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Preface

This book presents the mathematics, computational methods and data struc-
tures, as well as the algorithms needed to render implicit curves and surfaces.
Implicit objects have gained an increasing importance in geometric modelling,
visualisation, animation, and computer graphics due to their nice geometric
properties which give them some advantages over traditional modelling meth-
ods. For example, the point membership classification is trivial using implicit
representations of geometric objects—a very useful property for detecting col-
lisions in virtual environments and computer game scenarios. The ease with
which implicit techniques can be used to describe smooth, intricate, and ar-
ticulatable shapes through blending and constructive solid geometry show us
how powerful they are and why they are finding use in a growing number of
graphics applications.

The book is mainly directed towards graduate students, researchers and
developers in computer graphics, geometric modelling, virtual reality and com-
puter games. Nevertheless, it can be useful as a core textbook for a graduate-
level course on implicit geometric modelling or even for general computer
graphics courses with a focus on modelling, visualisation and animation. Fi-
nally, and because of the scarce number of textbooks focusing on implicit
geometric modelling, this book may also work as an important reference for
those interested in modelling and rendering complex geometric objects.

Abel Gomes
Irina Voiculescu
Joaquim Jorge
Brian Wyuwill
Callum Galbraith

March 2009
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1

Mathematical Fundamentals

This chapter deals with mathematical fundamentals of curves and surfaces,
and more generally manifolds and varieties.! For that, we will pay particular
attention to their smoothness or, putting it differently, to their singularities
(i.e. lack of smoothness). As will be seen later on, these shape particularities
are important in the design and implementation of rendering algorithms for
implicit curves and surfaces. Therefore, although the context is the differential
topology and geometry, we are interested in their applications in geometric
modelling and computer graphics.

1.1 Introduction

The rationale behind the writing of this chapter was to better understand the
subtleties of the manifolds, in particular to exploit the smooth structure of
manifolds (e.g. Euclidean spaces) through the study of the intrinsic properties
of their subsets or subspaces, i.e. independently of any choice of local coor-
dinates (e.g. spherical coordinates, Cartesian coordinates, etc.). As known,
manifolds provide us with the proper category in which most efficiently one
can develop a coordinate-free approach to the study of the intrinsic geometry
of point sets. It is obvious that the explicit formulas for a subset may change
when one goes from one set of coordinates to another. This means that any
geometric equivalence problem can be viewed as the problem of determining
whether two different local coordinate expressions define the same intrinsic
subset of a manifold. Such coordinate expressions (or change of coordinates)
are defined by mappings between manifolds.

Thus, by defining mappings between manifolds such as Euclidean spaces,
we are able to uncover the local properties of their subspaces. In geometric

1 A real, algebraic or analytic variety is a point set defined by a system of equations
fi =+ = fi =0, where the functions f; (0 < i < k) are real, algebraic or
analytic, respectively.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 7
Data Structures and Algorithms,
(© Springer-Verlag London Limited 2009



8 1 Mathematical Fundamentals

modelling, we are particularly interested in properties such as, for example,
local smoothness, i.e. to know whether the neighbourhood of a point in a
submanifold is (visually) smooth, or the point is a singularity. In other words,
we intend to study the relationship between smoothness of mappings and
smoothness of manifolds. The idea is to show that a mathematical theory
exists to describe manifolds and varieties (e.g. curves and surfaces), regardless
of whether they are defined explicitly, implicitly, or parametrically.

1.2 Functions and Mappings

In simple terms, a function is a relationship between two variables, typically
x and y, so it often denoted by f(z) = y. The variable z is the independent
variable (also called primary variable, function argument, or function input),
while the variable y is the dependent variable (secondary variable, value of the
function, function output, or the image of x under f). Therefore, a function
allows us to associate a unique output for each input of a given type (e.g. a
real number).

In more formal terms, a function is a particular type of binary relation
between two sets, say X and Y. The set X of input values is said to be the
domain of f, while the set Y of output values is known as the codomain of f.
The range of f is the set {f(z) : € X}, i.e. the subset of ¥ which contains
all output values of f. The usual definition of a function satisfies the condition
that for each x € X, there is at most one y € Y such that x is related to y.
This definition is valid for most elementary functions, as well as maps between
algebraic structures, and more importantly between geometric objects, such
as manifolds.

There are three major types of functions, namely, injections, surjections
and bijections. An injection (or one-to-one function) has the property that if
f(a) = f(b), then a and b must be identical. A surjection (or onto function)
has the property that for every y in the codomain there is an = in the domain
such that f(x) = y. Finally, a bijection is both one-to-one and onto.

The notion of a function can be extended to several input variables. That
is, a single output is obtained by combining two (or more) input values. In
this case, the domain of a function is the Cartesian product of two or more
sets. For example, f(z,y,z) = 22 + y? + 22 = 0 is a trivariate function (or
a function of three variables) that outputs the single value 0; the domain of
this function is the Cartesian product R x R x R or, simply, R3. In geometric
terms, this function defines an implicit sphere in R3.

Functions can be even further extended in order to have several outputs. In
this case, we have a component function for each output. Functions with sev-
eral outputs or component functions are here called mappings. For example,
the mapping f : R® — R? defined by f(z,y, 2) = (22 +y%+22—1, 222 +2y> 1)
has two component functions fi(x,y,2) = 2% + 4% + 22 — 1 and fo(x,y,2) =
222 4+ 2y? — 1. These components represent a sphere and a cylinder in R3,
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respectively, so that, intuitively, we can say that f represents the point set
that results from the intersection between the sphere and the cylinder.

Before proceeding any further, it is also useful to review how functions are
classified in respect to the properties of their derivatives. Let f: X — Y be a
mapping of X into Y, where X, Y are open subsets of R™, R", respectively. If
n = 1, we say that the function f is C” (or C" differentiable or differentiable
of class O™, or C" smooth or smooth of class C") on X, for r € N, if the partial
derivatives of f exist and are continuous on X, that is, at each point x € X.
In particular, f is C if f is continuous. If n > 1, the mapping f is C" if each
of the component functions f; (1 <i<mn)of fis C". We say that f is C*° (or
just differentiable or smooth) if it is C" for all > 0. Moreover, f is called
a C" diffeomorphism if: (i) f is a homeomorphism? and (ii) both f and f~!
are C" differentiable, r > 1 (when r = oo we simply say diffeomorphism). For
further details about smooth mappings, the reader is referred to, for example,
Helgason [182, p. 2].

1.3 Differential of a Smooth Mapping

Let U,V be open sets in R” R"”, respectively. Let f : U — V be a mapping
with component functions fi,..., f,. Note that f is defined on every point p
of U in the coordinate system x1,...z,,. We call f smooth provided that all
derivatives of the f; of all orders exist and are continuous in U. Thus for f
smooth, 02 f; /0x10x2, 03 f;/0x3, etc., and 92 f;/0x1029 = D% f;/Ox90x1, etc.,
all exist and are continuous. Therefore, a mapping f : U — V is smooth (or
differentiable) if f has continuous partial derivatives of all orders. And we call
f a diffeomorphism of U onto V when it is a bijection, and both f, f~1 are
smooth.

Let f: U — V be a smooth (or differentiable or C*°) and let p € U. The

matrix
df1(p)/0z1 0fi(p)/0x2 -+ Ofi(P)/OTm
Jf(p) = : : :

0f(D) /01 0 (D) /02 - Ofn(D) /D

where the partial derivatives are evaluated at p, is called Jacobian matrix of
f at p [68, p. 51]. The linear mapping Df(p) : R™ — R™ whose matrix is the
Jacobian is called the derivative or differential of f at p; the Jacobian Jf(p)
is also denoted by [Df(p)]. It is known in mathematics and geometric design
that every polynomial mapping f (i.e. mappings whose component functions

2 In topology, two topological spaces are said to be equivalent if it is possible to
transform one to the other by continuous deformation. Intuitively speaking, these
topological spaces are seen as being made out of ideal rubber which can be de-
formed somehow. However, such a continuous deformation is constrained by the
fact that the dimension is unchanged. This kind of transformation is mathemat-
ically called homeomorphism.
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fi are all polynomial functions) is smooth. If the components are rational
functions, then the mapping is smooth provided none of the denominators
vanish anywhere.

Besides, the composite of two smooth mappings, possibly restricted to
a smaller domain, is smooth [68, p. 51]. It is worth noting that the chain
rule holds not only for smooth mappings, but also for differentials. This fact
provides us with a simple proof of the following theorem.

Theorem 1.1. Let U,V be open sets in R™ R"™, respectively. If f : U — V is
a diffeomorphism, at each point p € U the differential D f(p) is invertible, so
that necessarily m = n.

Proof. See Gibson [159, p. 9].

The justification for m = n is that it is not possible to have a diffeomor-
phism between open subspaces of Euclidean spaces of different dimensions [58,
p. 41]. In fact, a famous theorem of algebraic topology (Brouwer’s invariance
of dimension) asserts that even a homeomorphism between open subsets of
R™ and R™, m # n, is impossible. This means that, for example, a point and
a line cannot be homeomorphic (i.e. topologically equivalent) to each other
because they have distinct dimensions.

Theorem 1.1 is very important not only to distinguish between two mani-
folds in the sense of differential geometry, but also to relate the invertibility of
a diffeomorphism to the invertibility of the associated differential. More sub-
tle is the hidden relationship between singularities and noninvertibility of the
Jacobian. We should emphasise here that the direct inverse of Theorem 1.1
does not hold. However, there is a partial or local inverse, called the inverse
mapping theorem, possibly one of the most important theorems in calculus.
It is introduced in the next section, where we discuss the relationship between
invertibility of mappings and smoothness of manifolds.

1.4 Invertibility and Smoothness

The smoothness of a submanifold that is the image of a mapping depends not
only on smoothness but also the invertibility of its associated mapping. This
section generalises such a relationship between smoothness and invertibility
to mappings of several variables. This generalisation is known in mathemat-
ics as the inverse mapping theorem. This leads to a general mathematical
theory for geometric continuity in geometric modelling, which encompasses
not only parametric objects but also implicit ones. Therefore, this generali-
sation is representation-independent, i.e. no matter whether a submanifold is
parametrically or implicitly represented.

Before proceeding, let us then briefly review the invertibility of mappings
in the linear case.
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Definition 1.2. Let X, Y be FEuclidean spaces, and f: X — Y a continuous
linear mapping. One says that f is invertible if there exists a continuous
linear mapping g : Y — X such that go f = idx and f o g = idy where
idx and idy denote the identity mappings of X and Y, respectively. Thus, by
definition, we have:

9(f(@)) ==z and f(g(y) =y
for every x € X and y € Y. We write f~! for the inverse of f.

But, unless we have an algorithm to evaluate whether or not a mapping
is invertible, smoothness analysis of a point set is useless from the geometric
modelling point of view. Fortunately, linear algebra can help us at this point.
Consider the particular case f : R”™ — R"™. The linear mapping f is represented
by a matrix A = [a,;]. It is known that f is invertible iff A is invertible (as a
matrix), and the inverse of A, if it exists, is given by

-1 _ 1
det A

adj A

where adj A is a matrix whose components are polynomial functions of the
components of A. In fact, the components of adj A are subdeterminants of A.
Thus, A is invertible iff its determinant det A is not zero.

Now, we are in position to define invertibility for differential mappings.

Definition 1.3. Let U be an open subset of X and f : U — Y be a C!
mapping, where X, Y are Buclidean spaces. We say that f is C'-invertible
on U if the image of f is an open set V in'Y, and if there is a C'' mapping
g:V — U such that f and g are inverse to each other, i.e.

9(f(@)) ==z and flg(y)) =y
forallx e U andy € V.

It is clear that f is C%invertible if the inverse mapping exists and is
continuous. One says that f is C"-invertible if f is itself C" and its inverse
mapping g is also C". In the linear case, we are interested in linear invertibility,
which basically is the strongest requirement that we can make. From the
theorem that states that a O™ mapping that is a C'* diffeomorphism is also a C"
diffeomorphism (see Hirsch [190]), it turns out that if f is a C'-invertible, and
if f happens to be C", then its inverse mapping is also C". This is the reason
why we emphasise C'! at this point. However, a C'! mapping with a continuous
inverse is not necessarily C'-invertible, as illustrated in the following example:

Example 1.4. Let f : R — R be the mapping f(z) = z3. It is clear that f
is infinitely differentiable. Besides, f is strictly increasing, and hence has an
inverse mapping ¢ : R — R given by g(y) = y!/3. The inverse mapping g is
continuous, but not differentiable; at 0.
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Let us now see the behaviour of invertibility under composition. Let f :
U—Vand g:V — W be invertible C" mappings, where V' is the image of
f and W is the image of g. It follows that go f and (go f)™! = f~Log™! are
CT-invertible, because we know that a composite of C" mappings is also C".

Definition 1.5. Let f : X — Y be a C" mapping, and let p € X. One says
that f is locally C"-invertible at p if there exists an open subset U of X
containing p such that f is C"-invertible on U.

This means that there is an open set V of Y and a C" mapping g : V — U
such that f og and g o f are the corresponding identity mappings of V' and
U, respectively. Clearly, a composite of locally invertible mappings is locally
invertible. Putting this differently, if f : X — Y and g : ¥ — Z are C”
mappings, with f(p) = q for p € U, and f, g are locally C"-invertible at p,
q, respectively, then g o f is locally C"-invertible at p.

In Example 1.4, we used the derivative as a test for invertibility of a real-
valued function of one variable. That is, if the derivative does not vanish at
a given point, then the inverse function exists, and we have a formula for its
derivative. The inverse mapping theorem generalises this result to mappings,
not just functions.

Theorem 1.6. (Inverse Mapping Theorem) Let U be an open subset of
R™, let p € U, and let f : U — R™ be a C' mapping. If the derivative D f
is invertible, f is locally C'-invertible at p. If f=! is its local inverse, and
y = [(x), then Jf~1(y) = [Jf(x)] .

Proof. See Boothby [58, p. 43].

This is equivalent to saying that there exists open neighbourhoods U,V
of p, f(p), respectively, such that f maps U diffeomorphically onto V. Note
that, by Theorem 1.1, R™ has the same dimension as the Euclidean space R",
that is, m = n.

Example 1.7. Let U be an open subset of R? consisting of all pairs (r,
with » > 0 and arbitrary 6. Let f : U — V C R? be defined by f(r,0)
(rcos,rsinf), i.e. V represents a circle of radius 7 in R2. Then

0),

sinf  rcosf

If(r6) = {cos@ rsm@]
and
det Jf(r,0) = rcos® 0 + rsin®f = r.

Thus, Jf is invertible at every point, so that f is locally invertible at every
point. The local coordinates fi, fo are usually denoted by x,y so that we
usually write

r=rcosf and y=rsin.
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The local inverse can be defined for certain regions of Y. In fact, let V' be the
set of all pairs (x,y) such that > 0 and y > 0. Then the inverse on V is

given by
r=+22+9y? and @ = arcsin Y

/22 + y2'
As an immediate consequence of the inverse mapping theorem, we have:

Corollary 1.8. Let U be an open subset of R™ and f : U — R™. A necessary
and sufficient condition for the C" mapping f to be a C" diffeomorphism from
U to f(U) is that it be one-to-one and Jf be nonsingular at every point of U.

Proof. Boothby [58, p. 46].

Thus, diffeomorphisms have nonsingular Jacobians. This parallel between
differential geometry and linear algebra makes us to think of an algorithm
to check whether or not a C” mapping is a C” diffeomorphism. So, using
computational differentiation techniques and matrix calculus, we are able to
establish smoothness conditions on a submanifold of R™.

Note that the domain and codomain of the mappings used in Theorem 1.1,
Theorem 1.6 and its Corollary 1.8 have the same dimension. This may suggest
that only smooth mappings between spaces of the same dimension are C”
invertible. This is not the case. Otherwise, this would be useless, at least
for geometric modelling. For example, a parametrised k-manifold in R™ is
defined by the image of a parametrisation f : R¥ — R™, with k < n. On the
other hand, an implicit k-manifold is defined by the level set of a function
f:RF — R, i.e. by an equation f(x) = ¢, where c is a real constant.

1.5 Level Set, Image, and Graph of a Mapping

Let us then review the essential point sets associated with a mapping. This
will help us to understand how a manifold or even a variety is defined, either
implicitly, explicitly, or parametrically. Basically, we have three types of sets
associated with any mapping f : U C R™ — R which play an important role
in the study of manifolds and varieties: level sets, images, and graphs.

1.5.1 Mapping as a Parametrisation of Its Image

Definition 1.9. (Baxandall and Liebeck [35, p. 26]) Let U be open in R™.
The image of a mapping f: U C R™ — R"™ s the subset of R™ given by

Image f ={y e R" |y = f(x), Vx € U},
being f a parametrisation of its image with parameters (x1,...,%m).

This definition suggests that practically any mapping is a “parametrisation”
of something [197, p. 263].
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Example 1.10. The mapping f : R — R? defined by f(t) = (cost,sint), t € R,
has an image that is the unit circle z2+32? = 1 in R? (Figure 1.1(a)). A distinct
function with the same image as f is the mapping g(t) = (cos 2t, sin 2t).

Example 1.10 suggests that two or more distinct mappings can have the
same image. In fact, it can be proven that there is an infinity of different
parametrisations of any nonempty subset of R™ [35, p. 29]. Free-form curves
and surfaces used in geometric design are just images in R? of some parametri-
sation R! — R3? or R? — R3, respectively. The fact that an image can be
parametrised by several mappings poses some problems to meet smoothness
conditions when we patch together distinct parametrised curves or surfaces,
simply because it is not easy to find a global reparametrisation for a com-
pound curve or surface. Besides, the smoothness of the component functions
that describe the image of a mapping does not guarantee smoothness for its
image.

Example 1.11. A typical example is the cuspidal cubic curve that is the image
of a smooth mapping f : R! — R? defined by t — (¢3,t2) which presents a
cusp at t = 0, Figure 1.2(a). Thus, the cuspidal cubic is not a smooth curve.

(a) (b)
Fig. 1.1. (a) Image and (b) graph of f(t) = (cost,sint).

NS

(a)

Fig. 1.2. (a) Cuspidal cubic z* = y? and (b) parabola y = 2? as images of different
parametrisations.




1.5 Level Set, Image, and Graph of a Mapping 15

Conversely, the smoothness of the image of a mapping does not imply that
such a mapping is smooth. The following example illustrates this situation.

Example 1.12. Let f, g and h be continuous mappings from R into R? defined
by the following rules:

f(t) = (t,tQ), g(t) = (t37t6)7 and h(t) - g(t)7 t<0.

{f(t), t20,
All three mappings have the same image, the parabola y = 22 in R?, Fig-
ure 1.2(b). Their Jacobians are however distinct,

Jft), t>0
Jfty=[ 2t, Jg(t) = [3t2 617, and  Jh(t) = ’ ’
FO =10 20 Jg) =B 6t 0 {Jg(t% o

As polynomials, f, g are differentiable or smooth everywhere. Furthermore,
because of Jf(t) # [0 0] for any t € R, f is Cl-invertible everywhere. Con-
sequently, its image is surely smooth. The function ¢ is also smooth, but its
Jacobian is null at ¢ = 0, i.e. Jg(0) = [0 0]. This means that g is not C'-
invertible, or, equivalently, g has a singularity at ¢ = 0, even though its image
is smooth. Thus, a singularity of a mapping does not necessarily determine a
singularity on its image. Even more striking is the fact that h is not differen-
tiable at ¢ = 0 (the left and right derivatives have different values at ¢t = 0).
This is so despite the smoothness of the image of h. This kind of situation
where a smooth curve is formed by piecing together smooth curve patches is
common in geometric design of free-form curves and surfaces used in industry.

The discussion above shows that every parametric smooth curve (in gen-
eral, a manifold) can be described by several mappings, and that at least one of
them is surely smooth and invertible, i.e. a diffecomorphism (see Corollary 1.8).

1.5.2 Level Set of a Mapping

Level sets of a mapping are varieties in some Euclidean space. That is, they
are defined by equalities. Obviously, they are not necessarily smooth.

Definition 1.13. (Dineen [112, p. 6]) Let U be open in R™. Let f : U C
R™ — R™ and ¢ = (c1,...,¢,) a point in R™. A level set of f, denoted by
f~(c), is defined by the formula

F ) = {x € U f(x) = c}
In terms of coordinate functions fi,..., f, of f, we write
fx)=c<= fi(x)=¢; fori=1,...,n

and thus
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FHe) = (xeUlfix) =} =) F ()
i=1 i=1
The smoothness criterion for a variety defined as a level set of a vector-
valued function is given by the following theorem.

Theorem 1.14. (Implicit Function Theorem, Baxandall [35, p. 145]) A
set X C R™ is a smooth variety if it is a level set of a C function f : R™ — R
such that Jf(x) # 0 for all x € X.

This theorem is a particular case of the implicit mapping theorem (IMT)
for mappings which are functions. The IMT will be discussed later.

Example 1.15. The circle z? + y? = 4 is a variety in R? that is a level set
corresponding to the value 4 (i.e. point 4 in R) of a function f : R? — R given
by f(x,y) = 22 + y%. Its Jacobian is given by Jf(x,y) = [2z 2y] which is
null at (0,0). However, the point (0,0) is not on the circle #2 4+ y? = 4; hence
the circle is a smooth curve.

Ezample 1.16. The sphere 22 4+ y? 4+ 22 = 9 is a smooth surface in R3. It
is the level set for the value 9 of a C! function f : R® — R defined by
fla,y,2) =22 + 9%+ 2% and Jf(x,y,2) #[0 0 0] at points on the sphere.

Example 1.17. Let f : R — R be a function given by f(z,y, z) = 22 +y? — 22,
Its level set corresponding to 0 is the right circular cone z = +/x2 + y2,
whose apex is the point (0,0, 0) as illustrated in Figure 1.3(a). The Jacobian
Jf(z,y,2) =[2¢ 2y —2z]isnull at the apex. Hence, the cone is not smooth
at the apex, and the apex is said to be a singularity. Nevertheless, the level
sets of the same function for which 22 + y? — 22 = ¢ # 0 are smooth surfaces
everywhere because the point (0,0,0) is not on them. We have a hyperboloid
of one sheet for ¢ > 0 and a hyperboloid of two sheets for ¢ < 0, as illustrated
in Figure 1.3(b) and (c), respectively.

(a) (b) (c)

Fig. 1.3. (a) Cone 2? +y? — 2% = 0; (b) hyperboloid of one sheet z* +y* — 2% = a;
(¢) hyperboloid of two sheets 22 + ¢ — 22 = —a?.
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Example 1.18. The Whitney umbrella with-handle 2% — 2y? = 0 in R?® (Fig-
ure 1.4) is not smooth. It is defined as the zero set of the function f(z,y,z) =
2?2 — 2y? whose Jacobian is Jf(z,y,2) = 22 —2yz —?]. It is easy to see
that the Whitney umbrella is not smooth along the z-axis, i.e. the singular
point set {(0,0, z)} where the Jacobian is zero. This singular point set is given
by the intersection {2z = 0} N {—2yz = 0} N {—y? = 0}, which basically is
the intersection of two planes, {z = 0} and {y = 0}, i.e. the z-axis.

The smoothness criterion based on the Jacobian is valid for functions and
can be generalised to mappings. In this case, we have to use the implicit
mapping theorem given further on. Even so, let us see an example of a level
set for a general mapping, not a function.

Ezample 1.19. Let f(z,y,2) = (2% + y* + 22 — 1,222 + 2y? — 1) a mapping
f : R® — R? with component functions fi(x,y,2) = 2% + 3*> + 22 — 1 and
fa(x,y,2) = 222 + 2y> — 1. The set f;1(0) is a sphere of radius 1 in R® while
f51(0) is a cylinder parallel to the z-axis in R® (Figure 1.5). If 0 = (0,0) is

\

(b)

Fig. 1.4. (a) Whitney umbrella with-handle z* — zy*> = 0; (b) Whitney umbrella
without-handle {2? — zy* = 0} — {z < 0}.

(b)

Fig. 1.5. Two circles as the intersection of a cylinder and sphere in R3.
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the origin in R?, the level set

F7H0) = 1710,0) = £ (0) N f51(0)
is the intersection of a sphere and a cylinder in R3. This intersection consists

of two circles that can be obtained by solving the equations fi(z,y,z) =
fa(z,y, 2) = 0. Such circles are in the planes z = v/2 and z = —/2.

Let us see now the role of the differentiability in the local structure of level
sets defined by general mappings as in Example 1.19. As noted in [112, p. 11],
by taking into account the linear approximation of differentiable functions and
standard results on solving systems of linear equations, we start to recognise
and accept that level sets are locally graphs.

Let f: U Cc R™ — R™ U an open subset of R™, f = (f1,..., fn),
c=(c1,...,¢,). We assume that f is differentiable. Let us consider the level
set f~1(c) =N, f; '(ci), ie. the set whose points (v1,...,7,,) € U satisfy
the equations

[y, am) = a
(1.1)
fo(ze, . 2m) = Cp.
We have m unknowns (z1,...,2,,) and n equations. If each component func-

tion f; is linear, we have a system of linear equations and the rank of the
matrix gives us the number of linearly independent solutions, and informa-
tion enough to identify a complete set of independent variables. The Implicit
Mapping Theorem states that all this information can be locally obtained for
differentiable mappings. This is due to the fact that differentiable mappings,
by definition, enjoy a good local linear approximation.

If p € f~%(c), then f(p) = c. If x € R™ is close to zero, then, since f is
differentiable, we have

fp+x)=f(p)+ f(p)x+e(x)

where €(x) — 0 when x — 0 (see Dineen [112, p. 3, p. 12]). Because we wish
to find x close to 0 such that f(p + x) = ¢, we are considering points such
that

f'p)x+ex)=0
and thus f/(p).x ~ 0 (where &~ means approximately equal). Let us assume
that m > n. Therefore, not surprisingly, we have something very close to the
following system of linear equations

7] 0
a—ii(p)m +-ot %(p)mm =0

(1.2)
o p)ar ++ 2L (o) =0,
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whose matrix is the Jacobian Jf.
From linear algebra we know that
rank Jf = n <= n rows of Jf are linearly independent
<= n columns of Jf are linearly independent
<= Jf contains n columns, and the associated (1.3)
n x n matrix has nonzero determinant
<= the space of solutions of the system (1.2)
is (m — n)-dimensional.
Besides, if any of the conditions (1.3) are satisfied, and we select n columns
that are linearly independent, then the variables concerning the remaining

columns can be taken as a complete set of independent variables. If the con-
ditions (1.3) are satisfied, we say that f has full or maximum rank at p.

Example 1.20. Let us consider the following system of equations

20 —y +z =0
Yy —w= Oa
whose matrix of coefficients is
2—-110
A= [0 10 —1] ’

The submatrix

2 -1

o]
is obtained by taking the first two columns from A, and has determinant 2 # 0.
Thus, A has rank 2, or, equivalently, the two rows are linearly independent.
So, the two variables z, w in the remaining two columns can be taken as the
independent variables. In other words, y = w, 22 =y — 2z = w — 2, and hence
{(252,w, z,w) : z € R,w € R} is the solution set. Alternatively, the solution

2
set can be written in the following form

{(9(z,w),z,0) : (z,w) € R*}

w—z

where g(z,w) = (%%, w) is a mapping g : R* — R In this format, the
solution space is the graph of g (defined in the next subsection).

Assuming that the rows of Jf(p) are linearly independent is equivalent to
supposing that the gradient vectors {V f1(p),...,V fn(p)} are linearly inde-
pendent in R™. The implicit mapping theorem states that with this condition
we can solve the nonlinear system of equations (1.1) near p and apply the
same approach to identify a set of independent variables. The hypothesis of a
good linear approximation in the definition of differentiable functions implies
that the equation systems (1.1) and (1.2) are very close to one another [112,
p. 13]. Roughly speaking, this linear approximation is the tangent space to
the solution set defined by the at p.
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Theorem 1.21. (Implicit Mapping Theorem, Munkres [292]) Let f : U C
R™ — R™ (m > n) be a differentiable mapping, let p € U and assume that
f(p) = c and rank J f(p) = n. For convenience, we also assume that the last
n columns of the Jacobian are linearly independent. If p = (p1,...,pm), let
P1 = (P1;---sPm—n) and P2 = (Pm—n+1;---,Pm) S0 that p = (p1,p2). Then,
there exists an open set V. C R™™™ containing p1, a differentiable mapping
g:V —R"™ an open subset U' C U containing p such that g(p1) = p2 and

f7He)nU" = {(x,9(x)) : x € V} = graphy.

Therefore, locally every level set is a graph.

1.5.3 Graph of a Mapping

Definition 1.22. (Dineen [112, p. 6]) Let U be open in R™. The graph of a
mapping f : U C R™ — R™ is the subset of the product space R™T" = R™ xR"
defined by

graph f = {(x,y)[x € U and y = f(x)}

graph f = {(x, f(x)) [x € U}.

Ezample 1.23. Let us consider both mappings f(t) = (cost,sint) and g(t) =
(cos 2t,sin 2t) of Example 1.10. They have the same image in R?, say a unit
circle. However, their graphs are distinct point sets in R3. The graph of f is
a circular helix (¢, cost,sint) in R3, Figure 1.1(b). But, although the graph of
g is a circular helix with windings being around the same circular cylinder,
those windings have half the pitch.

This suggests that there is a one-to-one correspondence between a mapping
and its graph, that different mappings have distinct graphs. This leads us to
think of a possible relationship between the smoothness of a mapping and
the smoothness of its graph. In other words, the smoothness of a mapping
determines the smoothness of its graph. This is corroborated by the following
theorem.

Theorem 1.24. (Baxandall [35, p. 147]) The graph of a C* mapping f : U C
R™ — R™ is a smooth variety in R™ x R".

Proof. Consider the mapping F': U x R™ C R™ x R™ — R" defined by
Fx,y)=f(x)—y, xeUyecR"
The graph of f is the level set of F' corresponding to the value 0, that is
graph f = {(x,y) € R" xR" | f(x) —y = 0}.

To prove that graph f is a smooth variety in R™ x R™ we show that:
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(i) F is a C' mapping.
(i) Jp(x,y) # (0,0) for all x € U, y € R™.
It follows from the definition of F' above that for each ¢ = 1,...,m, j =
m+1,....m+nandeachxec U,y € R”
aF( ) af
X =
8xi 24 axl

OF
(x) and —(x,y)=—1.
8yj

Therefore the partial derivatives of F are continuous and so F is a C'' mapping.
Also, for any x € U, y € R"

JF(x,y) = (Jf(x),—1) # (0,0).
This completes the proof.

Ezample 1.25. Let us consider the curves sketched in Figure 1.6. Figure 1.6(a)
shows the curve y = |z| in R? that is not smooth. It is the graph of the
function f : R — R that explicitly expresses y as a function of x, but f is not
differentiable at = = 0. Nor is it the graph of (an inverse) function g expressing
x as a function of y, because in the neighbourhood of (0,0) the same value of
y corresponds to two values of z.

Figure 1.6(b) shows another nonsmooth curve xy = 0 in R?, which is
the union of the two coordinate axes, x and y. Any neighbourhood of (0,0)
contains infinitely many y values corresponding to z = 0, and infinitely many
x values corresponding to y = 0. This means that the curve is not a graph of
an explicit function y = f(x), nor of a function & = ¢(y). Incidentally, this
curve can be regarded as a slice at z = 0 through the graph of h : R? — R
where h(x,y) = ry, which defines the implicit curve h(z,y) in R2.

Finally, the graph of the function f(z) = x'/3, depicted in Figure 1.6(c),
is a smooth curve. Note that the curve is smooth despite the function being
not differentiable at x = 0. This happens because the curve is the graph of
the function x = f(y) = y> that is differentiable.

From these examples, we come to the following conclusions:

(a) (b) (©)

Fig. 1.6. Not all point sets in R? are graphs of a mapping.
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e Rewording Theorem 1.24, every point set that is the graph of a differen-
tiable mapping is smooth.

e The fact that a mapping is not differentiable does not imply that its graph
is not smooth; but if the graph is smooth, then it is necessarily the graph
of a related function by changing the roles of the variables, possibly the
inverse function. This is the case for the curve x = % in Figure 1.6(c).

e The graph of a mapping that is not differentiable is possibly nonsmooth.
This happens because of the differentiable singularities such as the cusp
point in y = |z|, Figure 1.6.

e There are point sets in R™ that cannot be described as graphs of map-
pings, unless we break them up into pieces. For example, with appropriate
constraints we can split zy = 0 (the union of axes in R?) into the origin
and four half-axes, each piece described by a function. The origin is a cut
point of zy = 0, that is, a topological singularity. The idea of partitioning
a point set into smaller point sets by its topological singularities leads to
a particular sort of stratification as briefly detailed in the next chapter.
Another alternative to describe a point set that is not describable by a
graph of a function is to describe it as a level set of a function.

The relationship between graphs and level sets plays an important role in
the study of varieties. It is easy to see that every graph is a level set. Let us
consider a mapping f : U C R™ — R". We define F' : U x R™ — R" by
F(x,y) = f(x) —y. If O is the origin in R", we have

(x,y) € F71(0) <= F(x,y) =0
— f(x)-y=0
< (x,y) € graph f.

Thus, F~1(0) = graph f and every graph is a level set. This fact has been
used to prove the Theorem 1.24. As a summary, we can say that:

e Not all varieties in some Euclidean space are graphs of a mapping.
e Every variety as a graph of a mapping is a level set.
e Fvery variety is a level set of a mapping.

This shows us why the study of algebraic and analytic varieties in geometry
is carried out using level sets of mappings, i.e. point sets defined implicitly. The
reason is a bigger geometric coverage of point sets in some Euclidean space.
In addition to this, many (not necessarily smooth) varieties admit a global
parametrisation, whilst others can only be partially (locally) and piecewise
parametrised.

Ezxample 1.26. Let z = 22 —y? be a level set of a function F : R? — R defined
by F(x,y,2) = 22 — y? — z corresponding to the value 0. It is observed that
JF(z,y,2) = [2x —2y —1]is not zero everywhere. So z = 22 —y? in R? is
smooth everywhere. It is a variety known as a saddle surface. Note that z is
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explicitly defined in terms of x and y. So, the saddle surface can be viewed as
the graph of the function f : R? — R given by f(x,y) = 22 —%2. Consequently,
the saddle surface can be given a global parametrisation g : R? — R? defined
by g(z,y) = (z,y,2° — y*).

Not all varieties can be globally parametrised, even when they are smooth.
But, as proved later, every smooth level set can be always locally parametrised,
i.e. every smooth level set is locally a graph. This fact is proved by the implicit
mapping theorem.

Level sets correspond to implicit representations, say functions, on some
FEuclidean space, while graphs correspond to explicit representations. In fact,
we have from calculus that

Definition 1.27. (Baxandall and Liebeck [35, p. 226]) Let f : X CR™ — R
be a function, where m > 2. If there exists a function g : Y C R™ ! = R
such that for all (x1,...,%m_1) €Y,

f(xlw--;mmflag(xlw"?xmfl)) = 07

then the function g is said to be defined tmplicitly on'Y by the equation

flz1, ..., 2m) =0.

Likewise, the graph of g: Y C R™™ 1 — R is the subset of R™ given by
{(xla s 7.'L'm71,.’15m> € IRWL| Ty = g(-Tlv s 7mm71)}-

The expression x, = g(x) is called the equation of the graph [35, p.100].
Hence, g is said to be explicitly defined on Y by the equation x,, =

9(x1, . Tme1).

Example 1.28. The graph of the function f(x,y) = —2% — y? has equation
—z = 2% + y2. This graph is a 2-manifold in R3 called a paraboloid (Fig-
ure 1.7). The equation —z = 22 + y? explicitly defines the paraboloid in R3.

c=0.5
c=1.0

Fig. 1.7. The paraboloid —z = z* + y* in R3.
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For ¢ < 0 the plane z = ¢ intersects the graph in a circle lying below the level
set 22 + %2 = —c in the (x,y)-plane. The equation 22 + y?> = —c of a circle
(i.e. a 1-manifold) in R? is said to define y implicitly in terms of x. This circle
is said to be an implicit 1-manifold.

1.6 Rank-based Smoothness

Now, we are in position to show that the rank of a mapping gives us a general
approach to check the C” invertibility or C" smoothness of a mapping, and
whether or not a variety is smooth. This smoothness test is carried out inde-
pendently of how a variety is defined, implicitly, explicitly or parametrically,
i.e. no matter whether a variety is considered a level set, a graph, or an image
of a mapping, respectively.

Definition 1.29. (Olver [313, p. 11]) The rank of a mapping f : R™ — R"
at a point p € R™ is defined to be the rank of the n x m Jacobian matriz Jf of
any local coordinate expression for [ at the point p. The mapping [ is called
regular if its rank is constant.

Standard transformation properties of the Jf imply that the definition
of rank is independent of the choice of local coordinates [313, p. 11] (see
[58, p. 110] for a proof). Moreover, the rank of the Jacobian matrix (shortly
rank J f) provides us with a general algebraic procedure to check the smooth-
ness of a submanifold or, putting it differently, to determine its singularities.
It is proved in differential geometry that the set of points where the rank of f
is maximal is an open submanifold of the manifold R™ (which is dense if f is
analytic), and the restriction of f to this subset is regular. The subsets where
the rank of a mapping decreases are singularities [313, p. 11]. The types and
properties of such singularities are studied in singularity theory.

From linear algebra we have

rank Jf = k <= k rows of Jf are linearly independent
<= k columns of Jf are linearly independent

<= Jf has a k x k submatrix that has nonzero determinant.

The fact that the n x m Jacobian matrix Jf has rank k means that it
includes a k x k submatrix that is invertible. Thus, a necessary and sufficient
condition for a k-variety to be smooth is that rank Jf = k at every point of
it, no matter whether it is defined parametrically or implicitly by f. This is
clearly a generalisation of Corollary 1.8, and is a consequence of a generalisa-
tion of the inverse mapping theorem, called the rank theorem:

Theorem 1.30. (Rank Theorem) Let U C R™, V C R™ be open sets,
f:U — V be a C" mapping, and suppose that rankJf = k. If p € U and
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q = f(p), there exists open sets Uy C U and Vo CV withp € Uy and q € Vp,
and there exists C" diffeomorphisms

¢:Uy— X CR™,
Pv:Vo—Y CR"
with X, Y open in R™ R™, respectively, such that
Yofop (X)CY
and such that this mapping has the simple form

Yo fod tpi, . sPm)= P10k, 0,...,0).
Proof. See Boothby [58, p. 47].

This is a very important theorem because it states that a mapping of
constant rank k behaves locally as a projection of R™ = RF x R™* to R¥
followed by injection of R* onto R* x {0} C R¥ x R*~%F = R".

1.6.1 Rank-based Smoothness for Parametrisations
The rank theorem for parametrisations is as follows:

Theorem 1.31. (Rank Theorem for Parametrisations) Let U be an open
set in R™ and f: U — R"™. A necessary and sufficient condition for the C'*
mapping [ to be a diffeomorphism from U to f(U) is that it be one-to-one
and the Jacobian Jf have rank m at every point of U.

Proof. See Boothby [58, p. 46].

This is a generalisation of Corollary 1.8, with m < n. It means that the ker-
nel?® of the linear mapping represented by Jf is 0 precisely when the Jacobian
matrix has rank m.

Let us review some simple examples of parametrised curves.

Example 1.32. We know that the bent curve in R? depicted in Figure 1.6 and
defined by the parametrisation f(t) = (,|t|) is not differentiable at ¢ = 0,
even though its rank is 1 everywhere.

Example 1.32 shows that the differentiability test should always precede
the rank test in order to detect differentiable singularities.

3 Let F: X — Y be a linear mapping of vector spaces. By the kernel of F', denoted
by kernel F', is meant the set of all those vectors x € Xsuch that F(V) =0¢€Y,
i.e. kernel FF = {x € X : F(x) = 0} (see Edwards [128, p. 29]). In other words,
the kernel of a linear mapping corresponds to the level set of a mapping.
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Ezxample 1.33. A parametrised curve that passes the differentiability test, but
not the rank test, is the cuspidal cubic in R? given by f(t) = (¢3,¢?) (Fig-
ure 1.2(a)). The component functions are polynomials and therefore differen-
tiable. However, the rank Jf(t) = [3t> 2¢t] is not 1 (i.e. its maximal value) at
t = 0; in fact it is zero. This means that the parametrised cuspidal cubic is
not smooth at ¢ = 0, that is, it possesses a singularity at ¢ = 0.

Ezample 1.34. Let us take the parametrised parabola in R? given by f(t) =
(t,t?) (Figure 1.2(b)). f is obviously differentiable, and its rank is 1 every-
where, so it is globally smooth.

Nevertheless, algorithmic detection of singularities of a parametrised va-
riety fails for self-intersections, i.e. topological singularities. Let us see some
examples.

Ezample 1.35. The curve parametrised by the differentiable mapping f(t) =
(t3 — 3t — 2,t2 —t — 2) is not smooth at (0,0), despite the differentiability of
f and its maximal rank. In fact, we get the same point (0,0) on the curve
for two distinct points ¢t = —1 and ¢ = 2 of the domain, that is, f(—1) =
f(2) = (0,0), and thus f is not one-to-one. These singularities are known as
self-intersections in geometry or topological singularities in topology.

The problem with a parametrised self-intersecting variety is that its self-
intersections are topological singularities for the corresponding underlying
topological space, but not for the parametrisation. However, it is an easy
task to check whether a non-self-intersecting point in a parametrised vari-
ety is singular or not. A non-self-intersecting point is singular if the rank of
Jacobian at this point is not maximal.

Example 1.36. Let us consider a parametrisation f(u,v) = (uv,u,v?) of the
Whitney umbrella without-handle (the negative z-axis) (Figure 1.4(b)). The
effect of this parametrisation on R? can be described as the ‘fold’ of the v-axis
at the origin (0,0) in order to superimpose negative v-axis and positive v-axis.
The ‘fold’ is identified by the exponent 2 of the third component coordinate
function. Thus, all points (0,0, v?) along v-axis are double points and deter-
mine that all points on the positive z-axis are singularities or self-intersecting
points in R3. However, this is not so apparent if we restrict the discussion to
the Jacobian and try to determine where the rank drops below 2. In fact,

and we observe that the rank drops below 2 only at (0,0). This happens
because only (0, 0) is a differential singularity, that is, the tangent plane is not
defined at (0,0). Any other point on the positive z-axis has a parametrised
neighbourhood that can be approximated by a tangent plane in relation to
the parametrisation.
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Ezxample 1.37. Let f : R? — R? be the mapping given by

f(xz,y) = (sinz, e” cosy, siny).

Then
cos T 0
Jf(x,y) = |e*cosy —e*siny
0 cosy
and hence
10
Jf(0,0)= {10
01

has rank 2, so that in a neighbourhood of (0,0), the mapping f parametrises
a subset of R3.

1.6.2 Rank-based Smoothness for Implicitations

The implicit function theorem is particularly useful for geometric modelling
because it provides us with a computational tool to test whether an implicit
manifold, and more generally a variety, is smooth in the neighbourhood of a
point. Specifically, it gives us a local parametrisation for which it is possible
to check the local C"-invertibility by means of its Jacobian.

Before proceeding, let us see how C"-invertibility and smoothness is de-
fined for implicit manifolds and varieties.

Theorem 1.38. (Rank Theorem for Implicitations) Let U be open in R™

and let f: U — R be a C" function on U. Let (p,q) = (p1,.--,Pm-1,q9) €U

and assume that f(p,q) =0 but g;f (P, q) # 0. Then the mapping

F:U—-SR™!'xR=R™
given by
(x,y) = (%, f(x,))
is locally C"-invertible at (p,q).

Proof. (See Lang [223, p.523]). All we need to do is to compute the
derivative of F' at (p,q). We write F' in terms of its coordinates, F' =

(Fi,...,Fo1,Fp) = (21, ..., Zm—1, f). Its Jacobian matrix is therefore
1 0 ... 0
o 1 ... 0
JF(X) = : T .
0 ...1 0
of Oof af
Oxry Oxo " °° OTm

and is invertible since its determinant is equal to of # 0 at (p,q). The

O
inverse function theorem guarantees that F is locally C"-invertible at (p, q).
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As a corollary of this Theorem, we have the implicit function theorem for
functions of several variables, which can be reworded as follows:

Theorem 1.39. (Multivariate Implicit Function Theorem) Let U be
open in R™ and let [ : U — R be a C" function on U. Let (p,q) =
(p1y--+sPm-1,q) € U and assume that f(p,q) = 0 but aim (p,q) # 0. Then
there exists an open ball V in R™~1 centred at p and a C" function

g:V—-~R
such that g(p) = q and
fx9(x)) =0
forallxeV.

Proof. (See Lang [223, p. 524]). By Theorem 1.38 we know that the mapping
F:U—-R"!xR=R"

given by
(x,9) = (%, f(x,))
is locally C"-invertible at (p,q). Let F~' = (F;',...  F!) be the local in-
verse of F' such that
Fl(x,2) = (x,F,'(x,2)) for xeR™ ' zeR.

We let g(x) = F,,;}(x,0). Since F(p,q) = (p,0) it follows that F,,1(p,0) = ¢
so that g(p) = ¢q. Furthermore, since F, F~! are inverse mappings, we obtain

(x,0) = F(F~(x,0)) = F(x, g(x)) = (x, f(x,9(x))).
This proves that f(x,g(x)) = 0, as shown by previous equality.

Note that we have expressed y as a function of x explicitly by means of
g, starting with what is regarded as an implicit relation f(x,y) = 0. Besides,
from the implicit function theorem, we see that the mapping G given by

x = (x,9(x)) = G(x)
or writing down the coordinates
(mla s axm—l) = (xla s axm—lag(xh s 7xm—1))

provides a parametrisation of the variety defined by f(x1,...,2Zm—1,y) = 0
in the neighbourhood of a given point (p,¢). This is illustrated in Figure 1.8
for convenience. On the right, we have the surface f(x) = 0, and we have
also pictured the gradient grad f(p,¢) at the point (p,¢) as in Theorem 1.39.
Note that the condition %(p,q) # 0 in Theorem 1.39 implies that the
grad f(p,q) = [3L 3L ... L) #0.

An example follows to illustrate the implicit function theorem at work.
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grad f(p,q)

surface f(x)=0

Fig. 1.8. Local parametrisation of an implicitly defined variety.

Example 1.40. The Whitney umbrella 22 — zy? = 0 in R? is the level set for the
value 0 of the function f : R3 — R given by f(z,y,2) = 2% — zy?. According
to the Theorem 1.39, we have only to make sure that %f # 0 in order to
guarantee a regular neighbourhood for a point. But

of 2
—=-y =0 = =0

B Y Y

i.e. all points of 22 — zy? = 0 with y = 0 are singular points. These singular
points are then given by

{yo (:){y_gﬁ{xﬂ}ﬂ{y:o}

22— 2y2 =0 T

or, equivalently, the point set {(x,y,2) € R3 : 2 = 0,y = 0}. That is, the
singular set of the Whitney umbrella is the z-axis 0 x 0 x z.

This result agrees with the fact that the Jacobian J f = 22 2yz 2] has
maximal rank 1 for (z,y, z) # (0,0, z). However, because the rank cannot fall
below zero, we have no way to algorithmically detect via rank criterion any
possible singularities in the z-axis. In fact, the z-axis is a smooth line, but we
know that the origin is a special singularity of the Whitney umbrella provided
that, unlike the points of the positive z-axis, it is a cut-point.*

The question now is whether or not there is any method to compute such
singularities. An algorithm to determine the singularities of a variety is useful
for many geometry software packages. For example, the graphical visualisation
of the Whitney umbrella with-handle 22 — zy? = 0 in R? requires the detection
of its singular set along the z-axis. Therefore, unless we use a parametric
Whitney umbrella without-handle, such a point set cannot be visualised on

4 In topology, a point of a connected space is a cut-point if its removal makes its
space disconnected. For example, every point of a straight line is a cut-point
because it splits the line into two; the same is not true for any circle point.
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a display screen. This is an example amongst others that shows how much a
stratification algorithm of varieties can be useful.

Amongst other applications of implicit function theorem, we can mention
two:

e To prove the existence of smooth curves passing through a point on a
surface [223, p. 525].

e To state the smoothness conditions when an implicit surface and a para-
metric surface are stitched along an edge.

The first refers a theorem of major importance because it allows the study
of smoothness of higher-dimensional submanifolds via, for example, Taylor
or Frénet approximations. The second is also important because it makes it
possible to avoid the conversion of an implicit surface patch to its parametric
representation, or vice-versa. So, in principle, it is possible to design a smooth
surface composed of parametric and implicit patches.

1.7 Submanifolds

By definition, a submanifold is a subset of a manifold that is a manifold in
its own right. In geometric modelling, manifolds are usually Euclidean spaces,
and submanifolds are points, curves, surfaces, etc. in some Euclidean space
of equal or higher dimension. Manifolds and varieties in an Euclidean space
are usually defined by either the image, level set or graph associated with a

mapping.

1.7.1 Parametric Submanifolds

As shown in previous sections, the smoothness characterisation of a subman-
ifold clearly depends on its defining smooth mapping and its rank. We have
seen that the notion of smooth mapping of constant rank leads to the defini-
tion of smooth submanifolds. In this respect, the rank theorem, and ultimately,
the inverse function theorem, can be considered as the major milestones in the
theory of smooth submanifolds. Notably, the smoothness of a mapping does
not ensure the smoothness of a submanifold. In fact, not all smooth subman-
ifolds, say parametric smooth submanifolds, can be considered as topological
submanifolds, i.e. submanifolds equipped with the submanifold topology.

Extreme cases of mappings f : M — N of constant rank are those corre-
sponding to maximal rank, that is, the rank is the same as the dimension of
M or N.

Definition 1.41. Let f : M — N be a smooth mapping with constant rank.
Then, for allp € M, f is called:

an immersion if rankf = dim M,

a submersion if rankf = dimN.
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Let us now concentrate on immersions, that is, mappings whose images
are parametric submanifolds. To say that f: M — N is an immersion means
that the differential D f(p) is injective at every point p € M. This is the same
as saying that the Jacobian matrix of f has rank equal to dim M (which is
only possible if dim M < dim N). Then by the rank theorem, we have

Corollary 1.42. Let M, N be two manifolds of dimensions m, n, respectively,
and f: M — N a smooth mapping. The mapping f is an immersion if and
only if for each point p € M there are coordinate systems (U, @), (V,1) about
p and f(p), respectively, such that the composite 1 f p~! is a restriction of
the coordinate inclusion ¢ : R™ — R™ x R™"™™,

Proof. See Sharpe [360, p. 15].

This corollary provides the canonical form for immersed submanifolds:
(X1, Tm) = (X1, ., Tm, 0,...,0).

Definition 1.43. A smooth (analytic) m-dimensional immersed submani-
fold of a manifold N is a subset M' C N parametrised by a smooth (analytic),
one-to-one mapping f : M — M’ C N, whose domain M, the parameter
space, is a smooth (analytic) m-dimensional manifold, and such that f is
everywhere reqular, of mazximal rank m.

Thus, an m-dimensional immersed submanifold M’ is the image of an
immersion f : M — M’ = f(M). To verify that f is an immersion it is nec-
essary to check that the Jacobian has rank m at every point. Observe that
an immersed submanifold is defined by a parametrisation. Thus, an immersed
submanifold is nothing more than a parametrically defined submanifold, or
simply a parametric submanifold. Despite its smoothness, an immersed
or parametric submanifold may include self-intersections. A submanifold with
self-intersections is the image M’ = f(M) of an arbitrary regular mapping
f:M — M’ C N of maximal rank m, which is the dimension of the param-
eter space M. Examples of parametric submanifolds with self-intersections
such as Bézier curves and surfaces are often found in geometric design ac-
tivities. Immersed submanifolds constitute the largest family of parametric
submanifolds. It includes the subfamily of parametric submanifolds without
self-intersections, also known as parametric embedded submanifolds.

Definition 1.44. An embedding is a one-to-one immersion f : M — N
such that the mapping f: M — f(M) is a homeomorphism (where the topol-
ogy on f(M) is the subspace topology inherited from N ). The image of an
embedding is called an embedded submanifold.

In other words, the topological type is invariant for any point of an embed-
ded submanifold. This is why embedded submanifolds are often called simply
submanifolds. Obviously, f : M — N considered as a smooth mapping is
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called an embedding if f(M) C N is a smooth manifold and f: M — f(M)
is a diffeomorphism [65, p. 10].

