outward and the shape boundary (the
red) propagating inward meet at the zero level curve (the pink). In Fig. 20.8b more
level curves in the region where ! is negative, namely˝!, are depicted.

New distance fields give way to new skeleton models, one of which is the Three-
Partite Skeleton.

The Three-Partite Skeleton consists of three groups. Recall Fig. 20.2. The first
group SG (shown in red) is an abstraction of the central or gross structure. It consists
of two components: the inner component S in

G (the dark red) coinciding with the
zero-level curve and the outer component Sout

G (the light red). The second group SR
(shown in blue) abstracts ribbon-like sections corresponding to limbs and significant
protrusions. Finally the third group ST (shown in green) captures secondary details
typically arising due to boundary texture or noise.

Conceiving the Three Partite Skeleton The relation between the level curves of
! and those of the AT/TSP field makes conceiving the Three-Partite Skeleton quite
natural: With the exception of S in

G , which is readily provided by the zero level curve
of !, all of the points of the Three-Partite Skeleton are in a generalized ridge set
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Fig. 20.8 Seeded distance transform analogy for !

defined by the zero-crossings of the flowline curvature, i.e., d jr!j
ds
D 0 where s

is the arc-length along level curves. Moreover, the ridge points can be split into
maximum and minimum convexity groups depending on the sign of the second
derivative d2jr!j

ds2
[55]. In Fig. 20.9, the points are depicted in black if d2jr!j

ds2
< 0

and in light gray if d2jr!j
ds2

> 0; skeleton points tend to be on the first group.
Branches tracking discretization artifacts are clearly visible in the form of

disconnected short segments; they belong to ST . Branches tracking main limbs
are clearly visible too; they belong to SR. Each SR branch starts from a curvature
maximum of the shape boundary @˝ and comes to an end at a point where the front
initiated at @˝ meets the front initiated at the emergent zero level curve @˝C, during
the course of propagation. The termination points are in a sub-locus composed of
a circular sequence of saddles and minima so defining a numerical realization of
a parabolic locus [52]. This locus is Sout

G . All points in Sout
G are simultaneously

reachable from @˝ and @˝C; as such, Sout
G defines a minimal skeleton for ˝!,

the ring-like region bounded by the shape boundary @˝ and the emergent zero level
curve @˝C.

It is important that the level curves of the restriction of ! to ˝! behave similar
to the level curves of a highly diffused distance transform: Only if the tip of a
protrusion moves sufficiently faster than the opposing point on @˝C, the respective
fronts meet at a point that is sufficiently away from the tip, leaving enough room for
the respective branch to grow. As a result, a branch tracking a limb terminates when
the limb connects to a body, making the branch length a good correspondent of the
limb length.

The ridge locus takes an irregular appearance so becomes difficult to interpret
as the level curves get rounder. Fortunately, the irregularities are to a large extent
within the confines of the central region˝C, thus, can be cut out (Fig. 20.10).

Grouping the set of ridge points in the form of segments (branches) is an
implementation issue, typically subject to several ad-hoc decisions. In the case of
skeletons from !, the implementation can be considerably simplified by confining
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Fig. 20.9 Ridge points extracted by applying Tari et al. method [55] on !

Fig. 20.10 Removing the
ridge points that are inside
˝C (the light gray region)
significantly reduces the set
of candidate points. The thick
red curve is Sout

G

the grouping process to individual zones (recall that the peripheral region, unless it
is a perfect annulus, always breaks into parts). Then grouping within each zone may
be cast as a curve tracing task, performed by starting either from the boundary or
the interior [2,20]. Unfortunately both cases necessitates too many ad-hoc decisions.
A robust formulation via energy minimization is under development. In the mean
time, leaving the grouping task as a technical issue that requires further attention,
a sample set of branches is depicted in Fig. 20.11 in order to convey the concept.
Typically the branches in SR and ST are linear disconnected elements, but there
may be loop-like branches too, which occur if the shape has a hole in its peripheral
region (Fig. 20.12).

Whether a branch belongs to SR or ST becomes unclear if limbs have limbs too
(e.g. fingers of an arm). On one hand, it may be natural to put such branches in ST
since they track secondary details. On the other hand, it may be critical to distinguish
them from noise, discretization artifacts and boundary texture. A generic strategy
could be to assign fuzzy membership to such branches. This all depends on the task
at hand. (The more important point is not to prune any branch.)

If the task at hand necessitates distinguishing the limbs of limbs from other
secondary details, proper criteria need to be defined. Typically, within each zone,
SR branches are distinguished by the proximity of their termination point to a fixed
locus, i.e. Sout

G . Likewise, a branch denoting a limb of a limb may be distinguished by
the proximity of its termination point to a branch in SR. A better strategy, however, is
to consider the contribution of each branch to the reconstruction of the shape, i.e. the
effective coverage of a branch, defined as the ratio of the area exclusively covered
by the branch to its total coverage. Note that the region covered by a skeleton branch
is the envelope of all circles such that each circle is centered at a skeleton point on
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Fig. 20.11 Sample branches

Fig. 20.12 Shape with a hole

the branch, and has a radius given by the value of the distance transform at that
point [10].

In general, computing the effective coverage is difficult [19] but becomes easy in
our case because the branches can be put into a priority order, at least within a zone.
This order is based on the branch length and proximity to a fixed locus, be it Sout

G or
members of SR.

Effective coverages of the branches for the elephant shape are depicted in
Fig. 20.13. The gray toning of the covered regions (left) reflects the magnitudes
of the effective coverage ratios of the corresponding branches. On the right, the five
branches forming SR covers almost the entire peripheral region.

20.3.1 Why Three Partite Skeletons?

I make four arguments in favor of the new skeleton model:

Boundary Details The most frequently reported problem of the classical skeleton
is its sensitivity to boundary perturbations: small indentations or protrusions
introduce spurious branches. A classical connectivity-preserving skeleton for the
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Fig. 20.13 Coverage of
branches in SR and ST . The
gray toning of the covered
regions (left) reflects the
magnitudes of the effective
coverage ratios of the
corresponding branches

elephant shape is shown in Fig. 20.14; compare it to the Three-Partite one of the
same shape (Fig. 20.2).

Both skeletons contain spurious branches due to the wiggly boundary. Neverthe-
less, in the new model, they remain short and isolated, hence easily distinguishable,
from the main branches. In contrast, in the classical model, it is difficult to identify
spurious branches; consequently, there has been an extensive research on defining
criteria for branch pruning [5,19,27]. Pruning criteria and methods differ, but almost
all of the working skeleton methods reduce skeletons by eliminating those branches
that contribute little to the reconstruction of the shape.

On one hand, reduced skeletons decrease classification errors when experimented
using typical shape databases because secondary details most of the time act like
noise [4]. On the other hand, in a different context, secondary details may be
characterizing features: Observe that separation of the shapes shown in Fig. 20.15
into two perceptual proximity groups, as depicted in Fig. 20.16, is based on the
boundary texture, a secondary detail subject to pruning.

Thus, it is essential not to throw away spurious branches but to separate them
from primary ones, keeping in mind that the purpose of perceptual organization
is to organize and gradually explicate relations. In the Three-Partite Skeleton the
desired separation is achieved by letting each branch to be disconnected as a result
of extensive smoothing. Disconnected skeletons may be uncommon but have always
been around: Earlier examples are Leyton [26], Burbeck and Pizer [14], and Tari
et al. [55], and more recent examples are Aslan and Tari [3,4] and Macrini et al. [27].

Perceived Topology Preserving topology is the common promise of skeleton
models, but it may cause instability because topologic equivalence is not perceptual
equivalence. Let us consider a set of peanuts and blobs (Fig. 20.17a). Where should
we place category boundaries? Is the fifth shape more similar to the second or to the
last one? How different are the first two shapes?

It seems natural to consider multiple abstractions of the topology. In the case of
Three-Partite skeletons, this is achieved by the layered structure of SG considered
together with the critical points of ! inside the region enclosed by S in

G . The
following is important: If a simple closed curve in S in

G is blob-like, ! has a unique
maximum located roughly at the centroid of the region it encloses; but if it has
indentations, ! has at least two local maxima roughly located at the centroids of
implied blobs.

