
Implicit Curves and Surfaces:
Mathematics, Data Structures and Algorithms

Abel J.P. Gomes • Irina Voiculescu
Joaquim Jorge • Brian Wyvill • Callum Galbraith

Implicit Curves and Surfaces:
Mathematics, Data Structures
and Algorithms

ABC

Abel J.P. Gomes
Universidade da Beira Interior
Covilha
Portugal

Irina Voiculescu
Oxford University Computing
Laboratory (OUCL)
Oxford
United Kingdom

Joaquim Jorge
Universidade Tecnica de Lisboa
Lisboa
Portugal

Brian Wyvill
University of Victoria
Victoria BC
Canada

Callum Galbraith
University of Calgary
Calgary
Canada

ISBN 978-1-84882-405-8 e-ISBN 978-1-84882-406-5
DOI 10.1007/978-1-84882-406-5
Springer Dordrecht Heidelberg London New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009926285

c© Springer-Verlag London Limited 2009
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Li-
censing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book presents the mathematics, computational methods and data struc-
tures, as well as the algorithms needed to render implicit curves and surfaces.
Implicit objects have gained an increasing importance in geometric modelling,
visualisation, animation, and computer graphics due to their nice geometric
properties which give them some advantages over traditional modelling meth-
ods. For example, the point membership classification is trivial using implicit
representations of geometric objects—a very useful property for detecting col-
lisions in virtual environments and computer game scenarios. The ease with
which implicit techniques can be used to describe smooth, intricate, and ar-
ticulatable shapes through blending and constructive solid geometry show us
how powerful they are and why they are finding use in a growing number of
graphics applications.

The book is mainly directed towards graduate students, researchers and
developers in computer graphics, geometric modelling, virtual reality and com-
puter games. Nevertheless, it can be useful as a core textbook for a graduate-
level course on implicit geometric modelling or even for general computer
graphics courses with a focus on modelling, visualisation and animation. Fi-
nally, and because of the scarce number of textbooks focusing on implicit
geometric modelling, this book may also work as an important reference for
those interested in modelling and rendering complex geometric objects.

Abel Gomes
Irina Voiculescu

Joaquim Jorge
Brian Wyvill

Callum Galbraith

March 2009

V

Acknowledgments

The authors are grateful to those who have kindly assisted with the editing of
this book, in particular Helen Desmond and Beverley Ford (Springer-Verlag).

We are also indebted to Adriano Lopes (New University of Lisbon, Portu-
gal), Afonso Paiva (University of São Paulo, Brazil), Bruno Araújo (Technical
University of Lisbon, Portugal), Ron Balsys (Central Queensland University,
Australia) and Kevin Suffern (University of Technology, Australia) who gen-
erously have contributed beautiful images generated by their algorithms; also
to Tamy Boubekeur (Telecom ParisTech, France) for letting us to use the
datasets of African woman and Moai statues (Figures 8.7 and 8.10).

Abel Gomes thanks the Computing Laboratory, University of Oxford, Eng-
land, and CNR-IMATI, Genova, Italy, where he spent his sabbatical year writ-
ing part of this book. In particular, he would like to thank Bianca Falcidieno
and Giuseppe Patanè for their support and fruitful discussions during his
stage at IMATI. He is also grateful to Foundation for Science and Technology,
Institute for Telecommunications and University of Beira Interior, Portugal.

Irina Voiculescu acknowledges the support of colleagues at the Universi-
ties of Oxford and Bath, UK, who originally enticed her to study this field
and provided a stimulating discussion environment; also to Worcester College
Oxford, which made an ideal thinking retreat.

Joaquim Jorge is grateful to the Foundation for Science and Technology,
Portugal, and its generous support through project VIZIR.

Brian Wyvill is grateful to all past and present students who have con-
tributed to the Implicit Modelling and BlobTree projects; also to the Natural
Sciences and Engineering Research Council of Canada.

Callum Galbraith acknowledges the many researchers from the Graphics
Jungle at the University of Calgary who helped shape his research. In particu-
lar, he would like to thank his PhD supervisor, Brian Wyvill, for his excellent
experience in graduate school, and Przemyslaw Prusinkiewicz for his expert
guidance in the domain of modelling plants and shells; also to the University
of Calgary and the Natural Sciences and Engineering Research Council of
Canada for their support.

VII

Contents

Preface . V

Acknowledgments . VII

Part I Mathematics and Data Structures

1 Mathematical Fundamentals . 7
1.1 Introduction . 7
1.2 Functions and Mappings . 8
1.3 Differential of a Smooth Mapping . 9
1.4 Invertibility and Smoothness . 10
1.5 Level Set, Image, and Graph of a Mapping 13

1.5.1 Mapping as a Parametrisation of Its Image 13
1.5.2 Level Set of a Mapping . 15
1.5.3 Graph of a Mapping . 20

1.6 Rank-based Smoothness . 24
1.6.1 Rank-based Smoothness for Parametrisations 25
1.6.2 Rank-based Smoothness for Implicitations 27

1.7 Submanifolds . 30
1.7.1 Parametric Submanifolds . 30
1.7.2 Implicit Submanifolds and Varieties 35

1.8 Final Remarks . 40

2 Spatial Data Structures . 41
2.1 Preliminary Notions . 41
2.2 Object Partitionings . 43

2.2.1 Stratifications . 43
2.2.2 Cell Decompositions . 45
2.2.3 Simplicial Decompositions . 49

2.3 Space Partitionings . 51

IX

X Contents

2.3.1 BSP Trees . 52
2.3.2 K-d Trees . 55
2.3.3 Quadtrees . 58
2.3.4 Octrees . 60

2.4 Final Remarks . 62

Part II Sampling Methods

3 Root Isolation Methods . 67
3.1 Polynomial Forms . 67

3.1.1 The Power Form . 68
3.1.2 The Factored Form . 68
3.1.3 The Bernstein Form . 69

3.2 Root Isolation: Power Form Polynomials 72
3.2.1 Descartes’ Rule of Signs . 73
3.2.2 Sturm Sequences . 74

3.3 Root Isolation: Bernstein Form Polynomials 78
3.4 Multivariate Root Isolation: Power Form Polynomials 81

3.4.1 Multivariate Decartes’ Rule of Signs 81
3.4.2 Multivariate Sturm Sequences . 82

3.5 Multivariate Root Isolation: Bernstein Form Polynomials 82
3.5.1 Multivariate Bernstein Basis Conversions 83
3.5.2 Bivariate Case . 83
3.5.3 Trivariate Case . 84
3.5.4 Arbitrary Number of Dimensions . 86

3.6 Final Remarks . 87

4 Interval Arithmetic . 89
4.1 Introduction . 89
4.2 Interval Arithmetic Operations . 91

4.2.1 The Interval Number . 91
4.2.2 The Interval Operations . 91

4.3 Interval Arithmetic-driven Space Partitionings 93
4.3.1 The Correct Classification of Negative and Positive

Boxes . 94
4.3.2 The Inaccurate Classification of Zero Boxes 96

4.4 The Influence of the Polynomial Form on IA 98
4.4.1 Power and Bernstein Form Polynomials 99
4.4.2 Canonical Forms of Degrees One and Two Polynomials . 101
4.4.3 Nonpolynomial Implicits . 104

4.5 Affine Arithmetic Operations . 105
4.5.1 The Affine Form Number . 105
4.5.2 Conversions between Affine Forms and Intervals 106
4.5.3 The Affine Operations . 107

Contents XI

4.5.4 Affine Arithmetic Evaluation Algorithms 108
4.6 Affine Arithmetic-driven Space Partitionings 109
4.7 Floating Point Errors . 111
4.8 Final Remarks . 114

5 Root-Finding Methods . 117
5.1 Errors of Numerical Approximations . 118

5.1.1 Truncation Errors . 118
5.1.2 Round-off Errors . 119

5.2 Iteration Formulas . 119
5.3 Newton-Raphson Method . 120

5.3.1 The Univariate Case . 121
5.3.2 The Vector-valued Multivariate Case 123
5.3.3 The Multivariate Case . 124

5.4 Newton-like Methods . 126
5.5 The Secant Method . 127

5.5.1 Convergence . 128
5.6 Interpolation Numerical Methods . 131

5.6.1 Bisection Method . 131
5.6.2 False Position Method . 133
5.6.3 The Modified False Position Method 136

5.7 Interval Numerical Methods . 136
5.7.1 Interval Newton Method . 136
5.7.2 The Multivariate Case . 139

5.8 Final Remarks . 139

Part III Reconstruction and Polygonisation

6 Continuation Methods . 145
6.1 Introduction . 145
6.2 Piecewise Linear Continuation . 146

6.2.1 Preliminary Concepts . 146
6.2.2 Types of Triangulations . 147
6.2.3 Construction of Triangulations . 148

6.3 Integer-Labelling PL Algorithms . 151
6.4 Vector Labelling-based PL Algorithms . 156
6.5 PC Continuation . 164
6.6 PC Algorithm for Manifold Curves . 164
6.7 PC Algorithm for Nonmanifold Curves . 167

6.7.1 Angular False Position Method . 168
6.7.2 Computing the Next Point . 168
6.7.3 Computing Singularities . 169
6.7.4 Avoiding the Drifting/Cycling Phenomenon. 171

6.8 PC Algorithms for Manifold Surfaces . 173

XII Contents

6.8.1 Rheinboldt’s Algorithm . 173
6.8.2 Henderson’s Algorithm . 174
6.8.3 Hartmann’s Algorithm . 175
6.8.4 Adaptive Hartmann’s Algorithm . 179
6.8.5 Marching Triangles Algorithm . 180
6.8.6 Adaptive Marching Triangles Algorithms 182

6.9 Predictor–Corrector Algorithms for Nonmanifold Surfaces 183
6.10 Final Remarks . 186

7 Spatial Partitioning Methods . 187
7.1 Introduction . 187
7.2 Spatial Exhaustive Enumeration . 188

7.2.1 Marching Squares Algorithm . 189
7.2.2 Marching Cubes Algorithm . 194
7.2.3 Dividing Cubes . 200
7.2.4 Marching Tetrahedra . 201

7.3 Spatial Continuation . 207
7.4 Spatial Subdivision . 208

7.4.1 Quadtree Subdivision . 208
7.4.2 Octree Subdivision . 211
7.4.3 Tetrahedral Subdivision . 213

7.5 Nonmanifold Curves and Surfaces . 219
7.5.1 Ambiguities and Singularities . 220
7.5.2 Space Continuation . 221
7.5.3 Octree Subdivision . 221

7.6 Final Remarks . 224

8 Implicit Surface Fitting . 227
8.1 Introduction . 227

8.1.1 Simplicial Surfaces . 227
8.1.2 Parametric Surfaces . 228
8.1.3 Implicit Surfaces . 230

8.2 Blob Surfaces . 232
8.3 LS Implicit Surfaces . 234

8.3.1 LS Approximation . 234
8.3.2 WLS Approximation . 238
8.3.3 MLS Approximation and Interpolation 239

8.4 RBF Implicit Surfaces . 249
8.4.1 RBF Interpolation . 249
8.4.2 Fast RBF Interpolation . 252
8.4.3 CS-RBF Interpolation . 252
8.4.4 The CS-RBF Interpolation Algorithm 253

8.5 MPU Implicit Surfaces . 255
8.5.1 MPU Approximation . 258
8.5.2 MPU Interpolation . 261

Contents XIII

8.6 Final Remarks . 261

Part IV Designing Complex Implicit Surface Models

9 Skeletal Implicit Modelling Techniques . 267
9.1 Distance Fields and Skeletal Primitives . 267
9.2 The BlobTree . 270
9.3 Functional Composition Using fZ Functions 271
9.4 Combining Implicit Surfaces . 272
9.5 Blending Operations . 274

9.5.1 Hierarchical Blending Graphs . 275
9.5.2 Constructive Solid Geometry . 277
9.5.3 Precise Contact Modelling . 279
9.5.4 Generalised Bounded Blending . 281

9.6 Deformations . 284
9.7 BlobTree Traversal . 284
9.8 Final Remarks . 285

10 Natural Phenomenae-I: Static Modelling 287
10.1 Murex Cabritii Shell . 288
10.2 Shell Geometry . 288
10.3 Murex Cabritii . 289
10.4 Modelling Murex Cabritii . 290

10.4.1 Main Body Whorl . 291
10.4.2 Constructing Varices . 294
10.4.3 Constructing Bumps . 295
10.4.4 Constructing Axial Rows of Spines 297
10.4.5 Construction of the Aperture . 298

10.5 Texturing the Shell . 300
10.6 Final Model of Murex Cabritii . 301
10.7 Shell Results . 301
10.8 Final Remarks . 301

11 Natural Phenomenae-II: Animation . 303
11.1 Animation: Growing Populus Deltoides . 303
11.2 Visualisation of Tree Features . 305

11.2.1 Modelling Branches with the BlobTree 306
11.2.2 Modelling the Branch Bark Ridge and Bud-scale Scars . 308

11.3 Global-to-Local Modelling of a Growing Tree 309
11.3.1 Crown Shape . 310
11.3.2 Shoot Structure . 312
11.3.3 Other Functions . 313

11.4 Results . 315
11.5 Final Remarks . 316

XIV Contents

References . 319

Index . 345

1

Mathematical Fundamentals

This chapter deals with mathematical fundamentals of curves and surfaces,
and more generally manifolds and varieties.1 For that, we will pay particular
attention to their smoothness or, putting it differently, to their singularities
(i.e. lack of smoothness). As will be seen later on, these shape particularities
are important in the design and implementation of rendering algorithms for
implicit curves and surfaces. Therefore, although the context is the differential
topology and geometry, we are interested in their applications in geometric
modelling and computer graphics.

1.1 Introduction

The rationale behind the writing of this chapter was to better understand the
subtleties of the manifolds, in particular to exploit the smooth structure of
manifolds (e.g. Euclidean spaces) through the study of the intrinsic properties
of their subsets or subspaces, i.e. independently of any choice of local coor-
dinates (e.g. spherical coordinates, Cartesian coordinates, etc.). As known,
manifolds provide us with the proper category in which most efficiently one
can develop a coordinate-free approach to the study of the intrinsic geometry
of point sets. It is obvious that the explicit formulas for a subset may change
when one goes from one set of coordinates to another. This means that any
geometric equivalence problem can be viewed as the problem of determining
whether two different local coordinate expressions define the same intrinsic
subset of a manifold. Such coordinate expressions (or change of coordinates)
are defined by mappings between manifolds.

Thus, by defining mappings between manifolds such as Euclidean spaces,
we are able to uncover the local properties of their subspaces. In geometric

1 A real, algebraic or analytic variety is a point set defined by a system of equations
f1 = · · · = fk = 0, where the functions fi (0 ≤ i ≤ k) are real, algebraic or
analytic, respectively.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 7
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

8 1 Mathematical Fundamentals

modelling, we are particularly interested in properties such as, for example,
local smoothness, i.e. to know whether the neighbourhood of a point in a
submanifold is (visually) smooth, or the point is a singularity. In other words,
we intend to study the relationship between smoothness of mappings and
smoothness of manifolds. The idea is to show that a mathematical theory
exists to describe manifolds and varieties (e.g. curves and surfaces), regardless
of whether they are defined explicitly, implicitly, or parametrically.

1.2 Functions and Mappings

In simple terms, a function is a relationship between two variables, typically
x and y, so it often denoted by f(x) = y. The variable x is the independent
variable (also called primary variable, function argument, or function input),
while the variable y is the dependent variable (secondary variable, value of the
function, function output, or the image of x under f). Therefore, a function
allows us to associate a unique output for each input of a given type (e.g. a
real number).

In more formal terms, a function is a particular type of binary relation
between two sets, say X and Y . The set X of input values is said to be the
domain of f , while the set Y of output values is known as the codomain of f .
The range of f is the set {f(x) : x ∈ X}, i.e. the subset of Y which contains
all output values of f . The usual definition of a function satisfies the condition
that for each x ∈ X, there is at most one y ∈ Y such that x is related to y.
This definition is valid for most elementary functions, as well as maps between
algebraic structures, and more importantly between geometric objects, such
as manifolds.

There are three major types of functions, namely, injections, surjections
and bijections. An injection (or one-to-one function) has the property that if
f(a) = f(b), then a and b must be identical. A surjection (or onto function)
has the property that for every y in the codomain there is an x in the domain
such that f(x) = y. Finally, a bijection is both one-to-one and onto.

The notion of a function can be extended to several input variables. That
is, a single output is obtained by combining two (or more) input values. In
this case, the domain of a function is the Cartesian product of two or more
sets. For example, f(x, y, z) = x2 + y2 + z2 = 0 is a trivariate function (or
a function of three variables) that outputs the single value 0; the domain of
this function is the Cartesian product R×R×R or, simply, R3. In geometric
terms, this function defines an implicit sphere in R3.

Functions can be even further extended in order to have several outputs. In
this case, we have a component function for each output. Functions with sev-
eral outputs or component functions are here called mappings. For example,
the mapping f : R3 → R2 defined by f(x, y, z) = (x2+y2+z2−1, 2x2+2y2−1)
has two component functions f1(x, y, z) = x2 + y2 + z2 − 1 and f2(x, y, z) =
2x2 + 2y2 − 1. These components represent a sphere and a cylinder in R3,

1.3 Differential of a Smooth Mapping 9

respectively, so that, intuitively, we can say that f represents the point set
that results from the intersection between the sphere and the cylinder.

Before proceeding any further, it is also useful to review how functions are
classified in respect to the properties of their derivatives. Let f : X → Y be a
mapping of X into Y , where X,Y are open subsets of Rm,Rn, respectively. If
n = 1, we say that the function f is Cr (or Cr differentiable or differentiable
of class Cr, or Cr smooth or smooth of class Cr) on X, for r ∈ N, if the partial
derivatives of f exist and are continuous on X, that is, at each point x ∈ X.
In particular, f is C0 if f is continuous. If n > 1, the mapping f is Cr if each
of the component functions fi (1 ≤ i ≤ n) of f is Cr. We say that f is C∞ (or
just differentiable or smooth) if it is Cr for all r ≥ 0. Moreover, f is called
a Cr diffeomorphism if: (i) f is a homeomorphism2 and (ii) both f and f−1

are Cr differentiable, r ≥ 1 (when r =∞ we simply say diffeomorphism). For
further details about smooth mappings, the reader is referred to, for example,
Helgason [182, p. 2].

1.3 Differential of a Smooth Mapping

Let U, V be open sets in Rm,Rn, respectively. Let f : U → V be a mapping
with component functions f1, . . . , fn. Note that f is defined on every point p
of U in the coordinate system x1, . . . xm. We call f smooth provided that all
derivatives of the fi of all orders exist and are continuous in U . Thus for f
smooth, ∂2fi/∂x1∂x2, ∂3fi/∂x

3
1, etc., and ∂2fi/∂x1∂x2 = ∂2fi/∂x2∂x1, etc.,

all exist and are continuous. Therefore, a mapping f : U → V is smooth (or
differentiable) if f has continuous partial derivatives of all orders. And we call
f a diffeomorphism of U onto V when it is a bijection, and both f, f−1 are
smooth.

Let f : U → V be a smooth (or differentiable or C∞) and let p ∈ U . The
matrix

Jf(p) =

∂f1(p)/∂x1 ∂f1(p)/∂x2 · · · ∂f1(p)/∂xm
...

...
...

∂fn(p)/∂x1 ∂fn(p)/∂x2 · · · ∂fn(p)/∂xm


where the partial derivatives are evaluated at p, is called Jacobian matrix of
f at p [68, p. 51]. The linear mapping Df(p) : Rm → Rn whose matrix is the
Jacobian is called the derivative or differential of f at p; the Jacobian Jf(p)
is also denoted by [Df(p)]. It is known in mathematics and geometric design
that every polynomial mapping f (i.e. mappings whose component functions

2 In topology, two topological spaces are said to be equivalent if it is possible to
transform one to the other by continuous deformation. Intuitively speaking, these
topological spaces are seen as being made out of ideal rubber which can be de-
formed somehow. However, such a continuous deformation is constrained by the
fact that the dimension is unchanged. This kind of transformation is mathemat-
ically called homeomorphism.

10 1 Mathematical Fundamentals

fi are all polynomial functions) is smooth. If the components are rational
functions, then the mapping is smooth provided none of the denominators
vanish anywhere.

Besides, the composite of two smooth mappings, possibly restricted to
a smaller domain, is smooth [68, p. 51]. It is worth noting that the chain
rule holds not only for smooth mappings, but also for differentials. This fact
provides us with a simple proof of the following theorem.

Theorem 1.1. Let U, V be open sets in Rm,Rn, respectively. If f : U → V is
a diffeomorphism, at each point p ∈ U the differential Df(p) is invertible, so
that necessarily m = n.

Proof. See Gibson [159, p. 9].

The justification for m = n is that it is not possible to have a diffeomor-
phism between open subspaces of Euclidean spaces of different dimensions [58,
p. 41]. In fact, a famous theorem of algebraic topology (Brouwer’s invariance
of dimension) asserts that even a homeomorphism between open subsets of
Rm and Rn, m 6= n, is impossible. This means that, for example, a point and
a line cannot be homeomorphic (i.e. topologically equivalent) to each other
because they have distinct dimensions.

Theorem 1.1 is very important not only to distinguish between two mani-
folds in the sense of differential geometry, but also to relate the invertibility of
a diffeomorphism to the invertibility of the associated differential. More sub-
tle is the hidden relationship between singularities and noninvertibility of the
Jacobian. We should emphasise here that the direct inverse of Theorem 1.1
does not hold. However, there is a partial or local inverse, called the inverse
mapping theorem, possibly one of the most important theorems in calculus.
It is introduced in the next section, where we discuss the relationship between
invertibility of mappings and smoothness of manifolds.

1.4 Invertibility and Smoothness

The smoothness of a submanifold that is the image of a mapping depends not
only on smoothness but also the invertibility of its associated mapping. This
section generalises such a relationship between smoothness and invertibility
to mappings of several variables. This generalisation is known in mathemat-
ics as the inverse mapping theorem. This leads to a general mathematical
theory for geometric continuity in geometric modelling, which encompasses
not only parametric objects but also implicit ones. Therefore, this generali-
sation is representation-independent, i.e. no matter whether a submanifold is
parametrically or implicitly represented.

Before proceeding, let us then briefly review the invertibility of mappings
in the linear case.

1.4 Invertibility and Smoothness 11

Definition 1.2. Let X, Y be Euclidean spaces, and f : X → Y a continuous
linear mapping. One says that f is invertible if there exists a continuous
linear mapping g : Y → X such that g ◦ f = idX and f ◦ g = idY where
idX and idY denote the identity mappings of X and Y , respectively. Thus, by
definition, we have:

g(f(x)) = x and f(g(y)) = y

for every x ∈ X and y ∈ Y . We write f−1 for the inverse of f .

But, unless we have an algorithm to evaluate whether or not a mapping
is invertible, smoothness analysis of a point set is useless from the geometric
modelling point of view. Fortunately, linear algebra can help us at this point.
Consider the particular case f : Rn → Rn. The linear mapping f is represented
by a matrix A = [aij]. It is known that f is invertible iff A is invertible (as a
matrix), and the inverse of A, if it exists, is given by

A−1 =
1

detA
adjA

where adjA is a matrix whose components are polynomial functions of the
components of A. In fact, the components of adjA are subdeterminants of A.
Thus, A is invertible iff its determinant detA is not zero.

Now, we are in position to define invertibility for differential mappings.

Definition 1.3. Let U be an open subset of X and f : U → Y be a C1

mapping, where X, Y are Euclidean spaces. We say that f is C1-invertible
on U if the image of f is an open set V in Y , and if there is a C1 mapping
g : V → U such that f and g are inverse to each other, i.e.

g(f(x)) = x and f(g(y)) = y

for all x ∈ U and y ∈ V .

It is clear that f is C0-invertible if the inverse mapping exists and is
continuous. One says that f is Cr-invertible if f is itself Cr and its inverse
mapping g is also Cr. In the linear case, we are interested in linear invertibility,
which basically is the strongest requirement that we can make. From the
theorem that states that a Cr mapping that is a C1 diffeomorphism is also a Cr

diffeomorphism (see Hirsch [190]), it turns out that if f is a C1-invertible, and
if f happens to be Cr, then its inverse mapping is also Cr. This is the reason
why we emphasise C1 at this point. However, a C1 mapping with a continuous
inverse is not necessarily C1-invertible, as illustrated in the following example:

Example 1.4. Let f : R → R be the mapping f(x) = x3. It is clear that f
is infinitely differentiable. Besides, f is strictly increasing, and hence has an
inverse mapping g : R → R given by g(y) = y1/3. The inverse mapping g is
continuous, but not differentiable, at 0.

12 1 Mathematical Fundamentals

Let us now see the behaviour of invertibility under composition. Let f :
U → V and g : V → W be invertible Cr mappings, where V is the image of
f and W is the image of g. It follows that g ◦ f and (g ◦ f)−1 = f−1 ◦ g−1 are
Cr-invertible, because we know that a composite of Cr mappings is also Cr.

Definition 1.5. Let f : X → Y be a Cr mapping, and let p ∈ X. One says
that f is locally Cr-invertible at p if there exists an open subset U of X
containing p such that f is Cr-invertible on U .

This means that there is an open set V of Y and a Cr mapping g : V → U
such that f ◦ g and g ◦ f are the corresponding identity mappings of V and
U , respectively. Clearly, a composite of locally invertible mappings is locally
invertible. Putting this differently, if f : X → Y and g : Y → Z are Cr

mappings, with f(p) = q for p ∈ U , and f , g are locally Cr-invertible at p,
q, respectively, then g ◦ f is locally Cr-invertible at p.

In Example 1.4, we used the derivative as a test for invertibility of a real-
valued function of one variable. That is, if the derivative does not vanish at
a given point, then the inverse function exists, and we have a formula for its
derivative. The inverse mapping theorem generalises this result to mappings,
not just functions.

Theorem 1.6. (Inverse Mapping Theorem) Let U be an open subset of
Rm, let p ∈ U , and let f : U → Rn be a C1 mapping. If the derivative Df
is invertible, f is locally C1-invertible at p. If f−1 is its local inverse, and
y = f(x), then Jf−1(y) = [Jf(x)]−1.

Proof. See Boothby [58, p. 43].

This is equivalent to saying that there exists open neighbourhoods U, V
of p, f(p), respectively, such that f maps U diffeomorphically onto V . Note
that, by Theorem 1.1, Rm has the same dimension as the Euclidean space Rn,
that is, m = n.

Example 1.7. Let U be an open subset of R2 consisting of all pairs (r, θ),
with r > 0 and arbitrary θ. Let f : U → V ⊂ R2 be defined by f(r, θ) =
(r cos θ, r sin θ), i.e. V represents a circle of radius r in R2. Then

Jf(r, θ) =
[
cos θ −r sin θ
sin θ r cos θ

]
and

det Jf(r, θ) = r cos2 θ + r sin2 θ = r.

Thus, Jf is invertible at every point, so that f is locally invertible at every
point. The local coordinates f1, f2 are usually denoted by x, y so that we
usually write

x = r cos θ and y = r sin θ.

1.5 Level Set, Image, and Graph of a Mapping 13

The local inverse can be defined for certain regions of Y . In fact, let V be the
set of all pairs (x, y) such that x > 0 and y > 0. Then the inverse on V is
given by

r =
√
x2 + y2 and θ = arcsin

y√
x2 + y2

.

As an immediate consequence of the inverse mapping theorem, we have:

Corollary 1.8. Let U be an open subset of Rn and f : U → Rn. A necessary
and sufficient condition for the Cr mapping f to be a Cr diffeomorphism from
U to f(U) is that it be one-to-one and Jf be nonsingular at every point of U .

Proof. Boothby [58, p. 46].

Thus, diffeomorphisms have nonsingular Jacobians. This parallel between
differential geometry and linear algebra makes us to think of an algorithm
to check whether or not a Cr mapping is a Cr diffeomorphism. So, using
computational differentiation techniques and matrix calculus, we are able to
establish smoothness conditions on a submanifold of Rn.

Note that the domain and codomain of the mappings used in Theorem 1.1,
Theorem 1.6 and its Corollary 1.8 have the same dimension. This may suggest
that only smooth mappings between spaces of the same dimension are Cr

invertible. This is not the case. Otherwise, this would be useless, at least
for geometric modelling. For example, a parametrised k-manifold in Rn is
defined by the image of a parametrisation f : Rk → Rn, with k < n. On the
other hand, an implicit k-manifold is defined by the level set of a function
f : Rk → R, i.e. by an equation f(x) = c, where c is a real constant.

1.5 Level Set, Image, and Graph of a Mapping

Let us then review the essential point sets associated with a mapping. This
will help us to understand how a manifold or even a variety is defined, either
implicitly, explicitly, or parametrically. Basically, we have three types of sets
associated with any mapping f : U ⊂ Rm → Rn which play an important role
in the study of manifolds and varieties: level sets, images, and graphs.

1.5.1 Mapping as a Parametrisation of Its Image

Definition 1.9. (Baxandall and Liebeck [35, p. 26]) Let U be open in Rm.
The image of a mapping f : U ⊂ Rm → Rn is the subset of Rn given by

Image f = {y ∈ Rn |y = f(x), ∀x ∈ U},

being f a parametrisation of its image with parameters (x1, . . . , xm).

This definition suggests that practically any mapping is a “parametrisation”
of something [197, p. 263].

14 1 Mathematical Fundamentals

Example 1.10. The mapping f : R→ R2 defined by f(t) = (cos t, sin t), t ∈ R,
has an image that is the unit circle x2+y2 = 1 in R2 (Figure 1.1(a)). A distinct
function with the same image as f is the mapping g(t) = (cos 2t, sin 2t).

Example 1.10 suggests that two or more distinct mappings can have the
same image. In fact, it can be proven that there is an infinity of different
parametrisations of any nonempty subset of Rn [35, p. 29]. Free-form curves
and surfaces used in geometric design are just images in R3 of some parametri-
sation R1 → R3 or R2 → R3, respectively. The fact that an image can be
parametrised by several mappings poses some problems to meet smoothness
conditions when we patch together distinct parametrised curves or surfaces,
simply because it is not easy to find a global reparametrisation for a com-
pound curve or surface. Besides, the smoothness of the component functions
that describe the image of a mapping does not guarantee smoothness for its
image.

Example 1.11. A typical example is the cuspidal cubic curve that is the image
of a smooth mapping f : R1 → R2 defined by t 7→ (t3, t2) which presents a
cusp at t = 0, Figure 1.2(a). Thus, the cuspidal cubic is not a smooth curve.

(a) (b)

Fig. 1.1. (a) Image and (b) graph of f(t) = (cos t, sin t).

(a) (b)

Fig. 1.2. (a) Cuspidal cubic x3 = y2 and (b) parabola y = x2 as images of different
parametrisations.

1.5 Level Set, Image, and Graph of a Mapping 15

Conversely, the smoothness of the image of a mapping does not imply that
such a mapping is smooth. The following example illustrates this situation.

Example 1.12. Let f , g and h be continuous mappings from R into R2 defined
by the following rules:

f(t) = (t, t2), g(t) = (t3, t6), and h(t) =

{
f(t), t ≥ 0,
g(t), t < 0.

All three mappings have the same image, the parabola y = x2 in R2, Fig-
ure 1.2(b). Their Jacobians are however distinct,

Jf(t) = [1 2t], Jg(t) = [3t2 6t5], and Jh(t) =

{
Jf(t), t ≥ 0,
Jg(t), t < 0.

As polynomials, f , g are differentiable or smooth everywhere. Furthermore,
because of Jf(t) 6= [0 0] for any t ∈ R, f is C1-invertible everywhere. Con-
sequently, its image is surely smooth. The function g is also smooth, but its
Jacobian is null at t = 0, i.e. Jg(0) = [0 0]. This means that g is not C1-
invertible, or, equivalently, g has a singularity at t = 0, even though its image
is smooth. Thus, a singularity of a mapping does not necessarily determine a
singularity on its image. Even more striking is the fact that h is not differen-
tiable at t = 0 (the left and right derivatives have different values at t = 0).
This is so despite the smoothness of the image of h. This kind of situation
where a smooth curve is formed by piecing together smooth curve patches is
common in geometric design of free-form curves and surfaces used in industry.

The discussion above shows that every parametric smooth curve (in gen-
eral, a manifold) can be described by several mappings, and that at least one of
them is surely smooth and invertible, i.e. a diffeomorphism (see Corollary 1.8).

1.5.2 Level Set of a Mapping

Level sets of a mapping are varieties in some Euclidean space. That is, they
are defined by equalities. Obviously, they are not necessarily smooth.

Definition 1.13. (Dineen [112, p. 6]) Let U be open in Rm. Let f : U ⊂
Rm → Rn and c = (c1, . . . , cn) a point in Rn. A level set of f , denoted by
f−1(c), is defined by the formula

f−1(c) = {x ∈ U | f(x) = c}

In terms of coordinate functions f1, . . . , fn of f , we write

f(x) = c⇐⇒ fi(x) = ci for i = 1, . . . , n

and thus

16 1 Mathematical Fundamentals

f−1(c) =
n⋂
i=1

{x ∈ U | fi(x) = ci} =
n⋂
i=1

f−1
i (ci).

The smoothness criterion for a variety defined as a level set of a vector-
valued function is given by the following theorem.

Theorem 1.14. (Implicit Function Theorem, Baxandall [35, p. 145]) A
set X ⊆ Rm is a smooth variety if it is a level set of a C1 function f : Rm → R
such that Jf(x) 6= 0 for all x ∈ X.

This theorem is a particular case of the implicit mapping theorem (IMT)
for mappings which are functions. The IMT will be discussed later.

Example 1.15. The circle x2 + y2 = 4 is a variety in R2 that is a level set
corresponding to the value 4 (i.e. point 4 in R) of a function f : R2 → R given
by f(x, y) = x2 + y2. Its Jacobian is given by Jf(x, y) = [2x 2y] which is
null at (0,0). However, the point (0, 0) is not on the circle x2 + y2 = 4; hence
the circle is a smooth curve.

Example 1.16. The sphere x2 + y2 + z2 = 9 is a smooth surface in R3. It
is the level set for the value 9 of a C1 function f : R3 → R defined by
f(x, y, z) = x2 + y2 + z2, and Jf(x, y, z) 6= [0 0 0] at points on the sphere.

Example 1.17. Let f : R3 → R be a function given by f(x, y, z) = x2 +y2−z2.
Its level set corresponding to 0 is the right circular cone z = ±

√
x2 + y2,

whose apex is the point (0, 0, 0) as illustrated in Figure 1.3(a). The Jacobian
Jf(x, y, z) = [2x 2y −2z] is null at the apex. Hence, the cone is not smooth
at the apex, and the apex is said to be a singularity. Nevertheless, the level
sets of the same function for which x2 + y2 − z2 = c 6= 0 are smooth surfaces
everywhere because the point (0, 0, 0) is not on them. We have a hyperboloid
of one sheet for c > 0 and a hyperboloid of two sheets for c < 0, as illustrated
in Figure 1.3(b) and (c), respectively.

(a) (b) (c)(a) (b) (c)

Fig. 1.3. (a) Cone x2 + y2− z2 = 0; (b) hyperboloid of one sheet x2 + y2− z2 = a2;
(c) hyperboloid of two sheets x2 + y2 − z2 = −a2.

1.5 Level Set, Image, and Graph of a Mapping 17

Example 1.18. The Whitney umbrella with-handle x2 − zy2 = 0 in R3 (Fig-
ure 1.4) is not smooth. It is defined as the zero set of the function f(x, y, z) =
x2 − zy2 whose Jacobian is Jf(x, y, z) = [2x − 2yz − y2]. It is easy to see
that the Whitney umbrella is not smooth along the z-axis, i.e. the singular
point set {(0, 0, z)} where the Jacobian is zero. This singular point set is given
by the intersection {2x = 0} ∩ {−2yz = 0} ∩ {−y2 = 0}, which basically is
the intersection of two planes, {x = 0} and {y = 0}, i.e. the z-axis.

The smoothness criterion based on the Jacobian is valid for functions and
can be generalised to mappings. In this case, we have to use the implicit
mapping theorem given further on. Even so, let us see an example of a level
set for a general mapping, not a function.

Example 1.19. Let f(x, y, z) = (x2 + y2 + z2 − 1, 2x2 + 2y2 − 1) a mapping
f : R3 → R2 with component functions f1(x, y, z) = x2 + y2 + z2 − 1 and
f2(x, y, z) = 2x2 + 2y2 − 1. The set f−1

1 (0) is a sphere of radius 1 in R3 while
f−1

2 (0) is a cylinder parallel to the z-axis in R3 (Figure 1.5). If 0 = (0, 0) is

(a) (b)
(a) (b)

Fig. 1.4. (a) Whitney umbrella with-handle x2 − zy2 = 0; (b) Whitney umbrella
without-handle {x2 − zy2 = 0} − {z < 0}.

(a) (b)

Fig. 1.5. Two circles as the intersection of a cylinder and sphere in R3.

18 1 Mathematical Fundamentals

the origin in R2, the level set

f−1(0) = f−1(0, 0) = f−1
1 (0) ∩ f−1

2 (0)

is the intersection of a sphere and a cylinder in R3. This intersection consists
of two circles that can be obtained by solving the equations f1(x, y, z) =
f2(x, y, z) = 0. Such circles are in the planes z =

√
2 and z = −

√
2.

Let us see now the role of the differentiability in the local structure of level
sets defined by general mappings as in Example 1.19. As noted in [112, p. 11],
by taking into account the linear approximation of differentiable functions and
standard results on solving systems of linear equations, we start to recognise
and accept that level sets are locally graphs.

Let f : U ⊂ Rm → Rn, U an open subset of Rm, f = (f1, . . . , fn),
c = (c1, . . . , cn). We assume that f is differentiable. Let us consider the level
set f−1(c) =

⋂n
i=1 f

−1
i (ci), i.e. the set whose points (x1, . . . , xm) ∈ U satisfy

the equations

f1(x1, . . . , xm) = c1

... (1.1)
fn(x1, . . . , xm) = cn.

We have m unknowns (x1, . . . , xm) and n equations. If each component func-
tion fi is linear, we have a system of linear equations and the rank of the
matrix gives us the number of linearly independent solutions, and informa-
tion enough to identify a complete set of independent variables. The Implicit
Mapping Theorem states that all this information can be locally obtained for
differentiable mappings. This is due to the fact that differentiable mappings,
by definition, enjoy a good local linear approximation.

If p ∈ f−1(c), then f(p) = c. If x ∈ Rn is close to zero, then, since f is
differentiable, we have

f(p + x) = f(p) + f ′(p).x + ε(x)

where ε(x)→ 0 when x→ 0 (see Dineen [112, p. 3, p. 12]). Because we wish
to find x close to 0 such that f(p + x) = c, we are considering points such
that

f ′(p).x + ε(x) = 0

and thus f ′(p).x ≈ 0 (where ≈ means approximately equal). Let us assume
that m ≥ n. Therefore, not surprisingly, we have something very close to the
following system of linear equations

∂f1

∂x1
(p)x1 + · · ·+ ∂f1

∂xm
(p)xm = 0

... (1.2)
∂fn
∂x1

(p)x1 + · · ·+ ∂fn
∂xm

(p)xm = 0,

1.5 Level Set, Image, and Graph of a Mapping 19

whose matrix is the Jacobian Jf .
From linear algebra we know that

rank Jf = n⇐⇒ n rows of Jf are linearly independent
⇐⇒ n columns of Jf are linearly independent
⇐⇒ Jf contains n columns, and the associated (1.3)

n× n matrix has nonzero determinant
⇐⇒ the space of solutions of the system (1.2)

is (m− n)-dimensional.

Besides, if any of the conditions (1.3) are satisfied, and we select n columns
that are linearly independent, then the variables concerning the remaining
columns can be taken as a complete set of independent variables. If the con-
ditions (1.3) are satisfied, we say that f has full or maximum rank at p.

Example 1.20. Let us consider the following system of equations

2x− y + z = 0
y − w = 0,

whose matrix of coefficients is

A =
[
2 −1 1 0
0 1 0 −1

]
.

The submatrix [
2 −1
0 1

]
is obtained by taking the first two columns from A, and has determinant 2 6= 0.
Thus, A has rank 2, or, equivalently, the two rows are linearly independent.
So, the two variables z, w in the remaining two columns can be taken as the
independent variables. In other words, y = w, 2x = y− z = w− z, and hence
{(w−z2 , w, z, w) : z ∈ R, w ∈ R} is the solution set. Alternatively, the solution
set can be written in the following form

{(g(z, w), z, w) : (z, w) ∈ R2}

where g(z, w) = (w−z2 , w) is a mapping g : R2 → R2. In this format, the
solution space is the graph of g (defined in the next subsection).

Assuming that the rows of Jf(p) are linearly independent is equivalent to
supposing that the gradient vectors {∇ f1(p), . . . ,∇ fn(p)} are linearly inde-
pendent in Rm. The implicit mapping theorem states that with this condition
we can solve the nonlinear system of equations (1.1) near p and apply the
same approach to identify a set of independent variables. The hypothesis of a
good linear approximation in the definition of differentiable functions implies
that the equation systems (1.1) and (1.2) are very close to one another [112,
p. 13]. Roughly speaking, this linear approximation is the tangent space to
the solution set defined by the at p.

20 1 Mathematical Fundamentals

Theorem 1.21. (Implicit Mapping Theorem, Munkres [292]) Let f : U ⊂
Rm → Rn (m ≥ n) be a differentiable mapping, let p ∈ U and assume that
f(p) = c and rank Jf(p) = n. For convenience, we also assume that the last
n columns of the Jacobian are linearly independent. If p = (p1, . . . , pm), let
p1 = (p1, . . . , pm−n) and p2 = (pm−n+1, . . . , pm) so that p = (p1,p2). Then,
there exists an open set V ⊂ Rm−n containing p1, a differentiable mapping
g : V → Rn, an open subset U ′ ⊂ U containing p such that g(p1) = p2 and

f−1(c) ∩ U ′ = {(x, g(x)) : x ∈ V } = graph g.

Therefore, locally every level set is a graph.

1.5.3 Graph of a Mapping

Definition 1.22. (Dineen [112, p. 6]) Let U be open in Rm. The graph of a
mapping f : U ⊂ Rm → Rn is the subset of the product space Rm+n = Rm×Rn
defined by

graph f = {(x,y) |x ∈ U and y = f(x)}

or
graph f = {(x, f(x)) |x ∈ U}.

Example 1.23. Let us consider both mappings f(t) = (cos t, sin t) and g(t) =
(cos 2t, sin 2t) of Example 1.10. They have the same image in R2, say a unit
circle. However, their graphs are distinct point sets in R3. The graph of f is
a circular helix (t, cos t, sin t) in R3, Figure 1.1(b). But, although the graph of
g is a circular helix with windings being around the same circular cylinder,
those windings have half the pitch.

This suggests that there is a one-to-one correspondence between a mapping
and its graph, that different mappings have distinct graphs. This leads us to
think of a possible relationship between the smoothness of a mapping and
the smoothness of its graph. In other words, the smoothness of a mapping
determines the smoothness of its graph. This is corroborated by the following
theorem.

Theorem 1.24. (Baxandall [35, p. 147]) The graph of a C1 mapping f : U ⊆
Rm → Rn is a smooth variety in Rm × Rn.

Proof. Consider the mapping F : U × Rn ⊆ Rm × Rn → Rn defined by

F (x,y) = f(x)− y, x ∈ U, y ∈ Rn.

The graph of f is the level set of F corresponding to the value 0, that is

graph f = {(x,y) ∈ Rm × Rn | f(x)− y = 0}.

To prove that graph f is a smooth variety in Rm × Rn we show that:

1.5 Level Set, Image, and Graph of a Mapping 21

(i) F is a C1 mapping.
(ii) JF (x,y) 6= (0,0) for all x ∈ U , y ∈ Rn.

It follows from the definition of F above that for each i = 1, . . . ,m, j =
m+ 1, . . . ,m+ n and each x ∈ U , y ∈ Rn

∂F

∂xi
(x,y) =

∂f

∂xi
(x) and

∂F

∂yj
(x,y) = −1.

Therefore the partial derivatives of F are continuous and so F is a C1 mapping.
Also, for any x ∈ U , y ∈ Rn

JF (x,y) = (Jf(x),−1) 6= (0,0).

This completes the proof.

Example 1.25. Let us consider the curves sketched in Figure 1.6. Figure 1.6(a)
shows the curve y = |x| in R2 that is not smooth. It is the graph of the
function f : R→ R that explicitly expresses y as a function of x, but f is not
differentiable at x = 0. Nor is it the graph of (an inverse) function g expressing
x as a function of y, because in the neighbourhood of (0, 0) the same value of
y corresponds to two values of x.

Figure 1.6(b) shows another nonsmooth curve xy = 0 in R2, which is
the union of the two coordinate axes, x and y. Any neighbourhood of (0, 0)
contains infinitely many y values corresponding to x = 0, and infinitely many
x values corresponding to y = 0. This means that the curve is not a graph of
an explicit function y = f(x), nor of a function x = g(y). Incidentally, this
curve can be regarded as a slice at z = 0 through the graph of h : R2 → R
where h(x, y) = xy, which defines the implicit curve h(x, y) in R2.

Finally, the graph of the function f(x) = x1/3, depicted in Figure 1.6(c),
is a smooth curve. Note that the curve is smooth despite the function being
not differentiable at x = 0. This happens because the curve is the graph of
the function x = f(y) = y3 that is differentiable.

From these examples, we come to the following conclusions:

(a) (b) (c)(a) (b) (c)

Fig. 1.6. Not all point sets in R2 are graphs of a mapping.

22 1 Mathematical Fundamentals

• Rewording Theorem 1.24, every point set that is the graph of a differen-
tiable mapping is smooth.

• The fact that a mapping is not differentiable does not imply that its graph
is not smooth; but if the graph is smooth, then it is necessarily the graph
of a related function by changing the roles of the variables, possibly the
inverse function. This is the case for the curve x = y3 in Figure 1.6(c).

• The graph of a mapping that is not differentiable is possibly nonsmooth.
This happens because of the differentiable singularities such as the cusp
point in y = |x|, Figure 1.6.

• There are point sets in Rn that cannot be described as graphs of map-
pings, unless we break them up into pieces. For example, with appropriate
constraints we can split xy = 0 (the union of axes in R2) into the origin
and four half-axes, each piece described by a function. The origin is a cut
point of xy = 0, that is, a topological singularity. The idea of partitioning
a point set into smaller point sets by its topological singularities leads to
a particular sort of stratification as briefly detailed in the next chapter.
Another alternative to describe a point set that is not describable by a
graph of a function is to describe it as a level set of a function.

The relationship between graphs and level sets plays an important role in
the study of varieties. It is easy to see that every graph is a level set. Let us
consider a mapping f : U ⊆ Rm → Rn. We define F : U × Rm → Rn by
F (x,y) = f(x)− y. If 0 is the origin in Rn, we have

(x,y) ∈ F−1(0)⇐⇒ F (x,y) = 0

⇐⇒ f(x)− y = 0

⇐⇒ (x,y) ∈ graph f.

Thus, F−1(0) = graph f and every graph is a level set. This fact has been
used to prove the Theorem 1.24. As a summary, we can say that:

• Not all varieties in some Euclidean space are graphs of a mapping.
• Every variety as a graph of a mapping is a level set.
• Every variety is a level set of a mapping.

This shows us why the study of algebraic and analytic varieties in geometry
is carried out using level sets of mappings, i.e. point sets defined implicitly. The
reason is a bigger geometric coverage of point sets in some Euclidean space.
In addition to this, many (not necessarily smooth) varieties admit a global
parametrisation, whilst others can only be partially (locally) and piecewise
parametrised.

Example 1.26. Let z = x2− y2 be a level set of a function F : R3 → R defined
by F (x, y, z) = x2 − y2 − z corresponding to the value 0. It is observed that
JF (x, y, z) = [2x − 2y − 1] is not zero everywhere. So z = x2− y2 in R3 is
smooth everywhere. It is a variety known as a saddle surface. Note that z is

1.5 Level Set, Image, and Graph of a Mapping 23

explicitly defined in terms of x and y. So, the saddle surface can be viewed as
the graph of the function f : R2 → R given by f(x, y) = x2−y2. Consequently,
the saddle surface can be given a global parametrisation g : R2 → R3 defined
by g(x, y) = (x, y, x2 − y2).

Not all varieties can be globally parametrised, even when they are smooth.
But, as proved later, every smooth level set can be always locally parametrised,
i.e. every smooth level set is locally a graph. This fact is proved by the implicit
mapping theorem.

Level sets correspond to implicit representations, say functions, on some
Euclidean space, while graphs correspond to explicit representations. In fact,
we have from calculus that

Definition 1.27. (Baxandall and Liebeck [35, p. 226]) Let f : X ⊆ Rm → R
be a function, where m ≥ 2. If there exists a function g : Y ⊆ Rm−1 → R
such that for all (x1, . . . , xm−1) ∈ Y ,

f(x1, . . . , xm−1, g(x1, . . . , xm−1)) = 0,

then the function g is said to be defined implicitly on Y by the equation

f(x1, . . . , xm) = 0.

Likewise, the graph of g : Y ⊆ Rm−1 → R is the subset of Rm given by

{(x1, . . . , xm−1, xm) ∈ Rm|xm = g(x1, . . . , xm−1)}.

The expression xm = g(x) is called the equation of the graph [35, p.100].
Hence, g is said to be explicitly defined on Y by the equation xm =
g(x1, . . . , xm−1).

Example 1.28. The graph of the function f(x, y) = −x2 − y2 has equation
−z = x2 + y2. This graph is a 2-manifold in R3 called a paraboloid (Fig-
ure 1.7). The equation −z = x2 + y2 explicitly defines the paraboloid in R3.

c=–0.5

c=–1.0

Fig. 1.7. The paraboloid −z = x2 + y2 in R3.

24 1 Mathematical Fundamentals

For c < 0 the plane z = c intersects the graph in a circle lying below the level
set x2 + y2 = −c in the (x, y)-plane. The equation x2 + y2 = −c of a circle
(i.e. a 1-manifold) in R2 is said to define y implicitly in terms of x. This circle
is said to be an implicit 1-manifold.

1.6 Rank-based Smoothness

Now, we are in position to show that the rank of a mapping gives us a general
approach to check the Cr invertibility or Cr smoothness of a mapping, and
whether or not a variety is smooth. This smoothness test is carried out inde-
pendently of how a variety is defined, implicitly, explicitly or parametrically,
i.e. no matter whether a variety is considered a level set, a graph, or an image
of a mapping, respectively.

Definition 1.29. (Olver [313, p. 11]) The rank of a mapping f : Rm → Rn
at a point p ∈ Rm is defined to be the rank of the n×m Jacobian matrix Jf of
any local coordinate expression for f at the point p. The mapping f is called
regular if its rank is constant.

Standard transformation properties of the Jf imply that the definition
of rank is independent of the choice of local coordinates [313, p. 11] (see
[58, p. 110] for a proof). Moreover, the rank of the Jacobian matrix (shortly
rank Jf) provides us with a general algebraic procedure to check the smooth-
ness of a submanifold or, putting it differently, to determine its singularities.
It is proved in differential geometry that the set of points where the rank of f
is maximal is an open submanifold of the manifold Rm (which is dense if f is
analytic), and the restriction of f to this subset is regular. The subsets where
the rank of a mapping decreases are singularities [313, p. 11]. The types and
properties of such singularities are studied in singularity theory.

From linear algebra we have

rank Jf = k ⇐⇒ k rows of Jf are linearly independent
⇐⇒ k columns of Jf are linearly independent
⇐⇒ Jf has a k × k submatrix that has nonzero determinant.

The fact that the n × m Jacobian matrix Jf has rank k means that it
includes a k× k submatrix that is invertible. Thus, a necessary and sufficient
condition for a k-variety to be smooth is that rank Jf = k at every point of
it, no matter whether it is defined parametrically or implicitly by f . This is
clearly a generalisation of Corollary 1.8, and is a consequence of a generalisa-
tion of the inverse mapping theorem, called the rank theorem:

Theorem 1.30. (Rank Theorem) Let U ⊂ Rm, V ⊂ Rn be open sets,
f : U → V be a Cr mapping, and suppose that rank Jf = k. If p ∈ U and

1.6 Rank-based Smoothness 25

q = f(p), there exists open sets U0 ⊂ U and V0 ⊂ V with p ∈ U0 and q ∈ V0,
and there exists Cr diffeomorphisms

φ : U0 → X ⊂ Rm,

ψ : V0 → Y ⊂ Rn

with X,Y open in Rm,Rn, respectively, such that

ψ ◦ f ◦ φ−1(X) ⊂ Y

and such that this mapping has the simple form

ψ ◦ f ◦ φ−1(p1, . . . , pm) = (p1, . . . , pk, 0, . . . , 0).

Proof. See Boothby [58, p. 47].

This is a very important theorem because it states that a mapping of
constant rank k behaves locally as a projection of Rm = Rk × Rm−k to Rk
followed by injection of Rk onto Rk × {0} ⊂ Rk × Rn−k = Rn.

1.6.1 Rank-based Smoothness for Parametrisations

The rank theorem for parametrisations is as follows:

Theorem 1.31. (Rank Theorem for Parametrisations) Let U be an open
set in Rm and f : U → Rn. A necessary and sufficient condition for the C∞

mapping f to be a diffeomorphism from U to f(U) is that it be one-to-one
and the Jacobian Jf have rank m at every point of U .

Proof. See Boothby [58, p. 46].

This is a generalisation of Corollary 1.8, with m ≤ n. It means that the ker-
nel3 of the linear mapping represented by Jf is 0 precisely when the Jacobian
matrix has rank m.

Let us review some simple examples of parametrised curves.

Example 1.32. We know that the bent curve in R2 depicted in Figure 1.6 and
defined by the parametrisation f(t) = (t, |t|) is not differentiable at t = 0,
even though its rank is 1 everywhere.

Example 1.32 shows that the differentiability test should always precede
the rank test in order to detect differentiable singularities.

3 Let F : X → Y be a linear mapping of vector spaces. By the kernel of F , denoted
by kernelF , is meant the set of all those vectors x ∈ Xsuch that F (V) = 0 ∈ Y ,
i.e. kernelF = {x ∈ X : F (x) = 0} (see Edwards [128, p. 29]). In other words,
the kernel of a linear mapping corresponds to the level set of a mapping.

26 1 Mathematical Fundamentals

Example 1.33. A parametrised curve that passes the differentiability test, but
not the rank test, is the cuspidal cubic in R2 given by f(t) = (t3, t2) (Fig-
ure 1.2(a)). The component functions are polynomials and therefore differen-
tiable. However, the rank Jf(t) = [3t2 2t] is not 1 (i.e. its maximal value) at
t = 0; in fact it is zero. This means that the parametrised cuspidal cubic is
not smooth at t = 0, that is, it possesses a singularity at t = 0.

Example 1.34. Let us take the parametrised parabola in R2 given by f(t) =
(t, t2) (Figure 1.2(b)). f is obviously differentiable, and its rank is 1 every-
where, so it is globally smooth.

Nevertheless, algorithmic detection of singularities of a parametrised va-
riety fails for self-intersections, i.e. topological singularities. Let us see some
examples.

Example 1.35. The curve parametrised by the differentiable mapping f(t) =
(t3 − 3t− 2, t2 − t− 2) is not smooth at (0, 0), despite the differentiability of
f and its maximal rank. In fact, we get the same point (0, 0) on the curve
for two distinct points t = −1 and t = 2 of the domain, that is, f(−1) =
f(2) = (0, 0), and thus f is not one-to-one. These singularities are known as
self-intersections in geometry or topological singularities in topology.

The problem with a parametrised self-intersecting variety is that its self-
intersections are topological singularities for the corresponding underlying
topological space, but not for the parametrisation. However, it is an easy
task to check whether a non-self-intersecting point in a parametrised vari-
ety is singular or not. A non-self-intersecting point is singular if the rank of
Jacobian at this point is not maximal.

Example 1.36. Let us consider a parametrisation f(u, v) = (uv, u, v2) of the
Whitney umbrella without-handle (the negative z-axis) (Figure 1.4(b)). The
effect of this parametrisation on R2 can be described as the ‘fold’ of the v-axis
at the origin (0, 0) in order to superimpose negative v-axis and positive v-axis.
The ‘fold’ is identified by the exponent 2 of the third component coordinate
function. Thus, all points (0, 0, v2) along v-axis are double points and deter-
mine that all points on the positive z-axis are singularities or self-intersecting
points in R3. However, this is not so apparent if we restrict the discussion to
the Jacobian and try to determine where the rank drops below 2. In fact,

Jf(u, v) =

v u
1 0
0 2v


and we observe that the rank drops below 2 only at (0, 0). This happens
because only (0, 0) is a differential singularity, that is, the tangent plane is not
defined at (0, 0). Any other point on the positive z-axis has a parametrised
neighbourhood that can be approximated by a tangent plane in relation to
the parametrisation.

1.6 Rank-based Smoothness 27

Example 1.37. Let f : R2 → R3 be the mapping given by

f(x, y) = (sinx, ex cos y, sin y).

Then

Jf(x, y) =

 cosx 0
ex cos y −ex sin y

0 cos y


and hence

Jf(0, 0) =

1 0
1 0
0 1


has rank 2, so that in a neighbourhood of (0, 0), the mapping f parametrises
a subset of R3.

1.6.2 Rank-based Smoothness for Implicitations

The implicit function theorem is particularly useful for geometric modelling
because it provides us with a computational tool to test whether an implicit
manifold, and more generally a variety, is smooth in the neighbourhood of a
point. Specifically, it gives us a local parametrisation for which it is possible
to check the local Cr-invertibility by means of its Jacobian.

Before proceeding, let us see how Cr-invertibility and smoothness is de-
fined for implicit manifolds and varieties.

Theorem 1.38. (Rank Theorem for Implicitations) Let U be open in Rm
and let f : U → R be a Cr function on U . Let (p, q) = (p1, . . . , pm−1, q) ∈ U
and assume that f(p, q) = 0 but ∂f

∂xm
(p, q) 6= 0. Then the mapping

F : U → Rm−1 × R = Rm

given by
(x, y) 7→ (x, f(x, y))

is locally Cr-invertible at (p, q).

Proof. (See Lang [223, p.523]). All we need to do is to compute the
derivative of F at (p, q). We write F in terms of its coordinates, F =
(F1, . . . , Fm−1, Fm) = (x1, . . . , xm−1, f). Its Jacobian matrix is therefore

JF (x) =


1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 1 0
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xm


and is invertible since its determinant is equal to ∂f

∂xm
6= 0 at (p, q). The

inverse function theorem guarantees that F is locally Cr-invertible at (p, q).

28 1 Mathematical Fundamentals

As a corollary of this Theorem, we have the implicit function theorem for
functions of several variables, which can be reworded as follows:

Theorem 1.39. (Multivariate Implicit Function Theorem) Let U be
open in Rm and let f : U → R be a Cr function on U . Let (p, q) =
(p1, . . . , pm−1, q) ∈ U and assume that f(p, q) = 0 but ∂f

∂xm
(p, q) 6= 0. Then

there exists an open ball V in Rm−1 centred at p and a Cr function

g : V → R

such that g(p) = q and
f(x, g(x)) = 0

for all x ∈ V .

Proof. (See Lang [223, p. 524]). By Theorem 1.38 we know that the mapping

F : U → Rm−1 × R = Rm

given by
(x, y) 7→ (x, f(x, y))

is locally Cr-invertible at (p, q). Let F−1 = (F−1
1 , . . . , F−1

m) be the local in-
verse of F such that

F−1(x, z) = (x, F−1
m (x, z)) for x ∈ Rm−1, z ∈ R.

We let g(x) = F−1
m (x, 0). Since F (p, q) = (p, 0) it follows that F−1

m (p, 0) = q
so that g(p) = q. Furthermore, since F, F−1 are inverse mappings, we obtain

(x, 0) = F (F−1(x, 0)) = F (x, g(x)) = (x, f(x, g(x))).

This proves that f(x, g(x)) = 0, as shown by previous equality.

Note that we have expressed y as a function of x explicitly by means of
g, starting with what is regarded as an implicit relation f(x, y) = 0. Besides,
from the implicit function theorem, we see that the mapping G given by

x 7→ (x, g(x)) = G(x)

or writing down the coordinates

(x1, . . . , xm−1) 7→ (x1, . . . , xm−1, g(x1, . . . , xm−1))

provides a parametrisation of the variety defined by f(x1, . . . , xm−1, y) = 0
in the neighbourhood of a given point (p, q). This is illustrated in Figure 1.8
for convenience. On the right, we have the surface f(x) = 0, and we have
also pictured the gradient grad f(p, q) at the point (p, q) as in Theorem 1.39.
Note that the condition ∂f

∂xm
(p, q) 6= 0 in Theorem 1.39 implies that the

grad f(p, q) = [∂f∂x1

∂f
∂x2

. . . ∂f
∂xm

] 6= 0.
An example follows to illustrate the implicit function theorem at work.

1.6 Rank-based Smoothness 29

G p

V

surface f(x)=0

(p,q)

grad f(p,q)

Fig. 1.8. Local parametrisation of an implicitly defined variety.

Example 1.40. The Whitney umbrella x2−zy2 = 0 in R3 is the level set for the
value 0 of the function f : R3 → R given by f(x, y, z) = x2 − zy2. According
to the Theorem 1.39, we have only to make sure that ∂f

∂z 6= 0 in order to
guarantee a regular neighbourhood for a point. But

∂f

∂z
= −y2 = 0 ⇒ y = 0

i.e. all points of x2 − zy2 = 0 with y = 0 are singular points. These singular
points are then given by{

y = 0
x2 − zy2 = 0 ⇔

{
y = 0
x = 0 ⇔ {x = 0} ∩ {y = 0}

or, equivalently, the point set {(x, y, z) ∈ R3 : x = 0, y = 0}. That is, the
singular set of the Whitney umbrella is the z-axis 0× 0× z.

This result agrees with the fact that the Jacobian J f = [2x 2yz y2] has
maximal rank 1 for (x, y, z) 6= (0, 0, z). However, because the rank cannot fall
below zero, we have no way to algorithmically detect via rank criterion any
possible singularities in the z-axis. In fact, the z-axis is a smooth line, but we
know that the origin is a special singularity of the Whitney umbrella provided
that, unlike the points of the positive z-axis, it is a cut-point.4

The question now is whether or not there is any method to compute such
singularities. An algorithm to determine the singularities of a variety is useful
for many geometry software packages. For example, the graphical visualisation
of the Whitney umbrella with-handle x2−zy2 = 0 in R3 requires the detection
of its singular set along the z-axis. Therefore, unless we use a parametric
Whitney umbrella without-handle, such a point set cannot be visualised on

4 In topology, a point of a connected space is a cut-point if its removal makes its
space disconnected. For example, every point of a straight line is a cut-point
because it splits the line into two; the same is not true for any circle point.

30 1 Mathematical Fundamentals

a display screen. This is an example amongst others that shows how much a
stratification algorithm of varieties can be useful.

Amongst other applications of implicit function theorem, we can mention
two:

• To prove the existence of smooth curves passing through a point on a
surface [223, p. 525].

• To state the smoothness conditions when an implicit surface and a para-
metric surface are stitched along an edge.

The first refers a theorem of major importance because it allows the study
of smoothness of higher-dimensional submanifolds via, for example, Taylor
or Frénet approximations. The second is also important because it makes it
possible to avoid the conversion of an implicit surface patch to its parametric
representation, or vice-versa. So, in principle, it is possible to design a smooth
surface composed of parametric and implicit patches.

1.7 Submanifolds

By definition, a submanifold is a subset of a manifold that is a manifold in
its own right. In geometric modelling, manifolds are usually Euclidean spaces,
and submanifolds are points, curves, surfaces, etc. in some Euclidean space
of equal or higher dimension. Manifolds and varieties in an Euclidean space
are usually defined by either the image, level set or graph associated with a
mapping.

1.7.1 Parametric Submanifolds

As shown in previous sections, the smoothness characterisation of a subman-
ifold clearly depends on its defining smooth mapping and its rank. We have
seen that the notion of smooth mapping of constant rank leads to the defini-
tion of smooth submanifolds. In this respect, the rank theorem, and ultimately,
the inverse function theorem, can be considered as the major milestones in the
theory of smooth submanifolds. Notably, the smoothness of a mapping does
not ensure the smoothness of a submanifold. In fact, not all smooth subman-
ifolds, say parametric smooth submanifolds, can be considered as topological
submanifolds, i.e. submanifolds equipped with the submanifold topology.

Extreme cases of mappings f : M → N of constant rank are those corre-
sponding to maximal rank, that is, the rank is the same as the dimension of
M or N .

Definition 1.41. Let f : M → N be a smooth mapping with constant rank.
Then, for all p ∈M , f is called:

an immersion if rank f = dimM,

a submersion if rank f = dimN.

1.7 Submanifolds 31

Let us now concentrate on immersions, that is, mappings whose images
are parametric submanifolds. To say that f : M → N is an immersion means
that the differential D f(p) is injective at every point p ∈M . This is the same
as saying that the Jacobian matrix of f has rank equal to dimM (which is
only possible if dimM ≤ dimN). Then by the rank theorem, we have

Corollary 1.42. Let M , N be two manifolds of dimensions m, n, respectively,
and f : M → N a smooth mapping. The mapping f is an immersion if and
only if for each point p ∈M there are coordinate systems (U,ϕ), (V, ψ) about
p and f(p), respectively, such that the composite ψ f ϕ−1 is a restriction of
the coordinate inclusion ι : Rm → Rm × Rn−m.

Proof. See Sharpe [360, p. 15].

This corollary provides the canonical form for immersed submanifolds:

(x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).

Definition 1.43. A smooth (analytic) m-dimensional immersed submani-
fold of a manifold N is a subset M ′ ⊂ N parametrised by a smooth (analytic),
one-to-one mapping f : M → M ′ ⊂ N , whose domain M , the parameter
space, is a smooth (analytic) m-dimensional manifold, and such that f is
everywhere regular, of maximal rank m.

Thus, an m-dimensional immersed submanifold M ′ is the image of an
immersion f : M → M ′ = f(M). To verify that f is an immersion it is nec-
essary to check that the Jacobian has rank m at every point. Observe that
an immersed submanifold is defined by a parametrisation. Thus, an immersed
submanifold is nothing more than a parametrically defined submanifold, or
simply a parametric submanifold. Despite its smoothness, an immersed
or parametric submanifold may include self-intersections. A submanifold with
self-intersections is the image M ′ = f(M) of an arbitrary regular mapping
f : M → M ′ ⊂ N of maximal rank m, which is the dimension of the param-
eter space M . Examples of parametric submanifolds with self-intersections
such as Bézier curves and surfaces are often found in geometric design ac-
tivities. Immersed submanifolds constitute the largest family of parametric
submanifolds. It includes the subfamily of parametric submanifolds without
self-intersections, also known as parametric embedded submanifolds.

Definition 1.44. An embedding is a one-to-one immersion f : M → N
such that the mapping f : M → f(M) is a homeomorphism (where the topol-
ogy on f(M) is the subspace topology inherited from N). The image of an
embedding is called an embedded submanifold.

In other words, the topological type is invariant for any point of an embed-
ded submanifold. This is why embedded submanifolds are often called simply
submanifolds. Obviously, f : M → N considered as a smooth mapping is

32 1 Mathematical Fundamentals

called an embedding if f(M) ⊂ N is a smooth manifold and f : M → f(M)
is a diffeomorphism [65, p. 10].

Parametric immersed submanifolds have been mainly used in computer-
aided geometric design (CAGD) of parametric curves and surfaces, while em-
bedded submanifolds are preferably used as “building blocks” of solids in solid
geometric modelling, which usually embody mechanical parts and other en-
gineering artifacts. This means that an eventual computational integration
of these two research areas of geometric modelling becomes mandatory to
reconcile immersed and embedded submanifolds.

Let us see first some examples of 1-dimensional immersed submanifolds
that are not embedded manifolds.

Example 1.45. Let f : R→ R2 an immersion given by f(t) = (cos 2πt, sin 2πt).
Its image f(R) is the unit circle S1 = {(x, y) |x2 + y2 = 1} in R2. This
shows that an immersion need not be one-to-one into (injective) in the large,
even though it is one-to-one locally. In fact, for example, all the points
t = 0,±1,±2, . . . have the same image point (0, 1) in R2. Moreover, the cir-
cle intersects itself for consecutive unit intervals in R, even though its self-
intersections are not “visually” apparent. Thus, this circle is an immersed
submanifold, but not an embedded submanifold in R2. The same holds if we
consider the immersion f : [0, 1] → R2 because f(0) = f(1). But, if we take
the immersion f :]0, 1[→ R2, its image is an embedded manifold, that is, a
unit circle minus one of its points.

Example 1.46. Let f :]−∞, 2[→ R2 be an immersion given by f(t) = (−t3 +
3t+ 2, t2− t− 2). Its image f(]−∞, 2[) is an immersed 6-shaped submanifold
of dimension 1 (Figure 1.9(a)). Although f is injective (say, injective globally,
and consequently injective locally), that is, without self-intersections, its image
is not an embedded manifold. This is so because] − ∞, 2[and its image
f(] − ∞, 2[) are not homeomorphic. In fact the point (0, 0) in f(] − ∞, 2[)
is a cut point of f(] −∞, 2[), and hence the local topological type of such a

0.1

1

-1

(a) (b) (c)

Fig. 1.9. Examples of immersed, but not embedded, submanifolds.

1.7 Submanifolds 33

6-shaped submanifold is not constant. Note that the curve intersects itself at
t = −1 and t = 2, but because t = 2 is not part of the domain, one says that
the curve touches itself at the origin (0, 0).

Example 1.47. f : R → R2 defined by f(t) = (t2 − 1, t3 − t) is an immersion
(Figure 1.9(b)). It is not injective. However, it is injective when restricted to,
say, the range −1 < t <∞.

Example 1.48. A more striking example of a self-touching submanifold is given
by the image of the mapping f : R→ R2 so that

f(t) =

{
(1
t , sinπt) for 1 ≤ t <∞,

(0, t+ 2) for −∞ < t ≤ −1.

The result is a curve with a gap (Figure 1.9(c)). Let us connect the two pieces
together smoothly by a dotted line as pictured in Figure 1.9(c). Then we get
a smooth submanifold that results from the immersion of all of R in R2. This
submanifold is not embedded because near t =∞ the curve converges to the
segment line 0× [−1, 1] in y-axis. In fact, while t converges to a point near∞,
its image converges to a line segment. Thus, the submanifold is not embedded
because f is not a homeomorphism.

Embedded submanifolds are a subclass of immersed submanifolds that ex-
clude self-intersecting submanifolds and self-touching submanifolds, that is,
submanifolds that corrupt the local topological type invariance. Any other
submanifold that keeps the same topological type everywhere in it is an em-
bedded submanifold. Equivalently, a subset f(M) ∈ N of a manifold N is
called a smooth m-dimensional embedded submanifold if there is a covering
{Ui} of f(M) by open sets (i.e. arbitrarily small neighbourhoods) of the am-
bient smooth manifold N such that the components of Ui ∩ f(M) are all
connected open subsets of f(M) of dimension m. Thus, there is no limitation
on the number of components of an embedded submanifold in a chart of the
ambient manifold; it may even be infinite [360, p. 19]. This means that, even
with differential and topological singularities removed, a smooth embedded
submanifold may be nonregular. Regular submanifolds intersect more neatly
with coordinate charts of the ambient manifold; in particular, the family of
components of this intersection do not pile up.

Definition 1.49. An m-dimensional smooth submanifold M ⊂ N is regular
if, in addition to the regularity of the parametrising mapping, there is a cov-
ering {Ui} of M by open sets of N such that, for each i, Ui ∩M is a single
open connected subset of M .

By this definition, smooth regular submanifolds constitute a subclass of
smooth embedded submanifolds. Let us see three counterexamples of regular
submanifolds.

34 1 Mathematical Fundamentals

Example 1.50. Let f :]1,∞[→ R2 be a mapping given by

f(t) =
(

1
t
cos 2πt,

1
t
sin 2πt

)
.

Its image (Figure 1.10(a)) in R2 is an embedded curve because the image of
every point t ∈]1,∞[is a point in R2; hence, f is a homeomorphism. Note that
even near t =∞, f is still a homeomorphism because its image is a point, the
origin (0, 0). That is, a point and its image have the same dimension. (This
is not true in Example 1.48.) However, the image of]1,∞[is not a regular
curve because it spirals to (0, 0) as t → ∞ and tends to (1, 0) as t → 1,
Figure 1.10(a). This happens because near (in a neighbourhood of) t =∞ the
relative neighbourhood in the image curve has several (possibly an infinite
number of) components.

Example 1.51. Let us slightly change the previous mapping f :]1,∞[→ R2 to
be a mapping given by

f(t) =
(
t+ 1

2t
cos 2πt,

t+ 1
2t

sin 2πt
)
.

Its image (Figure 1.10(b)) in R2 is a nonregular embedded curve, now
spiralling to the circle with centre at (0, 0) and radius 1/2 as t → ∞,
Figure 1.10(b). It is quite straightforward to check that the Jacobian is
always 1. In fact, it could be 0 if both derivatives of the component func-
tions could vanish simultaneously on]1,∞[; this would happen if and only if
cos 2πt = −tan 2πt, an impossible equality.

Thus, every regular m-dimensional submanifold of an n-dimensional man-
ifold locally looks like an m-dimensional subspace of Rn. A trickier, but very
important counterexample is as follows.

Example 1.52. Let us consider a torus T2 = S1 × S1 with angular coordinates
(θ, γ), 0 ≤ θ, γ < 2π. The curve f(t) = (t, kt) mod 2π is closed if k/t is a

(a) (b)
(a) (b)

Fig. 1.10. Counterexamples of regular submanifolds.

1.7 Submanifolds 35

rational number, and hence a regular submanifold of T2, being S1 the param-
eter space. But, if k/t is irrational, the curve forms a dense subset of T2 and,
consequently, is not a regular submanifold.

This example shows us that a regular submanifold such as a torus in R3

may include nonregular submanifolds. One should be careful to avoid irra-
tional numbers in the representation and construction of submanifolds in a
geometric kernel.

1.7.2 Implicit Submanifolds and Varieties

An alternative to the parametric approach for submanifolds is to define them
implicitly as a common or intersecting level set of a collection of functions
[313, p. 16]. We have seen this in Subsection 1.5.2, where the implicit mapping
theorem was introduced. This theorem provides an immediate canonical form
for regular manifolds as follows:

Theorem 1.53. (Olver [313, p. 14]) A n-dimensional submanifold N ⊂ Rm
is regular if and only if for each point p ∈ N there exist local coordinates
x = (x1, . . . , xm) defined on a neighbourhood U of p such that U ∩N = {x :
x1 = · · · = xm−n = 0}.

Therefore, every regular n-dimensional submanifold of an m-dimensional
manifold locally looks like a n-dimensional subspace of Rm. This means that
all regular n-dimensional submanifolds are locally equivalent. They are the
basic constituents of some space decompositions introduced in Chapter 2.

Let us now see how all this works for varieties. They are generalisations of
implicit submanifolds, and thus they are defined by submersions. In general,
the variety VF determined by a family of real-valued functions F is defined
by the subset where they simultaneously vanish, that is,

VF = {x | fi(x) = 0 for all fi ∈ F}.

In particular, when these functions {fi} are components of a mapping f :
Rm → Rn, the variety Vf = {f(x) = 0} is just the set of solutions to the
simultaneous system of equations f1(x) = · · · = fn(x) = 0.

It is clear that the notion of rank has a natural generalisation to (infinite)
families of smooth functions.

Definition 1.54. Let F be a family of smooth real-valued functions fi : M →
R, with M,R smooth manifolds. The rank of F at a point p ∈ M is the
dimension of the space spanned by their differentials. The family is regular
if its rank is constant on M .

Definition 1.55. A set {f1, . . . , fk} of smooth real-valued functions on a
manifold M with a common domain of definition is called functionally de-
pendent if, for each p ∈ M , there is a neighbourhood U and a smooth

36 1 Mathematical Fundamentals

function H(y1, . . . , yk), not identically zero on any subset of Rk, such that
H(f1(x), . . . , fk(x)) = 0 for all x ∈ U . The functions are called functionally
independent if they are not functionally dependent when restricted to any
open subset of M .

Example 1.56. The functions f1(x, y) = x/y and f2(x, y) = xy/(x2 + y2) are
functionally dependent on the upper half-plane {y > 0} because the second
can be written as a function of the first, f2 = f1/(1 + f2

1).

Thus, for a regular family of functions, the rank gives us the number
of functionally independent functions it contains. So, we obtain an implicit
function family theorem generalising the implicit mapping theorem as follows.

Theorem 1.57. (Implicit Function Family Theorem) If a family of func-
tions F is regular of rank n, there exists n functionally independent functions
f1, . . . , fn ∈ F in the neighbourhood of any point, with the property that any
other function g ∈ F can be expressed as a function thereof, g = H(f1, . . . , fn).

Proof. See Olver [313, p.13].

Thus, if f1, . . . , fr is a set of functions whose m × r Jacobian matrix has
maximal rank r at p ∈M , they also have, by continuity, the same rank r in a
neighbourhood of U ⊂ M of p, and hence are functionally independent near
p. As expected, Theorem 1.57 also implies that, locally, there are at most m
functionally independent functions on any m-dimensional manifold M .

Definition 1.58. A variety (or system of equations) VF is regular if it is
not empty and the rank of F is constant.

Clearly, the rank of F is constant if F itself is a regular family. In partic-
ular, regularity holds if the variety is defined by the vanishing of a mapping
f : N → Rr which has maximal rank r at each point x ∈ VF , or equivalently,
at each solution x to the system of equations f(x) = 0 [313, p. 16]. The im-
plicit function family theorem 1.57, together with Theorem 1.53, shows that
a regular variety is a regular submanifold, as stated by the following theorem.

Theorem 1.59. Let F be a family of functions defined on an m-dimensional
manifold M . If the associated variety VF ⊂M is regular, it defines a regular
submanifold of dimension m− r.

Proof. See Olver [313, p. 17].

As for parametric submanifolds, to say that an implicit submanifold is reg-
ular means that it is smooth. However, a smooth parametric submanifold is
not necessarily regular. But, for implicit submanifolds, regularity and smooth-
ness coincide. This is so because, unlike a parametric submanifold, regularity
of an implicit submanifold is completely determined by the regularity of its
defining family of functions.

Thus, Theorem 1.59 gives us a simple criterion for the smoothness of a
submanifold described implicitly.

1.7 Submanifolds 37

Example 1.60. Let f : R3 → R be a function given by f(x, y, z) = x2 + y2 +
z2 − 1. Its Jacobian matrix [2x 2y 2z] has rank 1 everywhere except at
the origin, and hence its variety (the unit sphere) is a regular 2-dimensional
submanifold of R3.

Example 1.61. The function f : R3 → R given by f(x, y, z) = xyz is not
regular, and its variety (the union of the three coordinate planes) is not a
submanifold.

The fact that regularity and smoothness coincide for implicit submanifolds
suggests that we may have an algorithm to determine singularities on a variety
via the Jacobian matrix. Let us define regular points and singular points before
providing some examples that illustrate the computation of such singularities.

Definition 1.62. Let f : U ⊂ Rm → Rr be a smooth mapping. A point
p ∈ Rm is a regular point of f , and f is called a submersion at p, if the
differential D f(p) is surjective. This is the same as saying that the Jacobian
matrix of f at p has rank r (which is only possible if r ≤ m). A point q ∈ Rr
is a regular value of f if every point of f−1(q) is regular.

Instead of ‘nonregular’ we can also say singular or critical. In general, we
have:

Definition 1.63. Let f : U ⊂ Rm → Rr be a smooth mapping. A point
p ∈ Rm is a singular point of f if the rank of its Jacobian matrix falls
below its largest possible value min(m, r). Likewise, a singular value is any
f(p) ∈ Rr where p is a singular point.

Recall that a singular point of an immersion determines a singular point in
a parametric submanifold, but its self-intersections are not determined by the
singular points of its associated function. This happens because the regularity
of an immersion at a given point is necessary but not sufficient to guarantee
the regularity of its image. But, for implicit submanifolds and varieties, the
regularity of functions is necessary and sufficient to ensure their regularity.

Example 1.64. Let f : R→ R given by f(x) = x2. Then any c 6= 0 is a regular
value of f . Its Jacobian [2x] has rank 1 iff x 6= 0; hence x = 0 is the only
singular point of f . This corresponds to the minimum point of the graph of
f (i.e. the vertex of a parabola), but here we are concerned with implicit
submanifolds that are defined by level sets, not graphs.

Example 1.65. Let f : R2 → R given by f(x, y) = 2x2 + 3y2. Its Jacobian
[4x 6y] has rank 1 unless x = y = 0. So any c 6= 0 is a regular value of f .
For c > 0, f−1(c) is an ellipse in the plane.

Example 1.66. Let f : R2 → R given by f(x, y) = x3 + y3 − xy. The maximal
possible rank for its Jacobian [3x2 − y 3y2 − x] is 1, and we can find all

38 1 Mathematical Fundamentals

points where this fails, i.e. all singular points, by solving the system ∂f/∂x =
∂f/∂y = 0, that is, {

3x2 − y = 0
3y2 − x = 0 .

This yields the points (0, 0) and (1
3 ,

1
3) as the only singular points of f . Since

f(0, 0) = 0 and f(1
3 ,

1
3) = − 1

27 it follows that any c other than 0 or − 1
27 is a

regular value of f . Also, 0 is a regular value of restrictions f |(R2 − {(0, 0)})
and − 1

27 is a regular value of f |(R2 − {(1
3 ,

1
3)}). This is because the singular

points (0, 0), (1
3 ,

1
3) do not belong to the domain of the restrictions of f , say

f |(R2 − {(0, 0)}), f |(R2 − {(1
3 ,

1
3)}), respectively.

Figure 1.11 illustrates f−1(c) for some values of c. For c = 0 we have the
well-known folium of Descartes (Figure 1.11(a)). The folium of Descartes is
the variety x3 + y3 − xy = 0 which self-intersects at the singular point (0, 0),
i.e. the level set defined by f(x, y) = 0. The level set defined by f(x, y) = − 1

27
is the variety x3 + y3−xy = − 1

27 (Figure 1.11(c)) whose singular point is the
isolated point (1

3 ,
1
3). For c = − 1

54 , we have the regular variety x3 + y3−xy =
− 1

54 (Figure 1.11(b)).

Example 1.67. Let f : R3 → R be given by f(x, y, z) = x2 − zy2. The associ-
ated variety has dimension m− r = 3− 1 = 2, but the maximal possible rank
of its Jacobian [2x − 2zy − y2] is 1. Its singular points are the solutions of
the following system of equations:

2x = 0
−2zy = 0
−y2 = 0

⇐⇒


x = 0
zy = 0
y = 0

.

The expressions x = 0 and y = 0 denote the two coordinate planes in R3,
whose intersection is the z-axis. That is, the Jacobian vanishes along the

(a) (b) (c)

Fig. 1.11. Varieties as level sets x3 + y3 − xy = c.