Parametric immersed submanifolds have been mainly used in computer-
aided geometric design (CAGD) of parametric curves and surfaces, while em-
bedded submanifolds are preferably used as “building blocks” of solids in solid
geometric modelling, which usually embody mechanical parts and other en-
gineering artifacts. This means that an eventual computational integration
of these two research areas of geometric modelling becomes mandatory to
reconcile immersed and embedded submanifolds.

Let us see first some examples of 1-dimensional immersed submanifolds
that are not embedded manifolds.

Example 1.45. Let f : R — R? an immersion given by f(t) = (cos 27t, sin 27t).
Its image f(R) is the umit circle S' = {(z,y)|2* + y* = 1} in R% This
shows that an immersion need not be one-to-one into (injective) in the large,
even though it is one-to-one locally. In fact, for example, all the points
t = 0,41,42,... have the same image point (0,1) in R?. Moreover, the cir-
cle intersects itself for consecutive unit intervals in R, even though its self-
intersections are not “visually” apparent. Thus, this circle is an immersed
submanifold, but not an embedded submanifold in R?. The same holds if we
consider the immersion f : [0,1] — R? because f(0) = f(1). But, if we take
the immersion f :]0,1[— R?, its image is an embedded manifold, that is, a
unit circle minus one of its points.

Example 1.46. Let f :] — oo, 2[— R? be an immersion given by f(t) = (-t +
3t+2,t%2 —t—2). Its image f(] — 00, 2]) is an immersed 6-shaped submanifold
of dimension 1 (Figure 1.9(a)). Although f is injective (say, injective globally,
and consequently injective locally), that is, without self-intersections, its image
is not an embedded manifold. This is so because | — 00,2[ and its image
f(] — 00,2[) are not homeomorphic. In fact the point (0,0) in f(] — o0, 2])
is a cut point of f(] — 00,2[), and hence the local topological type of such a

(a) (b) (c)

Fig. 1.9. Examples of immersed, but not embedded, submanifolds.
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6-shaped submanifold is not constant. Note that the curve intersects itself at
t = —1 and t = 2, but because ¢t = 2 is not part of the domain, one says that
the curve touches itself at the origin (0,0).

Example 1.47. f : R — R? defined by f(t) = (t* — 1,t3 — t) is an immersion
(Figure 1.9(b)). It is not injective. However, it is injective when restricted to,
say, the range —1 < t < oo.

Ezample 1.48. A more striking example of a self-touching submanifold is given
by the image of the mapping f : R — R? so that

f(t) = (%,sinmﬁ) for 1<t < o0,

10,6 +2) for —oo<t< 1.
The result is a curve with a gap (Figure 1.9(c)). Let us connect the two pieces
together smoothly by a dotted line as pictured in Figure 1.9(c). Then we get
a smooth submanifold that results from the immersion of all of R in R?. This
submanifold is not embedded because near t = oo the curve converges to the
segment line 0 x [—1, 1] in y-axis. In fact, while t converges to a point near oo,
its image converges to a line segment. Thus, the submanifold is not embedded
because f is not a homeomorphism.

Embedded submanifolds are a subclass of immersed submanifolds that ex-
clude self-intersecting submanifolds and self-touching submanifolds, that is,
submanifolds that corrupt the local topological type invariance. Any other
submanifold that keeps the same topological type everywhere in it is an em-
bedded submanifold. Equivalently, a subset f(M) € N of a manifold N is
called a smooth m-dimensional embedded submanifold if there is a covering
{U;} of f(M) by open sets (i.e. arbitrarily small neighbourhoods) of the am-
bient smooth manifold N such that the components of U; N f(M) are all
connected open subsets of f(M) of dimension m. Thus, there is no limitation
on the number of components of an embedded submanifold in a chart of the
ambient manifold; it may even be infinite [360, p. 19]. This means that, even
with differential and topological singularities removed, a smooth embedded
submanifold may be nonregular. Regular submanifolds intersect more neatly
with coordinate charts of the ambient manifold; in particular, the family of
components of this intersection do not pile up.

Definition 1.49. An m-dimensional smooth submanifold M C N is regular
if, in addition to the regularity of the parametrising mapping, there is a cov-
ering {U;} of M by open sets of N such that, for each i, U; N M is a single
open connected subset of M.

By this definition, smooth regular submanifolds constitute a subclass of
smooth embedded submanifolds. Let us see three counterexamples of regular
submanifolds.
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Example 1.50. Let f :]1,00[— R? be a mapping given by

ft) = (1(308 27t %sin 27Tt).
Its image (Figure 1.10(a)) in R? is an embedded curve because the image of
every point ¢ €]1, oo[ is a point in R?; hence, f is a homeomorphism. Note that
even near t = 0o, f is still a homeomorphism because its image is a point, the
origin (0,0). That is, a point and its image have the same dimension. (This
is not true in Example 1.48.) However, the image of |1, 00[ is not a regular
curve because it spirals to (0,0) as t — oo and tends to (1,0) as ¢ — 1,
Figure 1.10(a). This happens because near (in a neighbourhood of) ¢t = oo the
relative neighbourhood in the image curve has several (possibly an infinite
number of) components.

Ezample 1.51. Let us slightly change the previous mapping f :|1, co[— R? to
be a mapping given by

t+1 t+1
flt)= <—2|_tcos 27t %sin 27rt>.

Its image (Figure 1.10(b)) in R? is a nonregular embedded curve, now
spiralling to the circle with centre at (0,0) and radius 1/2 as t — o0,
Figure 1.10(b). It is quite straightforward to check that the Jacobian is
always 1. In fact, it could be 0 if both derivatives of the component func-
tions could vanish simultaneously on |1, oo[; this would happen if and only if
cos 2mt = —tan 27t, an impossible equality.

Thus, every regular m-dimensional submanifold of an n-dimensional man-
ifold locally looks like an m-dimensional subspace of R™. A trickier, but very
important counterexample is as follows.

Ezxample 1.52. Let us consider a torus T? = S' x S! with angular coordinates
(60,7), 0 < 6,y < 2. The curve f(t) = (t,kt) mod 27 is closed if k/t is a

(a) (b)

Fig. 1.10. Counterexamples of regular submanifolds.
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rational number, and hence a regular submanifold of T2, being S' the param-
eter space. But, if k/¢ is irrational, the curve forms a dense subset of T2 and,
consequently, is not a regular submanifold.

This example shows us that a regular submanifold such as a torus in R3
may include nonregular submanifolds. One should be careful to avoid irra-
tional numbers in the representation and construction of submanifolds in a
geometric kernel.

1.7.2 Implicit Submanifolds and Varieties

An alternative to the parametric approach for submanifolds is to define them
implicitly as a common or intersecting level set of a collection of functions
[313, p. 16]. We have seen this in Subsection 1.5.2, where the implicit mapping
theorem was introduced. This theorem provides an immediate canonical form
for regular manifolds as follows:

Theorem 1.53. (Olver [313, p. 14]) A n-dimensional submanifold N C R™
is regular if and only if for each point p € N there exist local coordinates
x = (x1,...,2Zy) defined on a neighbourhood U of p such that UNN = {x :
Ty =+ =Ty_pn =0}.

Therefore, every regular n-dimensional submanifold of an m-dimensional
manifold locally looks like a n-dimensional subspace of R"”. This means that
all regular n-dimensional submanifolds are locally equivalent. They are the
basic constituents of some space decompositions introduced in Chapter 2.

Let us now see how all this works for varieties. They are generalisations of
implicit submanifolds, and thus they are defined by submersions. In general,
the variety Vr determined by a family of real-valued functions F is defined
by the subset where they simultaneously vanish, that is,

V= {X|f1(X) =0 for allfi S .7:}

In particular, when these functions {f;} are components of a mapping f :
R™ — R", the variety V; = {f(x) = 0} is just the set of solutions to the
simultaneous system of equations fi(x) =---= f,(x) =0.

It is clear that the notion of rank has a natural generalisation to (infinite)
families of smooth functions.

Definition 1.54. Let F be a family of smooth real-valued functions f; : M —
R, with M,R smooth manifolds. The rank of F at a point p € M 1is the
dimension of the space spanned by their differentials. The family is regular
if its rank is constant on M.

Definition 1.55. A set {f1,..., fx} of smooth real-valued functions on a
manifold M with a common domain of definition is called functionally de-
pendent if, for each p € M, there is a neighbourhood U and a smooth
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function H(y1,...,yx), not identically zero on any subset of RF, such that
H(f1(x),..., ft(x)) =0 for allx € U. The functions are called functionally
independent if they are not functionally dependent when restricted to any
open subset of M.

Example 1.56. The functions fi(z,y) = x/y and fo(z,y) = zy/(2® + y?) are
functionally dependent on the upper half-plane {y > 0} because the second
can be written as a function of the first, fo = f1/(1 + f2).

Thus, for a regular family of functions, the rank gives us the number
of functionally independent functions it contains. So, we obtain an implicit
function family theorem generalising the implicit mapping theorem as follows.

Theorem 1.57. (Implicit Function Family Theorem) If a family of func-
tions F is reqular of rank n, there exists n functionally independent functions
fi,--+, fn € F in the neighbourhood of any point, with the property that any
other function g € F can be expressed as a function thereof, g = H(f1,..., fn)-

Proof. See Olver [313, p.13].

Thus, if f1,..., f, is a set of functions whose m x r Jacobian matrix has
maximal rank 7 at p € M, they also have, by continuity, the same rank r in a
neighbourhood of U C M of p, and hence are functionally independent near
p. As expected, Theorem 1.57 also implies that, locally, there are at most m
functionally independent functions on any m-dimensional manifold M.

Definition 1.58. A wvariety (or system of equations) Vx is regular if it is
not empty and the rank of F is constant.

Clearly, the rank of F is constant if F itself is a regular family. In partic-
ular, regularity holds if the variety is defined by the vanishing of a mapping
f: N — R” which has maximal rank r at each point x € V£, or equivalently,
at each solution x to the system of equations f(x) = 0 [313, p. 16]. The im-
plicit function family theorem 1.57, together with Theorem 1.53, shows that
a regular variety is a regular submanifold, as stated by the following theorem.

Theorem 1.59. Let F be a family of functions defined on an m-dimensional
manifold M. If the associated variety VE C M is reqular, it defines a regular
submanifold of dimension m — r.

Proof. See Olver [313, p. 17].

As for parametric submanifolds, to say that an implicit submanifold is reg-
ular means that it is smooth. However, a smooth parametric submanifold is
not necessarily regular. But, for implicit submanifolds, regularity and smooth-
ness coincide. This is so because, unlike a parametric submanifold, regularity
of an implicit submanifold is completely determined by the regularity of its
defining family of functions.

Thus, Theorem 1.59 gives us a simple criterion for the smoothness of a
submanifold described implicitly.
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Example 1.60. Let f : R® — R be a function given by f(z,y,2) = 2% + 4> +
22 — 1. Its Jacobian matrix [2z 2y 22z] has rank 1 everywhere except at

the origin, and hence its variety (the unit sphere) is a regular 2-dimensional
submanifold of R3.

Ezample 1.61. The function f : R® — R given by f(x,y,2) = xyz is not
regular, and its variety (the union of the three coordinate planes) is not a
submanifold.

The fact that regularity and smoothness coincide for implicit submanifolds
suggests that we may have an algorithm to determine singularities on a variety
via the Jacobian matrix. Let us define regular points and singular points before
providing some examples that illustrate the computation of such singularities.

Definition 1.62. Let f : U C R™ — R” be a smooth mapping. A point
p € R™ is a regular point of f, and f is called a submersion at p, if the
differential D f(p) is surjective. This is the same as saying that the Jacobian
matriz of f at p has rank r (which is only possible if r < m). A point q € R"
is a regular value of f if every point of f=1(q) is regular.

Instead of ‘nonregular’ we can also say singular or critical. In general, we
have:

Definition 1.63. Let f : U C R™ — R" be a smooth mapping. A point
p € R™ is a singular point of f if the rank of its Jacobian matriz falls
below its largest possible value min(m,r). Likewise, a singular value is any
f(p) € R" where p is a singular point.

Recall that a singular point of an immersion determines a singular point in
a parametric submanifold, but its self-intersections are not determined by the
singular points of its associated function. This happens because the regularity
of an immersion at a given point is necessary but not sufficient to guarantee
the regularity of its image. But, for implicit submanifolds and varieties, the
regularity of functions is necessary and sufficient to ensure their regularity.

Example 1.64. Let f : R — R given by f(x) = 2%. Then any ¢ # 0 is a regular
value of f. Its Jacobian [2z] has rank 1 iff & # 0; hence x = 0 is the only
singular point of f. This corresponds to the minimum point of the graph of
f (i.e. the vertex of a parabola), but here we are concerned with implicit
submanifolds that are defined by level sets, not graphs.

Ezample 1.65. Let f : R? — R given by f(x,y) = 222 + 3y2%. Its Jacobian
[4x  6y] has rank 1 unless = y = 0. So any ¢ # 0 is a regular value of f.
For ¢ > 0, f~!(c) is an ellipse in the plane.

Example 1.66. Let f : R? — R given by f(x,y) = 23 + 3® — xy. The maximal
possible rank for its Jacobian [32%2 —y 3y® — x] is 1, and we can find all
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points where this fails, i.e. all singular points, by solving the system 0f/0x =

Of /0y = 0, that is,
322 —y =0
3y —2 =0.

This yields the points (0, 0) and (1, %) as the only singular points of f. Since

f(0,0) =0 and f(3,3) = —5- it follows that any c other than 0 or —5 is a
regular value of f. Also, 0 1s a regular value of restrictions f|(R? — {(0,0)})
and —5- is a regular value of f|(R? — {(4,1)}). This is because the singular

points (0, 0), (3 3) do not belong to the domain of the restrictions of f, say
1R = {(0.0)1) IR — {(3, D). respectively:

Figure 1.11 illustrates f~!(c) for some values of c. For ¢ = 0 we have the
well-known folium of Descartes (Figure 1.11(a)). The folium of Descartes is
the variety 2° + y® — xy = 0 which self-intersects at the singular point (0, 0),
i.e. the level set deﬁned by f(x,y) = 0. The level set defined by f(z,y) = —2%
is the variety 2° + y® — 2y = — 5= (Figure 1.11(c)) whose singular point is the
1solated point (3, 3) For ¢ = —z;, we have the regular variety 4y —xy =

= (Figure 1.11(b)).

Example 1.67. Let f : R® — R be given by f(z,y,2) = 2? — zy?. The associ-
ated variety has dimension m —r = 3 — 1 = 2, but the maximal possible rank
of its Jacobian [2z — 2zy — 2] is 1. Its singular points are the solutions of
the following system of equations:

—2zy = — zy =0
-2 =0 y=20

The expressions z = 0 and y = 0 denote the two coordinate planes in R3,
whose intersection is the z-axis. That is, the Jacobian vanishes along the

NN

(a) (b) (c)

Fig. 1.11. Varieties as level sets 2> + 3> — 2y = c.
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z-axis, or, equivalently, Each point in the z-axis is a singular point. Since
£(0,0,z) = 0 it follows that any ¢ other than 0 is a regular value of f. Also, 0
is a regular value of f|(R3 —{(0,0,2)}). Figure 1.12(a) illustrates f~1(0), the
Whitney umbrella with-handle (already seen in Figure 1.4(a)).

Example 1.68. Let f : R® — R be given by f(x,y,2) = y> — 2222 + 23. As
for the previous example, the Jacobian (—2z%z + 322 2y — 222?) vanishes
precisely on the z-axis. The z-axis is the line of “double points” where the
surface intersects itself at ¢ = 0. This surface is depicted in Figure 1.12(b).

Example 1.69. Let f : R — R? be the mapping given by f(x,v,2) = (zy, 12).

The Jacobian of f is
yx0
z0x

which has rank 2 unless all 2 x 2 minors are zero, i.e. unless zz = xy = 2 = 0,
which is equivalent to x = 0. Since f(0,y,z) = (0,0), any point of R? other
than (0,0) is a regular value. This variety (the union of the z-axis and the
plane z = 0) has dimension 2 and is the intersection of two 2-dimensional
varieties defined by the levels sets of the components functions of f. The first
level set is the union of the planes z = 0 and y = 0, while the second level set
is the union of the the planes = 0 and z = 0 in R3.

In short, the implicit function theorem and its generalisations allow us to
determine the singular set of an implicit variety. In the particular case of an
implicit surface f(x,y,z) = 0, the singular set is a 0- or 1-dimensional set at
which all the partial derivatives simultaneously vanish. Therefore, in essence,
a k-dimensional smooth (or differentiable) submanifold can be approximated
by a k-dimensional subspace of R™ at each of its points. In particular, this the
same as saying that a smooth curve in R? can be approximated by a tangent
line at each one of its points, a smooth surface by its tangent plane, etc. It is

4
A £

(a) (b)

Fig. 1.12. (a) Whitney umbrella with-handle as a level set x> — zy* = 0; (b) the
surface 3% — 2%2® + 2% = 0.
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clear that such an approximation is not possible at (differential) singularities;
for example, a tangent plane flips at any corner and along any edge of the
surface of cube.

1.8 Final Remarks

In this chapter, we have seen that manifolds can be either smooth or non-
smooth. Nonsmooth manifolds are in principle piecewise smooth manifolds.
This leads us to the idea of partitioning a n-dimensional manifold into smooth
k-dimensional submanifolds (k < n). The family of smooth submanifolds of
dimension less than n are singularities of such a n-dimensional manifold. This
simple idea is based on the pioneering work of two mathematicians, Whitney
and Thom, nowadays known as Thom-Whitney stratification theory. They
shows us that there is a close relationship between the concepts of differentia-
bility and stratificability of manifolds. Notably, both concepts are related even
when they are applied to more general geometric point sets such as algebraic,
analytic or even semianalytic varieties.

The essential key for having a smooth manifold is the concept of diffeo-
morphism, that is, a differentiable mapping with a differentiable inverse. The
differentiability of a mapping is not enough to guarantee the smoothness of
a manifold; its inverse must be also differentiable. As noted in [132, p. 106],
smoothness and differentiability do not agree. Smoothness means that the
mapping which defines a submanifold is a diffeomorphism.

Only a diffeomorphism (i.e. a smooth mapping with smooth inverse) en-
sures the smoothness of a parametric curve or surface. Thus, the smoothness
of a submanifold depends more on the properties of the mapping used to define
it than on its associated geometric invariants (e.g. curvature and torsion). The
use of a geometric invariant may be not conclusive to ensure smoothness on
a submanifold, as a topological invariant (e.g. Betti numbers) is not sufficient
to characterise the continuity of a subspace.

The relationship between the invertibility and smoothness of a mapping
has led us to its algebraic counterpart, that is, the relationship between the
invertibility of the Jacobian and smoothness of a submanifold. We have shown
that this relationship is independent of whether we treat submanifolds as level
sets, images, or graphs of mappings, i.e. it is representation-independent. So,
we have shown that C! smoothness can be determined by the rank-based cri-
terion. This suggests that we can determine the singularities of a submanifold
by observing where the rank is not constant.
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Spatial Data Structures

This chapter presents an overview of several spatial decomposition techniques,
as well as their associated data structures. We assume that the reader is
familiar with some basic concepts of set theory, topology and geometry.

Spatial decompositions apply to both ambient spaces and their subspaces.
In this textbook, we will focus on particular subspaces, say implicit curves
and surfaces. Spatial decompositions of these subspaces are here called object
decompositions. For example, the resolution of singularities of a level set (e.g.
implicit surface in R®) gives rise to its decomposition into manifolds. These
object decompositions are particularly useful for rendering implicit curves and
surfaces through continuation algorithms (see Chapter 6 for further details).

Decompositions that cover all the ambient space (e.g. a bounding box or
even the whole R™) containing an embedded object are called space decompo-
sitions. These decompositions are used by space-partitioning algorithms for
implicit objects (see Chapter 7 for more details).

2.1 Preliminary Notions

Let X be a topological space.! There are many ways to decompose X. Such
decompositions can be grouped together in two families: coverings and parti-
tions. A covering of X is a collection {X;} of subsets of X such that | X; = X.

L A topology T is a collection of sets U; that satisfies the following two axioms:
(i) the union of any (may be infinite) number of those sets also belongs to such
a collection; (ii) the intersection of a finite number of those sets also belongs
to such a collection. That is, a topology is closed in respect to the union and
intersection of its sets. Furthermore, from the axiom (i) we can say that the set
X = U{U; € T} is necessarily in 7 because 7 is a subcollection of itself, and
every set U; of 7 is a subset of X . The set X is called the space of the topology
T and 7 is a topology for X. Besides, the pair (X,7) is a topological space if
an additional axiom is satisfied: (iii) @, X € 7. Thus, 7 is a topology on X iff
(X,7T) is a topological space.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 41
Data Structures and Algorithms,
(© Springer-Verlag London Limited 2009
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(a) X (b) Xo (c) X (d) X2

Fig. 2.1. A covering of a point set X.

(b) XQ,...,Xg (C) X4,.“7X11 (d) Xlg,...7X16

Fig. 2.2. A partition of a point set X into faces, edges and vertices.

If a subset of a covering of X still covers X, it is said to be a subcovering.
This is illustrated in Figure 2.1, where X = Xy U X7 U X5, with X5 the only
subset that covers X totally.

But, if the subsets X; are all disjoint, we say that such a space decomposi-
tion is a partition, i.e. X; N X; = @ for any ¢ # j. For example, in Figure 2.2,
we have the partition X = U;io X, where Xy, ..., X3 are faces, X4,..., X1
are edges, and Xjo,..., X1g are vertices.

This chapter focuses mainly on partitions. There are two main families
of polygonisation algorithms for implicit curves and surfaces: continuation
algorithms, and space-partitioning algorithms. Both of these are based on
partitioning methods, in that both create a partitioned implicit object after
finding a finite collection of its points. They differ from each other through
the manner in which sampling points are found.

Continuation algorithms do not require the partitioning of the ambient
space. It is the implicit object itself (e.g. a curve or surface) that is sampled
directly, partitioned and approximated by a polyline or a triangular mesh, re-
spectively. Thus, continuation algorithms use object partitionings (see Chap-
ter 6 for further details).

By contrast, in order to sample an implicit object, space decomposition
algorithms do partition the ambient space. This partitioning of the ambient
space into convex cells allows us to sample an implicit object against the edges
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of those cells. Therefore, we can say that the resulting polyline that approx-
imates a curve, or mesh that approximates a surface, is obtained indirectly
from the partitioning of the ambient space. That is, space decomposition algo-
rithms for implicit curves and surfaces use space partitionings (see Chapter 7
for more details).

2.2 Object Partitionings

2.2.1 Stratifications

Stratifications have been extensively studied in mathematics mainly since the
1970s just to pave the way for the resolution of singularities of algebraic, semi-
algebraic, semi-analytic, and sub-analytic varieties (see, for example, Whitney
[412, 413], Thom [385, 386], Lojasiewicz [241, 242] and Hironaka [188, 189]).
Middleditch et al. [271, 162] introduced them in geometric modelling in the
late 90’s, in part by influence of the development of the Djinn project [21].

A stratification is a partition of a subset of R™ into manifolds (called
strata), thus providing a structure for point sets, regardless of whether they
are manifold or not [272]. Such a subset can be stratified in many ways. For ex-
ample, the partition of the manifold X in Figure 2.2 is a stratification because
all resulting subsets X; are manifolds, i.e. they are all locally homeormorphic
to R¥, with k = 0,1,2. A counterexample appears in Figure 2.3(a), where
the partitioned set X = U;zo X, in (a) is not a stratification because X
is not a manifold (it self-intersects). But, the sets X = U?:o X; in (b) and
X = U?:o X, in (c) are both stratifications of the same point set.

Figure 2.3 shows that there are many ways of partitioning and stratify-
ing point sets. Evidently, not all are of interest in geometric modelling. For
example, in solid modelling, boundary representations (B-Reps) represent ge-
ometric objects which are Whitney stratifications. These stratifications are

X % X
X X
(a) partition (b) stratification (c) stratification

Fig. 2.3. (a) A partition that is not a stratification; (b) a stratification; (¢) another
stratification of the same point set.
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occasionally called “cell complexes” in geometric modelling literature, but
the term is inadequate because of the essential difference between local and
global topological properties, as described in this section.

Whitney stratifications enjoy two main properties: (i) local finiteness;
(ii) local topological invariance. Local finiteness means that in the neighbour-
hood of each stratum point there are only a finite number of other strata.
Local topological invariance means that the topological type of the neigh-
bourhood of any point of a stratum is the same for every point of such a
stratum. Neighbourhoods with the same topological type is a way of saying
that they are topologically equivalent. For example, both stratifications (b)
and (c) in Figure 2.3 have a finite number of strata, so they are globally, and
consequently locally, finite; but, only (c¢) is a Whitney stratification.

In fact, not all points of the stratum X5 belonging to the stratification (b)
have topologically equivalent neighbourhoods. Intuitively, this is so because
the top part of X5 bounds simultaneously Xy and X, while its bottom part
bounds no strata; there are three topological types along the z-axis: one along
the positive subaxis, one along the negative one, and one around the origin.
For a more comprehensive study on stratifications, the reader is referred to
Shiota [365], Middleditch et al. [272], and Gomes [161].

Whitney stratifications: a data structure. With the advent of solid modelling
in the 1970s, and until the end of 1990s, general data structures for repre-
senting geometric objects were proposed in the literature in order to cope
with the requirements imposed by computer-aided design and manufacturing
(CAD/CAM) systems and applications. The “building blocks” of CAD geo-
metric kernels were and still are manifolds or strata, while those traditionally
used in computational geometry, and now widely used in computer graphics,
are cells and simplexes.

Let us then outline a general dimension-independent topological data
structure for finite Whitney stratifications:

typedef map<int, vector<Stratum*>*> Skeleton;

class Stratum {
int id; // stratum id
int dim; // stratum dimension
vector<Stratum*> *as // adjacent strata
vector<Stratum*> *is; // incident strata

geometry *g; // geometry

}

class Object {
int id; // object id
Skeleton *sk; // map of n-sleketa

}
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The containers vector and map are appliances provided by the STL (stan-
dard template library) of C4++. Note that this data structure is dynamically
dimension independent, in that when we need to add an n-stratum to it but
the corresponding object n-skeleton does not exist yet, we have only to create
a new entry in sk that maps the dimension n onto a vector of n-dimensional
strata, say the n-skeleton. By definition, the n-skeleton of an object is the set
of n- and lower-dimensional strata.

This data structure reinforces both the local finiteness condition and the
frontier condition by representing both the finite set is of incident (n + 1)-
dimensional strata and the finite set as of adjacent (n — 1)-dimensional strata
for each n-dimensional stratum. Recall that the frontier condition states that
the frontier of each cell is given by the union of a subset of the lower-
dimensional cells.

Finally, despite its simplicity, this data structure is prepared to host man-
ifold and nonmanifold geometric objects partitioned into strata, as required
in geometric and solid modelling. Nevertheless, a more comprehensive de-
scription of this data structure appears in [161], where it is called DiX data
structure.

2.2.2 Cell Decompositions

A cell decomposition can be defined as a partition of the space into cells.
By definition, an n-dimensional cell is homeomorphic to R™. For example,
the subsets Xy, ..., X146 of X depicted in Figure 2.2 are all cells. They do not
need be convex. But, they need to be simply connected, i.e. without homotopic
holes.

A counterexample is given by the 1-sphere S! = {p € R? : :E + yp =1}
In fact, S! admits a Whitney stratification consisting of a smgle 1-stratum
Xo (Flgure 2.4(a)), but its cell decomposition requires at least two cells, i.e.
a 0-cell X and a 1-cell X; (Figure 2.4(b)).

Another counterexample is given by an annulus without bounding vertices
(Figure 2.4(c)). As known, an annulus possesses two 1-dimensional boundaries.
Its simplest Whitney stratification consists of a 2-stratum Xs (i.e. a face with

OO

) stratification (b) cell decomposition (c) stratification (d) cell decomposition

Fig. 2.4. Four stratifications, two of which are also cell decompositions.
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a through hole) bounded by two 1-strata Xy and X;, and no O-strata. The
corresponding cell decomposition requires at least two O-strata, Xy and X7,
bounding distinct 1-strata, X5 and X3, respectively, with a dummy 1-stratum
X4 connecting those two O-strata; all these 0- and 1-strata form the frontier
of a 2-stratum X5 (Figure 2.4(d)).

Thus, unlike strata which may possess zero or more boundaries, a cell is a
manifold with exactly one nonempty boundary. As noted by Middleditch et al.,
it is no coincidence that classical boundary representations of solid objects use
artificial vertices and edges as a way to facilitate their cellular partitioning;
for example, this was important for the pioneer boundary representations
to guarantee that the resulting complexes would satisfy the Euler-Poincaré
formula.

A particular cell decomposition is the cell complex. A cell complex is a
collection of cells together with their boundaries, as well as further information
describing how the cells fit together. Like a Whitney stratification, a cell
complex also satisfies the frontier condition. However, a cell complex may
possess an infinite number of cells, so that mathematicians often use a more
restricted cell complex, called CW complex [410, 411]. A CW complex satisfies
two important conditions:

e C(Closure finiteness. This is the C condition, i.e. the frontier of each cell is
the finite union of lower-dimensional cells.

e Weak topology. This the W condition, i.e. the closed subsets are exactly
those sets that have a closed intersection with the closure of each cell.

The C condition is equivalent to say that the closure of each cell is con-
tained in a finite subcomplex. It imposes a finiteness restriction on the fron-
tier condition, i.e. the union of lower-dimensional cells bounding a given
cell must be finite. It is worth nothing that closure finiteness is not the
same as local finiteness. A complex is locally finite if each of its points is
in a finite number of cell closures. Closure finiteness neither implies nor is
implied by local finiteness, but both conditions are satisfied when a com-
plex has a finite number of cells. Thus, finite cell complexes are inherently
CW-complexes that are also locally finite. For example, the decomposition
of the 2-disk D* = {p € R? : 23 +y2 < 1} into a 2-cell (its interior
B> = {p € R? : 2 4+ y3 < 1}) and an infinite number of 0-cells bound-
ing it (its frontier S' = {p € R? : z 4+ y3 = 1}) is not a CW complex
because, despite its local finiteness, it does not satisfy the closure finiteness
condition.

The W condition defines a unique topology on the cell complex called the
W-topology or weak topology. This condition also imposes a finiteness restric-
tion, but now on the number of sets of the topology covering the complex. In
fact, a weaker topology is one that has fewer closed sets. The weak topology
on a cell complex is the smallest collection of subsets such that the intersec-
tion with each cell closure is closed within such a cell closure. Therefore, the
weak topology W = {W; };—o,...», consists of the following sets:
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(i) the sets formed from the closure of each cell;

(ii) the sets resulting from the union of any number of sets in W.
(iii) the whole set X of cells;

(iv) the empty set @& of cells;

For example, the cell complex shown in Figure 2.4(d) is a CW complex.
It satisfies the closure finiteness because the closure of any cell has a finite
number of cells. Its weak topology consists of the following collection of sets:

(i) Closures of cells. These sets of cells are Wy = X = {Xo}, Wi = X; =
{(Xa}, Wa = Xy = {Xo,Xo}, Ws = X3 = {X1, X3}, Wy = Xy =
{XQ, Xl, X4}, and W5 = X5 = {,Xvo7 Xl, XQ, Xg, X4, X5}

(ii) Unions of sets. By combining the previous sets through the set-theoretic
union, we obtain the following sets for the weak topology: W5 = XqUX;| =
{Xo, X1}, Wz = XoU X3 = {Xo, X1, X5}, Ws = X UXy = {Xo, X1, Xo},
Wy = Xo U X3 = {Xo, X1, X2, X3}, Wip = Xa U Xy = {Xo, X1, Xo, X4},
and Wy = X3 U Xy = { X, X1, X3, X4}. Note that the remaining unions
are already in the weak topology. For example, the union Xg U Xy =
{Xo, X5} is precisely the set Ws. Recall that, according to set theory,
there are no repeated elements in a set.

(iii) The whole set of cells. In this particular CW complex, the whole set X of
cells is just the set Ws.

(iv) The empty set of cells. The empty set & of cells is also part of this CW
topology. It is necessary to guarantee the closeness of the set-theoretic
intersection in the CW topology.

In fact, as for any topology, the intersection between two subsets of a weak
topology is always one of its subsets. For the example above, it is easy to see
that the intersection of any two subsets of the weak topology W is also a
subset of W. The same is true for the union of any two subsets of W. In
short, both the closure-finite and weak-topology conditions are satisfied for
the closed cells of that CW complex.

A CW-complex can be built up by attaching cells of increasing dimensions.
Informally speaking, attaching an n-cell to a CW-complex is carried out by
identifying the boundary of the cell with the finite union of a subset of (n—1)-
cells in the complex. Therefore, by using this attachment rule, and starting
off with the empty set, a CW-complex X can be inductively constructed out
by gluing the 0-cells, 1-cells, 2-cells, and so forth; this originates a filtration
XED c xO c x® € Xx@ C ... of X such that X = {J;o_; X@, with
XD = . The set X® obtained from X1 by attaching the collection
of i-cells is nothing more than the i-skeleton of X. Note that this definition
of CW complex does not allow us to attach i-cells before (i — 1)- and lower-
dimensional cells. Although some authors allow this (i.e. relaxation of the at-
tachment order), it seems to be common practice to restrict CW complexes to
the definition given above, and to call a space built up by attaching cells with
unrestricted order of dimensions a cell complex. Apart from these subtleties,
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we can say that CW complexes are finite cell complexes, which match the
memory storage limitations of modern computers. A more comprehensive
study on cell and CW complexes can be found in Lundell and Weingram [250].
CW complexes were introduced in mathematics by Whitehead [410, 411].

Finite cell complexes: data structures. In computational geometry there are
data structures for finite cell complexes and CW complexes. The cell-tuple
data structure due to Brisson [64] is a well-known data structure to represent
finite cell complexes. It consists of a set of tuples of incident cells of increasing
dimension: (vertices, edges, faces). For example, the cell complex depicted in
Figure 2.4(d) can be represented by the following set of four cell-tuples:

(Xo, X2, X5)
(Xo, X4, X5)
(leXSa X5)
(X1, Xy, X5)

To understand better the incidence scheme underlying this data structure,
let us consider the first tuple (Xo, X2, X5). This tuple tell us that the edge
X5 is incident at the vertex Xy, and the face X5 is incident on the edge Xs;
conversely, X, is adjacent to X5, which in turn is adjacent to X5. As for
stratifications, the term “is adjacent” means “bounds” or “is in the boundary
of.” Thus, the incidence and adjacency relations between cells are defined by
the order of such cells in each tuple.

Note that the data structure described above for finite Whitney stratifica-
tions may also be used to represent finite cell complexes because every n-cell
is an n-stratum (but not vice-versa). For 2-dimensional cellular objects in R3,
such a data structure would be as follows:

class Vertex {

int id; // vertex id
vector<Edge*> xie; // incident edges
Point *p; // geometry

}

class Edge {
int id; // edge id
Vertex *vil, *v2; // adjacent vertices
vector<Face*> *if; // incident faces

}

class Face {
int id; // face id
vector<Edgex*> *ae; // adjacent edges
Point *nf; // face normal

}
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class Object {

int id; // object id
vector<Vextex*> *vv; // vector of vertices
vector<Edgex> *ev; // vector of edges
vector<Facex*> *fv; // vector of faces

}

This data structure was proposed by Silva and Gomes in [369], and called
ATF (adjacency and incidence framework) data structure. Unlike traditional
B-rep data structures, it does not include any topologically oriented cells (e.g.
half-edges of the half-edge data structure) [256]. Nevertheless, the AIF data
structure is geometrically oriented because every face includes a normal vector
nf as appears defined in the class Face. The consistent orientation of such nor-
mal vectors on the object surface is acquired through an inducing mechanism
similar to the one described in [369] and [59]. Such an inducing mechanism
requires to traverse the frontier of each face in the same manner, i.e. either
clockwise or counterclockwise. From this induced topological orientation for
all faces, we are able to generate a geometric orientation (i.e. a normal vector)
for each face of the object.

2.2.3 Simplicial Decompositions

In a space of dimension at least n, an n-simplex (plural simplexes or simplices)
is an n-dimensional manifold with boundary whose interior is topologically
equivalent to R", i.e. a n-cell. In geometric terms, a n-simplex is the convex
hull of a set of (n + 1) affinely independent points in some n- or higher-
dimensional Euclidean space. Therefore, a n-simplex is a linear, convex, closed
n-cell; some examples in R? are depicted in Figure 2.5.

A simplicial complex is a space decomposed into a collection of simplices,
sometimes also called a triangulation. Simplicial complexes are a particular
case of CW complexes in that closures of cells are simplices (or simplexes). In
more formal terms, a simplicial complex K in R™ is a collection of simplices
that satisfy the following conditions [291]:

a) O-simplex b) 1-simplex ¢) 2-simplex d) 3-simplex
(a)
(vertex) (edge) (face) (solid)

Fig. 2.5. Simplices in R?.
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(i) Every frontier simplex of a simplex of K is in K, and
(ii) The intersection of any two simplices of K is a frontier simplex of each of
them.

Alternatively, a n-simplicial decomposition can be viewed as a union of
k-simplices (0 < k < n) that is closed under intersection, and such that the
only time that one simplex is contained in another is as a boundary simplex.
This is a constructive view of looking at simplicial complexes, i.e. simplices
can be used as building blocks to construct simplicial complexes by gluing
simplices together through their boundary simplices (or their intersecting sim-
plices).

Simplicial complexes: data structures. In the computational geometry litera-
ture, we easily find data structures for simplicial complexes (and cell com-
plexes) because Delaunay triangulations have been often applied to explore
and to study the properties and subtleties of subspaces in R™. But, triangu-
lations have also become very popular in geometric modelling and computer
graphics in last decade, mainly due to the emergence of multiresolution meshes
and compression techniques as a consequence of the Internet and Web revo-
lution. Besides, graphics cards are optimised to process triangles rapidly.

The incidence graph data structure [126] is a well-known dimension-
independent data structure for simplicial complexes. This data structure can
be viewed as a particular case of those described above for Whitney stratifi-
cations and cell complexes for two reasons:

e It also hosts the boundary and co-boundary of each d-simplex. The bound-
ary of a d-simplex is roughly the set of (d—1)-simplexes which are adjacent
to it, while its co-boundary is given by the set of (d + 1)-simplexes which
are incident on it.

e A d-simplex, roughly speaking, is a particular case of a d-cell.

A very compact, yet less general, data structure for 2D cell and simplicial
complexes is the star-vertices data structure [205]. It is as follows:

class Neighbour

{
Vertex *vtx; // the neighbour vertex
int nxt; // index to find next vertex of the face
s
class Vertex
{
float x, y, z; // geometry coordinates
int num_nb; // the number of neighbours to this vertex

Neighbour #*nb; // pointer to the array of neighbours

};
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class Mesh
{
vector<Vertex> *aov; // pointer to array of vertices

};

The star of vertices around a given vertex is represented by the field nb
in the class Vertex. The index nxt works as a pointer to the next vertex of
the star, which endows the data structure with a topological orientation. This
data structure is quite compact because it only encodes vertices and their
neighbours explicitly, not edges and faces. This fact may slow down geometric
algorithms involving traversal and reasoning algorithms. The star-vertex data
structure is particularly useful for encoding triangulations in R2.

In the literature, many other data structures that represent geometric
objects have been proposed in recent decades, namely: the winged-edge [33],
the half-edge [256], the DCEL [288], the quad-edge [170], the lath [203], the
corner-table [342], the facet-edge [113], the handle-face [246], the cell-tuple
[64], the nG-map [238] and the TCD graph [130], amongst others. For a more
detailed study of simplicial complexes and triangulations, the reader is referred
to Floriani and Hui [104] and Hjelle and Daehlen [191].

2.3 Space Partitionings

These decompositions primarily stress on the decomposition of the ambient
space itself, instead of its embedded geometric objects (e.g. implicit curves and
surfaces). In this case, the partitioning of any object is a consequence of the
partitioning of its ambient space. Some examples of these space partitionings
include quadtrees, octrees, and BSP trees.

Partitioning the ambient space normally results in a collection of convex
cells. However, there is no unique way to partition the space into similar cells—
hence the nonexistence of a unique representation for a given object. Any
unambiguous partitioning is valid, although for a given model some partitions
are better than others, depending on the problem we intend to solve.

For sampling implicit curves (respectively, surfaces), we normally use some
kind of space partitioning of a rectangular region into cells in R? (respectively,
R3). Some examples of space partitionings are shown in Figure 2.6. The cell
occupancy can be described either sequentially (Figure 2.6(a)), or in a hier-
archical way (Figure 2.6(b), (c) and (d)).

The sequential enumeration (Figure 2.6(a)), also known as ezhaustive enu-
meration, partitions a rectangular region into axially aligned cells with the
same size such that the resulting rectilinear grid is easily represented as an
n-dimensional array (where n is the dimension of the space). This technique
has applications in fields such as digital image processing where the data
is obtained from 2D image scanning devices), computer tomography (CT),
magnetic resonance imaging (MRI), and other scanning devices capable of
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(c) BSP subdivision (d) quadtree subdivision

Fig. 2.6. Some space partitionings for implicit curves.

processing 3D data. A popular example of this technique is provided by the
marching cubes algorithm due to Lorensen and Cline [247], which will be
described later in Chapter 7.

By contrast, in a hierarchical structure the relationship between cells is
granted by the very way in which the space is partitioned: smaller cells are
derived from larger ones, and can be arranged in a tree structure. This tech-
nique is also known as subdivision, as the larger cells are further away from
the curve or surface, whereas the finer cells tend to gather around the curve or
surface and adapt to its shape (Figure 2.6(b),(c) and (d)). Thus, subdivision
is a recursive partition of space into cells that altogether cover the rectan-
gular region of interest where the curve or surface lies in. The corresponding
hierarchical data structures thus generated are 2"-trees, which particularise
to bintrees (n = 1), quadtrees (n = 2) and octrees (n = 3) in 1D, 2D and 3D,
respectively, or higher dimensions.

2.3.1 BSP Trees

Binary space partitioning (BSP) recursively splits the space into convex sub-
spaces by hyperplanes (i.e. a higher-dimensional generalisation of the concepts
of a point in a straight line, a straight line in a plane, a plane in a 3D space,



2.3 Space Partitionings 53

and so forth). Each hyperplane divides a space into two convex subspaces.
This recursive partition of the space is usually encoded into a binary tree or
bintree, irrespective of the number of dimensions. This is a major advantage
from the point of view of implementation because binary trees are a common
data structure, easy to store and to browse. This matching between the BSP
and a bintree results in a BSP tree, as illustrated in Figure 2.7. Each internal
node of a BSP tree is associated with a splitting hyperplane. In Figure 2.7,
these hyperplanes are the bisection lines [y, ...,5.

BSP trees find applications in many science and engineering fields. In the
context of the present textbook, they are particularly useful to sample im-
plicit curves and surfaces; for example, the curve shown in Figure 2.6(c) was
polygonised after sampling some of its points against the bisection lines of a
binary space partitioning of a rectangular subspace of R2. This approach was
first proposed by Fuchs et al. in 3D computer graphics to determine visible
surfaces of polyhedra, without the need for a z-buffer, and to increase the
rendering efficiency [148]. In fact, the membership test of an arbitrary point
in space against a BSP tree is well known. Since then, BSP trees have found
some other applications, including geometric operations of CSG (constructive
solid geometry) shapes in CAD systems, ray tracing, collision detection in
robotics and 3D FPS (first-person shooter) computer games involving naviga-
tion through indoor environments, as well as other applications that involve
handling of complex spatial scenes.

Doom was probably the first computer game to use a BSP data struc-
ture. This is so because the scenery in computer games is usually built up
using polyhedral shapes, which can be easily represented accurately with this
technique. This includes convex as well as concave polyhedra. In a BSP repre-
sentation of a polyhedral object, each face is contained in a splitting plane of
the ambient space. In this case, the normal of the plane is assumed to point
towards the empty half-space, for illumination purposes.

Conversion algorithms from other representations of geometric objects into
BSP and vice versa are well known in geometric modelling community. In
particular the conversion from a B-rep model into a BSP tree has been studied
by Thibault and Naylor [298, 384]).

BSP: data structure. Many variants of the BSP tree data structure appear
in the literature, so that sometimes it is not easy to distinguish application-
dependent from application-independent data. On the contrary, the following
BSP tree data structure clearly splits such data:

class Node

{
Hyperplane *hp; // splitting hyperplane
Space *s; // intersection of half-spaces
Data *data; // application-dependent data

};



54 2 Spatial Data Structures

J

(a) initial space without partitioning (b) first space partition by Iy

(c) first 3 partitions by 1, l2 and I3

Fig. 2.7. Binary space partitioning of a space Q € R? and its corresponding bintree.
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class BSPTree
{
Node *node; // the top node
BSPTree *subtree[2]; // its two subtrees
}

The class BSPTree encodes the hierarchical structure of a binary tree, i.e.
it is application independent. Each BSP node keeps not only the geometry
of the its associated space s and its bisection hyperplane hp, but also any
specific data required by the application.

2.3.2 K-d Trees

K-d trees (short for k-dimensional trees) are a particular case of BSP trees,
where k£ denotes the dimension of the ambient space to be subdivided. The
extra restriction applied to k-d trees is that the space is divided by planes that
are always mutually perpendicular, and parallel to the coordinate axes. The
resulting subspaces are boxes, also known as hyper-rectangles. Even though
the division is always performed at right angles, it can be uneven, in that a
box need not be split into two equal sub-boxes.

The k-d tree is a multidimensional binary search tree for points in the
ambient k-dimensional space. Thus, given a set of n points in a k-dimensional
box, we can construct a binary tree which represents a binary partition of the
space into axially aligned subboxes by hyperplanes such that each point is
contained in its own region. This illustrated in Figure 2.8, where the insertion
of points A, B, C, D, F and F in the ambient space §2 by lexicographic order
have caused a decomposition of 2 into smaller boxes. The resulting space
partition and respective 2-d tree appears in Figure 2.8(f). A black square
node B of the 2-d tree indicates that a box in ) contains a given point,
while a white square node [0 denotes an empty box inside 2; a circle node
enclosing the letter identifier of a point means that either the z-coordinate or
y-coordinate of such a point defines a splitting line of the space.

In a unidimensional binary search tree, nodes have a single key. In a k-d
tree, nodes cycle through a set of k keys. As for a traditional binary search tree,
nodes are inserted and retrieved using < and >. But, the key that determines
the subtree to follow (i.e. left or right) depends on the the level of the tree. At
level [, the key number is given by [ mod k£ + 1. That is, the first key is used
at level 0 (root), the second key at level 1, and so forth until all keys have
been used. Then, we recycle through the keys for the remaining nodes down
in the tree. These keys usually represent the orthogonal axes x and y in 2D,
z, y and z in 3D, and so on.

Let us look again at the 2-d tree in Figure 2.8. The two possible splitting
directions are x and y. The area of interest is first split into two with a line
parallel to the y-axis, being the key given by x = 10 (i.e. the z-coordinate of
the point A). The point B is then inserted into the left node of A because its
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[ ]
[ ] L [
[ ] [ ]
o o o
(a) (b) (c)
D* c D* c D* c
A A A
[ ] b
B B E B E F
Q Q Q

Fig. 2.8. A 2-d tree and its associated space decomposition.

z-coordinate satisfies x < 10, while the point C' is associated with the right
node of A provided that its z-coordinate satisfies x > 10. Then, at the level
1, each of the subboxes generated through B and C' are cut parallel to the z
axis. In short, the splitting lines are parallel to z-axis at the odd levels, and
parallel to y-axis at the even levels.
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K-d trees are constructed by partitioning point sets. Figure 2.8 illustrates
a construction algorithm of a k-d tree by inserting points incrementally and
partitioning the corresponding cell accordingly. But, other flavours of algo-
rithms to construct k-d trees can be devised. For example, given a discrete
point set, each tree node is defined by a splitting hyperplane that partitions
the set of points into subsets (left and right subsets), each with half the points
of the parent node. In this case, we get a balanced k-d tree.

The correspondence between a k-d tree and a binary partition of the space
makes it well suited to support spatial queries on point sets. In computational
geometry, k-d trees are used to carry out the nearest neighbour point search,
the point location inside a polygon, and the orthogonal range search (to find
all the points that lie within a given box).

In geometric modelling, 2-d trees can be used to carry out a binary space
partitioning that progressively approximates an implicit curve or surface. This
is illustrated in Figure 2.6(b) for a curve. But, it can be also used to decom-
pose a filled geometric figure into boxes adaptively, depending on the local
curvature of its frontier, as usual in engineering analysis and finite element
methods. In this case, the recursive space decomposition of the figure stops
when the sub-boxes are either entirely empty, or entirely full, or too small to
divide further.

The k-d tree data structure can be encoded as follows:

class Node

{
Box *box; // its associated box
Data *data; // application-dependent data
}s;
class kdTree
{
Node *node; // the top node
kdTree *subtree[2]; // its two subtrees
}

Most of that structure is a standard binary tree, with links pointing up-
wards (if desired) and downwards. Additionally, there needs to be a convention
for encoding a direction of space along which the node is being subdivided;
it is appropriate to use the same field in order to mark a leaf node. A char field
has been suggested for this purpose, though the information is merely two-bit
wide. The coordinate of the division is the absolute offset, in the direction
direction, of a division plane whose normal is along that same direction.

At each stage of the division, it is also worth storing the coordinates of the
current node’s box (so as to avoid having to recalculate them each time). Since
the box is expected to be axially aligned, the box type can be, for example, a
collection of three intervals for the ranges in x, y and z.
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class box {
interval xi, yi, zi; // intervals for ranges in x, y, z

}

One sensitive detail is the fullness indicator. Depending on the reasons for
which the subdivision is being carried out, the full flag may represent one
bit of information indicating whether a box is full or empty. The subdivision
needs to stop once the box size has reached a threshold, in which case some
leaf nodes are “approximated” to one of the two values even if they contain
some surface and could, theoretically, be subdivided further. (This is dealt
with in a similar manner in the case of quadtrees and octrees, introduced
below.)

Alternatively, a third kind of value may be stored (as suggested in the
example above), whereby a box can be flagged as “partially full.” In other
words, this box contains surface and further algorithms may process the in-
formation pertaining to the surface patch in each partially full leaf node, for
example for the purpose of rendering. More details on k-d trees can be found
in de Berg et al. [97] and Samet [347].

2.3.3 Quadtrees

A quadtree is a tree data structure so that each node has up to four children,
i.e. a particular case of the 2"-tree, with n = 2. In other words, each node of
a 2™-tree splits along n dimensions giving rise to 2" children. Once again, the
directions in which a region is split are axially aligned. Finkel and Bentley
were who first proposed the quadtree data structure in 1974 [137].

When associated to a recursive partition of a 2D space, it splits a region of
interest along the two axial directions from which four quadrants or regions are
obtained, each stored into one of the four tree nodes. Note that such regions
may have arbitrary shapes, i.e. they are not necessarily square or rectangular.
Usually, a quadtree appears associated to a squared box which is partitioned
into subsidiary boxes recursively until some stopping condition be satisfied.

There are many types of quadtrees in the literature. They may be classified
according to the type of data they represent, namely points, lines, curves,
areas, etcetera. For example, a curve is approximated by a collection of edges,
whereas a volumetric object is approximated by a collection of voxels—both
stored in a treelike fashion.

The point quadtree is similar to the point 2-d tree previously described in
that the subdivision of the space always occurs on a point.

Another type is given by the edge quadtree, which stores lines rather than
points. This is illustrated in Figure 2.6(d), where an implicit curve is approx-
imated by adaptively partitioning boxes to an adequate sampling resolution.
Some boxes appear unnecessarily subdivided in Figure 2.6(d), but that does
depend on the subdivision criterion, not the quadtree itself.
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In geometric modelling, the region quadtree is the most familiar quadtree
data structure, which is used to approximately represent a point set (i.e. a
shape) in the plane. In this case, a quadtree can be viewed as a particular
type of space-partitioning tree. The recursive division process stops when all
the current sub-quadrants are either full or empty, or when they become too
small to be subdivided. Partially full quadrants are divided further in order to
establish finer features of the region being studied. When these partially full
quadrants become very small, they end up being also classified as full or empty.
A single bit in each leaf indicates which is the case. Figure 2.9 illustrates a re-
gion quadtree of a shape in the plane and its tree data structure in which each
node has four children. Every node in the three (Figure 2.9(b)) corresponds
to a quadrant or squared box in the region of interest €2; hence, the quadrants
NE (northeast), NW (northwest), SW (southwest) and SE (southeast).