Let us consider the four Three-Partite Skeletons depicted in Fig. 20.17b, corre-
sponding to the four peanuts shown in the middle group in (a). As before, Sout

G and
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Fig. 20.14 A connectivity
preserving skeleton. The
branch length is not a good
indicator of significance

Fig. 20.15 A collection of shapes

Fig. 20.16 Depending on the
context, a secondary detail
(e.g. boundary texture) may
be the key feature

S in
G are respectively shown as light and dark red; local maxima pairs are combined

via a magenta line whenever applicable. The SG of the leftmost shape consists of a
pair of nested closed curves; the inner component S in

G is blob-like so encloses the
unique maximum of !; signaling that the shape is a single blob. As the neck of the
shape thins giving the second shape, S in

G develops indentations, so the maximum
becomes the saddle separating two local maxima, indicating that the shape is a
composition of two blobs. As the neck thins further giving the third shape, S in

G

breaks into two curves, each of which is blob-like; the outer layer Sout
G still remains

connected. On one hand, the second shape is similar to the first shape because its
skeleton is a single pair of nested closed curves; on the other hand, S in

G encloses two
local maxima signaling that the shape is a composition of two blobs. That is, the
second shape is a borderline shape for which two abstractions of the topology should
be retained. Finally, as the neck sufficiently thins to yield the rightmost shape, the
outer loop also splits; signaling even more strongly that the shape is a composition
of two blobs. The fourth peanut (the fifth in Fig. 20.17a) is another borderline shape.
The magenta line connecting the pair of local maxima passes though a saddle point
region (light blue) which falls outside SG . Hence the alternative abstraction connects
the last shape to two discrete blobs.
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Fig. 20.17 (a): Peanuts of varying neck thickness and blobs. (b): The Three-Partite Skeletons of
the four shapes depicted in the middle group in (a). The new model enables multiple interpretations
of the shape topology. Transition shapes provide paths between blobs and peanuts

Fig. 20.18 Centrality

Centrality for Nearly Symmetric Shapes The classical skeleton of a circle is
a single point located at its center reflecting the shape’s symmetry. Likewise the
branches of the skeleton of n-fold symmetric stars (or n-fold symmetric polygons)
meet at the respective shape centroid; unfortunately, a slight deviation from the
symmetry changes the connectivity pattern, e.g., the branches tracing the eight arms
of the octopus in Fig. 20.18 do not all meet at a single point. This means that skeleton
based abstractions fail to capture centrality, a natural consequence of fold symmetry
(e.g., Figs. 20.18 and 20.5). This is rather ironic because the points of the classical
skeleton are the medial ones.

In the new model, the notion of medialness is revised. SG is a robust explication
of the centrality. Indeed, the region bounded by S in

G , namely˝C, can be considered
as an interval estimate of the center, a robust alternative to a point estimate. The
problem associated to connectivity pattern is solved by considering the branches
outside SG as they remain disjoint.

Notice that in Fig. 20.2, the eight disjoint branches in SR (blue) tracing the eight
arms of the octopus terminate without distorting the central part, which is a perfect
circle. The S in

G of the prickly ball is also a circle whereas the S in
G of the triskelion is a

triangle. For both shapes, SR is empty; the centrality of the triskelion is emphasized
(Fig. 20.19) consistent with the historic meaning of this shape.

Ligature Problem The fragility of the branch connectivity pattern is not specific
to nearly symmetric shapes. Instabilities near junctions almost always occur; this
is commonly addressed as the ligature problem [10]. One way to deal with the
ligature problem is to restrict skeleton extraction to ribbon-like sections where the
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Fig. 20.19 Consistent with
the historic meaning of the
triskelion, centrality is
emphasized

procedure is stable: While Shah [47] completed missing parts of the skeleton via
interpolation, Aslan and Tari [3] kept the skeleton disconnected. Recently Macrini
et al. [27] also proposed a disconnected skeleton by removing the ligature part of
the classical skeleton.

Ligature problem is all the more reason to cut out a central part.

20.4 Summary and Concluding Remarks

A distance-like field that attains both positive and negative values is described. It
emerges out of simple spatial interactions, both local and global. It is a feature
conscience field: A hierarchy of parts starting with peripheral versus gross structure
separation is readily provided by its level curves, which mimic curvature dependent
motion (so code curvature), and its generalized ridge points give rise to a generalized
medial locus that is organized in the form of an unconventional skeleton. The new
skeleton model suggests, among other things, (1) multiple interpretation of the shape
topology, and (2) gross structureC textureC part separation. Incentives for the new
skeleton model are discussed.

If the global interaction is ignored, the set of linear equations defining the field
reduces to a discrete implementation of a screened Poisson PDE, a computationally
advantageous alternative model for constructing reaction-diffusion scale space for
shapes. Exploiting a connection between the screened Poisson PDE and the famous
phase field of Ambrosio and Tortorelli, a connection between the new field and a
modification to the Ambrosio-Tortorelli model is established. Implication of this
connection is two fold: (1) a novel skeleton model, for which strong perceptual
incentives exist, is conceived, (2) the issue of bridging image segmentation and
shape analysis is raised, following former work by Tari, Shah and Pien.
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Chapter 21
Integrated DEM Construction and Calibration
of Hyperspectral Imagery: A Remote Sensing
Perspective

Christian Wöhler and Arne Grumpe

Abstract In this study, we present from a remote sensing perspective a method
for the combination of surface gradient information obtained by photoclinometry
and shape from shading with absolute depth data (here: light detection and ranging
(LIDAR) data) by exploiting their respective advantages, regarding distinctly non-
Lambertian surfaces with non-uniform albedos. While photometry-based 3D recon-
struction methods yield reliable small-scale surface gradient information for each
image pixel, absolute depth data which are typically noisy on small scales but
reliable on large scales are provided by LIDAR techniques. The first step of the
proposed algorithm consists of an extended photoclinometry approach which takes
into account both image and LIDAR data. In a second step the reconstructed surface
is refined based on an iterative scheme relying on the minimisation of a global error
functional, thus compensating the inaccuracies of the measured surface gradients
and the LIDAR data on the respective scales. The surface shape and non-uniform
albedo map represent the best fit to the observed image radiances and LIDAR data.
We apply our framework to the construction of digital elevation models (DEM) of
lunar surface regions. We use hyperspectral imagery in order to employ the DEM to
normalise the wavelength-dependent surface reflectance to a standard illumination
and viewing geometry. Although we employ a highly realistic, physically motivated
reflectance model (the Hapke model), systematic topography-dependent distortions
of the pixel spectra occur, which lead to errors in the extracted spectral parameters
(e.g. the absorption wavelength, depth, and width of prominent absorption troughs)
and for which we propose an empirical, PCA-based correction approach. Based
on the correspondingly corrected surface reflectances we obtain a refined DEM
along with spectral parameter maps in which (except for the hydroxyl absorption)
topographic effects are nearly completely removed.
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21.1 Introduction

The concept of photoclinometry is introduced by Wilhelms [52] for the image-based
measurement of lunar surface slopes. The concepts of shape from shading and
photometric stereo are introduced by Horn [20] and Woodham [54], respectively.
The method of characteristic strip expansion by Horn [21] and also the method by
Kozera [29] directly yield a depth map of the surface. In contrast, other methods
by Horn [20, 22] estimate the gradient field of the surface and infer the depth map
by integration. The computational efficiency of such gradient-based approaches is
increased e.g. by Simchony et al. [47] by an analytical approach. An extensive
survey is provided in [1].

Improved results can be achieved by combining photometrically determined
surface gradient data with independently measured absolute depth data. General
solutions for this problem are proposed e.g. in [7] and [40], where a highly detailed
3D surface reconstruction is obtained by a combination of the low-frequency part of
the absolute depth data with the high-frequency component of the photometrically
determined surface gradients. Non-Lambertian metallic surfaces are reconstructed
e.g. in [53], multiple views are taken into account in [25,32,55], and moving objects
are analysed in [46].