1.7 Submanifolds 39

z-axis, or, equivalently, Each point in the z-axis is a singular point. Since
f(0, 0, z) = 0 it follows that any c other than 0 is a regular value of f . Also, 0
is a regular value of f |(R3−{(0, 0, z)}). Figure 1.12(a) illustrates f−1(0), the
Whitney umbrella with-handle (already seen in Figure 1.4(a)).

Example 1.68. Let f : R3 → R be given by f(x, y, z) = y2 − z2x2 + x3. As
for the previous example, the Jacobian (−2z2x+ 3x2 2y − 2zx2) vanishes
precisely on the z-axis. The z-axis is the line of “double points” where the
surface intersects itself at c = 0. This surface is depicted in Figure 1.12(b).

Example 1.69. Let f : R3 → R2 be the mapping given by f(x, y, z) = (xy, xz).
The Jacobian of f is (

y x 0
z 0 x

)
which has rank 2 unless all 2×2 minors are zero, i.e. unless xz = xy = x2 = 0,
which is equivalent to x = 0. Since f(0, y, z) = (0, 0), any point of R2 other
than (0, 0) is a regular value. This variety (the union of the x-axis and the
plane x = 0) has dimension 2 and is the intersection of two 2-dimensional
varieties defined by the levels sets of the components functions of f . The first
level set is the union of the planes x = 0 and y = 0, while the second level set
is the union of the the planes x = 0 and z = 0 in R3.

In short, the implicit function theorem and its generalisations allow us to
determine the singular set of an implicit variety. In the particular case of an
implicit surface f(x, y, z) = 0, the singular set is a 0- or 1-dimensional set at
which all the partial derivatives simultaneously vanish. Therefore, in essence,
a k-dimensional smooth (or differentiable) submanifold can be approximated
by a k-dimensional subspace of Rn at each of its points. In particular, this the
same as saying that a smooth curve in R2 can be approximated by a tangent
line at each one of its points, a smooth surface by its tangent plane, etc. It is

(a) (b)

Fig. 1.12. (a) Whitney umbrella with-handle as a level set x2 − zy2 = 0; (b) the
surface y2 − z2x2 + x3 = 0.

40 1 Mathematical Fundamentals

clear that such an approximation is not possible at (differential) singularities;
for example, a tangent plane flips at any corner and along any edge of the
surface of cube.

1.8 Final Remarks

In this chapter, we have seen that manifolds can be either smooth or non-
smooth. Nonsmooth manifolds are in principle piecewise smooth manifolds.
This leads us to the idea of partitioning a n-dimensional manifold into smooth
k-dimensional submanifolds (k ≤ n). The family of smooth submanifolds of
dimension less than n are singularities of such a n-dimensional manifold. This
simple idea is based on the pioneering work of two mathematicians, Whitney
and Thom, nowadays known as Thom-Whitney stratification theory. They
shows us that there is a close relationship between the concepts of differentia-
bility and stratificability of manifolds. Notably, both concepts are related even
when they are applied to more general geometric point sets such as algebraic,
analytic or even semianalytic varieties.

The essential key for having a smooth manifold is the concept of diffeo-
morphism, that is, a differentiable mapping with a differentiable inverse. The
differentiability of a mapping is not enough to guarantee the smoothness of
a manifold; its inverse must be also differentiable. As noted in [132, p. 106],
smoothness and differentiability do not agree. Smoothness means that the
mapping which defines a submanifold is a diffeomorphism.

Only a diffeomorphism (i.e. a smooth mapping with smooth inverse) en-
sures the smoothness of a parametric curve or surface. Thus, the smoothness
of a submanifold depends more on the properties of the mapping used to define
it than on its associated geometric invariants (e.g. curvature and torsion). The
use of a geometric invariant may be not conclusive to ensure smoothness on
a submanifold, as a topological invariant (e.g. Betti numbers) is not sufficient
to characterise the continuity of a subspace.

The relationship between the invertibility and smoothness of a mapping
has led us to its algebraic counterpart, that is, the relationship between the
invertibility of the Jacobian and smoothness of a submanifold. We have shown
that this relationship is independent of whether we treat submanifolds as level
sets, images, or graphs of mappings, i.e. it is representation-independent. So,
we have shown that C1 smoothness can be determined by the rank-based cri-
terion. This suggests that we can determine the singularities of a submanifold
by observing where the rank is not constant.

2

Spatial Data Structures

This chapter presents an overview of several spatial decomposition techniques,
as well as their associated data structures. We assume that the reader is
familiar with some basic concepts of set theory, topology and geometry.

Spatial decompositions apply to both ambient spaces and their subspaces.
In this textbook, we will focus on particular subspaces, say implicit curves
and surfaces. Spatial decompositions of these subspaces are here called object
decompositions. For example, the resolution of singularities of a level set (e.g.
implicit surface in R3) gives rise to its decomposition into manifolds. These
object decompositions are particularly useful for rendering implicit curves and
surfaces through continuation algorithms (see Chapter 6 for further details).

Decompositions that cover all the ambient space (e.g. a bounding box or
even the whole Rn) containing an embedded object are called space decompo-
sitions. These decompositions are used by space-partitioning algorithms for
implicit objects (see Chapter 7 for more details).

2.1 Preliminary Notions

Let X be a topological space.1 There are many ways to decompose X. Such
decompositions can be grouped together in two families: coverings and parti-
tions. A covering of X is a collection {Xi} of subsets of X such that

⋃
Xi = X.

1 A topology T is a collection of sets Ui that satisfies the following two axioms:
(i) the union of any (may be infinite) number of those sets also belongs to such
a collection; (ii) the intersection of a finite number of those sets also belongs
to such a collection. That is, a topology is closed in respect to the union and
intersection of its sets. Furthermore, from the axiom (i) we can say that the set
X =

⋃
{Ui ∈ T } is necessarily in T because T is a subcollection of itself, and

every set Ui of T is a subset of X . The set X is called the space of the topology
T and T is a topology for X. Besides, the pair (X, T) is a topological space if
an additional axiom is satisfied: (iii) ∅, X ∈ T . Thus, T is a topology on X iff
(X, T) is a topological space.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 41
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

42 2 Spatial Data Structures

(a) X (b) X0 (c) X1 (d) X2

Fig. 2.1. A covering of a point set X.

(a) X (b) X0, . . . , X3 (c) X4, . . . , X11 (d) X12, . . . , X16

Fig. 2.2. A partition of a point set X into faces, edges and vertices.

If a subset of a covering of X still covers X, it is said to be a subcovering .
This is illustrated in Figure 2.1, where X = X0 ∪X1 ∪X2, with X2 the only
subset that covers X totally.

But, if the subsets Xi are all disjoint, we say that such a space decomposi-
tion is a partition, i.e. Xi ∩Xj = ∅ for any i 6= j. For example, in Figure 2.2,
we have the partition X =

⋃16
i=0Xi, where X0, . . . , X3 are faces, X4, . . . , X11

are edges, and X12, . . . , X16 are vertices.
This chapter focuses mainly on partitions. There are two main families

of polygonisation algorithms for implicit curves and surfaces: continuation
algorithms, and space-partitioning algorithms. Both of these are based on
partitioning methods, in that both create a partitioned implicit object after
finding a finite collection of its points. They differ from each other through
the manner in which sampling points are found.

Continuation algorithms do not require the partitioning of the ambient
space. It is the implicit object itself (e.g. a curve or surface) that is sampled
directly, partitioned and approximated by a polyline or a triangular mesh, re-
spectively. Thus, continuation algorithms use object partitionings (see Chap-
ter 6 for further details).

By contrast, in order to sample an implicit object, space decomposition
algorithms do partition the ambient space. This partitioning of the ambient
space into convex cells allows us to sample an implicit object against the edges

2.2 Object Partitionings 43

of those cells. Therefore, we can say that the resulting polyline that approx-
imates a curve, or mesh that approximates a surface, is obtained indirectly
from the partitioning of the ambient space. That is, space decomposition algo-
rithms for implicit curves and surfaces use space partitionings (see Chapter 7
for more details).

2.2 Object Partitionings

2.2.1 Stratifications

Stratifications have been extensively studied in mathematics mainly since the
1970s just to pave the way for the resolution of singularities of algebraic, semi-
algebraic, semi-analytic, and sub-analytic varieties (see, for example, Whitney
[412, 413], Thom [385, 386], Lojasiewicz [241, 242] and Hironaka [188, 189]).
Middleditch et al. [271, 162] introduced them in geometric modelling in the
late 90’s, in part by influence of the development of the Djinn project [21].

A stratification is a partition of a subset of Rn into manifolds (called
strata), thus providing a structure for point sets, regardless of whether they
are manifold or not [272]. Such a subset can be stratified in many ways. For ex-
ample, the partition of the manifold X in Figure 2.2 is a stratification because
all resulting subsets Xi are manifolds, i.e. they are all locally homeormorphic
to Rk, with k = 0, 1, 2. A counterexample appears in Figure 2.3(a), where
the partitioned set X =

⋃1
i=0Xi in (a) is not a stratification because X0

is not a manifold (it self-intersects). But, the sets X =
⋃2
i=0Xi in (b) and

X =
⋃4
i=0Xi in (c) are both stratifications of the same point set.

Figure 2.3 shows that there are many ways of partitioning and stratify-
ing point sets. Evidently, not all are of interest in geometric modelling. For
example, in solid modelling, boundary representations (B-Reps) represent ge-
ometric objects which are Whitney stratifications. These stratifications are

X1

X2

X0

X4

X2

X3
X0

X1

X1

X0

(a) partition (b) stratification (c) stratification

Fig. 2.3. (a) A partition that is not a stratification; (b) a stratification; (c) another
stratification of the same point set.

44 2 Spatial Data Structures

occasionally called “cell complexes” in geometric modelling literature, but
the term is inadequate because of the essential difference between local and
global topological properties, as described in this section.

Whitney stratifications enjoy two main properties: (i) local finiteness;
(ii) local topological invariance. Local finiteness means that in the neighbour-
hood of each stratum point there are only a finite number of other strata.
Local topological invariance means that the topological type of the neigh-
bourhood of any point of a stratum is the same for every point of such a
stratum. Neighbourhoods with the same topological type is a way of saying
that they are topologically equivalent. For example, both stratifications (b)
and (c) in Figure 2.3 have a finite number of strata, so they are globally, and
consequently locally, finite; but, only (c) is a Whitney stratification.

In fact, not all points of the stratum X2 belonging to the stratification (b)
have topologically equivalent neighbourhoods. Intuitively, this is so because
the top part of X2 bounds simultaneously X0 and X1, while its bottom part
bounds no strata; there are three topological types along the z-axis: one along
the positive subaxis, one along the negative one, and one around the origin.
For a more comprehensive study on stratifications, the reader is referred to
Shiota [365], Middleditch et al. [272], and Gomes [161].

Whitney stratifications: a data structure. With the advent of solid modelling
in the 1970s, and until the end of 1990s, general data structures for repre-
senting geometric objects were proposed in the literature in order to cope
with the requirements imposed by computer-aided design and manufacturing
(CAD/CAM) systems and applications. The “building blocks” of CAD geo-
metric kernels were and still are manifolds or strata, while those traditionally
used in computational geometry, and now widely used in computer graphics,
are cells and simplexes.

Let us then outline a general dimension-independent topological data
structure for finite Whitney stratifications:

typedef map<int, vector<Stratum*>*> Skeleton;

class Stratum {
int id; // stratum id
int dim; // stratum dimension
vector<Stratum*> *as // adjacent strata
vector<Stratum*> *is; // incident strata
geometry *g; // geometry

}

class Object {
int id; // object id
Skeleton *sk; // map of n-sleketa

}

2.2 Object Partitionings 45

The containers vector and map are appliances provided by the STL (stan-
dard template library) of C++. Note that this data structure is dynamically
dimension independent, in that when we need to add an n-stratum to it but
the corresponding object n-skeleton does not exist yet, we have only to create
a new entry in sk that maps the dimension n onto a vector of n-dimensional
strata, say the n-skeleton. By definition, the n-skeleton of an object is the set
of n- and lower-dimensional strata.

This data structure reinforces both the local finiteness condition and the
frontier condition by representing both the finite set is of incident (n + 1)-
dimensional strata and the finite set as of adjacent (n−1)-dimensional strata
for each n-dimensional stratum. Recall that the frontier condition states that
the frontier of each cell is given by the union of a subset of the lower-
dimensional cells.

Finally, despite its simplicity, this data structure is prepared to host man-
ifold and nonmanifold geometric objects partitioned into strata, as required
in geometric and solid modelling. Nevertheless, a more comprehensive de-
scription of this data structure appears in [161], where it is called DiX data
structure.

2.2.2 Cell Decompositions

A cell decomposition can be defined as a partition of the space into cells.
By definition, an n-dimensional cell is homeomorphic to Rn. For example,
the subsets X0, . . . , X16 of X depicted in Figure 2.2 are all cells. They do not
need be convex. But, they need to be simply connected, i.e. without homotopic
holes.

A counterexample is given by the 1-sphere S1 = {p ∈ R2 : x2
p + y2

p = 1}.
In fact, S1 admits a Whitney stratification consisting of a single 1-stratum
X0 (Figure 2.4(a)), but its cell decomposition requires at least two cells, i.e.
a 0-cell X0 and a 1-cell X1 (Figure 2.4(b)).

Another counterexample is given by an annulus without bounding vertices
(Figure 2.4(c)). As known, an annulus possesses two 1-dimensional boundaries.
Its simplest Whitney stratification consists of a 2-stratum X2 (i.e. a face with

X0
X0

X1

X0

X1 X2 X4

X5

X0

X1

X2

X3

(a) stratification (b) cell decomposition (c) stratification (d) cell decomposition

Fig. 2.4. Four stratifications, two of which are also cell decompositions.

46 2 Spatial Data Structures

a through hole) bounded by two 1-strata X0 and X1, and no 0-strata. The
corresponding cell decomposition requires at least two 0-strata, X0 and X1,
bounding distinct 1-strata, X2 and X3, respectively, with a dummy 1-stratum
X4 connecting those two 0-strata; all these 0- and 1-strata form the frontier
of a 2-stratum X5 (Figure 2.4(d)).

Thus, unlike strata which may possess zero or more boundaries, a cell is a
manifold with exactly one nonempty boundary. As noted by Middleditch et al.,
it is no coincidence that classical boundary representations of solid objects use
artificial vertices and edges as a way to facilitate their cellular partitioning;
for example, this was important for the pioneer boundary representations
to guarantee that the resulting complexes would satisfy the Euler-Poincaré
formula.

A particular cell decomposition is the cell complex. A cell complex is a
collection of cells together with their boundaries, as well as further information
describing how the cells fit together. Like a Whitney stratification, a cell
complex also satisfies the frontier condition. However, a cell complex may
possess an infinite number of cells, so that mathematicians often use a more
restricted cell complex, called CW complex [410, 411]. A CW complex satisfies
two important conditions:

• Closure finiteness. This is the C condition, i.e. the frontier of each cell is
the finite union of lower-dimensional cells.

• Weak topology . This the W condition, i.e. the closed subsets are exactly
those sets that have a closed intersection with the closure of each cell.

The C condition is equivalent to say that the closure of each cell is con-
tained in a finite subcomplex. It imposes a finiteness restriction on the fron-
tier condition, i.e. the union of lower-dimensional cells bounding a given
cell must be finite. It is worth nothing that closure finiteness is not the
same as local finiteness. A complex is locally finite if each of its points is
in a finite number of cell closures. Closure finiteness neither implies nor is
implied by local finiteness, but both conditions are satisfied when a com-
plex has a finite number of cells. Thus, finite cell complexes are inherently
CW-complexes that are also locally finite. For example, the decomposition
of the 2-disk D2 = {p ∈ R2 : x2

p + y2
p ≤ 1} into a 2-cell (its interior

B2 = {p ∈ R2 : x2
p + y2

p < 1}) and an infinite number of 0-cells bound-
ing it (its frontier S1 = {p ∈ R2 : x2

p + y2
p = 1}) is not a CW complex

because, despite its local finiteness, it does not satisfy the closure finiteness
condition.

The W condition defines a unique topology on the cell complex called the
W-topology or weak topology. This condition also imposes a finiteness restric-
tion, but now on the number of sets of the topology covering the complex. In
fact, a weaker topology is one that has fewer closed sets. The weak topology
on a cell complex is the smallest collection of subsets such that the intersec-
tion with each cell closure is closed within such a cell closure. Therefore, the
weak topology W = {Wi}i=0,...,n consists of the following sets:

2.2 Object Partitionings 47

(i) the sets formed from the closure of each cell;
(ii) the sets resulting from the union of any number of sets in W.
(iii) the whole set X of cells;
(iv) the empty set ∅ of cells;

For example, the cell complex shown in Figure 2.4(d) is a CW complex.
It satisfies the closure finiteness because the closure of any cell has a finite
number of cells. Its weak topology consists of the following collection of sets:

(i) Closures of cells. These sets of cells are W0 = X0 = {X0}, W1 = X1 =
{X1}, W2 = X2 = {X0, X2}, W3 = X3 = {X1, X3}, W4 = X4 =
{X0, X1, X4}, and W5 = X5 = {X0, X1, X2, X3, X4, X5}.

(ii) Unions of sets. By combining the previous sets through the set-theoretic
union, we obtain the following sets for the weak topology: W6 = X0∪X1 =
{X0, X1}, W7 = X0 ∪X3 = {X0, X1, X3}, W8 = X1 ∪X2 = {X0, X1, X2},
W9 = X2 ∪X3 = {X0, X1, X2, X3}, W10 = X2 ∪X4 = {X0, X1, X2, X4},
and W11 = X3 ∪X4 = {X0, X1, X3, X4}. Note that the remaining unions
are already in the weak topology. For example, the union X0 ∪ X2 =
{X0, X2} is precisely the set W2. Recall that, according to set theory,
there are no repeated elements in a set.

(iii) The whole set of cells. In this particular CW complex, the whole set X of
cells is just the set W5.

(iv) The empty set of cells. The empty set ∅ of cells is also part of this CW
topology. It is necessary to guarantee the closeness of the set-theoretic
intersection in the CW topology.

In fact, as for any topology, the intersection between two subsets of a weak
topology is always one of its subsets. For the example above, it is easy to see
that the intersection of any two subsets of the weak topology W is also a
subset of W. The same is true for the union of any two subsets of W. In
short, both the closure-finite and weak-topology conditions are satisfied for
the closed cells of that CW complex.

A CW-complex can be built up by attaching cells of increasing dimensions.
Informally speaking, attaching an n-cell to a CW-complex is carried out by
identifying the boundary of the cell with the finite union of a subset of (n−1)-
cells in the complex. Therefore, by using this attachment rule, and starting
off with the empty set, a CW-complex X can be inductively constructed out
by gluing the 0-cells, 1-cells, 2-cells, and so forth; this originates a filtration
X(−1) ⊆ X(0) ⊆ X(1) ⊆ X(2) ⊆ · · · of X such that X =

⋃
i≥−1X

(i), with
X(−1) = ∅. The set X(i) obtained from X(i−1) by attaching the collection
of i-cells is nothing more than the i-skeleton of X. Note that this definition
of CW complex does not allow us to attach i-cells before (i − 1)- and lower-
dimensional cells. Although some authors allow this (i.e. relaxation of the at-
tachment order), it seems to be common practice to restrict CW complexes to
the definition given above, and to call a space built up by attaching cells with
unrestricted order of dimensions a cell complex. Apart from these subtleties,

48 2 Spatial Data Structures

we can say that CW complexes are finite cell complexes, which match the
memory storage limitations of modern computers. A more comprehensive
study on cell and CW complexes can be found in Lundell and Weingram [250].
CW complexes were introduced in mathematics by Whitehead [410, 411].

Finite cell complexes: data structures. In computational geometry there are
data structures for finite cell complexes and CW complexes. The cell-tuple
data structure due to Brisson [64] is a well-known data structure to represent
finite cell complexes. It consists of a set of tuples of incident cells of increasing
dimension: (vertices, edges, faces). For example, the cell complex depicted in
Figure 2.4(d) can be represented by the following set of four cell-tuples:

(X0, X2, X5)
(X0, X4, X5)
(X1, X3, X5)
(X1, X4, X5)

To understand better the incidence scheme underlying this data structure,
let us consider the first tuple (X0, X2, X5). This tuple tell us that the edge
X2 is incident at the vertex X0, and the face X5 is incident on the edge X2;
conversely, X0 is adjacent to X2, which in turn is adjacent to X5. As for
stratifications, the term “is adjacent” means “bounds” or “is in the boundary
of.” Thus, the incidence and adjacency relations between cells are defined by
the order of such cells in each tuple.

Note that the data structure described above for finite Whitney stratifica-
tions may also be used to represent finite cell complexes because every n-cell
is an n-stratum (but not vice-versa). For 2-dimensional cellular objects in R3,
such a data structure would be as follows:

class Vertex {
int id; // vertex id
vector<Edge*> *ie; // incident edges
Point *p; // geometry

}

class Edge {
int id; // edge id
Vertex *v1, *v2; // adjacent vertices
vector<Face*> *if; // incident faces

}

class Face {
int id; // face id
vector<Edge*> *ae; // adjacent edges
Point *nf; // face normal

}

2.2 Object Partitionings 49

class Object {
int id; // object id
vector<Vextex*> *vv; // vector of vertices
vector<Edge*> *ev; // vector of edges
vector<Face*> *fv; // vector of faces

}

This data structure was proposed by Silva and Gomes in [369], and called
AIF (adjacency and incidence framework) data structure. Unlike traditional
B-rep data structures, it does not include any topologically oriented cells (e.g.
half-edges of the half-edge data structure) [256]. Nevertheless, the AIF data
structure is geometrically oriented because every face includes a normal vector
nf as appears defined in the class Face. The consistent orientation of such nor-
mal vectors on the object surface is acquired through an inducing mechanism
similar to the one described in [369] and [59]. Such an inducing mechanism
requires to traverse the frontier of each face in the same manner, i.e. either
clockwise or counterclockwise. From this induced topological orientation for
all faces, we are able to generate a geometric orientation (i.e. a normal vector)
for each face of the object.

2.2.3 Simplicial Decompositions

In a space of dimension at least n, an n-simplex (plural simplexes or simplices)
is an n-dimensional manifold with boundary whose interior is topologically
equivalent to Rn, i.e. a n-cell. In geometric terms, a n-simplex is the convex
hull of a set of (n + 1) affinely independent points in some n- or higher-
dimensional Euclidean space. Therefore, a n-simplex is a linear, convex, closed
n-cell; some examples in R3 are depicted in Figure 2.5.

A simplicial complex is a space decomposed into a collection of simplices,
sometimes also called a triangulation. Simplicial complexes are a particular
case of CW complexes in that closures of cells are simplices (or simplexes). In
more formal terms, a simplicial complex K in Rn is a collection of simplices
that satisfy the following conditions [291]:

point line segment tetrahedron triangle
(a) 0-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

(vertex) (edge) (face) (solid)

Fig. 2.5. Simplices in R3.

50 2 Spatial Data Structures

(i) Every frontier simplex of a simplex of K is in K, and
(ii) The intersection of any two simplices of K is a frontier simplex of each of

them.

Alternatively, a n-simplicial decomposition can be viewed as a union of
k-simplices (0 < k ≤ n) that is closed under intersection, and such that the
only time that one simplex is contained in another is as a boundary simplex.
This is a constructive view of looking at simplicial complexes, i.e. simplices
can be used as building blocks to construct simplicial complexes by gluing
simplices together through their boundary simplices (or their intersecting sim-
plices).

Simplicial complexes: data structures. In the computational geometry litera-
ture, we easily find data structures for simplicial complexes (and cell com-
plexes) because Delaunay triangulations have been often applied to explore
and to study the properties and subtleties of subspaces in Rn. But, triangu-
lations have also become very popular in geometric modelling and computer
graphics in last decade, mainly due to the emergence of multiresolution meshes
and compression techniques as a consequence of the Internet and Web revo-
lution. Besides, graphics cards are optimised to process triangles rapidly.

The incidence graph data structure [126] is a well-known dimension-
independent data structure for simplicial complexes. This data structure can
be viewed as a particular case of those described above for Whitney stratifi-
cations and cell complexes for two reasons:

• It also hosts the boundary and co-boundary of each d-simplex. The bound-
ary of a d-simplex is roughly the set of (d−1)-simplexes which are adjacent
to it, while its co-boundary is given by the set of (d+ 1)-simplexes which
are incident on it.

• A d-simplex, roughly speaking, is a particular case of a d-cell.

A very compact, yet less general, data structure for 2D cell and simplicial
complexes is the star-vertices data structure [205]. It is as follows:

class Neighbour
{
Vertex *vtx; // the neighbour vertex
int nxt; // index to find next vertex of the face

};

class Vertex
{
float x, y, z; // geometry coordinates
int num_nb; // the number of neighbours to this vertex
Neighbour *nb; // pointer to the array of neighbours

};

2.3 Space Partitionings 51

class Mesh
{
vector<Vertex> *aov; // pointer to array of vertices

};

The star of vertices around a given vertex is represented by the field nb
in the class Vertex. The index nxt works as a pointer to the next vertex of
the star, which endows the data structure with a topological orientation. This
data structure is quite compact because it only encodes vertices and their
neighbours explicitly, not edges and faces. This fact may slow down geometric
algorithms involving traversal and reasoning algorithms. The star-vertex data
structure is particularly useful for encoding triangulations in R2.

In the literature, many other data structures that represent geometric
objects have been proposed in recent decades, namely: the winged-edge [33],
the half-edge [256], the DCEL [288], the quad-edge [170], the lath [203], the
corner-table [342], the facet-edge [113], the handle-face [246], the cell-tuple
[64], the nG-map [238] and the TCD graph [130], amongst others. For a more
detailed study of simplicial complexes and triangulations, the reader is referred
to Floriani and Hui [104] and Hjelle and Dæhlen [191].

2.3 Space Partitionings

These decompositions primarily stress on the decomposition of the ambient
space itself, instead of its embedded geometric objects (e.g. implicit curves and
surfaces). In this case, the partitioning of any object is a consequence of the
partitioning of its ambient space. Some examples of these space partitionings
include quadtrees, octrees, and BSP trees.

Partitioning the ambient space normally results in a collection of convex
cells. However, there is no unique way to partition the space into similar cells—
hence the nonexistence of a unique representation for a given object. Any
unambiguous partitioning is valid, although for a given model some partitions
are better than others, depending on the problem we intend to solve.

For sampling implicit curves (respectively, surfaces), we normally use some
kind of space partitioning of a rectangular region into cells in R2 (respectively,
R3). Some examples of space partitionings are shown in Figure 2.6. The cell
occupancy can be described either sequentially (Figure 2.6(a)), or in a hier-
archical way (Figure 2.6(b), (c) and (d)).

The sequential enumeration (Figure 2.6(a)), also known as exhaustive enu-
meration, partitions a rectangular region into axially aligned cells with the
same size such that the resulting rectilinear grid is easily represented as an
n-dimensional array (where n is the dimension of the space). This technique
has applications in fields such as digital image processing where the data
is obtained from 2D image scanning devices), computer tomography (CT),
magnetic resonance imaging (MRI), and other scanning devices capable of

52 2 Spatial Data Structures

(a) exhaustive enumeration (b) 2-d tree subdivision

(c) BSP subdivision (d) quadtree subdivision

Fig. 2.6. Some space partitionings for implicit curves.

processing 3D data. A popular example of this technique is provided by the
marching cubes algorithm due to Lorensen and Cline [247], which will be
described later in Chapter 7.

By contrast, in a hierarchical structure the relationship between cells is
granted by the very way in which the space is partitioned: smaller cells are
derived from larger ones, and can be arranged in a tree structure. This tech-
nique is also known as subdivision, as the larger cells are further away from
the curve or surface, whereas the finer cells tend to gather around the curve or
surface and adapt to its shape (Figure 2.6(b),(c) and (d)). Thus, subdivision
is a recursive partition of space into cells that altogether cover the rectan-
gular region of interest where the curve or surface lies in. The corresponding
hierarchical data structures thus generated are 2n-trees, which particularise
to bintrees (n = 1), quadtrees (n = 2) and octrees (n = 3) in 1D, 2D and 3D,
respectively, or higher dimensions.

2.3.1 BSP Trees

Binary space partitioning (BSP) recursively splits the space into convex sub-
spaces by hyperplanes (i.e. a higher-dimensional generalisation of the concepts
of a point in a straight line, a straight line in a plane, a plane in a 3D space,

2.3 Space Partitionings 53

and so forth). Each hyperplane divides a space into two convex subspaces.
This recursive partition of the space is usually encoded into a binary tree or
bintree, irrespective of the number of dimensions. This is a major advantage
from the point of view of implementation because binary trees are a common
data structure, easy to store and to browse. This matching between the BSP
and a bintree results in a BSP tree, as illustrated in Figure 2.7. Each internal
node of a BSP tree is associated with a splitting hyperplane. In Figure 2.7,
these hyperplanes are the bisection lines l1, . . . , l5.

BSP trees find applications in many science and engineering fields. In the
context of the present textbook, they are particularly useful to sample im-
plicit curves and surfaces; for example, the curve shown in Figure 2.6(c) was
polygonised after sampling some of its points against the bisection lines of a
binary space partitioning of a rectangular subspace of R2. This approach was
first proposed by Fuchs et al. in 3D computer graphics to determine visible
surfaces of polyhedra, without the need for a z-buffer, and to increase the
rendering efficiency [148]. In fact, the membership test of an arbitrary point
in space against a BSP tree is well known. Since then, BSP trees have found
some other applications, including geometric operations of CSG (constructive
solid geometry) shapes in CAD systems, ray tracing, collision detection in
robotics and 3D FPS (first-person shooter) computer games involving naviga-
tion through indoor environments, as well as other applications that involve
handling of complex spatial scenes.

Doom was probably the first computer game to use a BSP data struc-
ture. This is so because the scenery in computer games is usually built up
using polyhedral shapes, which can be easily represented accurately with this
technique. This includes convex as well as concave polyhedra. In a BSP repre-
sentation of a polyhedral object, each face is contained in a splitting plane of
the ambient space. In this case, the normal of the plane is assumed to point
towards the empty half-space, for illumination purposes.

Conversion algorithms from other representations of geometric objects into
BSP and vice versa are well known in geometric modelling community. In
particular the conversion from a B-rep model into a BSP tree has been studied
by Thibault and Naylor [298, 384]).

BSP: data structure. Many variants of the BSP tree data structure appear
in the literature, so that sometimes it is not easy to distinguish application-
dependent from application-independent data. On the contrary, the following
BSP tree data structure clearly splits such data:

class Node
{

Hyperplane *hp; // splitting hyperplane
Space *s; // intersection of half-spaces
Data *data; // application-dependent data

};

54 2 Spatial Data Structures

l1

l1

l3 l1

l4

l2

l5

l1

l3 l2

l4 l5

l3 l1

l2

l1

l3 l2

(a) initial space without partitioning (b) first space partition by l1

l1

l1

l3 l1

l4

l2

l5

l1

l3 l2

l4 l5

l3 l1

l2

l1

l3 l2

(c) first 3 partitions by l1, l2 and l3 (d) first 5 partitions by l1, l2, l3, l4 and l5

Fig. 2.7. Binary space partitioning of a space Ω ∈ R2 and its corresponding bintree.

2.3 Space Partitionings 55

class BSPTree
{

Node *node; // the top node
BSPTree *subtree[2]; // its two subtrees

}

The class BSPTree encodes the hierarchical structure of a binary tree, i.e.
it is application independent. Each BSP node keeps not only the geometry
of the its associated space s and its bisection hyperplane hp, but also any
specific data required by the application.

2.3.2 K-d Trees

K-d trees (short for k-dimensional trees) are a particular case of BSP trees,
where k denotes the dimension of the ambient space to be subdivided. The
extra restriction applied to k-d trees is that the space is divided by planes that
are always mutually perpendicular, and parallel to the coordinate axes. The
resulting subspaces are boxes, also known as hyper-rectangles. Even though
the division is always performed at right angles, it can be uneven, in that a
box need not be split into two equal sub-boxes.

The k-d tree is a multidimensional binary search tree for points in the
ambient k-dimensional space. Thus, given a set of n points in a k-dimensional
box, we can construct a binary tree which represents a binary partition of the
space into axially aligned subboxes by hyperplanes such that each point is
contained in its own region. This illustrated in Figure 2.8, where the insertion
of points A, B, C, D, E and F in the ambient space Ω by lexicographic order
have caused a decomposition of Ω into smaller boxes. The resulting space
partition and respective 2-d tree appears in Figure 2.8(f). A black square
node � of the 2-d tree indicates that a box in Ω contains a given point,
while a white square node � denotes an empty box inside Ω; a circle node
enclosing the letter identifier of a point means that either the x-coordinate or
y-coordinate of such a point defines a splitting line of the space.

In a unidimensional binary search tree, nodes have a single key. In a k-d
tree, nodes cycle through a set of k keys. As for a traditional binary search tree,
nodes are inserted and retrieved using < and ≥. But, the key that determines
the subtree to follow (i.e. left or right) depends on the the level of the tree. At
level l, the key number is given by l mod k + 1. That is, the first key is used
at level 0 (root), the second key at level 1, and so forth until all keys have
been used. Then, we recycle through the keys for the remaining nodes down
in the tree. These keys usually represent the orthogonal axes x and y in 2D,
x, y and z in 3D, and so on.

Let us look again at the 2-d tree in Figure 2.8. The two possible splitting
directions are x and y. The area of interest is first split into two with a line
parallel to the y-axis, being the key given by x = 10 (i.e. the x-coordinate of
the point A). The point B is then inserted into the left node of A because its

56 2 Spatial Data Structures

!

!

A

!

!

A

B

C

!

!

A

B

!

!

A

B

C
D

E

!

!

A

B

C
D

!

!

A

B

C
D

E F

A A

B

y

B

D

A

C

y

x

A

B C

y

B

D

A

C

E

y

x x B

D

A

C

E

F

y

y

x x

(a) (b) (c)

!

!

A

!

!

A

B

C

!

!

A

B

!

!

A

B

C
D

E

!

!

A

B

C
D

!

!

A

B

C
D

E F

A A

B

y

B

D

A

C

y

x

A

B C

y

B

D

A

C

E

y

x x B

D

A

C

E

F

y

y

x x

(d) (e) (f)

Fig. 2.8. A 2-d tree and its associated space decomposition.

x-coordinate satisfies x < 10, while the point C is associated with the right
node of A provided that its x-coordinate satisfies x > 10. Then, at the level
1, each of the subboxes generated through B and C are cut parallel to the x
axis. In short, the splitting lines are parallel to x-axis at the odd levels, and
parallel to y-axis at the even levels.

2.3 Space Partitionings 57

K-d trees are constructed by partitioning point sets. Figure 2.8 illustrates
a construction algorithm of a k-d tree by inserting points incrementally and
partitioning the corresponding cell accordingly. But, other flavours of algo-
rithms to construct k-d trees can be devised. For example, given a discrete
point set, each tree node is defined by a splitting hyperplane that partitions
the set of points into subsets (left and right subsets), each with half the points
of the parent node. In this case, we get a balanced k-d tree.

The correspondence between a k-d tree and a binary partition of the space
makes it well suited to support spatial queries on point sets. In computational
geometry, k-d trees are used to carry out the nearest neighbour point search,
the point location inside a polygon, and the orthogonal range search (to find
all the points that lie within a given box).

In geometric modelling, 2-d trees can be used to carry out a binary space
partitioning that progressively approximates an implicit curve or surface. This
is illustrated in Figure 2.6(b) for a curve. But, it can be also used to decom-
pose a filled geometric figure into boxes adaptively, depending on the local
curvature of its frontier, as usual in engineering analysis and finite element
methods. In this case, the recursive space decomposition of the figure stops
when the sub-boxes are either entirely empty, or entirely full, or too small to
divide further.

The k-d tree data structure can be encoded as follows:

class Node
{

Box *box; // its associated box
Data *data; // application-dependent data

};

class kdTree
{

Node *node; // the top node
kdTree *subtree[2]; // its two subtrees

}

Most of that structure is a standard binary tree, with links pointing up-
wards (if desired) and downwards. Additionally, there needs to be a convention
for encoding a direction of space along which the node is being subdivided;
it is appropriate to use the same field in order to mark a leaf node. A char field
has been suggested for this purpose, though the information is merely two-bit
wide. The coordinate of the division is the absolute offset, in the direction
direction, of a division plane whose normal is along that same direction.

At each stage of the division, it is also worth storing the coordinates of the
current node’s box (so as to avoid having to recalculate them each time). Since
the box is expected to be axially aligned, the box type can be, for example, a
collection of three intervals for the ranges in x, y and z.

58 2 Spatial Data Structures

class box {
interval xi, yi, zi; // intervals for ranges in x, y, z

}

One sensitive detail is the fullness indicator. Depending on the reasons for
which the subdivision is being carried out, the full flag may represent one
bit of information indicating whether a box is full or empty. The subdivision
needs to stop once the box size has reached a threshold, in which case some
leaf nodes are “approximated” to one of the two values even if they contain
some surface and could, theoretically, be subdivided further. (This is dealt
with in a similar manner in the case of quadtrees and octrees, introduced
below.)

Alternatively, a third kind of value may be stored (as suggested in the
example above), whereby a box can be flagged as “partially full.” In other
words, this box contains surface and further algorithms may process the in-
formation pertaining to the surface patch in each partially full leaf node, for
example for the purpose of rendering. More details on k-d trees can be found
in de Berg et al. [97] and Samet [347].

2.3.3 Quadtrees

A quadtree is a tree data structure so that each node has up to four children,
i.e. a particular case of the 2n-tree, with n = 2. In other words, each node of
a 2n-tree splits along n dimensions giving rise to 2n children. Once again, the
directions in which a region is split are axially aligned. Finkel and Bentley
were who first proposed the quadtree data structure in 1974 [137].

When associated to a recursive partition of a 2D space, it splits a region of
interest along the two axial directions from which four quadrants or regions are
obtained, each stored into one of the four tree nodes. Note that such regions
may have arbitrary shapes, i.e. they are not necessarily square or rectangular.
Usually, a quadtree appears associated to a squared box which is partitioned
into subsidiary boxes recursively until some stopping condition be satisfied.

There are many types of quadtrees in the literature. They may be classified
according to the type of data they represent, namely points, lines, curves,
areas, etcetera. For example, a curve is approximated by a collection of edges,
whereas a volumetric object is approximated by a collection of voxels—both
stored in a treelike fashion.

The point quadtree is similar to the point 2-d tree previously described in
that the subdivision of the space always occurs on a point.

Another type is given by the edge quadtree, which stores lines rather than
points. This is illustrated in Figure 2.6(d), where an implicit curve is approx-
imated by adaptively partitioning boxes to an adequate sampling resolution.
Some boxes appear unnecessarily subdivided in Figure 2.6(d), but that does
depend on the subdivision criterion, not the quadtree itself.

2.3 Space Partitionings 59

In geometric modelling, the region quadtree is the most familiar quadtree
data structure, which is used to approximately represent a point set (i.e. a
shape) in the plane. In this case, a quadtree can be viewed as a particular
type of space-partitioning tree. The recursive division process stops when all
the current sub-quadrants are either full or empty, or when they become too
small to be subdivided. Partially full quadrants are divided further in order to
establish finer features of the region being studied. When these partially full
quadrants become very small, they end up being also classified as full or empty.
A single bit in each leaf indicates which is the case. Figure 2.9 illustrates a re-
gion quadtree of a shape in the plane and its tree data structure in which each
node has four children. Every node in the three (Figure 2.9(b)) corresponds
to a quadrant or squared box in the region of interest Ω; hence, the quadrants
NE (northeast), NW (northwest), SW (southwest) and SE (southeast).

!

!

(a) quadtree space partitioning

!

B SW NW NE SE

SE SW

B NW SE NE SW

NW

SE SW

NE

NW

SE SW NE NW B

NE

SE SW NE NW

(b) quadtree data structure

Fig. 2.9. Planar quadtree.

60 2 Spatial Data Structures

Therefore, quadtrees can be encoded as follows:

class Node
{

Box *box; // box it represents in the plane
Data *data; // application-dependent data

}

class Quadtree
{

Node *node; // top node
Quadtree *quadrant[4];// the quadrants: NE, NW, SW and SE

}

Beyond their applicability in computational geometry, geometric modelling
and computer graphics, quadtrees are also widely used in image processing
(e.g. image representation and storing of raster data) and spatial informa-
tion analysis (e.g. spatial indexing in databases) as needed in numerous fur-
ther applications, from computer vision, geographical information systems,
astronomy and cartography, etc.

2.3.4 Octrees

An octree is a 23-tree, i.e. it is the 3-dimensional analogue of a quadtree, i.e. an
octree has eight children instead of four (see Figure 2.10). Therefore, octrees
are good candidate data structures for representing 3D embedded geometric
objects in memory because an octree breaks the space of interest (i.e. the
initial bounding box) into eight boxes, called octants, by three hyperplanes
(usually, axis-aligned planes). These boxes are then recursively partitioned
into eight sub-boxes. Similar to the quadtree, this process continues until a
box is sufficiently homogenous (either full or empty) that it can be represented

x y

z

2.0

B

(a) (b)

Fig. 2.10. Some space partitionings for implicit curves.

2.3 Space Partitionings 61

by a single node. Recall that, in octree jargon, while an octant is of any size,
voxels (for “volume element”) refer to smallest octants (i.e. those lying in the
leaf nodes of the tree).

Looking at Figure 2.10, we easily conclude that the octree data structure
can be written as follows:

class Node
{

Box *box; // octant it represents
Data *data; // application-dependent data

}

class Octree
{

Node *node; // top node
Octree *octant[8];// array of octants or 3D boxes for node

}

The field data is capable of storing arbitrary information, but octrees
are commonly used for representing surfaces or volumes in 3D. For example,
implementations often use six bits in each octant to indicate whether any of
the octant’s six faces is on the surface of the volume. Extra face information
(e.g. colour) requires a collection of up to six indices or pointers to an auxiliary
face structure. Additionally, each leaf node denotes whether the space in its
corresponding octant is either empty or full, while interior nodes represent
partially full octants. That is, partially full octants have eight child octants
(hence the prefix “oct”).

Octrees are a data structure for storing information about curves, sur-
faces or volumes in a 3D space. Octrees have particular advantages over other
representations when 3D spaces contain blobs or volumes which are highly
connected (e.g. a human body). In [237], Libes uses octrees in modelling dy-
namic surfaces. They are also useful in collision detection, as usual when we
need to compute robot paths. In fact, when a robot interacts with the geo-
metric objects existing in the ambient space, the octrees allow us to detect
intersections between them.

However, octrees also have disadvantages, in particular in dynamic envi-
ronments where the geometric objects can grow and move without predefined
constraints. For a discussion about the advantages and disadvantages of oc-
trees and a running/space-time analysis, the reader is referred to Meagher
[264, 265]. Navazo and Brunet developed a solid geometric modeller based
on octrees, whose representation was even extended to non-manifold domain
[69, 296, 297]. Octrees also find applications in ray tracing and computer
graphics [154, 212, 421]. For a more comprehensive survey of octrees and re-
lated spatial representations of geometric objects, the reader is referred to
Samet [346, 347].

62 2 Spatial Data Structures

2.4 Final Remarks

As seen above, there are many different ways of partitioning spaces. Some
partitions directly decompose geometric objects as subspaces of the ambient
space, while others do the same indirectly by first decomposing the ambient
space. Different partitions normally lead to distinct spatial data structures.
This chapter just explores the relation between space partitions (including ob-
ject partitions) and their possible spatial data structures. It would interesting
to observe how different space decompositions determine not only different
data structures, but also different algebraic structures, but that is not in the
scope of the current textbook. For that, the reader is referred to Shapiro
[356, 357] for further details.

3

Root Isolation Methods

This chapter deals with bounding and isolating the zeros (i.e. roots) of a
polynomial function in a given region of interest. The function is assumed
to be in its implicit form f(x) = 0, although some of the theory is also
relevant to explicit and parametric functions. If the function has only one
variable, the region of interest is an interval. The procedure of root isolation
is normally preceded by procedures that find bounds for the interval where
the polynomial’s roots are likely to lie. Together, bounding and isolating are
known as root location methods [372]. Root location methods are important
to guarantee the correctness of sampling methods for curves and surfaces.

The theory of root location methods is easiest to explain for univariate
polynomial functions defined on a finite interval domain. This is because,
historically, the algebraic methods for root location were developed before
their use in geometric modelling became obvious. It is, however, possible to
extend the definition of “roots” to refer to zeros of multivariate functions.
In 2D, for example, the zeros of an bivariate polynomial lie on a curve, and
isolating such zeros in R2 is equivalent to locating the points of the curve in
the Euclidean plane. Similarly, in 3D one can talk about the skin or surface
of an object defined by a trivariate polynomial. Generalisations to higher
dimensions follow from there.

3.1 Polynomial Forms

An implicit polynomial function can be represented in an infinity of ways,
all of which are equivalent modulo algebraic manipulation. Some of the most
significant forms depend on the bases available on the ring of polynomials with
real coefficients, others depend on particular ways of arranging the terms. Let
us list and discuss a few:

• Power form
• Factored form
• Bernstein form

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 67
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

68 3 Root Isolation Methods

3.1.1 The Power Form

The power form is the expanded polynomial in monomials, after removal of
superfluous terms (e.g. x − x = 0), and reordering in descending order of
exponents. Therefore, a degree-n polynomial (also called n-order polynomial)
in the power basis is written as follows:

f(x) =
n∑
i=0

aix
i (3.1)

where ai ∈ R and an 6= 0.
For example, the following power form polynomial

f(x) = x2 + x− 6 (3.2)

is a 2-order polynomial because its highest power of x is 2. It is also monic
because its leading coefficient, say the coefficient of x2, is 1. To find the roots
of this 2-order polynomial, we can use the well-known quadratic formula

x =
−b±

√
b2 − 4ac

2a
. (3.3)

After general algebraic formulæ for the cubic and quartic equations [67]
had been found in the 16th century, Abel (in 1824) gave the first accepted
proof of the insolubility of the quintic. Later on, in 1831, Galois proved that
no formula exists for polynomials of degrees equal to or greater than five. This
motivated the appearance and development of the field of numerical analysis.

3.1.2 The Factored Form

By the fundamental theorem of algebra, any degree-n polynomial has exactly
n roots (or zeros), which are real or complex. For the 2-order polynomial f(x)
in Equation (3.2) above, let us assume its roots are both real and denote them
by α0 and α1. This means that f(α0) = 0 and f(α1) = 0, so that we can write

f(x) = (x− α0)(x− α1)

This is known as the factored form of the monic polynomial f(x). For a
nonmonic polynomial, in order to make it monic, it is possible to divide all
coefficients by the coefficient of the highest power term. This division by a
nonzero constant does not change the polynomial’s zeros. By multiplying out
the symbolic factored form, we obtain

f(x) = (x− α0)(x− α1) = x2 − (α0 + α1)x+ α0α1

Comparing this form with the original power form of the polynomial f(x)
in Equation (3.2), we come to the following nonlinear system of two equations
in two unknowns

3.1 Polynomial Forms 69{
−(α0 + α1) = 1

α0α1 = −6

which yields the solution zeros α0 = 2 and α1 = −3. Thus, the conversion
of a factored form polynomial into its power form is clearly easier than the
reverse process. This is even more the case with higher-order polynomials.

3.1.3 The Bernstein Form

In CAGD, the Bernstein polynomials are often used to define free-form
parametric surfaces (and curves), namely: Bézier, B-spline or NURBS sur-
faces [132].

On the contrary, in this book, we use the Bernstein form polynomials to
define implicit curves and surfaces. In fact, similar to the power form poly-
nomials, a 2D implicit curve can be defined as the zero set of a bivariate
Bernstein form polynomial in R2, while an implicit surface is defined as the
zero set of a trivariate Bernstein form polynomial in R3.

But, for the time being, let us concentrate on the univariate case. The
univariate Bernstein polynomial basis is normally defined for a variable x that
varies in the interval [0, 1]. However, it is possible to remove the constraint
x ∈ [0, 1] and to extend the domain of the Bernstein polynomials to the generic
interval [a, b].

For a given n ∈ N there are n + 1 univariate degree-n Bernstein polyno-
mials. By definition, the univariate Bernstein basis functions of degree n on
the interval [a, b] (see also Lorentz [248]) are defined by:

Bni (x) =
(
n

i

)
(x− a)i(b− x)n−i

(b− a)n
, ∀x ∈ [a, b], i = 0, 1, . . . , n. (3.4)

The fact that the polynomial set (Bni)i=0,n forms a basis for the ring of degree-
n polynomials means that any univariate power form polynomial of degree n
or lower can be represented on the interval [a, b] using its equivalent Bernstein
form as follows:

f(x) =
n∑
i=0

aix
i

︸ ︷︷ ︸
power form

=
n∑
i=0

bni B
n
i (x)︸ ︷︷ ︸

Bernstein form

(3.5)

where bni are the Bernstein coefficients corresponding to the degree-n base.
Both univariate representations (3.5) are equivalent on the interval [a, b] and
conversion between them is fairly straightforward.

The Unit Interval [0, 1]

On the unit interval [0, 1] for example, the univariate Bernstein coefficients
are easily computed in terms of the power coefficients (also shown by Farouki
and Rajan [133, 134]):

70 3 Root Isolation Methods

bni =
i∑

j=0

(
i
j

)(
n
j

)aj (3.6)

Therefore, the formula (3.6) can be used to design an algorithm of conver-
sion between the power and the Bernstein form of an univariate polynomial.
This is shown in the following example.

Example 3.1. (Univariate Bernstein form polynomial in [0, 1]) Given the poly-
nomial p(x) in the power form

p(x) = x3 − 5x2 + 2x+ 4

its equivalent Bernstein form (valid for x ∈ [0, 1]) is obtained using the For-
mula (3.6) above:

p(x) = 4B3
0 +

14
3
B3

1 +
11
3
B3

2 + 2B3
3

= 4(1− x)3 +
14
3

3x(1− x)2 +
11
3

3x2(1− x) + 2x3

where B3
i are the Bernstein polynomials of degree 3, namely:

B3
0 = (1− x)3

B3
1 = 3x(1− x)2

B3
2 = 3x2(1− x)

B3
3 = x3

In order to generalise the Formula 3.6 for polynomials with more than
one variable, it is convenient to express polynomials as matrix products. The
formulae below show how to calculate the desired set of Bernstein coefficients
in the matrix B in terms of the power coefficients given in matrix A.

Let us then first rewrite both polynomial representations in the matrix
notation:

f(x) =
n∑
i=0

aix
i =

[
1 x · · · xn

]

a0

a1

...
an

 = XA (3.7)

f(x) =
n∑
i=0

bni B
n
i (x) =

[
Bn0 (x) Bn1 (x) · · · Bnn(x)

]

b0
b1
...
bn

 = BXB (3.8)

Now, by expanding the elements of BX , we have:

3.1 Polynomial Forms 71

BX =
[
Bn0 (x) · · · Bnn(x)

]
=
[(
n
0

)
(1− x)n · · ·

(
n
n

)
xn
]

=
[(
n
0

) (
1 +

(
n
1

)
(−x) + · · ·+

(
n
n

)
(−x)n

)
· · ·

(
n
n

)
xn
]

=
[
1 x · · · xn

]︸ ︷︷ ︸
X

=


1 0 · · · 0(

n
0

)(
n
1

)
(−1)1

(
n
1

)(
n−1

0

)
(−1)0 · · · 0

...
...

. . . 0(
n
0

)(
n
n

)
(−1)1

(
n
1

)(
n−1
n−1

)
(−1)n−1 · · ·

(
n
n

)(
n−n

0

)
(−1)0


︸ ︷︷ ︸

CX

Thus,
f(x) = BXB = XCXB

So, by equating (3.7) and (3.8), we now obtain the Bernstein coefficients ma-
trix B in terms of the power coefficients matrix A as follows:

XA = XCXB

or, equivalently,
B = (CX)−1A

where (CX)−1 is the inverse matrix of CX .

A General Interval [a, b]

The constraint x ∈ [0, 1] can be relaxed by extending the domain of the Bern-
stein polynomials to a generic interval [a, b], as given by (3.4) and rewritten
here as follows:

Bni (x) =
(
n

i

)(
x− a
b− a

)i(
1− x− a

b− a

)n−i
, ∀x ∈ [a, b]. (3.9)

As before, a Bernstein form polynomial f(x) is written as:

f(x) = BXB, ∀x ∈ [a, b], (3.10)

where BX is the vector of Bernstein polynomials and B is the Bernstein
coefficients matrix.

Using an analogous sequence of steps as above, BX can be expressed as
follows:

BX =
[
Bn0 (x) Bn1 (x) · · · Bnn(x)

]
=
[
1 x−a
b−a · · ·

(
x−a
b−a

)n]
CX

or, equivalently,

72 3 Root Isolation Methods

BX =
[
1 x− a · · · (x− a)n

] 
1

(b−a)0 0
. . .

0 1
(b−a)n


︸ ︷︷ ︸

DX

CX

=
[
1 x− a · · · (x− a)n

]
DXCX

=
[∑0

k=0

(
0
k

)
xk(−x)0−k

∑1
k=0

(
1
k

)
xk(−x)1−k · · ·

∑n
k=0

(
n
k

)
xk(−x)n−k

]
DXCX

=
[
1 x · · · xn

]︸ ︷︷ ︸
X

=


1
(

1
0

)
(−x)1 · · ·

(
n
0

)
(−x)n

0
(

1
1

)
(−x)1−1 · · ·

(
n
1

)
(−x)n−1

...
...

. . .
...

0 0 · · ·
(
n
n

)
(−x)n−n


︸ ︷︷ ︸

EX

DXCX

or
BX = XEXDXCX . (3.11)

Therefore, the Bernstein coefficients matrix B for a generic interval [a, b] can
be determined from:

XA = XEXDXCXB

that is,
B = (CX)−1(DX)−1(EX)−1A.

3.2 Root Isolation: Power Form Polynomials

A real root isolation algorithm is an algorithm that, given a univariate real
function (e.g. a polynomial function), computes a sequence of disjoint intervals
each containing exactly one of the function’s distinct real roots.

In this section, the focus is on the root isolation for power form polyno-
mials. (Similar root isolation algorithms for Bernstein form polynomials are
dealt with in the next section.) When the function is a power form polynomial,
the most common methods for isolating its real roots are:

• Descartes’ rule of signs
• Sturm sequences
• Interval arithmetic

The first two are algebraic procedures that compute the total number of
roots that a power form polynomial has in a given interval. Descartes’ rule only
provides an upper bound , i.e. the maximum number of positive and negative
real roots of a polynomial. Sturm’s method computes the polynomial’s exact
number of roots.

Isolation by interval arithmetic has a major advantage, in that its use is
not confined to polynomials—it applies to general continuous functions. This
method only requires the function to be evaluated at the extremities of the

3.2 Root Isolation: Power Form Polynomials 73

interval for which it is being studied. However, when the function has more
than one variable, this method presents a number of problems, mainly to do
with singularities, multiple roots and other special points. Some of these are
tackled in Milne’s thesis [273], but his theoretical solutions remain difficult to
implement. For example, it may be thought that repeated roots can be re-
moved through factoring the polynomial and removing the factors that appear
more than once. This is not a practical option. Also, transcendental functions
return values that have no finite representation within the discrete range of
data formats. Consequently, there is no guarantee of correctness of the results,
even using multiple precision arithmetic libraries for storing floating point
numbers. In this case, the function evaluation is said to be ill-conditioned.

A thorough discussion of Interval Arithmetic and its uses in root isolation
can be found in Chapter 4.

3.2.1 Descartes’ Rule of Signs

Descartes’ rule of signs provides an upper bound on the number of positive and
negative roots of a power form polynomial. For positive roots, it states this
number does not exceed the number of sign changes of the nonzero coefficients
of the power form of the polynomial, arranged in the order of exponents. More
precisely, the number of positive roots of the polynomial is:

• either equal to the number of sign changes between consecutive nonzero
coefficients,

• or less than it by a multiple of 2.

More formally, we have:

Theorem 3.2. (Descartes′ Rule of Signs). The number of positive roots
of a power form polynomial does not exceed the number of sign changes of its
coefficients and differs from it by a multiple of two.

Proof. See Krandick and Mehlhorn [217].

Note that a zero coefficient is not counted as a sign change, and multiple
roots are counted separately.

For negative roots, we use a corollary of the previous theorem, which is as
follows:

Corollary 3.3. The number of negative roots of a power form polynomial
f(x) is equal to the number of positive roots of f(−x).

Proof. See Levin [231].

In other words, the number of negative roots is given by the number of
sign changes after replacing −x for x in f(x), or less than it by a multiple
of 2.

74 3 Root Isolation Methods

Example 3.4. The power form polynomial

f(x) = x3 − 3x2 + 4

has two sign changes; the first between the first and second terms, while the
second occurs between the second and third terms. Therefore it has exactly
two positive roots. Negating the odd-power terms, we obtain

f(−x) = −x3 − 3x2 + 4

i.e. a polynomial with one sign change, so the original polynomial has exactly
one negative root. The polynomial easily factors as

f(x) = x3 − 3x2 + 4 = (x− 2)2(x+ 1)

so the roots are 2 (twice) and −1.

Note that Descartes’ rule of signs, first described by René Descartes in his
work La Geometrie (an appendix of the famous masterpiece entitled “Discours
de la Méthode” written in 1637), provides a bound to the number of roots
of a power-form polynomial, not a bound to the interval where they lie in.
For a more recent mathematical discussion about Descartes’ rule of signs, the
reader is referred to Anderson et al. [16], Grabiner [166] and Levin [231].

Some well-known polynomial real root isolation algorithms based on
Descartes’ rule of signs are found in the literature. Uspensky’s 1948 book
presents an early version of these algorithms for a square-free polynomial
with real coefficients [394]. However, the worst-case complexity of this algo-
rithm grows exponentially with the number of digits in the coefficients. This
fact motivated Collins and Akritas to propose the modified Uspensky algo-
rithm in order to guarantee polynomial complexity [89]. In [202], Johnson and
Kandrick present a powerful and fast method which can be applied to polyno-
mials with both integer and real algebraic number coefficients, including the
pseudo-code of the algorithms. Rouillier and Zimmermann [343] bring up-to-
date (or at least to 2004) the various improvements of root isolation methods
based on Descartes’ rule of signs.

3.2.2 Sturm Sequences

By contrast with numerical algorithms, algebraic algorithms do not try to
evaluate the roots in the first instance, but rather study the existence of roots
in a given interval. Of course, in the cases where root counting techniques
are available, a divide-and-conquer approach can subsequently help to isolate
each of the roots in a separate subinterval. This subinterval provides tighter
lower and upper bounds for each root, from which it can be determined by
using an appropriate numerical method (e.g. Newton-Raphson method).

Sturm sequences are part of a root isolation method established by Sturm
in 1829. His theorem provides the number of real roots of a univariate poly-
nomial in a given interval [375]. Uspensky [394], Davenport et al. [95], and

3.2 Root Isolation: Power Form Polynomials 75

Bronstein and Semendjajew [67] also describe Sturm’s theory, the main fea-
tures of which are given below.

Let f ∈ Rn[x] be a n-order univariate polynomial with real coefficients
and no multiple roots (i.e. f and its first derivative f ′ are relatively prime).
Let s0, . . . , sk be the sequence of polynomials such that:

s0 = f

s1 = f ′

...
si = −mod(si−2, si−1)

(3.12)

with i = 2, . . . , k and sk ∈ R \ {0}, where mod means the remainder from the
division of two polynomials of R[x]. (The recurrence rule given above is a valid
particularisation of Sturm’s more general formulation: si−2 = si−1qi−si, with
deg(si) < deg(si−1).)

In fact, only the sign of the evaluation of the elements of the Sturm se-
quence (3.12) are needed for the root finding. The algorithm for the construc-
tion of Sturm’s sequence is similar to an application of Euclid’s algorithm to
f and f ′. Since the polynomials f and f ′ are supposed to be relatively prime,
and the terms of the sequence are polynomials of decreasing degree, ultimately
a constant is obtained. The null terms appearing after the constant term are
ignored, so Sturm’s sequence is always finite.

Sign Variation. If a ∈ R is not one of the roots of f(x), denote by V (a) the
number of sign changes in the sequence s0(a), s1(a), . . . , sk(a). Note that a sign
change is counted whenever si(a)sj(a) < 0 (j ≥ i+ 1) and sl(a) = 0 (i < l <
j). In other words, the zeros in the evaluated sequence s0(a), s1(a), . . . , sk(a)
are ignored.

Theorem 3.5. (Sturm′s Theorem). Let a, b ∈ R, a < b such that neither
is a root of f(x). Then the number of the roots that f(x) has in the interval
]a, b[equals V (a)− V (b).

Proof. See Sturm [375] or Uspensky [394].

Corollary 3.6. Let f(x) in R[x] without multiple roots and s0, . . . , sk be a
sequence of polynomials defined in Sturm’s theorem. Let us denote by V (+∞)
(respectively, V (−∞)) the number of sign changes in the sequence formed with
the leading coefficients of s0, . . . , sk (respectively, s0(x), . . . , sk(x)). Then, the
total number of real roots of f(x) equals V (−∞)− V (+∞).

Proof. See Uspensky [394].

Theorem 3.7. (Cauchy′s Theorem). Let f(x) = anx
n + · · · + a0 ∈ R[x]

with an 6= 0. Let M = 1 + |an−1
an
| + · · · + | a0

an
|. Then f(x) has no roots on

[M,+∞[(respectively, on]−∞,−M]) and its sign is the same as the one of
an (respectively of (−1)nan).

76 3 Root Isolation Methods

Cauchy’s theorem provides the very useful interval] −M,M [containing
all the roots of the polynomial f(x), i.e. their bounds.

Example 3.8. Let f(x) = (x − 1)(x − 2)(x − 3)(x + 1)(x + 2) a polynomial
in the factored form such that its roots are explicitly given in its expression.
The steps of the algorithm that determines the Sturm sequence for f(x) is as
follows:

s0 :
s0 = (x− 1)(x− 2)(x− 3)(x+ 1)(x+ 2)

= x5 − 3x4 − 5x3 + 15x2 − 12
s1 :

s1 = f ′ = 5x4 − 12x3 − 15x2 + 30x+ 4
s2 :

−mod(s0, s1) =
86x3 − 180x2 − 170x+ 288

25
s2 = 86x3 − 180x2 − 170x+ 288

s3 :

−mod(s1, s2) =
15,400x2 − 18,900x− 16, 900

1849
s3 = 15,400x2 − 18,900x− 16,900

s4 :

−mod(s2, s3) =
282,897

1694
x− 49,923

242
s4 = 282,897x− 349,461

s5 :

−mod(s3, s4) =
4,840,000

289
s5 = 4,840,000

The sequence stops here because s5 is a constant. Also, note that multi-
plying a polynomial by a nonzero constant does not affect its set of roots, so
that the terms of a Sturm sequence can be freely multiplied by convenient
numbers.

According to Sturm’s theorem, the number of roots will be given by the
number of sign changes encountered. Let us then evaluate the terms of the
Sturm sequence for several values of x, and study the sign variations on several
intervals. This is illustrated in Table 3.1.

For example, given the sequence s0(− 5
2), s1(− 5

2), . . . , s5(− 5
2), we observe

that the number V (− 5
2) of sign changes in such a sequence is equal to 5;

analogously, we get V (− 3
2) = 4, V (0) = 3, V (3

2) = 2, V (5
2) = 1, and V (7

2) = 0.

3.2 Root Isolation: Power Form Polynomials 77

Table 3.1. Evaluation of Sturm’s sequence at several values of x and the corre-
sponding sign variations.

@
@@si

x − 5
2

− 3
2

0 3
2

5
2

7
2

s0 − + − + − +
s1 + − + + − +
s2 − − + − + +
s3 + + − − + +
s4 − − − + + +
s5 + + + + + +

V (si) 5 4 3 2 1 0

Algorithm 1 Sturm sequence algorithm
1: procedure Sturm(f(x), L[])
2: i← 0 and si ← f(x)
3: L[]← add(pi) . first polynomial
4: d← degree(si) . find out its degree
5: if d ≥ 1 then
6: si+1 ← diff(si) . next term = first derivative
7: while degree(si+1) > 0 do
8: L[]← add(si+1) . append next polynomial
9: r ← −si mod si+1

10: si+2 ← numerator(r) . remove denominators
11: si ← si+1

12: si+1 ← si+2

13: end while
14: L[]← add(si+1) . append the last (constant) term
15: end if
16: return L[] . Sturm’s sequence as a list
17: end procedure

Therefore, from Table 3.1 it follows that:

V

(
−5

2

)
− V (0) = 5− 3 = 2 roots in the interval

]
−5

2
, 0
[

V

(
−3

2

)
− V

(
3
2

)
= 4− 2 = 2 roots in the interval

]
−3

2
,

3
2

[
V

(
−3

2

)
− V

(
7
2

)
= 4− 0 = 4 roots in the interval

]
−3

2
,

7
2

[
and so on.

Sturm Sequence Algorithm. The terms of the Sturm sequence are com-
puted according to Formula (3.12) and are successively appended to a list
L (steps 7–13 of Algorithm 1). When a degree-zero polynomial is found, the
algorithm appends such a polynomial to the list (step 14) and returns the list
as a result (step 16).

78 3 Root Isolation Methods

3.3 Root Isolation: Bernstein Form Polynomials

Bernstein-form polynomials have become increasingly popular for CAGD ap-
plications because of their numerical stability. This term is borrowed from the
field of numerical analysis, where the numerical stability of an algorithm [186]
is meant to express the extent to which approximation errors in the terms of
a calculation, as well as the order in which commutative operations are being
carried out, affect the accuracy of the final result.

Similarly, the numerical stability of a polynomial amounts to the numerical
stability of its corresponding evaluation algorithm. In that sense, it is inter-
esting to study the effect of a (small) perturbation in one of the polynomial’s
coefficients onto the number and location of its roots, onto the location of its
graph curve, or onto the extent to which it interpolates a given set of points.

Polynomials stored in the Bernstein form are more numerically stable than
their equivalent power form. This theoretical result, established by Farouki
and Rajan [133, 134], has now found its way into many geometric mod-
elling packages. Unsurprisingly, the robustness of the evaluation algorithms
is achieved at the expense of extra computations, since the Bernstein forms
of polynomials have significantly more terms and hence more operations need
to be performed for each evaluation.

For low-degree polynomials, the advantage of using the Bernstein form
polynomials is not immediately obvious. However, in axially aligned areas
which are further away from the origin, high-degree polynomials in the power
form usually operate with large powers of large numbers. This means that any
small errors in the coordinates of a point can cause a significant change in the
value of the polynomial at that point. On the contrary, since the Bernstein
base is more numerically stable than the power base, minor perturbations
introduced in the coefficients tend not to affect the accuracy of the polynomial
evaluation.

Let us then briefly review some relevant real root isolation methods rele-
vant to polynomials in Bernstein form:

• Variation diminishing methods
• Hull approximation methods
• Descartes’ rule of signs

All these methods use recursive subdivision as the basic technique behind
the root isolation. If they are used for Bernstein-form polynomials, then a
new (equivalent) for of the polynomial is recomputed at each step of the
subdivision, according to the subinterval being studied at that step.

The difference between these three methods lies in the computations they
each perform during the intermediate steps in order to isolate the real roots.
For example, it is possible to sample only the ends of the interval, to evalu-
ate the function’s gradient, or to draw conclusions from an evaluation of the
function’s value set.

3.3 Root Isolation: Bernstein Form Polynomials 79

Variation Diminishing Methods

Lane and Riesenfeld introduced this technique in 1981 (see [222]). Since then
several variants have been proposed by other researchers, namely Schnei-
der [354] and Spencer [372]. This technique works with a polynomial defined
on a finite interval. It repeatedly subdivides the interval domain of the poly-
nomial into two parts by its midpoint, with a view to isolating (and ultimately
approximating) the polynomial’s real roots. This recursive subdivision of the
interval stops when either the root is approximated to the desired precision, or
it is established that no root exists in one of the subintervals, whereupon that
subinterval is eliminated. The Lane-Riesenfeld algorithm combines recursive
bisection with the variation diminishing property of the Bernstein polynomi-
als to know whether or not a root exists in the subinterval. Binary subdivision
involves O(n2) steps and provides one bit of accuracy for each step.

Hull Approximation Methods

Instead of using the variation diminishing property, hull approximation meth-
ods exploit the convex hull property of the Bernstein polynomials. This is
in order to isolate, as well as to approximate the real roots of a polynomial.
Rajan-Klinkner-Farouki’s method [332] is well-known in this category. It uses
parabolic hulls to isolate and approximate simple real roots of a Bernstein-
form polynomial. A parabolic hull is a parabolic generalisation of the con-
vex hull property of the Bernstein-form polynomial. This method possesses
cubic convergence when approximating a root, which makes it a very fast
root-finding method even for high degree polynomials (examples up to degree
2048). In his thesis [372], Spencer also describes a method of this type to
isolate and approximate real roots for Bernstein-form polynomials.

Descartes’ Rule of Signs

As Eigenwillig et al. refer in [129], root isolation based on Descartes’ rule of
signs was cast into its modern form by Collins and Akritas [89] for polynomials
in the power form. An analogous formulation for polynomials in the Bernstein
form was first described by Lane and Riesenfeld [222], and more recently by
Mourrain et al. [284] (see also [32] and [286]).

Proposition 3.9. Let f(x) =
∑n
i=0 b

n
i B

n
i (x) be a Bernstein form polynomial

of degree n on the interval]a, b[. Let V (b) be the number of sign changes in
the list of Bernstein coefficients b = bn0 , . . . , b

n
n and N the number of roots of

f(x) in]a, b[counted with multiplicities. Then

(i) V (b) ≥ N ,
(ii)V (b)−N is even.

Proof. See Mourrain et al. [284].

80 3 Root Isolation Methods

This claim can be viewed as Descartes’ rule of signs for Bernstein form
polynomials. In other words, it provides the number of roots of a Bernstein
form polynomial.

Nevertheless, V (b) only provides us an upper bound for the number N of
roots of f(x) in]a, b[. However, under some circumstances, V (b) yields the
exact number of roots. This is stated by the following theorems:

Proposition 3.10. (One-Circle Theorem) The open disc bounded by the
circle centred at the midpoint of [a, b] does not contain any root of f(x) if and
only if V (b) = 0.

Proof. See Mourrain et al. [284] or Krandick and Mehlhorn [217].

Proposition 3.11. (Two-Circle Theorem) The union of two open discs
bounded by the circumcircles of two equilateral triangles sharing [a, b] as one of
their edges contains precisely one simple root of f(x) (which is then necessarily
a real root) if and only if V (b) = 1.

Proof. See Mourrain et al. [284] or Krandick and Mehlhorn [217].

Both one-circle and two-circle theorems provide the stopping conditions
of a recursive algorithm (see steps 4–9 of Algorithm 2) that subdivides the
interval [a, b] into subintervals to isolate roots therein. Taking into account
that the coefficients of a Bernstein form polynomial depend on the interval
being considered, we have to have an algorithm capable of computing the
Bernstein coefficients of f(x) on the subintervals [a, c] and [c, b] from those
on [a, b] (step 12 of Algorithm 2). This algorithm is known as de Casteljau’s
algorithm (see Algorithm 3).

Algorithm 2 Real Root Isolation
1: procedure BernsteinRootIsolation(f(x), [a, b], L)
2: b[a,c] ← list of Bernstein’s coefficients for [a, c]
3: V (b[a,c])← number of sign variations of Bernstein’s coefficients for [a, c]
4: if V (b[a,c]) = 0 then . one-circle theorem
5: return L . stopping condition: [a, c] is not inserted into L
6: end if
7: if V (b[a,c]) = 1 then . two-circle theorem
8: L← L ∪ [a, c] . stopping condition: [a, c] is inserted into L
9: return L

10: end if
11: if V (b[a,c]) > 1 then . de Casteljau subdivision algorithm
12: Casteljau(f(x), b[a,b], b[a,c], b[c,b])
13: BernsteinRootIsolation(f(x), [a, c], L)
14: BernsteinRootIsolation(f(x), [c, b], L)
15: end if
16: end procedure

3.4 Multivariate Root Isolation: Power Form Polynomials 81

Algorithm 3 de Casteljau’s algorithm
1: procedure Casteljau(f(x), b[a,b], b[a,c], b[c,b])
2: α← c−a

b−a and β ← b−c
b−a . first and second weights

3: b
(0)
i ← bi, i = 0, . . . , p . initialisation of Bernstein’s coefficients

4: for i = 1, . . . , p do
5: for j = 0, . . . , p− i do
6: b

(i)
j ← αb

(i−1)
j + βbi−1

j+1 . triangle of Bernstein coefficients
7: end for
8: end for
9: return l[a,c] ← b

(0)
0 , . . . , b

(j)
0 , . . . , b

(p)
0 . Bernstein’s coefficients for [a, c]

10: return l[c,b] ← b
(p)
0 , . . . , b

(p−j)
j , . . . , b

(0)
p . Bernstein’s coefficients for [c, b]

11: end procedure

The Bernstein coefficients computed in step 7 of de Casteljau’s algorithm
form a triangle as follows:

b
(0)
0 b

(0)
1 b

(0)
p−1 b(0)

p

b
(1)
0 b

(1)
p−1

.

.

b
(p−1)
0 b

(p)
1

b
(p)
0

The Bernstein coefficients on the interval [a, b] appear on the top side of
the triangle, while those on the subintervals [a, c] and [c, b] appear on the left
and right sides of the triangle, respectively.

For more details about the Descartes root isolation for univariate polyno-
mials in both power and Bernstein forms, the reader is referred to Mourrain
et al. [284]. Another recommended reference is Eigenwillig et al. [129] in which
a basis-free or unified approach for Descartes’ method is described.

3.4 Multivariate Root Isolation: Power Form
Polynomials

Root isolation methods are not easily extendible to multivariate polynomials.
They are still a topic of active research.

3.4.1 Multivariate Decartes’ Rule of Signs

A possible first attempt to come to a multivariate version of Descartes’ rule
was due to Itenberg and Roy [200], in 1996. But in 1998 Li and Wang [235]
gave a counterexample to their conjecture.

82 3 Root Isolation Methods

3.4.2 Multivariate Sturm Sequences

The generalisation of Sturm’s theorem is not immediate, but was made pos-
sible through the work of Milne [273, 274]. His generalisation relies heavily
on resultants, and does not deal with singularities, nor with multiple roots.
This makes it possible (though not easy) to use in 2D, but increasingly diffi-
cult to adjust for higher dimensions. An implementation that relies on exact
arithmetic is given in Voiculescu’s thesis [401].

Milne’s theory is meant to generalise the Sturm technique to n dimensions.
However, applications for n > 2 are somewhat difficult to implement, the
main inconvenience being finding suitable starting terms for the sequence. For
instance, the mere case d = 3 requires the initial term in the Sturm sequence
to be the product of two polynomial resultants. The problem with this is
that such a product will introduce “spurious roots” at the intersections of
the two resultants. These roots’ coordinates are such that some components
are roots of one resultant and some others are roots of another resultant.
Although they do not make the initial polynomials vanish, they do make
the polynomial product vanish. The elimination of these “spurious” points in
the root counting technique is not straightforward and makes the algorithm
almost impracticable.

In order to deal with this impediment Milne introduced the so-called “vol-
ume function” in the calculation of which Gröbner bases are essential—yet no-
toriously difficult to compute. Gröbner bases were introduced by Buchberger
in his PhD thesis [70]. Other references introducing the theory of Gröbner
bases are the books of Cox et al. [91] and Becker and Weispfenning [38].

In his thesis [321], Pedersen describes similar algebraic root-counting meth-
ods. In [322] he attempts a generalisation of the Sturm theory, based on
ideas expressed by Hermite [184]. Pedersen’s investigations were contempo-
rary to Milne’s. Their results are comparable. See also Gonzalez-Vega and
Trujillo [164] for more details.

3.5 Multivariate Root Isolation: Bernstein Form
Polynomials

Section 3.3, gave an overview of the way in which univariate root isolation
through Bernstein-form polynomials can be based on Descartes’ rule of signs.
It is easy to assume that the absence of a Descartes-like rule for polynomials
of more than one variable might undermine the generalisation the isolation
method to multivariate polynomials.

However, this is not the case: since the Bernstein coefficients can be seen as
a tensor, we have only to use the univariate de Casteljau subdivision n times.
This subdivision can be performed independently for each variable [236]. This
technique was recently developed by Mourrain and Pavone [283] and can be

3.5 Multivariate Root Isolation: Bernstein Form Polynomials 83

viewed as a follow-up of the interval projected polyhedron algorithm proposed
by Sherbrooke and Patrikalakis [364].

Evidently, this requires a preliminary algorithm capable of converting a
multivariate power form polynomial into a multivariate Bernstein polynomial
such as those outlined earlier in Section 3.5.1.

3.5.1 Multivariate Bernstein Basis Conversions

The multivariate Bernstein form polynomial f(x), with x = (x0, . . . , xn−1),
of maximum degree d = (d0, . . . , dn−1) can be obtained by rewriting Defini-
tion 3.5 in the form of tensor products as follows:

f(x) =
d0∑
k0=0

· · ·
dn∑
kn=0

bk1,...,knB
d0
k0

(x0) . . . Bdnkn (xn) (3.13)

The Bernstein coefficients bk1,...,kn can be seen as a tensor of dimension n.
Methods for converting a multivariate power form polynomial into a mul-

tivariate Bernstein polynomial have been proposed by Berchtold et al. [40]
and by Garloff [425], both outlined below.

3.5.2 Bivariate Case

Berchtold et al. [40] note that the implicit expression of a bivariate polynomial
in the power basis can also be rewritten in terms of matrix multiplication:

f(x, y) = a00 + a10x+ a01y + a11xy + · · ·+ amnx
myn = XA Y

where

X =
(

1 x · · · xm
)

Y =


1
y
...
yn

 A =

 a00 · · · a0n

...
...

am0 · · · amn


By analogy with the univariate case,

f(x, y) = XA Y = BXBBY

where BX and BY are Bernstein vectors in the variables x ∈ [x, x] and y ∈
[y, y]. These vectors can be decomposed as shown in Section 3.1.3.

In the case of the Bernstein vector corresponding to the variable y the
factors C, D and E in Equation (3.11) will appear in reverse order. This
happens because BY is a column vector (as opposed to BX which is a row
vector).

Hence, ∀x ∈ [x, x], ∀y ∈ [y, y], by equating the power form and Bernstein-
form polynomials we obtain:

84 3 Root Isolation Methods

XA Y = XEXDXCX B CY DY EY Y (3.14)

where
B = (CX)−1(DX)−1(EX)−1 A (EY)−1(DY)−1(CY)−1

Example 3.12. (Bivariate Bernstein form polynomial in [0, 1]×[0, 1]) Given the
equation of a circle centred at (1

2 ,
1
2) and of radius 2

5 in either the canonical
or the expanded power form

f(x, y) =
(
x− 1

2

)2

+
(
y − 1

2

)2

−
(

2
5

)2

= x2 − x+
17
50

+ y2 − y

the conversion algorithm based on Formula (3.14) finds the following equiva-
lent Bernstein form in [0, 1]× [0, 1]:

bf (x, y) =
(

17
50

(1− x)2 − 8
25
x (1− x) +

17
50
x2

)
(1− y)2

+ 2
(
− 4

25
(1− x)2 − 33

25
x (1− x)− 4

25
x2

)
y (1− y)

+
(

17
50

(1− x)2 − 8
25
x (1− x) +

17
50
x2

)
y2

3.5.3 Trivariate Case

It is possible to generalise this formula further, to 3D and higher dimensions.
Its trivariate version is rather difficult to write in linear form because the
order and direction in which the tensor products of the matrices involved is
essential for the correctness of the calculation. This method was given jointly
by Berchtold [41] and Voiculescu [401].

By analogy with the univariate and bivariate cases, the implicit expression
of a trivariate polynomial in the power basis can also be rewritten in terms of
matrix multiplication:

f(x, y, z) = a000

+a100x+ a010y + a001z

+a110xy + a101xz + a011yz

+ · · ·+ amnlx
mynzl

= Y ⊗y (X⊗x A)⊗z Z

where Am×n×l is the three-dimensional coefficient tensor, and X, Y and Z
are chosen such that the tensor multiplications are well-defined.

The following types of tensor multiplication have been chosen :

3.5 Multivariate Root Isolation: Bernstein Form Polynomials 85

⊗x : Qq×m ⊗x Am×n×l = Rq×n×l

⊗y : Qq×n ⊗y Am×n×l = Rm×q×l

⊗z : Am×n×l ⊗z Ql×q = Rm×n×q

If BX , BY and BZ are Bernstein vectors in the respective variables, the
Bernstein form of the polynomial f(x, y, z) is:

f(x, y, z) = Y ⊗y (X⊗x A)⊗z Z = BY ⊗y (BX ⊗x B)⊗z BZ

The Bernstein vectors can be decomposed as shown in Equation 3.11.
When the power form is made equal to the Bernstein form, the following
relation is obtained:

Y ⊗y (X⊗x A)⊗z Z = YEY DY CY

⊗y
(X⊗x (EX ⊗x (DX ⊗x (CX ⊗x B))))

⊗z
CZDZEZZ

In this equation the three-dimensional tensor B is being multiplied consec-
utively by each of the two-dimensional factors. At each stage another three-
dimensional tensor is produced. After the ⊗x-multiplication with the vector
X, the three-dimensional tensor is reduced to two dimensions. The rest of the
multiplications are the usual two-dimensional ones.

Hence, ∀x ∈ [x, x],∀y ∈ [y, y],∀z ∈ [z, z], the Bernstein coefficients tensor
B can be calculated by:

B = (CY)−1 ⊗y (DY)−1 ⊗y (EY)−1

⊗y ((CX)−1 ⊗x (DX)−1 ⊗x (EX)−1 ⊗x A︸ ︷︷ ︸
←−

)

︸ ︷︷ ︸
←−

⊗z (EZ)−1 ⊗z (DZ)−1 ⊗z (CZ)−1︸ ︷︷ ︸
−→

It is essential in this equation that the order of the multiplications is
starting from the tensor A outwards (according to the orientation of the
arrows).

Example 3.13. (Trivariate Bernstein form polynomial in [2, 3]× [6, 7]× [4, 5])
The Bernstein form of the polynomial f(x, y, z) = x3y2z7 in the 3D box
specified above is:

86 3 Root Isolation Methods

bf (x, y, z) =
(

288 (3− x)3 z7 + 1296 (x− 2) (3− x)2 z7

+1944 (x− 2)2 (3− x) z7 + 972 (x− 2)3 z7

)
(7− y)2

+2
(

336 (3− x)3 z7 + 1512 (x− 2) (3− x)2 z7

+2268 (x− 2)2 (3− x) z7 + 1134 (x− 2)3 z7

)
(y − 6) (7− y)

+
(

392 (3− x)3 z7 + 1764 (x− 2) (3− x)2 z7

+2646 (x− 2)2 (3− x) z7 + 1323 (x− 2)3 z7

)
(y − 6)2

3.5.4 Arbitrary Number of Dimensions

Zettler and Garloff [425] give an equivalent formula for the calculation of the
coefficients for an n-variate Bernstein form polynomial.