Q

(a) quadtree space partitioning

(b) quadtree data structure

Fig. 2.9. Planar quadtree.
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Therefore, quadtrees can be encoded as follows:

class Node

{
Box *box; // box it represents in the plane
Data *data; // application-dependent data
}
class Quadtree
{
Node *node; // top node
Quadtree *quadrant([4];// the quadrants: NE, NW, SW and SE
}

Beyond their applicability in computational geometry, geometric modelling
and computer graphics, quadtrees are also widely used in image processing
(e.g. image representation and storing of raster data) and spatial informa-
tion analysis (e.g. spatial indexing in databases) as needed in numerous fur-
ther applications, from computer vision, geographical information systems,
astronomy and cartography, etc.

2.3.4 Octrees

An octree is a 23-tree, i.e. it is the 3-dimensional analogue of a quadtree, i.e. an
octree has eight children instead of four (see Figure 2.10). Therefore, octrees
are good candidate data structures for representing 3D embedded geometric
objects in memory because an octree breaks the space of interest (i.e. the
initial bounding box) into eight boxes, called octants, by three hyperplanes
(usually, axis-aligned planes). These boxes are then recursively partitioned
into eight sub-boxes. Similar to the quadtree, this process continues until a
box is sufficiently homogenous (either full or empty) that it can be represented

Fig. 2.10. Some space partitionings for implicit curves.
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by a single node. Recall that, in octree jargon, while an octant is of any size,
vozels (for “volume element”) refer to smallest octants (i.e. those lying in the
leaf nodes of the tree).

Looking at Figure 2.10, we easily conclude that the octree data structure
can be written as follows:

class Node

{
Box *box; // octant it represents
Data *data; // application-dependent data
}
class Octree
{
Node *node; // top node
Octree *octant[8];// array of octants or 3D boxes for node
}

The field data is capable of storing arbitrary information, but octrees
are commonly used for representing surfaces or volumes in 3D. For example,
implementations often use six bits in each octant to indicate whether any of
the octant’s six faces is on the surface of the volume. Extra face information
(e.g. colour) requires a collection of up to six indices or pointers to an auxiliary
face structure. Additionally, each leaf node denotes whether the space in its
corresponding octant is either empty or full, while interior nodes represent
partially full octants. That is, partially full octants have eight child octants
(hence the prefix “oct”).

Octrees are a data structure for storing information about curves, sur-
faces or volumes in a 3D space. Octrees have particular advantages over other
representations when 3D spaces contain blobs or volumes which are highly
connected (e.g. a human body). In [237], Libes uses octrees in modelling dy-
namic surfaces. They are also useful in collision detection, as usual when we
need to compute robot paths. In fact, when a robot interacts with the geo-
metric objects existing in the ambient space, the octrees allow us to detect
intersections between them.

However, octrees also have disadvantages, in particular in dynamic envi-
ronments where the geometric objects can grow and move without predefined
constraints. For a discussion about the advantages and disadvantages of oc-
trees and a running/space-time analysis, the reader is referred to Meagher
[264, 265]. Navazo and Brunet developed a solid geometric modeller based
on octrees, whose representation was even extended to non-manifold domain
[69, 296, 297]. Octrees also find applications in ray tracing and computer
graphics [154, 212, 421]. For a more comprehensive survey of octrees and re-
lated spatial representations of geometric objects, the reader is referred to
Samet [346, 347].
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2.4 Final Remarks

As seen above, there are many different ways of partitioning spaces. Some
partitions directly decompose geometric objects as subspaces of the ambient
space, while others do the same indirectly by first decomposing the ambient
space. Different partitions normally lead to distinct spatial data structures.
This chapter just explores the relation between space partitions (including ob-
ject partitions) and their possible spatial data structures. It would interesting
to observe how different space decompositions determine not only different
data structures, but also different algebraic structures, but that is not in the
scope of the current textbook. For that, the reader is referred to Shapiro
[356, 357] for further details.
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Root Isolation Methods

This chapter deals with bounding and isolating the zeros (i.e. roots) of a
polynomial function in a given region of interest. The function is assumed
to be in its implicit form f(x) = 0, although some of the theory is also
relevant to explicit and parametric functions. If the function has only one
variable, the region of interest is an interval. The procedure of root isolation
is normally preceded by procedures that find bounds for the interval where
the polynomial’s roots are likely to lie. Together, bounding and isolating are
known as root location methods [372]. Root location methods are important
to guarantee the correctness of sampling methods for curves and surfaces.

The theory of root location methods is easiest to explain for univariate
polynomial functions defined on a finite interval domain. This is because,
historically, the algebraic methods for root location were developed before
their use in geometric modelling became obvious. It is, however, possible to
extend the definition of “roots” to refer to zeros of multivariate functions.
In 2D, for example, the zeros of an bivariate polynomial lie on a curve, and
isolating such zeros in R? is equivalent to locating the points of the curve in
the Euclidean plane. Similarly, in 3D one can talk about the skin or surface
of an object defined by a trivariate polynomial. Generalisations to higher
dimensions follow from there.

3.1 Polynomial Forms

An implicit polynomial function can be represented in an infinity of ways,
all of which are equivalent modulo algebraic manipulation. Some of the most
significant forms depend on the bases available on the ring of polynomials with
real coefficients, others depend on particular ways of arranging the terms. Let
us list and discuss a few:

e Power form
e Factored form
e Bernstein form

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 67
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(© Springer-Verlag London Limited 2009



68 3 Root Isolation Methods
3.1.1 The Power Form

The power form is the expanded polynomial in monomials, after removal of
superfluous terms (e.g. © — z = 0), and reordering in descending order of
exponents. Therefore, a degree-n polynomial (also called n-order polynomial)
in the power basis is written as follows:

fla) =3 ai’ (3.1)

where a; € R and a,, # 0.
For example, the following power form polynomial

flx)=2>4+2—-6 (3.2)

is a 2-order polynomial because its highest power of z is 2. It is also monic
because its leading coefficient, say the coefficient of z2, is 1. To find the roots
of this 2-order polynomial, we can use the well-known quadratic formula

b+ Vb2 — 4dac

- (3.3)

x

After general algebraic formulae for the cubic and quartic equations [67]
had been found in the 16th century, Abel (in 1824) gave the first accepted
proof of the insolubility of the quintic. Later on, in 1831, Galois proved that
no formula exists for polynomials of degrees equal to or greater than five. This
motivated the appearance and development of the field of numerical analysis.

3.1.2 The Factored Form

By the fundamental theorem of algebra, any degree-n polynomial has exactly
n roots (or zeros), which are real or complex. For the 2-order polynomial f(x)
in Equation (3.2) above, let us assume its roots are both real and denote them
by ap and a;. This means that f(«p) = 0 and f(aq) = 0, so that we can write

f(z) = (2 — ag)(z — a1)

This is known as the factored form of the monic polynomial f(x). For a
nonmonic polynomial, in order to make it monic, it is possible to divide all
coefficients by the coefficient of the highest power term. This division by a
nonzero constant does not change the polynomial’s zeros. By multiplying out
the symbolic factored form, we obtain

f(z) = (z —ap)(z — a1) = 2 — (o + 1) x + apay
Comparing this form with the original power form of the polynomial f(x)
in Equation (3.2), we come to the following nonlinear system of two equations
in two unknowns
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{—(a0+a1) = 1

apa; = —6

which yields the solution zeros oy = 2 and a; = —3. Thus, the conversion
of a factored form polynomial into its power form is clearly easier than the
reverse process. This is even more the case with higher-order polynomials.

3.1.3 The Bernstein Form

In CAGD, the Bernstein polynomials are often used to define free-form
parametric surfaces (and curves), namely: Bézier, B-spline or NURBS sur-
faces [132].

On the contrary, in this book, we use the Bernstein form polynomials to
define implicit curves and surfaces. In fact, similar to the power form poly-
nomials, a 2D implicit curve can be defined as the zero set of a bivariate
Bernstein form polynomial in R2?, while an implicit surface is defined as the
zero set of a trivariate Bernstein form polynomial in R3.

But, for the time being, let us concentrate on the univariate case. The
univariate Bernstein polynomial basis is normally defined for a variable x that
varies in the interval [0, 1]. However, it is possible to remove the constraint
z € [0, 1] and to extend the domain of the Bernstein polynomials to the generic
interval [a, b].

For a given n € N there are n 4+ 1 univariate degree-n Bernstein polyno-
mials. By definition, the univariate Bernstein basis functions of degree n on
the interval [a, b] (see also Lorentz [248]) are defined by:

o= ()

]

Vo € la,b], i=0,1,...,n. (3.4)

The fact that the polynomial set (B]");=0 , forms a basis for the ring of degree-
n polynomials means that any univariate power form polynomial of degree n
or lower can be represented on the interval [a, b] using its equivalent Bernstein

form as follows: .

fl@)= > aix’ = b'B(x) (3.5)
1=0

=0
~—— ——
power form Bernstein form

where b} are the Bernstein coefficients corresponding to the degree-n base.
Both univariate representations (3.5) are equivalent on the interval [a,b] and
conversion between them is fairly straightforward.

The Unit Interval [0, 1]

On the unit interval [0,1] for example, the univariate Bernstein coefficients
are easily computed in terms of the power coefficients (also shown by Farouki
and Rajan [133, 134]):
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= ;)
b= (3.6)
j=0 (])

Therefore, the formula (3.6) can be used to design an algorithm of conver-
sion between the power and the Bernstein form of an univariate polynomial.
This is shown in the following example.

Ezample 3.1. (Univariate Bernstein form polynomial in [0, 1]) Given the poly-
nomial p(z) in the power form

p(xr) = 2% —52? + 22+ 4

its equivalent Bernstein form (valid for = € [0, 1]) is obtained using the For-
mula (3.6) above:

14 11
p(x) = 4BS’ + ?Bi’ + 3

14 11
=4(1—2)* + §3m(1 —2)? + §3x2(1 — ) + 223

B3 + 283

where B? are the Bernstein polynomials of degree 3, namely:

Bi=(1-z)?
B} = 3x(1 — x)?
BS =32*(1 — )

3_.3
By =z

In order to generalise the Formula 3.6 for polynomials with more than
one variable, it is convenient to express polynomials as matrix products. The
formulae below show how to calculate the desired set of Bernstein coefficients
in the matrix B in terms of the power coefficients given in matrix A.

Let us then first rewrite both polynomial representations in the matrix
notation:

ag
f(m):Zaimi: 1z 2" a:1 =XA (3.7)
i=0 :
bo
n by
flz) =) b'Bi'(x) = [By(z) Bi(x) --- Bi(2)] | . | =BxB  (3.8)
1=0 .
bn

Now, by expanding the elements of By, we have:
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Thus,

So, by equating (3.7) and (3.8), we now obtain the Bernstein coefficients ma-
trix B in terms of the power coefficients matrix A as follows:

XA = XCyB

or, equivalently,
B=(Cx)'A

where (Cx)~! is the inverse matrix of Cx.

A General Interval [a, b]

The constraint = € [0, 1] can be relaxed by extending the domain of the Bern-
stein polynomials to a generic interval [a, ], as given by (3.4) and rewritten
here as follows:

mw= (1) (=) (-8 weewn 69

As before, a Bernstein form polynomial f(x) is written as:

f(z) =BxB, Vz € [a,b], (3.10)

where Bx is the vector of Bernstein polynomials and B is the Bernstein
coeflicients matrix.

Using an analogous sequence of steps as above, Bx can be expressed as
follows:

Bx = [Bj(z) Bi'(z) --- By (x)]

=t (=) ox

or, equivalently,
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Gmay 0
Bx=[lz—a - (z—a)"] Cx
1
0w
Dx

= [1x—a-~- (m—a)”} DxCyx
= [Zhoo (D" (=2)" " Thp (a2t (=) 7 - 3, (B)at (—a)" ¥ Dx Cx

T T
=z a" =1, 1)(.@ . 4 (.x) DxCy
— : : . :
X 0 0 (Z)(_x)n—n
Ex
or
Bx = XExDxCx. (3.11)

Therefore, the Bernstein coefficients matrix B for a generic interval [a, b] can
be determined from:
XA =XExDxCxB
that is,
B = (Cx)™'(Dx)'(Ex)'A.

3.2 Root Isolation: Power Form Polynomials

A real root isolation algorithm is an algorithm that, given a univariate real
function (e.g. a polynomial function), computes a sequence of disjoint intervals
each containing exactly one of the function’s distinct real roots.

In this section, the focus is on the root isolation for power form polyno-
mials. (Similar root isolation algorithms for Bernstein form polynomials are
dealt with in the next section.) When the function is a power form polynomial,
the most common methods for isolating its real roots are:

e Descartes’ rule of signs
e Sturm sequences
e Interval arithmetic

The first two are algebraic procedures that compute the total number of
roots that a power form polynomial has in a given interval. Descartes’ rule only
provides an upper bound, i.e. the maximum number of positive and negative
real roots of a polynomial. Sturm’s method computes the polynomial’s ezact
number of roots.

Isolation by interval arithmetic has a major advantage, in that its use is
not confined to polynomials—it applies to general continuous functions. This
method only requires the function to be evaluated at the extremities of the
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interval for which it is being studied. However, when the function has more
than one variable, this method presents a number of problems, mainly to do
with singularities, multiple roots and other special points. Some of these are
tackled in Milne’s thesis [273], but his theoretical solutions remain difficult to
implement. For example, it may be thought that repeated roots can be re-
moved through factoring the polynomial and removing the factors that appear
more than once. This is not a practical option. Also, transcendental functions
return values that have no finite representation within the discrete range of
data formats. Consequently, there is no guarantee of correctness of the results,
even using multiple precision arithmetic libraries for storing floating point
numbers. In this case, the function evaluation is said to be ill-conditioned.

A thorough discussion of Interval Arithmetic and its uses in root isolation
can be found in Chapter 4.

3.2.1 Descartes’ Rule of Signs

Descartes’ rule of signs provides an upper bound on the number of positive and
negative roots of a power form polynomial. For positive roots, it states this
number does not exceed the number of sign changes of the nonzero coefficients
of the power form of the polynomial, arranged in the order of exponents. More
precisely, the number of positive roots of the polynomial is:

e either equal to the number of sign changes between consecutive nonzero
coeflicients,
e or less than it by a multiple of 2.

More formally, we have:

Theorem 3.2. (Descartes’ Rule of Signs). The number of positive Toots
of a power form polynomial does not exceed the number of sign changes of its
coefficients and differs from it by a multiple of two.

Proof. See Krandick and Mehlhorn [217].

Note that a zero coefficient is not counted as a sign change, and multiple
roots are counted separately.

For negative roots, we use a corollary of the previous theorem, which is as
follows:

Corollary 3.3. The number of negative roots of a power form polynomial
f(x) is equal to the number of positive roots of f(—x).

Proof. See Levin [231].

In other words, the number of negative roots is given by the number of
sign changes after replacing —x for = in f(x), or less than it by a multiple
of 2.
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Ezxample 3.4. The power form polynomial
f(z) =23 —32% 44

has two sign changes; the first between the first and second terms, while the
second occurs between the second and third terms. Therefore it has exactly
two positive roots. Negating the odd-power terms, we obtain

f(—z) = —2® —32° +4

i.e. a polynomial with one sign change, so the original polynomial has exactly
one negative root. The polynomial easily factors as

flz)=2% =322 +4=(z-2)*(z+1)
so the roots are 2 (twice) and —1.

Note that Descartes’ rule of signs, first described by René Descartes in his
work La Geometrie (an appendix of the famous masterpiece entitled “Discours
de la Méthode” written in 1637), provides a bound to the number of roots
of a power-form polynomial, not a bound to the interval where they lie in.
For a more recent mathematical discussion about Descartes’ rule of signs, the
reader is referred to Anderson et al. [16], Grabiner [166] and Levin [231].

Some well-known polynomial real root isolation algorithms based on
Descartes’ rule of signs are found in the literature. Uspensky’s 1948 book
presents an early version of these algorithms for a square-free polynomial
with real coefficients [394]. However, the worst-case complexity of this algo-
rithm grows exponentially with the number of digits in the coefficients. This
fact motivated Collins and Akritas to propose the modified Uspensky algo-
rithm in order to guarantee polynomial complexity [89]. In [202], Johnson and
Kandrick present a powerful and fast method which can be applied to polyno-
mials with both integer and real algebraic number coefficients, including the
pseudo-code of the algorithms. Rouillier and Zimmermann [343] bring up-to-
date (or at least to 2004) the various improvements of root isolation methods
based on Descartes’ rule of signs.

3.2.2 Sturm Sequences

By contrast with numerical algorithms, algebraic algorithms do not try to
evaluate the roots in the first instance, but rather study the existence of roots
in a given interval. Of course, in the cases where root counting techniques
are available, a divide-and-conquer approach can subsequently help to isolate
each of the roots in a separate subinterval. This subinterval provides tighter
lower and upper bounds for each root, from which it can be determined by
using an appropriate numerical method (e.g. Newton-Raphson method).
Sturm sequences are part of a root isolation method established by Sturm
in 1829. His theorem provides the number of real roots of a univariate poly-
nomial in a given interval [375]. Uspensky [394], Davenport et al. [95], and
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Bronstein and Semendjajew [67] also describe Sturm’s theory, the main fea-
tures of which are given below.

Let f € R,[z] be a n-order univariate polynomial with real coefficients
and no multiple roots (i.e. f and its first derivative f’ are relatively prime).

Let sg, ..., sk be the sequence of polynomials such that:
so=f
S1 = f/
(3.12)
5; = —mod(s;_2,5;_1)
with i =2,...,k and s € R\ {0}, where mod means the remainder from the

division of two polynomials of R[x]. (The recurrence rule given above is a valid
particularisation of Sturm’s more general formulation: s; o = s;_1¢; —s;, with
deg(s;) < deg(s;-1).)

In fact, only the sign of the evaluation of the elements of the Sturm se-
quence (3.12) are needed for the root finding. The algorithm for the construc-
tion of Sturm’s sequence is similar to an application of Euclid’s algorithm to
f and f’. Since the polynomials f and f’ are supposed to be relatively prime,
and the terms of the sequence are polynomials of decreasing degree, ultimately
a constant is obtained. The null terms appearing after the constant term are
ignored, so Sturm’s sequence is always finite.

Sign Variation. If ¢ € R is not one of the roots of f(x), denote by V'(a) the
number of sign changes in the sequence sg(a), s1(a), ..., sg(a). Note that a sign
change is counted whenever s;(a)s;j(a) <0 (j > i+ 1) and s;(a) =0 (i <1<
7). In other words, the zeros in the evaluated sequence sg(a), s1(a), ..., sg(a)
are ignored.

Theorem 3.5. (Sturm’s Theorem). Let a,b € R, a < b such that neither
is a root of f(x). Then the number of the roots that f(x) has in the interval
la, b equals V(a) — V(D).

Proof. See Sturm [375] or Uspensky [394].

Corollary 3.6. Let f(z) in Rlz] without multiple roots and so,...,sk be a
sequence of polynomials defined in Sturm’s theorem. Let us denote by V (+00)
(respectively, V (—o0) ) the number of sign changes in the sequence formed with
the leading coefficients of so, ..., Sk (respectively, so(x),...,si(x)). Then, the
total number of real roots of f(x) equals V(—oc0) — V (400).

Proof. See Uspensky [394].

Theorem 3.7. (Cauchy’s Theorem). Let f(z) = a,z™ + -+ + ap € Rlz]
with a, # 0. Let M = 1+ |*2=X| + ... + |22|. Then f(z) has no roots on
[M, 40| (respectively, on ] — oo, —M]) and its sign is the same as the one of
an, (respectively of (—1)"a, ).
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Cauchy’s theorem provides the very useful interval | — M, M| containing
all the roots of the polynomial f(x), i.e. their bounds.

Ezample 3.8. Let f(x) = (z — 1)(z — 2)(xz — 3)(x + 1)(z + 2) a polynomial
in the factored form such that its roots are explicitly given in its expression.
The steps of the algorithm that determines the Sturm sequence for f(x) is as
follows:

So ¢
so=(r—1)(z—-2)(z—-3)(z+1)(z+2)
=2° — 3z — 5 4 1522 — 12
S1:
51 = f' =5z — 1223 — 152% + 30z + 4
So :
8623 — 18022 — 170z + 288
—mod(sg, $1) =
25
59 = 862° — 18022 — 170z + 288
S3
mod(s,, 59) = 15,4002 — 18,9002 — 16,900
1849
s3 = 15,400z — 18,900z — 16,900
Sq .
mod(ss, 53) = 282,897 49,923
1694 242
s4 = 282,897z — 349,461
S5t
4,840,000
—mod(ss, 84) = ~ g9
s5 = 4,840,000

The sequence stops here because ss is a constant. Also, note that multi-
plying a polynomial by a nonzero constant does not affect its set of roots, so
that the terms of a Sturm sequence can be freely multiplied by convenient
numbers.

According to Sturm’s theorem, the number of roots will be given by the
number of sign changes encountered. Let us then evaluate the terms of the
Sturm sequence for several values of z, and study the sign variations on several
intervals. This is illustrated in Table 3.1.

For example, given the sequence so(f%), sl(fg), ce 55(73), we observe
that the number V(—g) of sign changes in such a sequence is equal to 5;
analogously, we get V(—2) =4,V (0) =3, V(2) =2,V(3) =1, and V() = 0.
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Table 3.1. Evaluation of Sturm’s sequence at several values of x and the corre-

sponding sign variations.

xT

\
njon

Si

[NI[e)

o

[N

Nt
NI~

50
S1
52
53
S4
S5

I+

I+ + |

|+ +

o+ |+ I+

V(i)

S

w|+

o+ + |

S B

ol+ + + + + +

Algorithm 1 Sturm sequence algorithm

1: procedure STURM(f(z), L[])

2: i+ 0and s; — f(x)
3 L[] — add(p)
4 d « degree(s;)
5: if d > 1 then
6: Si41 dlff(sl)
7
8

while degree(s;+1) > 0 do

L[] « add(si41)

9: r <« —s; mod Sit1
10: Si4+2 < numerator(r)
11: Si — Sit1
12: Sit1 < Si+2
13: end while
14: L[] — add(si.H)

15: end if

16: return L[]
17: end procedure

> first polynomial
> find out its degree

> next term = first derivative
> append next polynomial

> remove denominators

> append the last (constant) term

> Sturm's sequence as a list

Therefore, from Table 3.1 it follows that:

5

Vv <—2) —V(0) =5—3 =2 roots in the interval

3 3
V(—2>—V(2)—4—2—2r00ts

3 7

2 2

\%4 (—) -V () =4 — 0 = 4 roots in the interval

in the interval

|
(en)
—

| |
N W N|W | ot
o w
| —

N~

{ and so on.

Sturm Sequence Algorithm. The terms of the Sturm sequence are com-
puted according to Formula (3.12) and are successively appended to a list
L (steps 7-13 of Algorithm 1). When a degree-zero polynomial is found, the
algorithm appends such a polynomial to the list (step 14) and returns the list

as a result (step 16).
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3.3 Root Isolation: Bernstein Form Polynomials

Bernstein-form polynomials have become increasingly popular for CAGD ap-
plications because of their numerical stability. This term is borrowed from the
field of numerical analysis, where the numerical stability of an algorithm [186]
is meant to express the extent to which approximation errors in the terms of
a calculation, as well as the order in which commutative operations are being
carried out, affect the accuracy of the final result.

Similarly, the numerical stability of a polynomial amounts to the numerical
stability of its corresponding evaluation algorithm. In that sense, it is inter-
esting to study the effect of a (small) perturbation in one of the polynomial’s
coefficients onto the number and location of its roots, onto the location of its
graph curve, or onto the extent to which it interpolates a given set of points.

Polynomials stored in the Bernstein form are more numerically stable than
their equivalent power form. This theoretical result, established by Farouki
and Rajan [133, 134], has now found its way into many geometric mod-
elling packages. Unsurprisingly, the robustness of the evaluation algorithms
is achieved at the expense of extra computations, since the Bernstein forms
of polynomials have significantly more terms and hence more operations need
to be performed for each evaluation.

For low-degree polynomials, the advantage of using the Bernstein form
polynomials is not immediately obvious. However, in axially aligned areas
which are further away from the origin, high-degree polynomials in the power
form usually operate with large powers of large numbers. This means that any
small errors in the coordinates of a point can cause a significant change in the
value of the polynomial at that point. On the contrary, since the Bernstein
base is more numerically stable than the power base, minor perturbations
introduced in the coefficients tend not to affect the accuracy of the polynomial
evaluation.

Let us then briefly review some relevant real root isolation methods rele-
vant to polynomials in Bernstein form:

e Variation diminishing methods
e Hull approximation methods
e Descartes’ rule of signs

All these methods use recursive subdivision as the basic technique behind
the root isolation. If they are used for Bernstein-form polynomials, then a
new (equivalent) for of the polynomial is recomputed at each step of the
subdivision, according to the subinterval being studied at that step.

The difference between these three methods lies in the computations they
each perform during the intermediate steps in order to isolate the real roots.
For example, it is possible to sample only the ends of the interval, to evalu-
ate the function’s gradient, or to draw conclusions from an evaluation of the
function’s value set.
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Variation Diminishing Methods

Lane and Riesenfeld introduced this technique in 1981 (see [222]). Since then
several variants have been proposed by other researchers, namely Schnei-
der [354] and Spencer [372]. This technique works with a polynomial defined
on a finite interval. It repeatedly subdivides the interval domain of the poly-
nomial into two parts by its midpoint, with a view to isolating (and ultimately
approximating) the polynomial’s real roots. This recursive subdivision of the
interval stops when either the root is approximated to the desired precision, or
it is established that no root exists in one of the subintervals, whereupon that
subinterval is eliminated. The Lane-Riesenfeld algorithm combines recursive
bisection with the variation diminishing property of the Bernstein polynomi-
als to know whether or not a root exists in the subinterval. Binary subdivision
involves O(n?) steps and provides one bit of accuracy for each step.

Hull Approximation Methods

Instead of using the variation diminishing property, hull approximation meth-
ods exploit the convex hull property of the Bernstein polynomials. This is
in order to isolate, as well as to approximate the real roots of a polynomial.
Rajan-Klinkner-Farouki’s method [332] is well-known in this category. It uses
parabolic hulls to isolate and approximate simple real roots of a Bernstein-
form polynomial. A parabolic hull is a parabolic generalisation of the con-
vex hull property of the Bernstein-form polynomial. This method possesses
cubic convergence when approximating a root, which makes it a very fast
root-finding method even for high degree polynomials (examples up to degree
2048). In his thesis [372], Spencer also describes a method of this type to
isolate and approximate real roots for Bernstein-form polynomials.

Descartes’ Rule of Signs

As Eigenwillig et al. refer in [129], root isolation based on Descartes’ rule of
signs was cast into its modern form by Collins and Akritas [89] for polynomials
in the power form. An analogous formulation for polynomials in the Bernstein
form was first described by Lane and Riesenfeld [222], and more recently by
Mourrain et al. [284] (see also [32] and [286]).

Proposition 3.9. Let f(z) = Y1 b B*(x) be a Bernstein form polynomial

K3

of degree n on the interval a,b[. Let V(b) be the number of sign changes in

the list of Bernstein coefficients b =by,...,b" and N the number of roots of
f(z) in )a,b] counted with multiplicities. Then
(i) V(b) = N,

(ii) V(b) — N is even.

Proof. See Mourrain et al. [284].
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This claim can be viewed as Descartes’ rule of signs for Bernstein form
polynomials. In other words, it provides the number of roots of a Bernstein
form polynomial.

Nevertheless, V'(b) only provides us an upper bound for the number N of
roots of f(z) in Ja,b[. However, under some circumstances, V' (b) yields the
exact number of roots. This is stated by the following theorems:

Proposition 3.10. (One-Circle Theorem) The open disc bounded by the
circle centred at the midpoint of [a,b] does not contain any root of f(x) if and
only if V(b) = 0.

Proof. See Mourrain et al. [284] or Krandick and Mehlhorn [217].

Proposition 3.11. (Two-Circle Theorem) The union of two open discs
bounded by the circumcircles of two equilateral triangles sharing [a,b] as one of

their edges contains precisely one simple root of f(x) (which is then necessarily
a real root) if and only if V(b) = 1.

Proof. See Mourrain et al. [284] or Krandick and Mehlhorn [217].

Both one-circle and two-circle theorems provide the stopping conditions
of a recursive algorithm (see steps 4-9 of Algorithm 2) that subdivides the
interval [a,b] into subintervals to isolate roots therein. Taking into account
that the coefficients of a Bernstein form polynomial depend on the interval
being considered, we have to have an algorithm capable of computing the
Bernstein coefficients of f(z) on the subintervals [a,c] and [c,b] from those
on [a,b] (step 12 of Algorithm 2). This algorithm is known as de Casteljau’s
algorithm (see Algorithm 3).

Algorithm 2 Real Root Isolation
1: procedure BERNSTEINROOTISOLATION( f(z), [a,b], L)

2: bla,c) < list of Bernstein’s coefficients for [a, c]

3: V (bla,¢)) < number of sign variations of Bernstein’s coefficients for [a, c]

4: if V(bpa,)) = 0 then > one-circle theorem
5: return L > stopping condition: [a, ¢| is not inserted into L
6: end if

7 if V(bie,)) = 1 then > two-circle theorem
8: L — LUla,c| > stopping condition: [a, ] is inserted into L
9: return L

10: end if

11: if V(bpa,)) > 1 then > de Casteljau subdivision algorithm
12: CASTELIAU(f(2), bja,b], bla,c]» Dle,b))

13: BERNSTEINROOTISOLATION( f (), [a, c], L)

14: BERNSTEINROOTISOLATION( f(z), [, b], L)

15: end if

16: end procedure
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Algorithm 3 de Casteljau’s algorithm
1: procedure CASTELJAU(f(x), b(a,b], bja,c]s ble,b))

2: a+— =% and 3 «— Z:Z > first and second weights
3: b§0> —bi,i=0,...,p > initialisation of Bernstein's coefficients
4: fori=1,...,pdo

5: for j=0,...,p—1ido

6: b;l) — aby—l) + ﬂb;-;ll > triangle of Bernstein coefficients
7 end for

8: end for _

9: return [, o «— bg)), ce béj), ce bép) > Bernstein’s coefficients for [a, ]
10: return [, ;) < b(()p), o bg.p_j), o b,(,O) > Bernstein's coefficients for [c, b]

11: end procedure

The Bernstein coefficients computed in step 7 of de Casteljau’s algorithm
form a triangle as follows:

0 0 0

b b\®) b,

b btV

p—1

0
b

b((JP* 1) bgp)
b((Jp)

The Bernstein coefficients on the interval [a, b] appear on the top side of
the triangle, while those on the subintervals [a, ¢] and [c, b] appear on the left
and right sides of the triangle, respectively.

For more details about the Descartes root isolation for univariate polyno-
mials in both power and Bernstein forms, the reader is referred to Mourrain
et al. [284]. Another recommended reference is Eigenwillig et al. [129] in which
a basis-free or unified approach for Descartes’ method is described.

3.4 Multivariate Root Isolation: Power Form
Polynomials

Root isolation methods are not easily extendible to multivariate polynomials.
They are still a topic of active research.
3.4.1 Multivariate Decartes’ Rule of Signs

A possible first attempt to come to a multivariate version of Descartes’ rule
was due to Itenberg and Roy [200], in 1996. But in 1998 Li and Wang [235]
gave a counterexample to their conjecture.
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3.4.2 Multivariate Sturm Sequences

The generalisation of Sturm’s theorem is not immediate, but was made pos-
sible through the work of Milne [273, 274]. His generalisation relies heavily
on resultants, and does not deal with singularities, nor with multiple roots.
This makes it possible (though not easy) to use in 2D, but increasingly diffi-
cult to adjust for higher dimensions. An implementation that relies on exact
arithmetic is given in Voiculescu’s thesis [401].

Milne’s theory is meant to generalise the Sturm technique to n dimensions.
However, applications for n > 2 are somewhat difficult to implement, the
main inconvenience being finding suitable starting terms for the sequence. For
instance, the mere case d = 3 requires the initial term in the Sturm sequence
to be the product of two polynomial resultants. The problem with this is
that such a product will introduce “spurious roots” at the intersections of
the two resultants. These roots’ coordinates are such that some components
are roots of one resultant and some others are roots of another resultant.
Although they do not make the initial polynomials vanish, they do make
the polynomial product vanish. The elimination of these “spurious” points in
the root counting technique is not straightforward and makes the algorithm
almost impracticable.

In order to deal with this impediment Milne introduced the so-called “vol-
ume function” in the calculation of which Grobner bases are essential—yet no-
toriously difficult to compute. Grébner bases were introduced by Buchberger
in his PhD thesis [70]. Other references introducing the theory of Grébner
bases are the books of Cox et al. [91] and Becker and Weispfenning [38].

In his thesis [321], Pedersen describes similar algebraic root-counting meth-
ods. In [322] he attempts a generalisation of the Sturm theory, based on
ideas expressed by Hermite [184]. Pedersen’s investigations were contempo-
rary to Milne’s. Their results are comparable. See also Gonzalez-Vega and
Trujillo [164] for more details.

3.5 Multivariate Root Isolation: Bernstein Form
Polynomials

Section 3.3, gave an overview of the way in which univariate root isolation
through Bernstein-form polynomials can be based on Descartes’ rule of signs.
It is easy to assume that the absence of a Descartes-like rule for polynomials
of more than one variable might undermine the generalisation the isolation
method to multivariate polynomials.

However, this is not the case: since the Bernstein coefficients can be seen as
a tensor, we have only to use the univariate de Casteljau subdivision n times.
This subdivision can be performed independently for each variable [236]. This
technique was recently developed by Mourrain and Pavone [283] and can be
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viewed as a follow-up of the interval projected polyhedron algorithm proposed
by Sherbrooke and Patrikalakis [364].

Evidently, this requires a preliminary algorithm capable of converting a
multivariate power form polynomial into a multivariate Bernstein polynomial
such as those outlined earlier in Section 3.5.1.

3.5.1 Multivariate Bernstein Basis Conversions

The multivariate Bernstein form polynomial f(x), with x = (xg,...,2,-1),
of maximum degree d = (dp,...,d,—1) can be obtained by rewriting Defini-
tion 3.5 in the form of tensor products as follows:

dO dn

F) =" > by B (w0) . B () (3.13)

ko=0 kn=0

The Bernstein coefficients by, .., can be seen as a tensor of dimension n.

Methods for converting a multivariate power form polynomial into a mul-
tivariate Bernstein polynomial have been proposed by Berchtold et al. [40]
and by Garloff [425], both outlined below.

3.5.2 Bivariate Case

Berchtold et al. [40] note that the implicit expression of a bivariate polynomial
in the power basis can also be rewritten in terms of matrix multiplication:

f(z,y) = ago + a10z + ao1y + a112y + -+ + ampx™y" = XAY

where

n Amo *** Omn

By analogy with the univariate case,
f(l‘,y) =XAY = BxBBy

where Bx and By are Bernstein vectors in the variables z € [z,Z] and y €
[y, 7). These vectors can be decomposed as shown in Section 3.1.3.
~ In the case of the Bernstein vector corresponding to the variable y the
factors C, D and E in Equation (3.11) will appear in reverse order. This
happens because By is a column vector (as opposed to Bx which is a row
vector).

Hence, Vz € [z,Z], Vy € [y, 7], by equating the power form and Bernstein-
form polynomials we obtain:
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XAY =XExDxCx BCyDyEyY (3.14)

where
B=(Cx) '(Dx) "(Ex)"" A (Ey) '(Dy) '(Cy)™!

Ezample 3.12. (Bivariate Bernstein form polynomial in [0, 1] x [0, 1]) Given the
equation of a circle centred at (%, %) and of radius % in either the canonical
or the expanded power form

2 2 2
1 1 2
e =(a=3) +(1-3) - (5)
17
— 2 _ 2 _
=z —x+ 50 +y -y
the conversion algorithm based on Formula (3.14) finds the following equiva-

lent Bernstein form in [0, 1] x [0, 1]:

by(w,y) = (;(1x)2285)x(1x)+;gx2>(1y)2
+2(—25(1—:c)2 %x(l ) 245502>y(1_y)

3.5.3 Trivariate Case

It is possible to generalise this formula further, to 3D and higher dimensions.
Its trivariate version is rather difficult to write in linear form because the
order and direction in which the tensor products of the matrices involved is
essential for the correctness of the calculation. This method was given jointly
by Berchtold [41] and Voiculescu [401].

By analogy with the univariate and bivariate cases, the implicit expression
of a trivariate polynomial in the power basis can also be rewritten in terms of
matrix multiplication:

f(xaywz) = @poo
+aj00% + ao10Y + o012
+a1102Y + a101T2 + ap11Y2
m, n_l

+ -t G Yy z
=Y®, X®,A)®,Z
where A, «nx; is the three-dimensional coefficient tensor, and X, Y and Z

are chosen such that the tensor multiplications are well-defined.
The following types of tensor multiplication have been chosen :
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Qg qum Oz Amxnxl = qunxl
®y : qun ®y Amxnxl = Rquxl
@z Amxnxl Dz leq = Rmxnxq

If Bx, By and B are Bernstein vectors in the respective variables, the
Bernstein form of the polynomial f(z,y, z) is:

flz,y,2) =Y ®, (X®,; A)®. Z=By ®, (Bx ® B) ®: Bz

The Bernstein vectors can be decomposed as shown in Equation 3.11.
When the power form is made equal to the Bernstein form, the following
relation is obtained:

Yo, X©,A)®.Z= YEyDyCy
®y
(X ®@; (Ex ®; (Dx ®; (Cx ®; B))))
(2
C;DzE;Z

In this equation the three-dimensional tensor B is being multiplied consec-
utively by each of the two-dimensional factors. At each stage another three-
dimensional tensor is produced. After the ®,-multiplication with the vector
X, the three-dimensional tensor is reduced to two dimensions. The rest of the
multiplications are the usual two-dimensional ones.

Hence, Vx € [z,7],Vy € [y,7],Vz € [z, Z], the Bernstein coefficients tensor
B can be calculated by: B

B=(Cy) '®, (Dy) ', Ey)"
®y ((CX)_l ®a: (DX)_l ®:v (EX)_l ®a: A)
N

—

—

X2 (EZ)71 Dz (DZ>71 &2 (CZ)71

—_—

It is essential in this equation that the order of the multiplications is
starting from the tensor A outwards (according to the orientation of the
arTows).

Ezample 3.13. (Trivariate Bernstein form polynomial in [2,3] x [6,7] x [4,5])
The Bernstein form of the polynomial f(x,y,2) = #3y?z7 in the 3D box
specified above is:



86 3 Root Isolation Methods
b(x,y,z) = (288 (3—2)32" +1296 (z — 2) (3 —x)2 27
+1944 (z —2)2 (3 —2) 27 + 972 (z — 2)3 27 ) (7T—1y)?
+2 (336 (3—2)% 2" +1512(x — 2) (3 — )2 27
+2268 (x —2)2 (3 —x) 27 + 1134 (z — 2)3 z7> (y—6)(7T—v)
+ (392 (3—2)32" +1764 (x — 2) (3 —x)2 27

+2646 (x —2)% (3 —x) 2" + 1323 (v — 2)3 27) (y —6)2

3.5.4 Arbitrary Number of Dimensions

Zettler and Garloff [425] give an equivalent formula for the calculation of the
coefficients for an n-variate Bernstein form polynomial.

Let | € N be the number of variables and x = (z1,...,7;) € Rl. A multi-
index [ is defined as I = (iy,...,i;) € N'. For two given multi-indices I,.J €
N the following conventions are made:

Notation. Write I < J for the case where 0 < iy < jq1,...,0 <4 < j;.
. , , ;
Notation. Denote the product (;1) e (;i) by (5)-
Notation. Denote by the product z' - 2i' x'.
Let p(x) be a multivariate polynomial in [ variables with real coefficients.

Definition 3.14. D = (dy,...,d;) is the tuple of mazimum degrees so that
dy is the mazimum degree of xy, in p(x), for k=1,...,1.

Definition 3.15. The set S = {I € N': I < D} contains all the tuples from
R! which are ‘smaller than or equal to’ the tuple D of mazimum degrees.

Then an arbitrary polynomial p(x) can be written as :
p(x) = Z arx!

where a; € R represents the corresponding coefficient! to each x! € R..
As in equation 3.5, a univariate Bernstein polynomial of degree n on the
unit interval [0, 1] is defined by:

Bl(z) = (Z):ck(l—x)”k k=0,...,n; z€0,1].

I Note that some of the a; may be 0.
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For the multivariate case consider, without loss of generality, a unit box U =
[0,1])" and the I*" Bernstein polynomial of degree D is defined by:

BP(x) = B{*(x1) x -+ x B{'(z)  xeR.

The Bernstein coefficients Br(U) of p over the unit box U = [0,1]! are given
by:

Bi(U)=Y" (@)w Ies.
J<I1 \J

And so the Bernstein form of a multivariate polynomial p is defined by:

p(x) = 3 Bi(U)BP (x).

1eS

For the uni-, bi- and trivariate polynomials in the examples above, this
formula and the alternative formulae (by Berchtold et al. [40]) given earlier
in this chapter generate the same Bernstein form polynomial.

3.6 Final Remarks

This chapter has given an overview of some of the most significant root isola-
tion techniques for real functions. In particular, real root isolation of univariate
integer polynomials is a classical and well studied problem, so a variety of al-
gorithms can be found in the literature. We have merely scratched the surface
of the existing literature of this topic in the area of algebraic and symbolic
computation.

Interval subdivision-based algorithms for real root isolation are based ei-
ther on Descartes’ rule of signs or on Sturm sequences. In general terms,
the idea behind these two approaches consists of partitioning a given interval
containing all the real roots into disjoint subintervals such that distinct roots
are assigned distinct subintervals. For that, Descartes’ approach repeatedly
transforms the original polynomial and counts the sign variations of the co-
efficients, while Sturm’s approach constructs a signed remainder sequence of
polynomials and evaluates them over the interval of interest.

Besides, as recently proven, both Descartes’ (either power basis or
Bernstein basis) and Sturm’s approaches achieve the same bit complexity
bound [117, 129]. For an alternative to the subdivision-based algorithms,
the interested reader is referred to a recent paper due to Tsigaridas and
Emiris [391] and Sharma [359] (and the bibliography therein), where the
continued fractions-based algorithms for root isolation are approached.
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Interval Arithmetic

4.1 Introduction

The fundamental idea behind the interval arithmetic (IA) is that the values of
a variable can be expressed as ranging over a certain interval. If one computes
a number A as an approximation to some unknown number X such that
|X — A| < B, where B is a precise bound on the overall error in A, we will
know for sure that X lies in the interval [A — B, A+ B], no matter how A and
B are computed. The idea behind TA was to investigate computations with
intervals, instead of simple numbers.

In fact, when we use a computer to make real number computations, we
are limited to a finite set of floating-point numbers imposed by the hardware.
In these circumstances, there are two main options for approximating a real
number. One is to use a simple floating point approximation of the number
and to propagate the error of this approximation whenever the number is used
in a calculation. The other is to bind the number in an interval (whose ends
may also be floating point values) within which the number is guaranteed
to lie. In the latter case, any calculation that uses the number can just as
well use its interval approximation instead. This chapter deals with computa-
tions involving two floating-point numbers as intervals—the subject covered
by interval arithmetic. Approximations carried out with a single floating-point
number are studied in the next chapter.

Interval arithmetic, also known as interval mathematics, interval analysis,
or interval computation, has been developed by mathematicians and com-
puter scientists since the late 1950s and early 1960s as an approach to putting
bounds on rounding errors in arithmetic computations. In this respect, Ramon
Moore’s PhD thesis [278], as well as his book [279] and other papers published
a posteriori, played an important role in the development of interval arith-
metic. Interval analysis is now a field of study in itself, widely used in nu-
merical analysis and geometric modelling, as well as many other computation
processes which require some guarantee in the results of calculations.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 89
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Other relevant references in interval arithmetic can be found in the lit-
erature. For example, Alefeld and Herzberger [4] propose using intervals in
Newton-like methods for finding the roots of univariate functions and also in
solving systems of equations. Neumaier [299] takes the concept of intervals
further and develops distance definitions and topological properties for inter-
vals. Methods for finding enclosures for the range of a function are given, as
well as interval-based methods for solving systems of equations.

Apart from the classical way of looking at intervals, other approaches exist
whereby the interval is regarded as an approximation of its centre. Ratschek
and Rockne [335], as well as Neumaier [299], discuss the use of centred-form
intervals. Comba and Stolfi [90] and Andrade et al. [17] take this approach
even further in their affine arithmetic. Affine arithmetic (AA) still regards
the interval as an approximation of the number at its centre, but at the same
time keeps track of the various levels of error affecting the computed quantity
at different steps of the evaluation of an expression. Their results are quite
encouraging, in that they are tighter than the ones produced by the traditional
TA. But as expected, there is a tradeoff between accuracy and computation
time cost.

IA and AA are also used in research areas such as computer graphics and
geometric modelling. At our best knowledge, Suffern and Fackerell [379] and
Snyder [370] were who first introduced interval arithmetic in these research
areas. For example, Snyder [370] explains the advantages of using TA in geo-
metric modelling as opposed to approaching global problems by finding roots
of polynomials. The main point he makes is that IA controls the approxi-
mation errors during the floating-point computation by computing bounds
rather than exact values. The other major advantage of using interval meth-
ods is that they are exhaustive and can give information about the whole
region of interest. Other references in scientific computing, computer graph-
ics and geometric modelling include de Figueiredo and Stolfi [102], Heidrich
et al. [181], Cusatis et al. [99], Voiculescu [401], Martin et al. [259], Bowyer
et al. [62, 63], Biilher and Barth [72], Michelucci [270], Biilher [71], Shou
et al. [367], Figueiredo et al. [103], Fang et al. [131], Paiva et al. [315], and
Miyajima and Kashiwagi [275].

In this chapter, we look at the IA and AA rules, and describe how they
can be used in geometric modelling. This is important because geometric mod-
elling not only involves high precision calculations, but also uses intervals in
order to denote and study regions of space, regardless of whether they contain
implicit curves, surfaces or solids. For example, a point can be approximated
by the intervals that give bounds for its coordinates. Hence a neighbourhood
in the shape of a box describes the region of space where that point is guar-
anteed to lie. Evaluating the function at that point (or some similar potential
value for the whole box of coordinate ranges) has geometrical meaning: it is
a measure of how far away the point (or the box) is from the surface rep-
resented by the function. This measurement is only relative, as the function
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value merely indicates which of several points is closer to a given surface but
it does not actually help evaluate the distance from a point to the surface.

4.2 Interval Arithmetic Operations

The execution of an automatic computation usually involves the propagation
of inaccuracies and rounding errors, because floating point values are merely
rational approximations of real numbers. If interval ranges are used instead
of a single approximation, then an automatic computation results in a range
of possible values for the final solution. This solution is generally described
by means of an interval. Once again, this is only one intuitive motivation for
using intervals and introducing arithmetic operations on the set of intervals.
The exact way in which intervals are used in geometric modelling is explained
later.

4.2.1 The Interval Number

Owing to Moore’s work, the mathematical concept of number has been gen-
eralised to the ordered pair of its approximations—the interval number. An
interval number x is denoted as the ordered pair of reals [z, Z], < Z, which
defines the set of real numbers

[z,7] ={z |2 <2 <7}

When one of the extremities of the interval needs to be excluded from the
interval set, variations of the following notation are used: |z, 7] = {z | z <
x < Z}. Either or both extremities of an interval can be excluded from the
set by using the appropriate inequalities. This particular notation has the
advantage of distinguishing between the open interval |z, Z[ and the pair of
numbers (z, T).

4.2.2 The Interval Operations

The rules of arithmetic can be redefined so that they apply to interval num-
bers. If x = [z,Z] and y = [y, 7], and the operator ® € {4, —, X, /} then the
four elementary arithmetic operations will follow the scheme:

xOy={x Oy :reX, Yy}

An interval operation must produce a new interval containing all the pos-
sible results that can be obtained by performing the operation in question
on any element of the argument intervals. This template produces simpler
specific rules for each of the arithmetic operators (see also Higham [186]):
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Addition:
x+ty=[z+yT+7 (4.1)
Subtraction:
x—y=[z-77T-y (4.2)
Multiplication:
X Xy = [min{zy, £y, Ty, 7y}, max{zy, 27, Ty, Ty }] (4.3)
Division:
x/y = [min{z/y,z/y,%/y,7/y}, max{z/y,z /Y, %/ yu, T/7}] (4.4)

Depending on the circumstances in which interval division is used, it may
be appropriate to declare division by an interval containing zero as undefined
or to express it as a union of two semi-infinite intervals.

Interval division can also be written as follows:

1
X/y =X X y (4.5)

where

ify>0o0ry<0

The addition and multiplication operations are commutative, associative
and subdistributive. The subdistributivity property comes from that fact that
the set x(y + 2z) is a subset of xy + xz.

An additional operation is the exponentiation of an interval. Interestingly,
it is defined differently from number exponentiation as follows:

Exponentiation:
[%gﬂ%ﬂ _ [$2n+l’f2n+1] (4.6)
[z, 7% if 0<z<Z
[z,7" ={[0,M*] if 2<0<7 (4.7)

[EQ",QQ”] if t<T<0
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where n is any natural number and M = max{|z|, |Z|}.
In particular, for even values of k,

[z,7]* # [2,2] x -+ X [z, 7]

=

which is proved by a simple counterexample:

[*132] x [*laQ] = [*2,4]
[_1’2]2 = [0, 4]

The interval resulting from an even power exponentiation is always entirely
positive (even when the interval which is being raised to the even power con-
tains negative numbers).

4.3 Interval Arithmetic-driven Space Partitionings

Interval arithmetic is especially useful in geometric modelling when objects
(e.g. points, curves, surfaces, and solids) are represented by implicit functions
and are categorised by means of space partitioning. As seen above, an interval
can be regarded as an entity which gives lower and upper approximations
of a number. Since a point in Euclidean space is a pair of real coordinates
in 2D (respectively, a triplet in 3D), it can be naturally approximated by a
pair (respectively, triplet) of intervals, i.e. an axially aligned bozx. Thus, the
classical point membership testing method used in geometric modelling can
be extended to a boz testing method.

We are then able to combine interval arithmetic with axially aligned space
partitionings to locate objects defined implicitly. This is illustrated in Fig-
ure 4.1, where combining interval arithmetic and a 2-d tree space partitioning
allows us to locate the following curve defined implicitly as follows:

Fig. 4.1. An implicit curve specified by the power-form polynomial p(z,y) defined
below, in the ambient space [0,1] x [0, 1] and using a minimum box size of 7 X 7.
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44 443214 764,554 4
9446 OB 5y TOASSL g 561

_ o 3
P@Y) = 15000 °Y ~ T00.000000 ° ¥ T 100000 % ¥ T 1000

The curve is somewhere in the region of the green boxes, i.e. those boxes
in which p evaluates to an interval that straddles zero. The red boxes denote
entirely negative boxes, i.e. boxes in which p evaluates negative everywhere.
The blue boxes identify entirely positive boxes, i.e. boxes in which p evaluates
positive everywhere.

Here is an example that illustrates this box classification. Given the axially
aligned box [z,Z] x [y, 7], the two variables of the curve expression x and y
are replaced by the two interval coordinates [z,Z]| and [y,7], respectively.
This substitution produces an interval expression which is then evaluated by
applying TA rules. This evaluation results in an interval. For example, let us
consider the box [%, g] x [0, %] in Figure 4.1. Substituting « and y by [%, g]
and [0, é], respectively, in the expression of p, we obtain

15] [, 17 _ 9446 [1 5][ 1 700,443,2141§3012
Prat \ 19 5]7 78] ) T 10,0002’ 8| 8] ~ 100,000,000 |2’ 8] |8
764,554 [1 57*7 11° 564 [ 11* 1 5]°
+ — =102 +—0,=| —|=,=
100,000 |2’ 8 8 1000 | '8 2°8
27,086,029,053  4,878,689,313
I 1011 T 1011

which is an entirely negative interval; this confirms that the box [1, 2] x [0, 1]
in Figure 4.1 is correctly depicted red.

4.3.1 The Correct Classification of Negative and Positive Boxes

As seen above, there are three types of boxes output by interval arithmetic:
negative boxes, positive boxes and zero boxes (i.e. those that depict a region
where the function evaluates to an interval that straddles zero). As will be
shown later, not all zero boxes contain segments of the curve, i.e. not all boxes
classified as zero boxes are genuine zero boxes. The prediction that the box
contains at least a curve segment is reasonably accurate only for low-degree
polynomials, but problems become manifest when the curve expression is of
high degree.