In the context of lunar remote sensing, a global digital elevation model (DEM)
of the Moon of 100m nominal lateral resolution with a typical vertical accuracy
of 23m is described in [44], which is termed “GLD100” and has been constructed
based on the stereoscopic evaluation of images acquired by the LROC WAC (Lunar
Reconnaissance Orbiter Wide Angle Camera). LROC NAC (Narrow Angle Camera)
based stereo images analysis has led to the construction of local lunar DEMs of very
high lateral resolution [31, 36]. Detailed information about the LROC WAC and
NAC instruments can be found in [43]. A nearly global lunar hyperspectral image
mosaic of typically 140m resolution has been acquired by the Moon Mineralogy
Mapper (M3) instrument on board the Indian spacecraft Chandrayaan-1 [42] (http://
m3.jpl.nasa.gov/m3data.html).

A combination of stereo image analysis and shape from shading is used in [28]
to construct DEMs of high lateral resolution of the surface of Mars. Lunar DEMs
are generated in [33] based on images acquired by the Clementine spacecraft using a
technique termed “multi-image shape from shading”, where the elevation values and
the parameters of the surface reflectance function are adapted to the image radiance
information, assuming a uniform surface albedo. A photometric stereo method
is used for DEM construction in [10] based on overlapping images of the lunar
southern polar region acquired by the SMART-1 Advanced Moon micro-Imager
Experiment (AMIE) camera. Detailed information about the AMIE instrument can
be found in [26]. The properties of the recently acquired lunar orbital image data
sets are summarised in Table 21.1.

The global DEMs obtained by the LIDAR instrument LALT on board the
Japanese Kaguya spacecraft and the Lunar Orbiter Laser Altimeter (LOLA) instru-
ment on board the LRO spacecraft have vertical accuracies of a few metres (cf. [4]
and [31] for a short description of LALT and LOLA data, respectively). The nominal
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Table 21.1 Properties of recently acquired lunar orbital imagery. The numbers in brackets denote
the M3 target mode applied to selected regions only

Instrument Bands Wavelength (nm) Resolution (m/pixel) Reference

SMART-1 AMIE No filterC 3 Visible, 750–960 27–270 [26]
Chandrayaan-1 M3 85 (260) 461–2;976 140 (70) [42]
LROC WAC 7 320–690 100 [43]
LROC NAC 1 Visible 0:5 [43]

lateral resolution of the gridded LOLA DEM (available at http://pds-geosciences.
wustl.edu/missions/lro/lola.htm) corresponds to 30m at the lunar equator, but its
effective lateral resolution is several times lower in most regions due to missing
data and the resulting interpolation artifacts.

This study presents a method for the integration of surface gradient data obtained
by shape from shading with absolute depth data inferred from laser altimetry
measurements, relying on M3 orbital images and the global LOLA DEM. This
framework is applied to the construction of DEMs of the lunar surface, which
displays a non-Lambertian reflectance behaviour and a non-uniform albedo. The
resulting DEMs have a high effective lateral resolution that comes close to the pixel
resolution of the utilised images. Furthermore, based on the resulting DEM data
we introduce the first procedure (to our knowledge) that normalises wavelength-
dependent lunar surface reflectance values to a standard illumination and viewing
geometry based on the topography on large and small spatial scales (given the
corresponding values of the pixel resolution, large spatial scales will in the following
refer to kilometres and small scales to pixels).

21.2 Reflectance Modelling

The light power emitted by a unit surface into a unit solid angle is termed “radiance”
and is measured in W m"2 sr"1. The incoming light power per apparent unit surface
is termed “irradiance” and has the physical unit W m"2. The so-called “reflectance”
is defined as the ratio between radiance and irradiance [21]. It usually depends on
the incidence angle !i between the surface normal n and the direction l to the light
source, the emission angle !e between n and the direction v to the camera, and on
the phase angle ˛ between the vectors l and v [14] (Fig. 21.1). The radiances and
irradiances regarded in the experiments of this study are additionally normalised to
wavelength (“spectral radiance” and “spectral irradiance” [14, 27]).

A reflectance model based on the theory of radiative transfer [5] has been
proposed by Hapke [14–17], which in its general form according to [17] can be
written as

RAMSA."0;"; ˛/ D
w
4#

"0

"0 C "
Œp.˛/BSH.˛/CM."0;"/$BCB.˛/ (21.1)



470 C. Wöhler and A. Grumpe

Fig. 21.1 Illustration of the
illumination and observation
geometry

with "0 D cos !i and " D cos !e. According to [14–17], the intrinsic reflectivity
of a surface particle is denoted by w and is termed “single-scattering albedo”.
Typical planetary surfaces display a peak of the reflectance function around ˛ D 0ı.
This so-called “opposition effect” is composed of a shadow hiding [16, 17] and
a coherent backscatter [17] component, described by the functions BSH.˛/ and
BCB.˛/ in Eq. (21.1), respectively. Each of these functions is governed by two
parameters describing the strength and width of the respective component [17].
The function p.˛/ is the so-called “single-particle scattering function” describing
first-order scattering processes at the particles [14]. The term M."0;"/ according
to [17] describes multiple scattering processes, which are assumed to be isotropic
in [14–16], leading to the “isotropic multiple scattering approximation” (IMSA),
while p.˛/ is expanded as a series of Legendre polynomials in [17], resulting in the
“anisotropic multiple scattering approximation” (AMSA). An extension that takes
into account the roughness of the surface is introduced in [15].

The so-called “lunar-Lambert” function, a simplified, empirical reflectance
function for planetary surfaces, is proposed in [38] according to

RLL."0;"; ˛/ D %
!
2L.˛/

"0

"0 C "
C .1 !L.˛//"0

"
: (21.2)

The factor % depends on the reflectivity of the surface but also on camera-specific
factors such as the sensor sensitivity. The empirical function L.˛/ is determined
in [38] based on a phase angle specific maximisation of the similarity between the
lunar-Lambert reflectance RLL."0;"; ˛/ and the Hapke IMSA reflectance [14–16]
across a broad interval of incidence and emission angles for a variety of parameter
configurations of the Hapke IMSA model.

The lunar-Lambert model is commonly used as the basis for the normalisation of
reflectance data to a standard illumination and viewing geometry, as outlined e.g. in
[39]. It is favourably used for DEM construction if relative pixel intensities rather
than absolute radiance data are available.
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In the DEM construction framework proposed in Sect. 21.3, radiance images are
evaluated, where the generally non-uniform value of the single-scattering albedo w
is recovered for each surface location simultaneously with the DEM, while the other
parameters of the Hapke model [14–17] are adopted from [51] (Moon solution 1
therein) and are assumed to be constant.

21.3 DEM Construction

In the following, the surface gradients are denoted by p and q, implying a local
surface normal vector n D .!p;!q; 1/T , the surface by z, the observed radiance
by Lobs, the solar irradiance by Esun, the modelled reflectance by R, and the lateral
coordinates by x and y. The value of Esun depends on the wavelength range in
which the image has been acquired and is assumed to be known. In our remote
sensing scenario, the observed reflectance is computed by a pixel-wise division of
Lobs by Esun. For brevity, the dependence on x and y is omitted where possible.