Let l ∈ N be the number of variables and x = (x1, . . . , xl) ∈ Rl. A multi-
index I is defined as I = (i1, . . . , il) ∈ Nl. For two given multi-indices I, J ∈
Nl the following conventions are made:

Notation. Write I ≤ J for the case where 0 ≤ i1 ≤ j1, . . . , 0 ≤ il ≤ jl.

Notation. Denote the product
(
i1
j1

)
· · ·
(
il
jl

)
by
(
I
J

)
.

Notation. Denote by the product xi11 · · ·x
il
l xI .

Let p(x) be a multivariate polynomial in l variables with real coefficients.

Definition 3.14. D = (d1, . . . , dl) is the tuple of maximum degrees so that
dk is the maximum degree of xk in p(x), for k = 1, . . . , l.

Definition 3.15. The set S = {I ∈ N l : I ≤ D} contains all the tuples from
Rl which are ‘smaller than or equal to’ the tuple D of maximum degrees.

Then an arbitrary polynomial p(x) can be written as :

p(x) =
∑
I∈S

aIxI

where aI ∈ R represents the corresponding coefficient1 to each xI ∈ Rl.
As in equation 3.5, a univariate Bernstein polynomial of degree n on the

unit interval [0, 1] is defined by:

Bnk (x) =
(
n

k

)
xk(1− x)n−k k = 0, . . . , n; x ∈ [0, 1].

1 Note that some of the aI may be 0.

3.6 Final Remarks 87

For the multivariate case consider, without loss of generality, a unit box U =
[0, 1]l and the Ith Bernstein polynomial of degree D is defined by:

BDI (x) = Bd1i1 (x1)× · · · ×Bdlil (xl) x ∈ Rl.

The Bernstein coefficients BI(U) of p over the unit box U = [0, 1]l are given
by:

BI(U) =
∑
J≤I

(
I
J

)(
D
J

)aJ I ∈ S.

And so the Bernstein form of a multivariate polynomial p is defined by:

p(x) =
∑
I∈S

BI(U)BDI (x).

For the uni-, bi- and trivariate polynomials in the examples above, this
formula and the alternative formulae (by Berchtold et al. [40]) given earlier
in this chapter generate the same Bernstein form polynomial.

3.6 Final Remarks

This chapter has given an overview of some of the most significant root isola-
tion techniques for real functions. In particular, real root isolation of univariate
integer polynomials is a classical and well studied problem, so a variety of al-
gorithms can be found in the literature. We have merely scratched the surface
of the existing literature of this topic in the area of algebraic and symbolic
computation.

Interval subdivision-based algorithms for real root isolation are based ei-
ther on Descartes’ rule of signs or on Sturm sequences. In general terms,
the idea behind these two approaches consists of partitioning a given interval
containing all the real roots into disjoint subintervals such that distinct roots
are assigned distinct subintervals. For that, Descartes’ approach repeatedly
transforms the original polynomial and counts the sign variations of the co-
efficients, while Sturm’s approach constructs a signed remainder sequence of
polynomials and evaluates them over the interval of interest.

Besides, as recently proven, both Descartes’ (either power basis or
Bernstein basis) and Sturm’s approaches achieve the same bit complexity
bound [117, 129]. For an alternative to the subdivision-based algorithms,
the interested reader is referred to a recent paper due to Tsigaridas and
Emiris [391] and Sharma [359] (and the bibliography therein), where the
continued fractions-based algorithms for root isolation are approached.

4

Interval Arithmetic

4.1 Introduction

The fundamental idea behind the interval arithmetic (IA) is that the values of
a variable can be expressed as ranging over a certain interval. If one computes
a number A as an approximation to some unknown number X such that
|X − A| ≤ B, where B is a precise bound on the overall error in A, we will
know for sure that X lies in the interval [A−B,A+B], no matter how A and
B are computed. The idea behind IA was to investigate computations with
intervals, instead of simple numbers.

In fact, when we use a computer to make real number computations, we
are limited to a finite set of floating-point numbers imposed by the hardware.
In these circumstances, there are two main options for approximating a real
number. One is to use a simple floating point approximation of the number
and to propagate the error of this approximation whenever the number is used
in a calculation. The other is to bind the number in an interval (whose ends
may also be floating point values) within which the number is guaranteed
to lie. In the latter case, any calculation that uses the number can just as
well use its interval approximation instead. This chapter deals with computa-
tions involving two floating-point numbers as intervals—the subject covered
by interval arithmetic. Approximations carried out with a single floating-point
number are studied in the next chapter.

Interval arithmetic, also known as interval mathematics, interval analysis,
or interval computation, has been developed by mathematicians and com-
puter scientists since the late 1950s and early 1960s as an approach to putting
bounds on rounding errors in arithmetic computations. In this respect, Ramon
Moore’s PhD thesis [278], as well as his book [279] and other papers published
a posteriori, played an important role in the development of interval arith-
metic. Interval analysis is now a field of study in itself, widely used in nu-
merical analysis and geometric modelling, as well as many other computation
processes which require some guarantee in the results of calculations.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 89
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

90 4 Interval Arithmetic

Other relevant references in interval arithmetic can be found in the lit-
erature. For example, Alefeld and Herzberger [4] propose using intervals in
Newton-like methods for finding the roots of univariate functions and also in
solving systems of equations. Neumaier [299] takes the concept of intervals
further and develops distance definitions and topological properties for inter-
vals. Methods for finding enclosures for the range of a function are given, as
well as interval-based methods for solving systems of equations.

Apart from the classical way of looking at intervals, other approaches exist
whereby the interval is regarded as an approximation of its centre. Ratschek
and Rockne [335], as well as Neumaier [299], discuss the use of centred-form
intervals. Comba and Stolfi [90] and Andrade et al. [17] take this approach
even further in their affine arithmetic. Affine arithmetic (AA) still regards
the interval as an approximation of the number at its centre, but at the same
time keeps track of the various levels of error affecting the computed quantity
at different steps of the evaluation of an expression. Their results are quite
encouraging, in that they are tighter than the ones produced by the traditional
IA. But as expected, there is a tradeoff between accuracy and computation
time cost.

IA and AA are also used in research areas such as computer graphics and
geometric modelling. At our best knowledge, Suffern and Fackerell [379] and
Snyder [370] were who first introduced interval arithmetic in these research
areas. For example, Snyder [370] explains the advantages of using IA in geo-
metric modelling as opposed to approaching global problems by finding roots
of polynomials. The main point he makes is that IA controls the approxi-
mation errors during the floating-point computation by computing bounds
rather than exact values. The other major advantage of using interval meth-
ods is that they are exhaustive and can give information about the whole
region of interest. Other references in scientific computing, computer graph-
ics and geometric modelling include de Figueiredo and Stolfi [102], Heidrich
et al. [181], Cusatis et al. [99], Voiculescu [401], Martin et al. [259], Bowyer
et al. [62, 63], Bülher and Barth [72], Michelucci [270], Bülher [71], Shou
et al. [367], Figueiredo et al. [103], Fang et al. [131], Paiva et al. [315], and
Miyajima and Kashiwagi [275].

In this chapter, we look at the IA and AA rules, and describe how they
can be used in geometric modelling. This is important because geometric mod-
elling not only involves high precision calculations, but also uses intervals in
order to denote and study regions of space, regardless of whether they contain
implicit curves, surfaces or solids. For example, a point can be approximated
by the intervals that give bounds for its coordinates. Hence a neighbourhood
in the shape of a box describes the region of space where that point is guar-
anteed to lie. Evaluating the function at that point (or some similar potential
value for the whole box of coordinate ranges) has geometrical meaning: it is
a measure of how far away the point (or the box) is from the surface rep-
resented by the function. This measurement is only relative, as the function

4.2 Interval Arithmetic Operations 91

value merely indicates which of several points is closer to a given surface but
it does not actually help evaluate the distance from a point to the surface.

4.2 Interval Arithmetic Operations

The execution of an automatic computation usually involves the propagation
of inaccuracies and rounding errors, because floating point values are merely
rational approximations of real numbers. If interval ranges are used instead
of a single approximation, then an automatic computation results in a range
of possible values for the final solution. This solution is generally described
by means of an interval. Once again, this is only one intuitive motivation for
using intervals and introducing arithmetic operations on the set of intervals.
The exact way in which intervals are used in geometric modelling is explained
later.

4.2.1 The Interval Number

Owing to Moore’s work, the mathematical concept of number has been gen-
eralised to the ordered pair of its approximations—the interval number. An
interval number x is denoted as the ordered pair of reals [x, x], x ≤ x, which
defines the set of real numbers

[x, x] = {x | x ≤ x ≤ x}

When one of the extremities of the interval needs to be excluded from the
interval set, variations of the following notation are used:]x, x] = {x | x <
x ≤ x}. Either or both extremities of an interval can be excluded from the
set by using the appropriate inequalities. This particular notation has the
advantage of distinguishing between the open interval]x, x[and the pair of
numbers (x, x).

4.2.2 The Interval Operations

The rules of arithmetic can be redefined so that they apply to interval num-
bers. If x = [x, x] and y = [y, y], and the operator � ∈ {+,−,×, /} then the
four elementary arithmetic operations will follow the scheme:

x� y = {x � y : x ∈ x, y ∈ y}

An interval operation must produce a new interval containing all the pos-
sible results that can be obtained by performing the operation in question
on any element of the argument intervals. This template produces simpler
specific rules for each of the arithmetic operators (see also Higham [186]):

92 4 Interval Arithmetic

Addition:

x + y = [x+ y, x+ y] (4.1)

Subtraction:

x− y = [x− y, x− y] (4.2)

Multiplication:

x× y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}] (4.3)

Division:

x/y = [min{x/y, x/y, x/y, x/y},max{x/y, x/y, x/y, x/y}] (4.4)

Depending on the circumstances in which interval division is used, it may
be appropriate to declare division by an interval containing zero as undefined
or to express it as a union of two semi-infinite intervals.

Interval division can also be written as follows:

x/y = x× 1
y

(4.5)

where

1
y

=


[

1
y ,

1
y

]
if y > 0 or y < 0]

−∞, 1
y

]
∪
[

1
y ,∞

[
if y ≤ 0 ≤ y

The addition and multiplication operations are commutative, associative
and subdistributive. The subdistributivity property comes from that fact that
the set x(y + z) is a subset of xy + xz.

An additional operation is the exponentiation of an interval. Interestingly,
it is defined differently from number exponentiation as follows:

Exponentiation:

[x, x]2n+1 =
[
x2n+1, x2n+1

]
(4.6)

[x, x]2n =


[
x2n, x2n

]
if 0 ≤ x < x[

0,M2n
]
if x < 0 ≤ x[

x2n, x2n
]
if x < x < 0

(4.7)

4.3 Interval Arithmetic-driven Space Partitionings 93

where n is any natural number and M = max{|x|, |x|}.
In particular, for even values of k,

[x, x]k 6= [x, x]× · · · × [x, x]︸ ︷︷ ︸
k

which is proved by a simple counterexample:

[−1, 2]× [−1, 2] = [−2, 4]

[−1, 2]2 = [0, 4]

The interval resulting from an even power exponentiation is always entirely
positive (even when the interval which is being raised to the even power con-
tains negative numbers).

4.3 Interval Arithmetic-driven Space Partitionings

Interval arithmetic is especially useful in geometric modelling when objects
(e.g. points, curves, surfaces, and solids) are represented by implicit functions
and are categorised by means of space partitioning. As seen above, an interval
can be regarded as an entity which gives lower and upper approximations
of a number. Since a point in Euclidean space is a pair of real coordinates
in 2D (respectively, a triplet in 3D), it can be naturally approximated by a
pair (respectively, triplet) of intervals, i.e. an axially aligned box. Thus, the
classical point membership testing method used in geometric modelling can
be extended to a box testing method.

We are then able to combine interval arithmetic with axially aligned space
partitionings to locate objects defined implicitly. This is illustrated in Fig-
ure 4.1, where combining interval arithmetic and a 2-d tree space partitioning
allows us to locate the following curve defined implicitly as follows:

Fig. 4.1. An implicit curve specified by the power-form polynomial p(x, y) defined
below, in the ambient space [0, 1]× [0, 1] and using a minimum box size of 1

27 × 1
27 .

94 4 Interval Arithmetic

p(x, y) =
9446

10,000
x y − 700,443,214

100,000,000
x3 y2 +

764,554
100,000

x4 y3 +
564
1000

y4 − x3

The curve is somewhere in the region of the green boxes, i.e. those boxes
in which p evaluates to an interval that straddles zero. The red boxes denote
entirely negative boxes, i.e. boxes in which p evaluates negative everywhere.
The blue boxes identify entirely positive boxes, i.e. boxes in which p evaluates
positive everywhere.

Here is an example that illustrates this box classification. Given the axially
aligned box [x, x] × [y, y], the two variables of the curve expression x and y
are replaced by the two interval coordinates [x, x] and [y, y], respectively.
This substitution produces an interval expression which is then evaluated by
applying IA rules. This evaluation results in an interval. For example, let us
consider the box [1

2 ,
5
8] × [0, 1

8] in Figure 4.1. Substituting x and y by [1
2 ,

5
8]

and [0, 1
8], respectively, in the expression of p, we obtain

prat

([
1
2
,

5
8

]
,

[
0,

1
8

])
=

9446
10,000

[
1
2
,

5
8

][
0,

1
8

]
− 700,443,214

100,000,000

[
1
2
,

5
8

]3[
0,

1
8

]2

+
764,554
100,000

[
1
2
,

5
8

]4[
0,

1
8

]3

+
564
1000

[
0,

1
8

]4

−
[

1
2
,

5
8

]3

=
[
− 27,086,029,053

1011
,−4,878,689,313

1011

]
which is an entirely negative interval; this confirms that the box [1

2 ,
5
8]× [0, 1

8]
in Figure 4.1 is correctly depicted red.

4.3.1 The Correct Classification of Negative and Positive Boxes

As seen above, there are three types of boxes output by interval arithmetic:
negative boxes, positive boxes and zero boxes (i.e. those that depict a region
where the function evaluates to an interval that straddles zero). As will be
shown later, not all zero boxes contain segments of the curve, i.e. not all boxes
classified as zero boxes are genuine zero boxes. The prediction that the box
contains at least a curve segment is reasonably accurate only for low-degree
polynomials, but problems become manifest when the curve expression is of
high degree.

However, we can prove that when a box is labelled as negative or positive
it is indeed correctly classified. The proof will be carried out in the one-
dimensional case, but can be easily generalised to any number of dimensions.

Given an implicit polynomial equation f : R → R, f(x) = 0 and a ‘box’
[x, x], we will first prove that if the box is labelled as positive then all the
points in the box have a positive function value. In other words,

f([x, x]) > 0 ?=⇒ f(x) > 0, ∀x ∈ [x, x].

4.3 Interval Arithmetic-driven Space Partitionings 95

Since f(x, y) is chosen as a polynomial function, its expression is an alge-
braic combination of entities involving additions, subtractions, multiplications
and exponentiations. Hence its corresponding interval expression will involve
similar combinations. All that remains to be proved is that any arithmetic
combination that yields a positive interval will yield a positive quantity when
the calculation is performed with numbers instead of intervals.

Addition:

[x, x] + [y, y] = [x+ y, x+ y] > 0 ?=⇒ x+ y > 0, ∀x ∈ [x, x], y ∈ [y, y]

Proof.
x+ y ≥ x+ y > 0

�

Subtraction:

[x, x]− [y, y] = [x− y, x− y] > 0 ?=⇒ x− y > 0, ∀x ∈ [x, x], y ∈ [y, y]

Proof.
x− y ≥ x− y > 0

�

Multiplication:

[x, x]× [y, y] > 0 ?=⇒ xy > 0, ∀x ∈ [x, x], y ∈ [y, y]

Proof.

[x, x]× [y, y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]
xy ≥ min{xy, xy, xy, xy} > 0

�

Exponentiation:

For any natural number n, let us first consider the exponentation operator for
odd powers: [

x2n+1, x2n+1
]
> 0 ?=⇒ x2n+1 > 0, ∀x ∈ [x, x]

Proof.
x2n+1 ≥ x2n+1 > 0

�

96 4 Interval Arithmetic

Now, let us do the same for even powers:

[x, x]2n > 0 ?=⇒ x2n > 0, ∀x ∈ [x, x]

Proof. If 0 ≤ x < x then x2n ≥ x2n > 0. If x < x ≤ 0 then x2n ≥ x2n >
0. The case x < 0 ≤ x cannot be achieved because this would mean that
[x, x]2n =

[
0,M2n

]
(where M = max{|x|, |x|}), which would contradict the

strict inequality [x, x]2n > 0. �

So, for any function f involving a combination of the arithmetic operations
above, we have proved that

f([x, x]) > 0 =⇒ f(x) > 0, ∀x ∈ [x, x]

There is another half to this proof, stating an analogous result for negative
boxes.

f([x, x]) < 0 =⇒ f(x) < 0, ∀x ∈ [x, x]

This result is based on the symmetry of the IA rules. Its proof is analogous
to the one of the first part.

This theory can be easily extended to include rational functions, as interval
division is expressed in terms of multiplication. Another important general-
isation can be done to include more than one dimension. In fact, the one-
dimensional case has been used merely for clarity of the argument, but since
multidimensional IA rules are expressed componentwise, there is no reason
why the result should not hold in any number of dimensions.

4.3.2 The Inaccurate Classification of Zero Boxes

Let us now examine the case where the resulting interval of the substitu-
tion straddles zero. At first sight this may seem to correspond to a situation
where the box contains some curve segment or surface patch, independently of
whether it belongs to the frontier of a solid or not. This section will illustrate
a one-dimensional counterexample. We will show it is possible for the inter-
val to straddle zero despite the box being an positive box indeed. Again, the
phenomenon described can be easily observed and generalised to any number
of dimensions.

Consider the following four real polynomial functions f, g, h, k : [0, 1]→ R
given by

f(x) = 4x2 − 12x+ 9 (power form)

g(x) = (4x− 12)x+ 9 (Horner form)

h(x) = 9(x− 1)2 − 6x(x− 1) + x2 (Bernstein form)

k(x) = (2x− 3)2 (factored form)

4.3 Interval Arithmetic-driven Space Partitionings 97

Although they appear in different forms,1 their definitions are chosen such
that f(x) = g(x) = h(x) = k(x). Despite the fact that they take only positive
values over the interval [0, 1], in some cases the membership test outputs
intervals straddling zero, though of course they all contain the image of the
function.

The functions f , g, h and k take the same values everywhere and have
equivalent implicit expressions, so they must have the same image in the
range—namely the interval [1, 9]. Depending on the form of the polynomial
expression, the interval arithmetic method may give predictions for the image
which are wider intervals including it. This phenomenon is known as interval
swell or interval over-estimation and is responsible for the appearance of false
zero boxes. Let us illustrate this with the previous four real-valued functions
by replacing x by [0, 1] in their expressions:

f([0, 1]) = 4([0, 1])2 − 12[0, 1] + 9
= [−3, 13]
⊃ [1, 9] = Image f

g([0, 1]) = (4 [0, 1]− 12) [0, 1] + 9
= [−3, 9]
⊃ [1, 9] = Image g

h([0, 1]) = 9([0, 1]− 1)2 − 6[0, 1]([0, 1]− 1) + [0, 1]2

= [0, 16]
⊃ [1, 9] = Imageh

k([0, 1]) = (2 [0, 1]− 3)2

= [1, 9]
= [1, 9] = Image k

After applying interval arithmetic to the functions f , g, h and k, we observe
that only the prediction given by k(x) gives an exact answer: the prediction
in this case equals the exact image [1, 9] of the function. The other examples
illustrate the typical situation where the resulting interval straddles zero but
the corresponding box is a false zero box because the box itself lies entirely
in the positive half-space.

The boxes that interval arithmetic does label as negative or positive are
always properly identified. However, not all zero boxes are correctly identified.
But this is only a cautious box classification as the interval arithmetic tech-
nique cannot determine correctly the type of all the boxes in a given region
of interest. In this scenario, the box classification is said to be conservative.
1 For the definition of Horner’s scheme (also known as nested multiplication), the

reader is referred to the original article [194] as well as any good textbook on
algebra or geometric algorithms [132]. A good splines textbook [132] will contain
a definition and usage of the Bernstein polynomial basis.

98 4 Interval Arithmetic

Conservativeness is the main weakness of IA. Often the intervals produced
are much wider than the true range of the computed quantities. This problem
is particularly severe in long computational chains where the intervals com-
puted at one stage are input into the next stage of the computation. The more
variable occurrences there are in the algebraic expression, the wider the pre-
diction and the larger the interval swell. However, this is not a general rule,
because there are other aspects (such as the presence of even exponents and
the order of the arithmetic operations) which may influence the final result.
Several conservativeness examples and a suggested approach to this problem
can be found in [40], [62] and [401].

4.4 The Influence of the Polynomial Form on IA

There is a wide variety of ways of writing and rewriting a polynomial. In the
previous section, we have briefly approached four polynomial forms: power
form, Horner form, Bernstein form and factored form. The reader is referred
to de Boor [98] for other polynomial forms. Unfortunately, there is no known
method to determine what is the best form to express a given polynomial
function in order to get the sharpest possible bounds. This is so because the
optimal way of representing and storing a polynomial is crucially determined
by the kind of operations the user might want to perform on it afterwards.
Studies and comparisons are given in Martin et al. [258, 259].

This section shows that the Bernstein form is the most stable numerically
by comparing it to the power form as input to interval arithmetic. As suggested
in the previous section for the equivalent functions f(x), g(x), h(x) and k(x),
the resulting intervals obtained by replacing x by [0, 1] may differ from one
to another. This means that applying interval arithmetic to two equivalent
functions has as a result two distinct space partitionings (Figure 4.2).

(a) (b)

Fig. 4.2. The influence of the polynomial form on interval arithmetic applied to
locate a curve: (a) the power-form polynomial p(x, y) defined in Section 4.3 and (b)
its equivalent Bernstein-form polynomial.

4.4 The Influence of the Polynomial Form on IA 99

As illustrated in Figure 4.2, it is visible the differences between the power
form and Bernstein form of a polynomial, namely:

• Number of sub-boxes. Their corresponding 2-d tree space partitionings have
a different number of sub-boxes. The power form polynomial on the left-
hand side leads to a bigger number of space subdivisions than the Bernstein
form polynomial on the right-hand side.

• Box classification. The zero boxes (in green) provide a better approxima-
tion to the curve when the function is in Bernstein form, so that there are
fewer false zero boxes.

4.4.1 Power and Bernstein Form Polynomials

For brevity, we review univariate and multivariate polynomials in this section.

Univariate

A power form polynomial of degree n ∈ N in the variable x is defined by:

f(x) =
n∑
i=0

aix
i, (4.8)

where ai ∈ R. The equation f(x) = 0 is the implicit equation corresponding
to the polynomial f(x).

We have shown in the previous section that the form of the implicit expres-
sion supplied as input to interval arithmetic is crucial for the accuracy of the
box classification. Since any input expression can be written in a number of
equivalent forms, it makes sense to choose a transformation which will gener-
ate a more numerically stable polynomial form. If a base other than the power
base is used in order to express the same polynomial, the interval arithmetic
classification method will, in general, produce different results. The results
which follow below encourage the use of the Bernstein base especially in the
case of high-degree polynomials.

As seen in Section 3.1.3, the univariate Bernstein basis functions of degree
n on the interval [x, x] (see also Lorentz [248]) are defined by:

Bni (x) =
(
n

i

)
(x− x)i(x− x)n−i

(x− x)n
, ∀x ∈ [x, x], i = 0, 1, . . . , n. (4.9)

For a given n ∈ N, these n+ 1 univariate degree-n Bernstein polynomials
(Bni)i=0,n forms a basis for the ring of degree-n polynomials. This means that
any univariate power form polynomial can be represented on the interval [x, x]
using its equivalent Bernstein form as follows:

f(x) =
n∑
i=0

aix
i

︸ ︷︷ ︸
power form p(x)

=
n∑
i=0

bni B
n
i (x)︸ ︷︷ ︸

Bernstein form B(x)

100 4 Interval Arithmetic

where bni are the Bernstein coefficients corresponding to the degree-n base. The
two univariate representations p(x) and B(x) are equivalent on the interval
[x, x]. For example, on the unit interval [0, 1], determining B(x) from p(x)
requires the computation of the univariate Bernstein coefficients in terms of
the power coefficients:

bni =
i∑

j=0

(
i
j

)(
n
j

)aj (4.10)

As referred in Section 3.1.3, Formula (4.10) can be used to design an
algorithm of conversion between the power form and the Bernstein form of an
univariate polynomial [133, 134].

Multivariate

The generalisation of Bernstein bases to multivariate polynomials is not im-
mediate. The power form of a polynomial in d variables is written in terms of
x1, . . . , xd like this:

f(x1, . . . , xd) =
∑

0≤k1+···+kd≤n

a(k1,...,kd)x
k1
1 · · ·x

kd
d

where the coefficients a(k1,...,kd) ∈ R. Again, the equation f(x1, . . . , xd) = 0 is
the implicit equation corresponding to the implicit polynomial f(x1, . . . , xd).
By convention, the degree of each term is k1 + · · ·+ kd, and the degree of the
polynomial is the maximum of all degrees of its terms.

The multivariate Bernstein form is defined recursively as a polynomial
whose main variable is xd and whose coefficients are multivariate Bernstein-
form polynomials in x1, . . . , xd−1.

Formula (4.10) can be generalised to more variables. Conversion between
the power and the Bernstein representation is possible regardless of the num-
ber of variables (see Geisow [158] and Garloff [155, 425]). In [40, 41] Berchtold
et al. give formulae and algorithms for the computation of the Bernstein form
of bi- and trivariate polynomials, as needed for locating implicit curves in 2D
and surfaces and solids in 3D, respectively. The following example makes use
of this particular conversion method.

Example 4.1. Let us look again at Figure 4.2. The power-form polynomial
appears on the left-hand side and is given by the polynomial defined in Sec-
tion 4.3 and written now, for convenience, with R-style coefficients, though
under the understanding that the calculations are exact:

p(x, y) = 0.9446x y − 7.0044x3 y2 + 7.6455x4 y3 + 0.5640 y4 − x3

The corresponding Bernstein form in [0, 1]×[0, 1] appears on the righ-hand
side of Figure 4.2 and is as follows:

4.4 The Influence of the Polynomial Form on IA 101

B(x, y) =
(
− x3(1− x)− x4

)
(1− y)4 +

4
(

0.2361x(1− x)3 + 0.7084x2(1− x)2 − 0.2915x3(1− x)− 0.7638x4

)
·

y(1− y)3 +

6
(

0.4723x(1− x)3 + 1.4169x2(1− x)2 − 0.7505x3(1− x)− 1.6951x4

)
·

y2(1− y)2 +

4
(

0.7084x(1− x)3 + 2.1253x2(1− x)2 − 2.3768x3(1− x)− 1.8823x4

)
·

y3(1− y) +(
0.564(1− x)4 + 3.2006x(1− x)3 + 6.2178x2(1− x)2 − 2.9146x3(1− x) +

1.1497x4

)
y4

The power representation in Figure 4.2(a) is less effective in areas which are
further away from the origin, whereas the Bernstein representation in Fig-
ure 4.2(b) starts classifying correctly boxes which are roughly at a constant
distance away from the function.

For low-degree polynomials the advantage of using the Bernstein form is
not immediately obvious. However, in rectangular areas which are further
away from the origin, high-degree polynomials in the power form usually op-
erate with large powers of large numbers. Any small errors in the coordinates
can cause a significant change in the value of the polynomial. Thus, the Bern-
stein base is more numerically stable than the power base, which means that
minor perturbations introduced in the coefficients tend not to affect the value
of the polynomial.

Floating point errors can also be a reason for interval swell. Very small
numbers on the “wrong” side of the origin are decisive in the classification
procedure. Numerical stability helps correct this problem, though the Bern-
stein representation is not entirely error-free.

4.4.2 Canonical Forms of Degrees One and Two Polynomials

The standard form polynomial for three-dimensional quadrics is, as for any
degree-two polynomial, written in the following manner:

A+ 2Bx+ 2Cy+ 2Dz+ 2Exy+ 2Fxz+ 2Gyz+Hx2 + Iy2 +Jz2 = 0 (4.11)

This is also known as the general expanded equation of a quadric. Quadric
surfaces are always a special category of surfaces in geometric modelling

102 4 Interval Arithmetic

because of various nice geometric properties they possess (see, for example,
Sarraga [348]). Their importance comes from the fact that they are able to de-
scribe the geometry of most engineering mechanical parts designed by current
CAD/CAM systems. This explains why CSG geometric kernels were designed
and implemented from quadrics. For further details, the reader is referred to
the SVLIS set-theoretic kernel geometric modeller [61].

Quadrics are more commonly known by their respective canonical form
equations, where terms are grouped together in a symmetrical manner. By
canonical form we mean the best-known implicit form in which quadrics are
normally defined and studied (as shown in Figure 4.3):

±x
2

a2
± y2

b2
± z2

c2
= 1 (4.12)

that is, the normalised equation for a 3D quadric centred at the origin (0, 0, 0).
According to the sign of the coefficients of the expanded form (4.11) or the
canonical form (4.12), the quadrics can be of different types. It can be easily
proved (see, for example, Bronstein and Semendjajew [67]) that there are only
a finite number of types of quadric surfaces.

Furthermore, empirical tests carried out by the geometric modelling re-
search group at Bath suggest it is probably the case that IA yields perfect
classifications of all the sub-boxes of a region, provided they are tested against
the equation of a plane or a quadric surface in the canonical form. Otherwise,
the classifications are only conservative.

The multiplication of an interval by a constant and the addition and sub-
traction of two intervals are all exact operations. Hence, when an interval is
substituted into a linear equation of the type Ax + By + Cz + D = 0 the
arithmetic is expected to be well-behaved. The immediate geometrical conse-
quence is that it is always possible to determine precisely whether a plane in
space cuts a given box. The ‘perfect’ results are due not only to the linear-
ity of the polynomial form but also to the fact that each variable occurs in
the expression of the polynomial exactly once and independently from other
variables. Thus no interference occurs between the different sources of noise.
The coefficients A, B, C and D in the linear form Ax+By+Cz+D = 0 are
assumed to be obtained after all the reductions possible have been performed.
Otherwise the swelling phenomenon reappears.

As an illustration, consider the polynomial p(x) = 2x − x. When studied
over the unit interval, it yields a swollen result, despite its linearity:

2 [0, 1]− [0, 1] = [0, 2]− [0, 1] = [−1, 2] ⊃ [0, 1]

With the exception of the plane equation and quadrics in their canonical
form, these “perfect” results cannot be obtained for equations of degree two or
higher. The functions f(x), g(x) and h(x) given in Section 4.3.2 have already
illustrated a counterexample. That is, they all had degree-two equations but
the intervals which resulted after applying interval arithmetic were not the

4.4 The Influence of the Polynomial Form on IA 103

(a) Ellipsoid: x2

a2
+ y2

b2
+ z2

c2
= 1 (b) Elliptic cylinder: x2

a2
+ y2

b2
= 1

(c) Elliptic cone: x2

a2
+ y2

b2
− z2

c2
= 0 (d) Elliptic paraboloid: z = x2

a2
+ y2

b2

(e) Hyperboloid of 1 sheet: (f) Hyperboloid of 2 sheets:
x2

a2
+ y2

b2
− z2

c2
= 1 x2

a2
+ y2

b2
− z2

c2
= −1

(h) Hyperbolic cylinder: x2

a2
− y2

b2
= −1 (i) Hyperbolic paraboloid: z = x2

a2
− y2

b2

Fig. 4.3. Canonical forms for quadrics.

results of the exact calculations. When comparing the general expanded form
with the canonical form of the same quadric, it is customarily the case that the
former is the expansion of the latter and has degree-one terms as well as square
terms. Most of the canonical forms of the quadrics have only degree-two terms,

104 4 Interval Arithmetic

which constitutes an advantage for the application of interval arithmetic. This
is due to the exponentiation rule stated in Equation (4.7), which causes the
tightest positive intervals to be generated as results.

In general, the interval arithmetic technique can be used successfully for
the location of the familiar quadrics, in that all the boxes of the spatial subdi-
vision are classified correctly. The canonical form of the conic section surfaces,
each of the variables occurs exactly once, independently from the others and
with an exponent of one or two; thus it is expected that the resulting interval
will coincide with the exact range. The technique starts suffering from conser-
vativeness in the case of surfaces of an arbitrary representation, or of higher
degree.

4.4.3 Nonpolynomial Implicits

One reason for extensively using polynomials is that the most important
curves, surfaces and solids in geometric modelling can be expressed by means
of polynomials. Perhaps the only significant exception is the helix. The helix
is useful to represent as it is widely used in practice for such things as screw
threads, but its formulation requires transcendental functions. Another rea-
son why polynomials have been preferred is that algebraic theories provide
extensive studies of polynomials. The findings concerning general algebraic
functions cannot always be extended to transcendental functions.

As expected, conservativeness remains a problem for transcendental im-
plicits. Whilst performing correctly for quite a large number of negative and
positive boxes, the interval arithmetic technique still outputs some regions of
space as zero boxes, although in reality they are purely negative or purely
positive. Similarly to the polynomial case, the result is usable but not satis-
factory.

Example 4.2. The expression sin(x) can legitimately be assumed to take values
in the range [−1, 1], but this may be quite a gross estimate. In the particular
case where x ∈ [1

2 ,
7
3] the function’s image is only [sin(1

2), 1] ⊆ [0.47, 1]. When
the sin(x) function is incorporated in further calculations, an initial range
approximation as gross as [−1, 1] will propagate the interval swell throughout
the computation chain, affecting the final result.

An alternative evaluation method for periodic trigonometric functions (like
sin(x) and cos(x)) would be to calculate the range as a result of a circumstan-
tial study of the domain. If the length of the domain interval is larger than the
function period (2π in the case of sin(x) or cos(x)), then the function takes
values over the whole of the range [−1, 1]. If not, then a detailed study of the
relative positions of the ends of the interval and multiples of the values 0, π2 ,
π, 3π

2 and 2π will help establish the exact range. This is the case with the
tangent and cotangent functions as well, with the further complication that
these are not defined for certain values of their argument.

4.5 Affine Arithmetic Operations 105

Other transcendental functions, like the logarithmic and exponential func-
tions are slightly better behaved. Because they are monotone, an exact range
can be obtained by evaluating the function at both ends of the interval. Prob-
lems may occur, however, when the function is not defined for the whole
domain interval (e.g. log(x) is not defined for negative numbers or zero).

4.5 Affine Arithmetic Operations

As seen above, the conservativeness of algebraic methods that rely on interval
arithmetic depends on the polynomial form used to represent implicit curves,
surfaces and solids. We have also seen that the conservativeness is reduced
when the input is provided in the Bernstein form. Furthermore, in the par-
ticular case of planes or quadrics represented by canonical form polynomials,
the conservativeness vanishes.

As described in Section 4.3, the box classification method relies on substi-
tuting the interval coordinates of a box for the variables of an implicit function
expression, performing interval arithmetic calculations, and studying the rel-
ative positions of the resulting interval and zero. It might be thought that the
interval swell during the interval arithmetic evaluation depends merely on the
number of occurrences of a variable in the implicit expression. There are other
aspects (such as the presence of even exponents or the order of the arithmetic
operations) which contradict this assumption. It is known that the Bernstein
form of a polynomial has many more variable occurrences than the power
form; despite this, the former behaves better with IA than the latter.

Still, whenever interval calculations are performed, no account is taken of
the fact that each occurrence of any variable, such as x, always represents the
same quantity. That is to say that each variable introduces the same error
in all the terms of the polynomial. The method, called affine arithmetic, de-
scribed in the rest of this chapter makes use of this observation and correlates
the sources of error in the interval classification (see also Martin et al. [258]
or Shou et al. [367]). And, more importantly, it does not depend on the poly-
nomial form used to represent an implicit object. Thus, affine arithmetic can
be viewed as a more sophisticated version of interval arithmetic.

4.5.1 The Affine Form Number

Affine arithmetic was proposed by Comba, Stolfi and others [90] in the early
1990s with a view to tackle the conservativeness problem caused by standard
interval arithmetic. Like interval arithmetic, affine arithmetic can be used to
manipulate imprecise values and to evaluate functions over intervals. While,
like interval arithmetic, it provides guaranteed bounds for computed results,
affine arithmetic also takes into account the dependencies between the sources
of error. In this way it is able to produce much tighter and more accurate
intervals than interval arithmetic, especially in long chains of computations.

106 4 Interval Arithmetic

In affine arithmetic an uncertain quantity x is represented by an affine
form x̂ that is a first-degree polynomial of a set of noise symbols εi.

x̂ = x0 + x1ε1 + · · ·+ xmεm = x0 +
m∑
i=1

xiεi

Here the value of each noise symbol εi is unknown but defined to lie in
the interval [−1, 1]. The corresponding coefficient xi is a real number that
determines the magnitude of the impact of the product xiεi. Each product
xiεi stands for an independent source of error or uncertainty which contributes
to the total uncertainty in the quantity x. The number m may be chosen as
large as necessary in order to represent all the sources of error. These may
well be input data uncertainty, formula truncation errors, arithmetic rounding
errors, and so on.

This piece of reasoning is not restricted to the univariate case. On the
contrary, given a polynomial expression in any number of variables, the de-
pendencies between them can be easily expressed by using the same noise
symbol εi wherever necessary. If the same noise symbol εi appears in two or
more affine forms (e.g. in both x̂ and ŷ) it indicates the interdependencies
and correlations that exist between the underlying quantities x and y. For
example, in the bivariate case, computing with the affine forms is a matter of
replacing x and y by x̂ and ŷ in f(x, y), respectively, and each operation in
f(x, y) with the corresponding affine operation on x̂ and ŷ. Of course, each
affine operation must take into account the relationships between the noise
symbols in x and y.

The rules for arithmetic operations on affine forms are explained below.
The important thing to notice about the way affine arithmetic works is that
algebraic expressions take into account the fact that the same variable may
appear in them more than once. Thus using affine arithmetic, similar terms
get cancelled when they appear in an expression (e.g. 2x̂ + ŷ − x̂ = x̂ + ŷ).
This is not the case with interval arithmetic.

4.5.2 Conversions between Affine Forms and Intervals

Conversions between affine forms and intervals are defined in various papers
by Comba and Stolfi [90], Figueiredo [100] and Figueiredo and Stolfi [102].

Given an interval [x, x] representing a quantity x, its affine form can be
written as

x̂ = x0 + x1εx, where x0 =
x+ x

2
, x1 =

x− x
2

. (4.13)

Conversely, given an affine form x̂ = x0 + x1ε1 + · · · + xmεm, the range
of possible values of its corresponding interval is

[x, x] = [x0 − ξ, x0 + ξ] , where ξ =
m∑
i=1

|xi|. (4.14)

4.5 Affine Arithmetic Operations 107

4.5.3 The Affine Operations

The affine arithmetic rules are fully defined in Comba and Stolfi [90]. Those
that are relevant to the location of curves and surfaces are addition and multi-
plication, both of a scalar to an affine form, and of (two or more) affine forms
to each other. Given the affine forms x̂ and ŷ, and the real number α ∈ R the
simple arithmetic operations are carried out thus:

Addition:

α+ x̂ = (α+ x0) + x1ε1 + · · ·+ xmεm (4.15)
x̂+ ŷ = (x0 + y0) + (x1 + y1)ε1 + · · ·+ (xm + ym)εm (4.16)

Subtraction:

α− x̂ = (α− x0) + x1ε1 + · · ·+ xmεm (4.17)
x̂− ŷ = (x0 − y0) + (x1 − y1)ε1 + · · ·+ (xm − ym)εm (4.18)

Multiplication:

αx̂ = (αx0) + (αx1)ε1 + · · ·+ (αxm)εm (4.19)
x̂ŷ = (x0 + x1ε1 + · · ·+ xmεm)(y0 + y1ε1 + · · ·+ ymεm) (4.20)

=

(
x0 +

m∑
i=1

xiεi

)(
y0 +

m∑
i=1

yiεi

)

= x0y0 +
m∑
i=1

(x0yi + xiy0)εi︸ ︷︷ ︸
L(ε1,...,εm)

+

(
m∑
i=1

xiεi

)(
m∑
i=1

yiεi

)
︸ ︷︷ ︸

Q(ε1,...,εm)

(4.21)

Now, L(ε1, . . . , εm) is an affine form in which the noise symbols εi occur
only with degree 1, whereas Q(ε1, . . . , εm) is quadratic in the noise symbols.
The quadratic term can be handled so that it becomes linear itself, at the
expense of introducing a new noise symbol εk ∈ [−1, 1], with coefficient µν,
where µ =

∑m
i=1 |xi| and ν =

∑m
i=1 |yi|. So x̂ŷ can be expressed as an affine

combination of first-degree polynomials in the noise symbols:

x̂ŷ = x0y0 +
m∑
i=1

(x0yi + xiy0)εi + µνεk

= x0y0 + (x0y1 + x1y0)ε1 + · · ·+ (x0ym + xmy0)εm + µνεk

The index k can be chosen as m+ 1.

108 4 Interval Arithmetic

Division:

Division can be defined via inversion and multiplication in the same style as
shown in Formula (4.5) for intervals. This is rarely used in calculations, as
there is little scope for simplifying the polynomial expansions obtained.

Exponentiation:

x̂a = (x0 + x1εx)a = xa0 +
a∑
i=1

(
a

i

)
xa−i0 xi1ε

i
x, a ∈ Z. (4.22)

Unlike interval arithmetic, the affine exponentiation is a particular case of
the affine multiplication because

x̂2 = x̂.x̂

and, consequently, there is no interval swell caused by exponentiation.
It is immediately apparent from the rules above that the affine arithmetic

operations are commutative, associative and distributive. This was not the
case with interval arithmetic, whose misbehaviour with the distributivity law
caused the interval swell.

Practical experience with polynomials other than those of lowest degree,
shows that simply using the rules of affine arithmetic directly gives relatively
little advantage over ordinary interval arithmetic when localising polynomials
(e.g. curves and surfaces), which are basically defined by additions, subtrac-
tions, multiplications and exponentiations. This is due to rapid introduction
of many new error symbols. Much better results can be obtained by taking
more care, in particular in handling exponentiations.

4.5.4 Affine Arithmetic Evaluation Algorithms

Various affine arithmetic schemes have been proposed for use in geometric
modelling. One of the earlier ones (see Zhang and Martin [426] or Voiculescu
et al. [402]) proposes to simplify exponentiations in a way that separates
odd exponent terms from even exponent terms, and express any (univariate)
polynomial with a degree-one polynomial of three terms and just two noise
symbols:

x̂a = xa0 + xoddεxodd + xevenεxeven .

Whilst this yields results very efficiently and leads to reasonably narrow
result intervals, it unfortunately does so at the expense of the loss of conserva-
tiveness. This comes from trying to share the noise symbols εxodd and εxeven

between the computations of two distinct powers [373].
A more complete yet more expensive scheme is proposed in a related pa-

per [258] where Martin et al. give a matrix-form evaluation of the affine in-
terval polynomials that leads to a conservative interval result.

4.6 Affine Arithmetic-driven Space Partitionings 109

4.6 Affine Arithmetic-driven Space Partitionings

When applying affine arithmetic to algebraic surface location, the polynomial
representing the implicit surface needs to be evaluated on the intervals over
which its variables range. In particular, in order to locate a planar curve a
polynomial f(x, y) needs to be evaluated over the ranges in x and y repre-
senting a box. These are [x, x] and [y, y] or their affine equivalents x̂ and ŷ
respectively.

Because the affine arithmetic form can be converted back into an interval,
it can easily be used as an alternative to producing box classifications for
power- or Bernstein-form polynomials using direct interval arithmetic rules.

To compare the relative merits of interval arithmetic and carefully evalu-
ated affine arithmetic for curve drawing, we now present a practical example.

Example 4.3. Let us consider the following bivariate polynomial function
p(x, y) in the power form:

p(x, y) =
945
1000

x y − 94,3214
100,000

x2 y3 +
74,554
10,000

x3 y2 + y4 − x3

and then in its Bernstein form in the unit box [0, 1]× [0, 1]:

B(x, y) = − x3 (1− y)4 +

4
(

23,625
100,000

x (1− x)2 +
4725

10,000
x2 (1− x)− 76,375

100,000
x3

)
y (1− y)3 +

6
(

4725
10,000

x (1− x)2 +
945
1000

x2 (1− x) +
715,066,667

1,000,000,000
x3

)
y2 (1− y)2 +

4
(

70,875
100,000

x(1− x)2 − 9,405,350,004
10,000,000,000

x2(1− x) +
1,078,415
1,000,000

x3

)
y3(1− y) +(

(1− x)3 +
3945
1000

x (1− x)2 − 4,542,140,001
1,000,000,000

x2 (1− x)− 103,174
100,000

x3

)
y4

The left-hand side of Figure 4.4 represents the interval arithmetic classification
of the Bernstein form (i.e. the best polynomial form for IA). The right-hand
side illustrates the result of applying affine arithmetic (AA) to the power-
form polynomial p(x, y). Both have been drawn using a minimum box size of
1
27 × 1

27 . As apparent from Figure 4.4, AA definitely classifies a larger area,
and in bigger chunks at a time, than either case of IA. The Table 4.1 gives
the respective box percentages for p(x, y) at a resolution ∆ = 1

210 × 1
210 .

The complexity of each algorithm depends on the type of arithmetic used
(i.e. standard interval arithmetic or affine arithmetic), as well as on the form
of the input. Tables 4.2 and 4.3 summarise the running times and the number
of subdivisions in each case. (Note that the times are interesting to compare,
but not relevant in absolute terms, as the implementation depends on the
interval package and hardware used.)

110 4 Interval Arithmetic

(a) IA on Bernstein form (b) AA on power form

Fig. 4.4. Interval- and affine arithmetic box classification for p(x, y) and B(x, y) in
the unit box [0, 1]× [0, 1].

Table 4.1. Box percentages for p(x, y) at a resolution ∆ = 1
210 × 1

210 .

Negative boxes Zero boxes Positive boxes
[−,−] [−,+] [+,+]

IA on power form 0.3171 0.0231 0.6597
IA on Bernstein form 0.3241 0.0088 0.6670
AA on power form 0.3266 0.0037 0.6695

Table 4.2. Running times and number of subdivisions for p(x, y) at ∆ = 1
210 × 1

210 .

time (sec) subdivisions

IA on power form 2338.121 39834
IA on Bernstein form 2783.140 15568
AA on power form 194.339 6447

Table 4.3. Running times and number of subdivisions for p(x, y) at ∆ = 1
27 × 1

27 .

time (sec) subdivisions

IA on power form 20.94 1854
IA on Bernstein form 51.52 947
AA on power form 10.07 433

The results in Table 4.2 and Table 4.3 have been obtained also using
different minimum box sizes, 1

210 × 1
210 and 1

27 × 1
27 , respectively.

For the example given above the affine arithmetic method produces results
more quickly (and accurately) than either interval arithmetic method. The
former involves slightly more calculations per box, but classifies big boxes in

4.7 Floating Point Errors 111

a very efficient manner. When interval arithmetic is applied there are fewer
calculations per box than for affine arithmetic. Still, the Bernstein polynomial
form is so much more complicated that the program runs much slower.

Regarding the number of subdivisions, interval arithmetic needs much finer
subdivision of boxes for the power form than for the Bernstein form and ends
up with a less accurate result. Affine arithmetic needs comparatively fewer
subdivisions to reach a very accurate result.

In principle, rather than the interval arithmetic, one could also study the
Bernstein form using the affine arithmetic approach. However, as it has been
shown that affine arithmetic operations are associative, commutative and
distributive, it is expected that different polynomial representations would
produce the same results. This is because the various ways of expressing a
polynomial function using different bases does nothing other than rearrang-
ing the terms. This rearrangement does not affect the arithmetic of the poly-
nomial, and hence does not affect the result of applying affine arithmetic to
an equivalent polynomial form. Therefore, when studying affine arithmetic, it
is only the power basis that needs to be considered. The proof of this final
statement has been published in [259].

As a final remark in this section, it is worth noting that when interval
arithmetic produces a correct estimate of the range of values, then affine
arithmetic is expected to produce an exact range too. For example, in the
case of function k(x) = (2x− 3)2 studied in Section 4.3.2, interval arithmetic
gives the correct range [1, 9], and so does affine arithmetic.

4.7 Floating Point Errors

Recursive subdivision using interval arithmetic relies fundamentally on the
arithmetic operations carried out on the end values of the intervals being
accurate. This is why the examples given so far have involved polynomials
with rational coefficients and subdivisions of boxes stored as rational inter-
vals. Implementations in languages without a rational number data type will
compromise the precision of the calculations by storing the numbers as floating
point values.

The current section illustrates the extent to which floating point errors
propagate through the evaluation process, often making the classification pro-
cess impracticable. Let us recall the polynomial p, defined in Section 4.3, in
its rational and floating point power forms:

prat(x, y) =
9446

10,000
x y − 700,443,214

100,000,000
x3 y2 +

764,554
100,000

x4 y3 +
564
1000

y4 − x3

pflt(x, y) = 0.9446 y x− 7.00443214 y2 x3 + 7.64554x4 y3 + 0.564 y4 − x3

This was originally defined in the unit box, and had the zero set illustrated
in Figure 4.1.

112 4 Interval Arithmetic

We now aim to translate p so that it has the same zero set in a general
box, say [9.62, 10.62] × [7.31, 8.31]. This can be achieved in several ways, all
involving the substitution of x by x-minus-some-quantity, and y by y-minus-
some-quantity, in either prat or pflt :

• substitute x := x− 962
100 and y := y − 731

100 in prat , yielding p1;
• substitute x := x− 962

100 and y := y − 731
100 in pflt , yielding p2;

• substitute x := x− 9.62 and y := y − 7.31 in prat , yielding p3;
• substitute x := x− 9.62 and y := y − 7.31 in pflt , yielding p4.

Floating point errors already start occurring at the stage where brackets
are multiplied out. In the particular case of p(x, y), when using a precision of
10 significant digits, p3 = p4. The three zero sets (corresponding to p1, p2 and
p3 respectively) in the box [9.62, 10.62]× [7.31, 8.31] are plotted in Figure 4.5,
in the order cyan, magenta, yellow.

The affine arithmetic method necessarily complies to one of the four
schemes above. Our study uses two schemes in parallel: all the way through
the subdivision process described above. Any subdivision decisions are taken
using p1 and a “totally rational” scheme. At the same time, the subboxes are
also converted to their floating point equivalents and subjected to the sign
test against the floating point polynomial p4. Thus it is certain that subdivi-
sion is carried out correctly. The respective ranges (given by the two different
approximations) can be compared.

When the signs of the two ranges agree (in that they both indicate a
negative or a positive box), the same conventions for colours as before has
been used—that is, red for negative and blue for positive. However, when the
rational arithmetic predicts a negative box and the floating point arithmetic
calculation disagrees, the box is coloured magenta. Similarly, when the rational
arithmetic predicts a positive box but the floating point arithmetic calculation
disagrees, the box is coloured cyan. Zero boxes are still coloured green. The
result is illustrated in Figure 4.6(a).

9.8 10 10.2 10.4 10.6 9.6

7.4

7.6

7.8

8.2

8.0

Fig. 4.5. Zero sets of p1 (cyan), p2 (magenta) and p3 (yellow).

4.7 Floating Point Errors 113

(a) (b)

Fig. 4.6. (a) Affine arithmetic classification of floating-point polynomial using
rational evaluations in the box [9.62, 10.62] × [7.31, 8.31]; (b) Affine arithmetic
(mis)classification using only floating-point evaluations in the box [9.62, 10.62] ×
[7.31, 8.31].

The frequent occurrence of magenta and cyan boxes indicates to what
extent floating point errors can influence the affine arithmetic calculations.
Had there been only floating point evaluations, the classification would have
been totally irrelevant, as decisions for further subdivision would have been
taken in completely the wrong places. Indeed, when running such a test it
simply returns an inconsistent collection of negative and positive boxes, which
only vaguely evokes the shape of the initial curve (Figure 4.6(b)).

This is a typical illustration of the propagation of floating point errors.
Let us now consider a single magenta box and examine the way in which the
four possibilities there are for approximating either the coefficients or the box
can influence the final range given as a result.

Take the rational box:[
8471
800

,
33,909
3200

]
×
[

1637
200

,
13,121
1600

]
=

[10.58875000, 10.59656250] × [8.185000000, 8.200625000]

This is one of the boxes coloured magenta in Figure 4.6(a). Its corresponding
affine forms are:

x̂ =
67,793
6400

+
1

256
εx = 10.59265625 + 0.003906250000 εx

ŷ =
26,217
3200

+
1

128
εy = 8.192812500 + 0.007812500000 εy

Let us evaluate the results returned by affine arithmetic when classifying
these affine forms and/or their floating point equivalents against the vari-
ous forms of p. The results differ according to the amount of floating point
approximation carried out:

114 4 Interval Arithmetic

affine eval(p1(x, y), x̂rat , ŷrat) =[
-8,180,237,644,390,479,080,447
56,294,995,342,131,200,000,000

,
-2,383,608,804,974,363

140,737,488,355,328,000

]
= [−0.1453102109,−0.01693655921]

affine eval(p1(x, y), x̂float, ŷfloat) = [0.09670367511, 0.2243380429]

affine eval(p4(x, y), x̂rat, ŷrat) = [−0.1038870246, 0.02492879264]

affine eval(p4(x, y), x̂float, ŷfloat) = [0.09641367500, 0.2246280630]

To summarise, the intervals generated as answers vary in their signs and
positions relative to zero. The results are not conservative anymore; on the
contrary, some of them have completely misclassified the box type, as shown
in Table 4.4:

Table 4.4. Box classification for p1 and p4.

p(x, y) x̂× ŷ interval type box classification

rat rat [−,−] negative
rat float [+,+] positive

float rat [−,+] zero
float float [+,+] positive

Of course, “mixed” forms of the polynomial (such as p2) could have been
used in the experiments as well, generating a potentially wider variety of
answers. Nevertheless the study outlined above illustrates the point being
made in this section, which is that floating point errors are not negligible.

All the floating point calculations in this section have been carried out
using a precision of 10 significant digits. Increasing the precision of the cal-
culations may eliminate the problem for particular cases. Indeed, in the case
of p(x, y) a precision of 40 significant digits seems to be enough for a box
classification comparable to the one where rational arithmetic had been used.
However this is not a general solution, as the result depends thoroughly on
the precision with which the polynomial coefficients and the edges of the box
are being calculated in the first place.

4.8 Final Remarks

There are, of course, a variety of ways in which the polynomial can be input,
such as storing it in some canonical form, using a planar basis [61], or using an
implicitisation of some Bernstein form [41], a Taylor expansion [368], etcetera.
Overall, we conclude that the conservativeness problem which occurs in sur-
face location can be reduced in at least two major ways: either the input is

4.8 Final Remarks 115

given in Bernstein form instead of power form and interval arithmetic is used,
or the calculations are carried out on the power form, but a careful strategy
based on affine arithmetic is used instead of interval arithmetic.

When the Bernstein form is used the improvement is significant: boxes can
be located much more accurately in a given region of interest. The shape of
the surface is outlined in enough detail for it to be located.

When affine arithmetic is used as shown above, our results demonstrate
that curves can be located even more closely. This is because the intervals
produced during polynomial evaluation are tighter.

Affine arithmetic calculations are more complicated than interval arith-
metic ones. This is why the method is more error-prone when using floating
point calculations. This is also why, in some cases, we have found it to be
perhaps twice as slow as simple interval arithmetic, although this is strongly
dependent on the implementation.

However, affine arithmetic has a speed advantage in some cases when in-
terval arithmetic performs particularly badly. This advantage arises in the
subdivision method because fewer boxes need to be considered, even though
the amount of computation for any single box is greater.

All in all, it is fully expected that the benefits shown in curve drawing are
also applicable to other uses of solutions to implicit equations, such as surface
intersection, surface location, etc. Although the examples shown here have
used polynomials, similar approaches could also be used if non-polynomial
functions are needed for modelling. Different suitable basis functions and affine
evaluation methods will need to be found for such cases.

There is also a need to express the operations defined here in a more com-
pact form (perhaps using matrices). This would facilitate generalisations and
would help study the operations and properties at a higher level of abstraction.

5

Root-Finding Methods

Broadly speaking, the study of numerical methods is known as “numerical
analysis,” but also as “scientific computing,” which includes several sub-areas
such as sampling theory, matrix equations, numerical solution of differential
equations, and optimisation. Numerical analysis does not seek exact answers,
because exact answers rarely can be obtained in practice. Instead, much of
numerical analysis aims at determining approximate solutions and at the same
time keeping reasonable bounds on errors. In fact, computations with floating-
point numbers are performed on a computer through approximations, instead
of exact values, of real numbers, so that it is inevitable that some errors will
creep in. Besides, there are frequently many different approaches to solve a
particular numerical problem, being some methods faster, more accurate or
requiring less memory than others.

The ever-increasing advances in computer science and technology have
enabled us to apply numerical methods to simulate physical phenomena in
science and engineering, but nowadays they are also found and applied to
interesting scientific computations in life sciences and even arts. For example,
ordinary differential equations are used in the study of the movement of heav-
enly bodies (planets, stars and galaxies); optimisation appears in portfolio
management; numerical linear algebra plays an important role in quantitative
psychology; stochastic differential equations and Markov chains are employed
in simulating living cells for medicine and biology; and, the chaotic behaviour
of numerical methods associated to colour theory in computer graphics can
be used to generate art on computer.

Nevertheless, in computer graphics, numerical techniques have mainly
found applications in the design of parametric curves and surfaces (i.e.
CAGD); they also appear in ray tracing of parametric and implicit surfaces. In
this book, numerical methods are essentially used to approximate the roots of
real functions in two and three variables as a way of sampling implicit curves
in R2 and surfaces in R3. Recall that a root solver involves two main steps:
root isolation and root approximation (also called root-finding). Relevant root

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 117
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

118 5 Root-Finding Methods

isolation techniques were approached in the last two chapters. This chap-
ter deals with the so-called numerical approximation methods or root-finding
methods.

5.1 Errors of Numerical Approximations

There are various potential sources of errors in numerical computation. Two
of these errors are universal because they occur in any numerical computation:
round-off and truncation errors. Inaccuracies of numerical computations due
to the errors lead to a deviation of a numerical solution from the exact solution,
independently of the latter is known a priori or not. To better understand the
effects of finite precision of a numerical solution, let us consider the definition
of relative error as follows:

e =
|x− ρ|
|ρ|

(5.1)

where ρ and x denote the exact solution and its approximate value, respec-
tively. The numerator |x− ρ| of this fraction denotes the absolute error .

5.1.1 Truncation Errors

As known, floating-point numbers are represented in a computer with a finite
number of digits of precision. The simplest hardware implementation is to
keep the first n digits after the period, and then to chop off all other digits. A
truncation error occurs when a decimal number is cut off beyond the maxi-
mum number of digits allowed by the computer accuracy, also called machine
precision.

Machine precision is the smallest number ε = 2−N that a computer recog-
nises as nonzero. On a 32-bit computer, single precision is 2−23 (approximately
10−7) while double precision is 2−52 (approximately 10−16). Algorithm 4 com-
putes not only the machine precision ε, but also the largest number N of bits
such that the difference between 1 and 1 + 2−N is nonzero.

It is worthy of noting that truncation errors are present even in a scenario
of infinite-precision arithmetic because the computer accuracy and termina-
tion criteria associated to algorithms lead to the truncation of the infinite

Algorithm 4 The Machine Precision
1: procedure MachinePrecision(ε,N)
2: ε← 1.0
3: N ← 0
4: while ε+ 1 > 1 do
5: ε← ε/2
6: N ← N + 1
7: end while
8: ε← 2.0 ε
9: end procedure

5.2 Iteration Formulas 119

Taylor series that approximate mathematical functions (e.g. transcendental
functions) to a finite number of terms (see [83] for further details).

5.1.2 Round-off Errors

A more accurate alternative to truncation is to round the nth digit to the
nearest integer. This cutting off of digits leads to round-off errors. For example,
the irrational number π = 3.14159265358979... has infinitely many digits after
the period, and let us round its 6th digit so that π = 3.141593. Everyone agrees
that 3.14 is a reasonable approximation for π, so the resulting absolute error
is |x − ρ| = |3.14 − 3.141593| = 0.001593 and the relative error is e = 0.0507
percent.

Thus, the round-off error of a floating-point number also depends on how
many digits are left out. A major problem in numerical analysis is how to
keep the accuracy of numerical computations despite the accumulation and
propagation of round-off errors in computer arithmetic. That is, round-off
errors are a consequence of using finite precision floating-point numbers on
computers.

Numerical errors produced by computers affect the quality of computa-
tions, which are particularly important for sampling implicit curves or surfaces
with self-intersections and other singularities. For example, a self-intersection
of a curve may be detected by a convergent sequence of points, each de-
termined by some numerical method. But, this requires that a stopping or
termination criterion has been defined very carefully in order to get a trade-
off between accuracy and time performance; otherwise, the result may be
unpredictable (e.g. divergence caused by inaccurate computations).

5.2 Iteration Formulas

In 1824, the Norwegian mathematician Niels Abel proved the impossibility of
a quintic formula by radicals. Later on, the French mathematician Évariste
Galois extended Abel’s result that it is impossible to obtain a general analytic
formula to determine the roots of fifth-order or higher polynomials. In other
words, unlike quadratic equations, higher nonlinear equations cannot be solved
through a general analytic formula.

This fact led to the development of root-finding numerical methods. There
are many numerical formulas and methods to determine a root of a nonlin-
ear equation, namely: the Newton-Raphson method, bisection method, secant
method, and false position (or regula falsi) method (see Press et al. [329] for
a classical treatment of numerical methods).

In numerical analysis, the generic iteration formula is as follows

xi+1 = Fi(xi, xi−1, . . . , xi−n+1). (5.2)

120 5 Root-Finding Methods

and is called the n-point iteration function. Most implicit surface (curve)
polygonisers use 2-point iteration functions. For example, the bisection method
and the false position method are two examples of 2-point numerical methods.
Recall that the acclaimed marching cubes polygoniser [247] uses a 2-point
numerical method for sampling implicit surfaces. Sampling a surface consists
in computing the intersection points between the surface and each edge of
every single cubic cell enclosed in an axis-aligned ambient bounding box. Each
intersection point is determined by applying a numerical 2-point method over
the edge, i.e. its endpoints work as initial guesses. These 2-point polygonisers
are based on the intermediate value theorem (IVT):

Theorem 5.1. (Intermediate Value Theorem) Let f be a continuous real
function on the interval [xi−1, xi]. If f(xi−1).f(xi) < 0, then there exists
xi+1 ∈ [xi−1, xi] such that f(xi+1) = 0.

That is, polygonisers based on IVT are sign-based polygonisers because the
next estimate xi+1 is determined from two previous estimates xi and xi−1 on
which the function f has values with different signs. Consequently, as stated
by the IVT, there must be at least one root (unless a singularity is present) in
the interval [xi−1, xi]. In these circumstances, a root is said to be bracketed
in the interval defined by those two points xi and xi−1.

However, these 2-point iteration functions are not able to detect sign-
invariant branches and sign-invariant components of implicit curves and
surfaces. These sign-invariant subsets of curves and surfaces enjoy the prop-
erty that their functions do not change sign in the neighbourhood of each
of their points. For example, the spherical surface defined by the level set
f(x, y, z) = (x2 + y2 + z2 − 9)2 = 0 cannot be sampled by any signed 2-point
iteration function because f is positive everywhere, except on the surface
points where it is zero.

We could ask ourselves why not to use a 1-point iteration function
such as, for example, the Newton-Raphson iteration formula, which is sign-
independent. However, if the initial estimate is not sufficiently close to the
root, the method may not converge. Besides, it is necessary to guarantee that
all roots have already been isolated properly.

5.3 Newton-Raphson Method

As suggested above, each numerical method has a specific iteration function.
There are many ways to construct iteration functions. These functions are
often formulated from the problem itself. For example, solving the equation
x− sinx = 0 can be intuitively done by the iterative formula

xi+1 = sinxi, i = 0, 1, 2, . . . ,

for which the iteration function is given by Fi(x) = sinxi.

5.3 Newton-Raphson Method 121

x0

 f(x)

!

x1 x2 x0

 f(x)

!

x1 x2 x3

(a) (b)

Fig. 5.1. (a) Newton’s method uses tangents; (b) secant method uses secants.

5.3.1 The Univariate Case

However, the idea of the Newton-Raphson method is a bit different. Given an
initial guess x0 reasonably close to a zero ρ, one approximates the function by
its tangent line at x0, computing then the x-intercept x1 of this tangent line.
Typically, this x-intercept better approximates such a zero that the original
guess, as illustrated in Figure 5.1(a). This process can be repeated until we
obtain a sufficiently close estimate to function zero at x, or until a predefined
maximum number of iterations have passed.

It is clear that we are assuming that f(x) is differentiable in the neighbour-
hood of any zero. So, let us start with the point (x0, f(x0)) in Figure 5.1(a).
We easily see that the gradient of the tangent to the function at this point is

f ′(x0) =
y − f(x0)
x− x0

where (x, y) is a point on the tangent. The x-intercept of the tangent is the
point (x1, 0), i.e.

f ′(x0) =
0− f(x0)
x1 − x0

or

x1 = x0 −
f(x0)
f ′(x0)

Repeating this process for the next estimates, we come to the Newton
iteration formula

xi+1 = xi −
f(xi)
f ′(xi)

(5.3)

The previous geometric construction of the Newton-Raphson iteration for-
mula agrees with its standard construction from the Taylor series expansion.
In fact, if x is a zero of f : R→ R, and f is sufficiently differentiable in a neigh-
bourhood N(x) of x, then the Taylor series expansion of f about x0 ∈ N(x)
is given by

122 5 Root-Finding Methods

f(x) = 0 = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2!
f ′′(x0) + . . .

By neglecting the 2- and higher order terms, we quickly come to (5.3) by
iterating over the indices. That is, the standard Newton-Raphson iteration
formula results from the linearisation of f . Obviously, taking into account
that an analytic expression exists for quadratic polynomials, we might use
a quadratic approximation to f at x0 by ignoring the 3- and higher power
terms. In geometric terms, this is equivalent to use a parabola, instead of a
tangent, to approximate f at x0.

As easily seen from (5.3), Newton’s method is an 1-point iterative numer-
ical method viewing that the next estimate xi+1 is determined from a single
estimate xi (see also Figure 5.1)(a). Besides, this method uses both the values
of the function f and its derivative f ′.

The root finding algorithm for the 1-dimensional Newton method is then as
appears described in Algorithm 5. This algorithm stops when two consecutive
guesses are sufficiently close to each other, i.e. within a small tolerance τ >
0. Note that ε is not the machine accuracy, but just and hereinafter called
the approximation accuracy, i.e. the absolute-valued difference between two
consecutive estimates in the process of convergence to the root.

Convergence

Newton’s method converges quadratically to a single root ρ provided that the
initial guess is close to it. In mathematical terms, this is equivalent to say that
there exists a constant C such that

|ρ− xn+1| ≤ C|ρ− xn|2, n ≥ 0. (5.4)

Let εn = ρ − xn be the error at the step n. Then, from (5.3), it follows
that

εn+1 = ρ− xn+1 = ρ− xn +
f(xn)
f ′(xn)

Algorithm 5 The Univariate Newton Method
1: procedure Newton(f, x0, ε, τ, xi)
2: i← 0
3: while ε > τ do . stopping condition
4: Evaluate f(xi) and f ′(xi)

5: xi+1 ← xi − f(xi)
f ′(xi)

. iteration formula

6: ε← |xi+1 − xi| . approximation accuracy
7: i← i+ 1
8: end while
9: end procedure

5.3 Newton-Raphson Method 123

that is,

εn+1 =
εnf
′(xn) + f(xn)
f ′(xn)

(5.5)

On the other hand, from the Taylor expansion, we have

f(ρ) = 0 = f(xn) + (ρ− xn)f ′(xn) +
(ρ− xn)2

2
f ′′(ξn)

with ξ between xn and xn + εn = ρ, that is

0 = f(xn) + εnf
′(xn) +

ε2n
2
f ′′(ξn)

or

εnf
′(xn) + f(xn) = −ε

2
n

2
f ′′(ξn) (5.6)

Replacing (5.6) in (5.5) we obtain

εn+1 = −1
2
f ′′(ξn)
f ′(xn)

ε2n

So, if the method converges, then for xn and ξn near to ρ we get

|εn+1| ≈
1
2
|f ′′(ρ|)
|f ′(ρ)|

|εn|2

or
|εn+1| ≈ C|εn|2

with C = 1
2 |
f ′′(ρ)
f ′(ρ) |, which proves that the Newton method has quadratic

convergence. This means that the number of exact significant digits in the
approximate root doubles from one iteration to the next. But, this is only
true if the initial estimate is close enough to the root. Also, this is only true
for single roots, not for multiple roots. In fact, the order of convergence at a
double root is only linear [374].

5.3.2 The Vector-valued Multivariate Case

The iteration formula (5.3) can be generalised to higher dimensions. Let
f : Rn → Rn a real vector-valued function of several real variables, i.e.
f(p) is defined by n real-valued function components f1, , f2, . . . , fn of n real
variables x1, x2, . . . , xn; equivalently, f(x) = (f1(x), f2(x), . . . , fn(x)) with
x = (x1, x2, . . . , xn).

The multidimensional Newton-Raphson formula can be derived similarly
as in the 1-dimensional case. Starting again with the Taylor series of the jth
function component centred at the current estimate xi, we have

124 5 Root-Finding Methods

Algorithm 6 The Vector-Valued Multivariate Newton Method
1: procedure VectorValuedMultivariateNewton(f,x0, ε, τ, xi)
2: i← 0
3: while ε > τ do . stopping condition
4: Evaluate f(xi) and Jf(xi)
5: Solve Jf(xi).ci = f(xi) for ci . yields correction percentage for xi
6: xi+1 ← xi − ci . next estimate after correction
7: ε← |xi+1 − xi| . approximation accuracy
8: i← i+ 1
9: end while

10: end procedure

fj(x) = 0 = fj(xi) + (x− xi)
n∑
k=1

∂fj(xi)
∂xk

+ . . .

In matrix notation, after neglecting the quadratic and higher-power terms,
this is equivalent to

xi+1 = xi −
f(xi)
Jf(xi)

, i = 0, 1, 2, . . . (5.7)

where Jf(xi) is the Jacobian of the vector-valued function f = (f1, f2, . . . , fn),
i.e. the multidimensional counterpart of the derivative of f . (See Stoer and
Bulirsch [374], and Ortega and Rheinboldt [314] for an insight into multidi-
mensional numerical methods.) The formula (5.7) is commonly used in nu-
merical analysis to solve nonlinear equation systems.

Although (5.3) and (5.7) are analogous, there is an important difference be-
tween the multidimensional Newton formula (5.7)and its 1-dimensional coun-
terpart. Looking at the multidimensional formula, we readily come across that
we need to compute the Jacobian matrix inverse. In practice, we do not need
to do so explicitly. In fact, solving Jf(xi).ci = f(xi), with ci = xi+1 − xi
saves about a factor of three in computing time over computing the inverse.
This improvement appears in Algorithm 6 that describes the vector-valued
multivariate Newton method. Apart these subtleties, this version of Newton’s
method is identical to the univariate case.

5.3.3 The Multivariate Case

Algorithm 6 is commonly used to solve systems of n equations with n variables.
In computer graphics, we use Algorithm 7 instead for sampling implicit curves
and surfaces. This is so because an implicit curve in R2 (respectively, a surface
in R3) is defined by a single function in two (respectively, three) real variables.
This means that, instead of using the Jacobian, we use the gradient of f as
follows:

xi+1 = xi −
f(xi)
∇f(xi)

, i = 0, 1, 2, . . . (5.8)

5.3 Newton-Raphson Method 125

Algorithm 7 The Multivariate Newton Method
1: procedure MultivariateNewton(f,x0, ε, τ, xi)
2: i← 0
3: while ε > τ do . stopping condition
4: Evaluate f(xi), ∇f(xi) and ||∇f(xi)||
5: xi+1 ← xi − ∇f(xi)

||∇f(xi)||2
f(xi) . iteration formula

6: ε← |xi+1 − xi| . approximation accuracy
7: i← i+ 1
8: end while
9: end procedure

However, this is not as simple as for (5.7) because the multiplicative inverse
of a vector (i.e. the gradient) is not defined for vector spaces, also called linear
spaces. Vector spaces are the core objects studied in linear algebra. Informally
speaking, a vector space is a set of vectors that may be scaled and added. The
geometric product of vectors is not defined; consequently, the multiplicative
inverse of a vector is not defined either.

Fortunately, such a geometric product is defined in a geometric algebra,
also called multilinear algebra, described technically as a Clifford algebra over
a real vector space. Intuitively, a multilinear algebra is more general than a
linear algebra because the essential objects of study are multivector spaces.
A multivector is an object defined as the addition of a scalar and a vector, in
exactly the same way that the addition of real and imaginary numbers yields
an object known as complex number.

In multilinear algebra, the geometric product uv of two vectors u and v
is defined as follows:

uv = u · v + u× v (5.9)

where u · v and u× v are their scalar and cross products, respectively.
The multiplicative inverse of a vector u, denoted by 1/u or u−1, is the

vector which yields 1 when multiplied by u, that is

uu−1 = 1 or u−1 =
1
u

=
1
u

u
u

=
u

uu

hence, by the definition of geometric product, we obtain

u−1 =
u

u · u
(5.10)

That is, the multiplicative inverse vector u−1 = u
||u||2 is the normalised

vector of u divided by its norm, so it is parallel to but smaller than the
normalised vector of u. So, (5.8) can be rewritten as

xi+1 = xi −
∇f(xi)
||∇f(xi)||2

f(xi), i = 0, 1, 2, . . . (5.11)

126 5 Root-Finding Methods

Newton’s method has not been often used for sampling implicit curves and
surfaces in computer graphics because of its unreliable convergence. Even so,
the formula (5.11) appears in a couple of polygonisers such as, for example,
that one due to Hartmann [179].

5.4 Newton-like Methods

Newton’s method has quadratic convergence. Unfortunately, it may fail to
converge under the following two circumstances:

• Problem I—The initial guess is far from the root. The convergence of the
Newton method is only guaranteed if the starting estimate is “sufficiently
close” to the root [374]. Otherwise, the method risk to converge slowly or
even diverge (Figure 5.2(a)).

• Problem II—The derivative is very small or vanishes. The Newton itera-
tion formula requires that the derivative f ′ does not vanish, i.e. f ′(x) 6= 0.
This means that method blows up at local extrema (i.e. local minima and
maxima) and inflection points (Figure 5.2(b)).

These two difficulties have led several researchers to modify the Newton
method in a variety of ways. Altogether, these modified Newton methods are
called Newton-like methods. As seen in Chapter 3, Problem I can be solved
at the root isolation stage by computing closer guesses. In fact, Newton-like
methods have concentrated almost all efforts in solving Problem II concerning
the derivative annihilation.

In [416], Wu proposes a family of continuation Newton-like methods for
finding a root of a univariate function, for which the derivative is allowed
to vanish on some points. In [215], Kou et al. extend Wu’s results to the
vector-valued multivariate functions such that the Jacobian is allowed to be

 f(x) f(x)

double

root

triple

root

x0

x1

x2
!

local

minimum

local

maximum

(a) (b)

Fig. 5.2. (a) Problem I: divergence; (b) Problem II: null derivative.

5.5 The Secant Method 127

numerically singular on some points. The iterative methods of this family also
have quadratic convergence.

Recently, similar methods with cubic convergence have been studied and
proposed by Kou et al. [216] to solve the same problem. For that, they used the
modifications of Newton described in [147] and [406], and the discretisation of
a variant of Halley’s method [173, 314, 350] to get two new modified Newton
methods with cubic convergence which allow for points with null derivative.
See also Sharma [358] for other recent work on Newton-like methods.

5.5 The Secant Method

In addition to those two main problems, Newton’s method suffers from a third
problem related to time performance.

• The convergence slows down on multiple roots. As illustrated in Fig-
ure 5.2(b), f ′(x) also vanishes on multiple roots. In the presence of mul-
tiple roots, Newton’s method slows down so that it no longer converges
quadratically. This is the first “slowing-down” problem.

• Computation of the derivative expression. Unless we know the derivative
expression in advance, we have to determine it using algebraic and sym-
bolic techniques, what may pose a significant burden on performance of
the method. This is the second “slowing-down” problem.

• Derivative evaluation. The evaluation of the derivative for every new es-
timate often is more time-consuming than the function evaluation itself.
This is the third “slowing-down” problem.

The secant method is a derivative-free method. It is an attempt to over-
come the problems posed by the use of the derivative by Newton’s method.
In this sense, the secant method can be considered as a Newton-like method.
The secant method avoids the problems posed by the derivative by using the
discrete derivative, also called difference quotient, which approximates the
derivative as follows:

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1
. (5.12)

Then, substituting the expression (5.12) of f ′(xi) into (5.3), we get the
iteration formula of the secant method:

xi+1 = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1)
, i ≥ 1, (5.13)

which forces the method to start with two initial estimates, say x0 and x1,
instead the single initial estimate of Newton’s method.

The secant method also has a geometric interpretation. Replacing the
derivative by the difference quotient in (5.3) results in using a secant line
instead a tangent line to approximate a root of a function. In fact, the next

128 5 Root-Finding Methods

estimate xi+1 is the x-intercept of the secant line to the graph of f at the
points (xi−1, f(xi−1)) and (xn, f(xn)). This secant line is given by

y − f(xi) =
f(xi)− f(xi−1)

xi − xi−1
(x− xi).

But we know that y = 0 at the x-intercept of the secant line, so we have

0− f(xi) =
f(xi)− f(xi−1)

xi − xi−1
(x− xi)

or, solving for x,

x = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1)
(5.14)

which is equivalent to the secant iteration formula (5.13).
Note that the secant method is a 2-point method because the next estimate

is determined from the two previous ones. However, it is not a bracketing
method because the root is not necessarily between the last two estimates, so
the IVT does not apply. The successive estimates converge to the root in a
similar way to Newton’s method. This is shown in Figure 5.1. However, when
we force both estimates to bracket the root for every single iteration, the
secant method turns into the so-called false position method. This explains
why they use the same iteration formula. Algorithm 8 describes the secant
method in its multivariate version for brevity.

5.5.1 Convergence

Let εi = ρ− xi be the error at the step i. Then, from (5.13), it follows that

εi+1 = ρ− xi+1 = ρ− [xi − f(xi) +
xi − xi−1

f(xi)− f(xi−1)
]

Algorithm 8 The Multivariate Secant Method
1: procedure MultivariateSecantMethod(f,x0,x1, ε, τ, xi)
2: i← 1
3: while ε > τ do . stopping condition
4: Evaluate f(xi), f(xi−1)

5: xi+1 ← xi − f(xi)
xi−xi−1

f(xi)−f(xi−1)
. iteration formula

6: Evaluate f(xi+1)
7: if f(xi+1) = 0 then
8: ε← 0
9: else

10: ε← |xi+1 − xi| . approximation accuracy
11: end if
12: i← i+ 1
13: end while
14: end procedure

5.5 The Secant Method 129

that is,

εi+1 =
ρf(xi)− ρf(xi−1) + xif(xi−1)− f(xi)xi−1

f(xi)− f(xi−1)

=
εi−1f(xi)− εif(xi−1)
f(xi)− f(xi−1)

after factoring and replacing ρ−xi (respectively, ρ−xi−1) by εi (respectively,
εi−1). Equivalently, we have

εi+1 =
xi − xi−1

f(xi)− f(xi−1)
εi−1f(xi)− εif(xi−1)

xi − xi−1

=
xi − xi−1

f(xi)− f(xi−1)

f(xi)
εi
− f(xi−1

εi−1

xi − xi−1
εiεi−1.

(5.15)

On the other hand, from the Taylor expansion at xi, we have

f(xi) = f(ρ− εi) = f(ρ) + εif
′(ρ) +

1
2
ε2i f
′′(ρ) +O(ε3i)

where f(ρ) = 0; thus, dividing by εi we have

f(xi)
εi

= f ′(ρ) +
1
2
εif
′′(ρ) +O(ε2i) (5.16)

and analogously

f(xi−1)
εi−1

= f ′(ρ) +
1
2
εi−1f

′′(ρ) +O(ε2i−1) (5.17)

Subtracting (5.17) from (5.16) we obtain

f(xi)
εi
− f(xi−1)

εi−1
=

1
2

(εi − εi−1)f ′′(ρ) +O(ε2i)−O(ε2i),

or
f(xi)
εi
− f(xi−1)

εi−1
≈ 1

2
(εi − εi−1)f ′′(ρ)

or still
f(xi)
εi
− f(xi−1)

εi−1
≈ 1

2
(xi − xi−1)f ′′(ρ). (5.18)

Now, by combining (5.15) and (5.18) we get

εi+1 ≈
xi − xi−1

f(xi)− f(xi−1)

(
− 1

2

)
f ′′(ρ)εiεi−1

≈ 1
f ′(ρ)

(
− 1

2

)
f ′′(ρ)εiεi−1

130 5 Root-Finding Methods

provided that 1
f ′(ρ) ≈

xi−xi−1
f(xi)−f(xi−1) for xi, xi−1 near to ρ. Consequently,

|εi+1| ≈
1
2
|f ′′(ρ)|
|f ′(ρ)|

|εiεi−1|

or
|εi+1| ≈ K|εiεi−1| (5.19)

Intuitively, this shows us that the rate of convergence of the secant method
is superlinear, though not quite quadratic. To make sure about that, let us
recall the definition of rate of convergence

lim
i→∞

|εi+1|
|εi|α

= C

or, similarly,

lim
i→∞

|εi|
|εi−1|α

= C

so that, from these two expressions, we have

|εi+1|
|εi|α

≈ |εi|
|εi−1|α

or

|εi+1| ≈
|εi|α+1

|εi−1|α
(5.20)

so, inserting (5.20) into (5.19) we get

|εi|α+1

|εi−1|α
≈ K|εi||εi−1|,

that is,
|εi| ≈ K

1
α |εi−1|

α+1
α

or, equivalently,
|εi+1| ≈ K

1
α |εi|

α+1
α (5.21)

but, by definition, we know that

|εi+1| ≈ C|εi|α. (5.22)

Therefore, from (5.21) and (5.22), we conclude that

α+ 1
α

= α.

But, this is equivalent to
α2 − α− 1 = 0

that is, a quadratic equation whose solutions are given by α = 1±
√

5
2 .

5.6 Interpolation Numerical Methods 131

Taking the positive solution, we can say that the rate of convergence is then
α = 1+

√
5

2 ≈ 1.618, i.e. the golden ratio. Thus, the convergence is superlinear.
Similar to Newton method, this result only holds if f is twice continuously
differentiable and the root is simple (i.e. it is not a multiple root). Analogously,
if the initial guesses are not sufficiently near to the root, then there is no
guarantee that the method converges.