However, we can prove that when a box is labelled as negative or positive
it is indeed correctly classified. The proof will be carried out in the one-
dimensional case, but can be easily generalised to any number of dimensions.

Given an implicit polynomial equation f : R — R, f(z) = 0 and a ‘box’
[z, %], we will first prove that if the box is labelled as positive then all the
points in the box have a positive function value. In other words,

2

f(z,7]) >0 =  f(x)>0, Vo € [z,T].
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Since f(x,y) is chosen as a polynomial function, its expression is an alge-
braic combination of entities involving additions, subtractions, multiplications
and exponentiations. Hence its corresponding interval expression will involve
similar combinations. All that remains to be proved is that any arithmetic
combination that yields a positive interval will yield a positive quantity when
the calculation is performed with numbers instead of intervals.

Addition:

2,7+ [uy] =2+ u,7+7] >0 == z+y>0 Vz€lz,a,ye [y,

Proof.
r+y>z+y>0

Subtraction:

?

Proof.
r—y>zx—-7>0

O
Multiplication:
2,7 % [1,7] >0 == a2y >0, Vo€ [z,7],y € [y,7]
Proof.
2, 7] x [y, 7] = [min{zy, 27, Ty, 77}, max{zy, 7, Ty, 77}]
zy > min{zy, 27,7y, Ty} > 0
O
Exponentiation:

For any natural number n, let us first consider the exponentation operator for
odd powers:

[@2"*'1,52”“} >0 = gl 0, V& € [z,7]

Proof.
x2n+1 > x2n+1 > 0
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Now, let us do the same for even powers:

>0 = 2™ >0, Vz€ 2,7

[z,Z
Proof. If 0 < z < T then 2" > 22" > 0. If z < T < 0 then z?" > 72" >
0. The case x < 0 < T cannot be achieved because this would mean that
[z,7)>" = [0, M?"] (where M = max{|z|,|Z|}), which would contradict the

strict inequality [z, Z]*" > 0. O

So, for any function f involving a combination of the arithmetic operations
above, we have proved that

f(z,7]) >0 = f(z)>0, Va € [z,7]

There is another half to this proof, stating an analogous result for negative
boxes.
f(z,7]) <0 = f(z)<0, Vx € [z,7]

This result is based on the symmetry of the TA rules. Its proof is analogous
to the one of the first part.

This theory can be easily extended to include rational functions, as interval
division is expressed in terms of multiplication. Another important general-
isation can be done to include more than one dimension. In fact, the one-
dimensional case has been used merely for clarity of the argument, but since
multidimensional IA rules are expressed componentwise, there is no reason
why the result should not hold in any number of dimensions.

4.3.2 The Inaccurate Classification of Zero Boxes

Let us now examine the case where the resulting interval of the substitu-
tion straddles zero. At first sight this may seem to correspond to a situation
where the box contains some curve segment or surface patch, independently of
whether it belongs to the frontier of a solid or not. This section will illustrate
a one-dimensional counterexample. We will show it is possible for the inter-
val to straddle zero despite the box being an positive box indeed. Again, the
phenomenon described can be easily observed and generalised to any number
of dimensions.

Consider the following four real polynomial functions f, g, h,k:[0,1] — R
given by

flz) =4a® — 122+ 9 (power form)
g(x) = (4o — 12)z +9 (Horner form)
h(z) = 9(z —1)? — 6z(z — 1) + 22 (Bernstein form)
k(z) = (2¢ - 3)* (factored form)
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Although they appear in different forms,! their definitions are chosen such
that f(x) = g(x) = h(z) = k(z). Despite the fact that they take only positive
values over the interval [0,1], in some cases the membership test outputs
intervals straddling zero, though of course they all contain the image of the
function.

The functions f, g, h and k take the same values everywhere and have
equivalent implicit expressions, so they must have the same image in the
range—namely the interval [1,9]. Depending on the form of the polynomial
expression, the interval arithmetic method may give predictions for the image
which are wider intervals including it. This phenomenon is known as interval
swell or interval over-estimation and is responsible for the appearance of false
zero boxes. Let us illustrate this with the previous four real-valued functions
by replacing = by [0, 1] in their expressions:

4([0,1])% — 12[0,1] + 9
— [-3,13]
D [1,9] = Image f

([0,1])

h([0,1]) = 9([0,1] — 1)2 —6[0,1]([0,1] — 1) + [0, 1]2
= [0, 16]
D [1,9] = Imageh
k([0,1]) = (2 [0,1] = 3)*
= [179]
= [1,9] = Image k

After applying interval arithmetic to the functions f, g, h and k, we observe
that only the prediction given by k(x) gives an exact answer: the prediction
in this case equals the exact image [1,9] of the function. The other examples
illustrate the typical situation where the resulting interval straddles zero but
the corresponding box is a false zero box because the box itself lies entirely
in the positive half-space.

The boxes that interval arithmetic does label as negative or positive are
always properly identified. However, not all zero boxes are correctly identified.
But this is only a cautious box classification as the interval arithmetic tech-
nique cannot determine correctly the type of all the boxes in a given region
of interest. In this scenario, the box classification is said to be conservative.

! For the definition of Horner’s scheme (also known as nested multiplication), the
reader is referred to the original article [194] as well as any good textbook on
algebra or geometric algorithms [132]. A good splines textbook [132] will contain
a definition and usage of the Bernstein polynomial basis.
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Conservativeness is the main weakness of IA. Often the intervals produced
are much wider than the true range of the computed quantities. This problem
is particularly severe in long computational chains where the intervals com-
puted at one stage are input into the next stage of the computation. The more
variable occurrences there are in the algebraic expression, the wider the pre-
diction and the larger the interval swell. However, this is not a general rule,
because there are other aspects (such as the presence of even exponents and
the order of the arithmetic operations) which may influence the final result.
Several conservativeness examples and a suggested approach to this problem
can be found in [40], [62] and [401].

4.4 The Influence of the Polynomial Form on TA

There is a wide variety of ways of writing and rewriting a polynomial. In the
previous section, we have briefly approached four polynomial forms: power
form, Horner form, Bernstein form and factored form. The reader is referred
to de Boor [98] for other polynomial forms. Unfortunately, there is no known
method to determine what is the best form to express a given polynomial
function in order to get the sharpest possible bounds. This is so because the
optimal way of representing and storing a polynomial is crucially determined
by the kind of operations the user might want to perform on it afterwards.
Studies and comparisons are given in Martin et al. [258, 259].

This section shows that the Bernstein form is the most stable numerically
by comparing it to the power form as input to interval arithmetic. As suggested
in the previous section for the equivalent functions f(z), g(z), h(x) and k(x),
the resulting intervals obtained by replacing z by [0, 1] may differ from one
to another. This means that applying interval arithmetic to two equivalent
functions has as a result two distinct space partitionings (Figure 4.2).

(a) (b)

Fig. 4.2. The influence of the polynomial form on interval arithmetic applied to
locate a curve: (a) the power-form polynomial p(z,y) defined in Section 4.3 and (b)
its equivalent Bernstein-form polynomial.
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As illustrated in Figure 4.2, it is visible the differences between the power
form and Bernstein form of a polynomial, namely:

o Number of sub-boxes. Their corresponding 2-d tree space partitionings have
a different number of sub-boxes. The power form polynomial on the left-
hand side leads to a bigger number of space subdivisions than the Bernstein
form polynomial on the right-hand side.

e Boz classification. The zero boxes (in green) provide a better approxima-
tion to the curve when the function is in Bernstein form, so that there are
fewer false zero boxes.

4.4.1 Power and Bernstein Form Polynomials

For brevity, we review univariate and multivariate polynomials in this section.

Univariate

A power form polynomial of degree n € N in the variable x is defined by:
flz) = Zaﬂi, (4.8)

where a; € R. The equation f(x) = 0 is the implicit equation corresponding
to the polynomial f(z).

We have shown in the previous section that the form of the implicit expres-
sion supplied as input to interval arithmetic is crucial for the accuracy of the
box classification. Since any input expression can be written in a number of
equivalent forms, it makes sense to choose a transformation which will gener-
ate a more numerically stable polynomial form. If a base other than the power
base is used in order to express the same polynomial, the interval arithmetic
classification method will, in general, produce different results. The results
which follow below encourage the use of the Bernstein base especially in the
case of high-degree polynomials.

As seen in Section 3.1.3, the univariate Bernstein basis functions of degree
n on the interval [z, Z| (see also Lorentz [248]) are defined by:

ra) = (" (v = 2)'@— )" T €|z, T, 1= n
B (x) (Z> T2 , Vo elz,T, 0,1,...,n.  (4.9)

For a given n € N, these n + 1 univariate degree-n Bernstein polynomials
(BI")i=0.n forms a basis for the ring of degree-n polynomials. This means that
any univariate power form polynomial can be represented on the interval [z, Z]

using its equivalent Bernstein form as follows:

flay=" Y aa’ = Y b'Bf(x)
i=0 i=0

—_——— N

power form p(z) Bernstein form B(z)
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where b} are the Bernstein coefficients corresponding to the degree-n base. The
two univariate representations p(z) and B(x) are equivalent on the interval
[z,Z]. For example, on the unit interval [0, 1], determining B(x) from p(z)
requires the computation of the univariate Bernstein coefficients in terms of
the power coefficients:

bl = —aj (410)

As referred in Section 3.1.3, Formula (4.10) can be used to design an
algorithm of conversion between the power form and the Bernstein form of an
univariate polynomial [133, 134].

Multivariate

The generalisation of Bernstein bases to multivariate polynomials is not im-
mediate. The power form of a polynomial in d variables is written in terms of
T1,...,2q like this:

k kg
f(x1,.. 0 2q) = ) Ulky k)1 "
0<ky 4 tha<n

where the coefficients a(, .. r,) € R. Again, the equation f(z1,...,74) =01is
the implicit equation corresponding to the implicit polynomial f(x1,...,2q).
By convention, the degree of each term is ky + - - - + kg, and the degree of the
polynomial is the maximum of all degrees of its terms.

The multivariate Bernstein form is defined recursively as a polynomial
whose main variable is x4 and whose coefficients are multivariate Bernstein-
form polynomials in x1,...,24_1.

Formula (4.10) can be generalised to more variables. Conversion between
the power and the Bernstein representation is possible regardless of the num-
ber of variables (see Geisow [158] and Garloff [155, 425]). In [40, 41] Berchtold
et al. give formulae and algorithms for the computation of the Bernstein form
of bi- and trivariate polynomials, as needed for locating implicit curves in 2D
and surfaces and solids in 3D, respectively. The following example makes use
of this particular conversion method.

Ezxample 4.1. Let us look again at Figure 4.2. The power-form polynomial
appears on the left-hand side and is given by the polynomial defined in Sec-
tion 4.3 and written now, for convenience, with R-style coefficients, though
under the understanding that the calculations are exact:

p(z,y) = 0.9446 z y — 7.0044 23 3% 4 7.6455 21 y° + 0.5640 y* — 2°

The corresponding Bernstein form in [0, 1] x [0, 1] appears on the righ-hand
side of Figure 4.2 and is as follows:
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Bla) = (=1 -a) o)1 =)'+
4(0.2361x(1 —2)% +0.70842%(1 — z)? — 0.29152%(1 — z) — 0.7638334> .

y(1—y)° +

6(0.4723x(1 —2)% +1.41692%(1 — )? — 0.75052%(1 — x) — 1.6951x4) .
y'(1—y)* +

4(0.70843:(1 — )% +2.12532%(1 — )% — 2.37682*(1 — x) — 1.8823334) :

v (1 —y)+

(0.564(1 —2)* +3.20062(1 — x)® 4+ 6.21782%(1 — x)? — 2.91462>(1 — z) +
1.1497:c4> yt

The power representation in Figure 4.2(a) is less effective in areas which are
further away from the origin, whereas the Bernstein representation in Fig-
ure 4.2(b) starts classifying correctly boxes which are roughly at a constant
distance away from the function.

For low-degree polynomials the advantage of using the Bernstein form is
not immediately obvious. However, in rectangular areas which are further
away from the origin, high-degree polynomials in the power form usually op-
erate with large powers of large numbers. Any small errors in the coordinates
can cause a significant change in the value of the polynomial. Thus, the Bern-
stein base is more numerically stable than the power base, which means that
minor perturbations introduced in the coefficients tend not to affect the value
of the polynomial.

Floating point errors can also be a reason for interval swell. Very small
numbers on the “wrong” side of the origin are decisive in the classification
procedure. Numerical stability helps correct this problem, though the Bern-
stein representation is not entirely error-free.

4.4.2 Canonical Forms of Degrees One and Two Polynomials

The standard form polynomial for three-dimensional quadrics is, as for any
degree-two polynomial, written in the following manner:

A+2Bx+2Cy+2Dz +2Fxy 4+ 2Fxz + 2Gyz + Ha® + [y* +J2* = 0 (4.11)

This is also known as the general expanded equation of a quadric. Quadric
surfaces are always a special category of surfaces in geometric modelling
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because of various nice geometric properties they possess (see, for example,
Sarraga [348]). Their importance comes from the fact that they are able to de-
scribe the geometry of most engineering mechanical parts designed by current
CAD/CAM systems. This explains why CSG geometric kernels were designed
and implemented from quadrics. For further details, the reader is referred to
the sSVLIs set-theoretic kernel geometric modeller [61].

Quadrics are more commonly known by their respective canonical form
equations, where terms are grouped together in a symmetrical manner. By
canonical form we mean the best-known implicit form in which quadrics are
normally defined and studied (as shown in Figure 4.3):

2,2
tpta

2
:ta—Q =1 (4.12)
that is, the normalised equation for a 3D quadric centred at the origin (0, 0, 0).
According to the sign of the coefficients of the expanded form (4.11) or the
canonical form (4.12), the quadrics can be of different types. It can be easily
proved (see, for example, Bronstein and Semendjajew [67]) that there are only
a finite number of types of quadric surfaces.

Furthermore, empirical tests carried out by the geometric modelling re-
search group at Bath suggest it is probably the case that IA yields perfect
classifications of all the sub-boxes of a region, provided they are tested against
the equation of a plane or a quadric surface in the canonical form. Otherwise,
the classifications are only conservative.

The multiplication of an interval by a constant and the addition and sub-
traction of two intervals are all exact operations. Hence, when an interval is
substituted into a linear equation of the type Az + By + Cz + D = 0 the
arithmetic is expected to be well-behaved. The immediate geometrical conse-
quence is that it is always possible to determine precisely whether a plane in
space cuts a given box. The ‘perfect’ results are due not only to the linear-
ity of the polynomial form but also to the fact that each variable occurs in
the expression of the polynomial exactly once and independently from other
variables. Thus no interference occurs between the different sources of noise.
The coefficients A, B, C' and D in the linear form Az + By+ Cz+ D = 0 are
assumed to be obtained after all the reductions possible have been performed.
Otherwise the swelling phenomenon reappears.

As an illustration, consider the polynomial p(z) = 2z — . When studied
over the unit interval, it yields a swollen result, despite its linearity:

2 [07 1] - [07 1] - [Oa 2] - [07 1} = [717 2] ) [07 H

With the exception of the plane equation and quadrics in their canonical
form, these “perfect” results cannot be obtained for equations of degree two or
higher. The functions f(z), g(x) and h(z) given in Section 4.3.2 have already
illustrated a counterexample. That is, they all had degree-two equations but
the intervals which resulted after applying interval arithmetic were not the



4.4 The Influence of the Polynomial Form on TA 103

(a) Ellipsoid: chz + 1;,/*2 +4&Z=1 b) Elliptic cylinder: &3 24 y2 =1

d) Elliptic paraboloid: z = % %

-
QU

(e) Hyperboloid of 1 sheet: f) Hyperboloid of 2 sheets:
a2+**%— a2+**%§:*1

2

(h) Hyperbolic cylinder: 25 —

N

2 2
Yy_ — z y_

Yz = —1 (i) Hyperbolic paraboloid: z = &5 — %;

Fig. 4.3. Canonical forms for quadrics.

results of the exact calculations. When comparing the general expanded form
with the canonical form of the same quadric, it is customarily the case that the
former is the expansion of the latter and has degree-one terms as well as square
terms. Most of the canonical forms of the quadrics have only degree-two terms,
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which constitutes an advantage for the application of interval arithmetic. This
is due to the exponentiation rule stated in Equation (4.7), which causes the
tightest positive intervals to be generated as results.

In general, the interval arithmetic technique can be used successfully for
the location of the familiar quadrics, in that all the boxes of the spatial subdi-
vision are classified correctly. The canonical form of the conic section surfaces,
each of the variables occurs exactly once, independently from the others and
with an exponent of one or two; thus it is expected that the resulting interval
will coincide with the exact range. The technique starts suffering from conser-
vativeness in the case of surfaces of an arbitrary representation, or of higher
degree.

4.4.3 Nonpolynomial Implicits

One reason for extensively using polynomials is that the most important
curves, surfaces and solids in geometric modelling can be expressed by means
of polynomials. Perhaps the only significant exception is the helix. The helix
is useful to represent as it is widely used in practice for such things as screw
threads, but its formulation requires transcendental functions. Another rea-
son why polynomials have been preferred is that algebraic theories provide
extensive studies of polynomials. The findings concerning general algebraic
functions cannot always be extended to transcendental functions.

As expected, conservativeness remains a problem for transcendental im-
plicits. Whilst performing correctly for quite a large number of negative and
positive boxes, the interval arithmetic technique still outputs some regions of
space as zero boxes, although in reality they are purely negative or purely
positive. Similarly to the polynomial case, the result is usable but not satis-
factory.

Ezample 4.2. The expression sin(x) can legitimately be assumed to take values
in the range [—1, 1], but this may be quite a gross estimate. In the particular
case where z € [£, I] the function’s image is only [sin(3),1] C [0.47,1]. When
the sin(z) function is incorporated in further calculations, an initial range
approximation as gross as [—1, 1] will propagate the interval swell throughout

the computation chain, affecting the final result.

An alternative evaluation method for periodic trigonometric functions (like
sin(z) and cos(x)) would be to calculate the range as a result of a circumstan-
tial study of the domain. If the length of the domain interval is larger than the
function period (27 in the case of sin(z) or cos(z)), then the function takes
values over the whole of the range [—1, 1]. If not, then a detailed study of the
relative positions of the ends of the interval and multiples of the values 0, 5,
m, 37” and 27 will help establish the exact range. This is the case with the
tangent and cotangent functions as well, with the further complication that

these are not defined for certain values of their argument.
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Other transcendental functions, like the logarithmic and exponential func-
tions are slightly better behaved. Because they are monotone, an exact range
can be obtained by evaluating the function at both ends of the interval. Prob-
lems may occur, however, when the function is not defined for the whole
domain interval (e.g. log(z) is not defined for negative numbers or zero).

4.5 Affine Arithmetic Operations

As seen above, the conservativeness of algebraic methods that rely on interval
arithmetic depends on the polynomial form used to represent implicit curves,
surfaces and solids. We have also seen that the conservativeness is reduced
when the input is provided in the Bernstein form. Furthermore, in the par-
ticular case of planes or quadrics represented by canonical form polynomials,
the conservativeness vanishes.

As described in Section 4.3, the box classification method relies on substi-
tuting the interval coordinates of a box for the variables of an implicit function
expression, performing interval arithmetic calculations, and studying the rel-
ative positions of the resulting interval and zero. It might be thought that the
interval swell during the interval arithmetic evaluation depends merely on the
number of occurrences of a variable in the implicit expression. There are other
aspects (such as the presence of even exponents or the order of the arithmetic
operations) which contradict this assumption. It is known that the Bernstein
form of a polynomial has many more variable occurrences than the power
form; despite this, the former behaves better with IA than the latter.

Still, whenever interval calculations are performed, no account is taken of
the fact that each occurrence of any variable, such as x, always represents the
same quantity. That is to say that each variable introduces the same error
in all the terms of the polynomial. The method, called affine arithmetic, de-
scribed in the rest of this chapter makes use of this observation and correlates
the sources of error in the interval classification (see also Martin et al. [258]
or Shou et al. [367]). And, more importantly, it does not depend on the poly-
nomial form used to represent an implicit object. Thus, affine arithmetic can
be viewed as a more sophisticated version of interval arithmetic.

4.5.1 The Affine Form Number

Affine arithmetic was proposed by Comba, Stolfi and others [90] in the early
1990s with a view to tackle the conservativeness problem caused by standard
interval arithmetic. Like interval arithmetic, affine arithmetic can be used to
manipulate imprecise values and to evaluate functions over intervals. While,
like interval arithmetic, it provides guaranteed bounds for computed results,
affine arithmetic also takes into account the dependencies between the sources
of error. In this way it is able to produce much tighter and more accurate
intervals than interval arithmetic, especially in long chains of computations.



106 4 Interval Arithmetic

In affine arithmetic an uncertain quantity z is represented by an affine
form & that is a first-degree polynomial of a set of noise symbols ¢;.

m
T=z0+ T80+ + TmEm =$0+Z$i5i
i=1

Here the value of each noise symbol ¢; is unknown but defined to lie in
the interval [—1,1]. The corresponding coefficient x; is a real number that
determines the magnitude of the impact of the product z;e;. FEach product
x;¢; stands for an independent source of error or uncertainty which contributes
to the total uncertainty in the quantity . The number m may be chosen as
large as necessary in order to represent all the sources of error. These may
well be input data uncertainty, formula truncation errors, arithmetic rounding
errors, and so on.

This piece of reasoning is not restricted to the univariate case. On the
contrary, given a polynomial expression in any number of variables, the de-
pendencies between them can be easily expressed by using the same noise
symbol &; wherever necessary. If the same noise symbol ¢; appears in two or
more affine forms (e.g. in both Z and ¢) it indicates the interdependencies
and correlations that exist between the underlying quantities x and y. For
example, in the bivariate case, computing with the affine forms is a matter of
replacing « and y by & and ¢ in f(z,y), respectively, and each operation in
f(x,y) with the corresponding affine operation on & and g. Of course, each
affine operation must take into account the relationships between the noise
symbols in  and y.

The rules for arithmetic operations on affine forms are explained below.
The important thing to notice about the way affine arithmetic works is that
algebraic expressions take into account the fact that the same variable may
appear in them more than once. Thus using affine arithmetic, similar terms
get cancelled when they appear in an expression (e.g. 2& + ¢ — & = & + §).
This is not the case with interval arithmetic.

4.5.2 Conversions between Affine Forms and Intervals

Conversions between affine forms and intervals are defined in various papers
by Comba and Stolfi [90], Figueiredo [100] and Figueiredo and Stolfi [102].
Given an interval [z, Z] representing a quantity z, its affine form can be
written as
T+ T—zx
, L1 =
2 2
Conversely, given an affine form & = z¢ + z161 + -+ + 2mem, the range
of possible values of its corresponding interval is

T =x0+ 164,  Where xp = (4.13)

2,7 = [zo — &m0 +&],  where =) |z|. (4.14)
i=1
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4.5.3 The Affine Operations

The affine arithmetic rules are fully defined in Comba and Stolfi [90]. Those
that are relevant to the location of curves and surfaces are addition and multi-
plication, both of a scalar to an affine form, and of (two or more) affine forms
to each other. Given the affine forms & and ¢, and the real number o € R the
simple arithmetic operations are carried out thus:

Addition:

a+i=(a+xz)+z1E1+ -+ TmEm (4.15)

Ty = (o +yo)+ (r1+y)er+ -+ (Tm + Ym)em (4.16)
Subtraction:

a—ﬁj:(a—xo)—i—xlgl""'"'_ TmEm (417)

T—y= (ffo *yO)Jr(xl *91)51 +"'+($m*ym)5m (4~18)
Multiplication:

at = (azg) + (axr)er + - + (azm)em (4.19)

9= (xo+x161+ 4+ Tmem)(Wo+y1e1+ -+ Ymem)  (4.20)

<330 + Z xi5i> (yo + Z yi5i>
ZoYo + Z Toyi + TiYo)ei + (Z 9:151> <Z yié:i) (4.21)
i=1

1=1

L(e150Em) Q(e1,--sEm)
Now, L(e1,...,&m,) is an affine form in which the noise symbols ¢; occur
only with degree 1, whereas Q(e1,...,&,,) is quadratic in the noise symbols.

The quadratic term can be handled so that it becomes linear itself, at the
expense of introducing a new noise symbol g, € [—1,1], with coefficient v,
where p = Y"1" | |x;] and v = >, |y;]. So 2§ can be expressed as an affine
combination of first-degree polynomials in the noise symbols:

m
9 = woyo + Z ToYi + Tiyo)Ei + prek

1=

= xoYo + (fﬂoy1 +x1y0)er + -+ (ToYm + TmYo)Em + pVER

The index k can be chosen as m + 1.
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Division:

Division can be defined via inversion and multiplication in the same style as
shown in Formula (4.5) for intervals. This is rarely used in calculations, as
there is little scope for simplifying the polynomial expansions obtained.

Exponentiation:

T = (o + x164)" = 2§ + Z (j) 2y lrtel a€Z. (4.22)

i=1

Unlike interval arithmetic, the affine exponentiation is a particular case of
the affine multiplication because

=34
and, consequently, there is no interval swell caused by exponentiation.

It is immediately apparent from the rules above that the affine arithmetic
operations are commutative, associative and distributive. This was not the
case with interval arithmetic, whose misbehaviour with the distributivity law
caused the interval swell.

Practical experience with polynomials other than those of lowest degree,
shows that simply using the rules of affine arithmetic directly gives relatively
little advantage over ordinary interval arithmetic when localising polynomials
(e.g. curves and surfaces), which are basically defined by additions, subtrac-
tions, multiplications and exponentiations. This is due to rapid introduction
of many new error symbols. Much better results can be obtained by taking
more care, in particular in handling exponentiations.

4.5.4 Affine Arithmetic Evaluation Algorithms

Various affine arithmetic schemes have been proposed for use in geometric
modelling. One of the earlier ones (see Zhang and Martin [426] or Voiculescu
et al. [402]) proposes to simplify exponentiations in a way that separates
odd exponent terms from even exponent terms, and express any (univariate)
polynomial with a degree-one polynomial of three terms and just two noise
symbols:

T4 = UCS + Zodd€zodd + TevenExzeven-

Whilst this yields results very efficiently and leads to reasonably narrow
result intervals, it unfortunately does so at the expense of the loss of conserva-
tiveness. This comes from trying to share the noise symbols €,,44 and €zepen
between the computations of two distinct powers [373].

A more complete yet more expensive scheme is proposed in a related pa-
per [258] where Martin et al. give a matrix-form evaluation of the affine in-
terval polynomials that leads to a conservative interval result.
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4.6 Affine Arithmetic-driven Space Partitionings

When applying affine arithmetic to algebraic surface location, the polynomial
representing the implicit surface needs to be evaluated on the intervals over
which its variables range. In particular, in order to locate a planar curve a
polynomial f(z,y) needs to be evaluated over the ranges in x and y repre-
senting a box. These are [z,Z] and [y, 7] or their affine equivalents Z and g
respectively.

Because the affine arithmetic form can be converted back into an interval,
it can easily be used as an alternative to producing box classifications for
power- or Bernstein-form polynomials using direct interval arithmetic rules.

To compare the relative merits of interval arithmetic and carefully evalu-
ated affine arithmetic for curve drawing, we now present a practical example.

Example 4.3. Let us consider the following bivariate polynomial function
p(z,y) in the power form:

945 94,3214 , 5 74,554

_ 4 3
1000 Y " 100,000 ¥ T 10,000

$3y2+y —r

p(x,y) =

and then in its Bernstein form in the unit box [0, 1] x [0, 1]:

B(z,y)=— 2*(1—y)*+
4725 76,375 ;
1—a)— 1—
10000 > =%~ To0.000 ) (I=y)"+

6< 425 e 9 b T5066.667 x?,) PR

1000 * 1,000,000,000
9,405,350,004

- N 1,078,415
10,000,000,000

1—a)+ T~ —x )y3(1 —y)+

1 _ 2
z(1-z) 1,000,000

3945 4,542,140,001 103,174
_\3 _ N2 D ’ ) 2 _ _ ) 3 4
(( 2+ 2000 * %~ To00.000000 © 1™~ To0.000 ) v

The left-hand side of Figure 4.4 represents the interval arithmetic classification
of the Bernstein form (i.e. the best polynomial form for TA). The right-hand
side illustrates the result of applying affine arithmetic (AA) to the power-
form polynomial p(z,y). Both have been drawn using a minimum box size of
2% X 2% As apparent from Figure 4.4, AA definitely classifies a larger area,
and in bigger chunks at a time, than either case of IA. The Table 4.1 gives
the respective box percentages for p(z,y) at a resolution A = 2% X 2%

The complexity of each algorithm depends on the type of arithmetic used
(i.e. standard interval arithmetic or affine arithmetic), as well as on the form
of the input. Tables 4.2 and 4.3 summarise the running times and the number
of subdivisions in each case. (Note that the times are interesting to compare,
but not relevant in absolute terms, as the implementation depends on the
interval package and hardware used.)
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(a) IA on Bernstein form (b) AA on power form

Fig. 4.4. Interval- and affine arithmetic box classification for p(z,y) and B(z,y) in
the unit box [0, 1] x [0, 1].

Table 4.1. Box percentages for p(z,y) at a resolution A = 2%0 X 2}0.

Negative boxes|Zero boxes|Positive boxes
[_7_] [_7+] [+’+]
IA on power form 0.3171 0.0231 0.6597
TA on Bernstein form 0.3241 0.0088 0.6670
AA on power form 0.3266 0.0037 0.6695

Table 4.2. Running times and number of subdivisions for p(z,y) at A =

515 X 315
\ [time (sec)[subdivisions]

TA on power form 2338.121 39834

TA on Bernstein form| 2783.140 15568

AA on power form 194.339 6447

Table 4.3. Running times and number of subdivisions for p(z,y) at A = 2% X 2%

\ [time (sec)[subdivisions]|
TA on power form 20.94 1854
TA on Bernstein form| 51.52 947
AA on power form 10.07 433

The results in Table 4.2 and Table 4.3 have been obtained also using
different minimum box sizes, 2% X 2% and 2% X 2%, respectively.

For the example given above the affine arithmetic method produces results
more quickly (and accurately) than either interval arithmetic method. The

former involves slightly more calculations per box, but classifies big boxes in
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a very efficient manner. When interval arithmetic is applied there are fewer
calculations per box than for affine arithmetic. Still, the Bernstein polynomial
form is so much more complicated that the program runs much slower.

Regarding the number of subdivisions, interval arithmetic needs much finer
subdivision of boxes for the power form than for the Bernstein form and ends
up with a less accurate result. Affine arithmetic needs comparatively fewer
subdivisions to reach a very accurate result.

In principle, rather than the interval arithmetic, one could also study the
Bernstein form using the affine arithmetic approach. However, as it has been
shown that affine arithmetic operations are associative, commutative and
distributive, it is expected that different polynomial representations would
produce the same results. This is because the various ways of expressing a
polynomial function using different bases does nothing other than rearrang-
ing the terms. This rearrangement does not affect the arithmetic of the poly-
nomial, and hence does not affect the result of applying affine arithmetic to
an equivalent polynomial form. Therefore, when studying affine arithmetic, it
is only the power basis that needs to be considered. The proof of this final
statement has been published in [259].

As a final remark in this section, it is worth noting that when interval
arithmetic produces a correct estimate of the range of values, then affine
arithmetic is expected to produce an exact range too. For example, in the
case of function k(x) = (2o — 3)? studied in Section 4.3.2, interval arithmetic
gives the correct range [1,9], and so does affine arithmetic.

4.7 Floating Point Errors

Recursive subdivision using interval arithmetic relies fundamentally on the
arithmetic operations carried out on the end values of the intervals being
accurate. This is why the examples given so far have involved polynomials
with rational coefficients and subdivisions of boxes stored as rational inter-
vals. Implementations in languages without a rational number data type will
compromise the precision of the calculations by storing the numbers as floating
point values.

The current section illustrates the extent to which floating point errors
propagate through the evaluation process, often making the classification pro-
cess impracticable. Let us recall the polynomial p, defined in Section 4.3, in
its rational and floating point power forms:

9446 700,443,214 4 , 764554 , . 564 , 4

pret(®:) = 35606 ¥ ~ Too,000.000 © ¢ To0.000 ¥ oo0 ¥ "

pa(r,y) = 0.9446 y x — 7.00443214 32 2 + 7.64554 x* > + 0.564 y* — 2®

This was originally defined in the unit box, and had the zero set illustrated
in Figure 4.1.
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We now aim to translate p so that it has the same zero set in a general
box, say [9.62,10.62] x [7.31,8.31]. This can be achieved in several ways, all
involving the substitution of by z-minus-some-quantity, and y by y-minus-
some-quantity, in either p,q; or pa;:

substitute x := x — % and y:=y — % in prqs, yielding pq;
substitute z := x — {55 and y 1=y — 155 in psat, yielding po;

substitute x := z — 9.62 and y := y — 7.31 in p,q, yielding ps;
substitute z := x — 9.62 and y := y — 7.31 in pp,, yielding pa.

Floating point errors already start occurring at the stage where brackets
are multiplied out. In the particular case of p(x,y), when using a precision of
10 significant digits, ps = p4. The three zero sets (corresponding to p;, p2 and
ps respectively) in the box [9.62,10.62] x [7.31,8.31] are plotted in Figure 4.5,
in the order cyan, magenta, yellow.

The affine arithmetic method necessarily complies to one of the four
schemes above. Our study uses two schemes in parallel: all the way through
the subdivision process described above. Any subdivision decisions are taken
using p; and a “totally rational” scheme. At the same time, the subboxes are
also converted to their floating point equivalents and subjected to the sign
test against the floating point polynomial ps. Thus it is certain that subdivi-
sion is carried out correctly. The respective ranges (given by the two different
approximations) can be compared.

When the signs of the two ranges agree (in that they both indicate a
negative or a positive box), the same conventions for colours as before has
been used—that is, red for negative and blue for positive. However, when the
rational arithmetic predicts a negative box and the floating point arithmetic
calculation disagrees, the box is coloured magenta. Similarly, when the rational
arithmetic predicts a positive box but the floating point arithmetic calculation
disagrees, the box is coloured cyan. Zero boxes are still coloured green. The
result is illustrated in Figure 4.6(a).

9.6 9.8 10 10.2 10.4 10.6

Fig. 4.5. Zero sets of p1 (cyan), p2 (magenta) and ps (yellow).
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(a) (b)

Fig. 4.6. (a) Affine arithmetic classification of floating-point polynomial using
rational evaluations in the box [9.62,10.62] x [7.31,8.31]; (b) Affine arithmetic
(mis)classification using only floating-point evaluations in the box [9.62,10.62] X
[7.31,8.31].

The frequent occurrence of magenta and cyan boxes indicates to what
extent floating point errors can influence the affine arithmetic calculations.
Had there been only floating point evaluations, the classification would have
been totally irrelevant, as decisions for further subdivision would have been
taken in completely the wrong places. Indeed, when running such a test it
simply returns an inconsistent collection of negative and positive boxes, which
only vaguely evokes the shape of the initial curve (Figure 4.6(b)).

This is a typical illustration of the propagation of floating point errors.
Let us now consider a single magenta box and examine the way in which the
four possibilities there are for approximating either the coefficients or the box
can influence the final range given as a result.

Take the rational box:

{8471 33,909] [1637 13,121}

800~ 3200 200 7 1600
[10.58875000, 10.59656250] x [8.185000000, 8.200625000]

This is one of the boxes coloured magenta in Figure 4.6(a). Its corresponding
affine forms are:

67,793 1
b= erg + 5ag ©x = 1059265625 + 0.003906250000 ¢,
26217 1

§= 505 T Tog & = 8192812500 + 0.007812500000 ¢,

Let us evaluate the results returned by affine arithmetic when classifying
these affine forms and/or their floating point equivalents against the vari-
ous forms of p. The results differ according to the amount of floating point
approximation carried out:
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affine_eval(p1(z,y), Trat, Yrat) =
-8,180,237,644,390,479,080,447 -2,383,608,804,974,363
56,294,995,342.131,200,000,000° 140,737,488,355,328,000
= [-0.1453102109, —0.01693655921]

affine_eval(pi(z,y), Zoat, Yloat) = [0.09670367511,0.2243380429]
affine_eval(py(x,y), Brat, Grat) = [—0.1038870246,0.02492879264]
affine_eval(ps(z,y), Toat, Joat) = [0.09641367500,0.2246280630]

To summarise, the intervals generated as answers vary in their signs and
positions relative to zero. The results are not conservative anymore; on the
contrary, some of them have completely misclassified the box type, as shown
in Table 4.4:

Table 4.4. Box classification for p; and pa.

lp(x, y)[ﬁc X g[interval type[box classification

rat | rat -, —] negative

rat | float [+, +] positive
float | rat [—,+] zZero
float |float [+, +] positive

Of course, “mixed” forms of the polynomial (such as ps) could have been
used in the experiments as well, generating a potentially wider variety of
answers. Nevertheless the study outlined above illustrates the point being
made in this section, which is that floating point errors are not negligible.

All the floating point calculations in this section have been carried out
using a precision of 10 significant digits. Increasing the precision of the cal-
culations may eliminate the problem for particular cases. Indeed, in the case
of p(x,y) a precision of 40 significant digits seems to be enough for a box
classification comparable to the one where rational arithmetic had been used.
However this is not a general solution, as the result depends thoroughly on
the precision with which the polynomial coefficients and the edges of the box
are being calculated in the first place.

4.8 Final Remarks

There are, of course, a variety of ways in which the polynomial can be input,
such as storing it in some canonical form, using a planar basis [61], or using an
implicitisation of some Bernstein form [41], a Taylor expansion [368], etcetera.
Overall, we conclude that the conservativeness problem which occurs in sur-
face location can be reduced in at least two major ways: either the input is
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given in Bernstein form instead of power form and interval arithmetic is used,
or the calculations are carried out on the power form, but a careful strategy
based on affine arithmetic is used instead of interval arithmetic.

When the Bernstein form is used the improvement is significant: boxes can
be located much more accurately in a given region of interest. The shape of
the surface is outlined in enough detail for it to be located.

When affine arithmetic is used as shown above, our results demonstrate
that curves can be located even more closely. This is because the intervals
produced during polynomial evaluation are tighter.

Affine arithmetic calculations are more complicated than interval arith-
metic ones. This is why the method is more error-prone when using floating
point calculations. This is also why, in some cases, we have found it to be
perhaps twice as slow as simple interval arithmetic, although this is strongly
dependent on the implementation.

However, affine arithmetic has a speed advantage in some cases when in-
terval arithmetic performs particularly badly. This advantage arises in the
subdivision method because fewer boxes need to be considered, even though
the amount of computation for any single box is greater.

All in all, it is fully expected that the benefits shown in curve drawing are
also applicable to other uses of solutions to implicit equations, such as surface
intersection, surface location, etc. Although the examples shown here have
used polynomials, similar approaches could also be used if non-polynomial
functions are needed for modelling. Different suitable basis functions and affine
evaluation methods will need to be found for such cases.

There is also a need to express the operations defined here in a more com-
pact form (perhaps using matrices). This would facilitate generalisations and
would help study the operations and properties at a higher level of abstraction.
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Root-Finding Methods

Broadly speaking, the study of numerical methods is known as “numerical
analysis,” but also as “scientific computing,” which includes several sub-areas
such as sampling theory, matrix equations, numerical solution of differential
equations, and optimisation. Numerical analysis does not seek exact answers,
because exact answers rarely can be obtained in practice. Instead, much of
numerical analysis aims at determining approximate solutions and at the same
time keeping reasonable bounds on errors. In fact, computations with floating-
point numbers are performed on a computer through approximations, instead
of exact values, of real numbers, so that it is inevitable that some errors will
creep in. Besides, there are frequently many different approaches to solve a
particular numerical problem, being some methods faster, more accurate or
requiring less memory than others.

The ever-increasing advances in computer science and technology have
enabled us to apply numerical methods to simulate physical phenomena in
science and engineering, but nowadays they are also found and applied to
interesting scientific computations in life sciences and even arts. For example,
ordinary differential equations are used in the study of the movement of heav-
enly bodies (planets, stars and galaxies); optimisation appears in portfolio
management; numerical linear algebra plays an important role in quantitative
psychology; stochastic differential equations and Markov chains are employed
in simulating living cells for medicine and biology; and, the chaotic behaviour
of numerical methods associated to colour theory in computer graphics can
be used to generate art on computer.

Nevertheless, in computer graphics, numerical techniques have mainly
found applications in the design of parametric curves and surfaces (i.e.
CAGD); they also appear in ray tracing of parametric and implicit surfaces. In
this book, numerical methods are essentially used to approzimate the roots of
real functions in two and three variables as a way of sampling implicit curves
in R? and surfaces in R?. Recall that a root solver involves two main steps:
root isolation and root approximation (also called root-finding). Relevant root
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isolation techniques were approached in the last two chapters. This chap-
ter deals with the so-called numerical approximation methods or root-finding
methods.

5.1 Errors of Numerical Approximations

There are various potential sources of errors in numerical computation. Two
of these errors are universal because they occur in any numerical computation:
round-off and truncation errors. Inaccuracies of numerical computations due
to the errors lead to a deviation of a numerical solution from the exact solution,
independently of the latter is known a priori or not. To better understand the
effects of finite precision of a numerical solution, let us consider the definition
of relative error as follows:

o lz=0l (5.1)

ol

where p and x denote the exact solution and its approximate value, respec-
tively. The numerator |z — p| of this fraction denotes the absolute error.

5.1.1 Truncation Errors

As known, floating-point numbers are represented in a computer with a finite
number of digits of precision. The simplest hardware implementation is to
keep the first n digits after the period, and then to chop off all other digits. A
truncation error occurs when a decimal number is cut off beyond the maxi-
mum number of digits allowed by the computer accuracy, also called machine
precision.

Machine precision is the smallest number € = 27 that a computer recog-
nises as nonzero. On a 32-bit computer, single precision is 2723 (approximately
10~7) while double precision is 2752 (approximately 10716). Algorithm 4 com-
putes not only the machine precision €, but also the largest number N of bits
such that the difference between 1 and 1 + 2~ is nonzero.

It is worthy of noting that truncation errors are present even in a scenario
of infinite-precision arithmetic because the computer accuracy and termina-
tion criteria associated to algorithms lead to the truncation of the infinite

Algorithm 4 The Machine Precision

1: procedure MACHINEPRECISION(¢, N)
2 e«— 1.0

3 N —0

4 while e+ 1 > 1 do

5: €—€/2
6.
7
8
9

N—N+1
end while
e«—20¢

: end procedure
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Taylor series that approximate mathematical functions (e.g. transcendental
functions) to a finite number of terms (see [83] for further details).

5.1.2 Round-off Errors

A more accurate alternative to truncation is to round the nth digit to the
nearest integer. This cutting off of digits leads to round-off errors. For example,
the irrational number 7 = 3.14159265358979... has infinitely many digits after
the period, and let us round its 6th digit so that 7 = 3.141593. Everyone agrees
that 3.14 is a reasonable approximation for 7, so the resulting absolute error
is | — p| = |3.14 — 3.141593| = 0.001593 and the relative error is e = 0.0507
percent.

Thus, the round-off error of a floating-point number also depends on how
many digits are left out. A major problem in numerical analysis is how to
keep the accuracy of numerical computations despite the accumulation and
propagation of round-off errors in computer arithmetic. That is, round-off
errors are a consequence of using finite precision floating-point numbers on
computers.

Numerical errors produced by computers affect the quality of computa-
tions, which are particularly important for sampling implicit curves or surfaces
with self-intersections and other singularities. For example, a self-intersection
of a curve may be detected by a convergent sequence of points, each de-
termined by some numerical method. But, this requires that a stopping or
termination criterion has been defined very carefully in order to get a trade-
off between accuracy and time performance; otherwise, the result may be
unpredictable (e.g. divergence caused by inaccurate computations).

5.2 Iteration Formulas

In 1824, the Norwegian mathematician Niels Abel proved the impossibility of
a quintic formula by radicals. Later on, the French mathematician Evariste
Galois extended Abel’s result that it is impossible to obtain a general analytic
formula to determine the roots of fifth-order or higher polynomials. In other
words, unlike quadratic equations, higher nonlinear equations cannot be solved
through a general analytic formula.

This fact led to the development of root-finding numerical methods. There
are many numerical formulas and methods to determine a root of a nonlin-
ear equation, namely: the Newton-Raphson method, bisection method, secant
method, and false position (or regula falsi) method (see Press et al. [329] for
a classical treatment of numerical methods).

In numerical analysis, the generic iteration formula is as follows

Tiy1 = Fi(xi, Li—1y.-- ,$i7n+1)~ (5'2)
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and is called the n-point iteration function. Most implicit surface (curve)
polygonisers use 2-point iteration functions. For example, the bisection method
and the false position method are two examples of 2-point numerical methods.
Recall that the acclaimed marching cubes polygoniser [247] uses a 2-point
numerical method for sampling implicit surfaces. Sampling a surface consists
in computing the intersection points between the surface and each edge of
every single cubic cell enclosed in an axis-aligned ambient bounding box. Each
intersection point is determined by applying a numerical 2-point method over
the edge, i.e. its endpoints work as initial guesses. These 2-point polygonisers
are based on the intermediate value theorem (IVT):

Theorem 5.1. (Intermediate Value Theorem) Let f be a continuous real
function on the interval [x;—1,z;]. If f(xi—1).f(x;) < 0, then there exists
Tit1 € [i—1, 2] such that f(ziy1) = 0.

That is, polygonisers based on IVT are sign-based polygonisers because the
next estimate x;41 is determined from two previous estimates x; and z;_; on
which the function f has values with different signs. Consequently, as stated
by the IVT, there must be at least one root (unless a singularity is present) in
the interval [x;_1,2;]. In these circumstances, a root is said to be bracketed
in the interval defined by those two points x; and z;_1.

However, these 2-point iteration functions are not able to detect sign-
invariant branches and sign-invariant components of implicit curves and
surfaces. These sign-invariant subsets of curves and surfaces enjoy the prop-
erty that their functions do not change sign in the neighbourhood of each
of their points. For example, the spherical surface defined by the level set
flx,y,2) = (22 +y? + 2% — 9)? = 0 cannot be sampled by any signed 2-point
iteration function because f is positive everywhere, except on the surface
points where it is zero.

We could ask ourselves why not to use a 1l-point iteration function
such as, for example, the Newton-Raphson iteration formula, which is sign-
independent. However, if the initial estimate is not sufficiently close to the
root, the method may not converge. Besides, it is necessary to guarantee that
all roots have already been isolated properly.

5.3 Newton-Raphson Method

As suggested above, each numerical method has a specific iteration function.
There are many ways to construct iteration functions. These functions are
often formulated from the problem itself. For example, solving the equation
x —sinz = 0 can be intuitively done by the iterative formula

Tip1 =sinz;, 1=0,1,2,...,

for which the iteration function is given by F;(z) = sinz;.
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f(X) f(x)
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(a) (b)

Fig. 5.1. (a) Newton’s method uses tangents; (b) secant method uses secants.

5.3.1 The Univariate Case

However, the idea of the Newton-Raphson method is a bit different. Given an
initial guess z( reasonably close to a zero p, one approximates the function by
its tangent line at xg, computing then the xz-intercept x; of this tangent line.
Typically, this z-intercept better approximates such a zero that the original
guess, as illustrated in Figure 5.1(a). This process can be repeated until we
obtain a sufficiently close estimate to function zero at x, or until a predefined
maximum number of iterations have passed.

It is clear that we are assuming that f(x) is differentiable in the neighbour-
hood of any zero. So, let us start with the point (zo, f(zo)) in Figure 5.1(a).
We easily see that the gradient of the tangent to the function at this point is

:y—f(l‘o)
T — X

f' (o)

where (x,y) is a point on the tangent. The z-intercept of the tangent is the
point (z1,0), i.e.

f/(xo) _ Ox—l i(;’z)
. I A C0))
0T (o)

Repeating this process for the next estimates, we come to the Newton
iteration formula
(@)

Tit1 L f/(l'i)

The previous geometric construction of the Newton-Raphson iteration for-

mula agrees with its standard construction from the Taylor series expansion.

In fact, if x is a zero of f : R — R, and f is sufficiently differentiable in a neigh-

bourhood N(z) of x, then the Taylor series expansion of f about z¢ € N(z)
is given by

(5.3)
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(x — x0)?

2' fll(xo) + ...

f(@) =0= f(zo) + (x — @0) f' (x0) +

By neglecting the 2- and higher order terms, we quickly come to (5.3) by
iterating over the indices. That is, the standard Newton-Raphson iteration
formula results from the linearisation of f. Obviously, taking into account
that an analytic expression exists for quadratic polynomials, we might use
a quadratic approximation to f at xy by ignoring the 3- and higher power
terms. In geometric terms, this is equivalent to use a parabola, instead of a
tangent, to approximate f at xg.

As easily seen from (5.3), Newton’s method is an 1-point iterative numer-
ical method viewing that the next estimate z;y; is determined from a single
estimate z; (see also Figure 5.1)(a). Besides, this method uses both the values
of the function f and its derivative f’.

The root finding algorithm for the 1-dimensional Newton method is then as
appears described in Algorithm 5. This algorithm stops when two consecutive
guesses are sufficiently close to each other, i.e. within a small tolerance 7 >
0. Note that € is not the machine accuracy, but just and hereinafter called
the approximation accuracy, i.e. the absolute-valued difference between two
consecutive estimates in the process of convergence to the root.

Convergence

Newton’s method converges quadratically to a single root p provided that the
initial guess is close to it. In mathematical terms, this is equivalent to say that
there exists a constant C' such that

lp—api1| <Clp—z,f*, n>0. (5.4)

Let €, = p — x, be the error at the step n. Then, from (5.3), it follows
that

€ntl =P~ Tpy1 =P — Ty + Fxn)

Algorithm 5 The Univariate Newton Method

1: procedure NEWTON(f, zo, €, T, x;)

2: i —0

3: while € > 7 do > stopping condition
4: Evaluate f(z;) and f'(z;)

5: Tit1 — T — f,((”;";) > iteration formula
6: €« |xig1 — x4 > approximation accuracy
7 i—i+1

8: end while

9: end procedure
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that is,
enf'(@n) + flan)
En+1 f/(xn) ( )
On the other hand, from the Taylor expansion, we have
_ 2
F0) = 0= f(a) + (0= ) () + L2 e
with £ between z,, and z,, + ¢, = p, that is
’ 5721 "
0= f(zn) +enf'(2n) + Ef (&n)
or
/ 631 "

Replacing (5.6) in (5.5) we obtain

v = ey

So, if the method converges, then for x,, and £, near to p we get

L[f"(pl)
/()

‘Gn‘Q

|6n+1| ~

\]

or
l€nt1| ~ C|6n|2

with C' = %|J;I,/((5 )) |, which proves that the Newton method has quadratic
convergence. This means that the number of exact significant digits in the
approximate root doubles from one iteration to the next. But, this is only
true if the initial estimate is close enough to the root. Also, this is only true
for single roots, not for multiple roots. In fact, the order of convergence at a

double root is only linear [374].

5.3.2 The Vector-valued Multivariate Case

The iteration formula (5.3) can be generalised to higher dimensions. Let
f : R" — R™ a real vector-valued function of several real variables, i.e.
f(p) is defined by n real-valued function components fi,, fo, ..., f, of n real
variables x1,xa,...,x,; equivalently, f(x) = (f1(x), fa(x),..., fn(x)) with
x = (1, T2, ..., Ty).

The multidimensional Newton-Raphson formula can be derived similarly
as in the 1-dimensional case. Starting again with the Taylor series of the jth
function component centred at the current estimate x;, we have
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Algorithm 6 The Vector-Valued Multivariate Newton Method

1: procedure VECTORVALUEDMULTIVARIATENEWTON( f, X0, €, T, ;)
2: i«—0

3 while € > 7 do > stopping condition
4 Evaluate f(x;) and Jf(x;)

5 Solve Jf(x;).c; = f(x;) for ¢; > yields correction percentage for x;
6: Xitl ¢ X; — C; > next estimate after correction
7 € — |Xit+1 — X > approximation accuracy
8 i—i+1

9 end while

10: end procedure

£ =0 = fx0) + (x—xp) S0 200D

X
k=1 Oz,

In matrix notation, after neglecting the quadratic and higher-power terms,
this is equivalent to

(=)
Jf(xi)’

where J f(x;) is the Jacobian of the vector-valued function f = (f1, fa,..., fn),
i.e. the multidimensional counterpart of the derivative of f. (See Stoer and
Bulirsch [374], and Ortega and Rheinboldt [314] for an insight into multidi-
mensional numerical methods.) The formula (5.7) is commonly used in nu-
merical analysis to solve nonlinear equation systems.