21.3.1 The Error Functional

The description in this section and in Sect. 21.3.2 has been adapted from [18].
Horn [22] proposes a minimisation of a global error functional composed of the
reflectance error

ER D
ZZ #

Lobs.x; y/

Esun
! R .p.x; y/; q.x; y//

$2
dx dy (21.3)

and the integrability error

Eint D
ZZ h

.zx ! p/2 C
%
zy ! q

&2i
dx dy: (21.4)

We extend this framework by adding the error term

EDEM D
ZZ !

f&DEM

#
@zDEM

@x

$
! f&DEM.p/

"2

C
!
f&DEM

#
@zDEM

@y

$
! f&DEM.q/

"2
dx dy (21.5)

to the error functional E D ER C 'Eint proposed in [22], such that absolute depth
data zDEM like the LOLA DEM can be taken into account. The term EDEM takes
into account the deviation between the large-scale gradients of the depth data and
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the surface z. The noisy high-frequency component of the absolute depth data is
suppressed by the lowpass filter function f&DEM , which is implemented as a Gaussian
filter of width &DEM. The low-frequency component of the absolute depth data can be
expected to be accurate on large scales. The reconstruction errorE˙ to be minimised
thus corresponds to

E˙ D ER C 'Eint C ıEDEM (21.6)

with ' and ı as weight parameters.
At this point one might argue that it would be more straightforward to take into

account the low-frequency component of zDEM directly instead of the corresponding
surface gradients. However, a computationally efficient formulation comparable
to the gradient-based numerical scheme presented in Sect. 21.3.2 is not available,
such that an error term based on zDEM would be much more intricate to minimise.
Furthermore, the normalisation of the hyperspectral data described in Sect. 21.5
requires accurate values of the surface gradients rather than the surface itself, such
that we expect an explicit determination of the surface gradients to be beneficial in
that context.

21.3.2 Variational Optimisation Scheme

The minimisation ofE˙ with a nonzero value of ' aims for generating an integrable
surface gradient field. For this purpose, we use a variational scheme according to
[22], leading to

p.nC1/ D z.n/x C
1

'

!
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Esun
!R

'
z.n/x ; z

.n/
y

(" @R
@p

ˇ̌
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C ı
'

ZZ !
f&DEM

#
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@x

$
! f&DEM.z

.n/
x /

"
@f&DEM .p/

@p

ˇ̌
ˇ̌
z.n/x

dxdy

z.nC1/ D Nz.n/ ! "
2

(

h
p.nC1/x C q.nC1/y

i
: (21.7)

The corresponding equation for q is obtained analogously. In Eq. (21.7), the average
over the ( nearest neighbouring pixels is denoted by Nz, and the lateral offset between
neighbouring pixels is given by ). The surface may be initialised e.g. by the
LOLA DEM.

The double integral in Eq. (21.7) corresponds to @EDEM.p;q/
@p

. A computationally
efficient implementation is obtained for the complete image by two consecutive
linear filtering operations if the filtering function f&DEM is implemented as a linear
filter. According to [13], the double integral is written as a sum over U " V discrete
cells, where the filter function f&DEM is defined as a K " L filter matrix F&DEM ,
leading to
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In Eq. (21.8), the filter f&DEM is correlated with the discrete data. The areal extent
A.i; j / of a discrete cell is defined such that it denotes the surface area covered
by the respective pixel. This quantity is not necessarily identical for all pixels. The
summands in Eq. (21.8) are only non-zero for u D lCk and v D jCl . Omitting the
zero-valued summands and shifting the indices i and j such that they are centred at
u and v yields
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(21.10)

According to Eq. (21.9), @EDEM.p;q/
@p

is obtained by a correlation between the filter

matrix F&DEM and the difference between the surface gradient @zDEM
@x

of the absolute
depth map and the surface gradient p to be optimised, and in a second step a
convolution of the correlation result with the filter matrix F&DEM weighted by the
areal extent A.i; j /. The value of @EDEM.p;q/

@q
is obtained in an analogous manner

(cf. Eq. (21.10)). The order of correlation and convolution in Eqs. (21.9) and (21.10)
is exchanged if the filter function f&DEM is defined by a convolution rather than a
correlation.

For a simultaneous reconstruction of the surface and the spatially non-uniform
albedo, the optimisation according to Eq. (21.7) is incorporated into a further
iterative scheme. The angles ! .m/i and ! .m/e and their cosines ".m/0 and ".m/are
determined based on the surface z.m/ and the corresponding gradients p.m/ and
q.m/ for each iteration m. The non-uniform single-scattering albedo w.m/.x; y/ is
obtained by solving

R
'
"
.m/
0 ;".m/; ˛;w.m/.x; y/

(
D Lobs.x; y/

Esun
(21.11)
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with respect to w.m/.x; y/ for each pixel .x; y/. A Gaussian low-pass filter G
&
.m/
w

of width & .m/w is then convolved with w.m/.x; y/. The surface gradients p.m C 1/,
q.mC 1/, and the surface z.m C 1/ of the subsequent step .mC 1/ are computed
based on the filtered albedo map

h
G
&
.m/
w
# w.m/.x; y/

i
. The width parameter & .m/w is

decreased in the course of the iteration process such that an albedo map of increasing
spatial resolution is obtained.

21.3.3 Initialisation by an Extended Photoclinometry Scheme

Photoclinometry denotes the pixel-wise determination of the surface gradients
according to the observed image reflectances by setting the reflectance error ER
(cf. Eq. (21.3)) to zero for each pixel [22]. However, if only a single image is
available but two surface gradients and (in the case of a non-uniform albedo map) the
surface albedo need to be estimated, this ill-posed problem has an infinite number of
solutions. Commonly, assumptions are made that regularise the problem and reduce
the solution space to a single solution. For example, the albedo might be assumed
to be constant over the surface or line-wise constant in the azimuthal direction of
incident light. Additionally, the gradient perpendicular to the azimuthal direction of
the incident light is difficult to estimate accurately; if it is small, it may be set to
zero [22]. A constant or line-wise constant albedo can be estimated when the mean
surface slope on large spatial scales is known. A favourable property of the surface
gradients estimated by photoclinometry is that they are not affected by regularisation
conditions such as smoothness of the surface. On the other hand, spurious artifacts
tend to occur perpendicular to the direction of incident light.

However, such assumptions are obsolete in the case of independent depth infor-
mation available on large spatial scales. Hence, instead of setting the reflectance
error ER to zero independently for each pixel, we minimise a weighted sum of the
reflectance error ER according to Eq. (21.3) and the DEM error EDEM according
to Eq. (21.5). Therefore, in analogy to classical photoclinometry, our extended
photoclinometry scheme does not take into account a regularisation term such
as smoothness or integrability of the surface gradients. Rather, we perform an
independent pixel-wise minimisation of E˙ according to Eq. (21.6) with ' D 0
[11]. In order to examine the behaviour of this minimisation, the Hessian matrix of
EDEM is required. For its first diagonal element we obtain the expression
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In Eq. (21.12), kC i D 0 and l C j D 0 must hold for all non-zero summands, and
the equation reduces to

@2EDEM

@p2
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iD"K=2

L=2X

jD"L=2
F 2
&DEM

.!i;!j / $ A.uC i; vC j /: (21.13)

The second derivative with respect to q has the same value. Since neither Eq. (21.9)
depends on q nor Eq. (21.10) depends on p, the mixed derivatives are given by

@2EDEM

@p@q
D @2EDEM

@q@p
D 0: (21.14)

Therefore, the Hessian matrix of EDEM reduces to a diagonal matrix. Due to the
fact that not all filter coefficients of F&DEM are zero and the pixel area A is positive
by definition, all eigenvalues of the Hessian matrix are positive for all pixels. This
implies thatEDEM possesses only one global minimum. Assuming a minimisation of
EDEM with the soft constraint ER weighted by 1=ı, convergence is thus guaranteed
for sufficiently large ı.

The resulting surface gradients p and q may be quite far from being integrable,
such that we determine the “nearest” surface z based on the approach introduced in
[21]. As an alternative to the LOLA DEM, the resulting surface can be used as an
initialisation of the variational optimisation scheme described in Sect. 21.3.2. It will
be shown in Sect. 21.4 that this initialisation results in a significantly higher absolute
reconstruction accuracy.

The albedo map is computed pixel-wise using the initial surface and is then
low-pass filtered as explained in Sect. 21.3.2. Since the method by Horn [21] of
estimating the surface z from the gradients p and q does not allow large variations
of z on large spatial scales, we apply a pyramidal approach, where both the image
and the LOLA DEM are downscaled npyr times by a factor of 2. Starting from the
lowest resolution level, the surface and the albedo map are computed and passed on
to the next pyramid level until the full image resolution is reached.