It is worth noting that, despite its slower rate of convergence, the secant
method converges faster than Newton’s method in practice. This is so because
the secant method only requires the evaluation of the function f for each
iteration, while Newton’s method requires the evaluation of both f and its
derivative.

5.6 Interpolation Numerical Methods

Interpolation numerical methods, also called bracketing methods, are 2-point
numerical methods. Let us then describe two of these methods: the bisection
method and the false position method.

5.6.1 Bisection Method

As any other bracketed method, the bisection method combines the recursive
subdivision of the initial interval with the IVT to ensure that the sequence
of intervals converge to the root. In the process of interval subdivision and
convergence to the root, we choose the subinterval that contains such a root
after applying the IVT. The search continues on such a subinterval recursively
until the root is found within a subinterval of minimum length.

The Univariate Case

Roughly speaking, the procedure behind the bisection method consists of three
major steps: (i) interval subdivision by its midpoint; (ii) function evaluation
at the midpoint; (iii) selection of the subinterval which satisfies the IVT. This
procedure continues recursively until the function approximately vanishes at
the midpoint. The midpoint of the search interval [xi−1, xi] is given by

xi+1 ←
xi−1 + xi

2
(5.23)

The next subinterval is the one that satisfies the IVT. That is, either
[xi−1, xi+1] if f(xi−1).f(xi+1) < 0 or [xi+1, xi] if f(xi+1).f(xi) < 0. There-
fore, without loss of generality, the bisection method produces a sequence of
shrinking subintervals [xi−1, xi], i ≥ 1, satisfying f(ai).f(bi) < 0. The corre-
sponding algorithm is described in Algorithm 9, though it appears here in its
multivariate version for brevity.

132 5 Root-Finding Methods

Algorithm 9 The Multivariate Bisection Method
1: procedure MultivariateBisection(f, [x0,x1], ε, τ)
2: i← 1
3: while ε > τ do . stopping condition: smallest interval
4: Evaluate f(xi), f(xi−1)

5: xi+1 ← xi−1+xi
2

6: Evaluate f(xi+1)
7: if |f(xi+1)| < τ then . stopping condition: root found
8: r ← xi+1

9: else
10: if f(xi−1).f(xi+1) < 0 then . bracketing through IVT
11: xi ← xi+1

12: else
13: xi−1 ← xi+1

14: end if
15: end if
16: ε← |xi − xi−1| . approximation accuracy
17: i← i+ 1
18: end while
19: if ε < τ then
20: r ← xi−1+xi

2

21: end if
22: end procedure

The Multivariate Case

The formula (5.23) easily generalises to the multivariate case as follows:

xi+1 ←
xi−1 + xi

2
(5.24)

The recursive computation of the midpoint terminates when the zero is
found within a small tolerance τ > 0 in the latest interval, i.e. f(xi+1) < τ
at the latest midpoint xi+1, as expressed in Algorithm 9. The value of ε =
|xi − xi−1| yields a measure of the error of in the approximation to the root.
In the following, we prove that the IVT-driven subdivision of the interval
guarantees that the bisection method always converge.

Convergence

Let ei = xi − ρ be the absolute error at the step i, with ρ denoting the exact
root we are looking for. Taking into consideration that

|xi − ρ| ≤ |εi|,

with εi = xi − xi−1, it follows from the iteration formula (5.24) that

5.6 Interpolation Numerical Methods 133

|εi| =
|ε0|
2i

=
x1 − x0

2i
, i ≥ 0.

Consequently, we have |ei| ≤ x1−x0
2i , i ≥ 0, which implies limi→∞ |ei| = 0.

Therefore, the bisection method is globally convergent. That is, it is guaranteed
to converge. However, in comparison to other methods, some of which are
discussed in this chapter, bisection tends to converge slowly.

5.6.2 False Position Method

The false position method , also called regula falsi method , can be described as
the bracketed secant method. The iteration formula is exactly the same as for
secant method, but before using it we have to guarantee that the root remains
bracketed through the IVT. Therefore, the false position method combines the
features of both bisection and secant methods.

The Univariate Case

Like the bisection method, the false position method is a bracketed 2-point
method. It starts with an interval [x0, x1], then it checks whether f(x0) and
f(x1) are of opposite signs or not by using the IVT. If so, then a root exists
in the interval surely, and the method proceeds by recursively subdividing
the interval into two sub-intervals, discarding those which do not satisfy the
IVT. The result is a sequence of shrinking intervals [xi−1, xi] (i = 1, . . . n)
converging to a root of f .

The (i + 1)-th estimate that subdivides the interval [xi−1, xi] into two is
given by the iteration formula (5.13), here rewritten for convenience:

xi+1 = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1)
, i ≥ 1. (5.25)

As illustrated in Figure 5.3, xi+1 is the root of the secant line passing
through (xi−1, f(xi−1)) and (xi, f(xi)). Now, we use the IVT in order to
guarantee that the guess xi+1 remains bracketed. If f(xi−1).f(xi+1) < 0,
then we set xi = xi+1; otherwise, we set xi−1 = xi+1. This process continues
until the root of the secant line approximates the function root inside a small
tolerance τ > 0.

Note that we can also get the iteration formula (5.25) by geometric
means. For that, we use the point-slope equation of the secant line through
(xi−1, f(xi−1)) and (xi, f(xi)), which is defined as follows:

y − f(xi) =
f(xi)− f(xi−1)

xi − xi−1
(x− xi).

Solving this equation after substituting the secant root (xi+1, 0), we just ob-
tain the formula (5.25) above.

134 5 Root-Finding Methods

x0

 f(x)

!

x1 x2 x0

 f(x)

!

x1 x2

(a) (b)

Fig. 5.3. (a) The false position (FP) method; (b) The “slowing-down” problem of
FP method.

The Multivariate Case

Similar to bisection method, the false position method also generalises to
higher dimensions easily. Instead of a simple variable x, we use a multi-variable
x = (x1, x2, . . . , xn) in the iteration formula (5.25), which yields

xi+1 = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1)
. (5.26)

This multivariate iteration formula allows for sampling curves and surfaces
defined by implicit functions in two and three variables in R2 and R3, respec-
tively. In this case, a curve or surface is sampled against a general straight
line (not necessarily the x-axis) in R2 or R3, respectively.

The pseudocode of the multivariate false position method appears in
Algorithm 10. This algorithm produces a sequence of shrinking bracketed
subintervals [xi−1,xi], i ≥ 1, satisfying f(xi−1).f(xi) < 0. But, unlike the
bisection method, it does not terminate when the length of the current inter-
val is less than or equal to a small tolerance τ > 0. It stops when the absolute
value of f for the guess xi+1 is approximately zero, i.e. it is within a small
tolerance τ . This is so because, unlike the bisection method, the length of the
brackets does not tend to zero. In fact, only one of the endpoints converges
to the root, the other remains fixed (Figure 5.3).

Convergence

Despite the false position method has the same iteration formula as the se-
cant method, it only converges linearly. This happens in this manner because
only one of the interval endpoints converges to the root, the other remains
unchanged (Figure 5.3).

5.6 Interpolation Numerical Methods 135

Algorithm 10 The Multivariate False Position Method
1: procedure MultivariateFalsePosition(f, [x0,x1], τ, r)
2: i← 1
3: while i < iMAX do . stopping condition: maximum number of iterations
4: Evaluate f(xi−1)
5: Evaluate f(xi)

6: xi+1 ← xi − f(xi)
xi−xi−1

f(xi)−f(xi−1)

7: Evaluate f(xi+1)
8: if |f(xi+1)| < τ then . stopping condition: root found
9: r ← xi+1

10: return true
11: else
12: if f(xi−1).f(xi+1) < 0 then . bracketing through IVT
13: xi ← xi+1

14: else
15: xi−1 ← xi+1

16: end if
17: end if
18: i← i+ 1
19: end while
20: return false
21: end procedure

Let us then consider that the false position method produces a se-
quence x0,x1, . . . ,xi, . . . of approximations or estimates to a root ρ, that is
lim
i→∞

xi = ρ. Let εi = xi−ρ be the error in the ith iterate. The speed of conver-

gence is determined by subtracting and dividing the iteration formula (5.26)
by x and εi = xi − ρ, respectively, to get

εi+1

εi
= 1− f(xi)

f(xi)− f(xi−1)
.

(xi − α)− (xi−1 − α)
xi − α

= 1 +
(

xi−1 − α
xi − α

− 1
)
.

f(xi)
f(xi)− f(xi−1)

= 1 +
(
εi−1

εi
− 1
)
.

f(xi)
f(xi)− f(xi−1)

Since f(xi)
f(xi)−f(xi−1) > 0 for bracketing intervals, lim

n→∞
εi+1
εi

= lim
i→∞

εi
εi−1

and lim
i→∞

xi−1 = lim
i→∞

xi = ρ, we get

lim
i→∞

εi+1

εi
= 1 +

(
1

lim
i→∞

εi+1
εi

− 1
)
.

1
2

that is lim
i→∞

ε1+1
ε1

= 1, as expected.

136 5 Root-Finding Methods

5.6.3 The Modified False Position Method

Taking into account that brackets do not converge to zero, it may happen
that the speed of convergence is too slow that the algorithm easily gets the
maximum number of iterations without finding the root. For example, the uni-
variate function f(x) = tan(x)tan(x) − 103 has a root in the interval [1.3, 1.4],
but the false position method is not capable of finding it if the maximum
number of iterations iMAX = 200. This situation is similar to that one shown
in Figure 5.3(b).

Intuitively, this problem arises when the absolute function values at the
endpoints differ significantly. Therefore, the idea behind the modified method
is down-weighting one of the endpoint function values to force the next esti-
mate xi+1 to approximate the root more rapidly. In other words, we reduce
the weight of the “bad” or higher function value to a half or any other value
found appropriate.

Rewriting the false position formula (5.26) as follows

xi+1 =
f(xi)xi−1 − f(xi−1)xi

f(xi)− f(xi−1)
(5.27)

we readily come to a weighted iteration formula. So, using a factor of 2, we
can fix the problem by changing the weight of a function value at an endpoint
such as

xi+1 =
1
2f(xi)xi−1 − f(xi−1)xi

1
2f(xi)− f(xi−1)

(5.28)

or

xi+1 =
f(xi)xi−1 − 1

2f(xi−1)xi
f(xi)− 1

2f(xi−1)
. (5.29)

The factor 2 in cutting down the function value at one of the endpoints
guarantees superlinear convergence. Other rescaling factors are possible to
work out in order to speed up the convergence to the root.

5.7 Interval Numerical Methods

An interval numerical method combines a numerical method with interval
arithmetic. This way, we end up by getting an iterative method that can be
used both to isolate and to approximate zeros of a real function, in a way
similar to the Bernstein solvers dealt with in Chapter 3. For brevity, we only
show here how this can be done for Newton’s method.

5.7.1 Interval Newton Method

Before proceeding any further, let us say that the foundations of the math-
ematical theory behind the interval Newton method appears described in
Alefeld and Herzberger [4].

5.7 Interval Numerical Methods 137

The Univariate Case

Basically, the interval Newton method computes an enclosure of a zero of a real
function f(x) defined on the interval X = [x, x], that is f : X = [x, x] → R.
Let us assume that its derivative f ′(x) is continuous and does not vanish in
X, i.e. 0 6∈ f ′(X), and that f(x).f(x) < 0.

Starting with the 0th inclusion X0, if Xi is the ith inclusion of the root,
the smaller (i+ 1)-th inclusion Xi+1 may be computed by

Xi+1 = N(x,Xi) ∩Xi, x ∈ Xi. (5.30)

where N(x,Xi) is the interval Newton operator defined over the interval Xi

as follows

N(x,Xi) = x− f(x)
f ′(Xi)

, x ∈ Xi. (5.31)

Usually, x is the midpoint of Xi, but any other value within the interval Xi

is eligible.
Therefore, the interval Newton method produces a sequence of shrinking

intervals which converge to the zero, so that it can be considered as a 2-point
numerical method. Let us see an example:

Example 5.2. Let f(x) = x2−4 a real function defined over the interval X0 =
[−3, 3], and x = 0 the midpoint of X0 chosen to subdivide it. The range of f ′

is then f ′(X0) = [−6, 6]. The first iteration yields

N(0,X0) = 0− −4
[−6, 6]

= 0−
(

[−∞,−2
3

] ∪ [
2
3
,∞]

)
=
[
−∞,−2

3

]
∪
[

2
3
,∞
]

Therefore,

X1 = N(0,X0) ∩X0 =
[
− 3,−2

3

]
∪
[

2
3
, 3
]

what yields the subintervals X0
1 = [−3,− 2

3] and X1
1 = [2

3 , 3]. Now, the first
sub-interval is put on a stack for posterior processing, while the second is
again subdivided by interval Newton method.

In geometric terms, the leading idea of the interval Newton method [175,
210, 252, 339] is the following:

• First, to enclose the graph of f in a cone given by N(x,Xi). This cone is
defined by the extremal tangents of f ′(Xi), i.e. the enclosure or interval
function for f ′.

• Second, to enclose the zeros in the intersection of such a cone and the
x-axis (cf. Equation (5.30)).

138 5 Root-Finding Methods

 f(x)

x

 f(x)

x
tangent with the
smallest slope

tangent with the
steepest slope

Xi

Xi

Xi+1
1

Xi+1

0

Xi+1

(a) (b)

Fig. 5.4. Interval Newton method: (a) one subinterval; (b) two subintervals.

This is illustrated in Figure 5.4(a) for a single zero in an interval Xi. But, if
Xi contains more zeros, the derivative f ′ vanishes somewhere on it, as shown
in Figure 5.4(b). In this case, to surround the problem of f ′(Xi) containing 0,
an extended interval division is performed to compute the cone, after which
two subintervals X0

i+1 and X1
i+1 are produced by intersecting the cone and

the interval Xi, as illustrated in Figure 5.4(b).
Note that no root belonging to the initial interval is missed out by using

the interval Newton algorithm. Moreover, every zero appears isolated in one
of the intervals of the final list of intervals. Eventually, this list may include
intervals without any root, but in this case they can be discarded if the interval
image of f does not contain 0.

Univariate Interval Newton Algorithm

The univariate interval Newton algorithm appears described in Algorithm 11.
The first stopping condition is global in the sense the algorithm stops when
there is no interval to process further. The second stopping condition is sat-
isfied when l(X) ≤ τ , i.e. the length of the interval X which contains a root
is less or equal to a given tolerance τ .

5.8 Final Remarks 139

Algorithm 11 The Univariate Interval Newton Method
1: procedure UnivariateIntervalNewtonMethod(f,X, τ, L)
2: I ← X . initialise auxiliary list of intervals
3: while I 6= ∅ do . first stopping condition
4: Remove an interval X from I
5: while l(X) > τ do . second stopping condition: the length of X
6: Compute N(x,X) ∩X for some x ∈ X
7: if N(x,X) ∩X consists of a single interval then
8: X← N(x,X) ∩X
9: else

10: Put the first interval into I
11: Set the second interval as X
12: end if
13: end while
14: L← X . new tight interval with root found
15: end while
16: end procedure

5.7.2 The Multivariate Case

The multivariate interval Newton method is analogous to the univariate case.
Thus, by analogy to the iteration Formula (5.8), the multivariate interval
Newton operator is as follows:

N(x,Xi) = x− f(x)
∇f(Xi)

, x ∈ Xi. (5.32)

This operator provides a robust tool for sampling implicit curves and sur-
faces in 2D and 3D, respectively, in particular in those algorithms using axis-
aligned space partitioning such as quadtrees and octrees. Surprisingly, it seems
that there is no polygonisation algorithm in the computer graphics literature
using this or any other interval numerical method. Instead, intervals and nu-
merical methods have been used separately for isolation and approximation,
respectively. For further details on the mathematics of multivariate interval
Newton methods, the reader is referred to Hansen [174].

5.8 Final Remarks

In this chapter we have presented several classical root-finding numerical al-
gorithms in the context of sampling implicit curves and surfaces. Hence, we
have focused on multivariate numerical methods, and this makes a difference
in relation to the classical numerical analysis textbooks.

We have seen that there are essentially two broad classes of numerical
methods:

140 5 Root-Finding Methods

• 1-Point Methods. Starting from a single guess, we try to move it closer to
the root.

• 2-Point or Interval Methods. Starting from a bracket that contains the
root, we attempt to shrink such an interval until the desired accuracy is
reached.

We can say that most interval techniques are reliable, but slow, while
1-point techniques tend to be faster, but do not guarantee convergence. With
all their advantages and shortcomings, we can also say that numerical methods
are still an active research area in mathematics and computing. In particu-
lar, interval numerical methods seem to be so promising in sampling implicit
curves and surfaces in respect to both speed and reliability (or quality) of
numerical computations.

6

Continuation Methods

Continuation methods are based on piecewise linear approximation of a vari-
ety (e.g. curve or surface) by means of numerical solution of an initial value
problem [7]. In other words, they compute solution varieties of nonlinear sys-
tems usually expressed in terms of an equation

f(p) = 0 (6.1)

with f : Rn+d → Rn a real function. The solution of this equation is called
zero set (i.e. a particular level set).

As studied in Chapter 1, a zero set is a variety that consists of regular
pieces called manifolds, which are joined at singular solutions (which are also
solution manifolds, but of a system with lower d). The regular pieces are
manifold curves when d = 1, manifold surfaces when d = 2, and d-manifolds in
general. These systems arise frequently in engineering and scientific problems,
because these problems are often formulated in terms of the computation of
a function that satisfies some set of equations, for example, the Navier-Stokes
equations, Maxwell’s equations, or Newton’s law.

6.1 Introduction

The essential idea behind a continuation method is very simple: first, compute
a piece of the solution manifold near one solution, then select another solution
from this set and repeat the process. As long as the new piece covers some
new part of the solution manifold the computation progresses. So the basic
issues are:

1. How to compute the solution manifold near some point pi at which
f(pi) = 0.

2. How to select a new point.
3. How to avoid recomputing the same part of the manifold.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 145
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

146 6 Continuation Methods

There are two ways to perform the first task, which lead us to two
types of continuation methods: simplicial continuation methods and predictor-
corrector methods.

6.2 Piecewise Linear Continuation

In the mid-1960s, Lemke and Howson introduced piecewise linear methods in
mathematics for calculating solutions to complementarity problems [227, 228],
as needed in economics. In the 1970s and 1980s, the research on piecewise
linear methods moved on to computing fixed points in mathematics. In the
1990’s they started to be used to approximate implicitly defined manifolds
and varieties in computer graphics.

Piecewise linear continuation (or PL continuation), also called simplicial
continuation, operates on a triangulation (simplicial complex) of a given do-
main Ω ⊂ Rn+d to approximate and to sample a a manifold (e.g. a curve or
a surface). This is illustrated in Figure 6.1 for a curve that lies in Ω ⊂ R2.
The triangulation (a) splits Ω into equilateral triangles, where the red ones
are those triangles which the curve passes through. The triangulation (b) par-
titions Ω into isosceles triangles, where the green ones are those which better
approximate the curve; they intersect the curve indeed.

6.2.1 Preliminary Concepts

Simplicial continuation methods are used to trace a piecewise linear (PL)
approximation of a zero set

S = {x ∈ Rn+d : f(x) = 0} (6.2)

given by the map f : Rn+d → Rn. For implicit curves, the PL approximation
is restricted to n = 1 and d = 1; for implicit surfaces, n = 1 and d = 2.
The idea is to construct a connected set of simplices that approximate S

(a) (b)

Fig. 6.1. Two simplicial approximations of a curve in Ω ⊂ R2.

6.2 Piecewise Linear Continuation 147

by stepping through transverse simplices (or simplexes) of a particular tri-
angulation in RN (N = n + d). For any positive integer N , and for any set
{p0, . . . ,pN} of points in some linear space which are affinely independent (or,
equivalently, {p1−p0, . . . ,pN−p0} are linearly independent), the convex hull
[p0, . . . ,pN] is called the d-simplex with vertices p0, . . . ,pN . As known, the
possible N -simplices in R3 are: vertices (N = 0), edges (N = 1), triangles
(N = 2), and tetrahedra (N = 3). Also, for each subset of K + 1 vertices
{q0, . . . ,qK} ⊂ {p0, . . . ,pN}, the K-simplex [q0, . . . ,qK] is called a K-face
of [p0, . . . ,pN]. In particular, 0-faces are vertices, 1-faces are edges, 2-faces
are triangles, and (K− 1)-faces are facets. Simplices are the “building bricks”
that allow us to construct different sorts of triangulations in RN .

Definition 6.1. Let T be a non-empty collection of d-simplices in RN . We
call T a triangulation of RN if the following properties are satisfied:

(1)
⋃
σ∈T σ = RN ;

(2) the intersection σ1

⋂
σ2 of two simplices σ1, σ2 ∈ T is empty or a

common facet of both simplices;
(3) the collection T is locally finite, i.e. any compact subset of Rd meets only

a finite number of simplices of σ ∈ T .

This definition applies not only to triangulations of RN but also to its
subspaces, as needed in computer graphics.

6.2.2 Types of Triangulations

As Dobkin et al. noted in [114], we would like to have triangulations with the
following properties:

(1) It should be easy to find the simplex that shares a facet with a given
simplex.

(2) It should be possible to label the vertices of all the simplexes at the same
time with indexes 0, . . . , N , such that each of the N + 1 vertices of an
N -simplex has a different label.

(3) It should be desirable for all the simplexes to have almost the same size.
(4) It should be desirable for all the simplexes to have roughly the same di-

mensions in all directions.

There is a dimension-independent class of triangulations that fit these
requirements, and are called Coxeter triangulations [92]. The Coxeter trian-
gulations are monohedral triangulations generated by reflections. Monohedral
means that all N -simplexes are congruent, whereas generated by reflections
means that all N -simplexes can all be obtained from a fixed one by successive
reflections in its facets [114].

In Figure 6.2 we can see three different Coxeter triangulations of a domain
Ω ⊂ RN (N = 2), called a bounding box. So, after finding a starting or
seeding transverse N -simplex, we proceed to the next transverse N -simplex

148 6 Continuation Methods

(a) (b) (c)

Fig. 6.2. Distinct types of Coxeter triangulations in R2: (a) equilateral triangula-
tion; (b) Freudenthal’s triangulation; (c) Todd’s triangulation J1.

in sequence. This is done by reflection in the common (N − 1)-simplex of
those adjacent N -simplices. Recall that two simplices σ1, σ2 ∈ T are called
adjacent if they meet in a common facet [8].

6.2.3 Construction of Triangulations

Coxeter’s triangulations are generated in a computer by moving from one
simplex to an adjacent one through a common facet, a process known as
pivoting [8]. Pivoting is essential for the dynamics of PL methods.

As suggested above, different pivoting rules generate different triangula-
tions, but the same rule applied to different triangles also generate distinct
triangulations. For example, in Figure 6.2, the triangulations (a) and (b) were
generated by applying the same pivoting rule to distinct triangles, while the
triangulation (c) was generated using a different rule.

Freudenthal’s Triangulation

The fact that Coxeter’s triangulations are monohedral means that a simplex
must have dihedral angles that are each a submultiple of 2π. That is, for
each pair of facets of the simplex, there is an integer i > 1 such that the
dihedral angle between the two facets is 2π

i . To understand how this is done,
consider the angle 2π

6 between two facet edges of a triangle in Figure 6.2(a),
and then alternately reflect the triangle in each of the two facet edges. After
six reflections, we must get back the original triangle; otherwise, this triangle
does not triangulate by reflection. Therefore, we get six equilateral triangles
around a common vertex, as illustrated in Figure 6.3.

The triangulation depicted in Figure 6.2(a) can be also obtained by piv-
oting across the midpoint of each of the two facet edges. This rule is known
as Freudenthal’s pivoting rule. The Freudenthal’s triangulation is shown in
Figure 6.2(b), which is generated by pivoting isosceles triangles. Recall that

6.2 Piecewise Linear Continuation 149

pk

pk-1

pk+1

pk
^

(a) (b) (c)

(d) (e) (f)

Fig. 6.3. Generation of equilateral triangles by reflection in R2.

the reflection of a vertex is across the midpoint of the reflection facet edge. As
a result, we obtain six triangles around the common vertex, but the dihedral
angle is not always the same; sometimes it is 2π/8, sometimes it is 2π/4.

Let us now formalise the Freudenthal rule. Let σ = [p0, . . . ,pN] be an N -
simplex. We will consider that the vertices of σ have inherited the following
cyclic ordering. For each k ∈ {0, . . . , N} let us define k − 1 and k + 1 as
the “left” and “right” neighbours of k in the cyclic ordering of (0, 1, . . . , N).
Analogously, for vertices, pk−1 (k 6= 0) and pk+1 (k 6= N) are defined to be
the “left” and “right” neighbours of the vertex pk. It is clear that pN is the
left neighbour of p0 and, conversely, p0 is the right neighbour of pN .

So, the vertex obtained as follows

p̂k = pk−1 − pk + pk+1

is called the reflection of pk across the centre of the “neighbouring edge”
[pk−1,pk+1]. Pivoting pk of σ = [p0, . . . ,pk, . . . ,pN] by reflection follows the
rule σ → σ̂, where σ̂ = [p0, . . . , p̂k, . . . ,pN]. This is illustrated in Figure 6.4,
where p̂k was obtained by reflection of pk across the edge [pk−1,pk+1]. As
in Figure 6.3, we end up getting an hexagon after six reflections, though the
triangles are isosceles.

Thus, Freudenthal’s triangulations are invariant under the pivot operation
Φk([p0, . . . ,pk, . . . ,pN]) = [p0, . . . , p̂k, . . . ,pN], where

p̂k =


pN − pk + pk+1, k = 0
pk−1 − pk + pk+1, 0 < k < N

pk−1 − pk + p0, k = N

(6.3)

150 6 Continuation Methods

pk pk+1

pk+1 p̂k

)c()b()a(

)f()e()d(

Fig. 6.4. Generation of isosceles triangles by reflection in R2.

This pivoting rule allows us to generate a Freudenthal’s triangulation of
the an axially aligned bounding box Ω ∈ RN (or even the entire RN).

Equivalently, the pivoting rule can be expressed in terms of interchange
permutations [8]. As a particular Coxeter’s triangulation, Freudenthal’s tri-
angulation has the advantage that any simplex can be concisely stored by
means of a single integer vector Z and a permutation π, being most pivot
steps achieved by interchanging two components of π. The reader is referred
to [8, 9, 101, 400] for more details about Freudenthal’s triangulations and
their usage in the implementation of piecewise linear algorithms, in particular
those concerned with implicit curves and surfaces in computer graphics.

Todd’s Triangulation J1

Todd introduced the “Union Jack” triangulations, namely J1 triangulations
[390]. Figure 6.5 shows the J1 triangulation of a subspace of R2. The J1 tri-
angulation is invariant under the pivot operation Θk([p0, . . . ,pk, . . . ,pN]) =
[p0, . . . , p̂k, . . . ,pN], where

p̂k =


2pk+1 − pk, k = 0
pk−1 − pk + pk+1, 0 < k < N

2pk−1 − pk, k = N

(6.4)

This pivoting rule generates a triangulation as shown in Figure 6.5. Similar
to the discussion carried out for pivoting in Freudenthal’s triangulations, the
pivoting rule for J1 can be also expressed by interchange permutations [8].

6.3 Integer-Labelling PL Algorithms 151

pk

pk-1

pk+1

p̂k

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.5. Generation of an 8-gon of isosceles triangles by applying J1 pivoting rule.

6.3 Integer-Labelling PL Algorithms

In addition to pivoting rules to generate triangulations, PL algorithms use
labellings with the following purposes:

• To keep track the PL approximation of a manifold. That is, by labelling the
simplexes that intersect a manifold, also called transverse simplexes, we are
able to follow such a manifold. Labellings work as a way of distinguishing
simplexes which intersect a zero set of a map f : Rn+d → Rn from those
which do not.

• To prevent the cycling phenomenon. This is the classical problem of contin-
uation algorithms. Unless the transverse simplexes are labelled or stored in
a separate data structure, we have no way to know whether a new pivoted
triangle has already been determined.

152 6 Continuation Methods

Simplicial continuation provides approximations of zero sets of maps by
using labellings. A simplicial algorithm provides a piecewise linear zero set of
f via an auxiliary map Lf called labelling induced by f . The values of Lf at
vertices are then used in determining whether a given n-simplex is “completely
labelled” or not. These “completely labelled simplices” are those that intersect
the zero set (e.g. a curve or surface) of f in Rn+d.

There are two major techniques to label the simplexes of a triangulation,
namely:

• integer labelling
• vector labelling.

This section describes algorithms based on integer labelling. Those algo-
rithms based on vector labelling will be dealt with in the next section.

Integer Labelling

The idea of labelling is to attach integer labels to vertices or nodes of a trian-
gulation. The integer labelling scheme proposed by Allgower and Schmidt [11]
is based on the following definition:

Definition 6.2. For p ∈ Rn+d, the labelling of p is defined by Lf (p) = j,
where j ∈ {0, . . . , n} is the number of leading nonnegative components of
f(p) ∈ Rn.

Definition 6.3. An n-simplex [p0, . . . ,pn] is said to be completely labelled
if Lf{p0, . . . ,pn} = {0, . . . , n}.

Let us look at Figure 6.6, where the parabola curve y − x2 + 1
2 = 0

appears depicted across a Freudenthal triangulation of the bounding box
Ω = [−2, 2] × [−2, 2] in R2. Each two triangles result from splitting a square
into two isosceles triangles, whose identical sides have length 1. Such parabolic
zero set is thus described by a real map in two real variables f : Ω ⊂ R2 → R,
with f(x, y) = y − x2 + 1

2 ; hence n = 1 and d = 1. Thus, in this case, f has
only one component function (n = 1), which means that there are only two
possible labels for any vertex v of the triangulation: either 0 when f(v) < 0
or 1 when f(v) ≥ 0.

Example 6.4. Looking again at Figure 6.6, we note that the vertices p0 =
(0, 0), p1 = (1, 0), p2 = (1, 1) define a 2-simplex or triangle in Ω = [−2, 2] ×
[−2, 2]. The labels of these three vertices are:

• Lf (0, 0) = 1 because f(0, 0) = 1
2 > 0;

• Lf (1, 0) = 0 because f(1, 0) = − 1
2 < 0

• Lf (1, 1) = 1 because f(1, 1) = 1
2 > 0

Thus, the 1-simplices or edges [p0,p1] and [p1,p2] are completely labelled,
but not the edge [p0,p2].

6.3 Integer-Labelling PL Algorithms 153

1

1

1

1

0 1

1

0

0
0

0

0

0

0

0

Fig. 6.6. Integer labelling of a triangulation in R2.

This labelling language hides a very simple idea. The fact that a given 1-
simplex is completely labelled means that, by the intermediate value theorem,
it intersects the zero set. Therefore, as argued by Allgower and Schmidt [11],
completely labelled 1-simplices yield “nearly zero-points” of f . When the la-
bels of the vertices of a 1-simplex are identical, or, equivalently, the values of
f at those vertices have identical signs, we say that such a 1-simplex is not
completely labelled.

Interestingly, as Allgower and Schmidt proved in [11], we have:

Proposition 6.5. If the (n + d)-simplex σ contains a completely integer la-
belled n-face τ , then the number of completely labelled n-faces of σ is between
(d+ 1) and 2d.

Note that the number of completely labelled n-faces of σ does not depend
on n; it only depends on d. For example, in R2, a triangle or 2-simplex (n = 1,
d = 1) has exactly either 0 or 2 completely labelled edges or 1-simplices
(Figure 6.6); in R3, a tetrahedron or 3-simplex (n = 1, d = 2) has exactly
either 0, 3 or 4 completely labelled edges or 1-simplices (Figure 6.7).

An important question is then how to obtain the approximate zero set
or PL zero set of f in the (n + d)-simplex σ. For that purpose, we use the
barycentre of each of its completely labelled n-simplices; the approximate
zero of f within σ is then the convex hull of these barycentres. Thus, the
PL zero set for f in σ is a convex d-dimensional polytope having between
d+ 1 and 2d vertices [11]. For example, the PL zero set in a triangle lying in
R2 is a 1-dimensional polytope (or line segment), while the PL zero set in a
tetrahedron in R3 is a 2-dimensional polytope, i.e. a triangle or a quadrila-
teral (Figure 6.7). In short, these polytopes intersect all faces that contain a
completely labelled n-face transversally. This leads to the following definition:

154 6 Continuation Methods

1

0

11

0

0

1
1

(a) (b)

Fig. 6.7. Integer labelling of a triangulation in R3 (n = 1, d = 2): (a) three and (b)
four completely labelled edges.

Definition 6.6. An (n+m)-simplex (m = 0, . . . , d) is said to be transverse
if it contains a completely labelled n-face.

Integer-labelling PL Algorithm

Allgower and Georg introduced a multidimensional algorithm for curves
(d = 1) via integer labellings [7]. This algorithm follows the door-in-door-
out principle [124]:

Proposition 6.7. An (n + 1)-simplex σ in Rn+1 has either zero or exactly
two completely labelled n-faces.

This principle follows from Proposition 6.5. The first completely labelled
face of σ is viewed as an “entrance” and the second as an “exit”. Then, by using
a pivoting process on σ, one determines a new (n+ 1)-simplex σ̂. Now σ and
σ̂ have a common n-face—the pivot n-face—which is simultaneously the exit
face of σ and the entrance face of σ̂. For example, in Figure 6.6, the 1-simplex
[p1,p2] is the “exit” of the 2-simplex [p0,p1,p2], where p0 = (0, 0), p1 = (1, 0)
and p2 = (1, 1), as well as the “entrance” of the 2-simplex [p1,p2,p3], with
p3 = (2, 1). This algorithm produces an alternate sequence of completely
labelled n-faces and (n + 1)-simplices from which one obtains approximate
zero points and a 1-dimensional approximation to the zero set. In other words,
it generates a sequence of completely labelled n-faces in the triangulation, by
entering an (n + 1)-simplex through one n-face and leaving it through the
other.

Allgower-Georg algorithm for implicit curves was later generalised to
higher dimensional manifolds (d > 1) by Allgower and Schmidt [11]. In this
case, the door-in-door-out (DIDO) principle above for curves has to be refor-
mulated because —as stated by Proposition 6.5—the number of possible exit
doors is now greater than one. For example, in Figure 6.7, the tetrahedron (a)
has three doors, while the tetrahedron (b) has four doors; consequently, we

6.3 Integer-Labelling PL Algorithms 155

Algorithm 12 Integer-Labelling PL Algorithm for Manifolds
1: procedure Allgower-Georg-Schmidt(f ,Ω,T)
2: T ← ∅ . set of pivoted, transverse (n+ d)-simplices of T
3: S ← ∅ . set of non-pivoted, transverse (n+ d)-simplices of T
4: Find a transverse starting (n+ d)-simplex σ ∈ T
5: S ← S ∪ {σ}
6: while S 6= ∅ do
7: Get σ ∈ S
8: Label vertices of σ
9: Determine F . set of non-pivoted, transverse facets of σ

10: while F 6= ∅ do
11: Choose a pivot facet τ ∈ F (σ)
12: Determine the (n+ d)-simplex σ̂ by pivoting σ across τ
13: S ← S ∪ {σ̂}
14: S ← S \ {σ}
15: T ← T ∪ {σ}
16: F ← F \ {τ}
17: end while
18: end while
19: end procedure

may assume that the first tetrahedron has one “entrance” door and two “exit”
doors, while the second has one “entrance” door and three “exit” doors in the
continuation process of tracking a surface. Thus, applying the DIDO princi-
ple as many times as the number of “exit” doors, we can easily program the
door-in-door-out step by pivoting only those vertices having the same label.

Algorithm 12 is the Allgower-Georg-Schmidt algorithm using integer la-
belling. The integer labelling of each transverse (n+ d)-simplex occurs in the
beginning of the outer while statement (step 8), while the multiple pivoting
of this (n + d)-simplex is done in the inner while statement (steps 11–12).
The number of times a (n+d)-simplex is pivoted equals the number of “exit”
doors (i.e. nonpivoted, transverse facets). Figure 6.8 illustrates the pivoting
of a tetrahedron for a surface in R3, but, for simplicity, one uses only one
“entrance” door and one “exit” door for tracking the surface.

In order to guarantee that the algorithm terminates after a finite number
of steps, one assumes that:

• Compactness. Not the whole Rn+d, but the compact domain Ω ⊂ Rn+d

(e.g. an axis-aligned bounding box of finite size) is triangulated by T .
• Finiteness. The triangulation T contains a finite number of (n + d − 1)-

facets. This is reinforced by the fact that each transverse facet is found
exactly twice: once when it is created and once more when it is “pivoted
across” or when “bumped into” as expected for a pivot facet.

• Cycling. Labelling and pivoting constitute an important mechanism to
avoid the cycling phenomenon, i.e. the recomputation of transverse or
intersecting simplices.

156 6 Continuation Methods

1

0 0

0

0

0

1
1

1

1
1

1

1

1

1

(a) (b) (c)

Fig. 6.8. The Allgower-Georg-Schmidt algorithm using integer labelling for approx-
imating a surface in R3.

As it stands, Algorithm 12 only produces a sequence of transverse (n+d)-
simplices by pivoting across transverse (n + d − 1)-simplices or facets of the
triangulation T . To output a manifold PL zero set of a map f : Rn+d → Rn,
it is necessary two additional steps immediately after step 8 (labelling). The
first would determine the set of completely labelled n-faces of the current
(n+ d)-simplex σ. The second would determine the approximate zero points
(e.g. the barycentres) in those n-faces, whose convex hull is the polytope that
approximates the zero set of f in σ.

6.4 Vector Labelling-based PL Algorithms

Integer labelling has the disadvantage that it leads to a very coarse approxi-
mation of the zero set of f : Rn+d → Rn. This is due to the fact that the PL
zero set is built upon the barycentres of transverse n-faces. In comparison to
vector labelling, the advantage of integer labelling is that numerical linear al-
gebra (i.e. matrix calculations) is not necessary to drive the pivoting process.
But, as shown below, vector labelling provides a finer PL zero set of f than
integer labelling.

Vector Labelling

Vector labelling is based on the barycentric coordinates of the vertices of the
current (n+ d)-simplex. Using barycentric coordinates leads to the computa-
tion of zero points by linear interpolation of the values of f : Rn+d → Rn on
the transverse n–faces of the triangulation T . We may leave T unspecified; the
only fact to retain is that T is generated by a repeated use of some pivoting
rule. For simplicity, we are also assuming that f never vanishes at the vertices
of T and is never constant on a (n+ d)–simplex.

6.4 Vector Labelling-based PL Algorithms 157

Let us first consider the contour plotting in R2 (n = 1, d = 1), i.e. tracing
an implicit curve in R2. For convenience, let us assume that the axially-aligned
bounding box Ω ⊂ R2 is divided into squares, each of them is in turn split
into two triangles by its right diagonal. This is Freudenthal’s triangulation in
R2, whose counterpart in R3 is known as Kuhn’s triangulation (see Chapter 7
for more details). We also assume that the square sides have length one.

Now, we are able to compute the PL zero set on each transverse simplex
using linear interpolation. This computation can be done using one of the
following two alternatives:

• Computing the convex hull of the zero points on the edges of the simplex.
• Computing the equation of the hyperplane that contains the convex hull.

Using the first alternative, we can determine the contour that passes
through a triangle by computing the points where the line intersects the edges
of such triangle. In this case, any transverse edge with vertices p0 and p1 can
be written as

p = p0 + t(p1 − p0) (6.5)

with t ∈ [0, 1], and the linear interpolant over such an edge is given by

F (p) = f(p0) + t[f(p1)− f(p0)] (6.6)

Setting F (p) = 0, we get t = − f(p0)
f(p1)−f(p0) from Equation (6.6). Substituting

the value of t in Equation (6.5), we obtain the zero point on the transverse
edge. Note that this zero point on the edge [p0,p1] only depends on the value
of f at the vertices, so any triangle sharing this edge produces the same zero
point; hence the contour is continuous. Thus, applying linear interpolation to
each transverse edge of T ends up producing the entire contour or PL curve.

The second alternative uses the interpolant over the triangle as a whole,
not over its edges. Analogously, the values of f at the corners of a triangle
[p0,p1,p2] define a unique piecewise linear interpolant F (p) to f(p) over each
triangle, which can be written in terms of the equations

p = p0 + (p1 − p0)s+ (p2 − p0)t (6.7)

and
F (p) = f(p0) + [f(p1)− f(p0)]s+ [f(p2)− f(p0)]t (6.8)

where s ≥ 0, t ≥ 0, and s + t = 1. The piecewise linear interpolant F is
continuous over the whole triangulation. The interpolant F is piecewise linear
because its contour (or PL zero set) across an individual triangle is a line
segment, whose line equation can be easily determined by solving the system
of Equations (6.7) and (6.8), after setting F (p) = 0.

Using linear interpolation amounts to use barycentric coordinates. In fact,
Equation (6.7) can be written as

p = α0p0 + α1p1 + α2p2 (6.9)

158 6 Continuation Methods

with α0 = 1− (s+ t), α1 = s, α2 = t, α0 + α1 + α2 = 1 and 0 ≤ s, t ≤ 1. The
scalars α0, α1 and α2 are called the barycentric coordinates of p. In general,
every point p in a simplex can be expressed as a convex combination of its
vertices, and more importantly this representation is unique [224].

Analogously, Equation (6.8) can be re-written as follows:

F (p) = α0f(p0) + α1f(p1) + α2f(p2) (6.10)

In general, every point p ∈ Rn+d of an (n + d)–simplex σ =
[p0, . . . ,pn+d] ⊂ Rn+d can be expressed in barycentric coordinates

p = α0p0 + · · ·+ αn+dpn+d (6.11)

with αi ≥ 0 (i = 0, . . . , n+ d) and α0 + · · ·+ αn+d = 1.
Similarly, we have

F (p) = α0f(p0) + · · ·+ αn+df(pn+d) (6.12)

or, equivalently,

Lf (σ) . α =
(

1
F (p)

)
(6.13)

where α = (α0, . . . , αn+d)T are the barycentric coordinates of a point p ∈
Rn+d and

Lf (σ) =
(

1 · · · 1
f(p0) · · · f(pn+d)

)
(6.14)

The matrix Lf (σ) is known as labelling matrix of a (n + d)-simplex σ =
[p0, . . . ,pn+d] ⊂ Rn+d. It consists of n+d labelling column vectors, each vector
storing the value of f , which works as a label, at each vertex. In general, the
standard vector labelling induced by f : Rn+d → Rn is then

lf (p) =
(

1
f(p)

)
(6.15)

where p ∈ Rn+d.
Following Allgower and Gnutzmann [9], we have:

Definition 6.8. Let τ = [p0, . . . ,pn] ⊂ Rn+d be a n-simplex and let f :
Rn+d → Rn. Then τ is said to be completely labelled with respect to the
vector labelling lf if the labelling matrix Lf (τ) has a lexicographically positive
inverse.

In other words, τ is completely labelled if and only if the following two
conditions are satisfied [8]:

• Lf (τ) is nonsingular:
• Lf (τ)−1 is lexicographically positive, i.e. the first nonvanishing entry in

any row of Lf (τ)−1 is positive.

6.4 Vector Labelling-based PL Algorithms 159

Intuitively, this means that f changes sign at vertices of τ ; consequently,
any (n+d)-simplex σ having τ as a n-face is said to be transverse to the zero
set of f . The labelling matrix then plays an important role for numerically
tracing the zero set of f .

As noted above, piecewise linear algorithms produce approximations of
zero points of maps by means of induced auxiliary maps called labellings,
vector labellings in this case. So, from Equation (6.13), the PL zero set across
the simplex σ is the set of points whose barycentric coordinates satisfy

Lf (σ) . α =


1
0
...
0

 (6.16)

with αi ≥ 0 (i = 0, . . . , n+ d), that is

α = Lf (σ)−1


1
0
...
0

 (6.17)

This gives us the barycentric coordinates of at least a point b0 in the d-
dimensional hyperplane that approximates the zero set inside a given (n+d)-
simplex σ. The parametric equation in barycentric coordinates corresponding
to the general Equation (6.16) of such hyperplane can be written as follows

b(t1, . . . , td) = b0 +
d∑
i=0

tibi (6.18)

where ti ∈ R is the real parameter on the line defined by the vector bi − b0,
and {bi} (i = 1, . . . , d) is a linearly independent set of points. This linear
independence implies that the barycentric coordinates of a nonzero (n + d)-
tuple bi have sum zero. Thus, computing bi in the zero set hyperplane inside
σ reduces to determine a nontrivial solution of the homogeneous equation

Lf (σ) .bi =


0
0
...
0

 (6.19)

Finding bi reduces to a standard linear algebra problem (e.g. using the
reduced row-echelon form). The hyperplane passes through the facets of σ, the
completely labelled facets, opposite to vertices for which ti = −b0

bi
is negative.

We are here assuming that all the vertices of the triangulation, including σ,
have been assigned an index, as well as the current completely labelled facet

160 6 Continuation Methods

is the “door we are currently entering”; the remaining facet is the exit or
pivoting facet. Found the index i of the vertex pi opposite to the exit facet,
pi is pivoted into a new vertex p̂i, and the labelling matrix Lf (σ̂) is obtained
by replacing the ith label or column of the Lf (σ) by

lf i(p̂i) =
(

1
f(p̂i)

)
(6.20)

So, the new labelling matrix can be algebraically obtained as follows:

Lf (σ̂) = Lf (σ) + [lf i(σ̂)− Lf (σ) . ei] . eTi (6.21)

where ei is the ith unit basis vector. This leads to the implementation of the
DIDO principle for vector labelling.

Example 6.9. Let f : Ω ⊂ R2 → R a real function in two real variables de-
fined by f(x, y) = −2x + y + 1

4 (see Figure 6.9). In this case, the zero set
of f is the straight line −2x + y + 1

4 = 0 in R2, so it coincides with its PL
zero set. Let us also consider that the domain Ω ⊂ R2 is to be triangulated
according to Freudenthal’s pivoting rule, where the coordinates of the ver-
tices are all integer. For brevity, we let us consider the 2-simplex or triangle
σ = [p0,p1,p2] ⊂ R2, with p0 = (0, 0), p1 = (1, 0) and p2 = (1, 1). The
labelling matrix is then

Lf (σ) =
(

1 1 1
f(p0) f(p1) f(p2)

)
=
(

1 1 1
1
4 −

7
4 −

3
4

)
(6.22)

Strictly speaking, a rectangular (m × n)–matrix does not have an inverse.
But, in some cases such a matrix may have a left or right inverse. In this

1

1

1

0

1

1

0

0

0

0

x

y

Fig. 6.9. Vector labelling of a triangulation in R2.

6.4 Vector Labelling-based PL Algorithms 161

example, the rank of L(σ) is equal to m = 2, so Lf (σ) has a right inverse
Lf (σ)−1 such that Lf (σ) . Lf (σ)−1 = I, where I is the identity matrix and
Lf (σ)−1 = Lf (σ)T . [Lf (σ) . Lf (σ)T]−1, that is

Lf (σ)−1 =

1 1
4

1 − 7
4

1 − 3
4


(1 1 1

1
4 −

7
4 −

3
4

)1 1
4

1 − 7
4

1 − 3
4



−1

=
1
6


68
16 3

− 1
4 −3

2 0

 (6.23)

Thus, the barycentric coordinates of a point b0 in the 1-dimensional PL zero
set (or hyperplane) of f are given by Equation (6.17)

b0 =
1
6


68
16 3

− 1
4 −3

2 0

(1
0

)
=


17
24

− 1
24
1
3

 (6.24)

Now, by solving Equation (6.19), we get the second barycentric-valued point

b1 =

−
1
2

− 1
2

1

 (6.25)

So, substituting b0 and b1 in Equation (6.18), we have
17
24

− 1
24
1
3

+ t

−
1
2

− 1
2

1

 =

0
0
0

 (6.26)

or 
t = − 17

24
− 1

2
= 17

12

t =
1
24
− 1

2
= − 1

12

t = − 1
3

1 = − 1
3

That is, t < 0 for the second and third coordinates, so the zero hyperplane
intersects the facets τ2 = [p0,p2] and τ0 = [p0,p1], respectively, of σ. For t =
− 1

12 , we obtain the barycentric coordinates of the solution point that results
from the intersection between the PL zero set and the facet τ2 = [p0,p2] as
follows: 

α0 = 17
24 + (− 1

12)(− 1
2) = 3

4

α1 = 0
α2 = 1

3 + (− 1
2)(1) = 1

4

so that the corresponding point in Cartesian coordinates is then

p =
3
4

(
0
0

)
+ 0

(
1
0

)
+

1
4

(
1
1

)
=
(

1
4
1
4

)
.

162 6 Continuation Methods

Likewise, for t = − 1
3 , we have solution point in τ0 = [p0,p1] with the

following barycentric coordinates:
α0 = 17

24 + (− 1
3)(− 1

2) = 7
8

α1 = − 1
24 + (− 1

3)(− 1
2) = 1

8

α2 = 0

hence the corresponding point in Cartesian coordinates

p =
7
8

(
0
0

)
+

1
8

(
1
0

)
+ 0

(
1
1

)
=
(

1
8
0

)
Note that the index of the null barycentric coordinate tell us which is the

pivoting vertex. For example, for t = − 1
12 , the pivoting vertex is p1 because

α1 = 0, which is opposite to the transverse facet τ2 = [p0,p2].

Vector-labelling PL Algorithm

We can now describe an algorithm, using vector labelling, that provides a PL
approximation of a curve implicitly defined by the equation f(p) = 0, where
f : Ω ⊂ Rn+d → Rn. Such an algorithm (Algorithm 13) generates a sequence

σ0 ⊃ τ0 ⊂ σ1 ⊃ τ1 · · ·

Algorithm 13 Vector-labelling PL Algorithm for Curves
1: procedure Allgower-Georg-Gnutzmann(f ,Ω,T)
2: Find a transverse (n+ 1)-simplex σ ∈ T with c.l. n-face τ opposite to pi.

3: Calculate labelling matrix Lσ =

(
1 . . . 1

f(p0) . . . f(pn+1)

)
.

4: repeat
5: Solve Lσ α = e1, with αi = 0. . first hyperplane point
6: if α 6≥ 0 then
7: stop
8: end if
9: Solve Lσ β = 0. . find other hyperplane points

10: Find index j of the next pivoting vertex. . door-in-door-out step
11: Pivot pj into p̂j . . pivoting step
12: pj ← p̂j
13: Update j-component of σ with the new pj . . adjacent (n+ 1)–simplex

14: Calculate new label lj =

(
1

f(pj)

)
.

15: Lσ ← Lσ + (lj − Lσ ej)eTj . update labelling matrix
16: i← j
17: until
18: end procedure

6.4 Vector Labelling-based PL Algorithms 163

of transverse (n + 1)-simplices σi bounded by the two completely labelled
n-faces τi−1 and τi. This is performed by pivoting a vertex of an (n + 1)-
simplex σi across a completely labelled facet τ in order to find another adjacent
(n+ 1)-simplex sharing the same facet τ (steps 11-13). Altogether, steps 11-
13 form the pivoting step. Steps 5-9 allow us to determine PL zero set inside
σi. These latter steps altogether are known as the piecewise linear step. The
piecewise linear step is usually more expensive, in computational terms, than
the pivoting step because it involves linear algebra operations (i.e. matrix
operations). From the piecewise linear step we can determine the index of of
the next vertex to be pivoted, i.e. the DIDO step.

For a more comprehensive discussion of piecewise linear algorithms for
curves using vector labelling, the reader is referred to Allgower and Georg[8].
Dobkin et al. [114] proposed a similar algorithm for curves (d = 1). Inter-
estingly, the first multidimensional algorithm (Algorithm 14) using vector la-
belling approximation was described by Allgower and Gnutzmann in [9] for

Algorithm 14 PL Algorithm for Manifolds
1: procedure Allgower-Gnutzmann(f ,Ω,T)
2: T ← ∅ . set of pivoted, transverse (n+ d)-simplices of T
3: S ← ∅ . set of nonpivoted, transverse (n+ d)-simplices of T
4: Find a transverse starting (n+ d)-simplex σ ∈ T .
5: S ← S ∪ {σ}
6: V (σ)← set of nonpivoted vertices of σ
7: while S 6= ∅ do
8: Get σ ∈ S.
9: while V (σ) 6= ∅ do

10: Get p ∈ V (σ).
11: Pivot p into p̂ to get an adjacent (n+ d)-simplex σ̂.
12: if σ̂ ∩ σ is not transverse or σ̂ ∩ Ω = ∅ then
13: V (σ)← V (σ) \ {p} . delete p from V (σ)
14: else
15: if σ̂ ∈ T or σ̂ ∈ S then . σ̂ is not new
16: V (σ)← V (σ) \ {p} . delete p from V (σ)
17: V (σ̂)← V (σ̂) \ {p̂} . delete p̂ from V (σ̂)
18: else
19: S ← S ∪ {σ̂}
20: V (σ̂)← set of nonpivoted vertices of σ̂
21: V (σ)← V (σ) \ {p} . delete p from V (σ)
22: V (σ̂)← V (σ̂) \ {p̂} . delete p̂ from V (σ̂)
23: end if
24: end if
25: end while
26: S ← S \ {σ}
27: T ← T ∪ {σ}
28: end while
29: end procedure

164 6 Continuation Methods

implicit surfaces (d = 2). Note that the PL algorithms described so far only
apply to curves and surfaces that are manifolds. This is so because it is not
possible to approximate a self-intersecting curve or surface by a hyperplane
inside a given simplex of the triangulation. In this case, PL methods approach
non-manifold curves and surfaces (varieties, in general) using small perturba-
tions of the zero value of the map f as a way to rid off possible singularities
[9]. Thus, a general piecewise linear algorithm for approximating manifolds
consists in pivoting through simplices which subdivide the domain of the map
f . Algorithm 14 describes such an algorithm.

6.5 PC Continuation

Predictor-corrector (PC) methods constitute the second class of continua-
tion methods. They also output a piecewise linear approximation of the zero
set defined by an arbitrary smooth function f : Rn+d → Rn. However, this
PL approximation is obtained using different devices. Instead of using a fixed
triangulation of the ambient space, predictor-corrector algorithms directly tri-
angulate the variety (e.g. curve or surface) on the fly in a progressive manner.
This means that the next vertex of the polyline that approximates a curve is
determined from the current vertex; analogously, the next vertex of a new tri-
angle that approximates a surface is determined from two consecutive vertices
of the boundary of the current growing mesh.

Every PC algorithm comprises two major stages: the growing stage and
the filling stage. The growing stage consists of two steps, the predictor and
corrector steps. The predictor step estimates a point in the tangent hyperplane
to the variety at the current vertex; the corrector step settles the predicted
point onto the surface producing a new vertex on the surface. The correction
is usually done using a Newton corrector, but a 2-point numerical corrector
(e.g. bisection method) may also be used.

The filling stage is only needed for closed curves and surfaces. For exam-
ple, expanding the mesh on a closed surface requires to avoid that the mesh
overlaps; otherwise, the meshing of the surface will never stop. This stopping
condition on the triangulation creates cracks or gaps in the mesh that need
to be filled with new triangles in order to close the surface.

6.6 PC Algorithm for Manifold Curves

Algorithm 15 outputs a 1-dimensional piecewise linear approximation for im-
plicit curves in R2 (n = 1, d = 1).

Algorithm 15 consists of the following steps. Step 2, as well as step 5,
uses Newton’s method (or some Newton-like method) to iterate a point near
the curve onto the curve. Steps 3–4 are illustrated in Figure 6.10 for the
computation of two curve points, xi+1 and xi+2.

6.6 PC Algorithm for Manifold Curves 165

Algorithm 15 Derivative-based Predictor–Corrector Algorithm for Curves
1: procedure PredictorCorrectorForCurves(f ,Ω,δ)
2: Determine one point xi on the curve.
3: Determine a tangent vector ti to the curve at xi.
4: Step out a small amount δ along ti to get a predicted point p0.
5: Map p0 onto the curve in order to obtain the next curve point xi+1.
6: xi ← xi+1

7: Go to step 3.
8: end procedure

xi

xi+1

ti+1 pi

xi+2 xi

xi+1

ti

pi

(a) (b)

Fig. 6.10. The Rheinboldt algorithm for curves in R2.

Step 3 is carried out by solving the linear system Jf(xi).ti = 0 where
Jf(xi) is the (n+ d)× n Jacobian matrix of f evaluated at a point xi on the
curve, and where ti is the unit tangent vector to f = 0 at xi.

Step 4 (predictor step) computes a predicted point pi = xi + δ.ti, where δ
is a given step size.

Step 5 (corrector step), this predicted point pi = p0
i is the starting point

of a Newton-like procedure of a sequence p0
i ,p

1
i , . . . ,p

k
i ≈ xi+1 of points

converging to a curve point xi+1 since pi is sufficiently near the curve.
In the end, we end up having a sequence x0,x1,x2, . . . ∈ R2 of points

on the curve such that xi+1 is obtained from xi using a predictor step and
its subsequent corrector step. This shows us that a curve can be traced in
relatively few steps for coarse approximations (i.e. with a step size not very
small).

Despite its simplicity, this class of algorithms has some deficiencies because
they may fail under some circumstances. Let us enumerate two of them:

1. Drifting away from the curve. One may fail to keep on moving along
the curve if by some misfortune a predictor step comes to close to some
unwanted point of f−1(0), as illustrated in Figure 6.11(a).

2. Cycling. This a variant of the previous situation, where the unwanted point
has been already determined a few steps earlier, so that the algorithm risks
cycling forever (Figure 6.11(b)).

This “nasty behaviour” in the predictor step can be resolved using more
sophisticated machinery such as Runge-Kutta or Adam’s methods [329] or,

166 6 Continuation Methods

xi

xi+1

xi+2

xi

xi+1

xi+2

(a) (b)

Fig. 6.11. (a) Drifting and (b) cycling phenomena for curves in R2.

alternatively, to halve the step length δ. These precautions help to ensure that
one stays in the domain of quadratic convergence about the curve of Newton’s
method. This is important because Newton’s method may not converge if the
curve oscillates too much in the interval [xi,xi+1].

Another point of concern is whether the curve possesses special points such
as:

• Turning points, where one of the partial derivatives to the curve vanishes.
• Singular points, where f = 0 and grad(f) = (0, 0), i.e. where both partial

derivatives vanish.

For example, the circle defined as the zero set f(x, y) = x2 +y2−4 = 0 has
four turning points at (0,−2), (0, 2), (−2, 0) and (2, 0). The first two result
from ∂f

∂x = 2x = 0, whereas the other two are found by means of ∂f∂y = 2y = 0.
These derivatives vanish simultaneously at (0, 0), but it is not a singular point
(or singularity) because it does not belong to the circle. A singularity on an
curve is where it is not smooth. For example, the curve f(x, y) = y2 − x3 = 0
has a cusp at (0, 0) because the both partial derivatives vanish at it and
because it is on the curve.

The fact that partial derivatives vanish at a singularity makes any algo-
rithm based upon Newton’s numerical method to break down because such
derivatives appear in the denominator of the iteration formula (cf. Equa-
tion (5.11)), which is here re-written for our convenience:

pk+1 = pk −
∇f(pk)
||∇f(pk)||2

f(pk) (6.27)

There are two main approaches to overcome this breakdown problem:

• Derivative-free methods. Using a derivative-free numerical method as,
for example, the false position method is a good numerical device for
sampling implicit curves and surfaces. But, since it is based on the
sign variation of function at two distinct points, it fails sampling sign-
invariant components of curves and surfaces. For example, the zero set

6.7 PC Algorithm for Nonmanifold Curves 167

(x2 + y2 + z2 − 25)2 = 0 is a sphere, inside and outside which the corre-
sponding function f(x, y, z) = (x2+y2+z2−25)2 always evaluates positive.
This means that 2-points numerical methods using the intermediate value
theorem cannot be used to sample zero sets with sign-invariant compo-
nents. To overcome this problem, and assuming that Newton’s method
breaks down at singularities, we have to use a sign-invariant 2-points nu-
merical method as the generalised false position method [281].

• Resolution of special points. The idea here is to first determine the special
points of a curve or surface through standard symbolic processing tech-
niques for resolution of equation systems. These special points then work
as starting points for sampling the remaining singularity-free patches of a
curve or surface through a Newton predictor-corrector.

In addition to special points, there is another problem underlying the
predictor–corrector algorithms. They are not equipped with suited devices for
sampling curves and surfaces with several components. To succeed on this we
have first to find out a seeding point on each component, which may be quite
difficult because there is no triangulation covering the domain to help us on
this respect.

6.7 PC Algorithm for Nonmanifold Curves

This section describes a derivative-free continuation algorithm for nonmani-
fold implicit curves in R2, and is due to Morgado and Gomes [280]. It is also
curvature-adaptive and suited for handling curves with singularities.

The basic idea behind this continuation algorithm is, given the previous
and current points xi−1, xi of a curve, to determine the next point xi+1 on
the circle neighbourhood Ni centred at xi (Figure 6.12). The algorithm uses
numerical continuation to compute xi+1 in an arc of the frontier of Ni. This
numerical method is inspired in the standard false position numerical method,
and is called angular false position method (AFP) [280].

xi

xi+1 xi-1

xi-1

xi

xi+1

(a) (b)

Fig. 6.12. Illustration of the basic idea behind Morgado-Gomes’ algorithm for
curves in R2.

168 6 Continuation Methods

6.7.1 Angular False Position Method

Traditionally, numerical methods operate on intervals in R or straight line
segments in higher dimensions. Let us consider the initial interval [p0,q0]
bracketing the root xi+1, i.e. [p0,q0] is transverse to the curve C at xi+1.
For convenience, let us rewrite the standard interpolation formula of the false
position method (see Section 5.6.2) as follows:

rk = qk −
f(qk)

f(qk)− f(pk)
(qk − pk) (6.28)

where rk is the root of the secant line through (pk, f(pk)) and (qk, f(qk)). If
f(pk) and f(rk) have identical signs, then we set pk+1 = rk and qk+1 = qk;
otherwise, we set pk+1 = pk and qk+1 = rk. That is, the initial segment
[p0,q0] bracketing a root converges to a final smaller segment [pn,qn] such
that the next estimate rn is a sufficiently good approximation of the next
curve point xi+1, that is rn ≈ xi+1.

Instead of using linear segments or intervals, the angular false position
method uses arcs to find a bracketed root or curve point. The corresponding
formula is then as follows:

α(rk) = α(qk)− f(qk)
f(qk)− f(pk)

[α(qk)− α(pk)] (6.29)

where α(x) denotes the angle of the point x on the frontier of the circle
neighbourhood Ni centred at a given origin xi. For example, in Figure 6.13,
the angle of p0 is equal to 2π

3 .

6.7.2 Computing the Next Point

Morgado-Gomes’ algorithm confines all computations to the neighbourhood
Ni of the current curve point xi. The next curve point xi+1 results from the
intersection of Ni and C, and is numerically determined by the AFP method.

2!/3

xi

-2!/3

xi-1

p0

q0

xi
xi-1

p0

q0

r0

(a) (b)

Fig. 6.13. Scanning neighbour circle arc in [− 2π
3
, 2π

3
] for curve points in R2.

6.7 PC Algorithm for Nonmanifold Curves 169

Recall that any point p = (x, y) on a circle with radius r and centred at
x = (xc, yc) can be obtained from its angle α through the equations (x, y) =
(xc + r cos θ, yc + r sin θ), with α ∈ [−π, π[, from which we can easily derive
the 2× 2 rotation matrix Mα, as usual in computer graphics.

To speed up our algorithm, and to prevent recomputing curve points on
the previous circle neighbourhood, the circle points of the current circle are
only computed for α ∈ [− 2π

3 ,
2π
3]. These angles are those at which the current

and previous circles intersect (Figure 6.13). So, the first step of the algorithm
consists of determining these two intersection points, p0 and q0

p0 = xi +M2π/3.
−−−−→xi−1xi (6.30)

q0 = xi +M−2π/3.
−−−−→xi−1xi (6.31)

Then, we use (6.29) to determine the curve point on the arc
_

p0q0. In prac-
tice, and to further speed up the root-finding process, we need to determine a
preliminary estimate r0 = xi+−−−−→xi−1xi, and then we apply the AFP method to
both arcs

_
p0r0 and

_
r0q0. Making an analogy to Newton’s method, r0 works

as a predicted point that is then corrected using the AFP method.

6.7.3 Computing Singularities

Morgado-Gomes’ algorithm computes the singularities such as cusps and self-
intersections using numerical approximation.

Cusps and Other High-curvature Points

As known, most curve continuation algorithms break down at singularities
(see, e.g., [82]). But, Möller-Yagel’s algorithm described in [277] copes with
bifurcation points of curves by analysing sign changes of the partial derivatives
in a rectangle neighbourhood. Nevertheless, it is a derivative-dependent algo-
rithm, so it breaks down at other singularities (e.g. cusps and corners) which
belong to the function domain, but not to domain of the partial derivatives.
For example, it fails in rendering the diamond curve |x| + |y| − 2 = 0 which
has four corners at (0, 2), (2, 0), (0,−2) and (−2, 0), where partial derivatives
do not exist.

In contrast, Morgado-Gomes’ algorithm does not compute derivatives
at all. As a consequence, curves defined by differentiable and nondifferen-
tiable functions can be, in principle, sampled and rendered in a straightfor-
ward manner. Another advantage of this derivative-free strategy is a shorter
computation time for each sampled point. There is no need for comput-
ing derivatives, which in many cases are more time-consuming that func-
tions themselves; for example, computing the partial derivatives of F (x, y) =
y(9− xy)(x+ 2y − y2)((x− 10)2 + (y − 4)2 − 1) requires a bigger processing
time overhead than the function itself.

170 6 Continuation Methods

xi

xi-1
xi+1

yi xi

xi-1
yi-1

yi
xi+1 yi+1

xi
xi+1

xi-1

yi
yi+1

xi
xi+1

xi-1

yi

(a) (b)

Fig. 6.14. Numerical approximation to a cusp point in R2.

Curvature flips at cusps and corners. Therefore, a cusp (or a quasi-cusp)
is a point at or around which there is a high curvature variance within Ni
(Figure 6.14). To make sure that there is a cusp (or a quasi-cusp) in Ni, we
have to check whether the angle ∠xi−1xixi+1 is small. If so, there is likely such
a special point between xi and xi+1. In addition, we have to check whether the
mediatrix of xi−1xi+1 inside Ni intersects the curve at exactly a single point.
Under these two circumstances, we can say that a cusp exists within Ni. This
means that xi+1 is not an appropriate point next to xi (Figure 6.14(a)).

To compute a suited next point xi+1 we can use various strategies. One of
them is to decrease the radius of Ni when the curvature increases. Another
strategy is to fix the radius and sample the curve inside Ni somehow. A way
to apply this second strategy is to assume that points after the cusp (or quasi-
cusp) are image points of those before it in Ni (Figure 6.14(b)). For example,
the former xi+1, now yi−1, is the image of xi−1. The image of xi is yi by
tracing a line segment parallel to xi−1yi−1. The next tentative point xi+1 is
determined by intersecting the curve with the mediatrix of xiyi in Ni. This
procedure is repeated for a few steps, stopping when the distance between the
latest next point and its image is under a tolerance ε, meaning that our special
point has been found, i.e. d(xi+n,yi+n) ≤ ε. At this point, set xi+1 = yi+n
and label it as a cusp (or quasi-cusp).

Self-intersection Points

A self-intersection point can be viewed as a double cusp point, i.e. two cusps
that come together (Figure 6.15). Therefore, no curve point on Ni can be
the next point. In fact, with the exception of the point xi+2 in front of xi,
the other two points form small angles with xi−1 and xi. But, xi+2 cannot
be the next point either, because the segment from it to xi−1 intersects the
curve at a nearer point. One solution is to use a procedure that converges to
the self-intersection in a way similar to that one described above for cusps.
This convergence process also stops when the distance between the latest next
point and its image is under ε. This latest point will be the self-intersection
point nearly, which will be set up as the next point xi+1.

6.7 PC Algorithm for Nonmanifold Curves 171

xi

xi-1 xi+1

xi+2

xi+3

xi

xi-1 xi+1

xi+2

xi+3

xi

xi+1 xi-1

xi+2

xi+3

xi

xi+1 xi-1

xi+2

xi+3

(a) (b)

Fig. 6.15. Numerical approximation to a self-intersection point in R2.

xi

xi+3

xi-1

xi+2
xi+1

xi

xi+1

xi+5

xi+2 xi+4

xi+3

(a) (b)

Fig. 6.16. Avoidance of the drifting phenomenon.

6.7.4 Avoiding the Drifting/Cycling Phenomenon

As seen above (cf. Figure 6.11), sometimes a curve comes close to itself so
that algorithm goes cycling forever or just drifts away. In a way, this is similar
to a self-intersection scenario because we have at least four curves points on
Ni (cf. Figure 6.15). But, unlike the self-intersection neighbourhood, one of
the curve points on Ni is the point next to xi (Figure 6.16). Recall that the
neighbourhood radius r is constant, even under ripples and undulations.

To determine the next point xi+1, we use two criteria: angle criterion (or
curvature criterion) as above, and a new criterion, called neighbour-branch
criterion. In Figure 6.16(a), xi+3 cannot be the next point because the an-
gle ∠xi−1xixi+3 is not approximately π within a given tolerance. But, both
angles ∠xi−1xixi+1 and ∠xi−1xixi+2 are about π, and neither xi−1xi+1 nor
xi−1xi+2 crosses the curve. Therefore, the next point will be either xi+1 or
xi+2. To pick up the right next point, we use the neighbour-branch criterion.
Basically, it is an elimination criterion, and can be described as follows:

1. Determine the midpoints of the segments xi−1xi+1, xi+1xi+2, and
xi+2xi+3 in Figure 6.16(a). The midpoint of xi−1xi+3 is not calculated
because xi+3 is not, by the angle criterion, a candidate to the next point.

172 6 Continuation Methods

2. Let us consider a segment with a midpoint M and P its projection on the
frontier of Ni by prolonging the segment xiM . If xiP intersects the curve
inside Ni, then we discard the endpoints of the segment transverse to xiP .
This eliminates xi+2 as a candidate next point in Figure 6.16(a) because
C ∩ xiP 6= ∅, where P is the projection of the midpoint of xi+2xi+3 on
Ni. Therefore, the next point will be xi+1.

In Figure 6.16(b), the angle criterion eliminates xi+3 and xi+5 as candi-
dates to the next point, while xi+2 and xi+4 are eliminated by the near-branch
criterion. The remaining point xi+1 will be the next point. Note that the neigh-
bourhood radius is constant independently of whether the curve oscillates or
not.

The Algorithm

Morgado-Gomes’ algorithm (Algorithm 16) essentially has the structure of
a continuation algorithm (cf. Algorithm 15), but it does not use Newton’s
method to compute the next point of the curve. Instead, it uses a derivative-
free method; hence its ability to cope with cusps (steps 7–8) and self-
intersections (steps 12–13).

Besides, it avoids the drifting phenomenon nicely (step 11) using elimina-
tion criteria described above. However, this algorithm does not solve the global
cycling problem. This global cycling phenomenon occurs when the current cir-
cle Ni overlaps a former or an intermediary circle neighbourhood previously
calculated and processed. To prevent this global cycling phenomenon, we have

Algorithm 16 Derivative-free Predictor-Corrector Algorithm for Curves
1: procedure Morgado-Gomes(f ,Ω,r)
2: Determine one point xi on the curve.
3: Set Ni as the circle neighbourhood with radius r centred at xi.
4: Compute curve points C ∩Ni by means of the angular numerical method.
5: if (#(C ∩Ni) = 1) then . a single candidate point
6: xi+1 ← get such a single point from C ∩Ni
7: if (∠(xi−1xixi+1) 6≈ π) then
8: xi+1 ← compute cusp
9: end if

10: else . two or more candidate points
11: xi+1 ← get point from C ∩Ni by applying elimination criteria
12: if (xi+1 = NULL) then . there is a self-intersection point about xi
13: xi+1 ← compute self-intersection point
14: end if
15: end if
16: xi ← xi+1

17: Go to step 3.
18: end procedure

6.8 PC Algorithms for Manifold Surfaces 173

to store circles in two vectors or lists. The first vector stores overlapping cir-
cles; typically, they are circles containing near-branch branches of the curve.
The remaining circles are classified as nonoverlapping circles. So, if the next
point xi+1 is in a nonoverlapping circle, the algorithm stops. But, if there is
a not yet sampled branch coming out from a self-intersection, the algorithm
restarts from this self-intersection point. Unfortunately, as usual for continua-
tion algorithms, if the curve has various components inside the domain, some
of them are likely missed out.

6.8 PC Algorithms for Manifold Surfaces

This section deals with predictor–corrector algorithms for implicit surfaces
that are inspired in Newton’s method. Therefore, these algorithms depend on
the derivative or its higher-dimensional counterparts.

6.8.1 Rheinboldt’s Algorithm

In computer graphics, while the simplicial continuation algorithms have
been inspired by the Allgower–Schmidt algorithm [11], the class of predictor-
corrector methods are rooted to Rheinboldt’s work [340]. Rheinboldt proposes
using a smoothly varying projection of the tangent plane onto the surface
(“moving frame”) to “wrap” a mesh onto the surface.

Therefore, Rheinboldt’s algorithm for surfaces (Algorithm 17) in R3 (n =
1, d = 2) is very similar to that one for curves (Algorithm 15). However, the
pseudocode of Algorithm 17 appears here simplified in order to highlight its
similarities to Algorithm 15.

Note that, the predictor step (step 4) now outputs two points xi+1 and
xi+2 close the surface S by computing two vectors with angle π/3 on the
tangent plane Ti to S at xi. The angle π/3 aims at producing approximately
equilateral triangles on the surface. The corrector step (step 5) places xi+1

and xi+2 on the surface. This allows us then to form a new triangle given by
the vertices xi, xi+1 and xi+2.

Of course, the algorithm does not work in practice that way. Important
issues like cycling, triangle overlapping, and triangle recomputation have to

Algorithm 17 Rheinboldt’s Predictor-Corrector Algorithm for Surfaces
1: procedure Rheinboldt(S,Ω,δ)
2: Determine a point xi on the surface S inside the bounding box Ω.
3: Determine the tangent plane Ti to the surface S at xi.
4: Step out a small amount δ along two vectors on Ti with angle π/3.
5: Relocate the surface at both new points xi+1 and xi+2.
6: Set xi ← xi+1 or xi ← xi+2.
7: Go to step 3.
8: end procedure

174 6 Continuation Methods

be considered. We have also assumed that tessellation bricks are triangles.
However, there are many ways of tessellating a surface in R3. For example,
tessels can be triangles, squares or hexagons, though squares and hexagons
are easily decomposed into two and six triangles, respectively.

6.8.2 Henderson’s Algorithm

Henderson’s algorithm is another predictor–corrector algorithm. Found a seed-
ing point on the surface, the triangulation spirals away from it on the surface
by attaching triangles beyond the current triangulation border. However, tri-
angles are not determined directly. The Henderson triangulation results from
covering the surface with an atlas of disks, being then their centres—which are
points on the surface—used to triangulate it. This is illustrated in Figure 6.17.
Therefore, we can say that Henderson’s algorithm is inspired by devices com-
monly used in differential topology and geometry. The algorithm computes a
set of points on the surface, and a set of mappings from the tangent space
which cover the surface [183].

Henderson’s algorithm (Algorithm 18) starts to differ from Rheinboldt’s
algorithm (Algorithm 17) at step 3. After determining the tangent plane Ti
to the surface S at xi (step 2), one determines a small disk Di centred at xi
on Ti. Such a disk is here called Henderson disk .

At step 4, one determines a new point yi+1 on an non-overlapping arc of
the Henderson disk Di. For the initial disk, this boundary arc is the complete
disk boundary. Non-overlapping arcs are those belonging to the border of the
growing atlas.

Step 5 maps the new point yi+1 and its disk on the surface, merging it
with the surface. The mapped point is now xi+1.

Before going to step 3, set xi = xi+1 or as any point on a nonintersect-
ing disk arc. Note that when the covering of disks grows on the surface, its

(a) (b)

Fig. 6.17. (a) Mapping the Henderson disk on the surface; (b) covering the surface
with disks followed by triangulation.

6.8 PC Algorithms for Manifold Surfaces 175

Algorithm 18 Henderson’s Predictor–Corrector Algorithm for Surfaces
1: procedure Henderson(S,Ω,δ)
2: Determine a point xi on the surface S inside the bounding box Ω.
3: Determine the tangent plane Ti to the surface S at xi.
4: Determine the radius δ Henderson disk Di at xi on Ti.
5: Determine a point yi+1 on an non-overlapping arc of the boundary of Di.
6: Map yi+1 ∈ Bd(Di) onto a new point xi+1 ∈ S.
7: Set xi ← xi+1.
8: if Bd(Atlas(S)) 6= ∅ then
9: Go to step 3.

10: end if
11: Triangulate S.
12: end procedure

boundary consists of a set of connected nonintersecting arcs. The triangula-
tion grows accordingly by connecting the centres of the disks mapped onto
the surface S.

Steps 4–6 are illustrated in Figure 6.17. The algorithm terminates when
non-overlapping arcs run out (step 8) or, equivalently, when the boundary
of the atlas of circles on the surface vanishes, i.e. Bd(Atlas(S)) = ∅. This
guarantees that the whole surface is triangulated. The mechanism of non-
overlapping arcs also ensures us that the algorithm does not loop locally and
globally. Obviously, we are here assuming that the surface is manifold and
thus closed, but the algorithm can be easily extended to manifold surfaces
with boundary.

The triangulation produces a triangular mesh whose data structure con-
sists of a vector of triangles and a vector of vertices. Each vertex is a surface
point, so it stores its disk, which in turn must include data concerning overlap-
ping and non-overlapping boundary arcs. The topological relations between
disks are easily retrieved via their vertices and triangles.

6.8.3 Hartmann’s Algorithm

Similar to Henderson’s algorithm, Hartmann’s algorithm only applies to sur-
faces in R3 without singularities [179]. Surfaces need not to be closed. But,
instead of triangulating an atlas of disks on the surface, Hartmann directly tri-
angulates each disk into an hexagon of six approximately equilateral triangles
(Figure 6.18(a)).

The compatibility between overlapping hexagons is achieved by computing
only the missing triangles of the new hexagon. This is illustrated in Fig-
ure 6.18(b), where we have three hexagons centred at x0, x3 and x4, respec-
tively. To construct a new hexagon around x2, we have to take into account
that three of its triangles are already attached to x2. Thus, we end up getting
a triangulated surface consisting of a set of imaginary overlapping hexagons.

176 6 Continuation Methods

x0 x1

x2

x3

x4

x5

x6

y1

y2

y5

y6

y3

y4

n x0 x1

x2

x3

x4

x5

x6

n

(a) (b)

Fig. 6.18. (a) Hartmann’s hexagon; (b) covering of three overlapping hexagons
centred at x0, x3 and x4.

The idea is then to determine the tangent plane at each mesh border vertex
x0, construct a small tangent disk—the Henderson disk—centred at x0, and
inscribe an hexagon of triangles in such a disk. This works quite well for the
first hexagon. Any subsequent hexagon already possesses at least one triangle
in the growing mesh.

The construction of a new hexagon starts from a mesh border vertex x0

(Algorithm 19, step 2). This process consists of inserting the missing triangles
around the hexagon centre x0 for completion; hence the need for compatibil-
ity between hexagons on the surface. This compatibility between hexagons is
achieved through heuristics. Basically, we partition the external angle at x0

in order to obtain approximately regular triangles (i.e. approximately equilat-
eral triangles). Hartmann [179], Karkanis and Stewart [208] and Raposo and
Gomes [334] use the Henderson disk and similar heuristics, although Karkanis
and Stewart also use the curvature criterion to produce good triangles in
those surface regions where the curvature (and, consequently, the triangle
size) changes quickly.

Hartmann’s algorithm is described in Algorithm 19. Step 2 is the typical
first step of any continuation algorithm which determines a seeding point x0

on the surface.
Step 3 leads to the construction of an orthonormal basis (u,v,n) at x0.
The predictor step (steps 4–5) involves the definition of Henderson’s disk

centred at x0 and the computation of six vertices of its inscribed triangles as
follows:

yj = x0 + δ cos (jπ/3)u + δ sin (jπ/3)v (6.32)

where u and v are unit base vectors in T0.
To calculate the corresponding six sampling points on the surface we apply

the Newton corrector to the points yj . The resulting points [xi+1, . . . ,xi+6]

6.8 PC Algorithms for Manifold Surfaces 177

Algorithm 19 Hartmann’s Predictor–Corrector Algorithm for Surfaces
1: procedure Hartmann(S,Ω,δ)
2: Determine a point x0 on the surface S inside the bounding box Ω.
3: Determine a tangent plane T0 to S at x0.
4: Determine the radius δ Henderson disk Di at x0 on T0.
5: Inscribe the Hartmann hexagon [y1, . . . ,y6] in Di, totally or partially.
6: Map Hartmann’s hexagon [y1, . . . ,y6] onto [xi+1, . . . ,xi+6] in S.
7: Triangulate [xi+1, . . . ,xi+6] in S, totally or partially.
8: if {xk} 6= ∅ then
9: Set x0 ← xk

10: Go to step 3.
11: end if
12: end procedure

are the six vertices of the starting hexagon of the surface, that is, the first mesh
boundary. This is valid for the first vertex, say hexagon, of the triangulation.

For other vertices, not all hexagon triangles need be determined, simply
because some have been already determined. An easy way to determine the
missing triangles around a border vertex x0 is to project its neighbour vertices
back to tangent plane at x0 and fill in the pie slice of Henderson disk with
the missing triangles. However, due to the varying curvatures of the surface,
this strategy may originate thin triangles. To overcome this problem, we have
sometimes to decompose the Henderson disk into 5-gons or 7-gons in order to
keep the triangulation approximately regular.

The problem is then how many triangles are going to be inscribed in
the missing Henderson slice defined by three consecutive border vertices
xi−1,xi,xi+1, where xi is the centre of the Henderson disk? We divide the
external angle (i.e. outwards the triangulation border) θ = ∠xi−1xixi+1 into
a number of angles with approximately π

3 radians. (See [334] for an elegant
implementation of the external angle.)

To find the optimal number of triangles that fit θ, let us use the strategy
described in [334]. First, we have to consider a range [θmin to θmax] of accept-
able angles around π

3 , where θmin = π
3 − ε and θmax = π

3 + ε, and where ε
is a tolerance. It is necessary then to calculate the numbers of triangles nmin

and nmax that result from dividing θ by θmin and θmax, rounding them to the
nearest integer. We select either nmin or nmax as the optimal number n∆ of
triangles depending on which one better approximates equilateral triangles,
i.e whose angles are closest to π

3 :

n∆ =

{
nmin if | θ

nmin
− π

3 | ≤ |
θ

nmax
− π

3 |
nmax if | θ

nmin
− π

3 | > |
θ

nmax
− π

3 |

Once determined the number of triangles that fit θ around x0, the current
mesh is ready to grow.