Although (5.3) and (5.7) are analogous, there is an important difference be-
tween the multidimensional Newton formula (5.7)and its 1-dimensional coun-
terpart. Looking at the multidimensional formula, we readily come across that
we need to compute the Jacobian matrix inverse. In practice, we do not need
to do so explicitly. In fact, solving Jf(x;).c; = f(x;), with ¢; = x;11 — x;
saves about a factor of three in computing time over computing the inverse.
This improvement appears in Algorithm 6 that describes the vector-valued
multivariate Newton method. Apart these subtleties, this version of Newton’s
method is identical to the univariate case.

i=0,1,2,... (5.7)

Xi+1 = X4

5.3.3 The Multivariate Case

Algorithm 6 is commonly used to solve systems of n equations with n variables.
In computer graphics, we use Algorithm 7 instead for sampling implicit curves
and surfaces. This is so because an implicit curve in R? (respectively, a surface
in R3) is defined by a single function in two (respectively, three) real variables.
This means that, instead of using the Jacobian, we use the gradient of f as
follows:

f(xi)

Vf(xi)'

Xi+1 = X3 — iZO,l,Q,... (58)
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Algorithm 7 The Multivariate Newton Method

1: procedure MULTIVARIATENEWTON( f, Xq, €, T, ;)
2: 10
while € > 7 do > stopping condition
Evaluate f(x;), Vf(xi) and ||V f(x;)|]
Xitl — Xi — %ﬂxi) > iteration formula
€ — |Xit+1 — X > approximation accuracy
t—1+1
end while
end procedure

However, this is not as simple as for (5.7) because the multiplicative inverse
of a vector (i.e. the gradient) is not defined for vector spaces, also called linear
spaces. Vector spaces are the core objects studied in linear algebra. Informally
speaking, a vector space is a set of vectors that may be scaled and added. The
geometric product of vectors is not defined; consequently, the multiplicative
inverse of a vector is not defined either.

Fortunately, such a geometric product is defined in a geometric algebra,
also called multilinear algebra, described technically as a Clifford algebra over
a real vector space. Intuitively, a multilinear algebra is more general than a
linear algebra because the essential objects of study are multivector spaces.
A multivector is an object defined as the addition of a scalar and a vector, in
exactly the same way that the addition of real and imaginary numbers yields
an object known as complex number.

In multilinear algebra, the geometric product uv of two vectors u and v
is defined as follows:

uw=u-v+uxv (5.9)

where u - v and u x v are their scalar and cross products, respectively.

The multiplicative inverse of a vector u, denoted by 1/u or u™!, is the
vector which yields 1 when multiplied by u, that is
_lu u

uu "t =1 or ul=

1
u uu uu

hence, by the definition of geometric product, we obtain
= — (5.10)

That is, the multiplicative inverse vector u=! = \|1?| 5 is the normalised
vector of u divided by its norm, so it is parallel to but smaller than the

normalised vector of u. So, (5.8) can be rewritten as

Vi)
IVf ()12

f(xi), i=0,1,2,... (5.11)

Xi+1 = X4
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Newton’s method has not been often used for sampling implicit curves and
surfaces in computer graphics because of its unreliable convergence. Even so,
the formula (5.11) appears in a couple of polygonisers such as, for example,
that one due to Hartmann [179].

5.4 Newton-like Methods

Newton’s method has quadratic convergence. Unfortunately, it may fail to
converge under the following two circumstances:

e PROBLEM I—The initial guess is far from the root. The convergence of the
Newton method is only guaranteed if the starting estimate is “sufficiently
close” to the root [374]. Otherwise, the method risk to converge slowly or
even diverge (Figure 5.2(a)).

e PROBLEM II—The derivative is very small or vanishes. The Newton itera-
tion formula requires that the derivative f’ does not vanish, i.e. f/(z) # 0.
This means that method blows up at local extrema (i.e. local minima and
maxima) and inflection points (Figure 5.2(b)).

These two difficulties have led several researchers to modify the Newton
method in a variety of ways. Altogether, these modified Newton methods are
called Newton-like methods. As seen in Chapter 3, Problem I can be solved
at the root isolation stage by computing closer guesses. In fact, Newton-like
methods have concentrated almost all efforts in solving Problem II concerning
the derivative annihilation.

In [416], Wu proposes a family of continuation Newton-like methods for
finding a root of a univariate function, for which the derivative is allowed
to vanish on some points. In [215], Kou et al. extend Wu’s results to the
vector-valued multivariate functions such that the Jacobian is allowed to be

f(x) f(x)

local
maximum

i)
3<0—-——-____

X1
| double
/:r X3 root \Io’::al
[}
1

minimum
(a) (b)

Fig. 5.2. (a) Problem I: divergence; (b) Problem II: null derivative.
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numerically singular on some points. The iterative methods of this family also
have quadratic convergence.

Recently, similar methods with cubic convergence have been studied and
proposed by Kou et al. [216] to solve the same problem. For that, they used the
modifications of Newton described in [147] and [406], and the discretisation of
a variant of Halley’s method [173, 314, 350] to get two new modified Newton
methods with cubic convergence which allow for points with null derivative.
See also Sharma [358] for other recent work on Newton-like methods.

5.5 The Secant Method

In addition to those two main problems, Newton’s method suffers from a third
problem related to time performance.

e The convergence slows down on multiple roots. As illustrated in Fig-
ure 5.2(b), f/(z) also vanishes on multiple roots. In the presence of mul-
tiple roots, Newton’s method slows down so that it no longer converges
quadratically. This is the first “slowing-down” problem.

e Computation of the derivative expression. Unless we know the derivative
expression in advance, we have to determine it using algebraic and sym-
bolic techniques, what may pose a significant burden on performance of
the method. This is the second “slowing-down” problem.

e Derivative evaluation. The evaluation of the derivative for every new es-
timate often is more time-consuming than the function evaluation itself.
This is the third “slowing-down” problem.

The secant method is a derivative-free method. It is an attempt to over-
come the problems posed by the use of the derivative by Newton’s method.
In this sense, the secant method can be considered as a Newton-like method.
The secant method avoids the problems posed by the derivative by using the
discrete derivative, also called difference quotient, which approximates the
derivative as follows:

fl(xi) ~ M (5.12)
Ti — Tj—1

Then, substituting the expression (5.12) of f’(x;) into (5.3), we get the

iteration formula of the secant method:

Tp— Ty .
K2 K2 Z>1

flzi) — flxiza) 7

which forces the method to start with two initial estimates, say x¢ and x1,
instead the single initial estimate of Newton’s method.

The secant method also has a geometric interpretation. Replacing the
derivative by the difference quotient in (5.3) results in using a secant line
instead a tangent line to approximate a root of a function. In fact, the next

Tit1l = L5 — f(acz) (513)
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estimate x;11 is the x-intercept of the secant line to the graph of f at the
points (z;—1, f(x;—1)) and (2, f(x,)). This secant line is given by

y— flay) = flz:) — f(xi—l)(x — ;).

Ti — Ti-1
But we know that y = 0 at the z-intercept of the secant line, so we have

0— fla) = M(m — ;)

Tj — Tj—1

or, solving for x,
Lj — Lj—1

f@i) = f(zio1)
which is equivalent to the secant iteration formula (5.13).

Note that the secant method is a 2-point method because the next estimate
is determined from the two previous ones. However, it is not a bracketing
method because the root is not necessarily between the last two estimates, so
the IVT does not apply. The successive estimates converge to the root in a
similar way to Newton’s method. This is shown in Figure 5.1. However, when
we force both estimates to bracket the root for every single iteration, the
secant method turns into the so-called false position method. This explains
why they use the same iteration formula. Algorithm 8 describes the secant
method in its multivariate version for brevity.

x=ux; — f(x;) (5.14)

5.5.1 Convergence

Let ¢; = p — x; be the error at the step 7. Then, from (5.13), it follows that

Li — Ti—1
€t =P~ Tit = p [ = fla) flxi) — f($i71)]

Algorithm 8 The Multivariate Secant Method

1: procedure MULTIVARIATESECANTMETHOD( f, X0, X1, €, T, ;)

2 i— 1

3 while € > 7 do > stopping condition
4 Evaluate f(x:), f(xi-1)

5: Xi+1 < Xi — f(Xi) Fm—roa ) > iteration formula
6 Evaluate f(xi+1)

7 if f(xi4+1) =0 then

8 e—0

9: else
10: € — |Xit1 — X4 > approximation accuracy
11: end if
12: t—1+1

13: end while
14: end procedure
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that is,

it = pf(xi) = pf(wic1) + o f(wi1) — f(@i)wia
f(@i) = f(zi-1)
_ &iaf(@i) —ef(wia)
f(i) = f(wi-1)

after factoring and replacing p — x; (respectively, p —x;_1) by €; (respectively,
€;—1). Equivalently, we have

iy = T — Ti—1 Ei—lf(xi) - Gif(fi—l)
" f(xi) — f(zio1) Ti — Ti—1
[ _ fai (5.15)
Ty — Tj—1 €; €1
= €i€,—1.

f(xz') - f(ﬂUi—l) Ti — Ti—1

On the other hand, from the Taylor expansion at x;, we have

Jw) = (o =) = 1(0) +esf (0) + 5E17(0) + O)

where f(p) = 0; thus, dividing by €; we have

%f) = f'(p) + %fif//(P) +O(e?) (5.16)
and analogously
f(j:l) = f'(p) + %fi—lf”(p) + 02 ) (5.17)

Subtracting (5.17) from (5.16) we obtain

Jla) @) %(Gi —ei-1)f"(p) + O(e}) = O(€7),

€; €i—1
or . 1
f(j%) _ % ~ (6 —€e-1)f"(p)
or still 1
f) _ flxic) ~ o(xg — 1) [ (p). (5.18)

€; €i—1 2

Now, by combining (5.15) and (5.18) we get

‘ ~ & _1 " €;€;
e fs) = f(:z:,-_l)( 2)f (p)ei€i

~ T (-%)f”(ﬂ)ﬁiﬁil
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provided that f’%p) ~ f(zfiiff'(;;l) for x;, v;_1 near to p. Consequently,
L1f"(p)l
il =5 o
or
|€i+1‘ ~ K‘6i61_1| (519)

Intuitively, this shows us that the rate of convergence of the secant method
is superlinear, though not quite quadratic. To make sure about that, let us
recall the definition of rate of convergence

lim —|ei+1| =C

17— 00 |6,L~|O‘ o
or, similarly,
€]

— 00 |€i71 ‘O‘

so that, from these two expressions, we have

leiva] el
lea*  Jeia]®
or
|€i|o¢+1
|€i+1| ~ |Ei71|a (520)
so, inserting (5.20) into (5.19) we get
€ a+1
:€1| = ~ Kleillei—1],
i
that is,
1 a+1
leil = K= ei—a| >
or, equivalently,
1, ekt
|6i+1| ~ K« |6L| @ (521)
but, by definition, we know that
|€i+1| ~ C|€i|a. (522)

Therefore, from (5.21) and (5.22), we conclude that

a—l—l_
— =

Q.

But, this is equivalent to
al—a—-1=0

that is, a quadratic equation whose solutions are given by o = 112\/5.
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Taking the positive solution, we can say that the rate of convergence is then
o= % ~ 1.618, i.e. the golden ratio. Thus, the convergence is superlinear.
Similar to Newton method, this result only holds if f is twice continuously
differentiable and the root is simple (i.e. it is not a multiple root). Analogously,
if the initial guesses are not sufficiently near to the root, then there is no
guarantee that the method converges.

It is worth noting that, despite its slower rate of convergence, the secant
method converges faster than Newton’s method in practice. This is so because
the secant method only requires the evaluation of the function f for each
iteration, while Newton’s method requires the evaluation of both f and its
derivative.

5.6 Interpolation Numerical Methods

Interpolation numerical methods, also called bracketing methods, are 2-point
numerical methods. Let us then describe two of these methods: the bisection
method and the false position method.

5.6.1 Bisection Method

As any other bracketed method, the bisection method combines the recursive
subdivision of the initial interval with the IVT to ensure that the sequence
of intervals converge to the root. In the process of interval subdivision and
convergence to the root, we choose the subinterval that contains such a root
after applying the IVT. The search continues on such a subinterval recursively
until the root is found within a subinterval of minimum length.

The Univariate Case

Roughly speaking, the procedure behind the bisection method consists of three
major steps: (i) interval subdivision by its midpoint; (ii) function evaluation
at the midpoint; (iii) selection of the subinterval which satisfies the IVT. This
procedure continues recursively until the function approximately vanishes at
the midpoint. The midpoint of the search interval [z;_1,x;] is given by

Ti—1+x;

5 (5.23)

Tit1 <

The next subinterval is the one that satisfies the IVT. That is, either

[1‘7;_1,261'_;,_1] if f(xi_l).f(xi_,_l) < 0 or [1‘7;4_1,1‘1‘] if f(xz—i-l)f(l'z) < 0. There-

fore, without loss of generality, the bisection method produces a sequence of

shrinking subintervals [z;_1,x;], i > 1, satisfying f(a;).f(b;) < 0. The corre-

sponding algorithm is described in Algorithm 9, though it appears here in its
multivariate version for brevity.
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Algorithm 9 The Multivariate Bisection Method
1: procedure MULTIVARIATEBISECTION( f, [Xo, X1], €, T)

2: i1

3: while € > 7 do > stopping condition: smallest interval
4: Evaluate f(x:), f(xi-1)

5: Xit1 — Xi—1tx;

6: Evaluate f(x;41)

7 if |f(xi11)| < 7 then > stopping condition: root found
8: T — Xig1

9: else

10: if f(xi—1).f(Xi4+1) < 0 then > bracketing through IVT
11: X < Xi+1

12: else

13: Xi—1 < X441

14: end if

15: end if

16: € — |xi — Xi—1] > approximation accuracy
17: t—i+1

18: end while

19: if ¢ < 7 then
20: T 7’”_;“‘"’
21: end if

22: end procedure

The Multivariate Case

The formula (5.23) easily generalises to the multivariate case as follows:

Xi—1+X;

Xit1 < B)

(5.24)

The recursive computation of the midpoint terminates when the zero is
found within a small tolerance 7 > 0 in the latest interval, i.e. f(x;41) < T
at the latest midpoint x;41, as expressed in Algorithm 9. The value of € =
|x; — x;—1| yields a measure of the error of in the approximation to the root.
In the following, we prove that the IVT-driven subdivision of the interval
guarantees that the bisection method always converge.

Convergence

Let e; = x; — p be the absolute error at the step ¢, with p denoting the exact
root we are looking for. Taking into consideration that

Ixi — p| < leil,

with €; = x; — x;_1, it follows from the iteration formula (5.24) that
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l€o X1 —Xo .
|€i‘:2i:T,ZZO-
Consequently, we have |e;| < 572, i > 0, which implies lim; . [e;| = 0.

Therefore, the bisection method is globally convergent. That is, it is guaranteed
to converge. However, in comparison to other methods, some of which are
discussed in this chapter, bisection tends to converge slowly.

5.6.2 False Position Method

The false position method, also called regula falsi method, can be described as
the bracketed secant method. The iteration formula is exactly the same as for
secant method, but before using it we have to guarantee that the root remains
bracketed through the IVT. Therefore, the false position method combines the
features of both bisection and secant methods.

The Univariate Case

Like the bisection method, the false position method is a bracketed 2-point
method. It starts with an interval [zg, z1], then it checks whether f(xo) and
f(x1) are of opposite signs or not by using the IVT. If so, then a root exists
in the interval surely, and the method proceeds by recursively subdividing
the interval into two sub-intervals, discarding those which do not satisfy the
IVT. The result is a sequence of shrinking intervals [z;_1,2;] (i = 1,...n)
converging to a root of f.

The (i 4+ 1)-th estimate that subdivides the interval [x;_1,2;] into two is
given by the iteration formula (5.13), here rewritten for convenience:

Ti — Li—1 .
Tipl = T; f(x‘)f(xl) TP i>1. (5.25)
As illustrated in Figure 5.3, x;11 is the root of the secant line passing
through (2,1, f(z;—1)) and (z;, f(z;)). Now, we use the IVT in order to
guarantee that the guess x;11 remains bracketed. If f(x;—1).f(ziyr1) < O,
then we set x; = x;41; otherwise, we set x;_1 = x;41. This process continues
until the root of the secant line approximates the function root inside a small
tolerance 7 > 0.
Note that we can also get the iteration formula (5.25) by geometric

means. For that, we use the point-slope equation of the secant line through
(zi—1, f(zi—1)) and (x;, f(x;)), which is defined as follows:

y— flo) = L@ =f@e)

T — Xj—1

Solving this equation after substituting the secant root (z;y1,0), we just ob-
tain the formula (5.25) above.
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f(x) f(x)

Fig. 5.3. (a) The false position (FP) method; (b) The “slowing-down” problem of
FP method.

The Multivariate Case

Similar to bisection method, the false position method also generalises to
higher dimensions easily. Instead of a simple variable x, we use a multi-variable
x = (21,2, ...,x,) in the iteration formula (5.25), which yields

X; — Xi—1
Xit1 = X; f(xl)f(xz) ) (5.26)

This multivariate iteration formula allows for sampling curves and surfaces
defined by implicit functions in two and three variables in R? and R?, respec-
tively. In this case, a curve or surface is sampled against a general straight
line (not necessarily the x-axis) in R? or R3, respectively.

The pseudocode of the multivariate false position method appears in
Algorithm 10. This algorithm produces a sequence of shrinking bracketed
subintervals [x;_1,%;], ¢ > 1, satisfying f(x;—1).f(x;) < 0. But, unlike the
bisection method, it does not terminate when the length of the current inter-
val is less than or equal to a small tolerance 7 > 0. It stops when the absolute
value of f for the guess x; 41 is approximately zero, i.e. it is within a small
tolerance 7. This is so because, unlike the bisection method, the length of the
brackets does not tend to zero. In fact, only one of the endpoints converges
to the root, the other remains fixed (Figure 5.3).

Convergence

Despite the false position method has the same iteration formula as the se-
cant method, it only converges linearly. This happens in this manner because
only one of the interval endpoints converges to the root, the other remains
unchanged (Figure 5.3).
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Algorithm 10 The Multivariate False Position Method
1: procedure MULTIVARIATEFALSEPOSITION( f, [X0, X1], T, ")

2: 7+ 1
3 while 7 < ip;4x do > stopping condition: maximum number of iterations
4: Evaluate f(xi—1)
5: Evaluate f(x;)
6: Xit1 = Xi = f(%) 7057y
7 Evaluate f(xi41)
8 if |f(xi41)| < 7 then > stopping condition: root found
9: T X1
10: return true
11: else
12: if f(xi—1).f(Xi+1) < 0 then > bracketing through IVT
13: X — Xi+1
14: else
15: Xi—1 < X441
16: end if
17: end if
18: t— 1+ 1
19: end while
20: return false

21: end procedure

Let us then consider that the false position method produces a se-
quence Xy, Xj,-..,X;,... of approximations or estimates to a root p, that is
lim x; = p. Let ¢; = x; —p be the error in the ¢th iterate. The speed of conver-

11— 00
gence is determined by subtracting and dividing the iteration formula (5.26)
by x and ¢; = x; — p, respectively, to get

€it1 _ f(xi) (xi —a) — (xi-1 — @)

€; B f(Xi)*f(Xi—l) . X —«

-1+ (550 1) e

4+&14>mJﬁéﬁ

Since 7 (i) ) > 0 for bracketing intervals, lim = lim

xi)—f(xi-1 n—oo i l_,oofi—l

and lim x;_; = hm X; = p, we get

. €igl 1 1
1 e (— 1.2
iteo € +(nmm])z

i—oo €

that is lim <+ =1, as expected.
i—oo 1
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5.6.3 The Modified False Position Method

Taking into account that brackets do not converge to zero, it may happen
that the speed of convergence is too slow that the algorithm easily gets the
maximum number of iterations without finding the root. For example, the uni-
variate function f(z) = tan(z)'"(*) —10% has a root in the interval [1.3,1.4],
but the false position method is not capable of finding it if the maximum
number of iterations 7574 x = 200. This situation is similar to that one shown
in Figure 5.3(b).

Intuitively, this problem arises when the absolute function values at the
endpoints differ significantly. Therefore, the idea behind the modified method
is down-weighting one of the endpoint function values to force the next esti-
mate x;41 to approximate the root more rapidly. In other words, we reduce
the weight of the “bad” or higher function value to a half or any other value
found appropriate.

Rewriting the false position formula (5.26) as follows

X1 = J(xi)xi1 — f(xi-1)%;
o F(xi) — f(xio1)

we readily come to a weighted iteration formula. So, using a factor of 2, we
can fix the problem by changing the weight of a function value at an endpoint

(5.27)

such as 1f( ) i )
= 5 (Xi)Xi—1 — J(Xi—1)X; 598
R o Y 52
or N - _ 1 ) )
Xit1 = f(xl)xl—l Qf(xl—l)xl (529)

f(Xz') - %f(xi—l)

The factor 2 in cutting down the function value at one of the endpoints
guarantees superlinear convergence. Other rescaling factors are possible to
work out in order to speed up the convergence to the root.

5.7 Interval Numerical Methods

An interval numerical method combines a numerical method with interval
arithmetic. This way, we end up by getting an iterative method that can be
used both to isolate and to approximate zeros of a real function, in a way
similar to the Bernstein solvers dealt with in Chapter 3. For brevity, we only
show here how this can be done for Newton’s method.

5.7.1 Interval Newton Method

Before proceeding any further, let us say that the foundations of the math-
ematical theory behind the interval Newton method appears described in
Alefeld and Herzberger [4].
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The Univariate Case

Basically, the interval Newton method computes an enclosure of a zero of a real
function f(z) defined on the interval X = [z, Z], that is f : X = [z,7] — R.
Let us assume that its derivative f’(z) is continuous and does not vanish in
X, ie 0¢ f/(X), and that f(z).f(Z) <O0.

Starting with the Oth inclusion Xy, if X; is the ith inclusion of the root,
the smaller (i 4 1)-th inclusion X;;; may be computed by

Xi+1 = N(iL’,XZ) NX;, xeX,. (530)

where N(x,X;) is the interval Newton operator defined over the interval X;
as follows
f(z)

(X))
Usually, = is the midpoint of X;, but any other value within the interval X;
is eligible.

Therefore, the interval Newton method produces a sequence of shrinking
intervals which converge to the zero, so that it can be considered as a 2-point
numerical method. Let us see an example:

z e X, (5.31)

Example 5.2. Let f(x) = 2% — 4 a real function defined over the interval X, =
[-3, 3], and « = 0 the midpoint of X chosen to subdivide it. The range of f’
is then f'(Xo) = [—6, 6]. The first iteration yields

N(0,Xg) =0 —
(0, Xo) &6

BN
IR

Therefore,
2 2
X1 - N(O,Xo) OXO - |: 3, 3:| @] |:3,3:|
what yields the subintervals X{ = [-3,—2] and X{ = [2,3]. Now, the first

sub-interval is put on a stack for posterior processing, while the second is
again subdivided by interval Newton method.

In geometric terms, the leading idea of the interval Newton method [175,
210, 252, 339] is the following:

e First, to enclose the graph of f in a cone given by N(z, X;). This cone is
defined by the extremal tangents of f/(X;), i.e. the enclosure or interval
function for f.

e Second, to enclose the zeros in the intersection of such a cone and the
z-axis (cf. Equation (5.30)).
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(%)

f(X) tangent with the
steepest slope

AR S, R - 4

A """__""'7_—"" A

Fig. 5.4. Interval Newton method: (a) one subinterval; (b) two subintervals.

This is illustrated in Figure 5.4(a) for a single zero in an interval X;. But, if
X, contains more zeros, the derivative f’ vanishes somewhere on it, as shown
in Figure 5.4(b). In this case, to surround the problem of f/(X;) containing 0,
an extended interval division is performed to compute the cone, after which
two subintervals X9, ; and X}, are produced by intersecting the cone and
the interval X;, as illustrated in Figure 5.4(b).

Note that no root belonging to the initial interval is missed out by using
the interval Newton algorithm. Moreover, every zero appears isolated in one
of the intervals of the final list of intervals. Eventually, this list may include
intervals without any root, but in this case they can be discarded if the interval
image of f does not contain 0.

Univariate Interval Newton Algorithm

The univariate interval Newton algorithm appears described in Algorithm 11.
The first stopping condition is global in the sense the algorithm stops when
there is no interval to process further. The second stopping condition is sat-
isfied when [(X) < 7, i.e. the length of the interval X which contains a root
is less or equal to a given tolerance 7.
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Algorithm 11 The Univariate Interval Newton Method
1: procedure UNIVARIATEINTERVALNEWTONMETHOD( f, X, 7, L)

2: I —X > initialise auxiliary list of intervals
3: while I # @ do > first stopping condition
4: Remove an interval X from [

5: while {(X) > 7 do > second stopping condition: the length of X
6: Compute N(z,X) N X for some z € X

7 if N(z,X) N X consists of a single interval then

8: X — N(z,X)nX

9: else

10: Put the first interval into

11: Set the second interval as X

12: end if

13: end while

14: L—X > new tight interval with root found

15: end while
16: end procedure

5.7.2 The Multivariate Case

The multivariate interval Newton method is analogous to the univariate case.
Thus, by analogy to the iteration Formula (5.8), the multivariate interval
Newton operator is as follows:

N(x,X;)=x— M x € X;. (5.32)

This operator provides a robust tool for sampling implicit curves and sur-
faces in 2D and 3D, respectively, in particular in those algorithms using axis-
aligned space partitioning such as quadtrees and octrees. Surprisingly, it seems
that there is no polygonisation algorithm in the computer graphics literature
using this or any other interval numerical method. Instead, intervals and nu-
merical methods have been used separately for isolation and approximation,
respectively. For further details on the mathematics of multivariate interval
Newton methods, the reader is referred to Hansen [174].

5.8 Final Remarks

In this chapter we have presented several classical root-finding numerical al-
gorithms in the context of sampling implicit curves and surfaces. Hence, we
have focused on multivariate numerical methods, and this makes a difference
in relation to the classical numerical analysis textbooks.

We have seen that there are essentially two broad classes of numerical
methods:
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e [-Point Methods. Starting from a single guess, we try to move it closer to
the root.

e 2-Point or Interval Methods. Starting from a bracket that contains the
root, we attempt to shrink such an interval until the desired accuracy is
reached.

We can say that most interval techniques are reliable, but slow, while
1-point techniques tend to be faster, but do not guarantee convergence. With
all their advantages and shortcomings, we can also say that numerical methods
are still an active research area in mathematics and computing. In particu-
lar, interval numerical methods seem to be so promising in sampling implicit
curves and surfaces in respect to both speed and reliability (or quality) of
numerical computations.
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Continuation Methods

Continuation methods are based on piecewise linear approximation of a vari-
ety (e.g. curve or surface) by means of numerical solution of an initial value
problem [7]. In other words, they compute solution varieties of nonlinear sys-
tems usually expressed in terms of an equation

f(p)=0 (6.1)

with f : R"*4 — R" a real function. The solution of this equation is called
zero set (i.e. a particular level set).

As studied in Chapter 1, a zero set is a variety that consists of regular
pieces called manifolds, which are joined at singular solutions (which are also
solution manifolds, but of a system with lower d). The regular pieces are
manifold curves when d = 1, manifold surfaces when d = 2, and d-manifolds in
general. These systems arise frequently in engineering and scientific problems,
because these problems are often formulated in terms of the computation of
a function that satisfies some set of equations, for example, the Navier-Stokes
equations, Maxwell’s equations, or Newton’s law.

6.1 Introduction

The essential idea behind a continuation method is very simple: first, compute
a piece of the solution manifold near one solution, then select another solution
from this set and repeat the process. As long as the new piece covers some
new part of the solution manifold the computation progresses. So the basic
issues are:

1. How to compute the solution manifold near some point p; at which
f(pi) =0.

2. How to select a new point.

3. How to avoid recomputing the same part of the manifold.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 145
Data Structures and Algorithms,
(© Springer-Verlag London Limited 2009
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There are two ways to perform the first task, which lead us to two
types of continuation methods: simplicial continuation methods and predictor-
corrector methods.

6.2 Piecewise Linear Continuation

In the mid-1960s, Lemke and Howson introduced piecewise linear methods in
mathematics for calculating solutions to complementarity problems [227, 228],
as needed in economics. In the 1970s and 1980s, the research on piecewise
linear methods moved on to computing fixed points in mathematics. In the
1990’s they started to be used to approximate implicitly defined manifolds
and varieties in computer graphics.

Piecewise linear continuation (or PL continuation), also called simplicial
continuation, operates on a triangulation (simplicial complex) of a given do-
main Q C R™"*? to approximate and to sample a a manifold (e.g. a curve or
a surface). This is illustrated in Figure 6.1 for a curve that lies in Q C R2.
The triangulation (a) splits Q into equilateral triangles, where the red ones
are those triangles which the curve passes through. The triangulation (b) par-
titions (2 into isosceles triangles, where the green ones are those which better
approximate the curve; they intersect the curve indeed.

6.2.1 Preliminary Concepts

Simplicial continuation methods are used to trace a piecewise linear (PL)
approximation of a zero set

S ={xeR": f(x) =0} (6.2)

given by the map f : R"*¢ — R". For implicit curves, the PL approximation
is restricted to n = 1 and d = 1; for implicit surfaces, n = 1 and d = 2.
The idea is to construct a connected set of simplices that approximate S

(a) (b)

Fig. 6.1. Two simplicial approximations of a curve in Q C RZ.
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by stepping through transverse simplices (or simplexes) of a particular tri-
angulation in RY (N = n + d). For any positive integer N, and for any set

{po, - - -, pn} of points in some linear space which are affinely independent (or,
equivalently, {p1 —Ppo,- .., P~ —Po} are linearly independent), the convex hull
[Po, - - -, Pn] is called the d-simplex with vertices py,...,pn. As known, the

possible N-simplices in R? are: vertices (N = 0), edges (N = 1), triangles
(N = 2), and tetrahedra (N = 3). Also, for each subset of K + 1 vertices
{q0,---,9x} C {pPo,.-., PN}, the K-simplex [qo,...,qx] is called a K-face
of [po,...,pn]. In particular, O-faces are vertices, 1-faces are edges, 2-faces
are triangles, and (K — 1)-faces are facets. Simplices are the “building bricks”
that allow us to construct different sorts of triangulations in R .

Definition 6.1. Let T be a non-empty collection of d-simplices in RY. We
call T o triangulation of RY if the following properties are satisfied:

(1) Uyer o = RY;

(2) the intersection o1 (o2 of two simplices o1,00 € T is empty or a
common facet of both simplices;

(3) the collection T is locally finite, i.e. any compact subset of R meets only
a finite number of simplices of o € T .

This definition applies not only to triangulations of RN but also to its
subspaces, as needed in computer graphics.

6.2.2 Types of Triangulations

As Dobkin et al. noted in [114], we would like to have triangulations with the
following properties:

(1) It should be easy to find the simplex that shares a facet with a given
simplex.

(2) It should be possible to label the vertices of all the simplexes at the same
time with indexes 0,..., N, such that each of the N + 1 vertices of an
N-simplex has a different label.

(3) It should be desirable for all the simplexes to have almost the same size.

(4) Tt should be desirable for all the simplexes to have roughly the same di-
mensions in all directions.

There is a dimension-independent class of triangulations that fit these
requirements, and are called Cozeter triangulations [92]. The Coxeter trian-
gulations are monohedral triangulations generated by reflections. Monohedral
means that all N-simplexes are congruent, whereas generated by reflections
means that all N-simplexes can all be obtained from a fixed one by successive
reflections in its facets [114].

In Figure 6.2 we can see three different Coxeter triangulations of a domain
Q c RY (N = 2), called a bounding boxr. So, after finding a starting or
seeding transverse N-simplex, we proceed to the next transverse N-simplex
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(a) (b) (c)

Fig. 6.2. Distinct types of Coxeter triangulations in R: (a) equilateral triangula-
tion; (b) Freudenthal’s triangulation; (¢) Todd’s triangulation J;.

in sequence. This is done by reflection in the common (N — 1)-simplex of
those adjacent N-simplices. Recall that two simplices 01,00 € 7 are called
adjacent if they meet in a common facet [8].

6.2.3 Construction of Triangulations

Coxeter’s triangulations are generated in a computer by moving from one
simplex to an adjacent one through a common facet, a process known as
pivoting [8]. Pivoting is essential for the dynamics of PL methods.

As suggested above, different pivoting rules generate different triangula-
tions, but the same rule applied to different triangles also generate distinct
triangulations. For example, in Figure 6.2, the triangulations (a) and (b) were
generated by applying the same pivoting rule to distinct triangles, while the
triangulation (c) was generated using a different rule.

Freudenthal’s Triangulation

The fact that Coxeter’s triangulations are monohedral means that a simplex
must have dihedral angles that are each a submultiple of 27. That is, for
each pair of facets of the simplex, there is an integer ¢ > 1 such that the
dihedral angle between the two facets is 27” To understand how this is done,
consider the angle %’T between two facet edges of a triangle in Figure 6.2(a),
and then alternately reflect the triangle in each of the two facet edges. After
six reflections, we must get back the original triangle; otherwise, this triangle
does not triangulate by reflection. Therefore, we get six equilateral triangles
around a common vertex, as illustrated in Figure 6.3.

The triangulation depicted in Figure 6.2(a) can be also obtained by piv-
oting across the midpoint of each of the two facet edges. This rule is known
as Freudenthal’s pivoting rule. The Freudenthal’s triangulation is shown in
Figure 6.2(b), which is generated by pivoting isosceles triangles. Recall that
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Px-1 /F\’k

Pk+1

(a) (b)
(d) (e) (f)

Fig. 6.3. Generation of equilateral triangles by reflection in R2.

Px

the reflection of a vertex is across the midpoint of the reflection facet edge. As
a result, we obtain six triangles around the common vertex, but the dihedral
angle is not always the same; sometimes it is 27/8, sometimes it is 27 /4.

Let us now formalise the Freudenthal rule. Let o = [po, ..., px] be an N-
simplex. We will consider that the vertices of o have inherited the following
cyclic ordering. For each k € {0,...,N} let us define ¥k — 1 and k + 1 as
the “left” and “right” neighbours of k in the cyclic ordering of (0,1,..., N).
Analogously, for vertices, px—1 (k # 0) and pr+1 (k # N) are defined to be
the “left” and “right” neighbours of the vertex pg. It is clear that py is the
left neighbour of pg and, conversely, pg is the right neighbour of py.

So, the vertex obtained as follows

Pk = Pk—1 — Pk + Ph+1

is called the reflection of pj across the centre of the “neighbouring edge”
[Pk—1,Pk+1]. Pivoting pi of o = [po, - .., Pk, - - -, Pn] by reflection follows the
rule ¢ — &, where 6 = [po, ..., Dk, --.,Pn]. This is illustrated in Figure 6.4,
where py was obtained by reflection of py across the edge [pr—1,Pr+1]. As
in Figure 6.3, we end up getting an hexagon after six reflections, though the
triangles are isosceles.

Thus, Freudenthal’s triangulations are invariant under the pivot operation
@ ([Pos---sPk,---»PN]) = [Pos-- s Pk, - - -, PN, Where

PN — Pk +Pit+1, k=0
Py ={Pk-1—Pkr+Pr+1, 0<k<N (6.3)
Pk—1 — Pk + Po, k=N
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pk+1 i\)k
P« Pi+1
(a) (b) (c)
(d) (e) (f)

Fig. 6.4. Ceneration of isosceles triangles by reflection in R

This pivoting rule allows us to generate a Freudenthal’s triangulation of
the an axially aligned bounding box 2 € RY (or even the entire RY).

Equivalently, the pivoting rule can be expressed in terms of interchange
permutations [8]. As a particular Coxeter’s triangulation, Freudenthal’s tri-
angulation has the advantage that any simplex can be concisely stored by
means of a single integer vector Z and a permutation 7, being most pivot
steps achieved by interchanging two components of 7. The reader is referred
to [8, 9, 101, 400] for more details about Freudenthal’s triangulations and
their usage in the implementation of piecewise linear algorithms, in particular
those concerned with implicit curves and surfaces in computer graphics.

Todd’s Triangulation J;

Todd introduced the “Union Jack” triangulations, namely .J; triangulations
[390]. Figure 6.5 shows the J; triangulation of a subspace of R?. The J; tri-
angulation is invariant under the pivot operation Ok ([po, ..., Pk,---,PN]) =
[pOa R f’k» R pN]a where

2Pk 41 — Pks k=0
Pt =< Prk-1—Pk+Pr+1, 0<k<N (6.4)
2pk—1 — Pk, k=N

This pivoting rule generates a triangulation as shown in Figure 6.5. Similar
to the discussion carried out for pivoting in Freudenthal’s triangulations, the
pivoting rule for J; can be also expressed by interchange permutations [8].
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N
Pk-1 P«
Pk Pk+1

(a) (b)

(8) (h)

Fig. 6.5. Generation of an 8-gon of isosceles triangles by applying J; pivoting rule.

6.3 Integer-Labelling PL Algorithms

In addition to pivoting rules to generate triangulations, PL algorithms use
labellings with the following purposes:

o To keep track the PL approzimation of a manifold. That is, by labelling the
simplexes that intersect a manifold, also called transverse simplexes, we are
able to follow such a manifold. Labellings work as a way of distinguishing
simplexes which intersect a zero set of a map f : R**¢ — R” from those
which do not.

e To prevent the cycling phenomenon. This is the classical problem of contin-
uation algorithms. Unless the transverse simplexes are labelled or stored in
a separate data structure, we have no way to know whether a new pivoted
triangle has already been determined.
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Simplicial continuation provides approximations of zero sets of maps by
using labellings. A simplicial algorithm provides a piecewise linear zero set of
f via an auxiliary map Ly called labelling induced by f. The values of Ly at
vertices are then used in determining whether a given n-simplex is “completely
labelled” or not. These “completely labelled simplices” are those that intersect
the zero set (e.g. a curve or surface) of f in R+,

There are two major techniques to label the simplexes of a triangulation,
namely:

e integer labelling
e vector labelling.

This section describes algorithms based on integer labelling. Those algo-
rithms based on vector labelling will be dealt with in the next section.

Integer Labelling

The idea of labelling is to attach integer labels to vertices or nodes of a trian-
gulation. The integer labelling scheme proposed by Allgower and Schmidt [11]
is based on the following definition:

Definition 6.2. For p € R"*% the labelling of p is defined by L¢(p) = 7,
where j € {0,...,n} is the number of leading nonnegative components of
f(p) eR™.

Definition 6.3. An n-simplez [po, . .., Pn] is said to be completely labelled
Zfo{p()vapn} = {0,,7],}

Let us look at Figure 6.6, where the parabola curve y — z? + % =0
appears depicted across a Freudenthal triangulation of the bounding box
Q= [-2,2] x [~2,2] in R2. Each two triangles result from splitting a square
into two isosceles triangles, whose identical sides have length 1. Such parabolic
zero set is thus described by a real map in two real variables f : Q@ C R? — R,
with f(z,y) =y — 2? + 3; hence n = 1 and d = 1. Thus, in this case, f has
only one component function (n = 1), which means that there are only two
possible labels for any vertex v of the triangulation: either 0 when f(v) < 0
or 1 when f(v) > 0.

Ezxample 6.4. Looking again at Figure 6.6, we note that the vertices pg =
(0,0), p1 = (1,0), p2 = (1,1) define a 2-simplex or triangle in @ = [—2,2] x
[—2,2]. The labels of these three vertices are:

e L;(0,0) =1 because f(0,0) = 3 > 0;

e Ls(1,0) =0 because f(1,0)=—3 <0

e L;(1,1) =1 because f(1,1) =3 >0

Thus, the 1-simplices or edges [po, p1] and [p1, p2] are completely labelled,
but not the edge [po, p2]-
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Fig. 6.6. Integer labelling of a triangulation in R?.

This labelling language hides a very simple idea. The fact that a given 1-
simplex is completely labelled means that, by the intermediate value theorem,
it intersects the zero set. Therefore, as argued by Allgower and Schmidt [11],
completely labelled 1-simplices yield “nearly zero-points” of f. When the la-
bels of the vertices of a 1-simplex are identical, or, equivalently, the values of
f at those vertices have identical signs, we say that such a 1-simplex is not
completely labelled.

Interestingly, as Allgower and Schmidt proved in [11], we have:

Proposition 6.5. If the (n + d)-simplex o contains a completely integer la-
belled n-face T, then the number of completely labelled n-faces of o is between
(d+1) and 2°.

Note that the number of completely labelled n-faces of o does not depend
on n; it only depends on d. For example, in R?, a triangle or 2-simplex (n = 1,
d = 1) has exactly either 0 or 2 completely labelled edges or 1-simplices
(Figure 6.6); in R, a tetrahedron or 3-simplex (n = 1, d = 2) has exactly
either 0, 3 or 4 completely labelled edges or 1-simplices (Figure 6.7).

An important question is then how to obtain the approzimate zero set
or PL zero set of f in the (n + d)-simplex o. For that purpose, we use the
barycentre of each of its completely labelled n-simplices; the approximate
zero of f within o is then the convex hull of these barycentres. Thus, the
PL zero set for f in ¢ is a convex d-dimensional polytope having between
d+ 1 and 2% vertices [11]. For example, the PL zero set in a triangle lying in
R? is a 1-dimensional polytope (or line segment), while the PL zero set in a
tetrahedron in R? is a 2-dimensional polytope, i.e. a triangle or a quadrila-
teral (Figure 6.7). In short, these polytopes intersect all faces that contain a
completely labelled n-face transversally. This leads to the following definition:
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:’/f)v

Fig. 6.7. Integer labelling of a triangulation in R* (n = 1,d = 2): (a) three and (b)
four completely labelled edges.

Definition 6.6. An (n+m)-simplex (m =0,...,d) is said to be transverse
if it contains a completely labelled n-face.

Integer-labelling PL Algorithm

Allgower and Georg introduced a multidimensional algorithm for curves
(d = 1) via integer labellings [7]. This algorithm follows the door-in-door-
out principle [124]:

Proposition 6.7. An (n + 1)-simplez o in R™™ has either zero or exactly
two completely labelled n-faces.

This principle follows from Proposition 6.5. The first completely labelled
face of o is viewed as an “entrance” and the second as an “exit”. Then, by using
a pivoting process on o, one determines a new (n + 1)-simplex 6. Now o and
¢ have a common n-face—the pivot n-face—which is simultaneously the exit
face of o and the entrance face of 6. For example, in Figure 6.6, the 1-simplex
[P1, P2] is the “exit” of the 2-simplex [po, p1, p2], where pg = (0,0), p1 = (1,0)
and py = (1,1), as well as the “entrance” of the 2-simplex [p1, p2, ps, with
ps = (2,1). This algorithm produces an alternate sequence of completely
labelled n-faces and (n + 1)-simplices from which one obtains approximate
zero points and a 1-dimensional approximation to the zero set. In other words,
it generates a sequence of completely labelled n-faces in the triangulation, by
entering an (n + 1)-simplex through one n-face and leaving it through the
other.

Allgower-Georg algorithm for implicit curves was later generalised to
higher dimensional manifolds (d > 1) by Allgower and Schmidt [11]. In this
case, the door-in-door-out (DIDO) principle above for curves has to be refor-
mulated because —as stated by Proposition 6.5—the number of possible exit
doors is now greater than one. For example, in Figure 6.7, the tetrahedron (a)
has three doors, while the tetrahedron (b) has four doors; consequently, we
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Algorithm 12 Integer-Labelling PL Algorithm for Manifolds

1: procedure ALLGOWER-GEORG-SCHMIDT(f,Q,7)

T — o > set of pivoted, transverse (n + d)-simplices of 7
3 S—o > set of non-pivoted, transverse (n + d)-simplices of 7
4: Find a transverse starting (n + d)-simplex o € 7

5: S— Su{c}
6.

7

8

while S # @ do

Get o €S
Label vertices of o
9: Determine F > set of non-pivoted, transverse facets of o
10: while ' # & do
11: Choose a pivot facet 7 € F(o)
12: Determine the (n + d)-simplex & by pivoting o across 7
13: S—Su{s}
14: S — S\{o}
15: T —TU{o}
16: F— F\{r}
17: end while

18: end while
19: end procedure

may assume that the first tetrahedron has one “entrance” door and two “exit”
doors, while the second has one “entrance” door and three “exit” doors in the
continuation process of tracking a surface. Thus, applying the DIDO princi-
ple as many times as the number of “exit” doors, we can easily program the
door-in-door-out step by pivoting only those vertices having the same label.

Algorithm 12 is the Allgower-Georg-Schmidt algorithm using integer la-
belling. The integer labelling of each transverse (n + d)-simplex occurs in the
beginning of the outer while statement (step 8), while the multiple pivoting
of this (n + d)-simplex is done in the inner while statement (steps 11-12).
The number of times a (n + d)-simplex is pivoted equals the number of “exit”
doors (i.e. nonpivoted, transverse facets). Figure 6.8 illustrates the pivoting
of a tetrahedron for a surface in R2, but, for simplicity, one uses only one
“entrance” door and one “exit” door for tracking the surface.

In order to guarantee that the algorithm terminates after a finite number
of steps, one assumes that:

e Compactness. Not the whole R"*?¢ but the compact domain Q c R"+9
(e.g. an axis-aligned bounding box of finite size) is triangulated by 7.

e Fliniteness. The triangulation 7 contains a finite number of (n 4+ d — 1)-
facets. This is reinforced by the fact that each transverse facet is found
exactly twice: once when it is created and once more when it is “pivoted
across” or when “bumped into” as expected for a pivot facet.

e (ycling. Labelling and pivoting constitute an important mechanism to
avoid the cycling phenomenon, i.e. the recomputation of transverse or
intersecting simplices.
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Fig. 6.8. The Allgower-Georg-Schmidt algorithm using integer labelling for approx-
imating a surface in R>.

As it stands, Algorithm 12 only produces a sequence of transverse (n+ d)-
simplices by pivoting across transverse (n + d — 1)-simplices or facets of the
triangulation 7. To output a manifold PL zero set of a map f : R*t¢ — R",
it is necessary two additional steps immediately after step 8 (labelling). The
first would determine the set of completely labelled n-faces of the current
(n + d)-simplex o. The second would determine the approximate zero points
(e.g. the barycentres) in those n-faces, whose convex hull is the polytope that
approximates the zero set of f in o.

6.4 Vector Labelling-based PL Algorithms

Integer labelling has the disadvantage that it leads to a very coarse approxi-
mation of the zero set of f : R"t¢ — R™. This is due to the fact that the PL
zero set is built upon the barycentres of transverse n-faces. In comparison to
vector labelling, the advantage of integer labelling is that numerical linear al-
gebra (i.e. matrix calculations) is not necessary to drive the pivoting process.
But, as shown below, vector labelling provides a finer PL zero set of f than
integer labelling.

Vector Labelling

Vector labelling is based on the barycentric coordinates of the vertices of the
current (n + d)-simplex. Using barycentric coordinates leads to the computa-
tion of zero points by linear interpolation of the values of f : R**¢ — R™ on
the transverse n—faces of the triangulation 7. We may leave 7 unspecified; the
only fact to retain is that 7 is generated by a repeated use of some pivoting
rule. For simplicity, we are also assuming that f never vanishes at the vertices
of 7 and is never constant on a (n + d)-simplex.
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Let us first consider the contour plotting in R? (n =1, d = 1), i.e. tracing
an implicit curve in R2. For convenience, let us assume that the axially-aligned
bounding box Q C R? is divided into squares, each of them is in turn split
into two triangles by its right diagonal. This is Freudenthal’s triangulation in
R?, whose counterpart in R? is known as Kuhn’s triangulation (see Chapter 7
for more details). We also assume that the square sides have length one.

Now, we are able to compute the PL zero set on each transverse simplex
using linear interpolation. This computation can be done using one of the
following two alternatives:

e Computing the convex hull of the zero points on the edges of the simplex.
e Computing the equation of the hyperplane that contains the convex hull.

Using the first alternative, we can determine the contour that passes
through a triangle by computing the points where the line intersects the edges
of such triangle. In this case, any transverse edge with vertices pg and p; can
be written as

P = Po +(P1 — Po) (6.5)
with ¢ € [0, 1], and the linear interpolant over such an edge is given by
F(p) = f(po) +t[f(P1) = f(Po)] (6.6)

Setting F(p) = 0, we get ¢ = —% from Equation (6.6). Substituting

the value of ¢ in Equation (6.5), we obtain the zero point on the transverse
edge. Note that this zero point on the edge [po, p1] only depends on the value
of f at the vertices, so any triangle sharing this edge produces the same zero
point; hence the contour is continuous. Thus, applying linear interpolation to
each transverse edge of 7 ends up producing the entire contour or PL curve.

The second alternative uses the interpolant over the triangle as a whole,
not over its edges. Analogously, the values of f at the corners of a triangle
[Po, P1, P2] define a unique piecewise linear interpolant F(p) to f(p) over each
triangle, which can be written in terms of the equations

P =Po + (P1 — Po)s + (P2 — Po)t (6.7)

and
F(p) = f(po) + [f(P1) — f(Po)ls + [f(P2) — f(Po)]t (6.8)

where s > 0, t > 0, and s +t = 1. The piecewise linear interpolant F' is
continuous over the whole triangulation. The interpolant F' is piecewise linear
because its contour (or PL zero set) across an individual triangle is a line
segment, whose line equation can be easily determined by solving the system
of Equations (6.7) and (6.8), after setting F(p) = 0.

Using linear interpolation amounts to use barycentric coordinates. In fact,
Equation (6.7) can be written as

P = ®Po + a1Pp1 + a2p2 (6.9)
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withag=1—(s+1t), 1 =8, a0 =t,ap+ a1 +as=1and 0 < s5,t < 1. The

scalars ag, ap and «g are called the barycentric coordinates of p. In general,

every point p in a simplex can be expressed as a convex combination of its

vertices, and more importantly this representation is unique [224].
Analogously, Equation (6.8) can be re-written as follows:

F(p) = aof(po) + a1 f(p1) + a2 f(p2) (6.10)

In general, every point p € R""% of an (n + d)-simplex o =
[P0, - - > Pnia) C R" can be expressed in barycentric coordinates

P = aoPo + -+ QnydPn+td (6.11)

with a; >0 (1 =0,...,n+d) and ag + -+ + aptq = 1.
Similarly, we have

F(p) = aof(po) + - + antaf(Pnta) (6.12)

or, equivalently,

Li(o).a= (F(lp)) (6.13)

)T are the barycentric coordinates of a point p €

where o = (g, ..., Qptq

ntd an
oo L(o):( Lo ) (6.14)
! fPo) -+ f(Pn+a) .

The matrix Ls(o) is known as labelling matriz of a (n + d)-simplex o =
[P0, - - > Pnia)] C R4, Tt consists of n-+d labelling column vectors, each vector
storing the value of f, which works as a label, at each vertex. In general, the
standard vector labelling induced by f : R"t¢ — R™ is then

ly(p) = <f<1p)> (6.15)

where p € R**4,
Following Allgower and Gnutzmann [9], we have:

Definition 6.8. Let 7 = [po,...,pn] C R" be a n-simplex and let f :
R™td — R™. Then 7 is said to be completely labelled with respect to the
vector labelling Ly if the labelling matriz L¢(T) has a lexicographically positive
1nverse.

In other words, 7 is completely labelled if and only if the following two
conditions are satisfied [8]:

e L(7) is nonsingular:
o Ly (1)~! is lexicographically positive, i.e. the first nonvanishing entry in
any row of L¢(7)~! is positive.
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Intuitively, this means that f changes sign at vertices of 7; consequently,
any (n+d)-simplex o having 7 as a n-face is said to be transverse to the zero
set of f. The labelling matrix then plays an important role for numerically
tracing the zero set of f.