21.4 Results of DEM Construction

For DEM construction, we utilise imagery acquired with the Moon Mineralogy
Mapper (M3) on board the Indian Chandrayaan-1 spacecraft. The M3 instrument
is a hyperspectral pushbroom sensor with (in global mode) 85 pixel-synchronous
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spectral channels with 20–40nm per channel with centre wavelengths between
461 and 2,976 nm, where the image resolution typically corresponds to 140m
per pixel [42] (cf. also Table 21.1). The M3 data archive accessible at http://m3.
jpl.nasa.gov/m3data.html comprises radiance images for each wavelength channel
and provides for each image pixel the selenographic longitude and latitude as
well as the incidence angle ! .0/i , the emission angle ! .0/e , and the phase angle ˛,
where topography is neglected and a smooth spherical surface is assumed for the
given values of ! .0/i and ! .0/e . We compute the reflectance error ER as the sum of
squared channel-wise errors according to Eq. (21.3) for channels 50–60, covering
the wavelength range from 1; 579 to 1;978 nm. As the lunar surface temperature
may reach up to 396K [50], we do not use channels with centre wavelengths
beyond 2;000 nm in order to avoid the resulting thermal radiance component. The
DEM error according to Eq. (21.5) is computed based on the gridded DEM derived
from LOLA data (http://pds-geosciences.wustl.edu/missions/lro/lola.htm), which
provides absolute elevation values relative to the mean lunar radius of 1;738 km
and is georeferenced to the same coordinate system as the M3 images.

Our first example DEM covers the eastern half of the lunar crater Alphonsus,
which shows a distinctly non-uniform surface albedo due to the presence of
pyroclastic deposits on the crater floor which consist of dark volcanic ash [9].
Bright highland material appears as high-albedo regions. This crater is well suited
for demonstrating the capability of the DEM construction algorithm proposed in
Sect. 21.3 to separate radiance variations due to topography from those due to non-
uniform albedo. The M3 image of Alphonsus, the corresponding LOLA DEM, the
refined DEM and the albedo map are shown in Fig. 21.2. Another lunar region
displaying distinct albedo variations is the crater Bullialdus (cf. Fig. 21.3). Our
refined DEM reveals the terraced structure of the inner crater walls and a multitude
of small craters which are invisible in the LOLA DEM. Similarly, we found that
despite the high nominal lateral resolution of the GLD100 according to [44], our
constructed DEMs reveal much finer details than the GLD100 (cf. also [12]).

No topographic map of sufficiently high lateral resolution is available for the
examined regions as ground truth. In order to nevertheless obtain an estimate of the
absolute accuracy, a synthetic image of Bullialdus crater was created by illuminating
the constructed DEM using the inferred albedo map. The illumination and viewing
direction were adopted from the original M3 image. This synthetic image was
used as an input image for our DEM construction algorithm. When the variational
optimisation scheme is initialised with the LOLA DEM, the reconstruction error
(RMSE) corresponds to 54m, while it becomes as low as 9m when the result
of the extended photoclinometry scheme is used for initialisation. The RMSE of
the inferred albedo map at 1;978 nm wavelength amounts to 0:007 and 0:005,
corresponding to 1:8 and 1:3% of the mean albedo of 0:391, respectively.

These results were obtained by performing 8 iterations of the variational
approach (cf. Sect. 21.3.2) with &w decreasing from 11 to 7 pixels, &DEM D 7 pixels,
' D 9 " 10"4, and ı D 2:5 " 10"5. The values of ' and ı have been chosen as
small as possible for the optimisation scheme to converge in order to maximise
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Fig. 21.2 Part of the floor of the lunar crater Alphonsus. (a) M3 radiance image at 1;978 nm
(Courtesy NASA/JPL-Caltech). (b) Map of the single-scattering albedo w at 1;978 nm, obtained
with &w D 5 pixels. The grey value range is 0–0:6. (c) LOLA DEM. (d) Refined DEM. In the
shaded perspectivical views of the DEMs, the vertical axis is three times exaggerated and the
albedo is assumed to be constant

the influence of the reflectance error ER. The variational optimisation scheme
was initialised by the result of the extended photoclinometry method outlined in
Sect. 21.3.3, where we have set &w D 16 pixels due to the low effective lateral
resolution of the LOLA DEM, ı D 0:05, and npyr D 4. Furthermore, we achieved
a favourable convergence behaviour when applying the pyramidal approach also in
the variational optimisation. As the photoclinometry result used for initialisation is
already close to the final result, we set npyr D 1 in the variational scheme.

21.5 Calibration of Hyperspectral Imagery

This section describes the preprocessing and normalisation of the hyperspectral
image data used for DEM construction. Furthermore, the topography dependence of
the spectral parameters extracted from the pixel spectra is regarded, and an empirical
topography correction scheme based on a principal component analysis (PCA) is
proposed. The topography dependence of spectral ratios extracted from Clementine
multispectral imagery and the correspondingly estimated abundances of chemical
compounds in the lunar soil is shown in [24]. As our method is based on the ratios
of spectra acquired at almost identical phase angles ˛ (the variation of ˛ within an
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Fig. 21.3 Lunar crater Bullialdus. (a) M3 radiance image at 750 nm (Courtesy NASA/JPL-
Caltech). (b) Map of the single-scattering albedo w at 750 nm, obtained with &w D 9 pixels. The
grey value range is 0–0:35. (c) LOLA DEM. (d) Refined DEM. In the shaded perspectivical views
of the DEMs, the vertical axis is three times exaggerated and the albedo is assumed to be constant

image is always smaller than a few degrees), the approach based on an empirical
phase angle dependent photometric function suggested in [19] for M3 data is not
able to perform such a correction of the spectra with respect to local topography.

21.5.1 Preprocessing and Normalisation of Reflectance
Spectra

In our spectral analyses we omit M3 channels 1–5 (which are known to be poorly
calibrated [23]) and 85 (this channel is also omitted in [19]) and only use channels
6–84, covering the wavelength range from 661 to 2;936 nm (cf. Fig. 21.4 for a
typical observed radiance spectrum). In remote sensing, it is a standard procedure
to take into account the thermal emission component of the observed spectra [45].
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Fig. 21.4 Typical M3

radiance spectrum (channels
6–84 covering the wavelength
range 661–2;936 nm)

At this point, we make the assumption that the observed radiance spectrum Lobs
*

between about 2;400 and 3;000 nm used for temperature estimation can be modelled
as the sum of a reference spectrum and the emission spectrum � B*.T / of a black
body of temperature T and emissivity � [45], which we assume to be wavelength-
independent. Our reference spectrum R62231* is the extrapolation of a linear fit to
the laboratory reflectance spectrum of returned lunar sample no. 62231 (http://
www.planetary.brown.edu/pds/AP62231.html). The linear fit is performed in the
wavelength range 2;400–2;600nm of the laboratory spectrum and yields the linear
reference spectrum

R62231* D 0:081151 * å "m$C 0:1423: (21.15)

The corresponding radiance spectrum is readily obtained by multiplyingR62231* with
the solar irradiance spectrum Esun

* . Hence, the model equation

Lmodel
* D aR62231* Esun

* C � B*.T / (21.16)

is fitted to the observed radiance spectrum Lobs
* of each M3 pixel in the wavelength

range 2;377–2;936nm, where a is a mean surface reflectivity parameter. This
procedure yields maps of the parameters a, � , and T . We always obtained values
of the emissivity � close to 1. Notably, due to the limited wavelength coverage
of the M3 spectra, it is not possible to reliably estimate temperature values below
about 300K. Finally, the thermally corrected radiance spectrum Lcorr

* is obtained
according to

Lcorr
* D Lobs

* ! � B*.T /: (21.17)

Figure 21.5 shows a comparison between the apparent reflectance Lobs
* =Esun

*

obtained without thermal correction and the thermally corrected reflectance
Lcorr
* =Esun