178 6 Continuation Methods

The external angle is a first device that guarantees that mesh grows be-
yond the border outwards. That is, it is the first condition to have a trian-
gulation without overlapping triangles. However, this not enough to ensure
re-triangulation of the surface because, when mesh grows on the surface, at
some point its border or borders come too close to itself or to each other that
they will overlap soon or later. To prevent this, Hartmann uses two proximity
criteria as follows:

• Two nonconsecutive vertices of the same border are near to each other.
If the distance d between two nonconsecutive border vertices is less that
the Henderson disk radius δ, then they must be connected by a new edge
to form a new triangle. This procedure splits the border into two. This
boundary splitting operation is illustrated in Figure 6.19. Let Λm be a
triangulation border, and let xi and xj (with i < j) be two of its ver-
tices having at least two border vertices between them. If the Euclidean
distance d(xi,xj) < δ, one connects xi to xj by a new edge. As a con-
sequence, Λm splits into two new borders, Λm = {xi,xi+1, . . . ,xj} and
Λn = {x1, . . . ,xi,xj , . . . ,xN}, where N is the number of vertices of the
former Λm. In Figure 6.19(b), we can see these borders after attaching the
triangle bounded by the border splitting edge xixj .

• Two vertices of distinct borders are near to each other. In this case,
two vertices belonging to different borders are within the distance δ.
Therefore, these borders are merged into a single one. This merging op-
eration is illustrated in Figure 6.20. Let Λm = {x1, . . . ,xm−1,xi} and
Λn = {xj ,xm+2, . . . ,xm+n} two expansion borders. If the vertex xi ∈ Λm
and the vertex xj ∈ Λn satisfy the condition d(xi,xj) < δ, their host
borders merge into a single one, say Λm, by attaching the new edge xixj
(Figure 6.20(b)). This implies deleting Λn after transferring its vertices
into Λm, i.e.

Λm = {x1, . . . ,xm−1,xi,xj ,xm+2, . . . ,xm+n}

where m and n denote the number of vertices of the former borders Λm
and Λn, respectively.

This concludes the step 5 of the algorithm.
Step 6 is about mapping the vertices (and corresponding triangles) onto

the surface. This is the corrector step. Every predicted vertex on the tangent
plane is settled onto the implicit surface, its corrected position. As usual, the
correction is usually done by a Newton-Raphson corrector (e.g. see [179] and
[334]), but some researchers employ other numerical methods (e.g. Karkanis
and Stewart use the bisection method in [208]).

Step 8 concerns the stopping criterion for the triangulation. The algorithm
stops when the number of border vertices of the growing mesh goes to zero,
i.e. {xk} = ∅. Recall that, we are here assuming that the surface is manifold.

6.8 PC Algorithms for Manifold Surfaces 179

xi
xj

!n

!m !m

xi

xj

(a) (b)

Fig. 6.19. Splitting a mesh border Λm (in thick red) into two smaller borders Λm
(in thick red) and Λn (in thick blue).

xi

xj

!n

!m

xi

xj

!m

(a) (b)

Fig. 6.20. Merging two mesh borders Λm (in thick red) and Λn (in thick blue) into
a bigger border Λm (in thick red).

6.8.4 Adaptive Hartmann’s Algorithm

In the context of implicit surfaces, an adaptive triangulation means a
curvature-dependent triangulation. An adaptive hexagonal triangulation
was proposed by Araújo and Jorge [20]. It is adaptive in the sense that the
size of the triangles circumscribed by the Henderson disk depends on the local
curvature of surface at each active or boundary vertex. That is, the radius of
the Henderson disk is no longer constant; it depends on the local curvature.

By computing the local curvature of a surface at an active vertex, we are
able to adapt the triangulation to shape variations of the surface, generating
smaller triangles in regions of higher curvature and larger triangles where the
curvature is smaller.

Thus, the adaptiveness of the Araújo-Jorge algorithm starts at the pre-
dictor step by changing the radius of Henderson’s disk at an active vertex,
depending on the curvature of the surface at such a vertex. The corrector
step is identical to Hartmann’s one, which is a Newton corrector for trivariate
real functions. Mean curvature-based adaptive triangulations of Igea’s implicit
surface are shown in Figure 6.21.

180 6 Continuation Methods

5.3 Meshing accuracy analysis 79

Figure 5.5: Adaptive Meshes of the Igea model using Mean Curvature Heuristics:
6908, 25596, 82511 triangles from left to right

Table 5.5, Gauss curvature is more adequate to reproduce the curvature of the

shape, however for coarse representation the Mean curvature is more sensitive to

the shape as we can see in Figure 5.5. This is due to the variation of the Gauss

curvature which is greater than the Mean curvature. However to generates high

details approximation, the Gaussian curvature can catch more details than the

heuristics based on Mean curvature. With the same heuristic bound parameters,

we can verify that polygonization using Gaussian based heuristics are faster

considering the number of triangles per second.

Curv. Method Mean. Gauss. Mean. Gauss. Mean. Gauss.
Heuristic f. 0.1 0.1 0.2 0.2 0.3 0.3

Heuristic min 0.05 0.05 0.05 0.05 0.1 0.1
Heuristic max 1 1 1 1 2 2

Triangles 82511 93352 25596 28396 6908 7629
Time(ms) 14791 16704 4767 5147 1472 1412

Triangle/sec 5578.46 5588.6 5369.41 5517 4692.93 5401.97
Avg. Deviation 0.0022 0.001942 0.006681 0.005783 0.02067 0.018335
Std Avg Dev. 0.0039 0.003375 0.010005 0.00816 0.03641 0.02730

Norm. Deviation 0.998263 0.998858 0.995795 0.996685 0.987126 0.988394
Std Norm. Dev. 0.018189 0.01195 0.021502 0.01990 0.04973 0.04636

Table 5.5: Comparison between several adaptive approximations generated by
our algorithm using different heuristics

(a) (b) (c)

Fig. 6.21. Adaptive meshes of Igea’s model using mean curvature heuristics: (a)
6908 triangles; (b) 25,596 triangles; (c) 82,511 triangles. Courtesy of B. Araújo [19].

As known, any PC algorithm for closed surfaces comprises two major
stages: the growing stage and the filling stage. The growing stage consists
of two steps, the predictor and corrector steps. The filling stage aims at filling
the cracks with new triangles in order to close the surface. Note that both the
original Hartmann algorithm and its adaptive counterpart due to Araújo and
Jorge only apply to closed manifold surfaces. The cracks are just a result of
avoiding that the growing surface mesh overlaps.

In the case of the Araújo-Jorge algorithm, the mesh overlapping is con-
trolled by an octree data structure that stores all the points generated by
the algorithm. Avoiding mesh overlapping is quickly done by first determin-
ing which octree cubes intersect or contain the sphere centred at an active
boundary vertex with Henderson’s radius (i.e. radius equal to the estimated
edge length); then, one checks the distance between the current vertex and the
boundary vertices associated to those intersecting cubes in order to prevent
the mesh overlapping and fill eventual cracks. The efficiency of this overlap-
ping avoidance procedure is reinforced by a cache mechanism that stores the
last n visited octree cells to speed up the algorithm.

6.8.5 Marching Triangles Algorithm

In [187], Hilton et al. proposed a PC algorithm called marching triangles
after the famous marching cubes algorithm (see the next chapter for further
details). In a way, we can say that all the PC algorithms for implicit surfaces
are based on the idea of marching triangles, i.e. triangles that are progressively
attached to the mesh that approximates the surface. Algorithms differ in that
they determine the triangles, i.e. how their triangulations are accomplished.

6.8 PC Algorithms for Manifold Surfaces 181

The marching triangles algorithm generates meshes with almost equilat-
eral triangles. The approach proposed by Hilton et al. is also based on the
prediction–correction step to compute new vertices of growing triangulation.
A major problem is detecting the cycling phenomenon, say when the sur-
face mesh starts to overlap. Even we succeed in controlling the cycling phe-
nomenon, another problem comes up, which is the appearance of cracks in the
mesh. Thus, unless we have a strategy to fill the cracks with new triangles,
closed surface meshes cannot be generated at all.

The Delaunay Triangulation

The marching triangles algorithm relies on the Delaunay triangulation of a set
X = {x0, . . . ,xn} of points in R3. This 3-dimensional Delaunay triangulation
is composed of tetrahedra such that each tetrahedron is inscribed in a sphere—
i.e. the sphere passes through the vertices of the tetrahedron—which does not
contain any other point of X.

In the case the points of X lie on a manifold surface, and according to
Boissonnat [56], the surface triangulation in the Delaunay triangulation sat-
isfies the condition that it is composed of triangles such that there exists a
circumsphere that passes through the three vertices of each triangle, but it
does not contain any other point of X. The result is the 2-dimensional ana-
logue of the 3-dimensional Delaunay triangulation where the points of X lie
on a manifold surface in R3 rather than R2.

The above definition of the manifold surface triangulation derived from
the 3D Delaunay triangulation provides the incremental mechanism to con-
struct the surface mesh by attaching triangle after triangle. This mechanism
is based on the 3D Delaunay surface constraint, which states that a triangle
σ = [xi,xi+1,xp] may only be attached to the mesh boundary at an edge
[xixi+1] if no other triangle of the growing surface mesh intersects the sphere
circumscribing σ = [xi,xi+1,xp] with the same surface orientation. (Two tri-
angles are said to have the same orientation if the dot product of their normals
is positive.)

The 3D Delaunay surface constraint guarantees that each triangle uniquely
defines the surface locally. In other words, the local surface does not over-fold
or self-intersect [187]. Interestingly, this local Delaunay constraint also ensures
that the triangulated surface is globally Delaunay [143].

The Algorithm

The marching triangles algorithm is described in Algorithm 20. Starting from
a seeding triangle on the surface, the marching triangles algorithm spirals
away on the surface by attaching new triangles to the border edges of the
growing mesh. The new triangle edges are then appended at the rear of the
list L of edges that form the border of the growing mesh.

182 6 Continuation Methods

Algorithm 20 Marching Triangles for Surfaces
1: procedure MarchingTriangles(f ,S,Ω,δ)
2: T ← ∅ . empty mesh of triangles
3: L← ∅ . empty list of boundary edges
4: Determine a seeding triangle σ0 on S inside Ω.
5: Add edges of σ0 to L.
6: n← #L . current size of L
7: for i = 0, n− 1 do
8: Estimate a vertex position, xp, by stepping out a constant distance δ

along a vector perpendicular to the boundary edge ei = [xk,xk+1] at the mid-
point of ei in the plane of the triangle σi = [xi,xk,xk+1] that is bounded by
ei.

9: Determine the nearest point xP on S to xp, i.e. f(xP) = 0.
10: if σP = [xP ,xk,xk+1] satisfies the 3D Delaunay constraint then
11: Remove edge [xk,xk+1] from L.
12: n← n− 1 . delete one edge from L
13: Add triangle σP = [xP ,xk,xk+1] to triangulation mesh T .
14: Add edges [xP ,xk] and [xP ,xk+1] to L.
15: n← n+ 2 . more two edges added to L
16: end if
17: end for
18: end procedure

The marching triangles algorithm iterates on the list L only once. When a
new triangle at a boundary edge fails to satisfy the 3D Delaunay constraint,
such an edge is left in L. At the end, L will accommodate an non-empty
border of connected edges in the triangular mesh. This suggests that this
algorithm is more adequate to polygonise open surfaces (also called surfaces
with boundary) than closed surfaces (also called surfaces without boundary)
simply because cracks will appear in the mesh.

Interestingly, the Delaunay constraint can also used to fix cracks in the
polygonisation. In fact, as Akkouche and Galin noted in [2], the Delaunay
constraint implies that the width of any crack in the surface does not exceed
the length of the triangle edges. Therefore, to complete the triangulation we
only need to connect the vertices of the boundary edges of L to create new
triangles that fix the cracks. Similar solutions for filling cracks were proposed
by Karkanis and Stewart [208] and Cermak and Skala [80].

In Algorithm 20, the predictor and corrector steps are steps 8 and 9,
respectively. This original marching triangles algorithm has the disadvantage
that the step length δ is constant. The triangulation tends to be regular, but
it does not adapt to the curvature of the surface.

6.8.6 Adaptive Marching Triangles Algorithms

PC algorithms using curvature-dependent triangulations of implicit surfaces
were proposed by Akkouche and Galin [2], Karkanis and Stewart [208], and

6.9 Predictor–Corrector Algorithms for Nonmanifold Surfaces 183

Cermak and Skala [79]. These adaptive marching triangles algorithms produce
a mesh of approximately equilateral triangles with sizes dependent on the local
surface curvature, although they do not use the Delaunay condition.

Karkanis-Stewart’s algorithm estimates the curvature at a surface point xp
by computing the radius of curvature of several geodesics that pass through
xp, taking then the minimum. This algorithm is slower than the PL methods
because it has the extra time overhead at computing local surface curvature
for every new vertex xp in order to generate triangles of the appropriate size.
This is so because curvature computation of Karkanis-Stewart’s algorithm as-
sumes the second derivative is not directly available; consequently, the implicit
function is invoked many times in the curvature calculation.

On the contrary, Akkouche-Galin’s algorithm avoids the explicit compu-
tation of the local curvature of the surface; instead, Akkouche and Galin use
a particular heuristics to speed up the algorithm.

6.9 Predictor–Corrector Algorithms for Nonmanifold
Surfaces

As much as we know, there is no piecewise linear (PL) algorithm for non-
manifold implicit surfaces. However, there is a PC algorithm capable of
polygonising non-manifold implicit surfaces under certain conditions. Such
an algorithm extends Hartmann’s algorithm in order to cope with self-
intersections and multi-component implicit surfaces, and is due to Raposo
and Gomes [334].

As known, continuation methods do not allow us to know a priori the
number of topological components a surface possesses, i.e. its topological
shape. Hence, the difficulties in finding a seeding point in each surface com-
ponent to polygonise the whole surface. Raposo and Gomes proposed a func-
tion factorisation-based solution to overcome this problem. The idea is to
factorise the implicit function f into function components {fi}, also called
symbolic components or irreducible components, before sampling the corres-
ponding surface.

There are three sorts of symbolic components, namely:

• One symbolic component matches a topological component. In this case, a
symbolic component corresponds to a topological component. For example,
in Figure 6.22, the spherical surface x2 + y2 + z2− 4 = 0 is described by a
single symbolic component f(x, y, z) = x2 + y2 + z2 − 4, which embodies
only one topological component. If we add another disconnected sphere
(x− 9)2 + (y− 9)2 + (z − 9)2 − 9 = 0, we get a function f(x, y, z) = (x2 +
y2+z2−4).((x−9)2+(y−9)2+(z−9)2−9) with two symbolic components,
f1(x, y, z) = x2+y2+z2−4 and f2(x, y, z) = (x−9)2+(y−9)2+(z−9)2−9,
each corresponding to a single topological component. Therefore, at least
in this case, factorisation allows to know in advance the topological shape
of the surface, i.e. the number of their topological components.

184 6 Continuation Methods

Fig. 6.22. f(x, y, z) = x2 + y2 + z2− 4 = 0 has a single symbolic component, while
its surface has a single topological component.

Fig. 6.23. f(x, y, z) = x lnx+ lnx cosz − xy − y cosz = 0 has two symbolic compo-
nents, but its surface has only one topological component.

• Two or more symbolic components form a topological component. This case
is illustrated in Figure 6.23, where the surface f(x, y, z) = x lnx+lnx cosz−
xy − y cosz = 0 has a single topological component with two intersecting
symbolic components. These symbolic components are f1(x, y, z) = lnx−y
and f2(x, y, z) = cosz + x. Each symbolic component can be tessellated
separately. Therefore, we do not need any particular procedure to treat self-
intersections for this sort of surface during the triangulation stage, nor an
exact symbolic algorithm to determine the intersection curve. A triangle-
to-triangle algorithm suffices to polylinearise the intersection curve after
triangulating all symbolic components; for example, the Möller algorithm
is appropriate for this task [276].

• One symbolic component possesses two or more topological components.
In this case, the algorithm only detects and tessellates one topological
component of the symbolic component. For example, the paraboloid of
two sheets −x2 − y2 + z2 = 1 shown in Figure 6.24 consists of a single
symbolic component with two topological components (say two sheets),
but only one sheet is pictured. This is so because, in general, we do not
know a priori the topological type of a symbolic component; consequently,
finding a seeding point on the second topological component or sheet is
only possible by chance. However, important results from the computation
of the topological type of implicit curves and surfaces may be useful to solve
this problem [163, 285, 355].

6.9 Predictor–Corrector Algorithms for Nonmanifold Surfaces 185

 Fig. 6.24. f(x, y, z) = −x2 − y2 + z2 − 1 = 0 has a single symbolic component,
while its surface has two topological components.

Algorithm 21 Raposo-Gomes’ Predictor–Corrector Algorithm for Surfaces
1: procedure Raposo-Gomes(f ,S,Ω,δ)
2: Factorise f into irreducible function components fi.
3: for i← 0, n do . for each symbolic component
4: Hartmann(fi,S,Ω,δ)
5: end for
6: for i← 0, n− 1 do . for every two meshes Mi,Mj of fi,fj
7: for j ← 1, n do
8: Möller(Mi,Mj) . polyline of curve intersection
9: end for

10: end for
11: end procedure

Note that a symbolic component is not the same as a topological com-
ponent. A function is said to be irreducible if it is non-constant and cannot
be represented as the product of two or more nonconstant function compo-
nents. Every function f can be factorised into irreducible function components
f1, . . . , fn, being factorisation unique up to permutation of the factors and
the multiplication of constants. Thus, we use symbolic factorisation; that is,
f = f1 · . . . ·fn, where each fi represents a symbolic component of the surface.

Algorithm 21 describes Raposo-Gomes’s algorithm. It is essentially a
“divide-and-conquer” algorithm because the symbolic factorisation decom-
poses a function expression into subexpressions (or symbolic components).
This way, one tessellates each symbolic component separately instead of the
surface as a whole. After polygonising all irreducible components of the sur-
face, one determines their intersection curve (step 3). This can be easily done
by using Möller’s algorithm [276] to find intersecting triangles of the irre-
ducible components. Thus, neither analytic nor symbolic techniques are nec-
essary to resolve self-intersections. Note that this resolution of singularities
(i.e. self-intersections) is important for keeping a valid representation of the
surface in the data structure, but it is not necessary for visualisation purposes.

186 6 Continuation Methods

6.10 Final Remarks

In this chapter we have dealt with the class of continuation algorithms, which
includes both piecewise linear (PL) and predictor-corrector (PC) algorithms.
PL algorithms were mainly developed in the field of numerical analysis us-
ing fixed triangulations of domain. In this context, the work of Allgower and
colleagues possibly is the one with more impact in computer graphics and
computational geometry. In turn, PC algorithms triangulate the surface di-
rectly. That is, no need exists for an intermediate triangulation of the domain.
But, this intermediate triangulation of PL methods has the advantage that
no concern is taken in relation to smoothness of functions. PL methods are
thus inherently derivative-free methods.

7

Spatial Partitioning Methods

This chapter deals with spatial partitioning algorithms for rendering implicit
surfaces. Typically, these algorithms start with a preliminary space decom-
position of the domain (e.g. bounding box) into smaller subdomains or cells
(e.g. cubic boxes), discarding those cells that do not intersect the surface. The
surface is then polygonised or approximated by one or more polygons within
each intersecting cell in order to render it on screen.

7.1 Introduction

Early spatial partitioning algorithms were developed by Wyvill et al. [421] for
rendering soft and blobby objects, and Lorensen and Cline [247] who designed
the marching cubes algorithm for generating human organ surfaces from med-
ical image data sets. Depending on the input data, these algorithms can be
classified as either continuous data-based algorithms or discrete data-based
algorithms. Discrete data-based partitioning algorithms have been developed
from Lorensen and Cline’s algorithm. In this case, no function is known a
priori so that the algorithm only operates on discrete data at the vertices of a
grid, from which a surface is generated by interpolation. In contrast, contin-
uous data-based partitioning algorithms can be viewed as a follow-up of the
Wyvill et al. algorithm, as they operate on a given trivariate function such
that continuous data can be evaluated at arbitrary points of the domain. In
both cases, rendering an implicitly defined surface requires the computation
of a polygonal mesh that approximates the surface.

Space partitioning algorithms subdivide (either uniformly or adaptively)
the space into a lattice of cells to find those that intersect the implicit curve or
surface. Usually, cells are either squares in R2 (respectively, cubes in R3 or n-
cubes in Rn) or triangles in R2 (respectively, tetrahedra in R3 or n-simplices
in Rn). The sign of the implicit function at the cell vertices determines a
topological configuration (also known as topological type or pattern) that
guides the polygonisation of the surface.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 187
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

188 7 Spatial Partitioning Methods

Cubes may lead to ambiguous configurations as more than one mesh can
be created for the same configuration type; consequently, the mesh that ap-
proximates the surface may be generated with cracks. Some disambiguation
strategies have been proposed in the literature, including simplicial decom-
position, modified look-up table disambiguation, gradient consistency-based
heuristics and quadratic fit, trilinear interpolation techniques, and recursive
subdivision of space into smaller cells. Unlike cubes, tetrahedra tend to gener-
ate topologically consistent triangular meshes (i.e. without ambiguities), yet
with distorted triangles. These distorted triangles require some kind of post-
processing procedure to repair the resulting mesh.

7.2 Spatial Exhaustive Enumeration

This family of algorithms partition the space into axis-aligned n-cubes, some-
times called voxels. The well-known marching cubes (MC) algorithm belongs
to this family. It was designed for the visualisation of the human anatomy.
Medical 3D images are composed from uniform 2D slices taken from comput-
erised tomography (CT) scanners—also called computerised axial tomogra-
phy (CAT) scanners—magnetic resonance imagers (MRI), positron emission
tomography (PET) scanners or even ultrasound scanners. These sliced 3D
images contain detailed data about human organs that need be extracted and
visualised for medical purposes. Many methods have been devised in last two
decades and, in a way, explain the emergence of the research field of scientific
visualisation.

We can ask ourselves, “Which is the relation between those sliced 3D im-
ages and spatial exhaustive enumeration algorithms in computer graphics and
geometric modelling?” In fact, a sliced 3D image induces a space decompo-
sition into voxels from which we can extract a cloud of points of a specific
human organ. The points of different organs have distinct threshold values
so that using a single threshold value over all slices we are able to extract
a cluster of points for a particular organ. In other words, given a threshold
value and a pack of 2D digital slices generated by some medical 3D scanner
as input data source, the algorithm performs the exhaustive enumeration of
a rectangular bounding box into voxels, from which points of a human organ
surface can be extracted, interpolated and polygonised.

Thus, spatial exhaustive enumeration algorithms can be used to extract
human organ surfaces from a pack of 2D pixel images. Note that these med-
ical surfaces are not given a priori an algebraic or analytic expression. Such
expression is given by the so-called interpolants as usual in scientific visu-
alisation, which simply interpolate the medical data inside each voxel. It is
convenient here to recall that spatial exhaustive enumeration algorithms ap-
ply not only to trilinear interpolants that approximate human organ surfaces,
but also to general trilinear surfaces implicitly defined by level sets. The dif-
ference is that, instead of feeding the algorithm with a threshold value (also

7.2 Spatial Exhaustive Enumeration 189

called isovalue) and a rectangular pack of 3D digital slices, the input consists
of a real constant (or function value) and the trivariate expression of a real
function.

7.2.1 Marching Squares Algorithm

Marching squares (MS) is the 2-dimensional version of marching cubes (MC)
algorithm, i.e. the marching 2-cubes algorithm. It applies to only one digital
2D slice, while the MC algorithm applies to a pack of digital 2D slices. There-
fore, given a threshold value and a single 2D slice, it generates a contour line
by bilinear interpolation. That is, MS is a contour algorithm, and thus ap-
plies to many other scientific fields, namely: cartography, weather forecasting,
fluid dynamics, etc. As known, the essential concept behind contouring is that
of isolines, i.e. lines whose points are associated to equal values, the thresh-
olds. For example, contours may represent lines with different temperatures
(isotherms) or pressures (isobars) over the globe, as needed in weather fore-
casting. Obviously, there are several methods to generate contours, depending
on the type of the grid, type of interpolation, and order of curve generation
[66, 333, 344, 405]. In this section, the focus is on bilinear interpolation over
a rectangular grid of squares.

Bilinear Interpolation

In contouring, we assume that data varies linearly between consecutive data
points of a rectangular grid of squares. This assumption seems to be reasonable
even when data does not vary linearly since we are able to guarantee a high
data resolution in a preprocessing stage.

Bilinear interpolation extends linear interpolation to bivariate functions
on a regular grid. The idea is to perform linear interpolation in two distinct
directions, one after the other. So, let us determine the value of the unknown
function f at the point P = (x, y) of the square [x0, x1] × [y0, y1], assuming
that the values of f at the corners P00 = (x0, y0), P01 = (x0, y1), P10 = (x1, y0)
and P11 = (x1, y1) are known (Figure 7.1).

The linear interpolation in the x-direction on the horizontal square sides
yields

f(x, y0) ≈ x1 − x
x1 − x0

f(P00) +
x− x0

x1 − x0
f(P10) (7.1)

and
f(x, y1) ≈ x1 − x

x1 − x0
f(P01) +

x− x0

x1 − x0
f(P11) (7.2)

where x ∈ [x0, x1]. Now, interpolating these two values in the y-direction we
obtain

f(x, y) ≈ y1 − y
y1 − y0

f(x, y0) +
y − y0

y1 − y0
f(x, y1) (7.3)

190 7 Spatial Partitioning Methods

F00 F10

F01 F11

x0 x1
y0

y1

x

y P(x,y)

(a) (b) (c)

Fig. 7.1. Bilinear interpolation of a 2-cube [x1, x2] × [y1, y2] with f00 = 0.0,
f10 = 1.75, f01 = 1.75 and f11 = 0.5: (a) interpolation scheme: first along [x1, x2],
then along [y1, y2]; (b) colour interpolation with (R,G,B)START = (0.5, 1.0, 0.75)
and (R,G,B)END = (10.0, 5.0, 0.0); (c) colour interpolation with (R,G,B)START =
(0.5, 0.1, 0.75) and (R,G,B)END = (10.0, 5.0, 0.0).

that is, the estimate of f(x, y). Substituting Equation (7.1) and Equation (7.2)
in Equation (7.3), we get the bilinear interpolant F (x, y) that approximates
f(x, y), say f(x, y) ≈ F (x, y) with

F (x, y) =
f(P00)

(x1 − x0)(y1 − y0)
(x1 − x)(y1 − y)

+
f(P10)

(x1 − x0)(y1 − y0)
(x− x0)(y1 − y)

+
f(P01)

(x1 − x0)(y1 − y0)
(x1 − x)(y − y0)

+
f(P11)

(x1 − x0)(y1 − y0)
(x− x0)(y − y0)

(7.4)

The isocontouring problem can be then rewritten as follows: given the
values of a bilinear function F (x, y) at the vertices of an axis-aligned square
D = [x0, x1]× [y0, y1], determine and display isolines corresponding to thresh-
old value c

C = {(x, y) ∈ D | F (x, y) = c} (7.5)

Without loss of generality, we transform the square domain D into a unit
square I = [0, 1] × [0, 1] for convenience, so that the bilinear interpolant is
hereafter as follows:

F (x, y) = F00(1− x)(1− y) + F10x(1− y) + F01(1− x)y + F11xy (7.6)

after labelling the function values as F (x, y) = Fxy for simplicity. This bilinear
function can be rewritten as

7.2 Spatial Exhaustive Enumeration 191

F (x, y) = Axy +Bx+ Cy +D (7.7)

where

A = F00 − F10 − F01 + F11

B = F10 − F00

C = F01 − F00

D = F00

(7.8)

Note that the bilinear interpolant is not linear. On the contrary, it is the
product (ax+ b)(cy+ d) = Axy+Bx+Cy+D of two linear functions, where
A = ac, B = ad, C = bc and D = bd. The bilinear interpolant is quadratic
along any straight line inside D, except along lines parallel to either in the x-
or the y-direction where it is linear (simply because either y or x is constant,
respectively).

Topological Configurations and Ambiguities

To correctly display the bilinear interpolant within a cell, we need to know its
topological configuration inside such a cell. For that, we compute its partial
derivatives as

∂F

∂x
= Ay +B and

∂F

∂y
= Ax+ C. (7.9)

That is, these derivatives vanish at the stationary point (−CA ,−
B
A). Besides,

the eigenvalues of the Hessian matrix are of opposite signs, λ = ±A; as a
consequence the stationary point is a saddle point for A 6= 0, i.e. the inter-
section point of two hyperbola asymptotes. In this case, the contour curve is
a hyperbola, which has to be approximated by straight line segments. But,
if A = 0, the interpolant F (x, y) is linear and the contours are just straight
lines within the cell so that contouring is exact.

The possible topological configurations of the polylinearised contour curve
are shown in Figure 7.2. Ambiguity appears when the contour curve is topo-
logically equivalent to a hyperbola (configurations 5 and 10). We simply do not
know how to connect pairs of hyperbola points on the boundary of the square.
This happens when positive and negative vertices are diagonally opposed. A
square point (x, y) is positive (respectively, negative) when its corresponding
data is above (respectively, below) the threshold value c.

This hyperbola ambiguity can be solved by means of two methods. The
first is known as the four triangles method and seems to be due to Dayhoff [96],
Heap [180] and Wyvill et al. [422]. Basically, one computes the function value
at the centre of the square. If this value is greater than the threshold value, the
separation of the pairs of intersection points is done along the square diagonal
that contains the positive vertices; otherwise, we use the diagonal defined by
the negative vertices. These two diagonals divide the square into four triangles;

192 7 Spatial Partitioning Methods

110=00012 010=00002 210=00102 310=00112

510=01012 410=01002 610=01102 710=01112

910=10012 810=10002 1010=10102 1110=10112

1310=11012 1210=11002 1410=11102 1510=11112

Fig. 7.2. Topological configurations for marching squares.

hence the name of four triangles. Unfortunately, this disambiguation method
only works when the function values at the centre of the square and at the
saddle point have identical signs.

The second disambiguation method is called asymptotic decider and was
introduced by Nielson and Hamann [303] to solve ambiguities in the more
general context of the MC algorithm. The pairwise connection is done after
separating the two pairs of hyperbola points on the boundary of the cell. This
is done by locating each of these points in relation to one of the asymptotes;
for example, a point (x, y) in on the left of the asymptote ∂F

∂y = Ax+ C if it
satisfies Ax + C < 0; it is on the right if Ax + C > 0. This is an elementary
space separation technique that works beautifully.

The Algorithm

Let us then describe the marching 2-cubes algorithm for implicitly defined
curves. Recall that an implicit curve in R2 is defined by the zero set of a real

7.2 Spatial Exhaustive Enumeration 193

bivariate function f : R2 → R, i.e. f(x, y) = 0. This is slightly different for
isocontours because no input function f(x, y) is given a priori ; instead, one
uses a bilinear interpolant F (x, y) ≈ f(x, y).

Marching squares algorithm essentially is a “divide and conquer” algo-
rithm. It starts by splitting the axis-aligned rectangular domain or bounding
box Ω = ∆X × ∆Y into a grid of n × m squares of side length equal to δ.
Then, each square is processed individually, that is, one evaluates the function
f(x, y) on its four vertices, stores these function values in the data structure,
computes the intersection points between the curve and the square edges by
using some root-finding method (see Part II), and then “marches” or moves
onto the next square. The obvious data structure for this space decomposi-
tion is a 2-dimensional array a[m,n] of m×n elements, in which each element
stores the data corresponding to a square.

The crucial steps of the marching squares algorithm (Algorithm 22) are
the steps 8 and 9 provided that they determine how the curve crosses each
square, i.e. the accurate topological shape within each square. It is clear that
this also depends on the square side length δ.

For computing the topological configuration within a square, we use a 4-
bit code which encodes the state of each vertex with a single binary digit. If
f evaluates negative at a vertex, its bit is set to 0; if f evaluates positive,
the corresponding bit is set to 1. Therefore, each topological configuration
corresponds to a specific 4-bit code. This code works as an index for a look-up
table that stores all possible topological configurations. The data stored in
this look-up table is used to correctly polylinearise the curve segment that
crosses the square.

Taking into account that each square has four vertices and the function
evaluates either positive or negative, we conclude that there are 42 = 16 possi-
ble topological configurations within any square, i.e. a curve passes any square
in up to different 16 ways. These 16 topological configurations form the lookup

Algorithm 22 The Marching Squares
1: procedure MarchingSquares(f ,Ω,δ,a[m,n])
2: m← ∆X/δ
3: n← ∆Y/δ
4: for i← 0,m− 1 do
5: for j ← 0, n− 1 do
6: Create square �i,j .
7: Evaluate f at each vertex of �i,j .
8: Set up the topological configuration of the curve within �i,j .
9: Find roots of f along edges of �i,j .

10: Polylinearise the curve across �i,j .
11: a[i, j]← �i,j
12: end for
13: end for
14: end procedure

194 7 Spatial Partitioning Methods

table used by the algorithm. These configurations are shown in Figure 7.2. The
binary encoding of the vertices is counterclockwise, starting on the bottom-left
vertex. For example, the pattern 1 (number base 10) in Figure 7.2 is encoded
as 0001 (number base 2), while the pattern 9 (number base 10) is encoded
as 1001 (number base 2). This encoding is used to index the pattern table.
Once the correct pattern has been established, we can polylinearise the curve
within the square with reasonable topological guarantees.

However, it is necessary to keep in mind that the topological configura-
tions in Figure 7.2 are for bilinear interpolants. For more general polynomial
functions of degree 3 or higher, the look-up table necessarily grows with new
topological configurations and the assumption of linearity along the edges of
a square is no longer valid. For example, it is possible to have more than one
curve point on a single edge. In this case, a possible solution is to subdivide
squares recursively until every square fits some of the those 16 configurations
in Figure 7.2. Note that we have not considered the case that occurs when the
curve crosses a vertex or the case of a curve self-intersection within a square.

7.2.2 Marching Cubes Algorithm

Marching cubes (MC) algorithm likely is the most used algorithm in scien-
tific visualisation, including applications in medical imaging, bioinformatics,
geographical information systems (GIS), weather forecasting, and many oth-
ers. MC algorithm was introduced by Lorensen and Cline [247] in the context
of medical imaging, though a similar algorithm due to Wyvill et al. [422]
had been published before in the context of modelling soft objects. The main
difference between these two algorithms lies in their spatial indexing data
structures. The first uses a voxel-based data structure (i.e. a 3D array that
mimics the partitioning of the bounding box into cubes), while the second
uses a hash-table structure.

Trilinear Interpolation

Similar to the extraction of isocontours by using bilinear interpolation inside
the unit 2-cube, we can extract isosurfaces by interpolating trilinearly values
on eight vertices of the unit 3-cube. By generalisation of Equation (7.4), we
obtain the trilinear interpolant

F (x, y, z) = F000(1− x)(1− y)(1− z) + F001(1− x)(1− y)z
+ F010(1− x)y(1− z) + F011(1− x)yz
+ F100x(1− y)(1− z) + F101x(1− y)z
+ F110xy(1− z) + F111xyz

(7.10)

The trilinear interpolant is a cubic polynomial. As before, we are consid-
ering here the unit 3-cube I3 = [0, 1] × [0, 1] × [0, 1] because the extension

7.2 Spatial Exhaustive Enumeration 195

to general case is done by using simple scaling factors. It is clear that inside
each face of the unit 3-cube the values of F vary bilinearly because one of the
coordinates remains constant. Along each edge of the 3-cube, F varies linearly
as two out three coordinates do not vary.

Therefore, in addition to saddle points in faces (i.e. face saddles), there
may be saddle points in the interior of each 3-cube, which are called body
saddles. Recall that saddle points occur where the partial derivatives vanish
simultaneously. For face saddles we use the two partial derivatives of the
bilinear interpolant given by Equation (7.4) with the appropriate variables
in place, while the three partial derivatives of the trilinear interpolant above
are used to determine the body saddles of a 3-cube. As shown by Lopes and
Brodlie [244] and Natarajan [295], extra topological configurations of face and
body saddle points can be used to disambiguate the topological shape of a
trilinear isosurface within each 3-cube correctly.

The algorithm

Similar to 2-dimensional contours and curves, a marching cubes algorithm
involves a three-stages discretisation of the level set, namely:

• Partition of the bounding box.
• Sampling of the surface.
• Polygonisation of the surface.

The first stage partitions the bounding box into cubes (step 8 of Algo-
rithm 23). In fact, this discretisation of the bounding box need not be done
explicitly. There is no need to explicitly store edges and faces for each cube.
It is enough to store the vertex data of each cube into a n-dimensional array,
where n is the dimension of the cube (or of the space where the level set lies
in).

MC algorithm creates and processes each cube at a time. After processing
one cube, it moves (or marches) to the next one in an axis-aligned grid of
equally sized cubes. The simplicity of this algorithm is a result of the one-
to-one mapping between the cubes created inside the bounding box and the
elements of the array data structure.

The second stage (steps 9–11 of Algorithm 23) concerns the sampling of
the surface. Sampling consists in determining which cubes intersect the surface
and where. This involves the following sequence of operations for each cube:

evaluation→ classification→ interpolation.

Sampling an implicit surface is the critical part of the algorithm because
intersection points usually are determined by numerical interpolation (i.e.
2-point numerical methods), which may fail unless we use some of those cer-
tified techniques (e.g. interval arithmetic) described in Part II.

196 7 Spatial Partitioning Methods

Algorithm 23 The Marching Cubes
1: procedure MarchingSquares(f ,Ω,δ,a[m,n, o])
2: m← ∆X/δ
3: n← ∆Y/δ
4: o← ∆Z/δ
5: for i← 0,m− 1 do
6: for j ← 0, n− 1 do
7: for k ← 0, o− 1 do
8: Create cube �i,j,k.
9: Evaluate f at each vertex of �i,j,k.

10: Set up topological configuration of the surface within �i,j,k.
11: Find roots of f along edges of �i,j,k.
12: Polygonise the surface across �i,j,k.
13: a[i, j, k]← �i,j,k
14: end for
15: end for
16: end for
17: end procedure

For implicit surfaces, one first proceeds to the evaluation (step 9 of Al-
gorithm 23) of the function at each vertex of the current cube, whose values
(either positive or negative) are stored in the corresponding data structures
for vertices. Second, one encodes the topological configuration of the surface
within the cube, a bit per vertex. Since there are two signs for function values
and a 3-cube possesses 8 vertices, we readily come to the conclusion that there
are 28 = 256 possible shape configurations of the surface within a cube. In
practice, we use a simplified lookup table with fourteen shape configurations
(Figure 7.3). In fact, using cube symmetry operations (reflections and rota-
tions), those 256 possible shape configurations are easily reduced to fourteen
unique cases.

If a vertex has a function value equal or less than isovalue c of the surface,
its bit is set to 0 (marked as ◦ in Figure 7.3); otherwise, it is set as 1 (marked
as • in Figure 7.3). A cube edge crosses the surface if its vertices have dis-
tinct values (0 and 1). This bit encoding of vertices leads to the classification
(step 10 of Algorithm 23) of the topological shape of the surface within each
cube, as illustrated in Figure 7.3. This classification eases the interpolation
(step 11 of Algorithm 23) of edges which do intersect the surface, reducing
the processing workload to a minimum as non-transverse edges need not be
processed.

Note that, for 3D medical images (e.g. MRI), no function is evaluated
on the vertices because the data values are given by eight pixels, four each
from two consecutive digital slices of a sliced volumetric data set. That is,
sampling reduces to two stages: classification and interpolation. For that, we
use a trilinear interpolant F (x, y, z) to reconstruct the surface corresponding
to a given threshold value. This interpolant is a cubic polynomial. Therefore,

7.2 Spatial Exhaustive Enumeration 197

110=000000012 010=000000002 210=000000102 310=000000112

510=000001012 410=000001002 610=000001102 710=000001112

910=000010012 810=000010002 1010=000010102 1110=000010112

1310=000011012 1210=000011002

Fig. 7.3. Topological configurations for marching cubes.

intersection points between the surface (described by the interpolant) and
voxel edges usually are found by linear interpolation because we only use the
data values of the pixels of each slice to reconstruct the surface in a volumetric
data set.

Found the interpolated points, only the polygonisation of the surface (third
stage) remains to be done. The third stage reduces to triangulate the polygons
within each cube before rendering the triangular mesh that approximates the
surface (step 12 of Algorithm 23). For example, the quadrangles of the cases
2, 6, 8 and 10 can be easily decomposed into two triangles each. Thus, MC
algorithm generates a mesh that approximates an implicit surface as described
in Algorithm 23.

198 7 Spatial Partitioning Methods

Ambiguities

MC algorithm does not offer topological guarantees. The polygonisation of
the surface can be foiled up by eventual shape topological ambiguities that
the algorithm cannot detect or solve. There are two types of ambiguities:

• Face ambiguities.
• Interior ambiguities.

Let us look at the 2D ambiguous configurations 5 and 10 in Figure 7.2.
These configurations are ambiguous because they possess four intersection
points on the boundary of a square. Disambiguation in 2D is then a matter of
selecting the right pairs of intersection points to connect. In 3D, face ambigu-
ities of a cube also occur when all its four edges intersect the surface. In this
case, the triangulation procedure has to determine which pairs of intersection
points to connect. If pairs are wrongly formed, “holes” or cracks may appear
through the surface mesh when we try to merge the triangle edges of adjacent
cubes. This first problem was pointed out by Dürst [122] and arises when the
topological configurations of adjacent cubes do not match, as illustrated in
Figure 7.4. In Figure 7.4(a), the adjacent cells possess matching topological
configurations so that the surface will be polygonised without cracks in the
shared face. Note that matching topological configurations mean matching po-
larity of vertices on the shared face. On the contrary, in Figure 7.4(b), there
is not such a matching because the 3-type cell appears rotated 90 degrees
in relation to its position in Figure 7.4(a); hence, the cracking phenomenon.
That is, the lack of the shape continuity or matching between adjacent cells
leads to the appearance of cracks in the final polygonised surface.

There are a couple of face disambiguation techniques. They are exactly
those seen above for marching squares in 2D. The first, called the four triangles
technique, was proposed by Wyvill et al. [422] in the context of isosurfacing
in computer graphics. The second is due to Nielson and Hamann [303] and
is called asymptotic decider. Recall that the asymptotic decider is based on
the saddle point value of the bilinear interpolant to carry out the correct

(a) polygonisation without cracks (b) polygonisation with a crack

Fig. 7.4. Matching topological configurations of adjacent cubes.

7.2 Spatial Exhaustive Enumeration 199

connections between pairs of intersection points on an ambiguous face. Both
techniques guarantee the continuity between cells. However, the four triangles
technique not always guarantees the topological correctness of the surface on
the domain boundary. Fortunately, the unlike the asymptotic decider does.

As van Gelder and Wilhelms [395] pointed out, there is continuity between
cells if and only if each triangle edge is shared by exactly two triangles, ex-
cept for those triangle edges lying on the bounding box boundary. Otherwise,
cracks will appear through the surface mesh. The topological shape is cer-
tainly incorrect if not continuous. However, continuity is a necessary, but not
sufficient, condition for getting a surface mesh with topological guarantees.

Recall that the asymptotic decider only aims to solve face ambiguities. But,
other ambiguities may occur in the interior of a cube. In fact, Natarajan [295]
and Chernyaev [84] independently noted that additional ambiguities may ap-
pear in the representation of the trilinear interpolant in the cube interior. This
may even happen when the cube has no ambiguous faces.

For example, configuration 10 (Figure 7.3) has no ambiguous faces but it
admits at least two different shapes, as shown in Figure 7.5 (recall that data
varies trilinearly within the cell). The first shape is the usual one with two
separate components, while the second is a simple component with a tunnel
through it.

In [76], Natarajan proposes a similar method to the asymptotic decider
to detect the existence of internal tunnels. For that, he uses the concept of
body saddle point as an extension of 2D saddle point, i.e. a point at which
all the three first derivatives of the trilinear interpolant vanish. So, for con-
figuration 10, if the function evaluates negative at the body saddle point (i.e.
it has opposite sign to the two marked positive vertices), the surface has two
connected components inside the cube. If the body saddle point is positive,
then there is a tunnel between those two marked positive vertices. Natarajan
also indicates that internal tunnels may appear in configurations 4, 6, 7, 10,
12 and 13. Chernyaev [84] uses a different disambiguation strategy, but the
results are essentially the same.

Fig. 7.5. Ambiguities in the cube interior.

200 7 Spatial Partitioning Methods

Matveyev [261] also addresses the interior ambiguity problem, being the
interior ambiguities resolved by inspecting the behaviour of the trilinear func-
tion along the cell diagonals. van Gelder and Wilhelms [395] propose a disam-
biguation technique in the interior of a cube, but this technique requires data
beyond the extent of the cube itself, i.e. data from the surrounding cubes. It is
a very time-consuming technique just to be used for disambiguation, with the
further disadvantage that it must be applied to both nonambiguous and am-
biguous cubes. This is troublesome because discontinuities may appear when
one applies linear interpolation to an nonambiguous cube and cubic inter-
polation to an adjacent and ambiguous one. van Gelder and Wilhelms [395]
propose other disambiguation techniques that use the gradient vector at the
cube vertices to study how the function behaves across the domain. In fact, the
gradient vector, which is normal to the surface, indicates the direction along
which the function rises most rapidly, being its magnitude that determines
how quickly the function rises in that direction.

Cignoni et al. [85] propose a disambiguation strategy based on an adaptive
mesh refinement in order to get a very accurate representation for trilinear
isosurfaces. For that, a new, exhaustive look-up table (ELUT) was designed to
encode multi-entry patterns for each ambiguous configuration. Once again, in
[301], Nielson extends his own work by presenting a more precise characterisa-
tion and classification of the isosurfaces of trilinear functions. Based on these
results, he presents a new polygonisation algorithm that outputs a triangular
mesh that approximates isosurfaces for data given on a 3D rectilinear grid.
Lopes [243] and Lopes and Brodlie [244] also discusses and proposes accurate
disambiguation techniques using additional points on the boundary and inte-
rior of the cube. Lewiner et al. [232] describes an efficient implementation of
marching cubes with topological guarantees. Recently, Renbo et al. [337] have
provided a robust and topologically correct MC algorithm without using the
conventional look-up table.

In short, several techniques have been devised to overcome shape ambigu-
ity problems on the boundary and interior of marching cubes. In addition to
these local disambiguation techniques, various global solutions and algorithms
have been proposed in the literature to solve these ambiguity problems. Two
of these algorithms are the dividing-cubes and the marching-tetrahedra, which
can be viewed as variants of the marching cubes.

7.2.3 Dividing Cubes

Dividing cubes algorithm was proposed by Cline et al.[86] and is a variant
of marching cubes. It was introduced in the context of the production of 3D
medical images, i.e. surface reconstruction and rendering, in order to bypass
the scan conversion step of polygonal rendering algorithm.

Dividing cubes differs from marching cubes in that each cube is divided
into pixel-sized cubes, also called pixel-sized voxels. This division depends on

7.2 Spatial Exhaustive Enumeration 201

both image and data resolution. Each voxel is classified as being inside, out-
side or intersecting the surface with reference to the threshold value of the
isosurface. As usual, it is this threshold value that determines which human
organ will be visualised. But, unlike marching cubes, the sampling stage re-
duces to check whether each of those pixel-sized cubes belong to the isosurface
or not. There is no need for setting topological configurations for cubes, nei-
ther applying numerical interpolation to find surface points between vertices.
This explains why there is no concern about the shape ambiguities over cells.

After extracting the surface through this pixel-sized sampling, the visu-
alisation of the surface is straightforward. The algorithm generates a single
surface point for each pixel-sized voxel that intersects the surface. Such a point
is the centre of this pixel-sized voxel. Then, one computes the gradient vector
at the voxel centre point by interpolating the gradients on its eight vertices
in order to display it according to the Phong shading model.

Thus, the idea is to approximate the surface by a cloud of points instead of
a mesh of triangles. Displaying point primitives is more efficient than triangles
in terms of memory and time because point primitives can be displayed on
the raster directly. This means that the polygonisation stage of the marching
cubes is no longer necessary. This is particularly adequate in high-resolution
medical imaging, as the density of triangles increases in such a way that
the size of each triangle decreases and tends to the pixel size. Consequently,
rendering points instead of triangles pays off in terms of computational cost.

7.2.4 Marching Tetrahedra

Marching tetrahedra (MT) is an algorithm for computing a triangular mesh
that approximates an isosurface in a 3D volume. It is another attempt to solve
the ambiguities of the marching cubes. Where the marching cubes algorithm
decomposes the 3D volume into cubic cells, the marching tetrahedra algorithm
performs such a decomposition into tetrahedral cells or tetrahedra.

Tetrahedral Decompositions of a Cube

There are exactly 74 triangulations of the 3-cube, which fall into six classes
of combinatorially different types [44, 107, 225]. Representatives of three of
these classes are shown in Figures 7.6–7.8. All these triangulations of the
3-cube are regular. But, for higher-dimensional cubes, d-cubes (d ≥ 4), not
all triangulations are regular [107].

Interestingly, the smallest size of a triangulation of the 3-cube that slices
off its vertices is 5 [198]. Such a minimal triangulation is shown in Figure 7.6.
Recall that the size of a triangulation is the number of its higher-dimensional
simplices. It is also known that the maximum size of a triangulation of the
d-cube is d! [225]. Therefore, any maximal triangulation of the 3-cube has size
6, as those depicted in Figure 7.7 and Figure 7.8.

202 7 Spatial Partitioning Methods

(a) (b) (c)

(d) (e)

Fig. 7.6. 5-decomposition of a cube into tetrahedra: (a) one equilateral tetrahedron
and (b)-(e) four cubic tetrahedra.

(a) (b) (c)

(d) (e) (f)

Fig. 7.7. 6-decomposition of a cube into tetrahedra.

7.2 Spatial Exhaustive Enumeration 203

(a) (b) (c)

(d) (e) (f)

Fig. 7.8. Kuhn decomposition of a cube into tetrahedra.

Piecewise Linear Interpolation

Using piecewise linear interpolation aims at solving ambiguities within n-
dimensional hypercubes. Each hypercube is divided into d! smaller pieces,
called simplexes. Recall that a simplex is a convex region bounded by hyper-
planes of lower dimension.

The interpolation varies linearly over each simplex. Again, for simplicity,
we only consider here the unit hypercube Id = [0, 1]×[0, 1]×. . .×[0, 1]; the gen-
eral case simply requires scaling factors. Let us first consider the 2-dimensional
case, i.e. the unit square in Figure 7.9(a). Let us also label the values of the
linear interpolant at each of the vertices as F (0, 0) = F00, F (1, 0) = F10,
F (1, 1) = F11, and F (0, 1) = F01.

The diagonal line in Figure 7.9(a) slices the square into 2! = 2 triangles:
the lower triangle is the region 0 ≤ y ≤ x ≤ 1, and the upper triangle is the
region 0 ≤ x ≤ y ≤ 1. The linear interpolant over the lower triangle is given
by the following expression:

F (x, y) = F00 + (F10 − F00)x+ (F11 − F10)y. (7.11)

Analogously, in the upper triangle, the linear interpolant is

F (x, y) = F00 + (F01 − F00)y + (F11 − F01)x. (7.12)

Let us consider now the linear interpolation over the unit cube I3 = [0, 1]3,
as shown in Figure 7.9(b). In this case, the cube is sliced into 3! = 6 tetrahedra,
as for example the Kuhn triangulation shown in Figure 7.8. Let us consider,

204 7 Spatial Partitioning Methods

F00

(0,0)
F10

(1,0)

F01

(0,1)
F11

(1,1)

F011

(0,1,1)
F111

(1,1,1)

F001

(0,0,1)

F010

(0,1,0)

F000

(0,0,0)

F110

(1,1,0)

F101

(1,0,1)

F100

(1,0,0)

x

y

x

y z

)b()a(

Fig. 7.9. Piecewise interpolation of the unit 2-cube and the 3-cube.

for example, the tetrahedron 0 ≤ x ≤ z ≤ y ≤ 1 (Figure 7.8(b)). As illustrated
by the arrows on the edges of the cube depicted in Figure 7.9(b), we follow
the path by sorting the variable values in ascending order, say y ≥ z ≥ x, so
that the interpolation formula for every point within this tetrahedron is:

F (x, y, z) = F000 + (F010 − F000)y + (F011 − F010)z + (F111 − F011)x. (7.13)

Note that the function values F000, F010, F011, and F111 are picked up
by following the ascending order: first y, second z, and then x. Note that
every point within a tetrahedron has the same ascending order. Therefore,
it is straightforward to obtain interpolation formulas for the remaining five
tetrahedra inside the cube. And, more importantly, this easily generalises to
higher dimensions.

Recall that the main problem with cubic grids—whose scalar data is stored
at the vertices—is that the linear interpolation over a cube may produce
ambiguous surface configurations inside such a cube. The idea of splitting
cubes into tetrahedra aims at solving such ambiguities because the linear
interpolation over a tetrahedron becomes unique and the isosurfaces between
any two neighbouring tetrahedra are conformal [409]. Note that we are here
assuming that the interpolation scheme acts on scalar values at the vertices so
that the isovalues inside a tetrahedron correspond to isolevel planes, as shown
in Figure 7.10. This means that the transition between two neighbouring
tetrahedra is not differentiable, but it is scalar-value conformal, as typical
for piecewise linear interpolation.

As noted above, up to symmetry, there are six possible ways of decompos-
ing a regular cube into tetrahedra. These six combinatorial classes fall into two

7.2 Spatial Exhaustive Enumeration 205

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 7.10. Shape configurations inside a tetrahedron.

families with reference to their size: the 5-tetrahedral decomposition and the
6-tetrahedral decomposition. The 5-tetrahedral decomposition corresponds to
the minimal triangulation of a cube into five tetrahedra (Figure 7.6), which
yields an orientation switch of two opposite diagonal face edges of the cube.
Consequently, the tessellation of the isosurface inside a given cube forces a par-
ticular tessellation of all neighbouring cubes in order to guarantee a conformal
mesh. To be more specific, if such 5-tetrahedral cubes are stacked together to
a chain, the mesh in each cube must be rotated by an angle of π/2.

In the case of a 6-tetrahedral decomposition (i.e. a maximal tetrahedrali-
sation) of a cube, opposite face edges have identical orientations. This means
that we can use the same procedure and direction of cutting a cube into tetra-
hedra so that non-conformal mesh tessellations vanish completely. Looking at
Figure 7.8, we see that the Kuhn decomposition of a cube into six tetrahedra
is obtained by splitting diagonally through the three pairs of opposing faces.
In addition to the twelve edges of the cube, we now have more six face di-
agonals, and the main diagonal. Similar to marching cubes, the intersections

206 7 Spatial Partitioning Methods

of these 19 edges with the isosurface are approximated by linear interpola-
tion of the values at the grid corners. Note that all faces of the original cube
are now divided into two triangles, so that adjacent cubes share all edges in
the common face. This nice property prevents the appearance of cracks in
the rendered surface. This is very important for maintaining topological con-
sistency because interpolation of the two distinct diagonals of a face usually
produces different intersection points. Another advantage is that up to five
of computed intersection points (including their surface normals and other
graphics attributes) can be reused when it comes the turn of processing the
neighbour cube.

The Marching Tetrahedra Algorithm

Using tetrahedra has the following advantages:

• Generality. It works on both unstructured and structured meshes. This
makes the marching tetrahedra a generic solution for isosurface extraction
on all grid types. Recall that a structured mesh admits the standard de-
composition of a cube into five tetrahedra [3, 49, 115, 169, 172, 262, 302,
304, 305, 320, 366] or six tetrahedra [3, 10, 302, 305] without adding sup-
plementary points. On the contrary, an unstructured mesh results from
decomposing a cube into tetrahedra with reference to some supplemen-
tary point. By adding the cube centroid as a supplementary point, we can
produce a 12-tetrahedral subdivision after splitting each cube face by a
single diagonal [3, 49, 75, 81]. We can then progressively add centroids to
faces, splitting each face into four triangles in order to produce 14, 16, 18,
20, 24 or 48 tetrahedra [3, 34, 427]. In particular, the 24-tetrahedral sub-
division of a tetrahedron appears in a number of works [3, 10, 156, 407],
and is known as barycentric subdivision (BCS). In general, the BCS of an
n-dimensional simplex consists of (n + 1)! simplices; hence a tetrahedron
or 3-simplex is BCS-decomposed into 24 tetrahedra.

• Disambiguation. The second advantage is that tetrahedra are less prone
to shape ambiguities. The main reason behind this is that the number of
surface configurations in a tetrahedron is far less than the number of con-
figurations inside a cube. In fact, taking into account that each tetrahedron
has only four vertices, we can say that there are only 16 topological con-
figurations, which can be reduced to eight by symmetry, as illustrated in
Figure 7.10. These eight cases can be even reduced down to three cases by
using rotations. The first case is the topological pattern 0 (Figure 7.10(a)),
where no surface intersects the tetrahedron. Note that the filled and hol-
low circles at the vertices indicate that the vertices are on different sides
of the surface. The cases 1, 2, 3 and 4 shown in Figure 7.10(b)-(e), respec-
tively, represent the same topological pattern of a surface triangle defined
on three faces of the tetrahedron. Finally, the cases 5–7 shown in Fig-
ure 7.10(d)-(g) represent the topological pattern of a convex quadrangle

7.3 Spatial Continuation 207

defined on the four faces of the tetrahedron; each quadrangle is usually
divided into two triangles for polygonisation purposes.

The tetrahedral decomposition of the cube ends up with a set of tetrahe-
dra within which the isosurface is correctly drawn as a plane. Note that we
are here assuming that a linear model is being used. However, if the data vary
trilinearly within the cubic cell, as is the case in the MC, then such a tetrahe-
dral decomposition may be not free of ambiguities. Therefore, it is not correct
to assume linear variation of data along the edges of a tetrahedron [243]. That
is, no claim can be made about the automatic removal of ambiguities of MC
by simply decomposing cubes into tetrahedra.

The marching tetrahedra algorithm was first suggested by Shirley and
Tuchman [366]. See also Bloomenthal [50] for an elegant implementation of
a tetrahedral polygoniser. This algorithm is essentially the marching cubes
algorithm (Algorithm 23) with the 5-tetrahedral decomposition step for each
cube. Obviously, the look-up table has now three unique entries for topological
configurations, and the surface within each tetrahedron is approximated by
two triangles at maximum.

7.3 Spatial Continuation

Spatial continuation is a hybrid scheme that combines exhaustive enumera-
tion and continuation. The spatial partitioning is driven by a continuation
scheme, as that one presented by Wyvill et al. [422]. Continuation consists of
producing new transverse cubes (i.e. cubes intersected by the implicit surface)
incrementally from a seeding cube which straddles the surface (Figure 7.11);

(a) (b)

Fig. 7.11. Spatial continuation on two implicit surfaces: (a) z − 1
x2+y2

= 0; (b)

(z − (x2 + y2))(x2 + y2 + (z + 2)2) = 0.

208 7 Spatial Partitioning Methods

this process continues until the entire surface is enclosed by the collection
of cubes [50, 52]. The surface within each cube is then polygonised, i.e. the
surface patch inside each cube is approximated by one or more polygons, as de-
scribed [49]. As expected, this “marching cubes” method also produces cracks
in the surface because of the ambiguities described above. An implementation
in C of this method is presented by Bloomenthal [50].

These algorithms combine the principles of both spatial exhaustive enu-
meration and continuation. As a consequence, the main problem of continu-
ation algorithms—i.e. the computation of at least one seeding point on each
component of the surface—may be then solved by applying interval arithmetic
to axially aligned rectangular boxes belonging to the complement of the union
of surface-straddling cubes inside the bounding box.

7.4 Spatial Subdivision

Subdivision is an adaptive space partitioning technique. It is another attempt
to solve the ambiguity problems resulting from the use of regular space grids.
Before proceeding, let us recall that an implicit object is defined as the zero
set of a real function f : Ω ⊆ Rn → R, i.e. it is the solution set of an equation
f(p) = 0. For well-behaved functions, this zero set is a (n − 1)-dimensional
variety in Rn; in particular, such a zero set is an implicit curve in R2 or an
implicit surface in R3.

7.4.1 Quadtree Subdivision

This section shows how to achieve an adaptive polygonal approximation to a
curve implicitly defined in R2 as follows:

C = {(x, y) ∈ Ω ⊆ R2 : f(x, y) = 0} (7.14)

where Ω is the domain given by an axis-aligned bounding box. Following Lopes
et al. [245], what we mean by adaptive is twofold: first, the subdivision of the
bounding box Ω into smaller boxes is more intensive or finer near the curve
C; second, the polygonal approximation is curvature-adaptive, i.e. the higher
the curvature of C, the finer is the quadtree subdivision (Figure 7.12).

The advantage of the quadtree subdivision over the spatial enumeration is
that the size of the boxes is shape-adaptive so that eventual shape ambiguities
are resolved by further subdivision. For example, to make sure that the curve
depicted in Figure 7.12(b) does not self-intersect on the positive x-axis and
near to the origin, the quadtree has been subdivided down to a finer resolution
around there.

However, even so, if the resolution of the subdivision—i.e. the minimum
size of boxes—is not enough, some small components and isolated points of
the curve may remain undetected and are missed. In other words, the topo-
logical shape of the curve may be not preserved. The obvious solution for

7.4 Spatial Subdivision 209

(a) y3 − x2 + 2xy = 0 (b) y3 − x2 + 2xy − x = 0

Fig. 7.12. Quadtree subdivision for two implicit curves.

this problem is to use interval arithmetic or affine arithmetic (see Chapter 4
for more details). Doing so, we add robustness to the curve polylineariser, in
which the interval arithmetic plays the role of curve locator within each box.
The curve exists inside a box if f takes on the value 0 over two perpendicular
intervals or sides of a square. These boxes are called zero boxes. However, as
seen in Chapter 4, there may be false zero boxes, and the results are even
worse if floating-point computations are involved.

Note that a curve locator (e.g. interval arithmetic, affine arithmetic, or
any of their variants) is not used to sample the curve because that would
require to recursively subdivide a box down to a nearly infinitesimal resolution.
Instead, we use a root finder to compute the curve points that result from the
intersection between the curve and the edges of each zero box. Usually, such a
root finder builds on some classical numerical method (e.g. bisection method,
false position method or Newton’s method), but there is no impediment to the
usage of a symbolic root finder (e.g. Bézier root finder) based on the Descartes
rule. However, most symbolic root finders only apply to polynomials, not to
generic real functions.

The quadtree subdivision algorithm for implicit curves is described in
Algorithm 24. This algorithm has three subdivision stopping conditions:

• Inexistence of curve components. Testing the existence of any curve seg-
ment inside a box �i is done through interval arithmetic. This criterion
appears at the step 4 and discards the boxes of the quadtree that do not
contain any curve component or segment. In fact, the box exclusion test
0 6∈ Image(�i) guarantees that only empty boxes (i.e. boxes without any
segment of the curve f−1(0)) are immediately discarded. However, it may
happen that—as explained in Chapter 4—not only true zero boxes, but
also some false zero boxes will be considered for subdivision, i.e. there may
be redundant and unnecessary subdivision of some boxes.

• Maximum resolution. The maximum resolution is the admissible minimum
size of the boxes. When the size of a box falls below a given threshold ∆,

210 7 Spatial Partitioning Methods

Algorithm 24 Quadtree Subdivision Algorithm for Implicit Curves
1: procedure Quadtree-BasedImplicitCurve(f ,C,Ω,∆,τ)
2: Subdivide Ω into 4 equally sized boxes �i
3: for i← 0, 3 do
4: if 0 6∈ Imagef (�i) then . box exclusion test
5: Discard �i
6: else
7: if (size(�i) < ∆) ∨ (curvature(C) < τ) then
8: Find roots of f along edges of �i . curve points C ∩ Fr(�i)
9: Polylinearise the curve across �i

10: else
11: Quadtree-BasedImplicitCurve(f ,C,�i,∆,τ)
12: end if
13: end if
14: end for
15: end procedure

the recursive subdivision stops and the box becomes a leaf box of the
quadtree.

• Minimum curvature. The minimum curvature τ of the curve inside a given
box works as a threshold below which the subdivision also stops. The idea
is to stop subdividing a box when a curve segment inside it is approxi-
mately flat.

Note that Algorithm 24 also has the classical structure of a space partition-
ing algorithm, namely: partitioning (step 2), sampling (step 8), and polylin-
earisation (step 9). It is a robust algorithm because it uses interval arithmetic
as a fast and robust discarder of empty boxes (i.e. boxes that do not contain
any curve segment). However, it is not strictly necessary to use the interval
arithmetic as a discarder of empty boxes. By evaluating f at the vertices of a
given box �i, we are able, in principle, to check whether a box is empty or not.
In fact, if f does not change sign at the vertices of �i, we conclude that �i is
an empty box. But, this alternative technique for checking the transversality
of the curve within a box fails if a small component of the curve lies entirely
in a box; hence the use of interval arithmetic.

It seems that Suffern [377] was who first tried to use adaptive enumer-
ation, instead of full enumeration, to approximate implicit curves. Shortly
afterwards, Suffern and Fackerell [379] introduced interval arithmetic as a
robust support for the enumeration of implicit curves, whose algorithm is es-
sentially the Algorithm 24. Nevertheless, the credit of the first application of
interval arithmetic in computer graphics is due to Mudur and Koparkar [287].
In [370, 371], Snyder describes a geometric modelling system based on inter-
val arithmetic, which includes an approximation algorithm for implicit curves,
but the corresponding quadtree decomposition is not adapted to the curva-
ture. These pioneering works on interval methods in computer graphics have

7.4 Spatial Subdivision 211

given rise to interesting research results, in particular to the development of
several variants of interval arithmetic (e.g. affine arithmetic [17, 90, 102]).

7.4.2 Octree Subdivision

Similar to 2D implicit curves, a 3D implicit surface S is defined as a zero set
of some real function f , whose domain in now in R3:

S = {(x, y, z) ∈ Ω ⊆ R3 : f(x, y, z) = 0} (7.15)

where Ω is the domain given by an axis-aligned bounding box.
As for quadtrees, the idea behind the octree subdivision is to provide an

adaptive approximation to implicit surfaces. That is, a cubic box through
which the surface passes is subdivided into eight smaller boxes. These smaller
cubes are stored into an octree data structure (see Chapter 2 for further
details). Therefore, the first stopping criterion for an octree approximation to
an implicit surface is the emptiness of a given octree box (i.e. the box exclusion
criterion). Also, the curvature of the surface within a box and box resolution
(i.e. a box has reached its minimum size) can work as stopping criteria for the
octree subdivision (step 7 of Algorithm 25). Other criteria appear listed in
[49]. Their importance come from the fact that they reinforce the adaptivity
of the approximation to the implicit surface.

However, these adaptive criteria are not sufficient to resolve all the topo-
logical ambiguities. Note that a leaf box is topologically unambiguous if the
surface can be approximated by a single polygon within such a box. Topo-
logical unambiguity may work as the fourth stopping criterion of the octree
subdivision. But, resolving all ambiguities may not be an easy task. For exam-
ple, it is not easy to distinguish a surface consisting of two touching spheres

Algorithm 25 Octree Subdivision Algorithm for Implicit Surfaces
1: procedure Bloomenthal(f ,S,Ω,∆,τ)
2: Subdivide Ω into eight equally sized boxes �i
3: for i← 0, 7 do
4: if 0 6∈ Imagef (�i) then . box exclusion test
5: Discard �i
6: else
7: if (size(�i) < ∆) ∨ (curvature(S) < τ) then
8: Find roots of f along edges of �i . surface points S ∩ Fr(�i)
9: Polygonise the surface S across �i

10: else
11: Bloomenthal(f ,S,�i,∆,τ)
12: end if
13: end if
14: end for
15: end procedure

212 7 Spatial Partitioning Methods

from another having two almost touching spheres inside a given box; the first
has only one component, while the second possesses two components. The
problem here is that likely the polygonisation of the surface will be messed-up
inside the box where the surface-touching point lies in.

Satisfied the subdivision stopping conditions (step 7 of Algorithm 25), one
starts the polygonisation (or triangulation) of the surface within each leaf cube
(step 9), after which the surface mesh is ready to be rendered. Algorithm 25
is essentially Bloomenthal’s algorithm [49]. Possibly, this is the earliest work
on adaptive approximation of implicit surfaces through cubic boxes. Bloo-
menthal’s algorithm does not use interval methods for robustness; instead,
Bloomenthal’s algorithm simply inspects the function at the vertices of a box
to check whether the box intersects the surface. This function inspection tech-
nique is not obviously robust because small components entirely inside a box
are certainly missed. The box emptiness test (steps 4 of Algorithm 25), as
opposed to the transversality test (i.e. the intersection between a box and
the surface), is generically written in order to comprise both these robust and
non-robust solutions. A robust and accurate computation of transversality can
be carried out using not only interval arithmetic, but also Lipschitz constants
[185, 207], or even derivative bounds [177].

In the line of the Bloomenthal algorithm, other octree-based recursive
space subdivision have been developed and proposed in the literature [24, 316,
325, 352, 376, 378, 379]. In [379], Suffern and Fackerell proposed the first ro-
bust implementation of Bloomenthal’s algorithm by using interval arithmetic.
In [24], Balsys and Suffern improved the crack removal algorithm proposed
by Bloomenthal [49]. With adaptive subdivisions, cracks may appear in the
polygonal mesh that approximates the surface. In fact, adjacent boxes with
different sizes (or different subdivision depth levels) mean that the surface is
approximated with different resolutions; consequently, the surface is approxi-
mated by nonmatching polygons on overlapping back-to-back faces of adjacent
boxes with different sizes. Putting it differently, the reason behind the crack-
ing problem is that the polygonisation of each cell is carried out independently
of its adjacent cells. Suffern and Balsys [378] also proposed an algorithm to
compute the intersections of implicit surfaces, having them argued that this
algorithm could be extended to polygonise self-intersecting surfaces.

More recently, and following the principle of polygonising with topolog-
ical guarantees, Paiva et al. [316] introduced another adaptive algorithm
for implicit surfaces; its robustness stems from the fact that all topological
components of the surface are located using interval arithmetic; hence, the
topological guarantees. In addition to the box emptiness test, which is a
topological criterion to locate surface components, Paiva et al. also used
a second topological criterion for locating tunnels and enabling the corre-
sponding box subdivision. Interestingly, they also use a third subdivision
geometric criterion that has to do with the curvature-based adaptivity; the
curvature is estimated from the variation of the gradient. The polygonal mesh
that approximates the surface is generated from the dual grid of the octree

7.4 Spatial Subdivision 213

(a) (b) (c)

Fig. 7.13. (a) The marching cubes generates 11,664 triangles; (b) the dual march-
ing cubes generates 5396 triangles; (c) the quality–improved dual marching cubes
also generates 5396 triangles after using a simple mesh processing. (Figure kindly
provided by Dr. Afonso Paiva and his colleagues.)

using the an enhanced Schaefer-Warren method [351]. Thus, unlike the uni-
form tessellation generated by the marching cubes, the algorithm of Paiva
et al. tessellates an implicit surface adaptively, i.e. according to the value of
the surface curvature. This is illustrated in Figure 7.13, where the cyclide
(x2 +y2 +z2)2−2(x2 +r2)(a2 +b2)−2(y2−z2)(a2−b2)+(a2−b2)2 +6abrx = 0
with a = 10, b = 2 and r = 2 appears tessellated using the marching cubes
(Figure 7.13(a)) and the dual octree technique of Paiva et al. (Figures 7.13(b)
and (c)). Paiva et al. call their algorithm dual marching cubes.

7.4.3 Tetrahedral Subdivision

As argued by Hall and Warren [172], one major drawback of applying the
methods of Wyvill et al.[422] and Lorensen and Cline [247] to contour a trivari-
ate function is that these methods must sample the function uniformly at a
cubic grid of points. As a consequence, to accurately approximate the contour,
the function must be sampled closely, and thus heavily, even in regions where
the function is nearly linear. One solution to this problem is to use an adap-
tive subdivision scheme, sampling more closely near high-curvature regions
of the surface. There are two adaptive subdivision schemes: (a) the adaptive
octree subdivision scheme or, alternatively, (b) the adaptive tetrahedral subdi-
vision scheme. In the previous section, an adaptive octree subdivision scheme
has been described. This section deals with adaptive tetrahedral subdivision
schemes.

The first adaptive tetrahedral subdivision scheme to polygonise implicit
surfaces was proposed by Hall and Warren [172]. Hall-Warren’s algorithm
performs an adaptive partition of space into tetrahedra. Interestingly, and re-
gardless of the subdivision level, this tetrahedral subdivision enjoys the hon-
eycomb property, i.e. the collection of all tetrahedra forms a honeycomb, the
3D analogue of a tessellation [93]. A honeycomb is a polyhedral partition of

214 7 Spatial Partitioning Methods

f1 f2

e1
f11

f12 f13

f14

f21

f22

e11

e12

(a) (b)

Fig. 7.14. Keeping the honeycomb in 2D.

space in which the i-dimensional face of each polyhedron meets only one other
i-dimensional face on a (i− 1)-dimensional face. Figure 7.14 illustrates this in
2D for triangles. The equilateral triangles f1 and f2 share a common edge e1,
but after splitting f1 into f11, f12, f13 and f14 the honeycomb rule is violated
(Figure 7.14(a)). In order to maintain the honeycomb rule, e1 must be split
into e11 and e12, and f2 into f21 and f22. Note that the partition of f2 is
partial. The reader is referred to Hall and Warren [172] to observe the subdi-
vision patterns of equilateral and isosceles triangles, as needed to decompose
equilateral and cubic tetrahedra, respectively, of the 3D honeycomb.

By maintaining a honeycomb, the algorithm guarantees that the surface
will be approximated by a polygonal mesh without cracks. Possibly, this is
a major advantage of adaptive tetrahedral subdivisions over the octree sub-
division of space, yet not all types of tetrahedral subdivisions maintain a
honeycomb. In the rest of this section, we only deal with honeycombs.

Tetrahedral Honeycombs

Hall-Warren’s algorithm uses an adaptive subdivision of a tetrahedron into
twelve smaller tetrahedra. The result is an unstructured tetrahedral subdivi-
sion, as opposed to a Kuhn subdivision. The subdivision of a regular tetrahe-
dron is performed in two steps (Figure 7.15).

First, one subdivides such a regular tetrahedron into four regular tetrahe-
dra (Figure 7.15(a)) and one regular octahedron (Figure 7.15(b)) by cutting
off each corner of the original tetrahedron. This cut is done in a way that
each face of the tetrahedron, an equilateral triangle, is subdivided into four
smaller equilateral triangles (Figure 7.15(a)). Second, the remaining regular
octahedron (Figure 7.15(b)) left in the middle of the original tetrahedron is
then split into eight similar tetrahedra by creating a vertex at the centre of the
octahedron and projecting edges to each of its corners (Figure 7.15(c)). These
eight tetrahedra are called cubic tetrahedra, since each of these tetrahedra
may be formed by cutting a corner off a cube.

7.4 Spatial Subdivision 215

(a) (b) (c)

Fig. 7.15. Subdivision of an equilateral tetrahedron into four equilateral tetrahedra
(in red) and eight cubic tetrahedra (in green and blue).

(a) (b) (c)

Fig. 7.16. Subdivision of a cubic tetrahedron into one regular tetrahedron (in red)
and six cubic tetrahedra (in green and blue).

The 12-tetrahedra subdivision described above involves two types of tetra-
hedra: regular tetrahedra and cubic tetrahedra. To keep the honeycomb we
need a matching subdivision for cubic tetrahedra. This subdivision is illus-
trated in Figure 7.16.

First, one subdivides the equilateral face of a cubic tetrahedron (the pos-
terior tetrahedron face in Figure 7.16(a)) into four equilateral triangles (Fig-
ure 7.16(b)). Then, one subdivides the remaining three isosceles triangles as
shown in Figure 7.16(b). The resulting tetrahedron decomposition consists of
one regular tetrahedron and three pairs of cubic tetrahedra as shown in Fig-
ure 7.16(c). The small regular tetrahedron (in red) in Figure 7.16(c) can be
alternatively obtained by projecting from the vertex opposite the equilateral
face of the original cubic tetrahedron.

These two mutually recursive subdivisions involving only two types of
tetrahedra (regular tetrahedra and cubic tetrahedra) allow us to construct
arbitrarily fine honeycombs. Similar to the 2D case, the recursive subdivision
of a single tetrahedron may cause the honeycomb property to be lost, unless

216 7 Spatial Partitioning Methods

the neighbours of that tetrahedron are partially subdivided to maintain the
property. This way, it is possible to construct a continuous (i.e. without discon-
tinuities) piecewise linear function that interpolates the values at the vertices
of the tessellation, as usual in discrete data-based algorithms. For continuous
data-based algorithms, this guarantees that the mesh that approximates the
implicit surface is formed without cracks.

The Algorithm

The algorithm may start with either a regular tetrahedron or with a tetra-
hedral mesh on the domain, though a nonregular tetrahedron could be also
used by treating it as if it were regular. The nonregularity of a tetrahedron
does not break the honeycomb property of the subdivision scheme because
the subdivision of an irregular original tetrahedron is just the image under a
linear transformation of the subdivision of a regular tetrahedron [172].

Velho [397, 398, 399] and Hall and Warren [172] should be given the credit
of introducing the first adaptive tetrahedralisation algorithms in computer
graphics. In general terms, they are similar, so we are going to focus on Hall-
Warren’s algorithm.

The Hall-Warren algorithm (see Algorithm 26) consists of five major
stages:

• Decomposition of the bounding box into cubes.
• 5-tetrahedral decomposition of cubes.
• Uniform subdivision of tetrahedra.
• Adaptive subdivision of tetrahedra.
• Polygonisation of transverse tetrahedra

The first stage decomposes an axially aligned bounding box into a grid
of cubes (step 2 of Algorithm 26). At the second stage (steps 6–9 of Algo-
rithm 26), these cubes are partitioned by using, for example, a 5–tetrahedral
decomposition. Recall that the 5-tetrahedron decomposition consists of one
regular tetrahedron and four cubic tetrahedra (Figure 7.6). The third stage
(step 10 of Algorithm 26) performs a uniform subdivision of the tetrahedra
down to a given minimum level lMIN, regardless of whether the surface crosses
a tetrahedron or not. Therefore, lMIN works as a stopping condition for the
first stage of the algorithm. The fourth stage (step 12 of Algorithm 26) con-
cerns the adaptive subdivision of tetrahedra. Only transverse tetrahedra are
subdivided, but the subdivision of each tetrahedron depends on the curvature
of the surface. Finally, the algorithm performs the polygonisation (steps 14–
15) of the surface inside each transverse tetrahedron.

It is worthy noting that Hall-Warren’s algorithm comprises three tetra-
hedral decompositions. After applying a 5-tetrahedral decomposition to each
cube of the original cube grid (steps 6 and 7 in Algorithm 26), more two tetra-
hedral decompositions take place: a uniform decomposition (step 10) and an
adaptive decomposition (step 12).

7.4 Spatial Subdivision 217

Algorithm 26 Tetrahedral Subdivision Algorithm for Implicit Surfaces
1: procedure HallWarren(f ,S,Ω,lMIN,lMAX)
2: Subdivide Ω into a grid of equally sized boxes {�i}
3: {∆ON

j } ← ∅ . list of ACTIVE tetrahedra
4: {∆newON

j } ← ∅ . list of new ACTIVE tetrahedra
5: n← #{�i}
6: for i← 0, n− 1 do
7: Subdivide �i into five tetrahedra {∆k} . 5-tetrahedrom decomposition
8: {∆newON

j } ← {∆newON
j } ∪ {∆k}

9: end for
10: UniformSubdivision({∆ON

j }, {∆newON
j },lMIN) . uniform subdivision

11: {∆OFF
k } ← ∅ . list of PASSIVE tetrahedra

12: AdaptiveSubdivision({∆ON
k }, {∆OFF

k },lMAX) . adaptive subdivision
13: N ← #{∆OFF

k }
14: for i← 0, N − 1 do . polygonisation
15: Polygonise ∆OFF

k

16: end for
17: end procedure

Algorithm 27 Uniform Tetrahedral Subdivision
1: procedure UniformSubdivision({∆ON

j }, {∆newON
j },lMIN)

2: if lMIN=0 then
3: {∆ON

j } ← {∆ON
j } ∪ {∆newON

j }
4: return
5: end if
6: n← #{∆newON

j }
7: for i← 0, n− 1 do
8: Subdivide ∆newON

j into {∆k}
9: UniformSubdivision({∆ON

j }, {∆k},lMIN − 1)
10: end for
11: end procedure

The uniform decomposition subdivides regular and cubic tetrahedra down
for a number lMIN of subdivisions, as described in Algorithm 27. This uniform
subdivision of each tetrahedron terminates after completing a number lMIN of
recursion cycles (step 2 of Algorithm 27), being then the resulting terminal
tetrahedra inserted into the list {∆ON

j } of active tetrahedra (step 3 of Algo-
rithm 27). These tetrahedra are called “active” in the sense that they still
need be processed to check whether they contain the surface or not.

At the beginning of the adaptive subdivision stage, the list {∆ON
j } then

contains all terminal tetrahedra generated at the uniform subdivision stage.
Algorithm 28 takes as input this list of active tetrahedra, and outputs the list
{∆OFF

i } of passive tetrahedra. These passive tetrahedra are transverse to the
surface and are ready to polygonisation stage. The active tetrahedra ∆ON

j are
subject to two stopping subdivision criteria (see Algorithm 28):

218 7 Spatial Partitioning Methods

Algorithm 28 Adaptive Tetrahedral Subdivision
1: procedure AdaptiveSubdivision(f ,S,{∆ON

j }, {∆OFF
i },lMAX)

2: n← #{∆ON
j }

3: if (n = 0) or (lMAX=0) then
4: {∆OFF

j } ← {∆OFF
i } ∪ {∆newOFF

i }
5: return
6: end if
7: for i← 0, n− 1 do
8: if 0 6∈ Imf (∆ON

j) then . exclusion box test
9: Discard ∆ON

j

10: else
11: if S is approx. flat in ∆ON

j then . curvature test
12: {∆newOFF

i } ← insert(∆ON
j)

13: end if
14: end if
15: end for
16: m← #{∆newOFF

j }
17: for i← 0,m− 1 do
18: if ∆newOFF

i is adjacent to any ∆ON
j then

19: Subdivide ∆newOFF
i into {∆k} to maintain the honeycomb

20: {∆OFF
i } ← {∆OFF

i } ∪ {∆k}
21: else
22: {∆OFF

i } ← insert(∆newOFF
i)

23: end if
24: end for
25: N ← #{∆ON

j }
26: for j ← 0, N − 1 do
27: Subdivide ∆ON

j into {∆k}
28: {∆newON

j } ← {∆newON
j } ∪ {∆k}

29: end for
30: {∆ON

j } ← ∅
31: {∆ON

j } ← {∆ON
j } ∪ {∆newON

j }
32: AdaptiveSubdivision(f ,S,{∆ON

j }, {∆OFF
i },lMAX − 1)

33: end procedure

• Exclusion test. Interestingly, Hall and Warren do not use the intermediate
value theorem to exclude empty (i.e. nontransverse) tetrahedra. Instead,
they use Descarte’s rule applied to Bézier formulation of the polynomial
that defines the surface. This test changes the state of a tetrahedron from
“active” to “discarded” (steps 8–9) so that nontransverse tetrahedra are
deleted.