As noted above, piecewise linear algorithms produce approximations of
zero points of maps by means of induced auxiliary maps called labellings,
vector labellings in this case. So, from Equation (6.13), the PL zero set across
the simplex o is the set of points whose barycentric coordinates satisfy

1
0

Li(o).a=|. (6.16)
0

with a; >0 (i =0,...,n+d), that is

1
0

a=Lio)|. (6.17)
0

This gives us the barycentric coordinates of at least a point by in the d-
dimensional hyperplane that approximates the zero set inside a given (n+ d)-
simplex o. The parametric equation in barycentric coordinates corresponding
to the general Equation (6.16) of such hyperplane can be written as follows

d
b(t1,...,ta) =bo+ Y _tib; (6.18)
=0

where ¢; € R is the real parameter on the line defined by the vector b; — by,
and {b;} (i = 1,...,d) is a linearly independent set of points. This linear
independence implies that the barycentric coordinates of a nonzero (n + d)-
tuple b; have sum zero. Thus, computing b; in the zero set hyperplane inside
o reduces to determine a nontrivial solution of the homogeneous equation

Li(0).b; = (6.19)

Finding b, reduces to a standard linear algebra problem (e.g. using the
reduced row-echelon form). The hyperplane passes through the facets of o, the
completely labelled facets, opposite to vertices for which ¢; = f% is negative.
We are here assuming that all the vertices of the triangulation,zincluding o,
have been assigned an index, as well as the current completely labelled facet
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is the “door we are currently entering”; the remaining facet is the exit or
pivoting facet. Found the index i of the vertex p; opposite to the exit facet,
p; is pivoted into a new vertex P;, and the labelling matrix L;() is obtained
by replacing the ith label or column of the L;(c) by

ly;(Bi) = (f(i%)) (6.20)

So, the new labelling matrix can be algebraically obtained as follows:
Ls(6) = Ls(0) + [I7,(6) — Ly(0) .ei) €] (6.21)

where e; is the ¢th unit basis vector. This leads to the implementation of the
DIDO principle for vector labelling.

Example 6.9. Let f : © C R? — R a real function in two real variables de-
fined by f(z,y) = —2x + y + § (see Figure 6.9). In this case, the zero set
of f is the straight line —2z + y + i = 0 in R?, so it coincides with its PL
zero set. Let us also consider that the domain Q C R? is to be triangulated
according to Freudenthal’s pivoting rule, where the coordinates of the ver-
tices are all integer. For brevity, we let us consider the 2-simplex or triangle
o = [po,p1,P2] C R?, with py = (0,0), p1 = (1,0) and ps = (1,1). The
labelling matrix is then

10 = (o o o) = (1-3-4) 02

Strictly speaking, a rectangular (m x n)-matrix does not have an inverse.
But, in some cases such a matrix may have a left or right inverse. In this

Y
0
/
1/
0
1
Ox
1/
0
W D

Fig. 6.9. Vector labelling of a triangulation in R?.
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example, the rank of L(o) is equal to m = 2, so Ly(c) has a right inverse
L¢(o)~! such that Ls(o).L¢(c)™' = I, where I is the identity matrix and
Lf(O’)71 = Lf(O’)T . [Lf(cr) .Lf(O’)T}il, that is

1 1 -1 68
b 11 1 b 1 ’
Lio)'=|1-1 (1_7_ﬁ> 1-1 =—| -3 (6.23)
1-3 S 2 0

Thus, the barycentric coordinates of a point by in the 1-dimensional PL zero
set (or hyperplane) of f are given by Equation (6.17)

68 3 17

1 16 1 24
1 1
2 0 3

Now, by solving Equation (6.19), we get the second barycentric-valued point

1
T2
b= -1 (6.25)
1
So, substituting by and b; in Equation (6.18), we have
17 1
24 T2 0
1
— [+t _% = 8 (6.26)
1
3 1
or -
—3i _ 17
1
N S
t=2 =-4%
t = -3 - _1

=

3

That is, t < 0 for the second and third coordinates, so the zero hyperplane
intersects the facets 7o = [po, p2] and 79 = [po, P1], respectively, of o. For t =
—%, we obtain the barycentric coordinates of the solution point that results
from the intersection between the PL zero set and the facet 7 = [po, p2] as

follows:

Y

0=+ (-F)-1) =
[05) =0
=5+ (=31 = §

so that the corresponding point in Cartesian coordinates is then

=10 0() 1)~ ()
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Likewise, for ¢t = —%, we have solution point in 79 = [pg, p1] with the
following barycentric coordinates:

a0 =+ (51 =1
o=+ (H(-1) =
0&2:0

hence the corresponding point in Cartesian coordinates

P=3\o) "8 \o 1) = \o
Note that the index of the null barycentric coordinate tell us which is the

pivoting vertex. For example, for ¢ = —1—12, the pivoting vertex is p; because

ay = 0, which is opposite to the transverse facet 72 = [po, p2].

Vector-labelling PL Algorithm

We can now describe an algorithm, using vector labelling, that provides a PL
approximation of a curve implicitly defined by the equation f(p) = 0, where
f:Q c R — R Such an algorithm (Algorithm 13) generates a sequence

og D79 C 01 DTy

Algorithm 13 Vector-labelling PL. Algorithm for Curves
1: procedure ALLGOWER-GEORG-GNUTZMANN(f,Q,7)

2: Find a transverse (n + 1)-simplex o € 7 with c.l. n-face T opposite to p;.
. . 1 ... 1

3 Calculate labelling matrix L, = (f(po) - f(pn+1))'

4 repeat

5: Solve L, a = e1, with a; = 0. > first hyperplane point
6: if a 7 0 then

7 stop

8: end if

9: Solve L, 3 = 0. > find other hyperplane points
10: Find index j of the next pivoting vertex. > door-in-door-out step
11: Pivot p; into H;. > pivoting step
12: Pj — Pj

13: Update j-component of o with the new p;. > adjacent (n + 1)-simplex

1

14: Calculate new label I; = (f(pj))'
15: Ly «— Lo+ (I — Lo €j)e] > update labelling matrix
16: 1]
17: until

18: end procedure
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of transverse (n 4 1)-simplices o; bounded by the two completely labelled
n-faces 7,_1 and 7. This is performed by pivoting a vertex of an (n + 1)-
simplex o; across a completely labelled facet 7 in order to find another adjacent
(n + 1)-simplex sharing the same facet 7 (steps 11-13). Altogether, steps 11-
13 form the pivoting step. Steps 5-9 allow us to determine PL zero set inside
o;. These latter steps altogether are known as the piecewise linear step. The
piecewise linear step is usually more expensive, in computational terms, than
the pivoting step because it involves linear algebra operations (i.e. matrix
operations). From the piecewise linear step we can determine the index of of
the next vertex to be pivoted, i.e. the DIDO step.

For a more comprehensive discussion of piecewise linear algorithms for
curves using vector labelling, the reader is referred to Allgower and Georg[8].
Dobkin et al. [114] proposed a similar algorithm for curves (d = 1). Inter-
estingly, the first multidimensional algorithm (Algorithm 14) using vector la-
belling approximation was described by Allgower and Gnutzmann in [9] for

Algorithm 14 PL Algorithm for Manifolds
1: procedure ALLGOWER-GNUTZMANN(f,Q,7T)

2: T—o > set of pivoted, transverse (n + d)-simplices of 7'
3: S—g > set of nonpivoted, transverse (n + d)-simplices of 7'
4: Find a transverse starting (n + d)-simplex o € 7.
5: S—Su{c}
6: V(o) < set of nonpivoted vertices of o
T while S # @ do
8: Geto € S.
9: while V(o) # @ do
10: Get p € V(o).
11: Pivot p into p to get an adjacent (n + d)-simplex 6.
12: if 6 N o is not transverse or 6 N2 = @ then
13: V(o) — V(o) \{p} > delete p from V(o)
14: else
15: if 6 €7 or 6 € S then > & is not new
16: V(o) — V(o) \{p} > delete p from V(o)
17: V(6) < V(6)\{p} > delete p from V(5)
18: else
19: S—Su{s}
20: V(&) < set of nonpivoted vertices of &
21: V(o) < V(o) \{p} > delete p from V(o)
22: V(6) — V() \{p} > delete p from V(&)
23: end if
24: end if
25: end while
26: S «— S\{o}
27 T —TU{o}

28: end while
29: end procedure
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implicit surfaces (d = 2). Note that the PL algorithms described so far only
apply to curves and surfaces that are manifolds. This is so because it is not
possible to approximate a self-intersecting curve or surface by a hyperplane
inside a given simplex of the triangulation. In this case, PL methods approach
non-manifold curves and surfaces (varieties, in general) using small perturba-
tions of the zero value of the map f as a way to rid off possible singularities
[9]. Thus, a general piecewise linear algorithm for approximating manifolds
consists in pivoting through simplices which subdivide the domain of the map
f. Algorithm 14 describes such an algorithm.

6.5 PC Continuation

Predictor-corrector (PC) methods constitute the second class of continua-
tion methods. They also output a piecewise linear approximation of the zero
set defined by an arbitrary smooth function f : R"t¢ — R™. However, this
PL approximation is obtained using different devices. Instead of using a fixed
triangulation of the ambient space, predictor-corrector algorithms directly tri-
angulate the variety (e.g. curve or surface) on the fly in a progressive manner.
This means that the next vertex of the polyline that approximates a curve is
determined from the current vertex; analogously, the next vertex of a new tri-
angle that approximates a surface is determined from two consecutive vertices
of the boundary of the current growing mesh.

Every PC algorithm comprises two major stages: the growing stage and
the filling stage. The growing stage consists of two steps, the predictor and
corrector steps. The predictor step estimates a point in the tangent hyperplane
to the variety at the current vertex; the corrector step settles the predicted
point onto the surface producing a new vertex on the surface. The correction
is usually done using a Newton corrector, but a 2-point numerical corrector
(e.g. bisection method) may also be used.

The filling stage is only needed for closed curves and surfaces. For exam-
ple, expanding the mesh on a closed surface requires to avoid that the mesh
overlaps; otherwise, the meshing of the surface will never stop. This stopping
condition on the triangulation creates cracks or gaps in the mesh that need
to be filled with new triangles in order to close the surface.

6.6 PC Algorithm for Manifold Curves

Algorithm 15 outputs a 1-dimensional piecewise linear approximation for im-
plicit curves in R? (n =1, d =1).

Algorithm 15 consists of the following steps. Step 2, as well as step 5,
uses Newton’s method (or some Newton-like method) to iterate a point near
the curve onto the curve. Steps 3—4 are illustrated in Figure 6.10 for the
computation of two curve points, x;+1 and x; 2.
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Algorithm 15 Derivative-based Predictor—-Corrector Algorithm for Curves

1: procedure PREDICTORCORRECTORFORCURVES(f,2,0)

2: Determine one point x; on the curve.
Determine a tangent vector t; to the curve at x;.
Step out a small amount § along t; to get a predicted point po.
Map po onto the curve in order to obtain the next curve point x;41.
Xi — Xi41
Go to step 3.

end procedure

Pi .
.I t|+l pi

(a)
Fig. 6.10. The Rheinboldt algorithm for curves in R2.

Step 3 is carried out by solving the linear system Jf(x;).t; = 0 where
Jf(x;) is the (n + d) x n Jacobian matrix of f evaluated at a point x; on the
curve, and where t; is the unit tangent vector to f = 0 at x;.

Step 4 (predictor step) computes a predicted point p; = x; + d.t;, where 0
is a given step size.

Step 5 (corrector step), this predicted point p; = p? is the starting point
of a Newton-like procedure of a sequence p?,p},... ,pif ~ x;4+1 of points
converging to a curve point X;41 since p; is sufficiently near the curve.

In the end, we end up having a sequence Xg,X;,Xs,... € R? of points
on the curve such that x;,; is obtained from x; using a predictor step and
its subsequent corrector step. This shows us that a curve can be traced in
relatively few steps for coarse approximations (i.e. with a step size not very
small).

Despite its simplicity, this class of algorithms has some deficiencies because
they may fail under some circumstances. Let us enumerate two of them:

1. Drifting away from the curve. One may fail to keep on moving along
the curve if by some misfortune a predictor step comes to close to some
unwanted point of f~1(0), as illustrated in Figure 6.11(a).

2. Cycling. This a variant of the previous situation, where the unwanted point
has been already determined a few steps earlier, so that the algorithm risks
cycling forever (Figure 6.11(b)).

This “nasty behaviour” in the predictor step can be resolved using more
sophisticated machinery such as Runge-Kutta or Adam’s methods [329] or,
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(a) (b)

Fig. 6.11. (a) Drifting and (b) cycling phenomena for curves in R?.

alternatively, to halve the step length §. These precautions help to ensure that
one stays in the domain of quadratic convergence about the curve of Newton’s
method. This is important because Newton’s method may not converge if the
curve oscillates too much in the interval [x;,x;41].

Another point of concern is whether the curve possesses special points such
as:

Turning points, where one of the partial derivatives to the curve vanishes.
Singular points, where f =0 and grad(f) = (0,0), i.e. where both partial
derivatives vanish.

For example, the circle defined as the zero set f(z,y) = 22 +y*—4 = 0 has
four turning points at (0, -2), (0,2), (—2,0) and (2,0). The first two result
from g—i = 22 = 0, whereas the other two are found by means of % =2y =0.
These derivatives vanish simultaneously at (0, 0), but it is not a singular point
(or singularity) because it does not belong to the circle. A singularity on an
curve is where it is not smooth. For example, the curve f(x,y) = y*> — 23 =0
has a cusp at (0,0) because the both partial derivatives vanish at it and
because it is on the curve.

The fact that partial derivatives vanish at a singularity makes any algo-
rithm based upon Newton’s numerical method to break down because such
derivatives appear in the denominator of the iteration formula (cf. Equa-
tion (5.11)), which is here re-written for our convenience:

Vf(pk)

Pit1 = Pk~ G erp ST f(Pr) (6.27)

There are two main approaches to overcome this breakdown problem:

o Derivative-free methods. Using a derivative-free numerical method as,
for example, the false position method is a good numerical device for
sampling implicit curves and surfaces. But, since it is based on the
sign variation of function at two distinct points, it fails sampling sign-
invariant components of curves and surfaces. For example, the zero set
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(22 + y? + 22 — 25)? = 0 is a sphere, inside and outside which the corre-
sponding function f(z,y, 2) = (22 +y*+22—25)? always evaluates positive.
This means that 2-points numerical methods using the intermediate value
theorem cannot be used to sample zero sets with sign-invariant compo-
nents. To overcome this problem, and assuming that Newton’s method
breaks down at singularities, we have to use a sign-invariant 2-points nu-
merical method as the generalised false position method [281].

e Resolution of special points. The idea here is to first determine the special
points of a curve or surface through standard symbolic processing tech-
niques for resolution of equation systems. These special points then work
as starting points for sampling the remaining singularity-free patches of a
curve or surface through a Newton predictor-corrector.

In addition to special points, there is another problem underlying the
predictor—corrector algorithms. They are not equipped with suited devices for
sampling curves and surfaces with several components. To succeed on this we
have first to find out a seeding point on each component, which may be quite
difficult because there is no triangulation covering the domain to help us on
this respect.

6.7 PC Algorithm for Nonmanifold Curves

This section describes a derivative-free continuation algorithm for nonmani-
fold implicit curves in R?, and is due to Morgado and Gomes [280]. It is also
curvature-adaptive and suited for handling curves with singularities.

The basic idea behind this continuation algorithm is, given the previous
and current points x;_1, X; of a curve, to determine the next point x;41 on
the circle neighbourhood N; centred at x; (Figure 6.12). The algorithm uses
numerical continuation to compute x;41 in an arc of the frontier of N;. This
numerical method is inspired in the standard false position numerical method,
and is called angular false position method (AFP) [280].

(b)

Fig. 6.12. Illustration of the basic idea behind Morgado-Gomes’ algorithm for
curves in RZ.
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6.7.1 Angular False Position Method

Traditionally, numerical methods operate on intervals in R or straight line
segments in higher dimensions. Let us consider the initial interval [po, qo]
bracketing the root x;;1, i.e. [Po,qo] is transverse to the curve C at x;11.
For convenience, let us rewrite the standard interpolation formula of the false
position method (see Section 5.6.2) as follows:

I i C: 1) P
Ty = gk Flaw) — f(pr) (ax — px) (6.28)

where r, is the root of the secant line through (pg, f(pr)) and (qk, f(qx)). If
f(pr) and f(rg) have identical signs, then we set py11 = rp and qr+1 = qg;
otherwise, we set px+1 = pr and qry+1 = ri. That is, the initial segment
[Po, qo] bracketing a root converges to a final smaller segment [p,,,q,] such
that the next estimate r, is a sufficiently good approximation of the next
curve point x;41, that is r,, = x;11.

Instead of using linear segments or intervals, the angular false position
method uses arcs to find a bracketed root or curve point. The corresponding
formula is then as follows:

ol )

where «(x) denotes the angle of the point x on the frontier of the circle
neighbourhood N; centred at a given origin x;. For example, in Figure 6.13,
the angle of pg is equal to %’T

6.7.2 Computing the Next Point

Morgado-Gomes’ algorithm confines all computations to the neighbourhood
N; of the current curve point x;. The next curve point x; 1 results from the
intersection of N; and C, and is numerically determined by the AFP method.

-27t/3
(a) (b)

Fig. 6.13. Scanning neighbour circle arc in [f%", 2?”] for curve points in R?.
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Recall that any point p = (x,y) on a circle with radius r and centred at
x = (Z¢,y.) can be obtained from its angle o through the equations (z,y) =
(e + rcosb,y. + rsind), with a € [—m, 7[, from which we can easily derive
the 2 x 2 rotation matrix M,, as usual in computer graphics.

To speed up our algorithm, and to prevent recomputing curve points on
the previous circle neighbourhood, the circle points of the current circle are
only computed for o € [~2F, 27]. These angles are those at which the current
and previous circles intersect (Figure 6.13). So, the first step of the algorithm
consists of determining these two intersection points, pg and qq

Po = X; + Moy /3.X;-1X; (6.30)
qo = X; + M727|-/3.Xi71Xi (631)

Then, we use (6.29) to determine the curve point on the arc Poqo. In prac-
tice, and to further speed up the root-finding process, we need to determine a
preliminary estimate ro = x; +X;_1X;, and then we apply the AFP method to
both arcs poro and roqo. Making an analogy to Newton’s method, ry works
as a predicted point that is then corrected using the AFP method.

6.7.3 Computing Singularities

Morgado-Gomes’ algorithm computes the singularities such as cusps and self-
intersections using numerical approximation.

Cusps and Other High-curvature Points

As known, most curve continuation algorithms break down at singularities
(see, e.g., [82]). But, Moller-Yagel’s algorithm described in [277] copes with
bifurcation points of curves by analysing sign changes of the partial derivatives
in a rectangle neighbourhood. Nevertheless, it is a derivative-dependent algo-
rithm, so it breaks down at other singularities (e.g. cusps and corners) which
belong to the function domain, but not to domain of the partial derivatives.
For example, it fails in rendering the diamond curve |z| + |y| — 2 = 0 which
has four corners at (0,2), (2,0), (0, —2) and (—2,0), where partial derivatives
do not exist.

In contrast, Morgado-Gomes’ algorithm does not compute derivatives
at all. As a consequence, curves defined by differentiable and nondifferen-
tiable functions can be, in principle, sampled and rendered in a straightfor-
ward manner. Another advantage of this derivative-free strategy is a shorter
computation time for each sampled point. There is no need for comput-
ing derivatives, which in many cases are more time-consuming that func-
tions themselves; for example, computing the partial derivatives of F'(z,y) =
y(9 — zy)(z + 2y — y*)((# — 10)% + (y — 4)? — 1) requires a bigger processing
time overhead than the function itself.
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(a) (b)

Fig. 6.14. Numerical approximation to a cusp point in R2.

Cupvatiiid flips-at, cusps and corners. Therefore, a cusp (or a-quasi-Giisp,).
is :a»-"'iioint at or arouﬁd».yvhich there is a high curvature vg;ri’énce within N; ™
QFigure 6.14). To make siwe that there is a cusp (or a quési-cusp) in N;, we
/have to check wjkther the ahgle /X;_1X;X;41 is small. If ;Sb, there is likely fJuch
a special point ween x; and x;, 1. In addition, we ha\@é to check whethff
mediatrix o -+1 inside N1 intersects the curve at fexactly a singj
i Under theseyw0 cifcumstances, we can say that a cuspiexists within
means that ;1 is fot an aﬁpropriate point next to x;(Figure 6.14(f
' ~ To comgglute a suked ne}it point x;41 we can use Variégs strategi€f.
th@m is tofdecrease e radius of N; when the curvatureﬁ"’igcreas
) : ius and sample the curve inside N; Somg
strategy is to assume that points after the chgp/or-cussi-
cusp) are image points of those before it in IV; (Figure 6.14(b)). For example,
the former x;11, now y;_1, is the image of x;_;. The image of x; is y; by
tracing a line segment parallel to X;—1y;—1. The next tentative point x;4; is
determined by intersecting the curve with the mediatrix of X;y; in IV;. This
procedure is repeated for a few steps, stopping when the distance between the
latest next point and its image is under a tolerance ¢, meaning that our special
point has been found, i.e. d(Xjin,Yitn) < €. At this point, set X;11 = Yitn
and label it as a cusp (or quasi-cusp).

Self-intersection Points

A self-intersection point can be viewed as a double cusp point, i.e. two cusps
that come together (Figure 6.15). Therefore, no curve point on N; can be
the next point. In fact, with the exception of the point x;,5 in front of x;,
the other two points form small angles with x;_; and x;. But, x;12 cannot
be the next point either, because the segment from it to x;_; intersects the
curve at a nearer point. One solution is to use a procedure that converges to
the self-intersection in a way similar to that one described above for cusps.
This convergence process also stops when the distance between the latest next
point and its image is under e. This latest point will be the self-intersection
point nearly, which will be set up as the next point x;1.
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Fig. 6.15. Numerical approximation to a self-intersection point in RZ.

Xi+1

Xi+1

Xi+2 Xi+4 Xi+2

Xi+5

that algorithm goes cycling forever or just drifts away. In a way, this is similar
to a self-intersection scenario because we have at least four curves points on
N; (cf. Figure 6.15). But, unlike the self-intersection neighbourhood, one of
the curve points on N; is the point next to x; (Figure 6.16). Recall that the
neighbourhood radius 7 is constant, even under ripples and undulations.

To determine the next point x;11, we use two criteria: angle criterion (or
curvature criterion) as above, and a new criterion, called neighbour-branch
criterion. In Figure 6.16(a), x;43 cannot be the next point because the an-
gle /x;_1X;X;+3 is not approximately m within a given tolerance. But, both
angles /x;_1X;X;4+1 and Zx;_1X;X;4+2 are about 7, and neither X;_1X;+1 nor
X;_1X;+2 crosses the curve. Therefore, the next point will be either x;,1 or
X;+2. To pick up the right next point, we use the neighbour-branch criterion.
Basically, it is an elimination criterion, and can be described as follows:

1. Determine the midpoints of the segments X;_1X;11, X;+1Xitr2, and
Xit2Xits in Figure 6.16(a). The midpoint of X;_1X;13 is not calculated
because x;13 is not, by the angle criterion, a candidate to the next point.
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2. Let us consider a segment with a midpoint M and P its projection on the
frontier of N; by prolonging the segment x; M. If x; P intersects the curve
inside IV;, then we discard the endpoints of the segment transverse to x; P.
This eliminates x;42 as a candidate next point in Figure 6.16(a) because
CNx;P # @, where P is the projection of the midpoint of X;72X;13 on
N;. Therefore, the next point will be x;41.

In Figure 6.16(b), the angle criterion eliminates x;,3 and x;y5 as candi-
dates to the next point, while x;;2 and x;44 are eliminated by the near-branch
criterion. The remaining point x; 1 will be the next point. Note that the neigh-
bourhood radius is constant independently of whether the curve oscillates or
not.

The Algorithm

Morgado-Gomes’ algorithm (Algorithm 16) essentially has the structure of
a continuation algorithm (cf. Algorithm 15), but it does not use Newton’s
method to compute the next point of the curve. Instead, it uses a derivative-
free method; hence its ability to cope with cusps (steps 7-8) and self-
intersections (steps 12-13).

Besides, it avoids the drifting phenomenon nicely (step 11) using elimina-
tion criteria described above. However, this algorithm does not solve the global
cycling problem. This global cycling phenomenon occurs when the current cir-
cle N; overlaps a former or an intermediary circle neighbourhood previously
calculated and processed. To prevent this global cycling phenomenon, we have

Algorithm 16 Derivative-free Predictor-Corrector Algorithm for Curves

1: procedure MORGADO-GOMES(f,82,7)
2: Determine one point x; on the curve.

3: Set N; as the circle neighbourhood with radius r centred at x;.

4: Compute curve points C N N; by means of the angular numerical method.
5: if (#(CNN;) =1) then > a single candidate point
6: Xi+1 < get such a single point from C N N;

7 if (£(xi—1%XiXit1) % ) then

8: X;41 < compute cusp

9: end if

10: else > two or more candidate points
11: Xi+1 < get point from C N N; by applying elimination criteria

12: if (xi+1 = NULL) then > there is a self-intersection point about x;
13: X;+1 < compute self-intersection point

14: end if

15: end if

16: X < Xi+1

17: Go to step 3.
18: end procedure
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to store circles in two vectors or lists. The first vector stores overlapping cir-
cles; typically, they are circles containing near-branch branches of the curve.
The remaining circles are classified as nonoverlapping circles. So, if the next
point x;41 is in a nonoverlapping circle, the algorithm stops. But, if there is
a not yet sampled branch coming out from a self-intersection, the algorithm
restarts from this self-intersection point. Unfortunately, as usual for continua-
tion algorithms, if the curve has various components inside the domain, some
of them are likely missed out.

6.8 PC Algorithms for Manifold Surfaces

This section deals with predictor—corrector algorithms for implicit surfaces
that are inspired in Newton’s method. Therefore, these algorithms depend on
the derivative or its higher-dimensional counterparts.

6.8.1 Rheinboldt’s Algorithm

In computer graphics, while the simplicial continuation algorithms have
been inspired by the Allgower—Schmidt algorithm [11], the class of predictor-
corrector methods are rooted to Rheinboldt’s work [340]. Rheinboldt proposes
using a smoothly varying projection of the tangent plane onto the surface
(“moving frame”) to “wrap” a mesh onto the surface.

Therefore, Rheinboldt’s algorithm for surfaces (Algorithm 17) in R? (n =
1, d = 2) is very similar to that one for curves (Algorithm 15). However, the
pseudocode of Algorithm 17 appears here simplified in order to highlight its
similarities to Algorithm 15.

Note that, the predictor step (step 4) now outputs two points x;41 and
Xit+2 close the surface & by computing two vectors with angle 7/3 on the
tangent plane T; to S at x;. The angle /3 aims at producing approximately
equilateral triangles on the surface. The corrector step (step 5) places x;11
and x;42 on the surface. This allows us then to form a new triangle given by
the vertices x;, x;41 and x;o.

Of course, the algorithm does not work in practice that way. Important
issues like cycling, triangle overlapping, and triangle recomputation have to

Algorithm 17 Rheinboldt’s Predictor-Corrector Algorithm for Surfaces

1: procedure RHEINBOLDT(S,(2,0)

2: Determine a point x; on the surface S inside the bounding box 2.
Determine the tangent plane T; to the surface S at x;.
Step out a small amount § along two vectors on T; with angle 7/3.
Relocate the surface at both new points x;+1 and X;42.
Set X; < X;41 OF X; < X;j42.
Go to step 3.

end procedure
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be considered. We have also assumed that tessellation bricks are triangles.
However, there are many ways of tessellating a surface in R3. For example,
tessels can be triangles, squares or hexagons, though squares and hexagons
are easily decomposed into two and six triangles, respectively.

6.8.2 Henderson’s Algorithm

Henderson’s algorithm is another predictor—corrector algorithm. Found a seed-
ing point on the surface, the triangulation spirals away from it on the surface
by attaching triangles beyond the current triangulation border. However, tri-
angles are not determined directly. The Henderson triangulation results from
covering the surface with an atlas of disks, being then their centres—which are
points on the surface—used to triangulate it. This is illustrated in Figure 6.17.
Therefore, we can say that Henderson’s algorithm is inspired by devices com-
monly used in differential topology and geometry. The algorithm computes a
set of points on the surface, and a set of mappings from the tangent space
which cover the surface [183].

Henderson’s algorithm (Algorithm 18) starts to differ from Rheinboldt’s
algorithm (Algorithm 17) at step 3. After determining the tangent plane T;
to the surface S at x; (step 2), one determines a small disk D; centred at x;
on T;. Such a disk is here called Henderson disk.

At step 4, one determines a new point y; 41 on an non-overlapping arc of
the Henderson disk D;. For the initial disk, this boundary arc is the complete
disk boundary. Non-overlapping arcs are those belonging to the border of the
growing atlas.

Step 5 maps the new point y;;; and its disk on the surface, merging it
with the surface. The mapped point is now x;41.

Before going to step 3, set x; = x;41 or as any point on a nonintersect-
ing disk arc. Note that when the covering of disks grows on the surface, its

tangent disk

>
n

4

X]

surface disk

(a) (b)

Fig. 6.17. (a) Mapping the Henderson disk on the surface; (b) covering the surface
with disks followed by triangulation.
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Algorithm 18 Henderson’s Predictor—Corrector Algorithm for Surfaces

1: procedure HENDERSON(S,(2,0)

2: Determine a point x; on the surface S inside the bounding box €.
Determine the tangent plane T; to the surface S at x;.

Determine the radius § Henderson disk D; at x; on T;.
Determine a point y;4+1 on an non-overlapping arc of the boundary of D;.
Map yi+1 € Bd(D;) onto a new point x;4+1 € S.

Set x; «— Xit1-

if Bd(Atlas(S)) # @ then

9: Go to step 3.

10: end if

11: Triangulate S.

12: end procedure

boundary consists of a set of connected nonintersecting arcs. The triangula-
tion grows accordingly by connecting the centres of the disks mapped onto
the surface S.

Steps 46 are illustrated in Figure 6.17. The algorithm terminates when
non-overlapping arcs run out (step 8) or, equivalently, when the boundary
of the atlas of circles on the surface vanishes, i.e. Bd(Atlas(S)) = @. This
guarantees that the whole surface is triangulated. The mechanism of non-
overlapping arcs also ensures us that the algorithm does not loop locally and
globally. Obviously, we are here assuming that the surface is manifold and
thus closed, but the algorithm can be easily extended to manifold surfaces
with boundary.

The triangulation produces a triangular mesh whose data structure con-
sists of a vector of triangles and a vector of vertices. Each vertex is a surface
point, so it stores its disk, which in turn must include data concerning overlap-
ping and non-overlapping boundary arcs. The topological relations between
disks are easily retrieved via their vertices and triangles.

6.8.3 Hartmann’s Algorithm

Similar to Henderson’s algorithm, Hartmann’s algorithm only applies to sur-
faces in R? without singularities [179]. Surfaces need not to be closed. But,
instead of triangulating an atlas of disks on the surface, Hartmann directly tri-
angulates each disk into an hexagon of six approximately equilateral triangles
(Figure 6.18(a)).

The compatibility between overlapping hexagons is achieved by computing
only the missing triangles of the new hexagon. This is illustrated in Fig-
ure 6.18(b), where we have three hexagons centred at xg, x3 and x4, respec-
tively. To construct a new hexagon around x5, we have to take into account
that three of its triangles are already attached to x5. Thus, we end up getting
a triangulated surface consisting of a set of imaginary overlapping hexagons.
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Fig. 6.18. (a) Hartmann’s hexagon; (b) covering of three overlapping hexagons
centred at xo, x3 and x4.

The idea is then to determine the tangent plane at each mesh border vertex
Xq, construct a small tangent disk—the Henderson disk—centred at xg, and
inscribe an hexagon of triangles in such a disk. This works quite well for the
first hexagon. Any subsequent hexagon already possesses at least one triangle
in the growing mesh.

The construction of a new hexagon starts from a mesh border vertex xg
(Algorithm 19, step 2). This process consists of inserting the missing triangles
around the hexagon centre x( for completion; hence the need for compatibil-
ity between hexagons on the surface. This compatibility between hexagons is
achieved through heuristics. Basically, we partition the external angle at xg
in order to obtain approximately regular triangles (i.e. approximately equilat-
eral triangles). Hartmann [179], Karkanis and Stewart [208] and Raposo and
Gomes [334] use the Henderson disk and similar heuristics, although Karkanis
and Stewart also use the curvature criterion to produce good triangles in
those surface regions where the curvature (and, consequently, the triangle
size) changes quickly.

Hartmann’s algorithm is described in Algorithm 19. Step 2 is the typical
first step of any continuation algorithm which determines a seeding point xg
on the surface.

Step 3 leads to the construction of an orthonormal basis (u, v,n) at xq.

The predictor step (steps 4-5) involves the definition of Henderson’s disk
centred at xg and the computation of six vertices of its inscribed triangles as
follows:

v; =X+ dcos(jm/3)u+ dsin (jm/3)v (6.32)

where u and v are unit base vectors in T.
To calculate the corresponding six sampling points on the surface we apply
the Newton corrector to the points y;. The resulting points [X;4+1,. .., Xi+]
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Algorithm 19 Hartmann’s Predictor—Corrector Algorithm for Surfaces

1: procedure HARTMANN(S,2,0)
2: Determine a point xg on the surface S inside the bounding box €.

3: Determine a tangent plane Ty to S at xg.

4: Determine the radius § Henderson disk D; at xo on To.

5: Inscribe the Hartmann hexagon [y1,...,ys] in D;, totally or partially.
6: Map Hartmann’s hexagon [y1,...,¥s] onto [Xit1,...,Xit6] in S.

T Triangulate [Xit1,...,Xit+6] in S, totally or partially.

8: if {x,} # @ then

9: Set xg «— Xx

10: Go to step 3.

11: end if

12: end procedure

are the six vertices of the starting hexagon of the surface, that is, the first mesh
boundary. This is valid for the first vertex, say hexagon, of the triangulation.

For other vertices, not all hexagon triangles need be determined, simply
because some have been already determined. An easy way to determine the
missing triangles around a border vertex xg is to project its neighbour vertices
back to tangent plane at xy and fill in the pie slice of Henderson disk with
the missing triangles. However, due to the varying curvatures of the surface,
this strategy may originate thin triangles. To overcome this problem, we have
sometimes to decompose the Henderson disk into 5-gons or 7-gons in order to
keep the triangulation approximately regular.

The problem is then how many triangles are going to be inscribed in
the missing Henderson slice defined by three consecutive border vertices
X;—1,Xi,Xi+1, where x; is the centre of the Henderson disk? We divide the
external angle (i.e. outwards the triangulation border) 6 = /x;_1x;x;4+1 into
a number of angles with approximately % radians. (See [334] for an elegant
implementation of the external angle.)

To find the optimal number of triangles that fit 8, let us use the strategy
described in [334]. First, we have to consider a range [@min t0 Opnqz] of accept-
able angles around g, where 0, = % — ¢ and O = g + ¢, and where €
is a tolerance. It is necessary then to calculate the numbers of triangles nmyin
and Nmax that result from dividing 6 by Op,in and 0.y, rounding them to the
nearest integer. We select either nuyi, or nmax as the optimal number na of
triangles depending on which one better approximates equilateral triangles,
i.e whose angles are closest to %:

_ J Mmin if |nrzin o %| = |nj1x |
na s > |
3

™
3
Mmax lf | g - 8 - %l

Mmin Mmax

Once determined the number of triangles that fit § around xg, the current
mesh is ready to grow.
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The external angle is a first device that guarantees that mesh grows be-
yond the border outwards. That is, it is the first condition to have a trian-
gulation without overlapping triangles. However, this not enough to ensure
re-triangulation of the surface because, when mesh grows on the surface, at
some point its border or borders come too close to itself or to each other that
they will overlap soon or later. To prevent this, Hartmann uses two proximity
criteria as follows:

e Two nonconsecutive vertices of the same border are near to each other.
If the distance d between two nonconsecutive border vertices is less that
the Henderson disk radius §, then they must be connected by a new edge
to form a new triangle. This procedure splits the border into two. This
boundary splitting operation is illustrated in Figure 6.19. Let A,, be a
triangulation border, and let x; and x; (with ¢ < j) be two of its ver-
tices having at least two border vertices between them. If the Euclidean
distance d(x;,x;) < J, one connects x; to x; by a new edge. As a con-
sequence, A,, splits into two new borders, A,, = {x;,X;41,...,%;} and
Ap = {x1,...,%;,X;,...,xn}, where N is the number of vertices of the
former A,,. In Figure 6.19(b), we can see these borders after attaching the
triangle bounded by the border splitting edge X;X;.

o Two wvertices of distinct borders are mear to each other. In this case,
two vertices belonging to different borders are within the distance 0.
Therefore, these borders are merged into a single one. This merging op-
eration is illustrated in Figure 6.20. Let A,, = {x1,...,Xm—1,%X;} and
Ay ={Xj,Xm+2, - -, Xm4n} two expansion borders. If the vertex x; € A,
and the vertex x; € A, satisfy the condition d(x;,x;) < 4, their host
borders merge into a single one, say A,,, by attaching the new edge X;X;
(Figure 6.20(b)). This implies deleting A,, after transferring its vertices
into A,,, i.e.

Am = {Xh ey X1, X4, Xy, X2, - - - 7xm+n}

where m and n denote the number of vertices of the former borders A,,
and A,,, respectively.

This concludes the step 5 of the algorithm.

Step 6 is about mapping the vertices (and corresponding triangles) onto
the surface. This is the corrector step. Every predicted vertex on the tangent
plane is settled onto the implicit surface, its corrected position. As usual, the
correction is usually done by a Newton-Raphson corrector (e.g. see [179] and
[334]), but some researchers employ other numerical methods (e.g. Karkanis
and Stewart use the bisection method in [208]).

Step 8 concerns the stopping criterion for the triangulation. The algorithm
stops when the number of border vertices of the growing mesh goes to zero,
ie. {x} = @. Recall that, we are here assuming that the surface is manifold.
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Fig. 6.19. Splitting a mesh border A,, (in thick red) into two smaller borders A,,
(in thick red) and A, (in thick blue).

Am

An
(a)

Fig. 6.20. Merging two mesh borders A, (in thick red) and A, (in thick blue) into
a bigger border A,, (in thick red).

6.8.4 Adaptive Hartmann’s Algorithm

In the context of implicit surfaces, an adaptive triangulation means a
curvature-dependent triangulation. An adaptive hexagonal triangulation
was proposed by Aratjo and Jorge [20]. It is adaptive in the sense that the
size of the triangles circumscribed by the Henderson disk depends on the local
curvature of surface at each active or boundary vertex. That is, the radius of
the Henderson disk is no longer constant; it depends on the local curvature.

By computing the local curvature of a surface at an active vertex, we are
able to adapt the triangulation to shape variations of the surface, generating
smaller triangles in regions of higher curvature and larger triangles where the
curvature is smaller.

Thus, the adaptiveness of the Araijo-Jorge algorithm starts at the pre-
dictor step by changing the radius of Henderson’s disk at an active vertex,
depending on the curvature of the surface at such a vertex. The corrector
step is identical to Hartmann’s one, which is a Newton corrector for trivariate
real functions. Mean curvature-based adaptive triangulations of Igea’s implicit
surface are shown in Figure 6.21.



180 6 Continuation Methods

Fig. 6.21. Adaptive meshes of Igea’s model using mean curvature heuristics: (a)
6908 triangles; (b) 25,596 triangles; (c¢) 82,511 triangles. Courtesy of B. Aratjo [19].

As known, any PC algorithm for closed surfaces comprises two major
stages: the growing stage and the filling stage. The growing stage consists
of two steps, the predictor and corrector steps. The filling stage aims at filling
the cracks with new triangles in order to close the surface. Note that both the
original Hartmann algorithm and its adaptive counterpart due to Aratjo and
Jorge only apply to closed manifold surfaces. The cracks are just a result of
avoiding that the growing surface mesh overlaps.

In the case of the Araujo-Jorge algorithm, the mesh overlapping is con-
trolled by an octree data structure that stores all the points generated by
the algorithm. Avoiding mesh overlapping is quickly done by first determin-
ing which octree cubes intersect or contain the sphere centred at an active
boundary vertex with Henderson’s radius (i.e. radius equal to the estimated

5 B 1 1 5 B 1 1. 1 B 11
cage enguir ), thel, One CAgCKS tire aiStance betweenr thie Current vervtexX aird thie
+ 4

9

N pa| H H +1 S H3 N H pa| 4 4
Uuuuual_y VI TICCS  assUCIapCU U TIIoOT lllbUlDUbllllg CUaoCs I ourTuci g proveanu
the mesh overlapping and fill eventual cracks. [The efficiency of this| overlap-
ping avoidance [procedure |is reinforc¢d by a caghe mechanism that stores the

last n visited o¢tree cells to speed up the algorithm.

6.8.5 Marching Triangles Algorithm

In [187], Hilton et al. prpposed a PC algorithm called |marching |triangles
after the famous marching cubes algorithm (see the next|chapter for further
details). In a way, we can say that all the PC algorithms for implicitj surfaces

are based on the idea of marching friangles, 1.e. triangles that are progressively
attached to the mesh that approximates the surface. Algorithms differ in that
they determine the triangles, i.e. how their triangulations are accomplished.
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The marching triangles algorithm generates meshes with almost equilat-
eral triangles. The approach proposed by Hilton et al. is also based on the
prediction—correction step to compute new vertices of growing triangulation.
A major problem is detecting the cycling phenomenon, say when the sur-
face mesh starts to overlap. Even we succeed in controlling the cycling phe-
nomenon, another problem comes up, which is the appearance of cracks in the
mesh. Thus, unless we have a strategy to fill the cracks with new triangles,
closed surface meshes cannot be generated at all.

The Delaunay Triangulation

The marching triangles algorithm relies on the Delaunay triangulation of a set
X = {xo,...,X,} of points in R3. This 3-dimensional Delaunay triangulation
is composed of tetrahedra such that each tetrahedron is inscribed in a sphere—
i.e. the sphere passes through the vertices of the tetrahedron—which does not
contain any other point of X.

In the case the points of X lie on a manifold surface, and according to
Boissonnat [56], the surface triangulation in the Delaunay triangulation sat-
isfies the condition that it is composed of triangles such that there exists a
circumsphere that passes through the three vertices of each triangle, but it
does not contain any other point of X. The result is the 2-dimensional ana-
logue of the 3-dimensional Delaunay triangulation where the points of X lie
on a manifold surface in R? rather than R2.

The above definition of the manifold surface triangulation derived from
the 3D Delaunay triangulation provides the incremental mechanism to con-
struct the surface mesh by attaching triangle after triangle. This mechanism
is based on the 3D Delaunay surface constraint, which states that a triangle
0 = [X;,Xi+1,Xp] may only be attached to the mesh boundary at an edge
[x;x;4+1] if no other triangle of the growing surface mesh intersects the sphere
circumscribing ¢ = [X;, X;+1, X,] with the same surface orientation. (Two tri-
angles are said to have the same orientation if the dot product of their normals
is positive.)

The 3D Delaunay surface constraint guarantees that each triangle uniquely
defines the surface locally. In other words, the local surface does not over-fold
or self-intersect [187]. Interestingly, this local Delaunay constraint also ensures
that the triangulated surface is globally Delaunay [143].

The Algorithm

The marching triangles algorithm is described in Algorithm 20. Starting from
a seeding triangle on the surface, the marching triangles algorithm spirals
away on the surface by attaching new triangles to the border edges of the
growing mesh. The new triangle edges are then appended at the rear of the
list L of edges that form the border of the growing mesh.
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Algorithm 20 Marching Triangles for Surfaces
1: procedure MARCHINGTRIANGLES(f,S,,0)

2: T — g > empty mesh of triangles

3: L—go > empty list of boundary edges

4: Determine a seeding triangle oo on S inside 2.

5: Add edges of oo to L.

6: n <« #L > current size of L

T for i =0,n—1do

8: Estimate a vertex position, x,, by stepping out a constant distance
along a vector perpendicular to the boundary edge e; = [Xk,Xk+1] at the mid-
point of e; in the plane of the triangle o; = [Xs, Xk, Xx+1] that is bounded by
€.

9: Determine the nearest point xp on S to xp, i.e. f(xp) = 0.

10: if op = [XP, xk7xk+1} satisfies the 3D Delaunay constraint then

11: Remove edge [xk,Xk+1] from L.

12: n«—n-—1 > delete one edge from L

13: Add triangle op = [xp, Xk, Xk+1] to triangulation mesh 7.

14: Add edges [xp,xx] and [xp,Xi41] to L.

15: n<«—n+2 > more two edges added to L

16: end if

17: end for

18: end procedure

The marching triangles algorithm iterates on the list L only once. When a
new triangle at a boundary edge fails to satisfy the 3D Delaunay constraint,
such an edge is left in L. At the end, L will accommodate an non-empty
border of connected edges in the triangular mesh. This suggests that this
algorithm is more adequate to polygonise open surfaces (also called surfaces
with boundary) than closed surfaces (also called surfaces without boundary)
simply because cracks will appear in the mesh.

Interestingly, the Delaunay constraint can also used to fix cracks in the
polygonisation. In fact, as Akkouche and Galin noted in [2], the Delaunay
constraint implies that the width of any crack in the surface does not exceed
the length of the triangle edges. Therefore, to complete the triangulation we
only need to connect the vertices of the boundary edges of L to create new
triangles that fix the cracks. Similar solutions for filling cracks were proposed
by Karkanis and Stewart [208] and Cermak and Skala [80].

In Algorithm 20, the predictor and corrector steps are steps 8 and 9,
respectively. This original marching triangles algorithm has the disadvantage
that the step length ¢ is constant. The triangulation tends to be regular, but
it does not adapt to the curvature of the surface.

6.8.6 Adaptive Marching Triangles Algorithms

PC algorithms using curvature-dependent triangulations of implicit surfaces
were proposed by Akkouche and Galin [2], Karkanis and Stewart [208], and



6.9 Predictor—Corrector Algorithms for Nonmanifold Surfaces 183

Cermak and Skala [79]. These adaptive marching triangles algorithms produce
a mesh of approximately equilateral triangles with sizes dependent on the local
surface curvature, although they do not use the Delaunay condition.

Karkanis-Stewart’s algorithm estimates the curvature at a surface point x,
by computing the radius of curvature of several geodesics that pass through
Xp, taking then the minimum. This algorithm is slower than the PL methods
because it has the extra time overhead at computing local surface curvature
for every new vertex x,, in order to generate triangles of the appropriate size.
This is so because curvature computation of Karkanis-Stewart’s algorithm as-
sumes the second derivative is not directly available; consequently, the implicit
function is invoked many times in the curvature calculation.

On the contrary, Akkouche-Galin’s algorithm avoids the explicit compu-
tation of the local curvature of the surface; instead, Akkouche and Galin use
a particular heuristics to speed up the algorithm.

6.9 Predictor—Corrector Algorithms for Nonmanifold
Surfaces

As much as we know, there is no piecewise linear (PL) algorithm for non-
manifold implicit surfaces. However, there is a PC algorithm capable of
polygonising non-manifold implicit surfaces under certain conditions. Such
an algorithm extends Hartmann’s algorithm in order to cope with self-
intersections and multi-component implicit surfaces, and is due to Raposo
and Gomes [334].

As known, continuation methods do not allow us to know a priori the
number of topological components a surface possesses, i.e. its topological
shape. Hence, the difficulties in finding a seeding point in each surface com-
ponent to polygonise the whole surface. Raposo and Gomes proposed a func-
tion factorisation-based solution to overcome this problem. The idea is to
factorise the implicit function f into function components {f;}, also called
symbolic components or irreducible components, before sampling the corres-
ponding surface.

There are three sorts of symbolic components, namely:

e One symbolic component matches a topological component. In this case, a
symbolic component corresponds to a topological component. For example,
in Figure 6.22, the spherical surface 22 4+ 42 + 22 — 4 = 0 is described by a
single symbolic component f(z,y,z) = 22 + y? + 22 — 4, which embodies
only one topological component. If we add another disconnected sphere
(—9)24+(y—9)2%+ (2 —9)? -9 = 0, we get a function f(z,y,z) = (2 +
2 +22—4).((x—9)%+(y—9)%+(2—9)?—9) with two symbolic components,
F1(,,2) = 2+ +22 —d and fo(z, 9, 2) = (3-9)2+(y—9)*+(:—9)2 9,
each corresponding to a single topological component. Therefore, at least
in this case, factorisation allows to know in advance the topological shape
of the surface, i.e. the number of their topological components.
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Fig. 6.22. f(z,y,2) = 22 4+ 9% + 22 — 4 = 0 has a single symbolic component, while
its surface has a single topological component.

Fig. 6.23. f(x,y,2) = xlnz + Inx cosz — xy — y cosz = 0 has two symbolic compo-
nents, but its surface has only one topological component.

Two or more symbolic components form a topological component. This case
is illustrated in Figure 6.23, where the surface f(z,y, z) = x Inx+Inx cosz—
xy — ycosz = 0 has a single topological component with two intersecting
symbolic components. These symbolic components are f1(z,y,2z) = lnz—y
and fa(x,y,z) = cosz + z. Each symbolic component can be tessellated
separately. Therefore, we do not need any particular procedure to treat self-
intersections for this sort of surface during the triangulation stage, nor an
exact symbolic algorithm to determine the intersection curve. A triangle-
to-triangle algorithm suffices to polylinearise the intersection curve after
triangulating all symbolic components; for example, the Moller algorithm
is appropriate for this task [276].

One symbolic component possesses two or more topological components.
In this case, the algorithm only detects and tessellates one topological
component of the symbolic component. For example, the paraboloid of
two sheets —x2 — y? + 22 = 1 shown in Figure 6.24 consists of a single
symbolic component with two topological components (say two sheets),
but only one sheet is pictured. This is so because, in general, we do not
know a priori the topological type of a symbolic component; consequently,
finding a seeding point on the second topological component or sheet is
only possible by chance. However, important results from the computation
of the topological type of implicit curves and surfaces may be useful to solve
this problem [163, 285, 355].
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Fig. 6.24. f(z,y,2) = —a> —y? + 2> — 1 = 0 has a single symbolic component,
while its surface has two topological components.

Algorithm 21 Raposo-Gomes’ Predictor—Corrector Algorithm for Surfaces

1: procedure RarPoso-GOMES(f,S,0,d)

2: Factorise f into irreducible function components f;.

for i — 0,n do > for each symbolic component
HARTMANN( f;,8,8,6)

end for

for i — 0,n —1 do > for every two meshes M;,M; of f;,f;
for j — 1,n do

MOLLER(M;,M;) > polyline of curve intersection

9: end for

10: end for

11: end procedure

Note that a symbolic component is not the same as a topological com-
ponent. A function is said to be irreducible if it is non-constant and cannot
be represented as the product of two or more nonconstant function compo-
nents. Every function f can be factorised into irreducible function components

fi,---, fn, being factorisation unique up to permutation of the factors and
the multiplication of constants. Thus, we use symbolic factorisation; that is,
f = fi-... - fn, where each f; represents a symbolic component of the surface.

Algorithm 21 describes Raposo-Gomes’s algorithm. It is essentially a
“divide-and-conquer” algorithm because the symbolic factorisation decom-
poses a function expression into subexpressions (or symbolic components).
This way, one tessellates each symbolic component separately instead of the
surface as a whole. After polygonising all irreducible components of the sur-
face, one determines their intersection curve (step 3). This can be easily done
by using Moller’s algorithm [276] to find intersecting triangles of the irre-
ducible components. Thus, neither analytic nor symbolic techniques are nec-
essary to resolve self-intersections. Note that this resolution of singularities
(i.e. self-intersections) is important for keeping a valid representation of the
surface in the data structure, but it is not necessary for visualisation purposes.



186 6 Continuation Methods

6.10 Final Remarks

In this chapter we have dealt with the class of continuation algorithms, which
includes both piecewise linear (PL) and predictor-corrector (PC) algorithms.
PL algorithms were mainly developed in the field of numerical analysis us-
ing fixed triangulations of domain. In this context, the work of Allgower and
colleagues possibly is the one with more impact in computer graphics and
computational geometry. In turn, PC algorithms triangulate the surface di-
rectly. That is, no need exists for an intermediate triangulation of the domain.
But, this intermediate triangulation of PL methods has the advantage that
no concern is taken in relation to smoothness of functions. PL methods are
thus inherently derivative-free methods.
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Spatial Partitioning Methods

This chapter deals with spatial partitioning algorithms for rendering implicit
surfaces. Typically, these algorithms start with a preliminary space decom-
position of the domain (e.g. bounding box) into smaller subdomains or cells
(e.g. cubic boxes), discarding those cells that do not intersect the surface. The
surface is then polygonised or approximated by one or more polygons within
each intersecting cell in order to render it on screen.