* for an inferred surface temperature of T D 368K. The deviation rapidly
increases for wavelengths beyond 2;200 nm.
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thermally corrected
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At this point, we compute for each pixel the true incidence angle !i and
emission angle !e based on the constructed DEM and the angles ! .0/i and ! .0/e
provided with the M3 image data under the assumption of a smooth spherical
surface. The single-scattering albedo w.x; y/ obtained based on Eq. (21.11) during
the DEM construction process is then inserted into the utilised reflectance model
(Hapke IMSA [14–16] or AMSA [17]), using the standard illumination and viewing
configuration with ! ref

i D 30 � , ! ref
e D 0 � , and � refD 30 � , which yields the normalised

reflectance Rnorm
* according to

Rnorm
* .x; y/ D RIMSA=AMSA

%
"ref
0 ;"

ref; � ref;w.x; y/
&

(21.18)

with "ref
0 D cos.! ref

i / and "ref D cos.! ref
e /. The other parameters of the Hapke

model are chosen according to [51] (Moon solution 1 therein).
In this study we use the Hapke IMSA [14–16] and AMSA [17] models

for reflectance normalisation. However, the lunar-Lambert model according to
Eq. (21.2) is commonly used instead of the Hapke model as the basis for the
normalisation of reflectance data [39]. Since this results in a multiplication of the
original reflectances by a wavelength-independent factor, wavelength-dependent
effects then have to be taken into account by additional correction functions with
empirically determined parameters (cf. e.g. [19, 39]).

In the normalised reflectance spectra, one would expect topography effects to
be absent. We will see in Sect. 21.5.3, however, that even after normalisation to
standard illumination and viewing geometry subtle topography effects can still
be observed which may have a significant influence on the extracted spectral
parameters.

21.5.2 Extraction of Spectral Parameters

A typical thermally corrected lunar reflectance spectrum is shown in Fig. 21.6. The
reflectance strongly increases from visible towards near-infrared wavelengths. The
absorption trough around 1;000 nm is due to minerals containing iron in the form of
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Fig. 21.6 Typical thermally corrected lunar reflectance spectrum, illustrating the primary absorp-
tion troughs

Fe2C ions [3,35,48]. A second absorption trough around 2;000 nm can be attributed
to the mineral pyroxene [3]. The absorption trough around 2;800 nm is described
e.g. in [6], where it is attributed to the presence of water molecules and OH" ions in
the lunar soil. According to [37], they originate from chemical reactions of oxygen
contained in the minerals of the lunar surface with protons of the solar wind.

Easily obtainable quantities to characterise the depths of the ferrous absorption
trough around 1;000 nm and the hydrous absorption trough around 2;800 nm are the
diagnostic spectral ratios Rnorm

950 =R
norm
750 (cf. e.g. [9]) and Rnorm

2817 =R
norm
2657 , respectively.

Additionally, the detailed composition of lunar iron-bearing minerals causes subtle
variations of the shape of the ferrous absorption trough, which can be examined
based on the continuum-removed spectrum [35, 48].

To compute the continuum-removed reflectance spectrum, the normalised
reflectance spectrum is smoothed by adapting a curve for which the mean squared
deviation from the measured reflectance values and the mean squared second
derivative are minimised simultaneously [34]. The spectral continuum is then
approximated by a straight line between the smoothed reflectances at 701 and
1;249 nm (cf. [30]). Division of the smoothed reflectance spectrum by the linear
continuum then yields the continuum-removed reflectance spectrum [30], to which
an interpolation based on the Akima method [2] is applied (cf. Fig. 21.7).

The extracted spectral parameters of the absorption trough around 1;000 nm are
(as illustrated in Fig. 21.7) the absorption wavelength *abs, the full width at half
maximum (FWHM), the absorption depth ı (cf. [30]), and the integrated band depth
(IBD) [8], corresponding to the area under the trough in Fig. 21.7. The absorption
wavelength e.g. allows to differentiate between pyroxenes containing high and low
abundances of calcium [35, 48]. The absorption depth depends on the amount of
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Fig. 21.7 Typical smoothed and continuum-removed reflectance spectrum showing the ferrous
absorption trough around 1;000 nm

Fig. 21.8 (a) M3 750 nm radiance image of the crater Bullialdus (Courtesy NASA/JPL-Caltech).
(b) Single-scattering albedo w at 750 nm. (c) and (d) Integrated band depth (IBD) of the ferrous
absorption trough around 1;000 nm inferred based on the lunar-Lambert and on the Hapke AMSA
reflectance function, respectively (grey value range 0–50). (e) Relative difference of the IBD values
(grey value range 0–0:15)

mafic minerals [48] and also on the so-called “optical maturity” of the soil [41],
i.e. the period of time the surface has been exposed to high-energy solar radiation.
A broad absorption, i.e. a large FWHM value, indicates that olivine occurs in the soil
[35, 48]. The IBD of the ferrous absorption trough is correlated with the abundance
of pyroxene [8].

Figure 21.8 illustrates the difference between the values of the IBD of the
ferrous absorption trough inferred based on the wavelength-independent lunar-
Lambert reflectance function [38] according to Eq. (21.2) and on the Hapke AMSA
reflectance function [17] according to Eq. (21.1), respectively.
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Fig. 21.9 (a) M3 750 nm radiance image of the Huggins test region (Courtesy NASA/JPL-
Caltech). A location on the flat floor of the crater Huggins and two locations inside a small crater
just south of Huggins are indicated by arrows. (b) Continuum-removed spectra of the indicated
locations. Although from a geological point of view, spectra 2 and 3 from the inner wall of the
small crater should be identical, a strong dependence on surface orientation is apparent

21.5.3 Topography Dependence of Spectral Parameters

Figure 21.9 shows continuum-removed spectra of a location on the flat floor of
the crater Huggins and two locations inside a small crater just south of Huggins.
Although from a geological point of view, spectra 2 and 3 from the inner wall
of the small crater should be identical, the spectra appear to be distorted and a
strong dependence on surface orientation is visible. In contrast, the spectrum 1 of
the flat crater floor displays a regular, symmetric absorption trough. Similar effects
are observed for all regions examined in this study. They may in part result from
radiance calibration errors e.g. due to a nonlinear behaviour of some M3 channels.
However, one would expect such nonlinearities to result in a radiance dependence
of the distortions, whereas in Fig. 21.9 the average radiances of locations 1 and
2 are nearly identical while spectrum 2 displays a distortion but spectrum 1 does
not. Hence, inaccuracies of the reflectance model probably also contribute to the
topographic effects.

Regarding the spectral parameters, the absorption wavelength *abs shows the
strongest dependence on topography. For a part of the floor of the crater Purbach,
Fig. 21.10a, b shows that the slopes inclined towards the sun have much lower
absorption wavelengths *abs than the slopes inclined away from the sun. This
systematic effect may lead to geologic misinterpretations as it is very unlikely that
e.g. the western and the eastern flank of the mountain range in the image centre
consist of strongly different materials, as it would appear from a naive interpretation
of the *abs values.
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Fig. 21.10 (a) DEM of the floor of the crater Purbach with M3 750 nm radiance image as overlay
(Radiance image: courtesy NASA/JPL-Caltech). (b) Topography dependence of the absorption
wavelength *abs of the ferrous absorption trough. (c) Result of the correction of the topography
dependence of *abs according to Sect. 21.5.4. Low-radiance pixels are masked out in dark purple
colour. The range of the colour-coded spectral parameter maps is 880–1;000 nm

21.5.4 Empirical Topography Correction

This section describes an empirical approach to the correction of the effect
of topography on the M3 spectra. The basic assumption, which is geologically
reasonable, is that all pixels on the inclined inner wall of a small crater should have
identical reflectance spectra, while inclined and even surface parts may possibly
display systematically different spectra.