• Curvature test. This test evaluates the curvature of the surface within each
active tetrahedron. If the curvature falls below a given threshold, i.e. the
surface is approximately flat therein, the active tetrahedron is re-labelled
as a new passive tetrahedron (steps 11–12). Therefore, such a tetrahedron
is inserted into the collection ∆newOFF

i of new passive tetrahedra.

7.5 Nonmanifold Curves and Surfaces 219

In order to maintain the honeycomb (steps 17–24 of Algorithm 28), one
proceeds as follows. If a new passive tetrahedron is adjacent to any active
tetrahedron, it is subdivided into smaller tetrahedra, which will be then la-
belled as passive tetrahedra and inserted into {∆OFF

i }, ready for polygonisa-
tion; otherwise, the new passive tetrahedron is simply relabelled as a passive
tetrahedron and inserted into {∆OFF

i } also for polygonisation.
The remaining active tetrahedra—those containing surfaces patches with

significant curvature—are then subdivided into smaller active tetrahedra, as
illustrated in steps 25–28 of Algorithm 28. Then, of course, the algorithm
recurses on this set of active tetrahedra (step 32 of Algorithm 28). The adap-
tive subdivision terminates when at least one of the following conditions is
satisfied (step 3 of Algorithm 28):

• A predefined level lMAX of adaptive subdivision is reached;
• The number n of active tetrahedra is zero.

Finally, Hall–Warren’s algorithm uses the honeycomb consisting of passive
tetrahedra, as well as any remaining active ones, to create a piecewise planar
approximation (steps 14–15 of Algorithm 26).

Various adaptive tetrahedralisation algorithms are based on Hall-Warren’s
approach, as those described by Hui and Jiang [199] and Müller and
Wehle [289]. Hui-Jiang’s algorithm extends Hall-Warren’s algorithm in that it
uses a heuristics based on Schmidt’s work [352] to avoid intersection in highly
curves surfaces, surfaces with self-intersections or multiple components; a
process called compensate-subdivision is also used to eliminate cracks in the
tessellated surface.

The reader is still referred to Ning and Blomenthal [305] and Zhou
et al. [428] for more details on tetrahedralisations, as well as resolution of
ambiguities.

7.5 Nonmanifold Curves and Surfaces

So far, in this chapter, we have studied implicit curves and surfaces—in gen-
eral, varieties—that are manifolds. By definition, an n-dimensional manifold
(n ∈ N) is, everywhere, locally homeomorphic to Rn. This means that, an
infinitesimal neighbourhood of any point on an n-manifold is topologically
equivalent to an n-disk. Putting this differently, exactly n independent direc-
tions can be defined as the axes of a local coordinate system at each point of
an n-manifold. On the contrary, a variety V is said to be not an n-manifold if
and only if the number of independent directions we can follow from a point
is different from n.

For example, in Figure 7.17, the curve (a) is not manifold because it has an
isolated point at the origin so that no 1-dimensional local coordinate system
can be defined; the curve (b) is not manifold either because at the self-
intersection we can define two up to four 1-dimensional local systems. In

220 7 Spatial Partitioning Methods

(a) (b)

Fig. 7.17. Nonmanifold algebraic curves: (a) x4 + 2x2y2 − x2 + y4 − 4y2 = 0 and
(b) 2y3 − (3x− 3)y2 − (3x2 − 3x)y − x3 = 0.

respect to nonmanifold surfaces, the Steiner surface, the Whitney um-
brella surface with handle (Figure 1.12(a)), and the Kummer surfaces (Fig-
ure 7.18(b)) are some examples we can find in the literature. In other words, a
manifold is homogeneous in dimension and does not possess self-intersections.

7.5.1 Ambiguities and Singularities

Nonmanifold features of implicit curves and surfaces arise a series of problems
to polygonisers. The main problem comes from the fact that the dimension
may not be homogeneous. Dimension is a topological invariant, so if the di-
mension of a surface is not uniform, the polygoniser will face serious difficul-
ties in keeping topological guarantees. As far as the authors know, there is
no algorithm, at least in the computer graphics literature, to resolve isolated
singularities of an n-variety, i.e. k-directional singularities (0 ≤ k < n); these
singularities include isolated points of curves, and isolated points and lines for
surfaces.

As shown in Chapter 6, many m-directional singularities (m > n) or
self-intersections can be resolved through symbolic factorisation, in partic-
ular when a topological component has two or more symbolic components.
But, when a topological component has a single symbolic component (e.g.
Whitney umbrella surface) that self-intersects, such a procedure is no longer
possible. It is true that the mathematics behind the resolution of singularities
(see, e.g., Lu [249]) is wellknown and there are some symbolic techniques (see,
e.g., Bodnár and Schicho [55]) to compute them, but they are computationally
expensive and only apply to polynomial functions.

Thus, the integration of a singularity solver into a polygoniser remains
an open issue in computer graphics, regardless of whether the nature of the
polygoniser, either continuation-based polygoniser or space partitioning-based
polygoniser. In fact, no many articles have been published on the polygonisa-
tion of non-manifold implicit surfaces.

7.5 Nonmanifold Curves and Surfaces 221

7.5.2 Space Continuation

Similar to conventional polygonisers, Bloomenthal and Ferguson [53] use a uni-
form partitioning of the bounding box into smaller cubic boxes, but these sub-
sidiary boxes are obtained by spatial continuation. That is, with the exception
of the seeding box, every zero box (i.e. surface-intersecting box) is obtained
from a previously formed, adjacent zero box. To prevent cyclic propagation—
inherent to continuation algorithms—the location of each visited box is stored
in a hash table, as described by Wyvill et al. in [422]. Each zero box is then
decomposed into six tetrahedra. This tetrahedralisation aims to resolve even-
tual ambiguities. But, as seen above, tetrahedralisation-based disambiguation
is not sufficient to ensure that the surface polygonisation is performed with
topological guarantees, even for manifold surfaces.

Unlike manifold implicit surfaces, the implicit scalar fields underlying non-
manifold surfaces are no longer defined by real functions that bisect space
into interior and exterior regions. To solve this problem, Bloomenthal and
Ferguson [53] introduced a multiple space classification as a generalisation
of the binary space classification into positive and negative regions. But,
the use of multiple regions rather complicates the polygoniser, in particular
the polygonisation of surface borders and surface intersections. Recall that
Bloomenthal and Ferguson’s algorithm only applies to nonmanifold surfaces
with homogeneous dimension, i.e. surfaces with boundaries and surfaces with
intersections.

7.5.3 Octree Subdivision

In [352], Schmidt proposes an octree subdivision-based polygoniser for self-
intersecting surfaces. Using an octree data structure means that the polygoni-
sation is in principle adaptive. Tetrahedralisations of the leaf zero boxes (i.e.
boxes that intersect the surface at the maximum subdivision depth) also take
place in hope of resolving topological ambiguities caused by eventual surface
self-intersections. Unfortunately, as shown before, the resolution of ambigui-
ties through the tetrahedralisation of zero boxes may fail.

Balsys and Suffern also proposed an adaptive polygonisation for self-
intersecting surfaces [25, 378], but their polygoniser does not use tetrahe-
dralisations of the zero leaf boxes. Two examples of implicit surfaces rendered
by the Balsys-Suffern polygoniser are shown in Figure 7.18. Following their
previous own work on manifold surfaces [378], Balsys-Suffern’s method uses
an octree spatial data structure and a box exclusion test for adaptivity, in-
terval arithmetic for robustness, and uses a numerical root-finder for point
sampling over box edges. Balsys and Suffern’s polygoniser is capable of ren-
dering a number of important non-manifold implicit surfaces, but even so it
cannot be considered a general polygoniser because the surface is limited to
intersect any box edge twice at most. It is not able to handle isolated points
and dangling lines properly either. Despite its limitations, Balsys-Suffern’s
polygoniser is the most general polygoniser for nonmanifold implicit surfaces
we can found in the literature.

222 7 Spatial Partitioning Methods

(a) (b)

Fig. 7.18. Two surfaces generated by Balsys-Suffern’s polygoniser: (a) the Dupin
cyclide (x2+y2+z2−r2)2−2(x2+r2)(a2+b2)−2(y2−z2)(a2−b2)+8abrx+(a2−b2)2 =
0, with a = 10, b = 2, and r = 2; (b) the Kummer surface (x2+y2+z2−u2)2−λpqrs =

0, with u ∈ R+ controlling the number of double points of the surface, λ = 3u2−1
3−u2 is

a scaling factor taken here as 1, and p = 1−z−
√

2x, q = 1−z+
√

2x, r = 1+z+
√

2y,
s = 1 + z −

√
2y are the tetrahedral coordinates. A Kummer surface has sixteen

double points, i.e. the maximum number of double points for a surface of degree 4
in 3D space. By using the default value u = 1.3, all these double points are real
and displayed as the vertices of five tetrahedra. (Figure kindly provided by Dr. Ron
Balsys and Dr. Kevin Suffern.)

Balsys-Suffern’s Algorithm

Pseudo-code describing Balsys-Suffern’s algorithm appears in Algorithm 29.
This adaptive algorithm recursively partitions the given cubic bounding box
Ω into eight equally sized boxes (step 2), which are stored into the nodes of
an octree data structure. An interval arithmetic-based exclusion test is used
to discard cubic boxes that do not intersect the surface (steps 4 and 5). Each
zero box (i.e. nonexcluded box) is then subdivided recursively down (step 32)
until the minimum subdivision depth ∆MIN is reached (step 7). The minimum
depth works as landmark that indicates the beginning of the polygonisation.
However, the polygonisation of a box only takes place if the topological type
of the surface inside such a box is valid (step 11) and the polygons pass the
flatness test (step 12), after which eventual mesh cracks are repaired. Note
that the algorithm forces the polygonisation of the surface in a zero box when
the maximum depth ∆MAX is reached (step 19), regardless of its local flatness.

The admissible topological configurations of the surface inside a zero box
are depicted in Figure 7.19, namely: (a) a single surface patch, (b) two non-
intersecting patches, and (c) two intersecting patches. Similar to conventional
polygonisers, the topological pattern of the surface inside a box is determined
by first computing the intersection points between the surface and the edges
of such a box. For this task, Balsys and Suffern use a numerical root finder

7.5 Nonmanifold Curves and Surfaces 223

Algorithm 29 Balsys-Suffern Algorithm for Nonmanifold Implicit Surfaces
1: procedure BalsysSuffern(f ,S,Ω,∆,τ)
2: Subdivide Ω into eight equally sized boxes �i
3: for i← 0, 7 do
4: if 0 6∈ Imf (�i) then . box exclusion test
5: Discard �i
6: else
7: if depth(�i) ≥ ∆MIN then . minimum depth test
8: if depth(�i) ≤ ∆MAX then . maximum depth test
9: Find roots of f on edges of �i . sampling surface points

10: Determine topological type τ of S inside �i
11: if τ is valid then . topological type test
12: if τ is flat then . surface flatness test
13: Polygonise S across �i
14: Fix cracks
15: else . not flat enough yet
16: if depth(�i) < ∆MAX then
17: BalsysSuffern(f ,S,�i,∆,τ)
18: else
19: Polygonise S across �i
20: Fix cracks
21: end if
22: end if
23: else . type τ not valid
24: if depth(�i) < ∆MAX then
25: BalsysSuffern(f ,S,�i,∆,τ)
26: else
27: ; . polygonisation fails
28: end if
29: end if
30: end if
31: else
32: BalsysSuffern(f ,S,�i,∆,τ)
33: end if
34: end if
35: end for
36: end procedure

based on the false position method, combined with binary interval subdivision.
But, these sampled surface points on the box edges do not allow us to distin-
guish the topological pattern in Figure 7.19(b) from the topological pattern in
Figure 7.19(c). A gradient-based criterion is used to disambiguate these two
cases. If the angle between the gradient vectors at the sampled surface points
is within a small range, then the topological pattern is that one shown in Fig-
ure 7.19(b); otherwise, we have the pattern in Figure 7.19(c). Unfortunately,
the polygonisation fails for other topological configurations (steps 11, 23 and

224 7 Spatial Partitioning Methods

(a) (b) (c)

Fig. 7.19. Admissible surface’s topological configurations in a zero box according
to Balsys-Suffern’s polygoniser.

27); in particular, if the surface crosses an edge of a zero box more than twice,
there are not any guarantees that the surface will be polygonised correctly.

Balsys-Suffern’s algorithm is a curvature-driven adaptive subdivision al-
gorithm. In the literature, we find several criteria to estimate the curvature
of a surface, namely:

• the planarity of the surface in the box;
• the divergence of surface normals;
• the chord distance of the surface.

Balsys and Suffern use the first two in the flatness test (step 12), whereby,
if the surface patch is not flat enough inside the box, or the surface normals
is beyond a certain threshold, the box is further subdivided. The maximum
depth ∆MAX works as the principal stopping criterion (step 12); in particular,
it is used to stop subdivision in boxes where the surface has extreme curvature
(step 18).

7.6 Final Remarks

A number of space subdivision-based algorithms have been devised for ren-
dering implicit curves, surfaces, and even high-dimensional varieties. They all
are based on locating a series of boxes in space that intersect the surface.
For rendering purposes, the surface is usually polygonised, i.e. the surface is
approximated by one or more polygons in each cube. Early algorithms were
developed by Wyvill et al. [421] for rendering soft or blobby objects and
Lorensen and Cline [247] who designed the marching cubes algorithm for gen-
erating human organ surfaces from medical image data sets. These algorithms
have given rise to two major families for defining implicit surfaces through
space subdivisions: continuous data-based algorithms and discrete data-based
algorithms. Discrete data-based subdivision algorithms have been developed
from Lorensen and Cline’s algorithm. No function is known a priori so that

7.6 Final Remarks 225

the algorithm only operates on discrete data at the vertices of a grid, from
which a surface is generated by interpolation. In contrast, continuous data-
based subdivision algorithms operate on a given function such that continuous
data can be evaluated at arbitrary points of the domain.

Conventional manifold polygonisers are based on the principle that the
implicit function is continuous. They also assume that the function evaluates
positively on one side and negatively on the other side of the surface. Thus,
they perform a binary partitioning of space.

Implicit surfaces in 3D geometric modelling are limited to two manifolds
because the corresponding implicit fields are usually defined by real-valued
functions that bisect space into interior and exterior. We present a novel
method of modelling nonmanifold surfaces by implicit representation. Our
method allows discontinuity of the field function and assesses the special mean-
ing of the locus where the function is not differentiable. The enhancement can
yield a nonmanifold surface with such features as holes and boundaries. The
discontinuous field function also enables multiple classification of the field,
which makes it possible to represent branches and intersections of the im-
plicit surfaces. The implicit field is polygonised by the algorithm based on
the marching cubes algorithm, which is extended to treat discontinuous fields
correctly. We also describe an efficient implementation of converting a surface
model into a set of discrete samples of field function, and present the result
of the non-manifold surfaces reproduced by our method. The implicit sur-
faces are directly visualised at interactive frame rates independent of surface
complexity by the hardware-accelerated volume rendering method. We also
developed a system for visualising the implicit surfaces and have confirmed
that it can render surfaces at sufficient quality and speed.

Implicitly defined surfaces f(x) = 0 are usually displayed after computing
a polygonal mesh which approximates it. Space partitioning algorithms just
partition the bounding box surrounding the surface into a 3D polyhedron
mesh in order to sample the surface. The algorithms differ from each other in
how spatial partitioning is done.

8

Implicit Surface Fitting

Surface reconstruction has become an important research topic in part due to
the appearance of 3D range scanners on the market. These scanners are ca-
pable of acquiring unstructured 3D point datasets from the surface of a given
physical object. Digital scans allow for high-quality surface reconstructions,
but this requires a particular care in recovering sharp features such as ridges,
corners, spikes, etc. Surface reconstruction has many applications in science
and engineering, in particular, geometric modelling, computer graphics, vir-
tual reality, computer animation, computer vision, computer-assisted surgery,
and reverse engineering.

8.1 Introduction

This chapter deals with surface-fitting algorithms that reconstruct surfaces
from clouds of points. There are several surface reconstruction techniques
depending on the representation in hand: simplicial, parametric, implicit sur-
faces. Even though they are different representations, they share various issues
and problems. This chapter starts with a brief review on these surface recon-
struction techniques, after which the focus will be on the implicit ones.

8.1.1 Simplicial Surfaces

Sometimes, simplicial surfaces are also called triangulated surfaces. There
are two main classes of techniques to reconstruct simplicial surfaces from a
scattered set of points: Delaunay-based and region-growing techniques.

With Delaunay-based approach, we end up having a space partitioning
into tetrahedra. To be more specific, the typical Delaunay-based surface re-
construction algorithm consists of two steps:

• Delaunay triangulation. First, one constructs the Delaunay triangulation
(or Voronoi diagram) from such a cloud of points, which consists of a

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 227
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

228 8 Implicit Surface Fitting

partition of the convex hull of these sample points into a finite set of tetra-
hedra. The main advantage of the Delaunay triangulation comes from its
uniqueness; it is unique if no five sample points can be found on a com-
mon sphere. Several algorithms for constructing a Delaunay triangulation
can be found in the literature, in particular those given by Bowyer[60],
Watson [404], Avis and Bhattacharya [23], Preparata and Shamos [328],
Edelsbrunner [126], and, more recently, Hjelle and Dæhlen [191], just to
mention a few.

• Triangulated surface extraction. Terminated the triangulation of the cloud
of points, it only remains to identify which simplices belong to the sur-
face. Thus, the reconstruction of simplicial surfaces consists in finding the
subgraph of Delaunay triangulation of the initial set of points [127]. The
identification of surface simplices varies from an algorithm to another.

The first Delaunay-based surface reconstruction method seems to be due to
Boissonnat [56]. In the class of Delaunay-based surface reconstruction meth-
ods, we also find the α-shapes of Edelsbrunner and Mücke [127], the crust
and the power crust algorithms of Amenta et al. [12, 13, 14], the co-cone
algorithm of Dey et al. [110, 111], and more recently the reconstruction algo-
rithms due to Yau et al. [218, 424]. Amongst these algorithms, the algorithm
of Yau et al. [218] preserves sharp features, but only in convex regions, while
the algorithm of Amenta et al. [14] is capable of reconstructing sharp edges
and corners by steering poles, a subset of circumcentres of tetrahedra. In both
cases, multiple Delaunay computations are required, so that the corresponding
reconstruction algorithms are rather time-consuming to use.

The second class of algorithms to reconstruct simplicial surfaces is based
on the concept of continuation (see Chapter 6 for more details about con-
tinuation). In the context of surface reconstruction, continuation algorithms
are known as region-growing algorithms. Starting from a seed triangle, say
initial region, the algorithm iterates by attaching new triangles to the re-
gion’s boundaries. The early surface-based algorithm due to Boissonnat [56],
the graph-based algorithm of Mencl and Müller [267], the ball-pivoting algo-
rithm of Bernardini et al. [43], the projection-based triangulating algorithm
of Gopi and Krishnan [165], the interpolant reconstruction algorithm of Petit-
jean and Boyer [323], the advanced-front algorithm of Hung and Menq [196],
and the greedy algorithm of Cohen-Steiner and Da [88], all fall into the class
of region-growing algorithms.

In the literature, we also find hybrid algorithms that combine Delaunay-
based and region-growing approaches; for example, the algorithm of Kuo and
Yau [218, 219] is a representative of these hybrid algorithms. These algorithms
were later improved in order to reconstruct surfaces with sharp features [220].

8.1.2 Parametric Surfaces

Parametric surface fitting algorithms, also called spline-based surface recon-
struction algorithms, are quite common in numerical analysis and computer

8.1 Introduction 229

graphics. In the context of parametric representations, the problem of surface
reconstruction involves the computation of a surface S that approximates as
much as possible each point of a given cloud of points in R3. The goal is then
to find a parametric surface S, defined by a function F (u, v), that closely ap-
proximates a given cloud of points, where F belongs to a specific linear space
of functions. Examples of such parametric surfaces are Bézier and B-spline
surfaces [132].

Traditionally, the parametric surface reconstruction algorithm consists of
four main steps, namely:

• Mesh generation from the unorganised point cloud. This can be done by,
for example, using the marching cubes [247], Delaunay triangulations [26]
(see the previous section for further references), and α-shapes [127].

• Mesh partitioning into patches homeomorphic to disks. These patches
are also known as charts. The surface mesh partitioning becomes manda-
tory when the surface is closed or has genus greater than zero. Roughly
speaking, there are two ways of cutting surfaces into charts: segmentation
techniques and seam generation techniques. For parametrisation purposes,
segmentation techniques divide the surface into several charts in order to
keep as short as possible the parametric distortion resulting from the cuts.
Unlike segmentation, seam cutting techniques are capable of reducing the
parametric distortion without cutting the surface into separate patches.
For that purpose, they use seams (or partial cuts) to reduce a surface of
genus greater than zero to a surface of genus zero. For more details about
surface mesh partitioning, the reader is referred to Sheffer et al. [361] and
the references therein.

• Parametrisation. For each mesh patch, one constructs a local parametri-
sation. These local parametrisations are made to fit together continuously
such that they collectively form a globally continuous parametrisation
of the mesh. In computer graphics, this method was introduced by
Eck et al. [125], who used harmonic maps to construct a (local) parametri-
sation of a disk over a convex polygonal region. Nevertheless, before that,
Pinkall and Polthier had already used a similar method for computing
piecewise linear minimal surfaces [324]. For more details on this topic,
the reader is referred to Floater and Hormann [141] and the references
therein.

• Surface fitting. Terminated the parametrisation step, which outputs a col-
lection of pairs of parameters (ui, vi) associated to the points (xi, yi, zi) of
the cloud, it remains the problem of surface fitting. Surface fitting consists
in minimising the distance between each point (xi, yi, zi) and its corre-
sponding point of the surface F (ui, vi).

The standard approach of surface fitting reduces to the following minimi-
sation problem:

min
∑
i

||xi − F (ui, vi)||2 (8.1)

230 8 Implicit Surface Fitting

where xi is the ith input cloud point (xi, yi, zi) and || · || is the Euclidean
distance between xi and the corresponding point on the surface F (ui, vi) in
the above mentioned linear space of functions. The objective function of this
minimisation problem is then the squared Euclidean norm. Its computation
can be done easily by the least squares method; hence the least-squares (LS)
fitting for parametric surface reconstruction [87, 132]. As argued in [326], this
is the main approach to approximating an unstructured cloud of points by a
B-spline surface.

Alternatives to LS fitting using parametric surfaces are:

• Active contours. This approximation approach is borrowed from computer
vision and image processing, and is due to Kass et al. [209] who introduced
a variational formulation of parametric curves, called snakes, for detect-
ing and approximating contours in images. Since then various variants
of snakes or active contours have appeared in the literature [45]. In the
context of parametric surface reconstruction, the active contour technique
was introduced by Pottmann and Leopoldseder [326], which uses local
quadratic approximants of the squared distance function of the surface or
point cloud to which we intend to fit a B-spline surface. Interestingly, this
approach avoids the parametrisation problem, i.e. the third step of the
standard procedure described above.

• Lp fitting. The use of Lp norms in fitting curves and surfaces to data aims
at finding a member of the family of surfaces in Rn which gives a best fit
to N given data points. The least squares or L2 norm is just an example
of a fitting technique that minimises the orthogonal distances from the
data points to the surface. Note that the least squares norm is not always
adequate, in particular when there are wild points in the data set. This
leads us to look at other Lp norms for surface fitting [22]. For example,
Marzais and Malgouyres [260] uses a linear programming fitting which
is based on the L∞ norm, also called the uniform or Chebyshev norm.
The L∞ fitting outputs a grid of control points of a parametric surface
(e.g. Bézier or B-spline surface).

8.1.3 Implicit Surfaces

Most implicit surface reconstruction algorithms from clouds of points are
based on Blinn’s idea of blending local implicit primitives [47], called blobs.
This blending effect over blobs fits the requirements of modelling a molecule
from an union of balls that represent atoms. Muraki [293] combines Gaussian
blobs to fit an implicit surface to a point set. Lim et al. [239] use the blended
union of spheres in order to reconstruct implicit solids from scattered data;
the spheres are obtained from a previous configuration of spheres given by the
Delaunay tetrahedralisation of the sample points.

In computer graphics literature, in 1987, Pratt [327] was who first called at-
tention to fitting implicit curves and surfaces to data, since parametric curves

8.1 Introduction 231

and surface had received the most attention in the fitting literature, creating
the misleading idea that implicit curves and surfaces are less suitable for fit-
ting purposes. Also, Pratt affirms that none treatment of least squares fitting
of implicit surfaces to data was found in the literature. In 1991, Taubin [383]
noted that there was no previous work on fitting implicit curves in 3D, having
found only a few references on fitting quadric surfaces to data in the literature
of pattern recognition and computer vision.

Since then, two major classes of implicit fitting methods have been intro-
duced in the literature:

• Global methods. These methods aim to construct a single function such
that its zero set interpolates or approximates the cloud of points globally.

• Local methods. In this case, the global function results from blending local
shape functions, each one of which interpolates or approximates a sub-
cloud of points.

Now, there is an extensive literature on global implicit surface fitting that
uses a single polynomial to fit a point cloud. Taubin [383] introduced algo-
rithms to reconstruct algebraic curves and surfaces based on minimising the
approximate mean square distance from the cloud points to the curve or sur-
face, which is a nonlinear least squares problem. In certain cases, this problem
of implicit polynomial fitting leads to the generalised eigenvector fit, i.e. the
minimisation of the sum of squares of the function values that define the curve
or surface. Also, Hoppe et al. [192] proposed an algorithm based on the idea
of determining the zero set of a locally estimated signed distance function, say
the distance to the tangent plane of the closest point; such a zero set is then
used to construct a simplicial surface that approximates the actual surface.
Similarly, Curless and Levoy [94] use a volumetric approach to reconstruct
shapes from range scans that is based on estimating the distance function
from a reconstructed model. As Curless and Levoy noted, the isosurface of
this distance function can be obtained in an equivalent manner by means of
least squares (LS) minimisation of squared distances between range surface
points and points on the desired reconstruction. Other surface reconstruction
algorithms based on signed distance are due to Bernardini et al. [42] and
Boissonnat and Cazals [57].

An important representation of implicit surfaces is the moving least
squares (MLS) surfaces [229, 263]. Roughly speaking, a MLS surface is a
LS surface with local shape control. The main shortcoming of MLS (and
also LS) is that this approach transforms sharp creases and corners into
rounded shapes. To solve the problem of reconstructing sharp features,
Kobbelt et al. [213] proposed an extended marching cubes algorithm, Fleish-
man et al. [139] designed a robust algorithm based on the moving least squares
(MLS) fitting, and Kuo and Yau [220] proposed a combinatorial approach
based on the Delaunay to produce a simplicial surface with sharp features
from a point cloud.

232 8 Implicit Surface Fitting

Another family of implicit surface reconstruction algorithms use radial
basis functions (RBFs). Some algorithms employ globally supported radial
basis functions, namely those due to Savchenko et al. [349], Turk and O’Brien
et al. [392, 393], and Carr et al. [76]. Unfortunately, because of their global
support, RBFs fail to reconstruct surfaces from large datasets, i.e. point
sets having more than a few thousands points. This fact led to the develop-
ment of reconstruction algorithms that use Wendland’s compactly supported
RBFs [408]; for example, the algorithms proposed by Floater and Iske [142],
Morse et al. [282], Kojekine et al. [214], and Ohtake et al. [311, 312] fall into
this category. These algorithms are particularly suited to reconstruct smooth
implicit surfaces from large and incomplete datasets.

Another yet family of implicit surface reconstruction algorithms is the par-
tition of unity (PoU). This approach uses the divide-and-conquer paradigm.
The idea is to adaptively subdivide the box domain into eight subsidiary
boxes recursively. A necessary but not sufficient condition to subdivide a box
is the existence of data points in such a box. Then, one uses locally supported
functions that are blended together by means of the partition of unit. This
partition of unit is simply a set of smooth, local weights (or weight functions)
that sum up to one everywhere on the domain. Ohtake et al. [308] use the
multilevel partition of unity (MPU) together with three types of local approx-
imation quadratic functions (i.e. local shape functions) to reconstruct implicit
surfaces from very large sets of points, including surfaces with sharp features
(e.g. sharp creases and corners). Interestingly, Ohtake et al. [312] and Tobor
et al. [389] combine RBFs and PoU as a way of getting a more robust method
against large, non-uniform data sets, i.e. sets with variable density of points,
but the algorithm due to Tobor et al. [389] has the advantage that it also
works in the presence of noisy data.

In the remainder of the present chapter, we will focus on the most used or
significant methods in implicit surface reconstruction, namely: blob functions,
moving least squares, radial basis functions, and partition of unity implicits.

8.2 Blob Surfaces

In order to break away from the conventional ball-and-stick and space-filling
models, Blinn [47] introduced the blobby model in computer graphics for visu-
alising molecules. This model represents a surface of an object as an isosurface
of a global scalar field built from local scalar fields associated to subsidiary or
constituent primitives (Figure 8.1).

Instead of using the traditional implicit quadrics, we use electron density
functions to model atoms and molecules. Recall that a molecule is an aggre-
gate of atoms. For example, Figure 8.2 shows the trypsin molecule—with the
identifier 4PTI in the protein data bank (PDB)—as (a) an aggregate of atoms
and as (b) an isosurface of a molecular scalar field.

8.2 Blob Surfaces 233

(a) (b) (c)

Fig. 8.1. Blobby models with (a) one primitive, (b) two primitives, and (c) three
primitives. (Courtesy of Paul’s Projects.)

(a) (b)

Fig. 8.2. The trypsin molecule as (a) an aggregate of atoms and as (b) an isosurface
of a molecular scalar field.

As said above, the blobby model represents a 3-dimensional object in R3

as an isosurface of a scalar field generated by composition of local scalar fields,
each generated by a geometric primitive (e.g. point or sphere). This means
that a field value at a point x = (x, y, z) generated by a primitive or atom Ai
centred at a point xi is given by

fi(x) = bi e
−ai di(x) (8.2)

where the di(x) dictates the shape of the scalar field. Equation (8.2) is known
as Blinn’s Gaussian function. In fact, the exponential term is nothing more
than a Gaussian bump centred at xi which has height bi and standard devi-
ation ai. If di(x) is the square of the Euclidean distance between x and xi,
that is

di(x) = (x− xi)2 + (y − yi)2 + (z − zi)2 (8.3)

then the field is spherically symmetric.

234 8 Implicit Surface Fitting

The global density function of a given molecule with N atoms is obtained
by summing up the contribution of each atom

f(x) =
N∑
i=1

fi(x) (8.4)

or, equivalently,

f(x) =
N∑
i=1

bi e
−ai di(x) (8.5)

Now, we can define an implicit surface as the zero set of points where f
equals a given threshold T

F (x) = f(x)− T = 0. (8.6)

Although Blinn’s implicit model has been primarily designed to represent
molecules, many other applications have been described and discussed in the
literature. This is particularly true since the appearance of alternative implicit
blob models as generic shape representations, namely: the metaballs [306],
the soft objects [422], and the blobby model [293]. All these models rely on
the same global implicit function, but the subsidiary local functions differ
slightly. As explained in Chapter 9, these local functions are similar to Blinn’s
exponential density function.

8.3 LS Implicit Surfaces

The first comprehensive treatment of the least squares (LS) method was pub-
lished in 1805 and is due to Legendre [226]. In 1809, Gauss [157] published
a book in which he also describes the LS method. Gauss mentioned that he
had been using the LS method since 1795, thus starting an anteriority dis-
pute about the discovery of the method with Legendre, in a way similar to
the Leibniz-Newton controversy about the invention of Calculus.

8.3.1 LS Approximation

The LS method is an approximation method, and thus it results in smoothing
rather than interpolating the scattered data. The LS approximation starts
from the formulation of the following problem. Given a set of N observations
or scalar values {fi}Ni=1 on a set of points located at positions {xi}Ni=1 in Rn,
the problem is to find an unknown, globally defined function f(x) : Rn → R
that fits the given observed values fi as near as possible with respect to some
metric. If such a metric is the sum of the squares of the errors, also called
residuals, at the data points, we come up with the well-known least squares
solution. That is, we minimise the LS error

8.3 LS Implicit Surfaces 235

ELS =
N∑
i=1

r2
i (8.7)

where the residuals ri are given by

ri = f(xi)− fi (8.8)

The residuals are thus differences between the function values (or theoret-
ical values) at the data points and the observed values, so that the LS best
fit is obtained when the LS error of Equation (8.7) is reduced to a minimum.

As explained in the remainder of this section, the minimisation of the
LS error is crucial to achieve the unknown function f(x). This will allow us
to define the implicit surface given by f−1(0) that fits the given observed
data points xi. Such an unknown function f(x) can be designed as a linear
combination of K basis functions pj(x)

f(x) =
K∑
j=1

cjpj(x) (8.9)

so that the “best” fit—which depends on the criterion that one uses in a
specific context—to data set is obtained by adjusting and determining the
real parameters cj .

The functions pj(x) usually are polynomial basis functions, i.e. they form
a polynomial basis. This means that f(x) belongs to the space

∏n
d of n-variate

polynomials of total degree less or equal to d. Examples of polynomial bases
are:

(i) p(x) = [1] for a constant fit in arbitrary dimensions;
(i) p(x) = [1, x, y, z]T for a linear fit in R3 (d = 1 and n = 3);
(i) p(x) = [1, x, y, x2, xy, y2]T for a quadratic fit in R2 (d = 2 and n = 2).

Thus, in vector-vector notation, Equation (8.9) can be written as follows

f(x) = pT (x) c (8.10)

where c stands for the vector of the real coefficients cj associated to the basis
functions pj .

Thus, to achieve the fit function f(x) given by Equation (8.9), it only
remains to determine the parameter values cj that minimise the least squares
error ELS . Such a minimum is found by setting the corresponding gradient to
zero. This means that we have K gradient equations for K parameters

∂ELS
∂ck

= 2
N∑
i=1

ri
∂ri
∂ck

= 0, k = 1, . . . ,K (8.11)

or, equivalently,

236 8 Implicit Surface Fitting

N∑
i=1

(f(xi)− fi)
∂f(xi)
∂ck

= 0, k = 1, . . . ,K (8.12)

Since ∂f(xi)
∂ck

= pk(xi), it follows that

N∑
i=1

 K∑
j=1

cjpj(xi)− fi

 pk(xi) = 0, k = 1, . . . ,K (8.13)

or, equivalently,

N∑
i=1

K∑
j=1

cjpijpik =
N∑
i=1

fipik, k = 1, . . . ,K (8.14)

where pij = pj(xi) and pik = pk(xi). These K simultaneous linear equa-
tions are called the normal equations, which are written in matrix notation
as follows:

N∑
i=1

K∑
j=1

cjpijpik =
N∑
i=1

fipik, k = 1, . . . ,K (8.15)

From Equations (8.7) and (8.8), we obtain the system of equations in
matrix-vector notation

(PTP) c = PT f (8.16)

hence
c = (PTP)−1 PT f (8.17)

where c = [c1, . . . , cK]T is a vector of real coefficients, f = [f1, . . . , fN]T , and

P =


p11 p12 . . . p1K

p21 p22 . . . p2K

...
...

...
pN1 pN2 . . . pNK

 (8.18)

is the N×K matrix of basis functions pij = pj(xi), i = 1, . . . , N , j = 1, . . . ,K.
Using matrix calculus, it can be proved that c is a unique solution of

the system of equations (8.17), i.e. the unique solution of the least squares
problem. So, if the square matrix MLS = PTP is nonsingular or, equivalently,
det(MLS) 6= 0, we can substitute Equation (8.17) into Equation (8.10) to
obtain the fit function f(x).

Example 8.1. Let us consider the following set of sixteen data points in the
Euclidean space R2

{xi} =


(-1,-1), (-1,0), (-1,1), (-1,2),
(0,-1), (0,0), (0,1), (0,2),
(1,-1), (1,0), (1,1), (1,2),
(2,-1), (2,0), (2,1), (2,2)

 (8.19)

8.3 LS Implicit Surfaces 237

as well as the corresponding set of associated observed function values in R

{fi} =


1.0, 0.0, 1.0, 1.0,
0.0, 2.0, 0.0, 0.0,
1.0, 0.0, -0.5, -0.5,
0.5, 0.5, 0.5, 0.5

 . (8.20)

These sample data points {xi, fi} in the product space R2 × R are pictured
in Figure 8.3 as marked as • (say, bullets). The four graphs (in green) in Fig-
ure 8.3 were produced using this sample data set, but their LS approximating
functions are obviously different.

Figure 8.3(a) shows the graph of the fit function

f(x) = 1 +Ax+B y

with the linear basis p(x) = [1, x, y]T and the coefficient vector c = [A,B]T =
[−0.133,−0.190]T .

Figure 8.3(b) shows the graph of the fit function

f(x) = 1 +Ax+B y + C x2

y yx x

z z

(a) (b)

y
x

z

y
x

z

(c) (d)

Fig. 8.3. Four LS surfaces (in green) approximating the same input data set.

238 8 Implicit Surface Fitting

with the linear basis p(x) = [1, x, y, x2]T and the coefficient vector c =
[A,B,C]T = [−0.286,−0.239, 0.144]T .

Figure 8.3(c) shows the graph of the fit function

f(x) = 1 +Ax+B y + C x2 +Dxy + E y2

with the linear basis p(x) = [1, x, y, x2, xy, y2]T and the coefficient vector
c = [A,B,C,D,E]T = [−0.179,−0.440, 0.176,−0.051, 0.058]T .

Figure 8.3(d) shows the graph of the fit function

f(x) = 1 +Ax+B y + C x2 +Dxy + E y2 + F x3 +Gx2y +H xy2 + I y3

with the linear basis p(x) = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3]T and the coef-
ficient vector

c = [A,B,C,D,E, F,G,H, I]T

= [0.035, 0.287,−0.656,−0.229,−0.306, 0.215, 0.207,−0.007, 0.044]T .

Recall that the coefficient vectors of the example above were all determined
using Equation (8.17). Besides, as shown in Chapter 1, a graph of each function
f(x) : R2 → R is the zero set of another function F (x, z) : R2 ×R→ R given
by

F (x, z) = f(x)− z = 0 (8.21)

since f(x) is C1-differentiable, as it is the case. This means that the four
graphs in green shown in Figure 8.3 are also zero sets of F (x, y, z) as given
by Equation (8.21), i.e. they are implicit LS surfaces.

8.3.2 WLS Approximation

The method of weighted least squares (WLS) is a generalisation of the method
of least squares. Similar to ordinary least squares, the unknown values of the
coefficients (or parameters) c1, . . . , cK are estimated by finding their corre-
sponding numerical values that minimise the sum of the squared deviations
between the observed values fi and the true values f(xi). Unlike ordinary least
squares, however, each term of the approximant includes a weight, wi, that
determines how much each observed value influences the final coefficients ci.
The WLS approximation that is minimised to obtain the unknown coefficients
ci is given by the minimisation of the error

EWLS =
N∑
i=1

wi r
2
i (8.22)

where each residual ri is weighted by the corresponding weight value wi.
The ordinary LS is just a particular case of the WLS with all weights

equal to 1. The WLS method is thus adequate when it may seem reasonable

8.3 LS Implicit Surfaces 239

to assume that not all data points should be treated equally. This allows us,
in principle, to get a better approximation to the point dataset than that one
produced by the ordinary LS approximation.

To determine the parameter values cj that minimise EWLS , we follow the
same procedure we used to minimise ELS , i.e. using K null derivatives. Now,
the gradient equations for the sum of squares in Equation (8.22) are

∂EWLS

∂ck
= 2

N∑
i=1

wi ri
∂ri
∂ck

= 0, k = 1, . . . ,K. (8.23)

from which, and using the same method employed in the ordinary least
squares, we can easily derive the coefficients ck. The coefficient vector is now
given by

c = A−1(x) B(x) f (8.24)

with
A(x) = PTW(x) P and B(x) = PTW(x),

and where the weight matrix W(x) is an N ×N diagonal matrix given by

W(x) =


w1(x) 0 0 . . . 0

0 w2(x) 0 . . . 0
0 0 w3(x) . . . 0
...

...
...

. . .
...

0 0 0 . . . wN (x)

 (8.25)

Note that, the matrix notation has been reformulated in order to include
weighting of the scattered data points. More specifically, there is a weight
wi(x) = w(||x − xi||) for each data point xi, where ||x − xi|| stands for the
Euclidean distance di between x and xi; hence the diagonal matrix W (x),
with wi = Wii, i = 1, . . . , N .

8.3.3 MLS Approximation and Interpolation

Moving least squares (MLS) is a mesh-free approximation method. Therefore,
it is often understood as an alternative to the traditional finite element and
finite difference methods to scattered node configurations with no predefined
connectivity [135, 233, 234]. In approximation theory, the MLS method seems
to be due to McLain [263], later developed by Lancaster and Salkauskas [221]
for approximating (or smoothing) and interpolating scattered data, though
a particular case goes back to Shepard [363]; see also Fasshauer [136] and
references therein. In statistics, the MLS method is known as mesh-free local
regression and has been used by statisticians for the last 100 years approxi-
mately [105, 167, 415] (also, see Loader [240] and references therein).

240 8 Implicit Surface Fitting

The MLS Surfaces

The MLS method is essentially a WLS method. Accordingly, the MLS method
uses the fit function given by Equation (8.9), here rewritten for our conve-
nience

f(x) =
K∑
j=1

cjpj(x) (8.26)

or, in matrix notation, as
f(x) = pT (x) c (8.27)

where p(x) is the vector of basis functions, and c is the vector of real coeffi-
cients given by (8.24).

The MLS method differs from the WLS method in that the fit is allowed to
change depending on where we evaluate the function. The WLS approxima-
tion, as well as the LS approximation, is global because the coefficients cj , and
the corresponding fit function f(x) given by Equation (8.26), are evaluated
only once. On the contrary, the MLS approximation is local because:

• First, the fit function (8.26) is evaluated for each fixed point xi. Therefore,
the coefficient vector c is computed for each xi. Usually, but not necessar-
ily, the set of fixed points is a proper subset of the input data set. Such
fixed points are also called nodes, evaluation points, or centres.

• Second, and more importantly, the approximation is local because each
centre xi is associated with a compactly supported weight function wi(x) =
w(||x − xi||), that is wi(x) rapidly decays to zero with the distance di =
||x− xi||.

The weight function is a common feature to all mesh-free methods: MLS,
kernels, and partitions of unity (PoU) [39]. Each centre xi is associated with
a domain of influence, called the support of the weight function wi(x). The
support of xi may be compact or not. Using a compact support (Figure 8.4(f)),
we have wi(x) > 0 inside a subdomain that is small in relation to the domain,
and wi(x) = 0 outside it.

There are infinitely many possibilities for the weight function w(d),
namely:

• Thin-plate weight functions. Thin-plate functions are radial basis functions
(RBFs) of the form:

w(d) =

{
dk if k = 1, 3, 5, . . .
dkln(d) if k = 2, 4, 6, . . .

(8.28)

These functions have not compact support. Two examples of thin-plate
weight functions are pictured in Figure 8.4(a)–(b). To avoid problems with
thin-plate functions of even dimension k at d = 0 (where ln(0) = −∞),
we set up w(0) = 0. Alternatively, for even k, the weight function may be
redefined by implementing the natural logarithm as follows:

8.3 LS Implicit Surfaces 241

1

0

-0.5

0.5

1

1.0

1

1.0

0.5

0.5

0.5

0.5

0.5

0

0

0

0

 0

-0.5

-0.5

-0.5

-0.5

1

-1

-1

-1

-1

-1

-1

-1

-1

1

1

1

1

2

2

2

2

0

 0

0

0

0

0

0.5

1

2

3

1

-2

-2

-2

-2

z
z

z
z

 x

 x x

 x

y
y

y
y

1

1

1

1

 1

1

0

0

0

 0

0

0

 2

2

-1

-1

-1

-1

0.5

 0.5

-2

-2

-0.5

-0.5

0.2

0.2

0.4

0.4

0.6

0.6

0.8

 0.8

 x

 x
y y

z
z

(a) Quadratic thin-plate w(d) = d2ln(d) (b) Cubic thin-plate w(d) = d3

1

0

-0.5

0.5

1

1.0

1

1.0

0.5

0.5

0.5

0.5

0.5

0

0

0

0

 0

-0.5

-0.5

-0.5

-0.5

1

-1

-1

-1

-1

-1

-1

-1

-1

1

1

1

1

2

2

2

2

0

 0

0

0

0

0

0.5

1

2

3

1

-2

-2

-2

-2

z
z

z
z

 x

 x x

 x

y
y

y
y

1

1

1

1

 1

1

0

0

0

 0

0

0

 2

2

-1

-1

-1

-1

0.5

 0.5

-2

-2

-0.5

-0.5

0.2

0.2

0.4

0.4

0.6

0.6

0.8

 0.8

 x

 x
y y

z
z

(c) Gaussian w(d) = e−(d
h

)2 (d) McLain w(d) = 1
(d+h)2

1

0

-0.5

0.5

1

1.0

1

1.0

0.5

0.5

0.5

0.5

0.5

0

0

0

0

 0

-0.5

-0.5

-0.5

-0.5

1

-1

-1

-1

-1

-1

-1

-1

-1

1

1

1

1

2

2

2

2

0

 0

0

0

0

0

0.5

1

2

3

1

-2

-2

-2

-2

z
z

z
z

 x

 x x

 x

y
y

y
y

1

1

1

1

 1

1

0

0

0

 0

0

0

 2

2

-1

-1

-1

-1

0.5

 0.5

-2

-2

-0.5

-0.5

0.2

0.2

0.4

0.4

0.6

0.6

0.8

 0.8

 x

 x
y y

z
z

(e) Inverse quadratic w(d) = 1
d2+h2 (f) Wendland w(d) =

(
1− d

h

)4
+

(
4 d
h

+ 1
)

Fig. 8.4. Weight functions.

242 8 Implicit Surface Fitting

w(d) =

{
dk−1ln(dd) if d < 1
dkln(d) if d ≥ 1.

(8.29)

• Gaussian weight function. This weight function has not compact support
either (Figure 8.4(c)). It is given by

w(d) = e−(dh)2 (8.30)

where h is a parameter that can be used to smooth out small features
in the data [230, 5]. This parameter h is related to the full width at half
maximum of the Gaussian peak, and corresponds to the position of the
circle of inflection points on the Gaussian.

• McLain weight function. This function appears in Figure 8.4(d) and is
given by

w(d) =
1

(d+ h)2
. (8.31)

• Inverse quadratic weight function. This is a variant of McLain’s function
(Figure 8.4(e)). It is as follows

w(d) =
1

d2 + h2
. (8.32)

In this case, there is a singularity at d = 0 if the parameter h vanishes.
• Wendland weight function. This function is shown is Figure 8.4(f). Un-

like the previous weight functions, the Wendland function [408] does have
compact support

w(d) =
(

1− d

h

)4

+

(
4
d

h
+ 1
)
, (8.33)

where h stands for the radius of support, and d ∈ [0, h]. Note that w(0) = 1,
w(h) = 0, w′(h) = 0 and w′′(h) = 0, i.e. this function is C2 continuous.
The first factor of the Wendland weight function (8.51) is a truncated
quartic power function.

By choosing an adequate weight function, the fit function behaves as either
an approximant or interpolant, even with lower-degree basis functions. For
example, Shen et al. [362] use the inverse quadratic weight function (8.32). In
this case, and assuming that di = ||x−xi|| is the Euclidean distance between
the centre xi and some data point x, we have:

• The weight function w(di) quickly, monotonically decreases to zero as di →
∞.

• The weight function w(di) tends to infinity near the corresponding input
data point xi (where di → 0) when h is very small, which forces the
fit function to interpolate the corresponding function values. Thus, the
parameter h determines how the MLS fit function behaves, either as an
interpolant or as an approximant.

8.3 LS Implicit Surfaces 243

The inverse quadratic weight function rapidly decays to zero, but it has
not compact support. This ensures a priori that we end up having a smooth
assembly of the local fits into the global fit. On the contrary, using compactly
supported weight functions (e.g. the Wendland function) does not guarantee
such a smooth assembly, unless we use some extra algorithmic machinery to
ensure that every point of the domain Ω is covered by at least one fitting
polynomial. In other words, we have to make sure that the compact supports
of weight functions w(di) centred at xi cover Ω or, equivalently,

Ω =
N⋃
i=1

supp(w(di)). (8.34)

Thus, since the coefficient vector c varies with x, the polynomial coeffi-
cients have to be recomputed for every centre. We do so by evaluating a new
weight matrix Wi for each centre xi, which is seen as a new location of the
moving x; hence the moving least squares (MLS). That is, one computes a
local MLS fit for each translate of x individually. This leads us to slightly
change Equation (8.26) for each local MLS function as

fi(x) =
K∑
j=1

cij(x) pj(x) (8.35)

or, using the matrix notation,

fi(x) = pT (x) ci(x) (8.36)

which give us the approximation to the surface in the neighbourhood of the
ith fixed point x = xi, and where ci is the corresponding coefficient vector
obtained by minimising the WLS error (8.22). Thus,

ci = A−1
i (x) Bi(x) f (8.37)

with
Ai(x) = PTWi(x) P and Bi(x) = PTWi(x),

We can then say that there is local degree-d polynomial reproduction in
the neighbourhood of each data point (xi, fi). Obviously, computing each
local polynomial fi(x) that fits the surface in the neighbourhood N(xi) of the
centre xi requires that we determine which data points are inside N(xi) by
means of, for example, k-d trees [362].

Finally, by summing up the local MLS fit functions given by Equa-
tion (8.35), we obtain a global MLS approximation written as follows:

F (x) =
N∑
i=1

fi(x) (8.38)

244 8 Implicit Surface Fitting

By substituting Equation (8.35) into Equation (8.38), we get the global MLS
approximation written in the form of Equation (8.26), i.e.

F (x) =
K∑
j=1

cj(x) pj(x) with cj(x) =
N∑
i=1

cij(x). (8.39)

Also, substituting Equation (8.37) into Equation (8.36), and Equa-
tion (8.36) into Equation (8.38), and rearranging the equation in relation
to the observed values fi, Equation (8.38) can be written in the following
form:

F (x) =
N∑
i=1

pT (x) A−1
i (x) Bi(x) f

=
N∑
i=1

 K∑
j=1

pj(x) [A−1
i (x) Bi(x)]j

 fi

that is

F (x) =
N∑
i=1

φi(x) fi (8.40)

where

φi(x) =
K∑
j=1

pj(x) [A−1
i (x) Bi(x)]j (8.41)

is known as the MLS shape function associated to jth node; [A−1
i (x) Bi(x)]j

is the jth column of the K×N matrix A)−1
i (x) Bi(x). Remarkably, the MLS

shape functions (8.41) form a partition of unity since there exists a pj such
that pj(x) = 1, a result due to Duarte and Oden [118].

The MLS Algorithm

A näıve computation of the global MLS function would involve the compu-
tation of a local MLS function in the neighbourhood of each data point xi
(i = 1, . . . , N). As argued by Shen et al. [362], this näıve computation is
impracticable for large data sets.

A solution for this problem is to use a rather smaller number of centres, say
n < N , in the neighbourhood of each one estimates the corresponding local
MLS fit. This centre reduction can be achieved by using an adaptive octree
subdivision of domain Ω into leaf subdomains Ωk (k = 1, . . . , n), and then
defining a centre for each leaf subdomain. Of course, the recursive subdivision
of the domain stops when the number of data points inside each subdomain
falls below a given threshold.

Stopped the subdivision of the domain, one determines the local MLS fit
fi(x) given by (8.35) within each leaf subdomain. To be more precise, and

8.3 LS Implicit Surfaces 245

Algorithm 30 The MLS Implicit Surface Reconstruction
1: procedure MLS({xi},{fi},P (x)) . i← 1, N
2: F ← 0 . initialise the global MLS function
3: Partition Ω into n leaf domains Ωk . n < N
4: for k ← 1, n do
5: Evaluate the local MLS function fk . local MLS function (8.35)
6: F ← F + fk . global MLS function (8.38)
7: end for
8: Ray-trace or polygonise the implicit surface F
9: end procedure

in order to guarantee the continuity of the global reconstruction surface, the
local MLS approximations (8.35) are determined within overlapping spherical
neighbourhoods enclosing leaf subdomains, instead of the leaf subdomains
themselves.

Several surface reconstruction algorithms use this adaptive space subdi-
vision scheme, namely those due to Ohtake et al. [308], Tobor et al. [389],
and Yang et al. [423]. Algorithm 30 concerns the MLS algorithm with centre
reduction to reconstruct implicit surfaces from scattered datasets of points.

The partition (step 3) of the domain Ω into subdomains Ωk involves the
computation of the K nearest neighbours of ck, the centre of the box subdo-
main Ωk. These K nearest neighbour points are easily retrieved from a K-d
tree and constitute a spherical neighbourhood N(ck) that encloses Ωk. As-
suming that the local reconstruction functions fk contribute equally to the
global reconstruction function F , we end up having a partition of unity for
MLS surfaces (step 8).

It is worthy noting that point sets obtained from range scanners are usually
noisy and do not include normals, which poses some difficulties in rendering
MLS surfaces. Ohtake et al. [308] implemented a technique to generate pseudo-
normals from surface point datasets, which was originally suggested by Turk
and O’Brien [392]. This technique takes advantage of the definition of a closed
implicit surface as a zero set such that one attaches a zero constraint to a point
on the surface, a positive offset constraint to a point just outside the surface,
and a negative one just inside. Shen et al. [362] improved on this technique not
only for rendering purposes, but also to reduce undesirable oscillations in the
process of fitting a surface to points of the dataset. Interestingly, Sun-Jeong
Kim and Chang-Geun Song [211] use the MLS approximation itself not only
to approximate the surface in the neighbourhood of each point, but also to
obtain normals and relevant differential data.

Levin’s MLS Surfaces

A different MLS approach to reconstruct an implicit surface S in R3 from a
unstructured point dataset {xi}Ni=1 on S or nearly on S was originally pro-
posed by Levin [230]. This method, also known as PMLS (projection moving

246 8 Implicit Surface Fitting

 (a) (b)

Fig. 8.5. A MLS surface reconstructed from a cloud of points using Pointshop 3D.

least squares), is based upon a projection operator that takes points near
the data set onto a smooth surface. Figure 8.5 shows a cloud of points and
the corresponding MLS surface produced by a variant of the PMLS surfaces,
called VMLS, which were encoded in PointShop 3D (see Zwicker et al. [429]
for further details).

Given a point x near S, the projection procedure involves two steps:

• Computation of a hyperplane H in R3 that approximates the surface S
locally.

• Computation of the projection of x on a local polynomial approximation
of S over H.

Remarkably, both steps are performed using the MLS method. Of course,
the degree of approximation depends on the degree of polynomials used in
the second step. More specifically, the projection procedure can be detailed
as follows:

• The local approximating hyperplane. The computation of the local
approximating hyperplane (sometimes called stencil)

H = {x ∈ R3 : x · n−D = 0}, (8.42)

here defined by a unit vector n and an offset D ∈ R (the symbol · stands
for the standard inner product in R3), is accomplished by minimising the
following weighted sum of squared distances

N∑
i=1

(xi · n−D)2 w(||xi − p||). (8.43)

8.3 LS Implicit Surfaces 247

where p is the orthogonal projection of x onto H, and w is a non-negative
weight function that typically only depends on the Euclidean distance.
Taking into account that the weights w(||xi − p|| decrease with the Eu-
clidean distance ||xi − p||, we conclude that the resulting hyperplane H
approximates the tangent hyperplane to S near p. In the minimisation
process of (8.42), we may find several local minima, so we choose the clos-
est to p, i.e. the one that minimises |x · n − D|. Note that H defines a
local orthonormal coordinate system with p at the origin, so that the co-
ordinates of the sample points {xi}Ni=1 of S in this coordinate system are
(ui, vi, hi), where (ui, vi) are the parameter values in H and hi = xi ·n−D
is the height of xi over H.

• The local approximating polynomial P . This is the first part of the
second step. Let {pi}Ni=1 be the orthogonal projections of the sample points
{xi}Ni=1 onto H, i.e. pi = (ui, vi, 0). The 2-dimensional local approxima-
tion to S is given by a degree 2 polynomial P that minimises the weighted
least squares error

N∑
i=1

(P (pi)− hi)2 w(||xi − p||). (8.44)

• The projection of x onto the local polynomial approximation of
the surface. This is the second part of the second step. Once determined
the approximating polynomial P , we can determine the projection of x
onto the MLS surface S as follows

Π(x) = p + P (0) · n, (8.45)

where Π(x) denotes such a projection operator.

In short, Levin’s two-step minimisation procedure first determines a local
reference frame that approximates the surface, and then computes the poly-
nomial function that approximates the surface locally. The reason behind the
use of a local stencil H of data points rather than the whole set of data points
in the domain lies in the fact that points near the fixed point have more in-
fluence on the value of the function than those points far away. Applying the
stencil to several points, we are able to construct a global approximation to
the whole surface by blending those local approximations.

However, Amenta and Kil [15] show that Levin’s projection has undesirable
behaviour near corners and edges. As Ochotta et al. also note in [307], the
failures of Levin’s two-step procedure near corners and edges occur regardless
of the sampling density and neighbourhood size. In fact, the first minimisation
step may fail to output the expected reference frame, and consequently the
expected normal to the surface. This is illustrated in Figure 8.6; (a) shows the
expected local hyperplane that approximates the surface, while (b) depicts
a wrong local hyperplane. In the latter case, the MLS projection operator
pinches and extends away from the points xi.

248 8 Implicit Surface Fitting

F(x)=0

fi(x)=0

ci

di

fj(x)=0

cj

dj

H

xi

x

p

H

xi

x p

(a) (b)

Fig. 8.6. The first step of Levin’s procedure for MLS surfaces: (a) the expected
local approximating hyperlane and (b) the wrong local approximating hyperlane H
for a point x near a curve.

Intuitively, we may think of the sampling density of points as the source of
Levin’s first-step minimisation problem. In fact, from the differential geome-
try, we know that such approximating local plane exists for smooth surfaces,
but the first step of Levin’s MLS procedure is not finding it correctly. Ochotta
et al. [307] also argue that this deficiency results from performing the minimi-
sation in two different steps. Once determined a planar approximation to the
surface at the first step, there is no way for the second step to correct such
a local reference frame. Instead, they use a unified projection operator that
guarantees that the projection is always orthogonal to f , not to the hyper-
plane H. A former solution to this problem is due to Fleishman et al. [139],
who propose a robust projection scheme that does not fail near sharp fea-
tures (say, corners and edges), but this is accomplished at expense of extra
processing steps.

Note that Levin’s MLS surface can be viewed as a point-set surface, which
is defined as the set of stationary points of a projection operator. It seems
that this surface definition was first used by Alexa et al. [5] in the context of
point-based modelling and rendering. See [138] and [319] for other applications
of the concept of point-set surfaces. Amenta and Kil [6] explicitly define a
point-set surface as the set of local minima of an energy function along the
directions provided by a vector field. Adamson and Alexa [1] give a simplified
definition of an implicit surface which is tailored for efficient ray tracing, as
well as sampling conditions that guarantee the manifold reconstruction of the
surface.

8.4 RBF Implicit Surfaces 249

8.4 RBF Implicit Surfaces

Radial basis functions (RBFs) were introduced by Hardy [176] and
Duchon [120]. Hardy empirically discovered, in the field of cartography,
that a linear combination of multiquadrics—now known as multiquadric
RBFs—produce a single interpolant that fits all the given scattered point
data. In mathematics, the seminal work on thin-plate splines and other RBFs
is due to Duchon [121, 119, 120] and later Madych and Nelson [254, 255, 253].

Since then, RBFs have gained in popularity in various disciplines of sci-
ence and engineering, namely computer graphics, computer aided design, neu-
ral networks, fluid mechanics and simulation, geodesy and cartography, and
applied mathematics. One of the most influential contributions to the theory
of RBFs is due to Micchelli [269], who established solid theoretical results on
the invertibility of the RBF interpolation matrix. Micchelli’s work focused on
“Laplace transforms” related to Gaussian RBFs. Also, Franke [145] published
a survey paper on several interpolating methods which helped to shed light on
the essence of the theory of RBFs. A more comprehensive study of the RBFs
is given by Buhmann [73].

In computer graphics, Nielson [300] introduced the use of RBFs to build
up interpolants for 3D data where the interpolation centres do not form a
regular grid, but the first surface reconstruction algorithms based on RBF in-
terpolants are usually credited to Savchenko et al. [349], Carr et al. [78], and
Turk and O’Brien [392]. Savchenko and colleagues proposed RBFs to interpo-
late implicit surfaces. Carr and colleagues used the thin-plate spline RBF to
interpolate incomplete surfaces extracted from 3D medical graphics [78]. Turk
and O’Brien proposed the variational implicit surface, which is essentially a
RBF implicit surface built up from the interpolation of a cloud of points in a
way similar to thin-plate interpolation [392]. This interpolation method pro-
vides the surface of minimal curvature that passes through the data points.
Solving this minimisation problem is accomplished using variational interpola-
tion; hence the variational implicit surfaces. For further details on variational
interpolation, the reader is referred to Duchon [120].

8.4.1 RBF Interpolation

Let us then consider the problem of interpolating a multivariate function f :
Ω ⊂ R3 → R, from a set of sample values {f(xi)}Ni=1 on a scattered point data
set {xi}Ni=1 ⊂ Ω. A popular method for interpolating multivariate scattered
data is using RBFs. To reconstruct f efficiently, it suffices to approximate f
locally by a real-valued function φ at each centre xi. This real-valued function
is called radial basis function (RBF) and depends on the Euclidean distance
|| · || from each centre xi, so that φ(||x − xi||) = φi(x). That is, φ is radially
symmetric.

The characteristic property of a radial basis function is that its re-
sponse decreases (or increases) monotonically with distance from its centre.

250 8 Implicit Surface Fitting

In Figure 8.4, we can observe various RBFs. In the MLS formulation, these
radial functions are used as weight functions. Here, they are used as basis
functions of splines that approximate functions and interpolate data.

The RBF interpolation requires an appropriate choice of the radial basis
functions. An important class of radial basis functions is the class of thin-
plate functions. The thin-plate functions are the basis functions of thin-plate
splines. Thin-plate functions are a special case of polyharmonic functions,
which means that thin-plate splines are a particular case of polyharmonic
splines. In fact, Duchon [121] shows that solving for thin-plate splines to inter-
polate sample points in 2D is equivalent to using the biharmonic radial basis
function φ(d) = d2 log(d) to interpolate these points; in 3D, the thin-plate
solution amounts to interpolating the sample points using the triharmonic ra-
dial radial function φ(d) = d3. Turk and O’Brien [392] just opted by using the
triharmonic thin-plate RBF φ(||x − xi||) = ||x − xi||3, while Carr et al. [78]
used the uniharmonic thin-plate RBF φ(||x − xi||) = ||x − xi||. Chosen the
radial basis function φ, we are able to build up approximations to the function
f as follows

F (x) =
N∑
i=1

wi φ(||x− xi||) (8.46)

where the interpolant F (x) is a result of the sum of N radial basis functions,
each of which is associated with a distinct centre xi, and weighted by an
adequate coefficient wi.

In order to guarantee the positive-definiteness—one of the conditions to
ensure the uniqueness—of the solution, it is necessary to add a low-degree
polynomial to the interpolant F in Equation (8.46). The result is the general
form of an RBF interpolant:

F (x) = P (x) +
N∑
i=1

wi φ(||x− xi||), x ∈ Rn (8.47)

where P (x) is a polynomial of degree at most k. Duchon [120] shows that a
linear polynomial P suffices to guarantee the smoothness of the interpolant.
The biharmonic and triharmonic splines likely are the smoothest interpolants
in the sense that they interpolate the scattered data and minimise certain
energy functionals [77].

Surface reconstruction through RBF interpolation thus requires to ap-
proximate a real-valued function f(x) by the RBF interpolant F (x) given the
scalar values fi at the distinct points xi (i = 1, . . . , N). To compute the inter-
polant F (x) in Equation (8.47), we have to first determine the weights wi and
the vector of unknown coefficients c = [c1, . . . , ck]T that give P in terms of its
basis b(x) = [b1(x), . . . , bk(x)]T . The weights wi are such that F (x) satisfies
the interpolation conditions

F (xi) = fi, i = 1, . . . , N. (8.48)

8.4 RBF Implicit Surfaces 251

This system of equations has more parameters than data, so we have to
further impose the following orthogonality conditions on the weights wi:

N∑
i=1

wiP (xi) = 0, for all polynomials P of degree at most k. (8.49)

Equations (8.48) and (8.49) may be then written in matrix form as(
A B
BT O

)(
w
c

)
=
(

f
0

)
(8.50)

where

A =


φ11 φ12 . . . φ1N

φ21 φ22 . . . φ2N

...
...

. . .
...

φN1 φN2 . . . φNN


with φij = φ(||xj − xi||) for i, j = 1, . . . , N , and

B =


b11 b12 . . . b1k
b21 b22 . . . b2k
...

...
...

bN1 bN2 . . . bNk


with bij = bj(xi), for i = 1, . . . , N , j = 1, . . . , k. The submatrix O is the
(k × k) zero matrix.

Solving the system of Equations (8.50) determines the coefficients c =
[c1, . . . , ck]T of the the polynomial P , the weights w = [w1, . . . , wN]T , and
hence F (x). In fact, the system (8.50) is symmetric and positive semi-definite,
which means that there is a unique solution for the wi and cj [160]. Moreover,
the system can be directly solved using the symmetric LU decomposition if
the system is limited to a few thousand constraints; for example, Turk and
O’Brien [392] employed this LU technique to interpolate implicits together
with a degree-one polynomial P .

The RBF interpolation allow us to reconstruct complex and smooth im-
plicit surfaces with arbitrary topological shape from a set of constraint points,
weights and a k-order polynomial. Consequently, it is straightforward to com-
pute the normal vector and the curvature at a given point of the surface, as
necessary in many geometric applications, and ensure C2 continuity. Another
nice property of RBFs is that they impose no restrictions on the scattered data
points. In particular, RBFs do not require that these scattered data points lie
in any type of regular grid or space decomposition, as usual in the marching
cubes and its variants. Unfortunately, the interpolation process is very time-
consuming when the number of data points goes above a few thousands, since
it requires the global evaluation of all the basis functions.

252 8 Implicit Surface Fitting

8.4.2 Fast RBF Interpolation

Standard RBFs have the disadvantage that they only cope with small scat-
tered data sets, i.e. data sets having up to two thousand points approximately.
To overcome this problem, Carr et al. [76, 77] introduced a kind of fast RBFs
to reconstruct surfaces from very large point data sets. Speeding up the RBF
interpolation was made feasible thanks two mechanisms:

• Fast multipole method (FMM).
• RBF centre reduction.

The FMM was originally developed by Greengard and Rokhlin [168] in
computational physics. This method allows the fast summation of potential
fields (harmonic RBFs) as needed in particle simulations. More specifically,
it allows the matrix-vector product of the form given by Equation (8.46) to
be computed in O(n log(n)) or even O(n) operations instead of the O(n2)
operations performed on the direct product. In fact, the FMM was originally
designed for the fast evaluation of harmonic RBFs in 2D and 3D, and later
extended to higher-order polyharmonic RBFs by Beatson et al. [36, 37], just
those used by Carr et al. [76] .

The fast RBF interpolation also uses the centre reduction technique to
make possible the reconstruction of surfaces from very large point data sets.
Unlike the standard RBFs, the fast RBFs do not use all the input scattered
points xi as RBF centres (or interpolation nodes). By using a significantly
smaller point data subset of centres within a predefined fitting accuracy δ,
one can reconstruct the surface with the same visual quality. This allows us
then to remove the redundant detail or noise before going to the fitting stage.
This can be done using a greedy algorithm as the one described by Carr
et al. [76].

To render an RBF implicit surface, we have to bear in mind that it can
be defined as the zero set of a single RBF fitted to the given scattered point
data. Therefore, this surface can be directly displayed using a ray tracer, or
indirectly using any implicit surface polygonisation algorithm described in
previous chapters. For example, Carr et al. [76] use the marching tetrahedra
to polygonise RBF implicit surfaces.

8.4.3 CS-RBF Interpolation

The main drawback of the RBFs, including the fast RBF, lies in their global
nature, which results from the use of noncompactly supported basis functions.
This means that even a small change on a single constraint point or centre
affects the entire interpolated surface. On the contrary, compactly supported
RBFs (CS-RBFs) follow the principle of locality in a way similar to the clas-
sical B-splines [408]. Changing the position of a given centre xi causes only a
local change of the interpolant and the corresponding surface.

8.4 RBF Implicit Surfaces 253

Therefore, compactly supported RBFs (CS-RBFs) allow for a better con-
trol since the influence of each radial function is local. This control is deter-
mined by the radius of the radial basis function at each centre. Wendland [408]
introduced the following family of compactly supported radial basis functions
to interpolate an implicit surface from scattered point data:

φ =

{
(1− r)p+P (r) if 0 ≤ r < 1
0 if r ≥ 1

(8.51)

where (1 − r)p+ is the truncated power function, and P (r) is a low degree
polynomial. In particular, the radial basis functions in Table 8.1 are derived
from (8.51).

Table 8.1. Wendland’s compactly supported radial basis functions (CS-RBFs).

Dimension Radial Basis Function (RBF) Continuity

d = 1 (1− r)+ C0

(1− r)3+(3r + 1) C2

(1− r)5+(8r2 + 5r + 1) C4

d = 3 (1− r)2+ C0

(1− r)4+(4r + 1) C2

(1− r)6+(35r2 + 18r + 3) C4

(1− r)8+(32r3 + 25r2 + 8r + 1) C6

d = 5 (1− r)3+ C0

(1− r)5+(5r + 1) C2

(1− r)7+(16r2 + 7r + 1) C4

The radius of support of these functions is equal to 1, though any radius is
allowed by scaling of the basis function. By summing up the contributions of
these polynomial, positive-definite and compactly supported RBFs associated
to the centres, we obtain a piecewise polynomial interpolant of minimal degree.
As expressed in Table 8.1, the dimension and smoothness of the interpolant
F depend on the dimension d and continuity Ck of the radial basis functions.

8.4.4 The CS-RBF Interpolation Algorithm

The CS-RBF interpolation algorithm to reconstruct implicit surface from scat-
tered data sets is outlined in Algorithm 31 (cf. Morse et al. [282]) and illus-
trated in Figure 8.7.

We are here assuming that the number n of centres that is less than the
number N of data points, i.e. we are using centre reduction. The steps 4–6
are the core of Algorithm 31 since they are also the steps we need to compute
the standard RBF interpolant given by (8.47).

In the case of compactly supported RBFs, these three steps are locally
performed for each centre as follows:

254 8 Implicit Surface Fitting

Algorithm 31 The CSRBF Implicit Surface Reconstruction
1: procedure CSRBF({xi},{fi},P (x)) . i← 1, N
2: F ← P (x)
3: for k ← 1, n do . n ≤ N
4: Build up the system of equations (8.50)
5: Solve the system of equations (8.50)
6: Evaluate the local interpolant Fk
7: F ← F + Fk
8: end for
9: Ray-trace or polygonise the implicit surface F

10: end procedure

(a) (b) (c) (d)

Fig. 8.7. Multilevel CS-RBF surface reconstruction of an African statue (woman
and child): (a) a subset of the original point dataset; (b) the original point dataset
with 220,318 points with some missing local regions of points; (c) the mesh of the
reconstructed surface; (d) the flat-shaded reconstructed surface. (This African statue
dataset is courtesy of Tamy Boubekeur’s repository. The pictures were generated
from the RBF3D testbed due to Ohtake et al. [312].)

8.5 MPU Implicit Surfaces 255

• Building up the system of equations. Using radial basis functions of finite
support has a significant impact on the sparsity of the resulting matrix
of the system of equations (step 4), simply because φ(||xi − xk||) = 0 for
all (xi,xk) farther apart than the radius of support. An immediate con-
sequence is that only O(n) storage is required. Besides, Morse et al. [282]
use a k-d tree to find all points within the radius r of a given centre, which
is performed in O(logn) time.

• Solving the system of equations. To solve the system of equations (step 5),
Morse and colleagues use a direct (LU) sparse matrix solver [116]. The com-
putational complexity of this LU solver seems to be O(n1.5) at most [345].

• Evaluating the local interpolant. Finally, one evaluates the local interpolant
Fk at each using (8.46), where N now denotes the number of data points
within the radius of support.

A similar reconstruction algorithm based on CS-RBFs is due to Ohtake
et al. [310, 312]. They use a multiresolution approach together with a sim-
ple RBF centre reduction to achieve high-quality approximations, even when
the density of point data is not uniform or there is the need for repairing
incomplete data, as illustrated in Figure 8.7.

8.5 MPU Implicit Surfaces

The partition-of-unity (PoU) approach has attracted considerable attention
in recent years because of its local nature. The essence of this approach can be
traced back to Shepard’s blending method [363], which was originally thought
of as a good means of building a global solution function by blending local
solution functions using smooth, local weights that sum up to one everywhere
in the domain. Thus, each local function has a limited domain of influence in
the resulting global function. This is illustrated in Figure 8.8 for four positive
real functions f1, f2, f3, and f4 that are defined locally about four points x1,
x2, x3, and x4, respectively.

In general, we split a bounded domain Ω ∈ Rd into a number of slightly
overlapping subdomains Ωi that cover Ω, that is Ω ⊆

⋃
i Ωi. These subdomains

are intervals in R (Figure 8.8), circles in R2 (Figure 8.9), and spheres in R3

that overlap near their boundaries.
Then, we build a partition of unity on the set {Ωi} of subdomains. Such a

partition of unity is nothing more than a collection of nonnegative functions
φi with compact support supp(φi) ⊆ Ωi that satisfy the condition

∑
i φi = 1

in Ω.
For each subdomain {Ωi}, we form the set Pi of the data points inside

{Ωi}, computing then a local function fi that fits the points of Pi. The global
fitting function F is then the result of a combination of the local functions fi
weighted by the partition functions φi as follows:

256 8 Implicit Surface Fitting

F(x)

x

f1(x)
f2(x)

f3(x)

f4(x)

w1(x-x1)
w2(x-x2)

w3(x-x3)

w4(x-x4)

x1 x2 x3 x4

F(x)=0

fi(x)=0

ci

ri

fj(x)=0

cj

rj

Fig. 8.8. Four local functions fi (i = 1, 2, 3, 4) blended by weighting functions ωi
centred at the points xi on the real line R. The graph of the resulting function is
the red solid curve.

F(x)=0

fi(x)=0

ci

ri

fj(x)=0

cj

rj

Fig. 8.9. Three local functions fi (i = 1, 2, 3) blended by weighting functions ωi
centred at the points ci on the real line R.

F (x) =
n∑
i=1

φi(x) fi(x) (8.52)

For example, in Figure 8.8, the resulting function F in red is built from
a combination of four local functions fi, which are associated to four weight
functions ωi. The condition

∑
i φi = 1 is just obtained from the smooth weight

functions ωi using the following normalisation formula:

φi(x) =
ωi(x)∑
j ωj(x)

. (8.53)

Equation (8.52) can be then re-written as

F (x) =
∑
i ωi(x)fi(x)∑

i ωi(x)
(8.54)

Starting from this framework, various hierarchical implicit surface recon-
struction algorithms have been proposed in the literature. Possibly, the most

8.5 MPU Implicit Surfaces 257

known of these algorithm is the multilevel partition-of-unity (MPU) method
introduced by Ohtake et al. [308]. This method uses an adaptive 2n-tree sub-
division of the domain which allows for manifold reconstruction even from
large point datasets.

In 2D, reconstructing an implicit curve is carried out using an adaptive
quadtree-based subdivision, as illustrated in Figure 8.9. In this case, the sub-
division of a square into four smaller squares depends on the shape changes
of the curve inside such a square.

In 3D (see Figure 8.10), the MPU method to reconstruct an implicit surface
involves three key ingredients:

• An octree space partitioning that subdivides the bounding box domain
into smaller boxes or cubes. This space subdivision adapts to local shape
variations of the reconstructing surface. However, the subdomains are not
those cubes. Instead, the subdomains are spheres that contain the cubes
and match their centres in order to cover the domain.

• Piecewise quadratic functions fi that fit the local shape of the surface,
i.e. a piecewise quadratic function fits the data points in each box sub-
domain or octree cell. These piecewise quadratic functions are called the
local shape functions.

• Weighting functions (partitions of unity) that blend those quadratic func-
tions together.

(a) (b) (c)

Fig. 8.10. Surface reconstruction of a Moai statue via MPU implicits: (a) dataset
with 6053 points; (b) mesh of the reconstructed surface with support size of 0.5;
(c) mesh of the reconstructed surface with support size of 0.4. (Moai’s dataset is
courtesy of Tamy Boubekeur’s repository. The pictures were generated from the
MPU testbed due to Ohtake et al. [308].)

258 8 Implicit Surface Fitting

This approach allows for other local fitting functions. This flexibility is re-
inforced by the fact that sharp features (e.g. ridges and corners) can accurately
represented by extending the set of local fitting functions with supplementary
shape functions. The previous work of Ohtake et al. [309] (and the references
therein) influenced the inclusion of those sharp features in MPUs.

8.5.1 MPU Approximation

MPUs can be used to approximate or interpolate a point dataset. If we intend
to approximate a point dataset, we should use the general trivariate quadratic
polynomial P (x) to form weight functions

ωi(x) = P

(
3 ||x− ci||

2 ri

)
(8.55)

which are centred at ci (i.e. centres of the octree cells) and have a spherical
support of radius ri.

The octree data structure is thus the core of the MPU-based implicit
surface reconstruction algorithm. For each leaf octree cell containing sample
points of the physical surface, we have to generate a local shape function fi
that approximates such a surface in the cell. Each approximant fi is built
using a least-squares fitting framework similar to MLS surfaces.

There are three possible approximants, depending on the number of data
points inside the ball associated to a given cell, as well as the distribution of
the normals at the data points. The possible approximants are the following:

• A general quadric in R3. This trivariate quadratic polynomial serves the
purpose of approximating larger regions of the surface, in particular those
unbounded regions and regions with two or more sheets inside a given
octree cell.

• A bivariate quadratic polynomial in local coordinates. This polynomial is
suited to approximate a single local smooth patch.

• A piecewise quadric surface that fits a sharp feature (i.e. a corner or an
edge). The piecewise nature of this quadric makes it adequate for modelling
regions with differential singularities like cusps and creases.

Let N be the number of points in a ball centred at c, the centre of a given
octree cell, and n a unit normal vector at c. This unit normal vector is deter-
mined from the normalised weighted arithmetic mean of the normals assigned
to data points inside the ball, with the weights taken from Equation (8.55).
Let also θ be the maximal angle between n and those normals inside the ball.
The choice of the local surface fit depends on the values of N and θ.

Local Fit of a General Quadric

The surface is locally approximated with a general quadric if the following
condition is satisfied:

8.5 MPU Implicit Surfaces 259

N > 2Nmin and θ ≥ π

2
(8.56)

where Nmin takes on the empirical value 15. In this case, the local shape
function is given by the general form of a quadric surface

f(x) = Ax2+By2+Cz2+2Dxy+2Exz+2Fyz+2Gx+2Hy+2Iz+J (8.57)

or, equivalently, in the matrix notation as

f(x) = xT A x + bT x + c (8.58)

where

A =

A D E
D B F
E F C

 , bT =

2G
2H
2I

 and c = J

The unknowns A, B, C, D, E, F , G, H, I, and J are computed by means
of a minimisation procedure described by Ohtake et al. [308].

Local Fit of a Bivariate Quadratic Polynomial

Using a bivariate quadratic polynomial to fit the surface locally requires that
the following condition be satisfied:

N > 2Nmin and θ <
π

2
(8.59)

Such a bivariate quadratic shape function is given by the second term of
the following expression of f

f(x) = w − (Au2 + 2Buv + Cv2 +Du+ Ev + F) (8.60)

where (u, v, w) are the coordinates of a local coordinate system with the origin
at c and such that the normal vector n at c is orthogonal to the plane (u, v)
along w, i.e. (u, v, w) are the coordinates of x in the new coordinate system.
Once again, the unknown coefficients A, B, C, D, E, and F are computed by
means of a minimisation procedure described in [308].

Local Approximation of Sharp Features

The following condition
N ≤ 2Nmin (8.61)

indicates that there may be a sharp edge or corner inside the ball B centred
at c. In this case, we consider a piecewise quadratic function instead of the
quadratic functions (8.57) and (8.60) to fit the data points inside B. The
automatic recognition of sharp edges and corners is carried out by a procedure
proposed by Kobbelt et al. [213].

260 8 Implicit Surface Fitting

The MPU Approximation Algorithm

Algorithm 32 (jointly with Algorithm 33) describes the MPU approximation
to reconstruct an implicit surface from a scattered point dataset with precision
ε0.

As said above, the algorithm uses an adaptive octree subdivision of the
bounding box Ω into subsidiary cubes Ωk. The algorithm also uses a K-d
tree for sorting and collecting data points inside the sphere that encloses each
leaf cube. If the sphere is empty (i.e. no data points), its associated interior
cube will not be subdivided any further. Otherwise, one first estimates a local
max-norm approximation error using the Taubin distance [383] given by

ε = max||xi−c||<R
||f(xi)||
||∇f(xi)||

(8.62)

Algorithm 32 The MPU Implicit Surface Approximation
1: procedure MPUapproximation(Ω,x,ε0)
2:

∑
w ← 0 . initialises denominator of (8.54)

3:
∑
wf ← 0 . initialises numerator of (8.54)

4: Ω← MPU(x, ε0) . Algorithm 33

5: F ←
∑
wf∑
w

. formula (8.54)

6: end procedure

Algorithm 33 The MPU Implicit Surface Reconstruction
1: procedure MPU(x,ε0)
2: if |x− ci| > ri then
3: return; . excludes points beyond the radius of support ri
4: end if
5: if fi has not been generated yet then
6: Create fi . local shape fit
7: Compute εi . Taubin’s distance
8: end if
9: if εi > ε0 then

10: if no children created then
11: Create children Ωk . octree subdivision
12: end if
13: for each child Ωk do
14: Ωk ← MPU(x,ε0)
15: end for
16: else
17: Compute ωi(x) . formula (8.55)
18:

∑
w ←

∑
w +ωi(x) . updates denominator of (8.54)

19:
∑
wf ←

∑
wf +ωi(x) fi(x) . updates numerator of (8.54)

20: end if
21: end procedure

8.6 Final Remarks 261

If ε > ε0 (Algorithm 33, step 9), where ε0 is a user-predefined threshold, one
subdivides the cube into eight smaller cubes (Algorithm 33, step 11), and the
approximation is delegated down to its child cubes (Algorithm 33, steps 13–
14). Otherwise, one computes the corresponding weight function ωi(x) and
updates the numerator and denominator (Algorithm 33, steps 17–18) of the
global MPU function (Algorithm 32, step 5).