7.1 Introduction

Early spatial partitioning algorithms were developed by Wyvill et al. [421] for
rendering soft and blobby objects, and Lorensen and Cline [247] who designed
the marching cubes algorithm for generating human organ surfaces from med-
ical image data sets. Depending on the input data, these algorithms can be
classified as either continuous data-based algorithms or discrete data-based
algorithms. Discrete data-based partitioning algorithms have been developed
from Lorensen and Cline’s algorithm. In this case, no function is known a
priori so that the algorithm only operates on discrete data at the vertices of a
grid, from which a surface is generated by interpolation. In contrast, contin-
uous data-based partitioning algorithms can be viewed as a follow-up of the
Wyvill et al. algorithm, as they operate on a given trivariate function such
that continuous data can be evaluated at arbitrary points of the domain. In
both cases, rendering an implicitly defined surface requires the computation
of a polygonal mesh that approximates the surface.

Space partitioning algorithms subdivide (either wuniformly or adaptively)
the space into a lattice of cells to find those that intersect the implicit curve or
surface. Usually, cells are either squares in R? (respectively, cubes in R? or n-
cubes in R™) or triangles in R? (respectively, tetrahedra in R3 or n-simplices
in R™). The sign of the implicit function at the cell vertices determines a
topological configuration (also known as topological type or pattern) that
guides the polygonisation of the surface.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 187
Data Structures and Algorithms,
(© Springer-Verlag London Limited 2009
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Cubes may lead to ambiguous configurations as more than one mesh can
be created for the same configuration type; consequently, the mesh that ap-
proximates the surface may be generated with cracks. Some disambiguation
strategies have been proposed in the literature, including simplicial decom-
position, modified look-up table disambiguation, gradient consistency-based
heuristics and quadratic fit, trilinear interpolation techniques, and recursive
subdivision of space into smaller cells. Unlike cubes, tetrahedra tend to gener-
ate topologically consistent triangular meshes (i.e. without ambiguities), yet
with distorted triangles. These distorted triangles require some kind of post-
processing procedure to repair the resulting mesh.

7.2 Spatial Exhaustive Enumeration

This family of algorithms partition the space into axis-aligned n-cubes, some-
times called vozels. The well-known marching cubes (MC) algorithm belongs
to this family. It was designed for the visualisation of the human anatomy.
Medical 3D images are composed from uniform 2D slices taken from comput-
erised tomography (CT) scanners—also called computerised axial tomogra-
phy (CAT) scanners—magnetic resonance imagers (MRI), positron emission
tomography (PET) scanners or even ultrasound scanners. These sliced 3D
images contain detailed data about human organs that need be extracted and
visualised for medical purposes. Many methods have been devised in last two
decades and, in a way, explain the emergence of the research field of scientific
visualisation.

We can ask ourselves, “Which is the relation between those sliced 3D im-
ages and spatial exhaustive enumeration algorithms in computer graphics and
geometric modelling?” In fact, a sliced 3D image induces a space decompo-
sition into voxels from which we can extract a cloud of points of a specific
human organ. The points of different organs have distinct threshold values
so that using a single threshold value over all slices we are able to extract
a cluster of points for a particular organ. In other words, given a threshold
value and a pack of 2D digital slices generated by some medical 3D scanner
as input data source, the algorithm performs the exhaustive enumeration of
a rectangular bounding box into voxels, from which points of a human organ
surface can be extracted, interpolated and polygonised.

Thus, spatial exhaustive enumeration algorithms can be used to extract
human organ surfaces from a pack of 2D pixel images. Note that these med-
ical surfaces are not given a priori an algebraic or analytic expression. Such
expression is given by the so-called interpolants as usual in scientific visu-
alisation, which simply interpolate the medical data inside each voxel. It is
convenient here to recall that spatial exhaustive enumeration algorithms ap-
ply not only to trilinear interpolants that approximate human organ surfaces,
but also to general trilinear surfaces implicitly defined by level sets. The dif-
ference is that, instead of feeding the algorithm with a threshold value (also
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called isovalue) and a rectangular pack of 3D digital slices, the input consists
of a real constant (or function value) and the trivariate expression of a real
function.

7.2.1 Marching Squares Algorithm

Marching squares (MS) is the 2-dimensional version of marching cubes (MC)
algorithm, i.e. the marching 2-cubes algorithm. It applies to only one digital
2D slice, while the MC algorithm applies to a pack of digital 2D slices. There-
fore, given a threshold value and a single 2D slice, it generates a contour line
by bilinear interpolation. That is, MS is a contour algorithm, and thus ap-
plies to many other scientific fields, namely: cartography, weather forecasting,
fluid dynamics, etc. As known, the essential concept behind contouring is that
of isolines, i.e. lines whose points are associated to equal values, the thresh-
olds. For example, contours may represent lines with different temperatures
(isotherms) or pressures (isobars) over the globe, as needed in weather fore-
casting. Obviously, there are several methods to generate contours, depending
on the type of the grid, type of interpolation, and order of curve generation
[66, 333, 344, 405]. In this section, the focus is on bilinear interpolation over
a rectangular grid of squares.

Bilinear Interpolation

In contouring, we assume that data varies linearly between consecutive data
points of a rectangular grid of squares. This assumption seems to be reasonable
even when data does not vary linearly since we are able to guarantee a high
data resolution in a preprocessing stage.

Bilinear interpolation extends linear interpolation to bivariate functions
on a regular grid. The idea is to perform linear interpolation in two distinct
directions, one after the other. So, let us determine the value of the unknown
function f at the point P = (z,y) of the square [zg,x1] X [y0, y1], assuming
that the values of f at the corners Poo = (20, v0), Por = (2o, v1), Pro = (1,%0)
and Py = (x1,y1) are known (Figure 7.1).

The linear interpolation in the z-direction on the horizontal square sides
yields

Fl@,90) ~ ﬁﬂzﬂoo) + %f(ﬂo) (7.1)
and Tr1 — X Tr —
f(@,y) = ﬁf(Pol) + F;Of(Pll) (7.2)

where x € [z9,21]. Now, interpolating these two values in the y-direction we
obtain

-y Y—Y
f(xvy) ~ Y1 — yof(xuyO) + U1 — yof(xvyl) (73)
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Fig. 7.1. Bilinear interpolation of a 2-cube [z1,x2] X [y1,y2] with foo = 0.0,
fio = 1.75, for = 1.75 and fi1 = 0.5: (a) interpolation scheme: first along [z1, z2],
then along [y1,y2]; (b) colour interpolation with (R, G, B)starr = (0.5,1.0,0.75)
and (R, G, B)enp = (10.0,5.0,0.0); (c¢) colour interpolation with (R, G, B)starT =
(0.5,0.1,0.75) and (R, G, B)exp = (10.0,5.0,0.0).

that is, the estimate of f(x,y). Substituting Equation (7.1) and Equation (7.2)
in Equation (7.3), we get the bilinear interpolant F'(z,y) that approximates

f(z,y), say f(z,y) =~ F(z,y) with

f(Poo)
(1 —20) (Y1 — Yo
f(Pro)

(331 - HUo)(yl - yo)
f(Po1)
(21— 20) (Y1 — Yo
J(P11)

(r1 —20)(y1 — Yo

F(m7y) =

=2 =)

(. —z0)(y1 —¥)

)(xl —z)(y — vo)

)(95 —20)(y — Yo)

The isocontouring problem can be then rewritten as follows: given the
values of a bilinear function F'(x,y) at the vertices of an axis-aligned square
D = [0, x1] X [yo, y1], determine and display isolines corresponding to thresh-
old value ¢

C={(z,y) e D| F(x,y) = ¢} (7.5)
Without loss of generality, we transform the square domain D into a unit
square I = [0,1] x [0,1] for convenience, so that the bilinear interpolant is

hereafter as follows:
F(z,y) = Foo(1 —z)(1 —y) + Fioz(1 —y) + Fou(1 — )y + Fuzy  (7.6)

after labelling the function values as F'(x,y) = Fy, for simplicity. This bilinear
function can be rewritten as
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F(z,y) = Azy+ Bz +Cy+ D (7.7)

where

A= Fyo — Fio — Fo1 + Fn

B = Fip — Foo (78)
C = Fy1 — Foo .
D = Fy

Note that the bilinear interpolant is not linear. On the contrary, it is the
product (ax +b)(cy +d) = Avy + Bx+ Cy+ D of two linear functions, where
A =uac, B=ad, C =bc and D = bd. The bilinear interpolant is quadratic
along any straight line inside D, except along lines parallel to either in the z-
or the y-direction where it is linear (simply because either y or x is constant,
respectively).

Topological Configurations and Ambiguities

To correctly display the bilinear interpolant within a cell, we need to know its
topological configuration inside such a cell. For that, we compute its partial
derivatives as

oF oF

B = Ay + B and En = Az +C. (7.9)

That is, these derivatives vanish at the stationary point (—%, —%). Besides,
the eigenvalues of the Hessian matrix are of opposite signs, A\ = +A4; as a
consequence the stationary point is a saddle point for A # 0, i.e. the inter-
section point of two hyperbola asymptotes. In this case, the contour curve is
a hyperbola, which has to be approximated by straight line segments. But,
if A =0, the interpolant F(x,y) is linear and the contours are just straight
lines within the cell so that contouring is exact.

The possible topological configurations of the polylinearised contour curve
are shown in Figure 7.2. Ambiguity appears when the contour curve is topo-
logically equivalent to a hyperbola (configurations 5 and 10). We simply do not
know how to connect pairs of hyperbola points on the boundary of the square.
This happens when positive and negative vertices are diagonally opposed. A
square point (z,y) is positive (respectively, negative) when its corresponding
data is above (respectively, below) the threshold value c.

This hyperbola ambiguity can be solved by means of two methods. The
first is known as the four triangles method and seems to be due to Dayhoff [96],
Heap [180] and Wyvill et al. [422]. Basically, one computes the function value
at the centre of the square. If this value is greater than the threshold value, the
separation of the pairs of intersection points is done along the square diagonal
that contains the positive vertices; otherwise, we use the diagonal defined by
the negative vertices. These two diagonals divide the square into four triangles;



192 7 Spatial Partitioning Methods

RN

e ———o 6—O

0,,=0000, 1,,=0001, 2,=0010, 3,,=0011,
I\ \1
4,,=0100, 5,,=0101, 6,,=0110, 7,,=0111,
M
8,,=1000, 9,,=1001, 10,,=1010, 11,,=1011,
4 1\
12,,=1100, 13,,=1101, 14,,=1110, 15,=1111,

Fig. 7.2. Topological configurations for marching squares.

hence the name of four triangles. Unfortunately, this disambiguation method
only works when the function values at the centre of the square and at the
saddle point have identical signs.

The second disambiguation method is called asymptotic decider and was
introduced by Nielson and Hamann [303] to solve ambiguities in the more
general context of the MC algorithm. The pairwise connection is done after
separating the two pairs of hyperbola points on the boundary of the cell. This
is done by locating each of these points in relation to one of the asymptotes;
for example, a point (z,y) in on the left of the asymptote %—5 =Ax+Cifit
satisfies Az + C' < 05 it is on the right if Az + C > 0. This is an elementary
space separation technique that works beautifully.

The Algorithm

Let us then describe the marching 2-cubes algorithm for implicitly defined
curves. Recall that an implicit curve in R? is defined by the zero set of a real
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bivariate function f : R? — R, i.e. f(x,y) = 0. This is slightly different for
isocontours because no input function f(z,y) is given a priori; instead, one
uses a bilinear interpolant F(x,y) ~ f(x,y).

Marching squares algorithm essentially is a “divide and conquer” algo-
rithm. It starts by splitting the axis-aligned rectangular domain or bounding
box 2 = AX x AY into a grid of n x m squares of side length equal to 9.
Then, each square is processed individually, that is, one evaluates the function
f(x,y) on its four vertices, stores these function values in the data structure,
computes the intersection points between the curve and the square edges by
using some root-finding method (see Part II), and then “marches” or moves
onto the next square. The obvious data structure for this space decomposi-
tion is a 2-dimensional array a[m,n] of m x n elements, in which ecach element
stores the data corresponding to a square.

The crucial steps of the marching squares algorithm (Algorithm 22) are
the steps 8 and 9 provided that they determine how the curve crosses each
square, i.e. the accurate topological shape within each square. It is clear that
this also depends on the square side length §.

For computing the topological configuration within a square, we use a 4-
bit code which encodes the state of each vertex with a single binary digit. If
f evaluates negative at a vertex, its bit is set to 0; if f evaluates positive,
the corresponding bit is set to 1. Therefore, each topological configuration
corresponds to a specific 4-bit code. This code works as an index for a look-up
table that stores all possible topological configurations. The data stored in
this look-up table is used to correctly polylinearise the curve segment that
crosses the square.

Taking into account that each square has four vertices and the function
evaluates either positive or negative, we conclude that there are 4> = 16 possi-
ble topological configurations within any square, i.e. a curve passes any square
in up to different 16 ways. These 16 topological configurations form the lookup

Algorithm 22 The Marching Squares

1: procedure MARCHINGSQUARES(f,$2,d,a[m, n])
2: m«— AX/o

3: n— AY/6

4: for i — 0,m — 1 do

5: for j — 0,n—1do

6: Create square U ;.

T Evaluate f at each vertex of [J; ;.
8: Set up the topological configuration of the curve within [O; ;.
9: Find roots of f along edges of U; ;.
10: Polylinearise the curve across ; ;.
11: a[i,j} — Dl‘,j
12: end for
13: end for

14: end procedure
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table used by the algorithm. These configurations are shown in Figure 7.2. The
binary encoding of the vertices is counterclockwise, starting on the bottom-left
vertex. For example, the pattern 1 (number base 10) in Figure 7.2 is encoded
as 0001 (number base 2), while the pattern 9 (number base 10) is encoded
as 1001 (number base 2). This encoding is used to index the pattern table.
Once the correct pattern has been established, we can polylinearise the curve
within the square with reasonable topological guarantees.

However, it is necessary to keep in mind that the topological configura-
tions in Figure 7.2 are for bilinear interpolants. For more general polynomial
functions of degree 3 or higher, the look-up table necessarily grows with new
topological configurations and the assumption of linearity along the edges of
a square is no longer valid. For example, it is possible to have more than one
curve point on a single edge. In this case, a possible solution is to subdivide
squares recursively until every square fits some of the those 16 configurations
in Figure 7.2. Note that we have not considered the case that occurs when the
curve crosses a vertex or the case of a curve self-intersection within a square.

7.2.2 Marching Cubes Algorithm

Marching cubes (MC) algorithm likely is the most used algorithm in scien-
tific visualisation, including applications in medical imaging, bioinformatics,
geographical information systems (GIS), weather forecasting, and many oth-
ers. MC algorithm was introduced by Lorensen and Cline [247] in the context
of medical imaging, though a similar algorithm due to Wyvill et al. [422]
had been published before in the context of modelling soft objects. The main
difference between these two algorithms lies in their spatial indexing data
structures. The first uses a voxel-based data structure (i.e. a 3D array that
mimics the partitioning of the bounding box into cubes), while the second
uses a hash-table structure.

Trilinear Interpolation

Similar to the extraction of isocontours by using bilinear interpolation inside
the unit 2-cube, we can extract isosurfaces by interpolating trilinearly values
on eight vertices of the unit 3-cube. By generalisation of Equation (7.4), we
obtain the trilinear interpolant

F(z,y,z) = Fooo(1 —2)(1 —y)(1 — 2) + Foor (1 —2)(1 —y)z
+ Foro(1 — 2)y(1 — 2) + Fo11(1 — 2)yz
+ Fiooz(1 — y)(1 — 2) + Fioiz(1 — y)2
+ Fiiory(l — 2) + Fiiizyz

(7.10)

The trilinear interpolant is a cubic polynomial. As before, we are consid-
ering here the unit 3-cube I? = [0,1] x [0,1] x [0, 1] because the extension
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to general case is done by using simple scaling factors. It is clear that inside
each face of the unit 3-cube the values of F' vary bilinearly because one of the
coordinates remains constant. Along each edge of the 3-cube, F' varies linearly
as two out three coordinates do not vary.

Therefore, in addition to saddle points in faces (i.e. face saddles), there
may be saddle points in the interior of each 3-cube, which are called body
saddles. Recall that saddle points occur where the partial derivatives vanish
simultaneously. For face saddles we use the two partial derivatives of the
bilinear interpolant given by Equation (7.4) with the appropriate variables
in place, while the three partial derivatives of the trilinear interpolant above
are used to determine the body saddles of a 3-cube. As shown by Lopes and
Brodlie [244] and Natarajan [295], extra topological configurations of face and
body saddle points can be used to disambiguate the topological shape of a
trilinear isosurface within each 3-cube correctly.

The algorithm

Similar to 2-dimensional contours and curves, a marching cubes algorithm
involves a three-stages discretisation of the level set, namely:

Partition of the bounding box.
Sampling of the surface.
Polygonisation of the surface.

The first stage partitions the bounding box into cubes (step 8 of Algo-
rithm 23). In fact, this discretisation of the bounding box need not be done
explicitly. There is no need to explicitly store edges and faces for each cube.
It is enough to store the vertex data of each cube into a n-dimensional array,
where n is the dimension of the cube (or of the space where the level set lies
in).

MC algorithm creates and processes each cube at a time. After processing
one cube, it moves (or marches) to the next one in an axis-aligned grid of
equally sized cubes. The simplicity of this algorithm is a result of the one-
to-one mapping between the cubes created inside the bounding box and the
elements of the array data structure.

The second stage (steps 9-11 of Algorithm 23) concerns the sampling of
the surface. Sampling consists in determining which cubes intersect the surface
and where. This involves the following sequence of operations for each cube:

evaluation — classification — interpolation.

Sampling an implicit surface is the critical part of the algorithm because
intersection points usually are determined by numerical interpolation (i.e.
2-point numerical methods), which may fail unless we use some of those cer-
tified techniques (e.g. interval arithmetic) described in Part II.
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Algorithm 23 The Marching Cubes

1: procedure MARCHINGSQUARES(f,$2,0,a[m, n, o])
m «— AX/6

3 n«— AY/o

4: 0o— AZ/§

5: for i — 0,m — 1 do
6

7

8

for j — 0,n—1do
for k — 0,0—1 do
Create cube O; ; k.

9: Evaluate f at each vertex of [; ; x.

10: Set up topological configuration of the surface within OJ; j 5.
11: Find roots of f along edges of U; ; .

12: Polygonise the surface across U j .

13: a[@j, k] — Di,j,k

14: end for

15: end for

16: end for
17: end procedure

For implicit surfaces, one first proceeds to the evaluation (step 9 of Al-
gorithm 23) of the function at each vertex of the current cube, whose values
(either positive or negative) are stored in the corresponding data structures
for vertices. Second, one encodes the topological configuration of the surface
within the cube, a bit per vertex. Since there are two signs for function values
and a 3-cube possesses 8 vertices, we readily come to the conclusion that there
are 28 = 256 possible shape configurations of the surface within a cube. In
practice, we use a simplified lookup table with fourteen shape configurations
(Figure 7.3). In fact, using cube symmetry operations (reflections and rota-
tions), those 256 possible shape configurations are easily reduced to fourteen
unique cases.

If a vertex has a function value equal or less than isovalue ¢ of the surface,
its bit is set to 0 (marked as o in Figure 7.3); otherwise, it is set as 1 (marked
as e in Figure 7.3). A cube edge crosses the surface if its vertices have dis-
tinct values (0 and 1). This bit encoding of vertices leads to the classification
(step 10 of Algorithm 23) of the topological shape of the surface within each
cube, as illustrated in Figure 7.3. This classification eases the interpolation
(step 11 of Algorithm 23) of edges which do intersect the surface, reducing
the processing workload to a minimum as non-transverse edges need not be
processed.

Note that, for 3D medical images (e.g. MRI), no function is evaluated
on the vertices because the data values are given by eight pixels, four each
from two consecutive digital slices of a sliced volumetric data set. That is,
sampling reduces to two stages: classification and interpolation. For that, we
use a trilinear interpolant F(z,y, z) to reconstruct the surface corresponding
to a given threshold value. This interpolant is a cubic polynomial. Therefore,
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Fig. 7.3. Topological configurations for marching cubes.

intersection points between the surface (described by the interpolant) and
voxel edges usually are found by linear interpolation because we only use the
data values of the pixels of each slice to reconstruct the surface in a volumetric
data set.

Found the interpolated points, only the polygonisation of the surface (third
stage) remains to be done. The third stage reduces to triangulate the polygons
within each cube before rendering the triangular mesh that approximates the
surface (step 12 of Algorithm 23). For example, the quadrangles of the cases
2, 6, 8 and 10 can be easily decomposed into two triangles each. Thus, MC
algorithm generates a mesh that approximates an implicit surface as described
in Algorithm 23.
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Ambiguities

MC algorithm does not offer topological guarantees. The polygonisation of
the surface can be foiled up by eventual shape topological ambiguities that
the algorithm cannot detect or solve. There are two types of ambiguities:

e Face ambiguities.
e Interior ambiguities.

Let us look at the 2D ambiguous configurations 5 and 10 in Figure 7.2.
These configurations are ambiguous because they possess four intersection
points on the boundary of a square. Disambiguation in 2D is then a matter of
selecting the right pairs of intersection points to connect. In 3D, face ambigu-
ities of a cube also occur when all its four edges intersect the surface. In this
case, the triangulation procedure has to determine which pairs of intersection
points to connect. If pairs are wrongly formed, “holes” or cracks may appear
through the surface mesh when we try to merge the triangle edges of adjacent
cubes. This first problem was pointed out by Diirst [122] and arises when the
topological configurations of adjacent cubes do not match, as illustrated in
Figure 7.4. In Figure 7.4(a), the adjacent cells possess matching topological
configurations so that the surface will be polygonised without cracks in the
shared face. Note that matching topological configurations mean matching po-
larity of vertices on the shared face. On the contrary, in Figure 7.4(b), there
is not such a matching because the 3-type cell appears rotated 90 degrees
in relation to its position in Figure 7.4(a); hence, the cracking phenomenon.
That is, the lack of the shape continuity or matching between adjacent cells
leads to the appearance of cracks in the final polygonised surface.

There are a couple of face disambiguation techniques. They are exactly
those seen above for marching squares in 2D. The first, called the four triangles
technique, was proposed by Wyvill et al. [422] in the context of isosurfacing
in computer graphics. The second is due to Nielson and Hamann [303] and
is called asymptotic decider. Recall that the asymptotic decider is based on
the saddle point value of the bilinear interpolant to carry out the correct

3-type
cell
(a) polygonisation without cracks (b) polygonisation with a crack

Fig. 7.4. Matching topological configurations of adjacent cubes.
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connections between pairs of intersection points on an ambiguous face. Both
techniques guarantee the continuity between cells. However, the four triangles
technique not always guarantees the topological correctness of the surface on
the domain boundary. Fortunately, the unlike the asymptotic decider does.

As van Gelder and Wilhelms [395] pointed out, there is continuity between
cells if and only if each triangle edge is shared by exactly two triangles, ex-
cept for those triangle edges lying on the bounding box boundary. Otherwise,
cracks will appear through the surface mesh. The topological shape is cer-
tainly incorrect if not continuous. However, continuity is a necessary, but not
sufficient, condition for getting a surface mesh with topological guarantees.

Recall that the asymptotic decider only aims to solve face ambiguities. But,
other ambiguities may occur in the interior of a cube. In fact, Natarajan [295]
and Chernyaev [84] independently noted that additional ambiguities may ap-
pear in the representation of the trilinear interpolant in the cube interior. This
may even happen when the cube has no ambiguous faces.

For example, configuration 10 (Figure 7.3) has no ambiguous faces but it
admits at least two different shapes, as shown in Figure 7.5 (recall that data
varies trilinearly within the cell). The first shape is the usual one with two
separate components, while the second is a simple component with a tunnel
through it.

In [76], Natarajan proposes a similar method to the asymptotic decider
to detect the existence of internal tunnels. For that, he uses the concept of
body saddle point as an extension of 2D saddle point, i.e. a point at which
all the three first derivatives of the trilinear interpolant vanish. So, for con-
figuration 10, if the function evaluates negative at the body saddle point (i.e.
it has opposite sign to the two marked positive vertices), the surface has two
connected components inside the cube. If the body saddle point is positive,
then there is a tunnel between those two marked positive vertices. Natarajan
also indicates that internal tunnels may appear in configurations 4, 6, 7, 10,
12 and 13. Chernyaev [84] uses a different disambiguation strategy, but the
results are essentially the same.

Fig. 7.5. Ambiguities in the cube interior.
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Matveyev [261] also addresses the interior ambiguity problem, being the
interior ambiguities resolved by inspecting the behaviour of the trilinear func-
tion along the cell diagonals. van Gelder and Wilhelms [395] propose a disam-
biguation technique in the interior of a cube, but this technique requires data
beyond the extent of the cube itself, i.e. data from the surrounding cubes. It is
a very time-consuming technique just to be used for disambiguation, with the
further disadvantage that it must be applied to both nonambiguous and am-
biguous cubes. This is troublesome because discontinuities may appear when
one applies linear interpolation to an nonambiguous cube and cubic inter-
polation to an adjacent and ambiguous one. van Gelder and Wilhelms [395]
propose other disambiguation techniques that use the gradient vector at the
cube vertices to study how the function behaves across the domain. In fact, the
gradient vector, which is normal to the surface, indicates the direction along
which the function rises most rapidly, being its magnitude that determines
how quickly the function rises in that direction.

Cignoni et al. [85] propose a disambiguation strategy based on an adaptive
mesh refinement in order to get a very accurate representation for trilinear
isosurfaces. For that, a new, exhaustive look-up table (ELUT) was designed to
encode multi-entry patterns for each ambiguous configuration. Once again, in
[301], Nielson extends his own work by presenting a more precise characterisa-
tion and classification of the isosurfaces of trilinear functions. Based on these
results, he presents a new polygonisation algorithm that outputs a triangular
mesh that approximates isosurfaces for data given on a 3D rectilinear grid.
Lopes [243] and Lopes and Brodlie [244] also discusses and proposes accurate
disambiguation techniques using additional points on the boundary and inte-
rior of the cube. Lewiner et al. [232] describes an efficient implementation of
marching cubes with topological guarantees. Recently, Renbo et al. [337] have
provided a robust and topologically correct MC algorithm without using the
conventional look-up table.

In short, several techniques have been devised to overcome shape ambigu-
ity problems on the boundary and interior of marching cubes. In addition to
these local disambiguation techniques, various global solutions and algorithms
have been proposed in the literature to solve these ambiguity problems. T'wo
of these algorithms are the dividing-cubes and the marching-tetrahedra, which
can be viewed as variants of the marching cubes.

7.2.3 Dividing Cubes

Dividing cubes algorithm was proposed by Cline et al.[86] and is a variant
of marching cubes. It was introduced in the context of the production of 3D
medical images, i.e. surface reconstruction and rendering, in order to bypass
the scan conversion step of polygonal rendering algorithm.

Dividing cubes differs from marching cubes in that each cube is divided
into pixel-sized cubes, also called pixel-sized voxels. This division depends on
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both image and data resolution. Each voxel is classified as being inside, out-
side or intersecting the surface with reference to the threshold value of the
isosurface. As usual, it is this threshold value that determines which human
organ will be visualised. But, unlike marching cubes, the sampling stage re-
duces to check whether each of those pixel-sized cubes belong to the isosurface
or not. There is no need for setting topological configurations for cubes, nei-
ther applying numerical interpolation to find surface points between vertices.
This explains why there is no concern about the shape ambiguities over cells.

After extracting the surface through this pixel-sized sampling, the visu-
alisation of the surface is straightforward. The algorithm generates a single
surface point for each pixel-sized voxel that intersects the surface. Such a point
is the centre of this pixel-sized voxel. Then, one computes the gradient vector
at the voxel centre point by interpolating the gradients on its eight vertices
in order to display it according to the Phong shading model.

Thus, the idea is to approximate the surface by a cloud of points instead of
a mesh of triangles. Displaying point primitives is more efficient than triangles
in terms of memory and time because point primitives can be displayed on
the raster directly. This means that the polygonisation stage of the marching
cubes is no longer necessary. This is particularly adequate in high-resolution
medical imaging, as the density of triangles increases in such a way that
the size of each triangle decreases and tends to the pixel size. Consequently,
rendering points instead of triangles pays off in terms of computational cost.

7.2.4 Marching Tetrahedra

Marching tetrahedra (MT) is an algorithm for computing a triangular mesh
that approximates an isosurface in a 3D volume. It is another attempt to solve
the ambiguities of the marching cubes. Where the marching cubes algorithm
decomposes the 3D volume into cubic cells, the marching tetrahedra algorithm
performs such a decomposition into tetrahedral cells or tetrahedra.

Tetrahedral Decompositions of a Cube

There are exactly 74 triangulations of the 3-cube, which fall into six classes
of combinatorially different types [44, 107, 225]. Representatives of three of
these classes are shown in Figures 7.6-7.8. All these triangulations of the
3-cube are regular. But, for higher-dimensional cubes, d-cubes (d > 4), not
all triangulations are regular [107].

Interestingly, the smallest size of a triangulation of the 3-cube that slices
off its vertices is 5 [198]. Such a minimal triangulation is shown in Figure 7.6.
Recall that the size of a triangulation is the number of its higher-dimensional
simplices. It is also known that the maximum size of a triangulation of the
d-cube is d! [225]. Therefore, any maximal triangulation of the 3-cube has size
6, as those depicted in Figure 7.7 and Figure 7.8.
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Fig. 7.6. 5-decomposition of a cube into tetrahedra: (a) one equilateral tetrahedron
and (b)-(e) four cubic tetrahedra.

Fig. 7.7. 6-decomposition of a cube into tetrahedra.
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Fig. 7.8. Kuhn decomposition of a cube into tetrahedra.

Piecewise Linear Interpolation

Using piecewise linear interpolation aims at solving ambiguities within n-
dimensional hypercubes. Each hypercube is divided into d! smaller pieces,
called simplexes. Recall that a simplex is a convex region bounded by hyper-
planes of lower dimension.

The interpolation varies linearly over each simplex. Again, for simplicity,
we only consider here the unit hypercube I¢ = [0, 1] x [0, 1] x.. .. x [0, 1]; the gen-
eral case simply requires scaling factors. Let us first consider the 2-dimensional
case, i.e. the unit square in Figure 7.9(a). Let us also label the values of the
linear interpolant at each of the vertices as F(0,0) = Fyo, F(1,0) = Fio,
F‘I(l7 1) = Fll) and F‘I(O7 1) = FOl-

The diagonal line in Figure 7.9(a) slices the square into 2! = 2 triangles:
the lower triangle is the region 0 <y < = < 1, and the upper triangle is the
region 0 < z < y < 1. The linear interpolant over the lower triangle is given
by the following expression:

F(z,y) = Foo + (Fio — Foo)z + (F11 — Fio)y- (7.11)
Analogously, in the upper triangle, the linear interpolant is
F(z,y) = Foo + (Fo1 — Foo)y + (F11 — Fo1). (7.12)

Let us consider now the linear interpolation over the unit cube I* = [0, 1]3,
as shown in Figure 7.9(b). In this case, the cube is sliced into 3! = 6 tetrahedra,
as for example the Kuhn triangulation shown in Figure 7.8. Let us consider,
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Fig. 7.9. Piecewise interpolation of the unit 2-cube and the 3-cube.

for example, the tetrahedron 0 < z < z < y < 1 (Figure 7.8(b)). As illustrated
by the arrows on the edges of the cube depicted in Figure 7.9(b), we follow
the path by sorting the variable values in ascending order, say y > z > x, so
that the interpolation formula for every point within this tetrahedron is:

F(x,y,2) = Fooo + (Foio — Fooo)y + (Fo1r — Foi0)z + (Fi11 — Foir)z. (7.13)

Note that the function values Fyog, Fo10, Fo11, and Fii; are picked up
by following the ascending order: first y, second z, and then z. Note that
every point within a tetrahedron has the same ascending order. Therefore,
it is straightforward to obtain interpolation formulas for the remaining five
tetrahedra inside the cube. And, more importantly, this easily generalises to
higher dimensions.

Recall that the main problem with cubic grids—whose scalar data is stored
at the vertices—is that the linear interpolation over a cube may produce
ambiguous surface configurations inside such a cube. The idea of splitting
cubes into tetrahedra aims at solving such ambiguities because the linear
interpolation over a tetrahedron becomes unique and the isosurfaces between
any two neighbouring tetrahedra are conformal [409]. Note that we are here
assuming that the interpolation scheme acts on scalar values at the vertices so
that the isovalues inside a tetrahedron correspond to isolevel planes, as shown
in Figure 7.10. This means that the transition between two neighbouring
tetrahedra is not differentiable, but it is scalar-value conformal, as typical
for piecewise linear interpolation.

As noted above, up to symmetry, there are six possible ways of decompos-
ing a regular cube into tetrahedra. These six combinatorial classes fall into two
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Fig. 7.10. Shape configurations inside a tetrahedron.

families with reference to their size: the 5-tetrahedral decomposition and the
6-tetrahedral decomposition. The 5-tetrahedral decomposition corresponds to
the minimal triangulation of a cube into five tetrahedra (Figure 7.6), which
yields an orientation switch of two opposite diagonal face edges of the cube.
Consequently, the tessellation of the isosurface inside a given cube forces a par-
ticular tessellation of all neighbouring cubes in order to guarantee a conformal
mesh. To be more specific, if such 5-tetrahedral cubes are stacked together to
a chain, the mesh in each cube must be rotated by an angle of 7/2.

In the case of a 6-tetrahedral decomposition (i.e. a maximal tetrahedrali-
sation) of a cube, opposite face edges have identical orientations. This means
that we can use the same procedure and direction of cutting a cube into tetra-
hedra so that non-conformal mesh tessellations vanish completely. Looking at
Figure 7.8, we see that the Kuhn decomposition of a cube into six tetrahedra
is obtained by splitting diagonally through the three pairs of opposing faces.
In addition to the twelve edges of the cube, we now have more six face di-
agonals, and the main diagonal. Similar to marching cubes, the intersections
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of these 19 edges with the isosurface are approximated by linear interpola~
tion of the values at the grid corners. Note that all faces of the original cube
are now divided into two triangles, so that adjacent cubes share all edges in
the common face. This nice property prevents the appearance of cracks in
the rendered surface. This is very important for maintaining topological con-
sistency because interpolation of the two distinct diagonals of a face usually
produces different intersection points. Another advantage is that up to five
of computed intersection points (including their surface normals and other
graphics attributes) can be reused when it comes the turn of processing the
neighbour cube.

The Marching Tetrahedra Algorithm

Using tetrahedra has the following advantages:

e (Generality. It works on both unstructured and structured meshes. This
makes the marching tetrahedra a generic solution for isosurface extraction
on all grid types. Recall that a structured mesh admits the standard de-
composition of a cube into five tetrahedra [3, 49, 115, 169, 172, 262, 302,
304, 305, 320, 366] or six tetrahedra [3, 10, 302, 305] without adding sup-
plementary points. On the contrary, an unstructured mesh results from
decomposing a cube into tetrahedra with reference to some supplemen-
tary point. By adding the cube centroid as a supplementary point, we can
produce a 12-tetrahedral subdivision after splitting each cube face by a
single diagonal [3, 49, 75, 81]. We can then progressively add centroids to
faces, splitting each face into four triangles in order to produce 14, 16, 18,
20, 24 or 48 tetrahedra [3, 34, 427]. In particular, the 24-tetrahedral sub-
division of a tetrahedron appears in a number of works [3, 10, 156, 407],
and is known as barycentric subdivision (BCS). In general, the BCS of an
n-dimensional simplex consists of (n + 1)! simplices; hence a tetrahedron
or 3-simplex is BCS-decomposed into 24 tetrahedra.

e Disambiguation. The second advantage is that tetrahedra are less prone
to shape ambiguities. The main reason behind this is that the number of
surface configurations in a tetrahedron is far less than the number of con-
figurations inside a cube. In fact, taking into account that each tetrahedron
has only four vertices, we can say that there are only 16 topological con-
figurations, which can be reduced to eight by symmetry, as illustrated in
Figure 7.10. These eight cases can be even reduced down to three cases by
using rotations. The first case is the topological pattern 0 (Figure 7.10(a)),
where no surface intersects the tetrahedron. Note that the filled and hol-
low circles at the vertices indicate that the vertices are on different sides
of the surface. The cases 1, 2, 3 and 4 shown in Figure 7.10(b)-(e), respec-
tively, represent the same topological pattern of a surface triangle defined
on three faces of the tetrahedron. Finally, the cases 5-7 shown in Fig-
ure 7.10(d)-(g) represent the topological pattern of a convex quadrangle
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defined on the four faces of the tetrahedron; each quadrangle is usually
divided into two triangles for polygonisation purposes.

The tetrahedral decomposition of the cube ends up with a set of tetrahe-
dra within which the isosurface is correctly drawn as a plane. Note that we
are here assuming that a linear model is being used. However, if the data vary
trilinearly within the cubic cell, as is the case in the MC, then such a tetrahe-
dral decomposition may be not free of ambiguities. Therefore, it is not correct
to assume linear variation of data along the edges of a tetrahedron [243]. That
is, no claim can be made about the automatic removal of ambiguities of MC
by simply decomposing cubes into tetrahedra.

The marching tetrahedra algorithm was first suggested by Shirley and
Tuchman [366]. See also Bloomenthal [50] for an elegant implementation of
a tetrahedral polygoniser. This algorithm is essentially the marching cubes
algorithm (Algorithm 23) with the 5-tetrahedral decomposition step for each
cube. Obviously, the look-up table has now three unique entries for topological
configurations, and the surface within each tetrahedron is approximated by
two triangles at maximum.

7.3 Spatial Continuation

Spatial continuation is a hybrid scheme that combines exhaustive enumera-
tion and continuation. The spatial partitioning is driven by a continuation
scheme, as that one presented by Wyvill et al. [422]. Continuation consists of
producing new transverse cubes (i.e. cubes intersected by the implicit surface)
incrementally from a seeding cube which straddles the surface (Figure 7.11);

(a)

Fig. 7.11. Spatial continuation on two implicit surfaces: (a) z — = 0; (b)
(= (@ +9M))@" +y* + (2 +2)%) = 0.
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this process continues until the entire surface is enclosed by the collection
of cubes [50, 52]. The surface within each cube is then polygonised, i.e. the
surface patch inside each cube is approximated by one or more polygons, as de-
scribed [49]. As expected, this “marching cubes” method also produces cracks
in the surface because of the ambiguities described above. An implementation
in C of this method is presented by Bloomenthal [50].

These algorithms combine the principles of both spatial exhaustive enu-
meration and continuation. As a consequence, the main problem of continu-
ation algorithms—i.e. the computation of at least one seeding point on each
component of the surface—may be then solved by applying interval arithmetic
to axially aligned rectangular boxes belonging to the complement of the union
of surface-straddling cubes inside the bounding box.

7.4 Spatial Subdivision

Subdivision is an adaptive space partitioning technique. It is another attempt
to solve the ambiguity problems resulting from the use of regular space grids.
Before proceeding, let us recall that an implicit object is defined as the zero
set of a real function f: Q2 C R™ — R, i.e. it is the solution set of an equation
f(p) = 0. For well-behaved functions, this zero set is a (n — 1)-dimensional
variety in R”; in particular, such a zero set is an implicit curve in R? or an
implicit surface in R3.

7.4.1 Quadtree Subdivision

This section shows how to achieve an adaptive polygonal approximation to a
curve implicitly defined in R? as follows:

C={(r,y) €QCR?: f(x,y) =0} (7.14)

where (2 is the domain given by an axis-aligned bounding box. Following Lopes
et al. [245], what we mean by adaptive is twofold: first, the subdivision of the
bounding box 2 into smaller boxes is more intensive or finer near the curve
C; second, the polygonal approximation is curvature-adaptive, i.e. the higher
the curvature of C, the finer is the quadtree subdivision (Figure 7.12).

The advantage of the quadtree subdivision over the spatial enumeration is
that the size of the boxes is shape-adaptive so that eventual shape ambiguities
are resolved by further subdivision. For example, to make sure that the curve
depicted in Figure 7.12(b) does not self-intersect on the positive z-axis and
near to the origin, the quadtree has been subdivided down to a finer resolution
around there.

However, even so, if the resolution of the subdivision—i.e. the minimum
size of boxes—is not enough, some small components and isolated points of
the curve may remain undetected and are missed. In other words, the topo-
logical shape of the curve may be not preserved. The obvious solution for
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(a) y* — 2 +2zy =0 (b) y* —a® +2xy —x =0

Fig. 7.12. Quadtree subdivision for two implicit curves.

this problem is to use interval arithmetic or affine arithmetic (see Chapter 4
for more details). Doing so, we add robustness to the curve polylineariser, in
which the interval arithmetic plays the role of curve locator within each box.
The curve exists inside a box if f takes on the value 0 over two perpendicular
intervals or sides of a square. These boxes are called zero boxes. However, as
seen in Chapter 4, there may be false zero boxes, and the results are even
worse if floating-point computations are involved.

Note that a curve locator (e.g. interval arithmetic, affine arithmetic, or
any of their variants) is not used to sample the curve because that would
require to recursively subdivide a box down to a nearly infinitesimal resolution.
Instead, we use a root finder to compute the curve points that result from the
intersection between the curve and the edges of each zero box. Usually, such a
root finder builds on some classical numerical method (e.g. bisection method,
false position method or Newton’s method), but there is no impediment to the
usage of a symbolic root finder (e.g. Bézier root finder) based on the Descartes
rule. However, most symbolic root finders only apply to polynomials, not to
generic real functions.

The quadtree subdivision algorithm for implicit curves is described in
Algorithm 24. This algorithm has three subdivision stopping conditions:

e Inemxistence of curve components. Testing the existence of any curve seg-
ment inside a box [J; is done through interval arithmetic. This criterion
appears at the step 4 and discards the boxes of the quadtree that do not
contain any curve component or segment. In fact, the box exclusion test
0 ¢ Image([J;) guarantees that only empty boxes (i.e. boxes without any
segment of the curve f~1(0)) are immediately discarded. However, it may
happen that—as explained in Chapter 4—mnot only true zero boxes, but
also some false zero boxes will be considered for subdivision, i.e. there may
be redundant and unnecessary subdivision of some boxes.

o Maximum resolution. The maximum resolution is the admissible minimum
size of the boxes. When the size of a box falls below a given threshold A,
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Algorithm 24 Quadtree Subdivision Algorithm for Implicit Curves
1: procedure QUADTREE-BASEDIMPLICITCURVE(f,C,Q2,A,T)

2: Subdivide €2 into 4 equally sized boxes [;

3: for i +— 0,3 do

4 if 0 ¢ Image;(0J;) then > box exclusion test
5: Discard [J;

6 else

7 if (size(0d;) < A) V (curvature(C) < 7) then

8 Find roots of f along edges of [J; > curve points C N Fr(0J;)
9: Polylinearise the curve across [;

10: else

11: QUADTREE-BASEDIMPLICITCURVE( f,C,[0;,A,7)

12: end if

13: end if

14: end for
15: end procedure

the recursive subdivision stops and the box becomes a leaf box of the
quadtree.

o  Minimum curvature. The minimum curvature 7 of the curve inside a given
box works as a threshold below which the subdivision also stops. The idea
is to stop subdividing a box when a curve segment inside it is approxi-
mately flat.

Note that Algorithm 24 also has the classical structure of a space partition-
ing algorithm, namely: partitioning (step 2), sampling (step 8), and polylin-
earisation (step 9). It is a robust algorithm because it uses interval arithmetic
as a fast and robust discarder of empty boxes (i.e. boxes that do not contain
any curve segment). However, it is not strictly necessary to use the interval
arithmetic as a discarder of empty boxes. By evaluating f at the vertices of a
given box [J;, we are able, in principle, to check whether a box is empty or not.
In fact, if f does not change sign at the vertices of [J;, we conclude that [J; is
an empty box. But, this alternative technique for checking the transversality
of the curve within a box fails if a small component of the curve lies entirely
in a box; hence the use of interval arithmetic.

It seems that Suffern [377] was who first tried to use adaptive enumer-
ation, instead of full enumeration, to approximate implicit curves. Shortly
afterwards, Suffern and Fackerell [379] introduced interval arithmetic as a
robust support for the enumeration of implicit curves, whose algorithm is es-
sentially the Algorithm 24. Nevertheless, the credit of the first application of
interval arithmetic in computer graphics is due to Mudur and Koparkar [287].
In [370, 371], Snyder describes a geometric modelling system based on inter-
val arithmetic, which includes an approximation algorithm for implicit curves,
but the corresponding quadtree decomposition is not adapted to the curva-
ture. These pioneering works on interval methods in computer graphics have
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given rise to interesting research results, in particular to the development of
several variants of interval arithmetic (e.g. affine arithmetic [17, 90, 102]).

7.4.2 Octree Subdivision

Similar to 2D implicit curves, a 3D implicit surface S is defined as a zero set
of some real function f, whose domain in now in R?:

S={(z,y,2) €EQCR?: f(x,9,2) =0} (7.15)

where 2 is the domain given by an axis-aligned bounding box.

As for quadtrees, the idea behind the octree subdivision is to provide an
adaptive approximation to implicit surfaces. That is, a cubic box through
which the surface passes is subdivided into eight smaller boxes. These smaller
cubes are stored into an octree data structure (see Chapter 2 for further
details). Therefore, the first stopping criterion for an octree approximation to
an implicit surface is the emptiness of a given octree box (i.e. the box exclusion
criterion). Also, the curvature of the surface within a box and box resolution
(i-e. a box has reached its minimum size) can work as stopping criteria for the
octree subdivision (step 7 of Algorithm 25). Other criteria appear listed in
[49]. Their importance come from the fact that they reinforce the adaptivity
of the approximation to the implicit surface.

However, these adaptive criteria are not sufficient to resolve all the topo-
logical ambiguities. Note that a leaf box is topologically unambiguous if the
surface can be approximated by a single polygon within such a box. Topo-
logical unambiguity may work as the fourth stopping criterion of the octree
subdivision. But, resolving all ambiguities may not be an easy task. For exam-
ple, it is not easy to distinguish a surface consisting of two touching spheres

Algorithm 25 Octree Subdivision Algorithm for Implicit Surfaces

1: procedure BLOOMENTHAL(f,S,Q,A,7)

2 Subdivide €2 into eight equally sized boxes [J;

3 for i — 0,7 do

4 if 0 ¢ Image;(0J;) then > box exclusion test
5: Discard [J;

6 else

7 if (size(d;) < A) V (curvature(S) < 7) then

8 Find roots of f along edges of [J; > surface points S N Fr(0;)
9: Polygonise the surface S across [J;
10: else
11: BLOOMENTHAL( f,S,0;,A,7)
12: end if
13: end if

14: end for
15: end procedure
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from another having two almost touching spheres inside a given box; the first
has only one component, while the second possesses two components. The
problem here is that likely the polygonisation of the surface will be messed-up
inside the box where the surface-touching point lies in.

Satisfied the subdivision stopping conditions (step 7 of Algorithm 25), one
starts the polygonisation (or triangulation) of the surface within each leaf cube
(step 9), after which the surface mesh is ready to be rendered. Algorithm 25
is essentially Bloomenthal’s algorithm [49]. Possibly, this is the earliest work
on adaptive approximation of implicit surfaces through cubic boxes. Bloo-
menthal’s algorithm does not use interval methods for robustness; instead,
Bloomenthal’s algorithm simply inspects the function at the vertices of a box
to check whether the box intersects the surface. This function inspection tech-
nique is not obviously robust because small components entirely inside a box
are certainly missed. The box emptiness test (steps 4 of Algorithm 25), as
opposed to the transversality test (i.e. the intersection between a box and
the surface), is generically written in order to comprise both these robust and
non-robust solutions. A robust and accurate computation of transversality can
be carried out using not only interval arithmetic, but also Lipschitz constants
[185, 207], or even derivative bounds [177].

In the line of the Bloomenthal algorithm, other octree-based recursive
space subdivision have been developed and proposed in the literature [24, 316,
325, 352, 376, 378, 379]. In [379], Suffern and Fackerell proposed the first ro-
bust implementation of Bloomenthal’s algorithm by using interval arithmetic.
In [24], Balsys and Suffern improved the crack removal algorithm proposed
by Bloomenthal [49]. With adaptive subdivisions, cracks may appear in the
polygonal mesh that approximates the surface. In fact, adjacent boxes with
different sizes (or different subdivision depth levels) mean that the surface is
approximated with different resolutions; consequently, the surface is approxi-
mated by nonmatching polygons on overlapping back-to-back faces of adjacent
boxes with different sizes. Putting it differently, the reason behind the crack-
ing problem is that the polygonisation of each cell is carried out independently
of its adjacent cells. Suffern and Balsys [378] also proposed an algorithm to
compute the intersections of implicit surfaces, having them argued that this
algorithm could be extended to polygonise self-intersecting surfaces.

More recently, and following the principle of polygonising with topolog-
ical guarantees, Paiva et al. [316] introduced another adaptive algorithm
for implicit surfaces; its robustness stems from the fact that all topological
components of the surface are located using interval arithmetic; hence, the
topological guarantees. In addition to the box emptiness test, which is a
topological criterion to locate surface components, Paiva et al. also used
a second topological criterion for locating tunnels and enabling the corre-
sponding box subdivision. Interestingly, they also use a third subdivision
geometric criterion that has to do with the curvature-based adaptivity; the
curvature is estimated from the variation of the gradient. The polygonal mesh
that approximates the surface is generated from the dual grid of the octree
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Fig. 7.13. (a) The marching cubes generates 11,664 triangles; (b) the dual march-
ing cubes generates 5396 triangles; (c) the quality—improved dual marching cubes
also generates 5396 triangles after using a simple mesh processing. (Figure kindly
provided by Dr. Afonso Paiva and his colleagues.)

using the an enhanced Schaefer-Warren method [351]. Thus, unlike the uni-
form tessellation generated by the marching cubes, the algorithm of Paiva
et al. tessellates an implicit surface adaptively, i.e. according to the value of
the surface curvature. This is illustrated in Figure 7.13, where the cyclide
(22 4+y?+22)2 =222 +72) (a®? +b%) —2(y* — 2%) (a® - b?) + (a®> = b*)? +6abrz = 0
with ¢ = 10, b = 2 and r = 2 appears tessellated using the marching cubes
(Figure 7.13(a)) and the dual octree technique of Paiva et al. (Figures 7.13(b)
and (c)). Paiva et al. call their algorithm dual marching cubes.

7.4.3 Tetrahedral Subdivision

As argued by Hall and Warren [172], one major drawback of applying the
methods of Wyvill et al.[422] and Lorensen and Cline [247] to contour a trivari-
ate function is that these methods must sample the function uniformly at a
cubic grid of points. As a consequence, to accurately approximate the contour,
the function must be sampled closely, and thus heavily, even in regions where
the function is nearly linear. One solution to this problem is to use an adap-
tive subdivision scheme, sampling more closely near high-curvature regions
of the surface. There are two adaptive subdivision schemes: (a) the adaptive
octree subdivision scheme or, alternatively, (b) the adaptive tetrahedral subdi-
vision scheme. In the previous section, an adaptive octree subdivision scheme
has been described. This section deals with adaptive tetrahedral subdivision
schemes.

The first adaptive tetrahedral subdivision scheme to polygonise implicit
surfaces was proposed by Hall and Warren [172]. Hall-Warren’s algorithm
performs an adaptive partition of space into tetrahedra. Interestingly, and re-
gardless of the subdivision level, this tetrahedral subdivision enjoys the hon-
eycomb property, i.e. the collection of all tetrahedra forms a honeycomb, the
3D analogue of a tessellation [93]. A honeycomb is a polyhedral partition of
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€11 f21

f13 f12

(a) (b)
Fig. 7.14. Keeping the honeycomb in 2D.

space in which the i-dimensional face of each polyhedron meets only one other
i-dimensional face on a (i — 1)-dimensional face. Figure 7.14 illustrates this in
2D for triangles. The equilateral triangles f; and f5 share a common edge ey,
but after splitting f1 into fi1, fi2, fi3 and f14 the honeycomb rule is violated
(Figure 7.14(a)). In order to maintain the honeycomb rule, e; must be split
into e;; and ejs, and fy into fo; and fos. Note that the partition of fo is
partial. The reader is referred to Hall and Warren [172] to observe the subdi-
vision patterns of equilateral and isosceles triangles, as needed to decompose
equilateral and cubic tetrahedra, respectively, of the 3D honeycomb.