Hence, the inclined inner wall of a small crater in the region under study is used
as a reference region, where the reference spectrum S* D hR*iref is taken to be
the average of all spectra of the reference region. For each pixel position .x; y/, the
normalised ratio spectrum is then defined as

Q*.x; y/ D
R*.x; y/=S*

hR*.x; y/=S*i*
: (21.19)

A principal component analysis (PCA) of all normalised ratio spectra of the refer-
ence region yields a set of PCA components P .i/

* and, for each pixel, a set of PCA
coefficients ai . The DEM constructed according to Sect. 21.3 allows to compute a
pixel-wise unit normal vector n, which in turn yields the surface inclination angle
& D arccos .nz/ and the azimuth angle  D atan2

%
ny; nx

&
DW arctan

%
ny=nx

&
,

where & 2 Œ0ı; : : : ; 90ı$ and  2 Œ0ı; : : : ; 360ı$. A polynomial function of second
order in & and eighth order in  is fitted to the PCA coefficients extracted from the
reference region. For a pixel located at .x; y) outside the reference region, the PCA
coefficients ai .&.x; y/;  .x; y// are then computed according to the DEM, which
yields a corrected normalised ratio spectrum

Qcorr
* .x; y/ D R*

S*
!

KX

iD1
ai .&.x; y/;  .x; y// P

.i/
* (21.20)



21 Integrated DEM Construction and Calibration of Hyperspectral Imagery 485

500 1000 1500 2000 2500 3000

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

wavelength [nm]

M
ea

n,
 p

ri
nc

ip
al

 c
om

po
ne

nt
s 

of
 Q

λ

M
ea

n,
 p

ri
nc

ip
al

 c
om

po
ne

nt
s 

of
 Q

λ

PC1

PC2

<Q
λ
>

ref
 − 1

500 1000 1500 2000 2500 3000
−0.3

−0.2

−0.1

0

0.1

0.2

wavelength [nm]

<Q
λ
>

ref
 − 1

PC1

PC2

a b

Fig. 21.11 Average value of Q*.x; y/ according to Eq. (21.19) and the first two principal
components (denoted by PC1 and PC2), extracted from the pixels belonging (a) to the inner
walls of two small craters just south of Huggins and (b) to those of the small crater Purbach A,
respectively

and a corrected reflectance spectrum

Rcorr
* .x; y/ D Qcorr

* .x; y/S*: (21.21)

For our two test regions, the first four principal components comprise 98% of the
information, such that we always set K D 4 in Eq. (21.20). The average value of
Q*.x; y/ is shown along with the first two PCA components for the Huggins and
Purbach test regions in Fig. 21.11. The differences between the test regions are due
to the higher southern selenographic latitude of the Huggins region, resulting in a
more oblique solar illumination angle.

Based on the corrected reflectances, a refined DEM is constructed according to
Sect. 21.3.2, where the Hapke IMSA reflectance model is used due to convergence
problems with the AMSA model. Finally, the reflectance normalisation and PCA-
based topography correction is repeated using the Hapke AMSA model, where it
is favourable to neglect low-radiance pixels (e.g. shaded crater walls or mountain
flanks) in the analysis due to their very low signal-to-noise ratio.

21.6 Results of Topography Correction and Final DEM
Construction

The final DEMs of the Huggins and Purbach test regions are shown in Fig. 21.12,
showing a high amount of small-scale surface detail. The spectral parameters
extracted from the uncorrected and the final corrected reflectance spectra of these
regions are shown in Figs. 21.13 and 21.14, respectively, where dark pixels with
750nm radiances below 7W m"2 +m"1 sr"1 are masked out. Figure 21.10c shows
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Fig. 21.12 Final DEMs of the test regions (a) Huggins and (b) Purbach. The vertical axis is three
times exaggerated. The shaded DEM rather than the original image is used as an overlay, such that
all visible small-scale detail is actually present in the DEM and not only in the original image

Fig. 21.13 M3 750 nm radiance image of the Huggins test region (Courtesy NASA/JPL-Caltech)
(upper left) and spectral parameters extracted from the uncorrected and from the final corrected
reflectance spectra (low-radiance pixels are masked out in black)

the final DEM of the Purbach test region with false-colour overlay of the absorption
wavelength *abs extracted from the uncorrected and final corrected reflectance spec-
tra, respectively. For all examined spectral parameters, the PCA-based correction
according to Sect. 21.5.4 is able to eliminate most topographic effects.

As an independent test example, we examine the crater Bullialdus. This crater is
located at approximately the same selenographic latitude as the Purbach test region,
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Fig. 21.14 M3 750 nm radiance image of the Purbach test region (Courtesy NASA/JPL-Caltech)
(upper left) and spectral parameters extracted from the uncorrected and from the final corrected
reflectance spectra (low-radiance pixels are masked out in black)

resulting in similar illumination conditions in the corresponding M3 data. Hence,
we use the PCA components P .i/

* and the coefficient functions ai .&;  / inferred
from the Purbach region in order to compute corrected reflectances according
to Eq. (21.21) and extract the corresponding corrected spectral parameters. The
spectral parameters extracted from the uncorrected and corrected reflectances are
shown in Fig. 21.15 (cf. Fig. 21.3 for the final DEM). Again, the topography
correction is most obvious in the map of the absorption wavelength *abs, which
is used as an overlay of the final DEM of Bullialdus in Fig. 21.16. After correction,
the crater walls, most of the crater floor, and the even surface outside the crater
display similar values of *abs, only the central peaks still display excessively low
absorption wavelengths. These low *abs values are much more clearly confined to
the central peaks than without correction. In [49], the spectral characteristics of the
central peaks of Bullialdus are attributed to the occurrence of the mineral norite.

Figure 21.15 shows that the cold, shaded flanks of the central peak of Bullialdus
display a stronger hydroxyl absorption (i.e. lower R2817=R2657 ratio) than the
warmer crater floor. This effect is not eliminated by the empirical correction
approach. Temperatures below 250–300K cannot be estimated reliably due to the
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Fig. 21.15 M3 750 nm radiance image of Bullialdus crater (Courtesy NASA/JPL-Caltech) (upper
left) and spectral parameters extracted from the uncorrected and from the final corrected reflectance
spectra

Fig. 21.16 Final DEM of Bullialdus crater with false-colour overlay of the absorption wavelength
*abs (range: 880–1;000 nm) extracted (a) from the uncorrected and (b) from the final corrected
reflectance spectra, respectively

limited spectral range, such that for these pixels no thermal correction can be
performed. The high R2817=R2657 values southwest of the crater appear to be due
to cool surface parts with temperatures just below the detection threshold, for which
the thermal correction is inaccurate. Generally spoken, it is not possible based on
the available data to distinguish topography effects on the R2817=R2657 ratio (cf. also
Figs. 21.13 and 21.14) from thermal effects.
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21.7 Summary and Conclusion

A method for the construction of lunar DEMs which combines surface gradients
obtained by photoclinometry and shape from shading with absolute depth data
(here: lunar orbital LIDAR data) by exploiting their respective advantages has
been presented. The lunar surface has a non-Lambertian reflectance behaviour and
a non-uniform albedo. In a first step, the surface gradients are estimated based
on an extended photoclinometry approach which takes into account both image
and LIDAR data, and the surface is reconstructed by integration. The second step
consists of the minimisation of a global error functional based on a variational
approach in order to combine the surface gradient information on small spatial
scales and the LIDAR data on large spatial scales, where the result of the first
step is used for initialisation. This framework has been applied to the construction
of DEMs of lunar surface regions. Based on the available hyperspectral imagery,
the obtained DEMs have been used to normalise the wavelength-dependent surface
reflectance to a standard illumination and viewing geometry. In this context, an
empirical, PCA-based correction approach has been proposed to compensate the
detected systematic topography-dependent distortions of the pixel spectra which
affect the extracted spectral parameters. Relying on the corrected surface reflectance
data, refined DEMs have been constructed and spectral parameter maps have been
obtained in which (except for the hydroxyl absorption) topographic effects are
nearly completely removed.
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18. Herbort, S., Grumpe, A., Wöhler, C.: Reconstruction of non-Lambertian surfaces by fusion
of shape from shading and active range scanning. In: Proceedings of IEEE International
Conferences on Image Processing, Brussels, Belgium, pp. 17–20 (2011)