The computation of the local MPU function fi(x) is carried out by step 6
of Algorithm 33. Recall that the choice of this local shape function depends
on the values of N and θ, say the number of points inside the ball enclosing
a given leaf cube and the maximal angle between the normal at the centre of
the ball and the normals at the points inside the ball.

8.5.2 MPU Interpolation

MPUs can be also used to interpolate the point dataset. In this case, we do
not use the weights of Equation (8.55). Instead, we use the inverse-distance
singular weights proposed by Franke and Nielson [146]:

ωi(x) =
[

(ri − ||x− ci||)+

ri||x− ci||

]2

(8.63)

where

(d)+ =

{
d if d > 0
0 otherwise.

(8.64)

8.6 Final Remarks

Boissonnat [56] apparently first addressed the problem of surface reconstruc-
tion from scattered datasets in the 1980s. Another reference work on surface
reconstruction from point cloud is due to Hoppe et al. [192]. Since then sur-
face reconstruction has become an active research topic in computer graphics
and visualisation. As seen in the beginning of the present chapter, three ma-
jor approaches have been used to fit surfaces to point clouds, depending on
the geometric representation for such surfaces: simplicial surface, parametric
surface, and implicit surface.

Nevertheless, this chapter is mainly concerned with algorithms that fit im-
plicit surfaces to such point clouds. Basically, there are two families of methods
for fitting an implicit surface to a cloud of points: interpolation methods and
approximation methods. Interpolation methods generate surfaces that exactly
pass through the data points, while approximation methods produce surfaces
that pass near the data points. Thus, approximation methods are the adequate
choice to reconstruct surfaces from point datasets with noise.

Interpolation and approximation methods include finite elements [123],
RBFs, MLS, and MPUs. The latter three take advantage over the former

262 8 Implicit Surface Fitting

method because they do not require a consistent tessellation of the func-
tion domain, and are known as mesh-free methods. These mesh-free methods
are also known as Galerkin methods in numerical analysis, computation and
engineering.

In surface reconstruction, we also find polygonal interpolants. The reader
is referred to Wachspress [403], who proposed rational polynomial interpolants
for convex polygons. See also Sukumar and Malsch [381] for a recent review
on the construction of polygonal interpolants. Unsurprisingly, polygonal in-
terpolants is now an active research field in computer graphics and geometric
modelling, in particular with respect to the construction of barycentric coor-
dinates on irregular polygons [140, 193, 268, 380, 381, 382].

9

Skeletal Implicit Modelling Techniques

In this chapter we review skeletal implicit modelling techniques and introduce
functions that have proved to be very useful in the construction of complex
models.

9.1 Distance Fields and Skeletal Primitives

When a function f is applied to a point p ∈ R3, the result is a scalar value
f(p) ∈ R. A surface S ⊂ R3 is given by

f(p) = C (9.1)

where C is any scalar value in R. Implicit surfaces can also be written as
f(p)−C = 0 where C is nonzero. The surface S is an isosurface of the scalar
field produced by f(p), and v is the isovalue that produces S. In computer
graphics, S is commonly known as an implicit surface.

Another type of implicit surface is the distance field , defined with respect
to some geometric entity T ⊂ R3, e.g. a point, curve, surface, or solid:

fT(p) = min
q∈T
|q− p| (9.2)

Intuitively, fT(p) is the shortest distance from p to T. Hence, when p lies
on T, fT(p) = 0.

One challenge when analysing implicit surfaces is visualising the underly-
ing scalar fields. A common technique is to regularly sample f on a 2D planar
slice through the field and map the values to grayscale, creating a field image
(Figure 9.1(a)). Another useful visualisation can be created by applying a sin
function to the values of f before mapping to grayscale. This creates a contour
diagram (Figure 9.1(d)).

Nonzero isovalues can be used with distance fields to define offset surfaces,
where fT(p) = C and C > 0. Here C is the distance from the offset surface

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 267
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

268 9 Skeletal Implicit Modelling Techniques

(a) (b) (c) (d)

Fig. 9.1. A 2D implicit circle defined by the distance field f =
√
x2 + y2 − 1. A

2 × 2 region of the infinite distance field f is visualised in (a) by sampling f at
each pixel and mapping the value to grayscale. The circle lies on the zero isocontour
f = 0, highlighted in red in (a) and shown explicitly in (b). The field f is plotted
as a standard height map in (c). In (d), a contour diagram is created by applying
(1 + sin(k . f))/2 to the value at each pixel before mapping to grayscale. The area
inside the zero isocontour, f < 0, is highlighted in red.

to T. Note that if T is a closed surface, then fT(p) = v defines two new
surfaces—one “inside” the old surface, and another “outside.” If T has no
interior, as is the case for points, curves, open surfaces, and solids, then only
one offset surface is defined. In this case, fT(p) = C is referred to as a skeletal
primitive.

The idea of using implicit surfaces as a procedural method for build-
ing models by combining primitive parts was put forward in a paper by
Ricci in the early seventies [341]. As argued by Bloomenthal [51], perhaps
the most useful procedural method for defining f is that of skeletal im-
plicit surfaces [51, 306, 422]. Originally introduced to the field of computer
graphics by Blinn [47] for the visualisation of electron density fields, skeletal
implicit surfaces are constructed from skeletal primitives, each defining their
own potential function. The correspondence between skeletal elements and
implicit primitives allows for intuitive model construction using skeletal ele-
ments, while maintaining the inherent advantages of implicit surfaces. This
higher-level control reduces the degrees of freedom in the model but there are
several advantages. For example, f(p) can only have a single value at any
point in space. That value is either on the surface, or it is not and thus, self-
intersections are impossible. Self-intersections can be highly undesirable with
other modelling methodologies such as polygon meshes.

Each component fi(p) of the implicit function may be split into a distance
function di(p) and a potential function gi(r), where r stands for the distance
to the skeleton. Using ◦ as the operation of composition of functions, each
component fi(p) can be then written as follows:

fi(p) = gi(r) ◦ di(p).

Potential functions gi are chosen so that the field values are maximum on
the skeleton and generally fall off to zero at some chosen distance from the

9.1 Distance Fields and Skeletal Primitives 269

Fig. 9.2. Potential functions. (a) Blinn’s Gaussian or “blobby” function, (b)
Nishimura’s “metaball” function, (c) Wyvill et al’s “soft objects” function, and
(d) the Wyvill function.

skeleton. One of the distinguishing features of the early work was to derive
a number of different potential functions (see Figure 9.2). An implicit model
is generated by combining the influences of k skeletal elements, the potential
field contributed by each element i will be denoted by fi. The contributions
can be combined in several different ways and together they define a scalar
field f .

In the simple case where the resulting surfaces are blended together, the
global potential field f(x, y, z) of an object, the implicit function, may be
defined as :

f(p) =
k−1∑
i=0

fi(p)

The surface of the object may be derived from the implicit function f(p)
as the points of space whose value equals a threshold denoted by C. The
isosurface, f(p) = C of a skeletal point and a radius of influence is a sphere.
In turn, the isosurface of two skeletal points with the same radius of influence

270 9 Skeletal Implicit Modelling Techniques

Fig. 9.3. Two skeletal points placed in close proximity.

is is shown in Figure 9.3, where the field at any point p is calculated as in
Equation (9.1).

9.2 The BlobTree

The BlobTree was introduced in [418] and proposed a tree structure that
extended the CSG tree (see [338]) to include various blending operations.
Various other similar systems were also published at that time. To understand
the different approaches return to the definition of the implicit function.

For a given potential function f , the volume V, and corresponding implicit
surface S, are defined by the following equations:

V = {p ∈ R3|f(p) ≤ 0} (9.3)
S = {p ∈ R3|f(p) = 0} (9.4)

Originally introduced to the field of computer graphics by Ricci [341], two
distinct classes of potential function have emerged. The first class, here termed
f zero functions (fZ) for clarity, assumes implicit primitives are defined as
in Equations (9.3) and (9.4). In this case the potential functions defined by
the primitives typically vary over the whole of space. The second class, here
termed fC functions, employ a modified version of Equations (9.3) and (9.4)
as follows:

V = {p ∈ R3|f(p) ≥ C} (9.5)
S = {p ∈ R3|f(p) = C} (9.6)

where C > 0, and is a user defined value (typically 0.5). Note that for visuali-
sation, if the solver expects an fZ function, an fC function is simply modified
by scaling by negative one and adding C.

The salient point in this classification lies in the fact that many common
modelling operations with implicit surfaces employ separate mathematical op-
erations dependent on whether fZ functions or fC functions are being used.
For example, fC functions support summation blending as presented in Sec-
tion 9.5, which if applied to fZ functions results in a shrinking of the input
surfaces. In some cases, fZ functions offer functional composition operations
with superior properties in the resulting potential values [28, 317]. In con-
trast, the main advantage of fC functions is that primitives are easily defined

9.3 Functional Composition Using fZ Functions 271

such that f(p) = 0 outside a boundary, thus allowing the use of standard
optimisation techniques such as bounding volumes or spatial subdivision. An
alternative classification of potential functions focuses on bounded versus un-
bounded fields [28]. This approach is useful when considering the optimisation
of function evaluations; however, beyond considerations of optimisation it is
not usefully applied when examining the properties of functional composi-
tion operations. For example, many unbounded forms of fC functions, such
as those defined by Blinn [47], are easily incorporated into systems employing
bounded fC functions.

9.3 Functional Composition Using fZ Functions

fZ functions often define implicit primitives such that the distance from the
surface S to a given point p is given as d = f(p). Skeletal primitives are thus
easily employed by defining f as:

f = fdistance(p)− r (9.7)

where r is the desired distance from the skeletal element to the surface S and
fdistance is a distance function as previously defined [29].

Pasko et al. [317] introduced the theory of R-functions to computer graph-
ics. Their method uses R-functions to perform binary set-theoretic opera-
tions on two implicit primitives with potential functions f1 and f2, here de-
noted as ∪R for union, ∩R for intersection and \R for difference. The meth-
ods they present work under the condition of reversing the inequality from
Equation (9.3), such that the volume V is defined by the following inequality
f(p) ≥ 0. A variety of forms are presented, the most useful in practice being:

∪R f = f1 + f2 +
√
f2

1 + f2
2 (9.8)

∩R f = f1 + f2 −
√
f2

1 + f2
2 (9.9)

\R f = f1 − f2 −
√
f2

1 + f2
2 (9.10)

These functions have C1 discontinuities only where f1 = f2 = 0. Alter-
native forms exist which can ensure Cm continuity for a given value of m if
needed, thus providing some advantages over Ricci’s [341] max-min method
(see Section 9.5.2).

Extensions to this formulation allow for soft transitions and blending by
the addition of a displacement function d(f1, f2), where d has a maximal
absolute value at d(0, 0) and asymptotically approaches a zero value with
increasing values of the arguments. The following has been presented as a
useful form of d for blending purposes [317]:

d(f1, f2) =
a0

1 +
(
f1
a1

)2

+
(
f2
a2

)2 (9.11)

272 9 Skeletal Implicit Modelling Techniques

where a0, a1 and a2 are user defined constants controlling the shape of the
blend. The displacement function is added directly to the values of Equa-
tions (9.8) to (9.10), for example a blending union operation is defined as:

f = f1 + f2 +
√
f2

1 + f2
2 +

a0

1 +
(
f1
a1

)2

+
(
f2
a2

)2 (9.12)

Pasko et al. subsequently introduced bounded blending to provide localised
control of blends using R-functions [318]. Two methods were proposed, the
first replaced the displacement function from Equation (9.11) with a function
providing a local area of influence. This local area of influence allowed for
blends with similar properties to those defined for fC functions employing
field functions with varying hardness factors. It also has the advantage of being
repeatedly applied in a hierarchical system. The second, and more interesting
approach was the use of a bounding solid to control the locality and extent
of blending. Unlike controlled blending, bounded blending allows two implicit
primitives to be blended in one region and non-blended in another region
simultaneously.

A more robust approach to controlling the shape of blends has been de-
fined by Barthe et al. [28, 30]. They defined a method using free-form curves
modified in the Euclidean user space to control the shape of the blend be-
tween two implicit primitives. This method represents a unified and intuitive
approach to a wide array of modelling operations, and provides superior prop-
erties in the resulting potential field over all other known methods; however,
it does not allow for the truly localised blending control offered by bounded
blending.

In the BlobTree system models are defined by expressions which combine
implicit primitives and the operators ∪ (union), ∩ (intersection), − (differ-
ence), + (blend), � (super-elliptic blend), and w (warp). The BlobTree is not
only the data structure, built from these expressions but also a way of visual-
ising the structure of the models. The operators listed above are binary with
the exception of warp which is a unary operator. In fact it is more efficient
to use n-ary rather than binary operators. The BlobTree incorporates affine
transformations as nodes so that it is also a scene graph.

9.4 Combining Implicit Surfaces

Given a set of k implicit primitives with implicit surface functions fi, where
i ∈ [0, k − 1], any method which combines them to produce a final potential
function f may be used as a modelling operation. Typically, only certain op-
erations are considered useful, those that combine primitives in an intuitive
fashion while maintaining desirable properties in the resulting potential func-
tion. Figure 9.4 shows the results of the operators discussed. Three implicit
point primitives have been combined in various ways. The top row shows a

9.4 Combining Implicit Surfaces 273

Fig. 9.4. Implicit modelling operators, identified from left to right. Top row: union,
intersection, difference. Second row: super-elliptic blending with n=1, n=3, n=10.
Third row: controlled blending, precise contact modelling, bounded blending. Bot-
tom row: three blended line primitives twisted (left), twisted and tapered (centre),
and twisted, tapered and bent (right).

union of the resulting spheres, the intersection of the spheres, i.e. only the
volume that is common to all three remains after the operation. In the third
image the green and blue spheres have been subtracted from the red sphere.
On the second row we see the results of super-elliptic blending. The blend
operator is described in Equation (9.14), see Section 9.5. The third row shows
the results of using the precise contact modelling operator described in Sec-
tion 9.5.3, and the bottom row the results of applying warp operations to
three implicit cylinders, see Section 9.6.

274 9 Skeletal Implicit Modelling Techniques

9.5 Blending Operations

One of the main advantages of modelling with skeletal implicit surfaces is the
ease with which primitives are blended together using summation as follows:

f =
k−1∑
i=0

fi (9.13)

This is the most compact and efficient blending operation which can be
applied to implicit surfaces as illustrated in Figure 9.3.

The super-elliptic blending allows the modeller to control the amount of
blending to achieve a large range of blends [341]. Given the same set of k
implicit primitives, and a blending power n ∈ [1,+∞), super-elliptic blending
is defined as:

f =

(
k−1∑
i=0

(fi)n
) 1
n

(9.14)

Here, Equation (9.13) can be seen to be a special case of Equation 9.14
with n = 1. Moreover,

lim
n→+∞

(
k−1∑
i=0

(fi)n
) 1
n

=
k−1
max
i=0

(fi) (9.15)

Thus, as n varies from 1 to +∞, it creates a set of blends varying be-
tween summation blending and a union of the implicit primitives as defined
by Equation (9.17).

The choice of potential function can now be seen to be important, as it di-
rectly affects the shape of blended surfaces constructed using Equations (9.13)
and (9.14), as well as impacting the overall efficiency of surface visualisation.
One choice for such potential function is [420]:

g(d) =
(

1− d2

r2

)3

(9.16)

This function, shown in Figure 9.2(d), satisfies the desired conditions
while providing intuitive properties when combining primitives and being ef-
ficient for evaluation purposes. Many alternative field functions have been
proposed [46, 204, 306, 422]. One of the main advantages in many of these
formulations is the inclusion of a hardness factor. A hardness factor affects
the blending properties of primitives to control the smoothness of resulting
blends. An efficient field function with a hardness factor was introduced by
Blanc and Schlick [46], who also review previous approaches. By incorporating
a hardness factor into a primitive’s field function, desired blending properties
can be associated with individual primitives, rather than with the blends be-
tween them; however, this approach is of limited use in hierarchical modelling
where a series of blends with varying degrees of hardness may be desired.

9.5 Blending Operations 275

One property arising from blends defined by Equation (9.13), in conjunc-
tion with the field function from Equation (9.16), is the occurrence of bulging
when working with an articulated skeleton. This can be seen in Figure 9.5.
Bloomenthal examined this topic in detail [51], and determined that convo-
lution is the best solution to this problem. Succinctly, the field function is
defined by convolving a filter over the signal defined by the skeleton. Com-
pletely bulge-free surfaces result when blending two line segments with coinci-
dent endpoints, and bulge-free blends in branching situations can be obtained
through the use of polygonal skeletal elements under certain conditions.

The main drawbacks of convolution are its implementation complexity and
increased computational complexity; however, if perfectly bulge-free blends
are required this is currently the preferred method. Convolution may properly
be viewed as another field function, and skeletal implicit primitives based on
convolution may be used in the same way as primitives defined using other
field functions.

9.5.1 Hierarchical Blending Graphs

Bloomenthal points out in [54], that by simply using the summation operator
for blending, unwanted blending can occur. Figure 9.6 shows the problem. The
cartoon creature consists of a number of point primitives. Blending is required
between some of them but not all. The problem can be partially solved by
using a group that contains objects which do not blend (see [74]) but for full
control over a chain of primitives where blending is required between arbitrary
pairs controlled blending via a blending graph is required as originally defined
by Guy et al. [171], and subsequently implemented as a blending node in
the BlobTree [417]. A fundamental limitation with previous implementations
of blending graphs for implicit surfaces has been the flat nature of the data

Fig. 9.5. Bulge when skeletal implicit primitives (two line segments with coincident
endpoints) are blended using summation.

Fig. 9.6. Unwanted blending between the leg and the body (left) and result of using
a hierarchical blending graph (right).

276 9 Skeletal Implicit Modelling Techniques

structures employed. They have not supported hierarchical compositions of
blending graphs, requiring instead that all nodes involved in the controlled
blending be defined in a single graph. A simple example of the problem is
shown in Figure 9.7. On the left is the BlobTree childCBNode constructed
using controlled blending as follows:

childCBNode = controlledBlendGraph()
childCBNode.addBlendGroup(redSphere, blueSphere)
childCBNode.addBlendGroup(redSphere, greenSphere)

Each blend group added to the graph defines a blend between the inputs,
thus the red and blue spheres are blended and the red and green spheres are
blended. The blue and green spheres do not blend as they are not explicitly
defined to do so by the blend graph. The centre image in Figure 9.7 showing
parentCBNode, defined by the following, illustrates the problem:

parentCBNode = controlledBlendGraph()
parentCBNode.addBlendGroup(childCBNode, yellowSphere)

When blending the yellow sphere to childCBNode, it must blend globally,
demonstrated by the yellow sphere blending with both the green and blue
spheres defined within childCBNode. This is due to the blending graph em-
ployed by childCBNode being a purely internal structure. If the user wishes the
yellow sphere to blend only with some of the elements within childCBNode,
they must rewrite their model definition to include all four original spheres
within one controlled blending graph node. Although this simple example is
easily rewritten, in practical situations this can be highly problematic. Requir-
ing all input nodes to be children of a single controlled blending node makes
hierarchical model construction at best extremely difficult, and generally not
possible.

To solve this, blending graphs are redefined such that they have internal
and external blend groups. Internal blend groups define blends among the

Fig. 9.7. Three examples using controlled blending. See Section 9.5.1 for the
corresponding functions defining the three models. Left: childCBNode. Centre: par-
entCBNode using childCBNode as input. Right: parentCBNode using hierachical-
CBNode as input.

9.5 Blending Operations 277

various children of the controlled blending node. External blend groups define
those parts of the field which will be used for blending in an hierarchical
controlled blending environment. For example, childCBNode may be redefined
in a hierarchical fashion as HCB (hierarchical controlled blending) such that
only the green sphere is available for external blending as follows:

HCB = hierarchicalControlledBlendGraph()
HCB.addInternalBlendGroup(redSphere, blueSphere)
HCB.addInternalBlendGroup(redSphere, greenSphere)
HCB.addExternalBlendGroup(greenSphere)

The right image in Figure 9.7 shows the result when parentCBNode is
redefined to use HCB as follows:

parentCBNode = hierarchicalControlledBlendGraph()
parentCBNode.addInternalBlendGroup(HCB,yellowSphere)

The yellow sphere now blends only with the green sphere, as this was
the only one nominated for external blending by HCB. This approach scales
well, for example parentCBNode may in turn define its own external blending
groups.

9.5.2 Constructive Solid Geometry

As previously stated, implicit surfaces are inherently useful for solid mod-
elling operations. Ricci introduced a constructive geometry for defining com-
plex shapes from operations such as union, intersection, difference and blend
upon primitives [341]. The surface was considered as the boundary between
the half spaces f(p) < 1, defining the inside, and f(p) > 1 defining the out-
side. This initial approach to solid modelling evolved into constructive solid
geometry or CSG [338]. CSG is typically evaluated bottom up according to
a binary tree, with low-degree polynomial primitives as the leaf nodes, and
internal nodes representing Boolean set operations. These methods are readily
adapted for use in implicit modelling, and in the case of skeletal implicit sur-
faces the Boolean set operations union ∪max, intersection ∩min and difference
\minmax are defined as [417]:

∪max f =
k−1
max
i=0

(fi) (9.17)

∩min f =
k−1
min
i=0

(fi) (9.18)

\minmax f = min
(
f0, 2C −

k−1
max
j=1

(fj)
)

(9.19)

As pointed out by Pasko et al. [317], these operations introduce C1 dis-
continuities in the resulting potential field, and are thus problematic when
used in hierarchical blending situations. In particular, subsequent blending

278 9 Skeletal Implicit Modelling Techniques

(a) ∪max operator (b) Allègre et al.’s operator

Fig. 9.8. Blending between a point (green), and the result of a union operation
between two points (red and blue). In Figure 9.8(a) an undesirable artifact is ob-
served due to a discontinuity in the field resulting from the underlying ∪max operator
(Equation (9.17)). In Figure 9.8(b) this discontinuity has been removed using an al-
ternative formulation due to Allègre et al. [6].

operations which overlap the C1 discontinuity result in crease like artifacts,
shown in Figure 9.8(a). These discontinuities are also problematic for some
2D parametrisation methods for implicit surfaces [387].

One attempt to solve this problem was presented by Allègre et al. [6],
and is based on the theory of R-functions [317]. Their method conserves the
sharp transition expected from CSG operations at the join of the two input
surfaces, and produces a C1 continuous field everywhere else. The result is
that subsequent blending operations do not contain any crease like artifacts,
as shown in Figure 9.8(b). Nevertheless, their approach is of limited use as
the union operator they described effectively compresses the blending radius
of the resultant potential field. The result is that after combining four or more
primitives with Allègre et al.’s operator, there are parts of the surface where
subsequent blending operations will not produce any noticeable blending. In
an hierarchical modelling environment this can quickly lead to degenerate
models with no inherent blending properties. The intersection operator they
describe has the inverse effect, resulting in too much blending.

9.5 Blending Operations 279

A better solution to this problem was presented by Barthe et al. [31], based
on their earlier methods employed for CSG operations on fZ functions [28].
In contrast to the method of Allègre et al., they maintain a good transition
of field values outside the surface for later summation blending operations.
The key problem with their approach is its overwhelming complexity as they
succinctly point out [31]:

“We point out that it is obvious that our operators are computation-
ally expensive ...” (page 138)

Their solution depends on solving a highly complex set of polynomials, and
all computations must be carried out using complex numbers, even where the
results are real.

9.5.3 Precise Contact Modelling

Precise contact modelling, or PCM, is a method of deforming implicit surface
primitives in contact situations, while maintaining a precise contact surface
with C1 continuity [74].

PCM is implemented by the inclusion of a deforming function D(p) as
follows. For each pair of objects, collision is first detected using a bounding
box test. Once it is established that there is likely a collision PCM is applied.
A local, geometric deformation term, Di, is computed and added to fi. The
volume of the colliding objects is divided into an interpenetration region and
a deformation region. The result of applying Di is that the interpenetration
region is compressed so that contact is maintained without interpenetration
occurring (see Figure 9.9). The effect of Di is attenuated to zero within
the propagation region so that the volume outside of the two regions is not
deformed.

interpenetration region
propagation region

undeformed region
 f1=0

 f2=0

 f1+D1=0
 f2+D2=0

 f1=f2

 p0

 p

(a) objects in collision (b) resulting deformation PCM

Fig. 9.9. A 2D slice through objects in collision showing the various regions and
PCM deformation.

280 9 Skeletal Implicit Modelling Techniques

Deformation in the Interpenetration Region

Given two skeletal elements generating fields f1(p) and f2(p), the surface
around each one is calculated as:

f1(p) +D1(p) = 0 (9.20)
f2(p) +D2(p) = 0 (9.21)

These equations have a common solution or contact surface (red line in
Figure 9.9) in the interpenetration region. For some p in the interpenetration
region, we then have:

D1(p) = −f1(p) (9.22)
D2(p) = −f2(p) (9.23)

Thus, the contact surface corresponds to those points in the interpenetra-
tion region for which f1(p) = f2(p). Intuitively, the deeper within object 1,
object 2 penetrates, the higher the implicit value of object 1 and thus the
more object 2 will be compressed.

Deformation in the Propagation Region

The function Di is defined to produce a smooth junction at the boundary of
the interpenetration region, in other words where Di = 0 but its derivative
is greater than zero. From here to the boundary of the propagation region,
Di is used to attenuate the propagation to zero. The nearest point on the
interpenetration region boundary, p0 is found by following the gradient.

Figure 9.10 illustrates the behaviour of the deformation in the propagation
region. Within the propagation region Di(p) = hi(r), where p is the point
whose implicit value is being calculated and r = ‖p − p0‖. The radius wi in
Figure 9.10 is set by the user and defines the size of the propagation region,
so that no deformation occurs beyond this region (see also Subsection 9.5.4).

hi

Mi

wi wi/2

k

r

Fig. 9.10. The function hi(r) is the value of the deformation function Di in the
propagation region.

9.5 Blending Operations 281

The equation for hi is formed in two parts by two cubic polynomials that
are designed to join at r = wi

2 where the slope is zero. More specifically,

hi(r) =

{
cr3 + dr2 + kr if r ∈ [0, wi2]
4a0
w3 (r − w)2 (4r−w)

w3 if r ∈ [wi2 , wi]

where w = wi, a0 = Mi (the maximum value of hi), c = 4(wk−4a0)
w3 , and

d = 4(3a0−wk)
w2 .

It is desirable that we have C1 continuity, going from interpenetration
to the propagation region. Thus h′i(0) = k in Figure 9.10, the directional
derivative of Di at the junction (marked as p0 in Figure 9.9). As indicated in
Equation (9.22), Di = −fi in the interpenetration region, thus:

k = ‖∇fi(p0)‖.

In addition to the size wi of the propagation region, we have to control
how much the objects inflates in the propagation region. This inflation control
is done with reference to the parameter αi, which takes on a value provided
by the user. This factor α relates the maximum value Mi of hi and the cur-
rent minimum value Di,min of Di, which is negative in the interpenetration
region; hence Mi = −αiDi,min. Thus, an object will be compressed in the
interpenetration region will inflate in the propagation region.

PCM is only an approximation to a properly deformed surface, but is an
attractive algorithm due to its simplicity. More recently, it has been applied
to implicit surfaces of an articulated skeleton in a branching situation, where
distant parts of the skeleton could be defined not only to avoid blending, but
to deform each other using PCM [18].

f = fj +Dj , where fj =
k−1
max
i=0

(fi) (9.24)

The reader is referred to [74, 108] for a more complete description of the
method.

9.5.4 Generalised Bounded Blending

Pasko et al. introduced the idea of bounded blending [318], in which two
functional solids defined by potential functions f1 and f2, could be locally
blended using R-functions based on a third bounding potential function fb.
This method provides control over local blending between two solids; however,
Pasko et al.’s approach has two fundamental limitations. The first problem
is the reliance on R-functions as the base blending operator, which not only
restricts the user to this specific set of modelling operations, but also restricts
the application of this technique to pairwise blends. The second shortcoming
of their method is that it does not allow interpolation between two arbitrary
blending operations.

282 9 Skeletal Implicit Modelling Techniques

Generalised bounded blending (GBB) extends this simple concept, open-
ing up a plethora of new modelling possibilities for arbitrary implicit surfaces.
Although inspired by the work of Pasko et al., the underlying mathematical
formulation is distinct. The essence of GBB is the use of an interpolation oper-
ation to interpolate between distinct blending operations applied to the same
set of k implicit primitives (with potential functions fi where i = 0, ..., k− 1).
The interpolation is controlled by a separate implicit primitive with potential
function fb, which bounds the region of interest. Defining the two blending
operations as fo1 and fo2, the field defined by GBB is given as follows:

f = fb . fo1(f0, ..., fk−1) + (1.0− fb) . fo2(f0, ..., fk−1) (9.25)

In principle, any potential function can be used to define the bounding
region defined by fb. In practice, the following constraints are necessary to
produce intuitive results:

• fb ∈ [0, 1]
• ∇fb = 0 when fb = 0
• ∇fb = 0 when fb = 1

Good results can be obtained by making fb a sigmoid function, which
decreases smoothly from 1 to 0 over [0, 1]. In this research fb was defined as
a distance function computed by fb(p) = ((1 − r)2)3 where r is the distance
from a skeletal primitive. Nevertheless, any arbitrary field can be used for fb
within Equation (9.25), including non-smooth fields such as those produced
by CSG operations although the results can not be useful.

Six different blending operations which may be applied between two or
more primitives in the BlobTree are shown in Figure 9.11. In this case only two

Fig. 9.11. Six methods used to blend two implicit primitives (a skeletal rectangle
primitive, red, and a skeletal line primitive, blue) labelled from left to right. Top
row: summation blend, super elliptic blend with n = 10, precise contact blending.
Bottom row: union, intersection, difference.

9.5 Blending Operations 283

Fig. 9.12. Application of generalised bounded blending (GBB) to interpolate be-
tween a blend and intersection of two implicit primitives. The bounding solid, with
potential function fb, is defined by a block primitive and is visualised by two trans-
parent surfaces. Within the inner surface fb = 1, outside the outer surface fb = 0,
and in between fb ∈ (0, 1).

Fig. 9.13. Five examples of GBB. In each case an interpolation is made from
the summation blend operation shown in Figure 9.11, to each of the other blend
operations shown in Figure 9.11 using the bounding solid shown in Figure 9.12.
Labelled from left to right. Top row: super-elliptic blend with n = 10, precise contact
blending. Bottom row: union, intersection, difference.

input primitives are used for clarity, whereas in practice all of these operations
are n-ary. The application of GBB is illustrated in Figure 9.12, which shows an
interpolation between the summation blend and intersection operations (Fig-
ure 9.11). The bounding solid, with potential function fb, is defined by a block
primitive and is visualised by two transparent surfaces. Within the inner sur-
face fb = 1, outside the outer surface fb = 0, and in between fb ∈ (0, 1). Where
fb changes from 0 to 1, the surface is interpolating between the intersection
and summation blend operations. The final surface is shown in Figure 9.13

284 9 Skeletal Implicit Modelling Techniques

without the bounding solid visualised, along with 4 other examples showing
interpolation between summation blending and each of: super-elliptic blend-
ing, precise contact modelling, union, intersection and difference.

9.6 Deformations

Modelling operations may also be applied to individual implicit primitives.
Spatial warping is one method in this category. Examples of spatial warps
include the Barr warps: twist, taper, and bend [27]. Warping is easily applied
to implicit surfaces by providing a single warping function w(p) [417]. Given
an arbitrary choice for w, and a single implicit primitive with implicit surface
function f0, f is defined as follows:

p′ = w(p) (9.26)
f(p) = f0(p′) (9.27)

This differs from other modelling operations in that the operator is applied to
the input (the position) before it is provided to the implicit surface function,
rather than operating on the returned value. Barr applies the warp function
to wireframe models, and thus uses the warp function wi to change the co-
ordinates of the vertices. In our case, we wish to warp space, thus we use
the inverse warp function (wi)−1. The inverse twisting operation is a twist
with a negative angle, and the inverse tapering operation is a taper with the
inverse shrinking coefficient. The inverse of bend cannot be produced by mod-
ifying the bend parameters (see Barr [27] for details of the inverse of the bend
operation). Some examples are shown in Figure 9.4.

9.7 BlobTree Traversal

In the earlier sections we have reviewed some of the operations that have been
incorporated into the BlobTree and we are now in a position to understand
the tree traversal using the Ricci operators for CSG.

The BlobTree is a binary tree similar to CSG tree. Each tree node is
either a primitive or an operation. More specifically, leaf nodes store primi-
tives, whereas other nodes accommodate operations (e.g. warp, blend, union,
intersection and difference).

Given a node N and a point p, the recursive function, f(N ,p) returns
the appropriate value, which obviously depends on the primitive or operation
stored in the node. So,

• If N is a primitive,
f(N ,p) = f(p)

returns the field value at p. This is the basic requirement of a rendering
algorithm such as [396, 419].

9.8 Final Remarks 285

• If N is a warp,
f(N ,p) = f(L(N), w(p)).

• If N is a blend,

f(N ,p) = f(L(N),p) + f(R(N),p).

• If N is an union,

f(N ,p) = max(f(L(N),p), f(R(N),p)).

• If N is an intersection,

f(N ,p) = min(f(L(N),p), f(R(N),p)).

• If N is a difference,

f(N ,p) = min(f(L(N),p),−f(R(N),p)),

where L(N) and R(N) denote the left and right sub-trees of the node N .
The operations above are only a few of the operations in the BlobTree. The

BlobTree is also a scene graph, so that it includes nodes describing geometric
transformations as well as many nodes introduced for such operations as ani-
mation and texturing. There are now many implementations of the BlobTree
and research software can be downloaded over the internet.

9.8 Final Remarks

In this chapter we have reviewed some of the techniques that make modelling
with skeletal implicit primitives an intuitive process, and that contribute to-
wards the design of complex of models. Models can be represented by the
BlobTree, in which each node represents one of these techniques. Complex
models are visualised by traversing the BlobTree and finding a value attached
to each point. To render such a model, an isosurface is found. The BlobTree
nodes represent different types of blending, space deformation, CSG and also
affine transformations. Other types of nodes may be found in the literature,
for example, for texturing [353] and animation [150].

In the following chapters we take a look at some applications of the tech-
niques discussed, and how they may be used to design complex models.

10

Natural Phenomenae-I: Static Modelling

Implicit modelling as an underlying metaphor provides a large number of
techniques that facilitate building of complex models. The BlobTree provides
tools that make use of blending, CSG, deformation, precise contact modelling
and other procedural techniques. Figure 10.1 shows a sea anemone model
that was built using the BlobTree. The spines were placed procedurally using
spiral phyllotaxis and blended to the base. The base of the anemone deforms
to fit the rock using precise contact modelling. In the following sections we
explore methods for describing complex models from the natural world using
the implicit methodology.

Fig. 10.1. Anemone illustrates the use of PCM to “fit” the rock.

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 287
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

288 10 Natural Phenomenae-I: Static Modelling

10.1 Murex Cabritii Shell

The seemingly simple mathematical character of shells, which yield a great
variety of beautiful shapes, has attracted much attention from computer mod-
ellers. Two motivations for such work are to synthesise realistic images that
can be incorporated into computer-generated scenes, and to gain a better un-
derstanding of the mechanism of shell formation [144, 266]. Two open prob-
lems in the modelling of shells are finding a good method to represent thin
spines, and to capture the thickness of the shell walls [144]. In this chapter
both of the above problems are addressed using the BlobTree. A model of
Murex cabritii is described which includes large spines, shell walls of non-
zero thickness, and allows different textures to be applied to different parts
of the shell, while blending textures automatically where these parts join. A
preliminary version of this work was published in [152].

10.2 Shell Geometry

As reviewed in [144, 266], the surface of a shell without protrusions may be
defined by sweeping a closed generating curve C in the shape of the aperture
of the shell along a logarithmic helico-spiral S. The scale of the generating
curve increases in geometric progression as the angle of rotation around the
shell’s axis increases arithmetically.

The helico-spiral is conveniently described in a cylindrical coordinate sys-
tem (Figure 10.2). The radius R (distance of a point P on the helico-spiral

H

R

!R

!D

P

C

D

P’

"

"

L

C’

Fig. 10.2. One-half of a longitudinal cross-section of a turbinate shell.

10.3 Murex Cabritii 289

from the shell axis) is an exponential function of the angle of revolution θ
around the axis:

R(θ) = R0ρ
(θ
360◦); R0 > 0, ρ > 1, θ ≥ 0 (10.1)

where R0 is the initial radius and ρ is the ratio of the radii corresponding
to a rotation of 360◦. The vertical displacement H of point P increases in
proportion to the radius:

H(θ) = R(θ) cotβ, β > 0 (10.2)

where β is the angle between the axis of the spiral and a line L passing through
successive whorls of the helico-spiral (Figure 10.2). A whorl is defined as a
single volution of a spiral shell, or one turn about the axis.

The size of the generating curve C at point P can be determined under
the assumption that C is a circle of radius D lying in the plane including
the shell axis and the point P , and that the circles in consecutive whorls are
tangential to each other. From Figure 10.2 we then obtain:

D(θ) = R(θ)
sin β

(
ρ−1
ρ+1

)
(10.3)

In the case of noncircular generating curves, Equation (10.3) remains useful
as an approximate indicator of the curve size.

10.3 Murex Cabritii

To model Murex cabritii requires a description of the parts of the shell. The
model is derived from observations made from Figure 10.3, and from a written
description of the shell found in [336] page 507, which lists the following
features:

Fig. 10.3. Murex cabritii.

290 10 Natural Phenomenae-I: Static Modelling

• A smallish, oval aperture in a strongly convex body whorl.
• A long slender canal below the main body whorl, narrowly open, with

three axial rows of four to five spines.
• Each whorl has three varices (ridges) which bear several sharp curving

spines.
• Beaded axial riblets (or small bumps) are present between varices.

For the remainder of this chapter a whorl is redefined as a volution of
the shell beginning at one varix, and ending after three varices have been
formed. From Figure 10.3 it has been estimated that a whorl corresponds to
a rotation of θwhorl = 348◦ about the axis of the shell, thus the angle between
successive varices θvarix is equal to 116◦. This redefinition is employed as
model construction is more usefully guided by angles at which varices occur
than arbitrary intervals of 360◦.

The model presented in this chapter is constructed with wcount = 7 whorls,
each having vcount = 3 varices, thus a total of wcountvcount = 21 varices are in
the final model. Five to six spines (as observed in Figure 10.3) are modelled in
the axial rows rather than four to five as described above. The bumps occur
periodically both parallel and perpendicular to the helico-spiral, and five sets
of bumps are added along the helico-spiral between each pair of varices. The
y-axis in the standard coordinate system is defined as the axis of rotation of
the shell. The following parameters are used to define the helico-spiral for the
model:

β = 22.5◦

ρ = 1.3
R0 = 0.2

D(θ) = R(θ)
sin β

ρ−1
ρ+1 = 0.341R(θ)

(10.4)

10.4 Modelling Murex Cabritii

Procedural techniques are used to construct a BlobTree defining the model of
Murex cabritii. To implement the procedures introduced in this chapter, the
Python interface similar to that outlined in [388] was used. To describe the
construction of the BlobTree, the following notation is introduced. Arbitrary
BlobTree models are described using the symbol B, with specific instances de-
noted using appropriate subscripts. For example, skeletal implicit primitives,
which are the basic building blocks from which models are constructed, are
denoted as follows:

Bpoint → Skeletal point primitive
Bline → Skeletal line primitive (10.5)

Models are defined by expressions which combine BlobTrees using a mix-
ture of basic operators ∪ (union), ∩ (intersection), − (difference), + (blend),

10.4 Modelling Murex Cabritii 291

⊕n (super-elliptic blend) and functional composition operators fcontrol (con-
trolled blend), ftransl (translate), fscale (scale), frot (rotate), ftwist (twist
warp), ftaper (taper warp), fbend (bend warp), ftextG (gradient interpolated
2D texture mapping), and ftextF (field interpolated 2D texture mapping).
Additionally

∑
and

⊕
n

are used to represent the blend and super-elliptic
blend, respectively, of multiple BlobTrees using limit style notation. These op-
erators all correspond to the well-defined implicit surface modelling operations
introduced in Chapter 9.

At the lowest level, these operators act on one or more primitives. As a
valid BlobTree results from each operation, which may be passed as input to
other operators, hierarchical models are easily constructed.

The functional composition operators differ from the basic operators in
that they require additional parameters to the input BlobTrees. Notationally
this is defined as foperator(p1, p2, . . . , pn)(B1, B2, . . . , Bm) for an arbitrary op-
erator with n parameters and m input BlobTrees as follows:

ftransl(x, y, z)(B) → translate by (x, y, z)
fscale(x, y, z)(B) → scale by (x, y, z)
frot(θ, axis)(B) → rotate by θ about the given axis

using the right-hand rule
ftransf(m)(B) → transform by matrix m
ftaper(n)(B) → taper by n along the positive y-axis
fbend(θ, d)(B) → bend by θ degrees about the z-axis

over a distance of d units
fcontrol(b1, ..., bn)(B1, ..., Bm) → Controlled blend of m BlobTrees

where each bi defines a blend group
and bi ⊆ {1, ...,m}

ftextG(t)(B) → apply texture t using gradient
interpolated texture mapping

ftextF(t)(B) → apply texture t using field
interpolated texture mapping

For clarity, the numerical parameters to the above functional composition
operators will at times be omitted in the following discussion.

Construction of the BlobTree defining a Murex cabritii shell is discussed
next. Section 10.4.1 describes building the main body whorl of the shell. Cre-
ation of the varices is discussed in Section 10.4.2, followed by the addition of
bumps in Section 10.4.3 and the spines on the lower canal in Section 10.4.4.
Creating the aperture is described in Section 10.4.5 and the application of 2D
textures is discussed in Section 10.5.

10.4.1 Main Body Whorl

The formulas in Section 10.2 determine position (Equations (10.1) and (10.2))
and size (Equation (10.3)) of a generating curve along a helico-spiral, such

292 10 Natural Phenomenae-I: Static Modelling

that if successive curves are placed along the helico-spiral and connected in
a polygonal mesh, an approximation of the surface of the shell is obtained.
For example, Fowler et al. [144] used piecewise Bézier curves to construct
generating curves, which were applied to model a great variety of shells.

A similar method is used to create the implicit model. A generating im-
plicit surface Bg is first defined (for example using a skeletal implicit point
primitive). The placement of an instance of Bg on the helico-spiral at any
angle θ is then performed in three steps:

1. Scale by D(θ)—Equation (10.3).
2. Translate by

(
R(θ),H(θ), 0

)
—Equations (10.1) and (10.2).

3. Rotate by θ about the y-axis.

that is, the function

P (B, θ) = frot

(
θ, ay

)
. ftransl

(
R(θ), H(θ), 0

)
. fscale

(
D(θ), D(θ), D(θ)

)
. B
(10.6)

transforms an arbitrary BlobTree B as described above. To construct the
whorl, instances of Bg are placed at fixed intervals of θg along the helico-
spiral using Equation (10.6). The value assigned to θg must be chosen with
care. If θg is too large, then a smooth blend along the helico-spiral will not
be realised. In contrast, if θg is too small, then the tight overlap of the many
instances of Bg will lead to poor blending properties when adding detail to
the shell.

To incorporate controlled blending, each whorl is modelled in three whorl
sections, which are contained between successive varices along the whorl, and
thus correspond to a rotation of θvarix about the axis of the shell. Each whorl
section is created by placing five instances of Bg on the helico-spiral such that
θg = θvarix/5. The BlobTree for a whorl section Bwhorl

w
v which immediately

precedes varix v on whorl w is given by:

Bwhorl
w
v =

5∑
i=1

P
(
Bg, (3w + v − 1)θvarix + θgi

)
(10.7)

Figure 10.4 shows a whorl section composed of five point primitives placed
along a helico-spiral, as the radius of the field defined by each primitive is
increased, the resulting blended surface tends toward a shell whorl with a
circular aperture.

To avoid unwanted blending between consecutive whorls, controlled blend-
ing (see Section 9.5.1) is applied to create the main shell body Bbody using
the following procedure:

Lwhorlsections = (Bwhorl
j
i),with i = 1, . . . , vcount, j = 1, . . . , wcount

Lblendpairs =
{

(j, j + 1) : j ∈ {1, 2, ..., wcountvcount − 1}
}

(10.8)

Bbody = fcontrol

(
Lblendpairs

)(
Lwhorlsections

)

10.4 Modelling Murex Cabritii 293

Fig. 10.4. Five point primitives placed on a helico-spiral. As the size of the field
produced by each primitive increases, the resulting surface forms part of the main
body whorl of a shell.

Fig. 10.5. Each whorl of a shell is composed of three sections (shown in Figure 10.4).
On the left all sections blend with all other sections, on the right controlled blending
constrains each section to blend only with its two neighbours along the helico-spiral.

Each whorl section is blended with its two immediate neighbours, and not
with any other whorl sections. The resulting surface is thus smooth along the
helico-spiral, while adjacent whorls do not blend together. A comparison of the
results obtained with and without controlled blending is shown in Figure 10.5,
where four whorls and a total of twelve whorl sections were modelled using
a point primitive as the generating surface. The whorl sections are assigned
dark and light colours in an alternating pattern so that each whorl section is
easily distinguished.

To incorporate the long slender canal below the main body whorl, a ta-
pered line primitive, subsequently bent with a bend operator, was placed
below and blended to a point primitive as follows:

Bg = ftransf(Bpoint) + ftransf

(
fbend

(
ftaper

(
ftransf(Bline)

)))
(10.9)

The generating surface and the resulting whorl it defines are shown in
Figure 10.6.

294 10 Natural Phenomenae-I: Static Modelling

Fig. 10.6. On the left is the generating surface used for the model of murex cabritii,
on the right is the whorl this surface defines.

10.4.2 Constructing Varices

Varices are the spiny ridges extending out from the main body whorl at even
intervals of θvarix around the axis of the shell. The varix is modelled primarily
as a series of curving spines of varying size. The relative size and location of
spines for varix v on whorl w is determined on a per-whorl basis, (for values
see [153]). Individual spines are modelled using tapered line primitives which
are bent by 30◦ over four units of length. Thus, spines shorter than 4 units
are bent less than 30◦, and spines longer than 4 units are not bent over their
whole length. All spines are modelled with the same thickness. By applying
taper such that the amount of taper is inversely proportional to the length of
each individual spine, a uniform thickness at the tip is achieved, regardless of
individual spine length. Construction of the ith spine Bspine

w
i for a varix on

whorl w using this method.
The left hand image in Figure 10.7 shows the resulting series of spines

for w = 7 blended to a whorl section. The result does not accurately reflect
the form observed in Figure 10.3, as the spines in the varix of Murex cabritii
are not free-standing, but are blended together in a ridge. A circle primitive
(which defined a toroid implicit surface) is added to connect the spines to
each other near the shell surface. The effect of this operation is seen in the
centre image of Figure 10.7. A new problem now emerges in that the base
of the spines are obscured by the toroid ridge. To make the spines stand out
from the ridge, a suitable scale is introduced:

Bspine
w
i = fbend(30, 4) . frot(−90, az) . ftaperZ

(
8
δwi

)
.

. ftaperX

(
4
δwi

)
. fscale(1, δwi , 3) . Bline

(10.10)

10.4 Modelling Murex Cabritii 295

Fig. 10.7. Creation of a varix. Left: bent tapered line primitives are placed as curved
spines. Centre: a circle primitive is used to create a toroid ridge blending the spines
together. Right: spines are modified as and super-elliptic blending is employed.

where az stands for the z-axis and δwi the relative size of curving spines at
each of 3 varices per whorl in the model of murex cabritii. In this case, the
spines are scaled by a factor of 3 in the z axis, and subsequently tapered by an
increased amount in the z-axis. The resulting spines are much wider in the z-
axis at their base, but gradually revert toward a circular aperture along their
length. When the spines are positioned along the helico-spiral, the z-axis in
their local coordinate system is transformed to be parallel to the helico-spiral,
thus the base of the spines are lengthened along the helico-spiral. Finally, to
avoid an overly smooth blending of the spines both with each other, and with
the toroid ridge, super-elliptic blending (Equation (9.14)) was used with a
blend factor of 3 to blend all of the components of the varix together. The
base BlobTree for a varix Bvarix

w on whorl w is thus defined as:

Bvarix
w = ftransf(Bcircle)⊕3

scount⊕
3

i=1

frot

(
αi, az

)(
ftransl(ra, 0, 0)(Bspine

w
i)
)

(10.11)
using Bspine

w
i from Equation (10.10). The vth varix Bvarix

w
v on whorl w is

defined by using Equation (10.6) with Bvarix
w as follows:

Bvarix
w
v = P

(
Bvarix

w, (3w + v)θvarix

)
(10.12)

The right image of Figure 10.7 shows the final varix blended with the
final whorl section using Equation (10.12), that is the result of Bvarix

wcount
vcount

+
Bwhorl

wcount
vcount

.

10.4.3 Constructing Bumps

Individual bumps Bbump were modelled using single point primitives scaled
by (sx, sy, sz) = (1.4, 1.0, 1.5) as follows:

Bbump = fscale(sx, sy, sz)(Bpoint) (10.13)

296 10 Natural Phenomenae-I: Static Modelling

Five sets of bumps were placed at regular intervals along the helico-spiral
between each successive set of varices. Definition of a single set of bumps
Bbumpset

w for whorl w is done in a similar fashion to the placement of spines
on a varix, utilising a set of empirically determined values. One bump was
placed for every two spines present in the varices for the given whorl as follows:

Bbumpset
w =

scount/2∑
i=1

frot

(
α2i, az

)(
ftransl(ra, 0, 0)(Bbump)

)
(10.14)

To place five sets of bumps Bbumpsection
w
v before a given varix v on whorl

w, where (3w+ v)θvarix is the angle of the varix along the helico-spiral, Equa-
tion (10.6) is used as follows:

Bbumpsection
w
v =

5∑
i=1

P

(
Bbumpset

w,

(
3w + v − 1 +

i

6

)
θvarix

)
(10.15)

The left image of Figure 10.8 shows the final bump section and final
whorl section blended together using Equation (10.15), that is the result of
Bbumpsection

wcount
vcount

+ Bwhorl
wcount
vcount

. The bumps are placed as desired; however,
the overlap in blending regions causes undesirable amounts of blending be-
tween adjacent bumps. The first step to solving this problem is to employ
super-elliptic blending again. For the Murex cabritii model n = 3 has been
found to work well.

A localised method is used to provide additional relief for the more tightly
packed bumps on the top and bottom of the whorl. Bumps are scaled based
on their rotation from the horizontal plane again as defined by empirically
determined values for αi. To produce a more organic feel, the sizes of individual
bumps were further modified using the function normal(µ, σ), which returns
a pseudo-random number with a normal distribution, where µ is the mean
and σ is the standard deviation. The default scale values

(
sx, sy, sz

)
are thus

replaced by
(
s′x, s

′
y, s
′
z

)
defined as follows:

Fig. 10.8. Creation of bumps. Left: bumps arranged and blended. Centre: non-
uniform scaling and super-elliptic blending ⊕3 are applied. Right: bumps are
randomly scaled, and rotated such that their long axis is aligned locally with the
helico-spiral.

10.4 Modelling Murex Cabritii 297

s′x = normal
(
sx,

sx
10

)
s′y = normal

(
sy,

sx
10

)
s′z = normal

(
sz,

sx
10

) (10.16)

An additional problem arises because the bumps are scaled non-uniformly,
so they are not locally aligned with the helico-spiral. This effect can be ob-
served in both the left and centre images from Figure 10.8. To counteract
this effect, each individual bump is rotated about the x-axis before they are
positioned, such that their longer axis is locally parallel to the helico-spiral.

10.4.4 Constructing Axial Rows of Spines

One row of axial spines protrudes from the lower canal below each varix
on the last whorl of the shell. Individual axial spines Baxspine are modelled
using tapered line primitives, in a similar fashion to the curving spines in the
varices from Equation (10.10). The relative sizes and number of axial spines
are determined separately for each row. The resulting spines, blended with
the lower whorl, are shown in the left image of Figure 10.9.

As with the bumps, to produce a more organic looking object random
variation is introduced. Each spine is randomly bent by 3◦ to 9◦, one to three
times, using a corresponding number of bend operators. The result is shown in
the right image of Figure 10.9. For details of the spine placement, the reader
is referred to Galbraith [153].

Fig. 10.9. Axial rows of 5-6 spines. Left: spines are straight. Right: each spine is
randomly bent 3◦ to 9◦ 1-3 times.

298 10 Natural Phenomenae-I: Static Modelling

10.4.5 Construction of the Aperture

To create the aperture, a solid model, defined as Baperture, is constructed in the
shape of the aperture. A CSG difference operation is then used to remove this
material from the main body of the shell, thus creating an opening. Baperture

is modelled using the same technique as that described for the main body
whorl.

A generating surface given by

Bgaperture = ftransf(Bpoint) + ftransf(Bcone)+

+ ftransf

(
fbend

(
ftaper

(
ftransf(Bline)

))) (10.17)

is created, which is slightly smaller in each dimension orthogonal to the helico-
spiral, than Bg. Equation (10.17) defines Bgaperture, which is formed in a
similar fashion to Bg. A point primitive slightly smaller than that of the
main whorl’s, is blended to a tapered and subsequently bent line primitive,
also slightly smaller than that of Bg. To this is also added an inverted cone
primitive which extends the inner edge of Bgaperture to the edge of the previous
whorl. This is done to ensure that no material is left between the outer shell
wall and that of the previous whorl. From Equation (10.17), and similar to
Equation (10.7), the corresponding whorl section Bapwhorl is defined as follows:

Bapwhorl =
7∑
i=1

P
(
Bgaperture, (wcountvcount − 1)θvarix + θg . i

)
(10.18)

Equation (10.18) describes a whorl equivalent to Bwhorl
wcount
vcount

plus two
additional instances of Bgaperture. This implies that the aperture will extend
θvarix degrees into the shell from the opening. The two additional instances of
Bgaperture ensure that Bapwhorl extends beyond the termination of Bwhorl

wcount
vcount

,
which in turn ensures that the aperture makes a clean opening. Bgaperture and
Bapwhorl are shown in the left and centre images of Figure 10.10. As defined,
Bapwhorl is not suitable for creating the opening in the shell, because Bapwhorl

overlaps significantly with the previous whorl. Before it is used to create the
opening, one more modelling operation is performed, shown in the right image
of Figure 10.10. A difference operation is used to remove the previous whorl
from Bapwhorl, thus defining Baperture, which creates an opening in the shell.

Baperture = Bapwhorl −
vcount∑
v=1

Bwhorl
wcount−1
v (10.19)

The summation term defines the second to last whorl using Equa-
tion (10.7). The right image in Figure 10.10 shows the resulting model.
The aperture in the main shell body is then created as:

Bbodywithaperture = Bbody −Baperture (10.20)

10.4 Modelling Murex Cabritii 299

Fig. 10.10. Creating an aperture. Left: the generating surface Bgaperture. Centre:
the resulting whorl from Equation (10.18). Right: the final aperture after difference
is applied to remove the previous whorl.

Fig. 10.11. Creating the aperture. Left: the opening which is carved out by Equa-
tion (10.20). Right: the final shape of the opening after adding in Binsidewall as in
Equation (10.21).

where Bbody is the complete shell without the opening from Equation (10.9).
The left image in Figure 10.11 shows the result when subtracting Baperture

from the last whorl section alone. This figure illustrates that the opening is
present only in the last third of the last whorl; however, this is a sufficient size
of opening for any view position set outside the shell to give the impression

300 10 Natural Phenomenae-I: Static Modelling

that the shell is hollow. Only if the view position is set inside the aperture is
the solid nature of the model revealed.

A more serious problem arises from the observation that the aperture
should be oval (as described in Section 10.3). To generate the desired oval
aperture, Bbodywithaperture is revised to include an inside wall:

Bbodywithaperture = (Bbody −Baperture) ∪Binsidewall (10.21)

Bbodywithaperture with and without the inside wall is shown in Figure 10.11.

10.5 Texturing the Shell

The final step in producing a photorealistic model of Murex cabritii is the
application of four 2D textures, using two separate texturing methods. The
textures used are shown in Figure 10.12, and were created using standard
paint programs.

Each whorl section in the main body whorl is textured with the tex-
ture shown in Figure 10.12(a) using gradient interpolated texture mapping
ftextG [387]. This method allows a single texture to be applied to an arbi-
trary BlobTree. As whorl sections are blended to each other, the resulting
textures on each whorl section are blended together. By placing the varices
directly over these regions, discontinuities in the resulting texture blends are
concealed.

Note that since the original work was done on texturing the shell, several
new techniques have been designed to ease the task of texturing any point set
object. Work is proceeding on this field but the following paper is of interest,
[353].

(a) (b) (c) (d)

Fig. 10.12. Textures and their corresponding uses in the model of Murex cabritii:
(a) main body whorl; (b) spines in varices; (c) axial rows of spines; (d) bumps on
main whorl.

10.8 Final Remarks 301

10.6 Final Model of Murex Cabritii

It is now possible to redefine the main geometry of the shell Bbody (originally
defined in Equation (10.9)), including textures, as follows:

Bvbwhorl
w
v = ftextG(Bwhorl

w
v) + ftextF(Bvarix

w
v) + ftextF(Bbumpsection

w
v)

Lwhorlsections = (Bwhorl
j
i),with i = 1, . . . , vcount, j = 1, . . . , wcount

Lblendpairs =
{

(j, j + 1) : j ∈ {1, 2, ..., wcountvcount − 1}
}

Bbody = fcontrol

(
Lblendpairs

)(
Lwhorlsections

)
(10.22)

The key change between Equations (10.9) and 10.22, is the use of Bvbwhorl
w
v

in place of Bwhorl
w
v . Bvbwhorl

w
v incorporates texture maps, and blends a whorl

section with its corresponding varix and bump section. Starting with this
formulation for Bbody, the BlobTree model of Murex cabritii Bmurex is defined
as follows:

Bmurex = (Bbody −Baperture) ∪Binsidewall + ftextF(Baxspinerows) (10.23)

10.7 Shell Results

A comparison of a photograph of Murex cabritii, with the resulting model
of Murex cabritii defined by Equation (10.23), is shown in Figure 10.13. The
following areas of the model remain open to improvement: the opening was
modelled by observing the opening on similar shells (Murex troschel); the po-
sition and number of spines and bumps were based on a single view of the
shell, the number and placement of these features was arbitrary and suddenly
change from one whorl to another; the textures were created in a paint pro-
gram and pasted on to give a good approximation only; the varices do not
extend to the lower canal. A major extension of the model would be to use
reaction diffusion techniques [144] to place spines and bumps on the shell.

10.8 Final Remarks

The description of the model of Murex cabritii presented in this chapter illus-
trates how the BlobTree may be used to construct models of complex phenom-
ena, based solely on simple geometric primitives and a small set of implicit
surface modelling operations. This demonstrates concretely that not only im-
plicit surfaces are a valid choice for modelling natural forms, but in addition
that they can create models for which other methods such as L-systems fail.
Specifically, large protrusions on a shell surface have been modelled simply by
switching from a parametric to an implicit definition of the shell form.

302 10 Natural Phenomenae-I: Static Modelling

(a) (b)

Fig. 10.13. (a) Murex cabritii; (b) model of Murex cabritii.

11

Natural Phenomenae-II: Animation

In this chapter we develop the idea that implicit modelling is useful for an-
imation and continue with the theme that examples from nature present a
challenge for any modelling methodology. Recently animations of the accre-
tion of ice and speleothem formations were produced using a version of the
BlobTree modified for voxel-based simulation (see Figure 11.1). In this chapter
we explore the construction and animation of a growing poplar tree using the
techniques of implicit modelling.

11.1 Animation: Growing Populus Deltoides

In this chapter, a method is described for producing a photorealistic model of
a growing tree based on the methods presented in [150]. Branching structures
with smoothly blending junctions are a key feature of many natural phenom-
ena, for example herbaceous plants, trees, coral, shells, icicles, speleothems,
and animals. Several methods have been applied to model this phenomenon;
however, previous work in the area of tree modelling [48, 201, 251, 257] fails to
model branching structures that are not universally smoothly blending. Com-
mon features of trees such as the branch bark ridge shown in Figure 11.2(a),
may combine both smooth and nonsmooth components in a single branching
point. Another feature of trees, the bud-scale scar shown in Figure 11.2(b) and
(c), may vary from a nonsmooth to a smooth blend over time. We demonstrate
how these features may be modelled.

We also model the mechanism used to define the architecture of a growing
tree during many growing seasons. A common approach to modelling devel-
opmental sequences of plant growth is to simulate the temporal development
of plant structures. In these models, the development and final structure of
a plant model emerges from the developmental rules. In contrast we describe
the developmental growth of a tree using an extension of the global-to-local
methodology [151, 290, 331]. The advantage of this approach is that complex

A.J.P. Gomes et al. (eds.), Implicit Curves and Surfaces: Mathematics, 303
Data Structures and Algorithms,
c© Springer-Verlag London Limited 2009

304 11 Natural Phenomenae-II: Animation

(a) (b) (c)

Fig. 11.1. (a) Implicit ice against a real backdrop; (b) implicit speleothem; (c) real
speleothem.

(a) (b) (c)

Fig. 11.2. Photographs of poplar trees showing: (a) the branch bark ridge; (b)
bud-scale scars at age two years; (c) four years.

developmental sequences may be defined without knowledge of the underlying
biological processes. Instead, the method allows specification of the model
directly based solely on observed phenomena. Using these techniques, realistic
visualisations of growing trees may be achieved.

11.2 Visualisation of Tree Features 305

11.2 Visualisation of Tree Features

Trees differ from herbaceous plants in that their structure grows over many
years. One year’s growth arising from a single bud is defined as a shoot. The
elementary portion of the axis of a branch is an internode and a metamer is
an internode which bears lateral organs (leaves, internodes, buds, fruits). A
shoot typically consists of a sequence of metamers, each with associated leaf
and lateral bud, terminated by an apical bud. The reader is referred to [414]
for a thorough description of tree development and form, and to [195] for a
description of populus deltoides (see Figure 11.3).

Fig. 11.3. Populus deltoides (Eastern cottonwood) at 27 years.

306 11 Natural Phenomenae-II: Animation

11.2.1 Modelling Branches with the BlobTree

The structure of a tree branch may be modelled using a skeletal line seg-
ment to represent each internode and blending the result. As pointed out
by Bloomenthal [51], to achieve perfectly bulge-free blending both along a
branch and at branching points the only method currently available within
the implicit surface paradigm is convolution based on polygonal skeletons. As
perfectly bulge-free blends are considered inappropriate for visualising many
tree branching structures, convolution surfaces are not employed. Bloomenthal
also suggested that bulging in ramiform structures using convolution surfaces
based on line segments may be reduced by offsetting the skeletal elements [51].
In this section it will be demonstrated that the same approach can be used
with skeletal implicit surfaces to achieve a sufficient degree of bulge-free blend-
ing, while maintaining smooth transitions at branching points.

To model branches of tapering thickness, individual internodes are repre-
sented by skeletal cone primitives, shown in Figure 11.4(a). The radius of the
cone is set to rcb = rb− rt at the base and rct = 0 at the top, where rb defines
the base radius of the internode and rt defines the top radius (rt ≤ rb). The
distance di from the cone to the visualised isosurface is di = rt. Branches
are modelled by summing the fields defined by cone primitives representing
successive internodes.

To mitigate unwanted bulging (shown in Figure 11.4(b)), the length of the
skeletal primitive representing the basal internode A is reduced by:

δA = 1.75rBt (11.1)

where rBt is the top radius of internode B, as illustrated in Figure 11.5. The
value 1.75 used in Equation (11.1) was determined empirically, and assumes
that the underlying field function ffield for both skeletal primitives is defined
as in Equation (9.16). Figure 11.5 shows the resulting isosurfaces when skeletal
line primitives A and B are blended. On the left, A and B are connected at
the branching point P , resulting in a large bulge. In contrast, the right image
shows the result of reducing the length of A by δA.

(a) (b)

Fig. 11.4. (a) A BlobTree cone primitive; (b) bulge when two line segments with
coincident end points are blended.

11.2 Visualisation of Tree Features 307

A
A

B B
P P

blended surface

non-blended

surface

(a) (b)

Fig. 11.5. (a) Two skeletal primitives A and B intersect at branching point P ,
resulting in bulging; (b) the length of A is shortened to reduce bulging.

(a) (b)

Fig. 11.6. Two cone primitives with their end points offset are blended using sum-
mation: (a) 180◦separation; (b) 90◦ separation.

This method does not completely remove the bulging between internodes,
but makes it practically unnoticeable, while maintaining a large blending ra-
dius in the interior angle between adjoining internodes, shown in Figure 11.6.
The scale factor of 1.75 used in Equation (11.1) could be varied by up to 3%
without affecting the bulge appreciably.

Internodes in a tree may be fairly short, which introduces an additional
problem. For example, in populus deltoides they typically vary from near 0 cm
to 5 cm. As the tree grows, internodes near the base thicken considerably, so
that the value of δA from Equation (11.1) quickly exceeds the length of the
internode for which it was computed. To overcome this, for each step in the
animation, the complete set of internodes representing the branch are first
computed as a series of connected line segments. Subsequently this set of line
segments is locally decimated based on the desired thickness of the branch,
until all remaining line segments meet the condition that their length exceeds
the local value of δA. The line simplification starts at the base of the branch,
which will have the thickest internode, and proceeds to the tip of the branch,
where no simplification is typically required as the branch is at its thinnest.

308 11 Natural Phenomenae-II: Animation

11.2.2 Modelling the Branch Bark Ridge and Bud-scale Scars

Generalised bounded blending (GBB, see Section 9.5.4) is applied to model
the bark ridge ridges and bud-scale scars in trees by interpolating between
summation blending and precise contact modelling (PCM, see Section 9.5.3).
This is appropriate, as in nature the shape is a consequence of the collision
between bark volumes, and PCM was designed to model collision deforma-
tions. It can also be observed that the collision volume is bounded and there
is a smooth change from the deformed part of the volume to the smoothly
blended part.

To model branching points, the lateral branch is first shortened at its
base and subsequently offset from the main branch using a variation of Equa-
tion (11.1). To create the branch bark ridge, GBB is applied as in Figure 11.7,
with the base branch shown in red, and the lateral branch in blue. To cap-
ture the blackened colour of the branch bark ridge, the texture is set to black
where both the bounding field and the deformation due to PCM are maxi-
mal. As either the value of the bounding field or of the deformation decreases,
the surface attributes are interpolated between those defined by the bounding
field, and those defined for the branches as shown in Figure 11.8. On the left
the same situation is shown as in Figure 11.7, except that where the field is
modified by the PCM blend, the surface attributes are defined by the bound-
ing field, illustrated by the green ridge. On the right we see the application
of texture maps and a black colour defined by the bounding field to produce
visually realistic results.

To model bud-scale scars, the bounding field fb is initially configured such
that PCM is applied uniformly. This is used to combine both lateral and apical
shoots with their basal branch. The effect can be seen in the left-hand image
in Figure 11.9. The ring around the main branch denotes a bud-scale scar
formed by the apical bud, and separates two years growth on a single branch.

Fig. 11.7. Application of GBB to blend a lateral branch (shown in blue) to its
base branch (shown in red) by interpolating between PCM (left) and summation
blending (centre). The bounding field is visualised by two transparent surfaces, the
inner one bounding a region where fb = 1 and the outer one representing the zero
surface fb = 0.

11.3 Global-to-Local Modelling of a Growing Tree 309

Fig. 11.8. Modifying the texture in the region of PCM deformation. Example image
(left) and branch bark ridge model (right).

Fig. 11.9. Evolution of bud-scale scars and branch bark ridge over time. Left-right:
1 year, 4 years, 7 years, 10 years.

The other ring on the lateral branch represents a bud-scale scar formed by a
lateral bud.

To model the variation of bud-scale scars and the branch bark ridge over
time, the field due to fb is modified over time. For bud-scale scars formed by
apical buds, fb shrinks slowly such that the bud-scale scars slowly disappear.
For bud-scale scars formed by lateral branches, fb is slowly moved such that
the bud-scale scar becomes a branch bark ridge. Results for a simple branching
situation during ten years are shown in Figure 11.9.

11.3 Global-to-Local Modelling of a Growing Tree

The global-to-local methodology was originally applied to model continuous
developmental sequences of growth for two types of lilac inflorescence by Gal-
braith et al. [151]. It was subsequently extended to model a wide variety of
static plant structures [331], and to animate continuous developmental se-
quences of herbaceous plant growth [290].

310 11 Natural Phenomenae-II: Animation

The extension of the global-to-local methodology to model growing trees is
based on the following observation. Branches of every order can be considered
as a series of growth increments produced annually as shoots. The difference
in branch length from one year to the next determines the length of that year’s
shoot.

From this observation, a two-step approach is developed. In the first step,
the global-to-local methodology is used to define the tree’s branching structure
in terms of shoots. As in the previous work, self-similarity is used to apply
the same set of functions recursively to model all orders of branches.

In the second stage, individual shoots are decomposed into metamers.
This decomposition is variable throughout the structure of the tree, thus cre-
ating branching structures without self-similarity. Subsequently, the growth
of shoots in each year is defined using the methods developed previously for
herbaceous plants [290].

The branching structure is first described for branches of order 0 (the
trunk) and 1. It is then extended to higher order branches. The following
notation is used throughout this section; y ∈ [0, ymax] denotes the current
year after germination, where ymax is the maximum age of the tree. Length of
a branch in year y is denoted as ly, and the following inequality is enforced:

ly + lmin ≤ ly+1 (11.2)

where lmin is a user-defined minimum length of shoot. For a shoot that grows
during year y, the shoot length ls is defined by ls = ly if y = 0, and ls =
ly − ly−1 otherwise.

Let us denote xs as the global position of a shoot along its branch, mea-
sured as the distance from the base of the branch to the shoot’s position, and
xsy ∈ [0, 1] the relative position of a shoot along its branch in year y, where
xsy = xs/ly. The relative position of a shoot along its branch during year
ymax is denoted by xsmax ∈ [0, 1], where xsmax = xs/lmax. Local parameters
of tree components are determined interactively by the user with graphically
defined functions G over the domain [0, 1], defined using an interactive func-
tion editor. Unless stated otherwise, these functions are defined in terms of
xsy , xsmax or time ty = y/ymax. For example, the height of the trunk by year
is defined by Gh as follows ly = Gh(ty).

11.3.1 Crown Shape

The first step is to define the length of each branch for each year. The length of
the trunk, or branch of order 0, is treated as a special case, and is determined
by Gh as above. The length of lateral branches is determined by the use of two
functions Gs1(xsy) defining the desired silhouette of the tree when it is young,
and Gs2(xsy) when it is mature, where xsy is determined by the position of
the branch’s parent shoot (the shoot that the branch grows from). The length
of a branch during each year is then determined as follows:

11.3 Global-to-Local Modelling of a Growing Tree 311

ldy = lpy .
((

1− ty
)
. Gs1

(
xsy
)

+ ty . Gs2
(
xsy
))

(11.3)

ly = max
(
ldy , ly−1 + lmin

)
(11.4)

where ldy is the determined length before enforcing Equation (11.2). Fig-
ure 11.10 shows the result where the young tree is narrow, and the mature
tree has a well-rounded crown, as in Populus deltoides. An alternate form is
shown in Figure 11.11, defining a tree which grows more like an evergreen.

To ensure a smooth progression of the overall crown shape, the input to
functions Gs1 and Gs2 is defined in terms of xsy , rather than xsmax . As xsy
varies for a given branch by year, the introduction of high frequency variations
in these functions will cause erratic growth patterns for individual branches
year by year. Therefore, it is important thatGs1 andGs2 are defined as smooth
curves. A significant side effect of this formulation is that the appearance of
branches on a specific shoot cannot be controlled using Gs1 and Gs2.

To provide a finer level of control, a scale factor ss unique to each shoot
is introduced. ss is defined by Gss(xsmax) for each shoot as follows:

ss = Gss(xsmax) (11.5)

The scale factor is used in several ways in the modelling process. Initially it
provides a direct method for controlling the length of branches by scaling the
result of Equation (11.4) by ss. Figure 11.12 shows an exaggerated example
where a discontinuous function is used to create a repeating pattern of short,
medium and long branches.

y=10 y=20 y=30

Gs1(xs) y

xs y

Gs2(xs) y

xs y

1

 1

 1

 1

 0
 0

 1

 0
 0

1

Fig. 11.10. Length of branches is determined by interpolation between two silhou-
ette curves based on the age of the tree y. The silhouette is defined by Gs1(xsy)
when y = 0, and Gs2(xsy) when y = 30xsy defines position of the branch along the
trunk.

312 11 Natural Phenomenae-II: Animation

Fig. 11.11. Length of branches is determined by interpolation between two silhou-
ette curves based on the age of the tree y. The silhouette is defined by Gs1(xsy)
when y = 0, and Gs2(xsy) when y = 30xsy defines position of the branch along the
trunk.

Fig. 11.12. Modifying branch length with the scale factor ss.

11.3.2 Shoot Structure

Once a shoot’s position and size within the branching structure have been
determined, it is decomposed into a sequence of m metamers defined by Gm
as follows:

m = Gm(q) (11.6)

where q = ls/lsmax and lsmax is the maximum length of a shoot. The lengths
of internodes li in the shoot are assumed to be equal for each metamer where
li = ls/m. The position of lateral organs relative to their parent shoot is then
given by xl ∈ [0, 1], where xlj = j/m and j ∈ [1,m].

11.3 Global-to-Local Modelling of a Growing Tree 313

During the year following a shoot’s growth, new shoots grow from the
apical bud and from some of the lateral buds. The lateral bud closest to
the tip of the shoot produces the longest lateral branch, and the length of
lateral branches decreases with increasing distance from the tip. As defined in
Section 11.3.1, all of the lateral branches growing from a common shoot will
have the same lengths.

To achieve the desired variation of lateral branch lengths along the shoot,
each lateral branch is assigned a unique scale factor sb using the function
Gsb(xl) as follows:

sb = Gsb(xl) . ss (11.7)

where ss is the scale factor of the branch’s parent shoot. The final length of
lateral branches is defined by scaling the result of Equation (11.4) by sb, rather
than by ss as defined in Section 11.3.1. Defining Gss such that lateral branches
near the top of the shoot have higher scale values, and lateral branches near
the base of the shoot have lower scale values, provides the desired arrangement
of branch lengths. Additionally, lateral branches will not be created if sb is
below a user-defined threshold smin allowing for some lateral buds to remain
dormant as in real trees.

Lateral branches are arranged in a spiral phylotactic arrangement, where
the lateral branch of each successive metamer is placed at an angle of 137.5◦

from the previous one in the plane perpendicular to the axis of the branch.
Unnatural repetitive patterns can arise in the final structure if the longest
branch from one year’s shoot is nearly coplanar with the longest branch from
the previous year’s shoot.

To avoid such structures, the metamer count m for a given shoot is re-
stricted such that the two longest lateral branches on the current shoot are
placed at an angle at least 40 degrees away from the longest branch of the
previous year’s shoot.

11.3.3 Other Functions

A number of other functions have been determined to account for various
visual properties. Full details are given in [153]. These are briefly described
below:

• Higher order branches. These are modelled by recursive application of the
functions employed to model branches of order 1. To account for variation
in branch orders, some modifications are made. Lengths of higher order
branches is defined as with order 1 branches, but are scaled based on the
order of branching.

• Avoidance of self-similar branching structures. The key to avoiding the
construction of self-similar branching structures lies in the variable de-
composition of shoots into metamers. By defining Gss(xsmax) (see Equa-
tion (11.5)) to vary continuously, considerable variation is achieved within
the branching structure.

314 11 Natural Phenomenae-II: Animation

Fig. 11.13. Modelling loss of branches using the scale factor sb, determined as in
Figure 11.12. Due to the correlation between branch length and sb, shorter branches
are only observed near the top of the tree where they are younger.

Fig. 11.14. Two functions, Go1 for branches of length 0, and Go2 for branches of
length lmax, define localised orientation of branch segments relative to the heading
of the branch. Localised orientation of branch segments is defined by interpolating
between the two functions based on current branch length.

• Incorporating loss of branches. As a tree grows, it sheds branches which
that are no longer productive. Typically these are shorter branches in the
interior of the canopy, where less light penetrates. The function designed
for this introduces a correlation between branch length and branch lifes-
pan. The result is that as the tree grows, shorter branches will tend to
be lost sooner than long branches of the same order as illustrated in Fig-
ure 11.13.

11.4 Results 315

• Branch shape. To produce more lifelike branching shapes, a method is
introduced to define localised orientation for branch segments in terms of
the relative position of an internode. This is done by interpolating between
local orientations for a theoretical branch of length 0, and local orientations
for a branch of maximum length. For each internode along a branch, a
desired heading and radius is specified during construction of the branch.
The result is shown in Figure 11.14 for six branches of varying length.

11.4 Results

Three animations illustrating various aspects of a growing poplar (populus
deltoides in Latin) model were produced. Figure 11.9 demonstrates the ef-
fectiveness of the proposed method in modelling the branch bark ridge and
bud-scale scars over time. Figure 11.15 shows frames illustrating the growth
of a shoot during one year. Note the visible bud-scale scar at the base of the
shoot where the bud scales are lost. Finally, the growth of populus deltoides
during 27 years, including a succession of foliage in each year is shown in Fig-
ure 11.16. Figure 11.17 shows a series of images of real populus deltoides trees
at different stages of growth. The shape and distribution of the branches is
matched fairly well to the generated images shown in Figure 11.18. The tree
at 27 years with a full canopy of leaves is shown in Figure 11.3.

Fig. 11.15. Growth of a shoot over 1 year.

316 11 Natural Phenomenae-II: Animation

Fig. 11.16. Foliage succession during one year.

Fig. 11.17. Photographs of Populus deltoides (Eastern cottonwood).

Fig. 11.18. Implicit surface models of Populus deltoides (Eastern cottonwood) at
several developmental stages.

11.5 Final Remarks

In this chapter new methods for the creation of photo realistic animations of
growing trees were presented. The main points of this work are summarised
below:

11.5 Final Remarks 317

• A combination of blending, precise contact modelling, and generalised
bounded blending was used to model bud-scale scars and branch bark
ridges, and their evolution over time.

• A method was presented for producing continuous animations of growing
trees using an extension of the global-to-local methodology.

• An animation of a growing Populus deltoides was defined using the above
techniques.

• The use of the proposed BlobTree modelling and animation system to
animate complex natural phenomena was demonstrated.

The main limitation of the current work continues to be the slow visualisation
times. In cases where the proposed method for modelling branching points
is not required, the algorithm for defining the architecture of a growing tree
may easily be reused in any system supporting procedural modelling of plants.
Examples of such systems include L-systems [330] and xfrog [109], whose use
of surface models offers significant speed benefits. Conversely, it is possible
to use alternate approaches to model the architecture of the tree, such as
rule based models of tree growth using L-systems [294], as input to create a
BlobTree model [149].

References

1. A. Adamson and M. Alexa. Approximating and intersecting surfaces from
points. In Proceedings of the 1st Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processing, pages 230–239, Aire-la-Ville, Switzerland, 2003.
Eurographics Association.

2. S. Akkouche and E. Galin. Adaptive implicit surface polygonization using
marching triangles. Computer Graphics Forum, 20(2):67–80, 2001.

3. G. Albertelli and R. Crawfis. Efficient subdivision of finite-element data sets
into consistent tetrahedra. In Proceedings of the IEEE Conference on Visual-
ization’97, pages 213–219. IEEE Computer Society Press, 1997.

4. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, New York, 1983.

5. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva. Com-
puting and rendering point set surfaces. IEEE Transactions on Visualization
and Computer Graphics, 9(1):3–15, January–March 2003.

6. R. Allègre, A. Barbier, S. Akkouche, and E. Galin. A hybrid shape representa-
tion for free-form modeling. In Shape Modeling International 2004, pages 7–18,
2004.

7. E. Allgower and K. Georg. Simplicial and continuation methods for approx-
imating fixed points and solutions to systems of equations. SIAM Review,
22(1):28–85, 1980.

8. E. Allgower and K. Georg. Introduction to Numerical Continuation Methods.
SIAM’s Classics in Applied Mathematics. SIAM Press, 2003.

9. E. Allgower and S. Gnutzmann. An algorithm for piecewise linear approxima-
tion of implicitly defined two-dimensional surfaces. SIAM Journal on Numer-
ical Analysis, 24(2):452–469, 1987.

10. E. Allgower and S. Gnutzmann. Simplicial pivoting for mesh generation of
implicitly defined surfaces. Computer Aided Geometric Design, 8(4):305–325,
1991.

11. E. Allgower and P. Schmidt. An algorithm for piecewise linear approximation of
implicitly defined manifold. SIAM Journal on Numerical Analysis, 22(2):322–
346, 1985.

319

320 References

12. N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface re-
construction algorithm. ACM SIGGRAPH Computer Graphics, 32(5):415–421,
1998.

13. N. Amenta, S. Choi, T. Dey, and N. Leekha. A simple algorithm for homeomor-
phic surface reconstruction. International Journal of Computational Geometry
and Applications, 12(1–2):125–141, 2002.

14. N. Amenta, S. Choi, and R. Kolluri. The power crust. In Proceedings of the
6th ACM Symposium on Solid Modeling and Applications, pages 249–266, Ann
Arbor, Michigan, USA, 2001. ACM Press.

15. N. Amenta and Y. Kil. The domain of a point set surface. In M. Alexa and
S. Rusinkiewicz, editors, Proceedings of Eurographics Symposium on Point-
Based Graphics, pages 139–147. ETH Zurich, Switzerland, Eurographics Asso-
ciation, June 2–4 2004.

16. B. Anderson, J. Jackson, and M. Sitharam. Descartes’ rule of signs revisited.
American Mathematical Montlhy, 105(5):447–451, 1998.

17. M. Andrade, J. Comba, and J. Stolfi. Affine arithmetic. In Proceedings of
Interval 94. St. Petersburg, Russia, March 1994. Available at: www-graphics.
stanford.edu/~comba/papers/aa-93-12-petersburg-paper.ps.gz.

18. A. Angelidis, P. Jepp, and M. Cani. Implicit modelling with skeleton curves:
controlled blending in contact situations. In Proceedings of the International
Conference on Shape Modeling and Applications (SMI 2002), pages 137–144.
IEEE Computer Society, May 2002.

19. B. Araújo. Curvature-dependent polygonization of implicit surfaces. Master’s
thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal,
February 2008.

20. B. Araújo and J. Jorge. Adaptive polygonization of implicit surfaces. Com-
puters & Graphics, 29(5):686–696, 2005.

21. C. Armstrong, A. Bowyer, S. Cameron, J. Corney, G. Jared, R. Martin, A. Mid-
dleditch, M. Sabin, and J. Salmon. Djinn: A Geometric Interface for Solid
Modelling: Specification and Report. Information Geometers Ltd., Winchester,
England, December 2000.

22. A. Atieg and G. Watson. Use of lp norms in fitting curves and surfaces to
data. Australian and New Zealand Industrial and Applied Mathematics Jour-
nal, 45:C187–C200, 2004.