By maintaining a honeycomb, the algorithm guarantees that the surface
will be approximated by a polygonal mesh without cracks. Possibly, this is
a major advantage of adaptive tetrahedral subdivisions over the octree sub-
division of space, yet not all types of tetrahedral subdivisions maintain a
honeycomb. In the rest of this section, we only deal with honeycombs.

Tetrahedral Honeycombs

Hall-Warren’s algorithm uses an adaptive subdivision of a tetrahedron into
twelve smaller tetrahedra. The result is an unstructured tetrahedral subdivi-
sion, as opposed to a Kuhn subdivision. The subdivision of a regular tetrahe-
dron is performed in two steps (Figure 7.15).

First, one subdivides such a regular tetrahedron into four regular tetrahe-
dra (Figure 7.15(a)) and one regular octahedron (Figure 7.15(b)) by cutting
off each corner of the original tetrahedron. This cut is done in a way that
each face of the tetrahedron, an equilateral triangle, is subdivided into four
smaller equilateral triangles (Figure 7.15(a)). Second, the remaining regular
octahedron (Figure 7.15(b)) left in the middle of the original tetrahedron is
then split into eight similar tetrahedra by creating a vertex at the centre of the
octahedron and projecting edges to each of its corners (Figure 7.15(c)). These
eight tetrahedra are called cubic tetrahedra, since each of these tetrahedra
may be formed by cutting a corner off a cube.
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(a) (b) (c)

Fig. 7.15. Subdivision of an equilateral tetrahedron into four equilateral tetrahedra
(in red) and eight cubic tetrahedra (in green and blue).

(a) (b)

Fig. 7.16. Subdivision of a cubic tetrahedron into one regular tetrahedron (in red)
and six cubic tetrahedra (in green and blue).

The 12-tetrahedra subdivision described above involves two types of tetra-
hedra: regular tetrahedra and cubic tetrahedra. To keep the honeycomb we
need a matching subdivision for cubic tetrahedra. This subdivision is illus-
trated in Figure 7.16.

First, one subdivides the equilateral face of a cubic tetrahedron (the pos-
terior tetrahedron face in Figure 7.16(a)) into four equilateral triangles (Fig-
ure 7.16(b)). Then, one subdivides the remaining three isosceles triangles as
shown in Figure 7.16(b). The resulting tetrahedron decomposition consists of
one regular tetrahedron and three pairs of cubic tetrahedra as shown in Fig-
ure 7.16(c). The small regular tetrahedron (in red) in Figure 7.16(c) can be
alternatively obtained by projecting from the vertex opposite the equilateral
face of the original cubic tetrahedron.

These two mutually recursive subdivisions involving only two types of
tetrahedra (regular tetrahedra and cubic tetrahedra) allow us to construct
arbitrarily fine honeycombs. Similar to the 2D case, the recursive subdivision
of a single tetrahedron may cause the honeycomb property to be lost, unless
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the neighbours of that tetrahedron are partially subdivided to maintain the
property. This way, it is possible to construct a continuous (i.e. without discon-
tinuities) piecewise linear function that interpolates the values at the vertices
of the tessellation, as usual in discrete data-based algorithms. For continuous
data-based algorithms, this guarantees that the mesh that approximates the
implicit surface is formed without cracks.

The Algorithm

The algorithm may start with either a regular tetrahedron or with a tetra-
hedral mesh on the domain, though a nonregular tetrahedron could be also
used by treating it as if it were regular. The nonregularity of a tetrahedron
does not break the honeycomb property of the subdivision scheme because
the subdivision of an irregular original tetrahedron is just the image under a
linear transformation of the subdivision of a regular tetrahedron [172].

Velho [397, 398, 399] and Hall and Warren [172] should be given the credit
of introducing the first adaptive tetrahedralisation algorithms in computer
graphics. In general terms, they are similar, so we are going to focus on Hall-
Warren’s algorithm.

The Hall-Warren algorithm (see Algorithm 26) consists of five major
stages:

Decomposition of the bounding box into cubes.
5-tetrahedral decomposition of cubes.

Uniform subdivision of tetrahedra.

Adaptive subdivision of tetrahedra.
Polygonisation of transverse tetrahedra

The first stage decomposes an axially aligned bounding box into a grid
of cubes (step 2 of Algorithm 26). At the second stage (steps 6-9 of Algo-
rithm 26), these cubes are partitioned by using, for example, a 5-tetrahedral
decomposition. Recall that the 5-tetrahedron decomposition consists of one
regular tetrahedron and four cubic tetrahedra (Figure 7.6). The third stage
(step 10 of Algorithm 26) performs a uniform subdivision of the tetrahedra
down to a given minimum level Iy, regardless of whether the surface crosses
a tetrahedron or not. Therefore, I\in works as a stopping condition for the
first stage of the algorithm. The fourth stage (step 12 of Algorithm 26) con-
cerns the adaptive subdivision of tetrahedra. Only transverse tetrahedra are
subdivided, but the subdivision of each tetrahedron depends on the curvature
of the surface. Finally, the algorithm performs the polygonisation (steps 14—
15) of the surface inside each transverse tetrahedron.

It is worthy noting that Hall-Warren’s algorithm comprises three tetra-
hedral decompositions. After applying a 5-tetrahedral decomposition to each
cube of the original cube grid (steps 6 and 7 in Algorithm 26), more two tetra-
hedral decompositions take place: a uniform decomposition (step 10) and an
adaptive decomposition (step 12).
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Algorithm 26 Tetrahedral Subdivision Algorithm for Implicit Surfaces
1: procedure HALLWARREN(f,S,Q,lmin,IMAX)

2: Subdivide € into a grid of equally sized boxes {{J;}

3 {AfN} —o > list of ACTIVE tetrahedra
4 {AFYON} o > list of new ACTIVE tetrahedra
5: n — #{0:}

6: for i — 0,n—1 do

7 Subdivide O; into five tetrahedra {A} > 5-tetrahedrom decomposition
8: [AJVONY  {ATVONY U {A)

9: end for

10:  UNIFORMSUBDIVISION({APN}, {ATVONY 1) > uniform subdivision
11: {AFFY — o > list of PASSIVE tetrahedra
12:  ApAPTIVESUBDIVISION({APN}, {ADFF} lvax) > adaptive subdivision
13: N — #{AQF}
14: for 1 <— 0,N —1do > polygonisation
15: Polygonise APYY

16: end for
17: end procedure

Algorithm 27 Uniform Tetrahedral Subdivision

1: procedure UNIFORMSUBDIVISION({APN}, {ATVON} Thin)
2 if lMIN:O then

3 {APN} — {APN} U fAyvONy

4 return

5 end if

6: n — #{AFVONY

7 for i — 0,n—1 do

8 Subdivide AN into {A;}

9 UNIFORMSUBDIVISION({APN}, {Ar},lvin — 1)
0 end for

1: end procedure

The uniform decomposition subdivides regular and cubic tetrahedra down
for a number Iy of subdivisions, as described in Algorithm 27. This uniform
subdivision of each tetrahedron terminates after completing a number lyn of
recursion cycles (step 2 of Algorithm 27), being then the resulting terminal
tetrahedra inserted into the list {A?N} of active tetrahedra (step 3 of Algo-
rithm 27). These tetrahedra are called “active” in the sense that they still
need be processed to check whether they contain the surface or not.

At the beginning of the adaptive subdivision stage, the list {A?N} then
contains all terminal tetrahedra generated at the uniform subdivision stage.
Algorithm 28 takes as input this list of active tetrahedra, and outputs the list
{APFFY of passive tetrahedra. These passive tetrahedra are transverse to the
surface and are ready to polygonisation stage. The active tetrahedra A?N are
subject to two stopping subdivision criteria (see Algorithm 28):
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Algorithm 28 Adaptive Tetrahedral Subdivision

1: procedure ADAPTIVESUBDIVISION(f,S,{A?N}, {APTF} Inmax)
2: n — #{AFN}

3: if (n =0) or (Imax=0) then

4: {A;)FF} P {A?FF} U {A?ewOFF}

5: return

6: end if

7: for i <— 0,n — 1 do

8: if 0 ¢ Im;(APY) then > exclusion box test
9: Discard A?N

10: else

11: if S is approx. flat in A?N then > curvature test
12: {APVOFFY  insert(AY)

13: end if

14: end if

15: end for

16:  m o #{ANVOFT}
17: for i — 0,m — 1 do

18: if APVOFT i adjacent to any A?N then

19: Subdivide AMYOFF into {A}} to maintain the honeycomb
20: [AOFF) — (AOTF} U (AL}

21: else

22: {APFFY}  insert(APewOTF)

23: end if

24: end for
25: N «— #{APN}
26: for j — 0,N —1do

27: Subdivide APN into {A}
28: {A;}ewON} P {A;}ewON} U {Ak}
29: end for

300 (AN} — o

310 {APN} — {APNT U {AevONY

32: ADAPTIVESUBDIVISION(f,S,{AFN}, {APT }luax — 1)
33: end procedure

e Fxclusion test. Interestingly, Hall and Warren do not use the intermediate
value theorem to exclude empty (i.e. nontransverse) tetrahedra. Instead,
they use Descarte’s rule applied to Bézier formulation of the polynomial
that defines the surface. This test changes the state of a tetrahedron from
“active” to “discarded” (steps 8-9) so that nontransverse tetrahedra are
deleted.

o Curvature test. This test evaluates the curvature of the surface within each
active tetrahedron. If the curvature falls below a given threshold, i.e. the
surface is approximately flat therein, the active tetrahedron is re-labelled
as a new passive tetrahedron (steps 11-12). Therefore, such a tetrahedron
is inserted into the collection APVOFF of new passive tetrahedra.
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In order to maintain the honeycomb (steps 17-24 of Algorithm 28), one
proceeds as follows. If a new passive tetrahedron is adjacent to any active
tetrahedron, it is subdivided into smaller tetrahedra, which will be then la-
belled as passive tetrahedra and inserted into {AiOFF}, ready for polygonisa-
tion; otherwise, the new passive tetrahedron is simply relabelled as a passive
tetrahedron and inserted into {AP¥F} also for polygonisation.

The remaining active tetrahedra—those containing surfaces patches with
significant curvature—are then subdivided into smaller active tetrahedra, as
illustrated in steps 25-28 of Algorithm 28. Then, of course, the algorithm
recurses on this set of active tetrahedra (step 32 of Algorithm 28). The adap-
tive subdivision terminates when at least one of the following conditions is
satisfied (step 3 of Algorithm 28):

e A predefined level [yjax of adaptive subdivision is reached;
e The number n of active tetrahedra is zero.

Finally, Hall-Warren’s algorithm uses the honeycomb consisting of passive
tetrahedra, as well as any remaining active ones, to create a piecewise planar
approximation (steps 14-15 of Algorithm 26).

Various adaptive tetrahedralisation algorithms are based on Hall-Warren’s
approach, as those described by Hui and Jiang [199] and Miiller and
Wehle [289]. Hui-Jiang’s algorithm extends Hall-Warren’s algorithm in that it
uses a heuristics based on Schmidt’s work [352] to avoid intersection in highly
curves surfaces, surfaces with self-intersections or multiple components; a
process called compensate-subdivision is also used to eliminate cracks in the
tessellated surface.

The reader is still referred to Ning and Blomenthal [305] and Zhou
et al. [428] for more details on tetrahedralisations, as well as resolution of
ambiguities.

7.5 Nonmanifold Curves and Surfaces

So far, in this chapter, we have studied implicit curves and surfaces—in gen-
eral, varieties—that are manifolds. By definition, an n-dimensional manifold
(n € N) is, everywhere, locally homeomorphic to R™. This means that, an
infinitesimal neighbourhood of any point on an n-manifold is topologically
equivalent to an n-disk. Putting this differently, exactly n independent direc-
tions can be defined as the axes of a local coordinate system at each point of
an n-manifold. On the contrary, a variety V is said to be not an n-manifold if
and only if the number of independent directions we can follow from a point
is different from n.

For example, in Figure 7.17, the curve (a) is not manifold because it has an
isolated point at the origin so that no 1-dimensional local coordinate system
can be defined; the curve (b) is not manifold either because at the self-
intersection we can define two up to four 1-dimensional local systems. In
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(a) (b)

Fig. 7.17. Nonmanifold algebraic curves: (a) z* + 2z%y* — 2 + y* — 4y® = 0 and
(b) 2y — (3x — 3)y® — (322 — 3z)y — 2 = 0.

respect to nonmanifold surfaces, the Steiner surface, the Whitney um-
brella surface with handle (Figure 1.12(a)), and the Kummer surfaces (Fig-
ure 7.18(b)) are some examples we can find in the literature. In other words, a
manifold is homogeneous in dimension and does not possess self-intersections.

7.5.1 Ambiguities and Singularities

Nonmanifold features of implicit curves and surfaces arise a series of problems
to polygonisers. The main problem comes from the fact that the dimension
may not be homogeneous. Dimension is a topological invariant, so if the di-
mension of a surface is not uniform, the polygoniser will face serious difficul-
ties in keeping topological guarantees. As far as the authors know, there is
no algorithm, at least in the computer graphics literature, to resolve isolated
singularities of an n-variety, i.e. k-directional singularities (0 < k < n); these
singularities include isolated points of curves, and isolated points and lines for
surfaces.

As shown in Chapter 6, many m-directional singularities (m > n) or
self-intersections can be resolved through symbolic factorisation, in partic-
ular when a topological component has two or more symbolic components.
But, when a topological component has a single symbolic component (e.g.
Whitney umbrella surface) that self-intersects, such a procedure is no longer
possible. It is true that the mathematics behind the resolution of singularities
(see, e.g., Lu [249]) is wellknown and there are some symbolic techniques (see,
e.g., Bodndr and Schicho [55]) to compute them, but they are computationally
expensive and only apply to polynomial functions.

Thus, the integration of a singularity solver into a polygoniser remains
an open issue in computer graphics, regardless of whether the nature of the
polygoniser, either continuation-based polygoniser or space partitioning-based
polygoniser. In fact, no many articles have been published on the polygonisa-
tion of non-manifold implicit surfaces.
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7.5.2 Space Continuation

Similar to conventional polygonisers, Bloomenthal and Ferguson [53] use a uni-
form partitioning of the bounding box into smaller cubic boxes, but these sub-
sidiary boxes are obtained by spatial continuation. That is, with the exception
of the seeding box, every zero box (i.e. surface-intersecting box) is obtained
from a previously formed, adjacent zero box. To prevent cyclic propagation—
inherent to continuation algorithms—the location of each visited box is stored
in a hash table, as described by Wyvill et al. in [422]. Each zero box is then
decomposed into six tetrahedra. This tetrahedralisation aims to resolve even-
tual ambiguities. But, as seen above, tetrahedralisation-based disambiguation
is not sufficient to ensure that the surface polygonisation is performed with
topological guarantees, even for manifold surfaces.

Unlike manifold implicit surfaces, the implicit scalar fields underlying non-
manifold surfaces are no longer defined by real functions that bisect space
into interior and exterior regions. To solve this problem, Bloomenthal and
Ferguson [53] introduced a multiple space classification as a generalisation
of the binary space classification into positive and negative regions. But,
the use of multiple regions rather complicates the polygoniser, in particular
the polygonisation of surface borders and surface intersections. Recall that
Bloomenthal and Ferguson’s algorithm only applies to nonmanifold surfaces
with homogeneous dimension, i.e. surfaces with boundaries and surfaces with
intersections.

7.5.3 Octree Subdivision

In [352], Schmidt proposes an octree subdivision-based polygoniser for self-
intersecting surfaces. Using an octree data structure means that the polygoni-
sation is in principle adaptive. Tetrahedralisations of the leaf zero boxes (i.e.
boxes that intersect the surface at the maximum subdivision depth) also take
place in hope of resolving topological ambiguities caused by eventual surface
self-intersections. Unfortunately, as shown before, the resolution of ambigui-
ties through the tetrahedralisation of zero boxes may fail.

Balsys and Suffern also proposed an adaptive polygonisation for self-
intersecting surfaces [25, 378], but their polygoniser does not use tetrahe-
dralisations of the zero leaf boxes. Two examples of implicit surfaces rendered
by the Balsys-Suffern polygoniser are shown in Figure 7.18. Following their
previous own work on manifold surfaces [378], Balsys-Suffern’s method uses
an octree spatial data structure and a box exclusion test for adaptivity, in-
terval arithmetic for robustness, and uses a numerical root-finder for point
sampling over box edges. Balsys and Suffern’s polygoniser is capable of ren-
dering a number of important non-manifold implicit surfaces, but even so it
cannot be considered a general polygoniser because the surface is limited to
intersect any box edge twice at most. It is not able to handle isolated points
and dangling lines properly either. Despite its limitations, Balsys-Suffern’s
polygoniser is the most general polygoniser for nonmanifold implicit surfaces
we can found in the literature.
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(b)

Fig. 7.18. Two surfaces generated by Balsys-Suffern’s polygoniser: (a) the Dupin
cyclide (2% 4+y?+22 —r?)2 =2z +r?) (a* +b%) —2(y* — 2%) (a* —b*) +-8abrz+(a®> —b?)? =
0, with @ = 10, b = 2, and r = 2; (b) the Kummer surface (z*+y*+2>—u?)?—A\pgrs =

0, with u € RT controlling the number of double points of the surface, A = 33“_2;21 is

a scaling factor taken here as 1, and p = 1—2—v2z, ¢ = 1—24++v/2z, r = 14+24+/2y,
s = 14 z — /2y are the tetrahedral coordinates. A Kummer surface has sixteen
double points, i.e. the maximum number of double points for a surface of degree 4
in 3D space. By using the default value © = 1.3, all these double points are real
and displayed as the vertices of five tetrahedra. (Figure kindly provided by Dr. Ron
Balsys and Dr. Kevin Suffern.)

Balsys-Suffern’s Algorithm

Pseudo-code describing Balsys-Suffern’s algorithm appears in Algorithm 29.
This adaptive algorithm recursively partitions the given cubic bounding box
Q into eight equally sized boxes (step 2), which are stored into the nodes of
an octree data structure. An interval arithmetic-based exclusion test is used
to discard cubic boxes that do not intersect the surface (steps 4 and 5). Each
zero box (i.e. nonexcluded box) is then subdivided recursively down (step 32)
until the minimum subdivision depth Ay is reached (step 7). The minimum
depth works as landmark that indicates the beginning of the polygonisation.
However, the polygonisation of a box only takes place if the topological type
of the surface inside such a box is valid (step 11) and the polygons pass the
flatness test (step 12), after which eventual mesh cracks are repaired. Note
that the algorithm forces the polygonisation of the surface in a zero box when
the maximum depth Ayax is reached (step 19), regardless of its local flatness.

The admissible topological configurations of the surface inside a zero box
are depicted in Figure 7.19, namely: (a) a single surface patch, (b) two non-
intersecting patches, and (c) two intersecting patches. Similar to conventional
polygonisers, the topological pattern of the surface inside a box is determined
by first computing the intersection points between the surface and the edges
of such a box. For this task, Balsys and Suffern use a numerical root finder
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Algorithm 29 Balsys-Suffern Algorithm for Nonmanifold Implicit Surfaces
1: procedure BALSYSSUFFERN(f,S,Q,A,T)

2: Subdivide €2 into eight equally sized boxes [;
3: for i — 0,7 do
4 if 0 ¢ Imy(0;) then > box exclusion test
5: Discard [J;
6 else
7 if depth(d;) > Anin then > minimum depth test
8 if depth(0J;) < Amax then > maximum depth test
9: Find roots of f on edges of [; > sampling surface points
10: Determine topological type 7 of S inside [J;
11: if 7 is valid then > topological type test
12: if 7 is flat then > surface flatness test
13: Polygonise S across [J;
14: Fix cracks
15: else > not flat enough yet
16: if depth(d;) < Amax then
17: BALSYSSUFFERN(f,S,0;,A,7)
18: else
19: Polygonise S across [J;
20: Fix cracks
21: end if
22: end if
23: else > type 7 not valid
24: if depth(0;) < Amax then
25: BALSYSSUFFERN(f,S,0;,A,7)
26: else
27: ; > polygonisation fails
28: end if
29: end if
30: end if
31: else
32: BALSYSSUFFERN(f,S,0;,A,7)
33: end if
34: end if
35: end for

36: end procedure

based on the false position method, combined with binary interval subdivision.
But, these sampled surface points on the box edges do not allow us to distin-
guish the topological pattern in Figure 7.19(b) from the topological pattern in
Figure 7.19(c). A gradient-based criterion is used to disambiguate these two
cases. If the angle between the gradient vectors at the sampled surface points
is within a small range, then the topological pattern is that one shown in Fig-
ure 7.19(b); otherwise, we have the pattern in Figure 7.19(c). Unfortunately,
the polygonisation fails for other topological configurations (steps 11, 23 and
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(a) (b) (c)

Fig. 7.19. Admissible surface’s topological configurations in a zero box according
to Balsys-Suffern’s polygoniser.

27); in particular, if the surface crosses an edge of a zero box more than twice,
there are not any guarantees that the surface will be polygonised correctly.

Balsys-Suffern’s algorithm is a curvature-driven adaptive subdivision al-
gorithm. In the literature, we find several criteria to estimate the curvature
of a surface, namely:

the planarity of the surface in the box;
the divergence of surface normals;
the chord distance of the surface.

Balsys and Suffern use the first two in the flatness test (step 12), whereby,
if the surface patch is not flat enough inside the box, or the surface normals
is beyond a certain threshold, the box is further subdivided. The maximum
depth Ayax works as the principal stopping criterion (step 12); in particular,
it is used to stop subdivision in boxes where the surface has extreme curvature
(step 18).

7.6 Final Remarks

A number of space subdivision-based algorithms have been devised for ren-
dering implicit curves, surfaces, and even high-dimensional varieties. They all
are based on locating a series of boxes in space that intersect the surface.
For rendering purposes, the surface is usually polygonised, i.e. the surface is
approximated by one or more polygons in each cube. Early algorithms were
developed by Wyvill et al. [421] for rendering soft or blobby objects and
Lorensen and Cline [247] who designed the marching cubes algorithm for gen-
erating human organ surfaces from medical image data sets. These algorithms
have given rise to two major families for defining implicit surfaces through
space subdivisions: continuous data-based algorithms and discrete data-based
algorithms. Discrete data-based subdivision algorithms have been developed
from Lorensen and Cline’s algorithm. No function is known a priori so that
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the algorithm only operates on discrete data at the vertices of a grid, from
which a surface is generated by interpolation. In contrast, continuous data-
based subdivision algorithms operate on a given function such that continuous
data can be evaluated at arbitrary points of the domain.

Conventional manifold polygonisers are based on the principle that the
implicit function is continuous. They also assume that the function evaluates
positively on one side and negatively on the other side of the surface. Thus,
they perform a binary partitioning of space.

Implicit surfaces in 3D geometric modelling are limited to two manifolds
because the corresponding implicit fields are usually defined by real-valued
functions that bisect space into interior and exterior. We present a novel
method of modelling nonmanifold surfaces by implicit representation. Our
method allows discontinuity of the field function and assesses the special mean-
ing of the locus where the function is not differentiable. The enhancement can
yield a nonmanifold surface with such features as holes and boundaries. The
discontinuous field function also enables multiple classification of the field,
which makes it possible to represent branches and intersections of the im-
plicit surfaces. The implicit field is polygonised by the algorithm based on
the marching cubes algorithm, which is extended to treat discontinuous fields
correctly. We also describe an efficient implementation of converting a surface
model into a set of discrete samples of field function, and present the result
of the non-manifold surfaces reproduced by our method. The implicit sur-
faces are directly visualised at interactive frame rates independent of surface
complexity by the hardware-accelerated volume rendering method. We also
developed a system for visualising the implicit surfaces and have confirmed
that it can render surfaces at sufficient quality and speed.

Implicitly defined surfaces f(x) = 0 are usually displayed after computing
a polygonal mesh which approximates it. Space partitioning algorithms just
partition the bounding box surrounding the surface into a 3D polyhedron
mesh in order to sample the surface. The algorithms differ from each other in
how spatial partitioning is done.
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Implicit Surface Fitting

Surface reconstruction has become an important research topic in part due to
the appearance of 3D range scanners on the market. These scanners are ca-
pable of acquiring unstructured 3D point datasets from the surface of a given
physical object. Digital scans allow for high-quality surface reconstructions,
but this requires a particular care in recovering sharp features such as ridges,
corners, spikes, etc. Surface reconstruction has many applications in science
and engineering, in particular, geometric modelling, computer graphics, vir-
tual reality, computer animation, computer vision, computer-assisted surgery,
and reverse engineering.

8.1 Introduction

This chapter deals with surface-fitting algorithms that reconstruct surfaces
from clouds of points. There are several surface reconstruction techniques
depending on the representation in hand: simplicial, parametric, implicit sur-
faces. Even though they are different representations, they share various issues
and problems. This chapter starts with a brief review on these surface recon-
struction techniques, after which the focus will be on the implicit ones.

8.1.1 Simplicial Surfaces

Sometimes, simplicial surfaces are also called triangulated surfaces. There
are two main classes of techniques to reconstruct simplicial surfaces from a
scattered set of points: Delaunay-based and region-growing techniques.

With Delaunay-based approach, we end up having a space partitioning
into tetrahedra. To be more specific, the typical Delaunay-based surface re-
construction algorithm consists of two steps:

e Delaunay triangulation. First, one constructs the Delaunay triangulation
(or Voronoi diagram) from such a cloud of points, which consists of a

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 227
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partition of the convex hull of these sample points into a finite set of tetra-
hedra. The main advantage of the Delaunay triangulation comes from its
uniqueness; it is unique if no five sample points can be found on a com-
mon sphere. Several algorithms for constructing a Delaunay triangulation
can be found in the literature, in particular those given by Bowyer[60],
Watson [404], Avis and Bhattacharya [23], Preparata and Shamos [328],
Edelsbrunner [126], and, more recently, Hjelle and Dahlen [191], just to
mention a few.

e Triangulated surface extraction. Terminated the triangulation of the cloud
of points, it only remains to identify which simplices belong to the sur-
face. Thus, the reconstruction of simplicial surfaces consists in finding the
subgraph of Delaunay triangulation of the initial set of points [127]. The
identification of surface simplices varies from an algorithm to another.

The first Delaunay-based surface reconstruction method seems to be due to
Boissonnat [56]. In the class of Delaunay-based surface reconstruction meth-
ods, we also find the a-shapes of Edelsbrunner and Miicke [127], the crust
and the power crust algorithms of Amenta et al. [12, 13, 14], the co-cone
algorithm of Dey et al. [110, 111], and more recently the reconstruction algo-
rithms due to Yau et al. [218, 424]. Amongst these algorithms, the algorithm
of Yau et al. [218] preserves sharp features, but only in convex regions, while
the algorithm of Amenta et al. [14] is capable of reconstructing sharp edges
and corners by steering poles, a subset of circumcentres of tetrahedra. In both
cases, multiple Delaunay computations are required, so that the corresponding
reconstruction algorithms are rather time-consuming to use.

The second class of algorithms to reconstruct simplicial surfaces is based
on the concept of continuation (see Chapter 6 for more details about con-
tinuation). In the context of surface reconstruction, continuation algorithms
are known as region-growing algorithms. Starting from a seed triangle, say
initial region, the algorithm iterates by attaching new triangles to the re-
gion’s boundaries. The early surface-based algorithm due to Boissonnat [56],
the graph-based algorithm of Mencl and Miiller [267], the ball-pivoting algo-
rithm of Bernardini et al. [43], the projection-based triangulating algorithm
of Gopi and Krishnan [165], the interpolant reconstruction algorithm of Petit-
jean and Boyer [323], the advanced-front algorithm of Hung and Menq [196],
and the greedy algorithm of Cohen-Steiner and Da [88], all fall into the class
of region-growing algorithms.

In the literature, we also find hybrid algorithms that combine Delaunay-
based and region-growing approaches; for example, the algorithm of Kuo and
Yau [218, 219] is a representative of these hybrid algorithms. These algorithms
were later improved in order to reconstruct surfaces with sharp features [220].

8.1.2 Parametric Surfaces

Parametric surface fitting algorithms, also called spline-based surface recon-
struction algorithms, are quite common in numerical analysis and computer
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graphics. In the context of parametric representations, the problem of surface
reconstruction involves the computation of a surface S that approrimates as
much as possible each point of a given cloud of points in R?. The goal is then
to find a parametric surface S, defined by a function F'(u,v), that closely ap-
proximates a given cloud of points, where F' belongs to a specific linear space
of functions. Examples of such parametric surfaces are Bézier and B-spline
surfaces [132].

Traditionally, the parametric surface reconstruction algorithm consists of

four main steps, namely:

Mesh generation from the unorganised point cloud. This can be done by,
for example, using the marching cubes [247], Delaunay triangulations [26]
(see the previous section for further references), and a-shapes [127].
Mesh partitioning into patches homeomorphic to disks. These patches
are also known as charts. The surface mesh partitioning becomes manda-
tory when the surface is closed or has genus greater than zero. Roughly
speaking, there are two ways of cutting surfaces into charts: segmentation
techniques and seam generation techniques. For parametrisation purposes,
segmentation techniques divide the surface into several charts in order to
keep as short as possible the parametric distortion resulting from the cuts.
Unlike segmentation, seam cutting techniques are capable of reducing the
parametric distortion without cutting the surface into separate patches.
For that purpose, they use seams (or partial cuts) to reduce a surface of
genus greater than zero to a surface of genus zero. For more details about
surface mesh partitioning, the reader is referred to Sheffer et al. [361] and
the references therein.

Parametrisation. For each mesh patch, one constructs a local parametri-
sation. These local parametrisations are made to fit together continuously
such that they collectively form a globally continuous parametrisation
of the mesh. In computer graphics, this method was introduced by
Eck et al. [125], who used harmonic maps to construct a (local) parametri-
sation of a disk over a convex polygonal region. Nevertheless, before that,
Pinkall and Polthier had already used a similar method for computing
piecewise linear minimal surfaces [324]. For more details on this topic,
the reader is referred to Floater and Hormann [141] and the references
therein.

Surface fitting. Terminated the parametrisation step, which outputs a col-
lection of pairs of parameters (u;, v;) associated to the points (z;,y;, 2;) of
the cloud, it remains the problem of surface fitting. Surface fitting consists
in minimising the distance between each point (x;,¥;,2;) and its corre-
sponding point of the surface F'(u;,v;).

The standard approach of surface fitting reduces to the following minimi-

sation problem:

min Y~ ||x; — F(u;, ;)] (8.1)
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where x; is the ith input cloud point (z;,y:,2;) and || - || is the Euclidean
distance between x; and the corresponding point on the surface F(u;,v;) in
the above mentioned linear space of functions. The objective function of this
minimisation problem is then the squared Euclidean norm. Its computation
can be done easily by the least squares method; hence the least-squares (LS)
fitting for parametric surface reconstruction [87, 132]. As argued in [326], this
is the main approach to approximating an unstructured cloud of points by a
B-spline surface.
Alternatives to LS fitting using parametric surfaces are:

e Active contours. This approximation approach is borrowed from computer
vision and image processing, and is due to Kass et al. [209] who introduced
a variational formulation of parametric curves, called snakes, for detect-
ing and approximating contours in images. Since then various variants
of snakes or active contours have appeared in the literature [45]. In the
context of parametric surface reconstruction, the active contour technique
was introduced by Pottmann and Leopoldseder [326], which uses local
quadratic approximants of the squared distance function of the surface or
point cloud to which we intend to fit a B-spline surface. Interestingly, this
approach avoids the parametrisation problem, i.e. the third step of the
standard procedure described above.

e L, fitting. The use of L, norms in fitting curves and surfaces to data aims
at finding a member of the family of surfaces in R™ which gives a best fit
to N given data points. The least squares or Ly norm is just an example
of a fitting technique that minimises the orthogonal distances from the
data points to the surface. Note that the least squares norm is not always
adequate, in particular when there are wild points in the data set. This
leads us to look at other L, norms for surface fitting [22]. For example,
Marzais and Malgouyres [260] uses a linear programming fitting which
is based on the Lo, norm, also called the uniform or Chebyshev norm.
The Lo, fitting outputs a grid of control points of a parametric surface
(e.g. Bézier or B-spline surface).

8.1.3 Implicit Surfaces

Most implicit surface reconstruction algorithms from clouds of points are
based on Blinn’s idea of blending local implicit primitives [47], called blobs.
This blending effect over blobs fits the requirements of modelling a molecule
from an union of balls that represent atoms. Muraki [293] combines Gaussian
blobs to fit an implicit surface to a point set. Lim et al. [239] use the blended
union of spheres in order to reconstruct implicit solids from scattered data;
the spheres are obtained from a previous configuration of spheres given by the
Delaunay tetrahedralisation of the sample points.

In computer graphics literature, in 1987, Pratt [327] was who first called at-
tention to fitting implicit curves and surfaces to data, since parametric curves
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and surface had received the most attention in the fitting literature, creating
the misleading idea that implicit curves and surfaces are less suitable for fit-
ting purposes. Also, Pratt affirms that none treatment of least squares fitting
of implicit surfaces to data was found in the literature. In 1991, Taubin [383]
noted that there was no previous work on fitting implicit curves in 3D, having
found only a few references on fitting quadric surfaces to data in the literature
of pattern recognition and computer vision.

Since then, two major classes of implicit fitting methods have been intro-
duced in the literature:

e (lobal methods. These methods aim to construct a single function such
that its zero set interpolates or approximates the cloud of points globally.

e Local methods. In this case, the global function results from blending local
shape functions, each one of which interpolates or approximates a sub-
cloud of points.

Now, there is an extensive literature on global implicit surface fitting that
uses a single polynomial to fit a point cloud. Taubin [383] introduced algo-
rithms to reconstruct algebraic curves and surfaces based on minimising the
approximate mean square distance from the cloud points to the curve or sur-
face, which is a nonlinear least squares problem. In certain cases, this problem
of implicit polynomial fitting leads to the generalised eigenvector fit, i.e. the
minimisation of the sum of squares of the function values that define the curve
or surface. Also, Hoppe et al. [192] proposed an algorithm based on the idea
of determining the zero set of a locally estimated signed distance function, say
the distance to the tangent plane of the closest point; such a zero set is then
used to construct a simplicial surface that approximates the actual surface.
Similarly, Curless and Levoy [94] use a volumetric approach to reconstruct
shapes from range scans that is based on estimating the distance function
from a reconstructed model. As Curless and Levoy noted, the isosurface of
this distance function can be obtained in an equivalent manner by means of
least squares (LS) minimisation of squared distances between range surface
points and points on the desired reconstruction. Other surface reconstruction
algorithms based on signed distance are due to Bernardini et al. [42] and
Boissonnat and Cazals [57].

An important representation of implicit surfaces is the moving least
squares (MLS) surfaces [229, 263]. Roughly speaking, a MLS surface is a
LS surface with local shape control. The main shortcoming of MLS (and
also LS) is that this approach transforms sharp creases and corners into
rounded shapes. To solve the problem of reconstructing sharp features,
Kobbelt et al. [213] proposed an extended marching cubes algorithm, Fleish-
man et al. [139] designed a robust algorithm based on the moving least squares
(MLS) fitting, and Kuo and Yau [220] proposed a combinatorial approach
based on the Delaunay to produce a simplicial surface with sharp features
from a point cloud.
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Another family of implicit surface reconstruction algorithms use radial
basis functions (RBFs). Some algorithms employ globally supported radial
basis functions, namely those due to Savchenko et al. [349], Turk and O’Brien
et al. [392, 393], and Carr et al. [76]. Unfortunately, because of their global
support, RBFs fail to reconstruct surfaces from large datasets, i.e. point
sets having more than a few thousands points. This fact led to the develop-
ment of reconstruction algorithms that use Wendland’s compactly supported
RBFs [408]; for example, the algorithms proposed by Floater and Iske [142],
Morse et al. [282], Kojekine et al. [214], and Ohtake et al. [311, 312] fall into
this category. These algorithms are particularly suited to reconstruct smooth
implicit surfaces from large and incomplete datasets.

Another yet family of implicit surface reconstruction algorithms is the par-
tition of unity (PoU). This approach uses the divide-and-conquer paradigm.
The idea is to adaptively subdivide the box domain into eight subsidiary
boxes recursively. A necessary but not sufficient condition to subdivide a box
is the existence of data points in such a box. Then, one uses locally supported
functions that are blended together by means of the partition of unit. This
partition of unit is simply a set of smooth, local weights (or weight functions)
that sum up to one everywhere on the domain. Ohtake et al. [308] use the
multilevel partition of unity (MPU) together with three types of local approx-
imation quadratic functions (i.e. local shape functions) to reconstruct implicit
surfaces from very large sets of points, including surfaces with sharp features
(e.g. sharp creases and corners). Interestingly, Ohtake et al. [312] and Tobor
et al. [389] combine RBF's and PoU as a way of getting a more robust method
against large, non-uniform data sets, i.e. sets with variable density of points,
but the algorithm due to Tobor et al. [389] has the advantage that it also
works in the presence of noisy data.

In the remainder of the present chapter, we will focus on the most used or
significant methods in implicit surface reconstruction, namely: blob functions,
moving least squares, radial basis functions, and partition of unity implicits.

8.2 Blob Surfaces

In order to break away from the conventional ball-and-stick and space-filling
models, Blinn [47] introduced the blobby model in computer graphics for visu-
alising molecules. This model represents a surface of an object as an isosurface
of a global scalar field built from local scalar fields associated to subsidiary or
constituent primitives (Figure 8.1).

Instead of using the traditional implicit quadrics, we use electron density
functions to model atoms and molecules. Recall that a molecule is an aggre-
gate of atoms. For example, Figure 8.2 shows the trypsin molecule—with the
identifier 4PTT in the protein data bank (PDB)—as (a) an aggregate of atoms
and as (b) an isosurface of a molecular scalar field.
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Fig. 8.1. Blobby models with (a) one primitive, (b) two primitives, and (c) three
primitives. (Courtesy of Paul’s Projects.)

Fig. 8.2. The trypsin molecule as (a) an aggregate of atoms and as (b) an isosurface
of a molecular scalar field.

As said above, the blobby model represents a 3-dimensional object in R?
as an isosurface of a scalar field generated by composition of local scalar fields,
each generated by a geometric primitive (e.g. point or sphere). This means
that a field value at a point x = (z,y, z) generated by a primitive or atom A;
centred at a point x; is given by

fi (X) = bl e Y di(x) (82)

where the d;(x) dictates the shape of the scalar field. Equation (8.2) is known
as Blinn’s Gaussian function. In fact, the exponential term is nothing more
than a Gaussian bump centred at x; which has height b; and standard devi-
ation a;. If d;(x) is the square of the Euclidean distance between x and x;,
that is

di(x) = (= 2:)” + (y = 4:)* + (2 — 2)° (8.3)

then the field is spherically symmetric.
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The global density function of a given molecule with N atoms is obtained
by summing up the contribution of each atom

fx) = Z fi(x) (8.4)

or, equivalently,
N

Fx)=> be i (8.5)
i=1
Now, we can define an implicit surface as the zero set of points where f
equals a given threshold T’

F(x)=f(x)—-T=0. (8.6)

Although Blinn’s implicit model has been primarily designed to represent
molecules, many other applications have been described and discussed in the
literature. This is particularly true since the appearance of alternative implicit
blob models as generic shape representations, namely: the metaballs [306],
the soft objects [422], and the blobby model [293]. All these models rely on
the same global implicit function, but the subsidiary local functions differ
slightly. As explained in Chapter 9, these local functions are similar to Blinn’s
exponential density function.

8.3 LS Implicit Surfaces

The first comprehensive treatment of the least squares (LS) method was pub-
lished in 1805 and is due to Legendre [226]. In 1809, Gauss [157] published
a book in which he also describes the LS method. Gauss mentioned that he
had been using the LS method since 1795, thus starting an anteriority dis-
pute about the discovery of the method with Legendre, in a way similar to
the Leibniz-Newton controversy about the invention of Calculus.

8.3.1 LS Approximation

The LS method is an approximation method, and thus it results in smoothing
rather than interpolating the scattered data. The LS approximation starts
from the formulation of the following problem. Given a set of N observations
or scalar values {f;}2¥, on a set of points located at positions {x;}¥ , in R",
the problem is to find an unknown, globally defined function f(x):R"™ — R
that fits the given observed values f; as near as possible with respect to some
metric. If such a metric is the sum of the squares of the errors, also called
residuals, at the data points, we come up with the well-known least squares
solution. That is, we minimise the LS error
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N
Eps=Y 1} (8.7)
i=1
where the residuals r; are given by

ri = f(xi) — fi (8.8)

The residuals are thus differences between the function values (or theoret-
ical values) at the data points and the observed values, so that the LS best
fit is obtained when the LS error of Equation (8.7) is reduced to a minimum.

As explained in the remainder of this section, the minimisation of the
LS error is crucial to achieve the unknown function f(x). This will allow us
to define the implicit surface given by f~1(0) that fits the given observed
data points x;. Such an unknown function f(x) can be designed as a linear
combination of K basis functions p;(x)

K
x) =Y e;pi(x) (8.9)
j=1

so that the “best” fit—which depends on the criterion that one uses in a
specific context—to data set is obtained by adjusting and determining the
real parameters c;.

The functions p;(x) usually are polynomial basis functions, i.e. they form
a polynomial basis. This means that f(x) belongs to the space [])] of n-variate
polynomials of total degree less or equal to d. Examples of polynomial bases
are:

(i) p(x) = [1] for a constant fit in arbitrary dimensions;
(i) p(x) = [1,z,y,2]" for a linear fit in R? (d = 1 and n = 3);
(i) p(x) = [1,z,y, 2%, 2y, y?]T for a quadratic fit in R? (d = 2 and n = 2).

Thus, in vector-vector notation, Equation (8.9) can be written as follows
fx)=p"(x)c (8.10)

where ¢ stands for the vector of the real coefficients ¢; associated to the basis
functions p;.

Thus, to achieve the fit function f(x) given by Equation (8.9), it only
remains to determine the parameter values c; that minimise the least squares
error Erg. Such a minimum is found by setting the corresponding gradient to
zero. This means that we have K gradient equations for K parameters

N
aELS Z gzz—, k=1,...,K (8.11)
k

or, equivalently,
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N
i=1 Ock
Since 2 3P = pr(x;), it follows that
N [ K
Z Zc]pj (xi) = fi | pe(xi) =0, k=1,...,K (8.13)
i=1 \j=1

or, equivalently,

PPk = Z fipir, k=1, K (8.14)

=1

Il
—

M=
?Mw

A

where p;; = p;(x;) and pix = pr(x;). These K simultaneous linear equa-
tions are called the normal equations, which are written in matrix notation
as follows:

K
chp”plk —Zfzpm, k=1,....K (8.15)

i=1

uMZ

3

i=
From Equations (8.7) and (8.8), we obtain the system of equations in
matrix-vector notation

PTP)c=PTf (8.16)

hence
c=PTP)'PTf (8.17)
where ¢ = [c1,...,cx]T is a vector of real coefficients, f = [f1,..., fy]T, and

P11 P12 --- P1K

P21 P22 ... D2K
P = . . . (8.18)

PN1 PN2 --- PNK

is the N x K matrix of basis functions p;; = p;(x;),i=1,...,N,j=1,..., K.

Using matrix calculus, it can be proved that c is a unique solution of
the system of equations (8.17), i.e. the unique solution of the least squares
problem. So, if the square matrix My g = PTP is nonsingular or, equivalently,
det(Mrs) # 0, we can substitute Equation (8.17) into Equation (8.10) to
obtain the fit function f(x).

Ezample 8.1. Let us consider the following set of sixteen data points in the
Euclidean space R?

(8.19)
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as well as the corresponding set of associated observed function values in R

1.0, 0.0, 1.0, 1.0,
0.0, 2.0, 0.0, 0.0,
it = 1.0, 0.0, -0.5, -0.5,
0.5, 0.5, 0.5, 0.5

(8.20)

These sample data points {x;, f;} in the product space R? x R are pictured
in Figure 8.3 as marked as e (say, bullets). The four graphs (in green) in Fig-
ure 8.3 were produced using this sample data set, but their LS approximating
functions are obviously different.

Figure 8.3(a) shows the graph of the fit function

f(x)=1+Axz+ By

with the linear basis p(x) = [1, x,y]” and the coefficient vector ¢ = [A4, B]T =
[~0.133, —0.190]7.
Figure 8.3(b) shows the graph of the fit function

f(x)=1+Ax+By+Ca?

Fig. 8.3. Four LS surfaces (in green) approximating the same input data set.
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with the linear basis p(x) = [1,7,y,2%T and the coefficient vector ¢ =
[A, B,C]T = [~0.286, —0.239,0.144] .
Figure 8.3(c) shows the graph of the fit function

f(x):1+Aa:+By+C’x2+ny—|—Ey2

with the linear basis p(x) = [1,z,y, 2%, vy, y?]7 and the coefficient vector
c=[A,B,C,D,E]T =[-0.179,—0.440,0.176, —0.051, 0.058] .
Figure 8.3(d) shows the graph of the fit function

fx)=14+Az+By+Ca’>+ Daxy+ Fy?> + Fa® + Gy + Hay? + Ty

with the linear basis p(x) = [1,x,y, 22, 2y, %, 2%, 2%y, zy?, y*]7 and the coef-
ficient vector

c=[A,B,C,D,E,F G HI"
= [0.035, 0.287, —0.656, —0.229, —0.306, 0.215,0.207, —0.007, 0.044] .

Recall that the coefficient vectors of the example above were all determined
using Equation (8.17). Besides, as shown in Chapter 1, a graph of each function
f(x) : R? — R is the zero set of another function F(x,z2) : R? x R — R given
by

F(x,z)=f(x)—z=0 (8.21)

since f(x) is C'-differentiable, as it is the case. This means that the four
graphs in green shown in Figure 8.3 are also zero sets of F(x,y, z) as given
by Equation (8.21), i.e. they are implicit LS surfaces.

8.3.2 WLS Approximation

The method of weighted least squares (WLS) is a generalisation of the method
of least squares. Similar to ordinary least squares, the unknown values of the
coefficients (or parameters) ci,...,cx are estimated by finding their corre-
sponding numerical values that minimise the sum of the squared deviations
between the observed values f; and the true values f(x;). Unlike ordinary least
squares, however, each term of the approximant includes a weight, w;, that
determines how much each observed value influences the final coefficients ¢;.
The WLS approximation that is minimised to obtain the unknown coefficients
¢; is given by the minimisation of the error

N
Ewrs = sz r? (8.22)
i1

where each residual r; is weighted by the corresponding weight value w;.
The ordinary LS is just a particular case of the WLS with all weights
equal to 1. The WLS method is thus adequate when it may seem reasonable
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to assume that not all data points should be treated equally. This allows us,
in principle, to get a better approximation to the point dataset than that one
produced by the ordinary LS approximation.

To determine the parameter values c; that minimise Ew g, we follow the
same procedure we used to minimise E g, i.e. using K null derivatives. Now,
the gradient equations for the sum of squares in Equation (8.22) are

O0EwrLs al ori
GOWLS _ 9N~y 2t =0, k=1,..., K. 8.23
8ck zzzlw " 8Ck ( )

from which, and using the same method employed in the ordinary least
squares, we can easily derive the coefficients ¢i. The coeflicient vector is now
given by

c=A'x)B(x)f (8.24)

with
A(x)=PTW(x)P and B(x) =P W(x),

and where the weight matriz W (x) is an N x N diagonal matrix given by

wi(x) 0 o ... 0
0 we(x) 0 ... O

Note that, the matrix notation has been reformulated in order to include
weighting of the scattered data points. More specifically, there is a weight
w;(x) = w(]|x — x;||) for each data point x;, where ||x — x;|| stands for the
Euclidean distance d; between x and x;; hence the diagonal matrix W (x),

8.3.3 MLS Approximation and Interpolation

Moving least squares (MLS) is a mesh-free approximation method. Therefore,
it is often understood as an alternative to the traditional finite element and
finite difference methods to scattered node configurations with no predefined
connectivity [135, 233, 234]. In approximation theory, the MLS method seems
to be due to McLain [263], later developed by Lancaster and Salkauskas [221]
for approximating (or smoothing) and interpolating scattered data, though
a particular case goes back to Shepard [363]; see also Fasshauer [136] and
references therein. In statistics, the MLS method is known as mesh-free local
regression and has been used by statisticians for the last 100 years approxi-
mately [105, 167, 415] (also, see Loader [240] and references therein).
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The MLS Surfaces

The MLS method is essentially a WLS method. Accordingly, the MLS method
uses the fit function given by Equation (8.9), here rewritten for our conve-
nience

K
Fe0) =) epi(x) (8.26)
j=1
or, in matrix notation, as
f(x)=p"(x)c (8.27)
where p(x) is the vector of basis functions, and c is the vector of real coeffi-
cients given by (8.24).

The MLS method differs from the WLS method in that the fit is allowed to
change depending on where we evaluate the function. The WLS approxima-
tion, as well as the LS approximation, is global because the coefficients c¢;, and
the corresponding fit function f(x) given by Equation (8.26), are evaluated
only once. On the contrary, the MLS approximation is local because:

e First, the fit function (8.26) is evaluated for each fixed point x;. Therefore,
the coefficient vector ¢ is computed for each x;. Usually, but not necessar-
ily, the set of fixed points is a proper subset of the input data set. Such
fixed points are also called nodes, evaluation points, or centres.

e Second, and more importantly, the approximation is local because each
centre x; is associated with a compactly supported weight function w;(x) =
w(||x — x;]]), that is w;(x) rapidly decays to zero with the distance d; =
[x— ]l

The weight function is a common feature to all mesh-free methods: MLS,
kernels, and partitions of unity (PoU) [39]. Each centre x; is associated with
a domain of influence, called the support of the weight function w;(x). The
support of x; may be compact or not. Using a compact support (Figure 8.4(f)),
we have w;(x) > 0 inside a subdomain that is small in relation to the domain,
and w;(x) = 0 outside it.

There are infinitely many possibilities for the weight function w(d),
namely:

e Thin-plate weight functions. Thin-plate functions are radial basis functions
(RBFs) of the form:

da ifk=135,...
d) = R 8.28
w(d) {dkln(d) if k=246, .. (8.28)

These functions have not compact support. Two examples of thin-plate
weight functions are pictured in Figure 8.4(a)—(b). To avoid problems with
thin-plate functions of even dimension k at d = 0 (where In(0) = —o0),
we set up w(0) = 0. Alternatively, for even k, the weight function may be
redefined by implementing the natural logarithm as follows:
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Fig. 8.4. Weight functions.
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k*ln d i
():{d In(dd) ifd<1 (.29)

d*In(d) if d>1.

o (Gaussian weight function. This weight function has not compact support
either (Figure 8.4(c)). It is given by

w(d) = e~ (8.30)

where h is a parameter that can be used to smooth out small features
in the data [230, 5]. This parameter h is related to the full width at half
maximum of the Gaussian peak, and corresponds to the position of the
circle of inflection points on the Gaussian.
o McLain weight function. This function appears in Figure 8.4(d) and is
given by
1
d)=—. 8.31
wld) = 7 (8:31)
e [nverse quadratic weight function. This is a variant of McLain’s function
(Figure 8.4(e)). It is as follows

1

w(d) = 2 (8.32)

In this case, there is a singularity at d = 0 if the parameter h vanishes.
o  Wendland weight function. This function is shown is Figure 8.4(f). Un-
like the previous weight functions, the Wendland function [408] does have

compact support
(d) 1 a\' 4d +1 (8.33)
w = - = - .
h X h ’

where h stands for the radius of support, and d € [0, h]. Note that w(0) = 1,
w(h) = 0, w'(h) = 0 and w”(h) = 0, i.e. this function is C? continuous.
The first factor of the Wendland weight function (8.51) is a truncated
quartic power function.

By choosing an adequate weight function, the fit function behaves as either
an approximant or interpolant, even with lower-degree basis functions. For
example, Shen et al. [362] use the inverse quadratic weight function (8.32). In
this case, and assuming that d; = ||x — x;|| is the Euclidean distance between
the centre x; and some data point x, we have:

e The weight function w(d;) quickly, monotonically decreases to zero as d; —
0.

e The weight function w(d;) tends to infinity near the corresponding input
data point x; (where d; — 0) when h is very small, which forces the
fit function to interpolate the corresponding functi