19. Hicks, M.D., Buratti, B.J., Nettles, J., Staid, M., Sunshine, J., Pieters, C.M., Besse, S.,
Boardman, J.: A photometric function for analysis of lunar images in the visual and infrared
based on Moon Mineralogy Mapper observations. J. Geophys. Res. 116, E00G15 (2011).
doi:10.1029/2010JE003733

20. Horn, B.K.P.: Shape from shading: a method for obtaining the shape of a smooth opaque object
from one view. MIT Technical Report 232, Massachusetts Institute of Technology (1970)

21. Horn, B.K.P.: Robot Vision. MIT Press, Cambridge, MA (1986)
22. Horn, B.K.P.: Height and gradient from shading. AI Memo 1105A, MIT AI Lab (1989)
23. Isaacson, P.: M3 overview and working with M3 data. M3 Data Tutorial at Lunar Planetary Sci-

ence XXXXII. http://m3.jpl.nasa.gov/pubs/Isaacson M3DataWorkshop LPSC2011.pdf (2011)
24. Jolliff, B.L.: Clementine UVVIS multispectral data and the Apollo 17 landing site: what can

we tell and how well? J. Geophys. Res. 104(E6), 14123–14148 (1999)
25. Joshi, N., Kriegman, D.J.: Shape from varying illumination and viewpoint. In: Proceedings of

the International Conference on Computer Vision. IEEE, New York (2007)
26. Josset, J.-L., et al.: Science objectives and first results from the SMART-1/AMIE multicolour

micro-camera. Adv. Space Res. 37, 14–20 (2006)
27. Kieffer, H.H., Stone, T.C.: The spectral irradiance of the Moon. Astron. J. 129, 2887–2901

(2005)
28. Kirk, R.L., Soderblom, L.A., Howington-Kraus, E., Archinal, B.: USGS high-resolution

topomapping of Mars with Mars orbiter camera narrow-angle images. In: Proceedings of
ISPRS Symposium on Geospatial Theory, Processing and Applications. International Society
for Photogrammetry and Remote Sensing (2002)



21 Integrated DEM Construction and Calibration of Hyperspectral Imagery 491

29. Kozera, R.:. Existence and uniqueness in photometric stereo. Appl. Math. Comput. 44(1),
1–103 (1991)
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Non-rigid shapes, 325

Object decomposition, 126, 131
On-line learning model, 408
Optical flow, 210
Optimization, 142

combinatorial, 427
convex, 421
convex relaxation, 421, 425
global, 424
global local, 379
globally optimal, 379
Karush-Kuhn-Tucker (KKT) conditions,
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Levenberg-Marquardt method, 288
primal-dual problem, 432
quadratic programming, 328, 329
variational methods, 472
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Parameter estimation, 421
Partial differential equations (PDEs), 54, 162,

189, 220, 243, 269, 308, 331, 392,
411, 450

on graphs, 62
Perceptual organization, 460
Photoclinometry, 474
Photometric stereo, 217, 468

coplanar light sources, 220
uniqueness, 230

Point cloud, denoising, 281, 286
Principal component analysis (PCA), 92, 102,

281, 344, 408, 409, 477
Principal geodesic analysis (PGA), 100, 104
Principal nested spheres (PNS), 105
Pruning, 131
Pseudo surface skeleton (PSS), 118

Quaternions, 43

Reaction
diffusion, 439, 453
scale space, 453

Reflectance model
spectra, 478
surface albedo, 468, 469

Region-growing approach, 21
Regression, 33

on manifolds, 33, 34, 42
in shape spaces, 44

Remeshing, 243
adaptive, 249

Riemannian geometry, 34, 161, 269
Riemannian metric, 331
Robust statistics, 288

Sampling, anisotropic, 243
Scale space, 202, 304, 310

reaction diffusion, 453
Segmentation, 4, 51, 191, 207, 210, 261, 290,

421
active contour, 409
on graphs, 67
motion-based, 210, 261
of surfaces, 261

Semi-Lagrangian schemes, 189, 193, 238
Shape(s)

anisotropy, 135, 150
articulated, 261, 264

correspondence, 325
deformable, 159
dynamic, 439
dynamical statistical method, 413
metric structure, 333
models, 159
multi-component, 135, 140, 148
non-rigid, 159
orientability measure, 151
orientation, 135, 136, 139, 147
priors, 345, 407
recovery, 217, 236, 342
representation, 166, 243
symmetry, 462

Shape from shading (SfS), 190, 196, 217, 342,
468

Similarity, 326
Single view reconstruction, 341

for curved surfaces, 341
inflation problem, 363
survey, 341

Skeletal models
nested sphere statistics, 91
of non-branching objects, 93
s-rep, 93, 94

Skeleton, 91
comparative graph matching, 77, 82
complexity, 82
3D, 115
disconnected, 460
exactness of reconstruction, 81
homotopy, 81
minimality, 81
partition, 127, 128
pruning, 80, 124
three-partite, 439, 459

Skeletonization, 51, 130
comparative skeleton graph matching, 77
discrete, 115
flux-ordered adaptive thinning, 77, 78
flux-ordered thinning, 78
Hamilton-Jacobi method, 76
Hamilton-Jacobi skeletons, 78
homotopic thinning, 75–77
maximal disc thinning, 77, 79
medial axis transform, 75, 115
quality criteria, 75, 77, 81
thinning order, 77, 124

Spectral parameters, 477
s-Rep

discrete, 96
fitting, 97, 99
probabilistic analysis, 96, 105

Statistical shape analysis, 33
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Structuring graph, 56
Support set, 385
Surface skeleton, 115
Symmetry, intrinsic, 115, 219, 228, 326, 333,

345, 462

Tari, Shah and Pien (TSP), 450, 453
Top-down and bottom-up, 299
Total variation, 384
Total variation (TV) regularization,
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Variational
functional, 211, 379
methods, 379, 422, 442
segmentation, 263, 422

Viscosity solutions, 189

Watershed, 16
Weighting scheme, 386

Zone of influence, 119


	cover
	Part I Discrete Shape Analysis
	Chapter1 Modeling Three-Dimensional Morse and Morse-SmaleComplexes
	Chapter2 Geodesic Regression and Its Application to Shape Analysis
	Chapter3 Segmentation and Skeletonization on Arbitrary Graphs Using Multiscale Morphology and Active Contours
	Chapter4 Refined Homotopic Thinning Algorithms and Quality Measures for Skeletonisation Methods
	Chapter5 Nested Sphere Statistics of Skeletal Models
	Chapter6 3D Curve Skeleton Computation and Use for Discrete Shape Analysis
	Chapter7 Orientation and Anisotropy of Multi-component Shapes

	Part II Partial Differential Equations for Shape Analysis
	Chapter8 Stable Semi-local Features for Non-rigid Shapes
	Chapter9 A Brief Survey on Semi-Lagrangian Schemesfor Image Processing
	Chapter10 Shape Reconstruction of Symmetric Surfaces Using Photometric Stereo
	Chapter11 Remeshing by Curvature Driven Diffusion
	Chapter12 Group-Valued Regularization for Motion Segmentation of Articulated Shapes
	Chapter13 Point Cloud Segmentation and Denoising via Constrained Nonlinear Least Squares Normal Estimates
	Chapter14 Distance Images and the Enclosure Field: Applications in Intermediate-Level Computer and Biological Vision

	Part III Optimization Methods for Shape Analysis
	Chapter15 Non-rigid Shape Correspondence Using Pointwise Surface Descriptors and Metric Structures
	Chapter16 A Review of Geometry Recovery from a Single Image Focusing on Curved Object Reconstruction
	Chapter17 On Globally Optimal Local Modeling: From Moving Least Squares to Over-parametrization
	Chapter18 Incremental Level Set Tracking
	Chapter19 Simultaneous Convex Optimization of Regions and Region Parameters in Image Segmentation Models
	Chapter20 Fluctuating Distance Fields, Parts, Three-Partite Skeletons
	Chapter21 Integrated DEM Construction and Calibration of Hyperspectral Imagery: A Remote Sensing Perspective

	Index