23. D. Avis and B. Bhattacharya. Algorithms for computing d-dimensional voronoi
diagrams and their duals. In F. Preparata, editor, Computational Geometry,
volume 1 of Advances in Computing Research, pages 159–180. JAI Press, Lon-
don, England, 1983.

24. R. Balsys and K. Suffern. Visualisation of implicit surfaces. Computers &
Graphics, 25(1):89–107, February 2001.

25. R. Balsys and K. Suffern. Adaptive polygonisation of non-manifold implicit sur-
faces. In Proceedings of the International Conference on Computer Graphics,
Imaging and Vision: New Trends (CGIV’05), pages 257–263. IEEE Computer
Society Press, 2005.

26. C. Barber, D. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22(4):469–483, December
1996.

References 321

27. A. H. Barr. Global and local deformations of solid primitives. In Computer
Graphics (SIGGRAPH 84 Conference Proceedings), volume 18, pages 21–30.
ACM Press, 1984.

28. L. Barthe, N. A. Dodgson, M. A. Sabin, B. Wyvill, and V. Gaildrat. Two-
dimensional potential fields for advanced implicit modeling operators. Com-
puter Graphics Forum, 22(1):23–33, 2003.

29. L. Barthe, V. Gaildrat, and R. Caubet. Combining implicit surfaces with soft
blending in a CSG tree. In CSG Conference Series, pages 17–31, Apr 1998.

30. L. Barthe, V. Gaildrat, and R. Caubet. Extrusion of 1D implicit profiles: theory
and first application. International Journal of Shape Modeling, 7(2):179–198,
2001.

31. L. Barthe, B. Wyvill, and E. de Groot. Controllable binary CSG operators for
soft objects. International Journal of Shape Modeling, 10(2):135–154, 2004.

32. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, New York, 2003.

33. B. Baumgart. Winged edge polyhedron representation. Stanford Artificial
Intelligence Project, MEMO AIM-179 STAN-CS-320, Computer Science De-
partment, Stanford University, 1972.

34. P. Baxa, V. Skala, and R. Moucek. Error estimation for isosurfaces. In Pro-
ceedings of 6th International Conference on Computational Graphics and Vi-
sualization Techniques (COMPUGRAPHICS’97), pages 202–211, Vilamoura,
Algarve, Portugal, 1997.

35. P. Baxandall. Vector Calculus. Oxford Applied Mathematics and Computing
Science Series. Clarendon Press, Oxford, England, Oxford, UK, 1986.

36. R. Beatson, J. Cherrie, and D. Ragozin. Fast evaluation of radial basis func-
tions: methods for four-dimensional polyharmonic splines. SIAM Journal on
Mathematical Analysis, 32(6):1272–1310, 2001.

37. R. Beatson, M. Powell, and A. Tan. Fast evaluation of polyharmonic splines in
three dimensions. IMA Journal of Numerical Analysis, 27(3):427–450, 2006.

38. T. Becker and V. Weispfenning. Gröbner Bases. Springer-Verlag, New York,
1993.

39. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless
methods: an overview and recent developments. Computer Methods in Applied
Mechanics and Engineering, 139(1–4):3–47, December 1996.

40. J. Berchtold, I. Voiculescu, and A. Bowyer. Interval arithmetic applied to
multivariate Bernstein form polynomials. Technical Report 31/98 (http://
people.bath.ac.uk/ensab/G_mod/Bernstein/tr_31_98.html), University of
Bath, England, 1998.

41. Jakob Berchtold. The Bernstein Basis in Set-theoretic Geometric Modelling.
PhD thesis, University of Bath, England, 2000.

42. F. Bernardini, C. Bajaj, J. Chen, and D. Schikore. Automatic reconstruction
of 3D CAD models from digital scans. International Journal of Computational
Geometry and Applications, 9(4–5):327–369, August-October 1999.

43. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The
ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Vi-
sualization and Computer Graphics, 5(4):349–359, October-December 1999.

44. F. Bigdeli. Triangulations of Convex Polytopes and d-Cubes. PhD thesis,
University of Kentucky, Lexington, USA, 1991.

45. A. Blake and M. Isard. Active Contours. Springer-Verlag, Berlin, 1998.

322 References

46. C. Blanc and C. Schlick. Extended field functions for soft objects. In Implicit
Surfaces ’95, pages 21–32, 1995.

47. J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on
Graphics, 1(3):235–256, July 1982.

48. J. Bloomenthal. Modeling the mighty maple. In Computer Graphics (SIG-
GRAPH 85 Conference Proceedings), volume 19, pages 305–311. ACM Press,
1985.

49. J. Bloomenthal. Polygonization of implicit surfaces. Computer-Aided Geomet-
ric Design, 5(4):341–355, November 1988.

50. J. Bloomenthal. An implicit surface polygonizer. In P. Heckbert, editor, Graph-
ics Gems IV, Academic Press Graphics Gems Series, pages 324–349. Academic
Press, 1994.

51. J. Bloomenthal. Skeletal Design of Natural Forms. PhD thesis, University of
Calgary, 1995.

52. J. Bloomenthal. Surface tiling. In J. Bloomenthal, J. Blinn, M.-P. Cani-
Gascuel, A. Rockwood, B. Wyvill, and G. Wyvill, editors, Introduction to
Implicit Surfaces, The Morgan Kaufmann Series in Computer Graphics and
Geometric Modeling, pages 127–165. Morgan Kaufmann Publishers, Inc., 1997.

53. J. Bloomenthal and K. Ferguson. Polygonization of nonmanifold implicit sur-
faces. ACM SIGGRAPH Computer Graphics, 29:309–316, August 1995. (SIG-
GRAPH’95).

54. J. Bloomenthal and B. Wyvill. Interactive Techniques for Implicit Modeling.
Computer Graphics, 24(2):109–116, 1990.

55. G. Bodnár and J. Schicho. A computer program for the resolution of singular-
ities. In H. Hauser, J. Lipman, F. Oort, and A. Quirós, editors, Resolution of
Singularities, A Research Textbook in Tribute to Oscar Zariski,, volume 181 of
Progress in Mathematics, pages 231–238. Birkhäuser, 2000.

56. J. Boissonnat. Geometric structures for three-dimensional shape representa-
tion. ACM Transactions on Graphics, 3(4):266–286, 1984.

57. J. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neigh-
bor interpolation of distance functions. In Proceedings of the 16th ACM Sym-
posium on Computational Geometry, pages 223–232. ACM Press, 2000.

58. W. Boothby. An Introduction to Differentiable Manifolds and Riemannian
Geometry. Number 63 in Pure and Applied Mathematics. Academic Press,
Inc., New York, 1975.

59. P. Borodin, G. Zachmann, and R. Klein. Consistent normal orientation
for polygonal meshes. In Proceedings of Computer Graphics International
(CGI’04), pages 18–25. IEEE Computer Society Press, 2004.

60. A. Bowyer. Computing Dirichlet tessellations. The Computer Journal,
24(2):162–166, 1981.

61. A. Bowyer. SVLIS set–theoretic kernel modeller. Information Geometers Ltd.
and http://people.bath.ac.uk/ensab/G mod/Svlis, 1995.

62. A. Bowyer, J. Berchtold, D. Eisenthal, I. Voiculescu, and K. Wise. Interval
methods in geometric modelling. In Geometric Modelling and Processing 2000.
IEEE Computer Society Press, April 2000.

63. A. Bowyer, R. Martin, H. Shou, and I. Voiculescu. Affine intervals in a CSG
geometric modeller. In J. Winkler and M. Niranjan, editors, Uncertainty in
Geometric Computations, pages 1–14. Kluwer Academic Publishers, 2001.

References 323

64. E. Brisson. Representing geometric structures in d dimensions: topology and
order. Discrete & Computational Geometry, 9(4):387–426, 1993.

65. T. Brocker and K. Janich. Introduction to Differential Topology. Cambridge
University Press, Cambridge, England, 1982.

66. K. Brodlie. Mathematical Methods in Computer Graphics and Design. Institute
of Mathematics and Its Applications Conference Series. Academic Press, 1980.

67. I. Bronstein and K. Semendjajew. Taschenbuch der Mathematik. B. G. Teubner
Verlagsgesellschaft, 1991.

68. J. Bruce and P. Giblin. Curves and Singularities. Cambridge University Press,
Cambridge, England, 1984.

69. P. Brunet and I. Navazo. Solid representation and operation using extended
octrees. ACM Transactions on Graphics, 9(2):170–197, 1990.

70. B. Buchberger. On Finding a Vector Space Basis of the Residue Class Ring
Modulo a Zero Dimensional Polynomial Ideal (in German). PhD thesis, Uni-
versität Innsbruck, Austria, 1965.

71. K. Bühler. Fast and reliable plotting of implicit curves. In J. Winkler and
M. Niranjan, editors, Uncertainty in Geometric Computations, pages 15–28.
Kluwer Academic Publishers, 2002.

72. K. Bühler and W. Barth. A new intersection algorithm for parametric surfaces
based on linear interval estimations. In W. Krämer and J. W. von Gudenberg,
editors, Scientific Computing, Validated Numerics, Interval Methods. Kluwer
Academic Publishers, 2001.

73. M. Buhmann. Radial Basis Functions. Cambridge University Press, Cam-
bridge, England, 2003.

74. M. P. Cani. An implicit formulation for precise contact modeling between
flexible solids. In SIGGRAPH ’93, pages 313–320. ACM Press, Aug 1993.

75. H. Carr, T. Möller, and J. Snoeyink. Artifacts caused by simplicial subdivision.
IEEE Transactions on Visualization and Computer Graphics, 12(2):231–242,
March/April 2006.

76. J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum, and
T. Evans. Reconstruction and representation of 3D objects with radial basis
functions. ACM SIGGRAPH Computer Graphics, 35(3):67–76, August 2001.

77. J. Carr, R. Beatson, B. McCallum, W. Fright, T. McLennan, and T. Mitchell.
Smooth surface reconstruction from noisy range data. In M Adcock, I. Gwilt,
and Y.T. Lee, editors, Proceedings of the 1st International Conference on Com-
puter Graphics and Interactive Techniques in Australasia and South-East Asia
(GRAPHITE’03), February 11–14, Melbourne, Australia, pages 119–126. ACM
Press, 2003.

78. J. Carr, W. Fright, and R. Beatson. Surface interpolation with radial ba-
sis functions for medical imaging. IEEE Transactions on Medical Imaging,
16(1):96–107, February 1997.

79. M. Cermak and V. Skala. Adaptive edge spinning algorithm for polygonization
of implicit surfaces. In Proceedings of the Computer Graphics International
(CGI’04), pages 36–43. IEEE Computer Society Press, 2004.

80. M. Cermak and V. Skala. Edge spinning algorithm for implicit surfaces. Applied
Numerical Mathematics, 49(3–4):331–342, June 2004.

81. S. Chan and E. Purisima. A new tetrahedral tessellation scheme for isosurface
generation. Computers & Graphics, 22(1):83–90, January 1998.

324 References

82. R. Chandler. A tracking algorithm for implicitly defined curves. IEEE Com-
puter Graphics and Applications, 8(2):83–89, March 1988.

83. S. Chapra and R. Canale. Numerical Methods for Engineers (5th Edition).
McGraw-Hill, New York, 2006.

84. E. Chernyaev. Marching cubes 33: construction of topologically correct iso-
surfaces. Technical Report CN/95-17, European Organization for Nuclear Re-
search (CERN), 1995. Available at: http://wwwinfo.cern.ch/asdoc/psdir/
mc.ps.gz.

85. P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno. Reconstruction of
topologically correct and adaptive trilinear surfaces. Computers and Graphics,
24(3):399–418, June 2000.

86. H. Cline, W. Lorensen, and S. Ludke. Two algorithms for the three-dimensional
reconstruction of tomograms. Medical Physics, 15(3):320–327, May 1988.

87. E. Cohen, R. Riesenfield, and G. Elber. Geometric Modeling with Splines: An
Introduction. A K Peters, Ltd., 2001.

88. D. Cohen-Steiner and F. Da. A greedy Delaunay-based surface reconstruction
algorithm. The Visual Computer, 20(1):4–16, April 2004.

89. G. Collins and A.Akritas. Polynomial real root isolation using Descartes’ rule
of signs. In Proceedings of the 3rd ACM Symposium on Symbolic and Algebraic
Computations, Yorktown Heights, New York, pages 272–275, 1976.

90. J. Comba and J. Stolfi. Affine arithmetic and its applications to computer
graphics. In Actas do VI Simpósio Brasileiro de Computação Gráfica e Pro-
cessamento de Imagens (SIBGRAPI’93), pages 9–18, 1993.

91. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: an In-
troduction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992.

92. H. Coxeter. Discrete groups generated by reflections. The Annals of Mathe-
matics, 35(3):588–621, July 1934.

93. H. Coxeter. Introduction to Geometry. John Wiley & Sons, Inc., New York,
USA, 1961.

94. B. Curless and M. Levoy. A volumetric method for building complex models
from range images. ACM SIGGRAPH Computer Graphics, 30(3):303–312,
August 1996.

95. J. Davenport, Y. Siret, and E. Tournier. Computer Algebra — Systems and
Algorithms for Algebraic Computation. Academic Press, 1988.

96. M. Dayhoff. A contour-map program for x-ray crystallography. Communica-
tions of the ACM, 6(10):620–622, 1963.

97. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, New York, 2000.

98. C. de Boor. A Practical Guide to Splines. Number 27 in Applied Mathematical
Sciences. Springer-Verlag, New York (revised edition), 2001.

99. A. de Cusatis Jr., L. de Figueiredo, and M. Gattass. Affine arithmetic and
its applications to computer graphics. In Actas do XII Simpósio Brasileiro
de Computação Gráfica e Processamento de Imagens (SIBGRAPI’99), pages
65–71, 1999.

100. L. de Figueiredo. Surface intersection using affine arithmetic. In R. Bartels
and W. Davis, editors, Proceedings of the Conference on Graphics Interface’96,
pages 168–175. Canadian Information Processing Society, 1996.

References 325

101. L. de Figueiredo, J. Gomes, D. Terzopoulos, and L. Velho. Physically based
methods for polygonization of implicit surfaces. In R. Booth and A. Fournier,
editors, Proceedings of the Conference on Graphics Interface (GI’92), pages
250–257. Morgan Kaufmann Publishers, Inc., 1992.

102. L. de Figueiredo and J. Stolfi. Adaptive enumeration of implicit surfaces with
affine arithmetic. Computer Graphics Forum, 15(5):287–296, 1996.

103. L. de Figueiredo, J. Stolfi, and L. Velho. Approximating parametric curves with
strip trees using affine arithmetic. Computer Graphics Forum, 22(2):171–179,
2003.

104. L. de Floriani and A. Hui. Data structures for simplicial complexes: an analysis
and a comparison. In M. Desbrun and H. Pottmann, editors, Proceedings of the
3rd Eurographics Symposium on Geometry Processing (SGP’05), pages 119–
128. Eurographics Association, 2005.

105. E. de Forrest. On some methods of interpolation applicable to the graduation
of irregular series. Annual Report of the Board of Regents of the Smithsonian
Institute for 1871, Smithsonian Institute, 1873.

106. E. de Groot and B. Wyvill. Rayskip: Faster ray tracing of implicit surface
animations. In Proceedings of the 3rd International Conference on Com-
puter Graphics and Interactive Techniques in Australasia and Southeast Asia
(GRAPHITE’05), pages 31–36. ACM Press, 2005.

107. J. de Loera. Triangulations of Polytopes and Computational Algebra. PhD
thesis, Cornell University, Ithaca, USA, 1995.

108. M. Desbrun and M. P. Cani-Gascuel. Active implicit surface for animation.
Graphics Interface ’98, pages 143–150, Jun 1998.

109. O. Deussen and B. Lintermann. Digital Design of Nature: Computer-Generated
Plants and Organics. Springer-Verlag, 2005.

110. T. Dey, J. Giesen, N. Leekha, and R. Wenger. Detecting boundaries for surface
reconstruction using co-cones. International Journal of Computer Graphics and
CAD/CAM, 16:141–159, 2001.

111. T. Dey and S. Goswami. Tight cocone: a water-tight surface reconstruction. In
Proceedings of the 8th ACM Symposium on Solid Modeling and Applications,
pages 127–134, Seattle, Washington, USA, 2003. ACM Press.

112. S. Dineen. Multivariate Calculus and Geometry. Undergraduate Mathematics
Series. Springer-Verlag, London, 1998.

113. D. Dobkin and M. Laszlo. Primitives for the manipulation of three-dimensional
subdivisions. Algorithmica, 4(1):3–32, 1989.

114. D. Dobkin, S. Levy, W. Thurston, and A. Wilks. Contour tracing by piecewise
linear approximations. ACM Transactions on Graphics, 9(4):389–423, 1990.

115. A. Doi and A. Koide. An efficient method of triangulating equi-valued surface
by using tetrahedral cells. IEICE Transactions, E74(1):214–224, January 1991.

116. J. Dongarra, J. Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1–
17, March 1990.

117. Z. Du, V. Sharma, and C. Yap. Amortized bound for root isolation via sturm
sequences. In D. Wang and L. Zhi, editors, Proceedings of the International
Workshop on Symbolic-Numeric Computing, Beijing, China, 2005.

118. C. Duarte and J. Oden. H-p clouds: an h-p meshless method. Numerical
Methods for Partial Differential Equations, 12(6):673–705, November 1996.

326 References

119. J. Duchon. Interpolation des fonctions de deux variables suivante le principe de
la flexion des plaques minces. RAIRO Modélisation Mathématique et Analyse
Numérique, 10(12):5–12, 1976.

120. J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev
spaces. In Constructive Theory of Functions of Several Variables, volume 571
of Lecture Notes in Mathematics, pages 85–100. Springer-Verlag, Berlin, 1977.

121. J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables
par les dm splines. RAIRO Modélisation Mathématique et Analyse Numérique,
12(4):325–334, 1978.

122. M. Dürst. Letters: additional reference to marching cubes. ACM SIGGRAPH
Computer Graphics, 22(4):72–73, 1988.

123. N. Dyn and S. Rippa. Data-dependent triangulations for scattered data inter-
polation and finite element approximation. Applied Numerical Mathematics,
12(1–3):89–105, May 1993.

124. B. Eaves. Properly labeled simplexes. In G. Dantzig and B. Eaves, editors,
Studies in Optimization, volume 10 of Studies in Mathematics, pages 71–93.
Mathematical Association of America, 1974.

125. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle.
Multiresolution analysis of arbitrary meshes. ACM SIGGRAPH Computer
Graphics, 29:173–182, August 1995.

126. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1987.

127. H. Edelsbrunner and E. Mücke. Three-dimensional alpha shapes. ACM Trans-
actions on Graphics, 13(1):43–72, 1994.

128. C. Edwards. Advanced Calculus of Several Variables. Academic Press, New
York, 1973.

129. A. Eigenwillig, V. Sharma, and C. Yap. Almost tight recursion tree bounds
for the Descartes method. In B. Trager, editor, Proceedings of the 2006 ACM
Symposium on Symbolic and Algebraic Computation, pages 71–78. ACM Press,
2006.

130. B. Falcidieno and O. Ratto. Two-manifold cell decomposition of r-sets. Com-
puter Graphics Forum, 11(3):391–404, 1992.

131. C. Fang, T. Chen, and R. Rutenbar. Floating-point error analysis based on
affine arithmetic. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’03), volume 2, pages 561–
564. IEEE Press, April 2003.

132. G. Farin. Curves and Surfaces for CAGD: a Pratical Guide. Academic Press,
(4th edition), San Diego, 1997.

133. R. Farouki and V. Rajan. On the numerical condition of polynomials in Bern-
stein form. Computer-Aided Geometric Design, 4:191–216, 1987.

134. R. Farouki and V. Rajan. Algorithms for polynomials in Bernstein form.
Computer-Aided Geometric Design, 5:1–26, 1988.

135. G. Fasshauer. Approximate moving least-squares approximation with com-
pactly supported weights. In M. Griebel and M. Schweitzer, editors, Meshfree
Methods for Partial Differential Equations, volume 26 of Lecture Notes in Com-
puter Science and Engineering, pages 105–116. Springer-Verlag, Berlin, 2003.

136. G. Fasshauer. Mesh-free Approximation Methods with MATLAB, volume 6 of
Interdisciplinary Mathematical Sciences. World Scientific Publishers, Singa-
pore, 2007.

References 327

137. R. Finkel and J. Bentley. Quad trees: A data structure for retrieval on com-
posite keys. Acta Informatica, 4(1):1–9, 1974.

138. S. Fleishman, M. Alexa, D. Cohen-Or, and C. Silva. Progressive point set
surfaces. ACM Transactions on Graphics, 22(4):997–1011, October 2003.

139. S. Fleishman, D. Cohen-Or, and C. Silva. Robust moving least-squares fitting
with sharp features. ACM Transactions on Graphics, 24(3):544–552, July 2005.

140. M. Floater. Mean value coordinates. Computer-Aided Geometric Design,
20(1):19–27, 2003.

141. M. Floater and K. Hormann. Surface parameterization: a tutorial and survey.
In N. Dodgson, M. Floater, and M. Sabin, editors, Advances in Multiresolu-
tion for Geometric Modelling, Mathematics and Visualization, pages 157–186.
Springer-Verlag, Heidelberg, 2005.

142. M. Floater and A. Iske. Multistep scattered data interpolation using com-
pactly supported radial basis functions. Journal of Computational and Applied
Mathematics, 73(1–2):65–78, October 1996.

143. S. Fortune. Voronoi diagrams and Delaunay triangulations. In D.-Z. Du and
F. Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture
Notes Series on Computing, pages 193–230. World Scientific, 1992.

144. D. R. Fowler, H. Meinhardt, and P. Prusinkiewicz. Modeling seashells. Com-
puter Graphics, 26:379–387, 1992.

145. R. Franke. Scattered data interpolation: tests of some methods. Mathematics
of Computation, 38(157):181–200, 1982.

146. R. Franke and G. Nielson. Smooth interpolation of large sets of scattered data.
International Journal of Numerical Methods in Engineering, 15(11):1681–1704,
1980.

147. M. Frontini and E. Sormani. Some variants of Newton’s method with third-
order convergence. Applied Mathematics and Computation, 140(2-3):419–426,
August 2003.

148. H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a priori
tree structures. In Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’80), pages 124–133. ACM
Press, 1980.

149. C. Galbraith, P. MacMurchy, and B. Wyvill. Blobtree trees. In Computer
Graphics International, pages 78–85, 2004.

150. C. Galbraith, L. Mündermann, and B. Wyvill. Implicit visualization and in-
verse modeling of growing trees. Computer Graphics Forum, 23(3):351–360,
2004.

151. C. Galbraith, P. Prusinkiewicz, and C. Davidson. Goal oriented animation of
plant development. In 10th Western Computer Graphics Symposium, pages
19–32, University of Calgary, 1999. Department of Computer Science.

152. C. Galbraith, P. Prusinkiewicz, and B. Wyvill. Modeling murex cabritii seashell
with a structured implicit surface modeler. Visual Computer, 18(2):70–80,
2002.

153. Callum Galbraith. Modeling Natural Phenomena with Implicit Surfaces. PhD
thesis, Department of Computer Science, University of Calgary, 2005.

154. I. Gargantini and H. Atkinson. Ray tracing an octree: numerical evaluation of
the first intersection. Computer Graphics Forum, 12(4):199–210, 1993.

328 References

155. J. Garloff. Convergent bounds for the range of multivariate polynomials. In
Interval Mathematics, volume 212 of Lecture Notes in Computer Science, pages
37–56. Springer-Verlag, New York, 1985.

156. M. Garrity. Ray tracing irregular volume data. ACM SIGGRAPH Computer
Graphics, 24(5):35–40, November 1990.

157. C. Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem
Ambientium. Perthes & Besser, Hamburg, Germany, 1809. English translation
by C. Harris, reprinted 1963, Dover, New York.

158. A. Geisow. Surface Interrogations. PhD thesis, University of East Anglia,
England, 1983.

159. C. Gibson. Singular points of smooth mappings. Number 25 in Research Notes
in Mathematics. Pitman Publishing Limited, London, 1979.

160. G. Golub and C. van Loan. Matrix Computations. Johns Hopkins Studies in
Mathematical Sciences. The John Hopkins University Press, Baltimore, 1996.

161. A. Gomes. A concise b-rep data structure for stratified subanalytic objects.
In L. Kobbelt, P. Schroder, and H. Hoppe, editors, Proceedings of the Euro-
graphics/ACM SIGGRAPH Symposium on Geometry Processing, pages 83–93.
Eurographics Association, 2003.

162. A. Gomes, A. Middleditch, and C. Reade. A mathematical model for boundary
representations of n-dimensional geometric objects. In W. Bronsvoort and
D. Anderson, editors, Fifth Symposium on Solid Modeling and Applications,
pages 270–277. ACM Press, 1999.

163. L. Gonzalez-Vega and I. Necula. Efficient topology determination of implicitly
defined algebraic plane curves. Computer-Aided Geometric Design, 19(9):719–
743, 2002.

164. L. Gonzalez-Vega and G. Trujillo. Multivariate Sturm-Habicht sequences: real
root counting on n-rectangles and triangles. Revista Matemática de la Univer-
sitat Complutense de Madrid, 10:119–130, 1997.

165. M. Gopi and S. Krishnan. A fast and efficient projection-based approach for
surface reconstruction. In L. Gonçalves and S. Musse, editors, Proceedings of
the 15th Brazilian Symposium on Computer Graphics and Image Processing
(SIBGRAPI’02), pages 179–186. IEEE Computer Society Press, 2002.

166. D. Grabiner. Descartes’ rule of signs: another construction. American Mathe-
matical Montlhy, 1067(9):854–855, 1999.

167. J. Gram. Über entwicklung reeler functionen in reihen mitelst der methode
der kleinsten quadrate. Journal für die reine und angewandte Mathematik,
94:41–73, 1883.

168. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal
of Computational Physics, 73(2):325–348, December 1987.

169. A. Guéziec and R. Hummel. Exploiting triangulated surface extraction using
tetrahedral decomposition. IEEE Transactions on Visualization and Computer
Graphics, 1(4):328–342, December 1995.

170. L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of voronoi diagrams. ACM Transactions on Graphics,
4(2):74–123, 1985.

171. A. Guy and B. Wyvill. Controlled blending for implicit surfaces. In Implicit
Surfaces ’95, pages 107–112, 1995.

172. M. Hall and J. Warren. Adaptive polygonization of implicitly defined surfaces.
IEEE Computer Graphics & Applications, 10(6):33–42, November 1990.

References 329

173. E. Halley. A new, exact and easy method of finding the roots of equations
generally, and that without any previous reduction. Philosophical Transactions
of the Royal Society of London, 18:136–145, 1694.

174. E. Hansen. A multidimensional interval Newton method. Reliable Computing,
12(4):253–272, 2006.

175. E. Hansen and R. Greenberg. An interval Newton method. Applied Mathe-
matics and Computation, 12(2-3):89–98, 1983.

176. R. Hardy. Multiquadric equations of topography and other irregular surfaces.
Journal of Geophysical Research, 76(8):1905–1915, 1971.

177. J. Hart. Sphere-tracing: a geometric method for the antialiased ray tracing of
implicit surfaces. The Visual Computer, 12(10):527–545, 1997.

178. J. C. Hart and B. Baker. Implicit modeling of tree surfaces. In Proceedings of
Implicit Surfaces ’96, pages 143–152, Oct 1996.

179. E. Hartmann. A marching method for the triangulation of surfaces. The Visual
Computer, 14(3):95–108, 1998.

180. B. Heap. Algorithms for production of contour maps over an irregular triangu-
lar mesh. Research Report NAC 10, National Physical Laboratory, February
1972.

181. W. Heidrich, P. Slusallek, and H.-P. Seidel. Sampling procedural shaders using
affine arithmetic. ACM Transactions on Graphics, 17(3):158–176, 1998.

182. S. Helgason. Differential Geometry, Lie groups, and Symmetric Spaces. Pure
and Appllied Mathematics Series. Academic Press, Inc., New York, 1978.

183. M. Henderson. Computing implicitly defined surfaces: two parameter con-
tinuation. Research Report RC 18777, IBM Research Division, T.J. Watson
Research Center, New York, March 1993.

184. C. Hermite. L’Extension du Théorème de M. Sturm à un Système d’Équations
Simultanées, volume III of Oeuvres de Charles Hermite. Gauthier-Villars,
Paris, 1912.

185. B. Von Herzen and A. Barr. Accurate triangulations of deformed, intersecting
surfaces. Computer Graphics, 21(4), 1987. (SIGGRAPH’87).

186. N. Higham. Accuracy and Stability of Numerical Algorithms. Society for In-
dustrial and Applied Mathematics (SIAM), 1996.

187. A. Hilton, A.Stoddart, J. Illingworth, and T. Windeatt. Marching triangles:
range image fusion for complex object modelling. In Proceedings of the Inter-
national Conference on Image Processing, pages 381–384. IEEE Press, 1996.

188. H. Hironaka. Subanalytic sets. In Y. Kusunoki, S. Mizohata, M. Nagata,
H. Toda, M. Yamaguti, and H. Yoshizawa, editors, Number Theory, Algebraic
Geometry and Commutative Algebra, pages 453–493. Kinokuniya Book-Store
Co., Ltd., Tokyo, Japan, 1973.

189. H. Hironaka. Triangulations of algebraic sets. In R. Hartshorne, editor, Pro-
ceedings of Symposia in Pure Mathematics: Algebraic Geometry, Vol. 29, pages
165–185. American Mathematical Society (AMS), 1974.

190. M. Hirsch. Differential Topology. Number 33 in Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1976.

191. ∅. Hjelle and M. Dæhlen. Triangulations and Applications. Mathematics and
Visualization. Springer-Verlag, New York, 2006.

192. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. ACM SIGGRAPH Computer Graphics,
26(2):71–78, July 1992.

330 References

193. K. Hormann and M. Floater. Mean value coordinates for arbitrary planar
polygons. ACM Transactions on Graphics, 25(4):1424–1441, 2006.

194. W. Horner. A new method of solving numerical equations of all orders, by
continuous approximation. Philosophical Transactions of the Royal Society of
London, pages 308–335, July 1819.

195. R. Hosie. Native Trees of Canada. Fitzhenry and Whiteside Ltd., Markham,
Ontario, Canada, 1990.

196. J. Huang and C. Menq. Combinatorial manifold mesh reconstruction and op-
timization from unorganized points with arbitrary topology. Computer-Aided
Design, 34(2):149–165, February 2002.

197. J. Hubbard and B. Hubbard. Vector Calculus, Linear Algebra, and Differential
Forms: A Unified Approach. Prentice-Hall, Englewood Cliffs, 1999.

198. R. Hughes. Minimum-cardinality triangulations of the d-cube for d = 5 and
d = 6. Discrete Mathematics, 118(1–3):75–118, August 1993.

199. K. Hui and Z. Jiang. Tetrahedra based adapative polygonization of implicit
surface patches. Computer Graphics Forum, 18(1):57–68, March 1999.

200. I. Itenberg and M.-F. Roy. Multivariate Descartes’ rule. Contributions to
Algebra and Geometry, 36(2):337–346, 1996.

201. X. Jin, C. Tai, J. Feng, and Q. Peng. Convolution surfaces for line skeletons
with polynomial weight distributions. Journal of Graphics Tools, 6(3):17–28,
2001.

202. J. Johnson and W. Krandick. Polynomial real root isolation using approxi-
mate arithmetic. In Proceedings of the 1997 ACM Symposium on Symbolic
and Algebraic Computations, Maui, Hawaii, USA, pages 225–232. ACM Press,
1997.

203. K. Joy, J. Legakis, and R. MacCracken. Data structures for multiresolution
representation of unstructured meshes. In G. Farin, H. Hagen, and B. Hamann,
editors, Hierarchical Approximation and Geometric Methods for Scientific Vi-
sualization, pages 143–170. Springer-Verlag, Heidelberg, 2002.

204. Z. Kacic-Alesic and B. Wyvill. Controlled blending of procedural implicit
surfaces. In Graphics Interface 91, pages 236–245, 1991.

205. M. Kallmann and D. Thalmann. Star-vertices: A compact representation for
planar meshes with adjacency information. Journal of Graphics Tools, 6(1):7–
18, 2001.

206. D. Kalra and A. Barr. Guaranteed ray intersections with implicit functions.
Computer Graphics (Proc. of SIGGRAPH ’89), 23(3):297–306, 1989.

207. D. Kalra and A. Barr. Guaranteed ray intersections with implicit surfaces.
Computer Graphics, 23(4):297–306, 1989. (SIGGRAPH’89).

208. T. Karkanis and A. Stewart. Curvature-dependent triangulation of implicit
surfaces. IEEE Computer Graphics and Applications, 21(2):60–69, March 2001.

209. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. In-
ternational Journal of Computer Vision, 23(4):321–332, January 1988.

210. R. Kearfott. Empirical evaluation of innovations in interval branch and bound
algorithms for nonlinear systems. SIAM Journal on Scientific Computing,
18(2):574–594, 1997.

211. S.-J. Kim and C.-G. Song. Rendering of unorganized points with octago-
nal splats. In V. Alexandrov, G. Albada, P. Sloot, and J. Dongarra, edi-
tors, Proceedings of the 6th International Conference on Computational Science

References 331

(ICCS’06), volume 3992, Part II of Lecture Notes in Computer Science, pages
326–333. Springer-Verlag, New York, 2006.

212. A. Knoll, I. Wald, S. Parker, and C. Hansen. Interactive isosurface ray tracing
of large octree volumes. In Proceedings of the IEEE Symposium on Interactive
Ray Tracing (IRT’06), pages 115–124. IEEE Press, 2006.

213. L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive
surface extraction from volume data. ACM SIGGRAPH Computer Graphics,
35(3):57–66, August 2001.

214. N. Kojekine, I. Hagiwara, and V. Savchenko. Software tools using CSRBFs
for processing scattered data. Computers and Graphics, 27(2):311–319, April
2003.

215. J. Kou, Y. Li, and X. Wang. Efficient continuation Newton-like method for
solving systems of nonlinear equations. Applied Mathematics and Computation,
174(2):846–853, March 2006.

216. J. Kou, Y. Li, and X. Wang. On modified Newton methods with cubic conver-
gence. Applied Mathematics and Computation, 176(1):123–127, 2006.

217. W. Krandick and K. Mehlhorn. New bounds for the Descartes’ method. Journal
of Symbolic Computation, 41(1):49–66, 2006.

218. C. Kuo and H. Yau. Reconstruction of virtual parts from unorganized scanned
data for automated dimensional inspection. Journal of Computing and Infor-
mation Science in Engineering, 3(1):76–86, March 2003.

219. C. Kuo and H. Yau. A Delaunay-based region-growing approach to surface
reconstruction from unorganized points. Computer-Aided Design, 37(8):825–
835, July 2005.

220. C. Kuo and H. Yau. A new combinatorial approach to surface reconstruc-
tion with sharp features. IEEE Transactions on Visualization and Computer
Graphics, 12(1):825–835, January-February 2006.

221. P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares
methods. Mathematics of Computation, 37(155):141–158, July 1981.

222. J. Lane and R. Riesenfeld. Bounds on a polynomial. BIT Numerical Mathe-
matics, 21(1):112–117, 1981.

223. S. Lang. Undergraduate analysis. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 1997.

224. S. Lay. Convex Sets and Their Applications. Dover Publications, Mineola,
1982.

225. C. Lee. Subdivisions and triangulations of polytopes. In J. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, The
CRC Press Series on Discrete Mathematics and Its Applications, pages 271–
290. CRC Press, 1997.

226. A. Legendre. Nouvelles Méthodes pour la Détermination des Orbits des Co-
mètes. Courcier Imprimeur, Paris, France, 1805. Reissued with a supple-
ment, 1806. Second supplement published in 1820. A portion of the appendix
was translated in 1929, pages 576–579 in A Source Book in Mathematics, S.
Smith (ed.), translated by H. Ruger and H. Walker, McGraw-Hill, New York.
Reprinted in two volumes, Dover, New York, 1959.

227. C. Lemke. Bimatrix equilibrium points and mathematical programming. Man-
agement Science, 11(7, Series A, Sciences):681–689, May 1965.

228. C. Lemke and J. Howson. Equilibrium points of bimatrix games. SIAM Journal
on Applied Mathematics, 12(2):413–423, June 1964.

332 References

229. D. Levin. The approximation power of moving least squares methods. Mathe-
matics of Computation, 67(224):1517–1531, October 1998.

230. D. Levin. Mesh-independent surface interpolation. In G. Brunnett, B. Hamann,
H. Müller, and L. Linsen, editors, Geometric Modeling for Scientific Visual-
ization, Mathematics and Visualization, pages 37–50. Springer-Verlag, Berlin,
2003.

231. S. Levin. Descartes’ rule of signs: how hard can it be? American Mathematical
Monthly (submitted for publication), 2002.

232. T. Lewiner, H. Lopes, A. Vieira, and G.Tavares. Efficient implementation of
marching cubes’ cases with topological guarantees. Journal of Graphics Tools,
8(2):1–15, 2003.

233. S. Li and W. Liu. Meshfree and particle methods and their applications.
Applied Mechanics Reviews, 55(1):1–34, 2002.

234. S. Li and W. Liu. Mesh-free Particle Methods. Springer-Verlag, Berlin, 2004.
235. T. Li and X. Wang. On multivariate Descartes’ rule: a counterexample. Con-

tributions to Algebra and Geometry, 39(1):1–5, 1998.
236. C. Liang, B. Mourrain, and J.-P. Pavone. Subdivision methods for the topology

of 2D and 3D implicit curves. In Proceedings of the Workshop on Computational
Methods for Algebraic Spline Surfaces, Oslo, Norway, 2005.

237. D. Libes. Modeling dynamic surfaces with octrees. Computer & Graphics,
15(3), 1991.

238. P. Lienhardt. Topological models for boundary representation: a comparison
with n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82,
January 1991.

239. C. Lim, G. Turkiyyah, M. Ganter, and D. Storti. Implicit reconstruction of
solids from cloud point sets. In Proceedings of the 3rd ACM Symposium on
Solid Modeling and Applications, pages 393–402. ACM Press, 1995.

240. C. Loader. Local Regression and Likehood. Statistics and Computing. Springer-
Verlag, New York, 1999.

241. S. Lojasiewicz. Triangulation of semianalytic sets. Annali Della Scuola Nor-
male de Pisa, 3rd Series, 18:449–474, 1964.

242. S. Lojasiewicz. Ensembles semi-analytiques. Technical Report Cours Faculté
des Sciences d’Orsay, Bures-sur-Yvette, Inst. Hautes Études Sci., 1965.

243. A. Lopes. Accuracy in Scientific Visualization. PhD thesis, The University of
Leeds, School of Computer Studies, Leeds, England, March 1999.

244. A. Lopes and K. Brodlie. Improving the robustness and accuracy of the march-
ing cubes algorithm for isosurfacing. IEEE Transactions on Visualization and
Computer Graphics, 9(1):16–29, 2003.

245. H. Lopes, J. Oliveira, and L. Figueiredo. Robust polygonal adaptive approxi-
mation of implicit curves. Computers & Graphics, 26(6):841–852, 2002.

246. H. Lopes and G. Tavares. Structural operators for modeling 3-manifolds. In
Proceedings of the 4th ACM Symposium on Solid Modeling and Applications,
pages 10–18. ACM Press, May 1997.

247. W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface
construction algorithm. Computer Graphics, 21(4):163–169, July 1987.

248. G. Lorentz. Bernstein Polynomials. Chelsea Publishing Company, New York,
1986.

249. Y. Lu. Singularity Theory and An Introduction to Catastrophe Theory. Uni-
versitext. Springer-Verlag, New York, 1976.

References 333

250. A. Lundell and S. Weingram. The Topology od CW Complexes. The University
Series in Higher Mathematics. Van Nostrand Reinhold Company, 1969.

251. P. MacMurchy. Subdivision surfaces for plant modeling. Master’s thesis, Uni-
versity of Calgary, Canada, 2004.

252. V. Madan. Interval Newton method: Hansen-Greenberg approach—some pro-
cedural improvements. Applied Mathematics and Computation, 35(3):263–276,
1990.

253. W. Madych. Miscellaneous error bounds for multiquadric and related interpo-
lators. Computers & Mathematics with Applications, 24(12):121–138, 1992.

254. W. Madych and S. Nelson. Multivariate interpolation and conditionally posi-
tive definite functions. Approximation Theory and Its Applications, 4(4):77–89,
1988.

255. W. Madych and S. Nelson. Multivariate interpolation and conditionally posi-
tive definite functions. ii. Mathematics of Computation, 54(189):211–230, 1990.

256. M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press, 1987.
257. K. Maritaud. Rendu réaliste d’arbres vus de près en images de synthèse. PhD

thesis, University de Limoges, France, December 2003.
258. R. Martin, H. Shou, I. Voiculescu, A. Boywer, and G. Wang. Comparison

of interval methods for plotting algebraic curves. Computer Aided Geometric
Design, 19(7):553–587, July 2002.

259. R. Martin, H. Shou, I. Voiculescu, and G. Wang. A comparison of Bernstein
hull and affine arithmetic methods for algebraic curve drawing. In J. Winkler
and M. Niranjan, editors, Uncertainty in Geometric Computations, pages 143–
154. Kluwer Academic Publishers, 2001.

260. T. Marzais, Y. Grard, and R. Malgouyres. LP fitting approach for reconstruct-
ing parametric surfaces from points clouds. In J. Braz, J. Jorge, M. Dias, and
A. Marcos, editors, Proceedings of the 1st International Conference on Com-
puter Graphics Theory and Applications (GRAPP’06), pages 325–330, Setúbal,
Portugal, February 25–26 2006. INSTICC (Institute for Systems and Technolo-
gies of Information, Control and Communication).

261. S. Matveyev. Approximation of isosurface in the marching cube: ambiguity
problem. In R. Bergeron and A. Kaufman, editors, Proceedings of the IEEE
Conference on Visualization’94, pages 288–292. IEEE Computer Society Press,
1994.

262. N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for efficient
visualization of 3D scalar functions. ACM SIGGRAPH Computer Graphics,
24(5):27–33, November 1990.

263. D. McLain. Drawing contours from arbitrary data points. Computer Journal,
17(4):318–324, 1974.

264. D. Meagher. Geometric modeling using octree encoding. Computer Graphics
and Image Processing, 19(2):129–147, June 1982.

265. D. Meagher. Octree generation, analysis and manipulation. Technical Report
IPL-TR-027, Image Processing Laboratory, Rensselaer Polytechnic Institute,
Troy, New York, April 1982.

266. H. Meinhardt. The Algorithmic Beauty of Sea Shells. Springer-Verlag, New
York, 1995.

267. E. Mencl and H. Müller. Graph-based surface reconstruction using structures
in scattered point sets. In Proceedings of Computer Graphics International
(CGI’98), pages 298–311. IEEE Computer Society Press, 1998.

334 References

268. M. Meyer, H. Lee, A. Barr, and M. Desbrun. Generalized barycentric coordi-
nates on irregular polygons. Journal of Graphical Tools, 7(1):13–22, 2002.

269. C. Micchelli. Interpolation of scattered data: distance matrices and condition-
ally positive definite functions. Constructive Approximation, 2(1):11–12, 1986.

270. D. Michelucci. Reliable representations of strange attractors. In W. Krämer
and J. W. von Gudenberg, editors, Scientific Computing, Validated Numerics,
Interval Methods, pages 379–389. Kluwer Academic Publishers, 2001.

271. A. Middleditch, C. Reade, and A. Gomes. Set combinations of the mi-
xed-dimension cellular objects of the Djinn API. Computer-Aided Design,
31(11):683–694, September 1999.

272. A. Middleditch, C. Reade, and A. Gomes. Point-sets and cell structures relevant
to computer aided design. International Journal of Shape Modeling, 6(2):175–
205, 2000.

273. P. Milne. On the Algorithms and Implementation of a Geometric Algebra Sys-
tem. PhD thesis, University of Bath, England, 1990.

274. P. Milne. The zeros of a set of multivariate polynomial equations. Technical
Report 90/34, University of Bath, England, 1990.

275. S. Miyajima and M. Kashiwagi. Existence test for solution of nonlinear systems
applying affine arithmetic. Journal of Computational and Applied Mathemat-
ics, 199(2):304–309, 2007.

276. T. Möller. A fast triangle-triangle intersection test. ACM Journal of Graphics
Tools, 2(2):25–30, 1997.

277. T. Möller and R. Yagel. Efficient rasterization of implicit functions. Technical
Report OSU-CISRC-11/95-TR50, The Ohio State University, Department of
Computer and Information Science, USA, November 1995.

278. R. Moore. Interval Analysis. Prentice-Hall, 1966.
279. R. Moore. Methods and Applications of Interval Analysis. SIAM (Society for

Industrial and Applied Mathematics), 1979.
280. F. Morgado and A. Gomes. A derivative-free tracking algorithm for implicit

curves with singularities. In M. Bubak, D. Albada, P. Sloot, and J. Dongarra,
editors, Proceedings of the 4th International Conference on Computational
Conference (ICCS’04), volume 3039 of Lecture Notes in Computer Science.
Springer-Verlag, New York, 2004.

281. J. Morgado and A. Gomes. A generalized false position numerical method for
finding zeros and extrema of a real function. In T. Simos and G. Maroulis, edi-
tors, Proceedings of the International Conference in Computational Methods in
Sciences and Engineering (ICCMSE’05), volume 4 of Lecture Series on Com-
puter and Computational Sciences, pages 425–428. Brill Academic Publishers,
2004.

282. B. Morse, T. Yoo, P. Rheingans, D. Chen, and K. Subramanian. Interpolating
implicit surfaces from scattered surface data using compactly supported ra-
dial basis functions. In Proceedings of the International Conference on Shape
Modeling and Applications, pages 89–98. IEEE Computer Society Press, 2001.

283. B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial
equations. Technical Report 5658, Institut National de Recherche en Informa-
tique et en Automatique (INRIA), August 2005.

284. B. Mourrain, F. Rouillier, and M.-F. Roy. Bernstein’s basis and real root iso-
lation. Technical Report 5149, Institut National de Recherche en Informatique
et en Automatique (INRIA), March 2004.

References 335

285. B. Mourrain and J.-P. Técourt. Computing the topology of real algebraic
surface. In MEGA Electronic Proceedings, 2005.

286. B. Mourrain, M. Vrahatis, and J. Yakoubsohn. On the complexity of isolating
real roots and computing with certainty the topological degree. Journal of
Complexity, 18(2):612–640, 2002.

287. S. Mudur and P. Koparkar. Interval methods for processing geometric objects.
IEEE Computer Graphics & Applications, 4(2):7–17, 1984.

288. D. Muller and F. Preparata. Finding the intersection of two convex polyhedra.
Theoretical Computer Science, 7(2):217–236, 1978.

289. H. Müller and M. Wehle. Visualization of implicit surfaces using adaptive
tetrahedrizations. In H. Hagen, G. Nielson, and F. Post, editors, Proceedings
of the Conference on Scientific Visualization (Dagstuhl’97), pages 243–250.
IEEE Computer Society, 1997.

290. L. Mündermann. Inverse Modeling of Plants. PhD thesis, University of Calgary,
2003.

291. J. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
292. J. Munkres. Analysis on Manifolds. Addison-Wesley, 1991.
293. S. Muraki. Volumetric shape description of range data using ”Blobby Model”.

ACM SIGGRAPH Computer Graphics, 25(4):227–235, July 1991.
294. R. Měch and P. Prusinkiewicz. Visual models of plants interacting with their

environment. In SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 397–410, 1996.

295. B. Natarajan. On generating topologically consistent isosurfaces from uniform
samples. The Visual Computer, 11(1):52–62, 1994.

296. I. Navazo. Extended octree representation of general solids with plane faces:
model structure and algorithms. Computer Graphics, 13(1):5–16, 1989.

297. I. Navazo, D. Ayala, and P. Brunet. A geometric modeller based on the exact
octtree representation of polyhedra. Computer Graphics Forum, 5(2):91–104,
1986.

298. B. Naylor, J. Amanatides, and W. Thibault. Merging BSP trees yields polyhe-
dral set operations. In Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’90), pages 115–124. ACM
Press, 1990.

299. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-
sity Press, 1990.

300. G. Nielson. Scattered data modeling. IEEE Computer Graphics & Applica-
tions, 13(1):60–70, January/February 1993.

301. G. Nielson. On marching cubes. IEEE Transactions on Visualization and
Computer Graphics, 9(3):283–297, July-September 2003.

302. G. Nielson and R. Franke. Computing the separating surface for segmented
data. In Proceedings of the IEEE Conference on Visualization’97, pages 229–
233. IEEE Computer Society Press, 1997.

303. G. Nielson and B. Hamann. The asymptotic decider: resolving the ambiguity
in marching cubes. In Proceedings of the IEEE Conference on Visualization’
91, pages 83–91. IEEE Computer Society Press, 1991.

304. G. Nielson and J. Sung. Interval volume tetrahedrization. In Proceedings of the
IEEE Conference on Visualization’97, pages 221–228. IEEE Computer Society
Press, 1997.

336 References

305. P. Ning and J. Bloomenthal. An evaluation of implicit surface tilers. IEEE
Computer Graphics & Applications, 13(6):33–41, November 1993.

306. H. Nishimura, M. Hirai, and T. Kawai. Object modeling by distribution func-
tion and a method of image generation. Transactions of IECE of Japan, 68-
D(4):227–234, April 1985.

307. T. Ochotta, C. Scheidegger, J. Schreiner, Y. Lima, R. Kirby, and C. Silva.
A unified projection operator for moving least squares surfaces. Technical
Report UUSCI-2007-006, Scientific Computing and Imaging Institute (SCII),
University of Utah, Salt Lake City, April 2007.

308. Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multilevel parti-
tion of unity implicits. ACM Transactions on Graphics, 22(3):463–470, 2003.

309. Y. Ohtake, A. Belyaev, and A. Pasko. Dynamic meshes for accurate polygoniza-
tion of implicit surfaces with sharp features. In A. Pasko and M. Spagnuolo,
editors, Proceedings of the International Conference on Shape Modeling and
Applications, pages 74–81. IEEE Computer Society Press, May 2001.

310. Y. Ohtake, A. Belyaev, and H.-P. Seidel. A multi-scale approach to 3D scat-
tered data interpolation with compactly supported basis functions. In Myung-
Soo Kim, editor, Proceedings of the Shape Modeling International (SMI’03),
pages 153–161. IEEE Computer Society Press, May 2003.

311. Y. Ohtake, A. Belyaev, and H.-P. Seidel. 3d scattered data approximation
with adaptive compactly supported radial basis functions. In F. Giannini and
A. Pasko, editors, Proceedings of the 6th International Conference on Shape
Modeling and Applications, pages 31–39. IEEE Computer Society Press, June
2004.

312. Y. Ohtake, A. Belyaev, and H.-P. Seidel. Multi-scale and adaptive CS-RBFs
for shape reconstruction from cloud of points. In N. Dodgson, M. Floater,
and M. Sabin, editors, Advances in Multiresolution for Geometric Modelling,
pages 143–154. Springer-Verlag, June 2005. Proceedings of the MINGLE Work-
shop on Multiresolution in Geometric Modelling, Cambridge, United Kingdom,
September 9–11, 2003.

313. P. Olver. Equivalence, Invariants and Symmetry. Cambridge University Press,
Cambridge, England, 1995.

314. J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Classics in Applied Mathematics. SIAM (Society for Industrial
and Applied Mathematics), Philadelphia, 2000.

315. A. Paiva, L. de Figueiredo, and J. Stolfi. Chaos and graphics: robust visual-
ization of strange attractors using affine arithmetic. Computers and Graphics,
30(6):1020–1026, December 2006.

316. A. Paiva, H. Lopes, T. Lewiner, and L. Figueiredo. Robust adaptive meshes for
implicit surfaces. In Proceedings of the 19th Brazilian Symposium on Computer
Graphics and Image Processing (SIBGRAPI ’06), pages 205–212. IEEE Press,
October 2006.

317. A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function representation in
geometric modeling: concepts, implementation and applications. Visual Com-
puter, 11(8):429–446, 1995.

318. G. Pasko, A. Pasko, M. Ikeda, and T. Kunnii. Bounded blending operations.
In Proceedings of the International Conference on Shape Modeling and Appli-
cations (SMI 2002), pages 95–103. IEEE Computer Society, May 2002.

References 337

319. M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape modeling with point-
sampled geometry. ACM Transactions on Graphics, 22(3):641–650, July 2003.

320. B. Payne and A. Toga. Surface mapping brain function on 3D models. IEEE
Computer Graphics & Applications, 10(5):33–41, September 1990.

321. P. Pedersen. Counting Real Zeros. PhD thesis, New York University, Depart-
ment of Computer Science, Courant Institute of Mathematical Sciences, New
York, 1991.

322. P. Pedersen. Multivariate Sturm theory. In Proceedings of the 9th International
Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, volume 539 of Lecture Notes in Computer Science, pages 318–332.
Springer-Verlag, London, 1991.

323. S. Petitjean and E. Boyer. Regular and non-regular point sets: properties and
reconstruction. Computational Geometry: Theory and Applications, 19(2):101–
126, July 2001.

324. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics, 2(1):15–36, 1993.

325. S. Plantinga and G. Vegter. Isotopic meshing of implicit surfaces. The Visual
Computer, 23(1):45–58, January 2007.

326. H. Pottmann and S. Leopoldseder. A concept for parametric surface fitting
which avoids the parametrization problem. Computer-Aided Geometric Design,
20(6):343–362, September 2003.

327. V. Pratt. Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH
Computer Graphics, 21(4):145–152, July 1987.

328. F. Preparata and M. Shamos. Computational Geometry: An Introduction.
Texts and Monographs in Computer Science. Springer-Verlag, New York, 1985.

329. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in
C. Cambridge University Press, second edition, 1992.

330. P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer-Verlag, New York, 1990.

331. P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane. The use of
positonal information in the modeling of plants. In Eugene Fiume, editor,
SIGGRAPH 2001 Conference Proceedings, Annual Conference Series, pages
289–300. ACM SIGGRAPH, 2001.

332. V. Rajan, S. Klinkner, and R. Farouki. Root isolation and root approximation
for polynomials in Bernstein form. Technical report, IBM Research Report
RC14224, IBM Research Division, T.J. Watson Research Center, Yorktown
Heights, New York, November 1988.

333. S. Rana. Topological Data Structures for Surfaces: An Introduction to Geo-
graphical Information Science. John Wiley & Sons, Chichester, 2004.

334. A. Raposo and A. Gomes. Polygonization of multi-component non-manifold
implicit surfaces through a symbolic-numerical continuation algorithm. In Y.T.
Lee and S. M.Shamsuddin, editors, Proceedings of the 4th International Con-
ference on Computer Graphics and Interactive Techniques in Australasia and
South-East Asia (GRAPHITE’06), pages 399–406. ACM Press, 2006.

335. H. Ratschek and J. Rokne. Computer Methods for the Range of Functions.
Mathematics and Its Applications. Ellis Horwood, Chicester, 1984.

336. Rehder. The Audobon Society Field Guide to North American Seashells. Alfre
A. Knopf, Inc., New York, 1981.

338 References

337. X. Renbo, L. Weijun, and W. Yuechao. A robust and topological correct
marching cube algorithm without look-up table. In Proceedings of the Fifth
International Conference on Computer and Information Technology (CIT’05),
pages 565–569, Shanghai, China, September 21-23 2005. IEEE Computer So-
ciety Press.

338. A. Requicha and R. Tilove. Mathematical foundations of constructive solid
geometry: general topology of closed regular sets. Production Automation
Project Tech. Memo 27a, University of Rochester, 1978.

339. N. Revol. Interval Newton iteration in multiple precision for the univariate
case. Research Report 4334, Institut National de Recherche en Informatique
et en Automatique (INRIA), December 2001.

340. W. Rheinboldt. On a moving frame algorithm and the triangulation of equili-
birum manifolds. In T. Kuper, R. Seydel, and H. Troger, editors, Bifurcation:
Analysis, Algorithms, Applications, volume 79 of International Series of Nu-
merical Mathematics, pages 256–267. Birkhauser, Boston, 1987.

341. A. Ricci. Constructive geometry for computer graphics. Computer Journal,
16(2):157–160, May 1973.

342. J. Rossignac, A. Safonova, and A. Szymczak. Edgebreaker on a corner table:
a simple technique for representing and compressing triangulated surfaces. In
G. Farin, H. Hagen, and B. Hamann, editors, Hierarchical Approximation and
Geometric Methods for Scientific Visualization, pages 41–50. Springer-Verlag,
Heidelberg, 2002.

343. F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots.
Journal of Computational and Applied Mathematics, 162(1):33–50, 2004.

344. M. Sabin. Contouring: the state of the art. In R. Earnshaw, editor, Funda-
mental Algorithms for Computer Graphics, volume 17 of NATO ASI Series F:
Computer and Systems Sciences, pages 411–482. Springer-Verlag, Berlin, 1985.

345. R. Saleh, K. Gallivan, M. Chang, I. Hajj, D. Smart, and T. Trick. Parallel
circuit simulation on supercomputers. Proceedings of the IEEE, 77(12):1915–
1931, December 1989.

346. H. Samet. The quadtree and elated hierarchical data structures. ACM Com-
puting Surveys, 16(2), 1984.

347. H. Samet. Foundations of Multidimensional and Metric Data Structures. The
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann
Publishers, 2006.

348. R. Sarraga. Algebraic methods for intersections of quadric surfaces in GM-
SOLID. Computer Vision, Graphics, and Image Processing, 22:222–238, 1983.

349. V. Savchenko, A. Pasko, O. Okunev, and T. Kuni. Function representation
of solids reconstructed from scattered surface points and contours. Computer
Graphics Forum, 14(4):181–188, 1995.

350. T. Scavo and J. Thoo. On the geometry of Halley’s method. American Math-
ematical Monthly, 102(5):417–426, 1995.

351. S. Schaefer and J. Warren. Dual marching cubes: primal contouring of dual
grids. In Proceedings of the 12th Pacific Conference on Computer Graphics
and Applications (PG’04), pages 70–76, Seoul, Korea, October 2004. IEEE
Computer Society Press.

352. M. Schmidt. Cutting cubes: visualizing implicit surfaces by adaptive polygo-
nization. The Visual Computer, 10(2):101–115, 1993.

References 339

353. R. Schmidt, C. Grimm, and B. Wyvill. Interactive decal compositing with
discrete exponential maps. ACM Transactions on Graphics, 25(3):605–613,
July 2006.

354. P. Schneider. A Bézier curve-based root-finder. In A. Glassner, editor, Graphics
Gems, pages 408–415. Academic Press, San Diego, 1990.

355. R. Seidel and N. Wolpert. On the exact computation of the topology of real
algebraic curves. In Proceedings of the 21st ACM Annual Symposium on Com-
putational Geometry, Pisa, Italy, pages 107–115. ACM Press, June 2005.

356. V. Shapiro. Representations of semi-algebraic sets in finite algebras generated
by space decompositions. Technical Report CPA91-1 Programmable Automa-
tion, Cornell University, Ithaca, NY, February 1991.

357. V. Shapiro. Maintenance of geometric representations through space decom-
positions. International Journal of Computational Geometry & Applications,
6(4):383–418, 1997.

358. J. Sharma. A family of Newton-like methods based on an exponential model.
International Journal of Computer Mathematics, 84(3):297–304, 2007.

359. V. Sharma. Complexity of real root isolation using continued fractions. In Pro-
ceedings of the 2007 ACM Symposium on Symbolic and Algebraic Computation,
Waterloo, Ontario, Canada, pages 339–346, 2007.

360. R. Sharpe. Differential Geometry. Graduate Texts in Mathematics. Springer-
Verlag, New-York, 1997.

361. A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and
their applications. Foundations and Trends in Computer Graphics and Vi-
sion, 2(2):105–171, 2006.

362. C. Shen, J. O’Brien, and J. Shewchuk. Interpolating and approximating im-
plicit surfaces from polygon soup. ACM Transactions on Graphics, 23(3):896–
904, 2004.

363. D. Shepard. A two-dimensional interpolation function for irregularly-spaced
data. In Proceedings of the 23th ACM National Conference, pages 517–524,
New York, 1968. ACM Press.

364. E. Sherbrooke and N. Patrikalakis. Computation of the solutions of nonlinear
polynomial systems. Computer-Aided Geometric Design, 10(5):379–405, 1993.

365. M. Shiota. Geometry of Subanalytic and Semialgebraic Sets. Progress in Math-
ematics. Birkhauser, Boston, 1997.

366. P. Shirley and A. Tuchman. A polygonal approximation to direct scalar vol-
ume rendering. ACM SIGGRAPH Computer Graphics, 24(5):63–70, November
1990.

367. H. Shou, R. Martin, I. Voiculescu, A. Bowyer, and G. Wang. Affine arithmetic
in matrix form for polynomial evaluation and algebraic curve drawing. Progress
in Natural Science, 12(1):77–81, 2002.

368. H. Shou, R. Martin, G. Wang, A. Bowyer, and I. Voiculescu. A recursive Taylor
method for algebraic curves and surfaces. In T. Dokken and B. Juettler, editors,
Computational Methods for Algebraic Spline Surfaces, pages 135–155. Springer
Verlag, New York, 2003.

369. F. Silva and A. Gomes. AIF: a data structure for polygonal meshes. In
V. Kumar, M. Gavrilova, C. Tan, and P. L’Ecuyer, editors, Computational
Science and Its Applications (ICCSA’03), volume 2669 of Lecture Notes in
Computer Science, pages 986–987. Springer-Verlag, New York, 2003.

340 References

370. J. Snyder. Generative Modelling for Computer Graphics and CAD. Academic
Press, 1992.

371. J. Snyder. Interval analysis for computer graphics. Computer Graphics,
26(2):121–130, July 1992. (SIGGRAPH’92).

372. M. Spencer. Polynomial Real Root Finding in Bernstein Form. PhD thesis,
Brigham Young University, 1994.

373. G. Steele. Sun Microsystems Laboratories. Personal communication, 2002.
374. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis (third edition),

volume 12 of Texts in Applied Mathematics. Springer-Verlag, New York, 2002.
375. J. Sturm. Mémoire sur la résolution des équations numériques. Bulletin des

Sciences de Férussac, 11, 1829.
376. K. Suffern. An octree algorithm for displaying implicitly defined mathematical

functions. The Australian Computer Journal, 22(1):2–10, February 1990.
377. K. Suffern. Quadtree algorithms for contouring functions of two variables. The

Computer Journal, 33(5):402–407, October 1990.
378. K. Suffern and R. Balsys. Rendering the intersections of implicit surfaces. IEEE

Computer Graphics & Applications, 23(5):70–77, September/October 2003.
379. K. Suffern and E. Fackerell. Interval methods in computer graphics. Computers

& Graphics, 15(3):331–340, 1991.
380. N. Sukumar. Construction of polygonal interpolants: a maximum entropy ap-

proach. International Journal for Numerical Methods in Engineering, 61(12):
2159–2181, 2004.

381. N. Sukumar and E. Malsch. Recent advances in the construction of polygonal
finite element interpolants. Archives of Computational Methods in Engineering,
13(1):129–163, 2006.

382. N. Sukumar and A. Tabarraei. Conforming polygonal finite elements. In-
ternational Journal for Numerical Methods in Engineering, 61(12):2045–2066,
2004.

383. G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves
defined by implicit equations with applications to edge and range image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(11):1115–1138, November 1991.

384. W. Thibault and B. Naylor. Set operations on polyhedra using binary space
partition trees. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’87), pages 153–162. ACM
Press, 1987.

385. R. Thom. La stabilité topologique des applications polynomiales. Enseigne-
ment Math., 8:24–33, 1962.

386. R. Thom. Ensembles et morphisms stratifiés. Bulletin of the American Math-
ematical Society, 75:240–284, 1969.

387. M. Tigges and B. Wyvill. Texture mapping the blobtree. In Implicit Surfaces
’98, pages 123–130, 1998.

388. M. Tigges and B. Wyvill. Python for scene and model description for computer
graphics. In IPC 2000, Jan 2000.

389. I. Tobor, P. Reuter, and C. Schlick. Efficient reconstruction of large scattered
geometric datasets using the partition of unity and radial basis functions.
Journal of WSCG, 12(1–3):467–474, 2004. Proceedings of the 12th Interna-
tional Conference in Central Europe on Computer Graphics, Visualization and

References 341

Computer Vision (WSCG’04), University of West Bohemia, Campus Bory,
Plzen-Bory, Czech Republic, February 2–6, 2004.

390. M. Todd. On triangulations for computing fixed points. Mathematical Pro-
gramming, 10(1):322–346, 1976.

391. E. Tsigaridas and I. Emiris. Univariate polynomial real root isolation: contin-
ued fractions revisited. In Y. Azar and T. Erlebach, editors, Proceedings of
the 13th European Symposium on Algorithms, volume 4168 of Lecture Notes in
Computer Science, pages 817–828. Springer-Verlag, New York, 2006.

392. G. Turk and J. O’Brien. Shape transformations using variational implicit
surfaces. ACM SIGGRAPH Computer Graphics, 33(3):335–342, August 1999.

393. G. Turk and J. O’Brien. Modeling with implicit surfaces that interpolate. ACM
Transactions on Graphics, 21(4):855–873, October 2002.

394. J. Uspensky. Theory of Equations. McGraw-Hill, New York, 1948.
395. A. van Gelder and J. Wilhelms. Topological considerations in isosurface gen-

eration. ACM Transactions on Graphics, 13(4):337–375, 1994.
396. K. van Overveld and B. Wyvill. Shrinkwrap: An efficient adaptive algorithm

for triangulating an iso-surface . The Visual Computer, 20(6):362–369, 2004.
397. L. Velho. Adaptive polygonization of implicit objects. In Proceedings of 1990

Australian Graphics Conference (AUSGRAPH’90), pages 339–343, Melbourne,
Australia, September 1990.

398. L. Velho. Adaptive polygonization of implicit surfaces using simplicial de-
composition and boundary constraints. In C. Vandoni and D. Duce, editors,
Proceedings of 11th Annual Conference of the European Association for Com-
puter Graphics (EUROGRAPHICS’90), pages 125–136, Montreux, Switzer-
land, September 1990. Elsevier Sciense Publishers B.V. (North-Holland).

399. L. Velho, L. Figueiredo, and J. Gomes. A unified approach for hierarchical
adaptive tesselation of surfaces. ACM Transactions on Graphics, 18(4):329–
360, 1990.

400. L. Velho, L. Figueiredo, and J. Gomes. A methodology for piecewise linear ap-
proximation of surfaces. Journal of the Brazilian Computer Society, 3(3):329–
360, April 1997.

401. I. Voiculescu. Implicit Function Algebra in Set-theoretic Geometric Modelling.
PhD thesis, University of Bath, England, 2001.

402. I. Voiculescu, J. Berchtold, A. Bowyer, R. Martin, and Q. Zhang. Interval and
affine arithmetic for surface location of power- and Bernstein-form polynomi-
als. In R. Cipolla and R. Martin, editors, The Mathematics of Surfaces IX,
Proceedings of the 9th IMA Conference on the Mathematics of Surfaces, pages
410–423. Springer-Verlag, New York, 2000.

403. E. Wachspress. Rational Finite Element Basis. Mathematics in Science &
Engineering. Academic Press, New York, 1975.

404. D. Watson. Computing the n-dimensional Delaunay tessellation with applica-
tion to Voronoi polytopes,. The Computer Journal, 24(2):167–172, 1981.

405. D. Watson. Contouring: A Guide to the Analysis and Display of Spatial Data.
Computer Methods in the Geosciences. Pergamon Press, Oxford, 1992.

406. S. Weerakoom and T. Fernando. A variant of Newton’s method with ac-
celerated third-order convergence. Applied Mathematics Letters, 13(8):87–93,
November 2000.

342 References

407. C. Weigle and D. Banks. Complex-valued contour meshing. In R. Yagel and
G. Nielson, editors, Proceedings of the IEEE Conference on Visualization’96,
pages 173–181. IEEE Computer Society Press, 1996.

408. H. Wendland. Piecewise polynomial, positive definite and compactly supported
radial basis functions of minimal degree. Advances in Computational Mathe-
matics, 4(1):389–396, December 1995.

409. W. Wessner. Mesh Refinement Techniques for CAD Tools. PhD thesis, Tech-
nische Universität Wien, Austria, November 2006.

410. J. Whitehead. Combinatorial homotopy. I. Bulletin American Mathematical
Society, 55:213–245, 1949.

411. J. Whitehead. Combinatorial homotopy. II. Bulletin American Mathematical
Society, 55:453–496, 1949.

412. H. Whitney. Complexes of manifolds. Proceedings of the National Academy of
Sciences (U.S.A.), 33:10–11, 1947.

413. H. Whitney. Elementary structure of real algebraic varieties. Annals of Mthe-
matics, 66(3):545–556, November 1957.

414. B. Wilson. The Growing Tree. The University of Massachusetts Press, Amherst,
1984.

415. W. Woolhouse. Explanation of a new method of adjusting mortality tables,
with some observations upon Mr. Makeham’s modifications of Gompertz’s the-
ory. Journal of the Institute of Actuaries, 15:389–410, 1870.

416. X. Wu. A new continuation Newton-like method and its deformation. Applied
Mathematics and Computation, 112(1):75–78, June 2000.

417. B. Wyvill, E. Galin, and A. Guy. Extending the CSG tree. warping, blending
and boolean operations in an implicit surface modeling system. Computer
Graphics Forum, 18(2):149–158, 1999.

418. B. Wyvill, E. Galin, and A. Guy. The blob tree, warping, blending and Boolean
operations in an implicit surface modeling system. Computer Graphics Forum,
18(2):149–158, June 1999.

419. B. Wyvill and K. van Overveld. Polygonization of implicit surfaces with con-
structive solid geometry. Journal of Shape Modelling, 2(4):257–274, 1996.

420. G. Wyvill, 2001. Personal communication.
421. G. Wyvill, T. Kunii, and Y. Shirai. Space division for ray tracing in CSG.

IEEE Computer Graphics & Applications, 6(4):227–234, April 1986.
422. G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The

Visual Computer, 2(4):227–234, August 1986.
423. J. Yang, C. Zhu, and H. Zhang. Surface reconstruction with least square repro-

ducing kernel and partition of unity. In Workshops Proceedings of the 16th In-
ternational Conference on Artificial Reality and Telexistence (ICAT’06), pages
375–380, Hangzhou, China, November/December 2006. IEEE Computer Soci-
ety Press.

424. H. Yau, C. Kuo, and C. Yeh. Extension of surface reconstruction algorithm
to the global stitching and repairing of STL models. Computer-Aided Design,
35(5):477–486, 2002.

425. M. Zettler and J. Garloff. Robustness analysis of polynomials with polynomial
parameter dependency using Bernstein polynomials. IEEE Transactions on
Automatic Control, 43(3):425–431, March 1998.

References 343

426. Q. Zhang and R. Martin. Polynomial evaluation using affine arithmetic for
curve drawing. In Proceedings of the Eurographics UK Conference, pages 49–
56, 2000.

427. Y. Zhou, B. Chen, and A. Kaufmann. Multiresolution tetrahedral framework
for visualizing regular volume data. In Proceedings of the IEEE Conference on
Visualization’97, pages 135–142. IEEE Computer Society Press, 1997.

428. Y. Zhou, B. Chen, and Z. Tang. An elaborate ambiguity detection method
for constructing isosurfaces within tetrahedral meshes. Computer & Graphics,
19(3):353–364, March 1995.

429. M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop 3D: an interac-
tive system for point-based surface editing. ACM Transactions on Graphics,
21(3):322–329, July 2002.

Index

Lp, fitting, 230
n-cubes, 188

affine arithmetic, 90, 105
as number approximation, 105
conversion to interval arithmetic, 106
operations, 105

algorithm
adaptive Hartmann’s for surfaces, 179
adaptive marching triangles, 182
Balsys-Suffern, 222
bisection, 132
CS-RBF interpolation, 253, 254
de Casteljau, 81
dividing cubes, 200
dual marching cubes, 213
Hall-Warren, 216, 217
Hartmann’s for surfaces, 175, 177
Henderson’s for surfaces, 174, 175
integer-labelling, 154, 155
marching cubes, 194, 196
marching squares, 189
marching tetrahedra, 201, 206
marching triangles, 180
marching triangles for surfaces, 182
Morgado-Gomes, 167–169, 172
moving least squares (MLS), 244, 245
MPU approximation, 260
multivariate false position, 135
multivariate Newton, 125
multivariate secant, 128
Raposo-Gomes, 185
real root isolation, 80

Rheinboldt for curves, 165
Rheinboldt for surfaces, 173
Sturm sequence, 77
univariate interval Newton, 139
univariate Newton, 122
vector-labelling, 162
vector-valued Newton, 124

ambiguity, 191, 198, 220
face, 198
interior, 198

angle, external, 177
aperture, 298
approximation

global MLS, 243
least squares, 234
moving least squares (MLS), 239
MPU, 258
weighted least squares (WLS), 238

basis
Bernstein, 69, 99

bivariate, 70
coefficients, 100
generic interval, 71
matrix form, 70, 71
multivariate, 100
univariate, 69

Gröbner, 82
power, 68

blending
bounded, 273
bulge-free, 275
controlled, 273

345

346 Index

blending (cont.)
external blend group, 277
generalised bounded blending (GBB),

281
graph, 275
internal blend group, 276
operation, 274
super-elliptic, 273

blob, 230
Gaussian, 230
surface, 232

blobby, model, 232
blobtree, 270
bounded blending, 272
box classification, 99
branch bark ridge, 308
bud-scale scar, 308
bump, 295

cell, 45
-tuple data structure, 48
complex, 44, 46
decomposition, 45

centre, 240
closure finiteness, 46
complex

cell, 44, 46
CW, 46
finite cell, 48
simplicial, 49

component
irreducible, 183
symbolic, 183
topological, 183

composition
functional composition using fZ

functions, 271
of implicit surfaces, 272
operator, 291

condition
C, 46
frontier, 45
W, 46

configuration, topological, 191
conservativeness, 97, 98
constructive solid geometry (CSG), 277
continuation

piecewise linear, 146
predictor-corrector (PC), 164

simplicial, 146
space, 221
spatial, 207

contour diagram, 267
contour, active, 230
covering, 41

subcovering, 42
criterion

angle, 171
curvature, 171
neighbour-branch, 171

cube, dividing, 200
curve

explicit, 4
implicit, 5
parametric, 3

data structure
AIF, 49
BSP, 53
cell-tuple, see cell-tuple data

structure, 51
corner-table, 51
DCEL, 51
facet-edge, 51
half-edge, 49, 51
handle-face, 51
incidence graph, 50
k-d tree, 57
lath, 51
nG-map, 51
octree, 61
quad-edge, 51
quadtree, 60
star-vertices, 50
TCD graph, 51
Whitney, 44
winged-edge, 51

de Casteljau, 80, 82
decider, asymptotic, 192
decomposition

5-tetrahedral, 202, 205
6-tetrahedral, 203
Kuhn, 203, 205
tetrahedral, 201

deformation, 284
diagram, Voronoi, 227
difference of implicits, 273
difference, minmax, 277

Index 347

disk, Henderson, 174
distance, Taubin, 260
domain of influence, 240

edge, quadtree, 58
enumeration

exhaustive, 51
sequential, 51
spatial exhaustive, 188

equation, normal, 236
equivalence, topological, 9
error

absolute, 118
least squares (LS), 234
relative, 118
round-off, 118, 119
truncation, 118

field image, 267
field, distance, 267
finiteness, closure, 46
fit, local MLS, 243
formula

generic iteration, 119
multivariate bisection, 132
multivariate false position, 134, 136
multivariate interval Newton, 139
multivariate Newton, 125
secant iteration, 127
univariate bisection, 131
univariate false position, 133
univariate interval Newton, 137
univariate Newton, 121
vector-valued Newton, 124

function, 8
Cr, 9
Cr diffeomorphism, 9
Cr differentiable, 9
Cr smooth, 9
C∞, 9
fC , 270
fZ , 270
n-point iteration, 120
2-point iteration, 120
bijection, 8
Blinn’s exponential density, 234
Blinn’s Gaussian, 233
component, 8
deforming function, 279

diffeomorphism, 9
differentiable, 9
explicitly defined, 23
Gaussian weight, 242
global density, 234
implicitly defined, 23
injection, 8
inverse quadratic weight, 242
inverse warping, 284
mapping, 8
McLain weight, 242
R, 271
radial basis, 249
roots, 67
smooth, 9
surjection, 8
thin-plate weight, 240
warping, 284
Wendland weight, 242
zeros, 67

golden ratio, 131

hardness factor, 274
helico-spiral, 288
homeomorphism, 9
honeycomb, 213

tetrahedral, 214
Horner’s scheme, 97

interpolation
bilinear, 189
CS-RBF, 252
fast RBF, 252
moving least squares (MLS), 239
MPU, 261
piecewise linear (PL), 203
RBF, 249
trilinear, 194

intersection of implicits, 273
intersection, min, 277
interval arithmetic, 89

as number approximation, 91
conversion to affine arithmetic, 106
operations, 91, 107
root isolation, 72

interval swell, 97
isosurface, 5

Jabobian, 9

348 Index

k-d
tree, 55
tree data structure, 57

labelling, 152
integer, 152
vector, 152, 156, 158

level set, 5
local

finiteness, 44
topological invariance, 44

machine, precision, 118
manifold, 43
mapping, 8
C1-invertible, 11
Cr, 9
Cr diffeomorphism, 9
Cr-invertible, 11
C∞, 9
derivative, 9
diffeomorphism, 9
differentiable, 9
differential, 9
embedding, 31
graph, 20
image, 13
immersion, 30
invertible, 11
level set, 15
locally Cr-invertible, 12
parametrisation, 13
rank, 24
regular, 24
smooth, 9
submersion, 30

matrix
Jacobian, 9
labelling, 158

mesh
generation, 229
partitioning, 229

method, 117
bracketing, 131
angular false position, 168
bisection, 131
bracketed secant, 133
disambiguation, 192
false position, 133

fast multipole (FMM), 252
four triangles, 191
generalised false position, 167
global implicit fitting, 231
implicit fitting, 231
interpolation, 131
interval Newton, 136
local implicit fitting, 231
modified false position, 136
Newton-like, 126
Newton-Raphson, 120
regula falsi, 133
secant, 127
Shepard’s blending, 255

model, blobby, 232
molecule, 230
murex cabritii, 288–290

natural phenomenae, 287
numerical stability, 78

octree, 60
data structure, 61

operation
blendiing, 274
blending union, 272

operator
∩min, 277
∪max, 277
\minmax, 277
bounded blending, 273
controlled blending, 273
deformation, 284
difference, 273
implicit modelling, 273
intersection, 273
precise contact modelling, 273
projection, 247
R-difference, 271
R-intersection, 271
R-union, 271
super-elliptic blending, 273
twist, 273
twist and taper, 273
twist, taper and bend, 273
union, 273

orientation
geometric, 49
topological, 49

Index 349

parametrisation, 229
partition, 42
partition of unity, 255
partitioning

affine arithmetic-driven, 109
binary space, 52
interval arithmetic–driven, 93

phenomenon
cycling, 171
drifting, 171

pivoting rule, 148
Freudenthal, 148, 149
Todd’s J1, 150, 151

point
cut, 29
evaluation, 240
fixed, 240
quadtree, 58
regular, 37
self-intersection, 26
singular, 37, 166
turning, 166

polynomial
Bernstein form, 67, 97, 99
bivariate, 67
factored form, 67, 97
Horner form, 97
implicit, 5
monic, 68
multivariate, 67
numerical stability, 78
power form, 67, 68, 97, 99
resultant, 82
trivariate, 67
univariate, 67

populus deltoides, 305
precise contact modelling (PCM), 279
primitive, skeletal, 268
principle, door-in-door-out, 154
problem, isocontouring, 190
property, honeycomb, 213
protein data bank, 232

quadrics, 101
quadtree, 58

data structure, 60
edge, 58
point, 58
region, 59

R
difference, 271
function, 271
intersection, 271
union, 271

reconstruction
Delaunay-based surface, 227
implicit surface, 230
moving least squares (MLS), 245
multilevel CS-RBF surface, 254
parametric surface, 228
RBF surface, 249
region-growing simplicial surface, 227
simplicial surface, 227

reduction, RBF centre, 252
region

deformation region, 279
interpenetration region, 279

regression, local, 239
residual, 234
riblet, 290
root, 67

isolation, 67, 72
Bernstein base, 78
Descartes’ rule of signs, 72, 73, 78,

79
hull approximation, 78, 79
interval arithmetic, 72
multivariate, 81
Sturm sequences, 72, 74
variation diminishing, 78, 79

multiple, 82
root finding method, 117

saddle
body, 195
face, 195

shell
geometry, 288
wall, 288

shoot, 305
simplex, 49, 147

adjacent, 148
completely labelled, 152, 158
transverse, 154, 159

simplicial
complex, 49
complex data structure, 50
decomposition, 50

350 Index

singularity, 82, 169, 220

cusp, 169

high-curvature point, 169

self-intersection, 170

topological, 26

skeleton, 45

space

partitioning, 51

topological, 41

stage

filling, 180

growing, 180

stencil, 246

stratification, 43–45

Whitney, 43

stratum, 43

subdivision, 52

12-tetrahedral subdivision, 206

24-tetrahedral subdivision, 206

barycentric, 206

octree, 211, 221

quadtree, 208

spatial, 208

tetrahedral, 213

submanifold, 30

embedded, 31

immersed, 31

parametric, 31

regular, 33, 35

surface

blob, 232

explicit, 4

fitting, 229

implicit, 5, 267

nonpolynomial, 104

isosurface, 5

least squares implicit, 234

level set, 5

Levin’s MLS, 245

moving least squares (MLS), 240

multilevel partition of unity (MPU),
255

offset, 267

parametric, 3, 4, 69

projection MLS (PMLS), 246

radial basis function (RBF), 249

VMLS, 246

surface fitting, 227

test
curvature, 218
exclusion, 218

tetrahedron
marching, 201

theorem
implicit function, 16, 28

multivariate, 28
implicit function family, 36
implicit mapping, 18–20
intermediate value, 120
inverse mapping, 12
one-circle, 80
rank, 24

for implicitations, 27
for parametrisations, 25

Sturm, 75
two-circle, 80

topological
equivalence, 9
orientation, 49

topology, 41
weak, 46

traversal, BlobTree, 284
tree

blob, 270
BSP, 52
k-d, 55
oct-, 60

triangulation, 49
Coxeter, 147
Delaunay, 181, 227
Freudenthal, 148
Henderson, 174
maximal, 201
minimal, 201
Todd’s J1, 150

union of implicits, 273
union, max, 277

value
regular, 37
singular, 37

variety
parametrisation, 28
regular, 36

varix, 290, 294
voxels, 188

Index 351

warping

Barr, 284

spatial, 284

whorl, 289

main body, 291

zero set, 145
approximate, 153
piecewise linear (PL), 153

